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Abstract 19 

Habitat loss due to land conversion for agriculture is a leading cause of global biodiversity loss and 20 

altered ecosystem processes. Restoration plantings are an increasingly common strategy to address 21 

habitat loss in fragmented agricultural landscapes. However, the capacity of restoration plantings to 22 

support reproducing populations of native plants and animals is rarely measured or monitored. This 23 

review focuses on avifaunal response to revegetation in Australian temperate woodlands – one of 24 

the world’s most heavily altered biomes. Woodland birds are a species assemblage of conservation 25 

concern, but only limited research to date has gone beyond pattern data and occupancy trends to 26 

examine whether they persist and breed in restoration plantings. Moreover, habitat quality and 27 

resource availability, including food, nesting sites, and adequate protection from predation, remain 28 

largely unquantified. Several studies have found that some bird species, including species of 29 

conservation concern, will preferentially occupy restoration plantings relative to remnant woodland 30 

patches. However, detailed empirical research to verify long-term population growth, colonisation 31 

and extinction dynamics is lacking. If restoration plantings are preferentially occupied but fail to 32 

provide sufficient quality habitat for woodland birds to form breeding populations, they may act as 33 
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ecological traps, exacerbating population declines. Monitoring breeding success and site fidelity are 34 

under-utilised pathways to understanding which, if any, bird species are being supported by 35 

restoration plantings in the long term. There has been limited research on these topics 36 

internationally, and almost none in Australian temperate woodland systems. Key knowledge gaps 37 

centre on provision of food resources, formation of optimal foraging patterns, nest predation levels 38 

and the prevalence of primary predators, the role of brood parasitism, and the effects of patch size 39 

and isolation on resource availability and population dynamics in a restoration context. To ensure 40 

that future restoration plantings benefit woodland birds and are cost-effective as conservation 41 

strategies, the knowledge gaps identified by this review should be investigated as priorities in future 42 

research. 43 

Introduction 44 

A large fraction of the world’s woodland and forest avifauna is declining (IUCN 2016; Waldron et 45 

al. 2017), reflecting the well-documented global trend of biodiversity loss associated with 46 

intensifying anthropogenic activities (Butchart et al. 2010). An increasingly common strategy to 47 

address habitat loss in fragmented agricultural landscapes is the creation of habitat through 48 

revegetation, often referred to as “restoration plantings” (Pastorok et al. 1997; Cairns 2000; Rey 49 

Benayas et al. 2009; Barral et al. 2015). These are typically small patches of planted native 50 

vegetation, and are often intended to facilitate landscape connectivity and conservation of fauna 51 

such as birds (Block et al. 2001; Freudenberger 2001). Patterns of bird species occupancy and 52 

abundance in restoration plantings are commonly used to infer habitat quality (Cunningham et al. 53 

2008; Munro et al. 2011; Lindenmayer et al. 2012). However, there has been limited research on 54 

the population responses of birds to restoration plantings or other forms of habitat restoration, such 55 

as remediation (Larison et al. 2001; Germaine and Germaine 2002). It is crucial to understand the 56 

population dynamics of birds in revegetated landscapes to establish whether restoration plantings 57 

provide quality habitat in which birds can survive and reproduce. This is particularly relevant for 58 

threatened and declining bird assemblages that may come to rely on restoration plantings for long-59 

term population stability. 60 

61 

The ecological value of temperate woodland restoration plantings for woodland birds in Australia 62 

has traditionally been assessed using pattern data – primarily presence and abundance of bird 63 

species in study sites. This pattern-based research (e.g. Table 2) provides a critical basis for 64 

understanding the potential value of restoration plantings for woodland birds in fragmented 65 

environments. However, to supplement the existing body of knowledge, a much deeper 66 

understanding is needed of the demographic and behavioural responses (survival, site fidelity, 67 
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breeding success, dispersal, etc.) of woodland bird populations to habitat restoration. This is 68 

fundamental to determine the conservation and management value of restoration plantings, 69 

including their potential contribution to reversing species declines (Bennett and Watson 2011). For 70 

example, species that have been classified as ‘planting specialists’ (Table 1) may be expected to 71 

successfully breed in restoration plantings, but this has not been adequately tested. It is therefore 72 

essential to begin to explore these processes in a restoration context, asking, ‘Do restoration 73 

plantings facilitate the long-term persistence of birds in fragmented landscapes?’ 74 

75 

Previous research on bird community population dynamics, such as breeding success, has mostly 76 

dealt with birds in remnant habitat (e.g. Hoover et al. 1995; Zanette and Jenkins 2000; Berry 2001; 77 

Zanette 2001; Herkert et al. 2003; Debus 2006a; Debus 2006b; Holoubek and Jensen 2016), with a 78 

subset of comparative studies in fragmented and intact landscapes (e.g. Burke and Nol 2000; 79 

Cooper et al. 2002; Luck 2003). The majority of earlier work in revegetated landscapes has focused 80 

on species richness and abundance, with an emphasis on monitoring for occupancy by birds through 81 

time after establishment of restoration plantings (e.g. Taws 2002; Twedt et al. 2002; Martin et al. 82 

2004; Barrett et al. 2008; Saunders and Nicholls 2008; Freeman et al. 2009; Gould 2011; Munro et 83 

al. 2011; Becker et al. 2013; Lindenmayer et al. 2016). This earlier research has collectively 84 

established that some woodland bird species are able to colonise and occupy restoration plantings. 85 

The pressure of potential extinction debts for woodland birds (Ford et al. 2009) – that is, continued 86 

declines even after habitat loss and degradation (or other challenges) are eliminated or reversed 87 

(Kuussaari et al. 2009) – adds impetus to the need for replacing lost woodland habitat. However, it 88 

is imperative the effects of revegetation on avifauna are more comprehensively understood, lest 89 

they fail to address (or at worst, exacerbate) population declines. 90 

91 

Approach 92 

In this paper, we review the current knowledge on avifaunal response to revegetation and habitat 93 

restoration, and provide a general overview and synthesis of existing and future research directions 94 

on the topic of woodland birds in restoration plantings. We focus largely on Australian temperate 95 

woodlands, the cover of which has been reduced by up to 90% over the past 150 years as a result of 96 

land clearing for agriculture (Paton and O'Connor 2010). We build on the preliminary overview by 97 

Munro et al. (2007), consolidating the most recent research on the relationship between birds and 98 

restoration plantings and examining the available information that underpins practical restoration of 99 

woodland habitat. We move beyond the scope of previous reviews by exploring how the 100 

implementation of restoration plantings might influence the long-term survival and persistence of 101 

woodland bird communities in fragmented agricultural landscapes. Finally, we identify gaps in the 102 
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current knowledge and propose further research that would enhance understanding of the population 103 

dynamics of woodland birds in restoration plantings and revegetated landscapes. 104 

105 

We identified relevant literature for this paper by searching publication databases and citation lists, 106 

including ScienceDirect, Scopus and Google Scholar. We took a non-systematic approach and used 107 

a broad range and combination of search terms, including ‘woodland birds’, ‘breeding success’, 108 

‘population dynamics’, ‘occupancy’, ‘distribution’, ‘revegetation’ and ‘restoration’. We searched 109 

the internet and an institutional library catalogue for non-peer-reviewed work including books, 110 

theses and reports. 111 

Background  112 

Habitat degradation and restoration 113 

Temperate woodlands once covered an extensive area of southern Australia, however, the vast 114 

majority has been cleared for agriculture since European settlement (Saunders and Curry 1990; 115 

Lindenmayer et al. 2010a; Bradshaw 2012). Estimates vary, but around 32 million hectares, or up to 116 

90%, of native temperate woodland vegetation cover has been cleared (Vesk and Mac Nally 2006; 117 

Paton and O'Connor 2010). Scattered remnants persist, but due to their isolation and degradation 118 

history, they are vulnerable to threatening processes such as agricultural intensification, grazing, 119 

nutrient enrichment, weed invasion, and climate change (Eldridge 2003; Maron and Fitzsimons 120 

2007; Duncan and Dorrough 2009; Mac Nally et al. 2009; Prober et al. 2012; 2014). 121 

122 

The negative effects of broad-scale habitat clearance on the Australian environment began to be 123 

widely recognised in the 1980s (Saunders et al. 1991; Hobbs and Saunders 2012; Lindenmayer et 124 

al. 2013; Campbell et al. 2017). Changes in attitude towards land management throughout the 125 

1980s and 1990s led to small-scale revegetation programs that were initially instigated by the 126 

farming and environmental sectors to address issues such as salinity and erosion (Stirzaker et al. 127 

2002; Campbell et al. 2017), with larger-scale government-initiated revegetation programs such as 128 

the National Tree Program and the One Billion Trees Program applied within the next two decades 129 

(Hajkowicz 2009; Lindenmayer et al. 2013). Many early plantings were implemented without a 130 

well-defined wildlife conservation plan, but have nonetheless in some cases been occupied by 131 

woodland birds and other fauna (Munro et al. 2007; Lindenmayer et al. 2016). 132 

133 

In more recent years, some restoration plantings have been implemented with clear plans and goals 134 

relating to ecological factors, such as the habitat requirements of focal species (Freudenberger 2001; 135 
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Lindenmayer et al. 2013). Knowledge of effective revegetation techniques has also been used to 136 

begin construction of large-scale habitat linkage corridors (e.g. Gondwana Link) through the 137 

acquisition and revegetation of farming properties (Paton and O'Connor 2010). An ongoing (to 138 

2020), large-scale government initiative is the 20 Million Trees Program, which aims to “improve 139 

the extent, connectivity and condition of native vegetation”, with explicit reference to threatened 140 

species such as the southern emu-wren (Stipiturus malachurus) and regent parrot (Polytelis 141 

anthopeplus) (Australian Government Department of the Environment and Energy 2017; Landcare 142 

Australia 2017). Vegetation is also increasingly being planted for carbon sequestration, and such 143 

plantings have the potential to enhance the conservation of biodiversity (Bradshaw et al. 2013; 144 

Collard et al. 2013). 145 

146 

With ongoing large-scale revegetation programs such as the 20 Million Trees Program underway in 147 

Australia, extensive areas of temperate woodland restoration plantings are being added to the 148 

landscape every year (Atyeo and Thackway 2009; Campbell et al. 2017). However, it is important 149 

to note that Australia’s rate of land clearing remains among the highest in the world (Bradshaw 150 

2012; Evans 2016). With an ongoing net loss of habitat, restoration plantings are a critical 151 

conservation strategy for woodland birds and other fauna. Many restoration projects claim to focus 152 

on creating habitat for threatened and/or declining wildlife (e.g. Landcare Australia 2017). There is 153 

evidence that a focal-species approach can be used to develop guidelines for revegetation programs 154 

(Freudenberger 2001; Freudenberger and Brooker 2004; Wood et al. 2004). However, its usefulness 155 

as a conservation tool is debated (Lambeck 2002; Lindenmayer et al. 2002). Recent research 156 

suggests that although the focal-species approach has some merit, it is also necessary to ensure the 157 

flexibility of management actions such that all species are accounted for in conservation; focusing 158 

on one species may not benefit others of conservation concern, especially those which might not 159 

occur in species-rich assemblages (Lindenmayer et al. 2014). Furthermore, a generalised lack of 160 

information on the habitat requirements and population processes of many threatened and declining 161 

woodland bird species (Rayner et al. 2014) means that many revegetation programs are being 162 

implemented without sufficient knowledge as to the habitat requirements of the species they should 163 

be supporting (Block et al. 2001; Montague-Drake et al. 2009; Polyakov et al. 2015). 164 

165 

Reviews of restoration practice as early as the 1990s have outlined steps that should be taken to 166 

ensure the successful restoration of fragmented and degraded ecosystems, as well as challenges 167 

posed by large-scale revegetation (Pastorok et al. 1997; Block et al. 2001; Hobbs 2003; 168 

Lindenmayer et al. 2008; Duncan and Dorrough 2009; Prober and Smith 2009; Campbell et al. 169 

2017); also see the National Standards for the Practice of Ecological Restoration in Australia 170 
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(McDonald et al. 2016). The importance of setting measurable goals for restoration is crucial and 171 

underpins how we define long-term success in a restoration context (Cairns 2000; Block et al. 2001; 172 

Ruiz-Jaen and Aide 2005; Herrick et al. 2006; Hobbs 2017). This should include assessing the 173 

capacity of restoration plantings to support reproducing populations, an attribute that is rarely 174 

measured in restoration monitoring projects (Ruiz-Jaen and Aide 2005; Vesk and Mac Nally 2006). 175 

Patterns: bird responses to revegetation in Australian temperate woodlands 176 

Many pattern-based studies have investigated the effects of habitat loss, fragmentation and 177 

degradation on declining woodland bird species in Australia (reviewed by Ford et al. 2001; Ford 178 

2011); fewer have examined how these species respond to restoration plantings (Nichols and 179 

Watkins 1984; Heath 2003; Robinson 2006; Lindenmayer et al. 2007; Barrett et al. 2008; 180 

Cunningham et al. 2008; Saunders and Nicholls 2008; Loyn et al. 2009; Selwood et al. 2009; 181 

Lindenmayer et al. 2010b; Munro et al. 2011; Shanahan et al. 2011; Lindenmayer et al. 2012; 182 

Bennett et al. 2013; Vesk et al. 2015). To date, much of the research on birds in revegetated 183 

landscapes has focused on answering the question ‘Do birds use restoration plantings?’, and 184 

concurrently, ‘Which plantings are preferentially selected?’ 185 

186 

Previous research has discovered that some woodland bird species, including species of 187 

conservation concern, will readily occupy restoration plantings, and may even preferentially select 188 

plantings over remnant woodland (Nichols and Watkins 1984; Heath 2003; Kinross 2004; Martin et 189 

al. 2004; Kavanagh et al. 2007; Cunningham et al. 2008; Saunders and Nicholls 2008; Loyn et al. 190 

2009; Lindenmayer et al. 2010b; Martin et al. 2011; Lindenmayer et al. 2012). These species have 191 

been termed ‘planting specialists’ – species that are more likely to be found in restoration plantings 192 

than in woodland remnants (Table 1). It should be noted that inferred habitat preferences for some 193 

species, such as the eastern yellow robin, scarlet robin, and southern whiteface (see Table 1 for 194 

scientific names), are not consistent among studies. 195 

196 

TABLE 1 197 

198 

Bird species occupancy and abundance in restoration plantings appears to be a complex relationship 199 

between context (location within the landscape, e.g. proximity to other areas of native vegetation), 200 

configuration (e.g. shape, area), and content (structural and floristic variables) (Nichols and Watkins 201 

1984; Kavanagh et al. 2007; Cunningham et al. 2008; Kinross and Nicol 2008; Lindenmayer et al. 202 

2010b; Munro et al. 2011; Lindenmayer et al. 2016) (Table 2). Differences in bird community 203 

composition in restoration plantings and remnant woodland have been consistently reported in 204 
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Australia (Arnold 2003; Loyn et al. 2007; Martin et al. 2011; Munro et al. 2011; Lindenmayer et al. 205 

2012), as well as in similarly restored habitat patches in Brazil (Becker et al. 2013), China (Zhang 206 

et al. 2011), Mexico (MacGregor-Fors et al. 2010), and the United States (Brawn 2006; Ortega-207 

Álvarez et al. 2013). Some studies note that the bird community continually changes following 208 

initial establishment as planted vegetation matures and becomes more similar to remnant habitat 209 

(Lindenmayer et al. 2016; Debus et al. 2017); generalists and species favoured by open habitats are 210 

more common in the early stages, while shrub-dwelling and canopy specialists colonise as the 211 

habitat structure develops over time (Twedt et al. 2002; Heath 2003; Jansen 2005; Freeman et al. 212 

2009; Gould and Mackey 2015). 213 

214 

Habitat composition and structure strongly influence bird community composition and abundance 215 

in restoration plantings (Arnold 2003; Barrett et al. 2008; Munro et al. 2011; Gould and Mackey 216 

2015). In general, woodland bird abundance and diversity appears to increase with habitat 217 

complexity – the inclusion of a more diverse plant species assemblage, leaf litter, and an increase in 218 

canopy cover have all been positively associated with bird species richness and abundance (Barrett 219 

et al. 2008; Bonifacio et al. 2011; Munro et al. 2011; Gould and Mackey 2015). It is important to 220 

recognise the diverse ways in which different species or foraging guilds may respond to habitat 221 

features in restoration plantings. For example, Comer and Wooller (2002) found that a “clumped” 222 

spatial arrangement of shrubs in restoration plantings facilitated competitive exclusion of small 223 

honeyeaters by larger species, decreasing overall nectarivore diversity in the plantings. Barrett et al. 224 

(2008) found that ground-foraging insectivores were underrepresented in restoration plantings, and 225 

postulated that lack of native forb diversity may have been a likely cause. According to Arnold 226 

(2003), the inclusion of canopy and perching sites within one metre of the ground results in a 227 

greater abundance of insectivores in restoration plantings. Martin et al. (2004) found significantly 228 

lower abundances of species who primarily forage on bark in restoration plantings compared to 229 

woodland remnants; this may be due in part to the fact that certain habitat features, such as 230 

decorticating bark and fallen timber, take decades or even centuries to develop in temperate 231 

woodland habitats (Cunningham et al. 2007; Mac Nally 2008; Vesk et al. 2008; Munro et al. 2009). 232 

This may also be why restoration plantings are not predicted to support certain woodland-dependent 233 

bird species until 40, 60, or 100 years after establishment (Thomson et al. 2009). 234 

235 

There is evidence that the amount and proximity of remnant or planted vegetation in the area 236 

surrounding a restoration planting may have as much, if not more, influence on bird assemblage 237 

than the content of the planting itself (Kavanagh et al. 2007; Lindenmayer et al. 2007; 2010b). The 238 

rufous whistler (Pachycephala rufiventris) and grey fantail (Rhipidura albiscapa) are two species 239 
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that exhibit a positive response to an increase in the amount of planted native vegetation 240 

surrounding a restoration planting (Lindenmayer et al. 2010b). A habitat patch that is close to other 241 

patches may provide better foraging opportunities for species with large home ranges, such as the 242 

rufous whistler. Well-connected restoration plantings may also be key to supporting species whose 243 

local persistence is limited by dispersal, such as the brown treecreeper (Climacteris picumnus). 244 

245 

TABLE 2 246 

Process: breeding and persistence in restoration plantings 247 

Do restoration plantings actually provide suitable breeding habitat for woodland birds, and if they 248 

do, are attempts at breeding by birds in these sites successful? To persist in the long term, birds 249 

must be able to gain required resources from the patch they select (or from adjacent areas). This 250 

includes resources such as food and nesting sites, but also habitat services such as adequate 251 

protection from predation and competition (Figure 1). 252 

253 

FIGURE 1 254 

255 

There is documented evidence of breeding activity and site fidelity in multiple woodland bird 256 

species colonising young restoration plantings (2-3 years old) (Barrett et al. 2008). Bird breeding 257 

activity also has been reported in more mature plantings (up to 26 years old for directly planted 258 

sites, and 111 years for restored woodland remnants) (Selwood et al. 2009; Mac Nally et al. 2010; 259 

Bond 2011). However, species preference for, and occupancy of, a given habitat type is not 260 

necessarily correlated with long-term survival and persistence (Van Horne 1983; Battin 2004; Loyn 261 

et al. 2009). This is particularly relevant for declining species, which may occupy a site but display 262 

only limited evidence of successful breeding (Selwood et al. 2009; Mac Nally et al. 2010). 263 

264 

Restored habitats, including restoration plantings, have the potential to become ecological traps for 265 

bird populations. Ecological traps occur when individuals use habitat cues to preferentially colonise 266 

sites that are of inferior habitat quality and/or associated with lower breeding success than other 267 

sites (Kokko and Sutherland 2001; Schlaepfer et al. 2002; Battin 2004; Robertson and Hutto 2006). 268 

This concept differs from an ecological ‘sink’, which is simply an area of poor-quality habitat that 269 

is not preferentially occupied, in which the population tends toward decline (Dias 1996). 270 

Individuals may also inadvertently avoid high-quality patches due to misleading habitat cues, which 271 

likewise creates an ecological trap mechanism at the landscape level (Gilroy and Sutherland 2007). 272 

If restoration plantings were to act as ecological traps, with remnant habitat patches as the 273 
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population sources, metapopulation declines may be worsened rather than reversed by the extensive 274 

planting of native vegetation (Figure 2). 275 

276 

FIGURE 2 277 

278 

There are some instances in the global literature of restored habitats acting as ecological traps. For 279 

example, Larison et al. (2001) found that the song sparrow (Melospiza melodia) in restored riparian 280 

forest in California had lower reproductive success than in naturally regenerating or mature forest, 281 

due to the restored stands providing fewer nesting site choices and less protection from predation. 282 

Managed prairie sites were described as ecological traps by Shochat et al. (2005), as higher 283 

invertebrate abundances attracted breeding birds which subsequently experienced poorer nesting 284 

success than in other sites. Chalfoun and Martin (2007) also documented lower nest success of 285 

Brewer’s sparrow (Spizella breweri) in North American shrub-steppe landscapes with greater shrub 286 

cover, despite greater densities of birds settling in these landscapes. Low-density populations, such 287 

as those of many declining woodland bird species in Australia, face a high risk of local extinction in 288 

ecological traps (Kokko and Sutherland 2001). Many Australian woodland birds are relatively long-289 

lived – 10-20 years is common in many species (Australian Bird and Bat Banding Scheme 2016). 290 

Consequently, there may be a time-lag before the effects of a potential ecological trap mechanism 291 

become apparent. It is therefore important to assess whether woodland birds are able to successfully 292 

breed in restoration plantings. In the following sections, we discuss the primary factors likely to 293 

influence the reproductive success of breeding birds in restoration plantings. 294 

295 

Nest predation 296 

Predation is the primary driver of nest failure in most bird communities, causing up to 95% of failed 297 

breeding attempts (Hanski et al. 1996; Zanette and Jenkins 2000; Guppy et al. 2017; Okada et al. 298 

2017). Limited work has been done on the effects of predation on nest success in restoration 299 

plantings internationally (Larison et al. 2001; Germaine and Germaine 2002), and no published 300 

studies to date have sought to quantify nest predation or nest success in Australian temperate 301 

woodland restoration plantings. Typical predation rates on the nests of birds vary greatly between 302 

species, even for those with similar nest structures (Ford et al. 2001; Weidinger 2002). For 303 

example, studies of the cup-nesting Australasian robins (Petroicidae) have consistently detected low 304 

nest success rates – in the range of 10-47% – and identified nest predation as the most common 305 

cause of failure (Robinson 1990; Zanette and Jenkins 2000; Armstrong et al. 2002; Debus 2006c). 306 

Conversely, fantails (Rhipiduridae) typically have a 59-71% nest success rate, despite building cup-307 
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nests that are less cryptic than those of robins (Cameron 1985). Parental behaviour, brood behaviour 308 

(e.g. begging), nest site choice and concealment, and habitat variables are among several factors 309 

that may interact and contribute to highly variable nest predation rates within and among bird 310 

communities (Martin et al. 2000; Haskell 2002; Weidinger 2002; Haff and Magrath 2011; 311 

Cancellieri and Murphy 2014). This variability is reflected in the diverse outcomes of nest predation 312 

studies (e.g. Zanette and Jenkins 2000; Debus 2006c; Guppy et al. 2017), and highlights the 313 

importance of conducting such studies in restoration plantings. 314 

315 

Nest predation is also fundamentally dependent on the type and abundance of predators in the 316 

vicinity of the nest (Muchai and du Plessis 2005; Guppy et al. 2017). Avian predators cause up to 317 

96% of nest predation events in Australian forests and woodlands (Gardner 1998; Piper et al. 2002), 318 

and many predatory bird species, such as the pied currawong (Strepera graculina) and Australian 319 

magpie (Cracticus tibicen), have been favoured by habitat loss and fragmentation in temperate 320 

woodlands (Taylor and Ford 1998; Maron 2007). We might therefore expect to see higher rates of 321 

nest predation in restoration plantings in a fragmented landscape, where these species are more 322 

abundant, than in intact woodland remnants. Predator control may be an effective way of improving 323 

nest success in woodland birds (Debus 2006c), but is rarely undertaken – perhaps due to the 324 

considerable effort and resources required, in addition to the complex ecological and ethical 325 

considerations associated with controlling native predators (Wallach et al. 2010; 2015). 326 

327 

Patch size and isolation can interact with predation risk to influence breeding success and thus 328 

recruitment and persistence of birds in fragmented landscapes (reviewed by Stephens et al. 2004). 329 

Studies in fragmented landscapes worldwide have recorded lower breeding success and 330 

reproductive output in smaller habitat patches than in larger patches (Hoover et al. 1995; Burke and 331 

Nol 2000; Zanette and Jenkins 2000; Zanette 2001; Walk et al. 2010). These findings are frequently 332 

attributed to ‘edge-effects’, i.e. increased nest predation near habitat edges (Hoover et al. 1995; 333 

Burke and Nol 2000; Willson et al. 2001; Vander Haegen et al. 2002; Herkert et al. 2003; Wozna et 334 

al. 2017). However, this notion is challenged by other studies reporting no difference in nesting 335 

success or recruitment in smaller fragments (Lehnen and Rodewald 2009; Lollback et al. 2010; 336 

Walk et al. 2010) and/or no evidence of edge-effects increasing predator activity on nests (Hanski et 337 

al. 1996; Lahti 2001; Woodward et al. 2001; Piper et al. 2002; Boulton and Clarke 2003; Reino et 338 

al. 2010). It is important to consider the spatial scale of fragmentation relative to nest predation and 339 

its potential effects on bird populations – that is, whether fragmentation is occurring at the 340 

landscape, patch or edge scale (Zanette and Jenkins 2000; Stephens et al. 2004). Furthermore, 341 
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different predation processes, including different primary predators, may operate in fragmented 342 

versus intact landscapes (Vander Haegen et al. 2002). 343 

344 

The contrasting outcomes of studies of nest success in fragmented landscapes imply that the effects 345 

of influential processes are either species-specific or landscape-dependent or both. In general, we 346 

might expect species that typically experience high levels of nest predation to experience greater 347 

nest success in larger restoration plantings, or in plantings surrounded by a greater amount of 348 

vegetation cover. However, surrounding land-use may have unexpected effects on the distribution 349 

and abundance of nest predators and thus nesting success, irrespective of patch size or connectivity. 350 

Indeed, a recent study by Okada et al. (2017) found effects of both nest type and the surrounding 351 

matrix (i.e. land use) on breeding success of small-bodied woodland birds in a fragmented 352 

landscape. The results were contrary to expectations – nesting success for dome-nesting species was 353 

higher in woodland patches surrounded by grazing land than patches surrounded by pine 354 

plantations, with abundance of avian predator nests thought to be a contributing factor. Monitoring 355 

nest predation and success is an under-utilised pathway to understanding which species are being 356 

supported in the long term, and enabling management decisions to tailor restoration programs for 357 

species more vulnerable to predation. These topics should be thoroughly investigated in future 358 

research. 359 

360 

Nest site selection 361 

The importance of nest site microhabitat selection in bird breeding success has been documented 362 

both internationally (Martin 1998; Mezquida 2004; Smith et al. 2009; Schlossberg and King 2010; 363 

Murray and Best 2014) and in Australia (Oliver et al. 1998; Cousin 2009; Soanes et al. 2015). 364 

However, research concerning woodland species nesting in restoration plantings is lacking, and may 365 

be a critical determinant of breeding success (Martin 1998). This is particularly relevant for species 366 

vulnerable to predation, such as cup-nesters (Okada et al. 2017). Nest-site selection for such species 367 

may act as a stronger selective pressure than other variables. For example, the western yellow robin 368 

(Eopsaltria griseogularis) favours sites with views of the nest surroundings over foraging 369 

opportunities when selecting a nest site (Cousin 2009), indicating that predation is a primary 370 

concern for nesting individuals of this species. It is crucial that restoration plantings provide 371 

suitable nesting sites for a range of woodland bird species, lest they fail to support breeding 372 

populations (Larison et al. 2001). For example, the inclusion of trees with dense and/or pendulous 373 

foliage may increase availability of well-concealed nesting sites for foliage-nesters such as the 374 

weebill and yellow thornbill. Species that nest in lower strata, such as the superb fairy-wren and 375 

speckled warbler, may be better supported with the presence of native grasses and/or the 376 
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accumulation of dead woody material and leaf litter in the ground layer. These are factors rarely 377 

considered when constructing or monitoring restoration plantings. 378 

379 

Resource availability 380 

Resource distribution and abundance in habitat patches are critical determinants of woodland bird 381 

site occupancy and foraging patterns (Gilmore 1986; Barrett et al. 2008; Vesk et al. 2008; 382 

Montague-Drake et al. 2009; Munro et al. 2011). For example, litter and bare ground are important 383 

habitat features supporting ground-foraging birds such as robins and thornbills (Bromham et al. 384 

1999; Antos and Bennett 2006). Species in these groups also prefer a low density of shrubs, as does 385 

the diamond firetail (Antos et al. 2008). Other species may rely on various other resources, such as 386 

woody debris – reintroduced brown treecreepers in a vegetation reserve responded positively only 387 

when woody debris was included as a habitat feature (Bennett et al. 2013). A lack of woody debris 388 

may be one reason the brown treecreeper is currently underrepresented in restoration plantings 389 

(Martin et al. 2004; 2011; Lindenmayer et al. 2012; Gould and Mackey 2015). Furthermore, 390 

woodland bird species, including the brown treecreeper and southern whiteface, are known to vary 391 

their foraging habits and use of foraging substrates between the breeding and non-breeding seasons 392 

(Antos and Bennett 2006). This highlights the importance of using prior knowledge of species’ 393 

habitat requirements to inform predicted responses of birds to habitat restoration (Bennett et al. 394 

2013). 395 

396 

Food is generally considered a limiting resource for breeding birds (von Brömssen and Jansson 397 

1980; Hochachka and Boag 1987; Simons and Martin 1990; Verhulst 1994; Granbom and Smith 398 

2006; Wellicome et al. 2013). However, the addition of food resources does not tend to prevent 399 

major declines in fluctuating populations of terrestrial vertebrates (Boutin 1990), suggesting that the 400 

mechanisms of species decline are not usually related to resource-limitation alone. Nonetheless, it is 401 

vital to assess the role of food resources in woodland bird habitat suitability. The study by Zanette 402 

et al. (2000) is unique in its exploration of food shortage affecting birds in fragmented Australian 403 

woodlands; the authors documented lower availability of food resources in smaller versus larger 404 

fragments, with breeding success found to be lower in smaller fragments. Restoration plantings 405 

overwhelmingly comprise small habitat patches (Freudenberger et al. 2004; Smith 2008), and are 406 

known to attract a variety of bird species, including species of conservation concern (Lindenmayer 407 

et al. 2010b). When colonising sites, birds are motivated by habitat cues indicative of high resource 408 

availability, such as vegetation structure (Kokko and Sutherland 2001). If resource availability in 409 

restoration plantings does not accurately reflect these cues, then there is an increased likelihood of 410 

ecological trap mechanisms operating in revegetated landscapes (Schlaepfer et al. 2002). 411 
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412 

Home range sizes of birds are inversely related to resource density and resource renewal rates (Ford 413 

1983). This means that larger home ranges are required in habitats with fewer available resources. 414 

In a fragmented landscape, birds that are unwilling to cross habitat gaps may be disadvantaged if 415 

they are unable to expand their home ranges to exploit resources in adjacent patches (Fahrig 2007; 416 

Robertson and Radford 2009). Patchily distributed or scarce food resources can lead to inefficient 417 

foraging patterns, with subsequent reduced fitness and reproductive output in birds (Pyke 1984; 418 

Martin 1987; Granbom and Smith 2006; Flockhart et al. 2016). In the breeding season, optimal 419 

central place foraging (i.e. the need to regularly return to the nest) influences searching movements, 420 

distance travelled, and prey selection (Pyke 1984). In a fragmented landscape, the need to expand 421 

foraging areas or depart a patch due to resource depletion can measurably increase energy 422 

expenditure for breeding birds, thus reducing their reproductive fitness. For example, birds in 423 

fragmented landscapes may spend up to 64% more energy per chick raised than those breeding in 424 

intact remnant woodland (Hinsley et al. 2008). Small woodland patches have also been associated 425 

with the contraction of breeding seasons, eggs of lighter mass being laid, and smaller nestlings 426 

being produced (Zanette et al. 2000). These issues could influence the breeding success of birds in 427 

restoration plantings. 428 

429 

For insectivorous birds in particular, dietary composition and hence dietary quality is directly 430 

related to habitat quality (Razeng and Watson 2012). Terrestrial invertebrates can display strong 431 

responses to habitat variables in fragmented temperate woodlands (Bromham et al. 1999; Barton et 432 

al. 2009; Lindsay and Cunningham 2009; Gibb and Cunningham 2010). As an example, Zanette et 433 

al. (2000) identified a 50% lower biomass of surface-dwelling invertebrates in small (55 ha) relative 434 

to large (>400 ha) woodland fragments, thereby linking food resources for insectivorous birds to 435 

patch size. Coleoptera constitute the largest proportion of prey items for declining insectivorous 436 

woodland birds, followed by Formicidae and Lepidoptera (Razeng and Watson 2012). Coleoptera 437 

and other preferred prey of insectivorous birds have been shown to respond positively to some 438 

restoration treatments (e.g. removal of grazing pressure, addition of fallen logs to habitat patches) 439 

(Lindsay and Cunningham 2009; Gibb and Cunningham 2010). However, there is also evidence that 440 

restoration plantings may not help restore invertebrate communities in agricultural landscapes 441 

(Jellinek et al. 2013). It is important to understand and consider the effects of habitat fragmentation 442 

and restoration on invertebrate prey of woodland birds when assessing habitat quality in restoration 443 

plantings. 444 

445 
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Competition 446 

Interspecific competition for resources is a strong selective process that is enhanced in habitats with 447 

depleted or patchy resources (Cody 1981). Sought-after resources such as food and nesting sites are 448 

defended by birds in established territories, especially during the breeding season (Robinson 1989; 449 

Broughton et al. 2012; Belder 2013). Closely-related species may compete for similar resources, 450 

particularly food. For example, Robinson (1990) found that flame robins and scarlet robins compete 451 

more for food resources than nest sites. The noisy miner (Manorina melanocephala) is a strong 452 

competitor for territories and resources in Australian temperate woodlands, and actively disrupts 453 

and excludes other small woodland birds (Grey et al. 1998; Maron 2007; Montague-Drake et al. 454 

2011; Maron et al. 2013; Bennett et al. 2015). Competition from the noisy miner has been shown to 455 

decrease breeding activity in species of smaller body mass, and can have a greater influence on 456 

woodland bird distribution and recruitment than vegetation characteristics (Bennett et al. 2015; 457 

Mortelliti et al. 2016). Recent research has revealed that the noisy miner is both increasing the risk 458 

of woodland birds going extinct from habitat patches, and decreasing the chances of them 459 

colonising patches (Mortelliti et al. 2016). The composition of restoration plantings can 460 

significantly affect the likelihood of colonisation and occupancy by the noisy miner; inclusion of a 461 

Eucalyptus overstorey increases the likelihood of noisy miner colonisation as the vegetation 462 

matures (Maron 2007). Conversely, the inclusion of an Acacia understorey reduces noisy miner 463 

occupancy (Lindenmayer et al. 2010b). Monitoring restoration plantings for factors likely to 464 

increase competition and competitive exclusion will provide a better understanding of species 465 

persistence mechanisms in these environments. 466 

467 

Brood parasitism 468 

The influence of brood parasitism on nest success is a factor often discussed in international studies 469 

of habitat restoration (Delphey and Dinsmore 1993; Fletcher et al. 2006; Small et al. 2007; 470 

Forrester 2015), but limited research has been done on this topic in Australian temperate woodland 471 

ecosystems (Ford 2011) – but see Guppy et al. (2017). There is evidence suggesting that parasitic 472 

cuckoos are dependent on large woodland remnants with an abundance of their preferred host 473 

species, and that host species may experience greater breeding success in smaller fragments where 474 

cuckoos are rare (Brooker and Brooker 2003). Restoration plantings typically create small habitat 475 

patches (Freudenberger et al. 2004; Smith 2008), thus brood parasitism events may be infrequent in 476 

revegetated sites. However, to our knowledge, no empirical studies to date have documented brood 477 

parasitism in temperate woodland restoration plantings, so its potential effect on the reproductive 478 

success of woodland birds in revegetated landscapes remains unknown. 479 
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Summary and future research directions 480 

Research to date has shown that the responses of woodland birds to revegetation are varied, and 481 

while the habitat requirements of some species may be met, there is still much to learn about the 482 

long-term responses of birds to landscape-scale habitat restoration. Ostensibly, occupancy data 483 

alone may not expose underlying trends in population processes, or drivers of breeding success and 484 

site fidelity. To prevent and reverse the ongoing decline of Australia’s woodland avifauna, and re-485 

establish endangered habitat in highly fragmented agricultural landscapes, it is vital that temperate 486 

woodland restoration efforts continue and increase over the coming years. However, to ensure that 487 

restoration plantings are both an ecologically-effective and cost-effective biodiversity conservation 488 

strategy, it is also essential for their design and management to be informed by scientific research. 489 

490 

There is an increasing number of modelling studies proposing strategies for optimising landscape 491 

restoration, aiming to solve the issues of catering for multiple species and ensuring maximum cost-492 

effectiveness in the face of limited conservation resources (Bennett and Mac Nally 2004; 493 

Holzkämper et al. 2006; Thomson et al. 2007; Westphal et al. 2007; Thomson et al. 2009; 494 

Lethbridge et al. 2010; McBride et al. 2010; Huth and Possingham 2011; Polyakov et al. 2015; Ikin 495 

et al. 2016). Many of these studies provide information to help guide future restoration efforts in 496 

Australia. However, because conservation and restoration remain low priorities for governments, 497 

almost all the proposed strategies are yet to be empirically tested. Furthermore, to the best of our 498 

knowledge, all such studies are based on pattern data. Due to the lack of knowledge on population 499 

processes in revegetated landscapes, optimisation strategies for restoration to support breeding 500 

populations of woodland birds are non-existent. 501 

502 

Developing a comprehensive understanding of woodland bird ecology in revegetated landscapes is 503 

fundamental to devising knowledge-based solutions to reverse species decline (Bennett and Watson 504 

2011), and a necessary key step is to move beyond pattern data towards quantifying population 505 

responses of birds to habitat restoration. We suggest that future research in restoration plantings 506 

should focus on the areas of interest and knowledge gaps identified by this review (summarised in 507 

Table 3), with an emphasis on exploring factors at the landscape- and patch-scale that are likely to 508 

contribute to restoration plantings acting as ecological traps. In particular, based on our review, we 509 

suggest the following questions should be addressed as priorities: 510 

- What cues do birds use to select habitat in revegetated landscapes?511 

- Are woodland birds resident in restoration plantings in the long term?512 

- Do restoration plantings have higher immigration and/or mortality rates than woodland513 

remnants?514 
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- Is habitat quality in restoration plantings sufficient for woodland birds to breed successfully? 515 

- Does habitat suitability for breeding birds change over time as plantings mature?516 

- How does the breeding success of birds in plantings compare to that of birds in remnant517 

woodland?518 

- What are the primary nest predators and rates of nest failure due to predation?519 

- Do restoration plantings provide suitable nesting sites and adequate food resources for520 

woodland birds?521 

- What is the role of competitive exclusion by the noisy miner?522 

- What is the role of brood parasitism in restoration plantings?523 

524 

Finally, a more thorough approach to monitoring restored habitats is required to determine their 525 

ability to support breeding populations of woodland birds. As Battin (2004) emphasised, ‘…we 526 

cannot afford to ignore the possibility of ecological traps or fail to take them into account in the 527 

study, management, and conservation of animal populations.’ Crucially, the capacity to accurately 528 

evaluate the success of restoration plantings in achieving intended conservation goals underpins 529 

effective utilisation of conservation resources, as well as ecologically sound environmental 530 

management. 531 

532 

TABLE 3 533 
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Figure 1 Conceptual diagram of interrelated factors that may influence the breeding success 
and persistence of woodland bird populations in restoration plantings. Bold/double rectangles 
= the processes we focus on in this review (breeding success and persistence). Rounded 
rectangles = population processes i.e. what the birds are doing. Rectangles = broad patch-
level characteristics i.e. what type of habitat the birds are living in and where. Circles = fine-
scale patch-level attributes i.e. what the birds experience in the habitat patch. 
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Figure 2 A conceptual model of an ecological trap mechanism operating in a 
fragmented landscape with restoration plantings and remnant patches. 
Restoration plantings have the potential to become ecological traps if they are 
preferentially occupied but lead to lower reproductive success and/or higher 
mortality than remnant patches. � = population process, �= trend in 
population process, � = habitat type. 
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Table 1 – Planting specialists 

Woodland bird species identified as ‘planting specialists’ – bird species more likely to be found in plantings 
than in remnants or other sites – in Australian studies of bird occurrence, distribution and abundance in 
revegetated landscapes. Species are listed in taxonomic order (Christidis and Boles 2008). 

Species Studies Study region(s) 

superb fairy-wren Malurus cyaneus Barrett et al. 2008; 
Cunningham et al. 2008; 
Martin et al. 2011; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

white-browed scrubwren Sericornis frontalis Cunningham et al. 2008 South-west Slopes, NSW 

speckled warbler
C

Chthonicola sagittata Kavanagh et al. 2007; 
Cunningham et al. 2008; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

weebill
C

Smicrornis brevirostris Kavanagh et al. 2007; 
Cunningham et al. 2008; 
Martin et al. 2011 

South-west Slopes, NSW 

western gerygone Gerygone fusca Cunningham et al. 2008; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

striated thornbill Acanthiza lineata Kavanagh et al. 2007 South-west Slopes, NSW 

yellow thornbill Acanthiza nana Kavanagh et al. 2007; 
Cunningham et al. 2008; 
Martin et al. 2011; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

yellow-rumped thornbill
C

Acanthiza chrysorrhoa Cunningham et al. 2008; 
Martin et al. 2011; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

southern whiteface
C

Aphelocephala leucopsis Barrett et al. 2008; South-west Slopes, NSW 

white-plumed honeyeater Lichenostomus penicillatus Barrett et al. 2008; 
Martin et al. 2011; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

red wattlebird Anthochaera carunculata Cunningham et al. 2008; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

rufous whistler
C

Pachycephala rufiventris Kavanagh et al. 2007; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

grey shrike-thrush Colluricincla harmonica Martin et al. 2011; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

grey fantail Rhipidura albiscapa Cunningham et al. 2008; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

willie wagtail Rhipidura leucophrys Heath 2003; Martin et al. 
2011; Lindenmayer et 
al. 2012 

Goomalling Shire, WA; 
South-west Slopes, NSW 

scarlet robin
CV

Petroica boodang Cunningham et al. 2008 South-west Slopes, NSW 

red-capped robin
C

Petroica goodenovii Cunningham et al. 2008; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

flame robin
CV

Petroica phoenicea Lindenmayer et al. 2012 South-west Slopes, NSW 

hooded robin
CV

Melanodryas cucullata Cunningham et al. 2008 South-west Slopes, NSW 

eastern yellow robin Eopsaltria australis Cunningham et al. 2008 South-west Slopes, NSW 

red-browed finch Neochmia temporalis Kavanagh et al. 2007; 
Barrett et al. 2008; 
Cunningham et al. 2008; 
Lindenmayer et al. 2012 

South-west Slopes, NSW 

diamond firetail
CV

Stagonopleura guttata Cunningham et al. 2008 South-west Slopes, NSW 

C 
Of conservation concern 

V 
Classified as Vulnerable in NSW 
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Table 2 – Restoration planting characteristics and woodland bird occupancy 

Variables found to influence occupancy by bird species in restoration plantings in Australian studies of bird 
occurrence, distribution and abundance in revegetated landscapes. Adapted from Lindenmayer et al. 
(2010b). 

Variable type Variable Studies Study region(s) 

Context Landscape vegetation cover, 
distance to nearest other 
native vegetation 

Heath 2003; Barrett et al. 
2008; Selwood et al. 
2009; Lindenmayer et al. 
2010b; Munro et al. 2011 

Goomalling Shire, WA; 
Box-ironbark region, VIC; 
South-west Slopes, NSW; 
West Gippsland, VIC 

Configuration Shape Lindenmayer et al. 2010b South-west Slopes, NSW 

Area Selwood et al. 2009; 
Lindenmayer et al. 2010b; 
Munro et al. 2011 

Box-ironbark region, VIC; 
South-west Slopes, NSW; 
West Gippsland, VIC 

Topography Lindenmayer et al. 2010b South-west Slopes, NSW 

Content No. plants Lindenmayer et al. 2010b South-west Slopes, NSW 

No. native plant species Barrett et al. 2008; Munro 
et al. 2011 

South-west Slopes, NSW; 
West Gippsland, VIC 

Canopy depth Lindenmayer et al. 2010b South-west Slopes, NSW 

Canopy height Lindenmayer et al. 2010b South-west Slopes, NSW 

Overstorey cover Barrett et al. 2008; 
Lindenmayer et al. 2010b 

South-west Slopes, NSW 

Midstorey cover Barrett et al. 2008; 
Lindenmayer et al. 2010b 

South-west Slopes, NSW 

Understorey/ground cover Heath 2003; Arnold 2003; 
Barrett et al. 2008; 
Lindenmayer et al. 2010b 

Goomalling Shire, WA; 
Wandoo woodland, WA; 
South-west Slopes, NSW 

Mistletoe Lindenmayer et al. 2010b South-west Slopes, NSW 

Logs, fallen timber, leaf litter Barrett et al. 2008; 
Selwood et al. 2009; 
Lindenmayer et al. 2010b; 
Munro et al. 2011 

Box-ironbark region, VIC; 
South-west Slopes, NSW; 
West Gippsland, VIC 

Dead trees/shrubs Lindenmayer et al. 2010b South-west Slopes, NSW 

Remnant/paddock trees Selwood et al. 2009; 
Lindenmayer et al. 2010b; 
Munro et al. 2011 

Box-ironbark region, VIC; 
South-west Slopes, NSW; 
West Gippsland, VIC 

Grazing Selwood et al. 2009; 
Lindenmayer et al. 2010b 

Box-ironbark region, VIC; 
South-west Slopes, NSW 

Other Age Selwood et al. 2009; 
Munro et al. 2011 

Box-ironbark region, VIC; 
West Gippsland, VIC 

Vegetation condition Munro et al. 2011 West Gippsland, VIC 
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