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Abstract: Multi-channel active noise control (ANC) is currently an
attractive solution for the attenuation of low-frequency noise fields, in
three-dimensional space. This paper develops a controller for the case
when the noise source components are sparsely distributed in space. The
anti-noise signals are designed as in conventional ANC to minimize
the residual errors but with an additional term containing an ¢; norm
regularization applied to the signal magnitude. This results in that only
secondary sources close to the noise sources are required to be active for
cancellation of sparse noise fields. Adaptive algorithms with low com-
putational complexity and faster convergence speeds are proposed.
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[SKL]

Date Received: August 30, 2016 Date Accepted: November 18, 2016

1. Introduction

Active noise control (ANC) developed based on the superposition principle employs
secondary sources to generate anti-noise signals for cancellation of the primary noise.
To deal with noise in a three-dimensional (3D) space, such as in applications of noise
cancellation in aircrafts and automobiles,” multi-channel (MC) ANC equipped with
multiple sensors and multiple secondary sources is adopted.” As typical noise fields are
often non-stationary, a common approach is to use adaptive filters to iteratively calcu-
late the anti-noise signals that drive the secondary sources, in either feed-forward or
feed-back control configurations. Feedback systems are of more interest as they avoid
the need for separate reference sensors to measure the primary noise. The frequency
domain MC ANC (Ref. 4) and its variation [such as Leaky ANC (Ref. 5)] are now
widely used in practice for noise cancellation at error sensor positions and their close
surroundings.®

When the noise source components are sparsely distributed in space (i.e., direc-
tional sparse noise field constructed by a few noise sources), such as industry noise field
in an open area and directional sources in less reverberant rooms, an effective strategy is
to use only the secondary sources that are close to the noise sources for noise cancella-
tion. This means that many secondary source candidates in the MC ANC system can be
inactive reducing the overall system complexity. The sparse feature is exploited by intro-
ducing an additional term to the cost function, which minimizes the residual error. This
term contains an /; norm penalty on the anti-noise signals. A similar solution is used in
sound control and system identification applications exploiting sparsity.”® For frequency
domain MC ANC, the adaptive filters are designed in terms of complex vectors, so the
£ norm constraint should be applied accordingly.

In this paper, we develop two constrained MC ANC formulations to deal with
spatially sparse distribution of noise sources. These algorithms are derived via

®Author to whom correspondence should be addressed. Also at: Research School of Engineering, College of
Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
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combining two variants of the ¢; norm of complex vectors into the conventional MC
cost function. The complex ¢; constrained multi-channel (C¢;-MC) algorithm adds ¢;
norm constraint on the complex anti-noise signals, and the scalar ¢; constrained multi-
channel (S¢;-MC) algorithm adds constraint on sum of the ¢; norm to the real and
imaginary part of the anti-noise signals. Simulations are conducted to evaluate the pro-
posed two algorithms in comparison with the conventional MC and Leaky multi-
channel (Leaky-MC) algorithm.

2. Problem formulation

Let the interested quiet zone be a two-dimensional (or height-invariant 3D) circular
region with radius r. Assume that the noise sources are located outside of the interested
region and have directional sparsity, as shown in Fig. 1. A single microphone array is
placed on the boundary of the region to measure the residual signals and a single loud-
speaker array is placed outside the control region to generate the anti-noise signals.'’

The residual signal at any arbitrary observation point x = {||x||, ¢,} within
the interested region is given by

e(x, k) = v(x, k) +s(x, k), ()
where k = 2nf /c is the wave number, f'is the frequency, c is the speed of sound propa-
gation, v(x, k) is the primary noise signal, and s(x, k) is the secondary sound field gen-

erated by the loudspeakers. The sound field due to the secondary sources (loudspeaker
array) is given by

k)= dy(k)G(xly,. k), )

q=1

where d, (k) is the driving signal for the gth loudspeaker, and G(x|y,, k) denotes the
acoustic transfer function (ATF) between the ¢th loudspeaker and the observation
point x. Let the microphones be positioned at x,,p = 1, ..., P with respect to the origin
O. Then the residual signal vector at the microphone array is given by

e=v+Gd, 3)

where e2le(x), k), ... e(xp, k)", vE[(x1,k), ..., v(xp, k)", d2[di (k), .. dQ( N7,
G is a P x O matrix with the (p, ) element given by G(x,|y,, k). Superscript 7 denotes
transpose of a vector or a matrix.

The objective is to design the anti-noise driving signals d, using the minimum
number of active secondary sources to generate secondary sound field and force the
residual error signals e toward zero. In practical applications, the noise field is often
unknown and time-varying. Therefore, we employ adaptive filters to iteratively update
the weights.

3. Conventional adaptive ANC

3.1 MCANC

The conventional MC approach minimizes the sum of the squares of the residual error
signals with the cost function &(n) = Zﬁzl\ep(n)f = e (n)e(n) = ||e(n)|3, where n is

the iteration index of the adaptive algorithm, and (~)H denotes the conjugate transpose.
By using the steepest descent algorithm, the adaptive filters are updated by

dn+1) = d(n) - gv:(n), &)

' Noise source”
-0 (s

. Adaptive algorithm
O
N Mrcrophone array—f— —mmm

\

Selgo.--O Loudspeaker AITAY — = = = = = —mmmemmm

Fig. 1. (Color online) ANC setup with a circular region and the block diagram of the MC feedback ANC system.
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where u is the adaptation step size, VE(n) = 2Ge(n) is the gradient of the cost func-
tion. The block diagram of the frequency domain MC feedback algorithm is shown in
Fig. 1.

3.2 Leaky-MC ANC

The Leaky-MC algorithm introduces the output power constraints to the adaptive fil-
ter. By minimizing the sum of the squares of the residual error signals and the
weighted sum of anti-noise signals,!' the modified cost function is written as

ELeaky (n) = lle()[3 + plld (n)]13, &)

where p is the leakage factor greater than zero. It can be seen that V& (n)
=2G"e(n) + 2pd(n). Hence the adaptive weights of the Leaky-MC algorithm are
updated as

d(n+1) = (1 - up)d(n) — pG"e(n). (©)

4. Sparsity constrained adaptive ANC

In this section, we exploit the sparse nature of the noise sources to reduce the active
loudspeaker numbers by introducing an additional constraint on the anti-noise signals
into the cost function.

4.1 £y norm constrained MC ANC

One method to enforce a reduction in the number of loudspeakers in MC ANC sys-
tems is by utilizing the compressed sensing techniques.'? This can be done by selecting
the amplitudes of the loudspeaker driving functions as the solution of the following
constrained minimization problem:

r2351|\e<z<>||§ + 3(k)[|d () lo, )

where d(k) is the sparsity level for each frequency bin, and ||d(k)]||, represents a total
number of non-zero elements in the anti-noise signal vector.

However, the problem in Eq. (7) is non-polynomial hard as it entails an
exhaustive search. Therefore, the ¢y norm is either approximated by a continuous func-
tion'* or replaced by the ¢, norm.” Because the ¢; norm regularization is a convex
problem, it can provide a sparse solution with less computational time. In this paper,
we propose two regularization methods involving £; norm in Secs. 4.2 and 4.3.

4.2 Complex £; norm constrained MC ANC
We replace the £y norm in Eq. (7) with the ¢; norm on the complex vector

min Je(k) 5 + AR 0], ®)

oo me

where ||d(k)||, is the sum of the magnitudes of the complex entries of the vector
d(k), A(k) is a controllable parameter to determine the degree of sparse constraint for
the adaptive coefficients.

In the frequency domain adaptive algorithm, combining the squared residual
error signals with the ¢; norm of the weight vector, the gradient of the cost function
can be written as

Véey me(n) = Ve ()3 + V2|d(n)]],, )

V¢ (n) Viéy(n)

where we dropped the frequency dependency and inserted the adaptive index n.
Theorem 1. The gradient of the cost functionécy, mc(n) is given by
Véenmc(n) = 2G"e(n) + 2exp(if(n). (10)

where 0(n) is the vector of phases of complex driving signals dy,(n), q=1,...,0, and
exp(+) denotes the exponential function.
Proof. The term V¢ (n) of Eq. (9) is the same as that of the conventional MC

algorithm, ie., V¢ (n) =2G"e(n). From Eq. (9), we write'"* V&, = 29(|d|,)/od"
= 228(2321 |d,|)/0d*, where the superscript * denotes the complex conjugate. Then
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0 || A, ol ]
o> |dy] od; awd) " oS(d)
g=1 1
7 N - : an
Oldo| Oldo| _, ; 0ldy
I ady, | _88‘%(dQ) 93 (dp) ]
Given the absolute value of a complex number |d,| = Sck(dq)2 + S(dq)z, where R(-)
and $(+) denote the real and imaginary parts of the argument, we have
R(d 3(d,
8;"1;’[' — ) _ cose, ai'dj W) Ghe, ap)
() JR(d) +5(d,)? S@)  fR(d,)? +5(d,)?

By substituting Eq. (12) into Eq. (11), V&, can be simplified to Zexp(i@). This com-
pletes the proof. Ul

Following the steepest descent updating, the final update equation of the C
£1-MC algorithm can be written as

dn+1) =d(n) — uG"e(n) — % ulexp(if(n)). (13)

Compared to the conventional MC approach, the additional constraint %,ul exp(if(n))
tends to shrink more entries in the anti-noise signals vector to zero. As evidenced in
Sec. 5, this method speeds up the convergence in the spatially sparse noise fields.

4.3 Scalar £; norm constrained MC ANC

In the second method, we replace the ¢y norm in Eq. (7) with the sum of the ¢, norm
on the real and imaginary part of the anti-noise signals. The new cost function
becomes

Estyme(n) = e ()13 + (IR (), + 1S@@)]),)- (14)

Instead of forcing the complex weight entries toward zero directly, we force the real
and imaginary parts of the complex entries toward zero at the same rate.
Theorem 2. The gradient of the cost functionis, yc(n) is given by

Vésy, mc(n) = Ve (n)]3 + VA(IREm), + 1S(d(n))]];) (15)
V¢ (n) V& (n)
=2G"e(n) + A(sgn(R(d(n))) + isgn(S(d(n)))), (16)

where sgn(-) is a component-wise function which is defined as

sen) = { o/ 970
Proof.
R R}
ve - <<”afz ), (||8£lg>||1)), a7

The complex partial differentiation based on d* can be separated by'’

an%(d)nl:;(au%( i, 3II§R(d>|1> and aus(d)|1:1<a||<s<d>||1+ia|%<d>||1>
2 2 '

od” oR(d) 03(d) od* oR(d) 03(d)
(18)
Each item in Eq. (18) can be given by
I|R(d)|| AR, _aIS@)|; _ S|
“oR@) L — son(R(d)), 93() L — R L—0 and 3@ T — sen(S(d)).
19)

By substituting Egs. (18) and (19) into Eq. (17), we obtain the second term of Eq. (16).
Also note from Theorem 1 V¢, (n) = 2G" e(n) which is the first term of Eq. (16). O
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Thus, the scalar ¢; norm constrained adaptive algorithm (S¢;-MC) can be
written as

dln-+ 1) = d(n) — G e(n) — 3 pi(sen(R(d(n))) +isen(S(d().  (20)

Compared to Eq. (13), in Eq. (20) the exponential function of a complex vector is
replaced by the sign function of two real vectors, which can save the computational com-
plexity in each iteration. It is a significant advantage in the real time implementations.

5. Simulation results

We compare the proposed algorithms (C/¢;-MC and S¢;-MC) with the MC algorithm®
and the Leaky-MC algorithm'! in a free-field environment. Let the desired quiet zone
be a circular region of radius of 1m. The ANC system consists of 11 microphones
placed equi-angularly on the boundary of the region and 11 loudspeakers placed on a
circle of R=2m. A point noise source is placed at 0° at a radius of 2.5m. A signal-to-
noise ratio of 40 dB white Gaussian noise is added at each microphone recording. To
evaluate the noise reduction (NR) performance inside the region (NRj,), sound pres-
sure (e;,) at M =1296 uniformly placed points inside the regions are examined. We
define NRj, () as follows:

lein ()15 /M
e (0)]5/M

where e;,(n) denotes the residual signals on the points inside the region at the nth itera-
tion, and e;,(0) represents the primary noise field in the region. The sparsity parameter

NRi,(n) = 101ogy 21
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Fig. 2. (Color online) Comparison of the convergence speed and NR level using different ANC algorithms:
(a) NR on the boundary and (b) NR inside the region.
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A(k) can be searched over the set [0, HG(k)Hv(k)Hoo), and the selection depends on a
trade-off between the active loudspeaker number and the NR level in the steady state.
As the primary noise field is often unknown, we can estimate the noise level using the
microphone recordings and obtain the searching range. During the adaptive process, if
significant changes happen to the microphone recordings, A(k) needs to be reset to fit
the varying noise field.

First, we investigate the narrowband performance of different algorithms. The
frequency of the noise field is 200 Hz. The initial value of d is d(0) = [0,0,...,0]”, and
hence 0(0) = [0,0,...,0]”. Figure 2 shows the convergence performance and the NR
level for each iteration. Compared with MC, adding the ¢; constraint will dramatically
increase the convergence speed, especially for NR inside the region, but adding the
power constraint (Leaky-MC) can only slightly increase the speed. For NR perfor-
mance, adding the constraint to the anti-noise signals (C¢;-MC, S/,-MC, and Leaky-
MC) will decrease NR in steady state. From the comparison of Figs. 2(a) and 2(b), we
can see that for the Leaky-MC algorithm, after convergence, the NR performance
inside the region is much worse than NR on the boundary. While for the same /, both
C/;-MC and S¢;-MC can achieve a similar NR level in steady state on the microphone
points and inside the region. Since our motivation is to cancel the noise over the entire
region, the proposed C¢;-MC and S¢;-MC algorithms have considerable improvement
than the conventional MC and Leaky-MC algorithms.

Figure 3 demonstrates the performance in terms of the energy of anti-noise
signals and active loudspeaker numbers. Here we define the jth loudspeaker is active
when ||d;|| > 2%)||dax||. From Fig. 3(a), compared to MC, the constrained MC

@)
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Fig. 3. (Color online) Comparison of the anti-noise signals using different ANC algorithms: (a) loudspeaker
driving signal energy for each iteration and (b) active loudspeaker numbers for each iteration.
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Table 1. Broadband performance using different ANC algorithms.

NR boundary (dB) NR inside (dB) Active speaker numbers
Frequency
(Hz) MC C(-MC St -MC MC C{-MC  S¢;-MC - MC  C4-MC  S¢-MC
50 —53.04 —49.50  —48.83 —6947 —6228  —58.67 11 4 5
100 —48.30  —38.62  —38.76 —6594 —49.39  —48.25 9 3 3
150 —46.88  —43.58  —-40.49 3843 —49.61 —49.69 9 3 3
200 —50.80  —4325  —4041 —-20.84 —41.04 3584 11 1 2
250 —81.20 —41.81 —38.57 —66.44 —4122  -35.73 7 1 1
300 —49.85 —4198  —40.05 2222 3898  —38.98 9 1 1

algorithms can reduce the total energy of the anti-noise signals, which can avoid the
overloading of the secondary sources. For the Leaky-MC algorithm, all the loud-
speaker candidates are active in steady state, as shown in Fig. 3(b). Whereas both C/;-
MC and S¢;-MC can reduce the active loudspeaker numbers, over the conventional
algorithms. After convergence, the loudspeakers which are far away from the noise
source are non-active. A larger value of A will force more loudspeakers non-active.
When 4 = 0.04, both C/;-MC and S/;-MC can reduce the active loudspeaker numbers
from 11 to 1, which corresponds to the case that only the loudspeaker candidate
located at 0° is active in the steady state. When the primary sound field is constructed
by multiple primary sources, for example, two primary sources in different locations,
the results are found to be similar to that containing a single primary source.

Table 1 shows the broadband performance for different algorithms after 50
iterations. The frequency range of the noise field is [50, 300] Hz. For the MC algo-
rithm, the NR is not converged, thus the NRs inside the region are not stable over the
frequency range. For the proposed algorithms, by selecting a proper parameter
value for each frequency, 40 to 50 dB NR can be achieved on the boundary and inside
the region. Compared to the MC algorithm, both C/;-MC and S/;-MC can reduce the
active loudspeaker numbers. From the comparison of the proposed algorithms, we can
see that C/;-MC has a slightly better broadband performance than S¢;-MC, but
S¢;-MC can achieve a significant NR with less computational complexity.
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