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A b stra c t

Information retrieval is the area of study concerned with the process of searching, 
recovering and interpreting information from large amounts of data. In this Thesis 
we show that many of the problems in information retrieval consist of structured 
learning, where the goal is to learn predictors of complex output structures, con
sisting of many inter-dependent variables. We then attack these problems using 
principled machine learning methods that are specifically suited for such scenar
ios. In the process of doing so, we develop new models, new model extensions 
and new algorithms that, when integrated with existing methodology, comprise 
a new set of tools for solving a variety of information retrieval problems.

Firstly, we cover the multi-label classification problem, where we seek to pre
dict a set of labels associated with a given object; the output in this case is 
structured, as the output variables are interdependent. Secondly, we focus on 
document ranking, where given a query and a set of documents associated with 
it we want to rank them according to their relevance with respect to the query; 
here, again, we have a structured output - a ranking of documents. Thirdly, we 
address topic models, where we are given a set of documents and attempt to find 
a compact representation of them, by learning latent topics and associating a 
topic distribution to each document; the output is again structured, consisting of 
word and topic distributions.

For all the above problems, we obtain state-of-the-art solutions as attested by 
empirical performance in publicly available real-world datasets.
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Chapter 1 

Introduction

Knowledge is of two kinds. We know a subject ourselves, or we 
know where we can find information upon it.

Samuel Johnson, 1775.

W ith personal computers becoming popular in the late 1980s and the internet 
reaching critical mass in the early 1990s, we are now living in a world were 
information is no longer a scarce resource; in fact, the situation is quite the 
opposite: we are being overwhelmed by information. Here are some examples:

• more than 48 hours of video are added to YouTube every day [1];

• according to Netcraft, as of October of 2011 there exist more than 500 
million websites, growing at a rate that exceeds 600 thousand new ones 
every day [2];

• the largest online encyclopaedia, Wikipedia, grows by more than one thou
sand articles a day [3].

As a consequence, the demand for efficient ways of searching for information 
has increased so much that Google, the company that hosts one of the most 
popular search engines, was the ninth US company by market value in 2010 [4]. 
Accordingly, the academic field of study concerned with the process of searching, 
recovering and interpreting information from large amounts of data -  Information 
retrieval (IR) -  has recently been the subject of intense research.1

In this thesis we will present new methods and algorithms for structured learn
ing -  that is, learning when the output is not a simple class, but a more complex

^ee, for example, http://www.wikicfp.com/cfp/call?conference=information%20retrieval 
for a list of conferences dedicated to IR.
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structured object. We divide the thesis in two parts: in the first part we will 
deal with structured learning in a supervised setting, where we are going to focus 
in multi-label classification and document ranking; in the second part we will 
address structured learning in an unsupervised setting, focusing on topic models. 
Although the methods differ in formulation and scope, they have in common the 
fact that they are all relevant to key problems in information retrieval, which we 
detail next:

M ulti-Label Classification (MLC) In MLC we are given an object and 
the task is to predict a set of labels associated with it. A simple example is 
image annotation: we are given an image and we want to predict a set of tags 
associated with it [5]. The output is structured, since the variables in the set are 
interdependent -  for example, in an image bicycles tend to co-occur with humans. 
MLC is a fundamental problem in IR [6], and its application to automatic image 
annotation [7] is vital to image retrieval. MLC is also loosely related to the 
relevance problem in IR, which deals with finding what classes a text is about, 
and has been subject of intense research [8, 9]. Finally, social networks provides 
us with massive MLC problems -  some examples are tag recommendations in 
Flickr and link recomendations in Linkedln, Twitter and Facebook2. In Chapters 
3 and 4 we will propose new formulations and solutions to MLC problems.

D ocum ent Ranking In document ranking we are given a query and a set 
of documents associated with it, and the task is to rank them according to the 
relevance with respect to the query. Again, we have a structured output -  in 
this case, a rank of the documents. This is highly pertinent to IR, as in many 
retrieval systems we want to rank results according to relevance. The significance 
of ranking to IR is evident by the number of workshops dedicated to learning 
to rank (See, for example, [10] and [11] for two recent examples.), as well as the 
continuing work on creating standard datasets such as LETOR [12] to facilitate 
research on the subject. In Chapter 5 we will propose a novel solution to the 
document ranking problem.

Topic M odeling Topic models are concerned with finding compact repre
sentations of documents by learning latent topics and associating each document 
with a topic distribution. The outputs of a topic model are highly structured, 
comprising interdependent word distributions for each topic and topic distribu
tions for each document. Topic models have been an active area of research in IR 
for more than a decade. Some examples are the work of [13] on Latent Semantic

2Flickr: http://www.flickr.com/; Linkedln: http://www.linkedin.com/; Twitter:
http ://tw itter.com /; Facebook: http://www.facebook.com/.
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Indexing (LSI) for information filtering; the successor of LSI, Probabilistic Latent 
Semantic Indexing (PLSI) [14]; and the recent work of [15] on Regularised Latent 
Semantic Indexing (RLSI), all of them published in IR conferences. Topic models 
are indeed the subject of whole chapters of textbooks on IR (see, for example, 
Chapter 18 of [6]). In Chapter 6 we will propose an extension to a well-known 
type of topic model, Latent Dirichlet Allocation (LDA).

1.1 Thesis Outline

The remainder of this thesis is organised into six chapters, whose content we 
summarise below. In Figure 1.1 we depict the dependencies between them.

Chapter 3 
Reverse Multi- 
Label Learning

Chapter 4 
Submodular 
Multi-Label 

Learning

Chapter 6 
Word Features 

for LDA

Chapter 5 
Exp. Family 

Graph Matching 
and Ranking

Chapter 2 
Background

Chapter 1 
Introduction

Chapter 7 
Conclusion

Figure 1.1: Outline of this thesis.

Chapter 2: Background In this chapter we will cover the background 
knowledge necessary to understand the subsequent chapters. We will first provide 
background on supervised structured learning, following with a description of two 
well-known estimators for it: max-margin with linear models and maximum a 
posteriori (MAP) with exponential families. The max-margin estimator shall be
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the base of the work described in Chapters 3 and 4, while the MAP estimator 
will be applied in Chapter 5. Next we will provide background on unsupervised 
structured learning, where we will cover the very basics of graphical models, 
Gibbs sampling and topic models, all of which are needed to introduce LDA, an 
extension of which is the subject of Chapter 6.

Part I: Supervised Structured Learning

Chapter 3: Reverse M ulti-Label Learning In this chapter we will ap
ply the framework of max-margin structured output learning to the problem of 
learning a multi-label classifier. We will leverage this framework to directly op
timise appropriate surrogates for a variety of performance measures commonly 
used in IR. We will apply our method to real-world datasets, and show that we 
can obtain state-of-the-art results.

Chapter 4: Subm odular M ulti-Label Learning In this chapter we will 
extend the work of Chapter 3 by encoding pairwise label interactions, so that we 
can leverage the co-ocurrence of pairs of labels in order to improve the quality of 
our predictions. Learning in this setting will become substantially more involved 
and will require the solution of an intractable combinatorial optimisation problem, 
so we will have to resort to an approximate algorithm. We will prove, however, 
tha t this algorithm is sound, in the sense that it never predicts incorrect labels. 
We will apply our method to real-world datasets, and show that we can obtain 
improvements over our previous methods.

Chapter 5: Exponential Family Graph M atching and Ranking In this 
chapter we will present a new estimator for learning graph matching predictors 
based on MAP estimation in conditional exponential families. We will apply it 
to the page ranking problem, with state-of-the-art results.

Part II: U nsupervised Structured Learning

Chapter 6: Word Features for LDA In this chapter we will extend LDA to 
allow for the encoding of side information in the distribution over words. This will 
result in a variety of new capabilities, such as improved estimates for infrequently 
occurring words, as well as the ability to leverage thesauri and dictionaries in order 
to boost topic cohesion within and across languages. This has direct application 
to IR, where the topic distributions generated by LDA can be used as a compact 
representation of a document.

Chapter 7 : Conclusion In this chapter we will summarise the main results 
of this thesis, and discuss future directions of research.

4



1.2 T h esis C ontrib u tion s

This thesis includes modelling and algorithmic contributions to the field of ma
chine learning. The main contributions are:

1. Model and algorithms for generating multi-label predictors optimised for a 
variety of performance measures.

2. An extension of this model that allows for the encoding of pairwise la
bel information. This includes: a constraint generation algorithm for loss- 
augmented inference where the scoring of the pair (input-output) is a sub- 
modular set function and the loss is derived from the F-score; an efficient 
algorithm which serves as a certificate of optimality for this constraint gen
eration algorithm.

3. A new method for learning max-weight matching predictors in bipartite 
graphs using MAP estimation in exponential families.

4. An extension of LDA to allow for the encoding of side information in the 
distribution over words.

1.3 P u b lica tio n s

This thesis is based on the following published papers:

• James Petterson, Tiberio Caetano, Julian McAuley, and Jin Yu. Exponen
tial family graph matching and ranking. In Advances in Neural Information 
Processing Systems, 2009.

• James Petterson, Alex Smola, Tiberio Caetano, Wray Buntine, and Shravan 
Narayanamurthy. Word features for latent dirichlet allocation. In Advances 
in Neural Information Processing Systems, 2010.

• James Petterson and Tiberio Caetano. Reverse multi-label learning. In 
Advances in Neural Information Processing Systems, 2010.

• James Petterson and Tiberio Caetano. Submodular multi-label learning. 
In Advances in Neural Information Processing Systems, 2011.

The following publications relate to other areas of machine learning and were 
not included in the thesis for consistency reasons:
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• Rogerio Feris, Behjat Siddiquie, Yun Zhai, James Petterson, Lisa Brown, 
and Sharath Pankanti. Attribute-based vehicle search in crowded surveil
lance videos. In ACM International Conference on Multimedia Retrieval, 
2011.

• Rogerio Feris, James Petterson, Behjat Siddiquie, Lisa Brown, and Sharath 
Pankanti. Large-scale vehicle detection in challenging urban surveillance 
environments. In Proceedings of the IEEE Workshop on Applications of 
Computer Vision, 2011.

• Novi Quadrianto, Alex Smola, Tiberio Caetano, S.V.N. Vishwanathan, and 
James Petterson. Multitask learning without label correspondences. In 
Advances in Neural Information Processing Systems, 2010.

• Novi Quadrianto, James Petterson, and Alex Smola. Distribution matching 
for transduction. In Advances in Neural Information Processing Systems, 
2009.

• Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola 
and S.V.N. Vishwanathan. Hash kernels for structured data. Journal of 
Machine Learning Research - Special Topic on Large Scale Learning, 2009.

• Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, 
Alex Strehl, and S. V. N. Vishwanathan. Hash kernels. In Proceedings of 
the 12th International Conference on Artificial Intelligence and Statistics. 
2009.
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Chapter 2 

Background

In this chapter we will introduce the essential background knowledge that is 
necessary for the development of the subsequent chapters.

In the first half of this chapter we will provide some background on supervised 
structured learning, and describe two generic estimation strategies for it: one 
based in max-margin estimators, and another in MAP estimators in exponential 
families. These are going to be the basis for the work described in Chapters 3, 4 
and 5.

In the second half of this chapter we will introduce the unsupervised structured 
learning problem. We will briefly review graphical models, a tool for dealing 
with complex probabilistic models, and Gibbs sampling, an algorithm that can 
be applied to generate samples from a probability distribution described by a 
graphical model. We will then focus on a particular case of an unsupervised 
structured learning problem: topic models. Finally, we will describe a popular 
type of topic model, Latent Dirichlet Allocation, an extension of which is the 
subject of Chapter 6.

2.1 S u p erv ised  S tru ctu red  L earning

In a supervised learning setting we are given a set of training examples, each 
consisting of an input object and an output label. The goal is then to train a 
predictor so as to minimise a specified loss that is a function of the predicted labels 
and the true labels. As we will see later, in the case of max-margin estimators 
this loss is usually based on a score that reflects that evaluation measure we want 
to optimise for, while in the case of MAP estimators in exponential families the 
loss is normally based on the likelihood of the underlying probabilistic model.

7



In a typical supervised learning setting we are interested in learning a mapping 
from an input feature space x G R.d to an output space with small cardinality -  
for example, y G {1 ,..., K}, for small K , in the case of classification. In certain 
application domains, however, the output space is more complex: in multi-label 
learning, for example, it is a set of mutually dependent variables; in natural lan
guage parsing, it is a parse tree. Supervised learning in these settings, where the 
outputs can be arbitrarily complex structured objects, is commonly denominated 
supervised structured learning, or structured output learning.

One simple approach to deal with these problems is to assign a label k G 

{1, . . . ,A} to each possible structured output and treat the resulting learning 
problem as an instance of multi-class learning. Quite often, however, this is 
not feasible, as the number of labels K  becomes extremely large. In multi-label 
learning, for example, where the output is a set of labels y G y from a dictionary 
of V possible labels, K  is 217, which becomes impractical for even small values of 
V. Clearly there is a need for a better approach.

In the following sections we describe two generic estimation strategies for 
producing structured output predictors. One is based on max-margin estima
tors [16, 17] and the other on maximum-likelihood (ML) or MAP estimators in 
exponential family models [18].

2.1.1 M ax-M argin Estim ators

The first approach we are going to describe is a generalisation of support vector 
machines (SVMs) to structured outputs, popularised by [16].

Let x G X be an input and y G y a discrete output, where y is a structured 
output space. We are given a training set {{xn,yn)}n=v and our task is to 
estimate a mapping /  : X —> y that has good agreement with the training set 
but also generalises well to new data.

We assume the training data is generated i.i.d. from an unknown distribution 
P on X x y , and that we are given a class of predictors T from which the predictor 
/  will be picked. We also assume we have a loss function A : ^ x ^ t-> M+, which 
quantifies the loss associated with a prediction given the true output value.

In a risk minimisation setting we would like to choose /  so as to minimise the 
expected loss with respect to P (i.e., the generalisation error):

( 2 . 1)

generalisation error

8



However, since we don’t know P , we need an induction principle. We assume 
the principle of regularised risk minimisation which consists of solving

a r g m i n ^ - ^ A  ( f ( x n) , yn) + Cl{f) • (2-2)
feJ 

v̂  ̂ regu lariser
em p irica l risk

We choose a class of predictors T parametrized by a vector 9 that, for a given 
input x , returns the maximiser of a linear score of 0 and some arbitrary encoding 
of the data 0(x, y):

fe{x) = argmax (</>(#, y), 9) . (2.3)

W ith a regulariser f2(9) = |  \\9\\2 to penalise complex solutions (where A 
controls the amount of regularisation), we have an ideal estimator taking the 
form

9* =  argmin 
e

(2.4)

where yn is our prediction for the instance n:

yn = argmax (0(xn, yn), 9) . (2.5)
yey

That is, we want to find a model that minimises the average prediction loss 
in the training set plus a quadratic regulariser that penalises complex solutions. 
Estimators of this type are known as regularised risk minimisers [19].

This optimisation problem, however, is non-convex. Even worse, the loss is a 
piecewise constant function of 0, since there is a countable number of loss values 
but an uncountable number of parameter values, so there are large equivalence 
classes of parameter values that correspond to precisely the same loss (see Figure 
2.1). A similar problem occurs when one aims at optimising a 0/1 loss in binary 
classification; in that case, a typical workaround consists of minimising a surrogate 
convex loss function which upper bounds the 0/1 loss, for example the hinge loss, 
what gives rise to support vector machines.

The approach proposed by [16] consists of optimising a convex upper bound

9



A

Figure 2.1: The loss in the optimisation problem of (2.4) is piecewise constant in 
9: there is a countable number of loss values (since the loss function is discrete) 
but an uncountable number of parameter values (since 9 is continuous), so there 
are large equivalence classes of parameter values that correspond to precisely the 
same loss.

on the structured loss of (2.4)1:

= argmin
71=1

s.t. (4)(xn,yn),0) -  ((f>(xn,y),9) > A(y,yn) -  fn, > 0 
Vn, y e y.

(2.6a)

(2.6b)

Intuitively, what this does is to enforce a loss-sensitive margin: 9 is learned so 
that mispredictions y that incur some loss end up with a score (4>(xn, y), 9) that 
is smaller than the score {(f>(xn,yn),9) of the correct prediction yn by a margin 
equal to that loss (minus the slack £).

More formally, it can be seen that £n upper bounds A(yn,yn), and therefore 
the objective in (2.6) upper bounds that of (2.4) for the optimal solution. First 
note that since the constraints (2.6b) hold for all ?/, they also hold for yn:

(<t>(xn, t/"), 6) -  (4>{xn, p ) ,  0) > A ( p , P )  -

Second, the left hand side of this inequality must be non-positive from the 
definition of y in (2.5):

(4>(xn,yn),e) -  (4>(xn,p),e)  > A( p , y n) - t n -
V V

V

<o

]Here we are describing the margin re-scaling approach; an alternative is slack re-scaling, 
which we do not describe here as the concept is very similar; for details see [16].
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It then follows that £n > A(yn, yn). The estimator is therefore well-motivated 
since it minimises an upper bound on the loss we really care about.

The optimisation problem (2.6), however, has N |^| constraints, where N  is 
the number of training instances and |V | is the cardinality of our output space, 
which can be extremely large. We therefore resort to a constraint generation 
strategy, which consists of starting with no constraints and iteratively adding the 
most violated constraint for the current solution of the optimisation problem. As 
shown by [16], such an approach is assured to find an e-close approximation of 
the solution of (2.6) after including only 0(e~2) constraints.

The key problem that needs to be solved at each iteration is constraint gener
ation, i.e., to find the constraint that induces the maximum value of the violation 
margin £n:

y*n € argmax [A(y, yn) + (0(a:n, y), 6»)]. (2.7)
yey

This is similar to the optimisation problem that we need to solve for inference
(2.5) , with the difference being the additional term due to the loss. Note that
(2.7) has to be solved N  times at each iteration of the learning algorithm, and
(2.5) has to be solved for each instance during inference, so for this framework 
to be practical a suitable choice of (f)(x, y) and A has to be made such that both
(2.7) and (2.5) can be solved efficiently.

This max-margin structured learning framework is appealing in that it tries 
to minimise the loss in which we are interested. This is what we will discuss 
in Chapters 3 and 4, where we apply it to minimise losses relevant to IR. Its 
drawback, however, is that it is not a probabilistic method and therefore cannot 
be easily integrated into a larger system for purposes of Bayesian inference in 
decision-theoretic scenarios.

In the next section we describe an alternative strategy, maximum a posteriori 
estimation in exponential families, which is a fully probabilistic model that can 
easily be incorporated as a module in larger probabilistic models.

2.1.2 E xponential Fam ily Estim ators

Consider the same setting as before: x 6 X is an input and y G y a discrete 
output, and we are given a training set {X,  T} =  {(xn, yn)}„=1. Now, however, 
instead of a generic map /  : X —» y, we are modelling a probability distribution: 
p(y\x) -  that is, given an input x we want to estimate the probabilities of all 
possible outputs y G

11



A well-known technique for this is to use ML or MAP estimation in conditional 
exponential families. Assuming an exponential family model, we have

v(y\v, 6) = ^ ( ^ e ) exp 2/)»ö»* (2-8)

Here, as before, (p(x, y) is an arbitrary encoding of the data, and in this case 
it also encodes the sufficient statistics of our distribution. Z{x\9) ensures that 
(2.8) is normalised:

Z(x\6) = ^exp(</>(z,y),0). (2.9)

Inference amounts to finding the most likely y, which has the same form as 
(2.5):

yn — argmax p(y| r e 71; 9) — argmax (cp(xn, pn), 9) 
yeV yey

(2 . 10)

MAP estimation amounts to finding the 9 that maximises the conditional 
likelihood of the training data (with a prior on 9):

9* = argmaxp(Y\X ; 9)p{9) = argmaxp(9\Y. X). (2-11)
e e

Assuming iid sampling, we have p(Y\X;9) = Y\n=iP(.yn\xn^)-  Therefore,

p(9\Y,X) (X exp l̂ogp(6») + ^ ( ( 0 ( x n,pn),6>) -  g(xnffi)) 

where

(2. 12)
71— 1

g(x; 0) = log Z{x\ 9) = log ^ 2  exP (<̂ 0g V)> °) (2-13)
yey

is the log-partition function, which is a convex and infinitely differentiable func
tion of 9 [20].

Instead of maximising the posterior we can equivalently minimise the negative 
log-posterior which, assuming a Gaussian prior on 9, becomes:

e(Y\X-0) = 1  ||*||a +  i £  0(.T"; 8) -  yn), 8)). (2.14)
n=l

Here we have suppressed the constant terms, and A is a regularisation constant 
that controls the strength of our prior. ML estimation is essentially the same as
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MAP estimation, but without the prior on 9 -  which is equivalent to setting A to 
zero in (2.14).2

Note that t(Y\X\0)  is a convex function of ft, since the log-partition function 
g{6) is a convex function of ft [20] and the other terms are clearly convex in ft, 
so minimising it amounts to solving an unconstrained and convex optimisation 
problem. The key difficulty is the computation of the partition function g(x;0), 
which often becomes intractable for structured outputs, since it is a sum over |^| 
items, and |y| can be extremely large.

This estimator, compared to the max-margin one, has the advantage of being a 
fully probabilistic model. To successfully apply it to structured outputs, however, 
the sufficient statistics must be carefully chosen, so as to keep both learning and 
inference tractable. In Chapter 5 we will use this estimator in a new learning 
algorithm for bipartite matching predictors.

2.2 U n su p erv ised  S tru ctu red  L earning

In the supervised learning setting just described we are given a set of training 
examples, where each example consists of an input object and an output label. 
In a unsupervised learning setting, however, we are not given labels, only objects. 
As a consequence, we can no longer classify examples, but we can still seek to 
summarise and explain the data.

One possible approach for summarising the data is clustering: assigning ob
jects into groups so that objects in the same group are in some sense similar. 
Topic models, which we describe later, can be seen as a type of soft clustering, 
where each instance has a probability distribution on the clusters to which it 
belongs.

In the unsupervised setting we can no longer rely on a loss defined over labels, 
as we do not have them. One possible approach then is to define a generative 
model for the data, and maximise the likelihood of this model with respect to the 
data we observe. We will describe this in Section 2.2.3, but first we will briefly 
review graphical models and Gibbs sampling, as they are key to understanding 
what follows.

2In the particular case where we have a binary output this formulation is known as logistic 
regression; this can be seen by assuming y G {—1,1} and choosing (j)(x,y) =  xy.
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2.2.1 G rap h ica l M odels

A graphical model [21] is a diagrammatic representation of a probabilistic model. 
It provides a way of visualising the structure of a model, while allowing the use of 
graphical manipulations to express the computations required to perform learning 
and inference (see, for example, belief propagation [22]).

A graph G = (V, E) is composed of a set of vertices V connected by edges 
E. In a graphical model each vertex represents a random variable, and edges 
represent the structure of conditional independences among the random variables. 
There are two main classes of graphical models: directed graphical models, also 
known as a Bayesian networks, in which the edges have directions, and undirected 
graphical models, or Markov random fields, in which the edges have no directional 
significance. Both types have its applications, but here we are going to focus on 
directed graphical models, as they are the basis of the LDA topic model, which 
is the model we are going to extend in chapter 6.

In a directed graphical model, the joint probability distribution of a set of 
random variables x = (xv)vey can be written as:

P(X) =  I \ p ( xv\xpa(v)) (2‘15)
vev

where pa{y) is the set of parents of v -  that is, those vertices pointing to v via a 
single edge. As an example, consider the graph of Figure 2.2: this is a directed 
graphical model that encodes the structure of a probability distribution over four 
variables: rzq, x2, £3 and X4 . This graph represents the following factorisation of 
the joint distribution of these variables:

p(x 1, z2, X3, x4) = p(xi)p(x2 \xi)p(x3 \x2)p{x4 \x2 , x3) (2.16)

Figure 2.2: A simple graphical model.

Directed graphical models are subjected to one condition: there must be no 
directed cycles; in other words, there should be no path starting on a vertex,
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following the edges in the direction pointed by the arrows and ending on the 
same vertex. Graphs that obey this restriction are also called directed acyclic 
graphs (DAGs).

2.2.2 G ibbs S am pling

Gibbs sampling [23] is a Markov chain Monte Carlo algorithm to generate a se
quence of samples from the joint probability distribution of two or more variables.
It is normally applied when it is difficult to sample from the joint distribution 
of all variables, but it is easy to sample from the distribution of each variable 
conditional on the values of the others. Using the graphical model of Figure
2.2 as an example, it could be the case that it is hard to sample directly from 
p(xi,x2, z3,z4), but easy (or easier) to sample from the conditional distributions 
p(xi), p(x2\xi), p(x3\x2) and p(xA\x2, x3).

The algorithm works by assigning initial values for the variables (normally at 
random), and then iteratively replacing the value of each variable by sampling 
a value for it conditionally on the current values of all the remaining variables. 
This is repeated by cycling through all variables until some stopping condition is 
reached.

More formally, suppose we have a distribution over N  variables: p(xi, x2, ... xpj). 
We start assigning random values for all of them. Then, at each step £, we cycle 
through all xt, i G 1.. .  N  variables and replace x\ with a sample from p{xi\xt~l) 
(here ~>i denotes all variables except variable i). It can be shown [24] that this 
sequence of samples constitutes a Markov chain, whose stationary distribution is 
the joint distribution p{x\,x2, ... x^). Therefore, in the limit when the number 
of iterations goes to infinity, the algorithm produces a sample from the correct 
distribution.

2.2.3 Topic M odels

Topic models are a class of latent variable models for analysing the semantic 
content of a collection of documents. They were first introduced in the context 
of natural language processing, but have later found applications in several other 
fields, such as computer vision [25], finance [26], bioinformatics [27], music [28] 
and others. In particular, they are useful in IR [29], where they can be applied 
to create compact representations of documents while keeping most of the intra
document statistical structure.
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In this section we will focus on what is arguably one of the most popular types 
of topic model: Latent Dirichlet Allocation.

L aten t D irich le t A llocation

The key idea of LDA [30] is to model each document as a mixture over K  topics, 
with each topic k coming from a multinomial distribution Va over a vocabulary 
of V words. It is an unsupervised method, and its output, when applied to a 
corpus of documents, is

1. A topic for each word of each document.

2. A topic distribution for each document.

3. A word distribution for each topic.

The topic distribution for each document is particularly useful for IR: it can be 
seen as a compact representation of a document, and given an input document it 
makes it possible to look for similar/related documents by defining some distance 
measure in the space of topic distributions.

LDA’s generative model works as follows (please refer to Table 2.1 for a sum
mary of the notation used in this section):

• For a given document m we first draw a topic distribution 6m from a Dirich
let distribution parametrized by a:

6m ~  Dir(a). (2.17)

• Then, for each word wmn in the document we draw a topic zmn from a 
multinomial distribution with parameter 9m:

Zmn ~  Mlllt(0m). (2.18)

• Finally, we draw the word wmn from the multinomial distribution parametrized 
by TpZmn-

W m n ~  Multi(V>*mn), (2.19)

which in turn comes from a Dirichlet distribution parametrized by ß:

~  Dir(0). (2.20)
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Table 2.1: Notation for LDA.
variable description ____________________________________
K  number of topics
M  number of documents
Nm number of words in document m
V dictionary size
a Dirichlet prior for 0 (hyperparameter)
ß Dirichlet prior for \J) (hyperparameter)
0 distribution of topics per document
xjj distribution of words per topic
zmn topic (1..K) of word n of document m
wmn term index (1..V) of word n of document m

number of times the term v has been observed with topic k 
n% number of times topic k has been observed in all documents
nkm number of times topic k has been observed in a word of document m

The graphical model representing this process is depicted in Figure 2.3, where 
we use plate notation: variables inside the plate are repeated according to the 
for loop in the bottom of it [31]. Note that the only observed variable in this 
model is w (shaded in the figure); 0, 2  and xjj are latent variables, and a and ß are 
hyperparameters. The joint probability distribution described by this graphical 
model (see Section 2.2.1) is:

K  M Nm

p(w,z,0,xj),a,ß)=Yip('ipk\ß)
fc=l m —1 n — 1

K  M Nm

= n  D‘ir{xpk 1/3) Yl Dir(0m\a) j][
k = l  m =1 n—1

Inference in LDA

The first inference method for LDA, proposed in the seminal paper of [30], was 
Variational Bayesian (VB), which made use of Jensen’s inequality to obtain an 
adjustable lower bound on the log likelihood. Later other methods were sug
gested: Expectation Propagation (EP) [32], Collapsed Gibbs Sampling [33, 34] 
and Collapsed Variational Bayesian (CVB) inference [35], to cite a few. In this 
thesis we will focus on Collapsed Gibbs Sampling since it is relatively simple and, 
with recent advancements [36], also competitively fast.
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m n

for k =  1 to K

for n — 1 to Nrfor m = 1 to M for v =  1 to V

Figure 2.3: LDA model.

C ollapsed  G ibbs sam pling

Collapsed Gibbs sampling, initially proposed by [33], is an application of the 
Gibbs sampling algorithm described in Section 2.2.2, but with the latent variables 
(6 and i/>) integrated out. Since a  and ß are hyperparameters, and w is observed, 
what is left after the integration is P{zmn\z^rnn)\ the distribution on the topic of 
a word of a document given the topics of all other words in the corpus.

The algorithm initially assigns random topics to all words. Then, at each step 
t, it iterates over each of the latent topic variables zn , ..., zmn, replacing z ^ n with 
a sample from P{zrnn[ z ^ n)- We are not going to dwell on the details here, since 
this has already been well explained in [33, 34], but in essence what we need to 
do is to sample from the distribution:

p (zm n  =  k\z-rmn) oc ^ (n £ £ L  +  a )  . (2.21)

In simple terms, to sample the topic of a word of a document given all the 
other words and topics we need, for each k in {1, . . . ,  K}:

1. n ^_ :  the total number of times the word has been observed with topic 
k (the subscript denotes that we are excluding from the statistics the 
word we are sampling for).

2. n£_: the total number of times topic k has been observed in all documents 
(excluding the word we are sampling for).

3. the number of times topic k has been observed in a word of this 
document (excluding the word we are sampling for).

18



The main computation cost of this originates from the need of computing a 
normalisation constant Z — J2k=i P(zi — k\z-i,w) to obtain a probability distri
bution that can be sampled from:

P ( Z m n  = k\z-,mn, w) = i  ( n k m -  +  <*) • (2-22)

Thus each iteration of collapsed Gibbs sampling has complexity 0(NTK ), 
where NT is the total number of words in the corpus, and K  is the number of 
topics.

Recently, however, [36] showed how to break (2.21) into three components 
and leverage the resulting sparsity in k. That, combined with an efficient storage 
scheme, leads to significant speed improvements on the sampling process. We are 
going to apply a similar approach to our extension of LDA that we describe in 
Chapter 6.
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S uperv ised  S tru c tu re d  L earn ing
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C h a p te r  3

R everse M ulti-L abel L earn ing

In this chapter we apply the max-margin estimator for structured outputs de
scribed in Section 2.1.1 to the problem of multi-label classification. In MLC 
we are concerned with classification problems where each instance is assigned to 
multiple labels -  one example would be image annotation, where each image can 
have several tags associated with it. Unlike most existing work on the subject, the 
method we propose can be optimised for a variety of performance measures, in 
particular for the macro-measures widely used in IR: macro-Fi, macro-precision 
and macro-recall.

3.1 In trod u ction

In contrast to multi-class classification, where each instance is assigned a single 
label, in multi-label classification each instance can potentially have many labels. 
This reflects the situation in many real-world problems: in document classifica
tion, one document can cover multiple subjects [37]; in biology, a gene can be 
associated with a set of functional classes [38]; in image annotation, one image 
can have several tags [7].

As diverse as the applications are the evaluation measures used to assess 
the performance of different methods. This is understandable, since different 
applications have different goals. In e-discovery applications [39] it is mandatory 
that all relevant documents are retrieved, so recall is the most relevant measure. 
In web search, on the other hand, precision is also important, so the Fi-score, 
which is the harmonic mean of precision and recall, might be more appropriate.

In this chapter we present a method for MLC which is able to optimise appro
priate surrogates for a variety of these measures. This means that the objective
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function being optimised by the method is tailored to the performance measure 
on which we want to do well in our specific application.

Goal: To design a learning algorithm that produces multi-label 
classifiers optimised for a specific performance measure.

This is in contrast with probabilistic approaches, which typically aim for max
imisation of likelihood scores rather than the performance measure used to assess 
the quality of the results. In addition, the method is based on well-understood 
facts from the domain of structured output learning (Section 2.1.1), which gives 
us theoretical guarantees1 regarding the accuracy of the results obtained.

An interesting aspect of the method is that we are only able to optimise 
the desired performance measures because we formulate the prediction problem 
in a reverse manner, in the spirit of [40]. We pose the prediction problem as 
predicting sets of instances given the labels. When this insight is fit into max- 
margin structured output methods, we obtain surrogate losses for the most widely 
used performance measures for multi-label classification. We perform experiments 
against state-of-the-art methods in five publicly available benchmark datasets for 
MLC, and the proposed approach is the best performing overall.

3.1.1 Related Work

A straightforward way to deal with multiple labels is to solve a binary classifica
tion problem for each one of them, treating them independently. This approach is 
known as Binary Method (BM) [41]. The method of Classifier Chains (CC) [42] 
extends that by building a chain of binary classifiers, one for each possible label, 
but with each classifier augmented by all prior relevance predictions. Since the 
order of the classifiers in the chain is arbitrary, an ensemble method is also pro
posed -  Ensemble of Classifier Chains (ECC) -  where several random chains are 
combined with a voting scheme. The method of Probabilistic Classifier Chains 
(PCC) [43] extends CC to the probabilistic setting, with Ensemble of Probabilistic 
Classifier Chains (EPCC) [43] being its corresponding ensemble method.

Another way of working with multiple labels is to consider each possible set 
of labels as a class, thus encoding the problem as single-label classification. The 
problem with such an approach is the exponentially large number of classes, which 
implies a large computational cost, and the fact that most classes will have no

1With exact constraint generation we can achieve an approximation e-close to optimal in
0(e~2) iterations of Algorithm 1 (Theorem 18 of [16])
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positive training instances. RAndom K-labELsets (RAKEL) [44] addresses this 
issue by proposing an ensemble of classifiers, each one taking a small random 
subset of the labels and learning a single-label classifier for the prediction of each 
element in the power set of this subset. Other proposed ensemble methods are 
Ensemble of Binary Method (EBM) [42], which applies a simple voting scheme to 
a set of BM classifiers, and Ensemble of Pruned Sets (EPS) [45], which combines 
a set of Pruned Sets (PS) classifiers. PS is essentially a problem transformation 
method that maps sets of labels to single labels while pruning away infrequently 
occurring sets.

In a different line of research Canonical Correlation Analysis (CCA) [46] ex
ploits label relatedness by using a probabilistic interpretation of CCA as a dimen
sionality reduction technique and applying it to learn useful predictive features 
for multi-label learning. Meta Stacking (MS) [47] also exploits label relatedness 
by combining text features and features indicating relationships between classes 
in a discriminative framework.

Two papers closely related to our proposed method from the methodologi
cal point of view, which are however not tailored particularly to the multi-label 
learning problem, are [48] and [49]. [48] proposes a smooth but non-concave 
relaxation of the F-measure for binary classification problems using a logistic re
gression classifier, and optimisation is performed by taking the maximum across 
several runs of BFGS [50] starting from random initial values. [49] proposes a 
method for optimising multivariate performance measures in a general setting in 
which the loss function is not assumed to be additive in the instances nor in the 
labels. The method also consists of optimising a convex relaxation of the derived 
losses, but it is specialised for the case in which the loss can be computed from a 
contingency table (such as in micro-measures) and is restricted to binary labels.

After our research was published there has been continuing work in MLC, with 
two main lines of research being pursued. The first one is on ensemble techniques: 
[51] proposed a method for combining a set of multi label learners that are both 
accurate and diverse, involving a multi-objective optimisation problem with a 
correlation penalty term in the error function of each individual base learner to 
enforce them to be as different as possible on the training set; [52] proposed 
combining two groups of classifiers: one assuming independence between the 
labels and another considering a dense dependency structure.

The second line of research that has had increasing attention recently is the 
incorporation of label dependencies in the models [53]. In Chapter 4 we will 
describe our own work in this direction, along with recent related work.
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_________ Table 3.1: Notation used throughout this chapter._________
X set of possible labels
N  number of possible labels (|X|)
V set of possible instances
V number of possible instances (|V|)
y set of outputs (power set of V) y = {0,1}V
D dimensionality of instance features
x input label, x £ X (N x 1 vector)
y set of instances, y £ y (V x 1 vector)
y predicted set of instances
9 parameter matrix (D x N  matrix)
9n the nth column of matrix 0
4>(x,y) feature map: (f>(x,y) = Yl^=i Vvi'tpv ® x) (D x N  matrix)
ijjv vector with feature representation for instance v (D x 1 vector)
T a V x D matrix with row v corresponding to 'ipv

3.2 T he M od el

Let the input x £ X denote a label (e.g., a tag of an image), and the output y £ y 
denote a set of instances, (e.g., a set of training images). Let TV = |X| be the 
number of labels and V be the number of instances. An input label x is encoded 
as x £ {0,1}^, s.t. J2ixi — 1* For example if N = 5 the second label is denoted 
as x = [0 1 0 0 0]. An output instance y is encoded as y £ {0,1}V (y := {0,1}V), 
and yf = 1 if and only if instance xn was annotated with label i. For example 
if V = 10 and only instances 1 and 3 are annotated with label 2, then the y 
corresponding to x = [0 1 0 0 0] is y = [1 0 1 0 0 0 0 0 0 0].

We assume a given training set {(.Tn,yn)}n=i, where {xn}^=1 comprises the 
entire label space ({^n}^=i = X), and {yn}%= x represents the sets of instances 
associated with those labels. The task consists of estimating a map f  : X —» y 
which accurately reproduces the outputs of the training set (i.e., f ( xn) «  yn) 
but also generalises well to new test instances. Please refer to Table 3.1 for the 
notation used throughout this chapter.

Note that our input is a label, and our output is a set of instances. N , the size 
of our training set, is the number of possible labels. V, the size of our output, is 
the number of instances. In other words, we pose our prediction problem as one 
of predicting the instances given the label.
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3.2.1 Loss Functions

The reason for this reverse prediction is the following: most widely accepted 
performance measures target IR applications -  that is, given a label we want to 
find a set of relevant instances. As a consequence, the measures are averaged 
over the set of possible labels. This is the case for, in particular, Macro-precision, 
Macro-recall, Macro-Fß2 and the Hamming loss [44]:

Here, yn is our prediction for input label n, and yn the corresponding ground- 
truth. Since these measures average over the labels, in order to optimise them we 
need to average over the labels as well, and this happens naturally in a setting in 
which the empirical risk is additive on the labels.2 3

Instead of maximising a performance measure we frame the problem as min
imising a loss function associated with the performance measure. We assume a 
given loss function A : y x y —>• M+ which assigns a non-negative number to 
every possible pair of outputs. This loss function encodes how much we want to 
penalise a prediction y when the correct prediction is y, i.e., it has the opposite 
semantics of a performance measure. As already mentioned, we will be able to 
deal with a variety of loss functions in this framework, but for concreteness of 
exposition we will focus on a loss derived from the Macro-Fß score defined above,

2Macro-Fi is the particular case of this when ß equals to 1. Macro-precision and macro-recall 
are particular cases of macro-Fß for ß —> 0 and ß —> oo, respectively.

3The Hamming loss also averages over the instances so it can be optimised in the ‘normal’ 
(not reverse) direction as well.

71=1

71=1
N

where

27



whose particular case for ß  equal to 1 (iq) is arguably the most popular perfor
mance measure for multi-label classification. In our notation, the Fp score of a 
given prediction is

Fß(y,y)  =  ( i  +  ß 2)-
T -v y

(3,1)

and since Fp is a measure of alignment between y and y , one possible choice for 
the loss is A (y,y) = 1 — Fp(y,y), which is the one we focus on in this chapter,

A(y,y) = 1 -  (1 + ß 2)
T  -y y

ß 2yr y +  yTy
(3.2)

3.2.2 Features and Param eterisation

Our next assumption is that the prediction for a given input x returns the max- 
imiser(s) of a linear score of the model parameter vector 9, i.e., a prediction is 
given by y such that 4

y  e  argmax y), 6) . (3.3)
yey

Here we assume that (f>(x,y) is linearly composed of features of the instances 
encoded in each yv, i.e., 4>(x,y) = 'Y^J=1yv{$v x). The vector ipv is the fea
ture representation for the instance v. The map (f>{x, y) will be the zero vector 
whenever yv = 0, i.e., when the instance v does not have label x. The feature 
map (f)(x, y) has a total of DN  dimensions, where D is the dimensionality of our 
features (ipv) and N  is the number of labels. Therefore DN  is the dimensionality 
of our parameter 9 to be learned.

3.2.3 O ptim isation  Problem

We are now ready to formulate our estimator. We assume an initial, ‘ideal’ 
estimator taking the form

6* = argmin 
e

( r (xn-,0),yn)
n= 1

A
+  2

(3.4)

In other words, we want to find a model that minimises the average prediction 
loss in the training set plus a quadratic regulariser that penalises complex solu
tions (the parameter A determines the trade-off between data fitting and good 
generalisation).

4(A,B)  denotes the inner product of the vectorised versions of A and B
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3.3 O p tim isa tion

3.3.1 C onvex R elaxation

The optimisation problem (3.4) is non-convex -  the loss is a piecewise constant 
function of 0. We will therefore resort to a convex upper bound on the structured 
loss of (3.4). As already discussed in Section 2.1.1, the key problem that needs 
to be solved at each iteration of our learning algorithm is constraint generation, 
i.e., to find the maximiser of the violation margin :

y*n e argmax [A(y, yn) + (<;f)(xn, y), 0)]. (3.5)

The difficulty in solving the above optimisation problem depends on the choice 
of 4>(x.y) and A. Next we investigate how this problem can be solved for our 
particular choices of these functions.

3.3.2 C onstraint G eneration

Using (3.2) and <j>(x,y) = Ylv=i Vvii’v ®x), (3.5) becomes

where

and

Vn e argmax (y, zn) .

T0n ( i  +  P)r
IMI2 + /?2llyi2’

(3.6)

(3.7)

• T is a V x D  matrix with row v corresponding to xpv]

• 9n is the nth column of matrix 9\

We now investigate how to solve (3.6) for a fixed 0. We first describe a simple, 
naive algorithm. In the next section we then present a more involved but much 
faster algorithm.

A simple algorithm can be obtained by first noticing that zn depends on y 
only through the number of its nonzero elements. Consider the set of all y with 
precisely k nonzero elements, i.e., y k =: {y : \\y\\2 = k}. Then the objective in 
(3.6), if the maximisation is instead restricted to the domain y k, is effectively 
linear in ?y, since zn in this case is a constant with respect to y. Therefore we can
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A lgorithm  1 Reverse Multi-Label Learning 
1: Input: training set {(:rn, yn)}^=1, A, /?, Output: 9 
2: Initialise i =  1, 9\ =  0, MAX= —oo 
3: repeat
4: for n =  1 to  N  do
5: Compute y* (Naive: Algorithm 2. Improved: Algorithm 3)
6: end for
7: Compute subgradient gi (3.10) and objective o* (3.9)
8: 0i + 1 := arginine |  ||y||2 +  max(0, max (m, 0) +  oA; z <— z +  1

9: until converged (see [55])
10: return 9

consider each y*. separately by finding the top k entries in zn. Finding the top k 
elements of a list of size V  can be done in 0 ( V )  time [54]. Therefore we have an 
0 { V 2) algorithm (for every k from 1 to V, solve argmaxyGyfc (y, z) in 0( V)  time). 
Algorithm 1 describes in detail the optimisation problem, as solved by Bundle 
Methods for Risk Minimization (BMRM) [55], and Algorithm 2 shows the naive 
constraint generation routine. The BMRM solver requires both the value of the 
objective function for the slack corresponding to the most violated constraint and 
its gradient. The value of the slack variable corresponding to y* is

Cn =  A ( y l y n) +  (<t>(xn,y'n),e) -  (<t>(xn,yn) , 8 ) , (3.8)

thus the objective function from (2.6) becomes

1 ] T a (2 / i y n) + -  W**,»"),*> +  ̂M*. (3-9)
n

whose gradient (with respect to 9) is

A fl -  jj»" )  -  y'n))• ( 3 -1 0 )
n

We need both expressions (3.9) and (3.10) in Algorithm 1.

3.3.3 Faster C onstraint G eneration

A faster constraint generation algorithm can be obtained by finding via binary 
search successively improved lower bounds on the cardinality k of nonzero entries 
in any optimal solution y*. Only once we cannot further improve this lower bound
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A lgorithm  2 Naive Constraint Generation 
1: Input: (xn,y n), T, 0, /?, V, Output: y* 
2: MAX= -o o
3
4
5
6

7
8

for k = 1 to  V  do
7  —  \ \ j f jn  _  ( 1+ ß 2) yn
Z n  ^  f c + ^ ||y n | |2

y* — argmaxyGyfc (y, 2n) (i.e. find top k entries in zn in 0 (V )  time) 
CURRENT^ maxyGyfc (y, zn)
if CURRENT>MAX th e n  

MAX =  CURRENT

9 : Vn =  V*

10: end if
11 end for
12 return y*

do we resort to a linear search in k, just as Algorithm 2 does. Below we describe 
the algorithm, and afterwards an explanatory proof of its correctness. The worst 
case complexity is still 0 ( V 2) since a linear search is required at the end, however 
in practice the algorithm is very fast since many if not most of the cardinalities 
k are never considered as they fall below the final lower bound.

Theorem  1 Algorithm 3 finds an optimal solution to argmaxyGy (y , z n).

P roof There are two key ideas in the algorithm. The first is in lines 2-3. The 
subvector Z(0) is constant, since it only depends on (T0)(O). In particular, its own 
subvector obtained by restriction to the positive entries is also constant: Z(0+). 
The idea is that the cardinality of (0+) is a lower bound on k , since removing a 
single 1 from y*0+̂ = 1 has two effects: (i) it will necessarily decrease the inner

product (ylo+p 2(o+)/ since all entries of Z(0+) are positive, and (ii) the remain
ing terms of the inner product (y*,z) will either be decreased or kept constant. 
Therefore collectively the inner product (y, z) is decreased. This gives us a first 
lower bound. A succession of larger lower bounds can be obtained by incorporat
ing a second idea, implemented in lines 6-18. We start with k as the first lower 
bound, and compute the amount of positive entries P O S  in the resulting z eval
uated at that particular k (lines 9-10). The key insight now is that, if PO S > k , 
then certainly P O S  is also a lower bound. This is true because by going from k 
to P O S  we necessarily increase the entries in 2 , so the indices that were positive 
continue to be positive and by the same previous argument any k < PO S  will

31



decrease the inner product. We then propose a new k halfway between the new 
lower bound and a (previously computed in line 7) upper bound UB+ on the 
number of positive entries of any z. This is done because we cannot expect that 
POS > k if k = UB+, so the test in line 11 (which gives us a better lower bound)

Algorithm 3 Constraint Generation 
1: Input: (x,y), T, 6 Output: y* (index n is left implicit)
2: Compute I  = {i : yi = 0}, and Z(0), the subvector of z restricted to /.
3: Compute the index set (0+ ) of the positive entries of Z(o). Set y^0+̂  = 1- 

4: LB = cardinality of (0+)
5: k = LB
6: Compute the index set (U+) of positive entries of z = T# —
7: UB+ = cardinality of (U+) (upper bound on no. positive entries of z)
8: repeat
9:

10:

Z  =  ^ 0  - ( 1+ ß 2 ) y  
k+ß2\\y\\2

Compute POS = #  of positive entries in z
11: i f  k < POS th e n

12: LB =  POS
13: k = KUB+ + LB )/2J
14: e n d  if

15: i f  k > POS th e n

16: k =  l(k + LB)/2\
17: e n d  i f

18: u n t il  k = LB
19: (in the following for loop all computations can be restricted to the index 
20: set p = {1,..., P}\(0+), since we know y*Q+) = 1)
21: for k = LB to V do 
22: z = '$ 0 - k+02\\y\\2
23: y' = argmaXy^ (y. z) (i.e. find top k entries in z in 0(V)  time)
24: CURRENT^ maxyeyfc (y,z)
25: i f  C U R R E N T > M A X  th e n

26: M AX =  C U R R E N T

27: y* = y'
28: e n d  if

29: e n d  for  

30: r e tu r n  y*
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will never be accepted for k > U B +. If however P O S < /c, then we don’t have 
a new lower bound, and we decrease the proposed k halfway towards the current 
lower bound. The end of the binary search happens when the number of positive 
entries in 2  agrees with the proposed fc, i.e. when the lower bound cannot be 
further improved. The fact that this will necessarily happen after some point 
follows from the fact that the sequence of lower bounds is increasing and U B + is 
an upper bound on this sequence. Once the binary search has finished, we simply 
revert to the naive version of the algorithm, as described in Algorithm 2, and 
search for k between this best lower bound and V. ■

3.3.4 P re d ic tio n

The problem to be solved at test time (3.3) has the same form as the problem 
of constraint generation (3.5), the only difference being that zn = 4>0n (i.e., the 
second term in (3.7), due to the loss, is not present). Since zn is a constant 
vector, the solution for (3.5) is the vector that indicates the positive entries 
of zn, which can be efficiently found in 0 (V ). Therefore inference at prediction 
time is very fast.

3.3.5 O th e r  Scores

Up to now we have focused on optimising Macro-F^, which already gives us 
several scores, in particular Macro-Fi, macro-recall and macro-precision. We can 
however optimise other scores, in particular the popular Hamming loss -  Table 
3.2 shows a list of scores with the corresponding loss, which we then substitute 
in (3.4).

Note that for the Hamming loss and macro-recall the denominator is constant, 
and therefore it is not necessary to solve (3.6) multiple times as described earlier, 
which makes constraint generation as fast as test-time prediction (see subsection 
3.3.4).

3.4 Experim ental R esults

In this section we evaluate our method in several real world datasets, for both 
macro-Fp and Hamming loss. These scores were chosen because macro-F/3 is a
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Table 3.2: Evaluation scores and corresponding losses.

score A(y,y)
macro-F p i (i+ ß ' jt) ( y 1 y )

ß 2 y T y + y T y

macro-precision 1 _ ä
1 y T y

macro-recall 1 _ Ö
1 y r y

Hamming loss y T l + y T l - 2 y T y
V

generalisation of the most relevant scores, and the Hamming loss is a generic, 
popular score in the multi-label classification literature.

3.4.1 D atasets

We used 5 publicly available5 multi-label datasets: yeast, scene, medical, enron 
and emotions. We selected these datasets because they cover a variety of applica
tion domains -  biology, image, text and music -  and there are published results 
of competing methods on them for some of the popular evaluation measures for 
MLC (macro-Fi and Hamming loss). Table 3.3 describes them in more detail.

3.4.2 M odel Selection

Our model requires only one parameter: A, the trade-off between data fitting 
and good generalisation. For each experiment we selected it with 5-fold cross- 
validation using only the training data.

3.4.3 Im plem entation

Our implementation is in C++, using the BMRM package of [55] as a base. 
Source code is available6 under the Mozilla Public License.7

3.4.4 Com parison to  Published R esu lts on M acro-Fi

In our first set of experiments we compared our model to published results on the 
Macro-Fi score. We strived to make our comparison as broad as possible, but

5 http: /  /  mulan. sour ceforge. net /  datasets. ht ml
6 http: /  /  users.cecs.anu.edu.au/~jpetterson/.
7http: /  /  www.mozilla.org/MPL/MPL-l. 1 .html
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Table 3.3: Datasets. #train/#test denotes the number of observations used for 
training and testing respectively; N  is the number of labels and D the dimen
sionality of the features.

d ataset dom ain # tr a in # t e s t N D

yeast biology 1500 917 14 103
scene image 1211 1196 6 294
medical text 645 333 45 1449
enron text 1123 579 53 1001
emotions music 391 202 6 72

Table 3.4: Macro-Fi results. Bold face indicates the best performance. Results 
for CCA in the Medical and Enron datasets are unavailable.

D a ta se t O urs C C A C C B M SM M S E C C E B M E P S R A K E L

Y east 0.440 0.346 0.346 0.326 0.327 0.331 0.362 0.364 0.420 0.413

Scene 0.671 0.374 0.696 0.685 0.666 0.694 0.742 0.729 0.763 0.750

M ed ica l 0.420 - 0.377 0.364 0.321 0.370 0.386 0.382 0.324 0.377

E n ro n 0.243 - 0.198 0.197 0.144 0.198 0.201 0.201 0.155 0.206

we limited ourselves to methods with published results on public datasets, where 
the experimental setting was described in enough detail to allow us to make a 
fair comparison.

We therefore compared our model to Canonical Correlation Analysis [46] 
(CCA), Binary Method [41] (BM), Classifier Chains [42] (CC), Subset Mapping 
[56] (SM), Meta Stacking [47] (MS), Ensembles of Binary Method [42] (EBM) , 
Ensembles of Classifier Chains [42] (ECC), Ensembles of Pruned Sets [45] (EPS) 
and Random K Label Subsets [44] (RAKEL).

Table 3.4 summarises our results, along with those of competing methods 
which were taken from compilations by [46] and [42]. We can see that our model 
has the best performance in yeast, medical and enron. In scene it doesn’t perform 
as well -  we suspect this is related to the label cardinality of this dataset: almost 
all instances have just one label, making this essentially equivalent to a multiclass 
dataset.

35



Table 3.5: Hamming loss results. Bold face indicates the best performance.

D a t a s e t O u rs C C P C C E C C E P C C

S c e n e

E m o t io n s

0.1271
0.2252

0.1780

0.2448

0.1780

0.2417

0.1503

0.2428

0.1498

0.2372

3.4.5 Com parison to  Published R esu lts on H am m ing Loss

To illustrate the flexibility of our model we also evaluated it on the Hamming 
loss. Here, we compared our model to classifier chains [42] (CC), probabilistic 
classifier chains [43] (PCC), ensembles of classifier chains [42] (ECC) and ensem- 
bled probabilistic classifier chains [43] (EPCC). These are the methods for which 
we could find Hamming loss results on publicly available data.

Table 3.5 summarises our results, along with competing methods’ which were 
taken from a compilation by [43]. As can be seen, our model has the best perfor
mance on both datasets.

3.4.6 R esu lts on

One strength of our method is that it can be optimised for the specific measure 
we are interested in. In Macro-F^, for example, 3 is a trade-off between precision 
and recall: when ß  —> 0 we recover precision, and when ß  —> oo we get recall. 
Unlike previous methods, given a desired precision/recall trade-off encoded in a 
choice of ß, we can optimise our model such that it gets the best performance on 
Macro-F^. To show this we ran our method on all five datasets, but this time with 
different choices of ß, ranging from 10-2 to 102. In this case, however, we could 
not find published results to compare to, so we used Mulan,8 an open-source 
library for learning from multi-label datasets, to train three models: BM[41], 
RAKEL[44] and MLKNN[57]. BM was chosen as a simple baseline, and RAKEL 
and MLKNN are the two state-of-the-art methods available in the package.

MLKNN has two parameters: the number of neighbours k and a smoothing 
parameter s controlling the strength of the uniform prior. We kept both fixed 
to 10 and 1.0, respectively, as was done in [57]. RAKEL has three parameters: 
the number of models m, the size of the label set k and the threshold t. Since 
a complete search over the parameter space would be impractical, we adopted 
the library’s default for t and m  (respectively 0.5 and 2 * N ) and set k to 4  as 
suggested by [42]. For BM we kept the library’s defaults.

8http://mulan.sourceforge.net/
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yeast scene

ML-KNN
RaKEL

Our method

ML-KNN

Our method

medical enron

- a - ML-KNN 
- 0 -  RaKEL 
—f —BM

O -  Our method

ML-KNN
RaKEL

Our method

emotions

ML-KNN

Our method

Figure 3.1: Macro-F^ results on five datasets, with ß ranging from 10-2 to 102 
(i.e., log10/3 ranging from -2 to 2). The centre point (log/3 = 0) corresponds to 
macro-Fi. ß controls a trade-off between Macro-precision (left side) and Macro
recall (right side).
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In Figure 3.1 we plot the results. We can see that BM tends to prioritise 
recall (right side of the plot), while ML-KNN and RAKEL give more emphasis 
to precision (left side). Our method, however, goes well in both sides, as it is 
trained separately for each value of ß. In both scene and yeast it dominates the 
right side while it is still competitive on the left side. And in the other three 
datasets -  medical, enron and emotions -  it practically dominates over the entire 
range of ß.

3.5 Sum m ary

Multi-label classification is a key problem in several IR applications such as au
tomatic image annotation [7] and document classification [37]. This chapter 
presented a new approach to this problem which consists of predicting sets of 
instances from labels. This apparently unintuitive approach is in fact natural 
since, once the problem is viewed from this perspective, many popular perfor
mance measures admit convex relaxations that can be directly and efficiently 
optimised with existing methods. The method only requires one parameter, as 
opposed to most existing methods, which have several. The method leverages 
existing tools from structured output learning, which gives us certain theoretical 
guarantees. A simple version of constraint generation is presented for small prob
lems, but we also developed a scalable, fast version for dealing with large datasets. 
We presented a detailed experimental comparison against several state-of-the-art 
methods and overall our performance is notably superior.

The proposed approach can also be applied, with small modifications, to pre
dict sets of labels given instances (the ‘normal’ direction). The main difference is 
that in this case we will optimise score measures averaged over instances, instead 
of averaged over labels. We are going to show this in the next chapter.

A fundamental limitation of the approach described in this chapter is that 
it does not handle dependencies among labels. It is however possible to include 
such dependencies by assuming for example a bivariate feature map on the labels, 
rather than univariate. We are also going to address this problem in the next 
chapter.
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C h a p te r  4

S ub m o d u lar M ulti-L abel 
L earn ing

In this chapter we extend the algorithm introduced in Chapter 3 to allow for 
submodular pairwise label interactions. This enables the algorithm to explic
itly model the dependencies between pairs of labels, improving its performance. 
This comes at a cost, however: even though inference remains efficient and ex
act, training becomes more expensive and complex, and we have to resort to 
an approximate algorithm due to the intractability of the constraint generation 
problem. Nevertheless we give both theoretical and empirical evidence that this 
algorithm is very effective.

4.1 In trod u ction

In Chapter 3 we proposed to apply the max-margin structured prediction frame
work to the problem of multi-label classification. We showed that, by choosing an 
appropriate objective function, we can optimise our model to the specific measure 
we are interested in. One limitation of that approach, however, is that it does not 
explicitly handle dependencies among labels. For example, in automatic image 
tagging, if the labels ocean and ship have high co-occurrence frequency in the 
training set, the learned model should somehow boost the chances of predicting 
ocean if there is strong visual evidence for the label ship [58].

In this chapter we extend the method from Chapter 3 to address this aspect. 
We explicitly model the dependencies between pairs of labels, albeit restricting 
them to be submodular (in rough terms, we model only the positive pairwise 
label correlations). This enables exact and efficient prediction at test time, since
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finding an optimal subset of labels reduces to the minimisation of a particular 
kind of submodular set function which can be done efficiently via graph-cuts.

Goal: To design a learning algorithm that produces multi-label classifiers 
optimised for a specific performance measure and takes into account 
label interactions.

Unlike in the previous chapter, however, here we deal with the problem of 
predicting labels given instances (i.e., the ‘normal’ direction). This makes more 
sense, since we want to model dependencies in the labels, not in the instances. 
A consequence of this is that we are now going to optimise for a score measure 
averaged over instances -  the mean over all instances of the E-score.1

The critical technical contribution in this chapter is a constraint generation al
gorithm for loss-augmented inference where the scoring of the pair (input-output) 
is a submodular set function and the loss is derived from the F-score. This is 
what enables us to fit our model into the estimator from [16]. Our constraint 
generation algorithm is only approximate since the problem is intractable. How
ever we give theoretical arguments supporting our empirical findings that the 
algorithm is not only very accurate in practice, but in the majority of our real- 
world experiments it actually produces a solution which is exactly optimal. We 
also present an efficient algorithm which serves as a certificate of optimality for 
this constraint generation algorithm. We compare the proposed method with 
other benchmark methods on publicly available multi-label datasets, and results 
support our approach.

4.1.1 R e la te d  W ork

In Chapter 3 we have already reviewed recent work in MLC (see section 3.1.1), 
so here we will focus on related work that specifically attempts to encode label 
dependencies.

One of the first publications in this line of research was [59], which proposed 
a generative model where each label generates different words. Even though it 
can handle correlations between labels, it uses greedy heuristics to search over 
the exponentially large label space.

On the discriminative side, most methods assume that the labels are arranged 
in a known hierarchy or a taxonomy, usually encoded in a tree. Examples of these

Tn this chapter we will deal only with the in-score, which we will write as F-score to keep 
the notation uncluttered.
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Figure 4.1: Graph of label co-occurrences in the yeast dataset (see Section 4.5.1 
for a description of the datasets used). Nodes represent labels, and the thickness 
of the edges represents how often the corresponding labels co-occur in the training 
dataset, with no edge when there is no co-occurence. The graph is dense -  86 of 
the 91 possible edges are present.

methods are [60, 61, 62, 63, 64]. A more general approach with respect to the 
hierarchical structure is the method proposed in [53], as it deals with both tree 
and DAG-based dependencies among the labels. It does so by adapting decoding 
algorithms from signal processing to the problem of finding predictions consistent 
with the structures learned. Similarly, in [65] graphical models are used to impose 
structure in the label dependencies.

In many real-life problems, however, imposing a graph topology on the pair
wise label interactions might not be realistic (see Figure 4.1 for an example). 
Our proposed method can therefore be seen as complementary to these methods, 
since we do not enforce any particular graph topology on the labels but instead 
we limit the nature of the interactions to be submodular.

[66] was perhaps the first to suggest the use of a max-margin framework to 
learn label interactions. Their method, however, deals only with the Hamming 
loss. [67] studies the multi-label problem under the assumption that prior knowl
edge on the density of label correlations is available. They also use a max-margin 
framework, similar in spirit to our formulation. Their main focus, however, is on
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___________ Table 4.1: Notation used throughout this chapter._____________
X set of instances
N  number of instances
y set of outputs: y = {0, \ }v
V number of possible labels
D dimensionality of instance features
x input instance, x G X (D x 1 vector)
y set of labels, y G y (V x 1 vector)
y predicted set of labels
91 linear component of the parameter vector: 9l :=[. . .  9\T ... ]T
92 quadratic component of the parameter vector: 92 := [... 92-... ]T
9} parameter vector that defines how label i weighs each feature of x
92j scalar parameter that defines how label i weighs label j
9 complete parameter vector: 9 = [9lT 92T]T

y) linear term of feature map: y) = veefx £$ y)
02 (y) quadratic term of feature map: (f2(y) = vec(y <g> y) 
cp(x.y) complete feature map: <f>(x:y) = [(j)J(x,y) 4>̂ {y)]T
Cij normalised count of co-occurrence of labels i and j  in the training set

training speed, and they do not optimise for the F-score.

4.2 T h e  M o d e l

Let X  £  X be a vector of dimensionality D with the features of an instance (say, 
an image); let y G y be a set of labels for an instance (say, tags for an image), 
from a fixed dictionary of V possible labels, encoded as y G {0,1}V\  For example, 
y = [1 1 0 0] denotes the first and second labels of a set of four. We assume we are 
given a training set {(xn, yn)}n=i-> and our task is to estimate a map /  : X —> y 
that has good agreement with the training set but also generalises well to new 
data. Please refer to Table 4.1 for the notation used throughout this chapter.

In this section we define the class of functions /  that we will consider. In the 
next section we define the learning algorithm, i.e., a procedure to find a specific 
/  in the class.
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4.2.1 The Loss Function D erived from the F -Score

Our notion of ‘agreement’ with the training set is given by a loss function. We 
focus on maximising the average over all instances of F, a score that considers 
both precision and recall and can be written in our notation as

F
n = l

2 p(yn,yn)r(yn,yn) 
P ( y n , y n) + r(yn,ynY

where p(y, y) = yTy
yTy

and r(y,y) yTy
yTy

Here yn denotes our prediction for input instance n, yn is the corresponding 
ground-truth. Since our goal is to maximise the F-score a suitable choice of loss 
function is A(y, y) = 1 — F(y, y), which is the one we adopt in this chapter. The 
loss for a single prediction is therefore

2 yTy
yTy +  yTy

4.2.2 Feature M aps and P aram eterisation

We assume that the prediction for a given input x is a maximiser of an expression 
that encodes both the unary dependency between labels and instances as well as 
the pairwise dependencies between labels:

y G argmaxyT/ly (4-2)

where A is an upper-triangular matrix scoring the pair (x,y), with diagonal ele
ments An = (x, 9}), where x is the input feature vector and 9] is a parameter vec
tor that defines how label i weighs each feature of x. The off-diagonal elements are 
Aij = Cij9fj, where C y  is the normalised count of co-occurrence of labels i and j  
in the training set, and 02 the corresponding scalar parameter (dim(02) = 1). We 
also define the complete parameter vectors 91 := [ ... 9}T ... ]r , 92 := [ ... 0?-... ]T 
and 9 = [9lT 92T]T, as well as the complete feature maps (pi(x,y) = vec(x y), 
<t>2 (y) = vec(y <8> y) and (f>(x,y) = [(pj(x^y) </>̂ (y)]r . This way the score in (4.2) 
can be written as yTAy = {4>(x, y), 0). Note that the dimensionality of 92 is the 
number of non-zero elements of C -  in this setting this is (g), but it can be 
reduced by setting to zero elements of C below a specified threshold.

In Appendix B we describe how to solve (4.2) via graph-cuts.

43



4.3 L earn ing  A lgo rithm

4.3.1 O ptim isation  Problem

Direct optimisation of the loss defined in (4.1) is a highly intractable problem 
since it is a discrete quantity and our parameter space is continuous. Once again 
we follow the framework described in Section 2.1.1, and as a consequence at each 
iteration we need to maximise the violation margin £n, which reduces to solving

Vn e  argmax [A(y, yn) +  (<f)(xn, y), 0)]. (4.3)
yey

4.3.2 Learning A lgorithm

Here we make use of the same quadratic solver as in Chapter 3 (BMRM [55]). 
For convenience, we repeat its description in Algorithm 4 (which requires Algo
rithm 5 as a subroutine). Note that other solvers could have been used instead. 
Our contribution lies not here, but in the routine of constraint generation for 
Algorithm 4, which is described in Algorithm 5.

BMRM requires the solution of constraint generation and the value of the 
objective function for the slack corresponding to the constraint generated, as 
well as its gradient. Soon we will discuss constraint generation. The other two 
ingredients we describe here. The slack at the optimal solution is

C  =  H v l ,  yn) + {<«*", Vn), 0) ~  y"), , (4.4)

thus the objective function from (2.6) becomes

1 Y ,  A(y;, yn) + (4>{xn, Vn), 0) -  <*(*", 8) + \  l i e f , (4-5)
n

whose gradient is

(4-6)
n

Expressions (4.5) and (4.6) are then used in Algorithm 4.

4.3.3 C onstraint G eneration

The most challenging step consists of solving the constraint generation problem. 
Constraint generation for a given training instance n consists of solving the com
binatorial optimisation problem in (4.3), which, using our expression for the loss
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A lgorith m  4 Bundle Method for Regularised Risk Minimisation (BMRM) 
1: Input: training set {(:rn,yn)}%=1, A, O utput: 9 
2: Initialise i = 1, 9\ = 0, max= —oo
3: repeat
4: for n =  1 to  N do
5: Compute y* (yjE”ai returned by Algorithm 5.)
6: end  for
7: Compute gradient y* (4.6) and objective cy (4.5)
8: 9i+1 := argmin^ |  \\9\\2 * 4- max(0, max (ŷ -, 9) + Oj); i f - j  + 1

j<i
9: until converged (see [55])

10: return  9

in (4.1), as well as the correspondence yTAy = (</>(x, y), #), can be written as

y*n E argmax yTAn(y)y (4.7)
y

where diag(An) =  diag(A) — and offdiag(An) = offdiag(A). Note that the
matrix An depends on y. More precisely, a subset of its diagonal elements (those 
A7̂ for which yn(i) = 1) depend on the quantity |y|, i.e., the number of nonzero 
elements in y. This makes solving (4.7) a formidable task. If An were independent 
of y, then (4.7) could be solved exactly and efficiently via graph-cuts, just as our 
prediction problem in (4.2). A naive strategy would be to aim for solving (4.7) V 
times, one for each value of |y|, and constraining the optimisation to only include 
elements y such that |y| is fixed. In other words, we can partition the optimisation 
problem into k optimisation problems conditioned on the sets y k {y • |y| = k}:

ma x y TA(y)y = maxma xyTA ^’ny, (4-8)
y k yê fc

where A ^ ,n denotes the particular matrix An that we obtain when |y| =  k. 
However the inner maximisation above, i.e., the problem of maximising a super- 
modular function (or minimising a submodular function) subject to a cardinality 
constraint, is itself NP-hard [68]. We therefore do not follow this strategy, but 
instead seek a polynomial-time algorithm that in practice will give us an optimal 
solution most of the time.

Algorithm 5 describes our algorithm. In the worst case it calls graph-cuts 
0(V)  times, so the total complexity is 0 (R 4).2 The algorithm essentially searches

2The worst-case bound of O(W) for graph-cuts is very pessimistic; in practice the algorithm
is extremely efficient.
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A lgorith m  5 Constraint Generation
1: Input: (xn,yn), 0, V , O utput: y*knmax 
2: k =  0
3: A [̂ 'n =  (Oij, Cij) (for all i , j  j )
4: w hile k < V do
5: diag(AW-n) =  diag(A) -
6: yln = argmaxy yTA ^ 'ny (graph-cuts)
7: if  \y*kn\ > k th en

kmax \yk I, k kmax 
9: else if |yjn| =  k th en

10: kmax — I yk |, k =  kmax T 1
11: else
12: k =  k + l
13: end  if
14: end w hile  
15: return  yln

** K m a x

for the largest k such that solving argmax yTA ^ ,ny returns a solution with k
ones. We call the k obtained kmax, and the corresponding solution 2/^  . Observe 
the fact that, as k increases during the execution of the algorithm, A™ increases 
for those i where yn{i) =  1. The increment observed when k increases to k' is

ejf := A%]'n -  A ^ n = 2— — —  (4.9)
‘ (k '+ \yn\)(k + \yn\)

which is always a positive quantity. Although this algorithm is not provably 
optimal, Theorem 2 guarantees that it is sound in the sense that it never predicts 
incorrect labels. In the next section we present additional evidence supporting 
this algorithm, in the form of a test that if positive guarantees that the solution 
obtained is optimal.

We call a solution y' a partially optimal solution3 of argmaxy yTAn(y)y if 
the labels it predicts as being present are indeed present in an optimal solution, 
i.e., if for those i for which y'{i) = 1 we also have y*n(i) = 1, for some y*n G 

argmaXy yTAn(y)y. Equivalently, we can write y' © y*n = y' (where a © b denotes 
the element-wise product of vectors a and b).

3This is related to the concept of weak autarky [G9]. In the context where it is defined (binary 
partial labelling), weak autarky implies that whenever an algorithm labels a node, it will never 
increase the energy (loss) of the solution over an arbitrary labelling. This is equivalent to our 
concept of partially optimality, if we consider a value of 0 in y as denoting unlabeled.
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Algorithm 6 Compute maxa ß^,a 
1: Input: Â kmax\’n, yiZaxi V»
2: Output: max
3: max — — oo

4: Z = {* : v Z J i )  = 0}
5= °  = {i ■ vZ j i )  = 1}
6: for i G Z do
7: O' = O U i
8: rmax =  maxy:J/o,=1 yTA^kmax̂ ny (graph-cuts)
9: if rmax > max then

10: max =  rmax
11: end if
12: end for
13: max =  max — maxy yT A^kmax̂ ny
14: return max

Theorem 2 Upon completion of Algorithm 5, y f fax is a partially optimal solu
tion o/argmaxy yTAn(y)y.

The theorem means that whenever the algorithm predicts the presence of a 
label, it does so correctly; however there may be labels predicted as absent which 
are in fact present in the corresponding optimal solution.

The proof is conceptually simple but requires care due to the possible mul
tiplicity of solutions. It consists of two main steps. First, we show that there 
must be an optimal solution to (4.7) with at least as many ones as the solution 
found by our algorithm. This is clearly a necessary condition for Theorem 2 to 
hold. Next we show that, for any possible solution found by our algorithm, there 
will be one such optimal solution which will indeed agree with our solution on 
all its ones. This proves the theorem. The first step is proven in proposition 
5 below, which requires supporting results that we prove first. The theorem is 
subsequently proved.

We need some preliminary results.

Lemma 3 Let Yk — argmaxy yTA ^ 'ny, where A ^ 'n is such that diag(A^,n) := 
diag(A) -  2 and A{j = ( ) f or i ^  j ,  with Oij > 0 and > 0. Now
let l > k and define similarly Yjf. Then for every y*k G Yjf there exists a yf G Yf 
such that y*k © y* = y*k (and, conversely, for every yf G Yf there exists a y*k G Yk 
such that yl © yf = y*k).
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P roof The claim states that for any optimal solution y*k G Yk , its ones will also 
be present in some optimal solution yf G Yj*. The proof is by contradiction, as
suming that there exists yk G Yk and an index i such that yk{i) =  1 and y \ (z) =  0 
for all y* G Y*. Now consider the binary vector zi which agrees with yf every
where except in z, i.e. Zi( j) =  y*(j) for j  i and Zi(i) =  1. This implies that 
ZiTA ^ 'nzi = y*TA^,ny* +  Â J,n A- ^ i )'U• Now note that we necessarily have

^ p ,n +  ̂ a ’n > 0. This holds because, first, + > 0 (other
wise yk would not be optimal), second, A ^ ,n > A ^ 'n and third that A^j'n = A ^ ,n 
for i ^  j .  Therefore ZiTA^'nZi > y*TA^,ny*, which implies that zi G Tz*, which 
contradicts the assumption that for all y* G Y*, y*(i) =  0. The converse is proved 
analogously. ■

Intuitively, the above result says that due to the non-negativity of the off- 
diagonal elements of /l, the new objective function arising from an increase in 
the diagonal of A surely has some maximiser which includes all ones already 
present in any maximiser of the previous objective function, prior to the increase 
in the diagonal.

Corollary 4 Let l > k. Then maxy yTA ^ ,ny > maxy yTA ^ ,ny.

Proof Note that the set of ones potentially present in a z/z* but not in a yk for 
which y* © yk =  y*k necessarily has non-negative contribution to the objective 
function yTA ^ ,ny (otherwise yf would not be optimal), jointly with the fact that 
the same is true for the set of ones present both in yf and yk since A^}'n > A ^ 'n 
for any z. ■

We are now ready to prove that there exists an optimal solution to the constraint 
generation problem in (4.7) which contains at least kmax ones.

Proposition 5 Let k' > kmax, where kmax is as instantiated in Algorithm 5. 
Then there exists an optimal solution y*n G argmaxy yTAn(y)y such that for some 
k!, we have y*n G argmaxyGyfc/ yTA ^ ,ny.

Proof This follows from (4.8) and from the claim that for all k < kmax, 
maxyeyfc yTA^kmaâ ny > maxyeyfc yTA ^ 'ny, which we now prove. We know that
maxy yTA^kmax̂ ny = maxyeykrnnT yT A^kmax̂ ny holds since, from lines 8 and 10 of Al
gorithm 5, we have kmax = On the other hand, we have maxy yTA ^ 'ny >
maxy€yfc yTA ^ 'ny since ^  C Both facts, when put together with corollary 4, 
prove the claim. ■
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We are now able to give a proof of Theorem 2.
Proof of Theorem 2 We show that for any solution y*k̂ as found by Algorithm 
5, we have that 2/jJ” © y*n — ylZax f°r some optimal solution y*n having at least
kmax ones. We proceed by contradiction, assuming that there is no optimal so
lution y*n respecting \y*n\ > kmax such that yJ£ox © y*n = y*k”ax holds, for any 
y*kZax- This *s equivalent f° saying that for every y*n respecting |y*n| > kmax 
there is an index i (which can be different for different y*n) such that y*n(i) =  0 
and ;Vfĉax(0 = 1 for any j/J” . Now consider a vector z that agrees with y*n 
everywhere except in index i, i.e., z(i) = 1. The key observation now is that 
zTA ^ ,nz > (y*n)TA^y*n\}’ny*n, and therefore z should be an optimal solution as 
well, which results in a contradiction. To see why this inequality holds, first note 
that zTA ^ 'nz — (y*n)TA^y*n '̂ny*n = J 2 i(A ^ ’n — A ^  ’̂n) + Aij, where the 
first sum accounts for the potential change in the diagonal due to the increase 
in the cardinality of the solution, and the second sum accounts for the newly 
incorporated off-diagonal terms as a result of z(i) = 1. The result then follows 
from the submodularity assumption {At] > 0, Vi ^  j)  and from the fact that 
the diagonal is non-decreasing with respect to increases in the cardinality of the 
solution — A ^  > 0, Vi, since \z\ > \y*n\). ■

4.4 Certificate of O ptim ality

As empirically verified in our experiments in section 4.5, our constraint generation 
algorithm (Algorithm 5) is indeed quite accurate: most of the time the solution 
obtained is optimal. In this section we present a test that if positive guarantees 
that an optimal solution has been obtained (i.e., a certificate of optimality). This 
can be used to generate empirical lower bounds on the probability that the algo
rithm returns an optimal solution (we explore this possibility in the experimental 
section).

We start by formalising the situation in which the algorithm will fail. Let 
Z := {i : yl^ax{i) = 0}, and be the power set of Z (Z for ‘zeros’). Let 
O := {i : yjfc”ax(*) = 1} (O for ‘ones’). Then the algorithm will fail if there exists 
a G Tz such that

E T+ E A»+ E4b°
i£a,j€0 iEa

(a) (fc) (c)

+ etz::+M\yn @ y Z J > °- (4-10)
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The above expression describes the situation in which, starting with j/jJ” , if we 
insert |a| ones in the indices defined by index set cq we will obtain a new vector 
y' which is a feasible solution of argmaxy yTAn(y)y and yet has strictly larger 
score than solution y*ßßnar- This can be understood by looking closely into each 
of the sums in expression (4.10). Sums (a) and (6) describe the increase in the 
objective function due to the inclusion of off-diagonal terms. Both (a) and (b) 
are non-negative due to the submodularity assumption. Term (c) is the sum of 
the diagonal terms corresponding to the newly introduced ones of y'. Term (c) 
is negative or zero, since each term in the sum is negative or zero (otherwise 
2/J” would have included it). Finally, term (d) is non-negative, being the total 
increase in the diagonal elements of O due to the inclusion of \a\ additional ones. 
We can write (c) as

E ^

[̂ max-i"|c*|] >71 _
a

xx] ,n +
E t 4 « "

c+ | a | ] , 7 i [ ^ m a i ]  >71A l ^ma^a (4.11)

(C) (e)

and the last term can be bounded as

( / )

t + 1a 11) (4.12)

where va = min[|f/n| — \yn © y ^ nx|,|o:|] is an upper bound on the number of 
indices i G such that yn(i) = 1, and is the increment in a diagonal
element i such that yn(i) = 1 arising from increasing the cardinality of the solution 
from kmax to kmax + \a\. Incorporating bound (4.12) into (4.11), we get that 
(c) < (e) + (#). We can then replace (c) in inequality (4.10) by (e) + (g), obtaining

E Al+  E ^ + E ^ l,n+.te+w"»+es=:+wi»*©C-i>o-
ieajeO iEa

=7 a

zß A , a

(4.13)

We know that, regardless of A or a, ßA,a < 0 (otherwise y*ßßnaT £ argmaxy yTA^kmax̂ ny: 
since ß is the increment in the objective function yT A^kmax̂ ny obtained by adding 
ones in the entries of a). The key fact coming to our aid is that is ‘small’, 
and a weak upper bound is 2. This is because

ew +l“lu“ + £w +l“llVn®vZJ ^ ^  eL „ Jy"l -  ^1^1 =
= 2V|ji"|/((V + 1y”I)IynI) < 2. (4.14)

50



(Note that if \yn\ = 0 then = 0 and our algorithm will always return an optimal 
solution since ß ^ a < 0).

Now, since ßA,a < 0 for any A and a  G it suffices that we study the 
quantity maxa ßA,a'- if maxQ < —2, then ß ^ a < —2 for any a E fPz- It 
is however very hard to understand theoretically the behaviour of the random 
variable maxa ß^,a even for a simplistic uniform i.i.d. assumption on the entries of 
A. This is because the domain of a i^z)  is itself a random quantity that depends 
on the particular A chosen. This makes computing even the expected value of 
maxa ßA,a an intractable task, let alone obtaining concentration of measure results 
that could give us upper bounds on the probability of condition (4.13) holding 
under the assumed distribution on A.

However, for a given A we can actually compute maxa ßA,a efficiently. This can 
be done with Algorithm G. The algorithm effectively computes the gap between 
the scores of the optimal solution yfffax and the highest scoring solution if one 
sets to 1 at least one of the zero entries in • It does so by solving graph-cuts 
constraining the solution y to include the ones present in j/J” but additionally 
fixing one of the zero entries of j/J” to 1 (lines 7-8). This is done for every 
possible zero entry of yfffax, and the maximum score is recorded (lines 7-11). The 
gap between this and the score of the optimal solution y™nax is then returned 
(line 13). This will involve V — kmax calls to graph-cuts, and therefore the total 
computational complexity is 0{V A). Once we compute maxQ ßA,a, we simply test 
wether maxn ßA,a + eZLx\yn\ > 0 holds (we use el^ax|yn| rather than 2 as an 
upper bound for 7a because, as seen from (4.14), it is the tightest upper bound 
which still does not depend on a and therefore can be computed). We have the 
following theorem

Theorem 6 Upon completion of Algorithm 6, if maxQ ßA,a +  eL!Lx \yn\ — then 
C  is an optimal solution of argmaxy yTAn(y)y.

Proof The theorem results directly from the fact that inequality (4.13) char
acterises the condition when the algorithm fails, as well as from the fact that 
maxa ßA,a > Pa,a and ev \yn\ > j a. ■

K m a x
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Table 4.2: Datasets. #train/#test denotes the number of observations used for 
training and testing respectively; V is the number of labels and D the dimension
ality of the features; Avg is the average number of labels per instance.

dataset dom ain # tr a in  # t e s t  V D Avg
yeast biology 1500 917 14 103 4.23
enron text 1123 579 53 1001 3.37

4.5 E x p erim en ta l R esu lts

To evaluate our multi-label learning method we applied it to real-world datasets 
and compared it to state-of-the art methods.

4.5.1 D atasets

For the sake of reproducibility we focused on publicly available datasets, and to 
ensure that the label dependencies have a reasonable impact on the results we 
restricted the experiments to datasets with a sufficiently large average number 
of labels per instance. We chose therefore two multilabel datasets from mulan:4 
yeast and enron. Table 4.2 describes them in more detail.

4.5.2 E xperim ental Setting

The datasets used have very informative unary features, so to better visualise 
the contribution of the label dependencies to the model we trained using varying 
amounts (1%, 10% and 100%) of the original unary features. We compared 
our proposed method to RML (the method proposed in Chapter 3, but without 
reversal5), which is essentially this chapter’s model without the quadratic term, 
and to other state-of-the-art methods for which source code is publicly available 
-  BM[41], RAkEL[44] and MLKNN[57].

4.5.3 M odel Selection

Our model has two parameters: A, the trade-off between data-fitting and good 
generalisation, and c, a scalar that multiplies C to control the trade-off between

4http://mulan. sourceforge.net/datasets.html
5RML deals mainly with the reverse problem of predicting instances given labels, however 

it can be applied in the forward direction as well.
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enron veast

% of unary features used for training % of unary features used for training

Figure 4.2: F-Score results on enron (left) and yeast (right), for different amounts 
of unary features. The horizontal axis denotes the proportion of the features used 
in training.

the linear and the quadratic terms. For each experiment we selected them with 
5-fold cross-validation on the training data. We also control the sparsity of C by 
setting Cij to zero for all except the top most frequent pairs -  this way we can 
reduce the dimensionality of 02, avoiding an excessive number of parameters for 
datasets with large values of V. In our experiments we used 50% of the pairs 
with yeast and 5% with enron (45 and 68 pairs, respectively). We experimented 
with other settings, but the results were very similar.

RML’s only parameter, A, was selected with 5-fold cross-validation. MLKNN’s 
two parameters k (number of neighbours) and s (strength of the uniform prior) 
were kept fixed to 10 and 1.0, respectively, as was done in [57]. RAkEL’s m 
(number of models) and t (threshold) were set to the library’s default (respectively 
2 * N  and 0.5), and k (size of the label set) was set to ^  as suggested by [42]. 
For BM we kept the library’s defaults.

4.5 .4  Im plem entation

Our implementation is in C++, using the BMRM package [55]. Note that we 
had to modify BMRM to enforce positivity in #2; the modifications, however, are 
relatively simple and are described in Appendix A. The max-flow computations 
needed for graph-cuts were done with the library of [70].
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iteration iteration

Figure 4.3: Empirical analysis of Algorithms 5 and 6 during training with the 
yeast dataset. Left: frequency with which Algorithm 5 is optimal at each iter
ation (blue) and frequency with which Algorithm 6 reports an optimal solution 
has been found by Algorithm 5 (green). Right: difference, at each iteration, be
tween the objective computed using the results from Algorithm 5 and exhaustive 
enumeration.

4.5.5 R esults: F-Score

In Figure 4.2 we plot the F-Score for varving-sized subsets of the unary features, 
for both enron (left) and yeast (right). The goal is to assess the benefits of 
explicitly modelling the pairwise label interactions, particularly when the unary 
information is deteriorated. As can be seen in Figure 4.2, when all features are 
available our model behaves similarly to RML. The results are slightly inferior 
due to two main reasons:

• setting: our parameters (A and c) are chosen with cross-validation from a 
small set of possible values, and therefore are not optimal;

• approximation: we are using an approximate constraint generation algo
rithm, whereas RML uses an exact one.

In this setting the unary features are very informative and the pairwise inter
actions are not helpful. As we reduce the number of available unary features (from 
right to left in the plots), the importance of the pairwise interactions increases, 
and our model demonstrates improvement over RML.

54



4.5.6 Results: C orrectness

To evaluate how well our constraint generation algorithm performs in practice 
we compared its results against those of exhaustive search, which is exact but 
only feasible for a dataset with a small number of labels, such as yeast. We also 
assessed the strength of our test proposed in Algorithm 6. In Figure 4.3 (left) 
we plot, for the first 100 iterations of the learning algorithm, the frequency with 
which Algorithm 5 returns the exact solution (blue line) as well as the frequency 
with which the test given in Algorithm 6 guarantees that the solution is exact 
(green line). Overall we can see that in more than 50% of its executions Algorithm 
5 produces an optimal solution. Our test effectively offers a lower bound which 
is informative in the sense that overall, its variations reflect legitimate variations 
in the real quantity of interest (as can be seen by the correlation between the two 
curves).

For the learning algorithm, however, what we are interested in is the objec
tive Oi and the gradient of line 7 of Algorithm 4, and both depend only on the 
compound result of N  executions of Algorithm 5 at each iteration of the learn
ing algorithm. This is illustrated in Figure 4.3 (right), where we plot, for each 
iteration, the normalised difference between the objective computed with results 
from Algorithm 5 and the one computed with the results of an exact exhaustive 
search.6 We can see that the difference is quite small -  below 4% after the initial 
iterations.

4.5 .7  Training T im e

The time the algorithm takes to train depends on the average time per iteration 
and on the number of iterations.

At each iteration the running time is dominated by the N  calls to the con
straint generation algorithm, where each one may require at most V calls to the 
max-flow algorithm. The computational complexity of the whole learning algo
rithm is therefore 0{iN V A), where i is the number of iterations. In practice, 
however, this upper bound is loose.

In Table 4.3 we summarise training times along the variables mentioned above, 
for the experiments with all the features (rightmost bars in Figure 4.2). Note that 
our implementation is multi-threaded, and scales almost linearly with the number 
of available epus, so wall-clock times can be much smaller.

6We repeated this experiment with several sets of parameters with similar results.
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Table 4.3: Training times.

Dataset Training time i N V Time/call to Alg. 5
Yeast 47.8 cpu-seconds 205 1500 14 
Enron 847.3 cpu-seconds 116 1123 53

155 us 
6504 us

4.6 S um m ary

This chapter extended the multi-label learning method presented in Chapter 3 to 
explicitly models label dependencies in a submodular fashion. As an estimator 
we again used structured support vector machines optimised with constraint gen
eration. Our key contribution is an algorithm for constraint generation which is 
proven to be partially optimal in the sense that all labels it predicts are included 
in some optimal solution. We also described an efficient test that if positive 
guarantees that the solution found is optimal.

We presented empirical results that corroborate the fact that the algorithm 
is very accurate, and we illustrate the gains obtained in comparison to other 
popular algorithms, particularly the algorithm we described in Chapter 3, which 
can be seen as a particular case when there are no explicit label interactions being 
modeled.
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C h a p te r  5

E x p o n en tia l Fam ily G rap h  
M atch ing  an d  R ank ing

Document ranking is a fundamental problem in IR [10, 11]. Finding a ranking of 
a set of documents can be seen as searching for an optimal permutation of the 
documents, which can be modeled as a bipartite matching problem. Bipartite 
graph matching, also known as linear assignment, is one of the best known com
binatorial optimisation problems, which can be solved efficiently in polynomial 
time. This model is useful in a number of applications involving assignment of 
resources to tasks. The classical approach consists of hand-tuning the weights 
of the graph according to prior knowledge about the application at hand, and 
then proceeding to solve the matching problem. However in order to leverage 
data one should instead seek an estimator to produce the weights of the graph 
from training examples of good matches. Existing estimators for this problem are 
based on structured support vector machines. In this chapter we introduce an al
ternative estimator for this problem, namely maximum a posteriori estimation in 
exponential families. The driving motivation for seeking alternative estimators is 
the importance of having a fully probabilistic approach, which allows integration 
with other probabilistic models. We show that for small graphs maximum a pos
teriori estimation is computationally efficient. For larger graphs we point out the 
existence of a sampler that allows for approximations of maximum a posteriori 
estimation, albeit being slow in practice.
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5.1 In trod u ction

The Maximum-Weight Bipartite Matching Problem (henceforth ‘matching prob
lem’) is a fundamental problem in combinatorial optimisation [71]. This is the 
problem of finding the ‘heaviest’ perfect match in a weighted bipartite graph. An 
exact optimal solution can be found in cubic time by standard methods such as 
the Hungarian algorithm.

This problem is of practical interest because it can nicely model real-world 
applications. For example, in computer vision the crucial problem of finding a 
correspondence between sets of image features is often modeled as a matching 
problem [72, 73]. Ranking algorithms can be based on a matching framework 
[74], as can clustering algorithms [75, 76] (see Figure 5.1 for some example appli
cations).

When modeling a problem as one of matching, one central question is the 
choice of the weight matrix. The problem is that in real applications we typically 
observe edge feature vectors, not edge weights. Consider a concrete example 
in computer vision: it is difficult to tell what the ‘similarity score’ is between 
two image feature points, but it is straightforward to extract feature vectors 
(e.g. SIFT) associated with those points.

In this setting, it is natural to ask whether we could parameterise the fea
tures, and use labeled matches in order to estimate the parameters such that, 
given graphs with ‘similar’ features, their resulting max-weight matches are also 
‘similar’.

[17] and [73] describe max-margin structured learning formalisms for this prob
lem. As we discussed in Chapter 2, max-margin structured estimators are appeal
ing in that they try to minimise the loss that one really cares about (‘structured 
losses’, of which the Hamming loss is an example). However structured losses 
are typically piecewise constant in the parameters, which eliminates any hope 
of using smooth optimisation directly. Max-margin estimators instead minimise 
a surrogate loss which is easier to optimise, namely a convex upper bound on 
the structured loss [16]. In practice the results are often good, but it is very 
challenging to integrate such models in larger systems since they have no prob
abilistic nature and therefore cannot be easily used as a module in a graphical 
model formulation for large systems, which is often of importance for computing 
expectations of relevant quantities in a decision-theoretic setting.

Goal: To design a probabilistic model for predicting bipartite matchings.
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Motivated by the lack of a probabilistic interpretation for max-margin struc
tured estimators, in this chapter we present a MAP estimator for the matching 
problem. The observed data are the edge feature vectors and the labeled matches 
provided for training. We then maximise the conditional posterior probability of 
matches given the observed data. We build an exponential family model where 
the sufficient statistics are such that the mode of the distribution (the predic
tion) is the solution of a max-weight matching problem. The resulting partition 
function is {[P-complete to compute exactly. However, we show that for learning 
to rank applications the model instance is tractable, and can be solved by exact 
enumeration. We then compare the performance of our model instance against 
a large number of state-of-the-art ranking methods, including DORM [74], an 
approach that only differs from our model instance by using max-margin instead 
of a MAP formulation. We show very competitive results on standard document 
ranking datasets, and in particular we show that our model performs better than 
or on par with DORM. For intractable model instances, we show that the problem 
can be approximately solved using sampling and we provide experiments from the 
computer vision domain. However the fastest suitable sampler is still quite slow 
for large models, in which case max-margin matching estimators like those of 
[73] and [17] are likely to be preferable even in spite of their potentially inferior 
accuracy.

5.1.1 T he M atching Problem

Consider a weighted bipartite graph with m nodes in each part, G = (V,E,w ), 
where V is the set of vertices, E is the set of edges and w : E i-> R is a set 
of real-valued weights associated with the edges (please refer to Table 3.1 for 
the notation used throughout this chapter). G can be simply represented by 
a matrix (iify) where the entry wi3 is the weight of the edge ij. Consider also 
a bijection y : {l ,2, . . . ,m} H> {1,2, i.e., a permutation. Then the
matching problem consists of computing

y* = argmax ̂  wiy{i). (5.1)
y i=i

This is a well-studied problem: it is tractable and can be solved in 0(m 3) time 
[77, 71]. This model can be used to match features in images [73], improve 
classification algorithms [76] and rank documents [74], to cite a few applications
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_________ Table 5.1: Notation used throughout this chapter._________
G weighted bipartite graph G — (R, E, w)
V set of vertices of a graph
E set of edges of a graph
w set of real-valued weights associated with the edges of a

graph (m x m matrix)
rn number of nodes in each side of a bipartite graph
y a bijection {1 ,2 ,..., nn} {1 ,2 ,..., m}
xe feature vector associated with edge e (d x 1 vector)
6 parameter vector (d x 1 vector)
N  number of training instances
<f>(x,y) feature map (5.6)
qk query k: a list of documents {c^,. . . ,  dkD with corresponding

ratings {rf,.. ., rkD(k)}
D(k) number of documents retrieved by query k
R number of possible ratings for a document

joint feature vector for document dk and query q̂ .

(see Figure 5.1 for some examples). The typical setting consists of engineering 
the score matrix according to domain knowledge and subsequently solving 
the combinatorial problem.

5.1.2 Ranking

Ranking is a fundamental problem with applications in diverse areas such as 
document retrieval, recommender systems, product rating and others. In this 
chapter we focus, without loss of generality, on document ranking.

In this setting the ranking problem can be described as follows: given a query 
and a list of documents retrieved by the query, our task is to order these docu
ments by relevance with respect to the query.

The traditional approach has been to use domain knowledge to engineer a 
document scoring function and use its outputs to order the documents -  examples 
are BM25 [79] and language models for information retrieval (LMIR) [80]. The 
problem with this approach is that these functions have to be manually tuned, a 
complex task that becomes increasingly challenging as more sophisticated models 
are created.

We can, however, apply machine learning to this task. Assuming we are given

60



So o8
So

DO08

f \
is i*mII

Google P
W *  'rnanw Vriae 

NIPS

S « « h  I f tSI need

*S : NIPS 4 V,»it. . 12/1007
Th« Potewtetlon Th« Nvural Inten»«Hon Processing System« (NIPS) Pourdatkx» is ■ 
non-profit corooralion »mos« purpose I« to tester th« «»change Ol research ...
nip« co/ • Pu - GssAiffid - S.«v)Äj>»a«? -

2008 Program A cceded Papers
P roceedings BOOT Cohlstenc«
Mv Account Caw For P arers
Workshop« Oeniorntraupns

D Mate. IWIÄL &BgU)inbtf-J>

NIPS : C  onto re nee s ■ 2 OOP . 2008 Conte fence - 2? v isis 10.3Sam
Th« WPS Conference («et irres a singte Sack program. «»Ih curtnUmuns Item s larg« number
of intellectual communities Pmsantelion topics m u t e :  ...
nips.ee/Cor.farooces/200S/ - 10h • £&£&&) - Similar pane s  -

rsgVBofos in Nourpl tnlorm atien P rocossina  System » (NIPSj to visits - Doe 10
Advances m N«ural Intern»shoo  P rocessing  System s (WPS) Searching votuntes 0 - 20
(1987 - 2007) 2007 2006 2005 2004 2003 2002 ... 
books n ips eel - 3k - CaEöK • S lff lü a u a g «  -

Figure 5.1: Some applications of graph matching. Top: image matching [73]. Bot
tom left: machine translation [78] (reproduced with permission of Ben Taskar). 
Bottom right: page ranking [74],

a list of queries and corresponding retrieved documents ordered by a human 
editor, we can use statistical tools to learn a ranking function that, given the 
documents, will order them by relevance.

5.1.3 Related Work

Initial learning to rank methods applied a pairwise approach: given a query and 
all its retrieved documents, pairs of documents are used as instances in learning. 
Given a pair there are only two possible orderings, and so this becomes a binary 
classihcation problem and standard methods can be applied. Support Vector Ma
chines in this setting leads to RankSVM [81]. Similar approaches with boosting 
and neural networks lead to RankBoost [82] and RankNet [83] respectively.

The limitation of these methods is that they give the same penalty for incorrect 
orderings no matter what the position of the documents in the ranking is. This 
is undesirable, since we want to give more weight to errors in the first positions -
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in document ranking applications, for example, usually only the 10 top positions 
are considered, since these correspond to the first retrieved page of results. This 
is also reflected in ranking measures, such as normalised discounted cumulative 
gain (NDCG). [84] therefore proposed a listwise approach where document lists 
are used in training instead of document pairs. To that end, a map from a 
list of scores to a probability distribution is defined, and a metric between two 
probability distributions is used as a listwise loss function. Neural Networks 
are the model used for this method, which is called ListNet. [85] (AdaRank) 
attacked the same problem by applying the boosting framework to a exponential 
loss function based on IR performance measures, therefore minimising the desired 
ranking measure (NDCG, for example).

[86] raised some issues with the loss used in the model of [83] -  mainly the fact 
that it is unbounded and cannot achieve the minimal value of zero in some cases; 
they then proposed a new loss function to overcome them, based on the concept 
of the Fidelity distance measure from physics, and an algorithm (FRank) for min
imising this loss using a generalised additive model. [74] (DORM) cast learning 
to rank as a graph matching problem and applied the max-margin framework 
in the structured learning setting, directly optimising the desired performance 
measure. [87] proposed a general boosting method (QBRank) that can handle 
complex losses and applied it to learning to rank by combining the use of pref
erence data (i.e., document i is preferred over document j) and label data (i.e., 
document i ’s relevance level is r) in learning. [88] (IsoRank) proposed a ‘mini
mum effort’ optimisation method that takes into account the entire training data 
within a query at each iteration, applying functional iterative methods for learn
ing. [89] (SortNet) applied Neural Networks in a pairwise manner, but with the 
training set selected by an iterative procedure that, at each iteration, adds the 
most informative training examples. [90] (StructRank) proposed using cumula
tive distribution networks (CDNs) to maximise a joint cumulative distribution 
function (CDF) over multiple pairwise preferences. [91] proposed using both con
tent information and relations between objects to define the ranking model and 
used Continuous Conditional Random Fields (C-CRFs) to perform the learning 
task. [92] (BoltzRank) introduced an energy-based, listwise approach, defining a 
conditional probability distribution over rankings that combines potentials that 
depend on individual documents and pairs of documents. [93] proposed to use 
an ordered weighted average (OWA) of pairwise losses as a way to focus on top 
ranked elements.

In the years following the publication of our research, learning to rank contin-
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ued to be a very active area of research. One line of work has been on reducing test 
time:1 [95] addressed this issue by jointly optimising effectiveness and efficiency 
of linear ranking functions; [94] proposed to reduce the execution time of decision 
tree ensembles using early exits, showing considerable speed improvements with 
little or no degradation in the quality of the results.

Another recent line of research is on applying transfer learning to ranking, 
as in [96], which proposed a multi-task learning algorithm with boosted decision 
trees and applied it to web-search ranking, using data sets from several countries.

Finally, there has been increasing interest in online learning to rank: [97] pro
posed an online learning algorithm that can quickly refine the results of existing 
ranking methods based on real-time users’ feedback; [98] is concerned with re
cency ranking -  ranking documents while taking their recency into account -  and 
proposed to improve ranking recency with a query classification algorithm that 
automatically detects recency queries with high precision, and apply a specialised 
ranker to them.

5.2 T he M od el

5 .2 .1  B a s ic  G oa l

In this chapter we assume that the weights are to be estimated from training 
data. More precisely, the weight Wij associated with the edge ij  in a graph will 
be the result of an appropriate composition of a feature vector xiy (observed) and 
a parameter vector 0 (estimated from training data). Therefore, in practice, our 
input is a vector-weighted bipartite graph Gx = (V,E,x) (x : E Rn)5 which is 
‘evaluated’ at a particular 0 (obtained from previous training) so as to attain the 
graph G = (V, E,w). See Figure 5.2 for an illustration.

More formally, assume that a training set {A, Y} = {(xn,yn)}%=1 is avail
able, where xn := ( x ^ x ^  ... Here M(n) is the number of nodes
in each part of the vector-weighted bipartite graph xn. We then parameterise 
Xij as = /(®iy(i);0), and the goal is to find the 6 which maximises the
posterior probability of the observed data. We will assume /  to be bilinear, 

^) (ftiy(i) ’ •

Search engines typically require that the document scoring phase does not exceed a few 
hundred milliseconds [94].
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Figure 5.2: Left: Illustration of an input vector-weighted bipartite graph Gx with 
3 x 3  edges. There is a vector xe associated with each edge e (for clarity only 
is shown, corresponding to the solid edge). Right: weighted bipartite graph G 
obtained by evaluating Gx on the learned vector 0 (again only edge ij is shown).

5.2.2 E xponential Fam ily M odel

We assume an exponential family model, where the probability model is

P{y\x] 0) = exp {(<f>(x, y), 0) -  g{x\ 6»)), where (5.2)

g(x-6) = log^exp(0(a:,y),6>) (5.3)
v

is the log-partition function, which is a convex and differentiable function of 9
[20].

That is exactly the same setting as we described in section 2.1.2, so our loss 
function is:

e(Y\x-0) l|0||2 + ^  0) -  (<K *">»").»» (5-4)
n =  1

where A is a regularisation constant. £(Y\X; 9) is a convex function of 9 since the 
log-partition function g{9) is a convex function of 9 [20] and the other terms are 
clearly convex in 9.

5.2.3 Feature Param eterisation

The critical observation now is that we equate the solution of the matching prob
lem (5.1) to the prediction of the exponential family model (2.10), i.e., wiŷ ) = 
(4>(x, y), 9). Since our goal is to parameterise features of individual pairs of nodes

64



(so as to produce the weight of an edge), the most natural model is
M

0(jyy) = y w h i c h  gives (5.5)
i=l

^ i y ( i ) { - N y ( i ) ) ^ }  > ( ^ ' 0 )

i.e., linear in both x and B (see Figure 5.2, right). The specific form for Xij will be 
discussed in the experimental section. In light of (5.6), (5.1) now clearly means 
a prediction of the best match for Gx under the model 0.

5.3 L earning th e  M od el

5.3.1 Basics

We need to solve 6* = argmin0 i(Y\X; 6). £(Y\X; 0) is a convex and differentiable 
function of 0 [20], therefore gradient descent will find the global optimum. In 
order to compute Vq£(Y\X;0), we need to compute X/ogiß). It is a standard 
result of exponential families that the gradient of the log-partition function is the 
expectation of the sufficient statistics:

j ^ )  l ^ y ~ p ( y | x ; 0 )  [ ^ ( ^ i  2 / ) ]  • (5.7)

Therefore in order to perform gradient descent we need to compute the above 
expectation. Opening the above expression gives

Eŷ piy\x.e)[<p(x,y)] =  <b(x, y)v(y\x- 0) (5.8)

2 _^
= 'Z(xrff) ( 5-9)

which reveals that the partition function Z{x\6) needs to be computed. The 
partition function is:

M

Z{x;9) = ^ T T e x p ((x ij/(i),0)) • (5.10)
-Ä“ V -y

y  i= 1  TXT•-0iy(i)
Note that the above is the expression for the permanent of matrix 13 [99]. The 
permanent is similar in definition to the determinant, the difference being that 
for the latter sgn(y) comes before the product. However, unlike the determinant, 
which is computable efficiently and exactly by standard linear algebra manipula
tions [100], computing the permanent is a [jP-complete problem [101]. Therefore 
we have no realistic hope of computing (5.7) exactly for general problems.
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5.3.2 Exact E xpectation

The exact partition function itself can be efficiently computed for up to about 
M = 30 using the 0 ( M 2M) algorithm by Ryser [102]. However for arbitrary 
expectations we are not aware of any exact algorithm which is more efficient 
than full enumeration (which would constrain tractability to very small graphs). 
However we will see that even in the case of very small graphs we find a very 
important application: learning to rank. In our experiments, we successfully 
apply a tractable instance of our model, small enough to be solved by exact enu
meration, to benchmark document ranking datasets, obtaining very competitive 
results. For larger graphs, we have alternative options as indicated below.

5.3.3 A pproxim ate E xpectation

If we have a situation in which the set of feasible permutations is too large to 
be fully enumerated efficiently, we need to resort to some approximation for the 
expectation of the sufficient statistics. One option is to use the sampler pro
posed by Huber and Law, who recently presented an algorithm to approximate 
the permanent of dense non-negative matrices [103]. The algorithm works by 
producing exact samples from the distribution of perfect matches on weighted 
bipartite graphs. This is in precisely the same form as the distribution we have 
here, p(y\x\6). We can use this algorithm for applications that involve larger 
graphs.2 We generate K  samples from the distribution p(y\x-0), and directly 
approximate (5.8) with a Monte Carlo estimate

In our experiments, in order to illustrate the use of the sampler, we selected 
an image matching application, which requires larger graphs than the ranking 
problem.

5.4 E xp erim en ta l R esu lts

5.4.1 Ranking

Here we apply the general matching model introduced in previous sections to the 
task of learning to rank. Ranking is a fundamental problem with applications in

2The algorithm is described in appendix C.

(5.11)
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diverse areas such as document retrieval, recommender systems, product rating 
and others. We focus on document ranking.

We are given a set of queries {qj.J and, for each query <&, a list of D(k) 
documents {dk, . . . ,  dkD with corresponding ratings {rf, . . . ,  r j ^ }  (assigned by 
a human editor), measuring the relevance degree of each document with respect 
to query A rating or relevance degree is usually a nominal value in the list 
{ 1 where R is typically between 2 and 5. We are also given, for every 
retrieved document dk, a joint feature vector i/jk for that document and the query 
qk-

Training

At training time, we model each query q as a vector-weighted bipartite graph 
(Figure 5.2) where the nodes on one side correspond to a subset of cardinality M  
of all D(k) documents retrieved by the query, and the nodes on the other side 
correspond to all possible ranking positions for these documents (1, . . . ,  M). The 
subset itself is chosen randomly, provided that at least one exemplar document 
of every rating is present. Therefore M  must be such that M > R.

The process is then repeated in a bootstrap manner: we resample (with re
placement) from the set of documents {dk,. . .  ,dkD̂ } ,  M documents at a time 
(conditioned on the fact that at least one exemplar of every rating is present, but 
otherwise randomly). This effectively boosts the number of training examples 
since each query q ends up being selected many times, each time with a different 
subset of M  documents from the original set of D{k) documents.

In the following we drop the query index k to examine a single query. Here 
we follow the construction used in [74] to map matching problems to ranking 
problems (indeed the only difference between our ranking model and that of [74] 
is that they use a max-margin estimator and we use MAP in an exponential 
family.) Our edge feature vector xij will be the product of the feature vector fa 
associated with document i, and a scalar Cj (the choice of which will be explained 
below) associated with ranking position j

%ij IpiCj.  (5.12)

f a  is dataset specific (see details below). From (5.6) and (5.12), we have W i j  = 
Cj ( f a , 0 ) ,  and training proceeds as explained in Section 5.3.
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Testing

At test time, we are given a query q and its corresponding list of D associated 
documents. We then have to solve the prediction problem, i.e.,

D D

y* = argmax ̂  (xiy(i), 6) = argmax ^  cy(i) (^ , 6) • (5.13)
y i=i y i=i

We now notice that if the scalar Cj = c(j), where c is a non-increasing function of 
rank position ji, then (5.13) can be solved simply by sorting the values of 6) in 
decreasing order.3 In other words, the matching problem becomes one of ranking 
the values ('ipi,0). Inference in our model is therefore very fast (linear time).4 In 
this setting it makes sense to interpret the quantity (ipi, 0) as a score of document 
di for query q. This leaves open the question of which non-increasing function c 
should be used. We do not solve this problem here, and instead choose a fixed 
c. In theory it is possible to optimise over c during learning, but in that case the 
optimisation problem would no longer be convex.

D ata sets

We describe the results of our method on LETOR 2.0 [106], a publicly avail
able benchmark data collection for comparing learning-to-rank algorithms. It is 
comprised of three data sets: OHSUMED, TD2003 and TD2004.

OHSUMED contains features extracted from query-document pairs in the 
OHSUMED collection, a subset of MEDLINE, a database of medical publica
tions. It contains 106 queries. For each query there are a number of associated 
documents, with relevance degrees judged by humans on three levels: definitely, 
possibly or not relevant. Each query-document pair is associated with a 25 dimen
sional feature vector, The total number of query-document pairs is 16,140.

TD2003 and TD2004 contain features extracted from the topic distillation 
tasks of TREC 2003 and TREC 2004, with 50 and 75 queries, respectively. Again, 
for each query there are a number of associated documents, with relevance degrees 
judged by humans, but in this case only two levels are provided: relevant or not 
relevant. Each query-document pair is associated with a 44 dimensional feature 
vector, 'fii. The total number of query-document pairs is 49,171 for TD2003 and

3If r(y) denotes the vector of ranks of entries of vector v, then (a, n(b)) is maximised by 
the permutation 7r* such that r(a) = r(7r*(/>)), a theorem due to Polya, Littlewood, Hardy and 
Blackwell [104].

4Sorting the top k items of a list of D items takes 0(k\ogk  +  D) time [105].
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74,170 for TD2004. All datasets are already partitioned for 5-fold cross-validation. 
See [106] for more details.

Evaluation M etrics

In order to measure the effectiveness of our method we use the NDCG measure 
[107] at rank position k , which is defined as

here r(j) is the relevance of the j th document in the list, and Z is a normalisation 
constant so that a perfect ranking yields an NDCG score of 1.

External Param eters

The regularisation constant A is chosen by 5-fold cross-validation, with the par
tition provided by the LETOR package. All experiments are repeated 5 times 
to account for the randomness of the sampling of the training data. We use 
c(j) = M — j  on all experiments.

O ptim isation

To optimise (5.4) we use a standard BFGS Quasi-Newton method with a back
tracking line search, as described in [50].

For the first experiment training was done on subsets sampled as described above, 
where for each query q we sampled 0.4 ■ D(k) • M subsets, therefore increasing 
the number of samples linearly with M. For TD2003 we also trained with all 
possible subsets (M = 2(all) in the plots). In Figure 5.3 (left) we plot the results 
of our method (named RankMatch), for M = R, compared to those achieved by 
a number of state-of-the-art methods which have published NDCG scores in at 
least two of the datasets: RankBoost [82], RankSVM [81], FRank [86], ListNet 
[84], AdaRank [85], QBRank [87], IsoRank [88], SortNet [89], StructRank [90] 
and C-CRF [91]. We also included a plot of our implementation of DORM [74], 
using precisely the same resampling methodology and data for a fair comparison. 
RankMatch performs among the best methods on both TD2004 and OHSUMED, 
while on TD2003 it performs poorly (for low k) or fairly well (for high k).

(5.14)

R esults
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In Figure 5.3 (right) we compare variants of our method for different values 
of M. Overall, we observe that our method does not seem to benefit from the 
use of larger M.  This is intuitively plausible, since if M > R, documents with 
the same relevance appear in different orders during training, which may create 
unnecessary bias.

We notice that there are four methods which only report results in two 
of the three datasets: the two SortNet versions are only reported on TD2003 
and TD2004, while StructRank and C-CRF are only reported on TD2004 and 
OHSUMED. RankMatch compares similarly with SortNet and StructRank on 
TD2004, similarly to C-CRF and StructRank on OHSUMED and similarly to the 
two versions of SortNet on TD2003. This exhausts all the comparisons against 
the methods which have results reported in only two datasets. A fairer compar
ison could be made if these methods had their performance published for the 
respective missing dataset.

When compared to the methods which report results in all datasets, RankMatch 
entirely dominates their performance on TD2004 and is second only to IsoRank 
on OHSUMED (and performing similarly to QBRank).

These results should be interpreted cautiously: [108] presents an interesting 
discussion about issues with these datasets. Also, benchmarking of ranking algo
rithms is still in its infancy and we don’t yet have publicly available code for all 
of the competitive methods.

F in ite  Sam ple Perform ance o f  th e  E stim ator

In a second experiment we trained RankMatch with different training subset 
sizes, starting with 0.03 • D(k) • M and going up to 1.0 • D{k) ■ M . Once again, we 
repeated the experiments with DORM using precisely the same training subsets. 
The purpose here is to see whether we observe a practical advantage of our method 
with increasing sample size. The results are plotted in Figure 5.4 (right), where 
we can see that, as more training data is available, RankMatch improves more 
saliently than DORM.
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Figure 5.3: Results of NDCG@k. Left: comparing to state-of-the-art methods. 
Right: varying M.  From top to bottom: TD2004, TD2003 and OHSUMED.
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5.4.2 Im age M atching

In order to illustrate the use of the sampler (see Section 5.3.3) to deal with larger 
graphs, we applied our matching model to a computer vision application. We 
took a silhouette image from the Mythological Creatures 2D database,5 randomly 
selected 20 points on the silhouette as our interest points and applied shear to 
the image creating 200 different images. We then randomly selected N  pairs of 
images for training, N  for validation and 500 for testing, and trained our model 
to match the interest points in the pairs. In this setup,

Xij =  \fa -  fa\2, (5.15)

where | • | denotes the element-wise difference and fa is the Shape Context feature 
vector [109] for point i.

For a graph of this size computing the exact expectation is not feasible, so we 
used the sampling method described in Section 5.3.3. The regularisation constant 
A was chosen by cross-validation, and once again we compared the performance of 
the MAP and max-margin estimators as the sample size grows. We present results 
with varying training set sizes in Figure 5.4 (left). The max-margin method is 
that of [73]. After a sufficiently large training set size, our model exhibits a slight 
advantage.

5.4.3 R untim e

The runtime of our algorithm is competitive with that of max-margin for small 
graphs, such as those that arise from the ranking application. For larger graphs, 
the use of the sampling algorithm will result in much slower runtimes than those 
typically obtained in the max-margin framework. Table 5.2 shows the runtimes 
for graphs of different sizes, both for exponential family and max-margin matching 
models.

5 http://tosca.cs. technion.ac.il
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Table 5.2: Training times (per observation, in seconds, on an Intel Core2 2.4GHz 
machine) for exponential model (EM) and max-margin (MM). Runtimes for M = 
3,4,5 are from the ranking experiments, computed by full enumeration (exact); 
M — 20 corresponds to the shape image matching experiments, where we used 
the sampler from [103].

M EM (exact) EM (sampling) MM
3 0.0006661 - 0.0008965
4 0.0011277 - 0.0016086
5 0.0030187 - 0.0015328

20 _ 36.0300000 0.9334556

exponential model 
max margin______

number of training pairs sample size (x M D)

Figure 5.4: Performance with increasing sample size. Left: Hamming loss for dif
ferent numbers of training pairs in the image matching problem (test set size fixed 
to 500 pairs). Right: results of NDCG@1 on the ranking dataset OHSUMED. 
The plots above seem to suggest that our estimator enjoys a better finite sample 
performance, since after a finite number of training instances it becomes superior 
to the max-margin estimator.
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5.5 S um m ary

Document ranking is a fundamental problem in IR, and has been the subject of 
intensive research in recent years.6 This chapter presented a method for a su
pervised structured learning problem -  learning max-weight bipartite matching 
predictors -  and applied it extensively to well-known document ranking datasets, 
obtaining state-of-the-art results. It also illustrated -  with an image matching 
application -  that larger problems can also be solved, albeit slowly, with a re
cently developed sampler. The method has some convenient features: it consists 
of performing MAP estimation in an exponential family model, which results in 
a simple unconstrained convex optimisation problem solvable by standard algo
rithms such as BFGS; and, being fully probabilistic, it can easily be integrated 
as a module in a Bayesian framework.

GSee, for example, http://research.microsoft.com/en-us/um/beijing/projects/letor/paper.aspx.
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P a r t  II

U nsu p erv ised  S tru c tu re d  
L earn ing



C h a p te r  6

W ord  F eatu res for L a ten t 
D irich le t A llocation

Topic models are widely used in IR for summarising documents [6], and have 
been studied in the context of IR for years [13, 14, 15]. In this chapter we 
propose an extension to a well known type of topic model, LDA, that explicitly 
allows for the encoding of side information in the distribution over words. This 
results in a variety of new capabilities, such as improved estimates for infrequently 
occurring words, as well as the ability to leverage thesauri and dictionaries in order 
to boost topic cohesion within and across languages. We present experiments 
on multi-language topic synchronisation where dictionary information is used 
to bias corresponding words towards similar topics. Results indicate that our 
model substantially improves topic cohesion when compared to the standard LDA 
model.

6.1 In trod u ction

LDA [30] assigns topics to documents and generates topic distributions over words 
given a collection of texts. In doing so, it ignores any side information about the 
similarity between words. Nonetheless, it achieves a surprisingly high quality of 
coherence within topics.

The inability to deal with word features makes LDA fall short on several as
pects. The most obvious one is perhaps that the topics estimated for infrequently 
occurring words are usually unreliable. Ideally, for example, we would like the 
topics associated with synonyms to have a prior tendency of being similar, so that 
in case one of the words is rare but the other is common, the topic estimates for
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the rare one can be improved. There are other examples. For instance, it is quite 
plausible that ’Germany’ and ’German’, or ’politics’, ’politician’, and ’political’ 
should, by default, belong to the same topic. Similarly, we would like to be able to 
leverage dictionaries in order to boost topic cohesion across languages, a problem 
that has been researched but is far from being fully solved, especially for non- 
aligned corpora [110]. For example, we know that ‘democracy’ and ‘democracia’ 
are different words, but it is clear that not leveraging the fact they actually mean 
the same thing (and therefore should have aligned topics) reduces the statistical 
strength of a model. This is specially relevant for IR applications, where it is not 
uncommon to have a corpus composed of documents in different languages.

Goal: To extend Latent Dirichlet Allocation to allow for 
the encoding of side information on the words.

A possible solution, which we propose in this chapter, is to treat word infor
mation as features rather than as explicit constraints and to adjust a smoothing 
prior over topic distributions for words such that correlation is emphasised. In 
the parlance of LDA we do not pick a globally constant ß smoother over the word 
multinomials but rather we adjust it according to word similarity. In this way 
we are capable of learning the prior probability of how words are distributed over 
various topics based on how similar they are, e.g. in the context of dictionaries, 
synonym collections, thesauri, edit distances, or distributional word similarity 
features.

Unfortunately, in performing such model extension we lose full tractability 
of the setting by means of a collapsed Gibbs sampler. Instead, we use a hybrid 
approach where we perform smooth optimisation over the word smoothing co
efficients, while retaining a collapsed Gibbs sampler to assign topics for a fixed 
choice of smoothing coefficients. The advantage of this setting is that it is entirely 
modular and can be added to existing Gibbs samplers without modification.

We present experimental results on multi-language topic synchronisation which 
clearly evidence the ability of the model to incorporate dictionary information 
successfully. Using several different measures of topic alignment, we consistently 
observe that the proposed model improves substantially on standard LDA, which 
is unable to leverage this type of information.
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for k =  1 to K

for n ! to Nmfor m = 1 to M for v -- 1 to V

Figure 6.1: Our Extension: We assume that we observe side information <j>v 
(i.e. features) for each word v. The word-specific smoothing parameters ßkv are 
governed by (f)v and a common parameter choice y.

6.1.1 Related Work

Loosely related works that use logistic models to induce structure in genera
tive models are [111], which proposed a shared logistic normal distribution as a 
Bayesian prior over probabilistic grammar weights, and [112], which incorporated 
features into unsupervised models using locally normalised models. More related 
to our work is [113], which encodes correlations between synonyms, and [114] 
which encodes more general correlations. In fact, our proposed model can be 
seen as a generalisation of [114], where we can encode the strength of the links 
between each pair of words.

Previous work on multilingual topic models requires parallelism at either the 
sentence level [115] or document level [116, 117]. More recent work [118] relaxes 
that, but still requires that a significant fraction (at least 25%) of the documents 
are paired up.

Multilingual topic alignment without parallelism was recently proposed by 
[110]. Their model requires a list of matched word pairs m  (where each pair has 
one word in each language) and corresponding matching priors ir that encode the 
prior knowledge on how likely the match is to occur. The topics arc defined as 
distributions over word pairs, while the unmatched words come from a unigram 
distribution specific to each language. Although their model could in principle 
be extended to more than two languages their experimental section was focused 
on the bilingual case.

One of the key differences between [110] and our method is that we do not 
hardcode word information, but we use it only as a prior -  this way our method 
becomes less sensitive to errors in the word features. Furthermore, our model 
automatically generalises to multiple languages without any modification, align-

79



ing topics even for language pairs for which we have no information, as we show 
in the experimental section for the Portuguese/French pair. Finally, our model 
is conceptually simpler and can be incorporated as a module in existing LDA 
implementations.

Since our research was published there has been limited new work on the spe
cific subject of multilingual topic models; one example is [119], which proposed 
a probabilistic model for bilingual documents; their method requires paired doc
uments for training, but doesn’t need a dictionary -  in this sense it is comple
mentary to ours. At the time of this writing, however, we couldn’t find any new 
relevant work on incorporating features into LDA.

6.2 T h e  M o d e l

As we reviewed in Chapter 2, the LDA model of [30] (Figure 2.3) assumes that

9m ~  Dir(a), (6.1a) ipk ~  Dir(/3), (6.1c)

Zmn ~  Mult(0m), (6.1b) wmn ~  Multi(V tzm n ) .  (6. Id)

Nonparametric extensions in terms of the number of topics can be obtained 
using Dirichlet process models [120] regarding the generation of topics. Our 
extension deals with the word smoother ß. Instead of treating it as a constant 
for all words we attem pt to infer its values for different words and topics. That 
is, we assume that (6.1c) is replaced by

ipk ~  Dir(ßfcI<£,;</). (6.2)

We refer to this setting as downstream conditioning, in analogy to the upstream 
conditioning of [121] (which dealt with topical side information over documents). 
The corresponding graphical model is given in Figure 6.1. The above dependency 
allows us to incorporate features of words as side information. For instance, if 
two words (e.g. ’politics’ and ’politician’) are very similar then it is plausible that 
their topic distributions should also be quite similar. This can be achieved by 
choosing similar politics and ßk,politician- For example, both of those coefficients 
might have great affinity to / \ Scandai and we might estimate y such that this is 
achieved.
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Table 6.1: Notation used throughout this chapter, 
variable description 
K  number of topics
M number of documents
V dictionary size
ctfc Dirichlet prior for 9 (hyperparameter), for topic k
a vector a = [cti.. . aK\
ä  ä  := ||o:||x
ßkv Dirichlet prior for -0 (hyperparameter), for topic k and term v
ßk vector ßk = [ßkl ... ßkV\
ßk ßk : =  Wßklh
9 distribution of topics per document
0 distribution of words per topic
z m n  topic (1 ..K) of word n of document m
wmn term index (1..F) of word n of document m
nk/  number of times the term v has been observed with topic k
nk number of times topic k has been observed in all documents
n km  number of times topic k has been observed in a word of document m
n% number of words in document m
njf total number of times term v has been observed in the corpus
G similarity graph G =  (V, E, 0)
V set of vertices of a graph
E set of edges of a graph
(f)uv weight for edge between vertices u and v
ykv smoothing coefficient for topic k and term v
T gamma function: T(x) = f^°tx~1e~t dt
T digamma function: T(x) := dx log r(x)

6.2.1 D etailed  D escription

We now discuss the directed graphical model from Figure 6.1 in detail. Whenever 
needed we use the collapsed representation of the model [33], that is we integrate 
out the parameters 9m and ^kv such that we only need to update a and ß (or 
indirectly y). We define the standard quantities (please refer to Table 6.1 for the 
notation used throughout this chapter):
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n kv  =  {Zmn =  k  a n d  W m n =  n ™mn
k

as well as:
Topic distribution p(zmn|0m): We assume that this is a multinomial distri

bution specific to document m, that is p{zrnn\6m) = 0mẐrnri.

Conjugate distribution p(6m\a): This is a Dirichlet distribution with pa
rameters o, where ak denotes the smoother for topic k.

Collapsed distribution p(zm\a): Integrating out 6m and using conjugacy 
yields

where T is the gamma function: r(ar) = J^°tx~1e~f dt.
Word distribution p{wmn\zmn,ip): We assume that given a topic zmn the 

word wmn is drawn from a multinomial distribution ipWmn,zmn • That is p(temn|2:mn, ip) 
^wmn,zmn- This is entirely standard as per the basic LDA model.

Conjugate distribution p{ipk\ßk)'- As by default, we assume that ipk is 
distributed according to a Dirichlet distribution with parameters ßk- The key 
difference is that here we do not assume that all coordinates of ßk are identical.

Collapsed distribution p(w\z,ß): Integrating out ipk for all topics k yields 
the following

In order to better control the capacity of our model, we impose a prior on naturally 
related words, e.g. the (’Toyota’, ’Kia’) and the (’Bush’, ’Cheney’) tuples, rather 
than generally related words. For this purpose we design a similarity graph

6.2.2 Priors
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Figure 6.2: Example similarity graph: vertices represent words, and edges connect 
similar words. Edge weights can encode the degree of similarity.

G(V,E)  with words represented as vertices V  and similarity edge weights (f>uv 
between vertices u, v G V  whenever u is related to v. In particular, the magnitude 
of <f)uv can denote the similarity between words u and v (see Figure 6.2 for an 
example).

In the following we denote by ykv the topic dependent smoothing coefficients 
for a given word v and topic k. We impose the smoother

^   ̂ ^V,v' {iJkv Vkv') T ^   ̂Vy
jv,v',k v

where log p(ß) is given up to an additive constant and yv allows for multiplicative 
topic-independent corrections. A similar model was used by [122] to capture 
temporal dependence between topic models computed at different time instances, 
e.g. when dealing with topic drift over several years in a scientific journal. There 
the vertices are words at a given time and the edges are between smoothers 
instantiated at subsequent years.

\ogßkv = ykv +  yv and log p(ß) = —

6.3 In ference

In analogy to the collapsed sampler of [33] we also represent the model in a 
collapsed fashion. That is, we integrate out the random variables 9m (the docu
ment topic distributions) and ijjkv (the topic word distributions), which leads to 
a joint likelihood in terms of the actual words wmn, the side information ß about
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words, the latent variable ?/, the smoothing hyperprior ßkv, and finally, the topic 
assignments zmn.

6.3.1 D ocum ent Likelihood

The likelihood contains two terms: a word-dependent term which can be com
puted online while resampling data1, and a model-dependent term involving the 
topic counts and the word-topic counts which can be computed by one pass 
through the aggregate tables respectively. Let us first write out the uncollapsed 
likelihood in terms of z, 6, ip, a, ß. We have

M  Nm M  K

p(w,Z)ß,'lp\a,ß) = Y [ p ( Wmn\Zmn,'lp)p(zrnn\9m)Y[p{0m\a)Y{p('lpk\ß)-
m = 1 n — 1 m =  1 /c=U

Define a := 

p(w,z\a,ß)

a ||x and ßk := Integrating out 6 and ip yields

TT r(ä) TT T(ak +  n™) TT r(̂ fc) TT ^( ß kv  +  T l ™ )
+ r ( « t ) I L r f o  + n v J U ^  r(A.)

The above product is obtained simply by cancelling out terms in the denominator 
and numerator where the counts vanish. This is computationally significant, since 
it allows us to evaluate the normalisation for sparse count tables with cost linear 
in the number of nonzero coefficients rather than in the number of entries in the 
dense count table.

6.3.2 Collapsed Sampler
In order to perform inference we need two components: a sampler which is able 
to draw from p(zi = k\w, z-4 ,a, ß)2, and an estimation procedure for (ß,y). The 
sampler is essentially the same as in standard LDA. For the count variables 
r?KM,n KV,n K and nM we denote by the subscript ‘ —’ their values after the word 
wmn and associated topic zmn have been removed from the statistics. Standard 
calculations yield the following topic probability for resampling:

p{zmn = k I rest) oc [ft. + nj£U [niff- + Ok]
n)5_ + ßk

(6 .6)

xNote that this is not entirely correct -  the model changes slightly during one resampling 
pass, hence the log-likelihood that we compute is effectively the averaged log-likelihood due to 
an ongoing sampler. For a correct computation we would need to perform one pass through 
the data without resampling. Since this is wasteful, we choose the approximation instead.

2Here z* denotes the topic of word i, and z~,i the topics of all words in the corpus except for 
i.
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In Section 6.7 we show how we can adapt the sampler of [36] to obtain faster 
sampling.

6.3.3 Topic Sm oother for ß

Optimising over y is considerably hard since the log-likelihood does not decom
pose efficiently. This is due to the dependence of ßk  on all words in the dictionary. 
The data-dependent contribution to the negative log-likelihood is

K  K

Lß = Y l  [iog r (Ä +^fc) -iogr(Ä t)] + 5Z Y  H m v) - \ o g m v +n™)}
k = l  k — 1 v : n ^

with gradients given by the appropriate derivatives of the T function. We use the 
prior from section 6.2.2, which smooths between closely related words only. After 
choosing edges 4>uv according to these matching words, we obtain an optimisation 
problem directly in terms of the variables ŷ v and yv. Denote by N(v) the neigh
bours for word v in G(V, E ), and Y(:r) := dx logr(;r) the Digamma function. We 
have

dvkv iLß — logp(^)] =  ^ 2  Y ^vy [ykv-ykv']+ßkv(r(ßk + n * ) - r ( ß k) +

v ’(zN(v)

+ K 7  > 0} [T (/U  -  T(A„ + nJ5„v)] ).

The gradient with respect to ijk is analogous:

1 K
dvv [Lß ~  log Piß)] =  -j V̂v +  Y &kv (T(Ä + “  T(Ä) +

k —1

+ K „ v > 0} [T08*.) -  T(&„ + n™)] ).

6.4 E xp erim en ta l R esu lts

To demonstrate the usefulness of our model we applied it to a multi-lingual docu
ment collection, where we can show a substantial improvement over the standard 
LDA model on the coordination between topics of different languages.

6.4.1 D ataset

Since our goal is to compare topic distributions on different languages we used 
a parallel corpus [123] with the proceedings of the European Parliament in 11 lan
guages. We focused on two language pairs: English/French and English/Portuguese.
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Note that a parallel corpus is not necessary for the application of the proposed 
model -  it is being used here only because it allows us to properly evaluate the 
effectiveness of our model.3

We treated the transcript of each speaker in each session as a document, since 
in the European Parliament proceedings different speakers usually talk about 
different topics. We randomly sampled 1000 documents from each language, 
removed infrequent4 and frequent5 words and kept only the documents with at 
least 20 words. Finally, we removed all documents that lost their corresponding 
translations in this process. After this preprocessing we were left with 2415 
documents, 805 in each language, and a vocabulary size of 23883 words.

6 .4 .2  B a se lin e s

We compared our model to standard LDA, learning a  and /?, both asymmetric 
(that is, we don’t assume all coordinates of a  and ß  are identical).

6 .4 .3  P rio r

We imposed the graph-based prior mentioned in Section 6.2.2. To build our 
similarity graph we used the English-French and English-Portuguese dictionaries 
from h t tp : / /w ik i .w e b z .c z /d ic t / , augmented with translations from Google 
Translate for the most frequent words in our dataset. As described earlier, each 
word corresponds to a vertex, with an edge whenever two words match in the 
dictionary. Here all edges have a fixed weight of one.

In our model ß = exp(ykv+Vv), so we want to keep both y^v and yv reasonably 
low to avoid numerical problems, as a large value of either would lead to overflow. 
We ensure that by setting A, the standard deviation of their prior, to one in all 
experiments. We did the same for the standard LDA model, where to learn an 
asymmetric beta we simply removed ykv to obtain ß = exp(yv).

3To emphasise this point, later in this section we show experiments with non-parallel corpora, 
in which case we have to rely on visual inspection to assess the outcomes.

4Words that occurred less than 3 times in the corpus.
5Words that occurred more than M /10 times in the corpus, where M  is the total number of 

documents.
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6.4 .4  M ethodology

In our experiments we used all the English documents and a subset of the French 
and Portuguese ones -  this is what we have in a real application, when we try to 
learn a topic model from web pages: the number of pages is English is far greater 
than in any other language.

We compared three approaches. First, we ran the standard LDA model with 
all documents mixed together -  this is one of our baselines, which we call STD1.

Next we ran our proposed model, but with a slight modification to the setup: 
in the first half of the iterations of the Gibbs sampler we included only English 
documents; in the second half we added the French and Portuguese ones to the 
mix. We need to start with only one language so that an initial topic-word 
distribution is built; once that is done the priors are learned and can be used to 
guide the topic-word distributions in other languages.

Finally, as a control experiment we ran the standard LDA model in this same 
setting: first English documents, then all languages mixed. We call this STD2.

In all experiments we ran the Gibbs sampler for a total of 3000 iterations, 
with the number of topics fixed to 20, and keep the last sample. After a burn- 
in of 500 iterations, the optimisation over the word smoothing coefficients was 
done every 100 iterations, using an off-the-shelf L-BFGS [124] optimiser.6. We 
repeated every experiment 5 times with different randomisations.

6.4.5 Evaluation

Evaluation of topic models is an open problem -  recent work [125] suggests that 
popular measures based on held-out likelihood, such as perplexity, do not capture 
whether topics are coherent or not. Furthermore, we need a set of measures that 
can assess whether or not we improved over the standard LDA model with respect 
to our goal -  to synchronise topics across different languages -  and there’s no rea
son to believe that likelihood measures would assess that: a model where topics 
are synchronised across languages is not necessarily more likely than a model that 
is not synchronised. Therefore, to evaluate our model we compare the topic distri
butions of each English document with its corresponding French pair (and analo
gously for the other combinations: English/Portuguese and French/Portuguese), 
with these metrics:

Ghttp://www.chokkan.org/software/liblbfgs

87

http://www.chokkan.org/software/liblbfgs


M ean i 2 distance:

]Zti ^diGLi,d2=F(di) (Sfc=l (K 1 ~ 0k2) ) 5
where L\ denotes the set of documents in the first language, F a mapping 
from a document in the first language to its corresponding translation in 
the second language and 0d the topic distribution of document d.

M ean Hellinger distance: A =F(<i,) E f=i ■

A greem ents on first topic: ^  Y.d,eLudi=F(dx)̂ (argmax* 0$, argmaxfc )), 
where /  is the indicator function -  that is, the proportion of document pairs 
where the most likely topic is the same for both languages.

M ean number of agreem ents in top 5 topics:

jrn T,d1€L1,d2=F(d1)agreements^!, d2),
where agreements(di, d2) is the cardinality of the intersection of the 5 most 
likely topics of d\ and d2.

6 .4 .6  R e su lts

In Figure 6.3 we compare our method (DC) to the standard LDA model (STD1 
and STD2, see section 6.4.4), for the English-French pair. In all metrics our 
proposed model shows a substantial improvement over the standard LDA model.

In Figures 6.4 and 6.5 we do the same for the English-Portuguese and Portuguese- 
French pairs, respectively, with similar results. Note that we did not use a 
Portuguese-French dictionary in any experiment.

In Figure 6.6 we plot the word smoothing prior for the English word democracy 
and its French and Portuguese translations, democratic and democracia, for both 
the standard LDA model (STD1) and our model (DC), with 20% of the French 
and Portuguese documents used in training. In STD1 we don’t have topic-specific 
priors (hence the horizontal line) and the word democracy has a much higher 
prior, because it happens more often in the dataset (since we have all English 
documents and only 20% of the French and Portuguese ones). In DC, however, 
the priors are topic-specific and quite similar, as this is enforced by the similarity 
graph.

To emphasise that we do not need a parallel corpus we ran a second experiment 
where we selected the same number of documents of each language, but assuring 
that for each document its corresponding translations are not in the dataset,
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and trained our model (DC) with 100 topics. This could be done with any 
multilingual corpus, since no parallelisation is required. In this case, however, we 
cannot compute the distance metrics as before, since we have no information on 
the actual topic distributions of the documents. The best we can hope to do is 
to visually inspect the most likely words for the learned topics. This is shown 
in Table 6.2, for some selected topics, where the synchronisation amongst the 
different languages is clear.

Mean 12-distance Mean Hellinger distance

5 10 15
% of French documents
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% of French documents
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Figure 6.3: Comparison of topic distributions in English and French documents. 
See text for details.

6.5 Extensions: Other Features

Although we have implemented a specific type of feature encoding for the words, 
our model admits a large range of applications through a suitable choice of fea-
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% of Portuguese documents % of Portuguese documents

% agreements on first topic Mean no. agreements in top 5 topics

% of Portuguese documents% of Portuguese documents

Figure 6.4: Comparison of topic distributions in English and Portuguese docu
ments. See text.

tures. In the following we discuss a number of them in greater detail.

6.5.1 Single Language

D is trib u tio n a l S im ilarity

The basic idea is that words are similar if they occur in a similar context [126]. 
Hence, one could build a graph as outlined in Section 6.2.2 with edges only 
between words which exceed a level of proximity.

90



1.5
Mean 12-distance

2
Mean Hellinger distance

% agreements on first topic

% of Portuguese/French documents

3.5 

3

2.5 

2

1.5 

1

Mean no. agreements in top 5 topics

0 5 10 15 20
% of Portuguese/French documents

Figure 6.5: Comparison of topic distributions in Portuguese and French docu
ments. See text.

Lexical S im ilarity

For interpolation between words one could use a distribution over substrings of 
a word as the feature map. This is essentially what is proposed by [127]. Such 
lexical similarity makes the sampler less sensitive to issues such as stemming: 
after all, two words which reduce to the same stem will also have a high lexical 
similarity score, hence the estimated ßkv will yield very similar topic assignments.

S ynonym s an d  T h esau ri

Given a list of synonyms it is reasonable to assume that they belong to related 
topics. This can be achieved by adding edges between a word and all of its 
synonyms. Since in our framework we only use this information to shape a prior,
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Figure 6.6: Word smoothing prior for two words in standard LDA and in our 
model. The x-axis is the index of the topic. See text for details.

errors in the synonym list and multiple meanings of a word will not prove fatal.

6.5.2 M ultip le Languages

Lexical Sim ilarity

Similar considerations apply for inter-lingual topic models. It is reasonable to 
assume that lexical similarity generally implies similarity in meaning. Using such 
features should allow one to synchronise topics even in the absence of dictionaries. 
However, it is important that similarities are not hardcoded but only imposed as 
a prior on the topic distribution (e.g., ‘gift’ has different meanings in English and 
German).

6.6 Scalability

In Figure 6.7 (left) we plot run times for the experiments in Figures 6.3-6.5, where 
we can see that DC is approximately 2.5 times slower than standard LDA.

We also plot run times for DC with different numbers of topics (Figure 6.7, 
centre) and different numbers of documents (Figure 6.7, right), and as can be seen 
it scales linearly with the number of topics and sub-linearly with the number of 
documents.
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Table 6.2: Top 10 words for some of the learned topics. Words are coloured 
according to their language -  English, Portuguese or French -  except when am
biguous (e.g., information is a word in both French and English). See text for 
details.

Topic 8 Topic 17 Topic 20 Topic 32 Topic 49
amendments elections informagäo stability monnaie
alteragöes electoral information coordination consumers
amendment elections regioes estabilidade consumidores
amendements deputes societe central consommateurs
alteragäo eleigöes 1’information coordenagao l’euro
use partis acesso plans crois
substances proportional aeroplanes objectivo s’agit
reglement eleitoral prix stabilite moeda
l’amendement transnational regions ue pouvoir
accept scrutin comunicagäo list currency
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Figure 6.7: Left: run times for the experiments in Figures 6.3-6.5. Centre: run 
times versus number of topics for downstream conditioning. Right: run times 
versus number of documents for downstream conditioning.

6.7 Fast Sampling

As we mentioned in Section 2.2.3, recently [36] showed how to break LDA’s 
sampling into three components and leverage the resulting sparsity in k of some 
of them to significantly speed up the sampling process. We can do the same here, 
by decomposing (6.6) into three terms:
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' ■ = A k ~ B k ■ = C k

Unlike in the case of standard LDA [30], some of the normalisations are now 
dependent on the word in question (via the ß smoother). It is therefore not pos
sible to apply the sampler of [36] directly, since all terms now depend on both 
the topics and the words via ßkv  We modify it as follows: A Ak only
depends on wmn in a multiplicative fashion via ßkv and it is constant through
out the document otherwise. In ß  := Y lk &k only two terms need updating 
whenever we reassign a word to a new topic (and we have a new multiplicative 
constant for different words via ßkv)- Hence, the only term that needs to be fully 
recomputed for each word is C := 5~2k @k- Fortunately, this is nonzero for only a 
small number of topics for a given word.

6.8 S u m m a ry

Estimating topic distributions for documents is a well-known IR problem, for 
which one of the most popular approaches is LDA. In this chapter we described 
a simple yet general formalism for incorporating word features into LDA, which 
among other things allows us to synchronise topics across different languages. We 
performed a number of experiments in the multiple-language setting, in which the 
goal was to show that our model is able to incorporate dictionary information in 
order to improve topic alignment across different languages. Our experimental 
results revealed substantial improvement over the LDA model in the quality of 
topic alignment, as measured by several metrics, and in particular we obtained 
much improved topic alignment even across languages for which a dictionary is 
not used (as described in the Portuguese/French plots, see Figure 6.5). We also 
showed that the algorithm is quite effective even in the absence of documents 
that are explicitly denoted as being aligned (see Table 6.2). This sets it apart 
from [118], which requires tha t a significant fraction (at least 25%) of documents 
are paired. Also, the model is not limited to lexical features. Instead, we could 
for instance also exploit syntactical information such as parse trees. For instance, 
noun /  verb disambiguation or named entity recognition are all useful in deter
mining the meaning of words and therefore it is quite likely that they will also 
aid in obtaining an improved topic mixture model.
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C h a p te r  7 

C onclusion

In 2007, for the first time ever, more information was generated 
in one year than had been produced in the entire previous five 
thousand years - the period since the invention of writing.

Jaap Bloem, Menno van Doom and Sander Duivestein, 2009.

Information retrieval is a field comprised of several different methods and 
techniques which are often developed from sound but heuristic arguments, and 
therefore there is little understanding about why and when which methods work 
or not. In this thesis we took a fresh view into several information retrieval prob
lems from the perspective of structured learning, providing principled strategies 
for attacking such problems.

In Chapters 3 and 4 we focused on the multi-label classification problem. 
The task there was to predict a set of labels associated with an instance -  for 
example, predicting the tags associated with a document or image. Our main 
contribution in Chapter 3 was to propose a predictor that can be optimised for a 
specific evaluation measure, chosen from a set of possible measures that includes 
one of the most relevant ones for information retrieval: the F-score. In Chapter 
4 we extended this predictor to make use of label interactions, improving its 
performance.

In Chapter 5 we shifted focus to graph matching predictors, addressing one 
particular application of them: page ranking. The task there was to, given a 
query and a set of documents related to it, rank the documents according to 
their relevance. Our main contribution in that chapter was a novel method for 
learning max-weight bipartite matching predictors based on an exponential family 
model which, unlike previous work, is fully probabilistic and therefore can easily 
be incorporated as a module in larger probabilistic models.
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In Chapter 6 we addressed the problem of topic modeling. The task in that 
case was to find compact representations of documents by learning latent topics 
and associating each document with a topic distribution. Our main contribu
tion was an extension of Latent Dirichlet Allocation to allow for the encoding of 
side information in the distribution over words. While this has several potential 
applications, we focused on the alignment of topics in multilingual data sets.

7.1 Future D irection s

There are a number of possible extensions for the work described in this thesis.
On the multi-label classification problem we could try to extend the method 

to support other measures, such as area under curve (AUC) and the set of micro
measures: micro-precision, micro-recall, micro-Fi and the generalisation of these, 
inicro-F/3 (existing work on micro-measures [49] is restricted to binary labels). 
We could also extend the work to the interactive setting: that is, we assume a 
subset of the labels are known and have as a task to predict the remaining ones
[7]-

On the ranking problem, one possible focus would be on finding more efficient 
ways of solving large problems. Two possible and independent lines of research 
for that would be to exploit the data sparsity in the permutation group [128, 129] 
and to apply pseudo-likelihood estimators [130]. Another possibility would be to 
apply the so called kernel trick [131] to obtain a non-linear version of our method, 
potentially improving its performance.

On the topic modeling problem we could work on the application side: so far 
we have explored just one type of word feature -  interlingual dictionaries -  but 
there are many others that we could try, such as lexical similarity, synonyms and 
thesauri, each one with potentially many applications.
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A p p en d ix  A

A dding  P o sitiv ity  C o n stra in ts  to  
B M R M

BMRM ([55]) approximates the solution to an optimisation problem of the form

A 2minimize Remp(ö) +  -  ||0|| ,
0 2

(A.la)

1 N
where Remp{0) = — ^  l(xn, yn, 6»),

n= 1

(A.lb)

by iteratively solving a linear program arising from a lower bound based on a 
first-order Taylor approximation of /. Denoting ai + 1 := deRernp{6i) and 1 := 
Rempißi) — {ai+h&i)i where i corresponds to the iteration number, the problem 
that is solved is

/ \  2
minimize — ||#|| + £

2

subject to (cij,9) +  b3 < £ for all j  < i and  ̂ > 0. 

This is done by, at each iteration, solving the dual of (A.2):

(A.2a) 

(A.2b)

maximize---- - a r A TA a  +  a Tb
a 2A

s.t. l Ta  < 1 , a > 0,

(A.3a) 

(A.3b)

where A denotes the matrix [a\a2 . . .  a j ,  b the vector [bib2 . . .  6JT and 0 = — j  Aa.
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Enforcing positivity in 02 amounts to adding the additional constraints 02 > 0 
to (A.2), and the corresponding dual problem now becomes:

maximize — — (aTATAa + 7T7 — 2aT Ä {ry) + aTb (A.4a)
a,7 2 A

s.t. l ra < 1. a > 0 , 7 > 0 , (A.4b)

where A\ is the subset of the rows of A that correspond to the gradient with 
respect to 02.

98



A p p en d ix  B 

G rap h -cu ts

Here we describe a way of solving (4.2) via graph-cuts. We want to solve

y G argmax yTTy (B.l)
ye))

where A is a V x V upper-triangular matrix with non-negative off-diagonal ele
ments, and y is a V x 1 binary vector (y G {0,1}V). We first change this to the 
equivalent minimisation problem

y G argmin —y TAy (B.2)
yey

and then, using subscripts to index elements of y and A , we define the energy 
function

v v-i  v
E (y) =  ^ E i {yi) +  ^ 2 ^ 2  El3^ y j ) i  where (B -3)

i = 1 i=1 j = i +1

El{yi) = -ViAi  and (B.4)
ElJ (y{, y3) = -yiyj A{j (B .5)

and rewrite (B.2) as an energy minimisation problem:

y G argmin E(y). (B-6)

The graph-cut technique amounts to constructing a specialised graph for this 
energy function such that the minimum cut1 on the graph (which can be computed 
efficiently with max flow algorithms [132, 70]) also minimises the energy. For that 
end we make use of the work of Kolgomorov and Zabih [133], which provided

1A  cut is a partition of the vertices of a graph into two disjoint subsets.
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a characterisation of the energy functions that can be minimised as well as a 
general-purpose graph construction technique.

From eq. (7) of [133], (B.6) is graph-representable2 if and only if each term 
of satisfies the inequality

Eij{0,0) + Eij{ 1,1) < Eij(0,1) + Eij( 1,0). (B.7)

Substituting (B.5) in (B.7) we get the condition

Vi, j  : i < j, Aij > 0. (B.8)

This is the reason why we need to enforce non-negativity on the off-diagonal 
of A. Following the construction technique of [133], we create a graph with V + 2 
nodes: a source s, a sink t and one node u* for each one of the V elements of y. 
We then add:3

• For each i G {1... V] : Aü < 0, an edge from s to V{ with weight —An.

• For each z £ {1... V} : An > 0, an edge from v* to t with weight Aü.

• For each z, j  : i > j, an edge from Vi to Vj and another from Vj to £, both
with weight A^.

Note that by construction all edge weights are non-negative. As a minimal 
example, consider the following 2 x 2  example matrix A, with An > 0 and 
A 2 2  <  0:

An A12

0 A22

the corresponding graph will be:

Having constructed the graph we find the minimum cut and assign:

• yi = 0 for each i such that 1y is in the same side of the cut as the source s.

• iji = 1 for each z such that zy is in the same side of the cut as the sink t.

2For the definition of graph-representability please see [133].
3For the theory behind this construction we refer the reader to [133].
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A p p en d ix  C

A p p ro x im atin g  th e  P e rm an en t

For completeness we include a description of the sampling algorithm presented 
in [103]. The algorithm is an accept-reject algorithm. The core idea of such an 
algorithm is very simple: assume we need to sample from a distribution p in a 
given domain M, but that such a task is intractable. Instead, we sample from a 
distribution q in a superset N of the original domain (in which sampling is easier), 
whose restriction to the original domain coincides with the original distribution: 
q|x = p. We then only ‘accept’ those samples that effectively fall within the 
original domain M. Clearly, the efficiency of such a procedure will be dictated by 
(i) how efficient it is to sample from q in N and (ii) how much mass of q is in M. 
Roughly speaking, the algorithm presented in [103] manages to sample perfect 
matches of bipartite graphs such that both conditions (i) and (ii) are favourable.

The reasoning goes as follows: the problem consists of generating variates 
y G y (y is a match) with the property that p(y) = w(y)/Z , where w(y) is 
the non-negative score of match y and Z = Yhy w(y) is the partition function, 
which in our case is a permanent as discussed in Section 5.3.1. We first partition 
the space y  into ... , ^ / ,  where y t = {y : y(l) = i} . Each part has its own 
partition function Zi = ^2ye .̂ w{y)- Next, a suitable upper bound f/(^ ) > Zi on 
the partition function is constructed such that the following two properties hold:1

M

(pi) x ;c/q o < c/ q)).
i= 1

(P2) If m  = 1, then UQji) = Z, = w{y).

That is, (i) the upper bound is super-additive in the elements of the partition 
and (ii) if y * has a single match, the upper bound equals the partition function,

^ e e  [103] for details.
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which in this case is just the score of that match.
Now the algorithm: consider the random variable J where p(J = i) = U i ) / U (^). 

By (PI), YliiiP{‘0 < 1, so assume p(J = 0) = 1 — Ŷ iLip('0- Now, draw a variate 
from this distribution, and if J = i = 0, reject and restart, otherwise recursively 
sample in y*.2 This algorithm either stops and restarts or it reaches f̂mai which 
consists of a match, i.e., Î finail — 1- This match is then a legitimate sample from 
p(y). The reason this is the case is because of (P2), as shown below. Assum
ing the algorithm finishes after k samples, the probability of the match is the 
telescopic product

UQhip) t^3(2)) UQhjk)) (P2) w(y)_
u m  f/(V)) " ' u(V - d) v w

and since the probability of acceptance is Z/U(^), we have

, “’(y)/C/ (y) w(y)
p[y> z/u(y) z ’

( C . l )

(C.2)

which is indeed the distribution from which we want to sample. For pseudocode 
and a rigorous presentation of the algorithm, see [103].

2Due to the self-reducibility of permutations, when we fix y( 1) = i, what remains is also a 
set of permutations. We then sample y(2), y{3). . .  y(M).
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