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Abstract

Influenza A(HlNl)pdm09 was identified in April 2009 and spread rapidly around 

the globe. The public health response in Victoria was undertaken in accordance 

with the Australian Health Management Plan for Pandemic Influenza (AHMPPI) and 

included intensive case follow up, school closure, antiviral distribution and a 

vaccination program. However, evidence soon emerged that most cases were 

relatively mild compared to previous pandemics.

This thesis sought to assess how the epidemiology of influenza A(HlNl)pdm09 

differed from expectations in pandemic planning and how the control measures of 

school closure and antiviral distribution within the AHMPPI were applied and 

performed, and to investigate the role of infection severity in driving the initial 

spread of influenza A(HlNl)pdm09. It also sought to examine how the 

epidemiology of seasonal influenza in Victoria changed following the emergence of 

influenza A(HlNl]pdm09, and measure the effectiveness of influenza vaccine in 

prevention of laboratory confirmed influenza infection prior to, during and 

following the emergence of influenza A(HlNl)pdm09.

Investigation of these questions utilised a variety of methodological approaches, 

including: analysis of influenza-like illness (ILI) and laboratory confirmed 

influenza surveillance datasets in general practice, locum service, hospital, 

notifiable disease and reference laboratory settings; systematic review of the 

literature on influenza A(HlNl)pdm09 viral shedding; deterministic mathematical 

modelling; and application of sentinel surveillance influenza laboratory testing 

data to a novel variant of the traditional case control study design to measure 

vaccine effectiveness.

Although it spread rapidly and primarily affected younger age groups, influenza 

A(HlNl)pdm09 morbidity and mortality were mild compared with previous 

pandemics. However, the intensity of the public health response was not 

commensurate with the severity and magnitude of the disease. Transmission of 

influenza A(HlNl)pdm09 was largely driven by those effectively invisible to the 

health system and the virus was therefore well-established by the time it was 

detected. The delay in detection and high proportion of relatively mild infections

- xiv -



meant that school closures and antiviral distribution to notified cases and their 

contacts were ineffective. Pandemic plans need to be revised to accommodate such 

a scenario and ensure trust from public and professionals in future pandemic 

responses.

Influenza A(HlNl)pdm09 replaced the previously circulating seasonal A(H1N1) 

and remained dominant in Victoria in 2010. Higher proportions of A(H3N2) and 

type B influenza were observed in 2011 before dominance of A(H3N2) in 2012, 

accompanied by an increase in severe infections in older people especially. Whilst 

ILI surveillance suggested influenza seasons of moderate magnitude from 2010- 

2012, notifiable disease surveillance indicated a considerable increase in influenza 

testing by medical practitioners.

Influenza vaccine effectiveness (VE) in Victoria varied considerably in the years 

preceding, during and following the 2009 pandemic. With the exceptions of high 

influenza A(HlNl)pdm09-specific seasonal VE in 2010 and 2011, and no 

protective effect of seasonal vaccine against influenza A(HlNl)pdm09 in 2009, 

type and subtype-specific VE were inconsistent across seasons, and had little 

correlation with the percentage match between circulating and vaccine strains. 

Further investigation of the role of previous immunity and antigenic similarity by 

phylogenetic analysis is needed to better understand the determinants of influenza 

VE.
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Introduction

Despite it being one of the most studied infectious diseases, the epidemiology of 

influenza remains largely unpredictable with the timing, magnitude and circulating 

strain profile of seasonal epidemics varying considerably from one year to the 

next. However, even accounting for these uncertainties, the onset of a pandemic 

presents a multitude of new challenges, and in the first decade of the 20th century 

both public and private institutions around the world invested much effort in 

development of plans for the management of pandemic influenza [1, 2].

Emergence of the 2009 influenza pandemic
Influenza A(HlNl)pdm09 was identified in Mexico and the United States in April 

2009 and spread rapidly around the globe [3, 4]. Although Australia's first case 

was reported in Queensland on 9 May, the second reported case in Victoria 11 days 

later was followed by a rapid increase in notified cases that was not observed in 

other states or territories [5, 6]. The Victorian Government's response to influenza 

A(HlNl)pdm09 was undertaken in accordance with the phases described in the 

Australian Health Management Plan for Pandemic Influenza [1], which included 

follow up of all notified cases, closure of classrooms and schools with reported 

cases and distribution of antiviral medication for treatment of cases and 

prophylaxis of contacts.

As the pandemic response progressed it became evident that despite the large 

number of notified cases a high proportion had relatively mild symptoms and 

much lower case fatality risk compared to previous pandemics [7]. Influenza-like 

illness (ILI] activity and proportion of influenza tests positive as measured by 

other surveillance systems was also moderate compared to other influenza 

seasons [8, 9]. Furthermore, evidence emerged that suggested community 

transmission of influenza A(HlNl)pdm09 in Victoria was well established before 

cases were identified [10], raising the suggestion that spread of the virus was being 

driven by those with asymptomatic or clinically mild infections. Although the 

intensity of the initial response was curtailed after several weeks [6], the 

experience raised questions about conventional notions and definitions of what 

epidemiological characteristics constitute a pandemic [11] and the flexibility of 

plans to scale back in the event of a milder scenario. However, it also provided an
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opportunity to evaluate how pandemic plans operated in practice and observe the 

effect of influenza A(HlNl)pdm09 on seasonal influenza epidemiology following 

its emergence.

A central element of pandemic response plans is the rapid development and 

rollout of a pandemic vaccination program which, for influenza A(HlNl)pdm09, 

commenced in Australia in September 2009 [2, 5]. Victoria has had a publicly 

funded seasonal influenza vaccination program since 1997 [12] but influenza 

vaccine effectiveness (VE) estimates were not being regularly published at the time 

of the pandemic. However, using limited sentinel surveillance data from 2003- 

2007, proof of concept had been established for the application of a novel variant 

of a traditional case control study design to measure influenza VE in Victoria [13, 

14]. The availability of more complete data from 2007 provided an opportunity to 

estimate and compare effectiveness of seasonal trivalent and pandemic 

monovalent influenza vaccines.

These uncertainties regarding influenza epidemiology during and following the 

2009 pandemic, as well as seasonal and pandemic influenza VE during this period, 

are addressed by the research studies included in this thesis.

Aim and scope of thesis
The aims of this thesis were to examine the epidemiology of influenza during the 

first wave of the 2009 pandemic and the following influenza seasons, and to 

estimate the effectiveness of trivalent seasonal and monovalent influenza vaccines 

prior to, during and following the pandemic.

Several methods were employed to examine the epidemiology of influenza. 

Laboratory confirmed influenza and ILI surveillance datasets from a range of 

surveillance systems were descriptively analysed to compare the epidemiology 

and control strategies of influenza A(HlNl)pdm09 against pandemic planning 

expectations, and characterise the epidemiology of subsequent influenza seasons. 

A systematic review of the literature and mathematical modelling were 

undertaken to investigate the role different levels of disease severity had in driving 

pandemic influenza transmission. Influenza VE was measured by applying
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influenza laboratory testing data collected in the Victorian general practitioner 

sentinel surveillance program to a novel variant of the traditional case control 

study design.

These aims were addressed by four research questions that utilised four broad 

research methods and are described in Chapter 3 'Research design'.

Thesis structure
This thesis is presented as a compilation of published studies that address 

research questions related to influenza epidemiology and vaccine effectiveness 

following the 2009 pandemic. The thesis is structured such that each research 

question and its associated studies comprises its own chapter, accompanied by a 

context statement for the thesis as a whole.

The context statement
The context statement consists of: this introductory chapter; background about 

influenza virology, clinical features, epidemiology and control (Chapter 2); 

description of the research questions and an overview of the methods used to 

address them (Chapter 3); and discussion and conclusions arising from the studies 

published in the thesis (Chapter 8).

The studies
In Chapter 4, titled 'Pandemic planning in practice', two studies compare the 

observed epidemiology and interventions implemented during the 2009 pandemic 

with conventional expectations about how an influenza pandemic influenza would 

evolve. This comparison was used to assess the performance of pandemic planning 

in practice. Chapter 5, titled 'Role of severity in pandemic spread', contains a 

systematic review of the literature to determine viral shedding duration of 

influenza A(HlNl)pdm09 that informed the mathematical model used in the 

subsequent study to determine whether transmission of influenza A(HlNl)pdm09 

was driven by those with asymptomatic or very mild infections. Chapter 6, titled 

'Post-pandemic influenza epidemiology', includes three papers that describe the 

epidemiology of laboratory confirmed influenza and ILI for the three Victorian 

influenza seasons following the pandemic from 2010 to 2012 inclusive. Four
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studies comprise Chapter 7, titled 'Influenza vaccine effectiveness', which 

calculated the effectiveness for annual seasonal trivalent influenza vaccines from 

2007 to 2011 inclusive and monovalent pandemic (H1N1] vaccine in 2010.

During my doctoral candidature I also made minor contributions to five other 

studies: intra-household transmission of influenza A(HlNl]pdm09; seasonal 

trivalent influenza vaccine effectiveness over five years; and the understanding, 

compliance with and impact of social restrictions implemented during the public 

health response to pandemic influenza. These papers are included in the Appendix.

Contribution to manuscripts
Guidelines produced by the British Medical Journal were used to estimate my 

contribution to the conception and design, analysis and interpretation, and 

drafting and revising of each paper [15] and shown in the table in the declaration. I 

was lead or senior (last] author and guarantor for nine of the 11 studies and took 

responsibility for overall management of the drafting process, the conduct of the 

study and controlled the decision to publish. I was joint first author on a study in 

Chapter 4 for which I was also corresponding author, but contributions to the 

paper were shared with two other authors. In one paper in Chapter 7 I was third 

author given my contribution was mostly restricted to analysis & interpretation of 

the study.

All of the papers have been reproduced with the permission of the publishing 

company and co-authors. All papers included in this thesis were prepared during 

my doctoral candidature.

Funding sources
The study examining influenza A(HlNl)pdm09 transmission among school 

children and the distribution of oseltamivir treatment and prophylaxis (chapter 5] 

was partly funded by an Australian Government National Health and Medical 

Research Council grant (application ID 603753] for research on H1N1 influenza 09 

to inform public policy. Work conducted in all other studies in the body of this 

thesis was covered by institutional staff salaries.
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Influenza background

Influenza viruses cause a highly contagious respiratory disease and result in 

localised seasonal epidemics and global pandemics. Influenza virus infection has a 

broad spectrum of clinical manifestations, affects all age groups and can recur in 

any individual. Understanding the burden and epidemiology of influenza, and thus 

the development of effective prevention and control strategies, is challenging 

because of low case ascertainment and complex interactions between numerous 

factors. This chapter describes these characteristics of influenza and provides the 

context for the thesis.

Virology
The family of Orthomyxoviridae is defined by viruses that have a segmented 

genome of negative sense single-stranded RNA. It is comprised of five genera, of 

which three are influenza viruses: Influenzavirus A, Influenzavirus B and 

Influenzavirus C. Influenza viruses are also characterised by the presence of a host- 

derived lipid envelope containing glycoproteins that project from the surface of the 

virus. In type A and B influenza viruses, haemagglutinin facilitates entry of virus 

into host cells by binding to sialic acid receptors whilst neuraminidase cleaves 

glycosidic linkages to sialic acid to release virion progeny from infected cells. The 

major glycoprotein of influenza C virus is HEF (haemagglutinin-esterase-fusion) 

which combines the functions of haemagglutinin and neuraminidase. The matrix 

protein 2 (M2), found only in influenza A viruses, has proton channel activity and 

helps mediate the uncoating of the virus in endosomes. Other influenza virus 

proteins include polymerases and a nucleoprotein for viral replication, and matrix 

and non-structural nuclear export proteins [1].

Haemagglutinin and neuraminidase are the major antigenic determinants of 

influenza virus. Type A influenza virus is further subtyped based on antigenic 

differences in these glycoproteins. Eighteen different haemagglutinin subtypes 

(designated H1-H18) have been identified, the two most recent of which (H17 and 

H18) were discovered in bats in Central America in 2012 [2] and South America in 

2013 [3]. Nine neuraminidase subtypes (designated N1-N9) have been identified. 

With the exception of H17 and H18, all haemagglutinin and neuraminidase 

subtypes have been identified in aquatic birds and they are therefore considered

- 1 1 -



Chapter 2

the natural reservoir of influenza A viruses. Influenza viruses are usually benign in 

aquatic birds and exist in an evolutionary stasis but evolve rapidly when 

introduced into land-based poultry or mammalian species which include humans, 

swine, horses, dogs, cats, whales and seals. Highly pathogenic H5N1 influenza A 

virus has also been isolated from a tiger and a leopard [4]. It is suggested that 

swine in particular may serve as 'mixing vessels' for the generation of human- 

avian influenza A virus reassortants, given that cell surface receptors for both 

human and avian influenza viruses have been identified in the pig trachea and that 

humans have been shown to be infected with avian-human reassortant virus from 

pigs [5, 6]. Only haemagglutinin subtypes 1, 2 and 3 and neuraminidase subtypes 1 

and 2 have established stable lineages in humans. Type B influenza virus, for which 

only one haemagglutinin and one neuraminidase have been identified, was thought 

to be restricted to human populations until its isolation from a seal in 1999 [7].

The epidemiology of influenza in humans is dependent on two types of antigenic 

variation in the haemagglutinin and neuraminidase proteins. Antigenic drift arises 

from accumulated point mutations and results in evolution of new strains of the 

virus. These new strains are antigenically related to those circulating in previous 

epidemics but sufficiently different to evade immune recognition, leading to 

repeated (seasonal) outbreaks over time. Antigenic shift is the emergence of an 

antigenically distinct type A virus that contains a novel haemagglutinin or 

neuraminidase subtype. An antigenic shift is caused by reassortment 

(rearrangement of viral gene segments), typically between human and avian 

and/or swine viruses. Antigenic shift may also occur by direct transmission of 

avian or swine influenza virus to humans which then becomes established in the 

human population. The introduction of an antigenically distinct virus with a novel 

haemagglutinin alone or with a novel neuraminidase in an immunologically naive 

population results in high infection rates and can lead to a pandemic. The 

emergence of reassortant viruses has been sudden and unpredictable, occurring at 

irregular intervals, and is described further below [8].
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An international Standard convention for influenza virus nomenclature was 
recommended by the WHO in 1980. The nomenclature consists of: the antigenic 
type; host of origin (if non-human); geographical origin; strain number; year of 
isolation; and, for type A viruses, haemagglutinin and neuraminidase antigen 
description in parentheses [9]. For example: A/Swine/Minnesota/00194/2003 
(H1N2) designates a virus of swine origin and B/Perth/165/2007 represents a 
virus of human origin.

Clinical features
Infection with seasonal influenza virus manifests over a wide spectrum of clinical 
presentations, from asymptomatic to various respiratory syndromes and primary 
viral and secondary bacterial pneumonia. A meta-analysis of volunteer challenge 
studies estimated that 30-40% of infections are asymptomatic [10], but this may 
not be representative of community-acquired influenza, and infection most 
commonly manifests as an uncomplicated, acute self-limited febrile illness with 
myalgia and cough. Conventional descriptions of influenza illness generally 
indicate an abrupt onset with systemic systems (usually fever, headache, myalgia, 
malaise and anorexia) that generally persist for about three days, but may be as 
long as eight days. Although they may also be present at the onset of illness, 
respiratory symptoms (particularly a dry cough, pharyngeal pain and nasal 
obstruction and discharge) become more prominent as the disease progresses and 
persist for 3-4 days after the fever subsides [11].

Primary influenza viral pneumonia and secondary bacterial pneumonia are the 
most well recognised pulmonary complications of influenza. Primary viral 
influenza pneumonia is particularly common among those with cardiovascular 

disease and has a high mortality risk. Secondary bacterial pneumonia (most often 
caused by Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus 
aureus) is more common in older adults and those with chronic pulmonary, 
cardiac, metabolic or other disease. Other pulmonary complications include croup 
in children and exacerbation of chronic pulmonary disease. Non-pulmonary 
complications of influenza virus infection include myositis, cardiac complications, 
toxic shock syndrome and Reye's syndrome [11].
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Immune response
Infection with influenza virus evokes innate and adaptive immune responses in 

humans. The innate response aims to prevent infection of the respiratory epithelial 

cells, whilst the second line of defence comprises humoral immunity (mediated by 

virus-specific antibodies) and cellular immunity (mediated by T cells).

The most important antibodies induced by infection are those specific for the 

haemagglutinin and neuraminidase glycoproteins. Binding of haemagglutinin- 

specific antibody to any of the five antibody recognition sites that surround the 

receptor binding site of the haemagglutinin surface neutralises the virus by 

preventing attachment and entry to host cells [12]. Broadly neutralising antibodies 

to the conserved stem region of the haemagglutinin molecule have been observed 

in naturally infected individuals and this observation has raised prospects for the 

development of a universal influenza vaccine [13]. However, more research is 

required because frequency of stem-specific neutralizing antibody is very low and 

producing a properly folded recombinant haemagglutinin stem region is difficult 

without co-expression of the haemagglutinin head region [14, 15]. This s 

problematic if the stem region is poorly immunogenic, as the head region is highly 

immunogenic.

Neuraminidase-specific antibody does not neutralise the virus but limits its spread 

by inhibiting the enzymatic cleavage of virion progeny from infected cells. Immure 

pressure mediated by antibody production gives rise to escape variants, especial y 

haemagglutinin in which mutations in all five antigenic sites occur, with positive 

selection driving antigenic drift [16,17].

The cellular immune response to influenza infection comprises induction of CD4+ 

T cells, CD8+ T cells and regulatory T cells that mediate a number of important 

functions including: the elimination of virus-infected cells; promotion of B cell 

responses; regulation of the cellular immune response; and immunological 

memory. T cells are also thought to play an important role in heterosubtypic 

immunity to influenza virus A infection; they generally recognise conserved viral 

proteins and cross-protective immunity has been observed in the absence af 

strain-specific antibodies prior to infection [16, 18]. T cell responses to influenza
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infection are also significantly correlated with low virus shedding and reduced 

disease severity in the absence of detectable antibody response [15].

Transmission
Person-to-person transmission of influenza virus primarily occurs through 

respiratory droplets expelled during coughing and sneezing, particularly in 

enclosed spaces, and the virus can remain viable for hours in conditions of low 

temperature and humidity. Transmission may also occur through direct contact or 

from fomites. Occasionally transmission to humans may occur from birds and 

swine [19, 20].

The incubation period of influenza is estimated to range from 1-3 days, and up to 

four days for type B influenza viruses [8, 11, 19]. The period of communicability is 

generally equated to the detection of virus from clinical specimens, with the 

duration and viral titre dependent on several factors including age, clinical illness, 

treatment with antiviral agents and virus detection method [10, 21]. Among adults 

with uncomplicated infection, virus can usually be detected within about 24 hours 

prior to symptom onset, with the titre rising rapidly to a peak, staying elevated for 

24-48 hours and decreasing to undetectable levels after 5-10 days of shedding 

[11]. Duration of seasonal influenza virus shedding has been found to be longer in 

children [22-24], and is a widely accepted assumption in text books [8, 11] and 

pandemic planning documents [25].

Laboratory diagnosis
Common symptoms of influenza are shared with several other pathogens and 

clinical criteria are often not reliable indicators of infection. A study in two 

Australian states over two influenza seasons found combinations of the symptoms 

of cough and fever with or without fatigue and/or myalgia yielded sensitivities of 

44-75% and specificities 47-80%; positive predictive values ranged from 23-60% 

[26]. Laboratory testing is therefore required for a definitive diagnosis.

With higher sensitivity and shorter turnaround times compared to viral culture, 

reverse transcription polymerase chain reaction (PCR) has become the most 

common diagnostic method for influenza virus detection. Whilst viral culture is
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still important for antigenic characterisation of circulating and novel influenza 

viruses, antiviral susceptibility testing using neuraminidase inhibitor assays and 

vaccine production, PCR assays are also able to test for several targets 

concurrently (such as influenza types/subtypes and other respiratory viruses], can 

be adapted rapidly for the detection of novel targets and are highly automated 

with high throughput capacity [27].

A range of serological tests are available for influenza diagnosis, including 

haemagglutinin inhibition assay, complement fixation test and enzyme 

immunoassay. They are generally not practical in the clinical setting because 

antibodies to influenza virus do not appear until approximately two weeks after 

infection, and a four-fold or greater increase in antibody titre from paired acute- 

and convalescent-phase sera is required for diagnosis. Furthermore, increases in 

antibody titres are more difficult to detect in those who have received inactivated 

influenza vaccine [28]. However, serological testing is useful for retrospective 

diagnosis (such as identification of asymptomatic and resolved infections where 

the patient is no longer shedding virus) and seroepidemiological studies (such as 

determining the cumulative incidence of infection or levels of cross-protective 

immunity prior to a pandemic in a given population). Caution is required when 

interpreting the results of seroepidemiological studies as correlates of protection 

are not well defined and the titre cut-off level may under- or over-estimate the 

extent of infection [27].

Rapid antigen tests can be conducted at the point-of-care, are technically simple 

and low cost thus expediting clinical decision-making and appropriate allocation of 

limited supplies (such as antivirals in the early stages of a pandemic). Whilst the 

tests generally have high specificities and positive predictive values during periods 

of high prevalence, reported sensitivities vary widely from 20-90% [27].

Epidemiology
Only influenza virus types A and B cause seasonal epidemics, which tend to occur 

during the winter or early spring months each year in temperate climates. 

Epidemics in tropical and subtropical climates tend to coincide with the onset of 

the rainy season [19]. The overall attack proportion during a typical epidemic
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season is estimated to be 5-20% [29, 30] from which the World Health 

Organization estimates there are 3-5 million cases of severe illness and 250,000- 

500,000 deaths worldwide each year [31]. In Australia it is estimated that an 

annual average of 18,400 hospitalisations are attributable to influenza [32]. There 

are no recent estimates of overall excess seasonal influenza mortality in Australia, 

but modelling has indicated that over 3,000 deaths per annum among those aged 

50 years or older are attributable to influenza [33]. Whilst these estimates were 

derived from national databases of mortality, hospital morbidity, laboratory 

virology and serology reporting and a study of GP activity, their accuracy remains 

unclear. Limitations of the data and their analysis include misclassification bias 

arising from differential diagnostic coding practices, the inability to account for 

changes in testing practices over time, disregarding other causes of respiratory 

infection and uncertainty in the estimation of undiagnosed cases.

Younger age groups (particularly school children) are most susceptible to seasonal 

influenza infection with infection risk of up to 40-50% observed, whilst excess 

mortality occurs primarily in the elderly [29, 30]. The highest risk of complications 

occurs in children aged less than two years, those aged 65 years or older, pregnant 

women and those with certain medical conditions which include chronic heart, 

lung, kidney, liver, neurological, blood or metabolic diseases, and those with 

immunocompromising conditions [31].

Accurately assessing the burden of influenza is complicated by relatively poor case 

ascertainment: those with asymptomatic or milder infections w ill not present to 

health services; not all symptomatic cases are tested; and some hospitalised and 

fatal influenza cases may be coded to pneumonia or other causes [34]. During each 

influenza season there is usually an increase in all-cause deaths above those coded 

to influenza and/or pneumonia. Therefore, a common approach to assess the 

mortality impact of influenza has been to calculate the excess deaths that occur 

during periods of influenza activity over those occurring in baseline periods when 

influenza is not circulating, controlling for other seasonally variable causes of 

disease [35]. However, such estimates are imprecise because influenza contributes
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only marginally to total mortality; sensitivity is maximised at the expense of 

specificity [36].

Imprecision in estimation of influenza morbidity and mortality is also compounded 

by variation over population and geography and between seasonal epidemics due 

to complex interactions between the circulating influenza type(s)/subtype(s), viral 

antigenic variation, immunity from previous exposures and vaccination, age 

susceptibility, climate, ethnicity and social wellbeing [29, 34, 37, 38]. Variability 

between seasonal influenza epidemics is also shown by a study which estimated 

the reproduction number [the number of secondary cases generated by a primary 

case) in a partially immune population at the beginning of seasonal epidemics over 

three decades in the United States, France and Australia. The reproduction number 

varied within a range of 0.9-2.1 year-to-year, with high prevalence of influenza 

A(H3N2) viruses associated with high transmission seasons [39]. Influenza 

A(H3N2) viruses have also been noted to evolve more rapidly than A(H1N1) and 

type B viruses and cause more influenza-related deaths [35, 40].

Surveillance of influenza is needed to guide prevention, control and mitigation 

policies but is challenging to undertake and interpret because of the wide and non-

specific clinical spectrum and under-ascertainment of influenza infections. Multi- 

component surveillance systems are therefore used to assess the epidemiology of 

both laboratory confirmed influenza and syndromic proxy markers of influenza 

activity, such as influenza-like illness (ILI) [41].

Influenza and ILI activity in Australia is measured using community-based 

notifiable disease and laboratory surveillance, and sentinel and absenteeism 

surveillance in workplaces, general practices, hospital emergency departments and 

amongst admitted patients. The broad objectives of influenza and ILI surveillance 

are to: monitor the epidemiology of laboratory confirmed influenza; identify the 

onset, duration and relative severity of annual influenza seasons; provide samples 

for the characterisation of circulating influenza strains in the community to assist 

in evaluation of the current seasonal vaccine and formulation of the following 

season's vaccine; and provide potential for early recognition of new influenza 

viruses and new or emerging respiratory diseases [42, 43].
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Pandemic influenza
Since 2003, documents produced by the World Health Organization (WHO) stated 

an influenza pandemic occurs "when a new influenza virus appears against which 

the human population has no immunity, resulting in several, simultaneous 

epidemics worldwide with enormous numbers of deaths and illness" [44]. 

However, following the emergence of influenza A(H lN l)pdm 09 this description 

became controversial and was amended as evidence indicated the majority of 

cases had a generally mild clinical course and the presence of protective immunity 

in the elderly, and questions were raised as to whether influenza A(H lN l)pdm 09 

constituted a pandemic at all [45]. The updated WHO website states that "an 

influenza pandemic occurs when a new influenza virus emerges and spreads 

around the world, and most people do not have immunity" [46].

Three pandemics of influenza caused by different subtypes of influenza A virus 

occurred in the 20th century: an H1N1 virus in 1918; an H2N2 virus in 1957; and 

an H3N2 virus in 1968. Estimates of the number of cases and deaths in each 

pandemic vary and reflect the difficulty in using historical data to ascertain 

absolute numbers. However, each pandemic was characterised by a shift in the 

virus subtype, a high symptomatic infection risk, elevated mortality risks that were 

highest in young adults, an onset not restricted to the typical influenza season with 

successive pandemic waves, and replacement of the seasonal influenza A virus 

subtype with the pandemic strain [34, 47, 48].

The influenza pandemic of 1918-1919 is widely regarded as the most serious with 

estimated symptomatic infection risks of 20-60% in most countries and between 

20-50 million deaths, or 1-2.5% of the world's population. The pandemics of 1957 

and 1968-1969 were comparatively milder w ith respect to estimated symptomatic 

infection and mortality risks: there were approximately 2-3 million excess deaths 

worldwide (about 0.7% of the population) in 1957 and one million deaths (0.3%) 

in 1968-1969 [34, 49]. The age distribution of symptomatic infection risks also 

varied between the three pandemics: in 1918-1919 proportions were highest 

among children and young adults and declined with increasing age over 30; in 

1957 proportions were highest in school-aged children, intermediate in young and
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middle-aged adults and lowest among adults aged 50 years or more; in 1968-1969 

symptomatic infection risks were stable across all age groups [50].

Influenza A(H1N1) virus was reintroduced into the human population in 1977. 

Although disease was characterised by classical influenza symptoms, cases were 

generally mild and almost entirely restricted to people aged 25 years or younger. 

The age distribution has been attributed to the absence of circulating H1N1 since 

1957 (when it was replaced by H2N2) and a corresponding lack of exposure and 

immunity to H1N1 viruses in those born after then. Furthermore, the H1N1 strain 

did not replace the H3N2 that emerged in the 1968-1969 pandemic and thus 

strains of both subtypes have co-circulated in humans since 1977 [48].

The 'swine flu' pandemic of 2009 was the first influenza pandemic of the 21st 

century and also differed virologically and epidemiologically from the three 20th 

century pandemics. The pandemic virus, designated influenza A(HlNl)pdm09, 

emerged from a triple (avian, swine and human) reassortment rather than 

antigenic shift [51]. Furthermore, it replaced only the previously circulating 

seasonal H1N1 and not the H3N2 subtype. The cumulative incidence of infection 

was estimated by serological studies to be in the range 11-21% [52] and the 

majority of infections were relatively mild; between 30-50% of infections were 

estimated to be asymptomatic [53-55], with approximately 0.25% and 0.04% 

hospitalised and fatal respectively [56, 57]. Exposure to H1N1 viruses prior to the 

1957 pandemic is believed to account for the very low proportion of adults aged 

over 60 years infected with influenza A(HlNl)pdm09 [52].

Vaccine
Vaccination is recognised as the most effective measure for reducing the impact of 

influenza [58]. Most current seasonal influenza vaccines contain antigens for two 

type A strains (one of each subtype H1N1 and H3N2) and one type B strain, 

although in August 2013 a quadrivalent vaccine containing an additional B strain 

was included in the Australian Register of Therapeutic Goods [59]. The vaccine 

strains are frequently replaced due to antigenic drift of circulating viruses. The 

WHO conducts biannual consultations and uses global influenza virus surveillance 

data to recommend which influenza virus strains should be included in the vaccine
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for the following influenza season in the other hemisphere [60]. A period of 6-7 

months is required for production before suitable quantities of vaccine are 

available for administration.

Both inactivated and live, attenuated influenza vaccines are available. In live 

attenuated influenza vaccine [LAIV], virus antigen is constituted as live-attenuated, 

cold-adapted, temperature-sensitive vaccine viruses. The LAIV is administered 

intranasally and may cause mild symptoms related to vaccine virus infection. LAIV 

is not licensed for use in Australia. The trivalent influenza vaccines [TIV] are 

comprised of subvirions or surface antigens purified from inactivated influenza 

virus. A number of different TIV preparations, with various age and route of 

administration indications, are licensed for use in Australia [61]. Evidence from 

clinical trials suggests that protection against viruses that are antigenically similar 

to those in the vaccine lasts for at least 6-8 months. Although the elderly have a 

weaker immune response to influenza vaccine [62], there is no clear evidence that 

immunity declines more rapidly compared to younger adult populations [63].

In Australia, TIV generally becomes available in March each year. The Australian 

Government funds influenza vaccination for certain risk groups, which includes: 

everyone aged 65 years and over; all Aboriginal and Torres Strait Islander people 

15 years of age and over; any person six months of age and over with a condition 

predisposing them to severe influenza illness; and all pregnant women. Influenza 

vaccination is recommended, but not funded, for other risk groups [including 

children aged less than five years, residential and aged care facility residents, 

homeless people, those who may transmit influenza to persons at risk of 

complications from influenza infection, essential services workers and travellers] 

whilst others are vaccinated privately or through workplaces [61].

Following the emergence of the pandemic influenza A(HlNl)pdm09 virus and as 

recommended by the WHO, an A/California/7/2009 (HlNl)-like virus was used to 

produce a monovalent vaccine for Australia [64]. The Pandemic (H1N1) 2009 

Vaccination Program in Australia ran from 30 September 2009 to 31 December 

2010 and was publicly funded for all persons in Australia aged six months or older 

[65].
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Vaccine effectiveness
Efficacy and effectiveness studies are used to determine the extent to which a 

specific intervention produces a beneficial result. Efficacy is measured under ideal 

conditions whereas measurement of effectiveness is conducted when the 

intervention is deployed in the field under routine circumstances [66]. Vaccine 

effectiveness (VE) is the percentage reduction in cases among vaccinated 

individuals and differs from year to year for influenza due to antigenic drift and 

variable dominance of circulating strains, and the different strain compositions of 

seasonal vaccines that result. Regular monitoring of VE is an important part of 

evaluating the publicly funded influenza vaccination program. Determining the 

efficacy and effectiveness of influenza vaccine is dependent on a number of factors, 

including: age; immunocompetence of the vaccine recipient; antigenic similarity of 

the vaccine virus strains to those circulating; and the specificity of the outcome 

measure [67]. Whilst clinical trials are used for establishing vaccine efficacy, it is 

impractical for them to be conducted on each seasonal influenza vaccine and 

licensure of influenza vaccine is therefore based on immunogenicity studies. 

However, immunogenicity does not necessarily correlate with effectiveness and 

properly designed observational studies provide a reliable and more practical 

means of calculating VE under field conditions [68, 69].

One observational study design to emerge as the preferred method for calculating 

influenza VE is the so-called 'case test-negative' design [70] that has been used in 

Europe [71], Canada [72] and the USA [73] since around 2007. It is a prospective 

variant of the traditional case control study design, in which the case or control 

(test-negative) status of the study participants is not known at the time of their 

recruitment into the study: patients presenting with ILI (or other defined acute 

respiratory illness) are tested for influenza and those that test positive and 

negative become cases and controls respectively. Influenza negative ILI patients 

are a convenient source of controls in the general practice setting and are more 

likely to be representative of the case source population in terms of propensity to 

consult for ILI.
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In the decade prior to the 2009 pandemic there were few published studies 

estimating influenza efficacy or effectiveness in Australia, consisting only of a large 

randomised controlled trial conducted in Australia and New Zealand in 2008-9 

[74] and another that estimated VE from an influenza A outbreak in a Victorian 

aged care facility in 2001-2 [75]. In a paper published in 2009, the Epidemiology 

Unit at the Victorian Infectious Diseases Reference Laboratory retrospectively 

applied the case test-negative design to an existing sentinel general practitioner 

surveillance dataset to establish proof of concept, although completeness of 

vaccination status data were relatively low and the VE estimates were not 

stratified by type/subtype or age group [76]. Given its relative infancy, 

methodology and understanding of the case test-negative study design continues 

to evolve. Early modelling suggested the design underestimates true VE under 

most conditions of test sensitivity, specificity and the ratio of influenza to non-

influenza attack rates [77], whilst the classification and role of biases and 

confounding variables continue to be debated [70, 78-81].

Antivirals
Antiviral medications act by interrupting essential steps in the viral replication 

cycle and are used for both the treatment and prevention of influenza. The two 

major classes of antiviral drugs used for influenza virus infection are the M2 

inhibitors and the neuraminidase inhibitors. The M2 inhibitors amantadine and 

rimantadine have been available since the 1960s and prevent replication of type A 

influenza viruses by blocking the M2 proton channel. However, their usefulness is 

limited because of widespread resistance, particularly in seasonal A(H3N2) viruses 

but also the pandemic influenza A (H lN l)pdm 09 virus and some clades of 

A(H5N1) viruses [82]. Systematic reviews have found low to moderate quality 

evidence of effectiveness of amantadine and rimantadine in relieving or treating 

symptoms in healthy adults and children, and prevention of infection in children 

[83, 84].

Neuraminidase inhibitors (NIs) prevent the release and spread of progeny virions 

by blocking the neuramindase function. Two NIs [oseltamivir and zanamivir) are 

licensed globally for treatment and prevention of influenza, whilst peramivir and
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laninamavir are only licensed in Japan. Influenza virus NI resistance profiles vary 

because resistance can be specific to a neuramindase subtype or a particular NI; an 

oseltamivir-resistant (and zanamivir-sensitive) seasonal influenza A(H1N1) strain 

emerged in 2007-2008 and rapidly became the dominant A(H1N1) virus 

worldwide before being replaced with oseltamivir-sensitive A(HlNl)pdm09 virus 

[85]. NIs are widely believed to be effective in reducing the severity and duration 

of influenza (particularly if used within 48 hours of symptom onset) and in the 

prevention of influenza illness when administered prophylactically. Indeed, 

antivirals for treatment and prophylaxis remain important components of 

pandemic plans, particularly for delaying and containing spread of a pandemic 

virus [25, 65, 67]. However, the logistical constraints on the ability to deliver 

sufficient quantities of antivirals is often overlooked in these plans [86]. In 

addition, assumptions about the effectiveness of NIs have been challenged, with 

concerns raised about the quality of evidence, particularly with respect to 

publication bias and problems with the design, conduct and availability of 

information from clinical trials [87, 88].

Non-pharmaceutical interventions

Given the limitations of supply, production, distribution and cost of vaccine and 

antiviral medication, pandemic plans also include non-pharmaceutical 

interventions to mitigate the spread of pandemic influenza virus. At the 

community level, these include isolation of patients and quarantine of contacts, 

encouragement of personal protection and hygiene measures (such as use of 

facemasks, coughing etiquette and hand-washing) and social distancing measures 

(such as the closure of schools and childcare centres and cancellation of large scale 

public events) [89].

Modelling studies based on US, UK and Australian populations have indicated that 

school closure can be effective at reducing the cumulative incidence of influenza 

[90-93]. However, the extent to which this occurs varies considerably and is 

probably due to different assumptions about relative attack rates in adults and 

children, the extent of mixing and contact outside school, and the number of 

symptomatic cases before closure is implemented [93]. To be most effective,
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school closure must happen early, remain in place until prevalence returns to low 

levels and mixing of children prohibited during the closure. Implementation of 

school closure has been used with varying success in the control of influenza 

epidemics and pandemics, and the timing, extent and length of the closure are all 

important factors in the effectiveness of the intervention [94, 95].

Although effectively implemented social distancing measures are modelled to 

reduce the impact of pandemic influenza, policy makers must also consider the 

social and economic consequences of such measures. Surveys conducted in 

Australia following the public health response to influenza A(H lN l)pdm 09 

indicated high patient- and household-level compliance with quarantine 

requirements of 85-96% [96-98]. Parents in just over half of Victorian households 

affected by school closures took time off work to care for quarantined children, 

and of these 38% lost pay as a result [99]. Given that social distancing measures 

were only implemented for 2-3 weeks in Australia during the initial response to 

influenza A(H lN l)pdm 09, it is unlikely high levels of public acceptance could be 

sustained; one study found willingness to comply with avoiding social gatherings 

for one month was 63% [98].

Screening of arrivals (particularly at airports), as well as exit screening in affected 

areas, are methods suggested to lim it the spread of pandemic influenza across 

borders [100]. However, a number of modelling studies have indicated that 

screening or travel restrictions are unlikely to prevent, delay or slow global spread 

of an influenza pandemic because of the rapid initial growth rate of a pandemic, 

the large number of people infected and high proportion that are asymptomatic 

[101-103]. Further highlighting the ineffectiveness of border screening as a control 

measure is a review of non-contact infrared thermometers (NCITs), which were 

introduced at some international airports and gathering places to measure fever 

during the outbreak of severe acute respiratory syndrome in 2003. The positive 

predictive value of NCITs is low when fever prevalence is low, suggesting their 

efficacy would be limited at the early stages of a pandemic when they are primarily 

intended to be used [104]. Furthermore, NCITs w ill miss those using antipyretic 

medication or in the prodromal phase of illness.
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Conclusion
The complexity of seasonal influenza epidemiology and virology is reflected in the 

broad range of methods and strategies utilised for its surveillance and control. 

Whilst elements of seasonal influenza remain unpredictable, the emergence of an 

influenza pandemic at any time without warning necessitates an urgent, large- 

scale response with additional social and political challenges, particularly with 

respect to mitigation measures. The 2009 pandemic provided the first in situ 

application and test of public health pandemic response plans, in which 

considerable effort had been invested in the preceding years.

This thesis reflects on the Australian experience responding to influenza 

A(HlNl]pdm09 by comparing conventional epidemiological assumptions with 

what was observed, investigating the role of severity in transmission, and 

examining the application and performance of the specific control measures of 

school closure and antiviral distribution in this context. The thesis also examines 

post-pandemic seasonal influenza epidemiology as well as effectiveness of vaccine 

- the most important influenza control measure -  prior to, during and following 

the emergence of influenza A[HlNl)pdm09.
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Research questions
This thesis seeks to answer the following research questions:

1. How did the epidemiology and public health response for influenza 

A (H lN l]pdm 09 differ from expectations in pandemic planning?

2. What role did different levels of disease severity have in driving the initial 

spread of influenza A(HlN l)pdm 09?

3. How has the epidemiology of seasonal influenza in Victoria changed since the 

emergence of influenza A(HlNl)pdm09?

4. How effective has influenza vaccine been in the prevention of laboratory 

confirmed influenza infection from 2007 to 2011?

Each question is addressed by a discrete chapter comprising multiple studies that 

have been published in peer-reviewed journals.

Research question 1: how did the epidemiology and public health response for 

influenza A(H1N1 )pdm09 differ from expectations in pandemic planning?

Two studies were undertaken to address this research question and are included 

in Chapter 4. The first paper, on which I was a co-investigator, compared some of 

the virological and epidemiological assumptions about pandemic influenza viruses 

made from analysis of previous pandemics and in pandemic planning documents, 

to what was actually observed following the emergence of influenza 

A(H lN l)pdm 09 [1]. I was the primary author of a second study and I analysed 

surveillance data on symptoms, antiviral treatment and prophylaxis, and school 

attendance of the first 1,000 cases of influenza A(H lN l)pdm 09 notified to the 

Victorian Government Department of Health [2]. The findings of the analysis were 

used to make inferences about the impact of school closures and antiviral 

distribution in particular, which were key control strategies in itially used by the 

Government to contain the spread of the pandemic.
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Research question 2: what role did different levels of disease severity have in 

driving the initial spread of influenza A(H1N1 )pdm09?

During the public health response to influenza A(H lN l)pdm 09 in Victoria several 

lines of evidence, later supported by modelling, suggested community 

transmission of pandemic influenza was well established before cases were 

identified [3]. Along with anecdotal evidence and the observation that a large 

proportion of notified cases were relatively mild [4], this lead to the hypothesis 

that spread of influenza A(H lN l)pdm 09 was largely driven by those with 

asymptomatic or clinically mild infections. Research question 2 addressed this 

hypothesis in two discrete and sequential stages, the first of which was a 

systematic review of the viral shedding duration in people infected by influenza 

A(H lN l)pdm 09 virus [5]. This study arose from the absence of a such a review in 

the literature and the need to include estimates of influenza A(H lN l)pdm 09 viral 

shedding duration (as a proxy for the infectious period) in the second study. The 

second study (which had not been submitted to a journal at the time of thesis 

submission) used deterministic mathematical modelling to estimate the relative 

importance of different levels of infection severity in transmission of influenza 

A(H lN l)pdm 09 virus. Both of these studies, for which 1 was primary author, are 

included in Chapter 5.

Research question 3: how has the epidemiology of seasonal influenza in 

Victoria changed since the emergence of influenza A (H IN  1 )pdm09?

This research question is addressed in Chapter 6 by three surveillance studies that 

describe the epidemiology of influenza and influenza-like illness (ILI) conducted 

over consecutive influenza seasons from 2010-2012 inclusive [6-8]. I was primary 

author and/or chief investigator for each study in which I analysed Victoria ILI and 

laboratory confirmed influenza surveillance data from notifiable disease, sentinel 

general practices, a sentinel hospital network, locum service and strain typing 

databases.
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Research question 4: how effective have influenza vaccines been in the 
prevention of laboratory confirmed influenza infection from 2007 to 2011?
To address this research question I used data from the Victorian sentinel GP 

surveillance database in a prospective case test-negative study design to estimate 

seasonal influenza vaccine effectiveness (VE) for the two years preceding and 

following the 2009 pandemic, and 2009 itself. This resulted in four papers that are 

included in Chapter 7 [9-12]. With the exception of the study measuring the 

effectiveness of 2009 seasonal trivalent influenza vaccine in which I was a co-

investigator, I was primary author of each of the papers in Chapter 7. Whilst 

providing overall VE estimates, each study aimed to calculate estimates stratified 

by age and influenza type and subtype. The effectiveness of the monovalent 

pandemic influenza vaccine was also assessed, following the Pandemic (H1N1) 

2009 Vaccination Program that ran from 30 September 2009 to 31 December 

2010 .

Research methodology
The research questions were investigated using four broad research methods:

1. Analysis of public health surveillance data.

2. Systematic review of the literature.

3. Deterministic mathematical modelling.

4. Application of sentinel surveillance data to a case test-negative study design. 

The description of these broad methods below provides an overview for the thesis; 

more detailed and specific methodological techniques are contained within the 

published papers in subsequent chapters.

Analysis of public health surveillance data
The first and third research questions were investigated by descriptive analyses of 

a number of laboratory confirmed influenza and ILI surveillance datasets from a 

variety of clinical settings. Influenza surveillance systems are usually comprised of 

several different surveillance data sources due the wide and non-specific clinical 

spectrum and under-ascertainment of influenza infections [13]. The Victorian 

influenza surveillance system is comprised of multiple programs: notifiable 

laboratory confirmed influenza; a general practitioner sentinel surveillance
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network; a metropolitan locum service; a sentinel hospital network; and reference 

laboratory typing.

Laboratory confirmed influenza is a scheduled notifiable disease in Victoria under 

the Public Health and Wellbeing Act 2008 and Public Health and Wellbeing 

Regulations 2009; all medical practitioners and persons in charge of pathology 

services are required to notify identification, demographic and diagnostic 

information about cases to the Department of Health within five days of diagnosis 

[14, 15]. The Department of Health also receives requests for assistance with 

management of institutional respiratory outbreaks, for which data are collected.

The Victorian response to influenza A(H lN l)pdm 09 was undertaken in 

accordance with the phases described in the Australian Health Management Plan 

fo r Pandemic Inßuenza [16]. During the initial 'Delay' and 'Contain' phases of the 

public health response -  for which the objective is to delay entry of the virus and to 

contain the establishment of the pandemic strain -  data about symptoms, case 

treatment, prophylaxis of contacts and school attended were collected from 

notified cases in addition to the scheduled fields.

The Victorian Infectious Diseases Reference Laboratory (VIDRL) coordinates the 

general practitioner sentinel surveillance (GPSS) program. It operates annually 

from May to October, when the influenza season usually occurs, and consists of 

approximately 100 general practitioners (GPs) in metropolitan and regional 

Victoria. Participating GPs make weekly reports on the total number of 

consultations, and age, sex and vaccination status of patients presenting with an ILI 

using an established case definition [17]. GPs collect a nose or throat swab from 

their ILI patients, chosen at their discretion, which are tested at VIDRL by 

polymerase chain reaction (PCR) for detection of type A and type B influenza 

viruses. Influenza A virus-positive samples are then subtyped by PCR as A(H1) or 

A(H3). GPs also collect additional data about symptoms, vaccination and 

comorbidity (for which influenza vaccination is indicated [18]) for those patients 

that are swabbed.
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The Melbourne Medical Deputising Service (MMDS) provides urgent after-hours 

medical care across the Greater Melbourne and Geelong area. Records containing 

the diagnosis terms "influenza" and "flu" were extracted from the MMDS database 

each week to calculate ILI diagnoses as a proportion of total consultations. Records 

containing the terms "Fluvax", "at risk" and "immunisation" were excluded from 

the numerator to avoid inclusion of those immunised prophylactically.

The Influenza Complications Alert Network (FluCAN) was established in 2010 and 

is a national sentinel hospital program that collects surveillance data on 

hospitalised patients with laboratory confirmed influenza [19]. From 2012, data 

collected by the four Victorian FluCAN hospitals were incorporated into reporting 

for the Victorian influenza surveillance system.

Information on influenza strains circulating in Victoria is provided by the World 

Health Organization Collaborating Centre for Reference and Research on Influenza 

(WHOCCRRI). All influenza positive samples from the GPSS are forwarded to the 

Centre for strain characterisation along with a selection of influenza virus 

specimens and isolates from other Victorian diagnostic laboratories. Isolates are 

also tested for sensitivity to the antiviral drugs oseltamivir, zanamivir, peramivir 

and laninamivir.

Additional surveillance data were sourced for the first of two studies that 

addressed the first research question of how the epidemiology and public health 

response for influenza A(H lN l)pdm 09 differed from expectations in pandemic 

planning (Chapter 4). Laboratory confirmed influenza and ILI data from similarly 

operated GP sentinel surveillance programs in New Zealand and Western Australia 

were descriptively analysed with GPSS data to compare the epidemiological 

characteristics of influenza A(H lN l)pdm 09 virus with expectations based on 

previous pandemics [1]. I was a primary author of this study; working with 

jurisdictional representatives I was responsible for large parts of its design, 

analysis, interpretation and writing. In the second study, additional surveillance 

data collected by the Department of Health during the 'Delay' and 'Contain' phases 

of the influenza A(H lN l)pdm 09 public health response were descriptively 

analysed to gain insights into viral transmission among school children and the

- 4 3 -



Chapter 3

distribution of oseltamivir treatment and prophylaxis. I was principally 

responsible for all elements in the production of this research [2].

The third research question was addressed by a series of influenza and ILI 

surveillance studies utilising data from the Victorian Government Department of 

Health, GPSS, MMDS, FluCAN and the WHOCCRRI (Chapter 6). Working with 

representatives from the institutional custodians of the surveillance datasets and 

who were included as authors, I oversaw the data analyses and was responsible for 

design and production of the surveillance papers for the years 2010 [6], 2011 [7] 

and 2012 [8].

Temporal, age group, type/subtype and vaccination status distributions of the 

surveillance data were constructed using Microsoft Excel. Relative magnitude of 

influenza seasons was assessed using established thresholds for influenza seasons 

in Victoria [20, 21]. The chi squared and Fisher's exact tests were used to compare 

proportions, and the Mann-Whitney U test to compare time periods between 

events, with Stata (version 10.0; StataCorp LP). A p value of less than 0.05 was 

considered statistically significant. Maps were produced with ArcGIS software.

Systematic review of the literature

The period in which virus from clinical specimens can be detected from patients 

infected with influenza virus is generally equated with the period in which they are 

infectious to susceptible contacts, and is an important parameter in mathematical 

models for infectious diseases. In the development of a model to address the 

second research question of the role different levels of disease severity had in 

driving the spread of influenza A(H lN l)pdm 09 virus (Chapter 5), a systematic 

review of the literature was first conducted to characterise the duration of 

shedding [5]. I had primary responsibility for all elements of this study.

Articles were sourced by searching the PubMed database, after which a two-stage 

filtering process was applied to select community-based studies that were of 

human subjects and also had data of sufficient quality and quantity from which 

influenza A (H lN l]pdm 09 virus shedding duration was reported or could be
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calculated. Reference lists of shortlisted studies were searched to identify 

additional articles.

Detailed review of articles identified considerable differences in the methods by 

which duration of viral shedding in each was calculated, including: the start point 

of shedding duration (either the day of symptom onset, first positive test or 

treatment initiation), the endpoint (either the day of the last positive or first 

negative test) and how days of shedding duration were calculated (either by 

counting the starting point day as one day of viral shedding, or using the days 

difference between the start and endpoints). To compare studies, a standard 

definition of viral shedding duration -  the number of days from day of symptom(s) 

onset to the day of collection of the last specimen in which influenza 

A(H lN l)pdm 09 was detected, inclusive -  was applied to data abstracted from each 

shortlisted study. Study authors were contacted for clarification of their definitions 

or additional data if  required. Where possible, data were stratified by clinical 

severity (classified by the study settings of community, hospital or intensive care), 

age group (child or adult), antiviral treatment and the type of laboratory test used.

Studies were compared by forest plots of summary measures of viral shedding 

duration (minimum, maximum, median, mean and 95% confidence interval) and 

the proportion of patients shedding virus by day of illness in survival curves. Meta-

analyses using a random-effects model were conducted in Stata (version 10.1; 

StataCorp LP). Heterogeneity between studies was assessed by the I2 test, but 

because there was significant heterogeneity (defined as I2<80% and p>0.1) in most 

clinical severity groups, summary estimates of viral shedding duration were not 

reported.

Deterministic mathematical modelling

Mathematical models are a simplified representation of a complex phenomenon, 

and are a useful tool for understanding and predicting disease outcomes at a 

population level not afforded by traditional epidemiological approaches. 

Mathematical models are used for prediction and understanding but these 

applications are quite distinct. Models used for prediction (such as the effect of an 

intervention on disease transmission) need to be as accurate as possible, whilst
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transparency and flexibility are more important qualities of models that are used 

to improve understanding how diseases spread and various complexities that 

affect their dynamics [22, 23].

The type of modelling method used is dependent on the research question: they 

may be individual, group-based (compartmental), transmission dynamic, static or 

network, and be deterministic and/or stochastic in nature [23]. A deterministic 

compartmental Susceptible-Infected-Recovered [SIR] model structure was 

developed to investigate the second research question of the role that different 

levels of disease severity had in driving the spread of the first wave of influenza 

A(HlNl)pdm09 in Australia (Chapter 5). Each infection stage class comprised four 

compartments representing four levels of disease severity: asymptomatic (A); low- 

level symptoms (L); moderate symptoms (M); and illness requiring hospitalisation 

(H).

The model is shown in figure 1. Susceptible individuals (S) flow to respective 

infected (I) compartments following exposure to an overall force of infection A. 

Each level of infection severity has a force of infection that is the product of the 

severity level-specific transmission parameter ß and the proportion infected (I). 

The sum of these comprise the overall force of infection and is represented 

schematically by the branched transition from S to I compartments. Infected 

individuals transition to recovered (R) at a recovery rate y.

Figure 1. Influenza Susceptible-Infected-Recovered model with four levels of 

infection severity.
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The transmission parameter ß for each infection severity stratum was calculated as 

the product of relative proportional coefficients for infectivity [ ij ] and mixing (ju), 

and a common fitting coefficient 6. The fitting coefficient was defined in terms of 

the overall effective reproduction number, Re, to ensure Re was kept fixed at a 

plausible value. The model assumed a population susceptible to influenza 

A(H lN l)pdm 09 with no previous immunity from vaccination or infection, and that 

re-infections did not occur in the 250 day timeframe used for the first wave.

Literature searches were undertaken to determine plausible baseline values and 

ranges for the proportion of influenza A (H lN l)pdm 09 infections that were 

asymptomatic and those which required hospitalisation. Division of the remaining 

proportion of symptomatic infections into low-level and moderate symptoms was 

calculated using 'Flutracking' ILI surveillance data. The Flutracking surveillance 

system provides weekly community-level ILI symptomatic infection risks not 

biased by health-seeking behaviour and clinician testing practices [24]. The 

proportion reported as taking one or no days off because of their ILI were 

classified as low-level symptoms, and the proportion taking two or more days off 

because of their ILI were classified as moderate symptoms.

The mixing parameters n for each severity stratum were defined as proportions 

relative to the asymptomatic class [for which ju=1.0) and estimated by plausible 

assumptions, w ith the level of mixing decreasing as infection severity increased. 

The infectivity parameters rj for each severity stratum were also defined as relative 

proportions, but were all set at r/ =1.0 given the lack of evidence of a relationship 

between viral load and clinical severity [25, 26]. The recovery rate y for each 

severity category was calculated as the inverse of the duration of infectiousness, 

estimated from the systematic review of viral shedding duration [5].

MATLAB [Student version; MathWorks) was used to simulate the model using 

values of Re w ithin the limits of published estimates [range: 1.14-1.36) [27] that 

resulted in a total proportion of recovered individuals that was consistent with 

estimated age-standardised infection risks [28, 29]. Effective reproduction 

numbers for each infection severity stratum were calculated to determine the 

relative importance of each group in influenza A [H lN l)pdm 09 virus transmission.
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Triangular distributions of the parameter ranges (baseline value plus and minus 

10%) were sampled 400 times using Latin hypercube sampling. Parameter outputs 

were then transformed into their ranks and partial rank correlation coefficients 

(PRCC) calculated [30]. The results of the PRCC were used to identify which 

parameters most influenced the model outcome and test the effect of their 

variation, w ithin plausible limits, on the infection severity stratum-specific 

reproduction numbers.

Application of sentinel surveillance data to a 'case test-negative' study design

The case test-negative study design was applied to GPSS laboratory testing data to 

measure influenza VE in Victoria from 2007-2011. It was first used to measure VE 

in Victoria on data from 2003-2007 to establish proof of concept, but was limited 

by low ascertainment of influenza vaccination status and relatively few stratified 

analyses [31].

Figure 2 shows schematically how GPSS patients are recruited into the study and 

vaccine effectiveness is calculated. As described above, sentinel GPs swabbed a 

sample of patients meeting the ILI case definition for influenza testing. Those 

testing positive comprised the cases and those testing negative comprised the 

controls.

Logistic regression was used to estimate the odds ratio of laboratory confirmed 

influenza in vaccinated versus unvaccinated persons. The odds ratio is the odds of 

a case being vaccinated divided by the odds of a control being vaccinated. VE was 

calculated as 1 minus the odds ratio, multiplied by 100%. Odds ratios were 

adjusted for age and month of specimen collection, as well as pandemic response 

phase in 2009 and the presence of a comorbid condition for which influenza 

vaccination is indicated in 2011 (when collection of that data field commenced). 

Primary analyses were restricted to those in which a swab was collected four or 

less days between symptom onset and specimen collection date, given the 

decreased likelihood of a positive result after this time.
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Figure 2. Schema of case test-negative study design for measuring influenza 

vaccine effectiveness.
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To answer the fourth research question, I undertook all analyses and calculated 

effectiveness of seasonal trivalent influenza vaccine for each year from 2007 to 

2011 [9-12] by redeveloping the data cleaning and analysis methodology (Chapter 

7). This included calculation of stratified type/subtype- and age group-specific VE 

estimates, inclusion of additional confounding variables into the model, and 

sensitivity analyses for assumptions made in the model. VE estimates for the 

monovalent pandemic vaccine (which was publicly funded for all Australians aged 

six months or older from 30 September 2009 to 31 December 2010 [32]) were also 

calculated [11]. With the exception of the 2009 season paper in which I was a co-

investigator, I was principally responsible for interpretation and writing of all the 

VE studies.

Sensitivity analyses were conducted to determine the effects of: only including 

patients that presented within the defined influenza season; censoring records 

with longer time from illness onset to specimen collection; and assumptions about 

whether vaccination within 14 days of illness onset conferred an immune 

response.

Analyses were conducted in Stata (version 10.0; StataCorp LP). The chi squared 

test was used to compare proportions and the Mann-Whitney U test to compare 

time periods between events, with p<0.05 considered statistically significant.

Ethics
Human Research Ethics Committee was not required for studies using laboratory 

confirmed influenza datasets because data were collected as part of regulated 

notifiable disease surveillance. Influenza (laboratory confirmed) is a scheduled 

notifiable disease in Victoria and notification of all cases and prescribed data fields 

to the Department of Health is mandatory under the Public Health and Wellbeing 

Act 2008 and Public Health and Wellbeing Regulations 2009 [14, 15]. Written 

consent from patients is not required for notification of a notifiable infectious 

disease. Data in the studies were used and reported within the requirements of the 

Victorian Health Records Act 2001 [33].
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About this chapter
The papers in this chapter used laboratory confirmed influenza and influenza-like 
illness surveillance data collected in 2009 and the following influenza season in 
2010, as well as data from the published literature, to assess how the epidemiology 
and public health response for influenza A(HlNl)pdm09 differed from 
expectations in pandemic planning.

The first paper, published in the Australian and New Zealand Journal of Public 
Health highlighted differences between influenza A(HlNl)pdm09 and pandemic 
expectations with respect to timing of pandemic waves, mechanism of emergence 
of a pandemic strain, mortality risk, age distribution, strain replacement and 
effective reproductive number. In accordance with the copyright requirements of 
the journal publisher, the accepted version of this article - rather than a scan of the 
published version - is presented in this chapter. The second study, published in 
PLoS One, showed that the approach to school closure in Victoria during the initial 
public health response to influenza A(HlNl)pdm09 was ineffective in interrupting 
transmission and that antivirals could not be delivered to cases within the 
required timeframe.

Papers in this chapter
1. Grant KA, Fielding JE, Mercer GN, Carcione D, Lopez L, Smith D, Huang QS, 

Kelly HA. Comparison of the pandemic H1N1 2009 experience in the southern 
hemisphere with pandemic expectations. Aust N Z J Public Health 2012; 36: 
364-368.

2. Fielding JE, Bergeri I, Higgins N, Kelly HA, Meagher J, McBryde ES, Moran R, 
Hellard ME, Lester RA. The spread of influenza A(HlNl]pdm09 in Victorian 
school children in 2009: implications for revised pandemic planning. PLoS One 
2013; 8: e57265.
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Abstract
Objective
To describe the epidemiological characteristics of the 2009 H1N1 pandemic virus 

(pHINl) over the 2009 and 2010 influenza seasons in Australia and New Zealand 

(NZ) and compare them with expectations based on previous pandemics.

Methods
Laboratory-confirmed influenza and influenza-like illness (ILI) data were collected 

from established general practitioner sentinel surveillance schemes in NZ, Victoria 

and Western Australia (WA) throughout the 2009 and 2010 winter influenza 

seasons. Respiratory swabs from a sample of ILI patients were tested for influenza 

type and subtype. ILI rates and laboratory-confirmed influenza data were analysed 

by age group and over time. Morbidity, mortality and reproductive number data 

were collated from the published literature.

Results
Peak ILI rates and the percentage of influenza-positive swabs from ILI patients 

from all sentinel surveillance schemes were considerably lower in 2010 than 2009. 

Compared to the population, cases of ILI were over-represented in the young. 

While the age distributions in NZ and WA remained consistent, ILI cases were 

significantly younger in Victoria in 2009 compared to 2010. In Victoria, laboratory- 

confirmed pHINl comprised up to 97% of influenza-positive swabs in 2009 but 

only 56-87% in 2010. Mortality and hospitalisations were lower in 2010. The 

effective reproduction number (R) for pHINl was estimated to be 1.2-1.5 in NZ 

and WA, similar to estimated R values for seasonal influenza. Data from the 

surveillance systems indicated differences in the epidemiology of pHINl 

compared to expectations based on previous pandemics. In particular, there was 

no evidence of a second pandemic wave associated with increased mortality, and 

complete influenza strain replacement did not occur.

Implications
Pandemic planning needs to accommodate the potential for influenza viruses to 

produce pandemics of various infectiousness and degrees of severity.
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Introduction

Influenza pandemics in the last century -  in 1918,1957 and 1968 -  were caused by 

the influenza A virus subtypes H1N1, H2N2 and H3N2 respectively. These 

pandemics are generally accepted to have been characterised by: successive 

waves, most marked in the 1918-19 pandemic; a shift in the virus subtype, with 

subsequent replacement of the previous circulating influenza A strains with the 

pandemic strain; higher excess mortality, especially in younger age groups, 

generally associated with a younger age of infection; and an increased 

reproduction number (R -  the average number of secondary cases infected by one 

infectious case).13

Influenza A(H1N1) virus circulated in humans from 1918 until 1957, reappeared 

in 1977 and has since co-circulated with the influenza A virus H3N2 subtype.4 

Influenza A(H lN l)pdm 09 (hereafter pH IN I)  which arose through a novel 

reassortment rather than antigenic shift, emerged in North America in April 2009, 

early in the Southern Hemisphere influenza season. There was concurrent out-of- 

season influenza activity in the Northern Hemisphere, followed by an in-season 

second wave.5

Here, we use influenza-like illness (ILI) and laboratory confirmed p H IN l infection 

data from sentinel surveillance systems in New Zealand (NZ) and two Australian 

States, Victoria and Western Australia (WA), as well as data on hospitalisations, 

mortality and the effective reproduction number to summarise epidemiological 

characteristics of the p H IN l virus over two Southern Hemisphere influenza 

seasons. We compare the results from two Southern Hemisphere countries with 

expectations based on observations from previous pandemics.1*3

Methods
General practitioner (GP) sentinel surveillance for influenza and influenza-like 

illness (ILI) is conducted in NZ and Victoria throughout each winter influenza 

season, usually from May to September, but in 2009 was extended to the end of the 

year to monitor pH IN l. GP sentinel surveillance operates year-round in WA. In NZ, 

ILI is defined as acute upper respiratory tract infection characterised by abrupt
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onset and two of the following: fever, chills, headache and myalgia; in Victoria and 

WA the ILI definition is fever (measured or reported), cough and fatigue.6-7

Participating GPs reported weekly consultation rates for ILI, the denominator of 

which in NZ was the patient population of the practice and, in Victoria and WA, the 

total number of consultations for that week. Age of all ILI patients was collected by 

each surveillance system. Proportional age group distributions of ILI cases in 2009 

and 2010 and the total State/country population were compared for each 

surveillance scheme.

Respiratory swabs were collected systematically by participating GPs in NZ from 

the first ILI patient seen on each Monday, Tuesday and Wednesday, and were 

tested at the Institute of Environmental Science and Research Limited (ESR) and 

regional hospital laboratories in Auckland, Waikato and Christchurch. In Victoria 

and WA combined nose/throat swabs were collected at the GPs' discretion and 

tested at the Victorian Infectious Diseases Reference Laboratory and PathWest 

Laboratory Medicine WA, respectively. Swabs were tested by polymerase chain 

reaction (PCR) at all laboratories in Australia and NZ. All specimens were typed as 

influenza A or B. Sub-typing was attempted for all specimens; those that could not 

be sub-typed as influenza A(H1N1) or A(H3N2) were classified as 'untyped'.810

Data from weeks 18 to 40 (May to September) for both years from the three 

surveillance schemes were collated and analysed using Microsoft Excel and Stata 

(version 10.0, StataCorp LP). The chi squared test was used to compare 

proportions with p<0.05 considered statistically significant.

Hospitalisation and mortality data, and estimates of R, were collated from the 

published literature.1117 We compared surveillance results from our data analysis 

and the published data on morbidity, mortality and R with the expectations from 

previous pandemics as described above.1'3
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Results
ILI and laboratory confirmed influenza
Compared to the high levels in 2009, peak ILI rates from all three sentinel 

surveillance systems were considerably lower in 2010 (Figure 1). In Victoria and 

WA, the peak ILI rates in 2010 were low in comparison to previous seasons and 

approximately one-third of those in 2009: 8.9 versus 23.0 ILI patients per 1000 

consultations in Victoria, and 21.1 versus 56.9 patients per 1000 consultations in 

WA. In NZ the peak ILI rate in 2010 (151.6 per 100,000 population) was similar to 

previous seasons of high ILI activity in 2003 and 2005 and about half that in 2009 

(284.0 per 100,000 population).

Figure la. Sentinel surveillance influenza-like illness rates, Victoria and 

Western Australia, 2003-2010.
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Figure lb. Sentinel surveillance influenza-like illness rates, New Zealand, 
2003-2010.

300
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The percentage of swabs from ILI patients that were positive for influenza in 2010 

was lower than in 2009 for all three surveillance systems (Figure 2). Comparing 

2010 to 2009, the percentage positive peaked at 60% versus 67%, 44% versus 

59% and 44% versus 91% in Victoria, WA and NZ respectively.

Figure 2. Percentage of sentinel surveillance swabs positive for influenza by 
week and surveillance scheme, 2009-2010.
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Hospitalisations and deaths

Up until mid-October 2010, 732 hospitalisations and 15 confirmed deaths from 

p H IN l had been reported in NZ, equating to a case fatality risk (CFR) of 8.5 per 

100,000, similar to 2009 (9.0 per 100,000). The median age of those who died was 

higher in 2010 (50 years) than in 2009 (40 years). Hospital admissions in NZ were 

lower in 2010 (732) compared to 2009 (1,122). The age distribution of 

notifications and hospitalisations for p H IN l was similar in 2009 and 2010 in NZ, 

w ith highest rates being in children under 5 years (80 and 51 per 100,000 

population, respectively).6-18

In Australia in 2009 there were 191 confirmed deaths from p H IN l (median age 53 

years) and 4,992 hospitalised cases (median age 31 years). In 2010, there were 22 

deaths at a median age of 51 years.12 Estimates of the CFR were not available for 

either year. We could find no published data on hospitalisations in 2010 for 

Australia.

Age distribution

Compared to the population distributions of the age group categories, those aged 

0-19 years were significantly over-represented in the ILI cases in NZ, Victoria and 

WA in 2009 (p<0.001 for all surveillance schemes). This trend continued in 2010 

for both the NZ and WA surveillance schemes, w ith no significant difference to the 

age distributions observed in 2009 (p=0.35 in NZ and p=0.14 in WA). In contrast, 

ILI cases in Victoria were significantly younger in 2009 compared to 2010 

(pcO.001) (Figure 3).

The majority of confirmed p H IN l cases in 2010 were in the 5-19 and 20-49 age 

groups (Table 1).

The median ages of those with confirmed p H IN l infection were 24, 26 and 17 

years in NZ, Victoria and WA respectively. Although there were low numbers of 

H3N2 detections, the median ages of those infected were higher than for those 

infected with pH IN lin  NZ (46 years) and WA (36 years) but not in Victoria (18 

years). The median age of those infected w ith type B influenza (4, 12 and 11 years 

in NZ, WA and Victoria respectively) was lower than for influenza A (Table 1).
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Figure 3. Proportional age distribution of sentinel surveillance influenza-like 
illness cases and total population by surveillance scheme, 2009-2010.

2009

New Zealand

2009 2010 Population 2009 2010 Population

Victoria Western Australia

□ 65+

0 50-64

□ 20-49

□ 5-19 

a  0-4

Strain circulation
As had been the case in all surveillance schemes in 2009,19'21 pHINl was the most 

commonly identified strain in 2010, particularly in Victoria and NZ (87% and 76% 

of tested swabs respectively) (Table 1). Compared to the other surveillance 

schemes, a significantly higher proportion of influenza positive swabs (40%, 

p<0.001) in WA in 2010 were type B, of which 59% were detected in the 5-19 year 

old age group. There were no detections of the previous seasonal H1N1 virus from 

any surveillance scheme. Influenza A (H3N2) was detected in relatively low 

numbers in 2010 in all surveillance schemes.
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Reproduction number
The effective reproduction number was estimated using a stochastic version of a 

standard susceptible-infected-removed (SIR) model with Bayesian inference and 

accounted for the effect of imported cases.13 The mean effective reproduction 

number (R) during the peak of transmission was estimated for pHINl in 2009 WA 

as 1.2-1.413 and for NZ as 1.2-1.5,14‘16 although earlier estimates of a higher R had 

also been reported in NZ.16-17 In NZ and WA the estimated effective reproduction 

number was initially around 1.6-2.0, but rapidly declined to 1.2-1.4. This early 

higher estimate is expected from the nature of the estimation procedure and is not 

indicative of the population-wide reproduction number in the early stages of the 

outbreak.16'22 It was not possible to estimate an unbiased R for Victoria because of 

undetected early transmission of pHINl prior to testing.13

Comparison with pandemic expectations
The differences between observations from 2009-10 in Australia and NZ, and 

expectations based on previous pandemics, are summarised in Table 2. Evidence 

from the three surveillance systems in the Southern Hemisphere shows that 

pHINl differed substantially from pandemic expectations. It did not cause a 

second pandemic wave associated with increased mortality. It replaced the 

previous H1N1 seasonal influenza subtype, but did not replace the H3N2 subtype. 

It was not associated with a higher reproduction number and, although there was 

increased mortality in younger age groups, overall laboratory-confirmed mortality 

was lower than the excess mortality modelled to occur with seasonal influenza. 

These two measures are not strictly comparable and capture of all laboratory- 

confirmed deaths was likely to have been incomplete.

While previous influenza pandemics have been caused by antigenic shift in the 

influenza subtype, leading to higher rates of infection in a naive population, pHINl 

was characterised by a novel reassortant. In previous pandemics, all influenza A 

viruses were replaced by the pandemic strain,2 whereas in 2009 and 2010 

influenza A(H3N2) continued to circulate, albeit at low levels, and only the 

seasonal H1N1 strain was replaced by pHINl.
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T ab le  2. C om p arison  o f  p a n d e m ic  e x p e c ta t io n s  w ith  o b s e r v a t io n s  from

A u stra lia  an d  N ew  Z ealand  2 0 0 9 - 1 0 .

P a n d em ic  e x p e c ta tio n
E v id en ce  from  th e  p H I N l p a n d e m ic  in  

A u stra lia  an d  NZ

Sometimes multiple waves Seasonal waves

Possibility of second wave with an Decrease in mortality and morbidity in

increase in mortality and morbidity second season

Pandemic strain resulted from an Pandemic strain resulted from a novel

antigenic shift reassortant of a circulating subtype23

Increased mortality overall with case Probable decreased mortality overall with

fatality risk up to 2% case fatality risk <0.01%

Increased morbidity and mortality in Increased morbidity and mortality in

younger people younger people

Younger age of infection
Younger age of infection (possibly an 

H1N1 characteristic)

All influenza A viruses replaced by A(H1N1) replaced only; A(H3N2)

pandemic strain continues to circulate

R mean: 2.0; range: 1.4-2.824'25 R = 1.2-1.513'17'26'27

Discussion
Data from three sentinel surveillance systems highlight the importance of using a 

variety of information sources to describe the epidemiology of influenza. We found 

differences in the ILI rates across the three surveillance schemes, which may be 

subject to local influences, such as media, differences in the way surveillance is 

conducted or targeted vaccination programs. These differences may also reflect 

real differences in viral circulation or, most likely, a combination of these factors. 

However, data on laboratory-confirmed influenza, assessed by the percentage of 

respiratory swabs positive for influenza, showed that the seasons of 2009 and 

2010 were generally consistent between the three surveillance schemes in terms 

of timing and relative magnitude of the influenza epidemics. The higher number of 

tests for influenza in 2009 was most likely due to increased testing caused by 

increased concern about pH INI and targeted testing of patients, for example,
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those who were quarantined pending a negative laboratory result. Examining the 

proportion of swabs that test positive for influenza is an informative way to adjust 

for different testing practices between jurisdictions.28

The most plausible explanations for differential levels of ILI activity in 2010 

recorded by the three surveillance systems are: early arrival of pH IN I  into 

Victoria and subsequent spread of the virus before interventions had 

commenced;13 high p H IN l infection rates in both Australia and NZ during the first 

pandemic season;9-20 geographic variation in the reach of p H IN l in NZ in 2009;6-9 

and limited antigenic drift of the p H IN l virus.1-29 The role of population immunity 

and benefits from the vaccination programs in lower ILI activity hospital 

admissions and deaths in 2010 are less clear because complete vaccination 

coverage data from both the 2009 monovalent pandemic vaccine program (funded 

for all Australians but only for health care workers in NZ) and the 2010 trivalent 

seasonal vaccine are not available for comparison in both countries.

The effective reproduction number for p H IN l was likely to have been in the range 

1.2-1.5, similar to seasonal influenza and lower than previous pandemics. Values 

in the range 1.2-1.4 are consistent with estimates of R obtained from 

seroprevalence surveys of p H IN l.26-27 R has been estimated to be 2.0 (with a range 

of 1.4-2.8) for the 1918 pandemic, 1.6 for the pandemic of 1957 and 1.8 for the 

1968 pandemic. R varies year-to-year for seasonal influenza with a mean around 

1.3 and a range of 0.9-2.1.2-24-25-30

While a shift in distribution to the younger age groups is a distinctive feature of 

pandemics, it is possible that the younger age of infection of p H IN l in both years is 

due to the younger age of infection of characteristic of influenza A(H1N1) 

viruses.31-32 The age of infection tends to increase in the years following 

pandemics. There was a suggestion of this trend in the median age of ILI infections 

in Victoria in 2010, but not in WA or NZ.

In summary, the pandemic caused by p H IN l was very different to pandemic 

expectations, many of which informed pandemic planning in Australia and around 

the world. Early recognition of these differences may partly explain the public and

- 7 0 -



Pandemie planning in practice

professional disquiet about Australia's response to the pandemic.33-34 Recognition 

of the full range of the potential for influenza viruses to produce pandemics of 

various infectiousness (roughly measured by R), and degrees of severity (roughly 

measured by the risk of hospitalisation and death], reinforces the call for revised 

pandemic planning to accommodate plans that are calibrated on both spread and 

severity.35
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Abstract
Background: Victoria was the first state in Australia to experience community transmission of influenza A(H1 N1 )pdm09. We 
undertook a descriptive epidemiological analysis of the first 1,000 notified cases to describe the epidemic associated with 
school children and explore implications for school closure and antiviral distribution policy in revised pandemic plans.

Methods: Records of the first 1,000 laboratory-confirmed cases of influenza A(H1N1)pdm09 notified to the Victorian 
Government Department of Health between 20 May and 5 June 2009 were extracted from the state's notifiable infectious 
diseases database. Descriptive analyses were conducted on case demographics, symptoms, case treatment, prophylaxis of 
contacts and distribution of cases in schools.

Results: Two-thirds of the first 1,000 cases were school-aged (5-17 years) with cases in 203 schools, particularly along the 
north and western peripheries of the metropolitan area. Cases in one school accounted for nearly 8% of all cases but the 
school was not closed until nine days after symptom onset of the first identified case. Amongst all cases, cough (85%) was 
the most commonly reported symptom followed by fever (68%) although this was significantly higher in primary school 
children (76%). The risk of hospitalisation was 2%. The median time between illness onset and notification of laboratory 
confirmation was four days, with only 10% of cases notified within two days of onset and thus eligible for oseltamivir 
treatment. Nearly 6,000 contacts were followed up for prophylaxis.

Conclusions: With a generally mild clinical course and widespread transmission before its detection, limited and short-term 
school closures appeared to have minimal impact on influenza A(H1 N1)pdm09 transmission. Antiviral treatment could rarely 
be delivered to cases within 48 hours of symptom onset. These scenarios and lessons learned from them need to be 
incorporated into revisions of pandemic plans.
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Introduction
Influenza A(HlNl)pdni09 was identified in Mexico and the 

United States (US) in April 2009 [1]. It spread rapidly around the 
globe and by 12 May cases had been reported in 30 countries, 
including Australia’s first case in the state of Queensland on 9 May 
[2,3]. The second Australian case was reported in Victoria eleven 
days later [4], after which notifications of confirmed cases in 
Victoria accelerated much more rapidly than in other states and 
territories [5]. The vast majority of these cases occurred in 
metropolitan area of the state capital Melbourne. By early June 
there were over 1,000 cases in Victoria [6], more than all the other 
Australian states combined. This lead to Melbourne being referred

to in some popular media oudets as the “swine flu capital of the 
world” [7].

Australia’s response to influenza A(HlNl)pdm09 was un-
dertaken in accordance with the phases described in the Australian 
Health Management Plan for Pandemic Influenza (AHMPPI) [8], 
which was shifted from Delay to Contain on 22 May in response to 
evidence of local transmission in Victoria [3]. During the Delay and 
Contain phases testing was recommended for all suspected cases in 
the community. As the number of notified cases in Victoria 
increased, investigation of all suspected cases became unsustain-
able and Victoria announced its move to a Modified Sustain phase 
on 3 June; other jurisdictions remained in Contain [4]. Following an 
announcement by the Australian Government on 17 June, all
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Australian jurisdictions subsequently moved to a new Protect phase 
[3], with Victoria implementing this phase on 23 June. Tesdng 
during Modified Sustain and Protect was generally focussed on those 
most at risk of moderate to severe illness (including those with 
certain chronic medical conditions or obesity, Indigenous 
Australians, pregnant women, young children and infants and 
health care workers) and those presenting with moderate to severe 
disease [3,4].

School closure and distribution of antiviral medication are 
important components of the recommended response to pandemic 
influenza and both strategies were implemented in Victoria [9]. 
We reviewed the epidemiological data of the first 1,000 notified 
cases of confirmed influenza A(HlNl)pdm09 in Victoria to gain 
further insights into viral transmission among school children and 
the implications of this transmission on administration of 
oseltamivir for treatment and prophylaxis and for school closures. 
Insights from this study can inform revised pandemic plans.

M ethods

Laboratory confirmed influenza is a scheduled Group B 
notifiable disease under the Victorian Health (Infectious Diseases) 
Regulations 2001. Medical practitioners and pathology services 
are required to notify cases, including prescribed demographic, 
illness and outcome fields, to the Victorian Government De-
partment of Health (the department) in writing within five days of 
diagnosis.

All confirmed influenza A(HlNl)pdm09 cases notified during 
the Delay and Contain phases were investigated and demographic 
and illness data were collected. Data on school attended were also 
collected for cases aged from five to 17 years inclusive. Attempts 
were made to identify all close contacts of confirmed cases -  
defined as within one metre of the confirmed case (while infectious) 
for more than 15 minutes or in the same room as a confirmed case 
for more than four hours -  for provision of prophylaxis and/or 
quarantine advice as indicated.

During the Delay and Contain phases, testing for influenza 
A(HlNl)pdm09 at the state reference laboratory was authorised 
by the department for all suspected cases, defined as a person with 
fever and recent onset of at least one of rhinorrhoea, nasal 
congestion, sore throat or cough. A case was confirmed if influenza 
A(HlNl)pdm09 was detected by polymerase chain reaction.

All case data were entered into the department’s Notifiable 
Infectious Diseases Surveillance (NIDS) database. Records of the 
first 1,000 notified cases of confirmed influenza A(HlNl)pdm09 
cases were extracted from the NIDS database and analysed 
descriptively with Microsoft Excel software. Using Stata (Version 
10.0) statistical software, the %2 and Fisher’s exact tests were used 
to compare proportions, and the Mann-Whitney U test to 
compare time between diagnostic events and the number of 
contacts per case. A p value of less than 0.05 was considered 
significant. Mapping was undertaken with ArcGIS software.

Ethics Statement
Approval from the Victorian Government Department of 

Health Human Research Ethics Committee was not required for 
this study because data were collected as part of regulated 
notifiable disease surveillance. Influenza (laboratory confirmed) is 
a scheduled notifiable disease in Victoria and notification of all 
cases and prescribed data fields to the Department of Health is 
mandatory under the Health (Infectious Diseases) Regulations 
2001. Written consent from patients is not required for notification 
of a notifiable infectious disease. Data in the study were used and
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reported within the requirements of the Victorian Health Records 
Act 2001.

Results

The initial detection of influenza A(HlNl)pdm09 in Victoria 
has been described in detail elsewhere [10,11]. Briefly, the first 
case was confirmed on 20 May and increased to a peak of more 
than 250 cases on 2 June; the 1,000th case was confirmed on 5 
June. Only eight (0.8%) of the first 1,000 notified cases had 
a reported history of travel to an area affected by influenza 
A(HlNl)pdm09. Ages of cases ranged from five months to 79 
years with a median of 15 years. The modal five-year age groups 
were 10-14 and 15-19 years (figure 1).

Unspecified symptoms were reported for 14 cases and “flu-like 
symptoms” reported for 25 cases. An illness onset date was 
nominated for 389 cases but no symptoms were reported. Data 
about specific symptoms were available for 520 cases (52%) and 
are shown in table 1. Cough was the most commonly reported 
symptom (85% of cases) followed by fever (68%), runny nose (66%) 
and sore throat (62%). There was no statistically significant 
difference in the percentage of cases with reported symptoms when 
stratified by age groups of less than school age (<5 years), primary 
school age (5-11 years), secondary school age (12-17 years) and 
adults (^  18 years). However, when comparing primary and 
secondary school-aged children, a significantly higher percentage 
of primary school children reported fever (76% to 64%; p = 0.02).

Twenty-two cases (2%) were reported to have been hospitalised; 
eight (1%) of the 707 cases in children (aged less than 18 years) 
were hospitalised. No deaths were reported. Among the 
hospitalised children, six (75%) had reported risk factors including 
asthma (two cases) and one case each with diabetes, pulmonary 
disease, hypertension and muscular dystrophy.

Epidemiology in Schools
Children of school age (5-17 years) accounted for 668 of the 

first 1,000 confirmed cases, for whom data on primary or 
secondary school attended were available for 599 (90%). Data 
were also available for three students aged 18 years and six 
teachers, representing 203 schools. Among the remaining 69 
school-aged children, school attended was unknown for 63, two 
were in higher education institutions, two had not started school, 
one was not at school and the other was an overseas visitor.

One school accounted for 77 confirmed cases and six schools 
(3%) had between 10 and 25 cases. The remaining schools had less 
than ten notified cases each, of which most (145 schools, 74%) had 
two or fewer cases. The school with the largest number of 
confirmed cases was a selective school with no geographic 
enrolment restrictions, and the 77 cases’ residences represented 
26 of Melbourne’s 30 metropolitan local government areas.

In general, cases appeared first in schools along the northern 
corridor of the metropolitan area and then became established in 
outer northern and western suburbs at the same time as a cluster 
in the inner eastern suburbs (figure 2). Relatively few schools in the 
eastern suburbs were affected until 3 June. The lower number of 
cases in the final panel reflects the delay between disease onset and 
notification, and end of the detailed follow-up of the first 1,000 
cases.

An epidemic curve by age group for the school with 77 cases 
(“School A”) showed a predominance of cases in 14-15 year-olds 
in the first half of the 11-day period with an increasing proportion 
of 16-17 year-olds in the second half (figure 3). School A was 
closed for the week commencing 1 June, nine days after symptom 
onset in the first case.
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Figur« 1. Confirmed influenza A(H1N1)pdm09 cases and rate per 100,000 population by age group, Victoria, 2009.
doi:10.1371/journal.pone.0057265.g001

The median time between illness onset and notification of 
laboratory confirmation among school children was four days 
(interquartile range [IQR}: 3-6) (figure 4). The median time from 
illness onset to medical practitioner presentation and specimen 
collection was two days (IQR: 1-3), as was specimen collection to 
confirmatory laboratory result, following which the Department of 
Health was notified within 12 hours.

Treatm ent and Prophylaxis
Treatment data were available for 897 cases (90%) of whom 206 

(23%) were prescribed treatment doses of oseltamivir. The 
proportion of the 691 cases (77%) who did not receive oseltamivir,

was significantly higher among school-aged children (80%) 
compared to adults (73%) and those less than school age (62%) 
(p  -  0.009). M om . cases (666/691, 96%) w h o  did not receive 
oseltamivir were not eligible because more than 48 hours had 
elapsed since symptom onset. For the remaining 25 cases, the 
reason was not stated for 14, five were pregnant, alternate 
treatments were prescribed for four, one declined treatment, it was 
contraindicated in another and one was unable to source 
oseltamivir.

O f the 666 cases ineligible for oseltamivir treatment because 
more than 48 hours had elapsed since symptom onset, 253 (38%) 
had a specimen collected within one day of symptom onset.

Table 1. Reported symptoms for 520 of first 1,000 confirmed influenza A(H1N1)pdm09 cases with data by age group and order of 
case notification, Victoria, 2009.

Age group (years) Order of case notification

Symptom <5 5-11 12-17 2 1 8 p value First 100 Next 900 p value Total (%)

Cough 16 (76) 106 (85) 178 (86) 143 (86) 0.68 58 (78) 385 (86) 0.06 443 (85)

Fever 13(62) 95 (76) 133 (64) 111 (67) 0.13 49 (66) 303 (68) 0.77 352 (68)

Runny nose 16 (76) 82 (66) 143 (69) 103 (62) 0.42 40 (54) 304 (68) 0.02 344 (66)

Sore throat 9(43) 72 (58) 140 (67) 99 (60) 0.07 35(47) 285 (64) 0.007 320 (62)

Fatigue 5 (24) 45 (36) 62 (30) 62 (37) 031 10 (14) 164 (37) <0.001 174 (33)

Vomiting 3 (14) 17(14) 20 (10) 16 (10) 0.61 4(5) 52 (12) 0.15 56 (11)

Diarrhoea 1 (S) 13 (10) 13(6) 14(8) 0.53 0 41 (9) 0.002 41 (8)

Total with symptoms reported 21 125 208 166 74 446 520

doi:10.1371 /joumal.pone.0057265.t001
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Figur« 2. Confirmed influenza A(H1N1)pdm09 cases aged 5-17 years by school and date of onset, Victoria, 2009.
doi:10.1371/journal.pone.0057265.g002

Laboratory confirmation was made within one day of specimen 
collection for 182 (27%) cases and within two days for 417 (63%). 
Only 69 (10%) of the 666 cases were notified within two days of 
onset.

Follow-up of cases identified 5,825 eligible contacts to whom 
oseltamivir prophylaxis doses were distributed. Contacts were not 
identified for 71 (7%) cases. The number of contacts per case was 
significantly higher for school-aged children (median = 4, IQR: 3 - 
7) compared to adults (median = 4, IQR: 2-6) (p<0.0001).

Comparison between the First 100 and Next 900 Cases
Due to the increasing workload associated with the rapid rise in 

notifications, follow-up of cases was by necessity less complete as 
the epidemic evolved. We therefore compared the first 100 cases to 
the following 900 to determine if the different approach to follow-
up resulted in any substantial differences in outcome.

Symptoms were reported for 74% of the first 100 cases 
compared to 50% of the following 900 (pCO.001). However, with 
the exception of fever which was similar for both groups, specific 
symptoms were reported for a lower proportion of the first 100 
cases (table 1). A non-significandy lower proportion of the next 
900 cases were hospitalised (2.1% versus 3.0%) (p = 0.57). No 
difference between the two groups was observed for the time from 
onset to specimen collection (p = 0.91) but it took longer for the 
group of 900 cases to be diagnosed following specimen collection 
(median = 2 days, IQR: 1-3 versus median = 1 day, IQR: 1-2)

PLOS ONE I www.plosone.org 4

(p<0.0001). A significandy higher number of contacts for the first 
100 cases (median =  10, IQR: 6-21) were followed up compared 
to the following 900 (median = 4, IQR: 3-6) (p<0.0001). The 
median number of contacts per school-aged child was 12 (IQR: 7— 
31) and nine (IQR: 6-12) for adults who comprised the first 100 
cases, but was four (IQR: 3-6) for school-aged children and three 
(IQR: 2-5) for adults in the group of 900 cases.

Discussion
Comprising two-thirds of the first 1,000 notified cases, this study 

is consistent with a review of serological studies that estimated 
a higher cumulative incidence of influenza A(HlNl)pdm09 
infection (prior to the initiation of population-based vaccination 
against the pandemic strain) in school-aged children of 24—43% 
compared to pre-school-aged children (16-28%), young adults 
(12-15%) and older adults (2-3%) [12]. Further evidence of the 
pivotal role of school-aged children in the spread of influenza 
A(HlNl)pdm09 was demonstrated in this study by transmission 
within and from School A, which alone accounted for 8% of the 
first 1,000 notified cases. The school drew its student population 
from across the Melbourne metropolitan area, enabling wide 
geographic dissemination of cases. Rapid transmission had 
occurred through all the school’s year levels before cases were 
recognised and student interactions restricted by school closure.

Transmission was also likely facilitated by the generally mild 
clinical presentation, as evidenced by 32% of notified cases
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Figure 3. Confirmed influenza A(H1N1)pdm09 cases at School A by date of onset and age group, Victoria, 2009.
doi: 10.1371 /journal.pone.0057265.g003
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Figure 4. Confirmed influenza A(H1N1)pdm09 cases aged 5-17 years by days from onset to specimen collection and test result, 
Victoria, 2009.
doi:10.1371/journal.pone.0057265.g004
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without a reported fever and only 2% being hospitalised, 
consistent with findings from elsewhere around the globe 
[13,14]. Detection of the local epidemic was probably further 
delayed by the initial case definition criterion for testing of recent 
overseas travel. Thus, many -  presumably infectious -  cases were 
probably not tested, or even saw a clinician, for their illnesses. This 
hypothesis is supported by modelling which suggested community 
transmission of the pandemic virus was most likely established in 
Victoria by late April and was certainly established by the time of 
its detection [15]. Although the case definition for departmentally 
authorised testing of suspected influenza A(HlNl)pdm09 cases 
required a fever, nearly one third of the cases were sampled for 
influenza testing without a fever. The reason for this is unclear, but 
given these cases had at least one other reported symptom suggests 
that other clinical criteria for testing were being recognised by 
clinicians.

School closure is a commonly suggested mitigation measure for 
influenza pandemics and the pandemic plans of Australia and 
Victoria provided for this contingency [8,16]. Closure of schools to 
control influenza epidemics and pandemics has been used to 
varying effect, with timing of the closure(s) -  as well as trigger, 
extent and length -  of crucial importance for the intervention’s 
effectiveness [17]. Modelling using US [18,19] and Australian 
[20,21] populations has suggested school closure can be effective at 
reducing the final attack rate (cumulative incidence) of influenza 
but the magnitude of the reduction is highly variable. This 
variation is likely due to assumptions about differential attack rates 
in adults and children, the extent of mixing and contact outside 
school, and the number of symptomatic cases before closure is 
implemented [21].

In general though, school closure is modelled to be most 
effective if schools are closed early and remain closed until 
prevalence returns to low levels and children and teenagers stay at 
home during closure. There is evidence that closure of 
kindergartens and schools in Hong Kong for up to one month 
prior to the commencement of the 2009 summer vacation was 
effective in the mitigation of influenza A(HlNl)pdm09, with an 
estimated 70% reduction in intra-age transmission concurrent 
with school closures [22]. Furthermore, a study in two commu-
nities in Dallas/Fort Worth, Texas indicated that reported rates of 
respiratory illness were lower in a community which closed its 
schools for eight consecutive days compared to another commu-
nity in which no schools were closed [23]. However, closure was 
implemented early when influenza activity was low.

The approach to school closure in Victoria applied to specific 
schools and classrooms in which two or more confirmed cases had 
been identified, for the duration of one week. With the exception 
of isolation for confirmed cases there were no restrictions of 
student movements. O ur study has confirmed the need for a pre-
emptive decision on school closure as indicated by theory and 
practice; in Victoria too few schools were closed too late and for 
too short a period to have had any discernible impact on the 
impact of influenza A(HlNl)pdm09 transmission. Specifically in 
School A the delay between disease onset and notification meant 
transmission in the school was already well established before the 
need to close it was identified.

The rapid emergence of affected schools and modelling that 
estimated establishment of community transmission in Victoria 
around late April [11,15] suggested influenza A(HlNl)pdm09 
prevalence was high by the time it was detected, and probably too 
late for widespread school closure to be effective. Whilst pre-
emptive, widespread and extended school closure is anticipated to 
effectively interrupt the transmission of pandemic influenza, it 
raises concerns about expected compliance with social restrictions,

PLOS ONE I www.plosone.org 6

workforce shortages and economic impacts. A study of Victorian 
households affected by school and classroom closures found 90% 
of households understood what they were meant to do in the 
quarantine period [24] and 85% complied with the requirement to 
stay at home [25]. However, these households were only affected 
by closures of up to one week and this contrasts with a study 
among families in Western Australia, which found that school 
closures caused considerable disruption for families in arranging 
childcare and poor compliance among those placed in home 
quarantine [26].

Whilst more than 6,000 treatment and prophylactic doses of 
oseltamivir associated with the first 1,000 notified cases were 
distributed to cases and contacts, antiviral treatment could rarely 
be delivered to cases or their close contacts within 48 hours of 
symptom onset. It is likely that much of this distribution 
inefficiency was a consequence of its centralised nature and delays 
associated with notificadon. However this centralised system 
during the Contain phase was considered necessary as access to 
oseltamivir from the Nadonal Medical Stockpile was condidonal 
on laboratory confirmadon of cases.

Several limitadons were associated with the methods of case 
identificadon and data collection in this study. The presence of 
symptoms as a criterion for testing meant that those with 
subclinical infections were not represented, and although only 
52% of first 1,000 cases had recorded symptoms, that a further 
39% of cases had a reported illness onset date suggests that most of 
remainder were missing data. Data quality and the capacity of case 
investigation officers to follow up cases completely and undertake 
contact tracing is likely to have progressively diminished as the 
number of notified cases increased. This suggestion is supported by 
the difference in reported symptoms and higher median number of 
contacts followed up per case for the first 100 notified cases 
compared to the following 900 cases.

Many countries are now reflecting on their 2009 pandemic 
experiences and responses to review and revise their pandemic 
plans. Influenza A(HlNl)pdm09 had a generally mild clinical 
course resulting in apparent widespread dissemination in Victorian 
school children prior to its detection, meaning that school closure, 
particularly short-term and isolated closures, were of little or no 
benefit sis a mitigation measure. Pandemic plans need to be refined 
and flexible to incorporate such scensirios. Indeed, depending on 
the perceived pandemic severity, it may be better to keep schools 
open and waive the requirement for laboratory confirmation 
earlier and to treat clinically compatible children cases, or 
recommend nothing more thsin standard respiratory precautions 
for those exhibiting symptoms. Furthermore, in the wake of this 
experience consideration should be given to a decentralised, or 
direct clinician access to the Australia’s National Medical 
Stockpile, model of antiviral distribution during the early phases 
of a pandemic. Certainly it is important to include the 
ramifications of observations from this study in revised pandemic 
plans.
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About this chapter
This chapter investigates the relative importance of different levels of disease 
severity in transmission of the first influenza A(HlNl)pdm09 pandemic wave in 
Australia. This question was approached in two studies, the first of which was a 
systematic review of the literature to characterise the duration of shedding of 
influenza A(HlNl]pdm09 virus and identify any effects of severity of illness, age, 
receipt of antiviral treatment and the type of laboratory test used. The second 
study used the results of the review of viral shedding duration, as a proxy for 
duration of infectiousness, to help parameterise a deterministic mathematical 
model comprising four levels of influenza A(HlNl]pdm09 virus infection severity: 
asymptomatic; low-level symptoms; moderate symptoms; and hospitalisation 
required.

The systematic review, published in Influenza and Other Respiratory Viruses, found 
that duration of viral shedding generally increased with severity of clinical 
presentation and was shorter when antiviral treatment was administered within 
48 hours of illness onset. There was no evidence of longer shedding duration of 
influenza in children compared with adults. In accordance with the copyright 
requirements of the journal publisher, the accepted version of this article - rather 
than a scan of the published version - is presented in this chapter. With effective 
reproduction numbers greater than one, the modelling study showed that those 
with low-level symptoms and asymptomatic infections were responsible for most 
influenza A(HlNl)pdm09 virus transmission in the first pandemic wave. The 
manuscript of the modelling study presented in this chapter had not been 
submitted to a journal at the time of thesis submission.

Papers in this chapter
1. Fielding JE, Kelly HA, Mercer GN, Glass K. Systematic review of influenza 

A(HlNl)pdm09 virus shedding: duration is affected by severity but not age. 
Influenza Other Respir Viruses 2013: 8; 142-150.

2. Fielding JE, Glass K, Kelly HA, Mercer GN. Transmission of the first influenza 
A(HlNl)pdm09 pandemic wave in Australia was driven by undetected 
infections: pandemic response implications.
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Chapter 5

Abstract
Duration of viral shedding following infection is an important determinant of 

disease transmission, informing both control policies and disease modelling. We 

undertook a systematic literature review of the duration of influenza 

A(H lN l)pdm 09 virus shedding to examine the effects of age, severity of illness and 

receipt of antiviral treatment. Studies were identified by searching the PubMed 

database using the keywords 'H INT, 'pandemic', 'pandemics', 'shed' and 

'shedding'. Any study of humans with an outcome measure of viral shedding was 

eligible for inclusion in the review. Comparisons by age, degree of severity and 

antiviral treatment were made with forest plots. The search returned 214 articles 

of which 22 were eligible for the review. Significant statistical heterogeneity 

between studies precluded meta-analysis. The mean duration of viral shedding 

generally increased with severity of clinical presentation, but we found no 

evidence of longer shedding duration of influenza A(H lN l)pdm 09 among children 

compared with adults. Shorter viral shedding duration was observed when 

oseltamivir treatment was administered within 48 hours of illness onset. 

Considerable differences in the design and analysis of viral shedding studies lim it 

their comparison and highlight the need for a standardised approach. These 

insights have implications not only for pandemic planning, but also for informing 

responses and study of seasonal influenza now that the A(H lN l]pdm 09 virus has 

become established as the seasonal H1N1 influenza virus.
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Introduction
Prior to 2009, pandemic plans assumed that all influenza pandemics arise from the 

emergence of a different antigenic subtype, as was observed for the three 

pandemics of the 20th Century.13 However, the influenza A(HlNl)pdm09 strain 

responsible for the 2009 pandemic arose from a sequence of reassortment events 

rather than antigenic shift and had a generally mild course of illness with lower 

than expected mortality.4-5 Nevertheless, its high transmissibility -  particularly in 

younger age groups - and rapid global spread compared with pre-2009 seasonal 

influenza necessitated a pandemic response, and research studies were rapidly 

undertaken in various settings and populations around the globe to further 

characterise the clinical, virological and epidemiological features of infection.

The World Health Organization (WHO) recommends countries incorporate non- 

pharmaceutical interventions (such as isolation of patients and quarantine of 

contacts, social distancing and travel restrictions) and use of antivirals for 

treatment and prophylaxis into their pandemic plans to reduce transmission of 

pandemic influenza virus within populations.6-7 Along with understanding how and 

when a pandemic influenza virus is transmitted, the duration of infectiousness is a 

critical parameter in determining the most effective application of these mitigation 

measures.

The detection of virus from clinical specimens is generally equated to influenza 

infectiousness, with the duration dependent on several factors including age, 

clinical illness, treatment with antiviral agents and virus detection method.8-9 We 

undertook a systematic review of published literature to characterise the duration 

of shedding of influenza A(HlNl)pdm09 virus and identify any effects of severity 

of illness, age, receipt of antiviral treatment and the type of laboratory test used.

Methods
Search strategy and selection criteria
A literature search of the PubMed database, filtered for publication dates from 

2009 onwards, was undertaken on 15 March 2013 using the keywords: H1N1[A11 

Fields] and shedding[All Fields]; 'pandemics'[MeSH Terms] or 'pandemics'[All 

Fields] or 'pandemic'[All Fields]) and shedding[All Fields]; shed H1N1[A11 Fields]
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and shed[All Fields]; ('pandemics'[MeSH Terms] or 'pandemics'[All Fields] or 

'pandemic'[All Fields]) and shed[All Fields]. Any study of humans with an outcome 

measure of viral shedding using any test method was eligible for inclusion in the 

review.

Titles and abstracts of articles returned from the searches were reviewed and 

were excluded from further evaluation if they: did not comprise human subjects; 

did not measure virus shedding; measured shedding of non-pandemic/seasonal 

influenza, live attenuated vaccine or oseltamivir-resistant virus only; were 

restricted to specialised or high-risk populations (such as patients with HIV, 

cancer, who were transplant recipients or otherwise immunocompromised); had 

five or fewer participants; or were not written in English. Shortlisted articles were 

then evaluated in more detail, and their reference lists searched to identify 

additional potentially relevant articles.

During the detailed evaluation process, studies were excluded if there were not at 

least three specimen collection attempts from each participant (unless a negative 

result or loss to follow up) in the 7 days from presentation; viral shedding was 

reported as mean or median virus titre, viral load or reverse-transcription 

polymerase chain reaction (RT-PCR) cycle threshold; or shedding duration was not 

reported or could not be calculated for each patient as from the day of symptom(s) 

onset to day of collection of the last specimen in which virus was detected. Where 

possible, we adjusted the data in papers that used a different definition of viral 

shedding duration: one day was added to the duration of viral shedding if  the 

definition was not inclusive of the day of symptom(s) onset (e.g. defined as 'days 

since' or 'days after' onset); one day was subtracted from the duration of viral 

shedding if  the definition was reported to be the day that the first negative 

specimen was collected and specimens were collected daily, otherwise the study 

was excluded from analysis.

Two investigators (JEF and KG) read all the articles shortlisted from the search, 

applied the exclusion criteria and extracted the data separately. Differences were 

resolved by discussion and consensus.
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Data abstraction

For each paper, we collected information on the number and age group (child or 

adult as defined in the manuscript, or <15 years/>15 years respectively if  not 

explicitly stated) of study participants, respiratory specimen sampling method and 

frequency, the type(s) of test used to detect influenza virus or viral RNA, the 

defined interval for viral shedding duration and endpoint of patient follow-up, the 

clinical severity (classified by the study setting: community, hospital or intensive 

care), antiviral treatment for study participants and -  where given -  those who 

were treated in a timely manner (generally considered to be w ithin 48 hours of 

symptom(s) onset). Unless otherwise described, severity was classified as 

community-based illness if  study participants were part of studies undertaken 

during the containment phase of the pandemic when many countries required 

isolation of patients (usually in hospitals) despite the presence of only mild illness.

We defined viral shedding duration as the number of days from day of symptom(s) 

onset to the day of collection of the last specimen in which influenza 

A(H lN l)pdm 09 was detected, inclusive. Pre-symptomatic shedding and 

asymptomatic shedding in two studies were described separately. Summary 

measures of viral shedding duration (minimum, maximum, median, mean and 95% 

confidence interval) for each study were derived from patient record-level data, 

values reported in the body text, tables or survival curves. Data on the proportions 

of total study participants shedding virus by day of illness were extracted from 

tables or survival/Kaplan-Meier curves in 14 of the 22 reviewed studies. Summary 

measures and the proportion of participants shedding virus by day of illness were 

also extracted and/or calculated for the clinical severity, age group and antiviral 

treatment strata if  the data were appropriately reported and there were six or 

more cases in the stratum.

Data analysis

Meta-analyses using a random-effects model were conducted in Stata, version 10.1 

(StataCorp LP, College Station, Texas, USA). Heterogeneity between studies was 

assessed by the I2 test, and summary estimates calculated if  I2 < 80% and P > 0.1. 

To compare findings between studies, summary measures of viral shedding
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duration are presented in forest plots and the proportion of patients shedding 

virus by day of illness in survival curves. In instances where all summary measures 

were not reported or able to calculated from the reported data within the paper, or 

the definition of viral shedding duration was not given or ambiguous, the 

corresponding author was contacted to provide them.

Results

A total of 214 citations were returned from the search, of which 167 were excluded 

following title and abstract review. Searching of article reference lists identified an 

additional four papers, resulting in 51 papers being evaluated in detail. A further 

29 studies were excluded, mainly because of differences in the method by which 

virus shedding and shedding duration were measured (Table 1). A total of 22 

studies were included in the review, with the number of participants in each 

ranging from 15 to 421. All included studies were observational in nature, with 

considerable heterogeneity of specimen collection method and frequency (Table 

2). All studies measured viral shedding by PCR; six also measured shedding by 

culture. The corresponding authors of 19 studies were contacted for 

supplementary summary data or clarification of methodology, w ith responses 

received from nine (47%).

The mean and standard deviation of duration of viral shedding duration were 

available for 18 (82%) of the 22 included studies. Meta-analyses were conducted 

on studies grouped by the study settings of community-based cases (13 studies), 

hospitalised cases (three studies) and ICU cases (two studies), for which statistical 

heterogeneity as indicated by I2 values was 97% (P < 0.001), 45% (P = 0.165) and 

86% (P = 0.008), respectively. Given the significant heterogeneity in most groups, 

the combined estimates of viral shedding duration are not reported.
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Table 1. Identified studies and reasons for exclusion.

Criteria Number of studies

Identified from search 214

Excluded after title  and abstract review 167

Did not comprise human subjects 81

Did not measure virus shedding 30

Non-pandemic, vaccine or oseltamivir-resistant virus 

shedding
26

Restricted to specialised or high-risk populations 20

Five or fewer participants 2

Not w ritten in English 7

Unable to be retrieved 1

Additional inclusions after search of shortlisted articles 4

Excluded after detailed evaluation 29

Shedding reported as mean virus titre /load  or RT-PCR cycle
1 n

threshold

Unable to determine patient shedding duration as onset to
' \  r>

last positive
JL O

<3 specimens per patient collected and/or <7 days of
• 3

follow-up
o

Study data were a subset of another included study 3

Included in the review 22
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Chapter 5

Severity of clinical presentation

A relatively defined gradient of viral shedding duration was observed when 

summary measures were stratified by study setting, as a proxy for severity of 

clinical presentation (Figure 1). The mean duration of viral shedding was 3-9 days 

for community-based cases (15 studies), 7-10 days for hospitalised cases (four 

studies) and 13-18 days for those admitted to intensive care (three studies). The 

ranges of median viral shedding duration across the studies by respective settings 

were similar to the range of means (Figure 1). The studies involving those 

hospitalised and admitted to intensive care had relatively wide 95% confidence 

intervals, with generally smaller study sizes and a wider range of shedding 

duration. Shedding duration was longer for a higher proportion of hospitalised 

cases and longer still among cases in intensive care, with 80% or more cases still 

shedding virus at 18 days in two of the three studies (see survival curves in 

Supplementary Data). The maximum shedding duration in these studies was 28, 32 

and 158 days. Between 71% and 86% of patients in the three studies of intensive 

care patients had one or more risk factors for severe influenza such as pregnancy, 

obesity, cardiovascular disease, diabetes mellitus, immunosuppressive therapy or 

chronic pulmonary, renal or liver disease.

Age

Given the small number of studies among hospitalised and intensive care patients, 

age stratification was restricted to studies of community-based cases. Summary 

measures of viral shedding duration were available for 15 adult or children strata 

from ten studies. There was little difference in the ranges of mean viral shedding 

duration between the adults (3-8 days) and children (4-8 days) with similar 

observations for the respective median values (Figure 2). Comparison of viral 

shedding duration measured by PCR between community-based child and adult 

cases was made directly in five studies; children had longer shedding duration in 

three of the studies, two by a mean of 1.2 days14'30 (of which P < 0.01 for one of the 

studies)30 and the other by 0.4 day17 but was longer in adults in the other studies 

by 0.49 and 1.0 days.27 An additional paper that compared shedding duration in 

community-based cases but measured by viral culture found a mean of 5.7 days in 

children compared with 3.7 days in adults (P = 0.03).21
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Role of severity in pandemic spread

Figure 1. Shedding duration of influenza A (H lN l)pdm 09 by study and 

patient setting. (Legend: cross = minimum and maximum; middle of diamond 

= median; area of diamond = study size; vertical line = mean; horizontal line 

= 95% confidence interval).

Intensive care

Beutel
Petersen
Malato

+ + Esposito
Meschi
Chin+ Hospitalised

Killingley

—
+ Waiboci

Kay
»• Bhattarai

— Suess
Cao

-t- Ling
Jia

+ -------  + Community Killingley
Leuna

I

To
Suryprasad
Xiao

+ Hien
+ -m - Cowling

♦  I Duan
0 5 10 15 20 25 30 35

Days of viral shedding

Figure 2. Shedding duration of influenza A (H lN l)pdm 09 in studies of 
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Asymptomatic shedding
One study by Loeb et al.,23 conducted over several influenza seasons among a 

cohort of relatively isolated communal farming communities, measured shedding 

duration for cases of asymptomatic influenza A(HlNl)pdm09. Of the 97 

participants in the study, 12 (12%) were asymptomatic and had a mean viral 

shedding duration of 3.2 days (95% Cl: 2.0-4.4) compared with 4.8 days (95% Cl: 

4.2-5.4) for all participants. Only one other study by Suess et al.9 described 

asymptomatic cases. Surveillance of 30 laboratory-confirmed index cases 

identified 15 secondary cases, of which three (20%) were asymptomatic, although 

no data on shedding duration were available. The study by Loeb et al. was also the 

only one included in the review to systematically assess pre-symptomatic shedding 

and compare shedding duration of influenza A(HlNl)pdm09 with pre-2009 

seasonal influenza over a 2-year study period. The study found that nine (11%) of 

85 symptomatic cases shed virus in the day before acute respiratory illness onset 

and three (4%) up to 3 days before onset and that with a mean shedding duration 

of 4.8 days, influenza A(HlNl)pdm09 was comparable to seasonal H1N1 and type 

B influenza (5.2 and 4.9 days respectively) but longer than seasonal H1N1 (3.4 

days, P = 0.03).23

Antiviral treatment
Summary measures of viral shedding duration stratified by treatment modality 

were available from 11 studies of community-based cases, of which four further 

differentiated by whether or not oseltamivir was administered within 48 hours of 

illness onset. The range of mean values for viral shedding duration in studies of 

those treated with oseltamivir within 48 hours of illness onset (3-5 days) was 

lower than those for which treatment was administered after 48 hours of onset (5- 

7 days) and for those not treated (4-9 days) (Figure 3). Similar results were 

observed for median values of shedding duration (Figure 3). Several studies 

directly compared treatment modalities. Hien et al.17 observed statistically 

significant shorter shedding duration among those treated within 48 hours of 

onset compared with those treated after 48 hours; this observation was also made 

by Leung et al 21 but the difference was only statistically significant when shedding 

was measured by viral culture rather than RT-PCR. Similarly, shorter shedding
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duration was found by Cowling et al. and Suryaprasad et al. in those treated within 

48 hours of illness onset compared with treatment after 48 hours or no treatment, 

but the difference was not significant.14-27 In contrast, a study of hospitalised cases 

by Meschi et a/.25 noted a shorter, but not statistically significant, shedding 

duration in untreated cases compared with those who received oseltamivir.

Figure 3. Shedding duration of influenza A(HlNl)pdm09 in studies of 
community-based cases, by study and antiviral treatment.
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Culture versus RT-PCR

In addition to RT-PCR, five studies measured viral shedding by culture. Two 

studies measured viral shedding by culture for all study participants,19-21 and for 

63%20 and 73%11-14 of patients in the other three studies. With the exception of 

one study in which median values were the same and the means differed by 0.3 

day,14 the mean and median durations of viral shedding were 1.5-2 days shorter 

when measured by culture. The maximum shedding duration was shorter by 2-3 

days in four studies14-19'21 and 6 days in the other.11
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Discussion
Several studies have reported that duration of pre-2009 seasonal influenza virus 

shedding is longer in children3133 and has become a widely accepted assumption 

in text books34 and pandemic planning documents.6 However, we did not 

demonstrate longer shedding duration of influenza A (HlNl)pdm09 among 

children compared with adults, either between or within studies. Three of the five 

studies in the review that directly compared shedding duration in adults to 

children observed shedding to be longer in children, whilst three other studies not 

included in the review - primarily because shedding was measured as virus titre or 

load - were also split in their findings: two studies found significantly longer 

shedding duration in children,35-36 whilst no difference was found in another.37 A 

further two studies reported no difference in the proportion of adults and children 

with prolonged viral shedding of more than 7 days.38-39 If not related to statistical 

anomalies, the absence of a difference in influenza A(HlNl)pdm09 shedding 

duration between children and adults may in part be explained by their similar 

susceptibility to the then-novel pandemic strain,40 as opposed to pre-2009 

seasonal influenza in which adults have more previous exposures and greater 

cross-protective immunity. However, there are few papers comparing viral 

shedding across several years to compare shedding in the pandemic and seasonal 

strains to support this hypothesis; whilst one study found a significantly longer 

duration of pandemic virus shedding compared with H3N2,23 another found little 

difference.14

As to be expected, progressively longer shedding duration cases of influenza 

A(HlNl]pdm09 infection were observed when studies were stratified into 

community (mean and median range: 2-9 days), hospital (6-10 days) and 

intensive care (13-20 days) settings. Prolonged shedding of more than 14 days 

was still seen for a small proportion (less than 20%) of patients in several of the 

community-based studies, but is not unexpected given that prolonged shedding 

can occur even in immunocompetent patients with non-mutated virus 41 With 70% 

or more of the cases in the three studies in ICU settings reported to have one or 

more risk factors for severe infection, the higher median values for duration of 

infection (11-20 days) and an upper range of 158 days are consistent with studies
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restricted to immunocompromised patients.42 44 The observation of generally 

shorter viral shedding duration in studies where cases received oseltamivir 

treatment within 48 hours of illness onset was consistent w ith the literature,45 

despite relatively few strata for comparison. However, the author of one hospital- 

based study in which longer shedding was observed in treated patients compared 

with untreated patients25 indicated by correspondence that this was probably a 

consequence of the treated group including patients with a more severe clinical 

presentation, suggesting that at least in some instances, differential inclination to 

treat can influence reported viral shedding duration.

The biggest challenge in extracting and compiling individual study data for this 

review was the variation in definitions, where provided, of the primary outcome 

measure of duration of viral shedding. The variability applied to the start point of 

shedding duration (either the day of symptom onset, first positive test or 

treatment initiation), the endpoint (either the day of the last positive or first 

negative test) and how days of shedding duration were calculated (either by 

counting the starting point day as one day of viral shedding, or using the days 

difference between the start and endpoints). The latter component of shedding 

duration was particularly poorly defined in many studies and in the absence of 

confirmation from corresponding authors needed to be assumed based on table, 

figure or axis titles, or descriptions in the main text. Using the day of the last 

positive result as the viral shedding duration endpoint is an additional limitation 

because it w ill underestimate viral shedding duration in studies where patients are 

not sampled every day. Kay et a/.19 used statistical modelling to account for the gap 

between last positive and first of two consecutive negatives as the endpoint of viral 

shedding. Loss of study participants to follow up, an inevitability particularly 

during the early stages of a pandemic, w ill also underestimate viral shedding 

duration. Furthermore, it cannot be assumed that patients are shedding the same 

quantity of virus throughout the course of their illness (as demonstrated by 

shedding studies measuring viral load,14'37-46-47 most of which were outside the 

scope of this review) or indeed continually shed virus throughout the course of 

their infection. More than half of the reviewed studies attempted to avoid 

underestimation of viral shedding duration caused by intermittent shedding by
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requiring at least two consecutive negative specimens as an endpoint of testing 

follow-up, which is shown schematically for several cases in three of the reviewed 

studies.11-17'27 Whilst a standardised measure of viral shedding duration was able 

to be applied to 22 studies in this review, numerous adjustments and assumptions 

were needed, and a further 13 had to be excluded. The development and adoption 

of standard parameters, which we have proposed in Box 1, would assist in simple 

and rapid assessment and comparison of influenza viral shedding duration that 

could reliably inform mathematical modelling (for which small variations in viral 

shedding duration, as a proxy for the period of infectiousness, are very sensitive) 

and exclusion policies, particularly during the early stages of a pandemic.

Box 1. Proposed standard parameters for measurement and reporting of 
influenza viral shedding duration.

• Unless measuring pre-symptomatic or asymptomatic shedding, the 

duration of viral shedding should be defined as from the day of symptom(s) 

onset to the day on which the last positive specimen was collected.

• Counting of the number of days of viral shedding duration should be 

inclusive of (rather than the difference between) the day of symptom(s) 

onset and the day on which last positive specimen was collected.

• Specimen collection should continue until two consecutively collected 

specimens both test negative.

• Where administratively possible, specimens should be collected daily but 

not less than one every 2 days.

• The age threshold for classification as a child or adult should be clearly 

defined.

• Record the date (or day with respect to symptom onset) of the 

commencement of antiviral therapy, or that no antiviral therapy was 

administered.

Additional methodological heterogeneity between studies also limits the scope of 

the review findings and precluded meta-analysis. Eleven different specimen types 

were collected with varying frequency in the 22 studies included in the review and 

likely have varying sensitivities, particularly during the later stages of infection.

- 1 0 4 -
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Supporting this are two studies that showed higher influenza A(H lN l)pdm 09 viral 

loads48 and sensitivity9-49 of RT-PCR testing of nasopharyngeal aspirate and nasal 

wash specimens compared with nasopharyngeal and nose/throat swabs. Detection 

of virus by RT-PCR is a more sensitive method than viral culture, and this was 

shown by Cheng et a/.49 for influenza A(H lN l)pdm 09 and reflected in the relative 

measures of viral shedding duration in the four studies in the review that 

compared the two methods. An advantage of viral culture is that it provides a 

measure of viable/infectious virus, whereas PCR may also detect non-viable viral 

RNA; however, the extent to which detection of non-viable RNA contributes to 

measures of viral shedding duration is unclear. Studies included in the review also 

differed by the age at which participants were classified as children, varying from 

12 years or less to 15 years or less. However, given little difference in viral 

shedding duration was observed between children and adults in general, the 

impact of this variation in definitions is likely to be neutral. A further limitation of 

the review is that there was little insight into pre-symptomatic and asymptomatic 

shedding; only one study examined these but given its setting in isolated 

communal farming communities in Canada is unlikely to be representative.23 One 

study that studied shedding in household contacts of index cases but was excluded 

from the review because viral shedding was reported as median viral load showed 

asymptomatic shedding in 12% and pre-symptomatic shedding up to 4 days prior 

to symptom onset in one (4%) of 28 secondary cases.37

This review has provided insights into viral shedding duration of influenza 

A(H lN l)pdm 09 and the relative effects of age, clinical severity and oseltamivir 

treatment. Additional reviews examining viral loads and correlation of symptoms 

over time may provide further insights into the relative infectivity and 

transmissibility of influenza A (H lN l)pdm 09 and are warranted now that influenza 

A(H lN l)pdm 09 has become established as the seasonal H1N1 influenza virus and 

that there is a large body of literature examining its properties. Understanding the 

infectivity of emerging novel influenza strains by synthesis of the wide array of 

research studies could be greatly enhanced by a standardised approach to 

measurement of viral shedding, and such guidelines would be a useful addition to
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global research planning documents such as the 'WHO Public Health Research

Agenda for Influenza'.50
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Supporting Information
Legend for figures: solid line = treated with 48 hours of onset; dashed line = 

treated after 48 hours of illness onset; dashed and dotted line = treatment timing 

unspecified; dotted line = no treatment

Appendix Figure 1. Proportion of community setting study cases positive for 
influenza A(HlNl)pdm09 by day of virus shedding and oseltamivir 
treatment.
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Appendix Figure 2. Proportion of hospital setting study cases positive for 

influenza A (H lN l)pdm 09 by day of virus shedding and oseltamivir 

treatm ent.
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Appendix Figure 3. Proportion of ICU setting study cases positive for 

influenza A(H lN l)pdm 09 by day of virus shedding and oseltamivir 

treatm ent.
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Abstract
Background

During the first wave of influenza A(HlNl]pdm09 in Victoria, Australia the rapid 

increase in notified cases and the high proportion with relatively mild symptoms 

suggested that community transmission was established before cases were 

identified. This lead to the hypothesis that those with low-level infections were the 

main drivers of the pandemic. A mathematical model was developed to estimate 

the relative importance of different levels of disease severity in transmission of the 

first pandemic wave.

Methods

A deterministic susceptible-infected-recovered model was constructed to describe 

the first pandemic wave in a population structured by disease severity levels of 

asymptomatic, low-level symptoms, moderate symptoms and severe symptoms 

requiring hospitalisation. The model incorporated mixing, infectivity and duration 

of infectiousness parameters to calculate effective reproduction numbers for each 

severity level.

Results

With effective reproduction numbers of 1.82 and 1.32 respectively, those with low- 

level symptoms, and those with asymptomatic infections were responsible for 

most of the transmission. The effective reproduction numbers for infections 

resulting in moderate symptoms and hospitalisation were less than one. The same 

relative effects were observed in sensitivity analyses of parameters in the model.

Conclusions

Transmission of influenza A(HlNl)pdm09 was largely driven by those essentially 

invisible to the health system. The delay in detection and high proportion of 

relatively mild infections limited the effectiveness of case-based control measures, 

such as school closures and antiviral distribution to cases and their contacts. 

Revision of pandemic plans need to incorporate milder scenarios, with a graded 

approach to implementation of control measures.
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Introduction
Influenza A(HlNl)pdm09 was identified in the United States and Mexico in April 

2009 and spread rapidly around the globe [1, 2]. In temperate countries of the 

northern hemisphere, the pandemic strain emerged outside of the cooler months 

during which seasonal influenza epidemics typically occur, resulting in a first 

pandemic wave of moderate magnitude followed by a larger second in-season 

wave [3, 4]. In contrast, both waves in temperate southern hemisphere countries 

occurred in-season, with a considerably lower overall cumulative incidence of 

symptomatic infection and impact in terms of severe illness in the second wave [5].

Although Australia's first case was reported in Queensland on 9 May, the second 

reported case in Victoria 11 days later was followed by a rapid increase in notified 

cases that was not observed in other states or territories [6, 7]. As the pandemic 

response progressed it became evident that despite the large number of notified 

cases, a high proportion had relatively mild symptoms and much lower case 

fatality risk compared to previous pandemics [8]. Influenza-like illness activity and 

proportion of influenza tests positive as measured by other surveillance systems 

was also moderate compared to other influenza seasons [9, 10]. Furthermore, 

there was a suggestion, supported by modelling, that community transmission of 

influenza A(HlNl)pdm09 in Victoria was well established before cases were 

identified [11].

These observations lead to the hypothesis that those with asymptomatic or 

clinically mild infections were driving the spread of the pandemic. To investigate 

this hypothesis, we developed a deterministic mathematical model to estimate the 

relative importance of different levels of disease severity in transmission of the 

first pandemic wave of influenza A(HlNl)pdm09 virus. We used data from 

observational studies to parameterise the model using the Australian population 

as an example.

Methods
Model structure
A deterministic susceptible-infected-recovered (SIR) model was constructed to 

describe the first wave of influenza A(HlNl)pdm09 transmission in a population
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structured by severity of infection. Four levels of infection severity were defined in 

the model: asymptomatic; low-level symptoms; moderate symptoms; and 

hospitalisation required, denoted by the subscript letters 'A', 'L', 'M' and 'H' 

respectively (figure 1). Based on published outcome data and detailed further 

below, the population was proportionally assigned to the four infection severity 

compartments of susceptible individuals (S). This stratification of the susceptible 

population assumed that susceptibility is defined before exposure by multiple 

determinants of infection severity, including underlying health status and 

immunity from prior infection and/or vaccination. The clinical course will then be 

determined by underlying susceptibility, the probability of exposure, the mode of 

virus transmission and the virus dose at exposure.

Figure 1: Basic influenza model with the four levels of infection severity 
asymptomatic (A), low-level symptoms (L), moderate symptoms (M) and 
hospitalised (H ), where force of infection A = /?a .Ia  + ßi-h.+ + /?h .Ih .

The transmission parameter ß for each infection severity stratum was calculated as 

the product of relative proportional coefficients for infectivity (77) and mixing (//), 

and a common fitting coefficient 0. However, multiple studies have found no 

difference between viral loads and clinical severity, ranging from asymptomatic 

infection to acute respiratory distress syndrome [12-19], thereby making 

infectivity parameters 77 for each infection severity category equivalent and 

redundant in the model. Therefore ß\ = O./j.i where i is one of A, L, M or H. The fitting 

coefficient was defined in terms of the overall effective reproduction number, Re, to
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ensure Re was kept fixed at a plausible value as described below. We assumed that 

all infection severity groups had the same susceptibility and thus the same 

infection pressure acting on them. Therefore, the overall reproduction number is 

the sum of the reproduction numbers for each infection severity stratum i and 

calculated by

Re = 2 p i .{ß i  /  yO

where pi is the proportion in each severity stratum A, L, M or H, and ßi = O.pi and y 

is described below. The equation can be rearranged to calculate 6 by

d = Re/[Z Pi.jUi/yO

Susceptible individuals flow to respective infected (I) compartments following 

exposure to a force of infection A, where A = £ ßi.h (figure 1). The branched 

transition from susceptible to infected compartments in figure 1 schematically 

represents the component parts of the force of infection, which acts on each 

compartment. Infected individuals transition to recovered (R] at a recovery rate y. 

Given its emergence as a pandemic strain, the model assumed a population 

susceptible to influenza A(HlNl)pdm09 with no previous immunity from 

vaccination or infection, and that re-infections did not occur in the timeframe 

considered.

Selection of baseline parameters
Parameter descriptors, values and sources used in the model are summarised in 

table 1. The proportional distribution of the susceptible population among the four 

infection severity compartments was estimated from published observational 

studies of influenza A(HlNl)pdm09 infections. The reported proportion of 

asymptomatic infections (pa ) varied widely by study setting and population, but 

was estimated at 0.35 based on several household and school transmission studies 

[18, 20, 21]. Reported estimates of the hospitalised proportion (ph ) were 

universally small at around 0.0025 [22, 23]. To divide the remaining 0.6475 

proportion of symptomatic infections between cases with low-level and moderate 

symptoms, we used data from the New South Wales Population Health Survey 

which collected all-age community-level influenza-like illness (ILI) data across the
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state from July to September 2009 [24]. Of the survey participants reporting an ILI, 

an average of 76% were unable to undertake normal duties for two or more days 

(classified as moderate symptoms and denoted as 'q') and 24% (1 -  q) were unable 

to undertake normal duties for one day or less because of their ILI (classified as 

low-level symptoms). Thus, 0.1554 and 0.4921 proportions of the susceptible 

population [pi and pu] were assigned to the low-level and moderate symptoms 

compartments respectively.

Table 1. List of model parameters and their values.

Parameter Notation* Baseline value Source(s)

Population proportion
PA, PL, 

P m , P h

0.35,0.1554,

0.4921,0.0025
[18, 20-24]

Proportion of symptomatic cases 

requiring >2 days off normal duties
q 0.76 [24]

Mixing coefficient
PA, P i ,  

P m , P h

1.0, 0.9, 

0.4, 0.1
-

Recovery rate
Y a , Y u  

Y m , Y h

1/8.3,1/4.9, 

1/4.9,1/3.2
[25]

^Subscripts denote infection severity categories of asymptomatic (A), low-level 

symptoms (L), moderate symptoms (M) and hospitalised (H)

The relative mixing parameters p were defined as proportions relative to the 

asymptomatic class (pa =1.0), with the level of mixing decreasing as infection 

severity increased. In the absence of published observational data, we made 

plausible assumptions regarding the relative mixing of each severity category. 

Given those with low-level symptoms were defined as being unable to undertake 

normal duties for one or no days because of illness, a slightly lower relative degree 

of mixing (p l =0.9) was assumed. However, mixing was considered to be much 

lower for infections with moderate symptoms that prevented normal duties for 

two or more days Qum=0.4) and required hospitalisation (p h =0.1).

Studies have indicated heterogeneity in the length of viral shedding duration 

between different severity classes. The parameters yi define the recovery rate in
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each severity category and are calculated as the inverse of the duration of 

infectiousness. Viral shedding duration was used as a proxy for duration of 

infectiousness values determined using weighted averages of medians from a 

systematic review of influenza A(HlNl)pdm09 virus shedding for asymptomatic, 

community-based and hospitalised cases [25]. The studies included in the review 

did not differentiate viral shedding of low level and moderate symptoms, thus the 

same weighted average of median duration from community-based cases was used 

for both these infection severity categories. As our focus here is on cumulative 

incidence and the relative contribution of each severity class to transmission, we 

do not model shedding dynamics in the individual, and assume a consistent level of 

viral shedding over the course of infection. Where this assumption may affect 

parameters, such as the mixing parameters pi, we have conducted further 

sensitivity analyses.

Model fitting and sensitivity analysis
MATLAB [Student version; MathWorks) was used to simulate the model using 

values of Re within the limits of published estimates (range: 1.14-1.36) [26] that 

resulted in a total proportion of recovered individuals that was consistent with 

estimated age-standardised infection risks of 19% and 21% in two all-age studies 

in Australia and New Zealand respectively [23, 27]. The differential equations for 

the model are given in the Supplementary Material. Infection severity stratum- 

specific reproduction numbers were then calculated to determine the relative 

importance of each group in influenza A(HlNl)pdm09 virus transmission.

Sensitivity analyses were also undertaken in MATLAB to assess the relative 

influence of the proportional population distribution, mixing and recovery rate 

parameters on the risk of infection, with a fixed overall reproduction number. 

Given the proportions of low-level and moderate symptoms parameters pi and pm 

are dependent on q, only q was included in the sensitivity analysis. The mixing 

coefficient pa was also excluded from the sensitivity analysis because it is the 

reference value against which the other mixing parameters were compared. 

Triangular distributions of the ten parameter ranges (baseline value plus and 

minus 10%) were sampled 400 times using Latin hypercube sampling. Parameter
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outputs were then transformed into their ranks and partial rank correlation 

coefficients (PRCC) calculated. Parameters with a PRCC closer to -1 and +1 

indicated a stronger impact on the model output, with the direction indicating a 

negative or positive correlation [28].

The results of the PRCC were also used to identify important parameters and test 

the effect of their variation, within plausible limits, on the infection severity 

stratum-specific reproduction numbers. The flexibility of the plausible 

assumptions used to generate the baseline values for the relative mixing 

parameters qi and pm was tested by lowering ii from 0.9 to 0.7 and increasing pm 

from 0.4 to 0.6. The effect of a slower recovery rate from a one-day-longer duration 

of infectiousness for the moderate symptoms group ( /m) was also examined. The q 

parameter was varied from a baseline value of 0.76 to 0.42, based on data from the 

Australian Flutracking surveillance system which provides weekly community- 

level ILI symptomatic infection risks not biased by health-seeking behaviour and 

clinician testing practices; in the 2011 and 2012 influenza seasons, an average of 

42% of Flutracking participants reporting an ILI took two or more days off work or 

normal duties because of their illness [29]. The effect of lowering the proportion of 

asymptomatic cases (pa ) from 0.35 to 0.13 (the average of three studies in Canada 

[15], Germany [17] and China [30]) was also tested.

Results
Using the baseline population proportion distribution, mixing and recovery rate 

parameters, a value of Re = 1.14 at the lower limit of published range resulted in a 

cumulative infection risk of 24%, slightly higher than the age-standardized 

estimates of 19% and 21% for Australia and New Zealand respectively (figure 2). 

Figure 3 shows the model stratified by each severity stratum and the contribution 

of each to the infection risk: asymptomatic (8.5%); low-level symptoms (3.8%); 

moderate symptoms (11.9%); and hospitalised (0.06%). Asymptomatic infections 

peaked first at 95 days, followed two days later by those with low-level and 

moderate symptoms, and hospitalised cases at 100 days.
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Figure 2. Cumulative incidence of influenza A(HlNl)pdm 09, summed over all 

infection severity categories, over time in susceptible, infected and 

recovered populations.
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Effective reproduction numbers for each infection severity category are shown in 

table 2. Under the baseline parameter settings the low-level symptoms infection 

severity group accounts for the greatest transmission (Rl =1.82) followed by the 

asymptomatic group (/?a=1.32). The effective reproduction numbers in the 

moderate symptoms and hospitalised groups were less than 1.

Table 2. Effective reproduction number by severity category and parameter 

values.

Infection severity
Baseline R e after parameter adjustment from baseline

R e P a = 0 .1 3 P l = 0 .7 P m = 0 . 6 *7=0.42 7 m= 1 /5 .9

Asymptomatic 1.32 1.39 1.39 1.12 1.10 1.23

Low-level

symptoms
1.82 1.92 1.49 1.55 1.52 1.70

Moderate

symptoms
0.81 0.85 0.85 1.03 0.68 0.91

Hospitalised 0.34 0.36 0.36 0.29 0.29 0.32

The transformation of parameter uncertainty into PRCC showed that none of the 

hospitalised severity category parameters (proportion, mixing or recovery rate) 

had a discernible impact on the infection risk, with PRCC values near zero (figure 

4). The mixing (p) parameters for low-level and moderate symptoms were strongly 

and positively correlated with infection risk, particularly moderate symptoms for 

which the final PRCC=0.88. With PRCC values of -0.88 and -0.87 respectively, the 

recovery rate (y) parameters for asymptomatic infection and those with moderate 

symptoms were strongly and negatively correlated with infection risk. The 

recovery rate for low-level symptoms was less important, but like the recovery 

rate for moderate symptoms, increased in importance from negligible levels at the 

start of the epidemic period. The importance of the proportion of asymptomatic 

infections also varied over the course of the epidemic, initially moderately and 

positively correlated with infection but declining to near neutrality by the end. 

However, ILI resulting in inability to undertake normal duties for two or more days 

(notated as q and a proxy for the proportion with moderate symptoms) was very
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important throughout the epidemic with PRCC=-0.85. We used triangular 

distributions here for simplicity and to ensure that parameter values remained 

realistic, however normal distributions gave similar results.

Figure 4. Partial rank correlation for infection severity proportion, mixing 

and recovery rate parameters* over time.

...... \

Time (days)

*See table 1 for detailed parameter descriptions

Variation of important model parameters, as identified by PRCC analysis, generally 

resulted in little difference in the broad trends observed from baseline values 

(table 2). The most marked change in the infection severity stratum-specific 

reproduction numbers occurred with raising the moderate symptoms mixing co-

efficient from 0.4 to 0.6 and although this resulted in an effective reproduction 

number of just greater than one for the moderate symptoms group, it was still 

highest for the low-level symptoms group. Decreasing the q parameter 

(representing the proportion of health survey participants reporting an ILI during 

the first pandemic wave that were unable to undertake normal duties for two or
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more days) from 0.76 to 0.42 resulted in decreases in the effective reproduction 

number for all infection severity strata. The effect of lowering the proportion of 

asymptomatic cases from 0.35 to 0.13 had a relatively minor effect on infection 

severity stratum-specific reproduction numbers. Importantly, under all alternative 

scenarios the effective reproduction numbers for the asymptomatic and low-level 

symptoms groups were greater than one and higher than those for the moderate 

symptoms and hospitalised groups.

Discussion
Using a simple deterministic mathematical model, we show that transmission 

during the first wave of influenza A(HlNl)pdm09 was primarily driven by those 

with low-level symptoms (broadly defined as symptoms resulting in inability to 

undertake normal duties for zero or one days) and, to a lesser extent, 

asymptomatic infections. Given such infections do not necessitate medical 

attendance (except perhaps for a certificate of absence) and are very unlikely to be 

tested, they remain largely silent to the health system. In contrast, infections 

resulting in moderate symptoms (inability to undertake normal duties for two or 

more days) or hospitalisation that generally are detected by the health system both 

had effective reproduction numbers less than one and a comparatively minor role 

in influenza A(HlNl)pdm09 transmission.

Development of the model necessitated a number of important assumptions, 

particularly with respect to baseline parameter values. Whilst most parameter 

values were sourced directly from the published literature, the relative mixing 

coefficients Qu) of each infection severity category were based on data on health-

seeking behaviour, together with plausible assumptions concerning the behaviour 

of each category. The mixing coefficients for the low-level and moderate symptoms 

infection severity category in particular were influential model parameters. 

Nevertheless, sensitivity analyses using more conservative estimates of mixing 

coefficients were still broadly consistent with the baseline observation that 

asymptomatic and low-level symptoms infections were the most important drivers 

of transmission. Indeed, whilst reducing the mixing coefficient resulted in a lower 

effective reproduction number for the low-level symptoms group, this also
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resulted in an increase in transmission from those with asymptomatic infections. 

The model does not account for possible higher levels of mixing in hospitalised 

patients prior to hospitalisation, although any effect is likely to be minimal given 

the low proportion and importance of infection resulting in hospitalisation.

Searches of the literature also identified heterogeneity in other parameter values, 

in particular the proportion of asymptomatic cases. The baseline value was set at 

0.35 based on several transmission studies from Hong Kong, China and the USA 

[18, 20, 21], and comparable to estimates of asymptomatic infection for seasonal 

type A/H1N1, A/H3N2 and type B influenza of 31-38% [31]. At the lower end of 

the reported range were three studies with a reported asymptomatic proportion of 

10-17% [15,17, 30], but using an average of 17% in a sensitivity analysis had little 

effect on the infection severity stratum-specific reproduction numbers, as 

anticipated from the PRCC analysis. Other retrospective serological studies 

conducted in New Zealand [23], Austria [32] and a USA marine and naval cohort 

[33] indicated proportions of asymptomatic infections to be 45%, 84% and 53% 

respectively and were likely affected by recall bias and therefore not assessed in 

the sensitivity analysis.

With the exception of infections resulting in hospitalisation, the recovery rate 

parameters for all infection severity categories were important components of the 

model. Whilst these values were calculated from a systematic review of influenza 

A(HlNl)pdm09 virus shedding [25], they are also couched with some uncertainty. 

Firstly, the model assumes that the degree of infectiousness remains constant 

throughout the duration of viral shedding, and whilst there is some evidence that 

infectiousness wanes over this period it is highly variable and difficult to quantify 

[14-17, 20, 34, 35]. Secondly, most viral shedding studies used reverse 

transcriptase polymerase chain reaction (RT-PCR) to detect virus, which cannot 

differentiate between viable and non-viable virus and thus may overestimate the 

duration of viral shedding. However, this is likely to be at least partially offset 

(among those with symptomatic infections) by pre-symptomatic shedding. Pre- 

symptomatic influenza A(HlNl)pdm09 virus shedding has been reported in at
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least two studies for as long as three days before onset in less than 5% of cases [15, 

36], although our model has not incorporated these data.

Several other limitations should be considered when interpreting the findings of 

this study. Due to scarcity of published data on absenteeism as a result of 

laboratory confirmed influenza, the proportional division of symptomatic 

infections into those manifesting with low-level and moderate symptoms used 

data on days unable to undertake normal duties because of ILI. Whilst ILI is a non-

specific outcome and will likely incorporate upper respiratory tract infections that 

are generally considered to be milder than influenza (which also frequently causes 

lower respiratory or systemic symptoms [37]], the positive predictive value of the 

syndromic ILI definition for influenza is likely to be relatively high because the 

data were collected during the peak of the first pandemic wave [24]. Nevertheless, 

testing of a wide range of the proportions with moderate and low-level symptoms 

in the sensitivity analysis showed the same relative differences between the 

effective reproduction numbers of each infection severity stratum. Finally, the 

model was developed and should be interpreted in the context of the first in- 

season wave of influenza A(HlNl]pdm09 in Australia. It assumed a population 

immunologically naive to the virus and resulted in highest incidence in younger 

age groups [5], who likely have a different infection severity profile to other age 

groups. Estimating the relative importance of different levels of disease severity in 

influenza A(HlNl)pdm09 transmission in the northern hemisphere, subsequent 

pandemic waves in the southern hemisphere and seasonal influenza (that the 

pandemic strain has since become] would require the incorporation of immunity 

(either from prior infection or vaccination] and age group stratification.

Public health implications

Whilst the model structure requires modification to investigate the role of 

infection severity in post-pandemic influenza transmission, its finding that low- 

grade and asymptomatic infections were the drivers of the first influenza 

A(HlNl]pdm09 wave in Australia helps explain why community transmission was 

apparently already well-established by the time influenza A(HlNl]pdm09 was 

detected. Furthermore, that transmission was being driven by those essentially
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invisible to the health system suggests that case-based pandemic control strategies 

such as antiviral distribution may not always be very effective. Whilst population- 

based interventions such as school closures may be more likely to be effective in 

interrupting transmission, such measures will probably be of little value when 

such a high proportion of infections are relatively mild. Public health plans and 

responses to pandemics in the future need to accommodate this contingency.
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Supplementary Material
Differential equations

The force of infection is given by:

A = /?a-Ia + /?l .Il .+ /?m-Im + /?h-Ih

The differential equations that require solving are:

dSA/dt = -A.Sa

dSL/dt = -A.Sl

dSM/dt = -A.Sm

dSn/d t  = -A.Sh

dU /d t = A.Sa -  Ya .Ia

d k /d t = A.Sl  -  Yl .Il

dlM/dt = A.Sm -  Ym-Im

dlH/dt = A.Sh -  Yh-Ih

dRA/dt = y a .Ia

dRL/dt = y l .Il

dRM/dt = y m-Im

dRH/dt = y h .Ih

subject to the in itia l conditions Sa (0) = 0.35 -  Ia (0), Sh(0) = 0.0025, Sl (0) = (1 -  (Sa 

+ SH)).(1 -  q], Sm(0) = (1 -  (Sa + S Ia (0) = 0.001, and IL(0) = IM(0) = IH(0) = Ra 

= Rl (0) = Rm(0) = Rh(0) = 0.
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Post-pandemic influenza epidemiology

About this chapter
This chapter describes the epidemiology of laboratory confirmed influenza and 

influenza-like illness (ILI) over consecutive influenza seasons from 2010 to 2012 

inclusive, published as three articles in the Western Pacific Surveillance and 

Response Journal and the Victorian Infectious Diseases Bulletin. The studies were 

conducted using data from established notifiable disease, sentinel general practice, 

sentinel hospital, locum service and laboratory surveillance programs.

The studies showed that following the emergence of influenza A(HlNl)pdm09, 

influenza and ILI activity measured by most programs returned to normal seasonal 

levels from 2010 to 2012, although an increase in notified cases of laboratory 

confirmed influenza suggested a large increase in testing. Pre-pandemic H1N1 

influenza strains were not detected, indicating replacement by influenza A(H1N1) 

2009 which remained the dominant circulating strain in 2010. After comprising a 

higher proportion of cases in 2011, influenza A(H3N2) became the dominant 

circulating subtype in Victoria in 2012, accompanied by increases in older and 

hospitalised cases.

Papers in this chapter
1. Grant KA, Franklin LJ, Kaczmarek M, Hurt AC, Kostecki R, Kelly HA, Fielding JE. 

Continued dominance of pandemic A(H1N1) 2009 influenza in Victoria, 

Australia in 2010. Western PacSurveill Response J 2011; 2(3): 10-18.

2. Grant KA, Franklin LJ, Hurt AC, Garcia KT, Fielding JE. Higher proportion of 

older influenza A(HlNl)pdm09 cases in Victoria, 2011. Victorian Infect Dis Bull 

2012; 15:49-55.

3. Fielding J, Grant K, Franklin L, Sullivan S, Papadakis G, Kelly H, Cheng A. 

Epidemiology of the 2012 influenza season in Victoria, Australia. Western Pac 

Surveill Response J 2013; 4(3): 42-50.
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Surveillance Report

Continued dominance of pandemic A(H1N1) 
2009 influenza in Victoria, Australia in 2010
Kristina A Grant, 0 Lucinda J Franklin,b Marlena Kaczmarek, 0 Aeron C Hurt,c Renata Kostecki, 0 Heath A  Kelly0 and 
James E Fielding,od
Correspondence to James E Fielding (e-mail: james.Relding0mh.org.au).

The 2010 Victorian influenza season was characterized by normal seasonal influenza activity and the dominance 
of the pandemic A(H1N1) 2009 strain. General Practice Sentinel Surveillance rates peaked at 9.4 ILI cases 
per 1000 consultations in week 36 for metropolitan practices, and at 10.5 ILI cases per 1000 in the following week 
for rural practices. Of the 678 ILI cases, 23% were vaccinated, a significantly higher percentage than in previous years. 
A significantly higher percentage of ILI patients were swabbed in 2010 compared to 2003-2008, but similar to 2009, 
with a similar percentage being positive for influenza as in previous years. Vaccination rates increased with patient 
age. Melbourne Medical Deputising Service rates peaked in week 35 at 19.1 ILI cases per 1000 consultations. Of the 
1914 cases of influenza notified to the Department of Health, Victoria, 1812 (95%) were influenza A infections -  
1001 (55%) pandemic A(H1N1) 2009, 4 (<1%) A(H3N2) and 807 (45%) not subtyped; 88 (5%) were influenza B: 
and 14 (<1%) were influenza A and B co-infections. The World Health Organization Collaborating Centre for Reference 
and Research on Influenza tested 403 isolates of which 261 were positive for influenza, 250 of which were influenza A 
and 11 were influenza B. Ninety-two per cent of the influenza A viruses were pandemic A(H1N1) 2009, and following 
antigenic analysis all of these were found to be similar to the current vaccine strain. Three viruses (0.9%) were found to be 
oseltamivir resistant due to an H275Y mutation in the neuraminidase gene.

% f ic to r ia  is Australia’s second most populous 
\  /  state w ith  a temperate climate and an annual 

V influenza season that usually occurs between 
May and September. Given the wide clinical spectrum 
and variable levels of diagnostic testing for influenza, 
several surveillance programmes that target different 
populations are used to monitor activity of influenza and 
influenza-like illness (ILI) in Victoria. A sentinel general 
practice (GP) programme for the surveillance of ILI in 
Victoria has been coordinated by the Victorian Infectious 
Diseases Reference Laboratory (VIDRL) in partnership 
w ith the Victorian Government Department of Health 
since 1993. Laboratory testing of a sample of ILI cases 
from the surveillance programme commenced in 1 9 9 8 .1 
VIDRL also monitors diagnoses of ILI made by the locum 
medical practitioners through the Melbourne Medical 
Deputising Service (MMDS). The Department of Health 

coordinates the surveillance of all laboratory-confirmed 
influenza in Victoria, a prescribed group B notifiable 
disease under the Victorian Public Health and Well-
being Act 2008  and Public Health and Well-being 
Regulations 2009. The department also investigates 

notified institutional outbreaks of respiratory illness 
under the auspices of th is legislation.

The objectives of the influenza surveillance system 
are to:

• monitor the epidemiology of laboratory-confirmed 
influenza in Victoria;

• identify the onset, duration and relative severity 
of annual influenza seasons in Victoria;

• provide samples for the characterization of 
circulating influenza strains in the community to 
assist in the evaluation of the current season and 
formulation of the follow ing season’s vaccine;

• provide potential for early recognition of new 
influenza viruses and new or emerging respiratory 
diseases; and

• estimate influenza vaccine effectiveness each 
year.

Victoria was the first Australian jurisdiction 
to report widespread transmission -  particularly 

among schoolchildren -  when pandemic influenza 
A(H1N1) 2 009  emerged in m id-2009. W hile notification 

data suggested unprecedented levels of disease in the

u Victorio Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
0 Communicable Disease Prevention and Control Unit, Victorian Government Department of Health, Melbourne, Victoria, Australia
1 World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victorio, Australia 
aThe Australian National University, Conberra, Australian Capitol Territory
Submission date: 3 June 2011; Publication date: 31 August 2011 
doi: 10.5365/w psar.2011.2.2.009

WPSAR VoJ 2, No 3,2011 | doi: 10.53&5/wpsar201 1.2.2.009 ww*.v.pro.who.io./wpSor
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Figure 1. Distribution of sentinel surveillance practices in metropolitan and rural Victoria, 2010
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community, I LI data suggested a season characterized 

as higher than normal seasonal activity.2 The pandemic 

strain continued to be dominant around the world into 

the 2009 /2010  northern hemisphere influenza season 

and there was considerable interest in the epidemiology 
of a likely second southern hemisphere pandemic wave 

during the 2010  influenza season. Here we summarize 

the epidemiological findings from the Victorian influenza 
surveillance system during the 2 010  season.

METHODS

General Practice Sentinel Surveillance

In 2010, 61 GPs from 23 metropolitan practices and 

26 GPs from nine rural practices participated in the 

VIDRL GP Sentinel Surveillance (GPSS) programme 

(Figure 1), which is approved for continuing professional 

development points by the Royal Australian College 

of General Practitioners and the Australian College 

of Rural and Remote Medicine for participation. 

The GPSS programme for 2010  operated from 

3 May to 24 October (weeks 19 -4 3 ) inclusive.

The 87 participating GPs reported total number 

of consultations per week and age, sex and vaccination 

status of any patients presenting with ILL GPs submitted 

the data weekly by fax or online submission (http:// 

www.victorianflusurveillance.com.au). A case of ILI 

was defined as fever, cough and fatigue/malaise.3 ILI 

rates were calculated as the number of ILI patients per 

1000 consultations and were compared to previously 

established activity thresholds (normal seasonal activity,

www.wpro.who.int/wpsar

higher than expected activity and epidemic activity) for 

Victorian influenza seasons.4

GPs were requested to collect nose and throat swabs, 

sent in the same viral transport medium, from patients 

presenting w ithin four days or less since the onset of 
symptoms. Patients were chosen at the discretion of the 

GP Data collected on swabbed patients included: age, 
sex, symptoms (fever, cough, fatigue, myalgia, other), 

vaccination status (for pandemic H1N1 vaccine and 

seasonal vaccine), date of vaccination/s and Aboriginal 

and/or Torres Strait Islander status. RNA was extracted 

from clinical specimens and real-time polymerase chain 

reaction (PCR) used to detect the presence of influenza 

A virus matrix gene. Influenza positive samples were 

confirmed as positive or negative for pandemic A(H1N1) 

2 009  in a second real-time PCR that incorporated 

primers and probes specific for the hemagglutinin gene 

of the pandemic A(H1N1) 2009  virus. Influenza B 

viruses were identified by a separate PCR.

Melbourne Medical Deputising Service

The MMDS is the largest medical locum service in 

Australia and has contributed to Victorian influenza 

surveillance since 2003. It provides a 24-hour medical 

service to patients in their own homes or aged care 

facilities. Weekly rates of influenza-related diagnoses 

by MMDS clinicians per 1000 consultations were 

calculated from records returned from the MMDS clinical 
database using the search terms “ influenza" and “ flu." 

To avoid inclusion of those immunized prophylactically, 

records that contained the terms “ Fluvax,” “at risk”

WPSAR Vol 2, No 3, 2011 | doi: 10.5365/wpsor.2011.2.2.009

-140  -



Post-pandemic influenza epidemioIogy

Flu surveillance in Victoria 2010 Grant et al.

and "immunization” were excluded from the rate 
calculation.

Notifications of laboratory-confirmed influenza 
to the Victorian Department of Health

Under the Victorian Public Health and Well-being Act
2008 and Public Health and Well-being Regulations
2009 medical practitioners and pathology services 
are required to notify laboratory-confirmed influenza 
cases to the Department of Health within five days of a 
positive test result. Records of all laboratory-confirmed 
influenza cases with a 2010 notification date were 
extracted for analysis from the Department of Health 
Notifiable Infectious Diseases Surveillance database on 
17 May 2011.

Outbreak investigations

The Victorian Department of Health investigates 
notified respiratory outbreaks in institutional settings 
under the Victorian Public Health and Well-being Act 
2008 and Public Health and Well-being Regulations 
2009. An outbreak is defined as three or more cases of 
newly acquired influenza-like illness within 72 hours in 
residents or staff of a setting or facility.

Strain typing

Seven laboratories referred specimens and isolates 
collected in Victoriaduring2010to the WHO Collaborating 
Centre for Reference and Research on Influenza, Victoria, 
Australia (WHO Collaborating Centre), although the 
selection method varied by laboratory. Tissue culture 
was attempted for all of the specimens/isolates received. 
Viruses that were successfully cultured were analysed 
by haemagglutination inhibition assay to determine 
antigenic similarity to the current vaccine strains and 
by sequencing and a neuraminidase inhibition assay to 
determine antiviral susceptibility.

Data from the surveillance systems were analysed 
descriptively using Microsoft Excel software. The %2 
test was used to compare proportions in Stata version 
10.0 statistical software, with P < 0.05 considered 
significant.

RESULTS

General Practice Sentinel Surveillance

For the 25 week surveillance period, an average 
of 93% (81/87) of GPs submitted tally sheets to

WPSAR Vol 2, No 3, 2011 | doi: 10 .5 36 5 /w p so r.2 0 l1.2 .2 .009

VIDRL each week. GPs reported having conducted 
172 411 consultations (121 270 metropolitan 
and 51 141 rural) and identified 678 HI cases 
(527 metropolitan and 151 rural) during the season, 
corresponding to metropolitan and rural rates of 4.4 and 
3.0 ILI cases per 1000 consultations, respectively.

Among the 678 ILI cases reported by GPs, the 
median age was 33 years (range: 1-91 years) and 50% 
were female. Twenty-three per cent of ILI cases were 
vaccinated in 2010. Of those vaccinated in 2010, 26% 
received the seasonal vaccine only, 38% had both the 
seasonal vaccine, which included the pandemic strain, 
and the monovalent pandemic vaccine, and 15% had 
the pandemic monovalent pandemic vaccine only. The 
remaining 20% were reported as vaccinated, but the 
vaccine was not specified.

ILI rates in 2010 were low compared to previous 
years and fell within the range of normal seasonal activity 
(Figure 2). The combined ILI rate began to increase 
in week 32 (week commencing 2 August) peaking at 
9.4 ILI cases per 1000 consultations in week 36 for 
metropolitan practices, and at 10.5 ILI cases per 1000 
in the following week for rural practices (Figure 3). Rates 
had declined to baseline levels by week 41.

GPs swabbed a total of 478 (71%) ILI patients in 
2010, of which 170 (36%) tested positive for influenza. 
In 2010, 166 (98%) of influenza positive swabs 
were influenza A and the remainder were influenza B. 
Of the 166 influenza A viruses detected, 148 (89%) 
were pandemic A(H1N1) 2009 influenza, seven (4%) 
were subtype A(H3N2) and the remaining 11 (7%) were 
not further subtyped (Table 1).

Among the influenza-positive patients, 155 (91%) 
were reported as not vaccinated and 13 (8%) were 
vaccinated with the pandemic and/or seasonal vaccine(s) 
(Table 1). Higher proportions of swabbed ILI patients 
who tested negative for influenza were reported as 
vaccinated. Three patients (one influenza positive and 
two influenza negative) were reported as receiving an 
unspecified influenza vaccine and the vaccination status 
of 11 patients (two influenza positive and nine influenza 
negative) was unknown. Of the 94 patients reported 
as vaccinated, 42 (44%) had received the seasonal 
vaccine, 26 (28%) the pandemic vaccine, 23 (25%) 
both vaccines and 3 (3%) had an unspecified vaccine. 
Excluding those with unknown vaccination status, the

www.wpro.who.inl/wpsor
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Figure 2. General Practice Sentinel Surveillance and Melbourne Medical Deputising Service influenza-like illness 

consultation rates, Victoria, 2003  to 2010
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proportion of vaccinated influenza-positive patients (7%) 

was significantly lower than the proportion of vaccinated 

influenza-negative patients (27% ; P <  0 .001). The 
proportion of swabbed patients that were vaccinated with 
either vaccine increased w ith  age, particularly among 

those that tested negative for influenza (Figure 4).

The median age of pandemic A(H1N1) 

2009  cases identified from the GPSS was 

26 years (range: 1 -6 3  years), compared to 18 years 
for both influenza A0H3N2) (range: 4 -3 4  years) and 

influenza B (range: 7 -2 8  years), although there were 

relatively few cases of the latter two infections. Most

Figure 3. General Practice Sentinel Surveillance and Melbourne Medical Deputising Service influenza-like illness 

rates and routinely notified laboratory-confirmed influenza cases by week, Victoria, 2010
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Table 1. Number (%) General Practice Sentinel Surveillance swabs by influenza type/subtype, vaccination status 
and median age, Victoria, 2010

Influenza type/subtype Total
Vaccinated

seasonal

(%)

Vaccinated
pandem ic

(%)

Vaccinated
both
(%)

Vaccinated
Unspecified

(%)

Not
vaccinated

(%)

Unknown  
vaccination  
status (%)

M edian
age

(years)

All Influenza 170 4  (2) 6 (4) 2 (1) 1 (1) 155 (91) 2 (1) 26

Pandemic A (H1N1) 2009 148 4 (3) 6 (4) 2 (1) 1 (1) 133 (90) 2 (1) 26

A(H3N2) 7 0 0 0 0 7 (100) 0 18

A (not subtyped) 11 0 0 0 0 11 (100) 0 34

B 4 0 0 0 0 4 (100) 0 18

Influenza negative 308 38 (12) 20 (7) 21 (7) 2 (1) 218 (71) 9 (3) 35

Total 478 42 26 23 3 373 11 32

cases (75%) identified from the GPSS were aged from 
5 to 39 years (Figure 5).

Melbourne Medical Deputising Service

A total of 441 patients were diagnosed with “flu" 
or "influenza" by the MMDS during the 2010 
surveillance season, corresponding to an overall rate of 
8.4 ILI cases per 1000 consultations. Like the 
GPSS ILI rate, the MMDS rate, with a peak of 19.1 
ILI per 1000 consultations, was low compared to 
previous seasons (Figure 2). The peak occurred in 
week 35 (week commencing 23 August) before the

peaks of the GPSS ILI rate and cases of laboratory- 
confirmed influenza notified to the Department of Health 
(Figure 3).

Notifications of laboratory-confirmed influenza 
to the Victorian Department of Health

Excluding notifications of cases associated with 
the GPSS and outbreaks, there were 1914 cases of 
influenza routinely notified to the Department of Health 
in 2010. Of these, 1812 (95%) were influenza A 
infections, 88 (5%) were influenza B and 14 (1%) were 
influenza A and B co-infections.

Figure 4. General Practice Sentinel Surveillance swabs by influenza and vaccination status and age group, 
Victoria, 2010

WPSAR Vol 2, No 3, 2011 | doi: 10.5365/wpjar.20l 1.2.2.009 www.wpro.who.int/wpjar
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Figure 5. Notified cases of laboratory confirmed influenza by age group and notification sources, Victoria, 2010
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The number of routinely notified cases of laboratory- 

confirmed influenza, particularly influenza A, increased 

from week 31 in a pattern that was generally consistent 
w ith GPSS ILI rates (Figure 3). Notified cases of both 

influenza A and influenza B influenza peaked in week 37 

(week commencing 6 September), the same week as the 

GPSS rural ILI rate peak and one week after that of the 

GPSS metropolitan ILI rate.

Of the 1812 influenza A cases, 1001 (55%) were 

pandemic A(H1N1) 2009, 4 (<  1%) were A0H3N2) and 

807 (45%) were not subtyped. The median ages for 

influenza cases were 28 years (range: 0 -9 5  years) for 

routinely notified pandemic A (H IN I) ,  21 years (range: 

0 -9 4  years) for A0H3N2) and 24 years (range: 

0 -8 0  years) for influenza B cases. The highest proportion 

of notified cases of pandemic A(H1N1) 2009  was in the 

0 -4  years age group (13% ) while those aged 5 -3 9  years 

accounted for 61% of the routinely notified cases 

(Figure 5). Overall, there was a 1:1 male-to-female ratio 

among the routinely notified cases.

Four cases aged 1 month, 27, 50 and 68 years, 

notified in weeks 34, 33, 35 and 39, respectively, were 

reported to have died as a result of influenza A virus 

infections (three due to pandemic A(H1N1) 2009  and 

the other not subtyped).

Outbreak investigations

Six respiratory outbreaks were notified to the Department 

of Health in 2010: one in week 26 (week commencing 

21 June), one in week 35 (23 August), one in week 38 

(13 September), one in week 41 (4 October) and 

two in week 44 (25 October). Four of the six outbreaks 

occurred in aged care facilities, one outbreak occurred 

in an assisted residential service, and one in a military 

facility. There were between three and 24 cases 
associated with each outbreak, corresponding to attack 

rates of 10% -45% . Of the four outbreaks in aged care 

facilities, all were caused by influenza A virus, of which 

two were influenza A (not further subtyped), one was 

due to a mixed infection [n o n -H IN l and pandemic 

A(H1N1) 2009], and one was due to A(H3N2). The 

outbreaks in the assisted residential service and the 

m ilitary facility were typed as pandemic A(H I N I )  2009.

Strain typing

Of the 403  specimens and three isolates received at the 

WHO Collaborating Centre from Victoria, 261 (64%) 

yielded an influenza-positive isolate following cell culture. 

Of these, 250  (96% ) were influenza A and 11 (4%) 

were influenza B. The majority ( n  =  231; 92% ) of the 

influenza A viruses were pandemic A(H1N1) 2009, with 

17 (7%) A(H3N2); two specimens contained mixed

w w w .w pro .w ho .in t/w psor WPSAR Vol 2, No 3,2011 | doi: 10.5365/wpsar.2011.2.2.009
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viral populations of pandemic A(H1N1) 2009 and 

A(H3N2) viruses. Following antigenic analysis, all of the 

pandemic A(H 1N 1) 2009 strains were found to be similar 
to the current vaccine strain A/California/7/2009 (apart 
from two low reactors). All A0H3N2) strains were similar 
to the current vaccine strain A/Perth/16/2009 (apart from 

two low reactors) and all influenza B strains were of the 

B/Victoria/2/87 lineage and similar to the current vaccine 

strain B/Brisbane/60/2008 (apart from one low reactor). 
All ( n  =  261) of the Victorian influenza-positive isolates 

and 45  clinical specimens were tested for susceptibility to 

the neuraminidase inhibitors oseltamivir and zanamivir. 
Three viruses were found to be oseltamivir resistant 
due to a H275Y mutation in the neuraminidase gene. 
Two of the resistant strains came from otherwise healthy 

patients that were not under oseltamivir treatment,5 
while the third was isolated from a hospitalized child 

undergoing oseltamivir treatment.

DISCUSSION

The 2010  influenza season in Victoria was characterized 

by dominance of the pandemic A(H1N1) 2009  strain, 
which, as a seasonal second wave, was not only mild 

in magnitude as measured by I LI activity rates in 

comparison to the first wave (also in-season) in 2009  
but also compared to previous seasons back to 2003 . 
Almost 90%  of GPSS swabs that tested positive for 
influenza were typed as pandemic A(H1N1) 2009, 
with the remainder comprised of influenza A0H3N2), 
influenza A (not subtyped) and influenza B. This 

distribution was generally consistent among notified 
cases to the Department of Health for which typing 

data were available. Pre-pandemic H1N1 influenza 

strains were not detected in 2010, suggesting the 

pandemic A(H1N1) 2009  strain has displaced seasonal 
A(H1N1).

Although ILI and influenza activity was lower, 
the dominance of pandemic A(H1N1) 2009  resulted 

in similarities between the 2009 and 2 010  seasons, 
particularly the concentration of cases among children 

and young adults, the relatively low number of overall 
deaths and few reported ILI or influenza outbreaks in 

aged care facilities.2 Furthermore, the proportion of 
GPSS ILI cases that were swabbed was approximately 

70%, compared to 35% -50%  from 2003  to 2008, 
(P <  0 .001 ) but similar to 2009  (68% ), indicating 

heightened doctor and/or patient concern with respect 
to confirmation of pandemic influenza infection. The

WPSAR Vol 2, No 3, 2011 | doi: 10 .5 3 6 5 /w p s o r.2 0 ll. 2 .2 .0 09

proportion of GPSS swabs positive for influenza was 

36%, similar to the 39% in 2 0 0 9 2 and the average of 
36%  for the years 2003  to 20 0 7 .6

Each of the surveillance systems indicated that the 

2010  influenza season, effectively the second pandemic 

A(H1N1) 2009  influenza wave, was considerably milder 
in terms of influenza cases and ILI activity compared 

to the first season in 2009. This trend was noted in 

other southern hemisphere countries,7 but contrasts 

with the northern hemisphere and previous pandemics 

in which a mild first wave was followed by a second of 
generally greater activity and severity.8-10 The concurrent 
emergence of pandemic A(H1N1) 2009  globally 

resulted in an out-of-season first wave followed by an 

in-season second wave in the northern hemisphere. 
That the first wave in the southern hemisphere was 

in-season and followed by pandemic and seasonal 
influenza vaccination programmes may have induced 

sufficient levels of population immunity -  suggested by 

serosurveys to be in the range of 16% to 2 6 .7% 11-15 -  

to help explain the difference in the relative magnitudes 

of the waves in each hemisphere. Also, 23%  of ILI cases 

were vaccinated in 2010, which is significantly higher 
than the 13%—17% observed from 2005  to 2009  

(P <  0 .02).

The 2 0 1 0  trivalent southern hemisphere influenza 

vaccine contained the pandemic A(H1N1) 2 009  strain 

(A/Califomia/7/2009) as well as A/Perth/16/2009 

(H3N2) and B/Brisbane/60/2008. Antigenic analysis by 

the WHO Collaborating Centre indicated good matching 

with circulating strains in Victoria to those in the vaccine, 

suggesting the seasonal vaccine was effective during 

the 2 010  season. This inference was supported by the 

significantly higher percentage of vaccinated influenza-

negative ILI patients compared to those that tested 

positive for influenza. Using a test-negative case control 

study design, the GPSS data were used to demonstrate 

a statistically significant protective effect of the 2010  

seasonal trivalent influenza vaccine against pandemic 

A(H1N1) 2009  infection. The vaccine effectiveness 

estimate was 79% (95%  C.I.: 33% —93%) after adjusting 

for age and month of specimen collection.16

As observed in previous years, the MMDS ILI rate 

peaked slightly earlier than the corresponding GPSS 

rate, which in turn preceded the peak in notified cases 

of laboratory confirmed influenza. Thus, although less

www.wpro.who.inl/wpsor
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specific, the I LI systems provided a more timely indication 

of influenza activity than notifiable disease data.

Given their varied source populations (e.g. those 

that seek health care from GPs and locums and the 
hospitalized young or elderly17 that make up a higher 

proportion of notified cases) the surveillance systems 

assist in providing comprehensive influenza and 

I LI surveillance in Victoria. However there are several 

lim itations of the surveillance. In 2 010  there was no 

systematic or timely hospital (emergency department 

and inpatient) or mortality surveillance. The Influenza 

Complications Alert Network w ill commence in five 

Victorian hospitals in 2011 and thus provide more 

clinical and burden of disease data associated with 

hospitalized influenza. A further lim itation of the system 

is the use of different I LI case definitions by the GPSS 

and the MMDS. Although it is d ifficult to speculate about 

the relative sensitivity and specificity of each system, it 

is comparison of I LI rate trends over time -  rather than 

absolute values between each system -  that best informs 

the level of I LI activity.

Victorian influenza surveillance system reports are 
available at https://www.victorianflusurveillance.com. 

au/.
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Higher proportion of older influenza A (H lN l)pdm 09 cases 
in Victoria, 2011
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2 W H O  Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victona

3 The Australian National University, Canberra, Australian Capital Territory

4 Communicable Disease Prevention and Control Unit, Victorian Government Department of Health, Melbourne, Victona

The influenza surveillance system in Victoria is comprised o f several components, including a general practitioner sentinel 
surveillance system, surveillance for influenza-like illness (ILI) in consultations made by the Melbourne Medical Deputising 
Service, laboratory confirmed influenza notified to the Victorian Department o f Health and strain typing performed by the 
World Health Organization Collaborating Centre for Reference and Research on Influenza.

As measured by ILI from both the MMDS and GPSS, the 2011 influenza season in Victona was mild compared to previous 
seasons and was not dominated by any type or subtype o f influenza. There were 13 laboratory confirmed influenza 
outbreaks in 2011, nearly all o f which were in aged care facilities.

GPs continue to swab more patients, a trend started in 2009, with a significantly lower percent o f these testing positive for 
influenza than previous years. The proportion of ILI and swabbed patients who were vaccinated was also significantly lower 
in 2011 than previously. Strain analysis undertaken by the WHO Collaborating Centre indicated a good antigenic match 
between the 2011 vaccine and circulating strains.

The Victorian influenza surveillance system continues to provide a reliable, consistent system for monitoring the epidemiology 
o f ILI and laboratory confirmed influenza in Victoria.

Background confirmed influenza in Victoria, a 
prescribed Group B notifiable disease 
under the Victorian Public Health and 
Wellbeing A ct 2008 and Public Health 
and Wellbeing Regulations 2009 for 
which notification is required within 
five days of diagnosis

The objectives of the influenza 
surveillance system are to:

and new or emerging respiratory 
diseases; and

A sentinel general practice (GP) 
program for the surveillance of 
influenza-like illness (ILI) has been 
coordinated by the Victorian Infectious 
Diseases Reference Laboratory 
(VIDRL) in partnership with the 
Victorian Government Department of 
Health p H ) since 1993. Laboratory 
testing of a sample of IU cases from 
the surveillance program commenced 
in 1998.1 The program operates 
between May and October each 
year and is approved for continuing 
professional development points 
by the Royal Australian College 
of General Practitioners and the 
Australian College of Rural and 
Remote Medicine. VIDRL also 
monitors diagnoses of IU made by the 
locum medical practitioners through 
the Melbourne Medical Deputising 
Service (MMDS). The DH coordinates 
the surveillance of all laboratory

• monitor the epidemiology of 
laboratory confirmed influenza in 
Victoria;

•  provide samples for the 
characterisation of circulating 
influenza strains in the community 
to assist in the evaluation of the 
current season; and formulation of 
the following season’s vaccine;

• identify the onset, duration and 
relative severity of annual influenza 
seasons in Victoria;

•  provide potential for early
recognition of new influenza viruses

In this paper we summarise 
findings from the Victorian influenza 
surveillance system in 2011.

• estimate influenza vaccine 
effectiveness each year.

General practice sentinel 
surveillance
In 2011,94 GPs (65 from 23 
metropolitan practices and 29 from 
13 rural practices) participated in the 
VIDRL GP Sentinel Surveillance (GPSS) 
program (Figures 1 a and 1 b). The 
GPSS program for 2011 operated from 
2 May to 30 October (weeks 18-43) 
inclusive in which participating GPs 
reported total number of consultations 
per week and age, sex and vaccination 
status of any patients presenting 
with influenza like illness (ILI). GPs

Methods

Victorian Infectious Diseases Bulletin Volume 15 Issue 2 June 2012 49
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Figure 1 a: Distribution of sentinel surveillance practices in metropolitan 
Victoria, 2011
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Figure 1 b: Distribution of sentinel surveillance practices in rural Victoria,
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submitted the data weekly by fax 
or online submission (http://www. 
victorianflusurveillance.com.au). A 
case of ILI was defined as fever, cough 
and fatigue/malaise.2 ILI rates were 
calculated as the number of ILI patients 
per 1,000 consultations and compared 
to previously established activity 
thresholds for Victorian influenza 
seasons.3

GPs were requested to collect either 
a nose or throat swab from patients 
presenting within four days of the 
onset of symptoms, chosen at the 
discretion of the GP. Data collected 
on swabbed patients included: 
age, sex, symptoms (fever; cough; 
fatigue; myalgia; other), vaccination 
status (for 2011 and the previous 
2010 vaccine), date of vaccination/s

and the presence of a co-morbidity 
for which influenza vaccination is 
recommended.4

RNA was extracted from clinical 
specimens and in-house validated 
real-time multiplex PCR assays 
were used to detect type A influenza 
viruses (matrix gene), type B influenza 
viruses (nucleoprotein gene) and type 
C influenza viruses (matrix gene). 
Influenza A virus-positive samples were 
sub-typed using individual real-time 
PCR assays incorporating primers and 
probes specific for the haemagglutinin 
gene of A(H1 N1)pdm09,5 pre-
pandemic A(H1 N1) and A(H3N2) 
strains.

Melbourne medical deputising 
service
The MMDS is the largest medical 
locum service in Australia and has 
contributed to the Victorian influenza 
surveillance system since 2003. The 
MMDS provides a 24-hour medical 
service to patients in their own home 
or aged care facility in the Melbourne 
metropolitan area and Geelong. 
Weekly rates of influenza-related 
diagnoses by MMDS clinicians per 
1,000 consultations were calculated 
from records returned from the 
MMDS dimca) database using the 
search terms ’influenza' and ‘flu’. To 
avoid inclusion of those immunised 
prophylactically, records that 
contained the terms 'Fluvax', ‘at risk’ 
and ‘immunisation’ were excluded 
from the rate calculation.

Notified laboratory confirmed 
influenza
Records of all laboratory confirmed 
influenza cases with a 2011 
notification date were extracted from 
the department’s Notifiable Infectious 
Diseases Surveillance database on 
24 February 2012. For the purposes 
of analysis, ‘routinely notified cases’ 
were those identified by clinical 
presentation, and excluded those

50 Victorian Infectious Diseases Bulletin Volume 15 Issue 2 June 2012
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identified from outbreak investigations 
and the GPSS.

Data from the three surveillance 
programs were analysed descriptively 
using Microsoft Excel software.
The chi squared test was used to 
compare proportions in Stata version
10.0 statistical software, with p<0.05 
considered statistically significant.

Strain typing
A selection of specimens and isolates 
collected in Victoria during 2011 were 
referred to the WHO Collaborating 
Centre for Reference and Research on 
Influenza (WHO Collaborating Centre). 
Tissue culture was attempted for all 
of the specimens/isolates received. 
Viruses that were successfully cultured 
were analysed by a haemagglutination 
inhibition assay to determine antigenic 
similarity to the current vaccine strains 
and a neuraminidase inhibition assay to 
determine susceptibility to the antiviral 
drugs oseltamivir and zanamivir. The 
haemagglutinin and neuraminidase 
genes of a selection of specimens and 
isolates were genetically analysed by 
Sanger sequencing or pyrosequencing.

Results
General practice sentinel 
surveillance
For the 26 week surveillance period, 
an average of 94 per cent (88/94) 
of GPs submitted tally sheets 
to VIDRL. GPs reported having 
conducted 194,469 consultations 
(135,593 metropolitan and 58,876 
rural) and identified 945 ILI cases 
(769 metropolitan and 176 rural), 
corresponding to metropolitan and 
rural rates across the surveillance 
period of 5.7 and 3.0 ILI cases per
1.000 consultations respectively.

Among the 945 ILI cases reported by 
GPs, 50 per cent were in females, 47 
per cent in males and the remainder 
unknown. The median age was

28 years (range one to 88 years). 
Fourteen per cent of ILI cases were 
reported as vaccinated in 2011.

IU rates during the 2011 season 
generally fell within the range of 
normal seasonal activity, and were low 
compared to previous years (Figure 
2). The overall (metropolitan and rural) 
IU rate rose above baseline levels 
of 2.5 ILI per 1,000 consultations 
in week 19 (week commencing 9 
May), and declined to baseline levels 
by week 41 (week commencing 10 
October). ILI activity peaked at 10.5 
IU per 1,000 consultations in week 
32 (week commencing 8 August) in 
metropolitan practices and at 6.2 IU 
per 1,000 consultations in week 35 
(week commencing 29 August) in rural 
practices (Figure 3).

GPs swabbed a total of 670 (71 per 
cent) ILI patients in 2011, of which 
185 (28 per cent) tested positive to 
influenza. Of these, 102 (55 per cent) 
were type A, 82 (44 per cent) were 
type B and one was type C. Of the 
102 type A influenza viruses detected, 
26 (25 per cent) were A(H1 N1)pdm09, 
62 (61 per cent) were A(H3N2) and 
the remaining 14 (14 per cent) were 
not further sub-typed (Table 1).

Among the influenza positive patients, 
164 (86 per cent) were reported as 
not vaccinated (Table 1). Twenty-five 
patients (four influenza positive and 21 
influenza negative) had an unknown 
vaccination status. Overall, 14 per 
cent (92/645) of swabbed patients 
were vaccinated but significantly 
more influenza negative patients were

Figure 2: General Practice Sentinel Surveillance and Melbourne Medical 
Deputising Service influenza-like illness consultation rates, Victoria, 2003- 
2011
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Figure 3: General Practice Sentinel Surveillance and Melbourne Medical 
Deputising Service influenza-like illness rates and routinely notified laboratory 
confirmed influenza cases by week, Victoria, 2011
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Table 1: Number (%) of General Practice Sentinel Surveillance swabs and routinely notified cases by influenza type/ 
subtype, vaccination status, co-morbidity and median age, Victoria, 2011

GPSS Routinely notified cases

Total swabs Vaccinated (%) Co-morbidity (%) Median age Total (%) Median age

Influenza A
A(H1N1)pdm09 26 0 (0) 1 (4) 32 213 33

A(H3N2) 62 6 (10) 7 (11) 27 15 44

Untyped 14 3 (21) 0 (0) 2,080

Total influenza A 102 9 (9) 8 8)
Influenza B 82 7 (9) 7 (9) 14 787 20
Influenza A and B co-infection 34

Influenza C 1 1 (100) 0 (0) NA 2
Negative 485 75 (15) 56 (12) 30

Grand total 670 92 (14) 71 (11) 29 3,007

Figure 4a: Routinely notified cases of laboratory confirmed influenza by age 
group, Victoria, 2011
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Figure 4b: GPSS cases of laboratory confirmed influenza by age group, 
Victoria, 2011
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vaccinated (15 per cent) than influenza 
positive patients (nine per cent; 
p=0.01). There was no significant 
difference in the proportion of patients 
with a co-morbidity recommended for

influenza vaccination between those 
that were positive for influenza (eight 
per cent) and those that were negative 
(12 per cent; p=0.10).

The median age of influenza A(H1 N1) 
pdm09 cases detected from the 
GPSS was 32 years (range: 1-55 
years), compared to 27 years for 
A(H3N2) (range: 1-72 years) and 14 
years for type B influenza (range: 1-74 
years). The one influenza C case was 
aged 51 years. Forty-three percent 
of GPSS influenza positive patients 
were in the 20-49 year age group 
(Figure 4). Fifty-six percent of influenza 
type B cases were younger than 20 
years while 67 per cent of A(H1 N1) 
pdm09 cases were in the 20-49 years 
age group. There was no statistically 
significant difference in the proportion 
of IU patients that were swabbed 
across age groups (p=0 .23) (Figure 
5). The proportion of patients that 
were vaccinated increased with age, 
particularly those aged 65 years and 
older, while the proportion positive for 
influenza was highest in the 20-49 
years age group.

Notified laboratory confirmed 
influenza
There were 3,007 routinely notified 
cases of influenza made to the 
department in 2011. Of these, 2,184 
(73 per cent) were type A, 787 (26 
per cent) were type B, 34 (1 per cent) 
were type A and B co-infections, and 
two were type C influenza (Table 1). 
The number of cases, particularly 
influenza A, increased from week
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Figure 5: General Practice Sentinel Surveillance IU and swabs by age group, 
vaccination status and percent positive, Victoria, 2011
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28 (week commencing 18 July) in a 
pattern that was generally consistent 
with GPSS and MMDS ILI rates 
(Figure 3). Notified cases of both 
type A and type B influenza peaked 
in week 39 (week commencing 19 
September), two weeks and four 
weeks after the peaks in the MMDS 
and the GPSS ILI rates respectively.

Of the 2,184 type A cases, 213 (10 
per cent) were A(H 1N1 )pdm09, 15 
(<1 per cent) were A(H3N2), and 
2,080 (95 per cent) were untyped.
The median age of routinely notified 
influenza A(H1 N1)pdm09 cases was 
33 years (range: 0-88 years), 44 
years for A(H3N2) (range: 3-90 years) 
and 20 years for type B cases (range: 
0-90 years) (Table 1). Fifty-five per 
cent of notified influenza A(H1 N1) 
pdm09 cases were in the 20-49 
years age group (55 per cent) (Figure 
4). Females comprised 53 per cent of 
the routinely notified cases in 2011.

Seven cases were reported to have 
died as a result of their influenza 
infection in 2011. These cases were 
aged 24 to 85 years with a median of 
63 years. With the exception of one 
case, all were due to type A infection, 
of which three were further subtyped: 
two as A(H1N1)pdm09 and one as 
A(H3N2). One death was due to 
type B.

Outbreak investigations
In 2011, a total of 25 respiratory 
outbreaks were notified to the 
department, of which 13 were 
confirmed as caused by influenza. Of 
these, one was in a prison setting, 
and 12 (one type B and 11 type 
A, of which two were subtyped 
as A(H3N2) and one as A(H1 N1) 
pdm09) were in aged care facilities. 
The first outbreak occurred in week 
3 (week commencing 17 January).
The remainder of the outbreaks were 
notified between early August and 
early November, with five outbreaks 
notified in September.

Melbourne medical deputising
service
A total of 757 patients had a recorded 
“flu” or “influenza” diagnosis by the 
MMDS during the 2011 surveillance 
season, corresponding to 0.6 per cent 
of all consultations. IU activity rose 
sharply in week 31 (week commencing 
18 July) and peaked in week 36 (week 
commencing 5 September) with 
13.8 ILI per 1,000 consultations, two 
weeks after the peak of the GPSS IU 
rate (Figure 3). Uke the GPSS, 
the peak IU rate from the MMDS was 
tow compared to previous seasons 
(Figure 2). The peak occurred in week 
36 (week commencing 5 September).

Victorian infectious Diseases Bulletin Volume 15 Issue 2 June 2012

Strain typing
Of the 771 specimens and four 
isolates received at the WHO 
Collaborating Centre, 388 (50 per cent) 
yielded an influenza positive isolate 
following cell culture. Of these, 243 
(63 per cent) were type A and 145 (37 
per cent) were type B. Of the influenza 
A viruses, 89 were A(H 1N1 )pdm09 
(A/CaJifomia/7/09) strains and 154 
were A(H3N2) viruses. Eighty-eight 
(98 per cent) of the A(H1 N1) viruses 
were antigenically similar to the 2011 
vaccine strain A/Califomia/7/2009, 
while 135 (88 per cent) of the A(H3N2) 
strain viruses were similar to the 2011 
vaccine strain A/Perth/16/2009.
Ail influenza type B strains except 
one were of the BA/ictoria/2/87 
lineage, with 130 (90 per cent) being 
similar to the 2011 vaccine strain B/  
Brisbane/60/2008. One type B virus 
was from the B/Yamagata/16/88 
lineage. All of the Victorian influenza 
positive isolates were tested for 
susceptibility to the neuraminidase 
inhibitors oseltamivir and zanamivir. 
One of the 89 A(H1 N1 )pdm09 viruses 
tested (one per cent) was found 
to be oseltamivir resistant due to a 
H275Y mutation in the neuraminidase 
gene. It is unknown if this patient was 
being treated with oseltamivir prior 
to specimen collection. None of the 
A(H3N2) or B viruses were resistant to 
oseltamivir or zanamivir.

Discussion
The 2011 influenza season in 
Victoria, as measured by IU from 
both the MMDS and GPSS, was mild 
compared to previous seasons. The 
season overall was not dominated 
by any type or subtype of influenza, 
although type A cases tended to be 
more common earlier in the season 
and type B in the latter part. There 
were no detections of pre-pandemic 
H1N1 influenza strains, confirming
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that influenza A(H1N1)pdm09 is now 
the seasonal influenza A(H1N1) strain. 
There were 13 laboratory confirmed 
influenza outbreaks in 2011. nearly 
all of which were in aged care 
facilities, and although this represents 
a considerable increase on the six 
reported in 20106 it may be indicative 
of the re-emergence of influenza 
A(H3N2) which is generally associated 
with older age groups.7

In 2011 the proportion of GPSS ILI 
cases that were swabbed was 71 
per cent, similar to 2010 (70 per 
cent)6 and 2009 (68 per cent) but 
significantly higher than from 2003 to 
2008 in which 35-50 per cent of IU 
patients were swabbed (p<0.001).8 
This suggests higher awareness and/ 
or concern regarding influenza and an 
increase in the ease of testing since 
the 2009 pandemic. However, only 
28 per cent of tests were positive for 
influenza, which was low compared 
to the previous years 2006 to 2010 in 
which the median proportion positive 
was 35 per cent (range: 28-45 per 
cent) (pcO.001).

The proportion of total ILI cases that 
were vaccinated was 14 per cent 
in 2011, significantly lower than the 
average of the years 2006-2010 (18 
per cent, p<0.001).6!M1 Similarly,
14 per cent of swabbed ILI cases in 
2011 were vaccinated, significantly 
lower than the average of the previous 
five years 2006-2010 (19 per cent, 
p<0.001). This suggests that while 
patients are being tested more, fewer 
are being vaccinated.

As indicated by the median ages 
and age distributions for both GPSS 
laboratory confirmed influenza and 
routine notifications, type B influenza 
cases were generally younger than 
type A(H3N2) cases, consistent 
with the typically observed age 
distributions for these influenza 
types.7 The median age of A(H1 N1)

pdm09 has risen from 20 years in 
2009, 26 (GPSS) and 21 (routine 
notifications) in 2010 to 32 (GPSS) 
and 33 (routine notifications) in 
2011. This increase in age was also 
observed in the United Kingdom 
Severe Influenza Surveillance System 
where the median age of A(H1 N1) 
pdm09 increased from 20 years in 
2009 to 35 years in 2010.1Z Such 
a shift in the median age of cases 
is not unexpected following the 
emergence of a pandemic influenza 
strain in which higher attack rates 
in younger age groups that have no 
prior immunity are observed during 
the initial outbreak, followed by a 
shift to older age groups as immunity 
increases in the young.13'14

The trivalent influenza vaccine for the 
2011 southern hemisphere season 
contained California/7/2009 (H1N1)- 
like virus, A/Perth/16/2009 (H3N2)- 
like virus and B/Brisbane/60/2008-like 
virus. Strain analysis undertaken 
by the WHO Collaborating Centre 
indicated a good antigenic match 
between the 2011 vaccine and 
circulating strains, with 88 per cent 
of the A(H1 N1) viruses matching the 
vaccine strain A/California/7/2009,
88 per cent of the A(H3N2) viruses 
matching the vaccine strain A/
Perth/16/2009 and 90 per cent 
of type B viruses similar to the B/ 
Brisbane/60/2008 strain in the 
vaccine. We have previously shown 
that type- and subtype-stratified 
adjusted vaccine effectiveness 
estimates (A(H1 N1)pdm09: 78 per 
cent; A(H3N2): 58 per cent; B: 53 per 
cent) were broadly consistent with a 
good match between vaccine and 
circulating strains.15

In previous years the ILI rate as 
measured by the MMDS has generally 
peaked prior to that of the GPSS, 
followed several weeks later by a 
peak in routine notifications. However

in 2011 GPSS ILI rates peaked two 
weeks prior to that of the MMDS. The 
reasons for this are unclear, but may 
be an artefact of a season with low 
or mild IU activity in which a peak is 
less well defined and exacerbated by 
the non-specific IU case definition. 
Routine notifications, given the time 
taken for testing and the notification 
to be made to the department peaked 
the latest. The age distribution of 
laboratory confirmed influenza was 
consistent with previous years, with 
a majority of those from the GPSS 
comprised of working age adults, 
while there was a higher proportion 
of elderly among the cases routinely 
notified to the department, likely to be 
a reflection of hospitalised influenza 
patients.

The Victorian influenza surveillance 
system continues to provide a reliable, 
consistent system for monitoring the 
epidemiology of IU and laboratory 
confirmed influenza in Victoria.

Victorian influenza surveillance system 
reports are available at https://www. 
victorianflusurveillance.com.au/

Acknowledgements
We gratefully acknowledge the 
ongoing support of general 
practitioners and their practice staff 
participating in the GP Sentinel 
Surveillance and Ms Josie Adams, 
Executive Director for the continued 
involvement of Melbourne Medical 
Deputising Service in influenza 
surveillance in Victoria. We also thank 
private pathology providers who 
assisted with transport of respiratory 
specimens from metropolitan and 
rural general practices.

Laboratory testing was conducted 
by the Viral Identification Laboratory 
at VIDRL and public health 
follow up was undertaken by the 
Investigation and Response Section,

54 Victorian Infectious Diseases Bulletin Volume 15 Issue 2 June 2012

- 1 5 4 -



Post-pandemic influenza epidemiology

Communicable Disease Prevention 
and Control Unit in the Department 
of Health. Staff of the WHO  
Collaborating Centre for Reference 
and Research on Influenza who 
provided influenza strain identification 

data to the weekly VIDRL surveillance 
report.

VIDRL receives support for its 
influenza surveillance program 
from the Victorian Government 
Department of Health. The Melbourne 
W HO Collaborating Centre for 
Reference and Research on Influenza 
is supported by the Australian 
Government Department of Health 

and Ageing.

References
1. Kelly H, Murphy A, Leong W, 

Leydon J, Tresise P, Gerrard 
M, et al. Laboratory-supported 
influenza surveillance in Victorian 

sentinel general practices. 
Commun Dis Intell. 2000  
Dec;24(12):379-83

2. Thursky K, Cordova SR Smith 
D. Kelly H. Working towards a 
simple case definition for influenza 
surveillance J Clin Virol. 2003 
Jul;27(2): 170-9

3. Watts CG, Andrews RM, Druce 
JD, Kelly HA. Establishing 
thresholds for influenza 
surveillance in Victoria. Aust N Z J  
Public Health. 2003;27(4):409-12

4. Australian Government 
Department of Health and Ageing. 
Immunise Australia Program -  
Influenza 2012 [updated 2012; 
cited]; Available from: http;// 
www.immunise.health.gov.au/ 
internet/immunise/publishing. 
nsf/Content/immunise-influenza.

5. World Health Organization. 
Standardization of terminology 
of the pandemic A(H1 N 1)2009 
virus. 2011 [updated 2011; cited]; 
Available from: http://www.who. 
int/influenza/gisrsjaboratory/ 
terminology_ah1 n1 pdm 09/en/ 
index.html.

6. Grant KA FL, Kaczmarek M.
Hurt AC, Kostecki R, Kelly 
HA, Fielding JE. Continued 
dominance of pandemic A(H1 N1) 
2009 influenza in Victoria, 
Australia in 2010. Western Pacific 
Surveillance and Response.
2011 ;2(3): www.wpro.who.int/ 
wpsar.

7. Kelly H, Grant K, Williams S, 
Smith D. H1N1 swine origin 
influenza infection in the United 
States and Europe in 2009 may 
be similar to H1N1 seasonal 
influenza infection in two 
Australian states in 2007 and 
2008. Influenza Other Respi 
Viruses. 2009 Jul;3(4): 183—8

8. Kelly HA, Grant KA, Fielding JE, 
Carville KS, Looker CO, Tran
T, et al. Pandemic influenza 
H1N1 2009 infection in Victoria, 
Australia: No evidence for harm 
or benefit following receipt of 
seasonal influenza vaccine 
in 2009. Vaccine. 2011 Apr 
5;29(37):6419 -2 6

9. Grant KA, Carville K, Fielding JE, 
Barr IG, Riddell MA, Tran T, et al. 
High proportion of influenza B 
characterises the 2008 influenza 
season in Victoria. Commun Dis 
Intell. 2009 Sep;33(3):328-36

10. Miller ER, Fielding JE, Grant KA, 
Barr IG, Papadakis G, Kelly HA. 
Higher than expected seasonal 
influenza activity in Victoria, 
2007. Commun Dis Intell. 2008  

Mar;32(1):63-70

11. Fielding JE, Miller ER, Adams J, 
Hawking B, Grant K, Kelly HA. 
Influenza surveillance in Victoria, 
2006. Commun Dis Intell. 2007  
Mar;31(1): 100-6

12. Bolotin S, Pebody R, White PJ, 
McMenamin J, Perera L, Nguyen- 
Van-Tam JS, et al. A new sentinel 
surveillance system for severe 
influenza in England shows a shift 
in age distribution of hospitalised 
cases in the post-pandemic 
period. PLoS One. 7(1 ):e30279

13. Ferguson NM, Galvani AP,
Bush RM. Ecological and 
immunological determinants of 
influenza evolution. Nature. 2003  
Mar 27 ;422(6930):428-33

14. Miller MA, Viboud C, Balinska 
M, Simonsen L. The Signature 
Features of Influenza Pandemics 
-  Implications for Policy. N  
Engl J  Med. 2009 June 18, 
2009;360:2595-8

15. Fielding JE GK, Tran T, Kelly 
HA. Moderate influenza vaccine 
effectiveness in Victoria, 
Australia, 2011. Euro Surveill.
2012;17(11):pii=20115

Victorian Infectious Diseases Bulletin Volume 15 Issue 2 June 2012 56



Chapter 6

- 1 5 6 -



Post-pandemic influenza epidemiology

Surveillance Report

Epidemiology of the 2012 influenza season 
in Victoria, Australia
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Allen Cheng' * 1
Correspondence to Fielding (e-moil: james.fielding@mh.org.au).

Objective: To assess the magnitude and severity of the 2012 influenza season in Victoria, Australia using surveillance data 
from five sources.

Methods: Data from influenza notifications, sentinel general practices, a sentinel hospital network, a sentinel locum service 
and strain typing databases for 2012 were descriptively analysed.

Results: Influenza and influenza-like illness activity was moderate compared to previous years, although a considerable 
increase in notified laboratory-confirmed influenza was observed. Type A influenza comprised between 83% and 87% 
of cases from the general practitioners, hospitals and notifiable surveillance data. Influenza A/H3 was dominant in 
July and August, and most tested isolates were antigenically similar to the A/Perth/16/2009 vims used in the vaccine. 
There was a smaller peak of influenza type B in September. No tested viruses were resistant to any neuraminidase inhibitor 
antivirals. Higher proportions of type A/H3, hospitalized cases and those with a comorbid condition indicated for influenza 
vaccination were aged 65 years or older. Influenza vaccination coverage among influenza-1 ike illness patients was 24% in 
sentinel general practices and 50% in hospitals.

Discussion: The 2012 influenza season in Victoria was average compared to previous years, with an increased dominance 
of A/H3 accompanied by increases in older and hospitalized cases. Differences in magnitude and the epidemiological 
profile of cases detected by the different data sources demonstrate the importance of using a range of surveillance data to 
assess the relative severity of influenza seasons.

% lictoria  is Australia’s southernmost mainland state 
\  /  with a population of approximately 5 .5  million and 
V a median age of 37.3  years.1 It has a temperate 

climate and an influenza season that usually occurs 
between May and October. The Victorian influenza 
surveillance system consists of several surveillance data 
sources used to monitor seasonal influenza and influenza-
like illness (ILI) activity in Victoria: notified laboratory- 
confirmed influenza, sentinel general practices and 
hospitals, a sentinel metropolitan locum service and 
reference laboratory typing.

Medical practitioners and laboratory personnel are 
required by state law to notify the Department of Health 
of all laboratory-confirmed cases of influenza within 
five days of diagnosis. Identification, demographic and 

diagnostic data must also accompany the notification.

The Victorian General Practice Sentinel Surveillance 
(GPSS) programme provides reports on ILI by sentinel

general practitioners (GPs) from May to October each 
year. A subset of these ILI cases is swabbed for laboratory 
testing for influenza.2 The Influenza Complications 
Alert Network (FluCAN) is a real-time sentinel hospital 
surveillance system for acute respiratory disease and 
collects surveillance data on hospitalised adults with 
laboratory-confirmed influenza.

The Melbourne Medical Deputising Service 
(MMDS) is the largest medical locum service in Australia 
and provides 24-hour medical services to patients at 
their residence in the Melbourne metropolitan area and 

Geelong. MMDS provides the proportion of ILI diagnoses 
made from all consultations.

Influenza-positive samples submitted to the 
World Health Organization (WHO) Collaborating Centre 
for Reference and Research on Influenza for strain 

characterization and antiviral drug sensitivity testing 
comprise the fifth surveillance data source.
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National Centre for Epidemiology & Population Health, Australian National University, Canberra, Australia. 
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The objectives of the Victorian influenza surveillance 
system are to: monitor the epidemiology of laboratory- 
confirmed influenza in Victoria; identify the onset, 
duration and relative severity of annual influenza seasons 
in Victoria; provide samples for the characterization of 
circulating influenza strains in the community to assist 
in the evaluation of the current seasonal vaccine and 
formulation of the following season’s vaccine; provide 
potential for early recognition of new influenza viruses 
and new or emerging respiratory diseases; and estimate 
influenza vaccine effectiveness each year.

Here we describe the epidemiology of the 2012 
influenza season from the Victorian influenza surveillance 
system.

METHODS

Notifiable diseases surveillance (notified cases)

Records of all laboratory-confirmed influenza cases 
(defined as detection of influenza virus by nucleic acid 
testing or culture from an appropriate respiratory tract 
specimen) with a 2012 notification date were extracted 
from the Department of Health Public Health Event 
Surveillance System on 19 March 2013. For consistency 
and comparability only cases classified as “routinely 
notified" were used in the descriptive analyses; this 
excluded cases identified from outbreak investigations 
and GPSS but included FluCAN cases, which were 
unable to be separated from the data set. As this report 
focuses on case-based surveillance, notified institutional 
outbreaks were excluded.

General Practice Sentinel Surveillance 
programme

In 2012, 104 GPs (74 from 29 metropolitan practices 
and 30 from 12 rural practices) participated in 
GPSS, which operated from 30 April to 28 October 
(weeks 18 to 43) inclusive. The number of ILIs, defined 
as a case with fever, cough and fatigue/malaise,3 and 
total consultations per week were submitted weekly 
by fax, e-mail or online submission. ILI rates were 
calculated as the number of ILI patients per 1000 
consultations.

GPs collected either a nose or throat swab from a 
subset of patients presenting within four days of symptom 
onset, chosen at the discretion of the GP Data collected

www.wpro.who.int/wpsar

on swabbed patients included: age, sex, symptoms 
(fever, cough, fatigue, myalgia, other), seasonal influenza 
vaccination status (for 2012 and the previous 2011 
vaccines), date of vaccination/s and any co-morbidity for 
which influenza vaccination is recommended.4

Testing of these clinical specimens comprised 
extraction of ribonucleic acid and in-house validated 
real-time multiplex polymerase chain reaction (PCR) 
assays to detect type A influenza viruses (matrix gene), 
type B influenza viruses (nucleoprotein gene) and type C 
influenza viruses (matrix gene). Influenza A virus-positive 
samples were further subtyped using individual real-time 
PCR assays incorporating primers and probes specific for 
the haemagglutinin gene of A(HlNl)pdm09 and A(H3) 
strains.

Influenza Complications Alert Network

FluCAN is a hospital-based programme that collects 
surveillance data on hospitalized patients with laboratory- 
confirmed influenza in near real-time.5 The network 
also aims to estimate vaccine coverage and vaccine 
effectiveness by comparing vaccination status in PCR- 
confirmed cases with a sample of test-negative controls. 
In Victoria, four hospitals are involved, two of which 
have paediatric units that collect data on hospitalized 
children.6 Subtyping of influenza A virus infections is not 
routinely conducted in FluCAN.

Melbourne Medical Deputising Service

Weekly rates of influenza-related diagnoses by MMDS 
clinicians per 1000 consultations were calculated from 
records returned from the MMDS clinical database 
using the search terms “influenza” and “flu.” To avoid 
inclusion of those immunized prophylactically, records 
that contained the terms “Fluvax," “at risk” and 
"immunization” were excluded.

Strain characterization and antiviral resistance 
testing

In 2012, all influenza-positive GPSS samples tested by 
the Victorian Infectious Diseases Reference Laboratory 
(VIDRL) as well as a selection of virus specimens and 
isolates tested by other Victorian laboratories were 
forwarded to the WHO Collaborating Centre for Reference 
and Research on Influenza for strain characterization 
and antiviral drug sensitivity testing. Samples were

WPSAR Vol 4, No 3, 2013 | doi: 10.5365/wpjor.2013.4.2.007 | T J
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Figure 1. General Practice Sentinel Surveillance (GPSS) and Melbourne Medical Deputising Service (MMDS) 
influenza-like illness (ILI) consultation rates, Victoria, Australia, 2003 to 2012

MMDS ILI rate

GPSS ILI rate

first inoculated into Madin-Darby Canine Kidney cells 
to obtain virus isolates. Those successfully isolated 
were then analysed by haemagglutination inhibition assay 
to determine antigenic similarity to the current vaccine 
strains. Isolates were also tested in a neuraminidase 
inhibition assay to determine susceptibility to the antiviral 
drugs oseltamivir, zanamivir, peramivir and laninamivir.

Data analyses

Descriptive analyses of the surveillance data were 
conducted in Microsoft Excel. Distributions of influenza 
and vaccination status by type/subtype, age group and 
presence of a comorbid condition were compared using 
the chi-squared test in Stata (version 10.0; StataCorp 
LP, College Station, TX, USA) with P < 0.05 considered 
significant.

RESULTS

Influenza-like illness

In 2012 GPPS conducted 186 375 consultations 
during the 26-week surveillance period, of which 
1176 (six per 1000 consultations) were for patients 
with ILI. Consultations for ILI were significantly higher 
for metropolitan GPs compared to rural GPs (seven and 
five per 1000 consultations, respectively; P < 0.001). 
During the same period, 948 cases of ILI were 
diagnosed from 76 267 MMDS consultations (12 per

WPSAR Vol 4, No 3, 2 0 1 3 jd o i: 10.5365/wpsor.2013.4.2.007

1000 consultations). ILI cases peaked at 14.9 and 
22.3 per 1000 consultations for the GPSS and MMDS 
systems during the week ending 15 July and one week 
later, respectively; both were slightly higher than those 
observed in 2010 and 2011 (Figure 1). Elevated ILI 
activity was sustained in MMDS for approximately 
two months beginning in early July (Figure 2).

Laboratory-confirmed influenza

Laboratory-confirmed influenza cases were reported 
from three sources -  notified cases (n = 5058), GPSS 
(n = 280) and FluCAN (n = 389) (Table 1). There 
was no clearly defined peak for notified cases in 2012, 
although 72% were notified in the two months between 
mid-July and mid-September (Figure 2). There were also 
no well-defined peaks for laboratory-confirmed cases of 
influenza from GPSS and FluCAN, although for FluCAN 
hospitals the highest number of cases admitted was in 
mid-to-late July (Figure 2).

Most notified cases (n =  4278; 85%) were 
influenza type A with subtyping reported for 223 (5%); of 
these, 67 (30%) were H I and 156 (70%) were H3. H3 
cases were detected throughout the peak period while 
H I cases were mainly reported in July. There were also 
745 cases (15%) of influenza type B notified, 
predominantly in the latter half of the surveillance period 
(Figure 3); 29 cases of type A and type B coinfection; 
and six cases of type C infections.

www.wpro.who. int/ wpsor
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Figure 2. Number of laboratory-confirmed influenza cases and influenza-like illness consultation rates by 
surveillance source, Victoria, Australia, 30  April to 28 October 2012
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Notified cases -  cases notified to Department of Health; GPSS -  General Practice Sentinel Surveillance; FluCAN -  Influenza 
Complications Alert Network; ILI -  influenza-like illness; MMDS -  Melbourne Medical Deputising Service

Table 1. Laboratory-confirmed influenza cases* by surveillance source, age group and type/subtype, Victoria, 
Australia, 2012

Source Age group 
(years)

A/H1

n %

A/H3

n %

A (not subtyped) 

n %

B

n %
Notified cases 0-4 18 27 13 8 471 12 48 6

5-14 7 10 11 7 400 10 182 25

15-29 14 21 21 13 543 13 149 20

30-49 11 16 35 22 1117 28 194 26

50-64 10 15 25 16 580 14 74 10

2 65 7 10 51 33 940 23 94 13

Not reported - - - - 4 - 4 -
Total 67 100 156 100 4055 100 745 100

GPSS 0-4 3 13 23 11 2 22 2 5

5-14 2 8 32 16 1 11 9 24

15-29 5 21 28 14 3 33 11 29

30-49 9 38 69 34 3 33 13 34

50-64 5 21 35 17 0 0 2 5

2 65 0 0 18 9 0 0 1 3

Total 24 100 205 100 9 100 38 100

FluCAN 0-4 - - - - 22 6 5 10

5-14 - - - - 7 2 4 8

15-29 - - - - 28 8 9 18

30-49 - - - - 59 17 13 26

50-64 - - - - 54 16 4 8

i  65 - - - - 169 50 15 30

Total - - - - 339 100 50 100

Notified cases -  cases notified to Department of Health; GPSS -  General Practice Sentinel Surveillance; FluCAN -  Influenza Complications 
Alert Network.

*  Excluding 2 9  notified cases of type A and B coinfection and 10 cases of type C (six notified cases and four from GPSS).
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Figure 3. Number of laboratory-confirmed influenza cases by type/subtype* and surveillance source, Victoria, 
Australia, 30 April to 28 October 2012

—  A/H1 - Notified cases

—  A/H1 - GPSS cases

—  A/H3 - Notified cases

—  A/H3 - GPSS cases

—  B - Notified cases 

B - GPSS cases

Week ending

Notified cases -  cases notified to Department of Health; GPSS -  General Practice Sentinel Surveillance 

*  4055 cases of influenza A that were not further subtyped were excluded.

Of the 1176 I LI cases identified from GPSS, 
709 (60%) were swabbed and 280 (39%) were 
positive for influenza. The proportion of swabbed I LI 
cases positive for influenza ranged from 15%-25% 
until mid-June then quickly rose to 40%-60% until late 
September, and from 35% in 50-64 year-olds to 54% 
among those aged 5-14 years (P = 0.06). Of the 280 
laboratory-confirmed influenza cases from GPSS, 205 
(73%) were A/H3 infections, 24 (9%) were A /H I, 38 
(14%) were type B and four were type C; specimens 
from the remaining nine influenza A cases contained 
insufficient virus for subtyping. Most (71%) of the type B 
cases were detected in August and September (Figure 3). 
The majority of the 389 FluCAN cases ( n  = 339; 87%) 
were type A but were not subtyped.

Sixteen notified cases were reported to have died 
due to influenza: one due to type B infection and the 
remainder type A, of which three were subtyped as H3. 
Twelve cases were aged 65 years or older, one was aged 
zero to four years, with the remaining three cases aged 
between five and 64 years.

The age group with the highest proportion of 
laboratory-confirmed cases was those aged 30-49 years 
for both notified cases (27%) and GPSS (34%). 
There were also relatively high proportions of cases

aged 65 years or older from FluCAN and notified cases 
(47% and 22%, respectively) but not GPSS (7%). 
However, the rate of notified cases was highest for 
those aged zero to four years and 65 years or older, with 
154 and 137 notified cases per 100 000 population, 
respectively, compared to 61-90 per 100 000 for the 
other age groups.

There was a significant difference in the age 
distribution of notified cases by influenza type B and 
A subtypes (excluding influenza A cases that were not 
subtyped, P < 0.001). A higher proportion of influenza 
A/HI cases were aged zero to four years, whereas for 
influenza A/H3 cases, a higher proportion were aged 
65 years or older. There was no difference observed 
in GPSS (P = 0.12) (Table 1). In FluCAN, cases of 
influenza type A were significantly older than those with 
type B (P = 0.003).

V acc ina tion  status

Vaccination status was recorded for 688 (97%) of 
709 swabbed GPSS patients of whom 168 (24%) 
reported being vaccinated. FluCAN collected vaccination 
status from cases and influenza-negative controls and 
recorded vaccination status for 772 of 935 (83%) 
patients who had been swabbed, half of whom were

WPSAR Vol 4, No 3, 2013 doi: 10.5365/wpsor.2013.4 .2 .007 www.wpro.who.int/wpsar
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Figure 4. Proportion of General Practice Sentinel Surveillance (GPSS) and Influenza Complications Alert 
Network (FluCAN) patients vaccinated* by influenza status, age group and surveillance source, 
Victoria, Australia, 2012

GPSS influenza negative 

GPSS influenza positive 

FluCAN influenza negative 

FluCAN influenza positive

15-29 30-49 50-64

Age group (years)

Includes only those patients who were swabbed and tested for influenza.

vaccinated in = 385; 50%). There was no statistically 
significant difference between the proportion of influenza-
positive and -negative patients with known vaccination 
status in either GPSS (P = 0.89) or FluCAN (P = 0.23). 
For both surveillance data sets the proportion of patients 
vaccinated increased with age (Figure 4). With the 
exception of those aged 65 years or older in GPSS, 
the proportion of influenza-positive patients who were 
vaccinated in adult age groups was lower than the 
proportion of influenza-negative patients who were 
vaccinated in each system.

Comorbidities

Data on comorbidities for which influenza vaccination 
is indicated were reported for 632 (89%) of the 
709 swabbed patients from GPSS. The presence of 
a comorbid condition was reported for 111 (18%) of 
swabbed patients; there was no difference between 
influenza-positive and influenza-negative patients 
(17% compared with 18%; P = 0.60). However, the 
proportion with a reported comorbidity rose steadily 
with increasing age group from 3% in those aged zero 
to four years to 58% in the 65 years or older age group 
(P < 0.001). In FluCAN patients, the proportion with a 
reported comorbidity rose steadily with increasing age 
group from 31% in those aged zero to four years to 87%

in the 50-64 year age group and 90% in the 65 years 
or older age group.

Strain characterization and antiviral resistance 
testing

A total of 1293 patient specimens were submitted to 
the WHO Collaborating Centre in 2012. Culture was 
attempted for 1095 of these samples, with 563 (51%) 
yielding an influenza virus isolate: 470 (83%) type A 
viruses, 92 (16%) type B viruses and one type C virus. 
Most of the viruses isolated were A/H3 viruses (n = 437, 
93%) with most of these (82%) being antigenically 
similar to the A/Perth/16/2009 virus used in the 
seasonal influenza vaccine. A/HI viruses comprised 
just 7% (n = 33), with 29 being antigenically similar 
to the A/California/7/2009 strain used in the vaccine; 
the remaining four were low reactors (haemagglutination 
inhibition titre > 8 fold lower). Among the 92 type B 
viruses isolated, 54 (59%) were antigenically similar to 
the B/Brisbane/60/2008 (Victoria lineage) strain used 
in the vaccine. The remainder included 16 Victoria and 
21 Yamagata lineage viruses.

Neuraminidase inhibition assays indicated that 
none of the 473 viruses tested was resistant to any of 
the antiviral drugs tested.
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DISCUSSION

The magnitude of ILI activity in the 2 0 1 2  influenza 

season in Victoria, as shown by GPSS and MMDS, was 

slightly higher than 2 0 1 0  and 2 011  but broadly average 

compared to the previous 10 years. Although the 

proportion of ILI patients identified by MMDS was higher 

than GPSS, both were consistent with trends observed 

in previous years. The number of laboratory-confirmed 

influenza cases from GPSS was also comparable to 

2 0 1 0  and 2 0 1 1.7,8 The number of patients reported 

through FluCAN in 2 0 1 2  was considerably higher than 

the 146  cases reported in 2 0 1 1  (the first year that all 
four hospitals participated in FluCAN).9 Notified cases 

of laboratory-confirmed influenza increased by 68%  in 

2 0 1 2  compared to 2011  and was also much higher than 

the 1914  notified cases in 2 0 1 0 .7,8 This increase was 

disproportionate compared with that of the other data 

sources in the Victorian surveillance system; therefore 

we believe the increase in notified cases reflects an 

increase in testing rather than a dramatic increase in 

disease.10

Type A influenza peaked during July and August, 
with a much smaller peak of type B in September. 
Subtyping of viruses from GPSS and a subset of notified 

cases indicated the 2 0 1 2  season was dominated 

by influenza A/H3, continuing the trend of seasonal 
dominance of A/H3 away from the emergence and 

almost exclusive predominance of influenza A (H 1N 1) 
pdm 09 in 2 0 0 9 .11A season in which H3 is the dominant 
subtype followed by a smaller type B increase is a well- 
established pattern of influenza epidemics during the 

winter months of temperate zones,12 as in Victoria in 

2 0 0 7 ,13 New Zealand in 2 0 1 2 ,14 the United States of 
America15 and Canada16 during the 2 0 1 2 /1 3  northern 

hemisphere influenza season.

Although the type A influenza reported through 

FluCAN were not further characterized, it is likely that 
a substantial proportion were A/H3 infections, given 

that a high proportion of FluCAN cases were aged 

65  years or older and that many cases in this age group 

among notified cases were A/H3. A higher median age 

of A/H3 cases compared to seasonal A /H I and type B 

cases has recently been observed in Victoria.17 However, 
the increase of H3 in older cases only partially explains 

the increase in all notified cases; similar proportional 

increases were observed across all age groups, possibly 

arising from increased presentation of more severe cases

F H  WPSAR Vol 4, No 3, 2013 doi: 10.5365/wpsor.2013.4.2.007

caused by A/H3 virus infections across all ages as well 
as increased testing.

The proportion of ILI patients who were swabbed in 

GPSS declined to 60%  in 2 0 1 2  from 71%  in both 2 0 1 0  

and 2 0 1 1 .7,8 As the aim of this component of GPSS is 

to determine what strains are circulating each season, 
demographic and other data are not collected on these 

patients. Therefore further comparison cannot be made, 
neither over the years nor between those that were 

swabbed or not. While providing flexibility to the doctors, 

discretionary swabbing is also a limitation of GPSS as 

factors that may influence a GP to differentially swab one 

patient over another (such as age or vaccination status) 
are unknown.

Vaccination coverage among patients in both GPSS 

and FluCAN systems increased between 2011  and 

2 0 1 2 , possibly due to a shift in age distribution to older 
patients in 2 0 1 2 .6,18 Higher vaccination coverage in 

FluCAN patients compared to GPSS in both years may be 

due to the older age distribution and higher prevalence of 

comorbid conditions indicated for influenza vaccination 

(groups for which influenza vaccine is provided free 

through the National Immunization Programme4) of 
those attending hospitals compared to general practice.

Two observations from the surveillance system 

suggest that the 2 0 1 2  seasonal trivalent influenza 

vaccine (comprised of A/California/7/2009 (H 1N 1) 
pdm09-like virus, an A /Perth /16/2009 (H3N2)-like  

virus and a B/Brisbane/60/2008-like virus)19 may have 

been moderately effective. First, the results of strain 

typing suggested a good antigenic match of vaccine 

strains -  particularly the A /H I and A/H3 subtypes -  to 

a high proportion of Victorian isolates for which strain 

characterization testing was undertaken. Second, a 

higher proportion of swabbed patients in nearly all adult 
age groups of GPSS and FluCAN who were negative for 

influenza were vaccinated compared to those who tested 

positive. However, these findings should be interpreted 

with caution. We have previously demonstrated with 

Victorian data that an apparent good match of vaccine 

to circulating strains does not necessarily correlate with 

greater vaccine effectiveness.20 It has been suggested 

that antibody immunity measured by haemagglutination 

inhibition assay may not be an optimal correlate of 
protection against clinical infection because it may not 

always detect drift in the haemagglutinin antigen.21,22 

Also, the relatively few participating institutions and

www.wpro.who. int/ wpsor
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limited number of specimens forwarded for strain 
characterization may not necessarily be representative of 
all virus/es circulating in the community. The calculation 
of influenza vaccine effectiveness from surveillance 
data requires application of a more systematic 
methodology,18,23 which will be reported separately.

The inclusion of hospitalized cases from FluCAN 
augmented the Victorian influenza surveillance system 
in 2012 by including cases at the severe end of the 
clinical spectrum. However, while FluCAN cases were 
reported independently, they were also included in the 
notified cases data set. While community surveillance 
suggested a relatively benign influenza season, hospital 
data indicated an increase in severe disease among 
older people, presumably associated with A/H3. This 
demonstrates the importance of using a range of 
surveillance data sources. Efforts are continuing to 
improve the quality and breadth of integrated influenza 
surveillance in Victoria by subtyping a higher proportion 
of type A influenza infections (especially those identified 
through FluCAN) and examining the feasibility of 
establishing ILI and influenza surveillance in hospital 
emergency departments.
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Influenza vaccine effectiveness

About this chapter
The papers in this chapter used influenza laboratory testing data from a general 

practitioner sentinel surveillance program in a case test-negative study design to 

estimate influenza vaccine effectiveness (VE) against medically attended 

laboratory confirmed influenza. Effectiveness was calculated for annual seasonal 

trivalent influenza vaccines from 2007 to 2011 inclusive and monovalent 

pandemic (H1N1) vaccine in 2010, and published in BMC Infectious Diseases, 

Vaccine, Emerging Infectious Diseases and Eurosurveillance.

Overall seasonal influenza VE varied from a low of 3% in 2009 to 79% in 2010, 

reflecting the sudden emergence of influenza A(HlNl)pdm09 in 2009 and its 

establishment as the dominant strain in 2010. The monovalent pandemic (H1N1) 

vaccine had a considerably lower effectiveness of 47%. There was also 

considerable variation in type- and subtype-specific estimates of VE that could not 

necessarily be reconciled by whether or not vaccine and circulating strains were 

matched. Insufficient study power compromised the ability to generate more 

precise estimates for some stratified analyses, particularly by age group.

Papers in this chapter
1. Fielding JE, Grant KA, Papadakis G, Kelly HA. Estimation of type- and subtype- 

specific influenza vaccine effectiveness in Victoria, Australia using a test 

negative case control method, 2007-2008. BMC Infect Dis 2011; 17: 170.

2. Kelly HA, Grant KA, Fielding JE, Carville KS, Looker CO, Tran T, Jacoby P. 

Pandemic influenza H1N1 2009 infection in Victoria, Australia: No evidence for 

harm or benefit following receipt of seasonal influenza vaccine in 2009. Vaccine 

2011; 29: 6419-6426.

3. Fielding JE, Grant KA, Garcia K, Kelly HA. Seasonal influenza vaccine 

effectiveness against medically-attended pandemic influenza A (H1N1) 2009 in 

Victoria, Australia, 2010. Emerg Infect Dis 2011; 17:1181-1187.

4. Fielding JE, Grant KA, Tran T, Kelly HA. Moderate influenza vaccine 

effectiveness in Victoria, Australia, 2011. Euro Surveill 2012; 17: pii=20115.
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Estimation of type- and subtype-specific influenza 
vaccine effectiveness in Victoria, Australia using 
a test negative case control method, 2007-2008
James E Fielding1,2*, Kristina A Grant1, Georgina Papadakis1 and Heath A Kelly1

Abstract
Background: Antigenic variation of influenza virus necessitates annual reformulation of seasonal influenza vaccines, 
which contain two type A strains (HI N1 and H3N2) and one type B strain. We used a test negative case control 
design to estimate influenza vaccine effectiveness (VE) against influenza by type and subtype over two consecutive 
seasons in Victoria, Australia.
Methods: Patients presenting with influenza-like illness to general practitioners (GPs) in a sentinel surveillance 
network during 2007 and 2008 were tested for influenza. Cases tested positive for influenza by polymerase chain 
reaction and controls tested negative for influenza. Vaccination status was recorded by sentinel GPs. Vaccine 
effectiveness was calculated as [(1 - adjusted odds ratio) x 100%].
Results: There were 386 eligible study participants in 2007 of whom 50% were influenza positive and 19% were 
vaccinated. In 2008 there were 330 eligible study participants of whom 32% were influenza positive and 17% were 
vaccinated. Adjusted VE against A/H3N2 influenza in 2007 was 68% (95% 0 ,  32 to 85%) but VE against A/H1N1 
(27%; 95% Cl, -92 to 72%) and B (84%; 95% Cl, -2 to 98%) were not statistically significant. In 2008, the adjusted VE 
estimate was positive against type B influenza (49%) but negative for A/H1N1 (-88%) and A/H3N2 (-66%); none was 
statistically significant
Conclusions: Type- and subtype-specific assessment of influenza VE is needed to identify variations that cannot be 
differentiated from a measure of VE against all influenza. Type- and subtype-specific influenza VE estimates in 
Victoria in 2007 and 2008 were generally consistent with strain circulation data.

Background
Vaccination is the cornerstone of influenza morbidity 
and mortality prevention and many countries have 
implemented publicly funded influenza vaccination pro-
grams for nationally defined high-risk groups [1]. As 
part of its National Immunisation Program, in 2007 and 
2008 the Australian Government provided free influenza 
vaccination to all Australians aged 65 years and over, 
and all Aboriginal and Torres Strait Islander people 
aged 50 years and over or aged 15-49 years with medical 
risk factors [2]. Influenza vaccination was also recom-
mended, but not funded, for: individuals aged six 
months or older with conditions predisposing to severe

* Correspondence: james.fielding@mh.org.au
'Victorian Infectious Diseases Reference Laboratory 10 Wreckyn Street, North 
M elbourne, Victoria 3051, Australia
Full list o f au thor information is available at the  end  of th e  article

influenza, people who may potentially transmit influenza 
to those at high risk of complications from influenza, 
people providing essential services and travellers. Indivi-
dual industries are also advised to consider the benefits 
of offering influenza vaccine in the workplace.

Only split virus and subunit trivalent inactivated influ-
enza vaccines are available for use in Australia against 
two type A strains (one of each subtype H1N1 and 
H3N2) and one type B strain which are frequently 
replaced due to antigenic drift of circulating viruses 
[2,3]. The World Health Organization (WHO) conducts 
biannual consultations to recommend which influenza 
virus strains should be included in the influenza vaccine 
for the following northern and southern hemisphere 
seasons [4]. The influenza virus compositions of the 
2007 season vaccine were: A /N ew  Caledonia/20/99 
(H lN l)-lik e  virus; A/W isconsin/67/2005(H3N2)-like

s -  v  © 2011 Fielding et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commonsf ) BioMed Csntrdl Attribution License (http7/creativecommons.org/licenses/by/20), which permits unrestricted use, distribution, and reproduction in 
>  - s '  any medium, provided the original work is properly cited.
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virus; and B/Malaysia/2506/2004-like virus (of the B/ 
Victoria/2/87 lineage) [5] and in 2008 were: A/Solomon 
Islands/3/2006 (HlNl)-like virus; A/Brisbane/10/2007 
(H3N2)-like virus; and B/Florida/4/2006-like virus (of 
the B/Yamagata/16/88 lineage) [6],

Regular evaluation of vaccination programs by assess-
ment of effectiveness of vaccine to prevent disease is 
important, particularly for influenza where vaccines 
often change seasonally. Whilst clinical trials are the 
ideal method for establishing vaccine efficacy, properly 
designed observational studies provide a reliable and 
more practical means of calculating vaccine effectiveness 
(VE) under field conditions [7,8].

Victoria is Australia’s second most populous state with 
a temperate climate and an annual influenza season that 
usually occurs between May and September. Here we 
describe assessment of the effectiveness of seasonal 
influenza vaccine against laboratory confirmed influenza 
infection over two consecutive influenza seasons (2007 
and 2008) using a test negative case control study design 
applied to a general practitioner (GP) sentinel surveil-
lance network. We have previously applied this method 
to assess seasonal influenza VE against any laboratory 
confirmed influenza [9] but here estimate the type- and 
subtype-specific protection given by each seasonal influ-
enza vaccine. To our knowledge type and subtype VE 
estimates have not previously been conducted for a 
southern hemisphere season.

Methods
Sentinel surveillance
A sentinel general practice surveillance program for 
influenza-like illness (ILI) and laboratory confirmed 
influenza has been conducted in Victoria by the Victor-
ian Infectious Diseases Reference Laboratory (VIDRL) 
and the Victorian Government Department of Health 
since 1998. The program is comprised of a network of 
GPs throughout Victoria who receive continuing profes-
sional development points from the Royal Australian 
College of General Practitioners and the Australian Col-
lege of Rural and Remote Medicine for their participa-
tion. Each week during the influenza season, GPs report 
cases of ILI as a proportion of total patients seen. Con-
sistent with established criteria, ILI was defined as his-
tory of fever, cough and fatigue/malaise [10]. The GPs 
were also asked to collect a nose and throat swab from 
patients presenting with ILI within four days of symp-
toms onset and forward to VIDRL for testing. Addi-
tional data on the patient’s age, sex, date of symptom(s) 
onset, whether vaccinated and date of vaccination were 
collected on the test request form. In 2007, 50 GPs par-
ticipated in the sentinel surveillance program which 
operated for 34 weeks from 12 March (week 11) to 4 
November (week 44) inclusive. There were 67 GPs in

the 2008 program which operated for 31 weeks from 
14 April (week 16) to 16 November (week 46). The pro-
gram commenced earlier in 2007 to accommodate a 
pilot varicella-zoster virus infection sentinel surveillance 
program and finished later in 2008 to enable full capture 
of ILI patients from a late season commencement.

Laboratory testing
All nose and throat swab samples were collected using 
Copan dry swabs placed into virus transport medium. 
Samples were tested by multiplex polymerase chain 
reaction (PCR) for influenza A, influenza B, respiratory 
syncytial virus, picornavirus, parainfluenza virus and 
adenovirus using a conventional gel based assay [11]. A 
conserved portion of the matrix gene and haemaggluti- 
nin gene were targeted to identify influenza type A and 
type B viruses respectively, with specific primers for 
influenza A haemagglutinin HI and H3 genes used to 
determine subtype. Specimens were forwarded to the 
WHO Collaborating Centre for Reference and Research 
on Influenza for strain typing.

Ascertainment of cases and controls
Cases and controls were sampled prospectively through-
out the study period. A person with ILI who tested posi-
tive for influenza was classified as a case whilst a patient 
with a negative test result, or who was positive for 
another respiratory virus, was classified as a control. A 
person selected as a control could become a case for a 
subsequent separate clinical presentation during the sea-
son, but not vice versa. Patients were excluded from the 
VE analysis if testing did not produce a result

Data analysis and calculation of VE
Analyses were conducted using Stata (version 10.0; Sta- 
taCorp LP). The chi squared test was used to compare 
proportions, with p < 0.05 considered statistically signifi-
cant. Patients were excluded from the VE analysis if vac-
cination status was unknown, if the date of symptom(s) 
onset was unknown or if there was an interval of greater 
than four days between symptom onset and specimen 
collection, based on the decreased likelihood of a posi-
tive result after this time [12,13]. For the purposes of 
analysis, patients were considered not vaccinated if there 
was less than 14 days between the dates of vaccination 
and symptom onset.

Vaccine effectiveness was defined as [(1 - odds ratio) x 
100%] where the odds ratio is the odds of laboratory 
confirmed cases being vaccinated divided by the odds of 
test negative controls being vaccinated. In the test-nega-
tive case control design, the odds ratio estimates the 
incidence density (rate) ratio because controls are 
selected longitudinally throughout the course of the 
study (i.e. by ‘density sampling’) [14,15]. The odds ratio
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in test-negative case control studies has also been shown 
to approximate the risk ratio under conditions of vary-
ing attack rates and test sensitivity and specificity [16]. 
Logistic regression was used to calculate odds ratios and 
95% confidence intervals (Cl) that were adjusted for the 
confounding variables of age (stratified into the age 
groups 0-4 years, 5-19 years, 20-49 years, 50-64 years 
and 65 years and over) and month of specimen collec-
tion. Sensitivity analyses were also conducted to deter-
mine the effect on VE estimates of: 1) not excluding 
study participants if more than four days had elapsed 
between symptom onset and specimen collection; 2) 
excluding those vaccinated within 14 days of symptoms 
onset and 3) classifying those vaccinated within 14 days 
of symptoms onset as vaccinated.

Ethical considerations
Data in this study were collected, used and reported 
under the legislative authorisation of the Victorian 
Health (Infectious Diseases) Regulations 2001 and thus 
did not require Human Research Ethics Committee 
approval.

Results
General practitioners in the sentinel surveillance net-
work saw a total of 182,984 patients during the study 
period in 2007, of which 1,226 (0.7%) had a reported 
ILI. The ILI rate peaked in weeks 33 and 34 between 
2.0% and 2.2% from a nadir of 0.04% in week 18. In 
2008 there were 159,030 patients seen and a total of 876 
(0.6%) reported to have an ILL The weekly rate gener-
ally climbed steadily from 0.2% at the start of the 2008 
study period in week 18 to a peak of 1.3% in week 35.

General practitioners collected nose and throat swabs 
for testing from 480 (39%) and 407 (46%) patients with 
ILI in 2007 and 2008 respectively. Of these, 223 (46%) 
in 2007 and 117 (29%) in 2008 were positive for influ-
enza. The 2007 season was characterised by a high pro-
portion (58%) of type A/H3N2 influenza cases for which 
limited strain typing data indicated a generally even split 
between A/Brisbane/10/2007-like and A/Wisconsin/67/ 
2005-like viruses with a further 17% due to type B and 
22% due to A/H1N1 for which all of those typed were 
the A/Solomon Islands/3/2006-like strain (table 1). A 
majority (56%) of influenza cases in 2008 were type B 
with a further 36% due to type A/H3N2 although like 
2007, a high proportion of specimens were unable to be 
recovered or typed (table 1).

Following exclusion of cases for whom vaccination sta-
tus was unknown, symptom onset or specimen collection 
dates were unknown or more than four days had elapsed 
between symptom onset and specimen collection, there 
were 386 (80%) and 330 (81%) study participants in 
2007 and 2008 respectively (table 2). In 2008, a higher

Table 1 Influenza positive swabs by subtype, year and 
strain, 2007-2008
Influenza s u b ty p e  a n d  strain 2007  (%) 2008 (%)

A/H1N1
A/Solomon lslands/3/2006-likeb 21 (43) 0
A/New Caledonia/20/99-likea 0 0
Not recovered/no result 28e (57) 4(100)
Total 49 (100) 4(100)

A/H3N2
A/Brisbane/10/2007-likeb 12(9) 4(10)
A/Wisconsin/67/2005-likea 10(8) 0
Not recovered/no result 108* (83) 38 (90)
Total 130 (100) 42 (100)

A/subtype not specified 
B

B/Florida/4/2006Tikeb

8 6

2(5) 1 (2)
B/Malaysia/2506/2004-likea 3C (8) 1 (2)
B/Shanghai/361/2002-like 2d (5) 0
Not recovered/no result 30 (81) 63 (97)
Total 37 (100) 65 (100)

a 2007 vaccine strain 
b 2008 vaccine strain 
c includes 1 low reactor isolate 
d includes 2 low reactor isolates 
* 1 case positive for A/H1N1 and A/H3N2

proportion of influenza negative patients (17%) compared 
to influenza positive patients (6%) were excluded because 
more than four days had elapsed between symptom onset 
and specimen collection (p = 0.004) whereas in 2007 
there was no significant difference (14% and 8%; p = 
0.10). There was no statistically significant difference in 
whether or not study participants had a specimen col-
lected within four days of symptoms onset by age group 
in either 2007 (p = 0.90) or 2008 (p = 0.09).

An epidemiological curve of influenza negative and 
influenza positive patients eligible for inclusion in the 
study (designated as controls and cases respectively) 
shows an earlier detection of influenza in 2007 com-
pared to 2008, although there was only two weeks’ dif-
ference in the time from which influenza positive 
patients were reported for more than three consecutive 
weeks indicating the start of each season (Figure 1). In 
addition to a higher number of study participants, the 
2007 influenza season was longer (as defined by the 
number of consecutive weeks in which influenza positive 
cases were reported) and consisted of a higher propor-
tion of influenza positive study participants (n = 194; 
50%) compared to 2008 (n = 106; 32%). The dominant 
circulating influenza type and subtype varied over the 
two seasons: 23% of cases in 2007 were A/H1N1, 60% 
were A/H3N2 and the remainder were type B; the 
respective proportions in 2008 were 4%, 36% and 57% 
(table 3).
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Table 2 Study inclusion and exclusion criteria by year, 2007-2008
Criteria 2007 2008

Excluded Included Excluded Included
In c lu s io n

R e sp ira to ry  s w a b s  o f  ILI p a t ie n ts  s u b m i t t e d  b y  G Ps 0 4 8 0 0 4 0 7

E xclusion

In flu e n za  re s u lt  u n k n o w n 0 4 8 0 0 4 0 7

V a c c in a tio n  s ta tu s  u n k n o w n 8 4 7 2 4 4 0 3

S y m p to m  o n s e t  t o  s p e c im e n  c o lle c tio n  in te rv a l u n k n o w n 4 1 a 4 3 4 2 2 a 3 8 4

>  4  d a y s  b e tw e e n  s y m p to m  o n s e t  a n d  s p e c im e n  c o lle c tio n 50* 3 8 6 5 4 3 3 0

3 includes 3 patients with unknown vaccination status 
b includes 2 patients with unknown vaccination status

Age group, sex and month of swab collection distribu-
tions for controls and cases (including type and subtype 
strata) are shown in table 3. There was no statistically 
significant difference in the sex distribution between 
controls and cases in either 2007 or 2008. In both years, 
the numbers and proportions of controls and cases were 
highest in the 20-49 years age group. Influenza type B 
cases were significantly younger than controls in 2008 
(p < 0.001); there were no other statistically significant 
differences in age distribution between controls and 
cases. With the exception of subtype A/H1N1 in 2008 
for which there were only four cases, stratification by 
month of swab collection revealed statistically significant

differences between cases and controls (range: p < 0.001 
to p = 0.02) because of the higher proportion of type A 
and type B cases identified in August and October 2007 
respectively, and subtype A/H3N2 and type B in 
August/September 2008.

A similar percentage of total study participants were 
vaccinated in 2007 (19%) and 2008 (17%), although the 
difference between vaccinated controls and vaccinated 
cases was generally higher in 2007 (table 4). In 2008 a 
higher proportion of cases of subtypes A/H1N1 and A/ 
H3N2 were vaccinated compared to controls. In both 
years the proportion of cases and controls that were 
vaccinated generally increased with age group. Among

Figure 1 Case and control recruitment from influenza-like illness (ILI) presentations at sentinel general practices by week and year, 
2007-2008
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Table 3 Cases and controls by age group, sex, month of swab collection, year and type/subtype, 2007-2008
2007 2008

Controls Influenza cases (%) Controls Influenza cases (%)

(%) Ail A/HI A/H3 B (%) All A/H1 A/H3 8

Age group (years)
04 7(4) 7(4) 3(7) 4(3) 0 4(2) 5(5) 0 1 (3) 3(5)
5-19 22 (11) 42 (22) 12(27) 24 (21) 6(23) 37 (17) 28 (27) 0 6(16) 22 (37)
2049 126 (66) 113 (58) 25 (56) 68(58) 17(65) 140 (63) 57 (54) 3(75) 18(47) 33 (56)
50-64 28 (15) 22 (11) 4(9) 14 (12) 2(8) 30(13) 11 (10) 1 (25) 9(24) 1 (2)
2 65 9(5) 10(5) 1 (2) 7(6) 1 (4) 13(6) 4(4) 0 4(11) 0

Sex
Female 89(46) 96(49) 20(44) 62 (53) 12 (46) 105 (47) 55 (52) 1 (25) 19 (50) 34 (57)
Male 103 (54) 98 (51) 25 (56) 55 (47) 14 (54) 119 (53) 51 (48) 3(75) 19 (50) 26 (43)

Month of swab collection
March 2(1) 2(1) 0 1 «  1) 1 (4) 0 0 0 0 0
April 5(3) 1 (< 1) 0 1 (< 1) 0 6(3) 0 0 0 0
May 14(7) 1 (< 1) 1 (2) 0 0 28 (13) 3(3) 0 0 3(5)
June 13(7) 4(2) 1 (2) 3(3) 0 33 (15) 3(3) 0 0 3(5)
July 48 (25) 50 (26) 10 (22) 31 (27) 7(27) 32 (14) 9(8) 0 3(8) 5(8)
August 66(34) 94(48) 30 (67) 56 (48) 4(15) 69 (31) 42 (40) 4 (100) 17(45) 21 (35)
September 37 (19) 30(15) 3(7) 23 (20) 4(15) 42 (19) 43 (41) 0 14(37) 27 (45)
October 7(4) 12 (6) 0 2(2) 10 (38) 13(6) 6(6) 0 4(11) 1 (2)
November 0 0 0 0 0 1 (< 1) 0 0 0 0

Total 192 194 45 117 26 224 106a 4 38 60a

* Age unknown for one case

the study participants reported as vaccinated, only one 
control in each year (0.5% in 2007 and 0.4% in 2008) 
and no cases were vaccinated within 14 days of symp-
toms onset, for which there was no statistically signifi-
cant difference.

Following adjustment for month of swab collection 
and age, there was a statistically significant protective

effect of influenza vaccine against all influenza in 2007 
(VE = 59%; 95% Cl, 25 to 78%) (table 5). The absence of 
vaccinated cases and controls (table 4) meant VE was 
unable to be estimated for several of the five age groups 
so age was collapsed into three variables: children (0-19 
years); working age adults (20-64 years); and the elderly 
(65 years or older). W hen stratified by age group, the

Table 4 Cases and controls by year, age group, vaccination status and type/subtype, 2007-2008
Total study participants Total vaccinated (%) Controls vaccinated (%) Influenza cases vaccinated (%) 

All A/H I A/H3 B

2007
0-4 14 0 0 0 0 0 0
5-19 64 4(6) 1 (5) 3(7) 2(17) 1 (4) 0
20-49 239 35 (15) 27 (21) 8(7) 2(8) 6(9) 0
50-64 50 20 (40) 13 (46) 7(32) 2(50) 2(14) 1 (50)
2 65 19 15(79) 8(89) 7(70) 1 (100) 4(57) 1 (100)

Total 386 74 (19) 49 (26) 25 (13) 7(16) 13(11) 2(8)

2008
04 9 1 (11) 0 1 (20) 0 1 (100) 0
5-19 65 4(6) 2(5) 2(7) 0 0 2(9)
20-49 197 23 (12) 17(12) 6(11) 1 (33) 4(22) 1 (3)
50-64 41 14 (34) 12 (40) 2(18) 0 1 (ID 1 (100)
2 65 17 14 (82) 10(77) 4(100) 0 4 (100) 0

Total 330* 56(17) 41 (18) 15 (14) 1 (25) 10 (26) 4(7)

* Age unknown for one case
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Table 5 Crude and adjusted vaccine effectiveness of seasonal vaccine against influenza by year, age group and type/ 
subtype, 2007-2006

Influenza vaccine effec tiveness (95% Cl)

All A/H1 A/H3 B

2007

Crude 57 (27, 75) 46 (-28, 77) 64 (29, 81) 76 (-7, 94)

Adjusted*

0-19 -98 (-1906, 80) -333 (-5401,66) -7 (-1850, 94) Not defined

20-64 64 (29, 82) 48 (-65, 84) 69 (29, 87) 85 (-19,98)

;> 65 74 (-283, 98) Not defined 84 (-156, 99) Not defined

All ages 59 (25, 78) 27 (-92, 72) 68 (32, 85) 84 (-2, 98)

2008

Crude 26 (-40, 61) -49 (-1367, 85) -59 (-254, 28) 68 (7, 89)

Adjusted*

0-19 -441 (-7774, 63) Not defined Not defined -314 (-6713, 75)

20-64 35 (-56, 73) -88 (-1936, 83) -17 (-255, 62) 71 (-32, 93)

:> 65 Not defined Not defined Not defined Not defined

All ages 9 (-96, 58) -88 (-1936, 83) -66 (-349, 39) 49 (-58. 84)

* adjusted for month of swab collection

statistically significant association in 2007 was restricted 
to the 20-64 years age group. Furthermore, when exam-
ined by influenza type and subtype, and after adjusting 
for age group and month of swab collection, the vaccine 
was found to only be protective at a significant level 
against the influenza A/H3N2 subtype (VE = 68%; 95% 
Cl, 32 to 85%), for which a statistically significant pro-
tective effect was maintained among the working age 
adults age group only. In 2008, only the unadjusted 
measure of VE against type B influenza was statistically 
significant. Receiving vaccine was positively associated 
with influenza illness for both A/H1N1 and A/H3N2 
subtypes after adjustment for age and month of swab 
collection in 2008 but neither of these associations was 
statistically significant

Sensitivity analyses were conducted to determine the 
possible effect of assumptions about timing of swab 
collection and vaccination status on the VE estimates. 
The effect of not excluding study participants if more 
than four days had elapsed between symptom onset and 
specimen collection was a reduction of the adjusted 
VE point estimates between 7% and 15% in 2007 and 
between 5% and 35% in 2008. Study participants who 
were known to be vaccinated within 14 days of symp-
tom onset (one control each in 2007 and 2008) were 
classified as not vaccinated in the primary analysis. The 
effect of excluding these cases or classifying them as 
vaccinated resulted in variations of 0% to 7% around the 
VE point estimates, but no changes in their relative sta-
tistical significance. However, collection of the ‘date of 
vaccination’ field only commenced in 2008, in which it 
was completed for 86 (91%) of the 94 vaccinated study 
participants. In 2007, only 16 (22%) of the 73 study

participants reported as vaccinated had a recorded date 
of vaccination.

Discussion
Although there was a low proportion of influenza cases 
in this study for which strain typing results were avail-
able, the statistically significant estimate of 59% effec-
tiveness of influenza vaccine against all influenza in 
2007 was generally consistent with Victorian state-wide 
strain typing data which indicated a partial match of 
circulating strains to those contained within the vaccine. 
These data showed A/H3N2 to be the predominant cir-
culating subtype in 2007 (accounting for 56% of the 
characterised isolates) of which 42% were the A/Wis- 
consin/67/2005-like (vaccine) strain and the other 58% 
were the A/Brisbane/10/2007-like strain [17]. When 
stratified by subtype, the 2007 vaccine was 68% effective 
(95% Cl, 32 to 85%) against A/H3N2 infection and 
although the A/Brisbane/lO/2007-like strain appeared to 
be the most dominant A/H3N2 strain, the relatively 
high VE estimate is likely to be explained by the anti-
genic similarity between the A/Brisbane/10/2007-like 
and A/Wisconsin/67/2005-like strains [18]. However, 
stratified analysis did not indicate a significant protective 
effect of the vaccine against type A/H1N1 or type B 
infection in 2007, a finding which is supported by 
apparent mismatch of circulating strains to vaccine 
strains: 96% of the characterised A/H1N1 isolates were 
the (non-vaccine) A/Solomon Islands/3/2006-like strain 
whilst the characterised type B isolates were split 
between B/Florida/4/2006-like (41%), B/Shanghai/361/ 
2002-like (35%) and B/Malaysia/2506/2004-like (24%) 
[18].
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W ith a non-significant point estimate of 9%, the 
adjusted effectiveness of influenza vaccine against all 
influenza in 2008 was considerably lower than in 2007. 
The 2008 influenza season in both Victoria and across 
Australia was of lower magnitude than 2007 and charac-
terised by a higher proportion of cases from influenza 
type B virus [19,20]. This contrasts with a Western Aus-
tralian study of the 2008 influenza season, which like 
Victoria was dominated by type B influenza virus with a 
late peak, that found a much higher and statistically sig-
nificant VE point estimate of 58% (95% Cl, 9 to 81%) 
against all influenza [21], Although this study was 
restricted to children aged 6-59 months, for whom there 
is a funded vaccination program in Western Australia, 
the reason for such a large difference is unclear. Both 
the sentinel general practice surveillance and other 
state-wide subtyping data indicated an approximately 
equal predominance of type A/H3N2 and type B viruses 
in 2008 [20], although few cases from the sentinel sur-
veillance were able to be strain typed. Crude analysis 
suggested that the vaccine was 68% effective at a statisti-
cally significant level against type B infection, although 
after adjustment was 49% and not significant. This find-
ing is generally consistent with strain typing data 
for isolates from across Victoria in which 42% were the 
vaccine B/Florida/4/2006-like strain and 58% were B/ 
Malaysia/2506/2004-like, between which there was little 
antigenic similarity given their different lineages (B/ 
Yamagata/16/88 and B/Victoria/2/87 respectively) 
[19,20]. Strain typing of isolates sourced from elsewhere 
in Victoria indicated that circulating A/H3N2 was exclu-
sively the A/Brisbane/10/2007-like strain and there was 
very little circulation of any A/H1N1 strains.

This study demonstrates the importance of conducting 
type- and subtype-specific assessment of influenza VE 
given the considerable variation that cannot be differen-
tiated from a measure of VE against all influenza, despite 
what strain typing of circulating isolates may suggest 
about vaccine match/mismatch. A Canadian study that 
measured influenza VE at the trivalent component level 
during the 2006-2007 northern hemisphere season also 
observed wide variation between type- and subtype-speci-
fic adjusted VE point estimates from 12% to 92% [22], 
whilst two other observational studies in Wisconsin, Uni-
ted States of America (USA) and Canada also found 
type-specific variation of VE point estimates from -35% 
to 58% and 58% to 70% respectively [23,24]. However, 
stratification of cases to assess type- and subtype-specific 
influenza VE compromises power as evidenced in this 
and the Canadian and USA studies. Insufficient power 
also compromised the ability of our study to generate 
more precise age group-specific estimates of VE, particu-
larly in 2008 despite the collapse of five age groups into 
three. This was especially evident for those aged £ 65

years (the main risk group eligible for vaccination) in 
which a protective - but not statistically significant - 
effect against A/H3N2 influenza was demonstrated in 
2007 but had too few cases to generate any VE estimates 
in 2008, highlighting a previously recognised limitation 
that the system is best suited to estimating VE amongst 
working age adults who comprise the majority of the sur-
veillance population [9]. Thus, whilst the program func-
tions well as a representative surveillance system in 
assessing magnitude and duration of influenza seasons, 
further recruitment of sentinel GPs may be required to 
sufficiently power VE calculations, particularly during sea-
sons of low magnitude or a dominant subtype.

A further limitation of this study is that the analysis 
has not controlled for the potential confounding effect 
of chronic or co-morbid conditions that are indicated 
for influenza vaccination. Several Canadian observational 
studies for which the specific confounding effect of co- 
morbid conditions was reported resulted in variations of 
the adjusted type- and subtype-specific VE estimates 
against seasonal influenza about the crude estimate of 
-23% to 7% [22,24], and an increase of 15% on the 
crude seasonal VE against pandemic (H1N1) 2009 influ-
enza [25]. Whilst the confounding effect of co-existing 
chronic medical conditions on VE estimates may be 
modest and variable, these data will be included in the 
patient questionnaire and analysis in future seasons as a 
single variable. Pooling of confounders has been shown 
as unlikely to result in residual confounding [26].

Although clinical trials are the ideal method to assess 
vaccine efficacy, ethical, practical and financial consid-
erations have lead to the emergence of observational 
studies - in particular case control studies such as this 
one - to routinely assess influenza VE [22,24,27-29]. 
However, inherent in observational study designs are 
biases that should be considered when interpreting and 
generalising the results to other populations. This study 
used test-negative control subjects which modelling, 
assuming no bias, has shown generally slightly underes-
timates the true VE under most conditions of sensitivity, 
specificity and influenza to non-influenza ILI attack 
rates [16] but was higher than traditional control sub-
jects when assessed over three consecutive seasons [27]. 
Another consideration is the sampling frame of atten-
dees of general practices, for which a high proportion 
are working-age adults probably representing the mid-
range of the clinical spectrum of influenza. More severe 
presentations (particularly among children and the 
elderly) are more likely to present to hospitals whilst 
asymptomatic or mild infections, estimated to be 34% 
[12], will not present to any medical facility. It is diffi-
cult to speculate how exclusion of cases from the per-
ipheries of the clinical spectrum might affect the VE 
estimates, but highlights the importance of interpreting
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these results in the context of medically attended IL I in 
the general practice setting.

Ascertainm ent bias of influenza status w ith in  the 
study has been minimised by laboratory testing of all 
study participants with an assay that is at least 90% sen-
sitive and 100% specific for influenza [11], and censoring 
of observations for which there was greater than four 
days between onset and specimen collection. Other fac-
tors, such as consistency of respiratory specimen collec-
tion, are d ifficu lt to quantify but may influence VE  
estimates. Furthermore, participants’ illness and vaccina-
tion status are only known for the current season and 
don’t account for cross-protection or prior im m unity  
provided by previous vaccination or influenza infection.

Conclusion
W e have applied a test negative case control study 
design to an established sentinel surveillance system to 
assess type- and subtype-specific effectiveness of influ-
enza vaccine, which as yet is not routinely undertaken 
elsewhere in Australia. W e found that VE differed by 
year, influenza type and subtype. Our analysis supple-
ments existing epidemiological and immunological data 
about seasonal influenza and vaccination to assist with 
evaluation of the influenza vaccination program.
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Conflicting findings regarding the level of protection offered by seasonal influenza vaccination against 
pandemic influenza H1N1 have been reported. We performed a test-negative case control study using 
sentinel patients from general practices in Victoria to estimate seasonal influenza vaccine effectiveness 
against laboratory proven infection with pandemic influenza. Cases were defined as patients with an 
influenza-like illness who tested positive for influenza while controls had an influenza-like illness but 
tested negative. We found no evidence of significant protection from seasonal vaccine against pandemic 
influenza virus infection in any age group. Age-stratified point estimates, adjusted for pandemic phase, 
ranged from 44% in persons aged less than 5 years to -103% (odds ratio-2 .0 3 ) in persons aged 50-64  
years. Vaccine effectiveness, adjusted for age group and pandemic phase, was 3% (95% Cl - 4 8  to 37) for all 
patients. Our study confirms the results from our previous interim report, and other studies, that failed 
to demonstrate benefit or harm from receipt of seasonal influenza vaccine in patients with confirmed 
infection with pandemic influenza H1N1 2009.

®  2011 Elsevier Ltd. All rights reserved.

1. Introduction

The first influenza pandemic of the 21st century was unex-
pected. Most pandemic preparedness plans had assumed a 
pandemic would originate somewhere in Asia and be caused by 
a novel sub-type. However the pandemic virus of 2009 was first 
recognised in North America in March and. although novel, was 
not a new subtype, being a reassortant of the influenza A (H1N1) 
subtype [1]. In accordance w ith established national policies in 
countries where influenza vaccine was available, eligible peo-
ple had been vaccinated against the expected seasonal influenza 
strains in 2008 or early 2009 in countries of the northern hemi-
sphere or early 2009 in countries of the southern hemisphere. 
In the northern hemisphere the vaccine for 2008/9 contained an 
A/Brisbane/59/2007-like virus as the H1N1 component and the 
same virus was recommended for the southern hemisphere vaccine 
for 2009. Although pandemic vaccines were subsequently man-
ufactured and distributed, there was interest at the time in the 
effectiveness of the seasonal vaccine against pandemic influenza.

* Corresponding author at: Victorian Infectious Diseases Reference Laboratory. 
Locked Bag 815, Carlton South 3053, Australia. Tel.: +61 03 9342 2608; fax: +61 03 
9342 2665.

E-mail addresses: heath.kellyOmh.oig.au, kristina.grant@mh.org.au (H A  Kelly).

0264-41 OX/S -  see front matter C  2011 Elsevier Ltd. All rights reserved. 
doi:10.1016/j.vaccine.2011.03.055

since this was the vaccine that had been widely administered prior 
to the circulation of the pandemic virus.

Conflicting contemporary reports of the effect of seasonal vac-
cine on laboratory proven infection with pandemic influenza 
increased interest in what should have been an otherwise aca-
demic question. Unless there was significant cross-protection from 
previously circulating influenza strains, unexpected with a novel 
quadruple reassortant virus, seasonal vaccine that aimed to protect 
against these strains should have offered little protection against 
infection with the pandemic strain. This expectation was supported 
in interim analyses from Australia [2] and the United States [3,4J. 
However a case control study from Mexico reported that seasonal 
vaccine prevented 73% (95% Cl 3 4 -89 ) of laboratory confirmed 
infections due to pandemic influenza [5] and four studies from 
Canada indicated that seasonal vaccine may have increased the risk 
of infection with pandemic influenza [6].

Pandemic virus was first confirmed by laboratory testing in 
Australia on 9 May 2009 and in the state of Victoria on 20 May. 
The approach to management of the pandemic virus differed from  
the approach taken for seasonal influenza. Adapted from the Aus-
tralian Management Plan for Pandemic Influenza [7], pandemic 
management in Victoria was characterised by different approaches 
in four different phases. The delay phase (26 A pril-22 May) aimed to 
delay entry of the virus into Australia, the contain phase (23 M ay-2  
June) aimed to contain circulation of the virus once it had entered
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the country, the modified sustain phase (3 June-22 June) aimed to 
develop an approach to pandemic management that was sustain-
able and the protect phase (23 June onwards) aimed to protect the 
vulnerable. The modified sustain phase was implemented only in 
Victoria, with the other phases common to the other Australian 
states [8],

Public health and clinical responses changed with pandemic 
phase and impacted on the approach to laboratory testing. In the 
delay and contain phases, laboratory testing was authorised by the 
state health department and was restricted to people with a travel 
history or exposure to travellers. This strategy was based on the 
assumption, in retrospect probably not well founded, that the virus 
had not yet entered Victoria [9]. In these two phases, all pandemic 
influenza (pH IN I) cases confirmed by laboratory testing were fol-
lowed up by officers from the state health department and attempts 
were made to identify all close contacts of confirmed cases. Anti-
viral prophylaxis was recommended for close contacts. During the 
modified sustain and protect phases, testing was recommended only 
for those assessed as having moderate or severe disease and those 
in particular risk groups. No confirmed cases were followed up in 
these two phases [8],

At the completion of the influenza season dominated by pan-
demic influenza in Victoria in 2009, we aimed to estimate the 
effectiveness of seasonal influenza vaccination against laboratory 
confirmed infection with pandemic influenza.

2. Methods

We recruited patients through sentinel general practices in Vic-
toria to estimate the protection afforded by seasonal influenza 
vaccination against general practice attendance for an influenza-
like illness (1LI) due to laboratory confirmed infection with pHINI. 
We used a test-negative case control design with cases and controls 
recruited prospectively at the time of presentation to their sen-
tinel general practitioner, although their case/control status was 
not determined until laboratory testing had been completed. Cases 
were defined as patients with an influenza-like illness who tested 
positive for influenza, while controls had an influenza-like illness 
but tested negative. This novel control selection gives the study 
design the title of "test negative’ [10]. With prospective recruit-
ment, the odds ratio from the case control study is an unbiased 
estimate of the risk ratio without the need for the rare disease 
assumption required for the retrospective cumulative incidence 
case control design [ 11 ]. In temperate Victoria, the influenza season 
typically occurs in winter (June to August) and often extends into 
the early months of spring (September and October). We included 
all patients ascertained from sentinel general practices between 
the weeks beginning 27 April 2009, when surveillance commenced, 
and 20 December 2009. The last sentinel patient with confirmed 
pandemic influenza infection was detected on 14 December 2009.

2.1. The Victorian sentinel general practice network

Victoria’s population is approximately 5.5 million, with 4.0 
million people living in the state capital, Melbourne. Sentinel 
surveillance, usually conducted during the nominal ‘influenza sea-
son’ between May and September, was extended to December 24 in 
2009. In 2009 sentinel surveillance comprised a network of 87 sen-
tinel general practitioners (GPs), 60 in Melbourne and 27 in regional 
Victoria. GPs reported weekly on the total number of consultations 
and any patients presenting with ILI, defined as fever (reported or 
observed), cough and fatigue/malaise [12], GPs were contacted reg-
ularly throughout the season in an attem pt to ensure the quality 
and completeness of data.

We also conducted a survey of 342 sentinel patients with con-
firmed pandemic Hl N1 infection diagnosed up to August 2009 and 
received responses from 132 (39*) [13]. Among many other ques-
tions in this survey, we included questions on date of symptom 
onset and vaccination status. We used responses from these two 
questions to update and validate information from the sentinel 
general practice database.

Laboratory-confirmed influenza has been a gazetted notifi-
able disease in Victoria since 2001. Formal ethics approval is not 
required for the surveillance program because of the legal require-
ment for the laboratory to notify positive cases. However written 
consent is obtained from sentinel patients, indicating that aggre-
gate anonymous data will be used for surveillance purposes and 
influenza positive results will be notified to the Victorian Gov-
ernment Department of Health. After consent was obtained, GPs 
collected data on the age, sex, date of onset, symptoms and vaccina-
tion status (recording the date the vaccine was administered) of the 
sentinel patients. All vaccinations were with a trivalent inactivated 
vaccine formulation. GPs also collected a combined nose and throat 
swab from consenting patients, with the choice of which patients 
to swab at the discretion of the GP. The swab was couriered to the 
Victorian Infectious Diseases Reference Laboratory (VIDRL), a WHO 
National Influenza Centre, for laboratory testing.

2.2. Laboratory testing

Testing for influenza A viruses involved extraction of RNA from 
nose/throat swabs using a Qiagen DX Reagent Pack and QIA extrac-
tor extraction robot cDNA was derived by reverse transcription 
using random hexamers and amplified using an ABI-7500 Fast Real- 
Time PCR System incorporating primers and probes targeting the 
matrix gene of influenza type A viruses including the pandemic 
virus. Samples testing positive in this screening assay were con-
firmed as positive or negative for the pandemic strain in a second 
real-time PCR assay incorporating primers and probes specific for 
the HA gene of that virus. All primer and probe sequences are avail-
able on request Subtyping of non-pandemic influenza A viruses 
was undertaken using a gel-based PCR assay as previously reported 
(14J. This assay reliably sub-typed viruses detected in the matrix 
real-time assay when the cycle threshold was less than 36.

2.3. Estimating influenza vaccine effectiveness

Analysis was restricted to patients who presented with an IU 
to any of the sentinel surveillance practices and who subsequently 
had a swab taken for the identification of influenza virus by real 
time PCR. Patients whose PCR tests were inhibited were excluded 
from the analysis, as were patients whose vaccine status or age 
was unknown, patients for whom subtyping was not possible and 
patients who had non-pandemic influenza detected. We calculated 
the number of days between symptom onset and the date the com-
bined nose/throat swab was taken and restricted our analysis to a 
maximum of four days between these dates, since PCR positivity 
decreases with time following symptom onset due to decreasing 
viral excretion [15]. We counted a patient as vaccinated if the 
patient’s sentinel GP had recorded receipt of the seasonal vaccine 
at least 14 days prior to symptom o nse t Patients who had received 
vaccine less than 14 days prior to symptom and onset, and those 
who had received no vaccine, were classified as not vaccinated. Vac-
cines from three manufacturers were licensed for us in Australia 
in 2009. All were trivalent inactivated vaccines. We did not col-
lect information on the specific vaccine administered to sentinel 
patients. In Victoria vaccination with seasonal vaccine commenced 
in March 2009.

Subsequent to recruitment and testing, a case was defined as a 
patient with IU in whom pandemic Hl N1 2009 influenza virus was
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Fig. 1. Case and control detection from patients with influenza-like illness recruited through sentinel genera! practices in Victoria, by week and pandemic phase, 200S.

detected and a control was a patient in whom pandemic influenza 
was not detected. W e estimated the VE (% ) - ( l  -  OR) x 100, where 
OR, the odds ratio, was the odds of being a vaccinated case divided 
by the odds of being a vaccinated control. W e compared covariates 
among cases and controls using the chi-squared test for categori-
cal variables and the M ann-W hitney test for age. W e used logistic 
regression models to estimate age-stratified VE for the following 
age groups: 0 -4  years, 5 -19  years, 2 0 -4 9  years, 50 -64  years and 
65 years and above. To account for differences in testing patterns 
throughout the pandemic, we adjusted for pandemic phase using 
swab collection date to define the pandemic phase to which the 
patient was assigned. We estimated VE, adjusting for age group 
and pandemic phase, and performed a range of sensitivity analy-
ses. Sentinel data were stored on a purpose written database and 
were imported to STATA [16] for analysis.

3. Results

3.1. The 2009 influenza season in Victoria

As reported previously, the influenza season of 2009 in Vic-
toria started unusually early, w ith  circulation of pandemic virus 
established by the time routine surveillance had commenced at the 
end of April [2]. The season was almost completely dominated by 
pandemic influenza H1N1 2009, with strain replacement virtually 
complete by the week beginning 25 May and 91% of all influenza 
viruses that could be subtyped confirmed as pandemic influenza 
[2]. The proportion of sentinel patients w ith 1LI confirmed as pan-
demic influenza increased from 6 *  in the first week of surveillance, 
beginning 27 April, and reached a maximum of 6 7 *  in the week 
beginning 29 June. Case and control recruitment are shown by week 
and pandemic phase in Fig. 1.

Between the weeks beginning 27 April and 20 December sen-
tinel practitioners had seen 236,448 patients, had notified 1608 
(0.7%) of these patients w ith IU and had taken a nose and throat 
swab from 1101 (69%) of them. No result was available for two

cases, influenza subtyping was not possible for 42 patients and 
seasonal influenza was detected in 10 patients, leaving 1047 
patients w ith pandemic influenza detected or excluded, all w ith age 
recorded (Fig. 2). Vaccine status was unknown for 42 (4.0%) patients 
but w ith no difference by pandemic influenza positive/negative 
status (p -  0.42) or age group (p -  0.72).

3.2. Patients included in the analysis

Between 37% and 42% of patients w ith ILI in each age group 
were swabbed with no significant difference by age group (p -  0.39). 
GPs were asked to collect a nose/throat swab only from patients 
whose symptoms had developed within the preceding four days. 
They complied with this request in 759 (89%) of all 854 notified 
patients for whom an onset date was reported, but patients that 
were pandemic influenza positive (267/280,95%) were more likely 
than those that were pandemic influenza negative (476/553,86%) 
to have had a swab collected within this period (p < 0.001) and this 
did not vary by vaccination status (Table 1). There was no difference 
in the time from symptom onset to specimen collection by vac-
cine status for controls alone (p -0 .1 7 ) or for cases alone (p -0 .3 7 )  
(Table 1). The proportion of patients whose swab was collected 
within four days decreased w ith  increasing age, from more than 
90% in all patients aged less than 50 years to 80% in patients aged 
50-64  years and 59% in patients aged 65 years and above (p < 0.001) 
(Table 1).

There were 743 patients available for analysis of vaccine effec-
tiveness after further exclusion of patients whose nose and throat 
swabs were collected more than four days after symptom onset 
and for whom vaccination status was unknown (Fig. 2). Two cases 
(0.75%) and four controls (0.84%) had been vaccinated within 14 
days of symptom onset (p -  0.89). Eight of 132 respondents to the 
case series survey reported being vaccinated at a workplace and 
three reported being vaccinated elsewhere. All 11 patients had been 
recorded as vaccinated by their sentinel GP. One patient aged 5 -19  
years reported not being vaccinated but had been recorded by the
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Total nose 6t 
throat swabs 

collected

1,101

Excluded
• No result (2)
• Influenza (not subtyped) (42)
• Seasonal influenza (10)

54

pHINI positive pH1N1 negative

363(35%) 684(65%)

Excluded

f

• Unknown vaccination status (42)
• »4 days between symptoms 

onset & swab collection (288*)

304b

pH1N1 positive pH1N1 negative
(Cases) (Controls)

267 (36%) 476 (64%)

I „__ i  _____♦ _i.
Vaccinated Not vaccinated

48 (18%) 219 (82%)

Vaccinated Not vaccinated

101(21% ) 375 (79%)

* Includes 193 with no recorded onset date 
6 Multiple exclusions for some cases

Fig. 2. Sentinel patients in the weeks beginning 27 April-20 December 2009.

GP as vaccinated and one patient aged 50-64 had vaccine status 
recorded as ‘yes' by the GP but reported as ‘no’ by the patient. 
We used the GP data for vaccination status for both patients, the 
first because we were not sure whether the mother completed 
the survey about her own vaccination status or her child’s and the 
second because the GP had recorded a date of vaccination for the 
patient.

Of the 743 patients included in the final analysis, 267 (36%) 
had pandemic influenza virus detected and were designated as 
cases, while pandemic influenza virus was not detected in the 476 
patients designated as controls. The proportion of patients in whom 
influenza was detected increased by pandemic phase as testing 
requirements became more focused on those at risk. In the delay

phase, influenza virus was detected in none of the 43 notified sen-
tinel patients. The proportion increased to 7/58 (12%) for the contain 
phase and to 70/161 (43%) the modified sustain phase but decreased 
to 190/481 (40%) during the protect phase (Table 2). The median age 
for all patients was 25 years (range 0-86) years but was 21 years 
for cases and 29 years for controls (Table 2).

Only 19% of patients were vaccinated against influenza, with 
people aged at least 50 years more likely to have been vaccinated 
than younger people (p< 0.001, Table 3). Detection of pandemic 
influenza also differed by age group, with people aged 5-19 years 
most likely to have influenza virus detected (100/204, 49%), com-
pared with 14/44 (32%) people aged 0-4  years and none of the 18 
people aged at least 65 years (p < 0.001, Table 3).

Table 1
Cases and controls by age group, vaccination status and days from symptoms onset to swab collection.

Age group Controls Cases

Vaccinated Not vaccinated Vaccinated Not vaccinated

0-4 days >4 days 0-4 days >4 days 0-4 days >4 days 0-4 days >4 days

0-4 5 2 25 3 2 0 12 0
5-19 13 0 91 9 8 0 92 5
20-49 44 7 227 27 24 0 109 6
50-64 19 4 34 13 12 1 8 1
>65 16 8 2 4 0 0 0 0

Total 97 21 379 56 46 1 221 12
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Table 2
Covariates for case and control analysis for sentinel patients with complete data available.

Covariate Cases n -  267 Controls n -4 7 6 p-value

Median age, years 21 29 p< 0.001
Age group (years)

0 -4 14 30 p< 0.001
5-19 100 104
20-49 133 271
50-64 20 53
65+ 0 18

Swab collected within 4 days of symptom 267/280 (95*) 476/553 (86*) p< 0.001
onset (n -  854 with result and onset date 
known, see Fig. 2)

Vaccinated >14 days prior to symptom onset 46/48 (96%) 97/101 (96*) p -  0.99
Swab taken during pandemic phase

Delay 0 43 p< 0.001
Contain 7 51
Modified sustain 70 91
Protect 190 291

3.3. Estimation o f vaccine effectiveness

W e found no evidence of significant protection or significant 
harm from seasonal vaccine against pandemic influenza virus infec-
tion in any age group, with point estimates, adjusted for pandemic 
phase, ranging from 45% in children aged 0 -4  years to -103%  
(OR-2 .0 3 ) in persons aged 50-64  years (Table 3). VE, adjusted for 
age and pandemic phase, was 3% (95% Cl -4 8  to 37) for all patients. 
Pandemic influenza was detected in only one patient aged at least 
65 years but this patient was not included in the analysis because 
the patient’s onset date was not stated and the time from onset to 
specimen collection was thus unknown.

Prior to adjustment for any covariates, and including swabs col-
lected at any time post symptom onset, it appeared as if  seasonal 
vaccine was effective in decreasing the risk of infection with pan-
demic influenza, w ith an estimated OR-0 .7 0  (95% Cl, 0.51-0.99), 
corresponding to a VE of 30% (95% CI, 1 -4 9 )  (Table 4). However the 
apparent significant effect disappeared after exclusion of swabs col-
lected more than 4 days from symptom onset and after adjusting 
for age-group or pandemic phase (Table 4). After these adjustments 
had been made, there were only minor changes in the estimated 
OR for any of the uncertainties we investigated, specifically includ-
ing patients as vaccinated or excluded if  vaccination had occurred 
within 14 days of symptom onset and dealing with the two patients 
for whom we had only the month of vaccination recorded as vacci-
nated or not vaccinated. When we restricted our analysis to the 14 
weeks of the peak season, the age and pandemic phase adjusted OR 
was 0.93 (95% Cl, 0 .60-1.45) (Table 4). W e extended the reference 
model to include a vaccination status x continuous age interaction 
term. The interaction OR was 1.016 (95% Cl 0.99-1.04, p -0 .1 8 ), 
which can be interpreted as the proportional change in vaccina-
tion OR per year of age, implying that the fitted vaccination OR 
increased from 0.62 (VE -  38%) at birth to 1.74 (0.62 times 1.01665)

(VE -  -74% ) at age 65. However this heterogeneity was not signifi-
cant at p < 0.05.

4. Discussion

We found no evidence that receipt of the southern hemisphere 
seasonal influenza vaccine for 2009 resulted in either significant 
protection or increased risk from laboratory confirmed infection 
with pandemic influenza H1N1 2009 among Victorian patients 
attending a sentinel GP w ith an IL1, although age specific point 
estimates suggested some non-significant degree of protection 
from seasonal vaccine for younger patients and increased risk for 
patients aged 5 0-64  years. These findings corroborate our interim  
analysis [2), w ith the current analysis differing by the inclusion of 
more patients, adjustment for pandemic phase, censoring of data at 
four days between symptom onset and the collection of a nose and 
throat swab, and strict application of vaccination status. A novel 
observation from this analysis was the relatively high proportion 
of people aged at least 65 years who presented to their sentinel 
GP more than four days after symptom onset This might suggest 
that symptom manifestation was milder in older people. Patients 
with confirmed pandemic influenza infection were a median of 
eight years younger than patients w ith an IU  not due to pandemic 
influenza.

4.1. Study lim itations

Our sample size was determined ultimately by sentinel GP test-
ing patterns during the pandemic in Victoria. W ith the observed 
vaccination coverage in the controls and the proportion of 1LI 
patients who tested positive for p H IN l, we estimated our study 
had 99% power to detect a VE of 60% but only 21 % power to detect a 
VE of 20%. Conversely the power to detect an OR of 2.5, correspond-

Table 3
Vaccine effectiveness of seasonal influenza vaccine against pandemic influenza H1N1 2009 by age group. Victoria, Australia. 2009.

Age group 
(years)

Patients tested 
(age and 
vaccine status 
known)

Number (* )  
positive for 
pandemic 
influenza 
(cases)

Number (X) 
negative for 
influenza 
(controls)

Number ( * )  
vaccinated

Cases(%) 
vaccinated

Controls (%) 
vaccinated

Vaccine 
effectiveness 
(%) (adjusted 
for pandemic 
phase)

95% confidence 
interval

0 -4 44 1 4 (32 *) 30(68%) 7(16%) 2(14%) 5(17%) 45% -2 5 9  to 92
5-19 204 100(49*) 104(51%) 21(10%) 8(8%) 13(13%) 44% -4 6  to 78
20-49 404 133 (33%) 271(67%) 68(17%) 24(18%) 44(16%) 5% -6 7  to 46
50-64 73 20(27%) 5 3 (73 *) 31(42%) 12(60%) 19(36%) -103% -5 0 4  to 32
>65 18 0(0%) 18(100%) 16(89%) 0 16(89%) Not defined
All 743 267(36%) 4 76 (6 4*) 143(19%) 46(17%) 97(20%) 3%J -4 8  to 37

1 Adjusted for age-group and pandemic phase for swabs collected from patients with IU within 4 days of symptom onset.
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Table 4
Estimated odds ratios (odds of being a vaccinated case/odds of being a vaccinated control) adjusted for various covariates for combined nose/throat swabs collected within 
four days of symptom onset.

Covariate Assumption Odds ratio (95* confidence interval) [n in model]

Crude Adjusted for 

Age Phase Age and phase

Reference* 0.81 (0.55-1.20) [743] 1.12(0.74-1.70)[725) 0.69 (0.47-1.03) [743] 0.97 (0.63-1.48)[725]
Days between 

onset and swab 
collection

No observations censored 0.70 (0.51-0.99) [1005] 1.00 (0.70-1.44) [1005] 0.64 (0.46-0.91) [1005] 0.89 (0.61-1.29) [1005]

Vaccination status Patient excluded if <14 days 
between vaccination and 
symptom onset

0.82 (0.55-1.20) [736] 1.12(0.74-1.70)[718] 0.70(0.47-1.04) [736] 0.97 (0.64-1.49) [718]

Patient considered vaccinated 
if <14 days between 
vaccination and symptom 
onset

0.81 (0.56-1.19) [743] 1.10(0.74-1.66)[725] 0.71 (0.48-1.05) [743] 0.98 (0.64-1.48) [725]

Patient considered not 
vaccinated if month only 
vaccination date given and 
onset in same or following 
month

0.82 (0.56-1.20)[744] 1.10(0.74-1.66)[726] 0.71 (0.48-1.05)[744| 0.98 (0.64-1.48) [726]

Patient considered vaccinated 
if month only vaccination date 
given and onset in same or 
following month

0.81 (0.55-1.18) [744] 1.09 (0.73-1.64)[726] 0.71 (0.48-1.04)[744] 0.97 (0.64-1.47)|726]

Swab collection 
date

Observation censored if swab 
not collected during peak of 
season (weeks 22-35)

0.75 (0.50-1.13) [624] 1.04(0.67-1.61)1611] 0.67(0.44-1.02)[624] 0.93 (0.60-1.45)(611]

1 Observations censored if: >4 days from symptom onset to nose/throat swab collection: only a month of vaccination is provided and for which there is potentially <14 
days from vaccination to symptom onset. Patient is considered not vaccinated if <14 days between vaccination and symptom onset.

ing to an apparently harmful effect of vaccination, was 99.9%, while 
power to detect an OR - 1.4 was only 49%. Our study would prob-
ably therefore have detected a large protective or harmful effect 
of vaccination, had either been present, but would have been less 
likely to detect more modest effects. Our study can therefore not 
exclude a harmful or protective effect of seasonal influenza vac-
cination on the risk of laboratory confirmed pandemic influenza 
in sentinel general practice patients. Moreover the estimate of VE 
from this study cannot be generalized from sentinel patients to the 
wider community.

The study has other limitations. Patients with 1LI had not been 
randomised to receive vaccine. Because we collect data as part 
of routine surveillance, with the intention of minimising the GP's 
workload, we did not collect data on patients' co-morbidities and 
could not adjust for this in our analysis. The absence of data on 
co-morbidities also prevents us making inferences about possible 
selection bias in the controls related to co-morbidities. However 
coarse adjustment for co-morbidities (yes/no) made no significant 
difference to the estimation of risk in the Canadian studies [6J. We 
were also unable to test for selection bias by comparing vaccine cov-
erage in our patients with population estimates of vaccine coverage 
because the latter are not collected routinely in Victoria for peo-
ple aged less than 65 years. The test-negative case control design 
accounts for the propensity to consult with an ILI, since all patients 
who consult and have a swab taken are included in the study. There 
was no difference by age group in the proportion of patients with 
an ILJ from whom a swab was taken. However GPs may be more or 
less likely to have swabbed a vaccinated patient. Study patients will 
not be representative of all patients with an ILI if patients with an 
ILI due to influenza are more or less likely to consult than a patient 
with an ILI due to another respiratory virus. We cannot test this 
assumption and residual confounding may bias our results.

4.2. Comparison with other studies

As indicated previously, two other studies failed to demonstrate 
protection from trivalent inactivated seasonal vaccine against

infection with pandemic influenza. A preliminary report compared 
541 US military personnel who had laboratory confirmed pandemic 
influenza infection diagnosed between April and August 2009 with 
date-matched controls. VE estimates were adjusted for age, num-
ber of prior vaccinations and length of military service. Interim 
analysis suggested that, although live attenuated influenza vaccine 
prevented 42% (95% Cl 18-59) of laboratory confirmed infections, 
inactivated vaccine provided no significant protection with the esti-
mated VE -  23% (95% Cl - 9  to 46). Increasing age was independently 
associated with protection (3J.

A second preliminary study, described as case-cohort design but 
essentially a variation of the screening method, estimated protec-
tion from seasonal vaccine in people aged at least 18 years with 
laboratory confirmed pandemic influenza diagnosed between May 
and June 2009 in eight US states [4], Influenza vaccination status 
of the population in each state was estimated from surveys. After 
adjusting for age and co-morbidities in the 356 cases for whom 
data were complete, VE was estimated as -10% (95% Cl -4 3  to 
15). The weaknesses of this interim analysis are discussed in an 
accompanying editorial note (4).

Perhaps more surprising was the VE estimate of 73% (95% 
Cl 34-89) from seasonal vaccination against pandemic influenza 
derived from a case control study using 240 patients, 60 cases 
with laboratory confirmed influenza and 180 frequency matched 
controls, admitted to a specialist respiratory diseases hospital in 
Mexico between 29 March and 20 May, 2009 [5], This level of pro-
tection is expected from a well-matched seasonal vaccine against 
seasonal influenza [17], but seemed unreasonably high for pro-
tection against pandemic influenza. A commentary on the study 
suggested the unexpected result could be explained by selection 
bias, with cases and controls ascertained from different popula-
tions having different opportunities forreceiptofinfluenza vaccine. 
More controls (65%) than cases (25%) had co-morbidities that 
increased their chance of receiving influenza vaccination [18].

Another unexpected finding, reported from four Canadian stud-
ies, was an apparent 40-150% increase in the risk of medically 
attended infection with pandemic influenza following receipt of
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seasonal vaccine, mostly seen among people aged less than 50 years 
[6]. A number of the studies were based on the test-negative case 
control design previously used in Canada [19) and in the Victorian 
study reported here. Similar to the findings in Canada, a study in 
the US military found active duty members with IU and proven 
p H IN l infection were more likely to have received influenza vac-
cination than those wi th 1L1 not due to pH 1N 1 (66% vs. 40%, p < 0.01), 
although the authors believed this was unlikely to be a true asso-
ciation [20].

4.3. Significance o f findings

The finding of neither significant risk nor significant benefit is 
biologically plausible, although evidence from cross-reactive anti-
body studies suggest that some cross-protection may be expected, 
especially in older people [21]. Indeed, benefit of seasonal vacci-
nation has been reported in two further studies, one in the US 
military [22] and another among hospitalised patients in Argentina 
[23]. However time between symptom onset and laboratory test-
ing was not considered in either of these studies. W e found that, 
compared w ith cases, a significantly decreased proportion of con-
trols (that is, influenza negative IU  patients) were tested within 4 
days of symptom onset, suggesting possible differential misdassi- 
fication of controls in both these studies. This could have increased 
VE estimates.

An increase in risk of p H IN l infection following seasonal vacci-
nation is more difficult to explain, but a plausible hypothesis can be 
developed based on modelling and animal studies. W e have previ-
ously suggested that prior infection w ith seasonal influenza, but not 
prior vaccination against seasonal influenza, provides some pro-
tection against infection w ith pandemic influenza. We base this 
hypothesis on the concept of non-specific temporary heterosub- 
typic immunity that provides a host w ith immunity to any strain 
of influenza for a period of perhaps 3 -6  months following any 
influenza infection. This implies that seasonal influenza infection 
would decrease the risk of pandemic influenza infection [24].

In Victoria, there was no significant prior seasonal influenza 
drculation in 2009, with the most recent significant circulation 
of seasonal influenza having occurred in late August to Septem-
ber, 2008 [25] and we found no evidence of protection from 
seasonal vaccine against pandemic influenza infection in 2009. 
However in Canada seasonal influenza circulation preceded pan-
demic influenza circulation. Seasonal vacdne was found to protect 
against seasonal infection. Vacdnated people were therefore less 
likely to be infected with seasonal influenza than unvaccinated 
people and subsequently less likely to be protected from infec-
tion w ith pandemic influenza, since seasonal influenza infection 
provided some protection against pandemic influenza infection. It 
could therefore appear as if receipt of seasonal influenza vaccine 
increased the risk of infection with pandemic influenza [24].

The conflicting findings from observational studies on the effec-
tiveness of seasonal influenza vaccination against infection with  
pandemic influenza highlight general problems with the esti-
mation of influenza vaccine effectiveness. While most vaccines 
are licensed based on results from randomised controlled trials, 
influenza vaccines are licensed annually based only on immuno- 
genicity studies and immunogenicity may not correspond with  
protection [26]. It is therefore important to estimate VE post- 
marketing. This has been acknowledged recently in Canada, Europe 
and the US with the emergence of studies aimed at estimating 
influenza VE from existing data sources [19,27,28]. However study 
designs need to adapt to the use of data not collected specifically 
to estimate influenza VE. For instance, a recent elegant analysis 
has demonstrated that a protective effect of influenza vaccination 
can be shown to be entirely due to bias when using administra-
tive, rather than research, data to estimate influenza VE against

non-specific outcomes in older people [29]. It seems biologically 
plausible that seasonal influenza vaccine may provide some limited 
protection against infection w ith  pandemic influenza and, while we 
did not demonstrate this, it has been shown in other studies. Con-
flicting findings in other published studies suggesting no effect of 
vaccination, or increased risk of infection associated with vaccina-
tion, may be due to design issues in observational studies, including 
power of the studies, but, as we have previously argued, might also 
be explained by the hypothesis of non-specific temporary immu-
nity following infection [30].
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Effectiveness of Seasonal Influenza 
Vaccine against Pandem ic (H1N1) 

2009 Virus, Australia, 2010
James E. Fielding, Kristina A. Grant, Katherine Garcia, and Heath A. Kelly

To estimate effectiveness of seasonal trivalent and 
monovalent influenza vaccines against pandemic influenza 
A (H1N1) 2009 virus, we conducted a test-negative c a se -  
control study in Victoria, Australia, in 2010. Patients seen  
for influenza-like illness by general practitioners in a 
sentinel surveillance network during 2010 were tested for 
influenza; vaccination status was recorded. Case-patients 
had positive PCRs for pandemic (H1N1) 2009 virus, and 
controls had negative influenza test results. Of 319 eligible 
patients, test results for 139 (44%) were pandemic (H1N1) 
2009 virus positive. Adjusted effectiveness of seasonal 
vaccine against pandemic (H1N1) 2009 virus was 79% 
(95% confidence interval 33%-93%); effectiveness of 
monovalent vaccine was 47% and not statistically significant. 
Vaccine effectiveness was higher among adults. Despite 
som e limitations, this study indicates that the first seasonal 
trivalent influenza vaccine to include the pandemic (H1N1) 
2009 virus strain provided significant protection against 
laboratory-confirmed pandemic (H1N1) 2009 infection.

A fter the emergence and rapid global spread of pandemic 
zjLinfluenza A (H1N1) 2009 virus, development of a 
pandemic (H1N1) 2009-specific vaccine began (/). A 
candidate reassortant vaccine virus, derived from the A/ 
Califomia/7/2009 (HlNl)v virus as recommended by 
the World Health Organization, was used to produce a 
monovalent, unadjuvanted, inactivated, split-virus vaccine 
for Australia (2,3). The national monovalent pandemic 
(H1N1) 2009 vaccination program in Australia ran from
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September 30, 2009, through December 31, 2010, and 
vaccination was publicly funded for all persons in Australia 
>6 months of age (4,5).

In September 2009, the World Health Organization 
recommended that trivalent influenza vaccines for use in 
the 2010 influenza season (Southern Hemisphere winter) 
contain A/Califomia/7/2009 (H1N1)-Iike virus, A/ 
Perth/16/2009 (H3N2)-like virus, and B/Brisbane/60/2008 
(of the B/Victoria/2/87 lineage) virus (6). Since March 
2010, the Australian Government has provided free 
seasonal influenza vaccination to all Australia residents 
>65 years of age, all Aboriginal and Torres Strait Islander 
persons >50 years, all Aboriginal and Torres Strait Islander 
persons 15-49 years with medical risk factors, persons 
>6 months with conditions that predispose them to severe 
influenza, and pregnant women (7). Influenza vaccination is 
also recommended, but not funded, for persons who might 
transmit influenza to those at high risk for complications 
from influenza, persons who provide essential services, 
travelers, and anyone >6 months of age for whom reducing 
the likelihood of becoming ill with influenza is desired. 
Individual industries are also advised to consider the 
benefits of offering influenza vaccine in the workplace 
(8). Because pandemic (H1N1) 2009 was expected to 
be the dominant strain in 2010, the monovalent vaccine 
continued to be used despite the availability of the seasonal 
vaccine, particularly by persons who were not eligible for 
funded vaccine (M. Batchelor, pers. comm.). However, in 
2010, there were no published data on the relative use of 
monovalent and seasonal vaccines at that time.

The need for rapid implementation of programs results 
in initial studies using immunogenicity, rather than efficacy, 
to assess performance of influenza vaccines. After 1 dose 
of monovalent pandemic (H1N1) 2009 vaccine containing 
15 pg hemagglutinin without adjuvant, seroprotection was
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estimated to be 94%-97% in working-age adults (3,9, 10) 
and 75% in children (10). Observational studies provide a 
practical way to calculate vaccine effectiveness under field 
conditions (11,12). Effectiveness of monovalent pandemic 
(H1N1) 2009 was estimated to be 72%-97% by 3 studies in 
general practice and community-based settings in Europe 
(13- 15), 90% in a hospital-based study in Spain (16), and 
100% in a community-based study of children in Canada 
(17). These studies were conducted in populations for 
which the respective local or national pandemic vaccination 
program primarily used vaccine without adjuvant.

We assessed effectiveness of the 2010 seasonal 
influenza vaccine against laboratory-confirmed pandemic 
(H1N1) 2009 influenza infection in Victoria, Australia. 
Data came from an established test-negative case-control 
study in a general practitioner sentinel surveillance network 
(18,19).

Methods

Sentinel Surveillance
Victoria is the second most populous state in Australia; 

it has a temperate climate, and the annual influenza season 
usually occurs during May-September. Each season, on 
behalf of the Victorian Government Department of Health, 
the Victorian Infectious Diseases Reference Laboratory 
conducts surveillance for influenza-like illness (ILI; 
defined as history of fever, cough, and fatigue/malaise) 
and laboratory-confirmed influenza. General practitioners 
within the network provide weekly reports on case-patients 
with ILI as a proportion of total patients seen and send 
swabs from patients with ILI to the laboratory for testing. 
In 2010, a total of 87 practitioners participated in the 
program, which operated for 25 weeks, from May 3 (week 
19) through October 24 (week 43). Practitioners were asked 
to collect nose and throat swabs from patients with an ILI 
(20) within 4 days after onset of the patient’s symptoms. 
Samples were collected by using Copan dry swabs (Copan 
Italia, Brescia, Italy) and were placed in virus transport 
medium. Practitioners were also asked to provide data on 
the patient’s age, sex, date of symptom onset, vaccination 
status, type of influenza vaccine (monovalent or trivalent/ 
seasonal) received, and date of vaccination. Type of 
vaccine and date of vaccination were ascertained from 
medical records and patient report.

Laboratory Testing
RNA was extracted from clinical specimens by using 

a Corbett extraction robot (Corbett Robotics, Brisbane, 
Australia), followed by reverse transcription to cDNA by 
using random hexamers. PCR amplification and detection 
selective for the type A influenza virus matrix gene was 
performed by using primers and a Taqman probe on

an ABI-7500 Fast Real-Time PCR system (Applied 
Biosystems, Foster City, CA, USA). Samples determined 
to be positive by this assay were confirmed as positive or 
negative for pandemic (H1N1) 2009 in a second real-time 
PCR that incorporated primers and probes specific for the 
hemagglutinin gene of the pandemic (H1N1) 2009 virus. 
Influenza B viruses were identified by a separate PCR. One 
practitioner chose to send samples to the state reference 
laboratory in South Australia for testing with equivalent 
diagnostic assays.

Ascertainment of Case-patients and Controls
Case-patients and controls were sampled prospectively 

throughout the study period. A case-patient was defined as a 
person with ILI for whom test results for pandemic (H1N1) 
2009 were positive; a control was defined as a person with 
negative test results for influenza virus. Analysis of vaccine 
effectiveness against other influenza subtypes was not 
undertaken because of the almost exclusive circulation of 
pandemic (H1N1) 2009 virus during the season; therefore, 
patients with positive test results for other influenza viruses 
were excluded. A control could become a case-patient if 
another illness developed during the season, but a case- 
patient was no longer at risk and could not be included 
again.

Data Analysis and Calculation of Vaccine Effectiveness
All analyses were conducted by using Stata version 

10.0 (StataCorp LP, College Station, TX, USA). 
The x2 test was used to compare proportions, and the 
Mann-Whitney U test was used to compare time from 
vaccination to time seen by practitioner; p<0.05 was 
considered significant. Patients were excluded from the 
vaccine effectiveness analysis if  vaccination status was 
unknown, if the date of symptom onset was unknown, 
or if the interval between symptom onset and specimen 
collection was >4 days (because of decreased likelihood 
of a positive result after this time) (21,22). Patients 
were considered not vaccinated if time between date of 
vaccination and symptom onset was <14 days. If only the 
month of vaccination was reported, the date of vaccination 
was conservatively estimated to be the last day of the 
month. To avoid overestimation of vaccine effectiveness 
arising from recruitment of controls when influenza was 
not circulating in the population, analysis was restricted 
to case-patients and controls detected within the influenza 
season, defined as the period during which influenza-
positive case-patients were detected (weeks 26—40).

Vaccine effectiveness was defined as (1-odds 
ratio) x 100%; the odds ratio is the odds of laboratory- 
confirmed pandemic (H1N1) 2009 case-patients having 
been vaccinated divided by the odds of controls having 
been vaccinated. In the test-negative case-control design,
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the odds ratio estimates the incidence density (rate) ratio 
because controls are selected longitudinally throughout the 
course of the study (i.e., by density sampling) (23,24). The 
odds ratio in test-negative case-control studies has also 
been shown to approximate the risk ratio under conditions 
of varying attack rates and test sensitivity and specificity 
(25). Logistic regression was used to calculate odds ratios 
and 95% confidence intervals (CIs) for having laboratory- 
confirmed pandemic (H1N1) 2009, which were adjusted 
for the variables of age group and month of specimen 
collection against the following: seasonal vaccine, 
monovalent vaccine, both vaccines, and any (either or both 
the seasonal and monovalent) vaccine. Sensitivity analyses 
were conducted to determine the effects of the following 
on vaccine effectiveness: not censoring for specimens 
collected from ILI patients >4 days after symptom onset, 
including controls recruited outside the defined influenza 
season, and assuming that patients with unspecified type A 
influenza had pandemic (H1N1) 2009.

Ethical Considerations
Data in this study were collected, used and reported 

under the legislative authorization of the Victorian Public 
Health and Wellbeing Act 2008 and Public Health and 
Wellbeing Regulations 2009. Thus, the study did not 
require Human Research Ethics Committee approval.

Results
A total of 172,411 patients were seen by participating 

practitioners during the study period, of whom 678 (0.4%) 
had 1L1. After a nadir 1L1 rate of 0.2% in week 21, the rate 
gradually increased to 0.4% in week 31 before increasing 
more sharply to a peak of 0.9% in week 36. Swabs were 
collected from 478 (71%) ILI patients, among whom 170 
(36%) had positive influenza test results and the remainder 
were negative. Influenza-positive patients were detected 
during weeks 26-40, which was defined as the influenza

50 □ Influenza B

Seasonal Vaccine against Pandemic (H1N1) 2009

season (Figure). A total of 142 patients were excluded from 
further analysis because vaccination status was unknown 
(n = 11), symptom onset date was unknown (n = 33), time 
between symptom onset and specimen collection was >4 
days (n = 43), or the specimen was collected outside the 
influenza season (n = 82). A significantly higher proportion 
of influenza-negative patients (13%) than influenza-
positive patients (4%) were excluded because >4 days had 
elapsed between symptom onset and specimen collection (p 
= 0.001). No significant difference was found by age group 
for whether study participants had a specimen collected 
within 4 days after symptom onset (p = 0.10).

Of the remaining 336 patients, 156 (46%) had positive 
influenza test results. Most (89%) influenza case-patients 
had pandemic (H1N1) 2009, 6% had unspecified type 
A influenza, 4% had influenza A (H3N2), and 1% had 
influenza type B (Figure). After exclusion of the other 
influenza patients, 139 pandemic (H1N1) 2009 case- 
patients and 180 controls were included in the study 
analysis. Most (57%) participants were 20-49 years of age, 
and case-patients were significantly younger than controls 
(p = 0.001); no case-patient was >65 years of age (Table 1). 
No statistically significant difference was found between 
male and female study participants by case or control status 
(p = 0.60) or by vaccination status (p = 0.09). The high 
proportion of case-patients detected in August resulted in 
a significant difference between case-patients and controls 
by month of swab collection (pO.001).

Overall, 59 (18%) study participants were reported as 
vaccinated with any vaccine, but the proportion was higher 
among controls (26%) than among case-patients (9%; 
p<0.001). The proportion of controls, who were mostly 
older, who had received the trivalent seasonal vaccine was 
higher than the proportion of controls who had received 
the monovalent vaccine (Table 1). Similarly, controls who 
had received both vaccines were all >20 years of age. Only 
case-patients who were 5-19 and 20-49 years of age were

■ Influenza A, not further specified
■ Influenza A/H3
■ Pandemic (H1N1)2009
□ Negative H I I b I

nRnrnnnrnnnnnml n mnfin
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 

W eek

Figure. Influenza status of patients seen at sentinel 
general practices, Victoria, Australia, May 3 (week 
19) through October 24 (week 43), 2010.
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reported as vaccinated. Influenza vaccine type was not 
specified for 1 case-patient and 1 control, each of whom 
was reported as vaccinated.

Reflecting the availability of each vaccine, the median 
period between vaccination and visit to a general practitioner 
was significantly shorter for those who received seasonal 
vaccine (114 days) than for those who received monovalent 
vaccine (223 days; p<0.0001). No significant difference in 
the time from vaccination to practitioner visit was found 
between case-patients and controls for seasonal (p = 0.70) 
or monovalent vaccine (p = 0.95).

In general, point estimates o f vaccine effectiveness 
adjusted for patient age and month o f specimen collection 
differed little from crude estimates (Table 2). A significant 
protective effect was observed for seasonal vaccine only 
(adjusted vaccine effectiveness 79%; 95% Cl 33%—93%) 
and seasonal and monovalent vaccines (adjusted vaccine 
effectiveness 81%; 95% Cl 7%—96%). The adjusted vaccine 
effectiveness for receipt o f any (either or both the seasonal 
and monovalent) vaccine was lower at 67% because of the 
47% vaccine effectiveness for monovalent vaccine. The 
absence of vaccinated case-patients and controls meant 
vaccine effectiveness could not be estimated for several of 
the 5 age groups (Table 1); therefore, age was collapsed 
into 3 variables: children (0-19 years), working-age adults 
(20-64 years), and elderly persons (>65 years). Estimates 
of vaccine effectiveness for working adults were 0%-14% 
higher than the overall adjusted estimates; estimates for 
children were either undefined because no controls were 
vaccinated or were without a significant protective effect. 
Vaccine effectiveness could not be calculated for elderly 
persons because there were no case-patients in this age 
group.

Sensitivity analyses to determine the effects o f certain 
assumptions resulted in variations in the adjusted vaccine 
effectiveness point estimates of 0%-3% and no changes to 
their relative significance. The effects considered were as 
follows: assumption that those patients with unspecified

influenza type A had pandemic (H1N1) 2009, no exclusion 
o f patients if  >4 days had elapsed between symptom onset 
and specimen collection, and no exclusion o f patients if 
they were identified outside the defined influenza season.

Discussion
Our results indicate that the 2010 seasonal trivalent 

influenza vaccine is >80% effective against pandemic 
(H1N1) 2009 virus, regardless whether given by itself or 
in addition to monovalent vaccine. Groups in Europe and 
Canada have estimated the effectiveness of monovalent 
seasonal influenza vaccine against pandemic (H1N1) 
2009 virus to be 72%-100% (13- 17). However, the 
effectiveness of any vaccine (monovalent, seasonal, or 
both) against pandemic (H1N1) 2009 virus was lower 
(67%, 95% Cl 33%-84%) because effectiveness for 
monovalent vaccine only was 47% (95% Cl -62%  to 
82%). The lower effectiveness of monovalent influenza 
vaccine against pandemic (H1N1) 2009 virus compared 
with seasonal trivalent influenza vaccine is difficult to 
explain. Both vaccines contain the same quantities (15 pg) 
of hemagglutinin; and although the monovalent vaccine 
does not contain adjuvant and was available =6 months 
before the seasonal vaccine, it has been shown to be 
strongly immunogenic (3,9,10). Immunogenicity does not 
necessarily correlate directly with vaccine effectiveness, 
and we cannot exclude waning immunity as an explanation 
for the lower effectiveness of monovalent vaccine in our 
study. Waning immunity after receipt of monovalent 
vaccine has been suggested after an interim study from the 
United Kingdom for the 2010-11 influenza season (26). 
The finding could also be a product of the relatively small 
number of case-patients and controls who received only 
the monovalent vaccine, given that vaccine effectiveness 
estimates can change considerably by the inclusion or 
exclusion o f 1-2 vaccinated study participants.

When stratified by age, estimates of vaccine 
effectiveness for working-age adults were higher and

Table 1. Participants in negative-test case-control study of efficacy of seasonal influenza vaccine for preventing pandemic (H1N1) 
2009, Australia, 2010

Age group, y Total,
Participants 0—4, n = 19 5-19, n = 73 20-49, n = 181 50-64, n = 41 >65, n = 5 n = 319
Controls

Total* 13(68) 27 (37) 107 (59) 28 (68) 5(100) 180 (56)
Vaccinated with monovalent vaccinef 0 3(11) 7(7) 1 (4) 0 11 (6)
Vaccinated with seasonal vaccinef 0 0 9(8) 10(36) 2(40) 21 (12)
Vaccinated with both vaccinesf 0 0 7(7) 4(14) 2(40) 13(7)

Pandemic (H1N1) 2009 case-patients
Total* 6(32) 46 (63) 74(41) 13(32) 0 139 (44)
Vaccinated with monovalent vaccinef 0 3(7) 3(4) 0 0 6(4)
Vaccinated with seasonal vaccinef 0 2(4) 2(3) 0 0 4(3)
Vaccinated with both vaccinesf 0 0 2(3) 0 0 2(1)

'No. (%) study participants.
tNo. (%) controls/pandemic (H1N1) 2009 case-patients.
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Table 2. Crude and adjusted vaccine effectiveness against pandemic (H1N1) 2009 virus, Australia, 2010
Influenza vaccine effectiveness, % (95% confidence interval)

Effectiveness Seasonal Monovalent Both Any
Crude 80 (39-93) 42 (-62 to 79) 84 (26 to 96) 70 (42 to 84)
Adjusted* 

0-19 y Undefinedt 44 (-231 to 91) Undefined!: -41 (-549 to 69)
20-64y 89 (50 to 98) 56 (-88 to 90) 81 (7 to 96) 81 (52 to 92)
All ages 79 (33 to 93) 47 (-62 to 82) 81 (7 to 96) 67 (33 to 84)

‘Adjusted for month of swab collection. 
tNo controls vaccinated.
TNo controls or case-patients vaccinated.

more precise than those for children. We previously 
demonstrated that the sentinel practitioner surveillance 
program in Victoria is well suited for estimating vaccine 
effectiveness among working-age adults, who account 
for most of the surveillance population (18), and the 
2010 results were consistent with this observation. The 
relatively few participants in the young (childhood) age 
groups meant the study had insufficient power to produce 
defined or significant estimates of vaccine effectiveness. 
At the other end of the age spectrum, 2% of study 
participants (5 controls and 0 case-patients) in 2010 were 
>65 years of age compared with an average of 7% in this 
age group during 2003-07 (18). Although the absence of 
pandemic (H1N1) 2009 case-patients >65 years of age is 
not surprising, given that older adults have been shown to 
have relatively higher levels of cross-reactive antibodies 
to pandemic (H1N1) 2009 virus (27- 29), the reason for 
the low proportion of controls in this age group remains 
unclear. Among the several explanations are a true lower 
rate of ILI in older persons during 2010, a lower rate of 
visits to practitioners for ILI by persons in this age group 
(or treatment at other health services such as hospitals), or 
preferential sampling of younger persons by practitioners 
(and perhaps awareness that pandemic [H1N1] 2009 was 
the predominant circulating influenza virus subtype).

In addition to having a sample size large enough to 
provide vaccine effectiveness estimates by age group 
and influenza type, several other considerations with 
regard to design of case-control studies of influenza 
vaccine effectiveness have been proposed: 1) whether the 
control group best represents the vaccination coverage 
of the source population and 2) whether collection and 
confounding variables have been adjusted for, particularly 
underlying chronic conditions for which vaccine is 
recommended and previous influenza vaccination history
(30) . A 2010 survey of pandemic vaccination suggests that 
monovalent vaccine coverage in the control group was 
generally consistent with that in the general population 
and that use of monovalent vaccine was =17% among 
those from Victoria, compared with 13% among controls
(31) . No equivalent survey of 2010 seasonal vaccine 
usage was available for comparison.

Data about concurrent conditions of study participants 
that would indicate need for influenza vaccination were 
not collected during the 2010 influenza season; thus, 
adjustment of the vaccine effectiveness estimates for this 
potentially confounding variable could not be conducted. 
Such confounding by indication (or negative confounding), 
in which persons at higher risk for influenza are more likely 
to be vaccinated, underestimates effectiveness of influenza 
vaccine but may be counteracted by healthy vaccinee bias (or 
positive confounding), which overestimates effectiveness 
(30,32). The extent to which these biases occur is likely to 
vary and may explain the positive and negative variation 
of crude influenza vaccine effectiveness estimates after 
adjustment for chronic conditions in several similar test-
negative case-control studies (33-33). Speculation about 
the relative effects of these biases on how many received 
monovalent vaccine is also difficult; vaccination was 
funded for the entire population of Australia, but at the end 
of February 2010, only 18% had been vaccinated (31).

Similar methods using test-negative controls to assess 
seasonal and pandemic vaccine effectiveness against 
both seasonal and pandemic influenza viruses have been 
applied in North America and Europe (13,16,17,33- 39). 
Observational studies provide a convenient and timely way 
to assess influenza vaccine effectiveness without the ethical, 
practical, and financial stringencies associated with clinical 
trials for vaccine efficacy, but they also have limitations. 
Modeling suggests that the test-negative case-control 
design generally underestimates true vaccine effectiveness 
under most conditions of test sensitivity, specificity, and the 
ratio of influenza to noninfluenza attack rates (25), although 
quantifying the extent of this effect in this study is difficult 
because the precise sensitivity and specificity of the test 
are not known. We attempted to limit ascertainment bias 
by censoring records that indicated specimen collection >4 
days after symptom onset and restricting the analysis to 
case-patients and controls tested within the influenza season 
only, although sensitivity analyses indicated little effect 
if these restrictions were relaxed. Of note, these findings 
apply predominantly to working-age adults receiving 
medical care in the general practice setting; the study did 
not include those who did not seek medical care for ILI.
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Thus, the study measured effectiveness o f vaccine against 
illness severe enough to require a visit to a practitioner; 
the results cannot necessarily be generalized to other 
parts of the population, in particular young children and 
elderly persons. We were also unable to determine whether 
participants had previously been infected with pandemic 
(H1N1) 2009 virus, which may result in overestimation of 
vaccine effectiveness.

In conclusion, we applied a test-negative case-control 
study design to an established sentinel surveillance system 
to estimate effectiveness o f a trivalent seasonal influenza 
vaccine, which included an A/Califomia/7/2009 (H1N1)- 
like virus, the pandemic (H1N 1) 2009 influenza virus strain. 
This strain is also a component of the trivalent influenza 
vaccine for the 2010-11 Northern Hemisphere influenza 
season (40) . The trivalent vaccine provided significant 
protection against laboratory-confirmed pandemic (H1N1) 
2009 virus infection.
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We used a sentinel general practitioner (GP) network 
to conduct surveillance for laboratory-confirmed influ-
enza amongst patients presenting with influenza-like 
illness (ILI) in Victoria, Australia in 2011. The test-
negative variation of the case control study design 
was used to estimate effectiveness for seasonal tri-
valent influenza vaccine. Cases and controls were ILI 
patients that tested positive and negative for influ-
enza, respectively. Vaccination status was recorded by 
GPs and vaccine effectiveness (VE) was calculated as 
(i-adjusted odds ratio)xioo%. There were 529 patients 
included in the study, of which 29% were influenza-
positive. Twelve percent of study participants were 
reported as vaccinated, 6% of cases and 15% of con-
trols. Adjusted VE against all influenza was 56%, but 
not statistically significant. There was generally little 
variation in VE estimates when stratified by virus type 
and subtype, which is consistent with good matches 
between circulating strains and the vaccine strains. 
The VE was higher among adults of working age than 
among children.

Introduction
Victoria accounts for approximately 25% of Australia’s 
population of 23 million people. It has a temper-
ate climate, and the influenza season usually occurs 
between June and October. Each season, the Victorian 
infectious Diseases Reference Laboratory uses a net-
work of sentinel general practitioners (GPs) to con-
duct surveillance for influenza-like illness (ILI) and 
laboratory-confirmed influenza. The system has been 
operational since 1998, with an average of 60 GPs par-
ticipating each year. This surveillance system is used 
to estimate vaccine effectiveness (VE) of the seasonal 
influenza vaccine.

Seasonal influenza vaccination in Australia is a pub-
licly funded programme. The Australian government 
provides free influenza vaccination to all Australians 
aged 65 years and older, Aboriginal and Torres Strait 
Islander people over 15 years of age, pregnant women 
and individuals aged six months and older with medi-
cal conditions predisposing to severe influenza [1].

Individuals may also be vaccinated outside the funded 
programme, such as through workplaces. The influ-
enza virus composition of the seasonal trivalent 
influenza vaccine (TIV) in Australia in 2011 was A/ 
California/7/2009 (HiNi)-like virus, A/Perth/16/2009 
(H3N2)-like virus, and B/Brisbane/60/2008-like virus 
(of the B/Victoria/2/87 lineage) [2].

Here we use the results from laboratory-confirmed 
influenza surveillance in Victoria to estimate TIV effec-
tiveness in 2011 using the prospective test-negative 
variation of the case control study. This design has 
been used in Europe, North America and Australia 
[3-6]. We aimed to calculate type- and subtype-specific 
VE estimates and used them in combination with sur-
veillance data to make inferences how well the 2011 
seasonal TIV matched circulating strains. The strain 
composition recommended for use in the 2011 south-
ern hemisphere influenza vaccine was the same as the 
one subsequently used in the 2011/12 northern hemi-
sphere seasonal vaccine [7].

Methods
In 2011, 97 GPs participated in the surveillance system 
which operated from 2 May to 30 October inclusive. 
Advertising in GP circulars was used to encourage GPs 
to participate in the programme and targeted recruit-
ment was undertaken in geographical areas consid-
ered to be poorly represented. A relatively even and 
widespread distribution suggested adequate represen-
tation of the 97 GPs throughout the metropolitan and 
most rural areas of the state. GPs reported the total 
number of consultations per week from which propor-
tions were calculated as the number of ILI patients per 
1,000 consultations. ILI was defined as fever (or history 
of fever), cough, and either fatigue or malaise [8]. GPs 
were asked to collect a nose and/or throat swab from 
patients with an ILI within four days of the onset of the 
patient’s symptoms and provide data on the patient’s 
age, sex, date of symptoms onset, influenza vaccina-
tion status in 2011 and 2010, date of vaccination and 
presence of comorbid conditions for which influenza
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vaccination is indicated. Patients were chosen for 
swabbing at the discretion of the GP.

To test for influenza viruses, RNA was extracted from 
clinical specimens using a Corbett extraction robot fol-
lowed by reverse transcription using random hexamers. 
cDNA was amplified using an ABI-7500 Fast Real-Time 
PCR System incorporating primers and probes specific 
for the detection of type A, B and C influenza viruses. 
Samples that tested positive for influenza type A in this 
assay were subtyped in a second real-time PCR assay 
incorporating primers and probe specific for influenza 
A(HiNi)pdmo9, A(Hi) (non-pandemic) and A(H3) hae- 
magglutinin genes.

VE was defined as (i-adjusted odds ratio)xioo%, where 
the odds ratio is the ratio of odds of laboratory-con-
firmed influenza cases being vaccinated to the odds 
of controls (those that tested negative for influenza) 
being vaccinated. Logistic regression was used to cal-
culate odds ratios and 95% confidence intervals that 
were adjusted for the variables of age group, month of 
specimen collection and comorbidity. There was not 
sufficient statistical power to generate age-specific 
VE estimates for the age group *65 years or to further 
stratify the age group of 0-19 year-olds. Patients were 
excluded from the VE analysis if vaccination status was 
unknown, if the date of symptom onset was unknown or 
if there was an interval greater than four days between 
symptom onset and specimen collection, based on the

decreased likelihood of a positive result after this time 
[9,10]. Patients were considered not vaccinated if there 
was less than 14 days between the date of vaccination 
and symptom onset. All analyses were conducted using 
Stata (version 10.0; StataCorp LP). The chi-squared test 
was used to compare proportions, with p<o.os consid-
ered statistically significant.

Results
Participating GPs reported seeing a total of 194,295 
patients during the reporting period, of whom 945 
(0.5%) met the ILI case definition, a proportion that 
was consistent with previous years. As the reporting of 
ILI cases is not identifiable and separate to those who 
are swabbed (for whom data are recorded on a labo-
ratory test request form), we are unable to assess any 
demographic or vaccination status differences between 
those who were swabbed and those who were not. Of 
the 945 ILI cases, 665 (70%) were swabbed and 185 
(28%) tested positive for influenza. In general, influ-
enza A(HiNi)pdmo9 predominated during the first half 
of the season, A(H3) during the middle to latter part, 
whilst cases of influenza B were detected throughout 
(Figure). One case of influenza type C infection was 
also detected.

We excluded 136 swabbed patients (20%) from the VE 
analysis due to unknown vaccination status (n=2s), 
unknown date of symptom onset (n=44) or more than 
four days between symptom onset and specimen

Fi g u r e  ____

Influenza-positive and -negative patients at sentinel general practices by week, Victoria, 2 May to 30 October (n=665)
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collection (n=8o); some were excluded for more than 
one reason. The case of influenza type C infection was 
also excluded. There was no statistically significant 
difference between the swabbed patients that were 
included and those that were excluded from the study 
by vaccination status (p=o.n), influenza positivity 
(p=o.07), age group (p=o.72), presence of a comorbid 
condition (p=o.2i) or vaccination in 2010 (p=o.io).

Of the 529 patients included in the study, 155 (29%) 
were cases and 374 (71%) were controls. Cases were 
significantly younger than controls (p=o.oo4) and 
more common in August and September (pto.ooi), 
but there was no statistically significant difference 
between cases and controls by sex (p=o.3i) (Table 
1). There was no statistically significant difference 
between cases and controls with respect to presence 
of a comorbidity recommended for influenza vaccina-
tion (p=o.i5), although those with a comorbid condi-
tion were more likely to be older (p<o.ooi) and to be 
vaccinated (pto.ooi). Being vaccinated in 2010 was not 
associated with testing positive for influenza (p=o.2i), 
but was associated with older age (p<o.ooi) and with 
vaccination in 2011 (pto.ooi).

Of the 529 patients eligible for the VE analysis, 65 
(12%) were reported as vaccinated, with a statistically 
significant difference between cases (6%) and con-
trols (15%) (p=o.oo8) (Table 2). No cases of influenza 
A(HiNi)pdmo9 were reported as vaccinated. The pro-
portion vaccinated was significantly higher in older 
age groups (pto.ooi), but there was no statistically

Tabl e 1______________________________________
Characteristics of cases and controls, vaccine effectiveness 
study, Victoria, 2 May to 30 October (n=529)

ä No data for one control. 
b No data for 50 controls and 15 cases. 
c No data for 27 controls and seven cases.

significant difference between those vaccinated and 
not vaccinated by month of testing (p=o.63).

There was little difference in the overall crude (60%) 
and adjusted (36%) point estimates for VE against all 
influenza, although only the crude estimate was sta-
tistically significant (Table 3). Although slightly higher 
against influenza A(HiNi)pdmo9, age-adjusted VE esti-
mates were generally consistent when stratified by 
type and subtype, however, 95% confidence intervals 
for estimates in the age group of 0-19 year-olds were 
very wide. Crude VE against influenza A(HiNi)pdmo9 
was 100% because none of 24 cases with confirmed 
influenza A(HiNi)pdmo9 were vaccinated, but the VE 
was reduced after adjustment.

A sensitivity analysis conducted by restricting inclusion 
of cases and controls to the influenza season in 2011 
when cases are more likely to be detected (the period 
from 20 June to 30 October when at least one influ-
enza case was detected in consecutive weeks) resulted 
in changes to the point estimates from 0% to 1%. Not 
censoring patients for whom there were more than four 
days between symptom onset and specimen collection 
reduced the crude and overall adjusted VE estimates 
from 0% to 25% and from 2% to 14%, respectively.

D iscussion
Using a population of patients with HI who consulted 
sentinel GPs in Victoria, Australia, we have estimated 
a moderate effectiveness of 56% for the 2011 seasonal 
TIV against all influenza, although this was not statisti-
cally significant. VE estimates for the age group of 0-19 
year-olds (childhood) were lower and considerably less 
precise than those for the age group of 20-64 year- 
olds. This is consistent with our observations in pre-
vious years which have highlighted the utility of this 
GP surveillance programme for estimating VE among 
working age adults who comprise most of the surveil-
lance population [11,12].

Tabl e 2_____________________________________
Number and vaccination status o f cases and controls by 
age group, vaccine effectiveness study, Victoria, 2 M ay to 
30 October (n=529)

Age group (years)

0-19 20-64  *65 Total

Controls
n 108 249 17 374

Vaccinated (%) 2(2) 43 (17) 10 (59) 55d5)
All influenza 
cases

n 67 85 3 155
Vaccinated (%) 1(1) 6(7) 3 (100) 10(6)

Influenza
A(HiNi)pdmo9
cases

n A 20 0 24
Vaccinated (%) 0(0) 0(0) 0(0) 0(0)

Influenza A(H3) 
cases

n 24 29 1 54
Vaccinated (%) 0(0) 3(10) 1 (100) 4(7)

Influenza B 
cases

n 37 30 2 69
Vaccinated (%) 1 (3) 1 (3) 2 (100) 4(6)
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Strain typing surveillance data suggested good 
matches to the vaccine strains: 89% of 87 influenza 
A(HiNi) isolates were A/California/7/2009-like with the 
remainder A/California/7/2009-like (low reactor); 96% 
of 122 type A(H3N2) isolates were A/Perth/16/2009-like 
with the remainder A/Perth/16/2009-like (low reactor); 
96% of 136 type B isolates were B/Brisbane/60/2008- 
like, 4% were B/Brisbane/60/2008-like (low reactor) 
and fewer than 1% were B/Florida/4/2006-like (low 
reactor) of the B/Yamagata/16/88 lineage (personal 
communication: K O’Bryan, World Health Organization 
Collaborating Centre for Reference and Research on 
Influenza, December 2011). Thus, the type- and sub-
type-stratified VE point estimates are broadly con-
sistent with a good match to the circulating strains. 
However, none of the adjusted VE estimates was statis-
tically significant suggesting insufficient study power. 
This is particularly evident in the childhood age group 
of the 0-19 year-olds.

To our knowledge there are no other published data 
for 2011 southern hemisphere seasonal influenza vac-
cine effectiveness. However, a point of comparison to 
other studies exists given the strain composition has 
not changed for the 2010/11 northern hemisphere and 
2010 and 2011 southern hemisphere seasonal TIVs. 
In general the estimates obtained from our study 
were higher than those from other comparable stud-
ies. Using the same method we were able to demon-
strate an effectiveness of 89% for the 2010 TIV against 
influenza A(HiNi)pdmo9 among working age adults 
[12], compared with the 78% effectiveness observed 
this year. A study conducted amongst inpatients in 15 
Australian hospitals in the same period in 2010 esti-
mated a statistically significant effectiveness of 49% 
for TIV against hospitalisation with influenza A(HiNi) 
pdmo9 [13]. Similarly in Europe, preliminary estimates 
for seasonal influenza vaccine effectiveness against all 
influenza using the test-negative variation of the case 
control study design among ILI patients seen in pri-
mary care were lower than our study, ranging from 5% 
to 50% [14-17]. The pooled end-of-season analysis of 
the European data resulted in lower adjusted estimates 
of VE against both influenza A(HiNi)pdmo9 (27%) and

type B influenza (64%) in working age adults compared 
to our study, although neither was statistically signifi-
cant [18].

In our analysis we attempted to control for variables 
generally considered to be confounders [19], that is, 
those assumed to be associated with both exposure 
(vaccination) and outcome (influenza) but not on the 
causal pathway. These include age, month of swab 
collection and presence of a comorbid condition for 
which influenza vaccine is indicated. We observed gen-
erally little variation between crude VE estimates and 
those adjusted for these confounding variables. Only 
age was significantly associated with both vaccination 
and influenza. Month of swab collection and comor-
bidity were significantly associated with outcome and 
exposure respectively, but neither was significantly 
associated with both. Other studies using the same 
variation of the test-negative case control study as 
this one have also adjusted for receipt of influenza 
vaccine within a year before the study [16,18]. Whilst 
we collected this data field in 2011, its inclusion as a 
covariate in the adjusted model resulted in consider-
able variation from the crude and the age-, month- and 
comorbidity-adjusted VE estimates. However, further 
statistical analysis did not support inclusion of previ-
ous vaccination in the model because it assumes that 
previous vaccination has the same effect regardless of 
vaccination in the current season, and because of its 
high degree of correlation with current vaccination sta-
tus which skews and reduces the precision of the VE 
estimate.

While variables may be considered to be theoreti-
cal confounders they may result in biases that could 
under- or over-estimate the VE. Results from influenza 
VE studies in Europe for the 2010/11 season included 
comments about the need for a cautious approach to 
dealing with such variables [17,20] and highlight the 
need for further clarification of the optimal analysis for 
the test-negative design when used to estimate influ-
enza VE. Whilst relatively new, the method is admin-
istratively practical and theoretically acceptable, and

Tabl e 3______________________________________________________________________________________
Crude and adjusted vaccine effectiveness of seasonal vaccine against influenza by age group and type/subtype, Victoria, 2 
May to 30 October (n=529)

All 60 (19 to 80) 33 (-676 to 94) 61 (-3 to 85) 56 (-2 to 81)
Influenza A(HiNi)pdmo9 100 (6 to ioo)b Not defined 77 (-44 to ioo)bt 78 (-38 to ioo)b-c
Influenza A(H3) 54 (-34 to 84) -44 (-1.757 to ioo)bt 48 (-99 to 86) 58 (-53 to 89)
Influenza B 64 (-2 to 88) -16 (-1,298 to 90) 78 (-77 to 97) 53 (-68 to 87)

* Adjusted for month of swab collection and comorbidities. 
6 Calculated using exact method. 
c Median unbiased estimates.
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we will continue to refine it in collaboration with other 
investigators that have adopted it.

As previously discussed, other limitations of the study 
must also be taken into account when considering the 
results [6,12,21]. Briefly, the study was conducted in a 
general practice setting and the results are thus rep-
resentative of the mid-range of the influenza clinical 
spectrum. Those not sick enough to attend a medical 
practitioner and more severe cases requiring hospitali-
sation were not part of the sampling frame. We were 
unable to quantify immunity from previous infection 
or healthy vaccinee bias, both of which overestimate 
VE. Conversely though, when conducted retrospec-
tively, the test-negative case control design generally 
underestimates true VE under most conditions of test 
sensitivity, specificity and the ratio of influenza to non-
influenza attack rates [22].

Overall, the seasonal TIV was moderately effective 
against medically attended influenza in Victoria, 
Australia during the 2011 southern hemisphere sea-
son. These VE estimates were generally consistent 
among working age adults when stratified by type and 
influenza A subtype, and consistent with an apparent 
good match between TIV and circulating strains during 
a season which saw the re-emergence of the influenza 
A(H3N2) subtype [23].
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Discussion and conclusions

The first influenza pandemic of the 21st century occurred in 2009 with the 
emergence of the influenza A(HlNl]pdm09 virus. In Australia this invoked a 
public health response largely based on the Australian Health Management Plan for 
Pandemic Influenza (AHMPPI) that had been developed over the course of the 
preceding decade [1]. The experience responding to the pandemic provided an 
opportunity not only to evaluate the performance of the plan in practice, but also 
the validity of some of the assumptions about pandemic epidemiology and its 
effect on post-pandemic seasonal influenza.

This thesis presented 11 studies that addressed the two aims to examine the 
epidemiology of influenza during the first wave of the 2009 pandemic and the 
following influenza seasons, and to estimate the effectiveness of trivalent seasonal 
and monovalent vaccines prior to, during and following the pandemic. More 
specifically, these aims were addressed by four research questions that 
investigated: how the epidemiology and application of school closure and antiviral 
distribution control strategies for influenza A(HlNl)pdm09 differed from 
expectations in pandemic planning; the role of disease severity in influenza 
A(HlNl)pdm09 transmission; post-pandemic influenza epidemiology; and 
influenza vaccine effectiveness prior to, during and following the pandemic. This 
chapter presents the key findings and conclusions of the 11 research papers in the 
context of the four research questions of the thesis. The public health implications 
and further investigative opportunities suggested by the studies' findings for each 
of the research questions are also discussed.

Expectations and reality of an influenza pandemic
The AHMPPI was largely based on the 1918-19 pandemic, with estimated 
symptomatic infection and case fatality risks of 40 per cent and 2.4 per cent 

respectively and 50 per cent of the population not going to work at the peak of the 
pandemic [1]. The first study in Chapter 4 showed that some epidemiological 
features of influenza A(HlNl)pdm09, including multiple waves, a younger age of 
infection and increased morbidity and mortality in younger age groups, were not 
inconsistent with previous pandemics [2]. However, in contrast to previous 
pandemics the emergence of the pandemic strain in 2009 resulted from a novel
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reassortant of a circulating subtype rather than antigenic shift and did not replace 

all influenza A virus subtypes. Furthermore, a case fatality risk of less than 0.01% 

was observed and the effective reproductive number was estimated to be 1.2-1.5 

compared to a mean of 2.0 (range: 1.4-2.8) in previous pandemics.

School closure and distribution of oseltamivir treatment and prophylaxis to cases 

and their contacts was proposed as a mitigation measure for influenza pandemics 

in the AHMPPI [1]. During the 'Delay' and 'Contain' phases of the public health 

response to influenza A(HlNl)pdm09 in Victoria, closure was only applied to 

specific schools and classrooms in which two or more cases had been identified, 

for the duration of one week [3]. The second study in Chapter 4 demonstrated that 

not enough schools were closed soon enough, and were closed for too short a 

period to have any discernible impact on the transmission of influenza 

A(HlNl)pdm09 [4]. Indeed, a case study of one school in which there were at least 

77 laboratory confirmed cases showed transmission was well established before 

case detection and the need to close the school was identified. This observation 

was also made in the wider Victorian population by the likely establishment of 

community transmission several weeks before cases were identified [5]. The delay 

in detection of cases was probably also exacerbated by a case definition that 

required a history of travel to an affected area, in which it was seemingly 

presumed that all or most infections acquired overseas would be serious enough to 

warrant medical attendance and testing.

A further consequence of identifying the pandemic weeks after it was first 

established was the rapid increase in notified cases. This placed pressure on the 

centralised response team, shown by the second Chapter 4 study in which 

collection of complete high-quality data became difficult and antiviral medication 

was unable to be delivered to most cases and their close contacts within 48 hours 

of symptom onset [4]. In addition to volume, the centralised nature of the 

distribution system and time between symptom onset, presentations, testing and 

notification likely contributed to delay in antiviral delivery.
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Implications for pandemic planning

Whilst there was considerable debate about whether influenza A(HlNl)pdm09 

even constituted a pandemic at all, it nevertheless challenged some of the 

underlying assumptions about influenza [6], and highlighted a gap in the ability of 

pandemic plans to accommodate a scenario with lower morbidity and mortality.

Notwithstanding the likely limited value of large-scale population-based control 

measures for relatively mild pandemics even if identified early, the identification of 

influenza A(HlNl)pdm09 later than expected also reduced the effectiveness, or 

made redundant, planned interventions to contain transmission. Effectiveness of 

school closures is greatest if the closures are universal, made early, continue until 

prevalence returns to low levels and children stay at home during the closure [7]. 

The limited school closure policy had no impact, but provided a valuable insight 

into the need to act early and universally should it be considered as a control 

measure in a future pandemic.

Public and professional disquiet about the response to the influenza 

A(HlNl)pdm09 pandemic, both within Australia [8, 9] and internationally [6], 

undermined trust in health officials. The lessons described here, along with many 

others regarding other elements of the broad response have been recognised [10]. 

Indeed, a methodology for short-term collection of enhanced epidemiological and 

virological data in Australia has been developed in consultation with a broad range 

of stakeholders to better manage the surveillance process in the early stages of a 

pandemic [11]. Jurisdictions will need to ensure that milder scenarios are 

addressed in revised pandemic plans to restore confidence and the ability to 

respond effectively to future pandemics.

Mild infections drove pandemic influenza transmission
The relatively mild nature of influenza A(HlNl)pdm09 coupled with evidence 

suggesting that community transmission in Victoria was well established before 

cases were identified lead to the hypothesis that spread of the virus was largely 

driven by those with asymptomatic or clinically mild infections [5]. Using a 

deterministic mathematical model, the second study in Chapter 6 showed that 

those with low-level symptoms and asymptomatic infections were responsible for
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most influenza A(HlNl)pdm09 transmission. The other infection severity 
categories of moderate symptoms and hospitalised each infected less than one 
individual on average, making them incapable of maintaining disease transmission 
in the absence of mild infections.

Whilst uncertainty around estimation of model parameters can be an important 
limitation of modelling studies, a strength of the study in this thesis is that 
parameter values were primarily drawn from observational study data. 
Furthermore, the robustness of the model was demonstrated by sensitivity 
analyses that used more conservative estimates of parameter values where there 
was variation in the published literature or were based on plausible assumptions. 
Whilst the effective reproduction numbers for each infection severity category 
varied, under all alternative scenarios, the broad findings of the model remained 
unchanged.

Determining the duration of viral shedding
The recovery rate parameters of the mathematical modelling study were drawn 
from a systematic review of influenza A(HlNl)pdm09 viral shedding duration that 
was undertaken as part of this thesis and also included in Chapter 6 [12]. As 
expected, the duration of viral shedding generally increased with severity of 
clinical presentation, which in the review was classified by the study settings of 
community-based, hospitalised and intensive care cases. Also observed as 
expected, was that viral shedding duration was shorter when antiviral treatment 
was administered within 48 hours of illness onset. An unexpected finding of the 
review was that there appeared to be little or no difference in duration of influenza 
A(HlNl)pdm09 virus shedding between adults and children. This is in contrast to 
several studies of seasonal influenza prior to 2009 that found longer shedding 
duration in children [13-15], and has become a widely held assumption in text 
books [16] and pandemic planning documents [17].

The biggest challenge in conducting the systematic review was the high degree of 
variability in the measurement and/or definition of viral shedding duration 
between shortlisted studies, and a standard definition was applied to data 
abstracted from each study so they could be compared. This variability was borne
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out by statistical testing which identified significant heterogeneity between studies 

and precluded meta-analysis. To enable simple and rapid comparison between 

future studies, the following list of standard parameters for measurement and 

reporting of influenza viral shedding duration were proposed:

• Unless measuring pre-symptomatic or asymptomatic shedding, the duration of 

viral shedding should be defined as from the day of symptom(s) onset to the 

day on which the last positive specimen was collected;

• Counting of the number of days of viral shedding duration should be inclusive 

of (rather than the difference between) the day of symptom(s) onset and the 

day on which last positive specimen was collected;

• Specimen collection should continue until two consecutively collected 

specimens both test negative;

• Where administratively possible, specimens should be collected daily but not 

less than one every 2 days;

• The age threshold for classification as a child or adult should be clearly defined;

• Record the date (or day with respect to symptom onset) of the commencement 

of antiviral therapy, or that no antiviral therapy was administered [12].

Whilst these parameters represent the ideal standards for measurement and 

reporting of influenza viral shedding duration, it is recognised that financial and 

practical considerations w ill frequently lim it the ability w ith which they can be 

applied.

Measurement of viral shedding duration is often used as a proxy for the period of 

infectiousness, however this is complicated by the test used to detect influenza 

virus. Most studies used reverse transcription polymerase chain reaction (RT-PCR) 

to measure influenza A(H lN l)pdm 09 virus shedding duration, which has been 

shown to be more sensitive than virus culture [18]. However, virus culture 

measures viable/infectious virus whereas RT-PCR may also detect non-viable RNA; 

such an error would overestimate the duration of shedding of infectious virus, 

although to what extent is unclear.
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Public health implications

The findings from both the viral shedding duration and role of severity in 

transmission studies for influenza A(H lN l)pdm 09 in Chapter 6 have important 

public health implications for pandemic planning. Whilst estimation of the 

duration of infectiousness is an important parameter in mathematical modelling of 

influenza, and can be quite sensitive to variations as short as one day, it also has a 

valuable role evaluating public health policy with respect to the recommended 

length of time that isolation and quarantine for pandemic influenza should be 

applied. That there was no strong evidence of a difference in viral shedding 

duration between adults and children is noteworthy because this conventional 

wisdom formed the basis of the initial Victorian pandemic response policy to 

quarantine and isolate of suspected or confirmed child cases for 14 days compared 

to seven days for adults.

The findings of the modelling study provided further support for the hypothesis 

that most influenza A (H lN l]pdm 09 transmission was driven by those with low- 

level and asymptomatic infections largely unrecognised by the health system and 

was thus able to become established before detection. This evidence further 

supports the need to update pandemic plans to incorporate milder scenarios in 

which quarantine, isolation and other social distancing control measures may not 

be as effective or even necessary.

Further investigations

Both the influenza A(H lN l)pdm 09 viral shedding duration and mathematical 

modelling studies in Chapter 6 provide scope for further investigation. Many of the 

viral shedding studies included in the systematic review measured viral load and 

symptoms, and opportunities exist to systematically review the association 

between influenza A(H lN l)pdm 09 viral load and symptom scores, initial viral load 

as a predictor of symptom scores and shedding duration, and the effect of antiviral 

usage on symptoms scores. The systematic review of influenza A(H lN l)pdm 09 

virus shedding, as well as the other study proposals, could also be extended to 

observational studies of seasonal influenza. Although several of these associations 

have already been investigated in a 2008 systematic review of experimental
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studies by Carrat et al [19], it has been suggested that the viruses used in studies 

comprising the review were of moderate pathogenicity by comparison with wild- 

type seasonal influenza viruses.

Many studies have been conducted to understand different parameters and their 

role in the dynamics of influenza transmission, seasonal epidemics and pandemics. 

However, there are few published studies that have examined the role of clinical 

presentation. The study in Chapter 6 presents obvious opportunities to further 

develop and apply the model to other scenarios, such as seasonal influenza, 

subsequent waves of the influenza A(HlNl)pdm09 pandemic or other pandemics. 

Modelling infection severity in seasonal epidemics would require incorporation of 

influenza vaccination coverage and effectiveness parameters into the model, which 

could also be used to provide insights into the impact of vaccination in preventing 

natural immunity from asymptomatic or mild influenza virus infections. Given that 

immunity conferred by influenza vaccination is widely accepted to be not as 

strong, cross-protective or long-lasting as that provided by natural influenza 

infection [20], modelling may suggest a more efficient influenza vaccination 

program structure that allows for more natural infection in particular 

subpopulations at lower risk of moderate or severe infections and balanced against 

economic cost of days lost to illness.

Post-pandemic influenza epidemiology
Three successive annual studies from 2010 to 2012 inclusive were undertaken to 

understand how the epidemiology of seasonal influenza has changed since the 

emergence of influenza A(HlNl]pdm09 in 2009 [21-23]. Influenza

A(HlNl)pdm09 was the dominant subtype in 2010 as it was in 2009 [24], and 

completely replaced the seasonal A(H1N1) subtype that circulated prior to 2009 

[25, 26]. There was co-circulation of A(HlNl)pdm09, A(H3N2) and type B viruses 

in the 2011 influenza season but none was dominant. A higher proportion of older 

influenza A(HlNl)pdm09 cases was observed in 2011 compared to the previous 

season, consistent with observations in the northern hemisphere [27]. Such a 

finding would be expected following the emergence of a pandemic influenza strain 

in which higher attack rates in younger age groups that have no prior immunity
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are observed during the initial outbreak, followed by a shift to older age groups as 

immunity increases in the young [28, 29]. The 2012 influenza season was 

characterised by dominance of the A(H3N2) subtype. There was a later and 

smaller peak of type B cases, which was also observed in 2011. Accompanying the 

increase of A[H3N2) cases in 2011 and 2012 was a higher number of laboratory 

confirmed influenza outbreaks in aged care facilities and an increase in severe 

disease requiring hospitalisation among older people, consistent with the 

observation that this subtype is generally associated with more severe illness in 

older age groups [30].

In general, the 2010, 2011 and 2012 influenza seasons, as measured by influenza-

like illness (ILI) activity, were moderate in magnitude and within the thresholds of 

normal seasonal activity compared to the previous years. Whilst peaks in ILI 

activity were similar in each of the three seasons, there was an increase of more 

than 250% in notified cases over the same period. The disparity between ILI 

activity and notified cases as a measure of seasonal influenza magnitude was first 

observed during the 2009 pandemic [24] and appears to have continued in the 

following years, likely as a result of increased testing by medical practitioners. This 

is supported by data from the general practitioner sentinel surveillance (GPSS) 

program which showed that in 2010 to 2012 participating medical practitioners 

tested between 60 and 71% of ILI patients for influenza [21-23], compared to an 

average of 40% in the years 2003-2007 [31].

The Victorian influenza surveillance system is well established, and provides a 

reliable and consistent method for monitoring the epidemiology of ILI and 

laboratory confirmed influenza in Victoria. A key strength of the system is its 

multiple data sources that capture a wide spectrum of clinical presentations in 

different settings, but which have comparable metrics that provide reassurance 

and validation when other elements of the surveillance may be indicating a 

different epidemiological pattern.
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Public health implications

The confidence in the Victorian influenza surveillance system, and its usefulness in 

understanding influenza epidemiology and guiding public health control measures, 

were most clearly demonstrated during the response to the pandemic in 2009. By 

indicating a milder disease than the number of notified cases suggested, the ILI 

activity measured by the general practitioner sentinel surveillance (GPSS) program 

and the Melbourne Medical Deputising Service in part informed the decision to 

scale down the intensity of the initial public health response to influenza 

A(H lN l)pdm 09 [24]. Whilst notifiable influenza surveillance is still important for 

understanding the epidemiology of confirmed diagnoses, changes in testing 

practices have limited its utility as a measure of the magnitude of an influenza 

season in the post-pandemic years. To better monitor and understand testing 

behaviour, it has therefore been proposed that surveillance also include the 

collection of the number of influenza laboratory tests performed to calculate the 

proportion of test results that are positive [8, 32]. Whilst the GPSS already collects 

negative testing data to calculate the proportion of tests that are influenza positive, 

it is subject to wide weekly variation because of the relatively small numbers [33].

Further system improvements

Mortality and hospital emergency department [ED) surveillance data for ILI and 

laboratory confirmed influenza are not routinely collected and represent an 

obvious gap in surveillance in Victoria. Routine collection and analysis of death 

registrations from the Registry of Births, Deaths and Marriages, as is done in New 

South Wales [34], is the logical option for sourcing suspected and confirmed 

influenza mortality data in Victoria, but has been administratively difficult to 

implement. Whilst an automated, broad-based, near real-time public health 

surveillance system using presentations to EDs has been established in New South 

Wales [35], it is expensive and resource-intensive to operate. Before considering 

the necessity of such a system for ILI and influenza surveillance in Victoria, an 

analysis of retrospective data from Victorian EDs could indicate the added value 

that near-real time ED surveillance could provide over existing surveillance data 

sources.
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Several options exist for the collection of denominator data for the proportion of 

influenza tests that are positive. This includes making influenza negative test data 

notifiable or the voluntary provision of the data by all or a subset of laboratories. 

To maximise participation, notification would need to be as low burden as possible 

(for example by electronic notification) and commercial sensitivities about 

disclosure of diagnostic testing markets would need to be addressed.

Influenza vaccine effectiveness from 2007 to 2011
Four studies in Chapter 7 examined influenza vaccine effectiveness (VE) in Victoria 

over five years, incorporating the first wave of the influenza A(HlNl)pdm09 

pandemic in 2009, as well as the two preceding and following years [36-39]. 

Subtype-specific estimates by year and the dominant circulating strains for the 

respective years are shown in table 1.

Point estimates of influenza VE varied considerably over the 2007-2011 period, 

both from year to year and between types and subtypes within the same influenza 

season, although few differences were statistically significant. Little correlation is 

evident between vaccine effectiveness and the percentage match between 

circulating and vaccine strains, as measured by haemagglutinin inhibition (HI). For 

example, VE against A(H3N2) and type B influenza in 2007 were relatively high 

(68% and 84% respectively) despite relatively poor observed matches of 

circulating to vaccine strains. This contrasts with 2011 in which 96% of circulating 

A(H3N2) and type B influenza strains were matched to the respective vaccine 

strains, yet type/subtype-specific VE estimates were lower. Despite these 

differences, the VE point estimates against all influenza in both years were very 

similar.

It is likely that multiple immunological and epidemiological factors are 

contributing to the apparent poor correlation between influenza vaccine 

effectiveness and match between circulating and vaccine strains. A study 

conducted during the 2010-2011 influenza season in Canada, which found 

suboptimal VE despite vaccine antigenic similarity to circulating strains based on 

HI characterisation, also undertook phylogenetic analysis that revealed multiple 

amino acid substitutions at antigenic sites [40]. The Canadian study also showed
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amino acid substitutions in the haemagglutinin of the egg-adapted vaccine strain 

relative to the WHO-recommended strain, resulting in further differences between 

the vaccine and circulating strains. The incorporation of phylogenetic analysis into 

assessment of VE in Victoria in 2012 also showed accumulated substitutions in the 

antigenic site of the circulating A(H3N2) strain compared to the vaccine strain, 

despite antigenic sim ilarity as indicated by HI assay [41].

Table 1. Adjusted vaccine effectiveness against influenza by year and type

(subtype), Victoria, 2007-2011.

Year
Influenza Adjusted VE Percent match of circulating

type(subtype) (95% Cl) strain to vaccine strain

A(H1N1) 27 (-92, 72) 0

2007
A(H3N2) 68 (32,85) 45

B 84 (-2, 98) 29

All 59 (25,78)

A(H1N1) -88 (-1936,83) 0

2008
A(H3N2) -66 (-349, 39) 100

B 49 (-58,84) 50

All 9 (-96, 58)

2009 A (H lN l)pdm 09 3 (-48, 37) 0

2010 A (H lN l)pdm 09
79 (33,93)*

100
47 (-62, 82)A

A (H lN l)pdm 09 78 (-38,100) 89

2011
A(H3N2) 58 (-53, 89) 96

B 53 (-68, 87) 96

All 56 (-2, 81)

* seasonal triva lent influenza vaccine 

A monovalent pandemic (H1N1) vaccine

Further complicating the measurement of VE is existing im m unity to influenza, 

e ither from previous infection or vaccination, in study participants. W hilst 

exposure to influenza virus is unknown and unable to be measured, two recent 

studies in the US found lower effectiveness among subjects who were vaccinated in
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both the studied and prior seasons, although the findings were not statistically 

significant [42, 43]. In contrast, a Canadian study found that VE was higher among 

those who had been vaccinated in both the studied and previous seasons, although 

unlike the US studies the vaccine strain composition was the same for both seasons 

and accompanied by phylogenetic analysis of circulating and vaccine viruses [44]. 

Data collection on vaccination in the previous season commenced in Victoria for 

the GPSS in 2011, and VE estimates when comparing vaccination status in study 

season only, prior season only, both seasons and either season to neither season in

2011 and 2012 were inconsistent [45].

Another important limitation of the influenza VE studies undertaken using the 

GPSS in Victoria is that they are insufficiently powered. Few estimates showed a 

statistically significant protective effect, particularly the stratified analyses. This 

has prevented meaningful analysis and comparison of influenza VE by age group in 

each of the studies included in this thesis, but also comparisons of type and 

subtype-specific VE in years when relatively few cases were identified. This was 

evident in 2008, particularly the type A subtypes, for which confidence intervals 

around the point estimates were very wide [36]. Despite the limited power 

available for some analyses, in general point estimates of VE in each of the studies 

only varied marginally when subjected to sensitivity analyses to test assumptions 

and a different analytical approach [46].

As expected, the trivalent seasonal influenza vaccine conferred no protective effect 

against influenza A(HlNl)pdm09 in 2009 [37]. The effectiveness point estimate of 

the 2010 trivalent seasonal influenza vaccine against influenza A(HlNl)pdm09 

[79%) was higher than the monovalent pandemic (H1N1) 2009 vaccine (47%), 

which was available in Australia from September 2009 as part of the national 

pandemic vaccination program [47]. Whilst not statistically significant, waning 

immunity cannot be excluded as an explanation; the monovalent vaccine did not 

contain adjuvant and was available approximately six months before the seasonal 

vaccine. Waning VE by time since vaccination was also observed in Victoria in

2012 but the effect was also not statistically significant [41].
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As well as providing a practical and relatively low-cost means of calculating 

vaccine effectiveness, the case test-negative study design has been shown to be 

robust under a wide range of assumptions and circumstances, and less subject to 

bias than traditional case control or cohort studies [48-50]. Nevertheless, as the 

methodology evolves, greater scrutiny and thought are being applied to the finer 

details. The presence of a comorbid condition for which influenza vaccination is 

indicated is regarded as an important confounding variable given that persons at 

higher risk for influenza may be more likely to be vaccinated. This field was not 

collected by the GPSS until 2011 and it therefore possible that the studies of the 

2007-2008 and 2010 seasons in particular underestimated VE as a result. Whilst 

this may have been counteracted by healthy vaccinee bias, it is difficult to 

speculate to what, if  any, extent.

More recently, it has been suggested that influenza VE may be biased if the 

proportion of non-influenza viral illness differs by influenza vaccination status

[50] . Underpinning this theory is the suggestion that influenza infection invokes an 

innate immune response that results in a temporary reduction in risk of infection 

with another respiratory virus. It is therefore proposed that whilst influenza 

vaccination would reduce the risk of influenza infection, it could increase the risk 

of infection with other non-influenza respiratory viruses [51, 52]. With a higher 

risk of non-influenza respiratory illness in vaccinated individuals than in those 

who are unvaccinated, the 'test-negative' group would have a higher proportion of 

vaccinated individuals compared to the source population, resulting in an 

overestimate of VE. Whilst one study reported increased risk of non-influenza 

respiratory virus infections associated with receipt of inactivated influenza vaccine

[51] , another found no evidence of an association [53].

Finally, it must also be acknowledged that annual estimates of VE in Victoria are 

based on general practice consultations for which the patient population is largely 

working age adults, thus lim iting the generalisability by age. The clinical spectrum 

of patients is also restricted as those with severe infections that are hospitalised 

and those who have very mild or asymptomatic infections w ill not attend general 

practice. The latter group represent another potential source of bias in the case
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test-negative study design; vaccine effectiveness w ill be underestimated if 

vaccinated cases are less severely ill and seek care less frequently than 

unvaccinated cases [49].

Public health implications

Ongoing assessment of influenza VE is important for several reasons: influenza 

vaccination is publicly funded for a large proportion of the Australian population 

and regular evaluation of its effectiveness is needed; it provides the only 

assessment of how the vaccine performs in the field; and the circulating strains 

and vaccine composition [usually] change every year. Measurement and reporting 

of VE with Victorian data collected from both the GPSS program and the Influenza 

Complications Alert Network is of particular importance because it is not regularly 

undertaken anywhere else in Australia or indeed the southern hemisphere.

Whilst timely publication of VE estimates w ill not change vaccine policy, given that 

vaccination programs w ill have already commenced or been completed, they can 

help public health officials better understand the epidemiology during an influenza 

season and manage expectations of the vaccine program. During a severe influenza 

season, a poor VE could suggest the need to prioritise resource allocation to 

alternative and more effective control measures.

Further investigations

The case test-negative study design is now well-established across Europe and 

North America. Groups utilising the methodology to measure influenza VE have 

formed a strong collaborative network, and efforts to improve it in the next several 

years are likely to focus on nuanced areas such as sources and control of bias, and 

better understanding the complex and interacting virological, immunological and 

epidemiological factors and their influence on influenza VE. The effect of prior 

vaccination is of particular interest but w ill likely require a longitudinal study to 

investigate properly. The cost and scope of such a study is probably beyond local 

capacity in the short-term, but could be pursued through international 

collaboration. There are also opportunities to improve the power of GPSS dataset 

and enable more precise and stratified VE analyses, by recruiting more GPs and/or 

pooling data from other Australian sentinel influenza surveillance programs.
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Conclusions
Although the influenza A(H lN l)pdm 09 pandemic spread rapidly around the globe 

and primarily affected younger age groups, it was relatively mild in terms of 

morbidity and mortality compared w ith previous pandemics. However, the 

intensity of the public health response, which was based on plans assuming a 

worst-case scenario, was not commensurate with the severity and magnitude of 

the disease.

Transmission of influenza A(H lN l)pdm 09 was largely driven by those effectively 

invisible to the health system and was therefore well-established by the time it was 

detected. The delay in detection and high proportion of relatively mild infections 

meant that school closures and antiviral distribution to notified cases and their 

contacts were ineffective. Pandemic plans need to be revised to accommodate a 

range of scenarios and ensure trust from public and professionals in future 

pandemic responses.

Following its emergence and replacement of the previously circulating seasonal 

A(H1N1) in 2009, influenza A (H lN l)pdm 09 remained dominant in Victoria in 

2010. Higher proportions of A(H3N2) and type B influenza were observed in 2011 

before dominance of A(H3N2] in 2012 that was accompanied by an increase in 

more severe infections, particularly in older age groups. Whilst ILI surveillance 

suggested influenza seasons of moderate magnitude from 2010-2012, notifiable 

disease data indicated a considerable increase in influenza testing by medical 

practitioners.

Influenza vaccine effectiveness in Victoria varied considerably in the years 

preceding, during and following the 2009 pandemic. With the exception of high 

influenza A(HlNl)pdm09-specific seasonal VE in 2010 and 2011, and no 

protective effect of seasonal vaccine against influenza A(H lN l)pdm 09 in 2009, 

type and subtype-specific VE were inconsistent across seasons and had little 

evident correlation with the percentage match between circulating and vaccine 

strains as measured by HI. Further investigation of the role of previous immunity 

and antigenic similarity by phylogenetic analysis is needed to better understand 

the determinants of influenza VE.
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About this appendix
This appendix contains papers related to aspects of influenza epidemiology and 
vaccine effectiveness following the 2009 pandemic in which I made a minor 
contribution during the course of my doctoral candidature.

The first study, published in Emerging Infectious Diseases, was a retrospective 
cross-sectional study of index case-patients and their household contacts that 
examined transmission of influenza A(HlNl)pdm09 in households, identified 
possible risk factors for intra-household secondary transmission, and assessed the 
effects of prevention and control measures introduced to limit transmission.

The following three studies, all published in BMC Infectious Diseases, were part of a 
research grant investigating influenza A(HlNl)pdm09-related school closures in 
Victoria. Each study drew on the results from a cross-sectional survey of families 
affected by school closures and assessed the understanding, compliance with and 
financial impact of home quarantine recommended to school children because they 
were diagnosed with influenza A(HlNl)pdm09 or were a close contact of a case.

The final study in this appendix estimated annual influenza vaccine effectiveness 
for the years from 2007-2011, with the exception of the pandemic year of 2009, 
and was published in Influenza and Other Respiratory Viruses. The study drew on 
the same data used for the influenza vaccine effectiveness studies in Chapter 7, but 
was restricted to adults aged 20-64 years and classified several variables 
differently in the analysis. In accordance with the copyright requirements of the 
journal publisher, the accepted version of this article - rather than a scan of the 
published version - is presented in this appendix.

Papers in this appendix
1. van Gemert C, McBryde ES, Fielding J, Spelman T, Higgins N, Lester R, Vally H, 

Hellard M, Bergeri I. Intrahousehold transmission of pandemic (H1N1) 2009 
virus, Victoria, Australia. Emerg Infect Dis 2011; 17: 1599-1607.

2. Kavanagh AM, Bentley RJ, Mason KE, McVernon J, Petrony S, Fielding J, 
Lamontagne AD, Studdert DM. Sources, perceived usefulness and 
understanding of information disseminated to families who entered home
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Intrahousehold Transm ission of 
Pandemic (H1N1) 2009 Virus, 

Victoria, Australia
Caroline van Gemert, Margaret Hellard, Emma S. McBryde, James Fielding, Tim Spelman, 

Nasra Higgins, Rosemary Lester, Hassan Vally,1 and Isabel Bergerl

To examine intrahousehold secondary transmission 
of pandemic (H1N1) 2009 virus in households in Victoria, 
Australia, we conducted a retrospective cross-sectional 
study in late 2009. We randomly selected case-patients 
reported during May-June 2009 and their household 
contacts. Information collected included household 
characteristics, use of prevention and control measures, 
and signs and symptoms. Secondary cases were defined 
as influenza-like illness in household contacts within the 
specified period. Secondary transmission was identified 
for 18 of 122 susceptible household contacts. To identify 
independent predictors of secondary transmission, 
we developed a model. Risk factors were concurrent 
quarantine with the household index case-patient, and a 
protective factor was antiviral prophylaxis. These findings 
show that timely provision of antiviral prophylaxis to 
household contacts, particularly when household members 
are concurrently quarantined during implementation of 
pandemic management strategies, delays or contains 
community transmission of pandemic (H1N1) 2009 virus.

TJ ouseholds play a major role in secondary transmission 
JLJ-of pandemic influenza. Modeling estimates that 
household transmission has accounted for 25%-40% of all 
pandemic (H1N1) 2009 cases (1,2). Although understanding

Author affiliations: Burnet Institute, Melbourne, Victoria, Australia 

(C. van Gemert, M. Hellard, E.S. McBryde, T. Spelman, I. Bergen); 
Australian National University, Canberra, Australian Capital 

Territory, Australia (C. van Gemert, J. Fielding, H. Vally); Monash 

University, Melbourne (M. Hellard); Victorian Department of Health, 
Melbourne (E.S. McBryde, J. Fielding, N. Higgins, R. Lester); 

Royal Melbourne Hospital, Melbourne (E.S. McBryde); University 

of Melbourne, Melbourne (E.S. McBryde); and Victorian Infectious 

Diseases Reference Laboratory, Melbourne (J. Fielding)

DOI: http://dx.doi.Org/10.3201/eid1709.101948

the effect of individual-level and household-level factors 
on secondary transmission of pandemic (H1N1) 2009 
is paramount to informing population-level prevention 
strategies, few studies have evaluated household-level risk 
factors (3- 8).

The Australian Health Management Plan for Pandemic 
Influenza (AHMPPI), revised in 2008, provides a framework 
for preparedness and response to pandemic influenza (9). 
The emergence and magnitude of pandemic (H1N1) 2009 
in Melbourne, Australia (10- 15), coupled with intensive 
follow-up and case identification data collected during the 
delay and contain phases of the AHMPPI (16), presented 
a unique opportunity to characterize intrahousehold 
transmission during a period of community transmission. 
Introduction of a suite of prevention and control measures 
in accordance with AHMPPI also provided an opportunity 
to measure the effects of these interventions on pandemic 
(H1N1) 2009 virus transmission.

We therefore conducted a retrospective cross- 
sectional study of index case-patients and their household 
contacts in Melbourne (population >3.5 million), Australia 
(17). We examined transmission of pandemic (H1N1) 
2009 in households, identified possible risk factors for 
intrahousehold secondary transmission, and assessed the 
effects of prevention and control measures introduced to 
limit transmission.

Methods

Participants
The sample population consisted of all persons with 

confirmed cases of pandemic (H1N1) 2009 reported to the

'Current affiliation: La Trabe University, Melbourne, Victoria, 
Australia.
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Victorian Department of Health (VDOH) during the delay 
and contain phases of AHMPPI (May 18-June 3, 2009) 
from 2 neighboring municipal regions in Melbourne with 
high numbers of pandemic (H1N1) 2009 notifications. 
To ensure that only the first reported case in a household 
could be randomly selected, we flagged households with 
>1 confirmed case. The index case-patient and household 
contacts were then recruited by mail and telephone (up to 
5 calls were attempted). Of those who could be contacted, 
we assessed the household’s eligibility according to the 
Australian Bureau of Statistics definition of a family 
(households of >2 persons residing together, including at 
least 1 person <18 years of age, related by blood, marriage, 
de facto, adoption, or fostering) (18).

Data Collection
During November 18-December 21, 2009, inter-

viewers administered questionnaires to index case-patients 
and their household contacts. Data collected included 
demographics, case details, and prevention and control 
measures used. Participants indicated dates of symptom 
onset and prevention and control measures used in a 
retrospective diary of the period of interest (May 11- 
June 14, 2009). Interpreters were used as requested or 
needed. A parent or guardian was also interviewed when 
a participant was <18 years of age. If a household member 
was not available, a parent, guardian, or partner provided 
information. Written informed consent was obtained for 
all participants; parents or legal guardians provided written 
informed consent for participants <18 years of age.

Definitions
Index case-patients were defined as patients with the 

first laboratory-confirmed case of pandemic (H1N1) 2009 
in a household reported to the VDOH. Household contacts 
were defined as persons residing in the same household at 
the time of the index case-patient’s symptom onset.

Cultural and linguistic diversity was defined as 
speaking English only or speaking languages other than 
English in the home. The latter category included those 
households in which English was a second language.

A secondary case-patient was defined as a household 
contact who met the case definition for having an influenza-
like illness (ILI), defined as self-described fever plus chills 
and/or respiratory tract signs or symptoms such as cough, 
sore throat, or shortness of breath with onset 1-9 days after 
onset for the index case-patient. This interval was based 
on a serial interval (the number of days between symptom 
onset in the index case-patient and household contacts) of 
up to 9 days to identify secondary cases, given that shedding 
of seasonal influenza virus rarely lasts >8 days (7,19) and 
a median incubation period for seasonal influenza of ~ 1.4 
days (7,20). Secondary cases were not required to be

laboratory confirmed. Household contacts who met our 
definition for having ILI but who reported symptom onset 
on the same day as or before that of the index case-patient 
were not considered to be at risk for secondary transmission 
and were not included in analysis for exposures associated 
with secondary transmission.

Use of antiviral drugs (treatment or prophylaxis) 
was self-reported. VDOH provided antiviral treatment to 
those who met the case definition (confirmed or suspected 
case) and whose symptom onset was within 48 hours and 
provided antiviral prophylaxis to household contacts. 
Quarantine was self-reported and defined as separation and 
restriction of movement of case-patients and contacts in 
their homes (21). During the contain phase, patients with 
confirmed cases were advised to quarantine themselves for 
7 days after symptom onset, and contacts were advised to 
quarantine themselves at home for 7 days after the most 
recent exposure to an infectious case-patient. A case-patient 
was considered infectious for 7 days after symptom onset 
or until acute respiratory symptoms resolved, whichever 
was longer (21).

Analysis
Chi-square tests were used to determine differences in 

clinical signs and use of prevention and control measures 
between index case-patients and household contacts. The 
Fisher exact test statistic, used to determine nonrandom 
associations between 2 categorical variables, was used when 
the expected value was <6. Secondary attack rates (SARs) 
were calculated by dividing the number of secondary cases 
by the total number of susceptible household contacts. 
We stratified SARs for several potential predictors, 
including individual-level factors, prevention and control 
measures, and household-level factors. Potential predictors 
included gender, age group (0-4, 5-19, 20-49, >50 
years), relationship to index case-patient (parent/child, 
sibling, partner, other family member, or other), use of 
antiviral drugs (treatment or prophylaxis), number of 
days quarantined with index case-patient, household size 
(2-3, 4-5, >6 persons), number of children living in the 
household (1, 2, >3 children), and cultural and linguistic 
diversity (English only spoken at home and English and/or 
other languages spoken at home).

Unadjusted logistic regression was used to identify 
significant candidate predictors (p<0.05) for inclusion in 
the final adjusted model. The final model used reverse 
stepwise selection procedures in which all significant 
predictors of secondary transmission were included 
in the initial model and removed sequentially until 
only significant predictors (p<0.05) remained. We 
accounted for household clustering in the unadjusted and 
adjusted logistic regression models; that is, we adjusted 
for dependency of all potential predictors based on
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membership in the same household by using a generalized 
estimated equation with robust error estimates, assuming 
conditional independence within each family (i.e., within 
the family, each member had independent probability of 
becoming a case-patient). Goodness of fit for both models 
was assessed by using the Hosmer-Lemeshow test to 0.05 
significance. Statistical analyses were conducted by using 
Stata version 10 (StataCorp LP, College Station, TX, 
USA). To indicate precision of the measurement, we have 
reported 3 significant (i.e., nonzero) figures.

Ethical Considerations
Participants were reimbursed with $A30. Ethical 

approval was obtained from the Alfred Hospital Ethics 
Committee and Australian National University Ethics 
Committee.

Results

Participation and Response Rates
Data extracted on October 20, 2009, contained 

records for 857 confirmed cases of pandemic (H1N1) 
2009, representing 772 households, reported on or 
before June 3, 2009, including a total of 181 cases for 
persons residing in the selected municipalities. We then 
randomly selected 72 case-patients to participate in this 
study, of which 12 refused, 21 could not be contacted, 
and 3 did not meet eligibility requirements; the remaining 
36 index case-patients and their 131 household contacts 
participated. Participating and nonparticipating index 
case-patients were similar in age and student status; 
however, more nonparticipating (n = 4) than participating 
(n = 2) index case-patients required an interpreter. 
Among the 36 households that participated in the study, 
32 (88.9%) persons were interviewed face to face and 4 
(11.1%) were interviewed by telephone. Interpreters were 
used for interviews in 2 households.

Participant Characteristics
The analysis included 36 index case-patients and 

131 household contacts (Table 1). The age range of index 
case-patients was 6-47 years; that of household contacts 
was 1-74 years. The number of persons living in each 
household was 2-14, median 4.5 persons. The number of 
children living in each household was 1-7; most (75.0%) 
households had 1-2 children. In half of the households (n 
= 18), a language other than English was spoken at home.

Prevention and Control Measures
Antiviral treatment was taken by 30.6% of index case- 

patients and 4.58% of all household contacts (Table 2). Just 
under half (45.8%) of all household contacts reported taking 
antiviral prophylaxis; and among those who did, 1 person

Intrahousehold Transmission of Pandemic (H1N1) 2009

reported subsequent symptoms consistent with ILI. The 
proportion of index case-patients and household contacts 
who reported being quarantined differed significantly 
(88.9% and 69.5%, respectively, p = 0.013).

The median number of days to initiate quarantine was 
3 days for index case-patients and 4 days for household 
contacts. Greater than half (61.1%) of household contacts 
reported concurrent quarantine with the index case-patient 
for at least 1 day; the range of concurrent quarantine was 
1-15 days, median 4 days.

The median number of days before antiviral treatment 
was initiated for index case-patients and household 
contacts was 2 days (Figure 1). The median number of days 
before antiviral prophylaxis was initiated among household 
contacts was 6 days.

Clinical Features
Among 131 household contacts, 122 (93.1%) were 

considered to be at risk for secondary transmission. Among 
these, 18 reported symptoms consistent with ILI within 
1-9 days of symptom onset for the index case-patient and 
were thus considered secondary case-patients (Figure 2). 
Household contacts who reported symptom onset before 
the index case-patient (n = 5), on the same day as the index 
case-patient (n = 4), or >9 days after onset of symptoms 
in the index case-patient (n = 3) were not considered to be 
secondary case-patients and were not included in analyses. 
The serial interval for secondary cases included in the 
analysis was 1-9 days, median 2 days.

With the exception of vomiting, clinical features 
reported by index and secondary case-patients did not differ 
significantly (range p = 0.275-0.667, Table 3). The most 
frequent duration of symptoms for index and secondary 
case-patients was 4-6 days; 31.3% and 37.0% of index and 
secondary case-patients, respectively, reported symptom 
duration within this range. Approximately three fourths 
(77.8%) of secondary case-patients sought medical care 
(p = 0.01). Prevention or control measures used by index 
case-patients and secondary case-patients did not differ 
significantly (quarantine p = 0.429, antiviral prophylaxis p 
= 0.429, antiviral treatment p = 0.095)

Secondary Transmission
The overall SAR in this study was 14.8% (95% 

confidence interval [Cl] 8.90%-22.3%, Table 4). The SAR 
varied when stratified for different individual-level and 
household-level factors. In unadjusted analysis, predictors 
of intrahousehold secondary transmission were being 
female, concurrent quarantine with the index case-patient, 
and use of antiviral prophylaxis (Table 5). We did not find 
a significant association between secondary case-patients 
and age group, relationship to the index case, household 
size, number of children living in the household, or cultural
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Table 1. Characteristics of pandemic (H1N1) 2009 case-patients and household contacts, Victoria, Australia, May 18-%June 3, 2009*

Characteristic
No. (%) index case-patients, 

n = 36
No. (%) household contacts, 

n = 131 p value
Individual level

Sex
M 25 (69.4) 69 (52.7) 0.07
F 11 (30.6) 62 (47.3)

Age, y
0-4 0 13 (9.92) <0.001
5-19 31 (86.1) 40 (30.5)
20-49 5(13.9) 68(51.9)
>50 0 10 (7.63)

Household level NA NA
No. persons

2-3 5(13.9)
4-5 22 (61.1)
>6 9 (25.0)

No. children NA NA
1 12 (33.3)
2 15(41.7)
>3 9 (25.0)

Cultural and linguistic diversity NA NA
English only spoken at home 18(50.0)
English and/or other language(s) spoken at home 18(50.0)

*NA, not applicable.

and linguistic diversity. In the adjusted analysis, p value for 
gender decreased from 0.037 to 0.83 and was thus removed 
from the final model. In the final model, the odds of a 
household contact who was concurrently quarantined with 
the index case-patient becoming a secondary case-patient 
increased for each additional day (adjusted odds ratio 1.25, 
95% Cl 1.06-1.47), and the odds of secondary transmission 
among household contacts who reported use of antiviral 
prophylaxis decreased (adjusted odds ratio 0.042, 95% Cl 
0.004-0.434). We did not identify a significant interaction 
term to include in the multivariate model.

Discussion
This study fully characterizes transmission of 

pandemic (H1N1) 2009 in households in Australia during 
implementation of pandemic management strategies to 
delay or contain community transmission. The findings 
are relevant for prevention and control strategies used 
at the household level indicated in the AHMPPI and for

international pandemic influenza planning. Overall, 14.8% 
of susceptible household contacts became secondary case- 
patients, assumed to have been infected by the index case- 
patient. The SAR for ILI observed in this study is within 
the range of reported SARs for ILI used as a proxy for 
pandemic (H1N1) 2009 in similar international studies, 
which were 3.7%- 45% (4-8,22-27).

The odds of seeking medical care were lower for 
secondary than for index case-patients. Although this 
finding was expected because of the case ascertainment 
methods used, other factors involved with health care-
seeking behavior should be considered. For example, 
household contacts may have not sought care because 
VDOH provided antiviral treatment and prophylaxis 
to household contacts without requiring evidence of 
laboratory-confirmed disease. Furthermore, symptomatic 
household contacts may have reasonably assumed that 
they were infected with pandemic (H1N1) 2009 given 
their proximity to a confirmed case-patient and may not

Table 2. Prevention and control measures used by pandemic (H1N1) 2009 case-patients and household contacts, Victoria, Australia,
May 18-%June 3, 2009*________________________________________________________________________________________________

No. (%) index case-patients, No. (%) household contacts,
Reported measure____________________________________________ n = 36_____________________n = 131_____________ p valuef
Antiviral 

Treatment 
Prophylaxis 

Quarantine duration, d
>1 32 (88.9) 91 (69.5) 0.013
>1 with index case-patient_____________________________________ NA______________________80 (61.1)___________________

*NA, not applicable.
fFisher exact test statistic used when expected value <6.

11 (30.6) 
0

6 (4.58) 
60 (45.8)

< 0.001
< 0.001
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No. days after symptom onset in index case-patiant
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----- AnWiral treatment: Me» case-pMent ------A nnua l treatment household contact
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Figure 1. Timeliness of quarantine initiation and administration 
of antiviral (treatment and prophylaxis) by pandemic (H1N1) 
2009 index case-patients and household contacts after onset 
of symptoms in the index case-patients, Melbourne, Victoria, 
Australia, May 18-%June 3, 2009.

have considered confirmation necessary. The differences 
in health care-seeking behavior have implications for 
the pandemic influenza response, particularly during the 
phases of the AHMPPI when emphasis is on active case 
finding and slowing community transmission. This finding 
highlights the need for timely household-level, rather than 
individual-level, provision of treatment and prevention 
strategies by health care professionals, at the point of care 
of the index case-patient.

Several individual-level and household-level factors 
influenced the SAR and the odds of secondary transmission 
within households. The odds of becoming a secondary 
case-patient were almost 3* greater for female than male 
contacts, possibly because more women assume caregiver 
roles and therefore having a greater likelihood of exposure. 
This explanation is supported by France et al. (4), who 
reported that providing care to a case-patient was associated 
with a higher risk for ILI among parents. A study with 
greater power may be able to demonstrate this association 
in adjusted analyses. Other studies have also reported 
findings that older age was protective against secondary 
transmission of pandemic (HIN 1) 2009, possibly as a result 
of prior immunity in older age groups (4,5). Although a 
decreasing trend of secondary transmission was observed 
for participants 5-19 years to 20-49 years of age, the size 
of this study was insufficiently powered to demonstrate 
a significant association between age group and rate of 
secondary transmission.

Our finding that antiviral prophylaxis reduced the odds 
of secondary transmission by 95% among at-risk household

contacts was greater than that reported by France et al., 
who reported a 68% reduction in risk (4). Although this 
finding highlights the potential for antiviral prophylaxis to 
prevent secondary transmission, it should be considered 
along with the finding that initiation of antiviral treatment 
and prophylaxis for index case-patients and household 
contacts was considerably delayed. Current evidence 
highlights that rapid implementation of prevention 
measures such as antiviral prophylaxis is critical for control 
of pandemic influenza as soon as community transmission 
is identified; our findings identify an area for improvement 
in the implementation of pandemic influenza management 
plans. For example, the need for timely use of antiviral 
prophylaxis was demonstrated by Donnelly et al., who 
found that only 18% of pandemic influenza transmission 
events take place >2 days after onset of symptoms in case- 
patients (28). Ghani et al. also demonstrated this need when 
they reported a 3-fold increase in odds of intrahousehold 
secondary transmission in households that did not receive 
antiviral prophylaxis within 3 days of index case-patient 
symptom onset (2). Similarly, Goldstein et al. report 
that early antiviral treatment (on the day of or day after 
symptom onset) reduced the odds of household secondary 
transmission by 42% (29).

The issue of timeliness was also identified with regard 
to initiation of quarantine. We identified a considerable 
delay between onset of symptoms in the index case-patient 
and initiation of quarantine for index case-patients and 
household contacts, thus prolonging community exposure 
to pandemic (HIN1) 2009. Quarantine of case-patients 
and close contacts is considered an essential strategy for 
mitigating community transmission of pandemic influenza 
(9); however, to reduce the rate of community transmission, 
case-patients need to be quarantined as early as possible 
during their infectious period.

Although quarantine has been demonstrated to be 
effective at reducing community attack rates in pandemic 
influenza modeling studies, it has been hypothesized
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Figure 2. Serial interval for symptom onset in pandemic (H1N1) 
2009 index case-patient to symptom onset in secondary case- 
patients, Melbourne, Victoria, Australia, May 18-June 3, 2009.
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Table 3. Clinical features for pandemic (H1N1) 2009 case-patients and household contacts, Victoria, Australia, May 18-June 3, 2009

Feature
No. (%) index case-patients, 

n = 36
No. (%) secondary case-patients, 

n = 18 p value*
Sign or symptom

Fever 35 (97.2) 18(100) 0.67
Chills 17(47.2) 8 (44.4) 0.54
Headache 25 (69.4) 13 (72.2) 0.55
Muscle pain 20 (55.6) 8 (44.4) 0.32
Joint pain 15(41.7) 7 (38.9) 0.54
Fatigue 30 (83.3) 16 (88.9) 0.46
Diarrhea 8 (22.2) 2(11.1) 0.28
Vomiting 16 (44.4) 2(11.1) 0.01
Upper respiratory tract symptoms 32 (88.9) 17(94.4) 0.45

Sign or symptom duration, d
1-3 9 (25.0) 2 (11.2) 0.49
4-6 13(36.1) 9 (50.0)
7-9 9(25.1) 3 (16.7)
>10 5(13.8) 4 (22.2)

Any medical care received 36 (100) 14 (77.8) 0.01
Reported prevention and control measures taken

Quarantine 32 (88.9) 15 (83.3) 0.43
Antiviral prophylaxis 0 1 (5.56) 0.43
Antiviral treatment 11 (33.3) 2(11.1) 0.10

‘Fisher exact test statistic used when expected value was <6.

that the subsequent increase in contact rates between including recognition and understanding of health 
household members during quarantine may increase promotion messages and access to antiviral treatment 
intrahousehold transmission (30). We found evidence and prophylaxis during the containment stages of the
supporting this hypothesis, demonstrating that the odds 
of secondary transmission increased >20% for each 
additional day of quarantine with the index case-patient. 
Similar effects of quarantine on intrahousehold secondary 
attack rates have not been reported for pandemic (HVN1) 
2009; however, a study of university students in the 
People’s Republic of China found an increased attack 
rate among contacts who shared a room or bathroom with 
confirmed pandemic (H1N1) 2009 case-patients (37), 
and a study in New York reported increased risk between 
siblings who interacted closely with the index case-patient 
(4). Thus, to prevent community transmission, effective 
communication to confirmed case-patients as well as 
their household contacts to ensure timely implementation 
of quarantine measures is needed. This finding should 
be considered along with previously discussed public 
health implications, including the recommendation for 
implementation of prevention and control measures at the 
household level rather than the individual level to ensure 
that messages reach household contacts. Furthermore, to 
counter the increased risk associated with quarantine with 
the index case-patient, quarantine should be implemented 
concurrently with distribution of antiviral prophylaxis to 
household contacts.

The influence of cultural and linguistic diversity on 
secondary transmission served as a proxy for a range of 
social and environmental determinants of intrahousehold 
transmission of pandemic (H1N1) 2009 transmission,

AHMPPI. A key finding was a higher SAR among persons 
who spoke languages other than English at home. This 
finding suggests that control and prevention measures 
were not effectively communicated, comprehended, and 
adhered to by a major community subset in Victoria. 
Although a higher SAR was observed among persons 
who spoke languages other than English at home, the 
study had insufficient power to provide evidence for the 
relative contribution of cultural and linguistic diversity on 
secondary transmission. Nonetheless, the potential issues 
associated with effective communication, comprehension, 
and adherence to prevention and control measures by 
cultural and linguistically diverse communities suggest 
that further work should explore the social and cultural 
determinants of pandemic (H1N1) 2009.

This study has some limitations. First, it was subject to 
recall bias, which we attempted to reduce by using tools to 
improve accurate recall of illness (such as case notification 
information from VDOH and calendars of major events that 
occurred during the period of interest). Second, information 
bias may have been introduced by household members who 
provided information for household contacts not available 
at the time of interview. This bias occurred during a few 
interviews; however, any information bias is likely to 
underestimate the true association between exposures and 
pandemic (H1N 1) 2009. Third, ILI was used as an indicator 
for pandemic (H1N 1) 2009, and thus some misclassification 
may have occurred. However, because sentinel surveillance
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indicated that most respiratory infections during the same 
period were pandemic (H1N1) 2009, misciassification was 
probably minimal (32). Fourth, recruitment of households 
on the basis of the confirmed status of 1 household member 
may introduce selection bias; however, during the study 
period, rates of testing of persons with mild to severe 
illness were high, and thus household contacts should be 
representative of influenza infections in the community. 
Fifth, the sample size was small; nonetheless, we identified 
several factors significantly associated with secondary 
transmission of pandemic (H1N1) 2009. Sixth, some ILI 
might be community acquired and therefore overestimate 
the rate of secondary transmission; we attempted to mitigate 
any overestimation by excluding concurrent primary cases 
and household contacts who reported symptom onset 
before that of the index case-patient.

Our study findings can aid the continued development 
of future pandemic influenza preparedness plans in 
Australia and internationally. In particular, the provision 
of treatment and prevention strategies at the household 
level, rather than at the individual level alone at the point 
of care of the index case-patient, should be considered. 
The need for engagement at the household rather than

Intrahousehold Transmission of Pandemic (H1N1) 2009

the individual level is further emphasized by the benefit 
of timely provision of antiviral prophylaxis to household 
contacts, particularly when household contacts are 
quarantined concurrently with the index case-patient. The 
integration of these practical findings in the development 
of pandemic influenza preparedness plans in Australia 
and internationally can help reduce the potential for 
intrahousehold transmission of influenza during future 
pandemics.
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Table 4. Secondary attack rates for susceptible household contacts of index case-patients with pandemic (H1N1) 2009, Victoria, 
Australia, May 18-dune 3, 2009*

Total no. household No. with influenza- Secondary attack rate, %
Variable contacts like illness (95% Cl)
Individual-level associations

Sex
M 58 5 8.62 (1.08-14.4)
F 64 13 20.3(11.3-32.2)

Age, y
0-4 11 1 9.09 (0.230-41.3)
5-19 35 6 17.1 (6.50-33.6)
20-49 66 10 15.2 (7.51-26.1)
>50 10 1 10.0 (0.25-44.5)

Relationship to index case-patient
Parent/child/partner 65 10 15.4 (7.63-26.5)
Sibling 44 8 18.2 (8.19-32.7)
Other family member 13 0 0 (0-24.7)

Prevention and control measures reported
Antiviral prophylaxis 57 1 1.8 (0.04-9.39)
Quarantined >1 d with index case-patient 73 15 20.5(12.0-31.6)

Household-level associations
No. persons

2-3 7 2 28.6 (3.67-71.0)
4-5 75 10 13.3(6.58-23.2)
>6 40 6 15.0(5.71-29.8)

No. children
1 31 6 19.4 (7.45-37.5)
2 47 7 14.9 (6.20-28.3)
>3 44 5 11.4 (3.79-24.6)

Cultural and linguistic diversity
Only English spoken at home 53 5 9.4 (3.13-20.7)
English and/or other language(s) spoken at home 69 13 18.8(10.4-30.1)

*CI, confidence interval.
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Table 5. Unadjusted associations with secondary transmission 
for pandemic (H1N1) 2009, Victoria, Australia, May 18-June 3, 
2009*
Variable OR (95% Cl) p value
Individual level

Sex
M 1.00
F 2.70 (1.060-6.860) 0.037

Age, y
0-4 1.00
5-19 2.06(0.179-23.90) 0.560
20—49 1.79(0.228-14.00) 0.581
>50 1.11 (0.529-23.30) 0.946

Relationship to index case-patient
Parent/child/partner 1.00
Sibling 1.22 (0.562-2.660) 0.613
Other family member t

Reported prevention and control measures
Antiviral prophylaxis! 0.05 (0.006-0.429) 0.006
Quarantined for >1 d 
with index case-patient§

1.22(1.03-1.44) 0.019

Household level
No. persons

2-3 1.00
4-5 0.385 (0.035—4.280) 0.437
>6

No. children
0.441 (0.024-8.070) 0.581

1 1.00
2 0.729 (0.163-3.260) 0.679
>3

Cultural and linguistic diversity
0.534 (0.05-5.74) 0.605

Only English spoken at 
home

1.00

English and/or other 
language(s) spoken at 
home

2.23(0.448-11.100) 0.328

‘Backwards stepwise selection procedures were used to develop the final 
adjusted model whereby predictors (p>0.05) were removed sequentially 
until only significant predictors (p<0.05) remained. Gender was not 
significant in the adjusted model (p = 0.83) and was thus removed. 
Goodness of fit for both models was assessed by using the Hosmer and 
Lemeshow test to 0.05 significance. Goodness of fit for the final model 
was 0.2. OR, odds ratio; Cl, confidence interval. 
fNo secondary cases occurred in this group, and this level is not included 
in the unadjusted model.
{Adjusted OR 0.042 (95% Cl 0.004-0.434); p = 0.008.
§Logistic regression using number of days quarantined with index case- 
patient as continuous exposure. Adjusted OR 1.25 (95% Cl 1.06-1.47); p 
= 0.008._______________________________________________________
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Sources, perceived usefulness and understanding 
of information disseminated to families who 
entered home quarantine during the H1N1 
pandemic in Victoria, Australia: a cross-sectional 
study
Anne M Kavanagh1*, Rebecca J Bentley1, Kate E Mason1, Jodie McVernon2, Sylvia Petrony1, James Fielding3,4,5, 

Anthony D LaMontagne6 and David M Studdert7

Abstract

Background: Voluntary home quarantine of cases and close contacts was the main non-pharmaceutical 
intervention used to limit transmission of pandemic (HINT) 2009 influenza (pHINI) in the initial response to the 
outbreak of the disease in Australia. The effectiveness of voluntary quarantine logically depends on affected 
families having a clear understanding of what they are being asked to do. Information may come from many 
sources, including the media, health officials, family and friends, schools, and health professionals. We report the 
extent to which families who entered home quarantine received and used information on what they were 
supposed to do. Specifically, we outline their sources of information; the perceived usefulness of each source, and 
associations between understanding of recommendations and compliance.

Methods: Cross-sectional survey administered via the internet and computer assisted telephone interview to 
families whose school children were recommended to go into home quarantine because they were diagnosed 
with H1N1 or were a close contact of a case. The sample included 314 of 1157 potentially eligible households 
(27% response rate) from 33 schools in metropolitan Melbourne. Adjusting for clustering within schools, we 
describe self-reported 'understanding of what they were meant to do during the quarantine period'; source of 
information (e.g. health department) and usefulness of information. Using logistic regression we examine whether 
compliance with quarantine recommendations was associated with understanding and the type of information 
source used.

Results: Ninety per cent understood what they were meant to do during the quarantine period with levels of 
understanding higher in households with cases (98%, 95% Cl 93%-99% vs 88%, 95% Cl 84%-91%, P = 0.006). Over 
87% of parents received information about quarantine from the school, 63% from the health department and 44% 
from the media. 53% of households were fully compliant and there was increased compliance in households that 
reported that they understood what they were meant to do (Odds Ratio 2.27, 95% Cl 1.35-3.80).

Conclusions: It is critical that public health officials work closely with other government departments and media 
to provide clear, consistent and simple information about what to do during quarantine as high levels of 
understanding will maximise compliance in the quarantined population.
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Background
In the absence of an effective vaccine, social distancing is 
a key strategy for preventing the spread of emerging, 
potentially serious, infectious respiratory diseases [1]. 
Voluntary home quarantine of cases and close contacts 
was the main non-pharmaceutical intervention used to 
limit transmission of pandemic (H1N1) 2009 influenza 
(pHIN l) in the initial response to the outbreak of the 
disease in Australia. The Australian Government’s man-
agement plan for pandemic influenza recommended 
school and classroom closures to reduce the early spread 
of the virus [2]. School closures and home quarantine 
became a key strategy during the ‘contain phase’ of the 
outbreak (22 May - 2 June 2009) [3], particularly in Vic-
toria, because the majority of Australia’s HIN1 cases 
occurred among school-aged children in that state [4-6].

The effectiveness of voluntary quarantine logically 
depends on affected families having a clear understanding 
of what they are being asked to do. Typically, however, 
the conditions are not conducive to conveying clear mes-
sages. As outbreaks unfold quickly, information tends to 
come from many sources, including the media, health 
officials, family and friends, schools, employers and 
health professionals. In previous epidemics, the accuracy, 
clarity, and usefulness of this information have been 
shown to vary greatly [7]. Two Australian studies of 
quarantine compliance included a study of Western Aus-
tralian school children [8] and a national study that 
reported intention to comply among unaffected indivi-
duals [9]; neither of these studies reported on under-
standing of quarantine recommendations or information 
sources used. In fact we could not identify any published 
studies that have reported the sources of information, 
understanding of recommendations and compliance.

We conducted a cross-sectional survey of Victorian 
households with children who were placed in voluntary 
home quarantine during the contain phase of the 
pH IN l outbreak. The survey probed participants’ 
understanding of the quarantine recommendations, the 
information sources used to gain this understanding, 
and the perceived usefulness of those sources. We also 
analysed whether these factors were associated with 
levels of compliance among families. Our goal was to 
inform the design and implementation of communica-
tion strategies around quarantine in future pandemics.

Methods
Study Environment
The first Australian case of pH IN l was identified on 8 
May 2009 [10]. Two weeks later, Victoria’s first case was 
identified, a nine year-old boy who had recently 
returned from the United States [4]. In the 12-day con-
tain phase that followed, cases and their immediate 
family members and close contacts were asked to go

into home quarantine. Quarantined persons were 
expected to have no contact with non-household mem-
bers and were treated with Oseltamivir for ten days. 
Cases were asked to stay in quarantine for seven days 
after the onset of symptoms. Contacts—defined as indi-
viduals who spent more than four hours in the same 
room as the confirmed case, or were within one metre 
of the confirmed case for more than 15 minutes—were 
asked to stay in home quarantine for seven days from 
last date of exposure to the case (Department of Health 
Victoria quarantine guidelines, 4 June 2009).

The trigger for closure of mainstream schools was two 
or more confirmed cases in separate classes. However 
only cases and fellow students who met the definition of 
contacts were placed in home quarantine; other students 
in closed schools were merely asked to limit their out-
side activities (Department of Health Victoria quarantine 
guidelines, 4 June 2009). The policy at special develop-
mental schools (SDS) differed from mainstream schools: 
a confirmed case triggered home quarantine for the 
entire student body.

Sample
We identified affected households through schools. Dur-
ing the outbreak, the Victorian Departments of Educa-
tion and Early Child Development (DEECD) and Health 
and the Catholic Education Office were actively involved 
in visiting schools, identifying cases and determining the 
need for quarantine. Each of these agencies held separate 
but incomplete information on closure and quarantine 
activities in schools. After pooling this information, we 
approached Principals at 82 schools that were known or 
suspected to have implemented closures and asked chil-
dren to enter quarantine (Figure 1). For Catholic Schools, 
the DEECD information was reconciled with the infor-
mation held by the Catholic Education Office before 
schools were approached. As a consequence of this a 
smaller proportion of Catholic schools were considered 
ineligible after schools were contacted directly (23% of 
Catholic Schools and 58% of government schools). We 
posed two eligibility questions to the Principals, namely, 
did the school have (1) classes closed during the contain 
phase of the outbreak? and (2) children who were asked 
to go into home quarantine?

Three Principals did not respond to our approaches, 
three declined to participate, and 37 schools did not 
meet the eligibility criteria (i.e. the Principals answered 
“no” to one or both of the eligibility questions). Of the 
rest, 33 Princpals agreed to facilitate the conduct of the 
survey resulting in an eligible school participation rate 
of 85%.

We worked with staff of these 33 schools to identify 
1,188 families who experienced quarantine. School staff 
used a mix of information to identify these families,
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Eligible families Identified by schools 
(IWI.1M)

Schools / Principals 
contacted (n«62)

Eligible achooia that consented  
(n.33)

Eligible schools that declined

Eligible acftoola (n«39)
25 Government (42%) 

10 Catholic (77%)
4 Independent (44%)

Ineligible schools (n*43)
35 Government (58%)

3 Catholic (23%)
5 Independent (56%)

Schools lor Inclusion m the study were Identified

Department ol Health

Figur« 1 Recruitment of parents whose school children were 
recommended to go into home quarantine (May 22nd until 
June 2nd, 2009).

including enrolment records, class lists and documenta-
tion of which classes and students had been asked to 
enter quarantine. Our research team guided the school 
staff through the process of assembling and reviewing 
this information, but we did not have contact with data 
identifying students or families, either at this stage or 
during subsequent administration of the survey.

The study was approved by the ethics committee at 
the University of Melbourne (0932293) and the DEECD 
and the Catholic Education Office granted us permission 
to approach schools to conduct the survey.

Survey Questionnaire
The questionnaire had several modules. One module 
gathered demographic details about the family, including 
household composition, education, employment, housing 
and income. Another module elicited information on 
whether each member of the household: was a contact 
or case (defined as having a pH INI diagnosis confirmed 
by a laboratory or medical practitioner); received Oselta- 
mivir for treatment or prophylaxis; and complied with 
quarantine.

Another module, the focus of this paper, asked partici-
pants whether they understood what their family was 
being asked to do during the quarantine period, where 
they obtained information on what to do, and how use-
ful various sources of such information proved to be. 
Specifically, participants were asked to rate on a five- 
point scale ranging from strongly agree to strongly dis-
agree the extent to which they agreed or disagreed with 
the statement "At the time o f the quarantine measures I 
understood what my fam ily was being asked to do".

Participants were also asked where they obtained “infor-
mation about what you were supposed to do in quaran-
tine" with the following response options: health 
department (which might refer to state or federal gov-
ernment); school; general practitioner (GP)/other health 
care provider; family/ffiends; media (newspaper/tv) and 
other. Multiple responses were possible. Finally, partici-
pants were asked to rate the usefulness of each informa-
tion source.

For analytical purposes, we collapsed the gradations of 
understanding into a binary variable (strongly agree/ 
agree vs. neither agree nor disagree/disagree/strongly 
disagree).

We defined a household as compliant with quarantine 
recommendations if they met all of the following cri-
teria: (1) All quarantined members of the household 
stayed at home for most of each day; (2) No quaran-
tined household members visited public places with lots 
of other people (excluding visits to health practitioners); 
(3) No adults from other households visited the home 
for £15 minutes; (4) Quarantined children did not mix 
with children from another household for £15 minutes; 
and (5) Any childcare was only provided by adults living 
in the household.

Survey Administration
The survey was administered during November and 
December 2009. School staff mailed letters to the par-
ents in eligible families inviting them to participate. The 
letter presented two options: an internet address at 
which parents could complete the questionnaire online 
and a telephone number to ring to complete it via a 
Computer Assisted Telephone Interview (CATI). The 
survey was offered in English only. The letter also 
included a unique 8-digit identification number which 
enabled access to the website and CATI. This number 
allowed us to identify the school(s) and home class(es) 
of each family’s child(ren), but revealed no other identi-
fying information.

School staff mailed two reminder letters. To boost 
response rates and recognise the effort involved for par-
ticipating families and schools we contributed $AU20 to 
the school for the purchase of educational resources for 
each completed questionnaire and all families received a 
movie voucher valued at AU$10.30 with the second 
reminder letter.

Eight letters were returned-to-sender and 23 parents 
responded indicating that they did not have a school- 
aged child who had been placed in home quarantine. 
This left an in-scope sample of 1,157. We received 314 
responses yielding a household participation rate of 27%. 
Missing data on key questions related to the information 
sources reduced our analysable sample for this study to 
297 families.
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Analysis
All analyses were conducted in Stata 11.0 (STATA 
Corp, College Station, TX). We calculated proportions 
for each of the variables of interest (household under-
standing of quarantine requirements, and use and per-
ceived usefulness of information sources) and stratified 
these proportions by whether the households had a case 
or contacts only. To account for within-school cluster-
ing, we used logistic regression (using Stata’s cluster 
command) and post-estimation commands to generate 
proportions, 95% confidence intervals and p-values.

We also used logistic regression, again adjusting for 
within-school clustering, to examine whether compli-
ance with quarantine recommendations was associated 
with understanding of quarantine recommendations and 
the type of information source used. The types of infor-
mation were grouped into official sources (health 
department and schools) and unofficial sources (media, 
family and friends and health care providers). We postu-
lated that these relationships may be confounded by two 
variables—whether a household had a case or contacts 
only, and level of parental education—and so included 
these as covariates. However, because adjustment for 
these variables did not change the size and significance 
of the coefficients of interest, we report unadjusted 
estimates.

Results
Sample characteristics
Seventeen per cent of participants reported having had a 
confirmed case of pH IN l in their household (Table 1). 
Seventy-six per cent of the quarantined children 
attended government schools, 15% attended Catholic 
schools and 9% attended Independent schools. Forty- 
one per cent of the children were in primary school, 
35% were in secondary school and 24% were in Special 
Development Schools.

Understanding of quarantine recommendations
Ninety per cent (266/297) of participants understood what 
they were meant to do during the quarantine period. This 
proportion was significantly higher in households with 
cases than in households with contacts only (98%, 95% Cl 
93%-99% vs 88%, 95% CI 84%-91%, P < 0.001).

Information sources
Nearly 90% of parents received information about quar-
antine from the school and 63% obtained information 
from the health department (Table 2). The next most 
common information source was the media (44%). 
Overall, most families used multiple sources of informa-
tion; only one household reported that they did not use 
any sources. 24% used only one source, 32% used two, 
and 44% used three or more.

Table 1 Demographic characteristics of sample (n = 297)
n %

S ex  o f  r e sp o n d e n t

Female 254 85.5
A g e  o f  o ld e s t  child

Under 12 145 49.0
N u m b er o f  ch ildren  in h o m e  q ua ra n tin e

Two or more 46 15.5
H o u seh o ld s  w ith  a ca se

Case in household 51 17.2
S ch o o l secto r*

Government 226 76.1
Catholic 45 15.2
Independent 26 8.8

S ch o o l level*

Primary 123 41.4
Primary/Secondary 1 03
Secondary 103 34.7
Special Development 70 23.6

H o u seh o ld  co m p o sitio n

Single parent one child 12 4.0
Single parent 2+ children 24 8.1
Couple, one child 40 13.5
Couple, 2+ children 221 74.4

H ig h est le v e l o f  p aren ta l ed u ca tio n

Bachelor degree or higher 155 52.5
“refers to the school through which the household was contacted.

A minority of participants reported using official 
sources only (n = 120, 40%). The majority (n = 172, 58%) 
used both official and unofficial sources of information. 
Only five households did not use any official sources.

There was some evidence that case households and con-
tact-only households received their information from dif-
ferent sources. Case households were more likely to receive 
information from the health department (80%, 95 Cl 64%- 
90% vs 59%, 95% CI 49%-69%, P = 0.015) and were less 
likely to receive their information through schools (51%, 
95% Cl 38%-64% vs 94% 95% Cl 90%-%%, P < 0.001).

Perceptions of usefulness of information
Approximately two-thirds of participants reported that 
they found the information from the health department, 
schools and health service providers useful or extremely 
useful, whereas only 38% gave media sources this rating 
(Table 3). There were no significant differences in use-
fulness ratings between case households and contact- 
only households.

Relationship between understanding, 
information and compliance
Fifty-three per cent of participants reported full compli-
ance with quarantine recommendations within their
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Table 2 Information sources used by parents whose children were placed in home quarantine
% who obtained information from source 

Total Case in household No case in household
Information Source n % % 95% Cl % 95% Cl

S chool 257 86.5 51.0 (38.1, 63.7) 93.9 (898, 96.4)

H ealth D ep artm en t 187 63.0 80.4 (642, 90.4) 5 9 3 (49.1, 68.8)

M edia (new spaper/TV) 132 44.4 54.9 (42.4, 66.8) 42.3 (383, 46.4)

G P /o th e r h ea lth ca re  provider 84 28.3 58.8 (46.1, 705) 22.0 (15.6, 30.0)

Fam ily/friends 51 17.2 13.7 (7.7,23.1) 17.9 (14.4, 220)

O th er 23 7.7 6.0 (2.4,14.0) 8.1 (4.8, 13.3)

household. Of the 90% of respondents who reported 
understanding what they were meant to do during quar-
antine, 55% (n = 147) reported full compliance. In con-
trast, full compliance was only reported by 35% (n = 11) 
of the minority who did not report that they understood 
what they were meant to do. Compliance was higher in 
the households that reported understanding what they 
were meant to do during the quarantine period (Odds 
Ratio 2.27, 95% Cl 1.35-3.80). There were no differences 
in the odds of compliance between households that 
used official sources of information only compared to 
those that used both official and unofficial sources 
(Odds Ratio 1.00, 95% Cl 0.69-1.44). (The five house-
holds that did not use any official sources were excluded 
from this analysis.)

Discussion
Families with school-children who entered quarantine 
during Victoria’s pH IN l relied heavily on official 
sources of information, particularly schools and the 
health department. Troublingly, one third of families 
who used these sources did not find them useful in 
gaining an understanding of what they were supposed to 
do during quarantine. The media was the next most 
relied upon source although nearly 60% of families did 
not find this source illuminating. Our findings also sug-
gest that the stakes associated with lack of comprehen-
sion are high, as the odds of compliance were more 
than twice as high among families who understood the 
home quarantine recommendations.

Liaising closely with a range of different media (such 
as print, television and internet) is critical, however 
media interests may not be congruent with optimal pub-
lic health policy [7]. The fact that 44% of families in our 
study turned to the media as a source of information 
during the contain phase of the pandemic, but a minor-
ity found media information useful, indicates that there 
is much room for improvement in coordinating the 
messages coming from official and non-official sources. 
In future pandemics, which may be more severe and of 
longer duration than pH IN l, Australian government 
officials will need to work more closely with the media 
to provide accurate, easy-to-understand information on 
social distancing measures and other preventative 
strategies.

As most Australian cases occurred in Victorian school- 
children, who became the chief target of preventive mea-
sures to reduce spread of pH IN l, our study provides 
valuable insights into information sources, understanding 
and compliance among families most affected by an emer-
ging pandemic However, the study has some limitations. 
Due to ethical and privacy issues the survey was not con-
ducted until November and December 2009 (six months 
after the home quarantine measures had been implemen-
ted), introducing the potential for recall bias. Another 
potential problem relates to the way in which the question 
about information sources was asked, whereby we do not 
know how respondents who used the media to obtain 
information from health department would have 
answered. It is possible that they ticked health department,

Table 3 Usefulness of information sources in H1N1 pandemic in Victoria, Australia
% useful or extremely useful

Total Case in household No case in household
Information Source n % % 95% Cl % 95% Cl
Health D ep artm en t 127 68.3 60.0 (46.1, 72.4) 70.3 (64.7, 755)

School 168 65.9 68.0 (49.5, 82 2 ) 65.9 (57.0, 73.9)

G P /o th er hea lth ca re  provider 51 63.0 71.4 (55.4, 83.4) 57.7 (43.9, 70.3)

M edia (new spaper/TV) 51 38.6 48.1 (33.7, 62.7) 3 6 5 (278, 46.2)

Fam ily/friends 16 32.0 42.9 (2 3 .1 ,6 5 2 ) 30.2 (18 5 ,4 5 .3 )

O ther 17 73.9 100.0 (29 .2  100.0)* 70.0 (505, 89.5)

*one-sided confidence interval.
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media or both. A European study found that national and 
international public health authorities were by far the lead-
ing source of information in articles in the media on 
H1N1 influenza in the early stage of the pandemic [11]. If 
the same pattern was observed in Australia then it is likely 
that families accessed information from the health depart-
ment through the media.

We had a relatively low response rate, although it is 
close to those achieved in similar studies that had much 
smaller population samples [12-14]. We had to adminis-
ter the survey through schools due to privacy concerns 
and this is likely to have contributed to our low 
response rate. It also likely that response rates were low 
because most of the schools were located in the North-
ern Metropolitan region of Melbourne, an area that has 
higher levels of disadvantage and a greater proportion of 
households that speak a language other than English at 
home (http://www.abs.gov.au/websitedbs/D3310114.nsf/ 
home/Census+data; accessed August 10/2010). In addi-
tion, the internet was the main mode of survey adminis-
tration which may have reduced access for 
disadvantaged groups. To the extent that this type of 
response bias occurred, it is likely to make our estimates 
of the understanding and perceived usefulness of quar-
antine information among affected families higher than 
might be the case in all families affected by quarantine. 
It is possible that non-responders were less interested in 
H1N1 or health issues in general and that their under-
standing of information and the sources of information 
used may differ from responders. Without more infor-
mation it is not possible to know how non-response 
bias might have affected our estimates of understanding 
of quarantine recommendations or the source of 
information.

social distancing measures. Finally, future pandemic 
management may benefit from the implementation of a 
process to monitor in real time how communication 
messages are being received, thereby allowing timely ana-
lyses and amendments rather than relying on collecting 
information many months after the event.

The relatively benign nature of the recent pH IN l in 
Australia probably prevented shortcomings in communi-
cation and outreach activities from causing serious 
harm. However, the next pandemic may be crueler: it 
may cause more serious morbidity and mortality, last 
longer, and necessitate the issuing of a range of recom-
mendations over time to guide public action. Under 
those conditions, weaknesses in communication strate-
gies will be exposed and may cost lives.
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Conclusions
Our findings reinforce the importance of providing clear 
messages about home quarantine and suggest that suc-
cess in this area is likely to have a substantial impact on 
compliance. Closer attention to how government recom-
mendations about quarantine are presented is needed, as 
one third of the sample reported that information 
obtained from these sources was not useful. Qualitative 
interviews with affected households might provide 
further insights into how the provision of this informa-
tion could be improved. The quality and clarity of infor-
mation from unofficial sources, particularly the media, is 
also important, recognising that nearly half the house-
holds in our study used media sources but two-thirds of 
them did not find this information useful. Coordination 
between the major information sources is also essential: 
government should work closely with the media to facili-
tate consistent messages, including responsible and accu-
rate reporting of quarantine recommendations and other
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Recommendations for and compliance with social 
restrictions during implementation of school 
closures in the early phase of the influenza A 
(HI N1) 2009 outbreak in Melbourne, Australia
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James Fielding4,5'7, David M Studdert6,8 and Anne Kavanagh2

Abstract

Background: Localized reactive school and classroom closures were implemented as part of a suite of pandemic 
containment measures during the initial response to influenza A (H1N1) 2009 in Melbourne, Australia. Infected 
individuals, and those who had been in close contact with a case, were asked to stay in voluntary home 
quarantine and refrain from contact with visitors for seven days from the date of symptom onset or exposure to 
an infected person. Oseltamivir (Tamiflu®) was available for treatment or prophylaxis.

Methods: We surveyed affected families through schools involved in the closures. Analyses of responses were 
descriptive. We characterized recommendations made to case and contact households and quantified adherence 
to guidelines and antiviral therapy.

Results: Of the 314 respondent households, 51 contained a confirmed case. The prescribed quarantine period 
ranged from 1-14 days, reflecting logistic difficulties in reactive implementation relative to the stated guidelines. 
Household-level compliance with the requirement to stay at home was high (845%, 95% Cl 79.3,88.5) and contact 
with children outside the immediate family infrequent.

Conclusions: Levels of compliance with recommendations in our sample were high compared with other studies, 
likely due to heightened public awareness of a newly introduced virus of uncertain severity. The variability of 
reported recommendations highlighted the difficulties inherent in implementing a targeted reactive strategy, such 
as that employed in Melbourne, on a large scale during a public health emergency. This study emphasizes the 
need to understand how public health measures are implemented when seeking to evaluate their effectiveness.

Background
The W orld Health Organization declared the first influ-
enza pandemic of the 21st Century in June 2009, follow-
ing global spread of a novel swine-origin reassortant 
strain of influenza A  (H1N1) (p H IN l)  [1], In  Australia, 
as in many countries, initial reports were dominated by 
outbreaks in schools, w ith  evidence of high rates of 
transmission between children [2]. Anticipating the spe-
cial risks posed in the school environm ent, the

* Correspondence: j.m cvernon@ unim elb .edu.au  

'Vaccine & Im m unisation Research Group, M urdoch  Children's Research 

Institute and M e lbourne School o f Population Health, University o f  

M elbourne, Australia

Full list o f  au thor in form ation is available a t the  end  o f th e  article

Australian Health Management Plan for Pandemic Influ-
enza 2008 (AHM PPI) [3] had recommended school and 
classroom closures as part of a suite of ‘social distancing’ 
measures aimed at limiting early spread of an imported 
pandemic virus. Other interventions during the initial 
‘C ontain ’ phase o f the pandemic response included 
voluntary home quarantine of cases and their close con-
tacts, and liberal d istribution o f antiviral agents for 
treatment and prophylaxis of infection [3].

Although school closure has been widely used in the 
response to past pandemics [4], there is little quantita-
tive evidence of its likely effectiveness to inform optimal 
implementation [5]. This absence of data is particularly

S  \  m e 2011 McVernon et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
I ) BioMed Central Commons Attribution Ucense (http://creativecommons.Org/licenses/by/2.0), which permits unrestricted use, distribution, and
\  ^  reproduction In any medium, provided the original work is properly cited.
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troublesome given the estimated societal costs of school 
and workplace closures in the context of a pandemic 
response as predicted by macroeconomic models [6,7]. 
Mathematical models have been used to estimate the 
impact of school closure on epidemic dynamics, with 
disparate conclusions. These variations arise because of 
differing assumptions regarding relative age-specific 
attack rates [8], social mixing patterns prior to [9] and 
during [5] the period of school closure and the timing 
and extent of interventions [10,11]. Within these model 
frameworks, full compliance with voluntary home quar-
antine recommendations is often assumed, perhaps erro-
neously given perceived inconvenience [12]. Even where 
models find simulated school closures to be effective at 
reducing disease, their associated societal costs generally 
exceed savings to the health care system resulting from 
case prevention [13].

Localized reactive school and classroom closures were 
employed during the Contain phase of the response to 
pH IN l in metropolitan Melbourne, Victoria, Australia, 
between 22nd May and 3rd June 2009 [14]. In Victoria, 
Department of Health guidelines recommended that 
schools with multiple confirmed cases in different 
classes should be closed for seven days from the date 
that the last confirmed case attended school; schools 
with confirmed cases in one class were instructed to 
close only that class. Quarantined individuals were 
asked to stay at home and refrain from contact with 
visitors for seven days from the date of symptom onset 
or exposure to an infected person - in the first week of 
measures the recommended period may have been as 
long as fourteen days in some cases (J Fielding, personal 
communication).

This questionnaire-based study aimed to characterize 
the implementation of this intervention across all 
schools that enacted closures in the Melbourne metro-
politan area, representing a population of 4.1 million 
residents. We also sought to quantify adherence to 
behavioural and pharmaceutical recommendations, and 
define household characteristics associated with differ-
ences in compliance.

Methods
Study population
In the state of Victoria, the three main education provi-
ders are the State Government (1613 schools), Catholic 
Education (484 schools) and the Independent schools 
sector (692 schools)(http://www.australianschoolsdirec- 
tory.com.au/educationinformation.php?region=28)We 
obtained from the Victorian government departments of 
Health and Education and the Catholic Education Office 
lists of government and Catholic schools in which clo-
sures were implemented from the 22nd May to 3rd June 
2009. From these lists, we identified a total of 82

potentially affected schools. Discussions with the princi-
pals at these schools regarding the pandemic response 
confirmed that only 39 had effected closures, and 33 of 
these agreed to participate - 6 schools did not respond 
to our enquiry (85% school participation rate). The rea-
sons for differential reporting of school closure status by 
government agencies and principals were not clear.

On our behalf, staff at participating schools forwarded 
study information to the parents of 1,181 students in the 
closed classes or teaching groups who had been advised to 
go into voluntary home quarantine. An initial letter and 
two reminder letters were sent to each identified family 
during November 2009. The second reminder included a 
movie voucher valued at $AU10.30 to boost participation 
and thank families for their involvement. Participating 
schools received $AU20 towards the purchase of educa-
tional resources for each completed questionnaire.

In Australia, each school is characterized according to a 
national ‘Index of Community Socio-Educational Advan-
tage’ (ICSEA), a measure that incorporates Australian 
Bureau of Statistics data (such as parental incomes, edu-
cation and employment), Aboriginal enrolment data and 
community remoteness - all factors known to predict 
educational outcomes (http://www.myschool.edu.au). 
Students are allocated to quartiles of advantage relative 
to the national average. If a school has a disproportionate 
number of students in the lowest quartile, it is likely to 
be serving a very disadvantaged community. We looked 
for a relationship between the response rate at school 
level and the difference between the proportion of stu-
dents in the lowest quartile and the national average of 
25%, using univariate linear regression.

The study was approved by the University of Mel-
bourne’s Health Sciences Human Ethics Sub-Committee 
(0932293). The Department of Education and Early 
Childhood Development and the Catholic Education 
Office granted permission for us to approach schools to 
conduct the survey.

Survey
Participating parents completed an anonymous online or 
telephone questionnaire, which elicited a range of infor-
mation, including: the compliance of all family members 
with behavioural recommendations and pharmaceutical 
interventions during the quarantine period, and factors 
that may have influenced compliance such as parental 
leave entitlements and attitudes to the intervention. 
This study focuses on quantitative measures of compli-
ance. A copy of the questionnaire is available from the 
authors on request.

Measures of compliance
Compliance with home quarantine was calculated as a 
proportion, representing the number of days spent at
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home, divided by the number of recommended days of 
quarantine (i.e. voluntary self-quarantine beyond this 
period was not assessed). This measure was derived for 
each individual, along with the proportion of individuals 
who stayed at home for all of their recommended quar-
antine days. Compliance was further assessed at house-
hold level, representing the number of recommended 
quarantine days on which all family members who were 
asked to go into quarantine complied with recommen-
dations. Respondents were asked to identify any trips 
made outside the home by quarantined individuals, 
whether the trips were to open or enclosed public 
spaces, and whether other persons were present

Compliance with social mixing recommendations was 
assessed by asking whether adults or children who were 
not members of the households made incursions to the 
home environment lasting more than 15 minutes during 
the quarantine period. For each day nominated as being 
spent outside the home, the questionnaire elicited infor-
mation on any mixing with children who were not 
family members. In any care location, participants were 
also asked to state whether primary child carers nor-
mally lived with the child or were from another 
household.

For every family member who was prescribed oselta- 
mivir (Tamiflu®), respondents were asked whether all, 
half or more, less than half or none of the course was 
completed. Reasons for less than full completion were 
elicited.

Statistical analysis
Statistical analyses were performed using Stata 11.0. 
Analyses were performed at the level of either house-
hold or individual, depending on the outcome measure. 
To adjust our estimates of compliance for the clustering 
of responding households within schools and individuals 
within households, we used logistic regression modelling 
and post estimation commands, and reported the esti-
mates as percentages with 95% confidence intervals 
(95% CIs). P-values are reported for comparisons 
between groups. Multilevel regression was used to inves-
tigate the extent to which the variance in household 
compliance was attributable to school-level versus 
household-level differences. Individual-level compliance 
estimates were adjusted only for clustering of individuals 
within households, as the clustering of compliance at 
the school level was estimated to be of minimal impact

Results
Study population
The population of schools surveyed derived from rela-
tively disadvantaged areas, with 16 schools reporting a 
larger proportion of students in the bottom quartile of 
advantage according to ICSEA scores than the national

average (Median difference: 4, range -25, 39). Median 
school level response rates were 19.9% (Range: 4%, 
46%). Response rates were square root transformed to 
approximate a normal distribution, and linear regression 
performed to assess the relationship between this score 
and the excess (or under-representation) of students in 
the least advantaged quartile. The two were significantly 
related (Coefficient (95%CI): -0.04 (-0.06, -0.01); p = 
0.002), reflecting lower response rates from less advan-
taged schools.

We received 314 responses from 1,181 (27%) eligible 
households approached by the 33 participating schools. 
Of these, 301 primary respondents (96%) provided infor-
mation regarding the presence or absence of a medically 
diagnosed case in the household. Reporting households 
ranged in size from 2 to 9 members (median 4, inter-
quartile range 4 to 5) and contained a total of 1,330 per-
sons (Figure 1). The total number of household 
members in families (n = 13) not reporting case status 
could not be determined due to missing data. Fifty-one 
families reported at least one pHINl-infected individual. 
Seven of these families reported a secondary case and 
four reported two secondary cases, for an average sec-
ondary household attack rate of 6%. Only one of the 51 
primary cases was older than 18 years.

Quarantine recommendations
Four hundred and ninety-six individuals were asked to 
stay in voluntary home quarantine in association with 
the school and classroom closures. Quarantine was 
more likely to be recommended for household members 
if a child had a confirmed case of influenza. The recom-
mended quarantine periods varied, ranging from 1-14 
days (median 7 days, IQR 5-8 days) (Figure 2).

Compliance with requirements to stay at home
Individual compliance with the recommendation to 
stay at home was high, with respondents reporting that 
individuals stayed at home for more than 94% of the 
days they were advised to be in quarantine (95% Cl 
92.8, 95.9). This figure was not associated with the 
length of quarantine (Figure 2) and did not fluctuate 
over the course of the quarantine period (data not 
shown). Of the 3,232 quarantined days, respondents 
reported that they and their family members spent 
most of their time outside the home during only 177 
days. Of these days, 47 were spent in the homes of 
friends, 44 at school, 18 in the workplace and 68 at 
‘Other’ unspecified locations. The proportion of indivi-
duals who remained at home during all days of their 
prescribed quarantine period was 88% - this lower fig-
ure was attributable to the variable length of the 
recommended quarantine period for any given indivi-
dual, as shown in Figure 2.
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Case in the 
Household 

(n=51)
(229 persons)

No case in the 
Household 

(n=250)
(1,101 persons)

Persons
quarantined

173/229
(76%)

Persons not 
quarantined 

56/229 
(24%)

Persons
quarantined

323/1,101
(29%)

Persons not 
quarantined 

778/1,101 
(71%)

No
Tamiflu
39/56
(70%)

No
Tamiflu
162/323
(50%)

No
Tamiflu
767/778
(99%)

Tamiflu
prescribed

161/323
(50%)

Tamiflu
prescribed

17/56
(30%)

Tamiflu
prescribed

11/778
( 1% )

Households
Recruited

(n=314)
(1,359 persons)

Tamiflu
described
124/173
(72%)

No
Tamiflu
49/173
(28%)

No response 
(n=13)

(29 reported 
persons + ??)

Figure 1 Quarantine and prophylaxis recommendations, by case status of the household

When compliance was considered at household level, 
250 households (84.5%; 95% Cl: 79.3%, 88.5%) reported 
perfect compliance by all family members with quaran-
tine recommendations throughout its duration, regard-
less of whether there was a case in the household 
(82.0% compliant) or not (85.0% compliant) (p = 0.57).

0 5 10 15
Days in Quarantine

Figure 2 Days spent at home relative to the recommended 
duration of quarantine (size of circles reflects the frequency of 
reported observations).

We estimated that only one per cent of the variation 
in this compliance outcome was explained by differences 
at the school level (level 2 variance), while 99% of varia-
tion was due to differences between households (level 1 
variance).

Compliance with restrictions on outings
During the quarantine period, 25 reporting households 
(8.4%; 95% Cl: 0.05%, 12.9%) stated that at least one 
quarantined family member left the home to visit “an 
outdoor public space with lots of other people around 
(e.g. playground or market)”. A further 36 respondents 
(12.0%; 95% Cl: 0.08%, 17.0%) reported an excursion to 
an enclosed public space, other than for medical atten-
dance. There was no significant difference in such inci-
dents between families with or without a resident 
influenza case (data not shown).

Compliance with requirements to avoid social mixing
The main purpose of school closure was to restrict con-
tact between children that may facilitate the spread of 
infection. Forty-three households reported that a child 
spent at least one day outside the family home, and 
mixing with other children occurred on almost half of 
these occasions (48.8%; 95% Cl: 35.7%, 62.1%), whether
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or not there was a case in the family (p = 0.5). Contact 
with children who were not immediate family members 
was far less likely during days spent at home. No child 
visited a study household in which another child was ill, 
compared with reported child visitors in 15.9% of 226 
homes without a case (p < 0.001). Adult visitors were 
somewhat more common (31.1%; 95% Cl: 25.5%, 37.3%), 
and again occurred more frequently in households with-
out (33.5%) than with (19.6%) an influenza-infected indi-
vidual (p = 0.04).

Compared to children in households that complied 
with recommendations to stay at home, children in 
households that did not comply with the recommenda-
tions were more likely to have been cared for during the 
quarantine period by an adult from outside the home 
(28.3% compared with 4.0% for compliant households; p 
< 0.001), thus also contravening the quarantine recom-
mendation not to mix with adults from outside the 
household. This distinction was especially marked for 
households in which there was a confirmed case of 
influenza, where the difference was 44.4% of children 
receiving outside care in non-compliant households 
compared with 2.4% of those that were compliant

Compliance with antiviral medications
Oseltamivir was prescribed for 313 individuals, more 
often if there was a case in the household and/or for 
quarantined persons (Figure 1). Compliance with the 
medication was high, with 75% of respondents stating 
that the full drug course was completed (95% Cl: 68.2, 
80.6%). Only 7.1% refused it altogether, 9.9% took up to 
half, and 5.1% more than half (2.9% were unsure). The 
presence of a case in the household did not affect adher-
ence to the prophylaxis or treatment regimen, nor did 
the age of the individual prescribed the medication. Rea-
sons for non-completion of the course did, however, 
vary by age (data not shown). Where non-compliance 
was reported, the primary household respondent attribu-
ted this to belief that the drug was unnecessary (n = 42), 
particularly for individuals older than 18 years (p = 
0.02). Some children refused to take the medication for 
unstated reasons (n = 10), but side effects, experienced 
(n = 12) or anticipated (n = 8), were infrequently 
reported.

Discussion
Despite variable recommendations for the containment 
of pH IN l in Victoria (Australia), our findings suggest 
that compliance with both behavioural and pharmaceu-
tical recommendations was high, particularly in case 
households. These closures occurred during a well- 
defined and relatively constricted time frame, at the very 
beginning of the pandemic strain’s emergence in Austra-
lia, where Victoria was the first state to report person-

to-person transmission. As Australia was one of the first 
countries to experience pH IN l outbreaks during the 
Southern Hemisphere winter, local public health officials 
were uncertain of the likely severity of disease and acted 
according to the ‘worst case scenario’ recommendations 
of the AHMPPI 2008 during the initial Contain phase. 
Considerable media attention was focussed on school- 
based spread of infection and the associated public 
health response. Our findings may therefore be indica-
tive of a ‘best case’ estimate of the public’s compliance 
during a moderate to severe influenza pandemic.

Issues arising in the conduct of our survey highlighted 
the considerable logistic challenges involved in imple-
menting this complex policy on a large scale. In seeking 
to quantify implementation of school closure measures 
in Melbourne during the 2009 pH IN l response, it was 
first apparent that government records of the interven-
tion did not accord with the level of stated school invol-
vement. Reasons for this discrepancy were unclear, but 
based on discussions with principals, did not represent 
school refusal to comply with directives. An alternative 
explanation might relate to the practical challenges 
involved in centralized administration of a localized 
reactive public health intervention, applied across many 
sites. The highly variable quarantine duration recom-
mended to families provides further support for this 
hypothesis.

Inevitable delays to response arising from the multiple 
steps to initiation of closure including: case diagnosis, 
public health reporting, contact identification and infor-
mation dissemination were reflected in frequent reports 
of quarantine periods less than seven days. A quarantine 
duration of three days or less may not reliably exclude 
development of infection, given some variation in the 
length of the presymptomatic infectious period [15], 
particularly in children [16]. Moreover, as the period of 
isolation was to extend for a total of 7 days following 
last contact with an infected individual, it must be 
assumed that those contained for a shorter period had 
already spent several days post-exposure mixing freely 
in the community, during the time at which they were 
most likely to be infectious.

Strengths and limitations of the study
This is the first study to evaluate implementation of 
school closure on such a large scale, with our 33 schools 
representing an intervention conducted across the whole 
of metropolitan Melbourne. The low response rate from 
invited participants in this study is consistent with that 
observed in similar surveys [17-19], but does introduce 
potential for ascertainment bias. In particular, we 
received a disproportionately low level of responses 
from less advantaged schools, limiting our ability to 
represent the whole population experience and possibly
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inflating estimates of compliance. Also of note, the pro-
portion of households that contained a confirmed case 
(20%) was considerably higher than that in a recently 
published West Australian (WA) study of school clo-
sures (5%) [20]. This may suggest that not only more 
affluent, but also more concerned and/or compliant par-
ents were more likely to take part in our study. Study 
materials were not available in languages other than 
English, which may also have excluded vulnerable sub-
groups in the population sample. Unfortunately, as invi-
tations to participate were distributed through schools 
due to privacy constraints, we are not able to character-
ize non-respondent households in more detail. Further, 
conduct of the survey several months after closures took 
place may have reduced motivation to participate, and 
introduced the possibility of recall bias.

Findings in relation to other studies of quarantine 
compliance
Why was compliance with quarantine recommenda-
tions so high in our sample? The study of school clo-
sures in WA, implemented later than in Victoria and 
with greater awareness of the generally mild nature of 
pH IN l disease, found greater frequency of excursions 
outside the home (75%) than did our survey [20]. 
Unlike our sample, the WA study included ‘peers' as 
well as those children identified as actual ‘contacts’. 
The latter were more likely to stay at home than their 
unexposed friends, exceeded only by cases, of whom 
there were relatively few [20]. Frequent socialization 
was reported among students sent home during 
pH IN l driven closures in the United States (US) [18], 
in keeping with earlier observations during a large sea-
sonal influenza B epidemic, in which individual risk 
perception was assessed and reported to be low [17]. 
Australian surveys have found a lower anticipated 
compliance with voluntary quarantine measures for 
seasonal influenza infection, compared with a pan-
demic virus [21].

Parental care in the home was associated with higher 
compliance with social restrictions. During pHINl asso-
ciated elementary school closures in Pennsylvania, only 
one in five parents took time off work to care for chil-
dren despite dual income earners in two thirds of 
households. In that study, 69% of affected children made 
excursions to locations outside the home during the clo-
sure period [22]. A recent contact diary study reported a 
50% reduction in child socialization during school holi-
day periods in the United Kingdom (UK) compared 
with term time, suggested to be predictive of behavior 
during a public health intervention [23]. However, the 
relevance of this finding to an emergency school closure 
setting should be interpreted with caution, as making 
‘ad hoc’ arrangements for child care at short notice may

lead to very different patterns of child socialization, 
compared with periods of scheduled leave.

Oseltamivir was well accepted by respondents in this 
study, with almost all taking at least half of the course, 
and very few reporting side effects. In a ‘real-time’ sur-
vey from the UK, just under half of secondary school 
students and three quarters of primary school students 
completed a prescribed course of oseltamivir [19]. Non- 
compliance was ascribed to gastro-intestinal side-effects 
in half, and may have been more reliably reported than 
in our study due to an absence of recall bias, although 
questionnaires were only completed by around 40% of 
the sample population [19]. Similarly high rates of 
adverse events were seen among children receiving osel-
tamivir in a comprehensive school in the South-West of 
England, but with better compliance and a higher study 
participation rate (> 90%) [24].

Conclusions
High levels of compliance with quarantine and antiviral 
recommendations were observed in our study popula-
tion, derived from families affected by school closures in 
Victoria during the early days of the 2009 H1N1 epi-
demic. These estimates likely reflect a ‘best case’ sce-
nario, fuelled by high levels of public awareness and 
anxiety at the time the measures were imposed. How-
ever, the complex nature of the intervention was 
reflected in the variable directives received by families, 
which likely undermined its impact

In related work, we explore the predictors of compli-
ance at household level in further detail, including 
socio-economic status and parental employment 
arrangements, along with financial consequences of 
home quarantine recommendations for the family (Prof 
Anne Kavanagh, personal communication). At societal 
level, the costs associated with school closures are sub-
stantial [7], making their economic justification difficult 
in the absence of high case fatality, even where highly 
effective [13]. As implemented, the measures in Victoria 
were unlikely to have substantially altered the course of 
the epidemic. This study emphasizes the need to under-
stand the feasibility of public health measures when 
considering their likely health and economic impacts in 
real world settings.
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Leave entitlements, time off work and the 
household financial impacts of quarantine 
compliance during an H1N1 outbreak
Anne M Kavanagh1*, Kate E Mason1, Rebecca J Bentley1, David M Studdert2, Jodie McVernon3, 

James E Fielding4,5,6, Sylvia Petrony1, Lyle Gurrin7 and Anthony D LaMontagne8

Abstract

Background: The Australian state of Victoria, with 52 million residents, enforced home quarantine during a H1N1 
pandemic in 2009. The strategy was targeted at school children. The objective of this study was to investigate the 
extent to which parents' access to paid sick leave or paid carer's leave was associated with (a) time taken off work 
to care for quarantined children, (b) household finances, and (c) compliance with quarantine recommendations.
Methods: We conducted an online and telephone survey of households recruited through 33 schools (85% of 
eligible schools), received 314 responses (27%), and analysed the subsample of 133 households in which all resident 
parents were employed.
Results: In 52% of households, parents took time off work to care for quarantined children. Households in which 
no resident parent had access to leave appeared to be less likely to take time off work (42% vs 58%, p=0.08) 
although this difference had only borderline significance. Among parents who did take time off work, those in 
households without access to leave were more likely to lose pay (73% vs 21%, p<0.001). Of the 26 households in 
which a parent lost pay due to taking time off work, 42% experienced further financial consequences such as being 
unable to pay a bill. Access to leave did not predict compliance with quarantine recommendations.
Conclusions: Future pandemic plans should consider the economic costs borne by households and options for 
compensating quarantined families for income losses.

Background
Social distancing and quarantine measures were central 
to Australia’s response to the outbreak of pandemic 
(H1N1) 2009 influenza (influenza A(HlNl)pdm09 (REF 
WHO)). Established community transmission of the novel 
virus was first confirmed in Victoria, Australia’s second 
largest state with 5.5 million residents. The majority of 
infections in the early weeks of the outbreak occurred 
among school-aged children. This high paediatric case 
proportion prompted the Victorian government to close 
classrooms and entire schools, introduce voluntary home 
quarantine for many children and their families, and rec-
ommend additional social distancing.

* Correspondence: a.kavanagh@unimelb.edu.au 
'C entre for W om en's Health, Gender and  Society, M elbourne School of 
Population Health, The University of Melbourne, M elbourne, Victoria, Australia 
Full list of au thor information is available at th e  end  of th e  article

A previous study found that non-pandemic influenza 
in school-aged children causes significant disruption to 
usual household activities, including lost work days for 
parents [1]. Home quarantine during the 2009 influenza 
outbreak in Australia may have accentuated such diffi-
culties for two reasons. First, the length of time for which 
quarantine was recommended was up to seven days, 
which is considerably longer than usual school absences. 
Second, the recommendation that quarantined children 
not have exposure to non-household members restricted 
childcare options.

Paid leave entitlements are an important buffer against 
‘shocks’ to childcare arrangements; a US study found 
that parents with access to paid leave are more likely to 
stay home to care for sick children than parents without 
such entitlements [2]. When presented with a hypothet-
ical scenario of a pandemic, employees in insecure jobs 
that lacked leave entitlements reported that they would

A  \  © 2012 Kavanagh et ab licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( 1 BioMed Centr'd! Commons Attribution License (http://aeativecommons.Org/licenses/by/2.0), which permits unrestricted use, distribution, and
V ^  reproduaion in any medium, provided the original work is properly cited.
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be less likely to comply with social distancing measures 
[3], and indeed a recent study in the US found that 
work-related barriers to imposing social distance was 
associated with increased incidence of influenza-like ill-
ness during the H1N1 outbreak [4]. One-quarter of 
working Australians do not have access to paid leave [5], 
one of the highest levels in the OECD. This raises ques-
tions about their capacity to have taken time off work 
during the 2009 Victorian influenza outbreak, the im-
pact on household finances if they did, and their ability 
to facilitate full compliance with the quarantine restric-
tions imposed on their children. A study that preceded 
the 2009 outbreak, suggested that up to a third of Aus-
tralians may experience financial difficulties if quaran-
tined for longer than two weeks [6].

We conducted a cross-sectional survey of parents of 
children who were asked to go into home quarantine 
during the initial stages of the influenza A(HlNl)pdm09 
outbreak in Victoria, which unfolded between 20 May 
and 3 June 2009. In earlier publications from this study 
we examined compliance with the quarantine measures, 
and the information that affected households received 
about these measures [7,8]. In most of the affected house-
holds, compliance with quarantine recommendations 
would have necessitated the children being cared for by a 
parent in the home. This analysis focuses on the subset 
of households in which all resident parents were em-
ployed during the quarantine period and no parent was 
him/herself quarantined. Compared to households in 
which one or more parents had access to paid leave, we 
hypothesised that households without this access would: 
(i) be less likely to have a parent take time off work; (ii) 
be at greater risk of adverse financial consequences (be-
cause some would take leave regardless); and (iii) have 
poorer compliance with quarantine recommendations.

Methods
Study environment
The first Australian case of influenza A(HlNl)pdm09 
was identified on 8 May 2009. Two weeks later, Victoria’s 
first case was identified -  a nine-year-old boy who had 
recently returned from the United States [9]. In the ensu-
ing 12-day period, ‘contain’ pandemic response measures 
[10] including case isolation, voluntary home quarantine 
and school closure were implemented, in an effort to pre-
vent wider community spread of the imported virus.

During this response phase, cases and their immediate 
family members and close contacts were asked to go 
into home quarantine [11]. Quarantined persons were 
expected to have no contact with non-household mem-
bers and were treated with oseltamivir for ten days. 
Cases were asked to stay in quarantine for seven days 
after the onset of symptoms. Contacts—defined as indi-
viduals who spent more than four hours in the same

room as a confirmed case, or were within one metre of a 
confirmed case for more than 15 minutes—were asked 
to stay in home quarantine for seven days from last date 
of exposure to the case (Department of Health Victoria 
quarantine guidelines, 4 June 2009).

The trigger for closure of mainstream schools was two 
or more confirmed cases in separate classes. Where a 
single case was identified, only the class or immediate 
teaching group was closed. However, only cases and fel-
low students who met the definition of contacts were 
placed in home quarantine; other students were asked 
to limit their outside activities (Department of Health 
Victoria quarantine guidelines, 4 June 2009). At special 
developmental schools a single confirmed case triggered 
home quarantine for the entire student body.

Sample
The target population for this study was households in 
which a child had been asked to go into home quaran-
tine during the outbreak, from schools affected by 
class closures during the outbreak. We identified eli-
gible households through schools. During the outbreak, 
the Victorian Departments of Education and Early Child 
Development (DEECD) and Health (DoH) and the Cath-
olic Education Office were actively involved in visiting 
schools, identifying cases and determining the need for 
quarantine. Each of these agencies held separate but in-
complete information on quarantine activities in schools. 
After pooling this information, we approached principals 
at 82 schools and posed two eligibility questions: did the 
school have (i) classes closed during the ‘contain’ phase 
of the outbreak? and (ii) children who were asked to go 
into home quarantine?

The study’s original sample size calculations were 
based on preliminary estimates from the Victorian De-
partments of Health and Education about the number of 
eligible schools affected by closures, the number of chil-
dren in those schools and the number of households 
affected. Of 82 schools identified, six did not provide in-
formation to allow us to assess their eligibility, and of 
the schools that did provide requisite information, only 
39 met the eligibility criteria. This reduced the number 
of in-scope households significantly below what was an-
ticipated. Of the eligible schools, 33 agreed to facilitate the 
conduct of the survey (school participation rate was 85%).

We worked with staff at participating schools to iden-
tify 1,188 families with children who went into quaran-
tine. School staff used enrolment records, class lists and 
documentation of which classes and students had been 
asked to enter quarantine in order to identify these fam-
ilies. We advised and guided school staff regarding the 
assembly and review of this information but had no con-
tact with data identifying students or families.
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The study was approved by the University of Mel-
bourne ethics committee (0932293) and the DEE CD and 
the Catholic Education Office granted us permission to 
approach schools to conduct the survey.

Survey administration
We tested a draft version of the survey instrument for 
comprehension, length and ease of administration with 
three participants from eligible schools, and made minor 
modifications based on their feedback. Due to the need 
to administer the survey as soon as possible after the 
school closures occurred, so as to reduce recall bias and 
maximise participation, more extensive testing was not 
feasible. The finalised survey was administered during 
November and December 2009. School staff mailed let-
ters to the parents in eligible families inviting them to 
participate. The letter presented two options: an internet 
address at which parents could complete the question-
naire online and a telephone number to ring to complete 
it via a Computer Assisted Telephone Interview (CATI). 
The survey was offered in English only. The letter also 
included a unique identification number which enabled 
access to the website and CATI. This number allowed us 
to identify the school(s) and home class(es) associated 
with each survey response, but revealed no other identi-
fying information. A copy of the CATI questionnaire is 
included in an online Additional file 1: Appendix.

School staff mailed two reminder letters. To boost re-
sponse rates and recognise the effort of participating 
families and schools we contributed $AU20 to the 
school for the purchase of educational resources for each 
completed questionnaire and all families received a 
movie voucher valued at AUS$ 10.30 with the second re-
minder letter.

Eight letters were returned-to-sender and 23 parents 
responded indicating that they did not have a school- 
aged child who had been placed in home quarantine. 
This left an in-scope sample of 1,157. We received 314 
responses, yielding a household participation rate of 27% 
(see Figure 1).

Variables
Care arrangements during quarantine 
For each child in quarantine, responding parents were 
asked to indicate who (e.g. parent, older sibling, grand-
parent, paid carer) provided any care for the child during 
school hours in the quarantine period. We then cate-
gorised households according to whether a parent pro-
vided any such care for any quarantined child.

Time off work and financial consequences 
In households reporting that a parent had provided care 
for their quarantined children during school hours we 
asked if they took any time off work to do so and, if they

did, whether this time off work was paid or unpaid. For 
those who took unpaid time off work, we asked them 
whether they had to borrow money, had difficulty paying 
a bill, mortgage or rent, or experienced other financial 
problems as a result

Access to leave
We defined parental leave entitlements according to 
whether each employed parent reported having access to 
paid sick leave or paid carer’s leave. This definition did 
not include annual leave. Parents who did not have paid 
sick or carer’s leave entitlements, or were unaware of 
their leave entitlements, were classified as not having ac-
cess to leave. Households were then classified as having 
access to leave if any parent had leave entitlements, or 
not having access to leave if no parent did.

Compliance with quarantine recommendations
A household’s compliance with quarantine recommen-
dations was assessed using the following criteria:

1. All quarantined members of the household stayed at 
home for most of each day.

2. Quarantined children did not mix with children from 
another household for 15 minutes or more.

3. No adults from other households visited the home 
for 15 minutes or more.

4. No quarantined household members visited public 
places being utilised by lots of other people 
(excluding visits to health practitioners).

5. Childcare was provided only by adults living in the 
household.

We constructed an overall measure of compliance dis-
tinguishing households that met all the criteria from 
those that did not

Statistical analyses
Analysis was restricted to the 133 households in which 
all resident parents were employed during the quaran-
tine period and in which no parent had been asked to 
stay in voluntary home quarantine (see Figure 1); for the 
rest of the households surveyed we assumed that non-
working parents would have been able to provide child-
care. According to whether a household had access to 
leave, we calculated the proportion of households in 
which (i) quarantined children were cared for by a par-
ent during school hours; (ii) a parent took time off work 
to provide this care; and (iii) a parent lost pay as a con-
sequence of taking time off work. We report p values 
from Pearson’s x2 tests for differences. We also describe 
the financial consequences of losing pay.

We used logistic regression to quantify the association 
(estimating odds ratios and 95% confidence intervals)
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No child in quarantine (n=23) or not at address (n=8)

Responding households 
(n=314)

Final sample 
(n=133 households)

Eligible families identified by schools 
(n=1,188)

At least one resident parent not employed (n= 116) or a 
parent also placed in quarantine (n=40) or both (n=2S)

Eligible schools that consented 
(n=33)
85%

Schools / Principals 
contacted (n=82)

Eligible schools that declined consent or 
were uncontactable 

(n=6)
15%

Ineligible schools (n=43)
35 Government (58%)

3 Catholic (23%)
5 Independent (56%)

Eligible schools (n=39)
25 Government (42%) 

10 Catholic (77%)
4 Independent (44%)

Schools for inclusion in the study were identified through an iterative process involving 
communication with DEECD, the Catholic Education Office and the Department of Health

Figure 1 Recruitment of sample of parents whose school children were recommended to go into home quarantine (May 22nd until 
June 2nd, 2009), and restriction of final sample for this analysis to  households in which all resident parents were employed during the 
quarantine period and in which no parent had been asked to stay in voluntary home quarantine.

between access to leave or taking time off work and 
compliance across all five indicators as well as the over-
all measure. We tested whether the estimates changed 
by more than 20% with the addition of two potential 
confounders -  highest level of parent education and par-
ental structure of household (single/couple). Addition of 
the covariates led to substantial attenuation of estimates 
(>20% change) in four of the six models assessing access 
to leave and compliance. Accordingly, all models 
reported in this paper were adjusted for these confoun-
ders. Robust standard errors were used to accommodate 
the fact that data from households were clustered within 
schools. All analyses were conducted in Stata 11.0 (Col-
lege Station, TX, USA: StataCorp LP).

Results
Table 1 outlines the demographic characteristics and 
leave and childcare arrangements of households in the

study sample. In 82% (109/133) of households a parent 
cared for their quarantined child during school hours 
and in 52% (69/133) a parent took time off work to care 
for their child. In 39% (52/133) of households no parent 
had access to paid sick or carer’s leave during the quar-
antine period, despite the sample being restricted to only 
those households in which all parents were in the paid 
workforce.

Of the 133 households in the analysis, only eight (6%) 
contained somebody who had been diagnosed with influ-
enza A(HlNl)pdm09.

Leave entitlements and care arrangements during 
quarantine
The proportion of households in which a parent looked 
after quarantined children on at least one day during the 
quarantine period did not differ significantly between
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Table 1 Characteristics of sample (n = 133)
no. (%)

P a re n ta l  s t r u c tu r e  in  h o u s e h o ld

S in g le  p a r e n t 15 (1 1 3 )

H ig h e s t  lev e l o f  p a re n ta l  e d u c a t io n  

U n iv e rs ity  b a c h e lo r  d e g r e e  o r  h ig h e r  

C h i ld c a re  a r r a n g e m e n t s  d u r in g  q u a r a n t in e

8 4  (63.1)

A p a r e n t  c a r e d  fo r  q u a r a n t in e d  c h ild re n  
d u r in g  s c h o o l  h o u r s  o n  > 1  d a y

1 0 9 (8 2 .0 )

T im e  o f f  w o rk

A p a r e n t  t o o k  t im e  o ff  w o rk  t o  c a re  fo r 

q u a r a n t in e d  c h ild r e n

6 9 ( 5 1 .9 )

A c c e s s  t o  le a v e

N o  p a r e n t  in  h o u s e h o ld  h a d  a c c e s s  t o  p a id  

s ic k /c a re r 's  le a v e

5 2  (39.1)

households with and without access to paid leave (83% 
vs 81%, p=0.78).

Leave entitlements and time taken off work
A larger proportion of households with access to leave 
had a parent who took time off work to care for a child 
(58% (47/81) vs 42% (22/52) but this difference did not 
reach statistical significance (p=0.08). Figure 2 shows in 
greater detail the time taken off work and financial con-
sequences of households in the sample, according to 
whether or not households had access to paid leave.

Financial consequences
Across the sample, thirty-eight per cent of households 
(26/69) lost pay as a result of taking time off work to 
care for quarantined children. Loss of pay was more

frequent in households that did not have access to leave 
(73% vs 21%, pcO.OOl) (Figure 2, bottom row).

Of the 26 households in which a parent lost pay (inde-
pendent of access to leave), 42% (11/26) had at least one 
other financial problem as a result Twenty-three per 
cent (6/26) had difficulty paying a bill, 15% (4/26) had 
difficulty paying the mortgage or rent, 8% (2/26) had 
to borrow money and 19% (5/26) had other financial 
problems.

Compliance with quarantine recommendations 
Half of all households were fully compliant with quaran-
tine recommendations. Compared to households with-
out access to sick leave or carer’s leave, households with 
access to leave appeared more likely to have all quaran-
tined members stay at home for most of the time on all 
days during the quarantine period (88% compared with 
75%), However, the association was not statistically sig-
nificant in multivariable analyses that adjusted for paren-
tal structure and parental education (OR=2.07; 95% Cl 
0.82 to 5.23; p=0.12). Further, there was no evidence to 
support associations between leave entitlements and any 
other of the four measures of compliance (see Table 2).

Turning to the relationship between taking time off 
and quarantine compliance (independent of access to 
leave), quarantined members of households in which a 
parent took time off work were less likely to make trips 
to populated public spaces during the quarantine period 
(97% vs 84%) and these households were more likely to 
have all quarantined members stay at home for most of 
the time on all days during the quarantine period (88% 
vs 77%). After adjustment for parental education and 
parental structure of households, taking time off work 
was associated with over double the odds of staying at

Access to leave 
61% (81/133)

Parent did not lose pay 
79% (37/47)

Parent lost pay 
73% (16/22)

Parent lost pay 
21% (10/47)

Parent did not lose pay 
23% (5/22)

No access to leave 
39% (52/133)

No parent took time 
off work to care for 

child/ren 
42% (34/81)

No parent took time 
off work to care for 

child/ren 
58% (30/52)

A parent took time off 
work to care for 

child/ren 
58% (47/81)

A parent took time off 
work to care for 

child/ren 
42% (22/52)

Figure 2 Diagrammatic representation of leave entitlements, time taken off work and financial consequences during the quarantine 
period (n = 133).

Households in which all resident parents were employed (n«133)

(+1 missing)

- 2 6 1 -
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Table 2 Logistic regression analysis of access to leave, time taken off work and compliance with quarantine 
recommendations (n = 133 households)*

S t a y e d  a t  

h o m e  a ll d a y s
N o  m ix in g  

w it h  c h i ld r e n

N o  m ix in g  

w it h  a d u lt s
N o  tr ip s C h ild c a r e  b y  

h o u s e h o ld  

m e m b e r s  o n ly

Full

c o m p lia n c e

% OR
(95% C I)

% OR
(95% C I)

% OR
(95% CI)

% OR
(95% C I)

% OR
(95% CI)

% OR
(95% C I)

No ac cess  to  leave 75.0 1.00 75.0 1.00 6 1 5 1.00 88.5 1.00 88.5 1.00 46.2 1.00

A ccess to  leave 87.7 2.07
(0.82-523)

8 0 3 1.24
(0.63- 2.45)

62.7 0.99
(054-1.82)

92.6 151
(0.49-5.28)

87.7 0.92
(0.41-2.05)

51.9 1.20
(0.62-2.34)

Did n o t tak e  tim e  off w ork 76.6 1.00 71.9 1.00 64.1 1.00 84.4 1.00 82.8 1.00 46.9 1.00

T ook tim e  o ff w ork 88.4 2.47
(1.17-5.22)

84.1 2.10
(0.71-6.19)

60.9 0.88
(0.32-2.40)

97.1 7 2 0
(1.42- 36.51)

92.8 2.69
(0.60-12.07)

52.2 1.27
(0.61-2.67)

•Adjusted for highest level of parental education and household structure (single versus two parent).

home on all days (OR 2.47, 95% Cl 1.17-5.22, p=0.02) 
and seven times the odds of not making trips outside 
the home (OR 7.20, 95% Cl 1.42-36.51, p=0.02). Taking 
time off work was not, however, associated with full 
compliance (see Table 2).

Discussion
During Victoria’s outbreak of influenza A(HlNl)pdm09 
in 2009, parents appeared to be somewhat more likely to 
take time off work to care for their children when a par-
ent in the household had access to paid sick or carer’s 
leave, compared to households without access to leave, 
but there is insufficient statistical evidence to reject the 
null hypothesis of no difference. Taking time off work 
was associated with two indicators of compliance with 
quarantine recommendations: quarantined children stay-
ing home for most of the time on all days and not mak-
ing trips to populated places. However, this study found 
no evidence that access to leave, per se, was associated 
with overall compliance with quarantine recommenda-
tions. On the other hand, lack of access to leave had 
measurable negative impacts on families. In households 
without this benefit available, nearly three-quarters had 
a parent who lost pay, compared to one in five households 
with leave, and nearly 40% of households that lost pay 
experienced further financial difficulties as a consequence.

The chief explanation for the lack of association be-
tween access to leave and compliance with quarantine 
appears to be that families frequently chose to follow 
public health recommendations even when that meant 
absorbing the collateral employment-related effects due 
to inadequate leave entitlements: in 42% of households 
that did not have access to leave, a parent still took time 
off work to care for the quarantined child. This behav-
ioural response is particularly selfless in light of the fact 
that financial consequences are borne privately whereas 
the benefits of home quarantine and social distancing 
measures accrue to the community in the form of

reduced risks of transmission. While some of this behav-
iour may have been driven by the need to care for sick 
children, there were no confirmed influenza A(H1N1) 
pdm09 diagnoses in the vast majority (94%) of house-
holds in our sample. This suggests that, absent the strict 
quarantine restrictions, other childcare options may well 
have been attractive to parents to enable them to attend 
work during the period of school closure. Twenty-two 
per cent of households where a parent did have access 
to leave still lost pay as a result of taking time off work. 
The likely explanation is that, because leave was defined 
at a household level, a parent without access to leave 
was the one who took time off work.

Our study is the first we know of to have considered 
the effect of parental leave entitlements on quarantine 
compliance during the 2009 outbreak of influenza A 
(HlNl)pdm09. In Western Australian school closures 
during this outbreak, a parent took time off work in 45% 
of households [12] — a similar finding to our study. 
However the Western Australian study did not examine 
whether time taken off work influenced compliance or 
whether taking leave had a financial impact. Our finding 
contrasts with findings from studies in the US, both hy-
pothetical and real, which have suggested a lack of access 
to paid sick leave is a barrier to social distancing [3,4],

The study had several limitations. First, despite begin-
ning with a sample frame consisting of all households in 
Victoria affected by school closures, our relatively small 
analytic sample meant the study was underpowered to 
detect differences unless they were large. A good ex-
ample of this is the relationship between parents’ access 
to leave and their decision to take time off work to care 
for their children; the difference in proportions was sub-
stantial (16 percentage points) but did not attain statis-
tical significance, likely due to the small sample size. 
Second, our response rate was not high, despite the use 
of incentives to boost participation rates. This has impli-
cations both for power and the risk of Type II errors. 
Nonetheless, the response rate is comparable to that
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achieved in other similar school-based studies of pan-
demic influenza in the US and England [13-15] and our 
study had the advantage of covering a larger number of 
affected schools than most other studies. As we showed 
in an earlier publication from this study, we received a 
disproportionately low level of response from less advan-
taged schools, reducing the generalisability of our find-
ings and potentially biasing our results [8], It could be 
expected that non-responding households were less 
likely to have access to paid leave and may have experi-
enced greater financial consequences, resulting in the 
estimates presented in this paper being conservative. Un-
fortunately, the survey had to be administered through 
schools due to privacy constraints, and we are therefore 
not able to characterize non-respondents in more detail.

The study was also limited by the fact that the survey 
was administered several months after the school clo-
sures occurred, and all information was obtained via self- 
report, introducing the possibility of recall bias. In some 
cases, parents were reporting on behaviours of their chil-
dren at times when parents may not have been present.

All pandemic plans must balance the likely benefits 
and social and economic costs of implementing social 
distancing measures. Characterising the costs incurred 
by families during quarantine and social distancing of 
school children during Victoria’s 2009 outbreak of pan-
demic influenza contributes to the evidence base for 
future assessment of the costs and benefits of these con-
tainment strategies. Models of pandemic influenza have 
shown that the greatest impact of school closure on 
transmission is observed when closures are widespread, 
initiated early, and sustained beyond the epidemic peak 
[16-18]. In Victoria, school closure was localised, short-
lived (often less than 7 days) and reactively initiated fol-
lowing case identification.

In households where parents are forced to take leave 
from work due to public health emergencies, foregoing 
wages is a high price to pay for honouring a public duty. 
Employers should be encouraged to provide flexible 
working arrangements, such as allowing employees to 
work from home or to make up hours at a later date. 
Setting aside the question of whether access to paid sick 
leave should be available to all workers, there are strong 
ethical arguments [19] and community support [20] for 
the provision of compensation to individuals who ex-
perience loss of income as a result of public health mea-
sures such as quarantine. Policy initiatives along these 
lines are not unprecedented: several countries affected 
by the SARS outbreak introduced some form of com-
pensation for affected households [21]. In Australia, this 
might involve government and employers sharing the 
costs of compensating quarantined employees. This could 
operate similarly to the current legislated arrangements 
for jury service, whereby employers are required to

release employees for jury service and pay them the dif-
ference between the set jury payment provided by the 
courts and what they would have received as earnings for 
that period had they not been on jury service [22].

Conclusions
Our findings emphasise the importance of bolstering 
quarantine measures that target children in public health 
emergencies with a supportive environment in which 
working parents are able to respond appropriately. We 
show that in the absence of this environment the social 
and economic costs borne by families during public 
health emergencies are non-trivial and unevenly distrib-
uted across the affected population. Planning for future 
pandemics should involve a careful weighing of these 
costs against the demonstrated effectiveness of any quar-
antine or social distancing strategies employed. Finally, if 
home quarantine of school children is implemented, the 
public and private sector should work to alleviate finan-
cial burdens that arise from loss of pay and financial 
hardship due to the need for affected parents to take 
time off work.
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Abstract
Background

Influenza vaccines are licensed annually based on immunogenicity studies. We 

used five sequential years of data to estimate influenza vaccine effectiveness (VE), 

the critical outcome in the field.

Methods

Between 2007 and 2011, we performed annual prospective test-negative design 

case-control studies among adults aged 20-64 years recruited from sentinel 

general practices in the Australian state of Victoria. We used PCR-confirmed 

influenza as the endpoint to estimate influenza VE for all years. We compared 

annual VE estimates with the match between circulating and vaccine strains, 

determined by haemagglutination inhibition assays.

Results

The adjusted VE estimate for all years (excluding 2009) was 62% (95% Cl 43, 75). 

By type and subtype, the point estimates of VE by year ranged between 31% for 

seasonal influenza A(H1N1) and 88% for influenza A(HlNl)pdm09. In 2007, when 

circulating strains were assessed as incompletely matched, the point estimate of 

the adjusted VE against all influenza was 58%. The point estimate was 59% in 

2011 when all strains were assessed as well matched.

Conclusion

Trivalent inactivated vaccines provided moderate protection against laboratory- 

confirmed influenza in adults of working age, although VE estimates were sensitive 

to the model used. VE estimates correlated poorly with circulating strain match, as 

assessed by haemagglutination inhibition assays, suggesting a need for VE studies 

that incorporate antigenic characterization data.
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Introduction
Trivalent influenza vaccines are licensed annually based on limited 

immunogenicity studies, most often among healthy adults.1 Given extensive past 

experience with influenza vaccines among adults, this process is widely accepted. 

It is also the only process that is feasible, given the current vaccine production and 

regulation processes. Each year influenza vaccines include selected strains of 

influenza A(H3N2], A(H1N1) and B viruses. Because the vaccine strains may need 

to change, depending on the drift of the circulating viruses, there is insufficient 

time for large-scale vaccine efficacy and safety studies prior to vaccine licensing 

each year. Immunogenicity is, therefore, used as a proxy for vaccine efficacy.

Immunogenicity assesses the antibody response to the specific vaccine antigens, 

while vaccine efficacy estimates the proportion of influenza infections prevented 

by vaccination in a randomized controlled trial. Vaccine effectiveness [VE) is the 

same measure from an observational study.2 Immunogenicity is not precisely 

correlated with VE, although effectiveness would normally be regarded as the 

ultimate test of a vaccine, as it assesses how well the vaccine protects against 

disease when delivered in routine practice.3 In recent years, a number of 

investigators from Europe,4 United States,5 Canada6 and Australia7 have conducted 

observational studies using similar designs to monitor influenza VE.

Using methodological insights gained from these previous studies, we have studied 

patients recruited from an existing network of sentinel general practitioners (GP) 

in Victoria, Australia, to estimate influenza VE. Victoria has a temperate southern 

hemisphere climate and a population of approximately 5.5 million. The influenza 

season usually occurs between May and September. In a previous feasibility study, 

we suggested that the sentinel surveillance system is best suited to estimating 

influenza VE in adults aged 20-64 years, a group often characterized as working- 

age adults.8 Moreover, this age group is most often used in vaccine trials. Confining 

our analysis to this group allows a comparison of results from this observational 

study with published trial results. This study provides summary estimates of 

influenza VE by type and subtype over 4 years from 2007 to 2011, years during 

which there were significant antigenic changes in all three types/subtypes
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included in the vaccine. We compare the annual VE with the match between 

circulating and vaccine strains.

Methods
Study design

We used the prospective test-negative variant of the case-control study9 to 

estimate VE against laboratory-confirmed influenza among patients presenting to 

a sentinel GP in Victoria between 2007 and 2011. In this study design, patients 

suspected of having influenza are recruited by the GP and swabbed at recruitment. 

Cases are patients who subsequently test positive for influenza, and controls are 

those who test negative. Control selection leads to the description of this study 

design as 'test negative'.9 In the prospective form of the test-negative design, 

patients are recruited before their case status is known, that is, before the result of 

their swab is available. This study design is, therefore, not strictly a case-control 

design in which cases and controls are recruited based on known case status. We 

confined our analysis to adults aged 20-64 years as younger and older patients 

were under-represented.

GP sentinel network

Over the 5 years of the study, sentinel GPs were recruited from metropolitan 

Melbourne and regional Victoria. GPs were rewarded for their participation with 

continuing education points from the Colleges of General Practice and Rural and 

Remote Medicine. GPs also received a weekly influenza surveillance report10 and 

provided annual feedback by a brief survey. GP participation increased over the 

years from 65 in 2007 to 97 in 2011. Our GP survey data show that an average of 

94.8% of GPs assessed the scheme as useful or very useful in this period.

GPs were asked to recruit patients with an ILI, defined as a combination of fever 

(measured or reported), cough and fatigue.11 At the discretion of the GP, patients 

had a combined nose and throat swab, which was tested for influenza virus RNA at 

the Victorian Infectious Diseases Reference Laboratory (VIDRL) using a range of 

in-house reverse transcriptase and real-time PCR assays as previously 

reported.7'12'14 The laboratory is designated as a National Influenza Centre by the 

World Health Organization. The sensitivity of an early in-house assay, which is
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dependent on time from symptom onset until swabbing, was estimated as 90%, 

while specificity was estimated as 100%.15 It has previously been shown that 

perfect specificity in the presence of imperfect, non-differential sensitivity w ill 

provide unbiased point estimates of VE from a TND study when compared with the 

estimate from a cohort study.9-16

In addition to symptoms, GPs collected data on the age and sex of patients and the 

date of influenza vaccination. In 2011, data on influenza vaccination in the 

previous year and the presence of comorbidities for which influenza vaccination is 

funded by the National Immunisation Program were also collected. Comorbidities 

were recorded as yes/no and included all those conditions that are indicated for 

influenza vaccination in Australia, such as immunosuppression, pre-existing 

respiratory disease and pre-existing cardiovascular disease.17 Data in this study 

were collected, used and reported under the legislative authority of the Public 

Health and Wellbeing Act 2008 and the Public Health and Wellbeing Regulations 

2009 and did not require approval from a Human Research Ethics Committee. 

Nonetheless, patients provided written informed consent for their swab to be 

collected, w ith an understanding that anonymous results may be used for 

surveillance purposes.

Estimating influenza VE

Vaccine status was recorded by the GP, based on GP records or patient report. As a 

proxy validation for accurate vaccine status, we required the GPs to provide the 

precise date of vaccination. In a case series in 2009, we found good concordance 

between GP and patient reports of vaccination, even when influenza vaccine had 

been administered outside the practice.18 Patients were administered trivalent 

inactivated vaccines provided by a variety of manufacturers that changed by year. 

Vaccines from six manufacturers were licensed in Australia during the study 

period.17 We did not collect data on vaccine manufacturer and assumed all 

vaccines were equally effective. Vaccines were analysed as potentially effective if 

administered at least 14 days prior to symptom onset. Patients whose vaccination 

occurred <14 days prior to symptom onset were excluded from the primary 

analysis. We also excluded any patient who had been vaccinated with only
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monovalent pandemic vaccine in 2009 or 2010 or those whose vaccination status 

was unknown.

Differences between those who tested positive or negative for influenza, and 

between the vaccinated and unvaccinated, were compared by Fisher's exact test 

for categorical variables and t-test for continuous variables. In the primary 

analysis, laboratory-confirmed influenza was the outcome of interest and influenza 

vaccination the exposure. We estimated a crude odds ratio (OR) for vaccination 

comparing cases and controls for each year and each influenza type/subtype. 

Multivariable models were also fitted to adjust for potential confounders, including 

age, month of swab and time between symptom onset and swab. It is generally 

assumed that immunocompetency does not vary significantly in adults between 

the ages of 20-64 years. Age was, therefore, included as a continuous variable 

within this age group and recentred so that 0 represented age 20 and rescaled to 

decades, so that 40 years became 2 [(40-20)/10 = 2]. This allowed for variation of 

VE by age within the age group. To ensure valid comparisons, the same model was 

used for all years, but a sensitivity analysis was performed for 2011, including the 

extra covariates on comorbidities and previous influenza vaccination. This was the 

only year these covariates were collected. VE was calculated as 1-OR and reported 

as a percentage with a 95% confidence interval. In the model combining data for 

the years 2007-2011, we included year as a covariate. In this estimation, we 

omitted 2009 when pandemic influenza was the predominant viral strain detected, 

and the vaccine was completely mismatched.19

Our primary analysis included all patients for whom we had complete data, 

without censoring any variables. However, we conducted a number of sensitivity 

analyses on reduced data sets. When influenza infection is present, volunteer 

studies have shown that it is more likely to be detected within the first 4 days of 

infection, presumably because of decreased viral load as the infection resolves.20 In 

the sensitivity analyses, we, therefore, examined the effect of excluding any 

patients who presented more than 4 days after symptom onset, compared with 

including the length of time from onset of symptoms to swabbing as a continuous 

variable. We also confined our analysis to the influenza season each year, w ith the
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season identified by two consecutive weeks in which one or more detections of 

influenza were made from sentinel patients with ILL71314

All analyses were conducted in Stata version 11 (StataCorp. 2009. Stata Statistical 

Software: Release 11; College Station, TX, USA).

Comparison of circulating and vaccine strains
The composition of the influenza vaccine for each year was extracted from the 

website of the WHO Collaborating Centre for Research and Surveillance of 

Influenza in Melbourne.21 The circulating strains were identified by the WHO 

Collaborating Centre based on specimens referred to the Centre from Victorian 

laboratories. Circulating and vaccine strains were compared based on the degree 

of cross-reaction between strains and were conventionally assessed as being 

incompletely matched if there was >8-fold difference in haemagglutination 

inhibition titres between the vaccine antigen and ferret-derived antibodies to the 

circulating strain.1 We accepted a match as incomplete when the vaccine and 

predominant circulating strains differed.

Results
Sentinel patients
There were 3136 sentinel patients with laboratory results from the 5 years of the 

study, of whom 2099 (67%) were aged 20-64 years. One case of influenza C was 

excluded from further analysis, and two patients had no laboratory results. The 

vaccination status was unknown or unspecified for 64 patients, 11 were vaccinated 

<14 days prior to the onset of ILI symptoms and 18 were vaccinated with the 

monovalent H1N1 vaccine. After excluding these patients, the final sample size was 

2003.

The proportion of patients with an unknown vaccination status was low, but 

varied by year, with 1.7% unknown in 2007, 0.7% in 2008, 4.6% in 2009, 2.8% in 

2010 and 3.6% in 2011 (P = 0.008). There was no difference by case status (P = 

0.6). In the 5 years combined, 368 (18%) patients were recorded as having been 

vaccinated, with a tendency for higher vaccine coverage (22%) in 2009, the year of 

the influenza A(H1N1) pandemic.
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In all, 655 (33%) patients tested positive for influenza of any type or subtype 

(Table 1). There were 96 cases of influenza B and 559 cases of influenza A, 

including 36 seasonal H1N1, 313 pandemic H1N1, 160 H3N2, 1 mixed 

H1N1/H3N2, and 49 were not subtyped. The proportion of cases and controls 

ascertained by month differed by year (Figure 1}.

Figure 1. Cases and controls by season1, Victorian sentinel patients 2007- 

2011; Autumn: March-May; Winter: June-August; Spring: September- 

November; Summer: December-February.

120

C Control ■ Case

D

l '
■r

2009 2010 2011

In 2011, the only year that data on comorbidities and previous vaccination were 

collected, 12% of 398 patients were recorded as having a comorbidity that 

increased their risk of an adverse outcome to infection. While more men than 

women recorded a comorbidity (19% versus 9%, P = 0.005), there was marginal 

difference by case status (8% cases versus 16% controls, P = 0.08). As expected, 

persons with a comorbidity were more likely to be vaccinated (33% versus 13%, P 

< 0.001). Patients who had been vaccinated in 2011 were more likely to have been 

vaccinated in the previous year (71% versus 17%, P < 0.001).
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Appendix

Influenza vaccine effectiveness

Overall, cases (patients with influenza) were less likely than controls (patients 

without influenza) to have been vaccinated (OR = 0.40), corresponding to a crude 

VE = 60%, 95% Cl 43, 72). This was the case for 2007 and 2010 but, based on a 

crude analysis, cases were not significantly more likely than controls to have been 

vaccinated in 2008, 2009 or 2011 (Table 2).

VE was calculated for each year for all influenza cases and by influenza type and 

subtype (Table 2). With the exception of 2009, the adjusted VE estimates were 

largely similar to the crude estimates in all years when the outcome was all 

influenza detections. Against all influenza types and subtypes, the adjusted VE 

showed a statistically significant protective effect in 2007 (VE = 58%, 95% Cl 17, 

79), 2010 (VE = 87%, 95% Cl 61, 96) and 2011 (VE = 59%, 95% Cl 4, 82) and a 

non-significant protective effect in 2008 (VE = 29%, 95% Cl -71, 71). In 2009, the 

year of the pandemic, the point estimate for VE was non-protective (VE = -32%, 

95% Cl -116, 19), but this was not statistically significant. Although crude and 

adjusted VE estimates were mostly similar for VE against influenza types and 

subtypes, estimates were variable and often not significant, likely owing to the 

small numbers of vaccinated cases in these categories by year (Table 2).

The adjusted VE estimate for the 4 years excluding 2009 was 62% (95% Cl 43, 75). 

Age was not a significant predictor [OR = 0.93 (95% Cl 0.83,1.04)]. When analysed 

by type and subtype, the point estimates of VE ranged between 31% for seasonal 

influenza A(H1N1) and 88% for influenza A (H lN l)pdm 09 (Table 2).

The sensitivity of the estimates was assessed when the model was modified in 

three ways. First, for 2011, the only year for which comorbidity and previous 

vaccination status were available, the adjusted VE including these variables in the 

model gave an estimate of 48% (95% Cl -41, 81), lower than the adjusted estimate 

when these variables were not included (VE = 59%, 95% Cl 4, 82) (Table 3). 

Second, among patients with information on the time between symptom onset and 

the collection of a nasopharyngeal swab, 151 of 1270 (12%) samples were 

collected after 4 days onset, but 6.4% of cases compared with 15% of controls had 

swabs collected after 4 days (P < 0.001). When these patients presenting late were
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Appendix

excluded from the analysis, the overall, adjusted estimate of vaccine effectiveness 

improved to 66% (95% Cl 48, 78; 2009 omitted). Finally, when only patients 

presenting during the influenza season were considered (n = 1230), the adjusted 

VE reduced slightly to 60% (95% Cl 40, 73).

Table 3. Sensitivity of the VE estimates under different models.

Model N(n*) VE % (95% Cl)

Adjusted model including 

comorbidity status and previous 

vaccination status, 2011 only

398 (274) 48 (-41,81)

Adjusted model excluding patients 

who presented <4 days after 

symptom onset, 2007-2001 (2009 

omitted)

1270 (1107) 66 (48.78)

Adjusted model excluding patients 

presenting outside the season, 2007- 1230 (1227) 60 (40, 73)

2011 (2009 omitted)

‘Numbers in parentheses are the number included in the regression model 

(complete case analysis)

Adjusted VE estimates by type and subtype were compared with assessments of 

the match between circulating and vaccine strains (Table 4). In 2007, when the 

majority of circulating strains were assessed as incompletely matched by the 

haemagglutination inhibition assay, the point estimate of the adjusted VE against 

all influenza was 58%. The point estimate of the VE was 87% in 2010 when 

vaccine and circulating strains were matched, but was 59% in 2011 when all 

strains were again assessed as well matched.

-  276 -



Vi
"u  - a  
re  0 )
<V JZ

re
«C
4H

_C
•a
0)
13
rep^

re• m
V)
re
reu

V
J3
4-*
a

’a
*
Mre
o
re
13
a>

• a■ M
>o
u
a

u
re
v 
>,
J3
ure
a;
ua

u
>
0 )

p C

H
vi
<v
■Mre
e•g
V3
a
viV)
Vre
a
>ip|
ua
0)
0)
re■—«
u
re
>
re
N
re
a>
3

C
re

re
E
>>

a
£
ou
re
rere
a
4-4reu
-S
re

o
« re

o  reOr

»
re
a>

4-4
re

£
4-4

_ re

u
o
4-»u
>
re

re u
4-» 
Vi
60 
re■PJ*
s
’Su u
‘u 
>>

re re 
re■ P4s
o 

•a 
a> u
a  
0) 

« r e
4H 
Vire
’S  
£  
Vi
r e

4t  g
o .5

’S  ^
H  g

a»
re

■«■

u
re
>

CD
X• wm

re
o «>

7 ?

c
reu

o
CN

X
VI

•a
re

re
o

QJ
re■p-j

i

o
o
CM

o
rH
\
a»
3

a>

1
re
o
o
CM

«-C■«p

l>
O
o
CM

O'
LO
\
(V
re
re

CD

!>•
O
o
CM

o
T—t

CD

CD
J*

re
o
o
CM

0

1
Ci
o
o
CM

.2
’S

■ p̂  
1

O'
o
o
CM

re
rH

o
u

>

£
o

eh
re
CD

_>
’S

3

O'
o
o
CM

2

3
re

O'
o
o
CM

re

CD
re

CO
o
o
CM

O
re
CD

CD
re

O'
o
o
CM

tM

2

CD
re

cb
o
o
CM

re

CD
re

CO
o
o
0d
\
o
re
CDV3

4-1
re
re
re

s

w
E
o
o
C/3

re
re
Vi

’2
CQ

re
■re■p i

o
E

reV)
u
CQ

<

3
re

reon
’2
DQ

re
re
’u
_o
Up

Dp

a•p<
s
u

re
E
o
CL
\

o
a;

VI
o
Cl
£

’£
Dp

a
75
u\

rH
\
«3■M
CD

CL

3
re

pQ
2

‘E
CO

3
Dp

dS

75
u

rH

re4->
CD

X

3
re

re
2

‘C
X

o < < CQ >5 < m < < re < < X < < T X
■re
CD 0 s

ro
s=o '
rH

#
eo

o '
Oo £. j on

>5o ' >9o '
CT\

Vi
O £

0 . CO
'M
re

P*w
IT3 rH 00

UJ
00 O'

W '
re 2 X

O'
re
O'

o
O'

O'
X

X
O'

LO
O'

—̂\ 
CD hr

1—> 
CD hr

t—\
UJU
re
o

UJU
re

CD
W3
re

_s c
CD
3 Vi 2 VI .2

re ^ \
/•—\
CD
ere

/—\ 
CD 
DO

3
Dp Vipp

o 3
Dp

5 2
o
u

/--->
rH

o
CJ

rH
2
rH

Tvi
CD

_3

re
CD
c CD

re

pj
Dp

>
>V_‘
VI

CD
re

3
Dp

’>
>V---!
VI

2 f\7 > X —p 3 3 CD 3rH 2 v_/ V__‘ CN
re

t-H
r~~\
CM

re r—^ re Dp 4---' re Dp

Xv_/
O'
O'

oo
£
LO

M"
O
O
CM

re
o
o
CM

2
oo
X

re
DJO
re
£
re

2
rH
Xv__/

2
00
X

re
DO
re
£
re

rH
2
rH
XV__!

cv?
2
00

>
CD

re

rH
2
rH
XV__!

!---\
00
2
X

’>
0)

re

o o
o re

00
o

f -
o C^

Q O' X obr~i O' X obQCM
_re

CM
re"
o

VI
re
3

o
CM re

o
o
CM

o
CM re

o

o
o
CM

v_J
O'
o

O
CM

O
o
CM

V_!
O'
O

O
Osl

r~*
o

T 3
_CD
rrt

re

c
’v3

LO
CM
re

jre
Vi

3

O
rH

CD52

o
CM

M*

O'
LO

3CT

o
rH

CDr-;

o
Osl

.2
c

o
0^

re

O
re
CDr*

O'*

.2c

o
Osl

re

o
re
CDf—4

CD
Ui

c j
3
O
CJ

> ,
re

O
E

re
re

re
re re

re
re

re
re

re
Dp

a
r—
re

X
Dp

a
re

rere £
CD

Vi
75 2 'u. 2 2 'iZ

_o fj* Cl 3 2
4-̂

2Ĵ 
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Appendix

Discussion

Based on a prospective test-negative design variant of a case-control study, we 

estimated influenza VE against laboratory-confirmed influenza for adults aged 20- 

64 years attending a Victorian sentinel general practice in 2007-2011 as 62% 

(95% Cl 43, 75), excluding the pandemic year of 2009. Using data for 4 years 

resulted in a sample size exceeding 1300 even after exclusion of 2009 when 

influenza A(H lN l)pdm 09 was the dominant circulating strain. PCR-confirmed 

influenza defined the study endpoint. Relative to PCR, viral culture w ill miss cases, 

and serology w ill overestimate VE for trivalent inactivated vaccines.22 For studies 

of inactivated influenza vaccines, such as this study, PCR is the laboratory test of 

choice.

Differences in VE estimates from this study and those from our previous 

publications resulted from restriction of our analysis to the 20- to 64-year-old age 

group, analysing age as a continuous variable within the group and the inclusion of 

the delay between symptom onset and swabbing as a continuous covariate in this 

analysis rather than censoring data at 4 days delay. However, comparison with 

previously reported results and the sensitivity analyses in this study showed the 

differences in approach made only marginal differences to the VE estimates by 

year, except for the pandemic year of 2009.7-12 14 We did not include that year in 

our summary VE estimate, and an exploration of possible reasons for the 

differences in VE estimates w ill be reported separately.

In addition to limitations common to observational studies, the test-negative 

design has its own methodological limitations, not all of which have been 

completely explored. Our study was limited by the fact that we did not collect 

comorbidity and previous vaccination status until 2011. We had tried to keep the 

system as simple as possible to facilitate GP involvement, but the collection of the 

extra data in 2011 did not appear to burden GPs. We allow GPs discretion in 

determining which patients to swab, whereas other surveillance schemes use a 

systematic approach to swabbing, to try  to lim it bias.4 All observational studies are 

limited by the lack of randomization of vaccination, a potential source of bias. For
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example, patients with comorbidities should be more likely to be vaccinated 

(exposure by indication) but additionally may be more likely to be tested.

Given these potential limitations, we acknowledge that the VE estimates from this 

study may be biased. It is, therefore, instructive to compare our results with those 

from contemporary studies using the same endpoint of PCR-confirmed influenza in 

patient groups of similar ages. The gold standard comparator is the randomized 

controlled trial. Results from a large randomized controlled trial conducted in 

Australia and New Zealand in 2008-2009 found an efficacy of 60% (95% Cl 44, 72) 

for matched strains and 42% (95% Cl 30, 52) for all strains, which included 

A (H lN l)pdm  2009.23 A meta-analysis of vaccines licensed for use in the USA 

estimated a pooled vaccine efficacy of 59% (95% Cl 51, 67) from published trials.24 

A recent pooled test-negative design of eight studies from Europe estimated 

adjusted VE for all influenza in 15- to 59-year-olds as 41% (95% Cl: -3, 66) in 

2010-2011.25 There are acknowledged potential biases in the test-negative design, 

but when comparisons from this design are limited to influenza laboratory- 

detected by PCR among adults of working age, efficacy (trial results) and 

effectiveness (observational study results) estimates are similar (Table 5).

However, our study also suggests that VE results are not directly related to the 

proportion of circulating strains that are matched to the vaccine. This observation 

may result from under-representation of viruses received by the WHO 

Collaborating Centre in Melbourne. The Centre receives about 15% of laboratory- 

confirmed influenza viruses reported by the state of Victoria each year, but it is 

difficult to know whether those viruses submitted represent equal proportions of 

the circulating strains. Even with perfect representativeness, haemagglutination 

inhibition assays are a blunt tool for the assessment of VE for inactivated 

vaccines.22 It has also been suggested that these assays may be suboptimal for the 

determination of strain match, especially for more recently circulating H3N2 

strains for which problems with agglutination of chicken and turkey red blood cells 

have been documented and assay results give sometimes discrepant results 

depending on whether the isolate was grown in eggs or cell culture.1 Other options 

for the assessment of vaccine match have their own limitations;
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microneutralization is labour- and time-intensive and has limited accuracy,26 and 

phylogenetic analysis does not reliably correlate with antigenic drift.27

A study from Taiwan that modelled excess seasonal pneumonia and influenza 

mortality in older persons showed a lower mortality when vaccine and circulating 

strains were matched. However, there was also a trend towards lower mortality 

with mismatched vaccines during the post-SARS period.28 In an analysis from the 

2007-2008 influenza season in the USA, VE was estimated as 37% with a 

suboptimal match for both the H3N2 and B strains.29 The authors concluded that, 

in any season, assessment of the clinical effectiveness of influenza vaccines cannot 

be determined solely by laboratory evaluation of the degree of antigenic match 

between vaccine and circulation strains. This was confirmed in the 2010-2011 

influenza season in Canada, when an incompletely matched H3N2 strain was 

identified by both reduced subtype VE estimation and phylogenetic analysis, but 

not by haemagglutination inhibition assay.27

We conclude that the trivalent influenza vaccine provides only moderate 

protection, of the order of 60%, against medically attended ILI due to laboratory- 

confirmed influenza in working-age adults. Other VE estimates for the 2010-2011 

northern hemisphere season and the 2010 and 2011 southern hemisphere seasons 

are consistent with this conclusion.14 27'30'32 In future seasons, we plan to continue 

to collect data on important confounders, such as comorbidity status and 

incorporate antigenic characterization data to estimate VE by strain. While it must 

be stressed that current influenza vaccines are proven to be effective in both trials 

and observational studies, it is our view that reliance on vaccines of moderate 

effectiveness should not be allowed to delay the development of new potentially 

improved vaccines.

Established and evolving observational study designs to estimate influenza vaccine 

effectiveness should continue to be improved. Such improvements could involve 

standardizing study designs internationally, as has already been done in Europe.25 

Increasing sample sizes could increase the precision of VE estimates, especially by 

influenza type and subtype. Improved study designs would facilitate reliable field 

effectiveness estimates of new-generation vaccines as they become available.

- 2 8 1 -



Appendix

Acknowledgements
For thoughtful comments on the manuscript, we would like to thank Dr Nicholas 

Kelley and Dr Ian Barr. We gratefully acknowledge the participation of all general 

practitioners involved in sentinel surveillance in Victoria. We thank the laboratory 

staff of the WHO Collaborating Centre for Reference and Research on Influenza and 

the Viral Identification Laboratory, both at the Victorian Infectious Diseases 

Reference Laboratory, Melbourne, Australia. The Melbourne WHO Collaborating 

Centre for Reference and Research on Influenza is supported by the Australian 

Government Department of Health and Ageing. Sentinel surveillance in Victoria is 

supported by the Victorian Department of Health.

References
1. Barr IG, McCauley J, Cox N et al. Epidemiological, antigenic and genetic 

characteristics of seasonal influenza A(H1N1), A(H3N2) and B influenza 

viruses: basis for the WHO recommendation on the composition of 

influenza vaccines for use in the 2009-2010 northern hemisphere season. 

Vaccine 2010; 28:1156-1167.

2. Last jM, Porta M. A dictionary of epidemiology, 5th ed. New York: Oxford 

University Press, 2008.

3. Kelly H, Barr I. Large trials confirm immunogenicity of H1N1 vaccines. 

Lancet 2010; 375:6-9.

4. Valenciano M, Kissling E, Cohen JM et al. Estimates of pandemic influenza 

vaccine effectiveness in Europe, 2009-2010: results of Influenza Monitoring 

Vaccine Effectiveness in Europe (I-MOVE) multicentre case-control study. 

PLoS Med 2011; 8:el000388.

5. Belongia EA, Kieke BA, Donahue JG et al. Effectiveness of inactivated 

influenza vaccines varied substantially with antigenic match from the 2004- 

2005 season to the 2006-2007 season. J Infect Dis 2009; 199:159-167.

6. Skowronski DM, Masaro C, Kwindt TL et al. Estimating vaccine effectiveness 

against laboratory-confirmed influenza using a sentinel physician network: 

results from the 2005-2006 season of dual A and B vaccine mismatch in 

Canada. Vaccine 2007; 25:2842-2851.

- 282 -



Supplementary papers

7. Fielding JE; Grant KA, Papadakis G, Kelly HA. Estimation of type- and 

subtype-specific influenza vaccine effectiveness in Victoria, Australia using 

a test negative case control method, 2007-2008. BMC Infect Dis 2011; 

11:170.

8. Kelly H, Carville K, Grant K, Jacoby P, Tran T, Barr I. Estimation of influenza 

vaccine effectiveness from routine surveillance data. PLoS One 2009; 

4:e5079.

9. Orenstein EW, De Serres G, Haber M] et al. Methodologie issues regarding 

the use of three observational study designs to assess influenza vaccine 

effectiveness. Int J Epidemiol 2007; 36:623-631.

10. Victorian Infectious Diseases Reference Laboratory. The 2013 Victorian 

influenza vaccine effectiveness audit. Available at: 

http://www.victorianflusurveillance.com.au/ (Accessed 27 September 

2012 ) .

11. Thursky K, Cordova SP, Smith D, Kelly H. Working towards a simple case 

definition for influenza surveillance. J Clin Virol 2003; 27:170-179.

12. Kelly HA, Grant KA, Fielding JE et al. Pandemic influenza H1N1 2009 

infection in Victoria, Australia: no evidence for harm or benefit following 

receipt of seasonal influenza vaccine in 2009. Vaccine 2011; 29:6419-6426.

13. Fielding JE, Grant KA, Garcia K, Kelly HA. Effectiveness of seasonal influenza 

vaccine against pandemic (H1N1) 2009 virus, Australia, 2010. Emerg Infect 

Dis 2011; 17:1181-1187.

14. Fielding JE, Grant KA, Tran T, Kelly HA. Moderate influenza vaccine 

effectiveness in Victoria, Australia, 2011. Euro Surveill 2012; 17:pii=20115.

15. Druce J, Tran T, Kelly H et al. Laboratory diagnosis and surveillance of 

human respiratory viruses by PCR in Victoria, Australia, 2002-2003. J Med 

Virol 2005; 75:122-129.

16. Greenland S, Lash TL. Bias analysis; in Rothman KJ, Greenland S (eds): 

Modern epidemiology. 3rd ed. Philadelphia: Lippincott, Williams & Wilkins, 

2008;345-380.

17. Australian Government Department of Health and Ageing. Immunise 

Australia Program. Available at: http://www.immunise.health.gov.au/

-  283  -



Appendix

internet/immunise/ publishing.nsf/Content/immunise-influenza (Accessed 

27 September 2012).

18. Looker C, Carville K, Grant K, Kelly H. Influenza A (H1N1) in Victoria, 

Australia: a community case series and analysis of household transmission. 

PLoS One 2010; 5:el3702.

19. Kelly H, Grant K. Interim analysis of pandemic influenza (H1N1) 2009 in 

Australia: surveillance trends, age of infection and effectiveness of seasonal 

vaccination. Euro Surveill 2009; 14:pii=19288.

20. Carrat F, Vergu E, Ferguson NM et al. Time lines of infection and disease in 

human influenza: a review of volunteer challenge studies. Am J Epidemiol 

2008; 167:775-785.

21. WHO Collaborating Centre for Reference and Research on Influenza.

Current vaccine recommendations. Available at:

http://www.influenzacentre.org/surveillance_vaccines.htm (Accessed 16 

February 2012).

22. Petrie JG, Ohmit SE, Johnson E, Cross RT, Monto AS. Efficacy studies of 

influenza vaccines: effect of end points used and characteristics of vaccine 

failures. J Infect Dis 2011; 203-.1309-1315.

23. CSL Limited. A study of the efficacy, safety and tolerability profile of CSL

Limited's influenza virus vaccine (CSL's IW) administered intramuscularly 

in healthy adults. Available at: http://clinicaltrials.gov/ct2/show/

NCT00562484 (Accessed 27 September 2012).

24. Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness 

of influenza vaccines: a systematic review and meta-analysis. Lancet Infect 

Dis 2012; 12:36-44.

25. Kissling E, Valenciano M, Cohen JM et al. I-MOVE multi-centre case control 

study 2010-11: overall and stratified estimates of influenza vaccine 

effectiveness in Europe. PLoS One 2011; 6:e27622.

26. Ansaldi F, Bacilieri S, Amicizia D et al. Antigenic characterisation of 

influenza B virus with a new microneutralisation assay: comparison to 

haemagglutination and sequence analysis. J Med Virol 2004; 74:141-146.

- 2 8 4 -



Supplementary papers

27. Skowronski DM, Janjua NZ, De Serres G et al. A sentinel platform to evaluate 

influenza vaccine effectiveness and new variant circulation, Canada 2010- 

2011 season. Clin Infect Dis 2012; 55:332-342.

28. Chan TC, Hsiao CK, Lee CC et al. The impact of matching vaccine strains and 

post-SARS public health efforts on reducing influenza-associated mortality 

among the elderly. PLoS One 2010; 5:ell317.

29. Belongia EA, Kieke BA, Donahue JG et al Influenza vaccine effectiveness in 

Wisconsin during the 2007-08 season: comparison of interim and final 

results. Vaccine 2011; 29:6558-6563.

30. Cheng AC, Kotsimbos T, Kelly HA et al Effectiveness of HIN 1/09 

monovalent and trivalent influenza vaccines against hospitalization with 

laboratory-confirmed H1N1/09 influenza in Australia: a test-negative case 

control study. Vaccine 2011; 29:7320-7325.

31. Castilla J, Martinez-Artola V, Salcedo E et al Vaccine effectiveness in 

preventing influenza hospitalizations in Navarre, Spain, 2010-2011: cohort 

and case-control study. Vaccine 2012; 30:195-200.

32. Jimenez-Jorge S, Savulescu C, Pozo F et al. Effectiveness of the 2010-11 

seasonal trivalent influenza vaccine in Spain: cycEVA study. Vaccine 2012; 

30:3595-3602.

-  285 -


