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Abstraci 

The action of light in periodic stnictiires can be qnite different to that in a 
homogenous medium. For example, while a nonlinear beam will spread out in a 
medium with a negative nonlinearity, in a periodic structure the beam is focused and 
a locaUsed state is formed. In this thesis I will show my work on light proi)agation 
in tuneable nonlinear periodic photonic structures. 

Nature provides us with dazzling displays of periodic photonic structures in the 
form of butterfly wings, peacock feathers, and opals. How these magnificent natural 
spectacles work has been a source of great scientific interest since we mastered the 
modern scientific method. 

With new technologies we can utilise periodic photonic structures to control 
how light propagates, which wavelengths are transmitted or reflected, and how light 
moves between waveguiding structures. Coupled waveguides provide a platform 
in which to study the linear and nonlinear light propagation and interaction in 
periodic photonic structures. Nonlinearity in optics provides a feedback mechanism 
which allows one beam of light to influence the propagation of another, or even 
itself. Advancements in our understanding of how light propagates and interacts in 
nonlinear periodic photonic structures is leading us to new and interesting areas of 
Physics. It is hoped that one day photons and photonic components can be used in 
place of electrons in electronic components widely used today. This will propel our 
computing power and further advance our understanding of the physical universe. 

In order to fully understand how light behaves in photonic structures and to 
make use of nonlinear features to allow light to control light, we first must under-
stand the fundamental interactions of light in linear and nonlinear periodic photonic 
structures. We must be able to time the properties of the system to investigate the 
fundamental behaviour of nonlinear beam propagation. 

In this thesis I investigate light propagation in tuneable nonlinear periodic pho-
tonic structures. I begin by introducing relevant concepts and ideas necessary to 
understand rny work (Chapter 1). Included in this introduction is theoretical and 
experimental work I conducted with two interacting beams in a btilk nonlinear liq-



uid (Sec. 1.4.6). I discover that a high power pump beam influences the nonlinear 

rnediiun in a way which locally alters its refractive index. This alteration occurs 

due to a change in temperature of the medium caused by absorption of the pump 

beam and results in the reflection of a probe beam from the pump beam. 

I then present rny research on the development of two platforms in which liquid 

is used to guide light in a one-dimensional (ID) periodic array. The first platform 

is made from photolithographically defined air-filled channels in SU8 polymer (Sec. 

2.1). These channels are infiltrated with an index matching oil and the linear 

diffraction is observed as the temperature of the platform is changed. I find that 

the discrete diffraction observed matches very well with an accompanying theoretical 

model of the system, and I am able to estimate the temperature of the liquid in the 

channels. 

The second platform for light propagation in a ID periodic array is developed 

using selectively infiltrated Photonic Crystal Fibres (Sec. 2.2). I use a simple 

method of blocking an inverse pattern with oil on one side of the hbre. The other 

end of the fibre is then submersed in a reservoir of the infiltrating liquid to fill any 

unblocked holes. I produce a ID periodic array in a of coupled waveguides and 

demonstrate temperature tuneable linear diffraction, and nonlinear defocusing. 

I then move on to present my observation of truncated nonlinear Bloch waves in 

Lithium Niobate waveguide arrays (Sec. 2.3). Such states are excited with a broad 

Gaussian input beam in a ID array of coupled nonlinear waveguides. This state is 

different from well known solitons and nonlinear Bloch modes because it contains 

features of both: a constant phase across all guiding waveguides characteristic of a 

nonlinear Bloch wave, with sharp edges otherwise seen in gap solitons. This work 

is supported by theoretical modelling, and I am able to show that the width of the 

soliton is dependant only on the width of the input beam, in contrast to discrete or 

gap solitons who's width depends on the nonlinearity. 

Chapter 3 then exhibits my work with liquid infiltrated Photonic Crystal Fibres 

as a two-dimensional (2D) periodic array of nonlinear waveguides. Firstly I show 

the existence and excitation conditions of nonlocal gap solitons (Sec. 3.1), where 

the properties of the system far from the light field influence soliton formation. 

I find that below a certain refractive index contrast these solitons are no longer 

excitable and the beam only defocuses. I then present my work on this crossover 

from focusing to defocusing in nonlinear periodic systems (Sec. 3.2). I show that the 

bandgap closes before the index contrast reaches zero, and that the system crosses 

from focusing to defocusing before the bandgap is fully closed. 

I will finally discuss my theoretical and experimental work on vortex beams 

propagating around a surface in a nonlinear hexagonal array (Sec. 3.3). I use liquid 

infiltrated Photonic Crystal Fibres and propagate a vortex beam around the core 



defect of the fibre. I find that noiihnear vortex modes of charge one are unstable 

and will focus to occupy a single waveguide on the surface of the core using the 

discrete model. A continuous model shows that linear and nonlinear charge one 

vortex modes are unstable and result in an asymmetric output. Linear charge three 

vortex modes show greater stability due to the staggered phase profile of the input 

beam, while nonlinear charge three vortex modes lose symmetry at the output due 

to a loss of this phase profile. 

I will finish this thesis with conclusions about my work and ideas for future 

directions this work could take, including specific experimental ideas directly related 

to this work. I will include some ideas as to the future direction these ideas may 

provide. 
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CHAPTER 1 

ntroduction to Waveguiding, Periodic 

Media and Nonlinearity 

1.1 Introduction 

Light is fundamental to our existence. We experience it every day, use it to 

navigate, to entertain, to create and to destroy. We can't touch it, or manipulate 

it directly, but this doesn't mean we can't control its propagation and properties 

indirectly. We can create waveguides in which to confine light by using materi-

als of differing refractive index. We can coax light to seep from one waveguide 

into a neighbouring one by placing them sufficiently close. By adding a periodic 

modulation to the refractive index of our waveguide(s) we can further control how 

light propagates. We can also use light to control light, which is known as a non-

linear interaction in which a propagating beam of light modifies the medium it is 

propagating through, which in turn modifies the beam. 

Controlling the propagation of light with periodic refractive index modulation 

and nonlinearity allows us to explore new areas of optics which have analogies in 

other areas of physics, such as Bose-Einstein Condensates. In this thesis I explore 

control of light with nonlinear interactions in tuneable nonlinear periodic photonic 

structures. 

The structure of this thesis is illustrated in Fig. 1.1. Physical concepts and 

previous works are introduced in Chapter 1. Chapter 2 discusses my development 

and investigation of linear and nonlinear waveguiding in novel ID periodic arrays, 

including nonlinearity in Lithium Niobate. Similarly Chapter 3 shows my investi-

gation into linear and nonlinear beam propagation in 2D periodic arrays in liquid 

infiltrated Photonic Crystal Fibres. Chapter 4 will draw final conclusions and ofi'er 

an insight into what future directions this work could take. 



Chapter 2: 
1D Platforms 

SU8 Polymer Waveguide Arrays 

(b) Selective Infiltration 

NonI 

Chapter 2: 
Nonlinearity in 1D Structures 

Truncated Nonlinear Bloch 
Wave Solitons in LiNbOs 
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Figure 1.1: Illustration of thesis structure and layout. Chapter 2 discusses the 

development and testing of 1D platforms in (a) photolithographically defined 

waveguide arrays in SU8 polymer, and (b) selectively infiltrated Photonic 

Crystal Fibres. This chapter also presents (c) theoretical and experimental 

realisation of truncated nonlinear Bloch waves in Lithium Niobate waveguide 

arrays, as a nonlinear effect in a periodic ID structure. Chapter 3 presents 

results from theoretical and experimental work with liquid infiltrated Pho-

tonic Crystal Fibres for (d) the observation of nonlocal gap solitons, (e) the 

crossover from focusing to defocusing nonlinearity, and (f) the investigation 

of vortex surface states. 



1.2 The Physics of Wavegiiiding 

In our everyday experience with light we see photons wliich are reflected from 

an object. These photons have traveled in a straight hne (known as a ray of hght) 

from an object into our eye. This is known as free space propagation in which hght 

is propagating through a material of constant refractive index, for example air or 

water. Photons will only travel in a straight hne until they are reflected from a 

surface, or refracted by a change in refractive index. We can hence modify the free 

space propagation of a ray of light and for example transmit a series of photons 

around a corner, by using a simple mirror. If we then introduce another mirror 

further along the path of the now reflected ray of hght, we can again modify the 

propagation of the ray of light. We could have a large number of mirrors arranged 

such that the ray of light propagates in a circle, eventually returning to the point 

of origin. Here we have some control over the direction the ray of light, but only 

in a rudimentary sense: we cannot for example guide two rays of light with slightly 

different input angles, because they will constantly diverge as they propagate. The 

perturbed beam will eventually stray from our carefully arranged array of mirrors. 

We can however come up with another way in which to guide light. A traditional 

mirror is made of a silvered metallic surface from which light will reflect. Light can 

also be reflected from the interface between two materials of differing refractive 

index. Light moving from one m'aterial of refractive index rii into another material 

of index 77-2 will obey Snell's law where rii sin 6*2 = n2 sin 6*1. From this equation we 

can see that an incident ray of hght with angle Oi will be reflected from the surface 

when 62 > 7r/2. This is known as a critical angle, after which light will be reflected 

from a surface between two media of refractive indices ni and 77,2. The refractive 

index of a material is determined by its relative permittivity e and permeability /i, 

n^ = e/i. 

We can now imagine a slab waveguide in which a planar region of higher re-

fractive index is between two regions of lower index. When a ray of hght enters 

the region of higher index with an incidence angle larger than the critical angle it 

will be reflected from the interface between the higher and lower refractive index 

materials. The hght will be reflected along the slab waveguide until the end and 

the light can exit. Such waveguides can be curved or even twisted, allowing us to 

control the propagation of hght, and get hght to bend around corners without the 

explicit use of mirrors. 

We can now imagine strips of higher index material surrounded by lower index 

material, allowing us to confine light to an area of the same magnitude as the 

propagating light's wavelength. Such a device is known as a waveguide. A square 

or rectangiflar strip waveguide can be further improved by introducing a higher 



degree of symmetry and producing a round waveguide, extruded into a cylinder. 
Such a device is known as an optical fibre, and forms the basis of most of our 
communications and information technology. 

While guiding a coherent beam of light, a waveguide will guide the beam in a 
luiniber of spatial modes determined by the dimensions of the waveguide and the 
wavelength of incident light [1]. If we consider a Gaussian beam with a profile A{z) = 

propagating along the 2; axis of a fibre optic cable, we can determine how 
the amplitude and phase will vary with propagation by looking at the propagation 
constant (3. In this thesis I only consider real values for /3, indicating that we have 
negligible loss in our guiding systems. The propagation constant can be expressed in 
terms of effective index of a medium (3 = rieffk, where A; = 27r/A is the wavenumber 
and rieff is the effective index of the propagating medium. 

Light propagating along a waveguide will travel as a combination of bound 
modes, each mode having a discrete propagation constant [2]. The electric and 
magnetic components of a i^ropagating mode will be invariant along the propaga-
tion direction for a uniform waveguide. A waveguide can sui)port modes of light 
with different profiles, depending on the waveguide geometry and input conditions. 
The output of the waveguide will be a linear superposition of all supported bound 
modes in the waveguide. In this work I consider only the fundamental mode of the 
studied waveguides, although higher order modes may be mentioned. 

Fibre optics guide light in a higher index core surrounded by a lower index 
cladding. They are thin and flexible, and are usually made from a silica glass. A 
recent development in fibre optics has yielded another breed of optical fibre, the 
Photonic Crystal Fibre (PCF). Such fibres consist of either a solid or hollow core 
surrounded by a periodic array of air filled holes. Light is guided by either the higher 
index core (index guiding), or by the photonic bandgai) effect (bandgap guiding). 
The periodic nature of the cladding region allows for the study of light propagation 
in periodic photonic media. 

1.2.1 Coupled Waveguides 

A discrete mode propagating in a waveguide will extend beyond the waveguide, 
in the form of an evanescently decaying electric field. A mode in one waveguide will 
resonate and couple to another nearby waveguide when the propagation constant 
of the two modes is close enough [3]. A strongly coupled set of waveguides will 
allow coupling between modes of greater difference in propagation constant than 
weakly coupled waveguides. It is possible to strongly couple a single mode from one 
waveguide into another. 

Mode coupling is not limited to coupling between two waveguides. By adding 



more waveguides in a planar fashion we can create a one dimensional array of 
coupled waveguides. We can imagine more coini)licated structures for example two 
dimensional arrays with square or triangular lattices of coupled waveguides. The 
modal coupling will occm- for any waveguide placed close enough to resonate with 
a propagating mode. A larger number of waveguides increases the complexity of 
the system. It is possible to derive a set of equations for the coupling between 
waveguides in an array in a simple fashion [3], which allows for the calculation 
of the coupling between modes in an arbitrary system of identical waveguides. If 
we arrange our waveguides carefully, the transverse refractive index profile will be 
periodic, further simplifying any coupled mode analysis. 

1.3 Periodic Media 

A periodic optical medium is one in which there is a periodic modulation of the 
refractive index in one, two, or three spatial dimensions. In this thesis I focus on 
one and two dimensional periodic optical media. I define the periodicity to be in 
the X, y plane, and light propagation to be along the 2 axis. 

A periodic modulation of refractive index in an optical media is known as a 
photonic crystal, where the periodic nature of the optical properties is analogous 
to atomic periodicity in crystalline structures. It is logical then to borrow some 
concepts from solid state physics to describe and model a periodic optical media. 

If we consider a set of waveguides in one dimension, we have a transverse refrac-
tive index profile, for example resembling a square wave in the x direction. Light 
entering a single waveguide will couple to the neighbouring waveguides (Sec. 1.2.1). 
This coupled light will be partially reflected from the surrounding waveguides. As 
light spreads through the array, reflections from each waveguide will add up in a 
linear superposition. The reflected rays of light will interfere constructively when 
their path length difference is an integer nniltiple of the wavelength. This is a well 
known phenonienum in solid state physics, and is known as the Bragg law [4]: 

m A / n o = 2(fsin(0), (1.1) 

where m is an integer, A is the wavelength of light in a vacuum, d is the distance 
between waveguides, no is the average refractive index, and (9 is the incident angle 
of the input light beam. By tuning any of the properties of such a system one can 
achieve constructive or destructive interference after some propagation distance. 
Periodic optical media usually have fixed values for the distance between waveguides. 
We have ultimate control however over the wavelength of light used, and some 
control over its input angle. Some types of optical media have a tuneable refractive 



index, but for simplicity we will first consider a fixed index contrast. 

Light incident on a single waveguide in an array will couple to neighbouring 
waveguides. As the modes propagate, light will couple further into the array, spread-
ing the light throughout the waveguides. This is known as discrete diffraction, and is 
illustrated in Fig. 1.2. The diffraction can be controlled in an array of waveguides by 
controlling the coupling between waveguides. Light couples back and forth between 
the waveguides in the array due to coupling between the individual waveguides and 
Bragg reflections. We can model a simple one dimensional system using a differen-
tial equation which uses the propagation constant (/?) and coupling coefficient (C) 
to transfer light between the waveguides [5]: 

dA 
+ + + = 0, (1.2) 

where An is the amplitude of the propagating mode in waveguide n, and the two 
neighbouring waveguides have amplitude A^^x and /3 is the propagation 
constant for the mode being studied, and C is the coupling coefficient between the 
waveguides n, n - 1, and n -'r We can see that as light propagates along 2 it will 
couple to the two neighbouring waveguides (Fig. 1.2). Light in these waveguides in 
turn couples to their neighbours and the light will eventually spread out to occupy 
the whole array (Fig. 1.2). 

Such coupled mode theory assumes ideal conditions and waveguides, as well as 
low absorption of propagating waves. Modes excited with transverse electric or 
transverse magnetic polarisation may also be slightly different. In a real world set-
ting coupled mode theory is only an approximation due to losses through radiation 
caused by higher order bandgap effects. 

While the coupled mode theory (Eq. 1.2) may model simple systems with weak 
coupling, it becomes difficult to model the full system including bandgap effects, 
which result from the periodic nature of the material. We can expand our under-
standing of such a system by moving to a more complete description using the time 
independent wave equation in the form of the Helmholtz equation: 

^ M r ) - ^ < r ) u { r ) = (\ (1.3) 

where u is a scalar function representing the components of the electric or magnetic 
field, c is the speed of light in the medium, u is the angular frequency of the wave, 
and e(r) is the positional dependant permittivity of the material. In a homogenous 
medium the eigenvalue solutions to this equation are in the form of a plane wave 
f / ( r ) = ;7oexp(ik • r) , where r = (x, z) is the positional vector, k = is the 
plane wave vector where |k| = A: = 2mi/\ = riofco- W^ can introduce a transverse 
wave vector k to achieve k^ = ^^^ in order to get a diffraction relation /? = 



Figure 1.2: (a) Output of a beam having undergone (b) discrete diffraction 
in a ID waveguide array. Bragg reflections cause the beam to periodically 
move through the lattice, causing the (c) input mode to diffract and spread 
to neighbouring waveguides. 

\/K? + A-2. K and /3 can now be seen as a basis for the wave vector k (Fig. 1.3 (a)). 
We can rearrange this to a more convenient form of the propagation constant using 
the paraxial approximation where k < k, giving p = k- K^/2k. This is a quadratic 
relationship in which each corresponding value of P and k represents a plane wave 
solution with propagation direction and k normal to the diffraction curve (Fig. 1.3 
(a)). 

Periodic optical media exist in one, two or three dimensions. Many interesting 
linear phenomena have been observed in all such systems. For example recently 
Zhang et al. have shown enhancement of discrete diffraction in a 3D optically 
induced lattice [6], and Szameit et al. have shown polychromatic localisation in 
curved waveguide arrays [7]. Waveguide arrays have also been used as multiclian-
nel wavelength-division nndtiplexers and denniltiplexers [8], in which wavelengths 
are combined or separated respectively, into a single waveguide. I will limit my 
discussion to relevant structures in one and two dimensions. 



Homogenous optical medium Periodic optical medium 

Figure 1.3: Illustration of the (a) diffraction relation /3(k) for a homogenous 

medium (inset). Gaps appear in the (b) diffraction relation for a periodic op-

tical media (inset), caused by Bragg reflections from the periodic modulation 

of refractive index. 

1.3.1 Properties of I D Periodic Systems 

In a I D periodic optical medium with period (distance between waveguides) 

d, any eigenmodes of the system should be invariant to a coordinate transform 

along the axis of periodicity x. The amplitude of the mode, denoted will 

be periodic such that A^^p^x) + d), where the index I denotes the band 

number. We can now see the eigenmodes of the system will take the form f/(r) = 

exp{iKX + i P z ) . Such modes are known as Block modes, which come from 

the Floquet-Bloch theorem from solid state physics [4]. Such modes have an infinite 

spatial extent, and any mode of a periodic system can be expressed as a linear 

superposition of Bloch modes. 

Using the eigenmodes of a I D periodic system we can determine a diffraction 

relation /?(/c). Since k is periodic we only need to look at the diffraction relation in 

the first Brillouin zone { - n < k < n) in order to fully miderstand the system. I 

define the first Brillouin zone as the region formed by the points which are closer 

to the origin than to any other vertex of the periodic lattice. When the diffraction 

relation is plotted one notices discrete jumps in /3 when k is an integer multiple 

of TT. These discontinuities correspond to photonic bandgaps, in whicli modes are 

forbidden to propagate (Fig. 1.3 (b)). This brings to mind a previous concept 

discussed in relation to coupling between waveguides (Eq. 1.1), and this is no 

coincidence! The origin of the photonic bandgaps is the Bragg reflections caused 

by the periodicity in the refractive index of the medium. If we consider two Bloch 

modes, with = we can see they both propagate with the same 

wavermmber (TT), but in opposite directions. From the Bloch theorem [4] these 

modes are identical, because they only differ by 2tt. At the edge of the Brillouin 



zone these two Bloch functions are inverted versions of each other, and so have 

distinct values of /J. This leads to the discontinuities of the diffraction relation at 

the boundary of the Brillouin zone. 

Total internal reflection band Bragg reflection band 

Figure 1.4: Transverse electric field of a Bloch mode in a I D periodic array 

of waveguides, (a) Modes in the first (total internal refiection) band with 

K = 0 (black line), and k — tt (red line), (b) Modes in the second (Bragg 

reflection) band with k = 0 (blue line) and k = n (green line). Grey shaded 

area indicates refractive index contrast. 

Photonic bandgaps represent modes which are forbidden to propagate through 

the periodic system, due to destructive interference from Bragg reflections. There 

are bands of allowed Bloch modes, numbered 1, 2, 3, etc. Modes propagating in 

the first band can be described using the coupled mode theory from Eq. 1.2, and 

are hence the simplest propagating Bloch mode. Modes in the first band can exist 

with uniform or staggered phase profile. Higher order bands can not be easily 

modelled using coupled mode theory, and they introduce more complexity into the 

propagating modes, usually resulting in nniltiniode beam propagation [9]. 

Fig. 1.4 shows the transverse electric field of modes propagating in the first 

(Fig. 1.4 (a)) and second band (Fig. 1.4 (b)) at the points k = 0 and k = tt (Fig. 

1.5). In the first band (Fig. 1.4 (a)) Bloch modes have maxima in the high index 

waveguides. The mode at the centre of the band (k = 0) has a constant phase across 

all waveguides and hence is never reduced to zero, meaning there is always some 

light even in between the waveguides. In contrast to this the mode at the edge of 

the band {k — vr) has a staggered phase profile, and hence will have a zero electric 

field component in between each waveguide where light does not exist. Higher order 

modes exist in the second band (Fig. 1.4 (b)) in a similar way. At the centre of the 

band (K = 0) a second order mode with a zero electric field exists in phase across 

the waveguides, while at the band edge {k — n) the mode again has a staggered 

phase, but in this case the mode also exists in between the higher index waveguides. 

The band diagram for these modes in the first and second band is shown in 



Figure 1.5: Illustration of a band diagram showing the linear diffraction 

relation /3(K) in a ID periodic photonic structure with period d. Shaded 

areas indicate a bandgap (only two gaps are shown). Transmission bands lie 

between the gaps, with modes indicated by solid black lines. Modes in the 

second band (black dotted lines) can be represented in the first Brillouin zone. 

Vertical dotted lines indicate the boundary of the first Brillouin zone. 

Fig. 1.5. The Brillouin zone is indicated by vertical dashed lines. Modes within 

a transmission band are shown as solid black curves. Modes in the second (lower) 

band can be represented in the first Brillouin zone (black dotted line in the second 

band). Similarly modes in the first band can be represented past the Brillouin zone 

(dotted lines in the first band). 

1.3.2 Properties of 2D Periodic Systems 

When we introduce another dimension to our periodic structure we will add 

some more complexity to the system. Bloch modes can be expanded to the 2D case 

by adding another term for the periodicity in the y dimension and will have the 

form Uiv) - y) exp{iK^x + i^z) exp{tKyy + i^z), where y) is 

now periodic in two dimensions, and K is split into x and y components. 

This new dimension of periodicity introduces the possibility for partial bandgaps. 

Since a mode can now propagate with a new degree of freedom there will be some 

values for Ky) under which a mode is permitted to propagate, while others 

where it is not. Complete bandgaps may still exist and can be a dominant feature 



Figure 1.6: (a) A triangular lattice of periodic refractive index produces 
a hexagonal primitive, (b) The reciprocal lattice (black lines) and Brillouin 
zone (shaded yellow) are also hexagonal, (c) The irreducible Brillouin zone 
(shaded yellow) is formed by the triangle of reciprocal lattice points FYJ [1], 

in some structures. 
A common 2D periodic structure is a triangular lattice, making up a hexagonal 

array (Fig. 1.6(a)) which has the highest degree of symmetry for a 2D lattice. The 
Brillouin zone is a hexagon (Fig. 1.6(b)) with an irreducible Brillouin zone making 
up a triangle (Fig. 1.6(c)) from the points FYJ. Such symmetry promotes the 
formation of omnidirectional bandgaps, although partial gaps still exist. Fig. 1.7 
shows an illustration of the diffraction relation for a hexagonal lattice. Red shaded 
regions are partial bandgaps, while the complete bandgap is shaded grey. 

Partial bandgap 

^ — ^ ^ 

Complete bandgap 
' 

Figure 1.7: An illustration of the complete and partial bandgaps for modes in 
a hexagonal lattice. Partial gaps are shaded red, while the complete bandgap 
is shaded grey. 

The added complexity of the 2D periodic lattice in comparison to a ID lattice 
also introduces a wide range of rich physical phenomena, unavailable in a ID lattice. 
Optical structures such as vortices only exist in 2D, and hence cannot be simplified 



to a ID case. With greater complexity in structure comes greater challenges in 
manufacturing. A 2D array of coupled waveguides will be more sensitive to any in-
honiogeneity in the structure, since beam propagation and coupling will be effecting 
more than two neighbovu'ing waveguides. 

In order to truly appreciate the full range of physical phenomena made available 
throTigh one and two dimensional periodic photonic structures we should investigate 
their behaviour in both the linear and nonlinear regime. Section 1.4 will introduce 
the basics of nonlinear physics in this context, and demonstrate its usefulness and 
beauty. 

1.4 Nonlinear Physics and Nonlinearity in Optics 

Interest began in nonlinear systems in the 1950's with the pioneering work of 
Fermi, Pasta and Ulam [10], in which they studied the the evohition of particles 
connected by nonlinear springs. They expected the system to homogenise to a 
single energy, but instead found a wide variety of interesting dynamics. They found 
coupling between modes of the system, which is not possible in a linear system. This 
research sparked an intense interest in nonlinear physics and nonlinear dynamics of 
nonlinear systems. 

A nonlinear system is a system in which a linear superposition no longer applies. 
A solution cannot be written as a linear combination of independent components. 
The output of a linear system F will be the simple sum of the individual response 
to each component of the input x and y: 

F{x + y) = F{x) + F{y), (1.4) 

a linear equation will also scale if multiplied by a rational real number a: 

F{ax) = aF{x). (1.5) 

A function F{x) = C is linear if it satisfies the above two conditions, and 
nonlinear otherwise. A simple example of a nonlinear eciuation is the quadratic 
equation x'^ + x — 1 = 0. VVe can write F{x) ~ C, where F{x) = x'^ + x and C = 1. 
If we adjust the input x by adding a constant term a we get: 

F{x + a) = {x + af + x + a= 1 (1.6) 

F{x + a) = x'^ + (i^+ 2xa +X + a = 1. (1.7) 

Eq. 1.7 is not a linear superposition of F{x) + F{a) because it contains a term 



including both x and a, and hence the equation is nonhnear. A similar outcome is 
easily observed to result in the same conclusion when trying to scale the function 
by a rational real number a: 

F{ax) = {ax)'^ + ax = l (1.8) 

F{ax) = a^x^ + ax = 1. (1.9) 

While this is a simple example of a nonlinear system, the same rules apply 
for more complicated situations. This mathematical distinction gives a clear con-
trast between linear and nonlinear equations. Such clarity is not always possible 
in physical systems, which can often contain a combination of linear and nonlinear 
components. The linear physics used to describe many physical systems is often 
a first order approximation of a very complex physical system. These first order 
approximations are perfectly valid when any input or driving forces involved in such 
a system are small in amplitude. If x and a are sufficiently small such that x"^ x 
and a? ^ a then xa ^ x + a, and from Eq. 1.7 and Eq. 1.9 : 

F{x + a) = x + a = l (1.10) 

F{ax) = ax = l. (1.11) 

This demonstrates a first order approximation when the input amplitudes (x, a, 
and a) are sufficiently small. If we increase these amplitudes we need to take the 
higher order and coupled terms (e.g. 2xa, a'̂ x'̂ ) into accoTuit to fully appreciate the 
physics in the system. 

Nonlinearity adds to the complexity of the system by allowing independent in-
puts (or variables) to interact. This does more than add complexity to any mathe-
matical model: it allows one variable to interact with another. Our modern day lives 
rely on electrostatic interactions between electrons in microprocessors and electronic 
systems. The output of a diode or transistor are inherently nonlinear, which is what 
makes them so useful. Can this concept of nonlinear interaction be translated to 
another field of physics, such as optics, and be as useful? Section 1.4.1 and onwards 
will introduce the concepts of nonlinear optics, in which noriinteracting photons are 
coerced into interacting. 

1.4.1 Nonlinearity in Optical Systems 

Optics is the study of the propagation of light through optical systems. Light is 
made of photons, which are noninteracting particles. If they are noninteracting they 



must be inherently linear, which is also the case with the equations which describe 

electromagnetic propagation, Maxwell's equations. Photons may not interact with 

each other, however they do interact with matter. Photons can be absorbed or 

emitted by an accelerating charge, adding or subtracting energy from the particle 

the photon interacts with. 

The study of optics and optical effects was made possible by the invention of 

the laser [11]. The coherent light produced by a laster is far superior to other light 

sources for the study of optical waves and interactions. Nonlinear optics began 

quite soon after the invention of the laser [12, 13, 14] in the form of damage to silica 

glass by high intensity lasers. Interest was growing in the phenomena of optical 

self trapping [15]. Such phenomena require optical nonlinearity, whereby the large 

electric field of a high intensity laser beam interacts strongly with the atoms of the 

nonlinear medium through its polarisation density. 

If we consider the dipole moment per unit volume of a material, its polarisation 

density P(<), is defined by an applied electric field E: 

P{t) = eoX^'^E{t), (1.12) 

where eo is the permittivity of vacuum, and x is the linear electric susceptibility of 

the medium. This is a first order linear approximation of a more complex system, 

which can be expanded as a power series of the applied electric field E{t): 

P{t) = eoix^'^ E{t) + x^'^E'it) + + + •••). (1.13) 

The values of x̂ '̂ ^ , and are the second, third, and fourth order susceptibil-

ities, respectively. For simplicity the fields P{t) and E{t) have been taken as scalar 

quantities. It is possible to treat them as vectors, in which case x̂ ^̂  becomes a 

second-rank tensor, x̂ "̂ ' becomes a third-rank tensor, etc [16]. We also assume that 

the polarisation at time t only depends on the instantaneous value of the electric 

field E{t) at that point in time. This implies the medium is lossless and disper-

sionless. Fig. 1.8 graphically shows the difference between a linear and nonlinear 

dependance of the polarisation density P on the electric field E. At low values of 

E (low optical intensity) the linear and nonlinear values of P are identical. As E 

increases, the difference between the linear and nonlinear values of P increases. 

Second order nonlinear optical phenomena are those which are produced by the 

second order susceptibility of a material. The second order susceptibility (x^^^) 

dominates the nonlinear polarisation of non-centrosymmetric crystals [16], those 

without an inversion symmetry. Examples of second order nonlinear effects are the 

Electro-Optic effect, three-wave mixing, and second harmonic generation. 



Linear 
Nonlinear 

Figure 1.8: Linear (red daslied line) and Nonlinear (green solid line) rela-

tionship between the electric field E and polarisation density P. 

Higher order nonlinear effects arising from the third order susceptibility (x^^^) 

occur in media where the second order susceptibility no longer dominates. Such 

media are usually amorphous solids, liquids or gasses, since these materials display 

inversion symmetry, leading to vanishingly small or nonexistent Examples 

of third order nonlinear effects include the Kerr effect, third harmonic generation, 

stimulated Raman scattering, and four wave mixing. In this thesis I will limit my 

discussion to the concepts required to understand my work, the Kerr effect and 

intensity dependant refractive index change in liquids, as well as the consequences 

this has on propagating modes. I will also discuss a nonlinearity in Lithium Niobate 

which can achieve similar nonlinear effects. 

1.4.2 The Kerr Effect 

A Kerr medium is one in which the third order susceptibility (x'^^) dominates, 

and the nonlinear polarisation can be defined as: 

PNL{t) = eoX^'^E'{t). (1.14) 

We can use the relation of relative permittivity e/co = 1 + X ^̂ iicl refractive 



index n^ — e/eo to get the equation: 

n2 = l + X, (1-15) 

which leads to an intensity dependent refractive index: 

n = no + n2/, (1-16) 

where I ~ is the optical intensity of the inpvit light field, no is the refractive 
index of the medium, and n2 = x'̂ ^̂ V̂o/n̂ '̂ o [16], where r]o is the impedance in a 
vacuum. In a Kerr medium the refractive index depends on the optical intensity 
of a propagating beam of light. The refractive index can thus be controlled to a 
certain degree by changing the intensity of the light in the medium. 

The Kerr effect is this intensity dependent refractive index. As a result of this 
a high intensity beam travelling through a Kerr medium will midergo self-phase 
modulation, a nonlinear effect in which the refractive index of the medium is changed 
by a beam of light (Fig. 1.9). Physically the high intensity light beam modifies the 
polarisation of the medium, leading to a change in the refractive index (Eq. 1.14-
1.16) [16]. This modification of the medium in turn alters the optical path length 
the beam of light experiences, resulting in a phase shift at the output. This is a key 
feature of the Kerr effect: feedback. A beam of light interacts with the medium, 
changing the optical properties of the medium. This change in turn changes the 
propagation of the beam. Such feedback loops can drive some interesting nonlinear 
phenomena, such as self focusing (Fig. 1.9(b)) and self defocusing (Fig. 1.9(a)), 
which are both a result of this self phase modulation. 

The Kerr effect is a local change in refractive index. The fundamental output 
of a laser beam will have a Gaussian profile, with a high intensity central region. 
Hence the centre of a high intensity laser beam propagating in a Kerr medimn will 
produce a locally higher (Fig. 1.9(b)) or lower (Fig. 1.9(a)) refractive index than 
other parts of the beam. 

1.4.3 Positive and Negative Nonlinearity 

In a Kerr medium the nonlinear coefficient is n2. It is convenient to introduce a 
general nonlinear coefficient 7, which can be used to describe a nonlinearity regard-
less of its origin. For a Kerr medium 7 oc na. The value for 7 can be either positive 
or negative. A positive 7 will increase the refractive index of the medium for a high 
intensity beam of light, while a negative 7 will decrease the refractive index under 
the same conditions. Fig. 1.10 shows the effect a high intensity Gaussian laser beam 
will have on a background refractive index of n = 1.46 for positive and negative 7. 



Figure 1.9: (a) A high intensity Gaussian beam with uniform phase profile 

incident on a nonhnear material of length L with negative nonlinearity causes 

a phase shift Ac/) resulting in the beam defocusing. (b) the same beam incident 

on a nonlinear material with positive nonlinearity causes a phase shift A0 

resulting in the beam focusing. Blue lines indicate input beam profile, red 

lines indicate wave fronts of the beam, greyscale indicates change in refractive 

index caused by the incident beam, white is a lower index than black. 

Fig. 1.10(a) and (b) show the Gaussian laser beam mode shape and profile. Fig. 

1.10 (c) shows the induced refractive index profile of a nonlinear material with a 

positive nonlinearity (7 > 0). The induced refractive index profile is inverted (Fig. 

1.10 (d)) for a material with a negative nonlinearity (7 < 0). 

Positive and negative nonlinear coefficients 7 give rise to a range of often com-

plimentary and inverse effects. One key example of such inverse behaviour is the 

phenomena of self focusing and self defocusing in homogenous media. Self focusing 

is a nonlinear phenomena which occurs in mediums with a positive nonlinearity. 

The high intensity light of a Gaussian beam causes a local increase in the refractive 

index (Fig. 1.10(c)). This high index region then acts as a high index waveguide, 

trapping light. The opposite effect occurs when the nonlinearity is negative. High 

intensity regions of the beam cause a local decrease in the refractive index (Fig. 

1.10(d)) which causes the beam to diffract, or defocus, faster than it would in a 

linear regime. 

Fig. 1.11 shows a numerically simulated beam propagating in a nonlinear mate-

rial. Self trapping (Fig. 1.11(a)) is achieved when the linear difiraction of the beam 

is balanced by tlie nonlinear focusing. Fig. 1.11(d) shows how the high intensity 

regions of the beam cause a local increase the refractive index of a medium with 

positive nonlinearity (7 > 0). The beam is then tra{)ped in the high index region 

it created. Fig. 1.11(f) shows how the high intensity regions of the input beam 

cause a local decrease in the refractive index of a rnediiun with negative nonlin-



Figure 1.10: (a) A Gaussian laser beam has an intensity / = exp(—x^) 

(b) profile. Such a beam increases the refractive index proportionally to its 

intensity for a (c) positive nonlinearity, and (d) decreases the refractive index 

locally for a negative nonlinearity. 

earity (7 < 0). The beam is then repelled from this low index region, diffracting 

faster (Fig. 1.11(c)) than it otherwise would in a linear medimn (Fig. 1.11(b)). Fig. 

1.11(e) comi^ares the input {z = 0) beam (black line) with the output {z = 120) for 

nonlinear media with positive nonlinearity (red line), negative nonlinearity (green 

line), and no nonlinearity (blue line). 

The origin of self focusing and self defocusing is the intensity dependent refractive 

index n{I). When passing through a Kerr medimn a Gaussian beam with uniform 

phase will experience self phase modulation in proportion to the intensity of the 

beam. A Gaussian beam thus experience different phase shifts across the profile 

of the beam (Fig. 1.9), due to the nonuniform intensity. The phase shift will be 

= {2n/X)Ln{I), for a beam of wavelength A propagating through a medium of 

length L. A beam incident on a medium with negative nonlinearity (Fig. 1.9(a)) will 

experience a negative phase shift (ri2 = 7 < 0), resulting in the beam defocusing. 

A similar beam incident on a medimn with positive nonlinearity (Fig. 1.9(b)) will 

experience a positive phase shift (na = 7 > 0), resulting in a focusing of the beam. 
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Figure 1.11: Propagation of a Gaussian input through a nonlinear medium 

when 7 is (a) positive, (b) zero (a hnear medium), and (c) negative. The high 

intensity light modifies the refractive index, increasing the index (d) when 

7 > 0, and decreasing the index (f) when 7 < 0. (e) Output profiles show 

the difference between the input and the outputs from (a),(b), and (c), where 

7 = 15 X 10^®, 7 = 0, and 7 = -15 x 10"® respectively. 

It is clear that the sign of the nonliiiearity has a drastic effect on the output 

beam. When a medium has a positive nonlinearity, a high intensity beam propa-

gating through it will experience self focusing. In Fig. 1.11(e) it is obvious that 

the output of such a beam has a higher peak than the input. This does not break 

any conservation of energy rules because the integral of both curves is in fact iden-

tical. Each output has the same integral as the input, as one would expect in a 

closed system such as this. When the nonlinear focusing exactly balances the linear 

diffraction otherwise experienced by a propagating beam, the beam can propagate 

as a spatial soliton, in which the profile of the beam doesn't change as it propagates. 

The general concept of a soliton was developed when nonlinearity balances linear 

dispersion of a wave in 1965 [17]. The concept of a soliton has been known since the 

1830's when John Scott Russell observed a well defined water wave travelling down 

a canal without changing its shape. Soliton pro[)agation on bulk nonlinear materials 

has been observed in nonlinear liquids [18] and silica glass [19], although the high 

optical intensity required to form the soliton limits any practical api)lication. Pulsed 

laser and slab waveguides were used to achieve the optical intensity and effective ID 

geometry favourable to soliton formation [18, 19]. Spatial optical solitons supjjorted 

by mutual focusing of a second beam have been studied for Kerr-type [20] and 



anisotropic optical media [21 . 

On the other hand optical solitons in silica fibres received much focus in the 

1970's and 1980's for telecommunication pinposes [22, 23]. Guided modes are con-

fined to a small silica core and thus require lower total power to achieve nonlinear 

effects than in a bulk medium. Long propagation lengths of an optical fibre al-

low for dispersion compensation over a very long distance even with relatively low 

nonlinearity. 

Solitons are indeed a fundamental phenomenon which exists in a large variety of 

systems, from Bose-Einstein condensates [24, 25], protein chains in biophysics [26], 

and in periodic photonic lattices [27, 28, 29 . 

Optical nonlinear effects can be observed in any material with the correct form of 

nonlinearity. Centrosymmetric solid materials exhibit the Kerr nonlinearity which 

causes the material to have an intensity dependent refractive index. Other cen-

trosymmetric materials such as liquids and gasses can exhibit the same behaviour 

without a fundamental Kerr nonlinearity n2. In these cases the nonlinearity arises 

from thermal effects. 

Materials not exhibiting centrosymmetry can be susceptible to photorefractive 

nonlinearity, where an applied electric field can produce a charge distribution in the 

material, locally altering the refractive index. 

I utilise materials with both Kerr-type and photorefractive-type nonlinearity. I 

use licjuids with thermal Kerr-type nonlinearity to investigate tuneable periodic pho-

tonic structures, and Lithium Niobate to investigate soliton propagation in waveg-

uides with photorefractive nonlinearity. 

1.4.4 Photorefractive Nonlinearity 

Photorefractive media are usually non-centrosymmetric crystalline materials, 

and contain a high concentration of weakly bound charge carriers (electrons). 

These charge carriers can be excited to become mobile by the electric field of a 

sufficiently high intensity incident light beam. These photo-excited charge carri-

ers non-uinfornily redistribute throughout illunnnated areas, creating an electric 

field and altering the local refractive index by An through the electro-optic effect 

An = -O.bn^rpE for a space-charge electric field E caused by the separation of 

charges, refractive index n, and Pockels coefficient rp [1 . 

Lithium Niobate (LiNbOa) is such a photorefractive crystal, and is widely used 

in Nonlinear Optics for this reason [30, 31, 32]. Other materials include Potassium 

Niobate (KNBO3), and Strontium Barium Niobate (SBN). Dopants in these crystals 

provide a source for mobile charge carriers in the form of donor electrons of acceptor 

sites for charge recombination. These dopants absorb incident light and generate 



mobile electrons, whieli migrate through the crystal in response to the electric field 
associated with the illuminating beam. These mobile electrons will eventually re-
combine with a dopant centre away from illuminated areas. This constant transfer 
of charge away from illumination leads to the generation of an electric field inside 
the crystal. This causes a change in refractive index in regions under illmnination, 
through the electro-optic effect. 

The redistribution of charges can remain for long periods of time (hours to days), 
even after the illuminating beam has been turned off. Since only high intensity 
beams have a strong enough influence on the medium to mobilise charges, a weak 
beam can be used to probe the refractive index structure of such a crystal. This 
has lead to devices which serve as an optical memory, where a high intensity beam 
'writes' a refractive index profile into the crystal, which a probe can later 'read' 
[33]. The memory can be erased by illumination of the whole crystal, resulting in 
redistribution of charges throughout the crystal. 

1.4.5 Nonlinearity in Liquids 

The refractive index of many materials (particularly liquids and gases) depends 
on its density, which in turn depends on the temperature of the material. This is 
known as the therrno-optic effect, which governs the material's change in refractive 
index diie to a change in temperature AT [16]: 

n = no + 
fdn \ 

AT, (1.17) 

where no is the refractive index of the material before any temperature change, 
and T is the temperature of the system. dn/dT is known as the tliermo-optic 
coefficient, which can be either positive or negative and depends on the material. 
Liquids for example usually have a negative thermo-optic coefficient because of 
their relation between density, temperature, and refractive index. Liquids typically 
display an order of magnitude higher thermo-optic coefficient of around 10"^ 
when compared to solids which often exhibit a thermo-optic coefficient around 10"^ 
K- i [16]. 

The refractive index of a bulk volume of liquid can be controlled globally by 
changing the temperature of the whole volume, or locally by introducing a local 
heat source. One way of introducing a heat source is to illuminate part of the 
liquid with a beam of laser light, of a wavelength which will be slightly absorbed 
by the liquid. The temperature of the illuminated liquid will be increased due to 
absorption of a fraction of the propagating light. For the purposes of this thesis I 
will look at liquids which absorb light with a constant fraction. This is connnon 
for many liquids until a very high light intensity, at which point the absorption can 



saturate. 
Higher intensity regions of a Gaussian beam will result in more photons ab-

sorbed, which will lead to a higher change in temperature than lower intensity 
regions of the beam. This leads once again to an intensity dependent refractive 
index, since the change in temperature is a function of the intensity AT{I)-. 

n(/) = n o + ( ^ ) A r ( / ) , (1.18) 

where I is the intensity of the propagating beam, no is the refractive index in the 
absence the beam, and dn/dT is the thermo-optic coefficient. 

The intensity induced temperature change T{I) is governed by the heat transport 
equation: 

BT 
( p o C ) — = (1.19) 

where PqC is the heat capacity per unit volume, Kt is the thermal conductivity, a is 
the linear absorption coefficient, / is the intensity of the propagating light, t is time, 
and V denotes the partial derivative in each relevant spatial coordinate. While an 
incident Gaussian laser beam may only heat the liquid locally, this heat will spread 
through the liquid over time t as defined by Ec[. 1.19. For most liquids this heat 
transport is a relatively slow process, occurring over a timescale of microseconds 
to milliseconds. Pulsed laser beam will thus be just as effective in heating a liquid 
along the propagation direction as a continuous wave laser beam. When using a 
pulsed laser beam the pulse energy will determine the amount of heating in the 
medium [16]. 

Such heat transport leads to a refractive index change in regions where the 
heating laser beam is not present. This is known as a nonlocal effect, in which 
the properties of the system far from the heat source are still under its influence. 
Nonlocal effects can have a significant impact on a beam propagating in such a 
medium [34, 35]. These nonlocal effects can be used to create an indirect interaction 
between two laser beams, allowing one photon to influence another through the use 
of a nonlinear medium. 

1.4.6 Nonlinear Beam Interaction in Bulk Liquids 

The interaction between a high intensity beam and an absorbing liquid opens up 
the possibility for one laser beam to directly influence another. When propagating 
in a vacuum, photons have no mechanism with which to interact. If however one 
laser beam modifies a medium for example with a thermal interaction (Eq. 1.19), 
a second laser beam propagating through the modified rnediiun will be effected by 



the first. I investigated this nonlinear interaction for two beams propagating in a 

bulk hquid, both experimentally and theoretically. 

I looked at the interaction between two continuous wave laser beams with wave-

lengths 532 nm (pump) and 633nm (probe), in a bulk liquid with a negative thermo-

optic coefficient. The pump beam generates the nonlinear effect in the liquid, while 

the probe beam allows us to investigate this induced refractive index change. The 

hquid used is ethanol, doped with Iodine to absorb 45.5% of 532 nm C W laser light 

over a distance of 5 cm to enhance the a defocusing nonlinearity of this liquid. 

Theoretically I consider the steady-state propagation of two paraxial beams 

with different frequencies. I and employ a system of equations for slowly-varying 

amplitudes of optical waves with weak absorption, intensity induced thermal self-

action (Eq. 1.18), and heat-conduction equation (Eq. 1.19) which account for the 

wave-induced heating of the medium with a temperature profile T{x,y): 

^ + z A A X ^ = - To)A, - 0.5(5iAi, (1.20) 

Q ̂ ^ J 

+ iD2A^A2 = - To)A2 - i).552A2, (1.21) 

k t A ^ T = - S2\A2\\ (1.22) 

where z is the longitudinal coordinate. A x is the Laplacian in terms of transverse 

coordinates x and y, Aj{x,y,z) — z) is the normalised amplitude 

of the electric field (Ej) of the pump or probe beam, where Cq is the speed of light 

in a vacuum, Cq is the permittivity of vacuum, and Uj is the refractive index of the 

medium for the corresponding wavelength. Dj = l/{2kj) is the diffraction coeffi-

cient for wavemnnber KJ = 2IT/X. SJ is the linear absorption of the corresponding 

wavelength of light, Kt is the thermal conductivity, and dUj/dT is the thernio-optic 

coefficient of the medium. 

For simplicity I consider a medium with weak absorption, where ~ 

0. I consider two propagating beams with incident conditions Ai = 

El exp{—x^/wf — if /w'\) and A2 = E2 exp{—{x - dY/w'^ - y'^/wl + ik292x), where 

d is the initial distance (at 2 = 0) between the pump and probe beams, which 

are propagating with an initial angle 62 (Fig. 1.12), Wi and W2 are the widths 

of the pump and probe beams. The temperature is held at a constant of Tq on 

the boundaries of the system. The refractive index is modified l)y an amount 

Anj{x,y, z) = dnj/dT[T{x,y, z) — Tq]. This refractive index difference results in 

the defocusing of both the beams, and a modification of the propagation profile of 

the probe beam. Several interesting effects were observed, the most prominent are: 

reflection of the probe beam from the pump; thermal defocusing; and nonlinear 



P'igure 1.12: Schematic showing Hnear pump and probe beam propagating 
through a nonlinear liquid medium with initial distance between the beams 
d and initial angle between the beams 62 • 

reflection. To begin I look at the nonlinear interaction resulting in reflection of the 
probe beam from the pump. 

The probe beam trajectory was characterised using Snell's law [36], 
n2{x) cos{d2{x)) = n2{d) cos{92{d)), and the approximation that the angle between 
the two beams is small {92{x) ^ 7r/4), and weak inhoniogeneity (n2(x) - n2{d) < 
n2{d)). This gives a simple relation: 

el{x) = elid) + 2[n2{x) - n2 (d ) ] /no2 , ^1.23) 

where no2 is the refractive index in the absence of radiation, and d is the initial 
distance between the two beams. As the probe beam becomes parallel to the pump 
beam, the distance between the two beams will be a minimum with a distance of 

dmin = no20l{d)/2. 

There is a maximum initial angle between the beams 9c after which total internal 
reflection of the probe from the purnp induced refractive index profile will not occur. 

Oc = \/2[n2(c/) - no2]/no2. (1.24) 

The thermal profile can be determined from (Eq. 1.22) with a Gaussian energy 
source: 

T ( r ) = To + ^ [ H [ B . / w , ) - h{r, w,) 
A-KKt 

; i .25) 

where the total power of the beam is Pi = 2ti \ Ax\^rdr = TreoConi^i and 
the temperature distribution function: 

H{q) = / dt{l - e-')lt = Ce + l{2e) - Ei{2 -
Jo 

(1.26) 



where Ce = 0.5772156649 is the Eiila constant and Ei{-q) is the integral expo-
nential function. If d/wi > 1 we can use the asymptotic expression H{d/wi) ^ 

2hi(1.8874d/u.ii). The temperature profile is plotted in Fig. 1.13. 

A7,/|, rel. units 
1.0 

Figure 1.13: Transverse distribution of (solid line) the normalised temper-
ature difference between the given point and the boundary of the liquid, 
(dashed line) The normalised intensity of the Gaussian pvurip beam for liquid 
contained in a cuvette of radius R = 20ivi. 

Using (Eq. 1.25) and (Eq. 1.26) we can find the critical angle in terms of pump 
intensity: 

er = 
no2 

(in-) 
dT [ T ( 0 ) - T ( d M ) ] = 

I 
nKTno2 

dn-) 
dT 

ln(1.8874ri/w;i). (1.27) 

From these equations we can see that the critical reflection angle depends on 
the pump intensity and the initial distance between the beams d. This is due to 
the nonlocal character of the thermal nonlinearity. Such behaviour is not seen in 
other nonlinear media (e.g. quadratic or cubic nonlinear crystals) because they 
lack nonlocal interactions. A thermal nonlinearity is inherently nonlocal because 
of the diffuse nature of heat flow, where regions of the medium far from the heat 
source (the pump beam in this case) effects the propagation of the probe. I sinuilate 
the nonlinear reflection using numerical solution to equations Eq. 1.20, 1.21, and 
1.22. Fig. 1.14(a) shows a calculated profile of propagated beams, compared to 
experimental reahsation (Fig. 1.14(b)). 

Next I look at the nonlinear beam interaction resulting in thermal defocusing 
and nonlinear reflection of the probe from the pump. As we have seen the negative 
thermal nonlinearity results in the reflection of the probe beam from the pump. 
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Figure 1.14: (a)Theoretical and (b) experimental result for a pump and 
probe beam propagated through nonlinear liquid with pump power Pi = 21.4 
mW, 92/00 ~ 0.7. 

This reflection becomes more complicated at higher input power due to defocusing 

of the pump beam. To estimate the defocusing analytically I use the aberrationless 

approximation [37], in which the normalised width of the beam w{z) satisfies the 

equation: 

w 
dz"^ 

= L j f j w + L j j w ^ exp (1.28) 

where Ldi/j = k\Wi/2 is the hiiear diffraction length and 

Ldef = 

TTKr 

26iPidn/dT 
(1.29) 

is the defocusing length. In the case where the defocusing is stronger than the 

diffraction, nonlinear broadening of the beam is observed up to z ft; Ldef, and the 

beam has a divergence angle which is independent of the initial beam width: 

Gdef — 
l6iPidn/dT 

TXHtUQ 
(1.30) 

Comparing Eq. 1.27 and Eq. 1.30 we can see that the critical angle of total 

reflection roughly coincides with the divergence angle of the defocusing beam. These 

two effects are easily distinguished due to difl'ering wavelengths of the pump and 

probe beams. 



1.4.7 Nonlinear Beam Interaction in Bulk Liquids: Experimental 
Observations 

Iodine (I2) crystals were dissolved in etlianol to a concentration of approximately 
10 rng per 100 ml. Iodine was chosen because of its absorption profile (highly 
absorbing at 532 nm, low absorption at 632.8 nni). This liquid was place in a glass 
cuvette with dimensions 50 x 20 x 20 mm. Two laser beams (the pump with A = 532 
nm, and probe with A = 632.8 am) were aligned to co-propagate through the liquid, 
with an adjustable initial displacement and angle. The output was imaged, using 
a combination of polarising beam splitter (PBS) and filters to distinguish between 
the probe and pump beams (Fig. 1.15). 

X=633 nm 

Figure 1.15: Experimental setup: a 532 nm C W laser beam (pump) is 
polarised with a A/2 wave plate before being focused and combined with a 
633 nm focused laser beam (probe). These two beams are co-propagated 
at an angle using a beamsplitter through a 50 mm long cuvette containing 
0.1 nig/niL of Iodine dissolved in Ethanol. The probe and pump beams are 
imaged with a colom- CCD. 

The pump beam has optical power between 0 — 30 mW, while the probe beam 
has a fixed power of 0.71 mW. The probe power is reduced by the beamsplitter 
used to combine the two beams, resulting in a power of 0.056 niW propagating 
in the liquid. The linear absorption of the licjuid at 532 nm was measured to be 
45.5% over 50 nnn. Each beam is independently focused with a lens. The output 
is imaged with a lens onto a CCD camera. The waist of the pump beam is 18.7/im. 
I experimentally study the reflection at several pump power levels and intersection 
angles and positions inside the liquid. 

Using Eq. 1.27 we can estimate the critical angle for beam reflection under the 
experimental conditions: Pi = 21.4 mW, dn/dT = 4 x 10*'' deg"^ Kt = 1.7 x lO*"' 
VV cm- ideg - ' , n-i = 1.36, 5 = 0.12 c n r ' , and d/w^ = 5 we get « 0.018 rad. 



which agrees (juahtatively with the experimental measurement of 02 = 0.008 rad. 9c 

is measured physically using trigonometric relations between the two laser beams, 

over the propagation distance. This manifests itself in the shape of the probe beam, 

where the pvmip is acting like a convex nonlinear mirror (Fig. 1.14). 

We can see that in bulk material's nonlinearity has a very large effect on propa-

gating beams. The nonlocal character of the thermal response cause the nonlinear 

effect to spread beyond the propagating pump beam. These nonlinear effects show 

how the pump beam can effect the propagation of the probe. This interaction comes 

from the influence of the pump beam on the medium. Without the medium the two 

beams would not interact at all. This is a key point about nonlinear interactions: 

they must occur in a nonlinear medium. While there are many bulk nonlinear media 

which allow for beam interaction, we can expand this intensity dependant refractive 

index change to explore rich new areas of physics by structuring the media, for 

example by adding waveguides, or more generally adding a periodic change to the 

refractive index, in one, two or three dimensions. 

1.5 Nonlinearity in Periodic Systems 

A range of new and interesting physical phenomena can be observed when we 

introduce periodicity to nonlinear media. We can take what we know about light 

propagation in periodic media (Sec. 1.3) and combine it with what we know about 

light propagating in nonlinear media (Sec. 1.4). 

Interest in nonlinearity in periodic photonic structures began in 1988 when 

Christodoulides and Joseph showed that discrete solitons in an array of coupled 

nonlinear waveguides could exist [27]. Such solitons were observed a decade later 

with high power femtosecond pulsed laser and planar Ahnniuiimi Gallium Arsenide 

waveguide (AlGaAs) array [38]. Waveguide arrays can favour the formation of soli-

tons because the diffraction can be controlled by the coupling between the waveg-

uides (Sec. 1.3), resulting in lower power recjuired for soliton formation when com-

pared to a bulk medium. Nonlinearity in periodic systems also allows for other 

important effects such as soliton formation in self-defocusing media [39], and many 

other interesting phenomena. 

Ligfit propagating in discrete periodic optical media can be studied theoretically 

using coupled mode theory [3] [27], and the tight binding api)roxiniation from solid 

state physics [4]. We can modify the coupled mode theory we already have (Eq. 

1.2) for a ID array of coupled waveguides, to include a nonlinear term [27]: 

(lA 

+ f^^n + + + = 0, (1.31) 



where An is the amphti ide of the propagating mode in waveguide n, and the two 

neighbouring waveguides have amphtude A^-i and P is the propagation con-

stant for the nonhnear mode, C is the couphng coefhcierit between the waveguides 

n, n - 1 , n + 1 , and 7 is the nonhnear coefhcient. 

Just as we have with the hnear case, we can get a more complete understanding 

of the system in both one and two dimensions by expanding this model of the system 

to the full continuous wave equation. In this case we use the nonhnear Schrodinger 

Equation, written in a time independent form: 

dA fd^A d^A^ 
(1.32) 

where A{x,y,z) is the normalised electric field amplitude, D = ZQX/[AmoXoya) is 

the diffraction coefficient, A is the wavelength of light in a vacuum, UQ is the refrac-

tive index of the medium, x and y are the transverse coordinates, 2 is the propaga-

tion coordinate which is normalised to Xq, yo and Zq respectively. F{x,y,z, is 

a function which defines the refractive index profile and nonlinear response through 

the material. 

In a hnear periodic system we have a fixed refractive index contrast, determined 

usually during manufacture. W i t h the intensity dependant refractive index provided 

by nonlinearity we can now study periodic media which contain a defect, where 

one or more of the waveguides are slightly different (or even nonexistent!) to the 

otherwise uniform periodic change in refractive index. 

(a) (b) 

A 
Figure 1.16: (a) refractive index of a periodic nonlinear medium (shaded 

grey) with a low intensity input Gaussian mode (blue line), (b) The same pe-

riodic medium with a high intensity input Gaussian mode (blue line) causes a 

local change in the refractive index on the input waveguide when the nonlin-

earity of the material is negative. Dashed lines indicate liner refractive index 

profile for comparison. 

Fig. 1.16 shows how a nonhnear defect in a periodic structure is formed when 

the nonlinearity is negative. Fig. 1.16(a) shows the case when we have an array 



of square waveguides with a low intensity Gaussian input. If we input a high 
intensity Gaussian mode into a single waveguide (Fig. 1.16(b)), that waveguide 
will experience a reduction in refractive index because of the nonlinearity. If the 
nonlinearity were positive the refractive index in that waveguide would increase. 

Nonlinearity in such periodic structures forms defects, and allows us to study 
nonlinear defect modes. A defect is any irregularity in an otherwise uniform periodic 
array. A defect mode is a mode which resonates with such a defect, and can only 
exist because of it. These modes include discrete solitons and gap solitons, and 
can often display counterintuitive properties such as localisation of a beam under a 
defocusing nonlinearity. These properties do not show up in bulk media: they are 
due to the periodic nature of the material, and the nonlinearity causing the defect. 

In a homogenous medium with a positive Kerr (-like) nonlinearity an increase 
in the intensity of a beam can be seen as an increase in the propagation constant 
which pushes the diffraction relation (Fig. 1.3(a)) into the total internal reflection 
gap at K = 0. Such a beam is decoupled from the linear diffraction relation (Fig. 
1.3(a)) and so can propagate in the form of a spatial soliton, which does not change 
its shape as it propagates. It follows that when a homogenous medium has a neg-
ative nonlinearity the propagation constant would be reduced, leading to increased 
spreading. 

Self trapping is possible in periodic media in a similar way to homogenous media 
when the nonlinearity is positive. The propagation constant is increased for a single 
waveguide, trapping the light in the high index waveguide, allowing a beam to 
propagate in the form of a discrete soliton. It is also possible to use Bragg reflections 
to trap a propagating beam in a single defect waveguide, in the form of a gap soliton. 
Gap solitons also have the curious property in which a negative nonlinearity can 
cause a propagating high intensity beam to focus. 

1.5.1 Discrete Solitons 

Discrete solitons occur in periodic (discrete) photonic structures with positive 
( 7 > 0) nonlinearity. A high intensity beam coupled into a single waveguide in a 
ID array will cause a local increase in the refractive index of the input waveguide. 
The light will localise in this high index defect and can propagate as a soliton. 
While most of the light is confined to the input waveguide, coupling between close 
neighbours can still occur. 

Discrete solitons were first observed in planar waveguide arrays [38]. Their dy-
namics were studied [40] and further control of the solitons was investigated through 
diffraction management [41]. Discrete solitons and self-defocusing effects were also 
observed [42] in the same periodic medium. Discrete solitons, dipole solitons, and 



soliton chains have also been observed in optically indnced strnctures [43, 44, 45, 46 . 
Martin et al. also showed that discrete solitons in partially coherent photonic lat-
tices lead to a range of new interesting phenomena such as lattice dislocation and 
the formation of polaron-like structures [47 . 

A soliton mode in this configuration will not contirme to couple further into the 
array, and will maintain its intensity profile as it propagates. This is due to the 
increase in propagation constant resulting from the high index defect. This shifts 
the mode into the total internal reflection gap at K = 0 (Fig. 1.17(a)), where it is 
decoupled from modes associated with linear discrete diffraction. 

1.5.2 Gap Solitons 

Periodic media with a negative nonlinearity will not experience the same focusing 
in this case. A high intensity mode will push (5 down, and since the total internal 
reflection gap always occurs at higher propagation constant than the first band (Fig. 
1.5), such a medium can never enter this region. 

Gap solitons occur when the propagation constant of a mode is pushed into the 
Bragg reflection gap in the diffraction relation. Previously observed discrete solitons 
only exist in the total internal reflection gap. For periodic media with a positive 
nonlinearity this occurs in the second band when K = TT (Fig. 1.17(a)). Such beams 
will again propagate as solitons, this time with a more complicated phase structure. 

Gap solitons in waveguide arrays with a focusing nonlinearity were first observed 
experimentally in 2003 [48], after the excitation of Bloch waves in higher order 
transmission bands [9]. Such observed gap solitons [9, 48, 49] exist in the Bragg 
reflection gap, a phenomenon not possible in bulk media. 

Somewhat surprisingly a periodic medium with a negative nonlinearity can also 
experience self focusing in the form of a gap soliton. Discrete solitons can not be 
achieved with such a nonlinearity because the total internal reflection gap always 
has a higher (5 than the mode, and the nonlinearity will reduce This reduction 
in (3 can push a mode into the Bragg gap however, at the edge of the band where 
K = TT (Fig. 1.17(b)). This results in the mode decoupling from the discrete diffrac-
tion band, and the formation of a gap soliton [43, 44, 50, 51]. The phase structure 
produced is staggered: each waveguide is out of phase with the neighbouring waveg-
uide. This results in points of zero energy in between the waveguides, which has 
become a signature of the formation of gap solitons in periodic media with negative 
nonlinearity. 



Figure 1.17: (a) Discrete solitons occur in periodic media with period d 
with 7 > 0 when the propagation constant of a mode is increased into the 
total internal reflection gap at k = 0. Gap solitons occur in the same media 
when modes in the second band are pushed up into the Bragg reflection gap. 
(b) Gap solitons occur in periodic media with 7 < 0 when the propagation 
constant of a mode is decreased into the Bragg reflection gap at K — w. Modes 
in higher order bands can be excited into higher order bands in a similar way. 

1.5.3 Other Nonlinear Effects in Periodic Photonic Structures 

Many other interesting nonlinear effects in periodic photonic structin-es have 
been observed. Optically induced waveguide arrays [52, 53] are a connnon medium 
for the observation of such nonlinear features because of their reconfigurability. Ef-
fects such as discrete vortex solitons [31, 29, 54, 55, 56], two dimensional surface 
solitons [57], and necklace-like solitons [58] have all been observed in optically in-
duced structures. Vortex solitons c:an be stabilised by a nonlinear medium [59], 
and have been shown to create stable waveguides in a nonlinear medium leading to 
second harmonic generation [60]. Anisotropic solitons in 2D square lattices occur 
when the effects of total internal reflection and Bragg reflection are combined [61]. 

1.6 Nonlinearity in Liciiiid Infiltrated Periodic Photonic 

Structures 

In this thesis I study s[)atial nonlinear effects in periodic photonic structures. 
My approach is to use liquid infiltrated periodic microstructures as a scaffold in 
which to investigate spatial nonlinear effects. I chose to use liquid as a nonlinear 
waveguide because of its temperature tuneable refractive index (Sec. 1.4.5) and 
thermal nonlinearity (Sec. 1.4.6). 



Using such periodic arrays of nonlinear waveguides I study tuneable nonlinear 
waveguide arrays in one-dimensional and two-dimensional periodic arrays, such as 
temperature tuneable discrete diffraction, nonlinear defocusing, and truncated non-
linear Bloch-wave solitons. I then study spatial nonlinear effects such as nonlocal 
gap solitons, the crossover from discrete to homogenous systems, and surface vortex 
states in two-dimensional arrays. I study the majori ty of these systems in liquid 
infiltrated Photonic Crystal Fibres. 

1.6.1 Photonic Crystal Fibres 

Photonic crystal fibres (PCFs) are glass or polymer fibres with a photonic mi-
crostructure along their length. Such a niicrostructure is usually provided by an 
array of air filled holes (known as the cladding region) surrounding a solid core 
(Fig. 1.18). The size and arrangement of these holes can be tuned to give a wide 
variety of optical phenomena such as endlessly single mode index guiding [62], and 
photonic bandgap guiding [63]. 

The periodic nature of the refractive index profile gives rise to bandgap effects 
in PFCs. These bandgap properties are determined by the exact structure of the 
cladding region, and can be tuned with subtle variations of the structure. 

^ ^ ^ ^ ^ i i i ^ l a d d i n g 

Figure 1.18: A Photonic Crystal Fibre is made up of a core and a periodic 
change in refractive index for the cladding. 

Photonic crystal fibres were first suggested in 1976, as a cylindrical Bragg waveg-
uide, where a periodic refractive index is arranged around a low index central core 
[64]. Another approach was taken by Knight et al. [65], whereby silica capillaries 



are formed by drilling a bulk preform of silica glass. This is then heated and drawn 

down (Fig. 1.19) to form a fibre optic cable, in which the profile of the drilled pre-

form is maintained. The cladding region of the first PCFs provide a region of lower 

index around a solid core, even though the fibre is made from a single material. 

Light is guided in the higher index core region via total internal reflection due to 

this refractive index difference. Bandgaps were not possible in these early fibres due 

to small hole size, and low filling fraction [66 . 

Scale ~ 5 cm 

Drawing direction 

Scale ~ 50 /jm 

Figure 1.19: Heat is applied to a PCF preform which is then drawn down 

to the desired size. The profile of the preform is maintained through careful 

drawing process, over significant change in diameter. 

These PCFs had the extraordinary property of being single mode for a wide 

range of wavelengths [62], This was understood to be a property of the structure, 

whereby higher order modes 'leak' from the core into the cladding due to their mode 

profile, while the fimdamental mode is always contained in the core [62]. Features 

in the profile of a mode with a size on the order of the hole spacing will be filtered 

out by the structure, while modes larger than the hole spacing will be contained in 

the core. By choosing the geometry it is possible to select which modes are gvnded. 

The cladding structure can also be used to tune the dispersion properties of a 

PCF [67], and even to produce broadband near-zero dispersion [68]. This can be 

used for supercontinuum generation and nonlinear optics [69]. More exotic struc-

tures such as dual core fibres can be used as directional couplers [70] or polarisation 

splitters [71]. If the fibre itself is made from a nonlinear medium the core can exhibit 

nonlinear properties [72]. 



Photonic crystal fibres can also guide light using the photonic bandgap effect, 
where the periodic str\icture of the cladding region acts as a Bragg reflector. This 
allows for fibres with a hollow core to guide light [63]. Theoretical modelling of 
bandgaps in a P C F can take the form of coupled mode theory [73], the nmltipole 
method [74, 75], or more recently as layered inclusions [76]. 

While it is possible to engineer fibres to control dispersion, select guided modes, 
and even guide light in a hollow core, all of these properties nmsh be determined and 
engineered into the fibre structure. Every time one wishes to test another property 
a new fibre must be produced. As suggested by Monro et at. [77] the cladding of a 
P C F can be filled with a liquid or gas, to influence the guiding of light and enhance 
the interaction between infiltrating liquid or gas and light. This allows for the 
possibility of using such fibres for sensing applications [77, 78, 79]. The introduction 
of another medium into a P C F allows for dynamic tuning of the structure and hence 
its optical properpties [80, 81, 82, 83, 84] as well as the enhancement of nonlinear 
effects [85, 86, 87, 88]. Such devices have recently been shown as ultra-sensitive 
refractive index sensors [89 . 

We can utilise the cladding region of a P C F (Fig. 1.18) by displacing the air in 
the cladding structure. If we use a medium with a higher refractive index than the 
material of the fibre itself the cladding region will guide light instead of the core. 
In order to achieve infiltration of the capillaries making up the cladding region, it is 
important to chose a medium which can easily displace the air in these capillaries. 
A simple method of infiltration is to use a liquid, which can spontaneously fill a 
capillary through capillary action. 

1.6.2 Liquid Infiltration 

Liquid fills a thin capillary through liquid-capillary-air interaction known as 
capillary action. The contact angle of the liquid with the capillary allows for an 
imbalance in the surface tension forces in the liquid, resulting in the liquid 'climbing' 
the walls of the capillary. The height of the liquid h is governed by the equation: 

= (1.33) 
pgr 

where ^ is the liquid-air surface tension, 9c is the contact angle between the liquid 
and the capillary, p is the density of the liquid, g is the local gravitational field 
strength, and r is the radius of the capillary. From this eciuation one can see 
that a larger filling height can be achieved with a smaller radius capillary, lower 
density, smaller contact angle, or larger surface tension. It is also possible to offset 
the gravitational force by tilting the capillary on its side, or applying a negative 
pressure to aid in capillary action. 
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Figure 1.20: Capillary action for a liquid with an interface which: (a) pro-

duces a concave meniscus {6c < tt/2) results in hquid being drawn up the 

capillary by a distance h\ (b) produces a convex meniscus {6c > tt/2) leads 

to a reduction of the height of the infiltrating hquid in a capillary. 

A liquid-solid interface can result in either a concave, or convex meniscus. A 

concave meniscus has a contact angle 9c < 7r/2. resulting in a positive capillary 

action where h is increased (Fig. 1.20(a)). A convex meniscus has a contact angle 

9c > 7r/2, resulting in a negative capillary action (Fig. 1.20(b)). 

Capillary action can easily be used to fill the holes of the cladding region of a 

PCF due to their small radius. Many liquids (some oils, aqueous solutions) produce 

a concave meniscus at an air-glass interface, which provides us with a wide range of 

liquids to use in the infiltration of silica glass PCFs. Not only do liquids commonly 

display nonlinearity, but their refractive index is often tuneable by varying the 

temperature of the licjuid (Sec. 1.4.5). 

By infiltrating the cladding region of a PCF it is possible to guide light in the 

high index liquid filling each hole. The coupling of light between the holes can be 

tuned by varying the refractive index contrast between the infiltrating liquid and the 

glass or polymer making up the PCF (Sec. 1.3.2). This gives us a tmieable array of 

nonlinear waveguides, in which we can propagate light in the form of cladding modes 

along the length of an infiltrated PCF. The nonlinearity of the liquid provides an 

opportunity to investigate nonlinear beam propagation in these periodic structures. 

Many liquids also exhibit low absorption of a variety of wavelengths available in 

high-power lasers both simplifying theoretical sinmlations of these systems 



and allowing us to achieve nonlinear interaction over a greater distance. 

A selective filling approach has been shown to introduce dynamically tuneable 

birefringence into an infiltrated PCF [91]. Selective filling of holes allows for the real-

isation of other waveguide geometries in a single fibre. In-fibre absorptive polarisers 

[92], ultra-sensitive refractive index sensors [89], and even direct measurement of 

the bands have been demonstrated 

1.6.3 Assumptions and Experimental Conditions 

I have listed for convenience the experimental apparatus and conditions. Unless 

otherwise stated explicitly in a jjarticular work these are the conditions under which 

experimental and theoretical studies are carried out. 

Photonic Crystal Fibre 

For my studies I used three different fibres from Crystal Fibre (LMA-15(5), 

LMA-15(7), and F-SM15). I measured the properties (hole size, spacing, core size 

etc.) of each fibre using a microscope and calibrated image. Several other fibre 

types were also tested for completeness and as such are also listed in Table 1.1. 

Liquids 

In rny experimental research I used castor oil and Cargille Series A liquids for 

infiltration. Liquids used in the experiments and their properties are listed in Table 

1.2. Measurements ate for ambient temperature of 25°Cand 1 Atmosphere pressure. 

Liquid Infi l trat ion 

I infiltrated fibres by sitting one end inside a small reservoir of the infiltrating 

licjuid, with the other end open to the air (Fig. 1.21). This is achieved by sitting 

one end of a fibre in a small syringe, in which the infiltrating liquid occupies the 

tip. leaving the other end of the fibre exposed. Capillary action is (}uite strong with 

such small capillary radii (Table 1.1), leading to simple and effective infiltration 

of all capillaries in a PCF. The length of fibre the liciuid will fill can be estimated 

using Eq. 1.33 with a density of 863 kg/m^, a surface tension of 0.03 N/ni, and a 

capillary radius of 2.5|Uni. This gives a height for Series A 14800 oil in LMA 15 of 

h = 2.83cos(6')m. Even for a small contact angle of 85° this is a significant length 

of fibre {h = 0.25m). 

I utilise this concept of liquid infiltration to investigate light propagation in 

tuneal)le nonlinear periodic photonic structures. I begin by developing platforms 

for the study of linear and nonlinear beam propagation in ID periodic structures. 



Table 1.1: Pliotonic crystal fibres used for experiments. A is the pitch (dis-

tance between the centre of two holes), d is the diameter of a single hole, d/A 
is the relative hole diameter, dr is the diameter of the core. 

Name A (/iin) d (/iin) d/A 4 (/^m) Image of Fibre 

LMA-5 

LMA-10 

LMA-15 (5) 

LMA-15 (7) 

LMA-20 

F-SM15 

2.85 

7.18 

9.78 

9.81 

13.22 

10 

1.12 

3.35 

4.46 

4.̂  

6.32 

0.423 

0.466 

0.456 

0.498 

0.478 

0.5 

10 

15 

15 

20 

15 ±5 

20/̂m 



Table 1.2: Liquids used in experiments and their properties, n is the refractive 

index, ^ is the thermo-optic coefficient, p is the Hquid's density, and ^ is the 

liquid-air surface tension. 

Name n 25°C(532 nm) ^ (K-i) p 25°C(kg/m3) ^ 25°C(N/m) 

Castor Oil 1.46 -2.5x10"^ unknown unknown 

Series A 14700 1.476 -3.92x10"" 848 0.029 

Series A 14800 1.484 -3.95x10-4 863 0.030 

This is achieved using new techniques for the fabrication of I D waveguide arrays in 

SU8 polymer, and by developing a method for the selective infiltration of PCFs. I 

then move on to discuss more fundamental mode propagation in I D periodic arrays 

with rny observation of truncated nonlinear Bloch-wave solitons in Lithium Niobate 

waveguide arrays. 

I then move to investigating nonlinear cladding modes in liquid infiltrated PCFs. 

I observe nonlocal gap solitons and discover the point at which such a system 

switches from focusing to defocusing. Finally I theoretically explore surface states 

of vortex modes propagating around the core of a liquid infiltrated PCF, and take 

the first steps to experimental realisation of this phenomena. 



Figure 1.21: Fibres being infiltrated with a liquid. A fibre sample is placed 
in a reservoir of the infiltrating liquid occupying the tip of a syringe. One 
end of the fibre is left exposed to the ambient atmosphere. 



CHAPTER 2 

Light Propagation in ID Periodic Arrays 

In order to study light propagation in tiuieable nonlinear periodic photonic struc-

tures one first needs a platform to produce a tuneable nonlinear array of waveg-

uides. Many fundamental nonlinear effects in periodic photonic structures have 

been demonstrated in ID periodic arrays of coupled nonlinear waveguides. It is 

therefore logical to begin by looking at ID periodic arrays of liquid waveguides, the 

tuneable refractive index of liquids allows for highly tuneable coupling between the 

waveguides, while the nonlinearity enables us to study nonlinear beam propagation. 

Typical waveguide size (1 — 10 /xm) for single mode guiding at visible wavelengths 

are ideal for liquid infiltration. Capillary action will be strong for many liquids, 

even with low contact angle oils, for infiltration of waveguides with a length larger 

than the coupling length between waveguides. While single capillaries are common, 

periodic arrays of such small capillaries in high quality periodic arrays are not easily 

obtained. 

I start by looking for a platform on which we can imprint or construct a periodic 

array of air fiUed capillaries which can be infiltrated. A simple method of photolitho-

graphically defined capillaries in an epoxy polymer (SU8) is used to create a high 

quality periodic structure in ID. The liquid infiltrated waveguides are characterised 

in the linear regime, as the coupling between waveguides is timed using an external 

heat source. I then move to selectively infiltrating the capillaries of a Photonic 

Crystal Fibre in order to expand our understanding of these systems by looking 

at nonlinear propagation, and develop a method of controlling light propagation in 

more complicated ID structures without the need for expensive or time consuming 

platform development. I then investigate new fundamental nonlinear effects in well 

known periodic nonlinear waveguides in Lithimu Niobate in the form of truncated 

nonlinear Bloch waves. 



2.1 Platform: Polymer Waveguides 

2.1.1 Introduction 

The advent of air structured fibre initiated an entire field of photonic investiga-

tion [66]. The abihty to realise periodic structures with high index contrast enables 

flexible dispersion engineering and strong optical confinement providing ideal con-

ditions for studying nonlinear optical phenomena. 

More recently, researchers have explored the use of air structured fibre as a 

platform for fluid infiltration [80]. For example, air structured fibres have been 

infiltrated with fluids to study tuneable and nonlinear propagation in two dimen-

sional waveguide arrays [85] where the high thermo-optic nonlinearity of fluid can be 

exploited. The ability to infiltrate air structured fibres with fluids also suggests ap-

plications as refractive index sensors with many elegant designs being demonstrated 

[89]. 

However, the propagation of light in two-dimensional (2D) arrays of waveguides 

is highly sensitive to imperfections of the structure, because the light in each waveg-

uide couples to more than two neighbouring waveguides. Thus, in 2D arrays there 

is always more than one path for light to couple from one waveguide to another. 

Small differences in these multiple coupling paths can degrade the coherence of a 

diffracting beam and thus typically, beam diffraction experiments in 2D arrays are 

limited to one or two coupling lengths making it difficult to observe subtle opti-

cal phenomena. For fD arrays there is only a single path for coupling between 

adjacent waveguides and thus coherent discrete diffraction can be sustained over 

many coupling lengths. Hence, ID infiltrated waveguide arrays can provide an 

excellent platform for the investigation of periodic behaviour enabling experimen-

tal observation of fvmdamental physical phenomena and also suggesting significant 

opportunities for photonic sensors. 

ft would be a great advantage to introduce lithographically defined longitudinal 

variations to these air structured waveguides to enable investigation of a wider 

variety of nonlinear optical phenomena [94] and also to realise more practical opto-

fluidic sensors [95] that could be monolithically integrated with planar microffuidics 

to form fully integrated lab-on-chip systems [96]. 

In this section, I present a rapid and low-cost technique for the realisation of 

planar air structured waveguides using the SU8 family of polymers, standard pho-

tolithography and simple dry-film lamination. I confirm the utility of this platform 

by demonstrating temperature tuneable coupling of light in an array of closely 

spaced liquid-infiltrated channels. 



2.1.2 Platform Development 

Fig. 2.1 presents a schematic outlining the fabrication method. This method is 
similar to a recently reported microfluidic fabrication technique [97] but on a nmch 
smaller scale. Table 2.1 summarises the process parameters. 

Table 2.1: SU8 Process Parameters 

SU8 Film Thickness 3 fim 10 /iui 50 /irn 
SU8 Product SU8-2002 SU8-2005 SU8-2025 
Spin Speed / rpm 1700 700 1000 
Acceleration / rpm/ s 300 300 300 
Spin Time / s 30 30 30 
Soft Bake Time / min 2 at 95°C 1 at 65°C/ 3 at 65°C/ 

10 at 90°C 6 at 95°C 
Exposure energy / mJ 90 600 600 
Post Exposure Bake Time / / min 2 at 95° C 3 at 95°C 1 at 65°C/ 

6 at 95°C 
Development / s 60 n/a n/a 

Figure 2.1: P^abrication Process: a) deposit and cure SU8 buffer; b) deposit, 
pattern and cure core; c) develop core; d) laminate PET film; e) deposit and 
soft bake SU8 sealing layer; f ) peel carrier film and sealing layer; g) laminate 
sealing layer over core, h) cure sealing layer, i) remove carrier film; j ) apply 
protective SU8 cover. 

A 50 /im buffer layer of SU8-2025 was deposited on a 3 inch diameter silicon 
wafer using a Karl Siiss RC-8 spin coater and UV flood exposed on a Karl Siiss 
MA-6 mask aligner as shown in Fig. 2.1a). The cured SU8 film was then oxygen 
plasma treated for 2 minutes to promote adhesion. A 3 /xm SU8-2()02 layer was 
then spin coated, patterned by contact photolithography (Fig. 2.1 b)) and then 
cured and developed to reveal open channels (Fig. 2.1 c)). This layer was also 
plasma treated to promote adhesion to the sealing layer. 



The sealing layer was formed using a 50 /iin-thick Adliesives Research Aclear 
8932 polyethylene terephthalate (PET) film consisting of two layers (carrier and 
substrate) which were weakly bonded with a strong adhesive applied to the substrate 
face. This PET film was laminated onto a silicon wafer, substrate side down, using 
a SSI FL-12HR laniinator (Fig. 2.1 d). A 10 fim film of SU8-2005 was spin coated 
onto the PET film and soft baked (Fig. 2.1 e)). 

The carrier PET film was then peeled from the substrate, inverted laminated 
onto the open channels at 45°C(Fig. 2.1 g)). The laminated stack was UV exposed 
and cured (Fig. 2.1 h)) After curing, the PET carrier was peeled off easily (Fig. 2.1 
i)). Finally, the wafer was coated with a 50 ;Um-thick SU8-2025 protective cover 
(Fig. 2.1 j)). The laminated wafer was diced into 10 x 10 nun pieces using a Disco 
DAD 321 dicing saw. 

The diced samples were inspected using a FEI Quanta 200 ESEM. Fig. 2.2 
presents two of these ESEM images. These show that the channels remained open 
and had relatively straight sidewalls. The dimensions of the channels were 2.7 x 
2.8 ^m which were slightly different to the nominal 3 x 3 /nn dimensions, but were 
well within the fabrication tolerance of SU8. More accurate lithography may be 
possible if required. Particles were evident at the openings of the channels. These 
may be silicon dust generated during dicing and should not affect the waveguide 
properties within the sample. 
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Figure 2.2: SEM micrographs of the cross-section of the diced (a) waveguide 
array and (b) two waveguides from the array. 

2.1.3 Temperature Tuneable Discrete Diffraction 

Having demonstrated fabrication of hollow channels with micron scale dimen-
sions, we may now explore whether these channels can be used as fluid infiltrated 
optical waveguides. 



For relatively short waveguides, distiiigiiisliiiig guided and scattered light can 
be difficult. Thus to test the waveguiding properties, I chose to examine discrete 
coupling of light within arrays of fluid infiltrated channels. 

The refractive index of SU8 was measured to be 1.572 at 1.55 /im using a 
Metricon 2010/M prism coupler at room temperature. I chose Cargille Series A 1.64 
as the infiltration fluid, which had a room temperature refractive index of 1.608 at 
1.55 /xm. Full wave finite element sinuilation was used to find the propagating 
modes of a 3 x 3 /im Cargille fluid core surrounded by SU8. Only the fundamental 
mode was found to propagate. 

The optical properties of both the SU8 and Cargille fluid can be tuned thermally. 
The thernio-optic coefficients (dn/dT) of SU8 and Cargille fluid are - 9 . 6 x l O - ^ K 
98] and - 4 . 5 9 x 10"'^/K, respectively. The thermo-optic coefficient of SU8 poly-

mer was determined using the prism coupler and heater attachment. dn/dT was 
also measured at 532 nm and 1310 nm, the results are summarised in Table 2.2. 
Since the thermo-optic coefficient of the Cargille fluid is greater than that of SU8, 
temperature may be used to tune the index contrast of the waveguide. This will 
particularly impact coupling of light between waveguides in an array. The greater 
change in refractive index of the infiltrating liquid with increased temperature will 
lead to greater coupling between the waveguides due to the reduced refractive index 
contrast. 

Table 2.2: Refractive index n and thermo-optic coefficient dn/dT of SU8 
polymer for wavelengths of 532, 1310, and 1550nm. 

Wavelength (nm) n at 25°C dn/dT (K- i ) 
532 1.601 -5.376 xlO"^ 
1310 1.573 -7.952 xlO-5 
1550 1.572 -9.6 xlO"^ 

A 3D beam propagation method (BPM) was used to predict the temperature 
dependent coupling in an array of fluid iiffiltrated waveguides. Each waveguide was 
a 3 x 3 jim. Cargille fluid core, surrounded by SU8. An array of 21 waveguides with 
9 jim. centre-to-centre separation and lOnnn length was simulated. The output 
optical profile was analysed and the width containing 70% of the optical power 
was recorded as a function of temperature as presented in Fig. 2.3. Discrete steps 
are evident at An = 0.028 and 0.027, where the beam occupies 3 and 5 adjacent 
waveguides respectively. These jumps are typical for discrete diffi'action. 

Fig. 2.3 also presents the distribution of light as it proi)agates through the 
coupled waveguides. Fig. 2.3 (i)-(iv) j)resents the oi)tical distributions from output 



face of the sample in the experiment and correspond to temperatures of 55, 45, 40, 

and 35°C, respectively. As the temperature increases, the mode profile widens as 

the hght couples to more waveguides in the array as it propagates. Fig. 2.3 (i) shows 

coupling resulting in the a dark central waveguide at the output. This feature is 

characteristic of discrete diffraction [99]. Fig. 2.3 (v)-(viii) present numerical results 

of a propagated beam in the theoretical system. The mode profile matches very well 

to the observed experimental outputs. The index contrast used for the theoretical 

calculations are An = 0.025, 0.027, 0.03, 0.031 respectively. 
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Figure 2.3: Comparison between width of output beam from experiment and 

simulation. Experimental images (i-iv) are matched to theoretical simulations 

(v-viii) to determine experimental index contrast An. Light is coupled into 

a single waveguide, and the output is imaged (inset). A n for theoretical 

images are: (v) 0.025, (vi) 0.027, (vii) 0.030, (viii) 0.031, which correspond 

to estimated temperatures of 55, 45, 40, and 35°C± l°Crespectively. 



From my siimilations we can conclude that fluid infiltration of this platform 
should provide temperature tuneable optical coupling between the waveguides. To 
experimentally test whether the structure depicted in Fig. 2.2 could provide this 
behaviour, a channel array with 3 x 3 /iin air channels and 9 /xm centre-to-centre 
separation was infiltrated with Cargille Series A 1.64 refractive index fluid. The 
small dimensions of the hollow waveguides enabled infiltration by capillary force 
through submerging one end of the sample in the Cargille liquid. Glass slides were 
clamped to either end of the sample to define the end facets. 

The sample was tested by focusing a 10 ps pulsed laser light with at a carrier 
wavelength of 1.55 ^m into one of the fluid waveguide cores using a 40 x microscope 
objective. The light emerging from the exit facet was imaged onto a CCD camera 
using a 10 x objective. The sample was heated to 60°C and a sequence of images 
were recorded as the sample cooled to room temperature. 

Fig. 2.3 (i)-(iv) present the measured optical distributions corresponding to 
temperatures of 55, 45, 40 and 35°C respectively. These compare well to the pre-
dicted results of Fig. 2.3 . In particular the coherent cancellation of light in the 
central waveguide observed in Fig. 2.3 (i) could only be achieved if the waveguides 
are single mode and if the coupling is syimnetric indicating that the fluid infiltrated 
channels are indeed behaving as a coupled waveguide array. 

It should be noted that in the experiment, the pulsed laser had a spectral band-
width of 0.3nm. This finite bandwidth would result in some loss of coherence when 
compared to the single wavelength assumption made in theoretical simulations. 
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2.2 Platform: Selective Infiltration of Photonic Crystal Fi-

bres 

While it is useful to produce custom structures in SU8 epoxy, we can expand on 
these waveguide arrays by utilising existing arrays of capillaries in Photonic Crystal 
Fibres. While these capillaries are two dimensional by design. I have developed a 
technique for selectively infiltrating these structures. This allows for more advanced 
structures to be produced using existing technology. 

2.2.1 Introduction 

ID periodic photonic structures provide a platform on which to study a rich 
variety of physical phenomena such as discrete diffraction, optical bandgaps and 
discrete solitons [28]. Waveguide arrays were first studied in Galhimi Arsenide 
(GaAs) as a first step in producing optical circuits and switches [100]. It was 
observed that hght would couple between waveguides as had been theoretically 
predicted several years earlier as discrete diffraction [101]. While it was unclear 
how to use or suppress this discrete diffraction, the idea of nonlinear optical effects 
began to take hold, with the prospect of nonlinear focusing balancing the diffraction 
caused by light coupling to neighbouring waveguides. 

Spatial solitons formed in this manner were later observed in waveguides etched 
into Aluminium Gallium Arsenide (AlGaAs) [47]. Further advances led to laser 
written waveguides [102] which provide faster production of waveguide arrays than 
traditional etching techniques, allowing the investigation of more exotic 1, 2 and 3D 
structures. W^hile the waveguides are of high quality, they can not be dynamically 
tuned, and are limited to relatively short lengths. 

Lithium niobate (LiNbOa) has also been utilised for planar optical waveguides, 
in order to take advantage of its relatively high photorefractive nonlinear response. 
Such waveguides can be used to demonstrate discrete diffraction and gap solitons 
[103, 51]. Lithium niobate introduces the possibility of dynamically timing the cou-
pling between waveguides in an array through the electro optic effect, in which an 
electric field can influence the refractive index of a material. This was furthered 
by the application of liquid crystals to ID waveguide arrays [104], where tuneable 
breather states were demonstrated in arrays of waveguides with nematic liciuid crys-
tals. Although this provided a highly tuneable, periodic nonlinear platform, it is 
restricted to ID planar waveguide arrays. 

Optically induced lattices have been investigated in strontium barium nio-
bate (SBN) crystals for applications in nonlinear effects such as soliton formation 
[44] [45] [47]. Such induced lattices can be extended to 2D arrays to jjrovide a wider 



range of physical phenomena to study, such as discrete vortex sohtons [29]. Opti-

cally induced lattices provide tuneable 1, 2 and 3D waveguide arrays, but are only 

available for a small variety of geometries over short lengths. 

In this section I present my work on the development of a new platform for 

waveguide arrays. By selectively infiltrating specific holes in a pre-existing array 

structure we can make waveguides which are tuneable, can be formed into complex 

network structures, and can be made in both 1 and 2D. I selectively infiltrate 

a photonic crystal fibre to achieve such waveguides and present it as a platform 

tuneable ID waveguide arrays and demonstrate linear tuneability and nonlinear 

discrete diffraction. Such selectively infiltrated fibres provide orders of magnitude 

more interaction length than previously studied waveguide arrays, allowing for more 

sensitive measurements [84]. 

Photonic crystal fibres (PCFs) are a recent development in fibre optics in which 

a periodic array of air filled holes surrounds a solid core. The arrangement and size 

of holes can be tuned to give a wide variety of optical phenomena, such as endlessly 

single mode index guiding [62], and photonic bandgap guiding [63]. Phenomena such 

as the photonic bandgap effect arise from the periodic nature of the refractive index 

profile in PCFs. The optical properties of a PCF can be changed by altering the 

structure of the cladding. This has the effect of changing the bandgap properties, 

which determines how light is transmitted through the fibre. 

It was suggested that the cladding structure of these fibres could be controlled 

by an external parameter such as temperature to provide a tuneable core mode [80]. 

Such a device would have the ability to dynamically control the optical properties 

of the medium using an existing platform, rather than develop a single platform for 

the study of a single optical phenomena. Liquid infiltrated PCFs were shown to 

have a tuneable photonic bandgap [105], and have been used to study linear and 

nonlinear effects [85, 106]. 

The added complexity of discrete diffraction in 2D requires high precision man-

ufacturing and quality control to ensure synnnetric coupling when using the infil-

trated cladding of a PCF. Any slight irregularities in the size or spacing of the 

infiltrated holes will result in asymmetries in the output [85]. 

We can reduce the reliance on technical tolerances such as precise hole spacing 

by infiltrating a selected one dimensional area of the cladding structure in a PCF. 

The reduced complexity of the coupling in a ID system is less reliant on the pre-

cision manufacturing of the PCF. While this may at first appear to be a platform 

similar to previous ID systems, the selective infiltration can be considered as a new 

platform. The infiltrating liquid providing part of the periodic structure and/or 

waveguides can be selected from a wide range of exhaustively studied liquids and 

even polymers [91]. These inhltrating liquids can be doped to enhance nonlinear 



response or increase absorption. In addition it is also possible to use the same 
platform and techniques developed here to create new structures which give a wide 
range of applications. The selective infiltration of a single cladding site in a PCF 
has been shown to be ultra sensitive to refractive index changes in the infiltrating 
liquid [89]. 

2.2.2 Platform Development 

The air filled cladding of a PCF is easily infiltrated using capillary action. The 
small hole diameter results in capillary action capable of drawing up viscous liquids 
such as oil. By immersing one end of the fibre in a reservoir of the infiltrating 
liquid, the air is displaced by the liquid and the fibre is infiltrated. While the 
time it takes to fill depends on the liquid used, I observed a filling time of about 5 
minutes per cm for a silica glass fibre with holes of diameter around 5 /im using 
a Cargille index matching oil of n == 1.47 and n = 1.48. Such liquids have a 
negative thermo-optic coefficient, close to dn/dt ^ - 3 . 9 x resulting in 
a reduction of the refractive index of the oil as it is heated. Specifically the fibres 
I used were commercially available from Crystal Fibre as LMA-20 and LMA-15 
(7). They consists of 7 hexagonal rings of air filled holes. LMA-20 has a measured 
hole diameter of 6.3 //m and hole spacing 13.2 fim. LMA-15 has a measured hole 
diameter of 4.9 î m and hole spacing of 9.8 /iin. 

In order to infiltrate only selected waveguides I took the approach of blocking 
an inverted infiltration pattern on one end. The vmblocked end is then placed into 
the infiltrating liquid reservoir for infiltration (Fig. 2.4). Holes which are blocked 
at one end will not infiltrate more than a few mm, due to air pressure inside the 
cavity (Fig. 2.4). It is conceivable that the blocking compound is pushed out by 
the capillary action of the infiltrating liquid, but I did not find this to be the case 
with the blocking and infiltrating liquids. 

I tested several different blocking compounds and techniques including epoxies, 
UV curable optical cement, and several oils. I applied the blocking liquid using an 
applicator made by tapering a conventional single mode fibre using a butane torch. 
The fibre is placed in the flame and tension is applied to either end of the fibre 
until it tapers to a small point. It is then broken at the taper under a shear stress. 
This forms the applicator for the blocking liquid, and is fixed to an x, y, z stage for 
manipulation (Fig. 2.5). 

The PCF is held vertically in a clamj), with a microscope focused on the upper 
end of the PCF. The tapered applicator is held at an angle relative to the top face 
of the PCF on an x,y,x stage (Fig. 2.5). The fibre is fixed at an angle such that 
either the tip of the applicator can deposit a single drop on the PCF, or the shaft 
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Figure 2.4: The unblocked end of the PCF is placed in a reservoir of the 

infiltrating liquid. Air pressure inside the blocked channels prevents them 

from completely filling. The ends of the sample are cleaved leaving the mid 

section of the fibre as a selectively infiltrated PCF sample. 

of the applicator lies parallel to the end face of the PCF. This allows for either a 

single droplet of blocking liquid, or a row of droplets, to be deposited on the PCF 

in a controlled fashion. The PCF is ilhuninated from either above or below to best 

highlight the location of blocking liquid. 

The first blocking technique tested was to apply a drop of blocking liquid to 

one area of the fibre and manipulate this drop to form the desired pattern [107 . 

The second technique involved drawing the applicator through a reservoir of liquid, 

forming small droplets along tfie length. Each droplet is then addressed to a specific 

hole or set of holes to block them. I found that castor oil was both the easiest to 

apply directly, and the most effective at blocking the holes. The glues were difficult 

to address to specific holes and were too viscous to move effectively. The castor oil 

was appUed to the tapered fibre suĉ h that small drops are formed along the length 

of the taper. The range of drop sizes allows for the covering of single holes, or small 

groups of holes with high accuracy. 

Fig. 2.6 shows an example of the progressive application of small droplets of 
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Figure 2.5: The P C F (top left) is held vertically under a microscope. A 
tapered fibre has blocking liquid applied to the tip, and is mounted on an 
X, y, z stage. The sample is illuminated to provide the best contrast between 
blocked and unblocked holes. 

castor oil to specific holes on the PCF. Fig. 2.6(a) shows an uiiblocked PCF. The 
contrast and lighting used for imaging is adjusted to provide the inaxinunn contrast 
between blocked and unblocked holes. In this example droplets are first applied to 
the top of the fibre (Fig. 2.6(b)). Blocked regions are enclosed by the red dashed 
line in Fig. 2.6. Unblocked holes are easily distinguished from blocked, as they 
retain their round shape and hexagonal pattern (Fig. 2.6(b)). Further droplets are 
ai)plied (Fig. 2.6(c)) to cover more of the top region, and some of the bottom region. 
The final unblocked pattern of a single line is achieved with careful placement of 
the final droplets (Fig. 2.6(d)). 

The sample is then placed in a reservoir of infiltrating liquid such that the 
blocked end is open to air (Fig. 2.4). Once any unblocked holes are filled both ends 
of the fibre are cleaved off leaving the mid section of the fibre with liquid only filling 
the selected holes (Fig. 2.4). The typical final sample PCF was ~ 2 cm in length. 



(a) 

Figure 2.6: (a) An unblocked PCF has oil applied to one end to block specific 

holes, (b) The red dashed line indicates regions that are blocked with oil. (c) 

More oil is applied to specific holes until (d) the desired pattern for infiltration 

is reached: in this case a single line of holes is left unblocked. 

2.2.3 ID Liquid Periodic Array: Linear Diffraction and Nonlinear 

Defociising 

In order to demonstrate and example the tuneable and nonlinear properties of 

this platform I first characterise the optical ])roperties by first observing discrete 

diffraction [fOl] in the array in the linear regime for a variety of temperatures. I 

then observed nonlinear defocusing while the fibre was held at a single temperature 

and the input power was increased. 

These observations were achieved by placing the the selectively infiltrated PCF 

inside a temperature stabilised oven. To ensure further stabilisation of the temper-

ature the fibre is encased between two brass plates. The fibre sits in a square cut 

groove and is in contact with the lower brass plate. The temperature of the appara-

tus was allowed to reach an equilibrium before measurements are taken. The oven 

was mounted on an x, y, z stage. Light was butt coupled into a single infiltrated 

hole from a single mode polarisation maintaining fibre carrying light from a Verdi 



V-5 CW 532 nrn laser. The end face of the infiltrated PCF was imaged with an 

objective and camera (Fig. 2.7). The input fibre and oven were mounted separately 

to allow light to be coupled into any specific infiltrated hole. 

P.M. fibre Focusing lens 

—dZ 
Fibre sample Imaging lens 

Verdi' 
V-5 laser 

/ : r1 

; x y z ; u 

Temperature control CCD camera 

Figure 2.7: Light is addressed to a single infiltrated hole by butt-coupling 

with a polarisation maintaining fibre. The infiltrated sample is mounted in a 

temperature controlled oven. The output is imaged with an imaging objective. 

In order to observe linear tuneable discrete diffraction, a selectively infiltrated 

PCF (LMA-20) was prepared as described above with a single row of holes infiltrated 

with n = 1.47 Cargille index matching oil. Light was injected into the center of 

the infiltrated ID array to achieve symmetric coupling between the waveguides. I 

observed coupling between the waveguides as the temperature was raised to 53°C 

at which point the refractive index contrast between the infiltrating oil and silica 

cladding is close to 2 x 10"^. Fig. 2.8 shows the output image and associated 

profile of the PCF as the temperature is increased. Each image and profile is 

normalised separately, to provide the best contrast. At 53°C there is very little 

coupling from the input waveguide to the neighbouring sites. When the temperature 

was raised to 54°C I observed significant coupling from the input waveguide to the 

two neighbouring sites. As the temperature was raised further to 55°C I observed 

nearly all the light coupling synnnetrically out of the input waveguide into the array 

up to three sites away. At 56°C I observed a loss of symmetry and some higher order 

modes as the light reached the edge of the waveguide array. In this sample I was 

only able to selectively infiltrate 14 holes in the PCF. At 56°C some of the light 

has reached the edge of the array, resulting in less symmetric coupling. I observe 

a slight but consistent asymmetry across the profiles between 53°C-55°C. The first 

waveguide to the left of the input has slightly more light than the first waveguide to 

the right of the input. This is most likely due to a slightly inhonioganeous structure 

due to the consistent nature of the asymmetry. 



Figure 2.8: Demonstration of linear discrete diffraction as the fibre temper-
ature is increased at (a) the fibre end face, and (fj) profile of the end face 
images. 

A new sample was prepared from L M A - I S fibre, infiltrating a single line with 

n = 1.48 Cargille index matching oil to investigate nonlinear effects in this system. 

Light was again injected into a site near the the center of the infiltrated I D array 

which provided the best linear coupling. T h e temperature of the fibre was raised 

to 76°C until coupling was observed to occupy approximately three sites. At this 

temperature the index contrast between the infiltrating oil and silica cladding is close 

to 3 X 10"''^. This larger index contrast provides roughly the same linear coupling as 

seen in Fig. 2.8 53°C due to the closer spacing of the waveguides in LJ\IA-15 used in 

this experiment. T h e temperature of the fibre was held constant while the intensity 

of light coupled into the input channel was increased. Fig. 2.9 shows images of the 

fibre end face as the input power is increased, and the associated profile of each 

image. I observed increased coupling of light from the input hole, even though the 

temperature of the whole fibre remained unchanged. At low power (0.3 m W ) I saw 

very little coupling from the input waveguide to the two neighbouring sites. As the 

power was increased to 30 m W the coupling increases slightly. As the power was 

raised to 70 m W the coui)ling was observed to again increase. Equal amounts of 

light were observed in the input waveguide and the two neighbouring sites as the 

power was increased to 110 m W . As the power was increased further to 150 m W 

I observed nearly all of the light couple out of the input waveguide. I believe this 

occurs because the input waveguide is heated by absorption of the input light. This 

reduces the refractive index of the licjuid in this waveguide, causing light to couple 



further into the array. 

Figure 2.9: Demonstration of nonlinear defocusing as the input power is 

increased (a) at the fibre end face, and (b) profiles of the end face images. 

I have successfully demonstrated a planar waveguide array in a selectively infil-

trated PCF. The platform presented here can be expanded to other complex struc-

tures supported by the cladding of a chosen PCF, for example 2D networks with 

tuneable beam interaction [108]. More recent work has achieved highly sensitive re-

fractive sensors [89], and other methods for the selective infiltration of PCFs [109]. 

While these methods require significantly more investment in equipment and tech-

niques, they have been used to demonstrate high quality and repeatable selective 

infiltration. The platform presented here provides a quick and relatively inexpen-

sive method of selective infiltration, which can be used to test the feasibility and 

properties of other selectively infiltrated structures. 

While the demonstrated nonlinear beam propagation in these selectively infil-

trated PCFs shows a defocusing effect, there are many other interesting nonlinear 

modes in ID systems with defocusing nonlinearity. Gap solitons are one example, 

and have been shown in a variety of platforms with defocusing nonlinearity [39] 

including Lithium Niobate [51]. Nonlinear Bloch-waves have also been observed 

in ID structures [9, 110]. Theoretical work and experimental observation in Bose-

Einstein condensates have discovered a nonlinear mode in between a gap soliton 

and nonlinear Bloch-wave soliton [111, 112, 113]. I next show my observation of 

these truncated Bloch-wave solitons on Lithium Niobate waveguide arrays. 





2.3 Truncated Block-Wave Solitons in Lithium Niobate 
Waveguide Arrays 

2.3.1 Introduction 

The coherent transport of nonUnear waves is essential in many phenomena in 
nature. In contrast to hnear waves, the physics becomes complex when wave inter-
actions start to play a role, making laboratory studies difficult. As such, many of 
the fundamental physical effects of nonlinear waves have been first studied in optics, 
where the advent of the laser as an intense coherent light source gave rise to the 
field of nonlinear optics. The recent experimental developments in Bose-Einstein 
condensates (BEC) opened the way for many analogous experiments with intense 
sources of coherent matter waves. Correspondingly, many effects earlier observed in 
nonlinear optics have been later fomid to occur in nonlinear atom optics, including 
four-wave mixing of matter waves [114] and matter-wave solitons [115]. 

A few years ago Anker et al. [ I l l ] reported the experimental observation of 
nonlinear self-trapping of Bose-condensed atoms in stationary periodic potentials. 
This trapping effect due to interaction between condensed atoms is manifested as a 
change from the diffusive regime, characterised by an expansion of the condensate, 
to the nonlinearity dominated self-trapping regime, where the initial expansion stops 
and the width of a matter-wave packet remains finite. This observation abrogates 
a seemingly obvious analogy between nonlinear optics and matter wave physics, 
because this type of nonlinearity-induced self-trapping in the presence of repulsive 
interaction has never been observed in optics. 

In this section, I report on the first observation of nonlinear self-trapping of 
broad beams with zero transverse momentum in an array of defocusing optical 
waveguides. My results not only provide an optical analogue of the self-trapping 
effect of Bose-condensed atoms [111], but also reveal important new features of these 
localised states. In particular, I demonstrate that unlike conventional gap solitons 
known in defocusing photonic lattices [103] and BEC [25], the spatial extent of such 
self-trapped states is controlled by the width of the input excitation rather than by 
the input power. Since this observation these states have been shown as a useful 
form of image transmission in photonic lattices [116 . 

While a detailed intuitive explanation of the self-trapping effect in terms of 
wave tunnelling in a single Josephson junction has been provided in Ref. [Il l ] , this 
description was found incomplete as it did not account for the periodic natm'e of 
the trapping potential. Subsequent theoretical works [112, 117, 113] have extended 
the description of the wave localisation linking it to the Bloch modes in the system. 
However, this subsequent description remained untested experimentally, largely due 



to the challenges in BEC experiments. By using an optical system, here I investigate 
the nature of the self-trapped state to a degree not attainable in the original BEC 
system. As such, I demonstrate experimentally two new fundamental effects: (i) 
Dependence of the width of the localised state on the input excitation, and (ii) 
independence of the localisation on the strength of the nonlinearity (beam power, 
or equivalently number of atoms in the BEC system), once above a critical value. 
This is due to the existence of a class of robust nonlinear states with arbitrary width 
which act as attractors in the system, with loss of excess power (or equivalently atom 
loss) able to occur through the edges of the localised state [117]. The latter point 
remained unnoticed in the earlier experiments which focused on the edge effects in 
a deep lattice. I reveal that the unique properties of the self-trapped states make 
them both highly robust and easily controllable. 

2.3.2 Theoretical Exploration 

I begin with the theoretical description of the beam localisation, and model beam 
propagation through lithium niobate (LiNbOa) waveguide array by the nonlinear 
Schrodinger equation with a periodic potential and Kerr-type nonlinearity, 

arr rp 
+ ^ ^ + p A n ( x ) £ - = 0. (2.1) 

Here D = ZgX/{ATmoxl), p = 2TTZS/\. The transverse coorchnate x and longitu-
dinal coordinate z are normalised in units of Xg = 1 /xm and Zg = I mm, respec-
tively. While the complete description of the defocusing photovoltaic nonlinearity of 
LiNbOs involves a complex charge diffusion type description, this simplified model 
captures well the generic features of the nonlinear beam evolution, as was success-
fully demonstrated for gap solitons in Ref. [118]. The linear refractive index of the 
substrate material is UQ = 2.234 at A = 532 nni, leading to a diffraction coefficient 
of D = 18.95. The linear refractive index change An{x) of the waveguides is taken 
as An(x) = ei ;„exp[-(a: - ndy/w'^], where e defines the modulation depth [103]. I 
take the waveguide width and spacing to he w = 7 fim and d = 14 /xm respectively, 
matching the experimental realisation of the wavegiiide array. The modulation 
depth is set at e = 0.0003 to provide a match between the theoretical and experi-
mental linear output profiles. This is a shallow depth compared to the experimental 
regime of Ref. [111]. I find however that the general effects presented in this work 
are preserved over a wide range of depths (e = 0.0002^0.005 have been considered). 

I examine the stationary solutions of the system Eq. (2.1) using the ansatz 
E{x,z) = U{x)exp{iPz), where P is the propagation constant (typically related to 
the negative value of the chemical potential in BEC physics). In the linear limit the 
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Figure 2.10: (a) Bandgap spectrum. (b,c) Examples of two truncated non-
linear Bloch waves of different widths. 

stationary wave solutions take the form of Bloch waves, Un,k{x) = ^ ( x ) exp('ifcx) 
where n denotes the band number and k the Bloch wavevector. The spectrum 
of these linear waves is divided into bands separated by gaps as shown in Fig. 
2.10(a). In the presence of nonlinearity, stationary solutions may exist inside the 
linear transmission gaps in the form of either periodic nonlinear Bloch waves [119] 
or spatially localised states known as gap solitons [44]. A third type of state has 
recently been revealed as a bridge between these two classes of solution, the so-called 
truncated nonlinear Bloch waves [112], Such a type of localisation occurs when the 
propagation constant of the Bloch wave is shifted into the gap, passing through the 
entire linear band, as shown with an arrow in Fig. 2.10(a). This crossing happens 
when a Bloch wave with zero transverse momentum is excited at the top of the first 
band and the defocusing nonlinearity decreases the propagation constant into the 
Bragg reflection gap. Intuitively this can be understood as confining a truncated 
piece of the Bloch wave between two Bragg reflectors, with no radiation into other 
linear waves due to the presence of the linear bandgap. Unlike conventional gap 
solitons in defocusing lattices, where the width of the soliton is proportional to 
the soliton power [44], the width of the truncated state is a control variable [113 
in the sense that it selects the soliton family out of an infinite number of families 
(for an infinite lattice), each with a different nvunber of occupied lattice sites. The 
particular family excited depends on the initial width of the incident optical beam. 
The families are all distinct, bifurcating near the upper gap edge above a critical 



value of the nonlinear Bloch wave intensity [112, 113]. Two particular examples of 

truncated nonlinear Bloch waves of different widths are shown in Figs. 2.10(b,c). 

Such localised states can also be regarded as rnulti-soliton states composed of a 

certain number of gap solitons [120], however they are stable in their entire region 

of existence. 

Next I examine the excitation of such localised Bloch waves from a Gaussian 

input. Figure 2.11 summarises the numerical results of a beam propagation model 

of the Bloch wave excitation for different values of the optical nonlinearity. As 

shown in Fig. 2.11(a), for weak defocusing nonlinearity the beam undergoes rapid 

spreading (faster than linear diffraction). However as the nonlinearity is increased 

this spreading is suddenly halted and the beam localises with a width of the order 

of the width of the input beam. As is evident in a comparison of Figs. 2.11(b,c) the 

signature of the truncated nonlinear Bloch wave is the sharp intensity drop-off in 

the wings of the beam. Additional features visible in Figs. 2.11(a,b) are the strong 

intensity modulations occurring within the localised state. The large diffraction 

coefficient leads to long-lived nonlinear excitations of the truncated nonlinear Bloch 

wave, which despite the strong modifications of the intensity profile do not lead to 

decay of the localised state. Most importantly. Fig. 2.11(a) shows that above a 

certain threshold for the optical nonlinearity (7 0.15), the width of the localised 

state remains practically independent of the input beam power. 

Interestingly, the localisation occurs even when the nonlinearity is strong enough 

to detune the propagation constant of the beam into the higher band. The local-

isation in this latter case occurs through a rapid loss of power from the central 

part of the beam into higher-order low intensity nonlinear Bloch waves, effectively 

moving the propagation constant back into the linear gap [112], This is an impor-

tant feature not addressed in the earlier experiments using deep lattices [111]. The 

tight-binding limit considered there always considered generation of a state within 

the linear band gap. We see here that even if the nonlinearity (or intensity) is suffi-

cient to drive the state outside the gap, localisation may occur through radiation of 

the excess power into higher-order low intensity nonlinear Bloch waves which can 

drain power through the sharp boundaries. It is also in contrast to the long-lived 

nonlinear excitations of the Bloch wave background [121]. 

An important feature of the generation process is that the output beam width 

is solely defined by the input widtii of the Gaussian beam, while being independent 

of the medium's nonlinearity. There is a linear dependence (Fig. 2.11(d)) between 

the input and output widths, while the different values of the nonlinearity lead 

to identical output beam widths (at least for moderate input beam widths). This 

can be understood as a consequence of the requirement of a critical intensity for 

generation [112]. As the nonlinearity (or equivalently beam power) is increased, 
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Figure 2.11: (a) Dependence of ou tpu t intensity profile on the nonlinearity 
7- The beam spreading is arrested at a critical nonlinearity, 7 « 0.15. (b,c) 
O u t p u t beam profiles (as marked in (a)) showing localisation, (d) Variation of 
the ou tpu t beam width (defined as the width between the sharp boundaries) 
with the input beam full width at half maximum (FWHM) for different values 
of the nonlinear coefficient 7 . 

the luimber of excited waveguides above the critical intensity does not change for 
moderate beam widths. At larger beam widths the nonlinear excitations of the 
truncated nonlinear Bloch state may lead to fluctuations in the measured width. 
This behavior arises due to the existence of independent families of arbitrary, but 
fixed, width which persist even into the higher order bands (where radiation occurs). 
Increasing the power of such states changes the rnaxinnnn intensity, but not the 
width. Stable nonlinear localised states with arbitrary fixed widths have not been 
seen before in any physical context, and the existence of these nonlinear states as 
stable attractors is at the heart of the new results of this work. 

2.3.3 Experimental Setup 

Experimentally, I test the excitation of truncated Bloch waves by employing 
the defocusing nonlinearity of a LiNbOg waveguide array (6 cm long, fabricated by 



Titanium indiffusion). Due to the slow nature of the photovoltaic nonlinear response 
in LiNbOs, the nonlinear index change increases slowly with time under a constant 
input laser power. Since the time-scale of this index change is of the order of several 
minutes, the time dependence of the beam output intensity profile can be effectively 
mapped to the dependence on the nonlinear coefficient 7 in Eq. (2.1). It is worth 
pointing out that the dependence ^{t) is a nonlinear function that saturates at large 
times. However, it is a rnonotonic function and uniquely defines the nonlinear index 
change. 
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Figure 2.12: Experimental setup to excite t nmca ted nonlinear Bloch waves. 
A laser beam with wavelength A = 532nni is elliptically shaped with a cylin-
drical lens after being polarised parallel to the plane of the waveguides with 
a half wave (A/2) plate. The cylindrical lens used has either / = 50 mm or 
/ = 75 mm. A 20x objective lens is used to focus this beam onto the sample, 
which is imaged with a 4x objective lens. The output is split and imaged 
directly onto an imaging camera, as well as the passing through a lens to 
image the Fourier spectrum on a second camera (Far-field camera). 

I excite the array with a broad Gaussian laser beam at 532 nm. The input beam 
(Fig. 2.13(a)) is elliptically shaped (Fig. 2.12) by a cylindrical lens ( / = 50 mm) 
before a (2()x) focusing objective. I monitor the beam output intensity profile with 
time for a typical input power of 1 mW and measure the variation of the beam width. 
We can note here that at these laser powers are far from nonlinearity saturation 
with intensity [118]. The width of the output beam (Fig. 2.13) is determined as 
the size of the area which contains 50% of the output light power. This allows us 
to filter out any noise in the diffraction pattern while maintaining a high degree of 
accuracy. Error bars are calculated as the asymmetry of the output profile with 



Figure 2.13: Output beam width (estimated as the width containing 50% of 
the total light) vs. time (nonlinear index change). Dashed line - the width of 
75% of the input beam, solid line - a fit to the experimental data, (a) Input 
beam profile; (b) linear diffraction at the output, (c) Nonlinear defocusing 
at low nonlinearity (time), (d) beam localization at high nonlinearity. Beam 
power, 1 niW. 

respect to the center of the input beam. 

2.3.4 Truncated Bloch-Wave Solitons 

The linear diffraction in the array canses the beam to spread ont and occupy 
nearly twice the mnnber of waveguides in comparison to the input beam (Fig. 
2.13(b)). Upon increase of the nonlinearity with time, we observe an initial de-
focusing of the beam (Fig. 2.13(c)) resulting from the weak negative nonlinearity. 
As the exposure time increases and the nonlinearity grows, the beam experiences 
gradual confinement and reduces its width (Fig. 2.13(d)). The dependence of the 
beam width with time is plotteci in the main [)anel of Fig. 2.13, where we observe 



that the beam locahses and the width remains essentially constant. This localised 

state has a width equal to the width of the input beam containing 75% of the power, 

where the remaining 25% have been lost in radiation (filtered out in my method for 

beam-width estimation). Small oscillations around this value are observed at longer 

times, thus matching the numerical predictions in Fig. 2.11. 

(b) 
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Figure 2.14: Beam profiles at the array input (dotted line) and output 

(solid) for (a) linear {t ~ 0) and (b) nonlinear {t = 10 hours) propagation, 

corresponding to Figs. 2.13(b,d). Insets: Fourier spectrum of the output 

beams. ±7r indicate the edges of the Brillouin zone of the lattice. 

Proof that the nonlinear localization is inside the Bragg reflection gap is the 

appearance of spatial frequencies at the edges of the Brillouin zone. This is seen 

in the insets of Fig. 2.14 together with the intensity profiles of the beam for linear 

and nonlinear propagation. We can note here that the intensity scale in the Fourier 

spectrum plots is nonlinear due to the nonlinear response of the camera. 

A unique property of the optical system is the ability to control independently 

the width and the power of the input beam. This control allows us to test the 

new feature of nonlinear Bloch wave localisation -- that it is parameterised by the 

input beam width rather than by the input power. For this purpose the input beam 

width in my experiment is reduced using a cylindrical lens with / = 75 mm. This 

arrangement results in an input beam nearly half the beam width in Fig. 2.13(a). 

The variations of the output beam width vs. the increase of the nonlinear response 

with time is shown in Fig. 2.15. Due to the strong difl'raction in this case, the output 

beam profile acciuires more noise and I therefore estimate the beam width as the 

area containing 30% of the total output power. Nevertheless, we can again identify 

similar behaviour of the output beam evolution. First we observe the initial beam 

defocusing with increase of the nonlinearity, while at longer times the beam confines 
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Figure 2.15: Output beam width (estimated as the width containing 30% of 

the total light) vs. time (nonlinear index change). Dashed line indicates the 

width of 65% of the input beam, solid line indicates a fit to the experimental 

data. Beam power, 1 mW. 

to a narrower localised state equal to the width of the input beam containing about 

65% of the total input power. 

The higher loss in this localisation process can be intuitively understood since 

the narrower beam (of the same power) used in Fig. 2.15 has approximately twice 

higher intensity than the beam of Fig. 2.13. This higher intensity pushes the 

propagation constant into the higher order bands, leading to higher losses. Most 

importantly, however, the experiments shown in Fig. 2.13 and Fig. 2.15, confirm the 

unique property of the truncated Bloch wave localisation in comparison to any other 

nonlinear localised states known in nature, namely that the width of the localised 

state remains independent of the nonlinearity, but can be chosen by the width of 

the input excitation. 

2.4 Chapter Suininary 

In this Chapter I have demonstrated a technicjue for the fabrication of one di-

mensional arrays of sealed, micron scale hollow chaimels using dry Him lamination 

of SU8 polymer. The channels can be easily infiltrated with high refractive index 

fluid to enable optical waveguiding. Temperature tuned discrete diffraction has been 



demonstrated validating the utility of this platform. 

This platform can be used to realise high index contrast waveguide arrays that 

can be lithographically patterned in both lateral and longitudinal dimensions. The 

exploration for the Tise of this platform for resonant and nonlinear optical investi-

gations are presently being undertaken. The ability to infiltrate with fluid suggests 

opportunities in bio-sensing, while the ability to photolithographically define the 

optical waveguide channels can enable interfacing to low-cost densely integrated 

opto-fluidic lab-on-a-chip platforms. 

I have shown a simple way in which existing PCF technology can be adapted to 

produce a wide range of new periodic nonlinear structures. By blocking one end of 

selected holes of an air filled PCF it is possible to produce a wide range of structures. 

I have applied this process to produce a simple ID array of nonlinear waveguides, 

and demonstrated ID linear discrete diffraction, and nonlinear defocusing. I propose 

that this platform can easily be expanded to provide long interaction lengths (> 

10 cm) with the infiltrating liquid with little, if any, alteration to the procedure 

described here. Such arrays can go beyond ID planar structures, and can include 

2D networks for tuneable beam interaction [108], ring structures for beam steering. 

Other infiltration patterns can be used to control birefringence [91]. 2D arrays can 

be adapted with complex surface structures and geometries, allowing for the study 

of surface states. This method can also be used with other nonlinear liquids without 

alteration, since the infiltrating liquid and blocking liquids never come into direct 

contact they will have no interaction. This allows for the selective infiltration of 

solvents with higher nonlinearity such as Toluene or CS2. although the high index 

and low boiling point would make coupling between waveguides very weak [122], 

Liquids with stronger nonlinear responses would enhance the nonlinear diffraction, 

and could be used to probe other nonlinear effects such as gap solitons. 

I have observed nonlinear self-trapping of broad optical beams in defocusing 

waveguide arrays. I have revealed that these novel types of spatially localised modes 

can have an arbitrary width defined by the input beam, while the width is practi-

cally independent of nonlinearity. The origin of these effects lies in the existence of 

an infinite number of independent families of localised solutions with different, but 

fixed, widths, which persist into the higher order bands of the linear bandgap struc-

ture. My experimental results provide the first proof of the existence of the unique 

properties of such states. I believe that the robust nature of the truncated nonlinear 

Bloch states and their controllable generation will encourage further observation in 

other physical systems, along with recent observation in optically induced lattices 

[116], including higher dimensional ones. 



CHAPTER 3 

Nonlinearity in 2D Periodic Structures 

Having studied several nonlinear effects in ID periodic arrays of nonlinear waveg-

uides, we can now generalise some of these to 2D hexagonal arrays of nonlinear 

waveguides. Moving from ID to 2D opens up new opportunities to study new 

physical effects and to further investigate light propagation in tvuieable nonlinear 

periodic photonic structures. 

I utihse liquid infiltrated Photonic Crystal Fibres as a 2D array of tuneable non-

linear waveguides in a hexagonal array. I begin by studying nonlocal gap solitons, 

where structure far from the light field influence soliton formation because of heat 

flow. I then study the point at which a 2D nonlinear periodic system crosses from 

focusing to defocusing. Solitons are no longer excitable in a waveguide array below 

a threshold index contrast, but before the index contrast reaches zero because the 

bandgap closes while the index contrast is still positive. Finally I study vortex states 

on the surface of the core of a photonic crystal fibre, their existence and stability 

in linear and nonlinear propagation. 

3.1 Nonlocal Gap Solitons 

3.1.1 Introduction 

The study of nonlinear wave propagation in periodic photonic structures has 

attracted a lot of recent interest due to possibility to engineer both linear and non-

linear properties of the material. In such systems, self-localised beams or lattice 

solitons can exist due to the interplay between effective diffraction and nonlinear-

ity. Lattice solitons have been observed in various physical systems including optics 

[38], but only with on-site nonlinearity. The consideration of long-range nonlinear 

interactions between lattice sites, on the other hand, have shown to lead to novel 

nonlinear phenomena [123]. Such interactions appear when the nonlinear response 

at a particular lattice site is affected by the light intensity not only at this site 



but also at its neighbours. In periodic structures, long-range nonlinear interactions 
can naturally arise from nonlocal response. Nonlocality is common to many phys-
ical systems [35], occurring due to electrostatic interactions or diffusion processes, 
however, its effect in periodic structures has not been investigated experimentally. 

In this section of my thesis I study nonlinear localised states in a two-dimensional 
(2D) periodic system with nonlocal nonlinear interaction between the lattice sites 
and demonstrate, for the first time to my knowledge, the formation of nonlocal gap 
solitons. 

I utilise the hexagonal lattice of the cladding of a photonic crystal fibre (PCF), 
where the holes are infiltrated with a high-index weakly absorbing oil. The non-
linearity in my system is defocusing and has thermal origin that arises due to the 
negative thernio-optic coefficient of the oil, while the nonlocality originates from the 
diffusive nature of heat transfer [124]. 

Nonlocal solitons have been experimentally studied in homogeneous media [125], 
but in periodic structures only theoretical studies in the one-dimensional (ID) case 
can be found [126, 127, 128, 129]. In defocusing materials, however, no nonlocal 
bright solitons have been observed to date. Only recently, it has been theoretically 
shown that ID nonlocal solitons can exist in periodic structures with defocusing 
nonlinearity through localisation in the Bragg gap. In two dimensions, however, the 
situation can become dramatically different, since a complete Bragg gap only exists 
above a threshold value of the refractive index contrast [43, 53]. 

3.1.2 Theoretical Studies 

I first study theoretically the existence of 2D nonlocal gap solitons in hexagonal 
lattices [53]. I consider the paraxial beam proi)agation in a periodic system with 
diffusive thermal nonlocal nonlinearity described by the equations, 

y, z) + ViA{x, y, z) - y, z) 

= -[no{x,tj) - T{x,y,z)Fn{x,y)Yq^A{x,y,z), (3.1) 

Vlr{x,y,z) = -\A{x,y,z)[\ (3.2) 

where A{x, y, z) stands for the normalised envelope of the electric field, and r(x', y, z) 
is the normalised norilinearly-induced temperature change. The transverse dimen-
sions are scaled to the pitch A, which is the distance between two adjacent holes 
(Fig. 3.1(a)). q is the normalised vacuum wavenumber, p is the normalised prop-
agation constant, and no{x, y) is the linear periodic refractive index. F„ (x ,y ) is a 
normalised nonlinear coefficient with Fn{x,y) = 1 in the holes and zero elsewhere. 
This is justified since the thermal nonlinear response of the liquid dominates the 



thermal response of the glass. Due to scaling - r (x , y, z)n{x, y) can be interpreted 

as the light induced index change. 

My structure (Fig. 3.1(a)) consists of high-index cylinders placed in a hexagonal 

pattern inside a circle with radius i?o = 5A. RQ must be large enough to encompass 

all the high-index cylinders and my results do not depend on its value. Away from 

the core the electric field decays rapidly, and we can therefore assume that a vanishes 

at the boundary of our computational domain RQ. The boundary condition for 

the temperature field requires a more careful analysis since commercially available 

PCFs often contain a large homogeneous region of silica outside the last ring of 

holes. If we assume that the physical fibre has a radius Ri = SRQ {S > 1), and 

that the temperature at the outer boundary is constant, r (r = SRQ/A) = 0, it can 

be shown that T{Ro/A)/Tr{Ro/A) = - log(s)i?o/A. Here r^ denotes differentiation 

with respect to radial coordinate. Tlie above relation is derived under the condition 

that the heat distribution in the region from RQ to R\ is radially symmetric, and that 

there is no heat source in this region. The meaning of this relation is that one can 

practically control the electric field inside the lattice by varying the homogeneous 

spatial extent of the fibre (where the field is zero). This is a clear signature of 

the nonlocal thermal response, where the degree of nonlocaiity in the system is 

measured by the parameter s = RI/RQ. The larger s relates to stronger nonlocaiity. 
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Figure 3.1: (a) System geometry, (b) Bandgap structure for ng = 1.46, 

m = 1.4605, and d/A = 0.5. Sliaded regions correspond to the bands of tlie 

finite structure in (a), while the solid lines show the edges of the first bandgap 

of an infinite lattice. The dashed line indicates the index of the solid material 

ns-

The 2D lattice with thermal nonlinearity is inherently hnite because the nonlin-

earity rehes on the boundaries [124], Therefore, I find the eigenmodes of Eq. (3.1) 



on the finite domain shown in Fig. 3.1(a). The discrete spectrum of eigenvalues is 
divided into bands of closely spaced values separated by large jumps, similarly to 
the Bloch states of an infinite periodic lattice as shown in Fig. 3.1(b) (d /A = 0.5). 
In these calculations n{x,y) = 1.4605 in the holes, and 1.46 elsewhere. A bandgap 
is seen to open up at q « 140. In Fig. 3.1(b) the edges of the first finite bandgap of 
the corresponding infinite periodic lattice are also plotted with solid lines. At large 
q the edges of the first gap for the finite and the infinite structure almost coincide, 
while at smaller values there are propagation constants where a gap exists in the 
infinite, but does not exist in the finite structure. 

The presence of the bandgap allows for existence of nonlinear localised states 
which for defocusing nonlinearity bifurcate from the bottom of the first band. I 
find these modes by looking for self-consistent ^-independent solutions of Eqs. (3.1-
3.2). Importantly, my calculations presented in Fig. 3.2 show that the gap solitons 
occupy the whole bandgap, regardless of the degree of nonlocality. I have tested 
this for different relative hole-diameters and outer boundaries, and every time the 
gap solitons occupy the whole bandgap. This is in contrast to earlier studies of 
asynnnetric nonlocal response where solitons cease to exist at large nonlocality 
[127]. 
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Figure 3.2: Families of nonlocal gap solitons. (a,b) Power P = J\E\'^dr 
and soliton width vs. effective index for different values of s. The normalised 
wave number is q = 200. The dots correspond to the example in Fig. 3.3. 

In Fig. 3.2(a), I show the soliton power vs. effective index for different values of 
nonlocality s. Notice that at high powers even solitons with propagation constants 
inside the second band of the corresponding linear structure exist. This apparent 
contradiction is a result of the finite size of my system which enables the tempera-
ture response to perturb the whole lattice, and thereby change the linear dispersion 



bands. The same behaviour was also recently reported for a ID system [129], An-
other interesting feature seen in Fig. 3.2(a) is the decrease of the soliton power at 
increased degree of nonlocality. This is somewhat counter-intuitive, as one might 
expect that with increase of the thermal mass of the fibre (larger s) one would need 
to inject more power in order to achieve the same nonlinear effect. 

In Fig. 3.2(b) I plot the soliton width Wa = ( / r ^ \ A \ ' ^ d x d y / J \ A \ ' ^ d x d y y / ^ as 
a function of Ues = p/q for different values of the nonlocality parameter s. The 
solitons are seen to localise as they move further into the bandgap, until the effective 
index reaches approximately the middle of the bandgap. Then the solitons start to 
delocalise again. This behaviour is similar to what has been observed for gap solitons 
with local nonlinearity [130]. The main effect of nonlocality in the system is the 
spatial broadening of the solitons with increasing parameter s. This behaviour is 
typical to other nonlocal nonlinear systems [35]. 
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Figure 3.3: Numerically calculated nonlocal gap soliton for power P = 
4 • 10^® and s — 10, marked with a dot in Fig. 3.2. (a) hitensity and 
(b) corresponding phase distr ibution, (c) Soliton profile and (d) induced 
t empera tu re change along the symmetry line shown white dashed line in (a). 

An example of a gap-soliton profile is shown in Fig. 3.3(a). An inherent signature 
of the localisation in the Bragg gap is the staggered phase structure shown in Fig. 
3.3(b). This staggered structure is in the form of concentric rings around the central 



hole and resembles the electric field profile of one-dimensional gap solitons [39]. An 

important difference from gap solitons with local nonlinearity is the actual induced 

index change. In the thermal nonlocal case, this is represented by the induced 

temperature response (Fig. 3.3(d)) that is extended fully towards the boundaries 

of the structure. 
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Figure 3.4: A=532 nm laser light is coupled into a polarisation maintaining 

fibre (P. M. fibre). This butt-couples light into a PCF inside a temperature 

controlled on an x, y, z stage. The output is split by a beamsplitter to two 

power meters and a CCD. 

3.1.3 Experimental Setup 

To verify experimentally my predictions that gap solitons exists in nonlocal 2D 

lattice, I employ a system comprising the hquid-infiltrated PCF cladding, similar to 

our earlier experiments [85]. I use a commercially available fibre LMA-15(7) (from 

Crystal Fibre) with a relative hole diameter d/A ^ 0.498 and s ^ 1. The cladding 

holes are filled by capillary action with an index matching oil (n = 1.48). The fibre 

is placed in a temperature controlled oven (Fig. 3.4 and heated to 76°C such that 

the refractive index of the oil is reduced closer to the index of silica. 532 nm light is 

butt coupled into a single infiltrated hole in the cladding, well away from the core, 

using a single-mode fibre. The output is split to two power meters and a CCD. A 



pinhole is placed in the imaging plane in front of one power meter, allowing light 

from the inpnt waveguide to pass through to the power meter. The other power 

meter nieasm-es power for the entire output image. This allows us to measure the 

fraction of light in the input waveguide. 

3.1.4 Observation and Characterisation of Nonlocal Gap Solitons 

In this system, we can see linear diffraction at low input power 3m\'V) (Fig. 

3.5(a)), corresponding to propagation of approximately three diffraction lengths. 

At high laser power 100 mW) (Fig. 3.5(b)) we observe nonlinear self-localisation 

to almost a single lattice site. Utilising a pinhole (Fig. 3.4) I also measure the 

amount of light in the input hole as a function of the power injected in the fibre 

(Fig. 3.5(c)). This dependence effectively represents the degree of localisation 

achieved experimentally, and it corresponds to the theoretical predictions in Fig. 

3.2. Indeed, my experiments confirm that the amount of localisation is highest for 

intermediate powers, while the soliton is delocalised at both band edges. In addition, 

we can observe the alternating phase structure of the gap solitons by producing an 

interference of the nonlinear mode (Fig. 3.5(b)) and a wide inclined reference beam. 

In the resulting interferogram (Fig. 3.5(d)), the input hole is out of phase with the 

first ring (upper line, expressed in a half-a-period shift in the interference fringes), 

while the first ring has constant phase (lower line). 

It is important to mention that in my previous experiments [85] utilising infil-

trated fibres with stronger nonlocality s « 2, we observed no localisation but only 

beam defocusing. This is a direct consequence of the fact that the nonlocal solitons 

in those fibres are much wider (due to the larger degree of nonlocality) and there-

fore they could not be excited via single site coupling. In this presented work the 

nonlocal parameter is s = 1. Hence the observed localisation is an indication of the 

formation of nonlocal gap solitons. 

During my experimental observations I noticed that nonlocal gap solitons were 

no longer excitable below a certain refractive index contrast. This is interesting 

because this switching from focusing to defocusing in nonlinear periodic structures 

occurs before the index contrast is zero, meaning light is still guided in the liquid 

waveguides. 



Figure 3.5: (a, b) Experimentally observed output diffraction pattern and 
soliton localisation in a liquid infiltrated PCF, at low and high input power, 
respectively, (c) Fraction of light in the input hole vs. input power, (d) 
Measured interference pattern of the output beam with an inclined reference 
beam. 



3.2 Focusing to Defocusiiig Crossover in Nonlinear Periodic 

Photonic Structures 

3.2.1 Introduction 

Self-action of light in nonlinear periodic strnctures is a rich physical phenomenon 

giving rise to a range of fundamental phenomena which can only be observed due 

to the medium periodicity and have no analogue in homogeneous systems. Peri-

odic structures in optics introduce dramatic changes in the linear wave spectrum 

through the the appearance of photonic band-gaps, and subsequent qualitative and 

quantitative modification of wave transport [131]. These features furthermore have 

a dramatic effect on nonlinear wave dynamics, in particular enabling localisation 

of slow-light pulses in the form of gap solitons [132] and supporting new types of 

spatial solitons and breathers [133]. 

A remarkable effect demonstrating a key difference between homogeneous and 

periodic nonlinear structures is the laser beam self-action. When an optical medium 

features Kerr-type nonlinear response such that the optical refractive index is de-

creased in the region of high optical intensity, then such nonliuearity is traditionally 

called "self-defocusing", since the nonlinear beam self-action leads to accelerated 

beam diffraction in such homogeneous medium [16]. However, in periodic photonic 

lattices or waveguide arrays the same type of nonliuearity can lead to beam focus-

ing and self-trapping as was predicted theoretically [39, 134, 135] and subsequently 

observed experimentally [43, 44, 103]. Such reversal of nonlinear self-action can ap-

pear due to the transition of wave transport from continuous to discrete tunnelling 

between the waveguides [28] and the simultaneous opening of photonic band-gaps. 

Whereas the nonlinear beam self-action is well understood in the extreme cases of 

purely homogeneous structures and strongly modulated periodic lattices, the beam 

dynamics in the intermediate regime is less studied. It was predicted theoretically 

for ID lattices that there is a threshold (non-zero) value of modulation where the 

nonlinear beam response sharply switches its behavior [103], however this was not 

observed experimentally. 

In this section, I employ a photonic structure with highly tuneable index modu-

lation and present the first experimental demonstration of crossover from nonlinear 

self-focusing to defocusing when the refractive index modulation is gradually de-

creased. In my experiments I utilise the cladding of an liquid-infiltrated photonic 

crystal fibre (PCF) [85, 106] (see inset in Fig. 3.6) and use precision control of the 

fibre temperature to tune the index modulation of the two-dimensional (2D) peri-

odic structure. In addition, the weak absorption of laser light in the liquid resTilts in 

thermal defocusing nonliuearity. In such a way, my system enables detailed studies 



Total internal reflection gap 

Figure 3.6: (a, b) Bandgap diagrams for refractive index modulation of 0.2 x 

and 10"^, respectively, (c) Propagation constants of the top (dashed 

line) and bottom (solid line) of the 1st and top of the 2nd band (red dashed 

line) vs. index modulation. Shading marks the position of the bandgap. 

Inset: hexagonal array of infiltrated holes in the PCF cladding. 

of the interplay between periodicity and nonlinearity. 

3.2.2 Theoretical Studies 

First I characterise iny system theoretically. The use of a 2D periodic strticture 

brings some richer physics in the process of light localisation [43] in comparison 

to the ID case [44, 103]. In particular, because for defocusing nonlinearity the 

propagation constant of localised states resides in the Bragg reflection gap, it is 

important that such gap exists. However, a property of the 2D lattices is that 

below a certain lattice depth the structure does not support a complete photonic 

bandgap anymore and only partial gaps in specific directions are allowed. This is 



illustrated in Fig. 3.6(a,b) showing the bandgap structure (propagation constant vs. 

transverse wavenuniber) of the hexagonal lattice for two different refractive index 

modulations. While in the case of An = 10"^ there is a complete 2D bandgap in 

the system, for smaller index modulation, An = 0.2 x 10"^, the gap is only indirect 

and no localised states can exist. 

To illustrate the closing of the 2D photonic gap with index modulation, in Fig. 

3.6(c) I plot the propagation constants of the top (Fl point) and bottom (J1 or 

Y1 points) of the first band together with the propagation constant of the top 

of the second band (Y2 point). With the decreasing of the index contrast of the 

structure, the gap (shaded area in Fig. 3.6(c)) gets narrower and completely closes 

for An = 2.3 x 10"" .̂ Obviously, the localisation of beams in the 2D system is not 

possible when the gap is completely closed. This is in contrast to the ID case where 

the Bragg reflection gap always exists. 

Next, I simulate the beam evolution in my structure by solving the 2D nonlinear 

Schrodinger equation for the slowly varying electric field envelope A: 

id^A + D V l A + (27r7/A)|/l|M + (27r/A)F(x, y) = 0. (3.3) 

Here V^ = + is the transverse Laplacian, D = A/47rn6 is the diffraction coeffi-

cient, 7 is the nonlinear coefficient, A is the wavelength of light, n^ is the background 

refractive index, and F(x, y) is the refractive index profile defined numerically as a 

hexagonal lattice of circular holes with a diameter of 5 //m, period 10 jim. and refrac-

tive index contrast An. The notation di, i = x,y,z stands for partial derivative on 

i. While the general description of the thermal nonlinearity is nonlocal [106], here I 

use the simpler approximation of Kerr type nonlinearity. As we will see below this 

model describes well the effect of crossover. 

I characterise the beam evolution by calculating the fraction of light in the 

input waveguide after propagation of 2 cm. In Fig. 3.7(niiddle) I show a 2D plot 

of this fraction (logjg scale) versus linear (horizontal axis) and nonlinear (vertical 

axis) index modulation in the lattice. A larger fraction of light in the input hole 

indicates a stronger beam confinement. In the linear regime (7 = 0) we observe 

increased beam diffraction and correspondingly decreased amount of light in the 

input waveguide as the index contrast is reduced. This is clearly visible in the output 

intensity distribution shown Fig. 3.7(i,iii,v). In the nonlinear regime (7 < 0) we 

can observe high degree of beam localisation and soliton formation for large index 

contrast (An > 2 x 10"^), see Fig. 3.7(ii) and (iv). Below an index contrast of 

An = 1.8 x we can see only beam defocusing with increased light intensity (Fig. 

3.7(vi)). This crossover is indicated in Fig. 3.7 by the white dashed line, after which 

any increases in nonlinear coefficient 7 leads to no increase in the fraction of light 

in the input waveguide. Interestingly, for the obtained threshold index modulation, 



the photonic Bragg-refiectioii gap is fully open (Fig. 3.6(c)), suggesting that the 

crossover is a fundamental phenomena appearing equally in any periodic structures 

regardless its dimensionahty. 

Figure 3.7: Calculated fraction of light in the input waveguide (log scale) over 

a range of index contrasts (An) and nonlinear coefficients (7). Linear (i,iii,v) 

and nonlinear (ii,iv,vi) output beam profiles corresponding to the marked 

points. The white dashed line corresponds to the crossover from focusing to 

defocusing, black lines indicate contours. 

3.2.3 Experimental Setup 

For the experimental demonstration of the predicted crossover. I use the cladding 

of a PCF with a hexagonal arrangement of holes with diameter ~ 5 /xm and period 

A « 10/im (see the inset in Fig. 3.6) [106]. The holes are infiltrated with a high-

refractive index Cargille oil {n = 1.48) which makes them act as optical waveguides. 



The fibre is placed inside a temperature stabilised oven (Fig. 3.4), where its temper-

ature is tuned such that the difference in the refractive indices of the infiltrating oil 

and the surrounding silica is ~ 10"^ For sufficiently small refractive index differ-

ence between the liquid and the glass matrix the waveguides are coupled together, 

forming a hexagonal photonic lattice. To probe the structure. I use the light from a 

CW laser at 532 nni and focus it to one input channel in the array. The output of the 

fibre is imaged onto a CCD camera, in order to analyse the output beam intensity 

distributions. The thermal defocusing nonlinearity of the liquid arises due to weak 

light absorption and the accompanying heating of the liquid channels. This heating 

leads to expansion of the liquid and a corresponding decrease of its refractive index. 

3.2.4 Experimental Observation of Focusing to Defocusing Crossover 

in Nonlinear Periodic Photonic Structure 

I couple light into a single hole of the infiltrated PCF cladding and measure 

a fraction of light in the central (input) channel of the array as a function of the 

transmitted total laser power (Fig. 3.4). In Fig. 3.8 I show the measured (points) 

power dependencies for three different sample temperatures. An increase of the 

light transmitted through the input channel indicates light beam localisation. For 

temperatures 76 - 77°C, the fraction of light in the input waveguide increases as 

the input power is increased. At high enough powers the beam is localised to a 

single waveguide (see Fig. 3.8(i-iv)), forming a gap soliton [106]. This strong beam 

localisation indicates that the system behaves as a discrete one. 

Increasing the fibre temperature, hence reducing the refractive index contrast, 

we observe that the system sharply switches its behaviour. For temperature of 78°C, 

with increase of beam power the output beam starts to defocus (Fig. 3.8(v-vi)). The 

focusing-defocusing transition occurs between 77°C and 78°C when the refractive 

index contrast is low enough and the system looses its discreetness. The observed 

crossover agrees well with my numerical simulations shown by solid curves in Fig. 

3.8. 

From these experimental and theoretical studies we can conclusively determine 

the point at which nonlinear periodic photonic structures switch from focusing to 

defocusing. This switching occurs before the bandgap closes, while the index con-

trast is still positive. Around this point the beam is very sensitive to changes in 

index contrast and nonlinearity. Having characterised the coupling and nonlinear 

properties of these tuneable nonlinear periodic photonic structures (licjuid infiltrated 

PCFs), we can now move on to more advanced beam propagation in this system, 

including interactions with the boundary of the array. 
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Figure 3.8: (top) Fraction of light in the input waveguide vs. input 

power/nonlinear coefficient: experiments (points) and numerical simulations 

(solid lines). (i,iii,v) Experimental images of the outpiit beam in the linear, 

and (ii,iv,vi) nonlinear regime corresponding to marked points on the top plot 

and temperatures (i,ii) 76°C, (iii,iv) 77°C, and (v,vi) 78°C. 



3.3 Surface Vortex States 

3.3.1 Introduction 

Until now tliiK thesis has detailed experiments and nnnierics for nonlinear states 
in a periodic array without any defects. A defect in such an array can be any disrup-
tion to the otherwise regular periodicity of the array, they add new and interesting 
[)hysics and uses to a system. For example one waveguide could be missing, as is 
the case in a PCF in the form of a core defect. This core defect is usually used to 
guide light along the PCF inside the core. 

Perhaps the most conunon defect in any periodic system is the edge of the array. 
While in theory it is possible to have infinite arrays, such devices are practically 
difficult to achieve, and usually umiecessary. In both one and two-dimensional 
systems we find some interesting effects for modes at the edge of an array, when 
looking at previously well understood linear and nonlinear optical effects in periodic 
systems. These nonlinear surface states have been extensively studied in both ID 
and 2D periodic arrays [136, 32, 137, 138, 57, 139]. Observed discrete and gap 
solitons occur for lower nonlinearity when on a surface, than when in an extended 
array [140, 141]. 

The surface at the edge of a 2D hexagonal array can form a number of angles 
between 60° and 300° (Fig. 3.9(a)). The excitation of nonlinear states at such 
angles has been studied in such an array [141], where Szameit et al. show that the 
nonlinearity required for soliton formation depends on the face angle. 
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Figure 3.9: (a) A 2D hexagonal array of waveguides, shaped to show surface 
angles at the intersection of two planar edges with angles between 60° and 
300°. (b) The hexagonal array of waveguides in an liquid infiltrated P C F 
with a vortex beam incident on the waveguides surrounding the core defect 
(red dots). Inset shows an illustration of the input mode incident on a PCF. 



Nonlinear propagation of fundamental Gaussian optical beams has produced a 
rich variety of physical phenomena such as discrete and gap solitons in positive and 
negative periodic nonlinear media [27, 38, 39]. We can uncover an even wider range 
of novel nonlinear optical propagation, by studying modes with different symmetries. 
One such mode is an optical vortex, which is an optical mode including a phase 
singularity at its centre. 

In this section I describe the work I performed with vortex surface states: vortex 
beams propagating in a liquid infiltrated PCF around the core defect (Fig. 3.9(b)). 
I studied such a system theoretically and experimentally. 

A vortex mode in optics is an optical mode whose phase is radially uniform, and 
angular dependant. Such modes have the form: 

(3.4) 

where A{z) is the amplitude of the field, r is the radial coordinate from the centre 
of the beam, 9 is the angular coordinate, m is the charge of the vortex, and w is 
the width of the beam. An optical vortex therefore has a mode profile with zero 
amplitude at its centre (r = 0), necessitated by the angular phase dependance (a 
photon cannot have more than one phase, yet a photon at r = 0 must have all phases 
(0 — m2n). The toroidal mode profile of vortex modes with charge m = 1, 2, 3, 6 are 
shown in Fig. 3.10. 

m=l m=2 m=3 m=6 

Figure 3.10: Mode profiles (top line) and phase profile (bottom line) for 
optical vortex modes with charge m = 1, 2,3, and 6. 

Optical vortices and their propagation have been studied for their ability to 
trap and manipulate particles [142], and in the production of waveguides in atomic 



vapour [143], The nonlinear propagation of vortex modes in the core of a photonic 
crystal fibre (PCF) have been studied theoretically [144, 145, 146, 54, 147], and there 
have been theoretical and experimental study of vortex solitons in optically induced 
lattices [148, 149, 29] and bulk nonlinear media [31, 150, 151], The propagation 
[152] and reflection [153] of a vortex mode from a nonlinear-linear interface in a bulk 
media has also been studied for multi-charge vortices, and single charge vortices in 
semi-infinite optically induced lattices [154], 

I take a new approach to the study of optical vortex propagation. Using an 
hexagonal array of nonlinear waveguides surrounding a solid core, I propagate an 
optical vortex in the waveguides adjacent to the core. I theoretically study the 
nonlinear propagation of vortex modes in this system, using both discrete and con-
tinuous models. 

Such structure is analogous to a liquid infiltrated photonic crystal fibre (PCF), 
which have been used to study nonlocal gap solitons [106], the crossover from fo-
cusing to defocusing in a periodic array (Sec. 3.2), as well as the possibility for 
selective infiltration for a range of interesting structures and applications (Sec. 2.2) 
[89, 109]. 

By propagating a vortex mode in waveguides around the solid core of a PCF 
we can study vortex modes interacting with a surface, where the periodic structure 
meets a homogenous dielectric. Such states have been studied and observed in 
similar structures for single site excitation with Gaussian modes [155, 141]. Similar 
work has been done at the bomidary of an optically induced lattice [154], showing 
the instability of some propagated vortex modes. 

This section is organised as follows: Section 3.3.2 introduces the discrete model 
for an infiltrated PCF structure with an liexagonal geometry and a central defect 
making a solid core, in section 3.3.3 I introduce the continuous model of the same 
structure, focussing on the dynamical evolution of vortex excitations. Section 3.3.4 
introduces the experimental setup, and section 3.3.5 discusses experimental results. 

3.3.2 Discrete Model 

I consider a finite two-dimensional array of weakly-coupled nonlinear (Kerr) 
waveguides with hexagonal geometry, with a missing waveguide at its center (Fig. 
3.11 (a)). In the framework of coupled-modes theory, the electric field E{x^ y,z) is 
{)resented as a superposition of (single) transverse modes (/)(x, y) with amplitudes 
A{z) that vary slowly along the longitudinal direction: E[Y,Z) = X]^n(2)(/)(r - n), 
where r = {x,y) and n = {rix.ny). These amplitudes obey the discrete nonlinear 



Schrodinger equation, 
(lA 
dz (3.5) 

where the sum is restricted to nearest-neighbors. The stationary sohitions of 
Eq.(3.5) have the form A„{z) = A„exp{iPz), where A^ obeys 

i i i T ^n 

(3.6) 
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Figure 3.11: Hexagonal waveguide array with central hole, (a) Example of 
a fundamental inner surface mode (/3 = 7.5, P = 8.33). Amount of shad-
ing denotes the distribution of optical intensity, (b) Power vs. propagation 
constant curve for this kind of mode. Solid (dashed) curve denotes stable 
(unstable) portions. 

I am interested in localised modes centred around the boundary of the solid core 
of the array. The simplest of these 'surface' modes is one centred on any of the 
six equivalent sites surrounding the missing guide. It is found by solving Eq. (3.6) 
using a direct extension of the Newton-Raphson method, starting from the decou-
pled (high-amplitude) limit, and perfornhng a continuation process towards finite 
coupling values. For each mode found, I perform a standard linear stability analysis. 
Fig. 3.11(a) shows an example of a spatial profile for this kind of mode, along with 
its power content P = Y. l^nP vs propagation constant curve (Fig. 3.11(b)). The 
curve obtained is typical of surface modes [156] and obeys the Vakhitov-Kolokolov 
stability criterion. In order to approach something resembling a vortex-like mode, I 
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Figure 3.12: Hexagonal waveguide array with central hole, (a) Example of 

an unstaggered 'ring' surface mode {P = 8.0, P = 37.4). Amount of shad-

ing denotes the distribution of optical intensity, (b) Power vs. propagation 

constant curve for this kind of mode. This mode is always linearly unstable. 

consider next a higher-order mode, in the form of an unstaggered 'ring' around the 

'hole', with no phase difference (i.e., zero vorticity). An example of this high-power 

mode is shown in Fig. 3.12 along with its power vs. propagation constant curve. In 

this case, the mode is unstable for all values of its propagation constant. In fact, I 

find that most higher-order surface mode configurations are indeed unstable, with 

the exception of one: The staggered version of the ring mode (Fig. 3.13(a)), where 

all amplitudes around the hole are identical initially, but with a phase difference of 

TT between nearest-neighbours around the ring. In this case, the mode is stable for 

initial amplitudes (Fig. 3.13(b)) exceeding a given threshold. 

One interesting question at this points is: If we excite dynamically the unstag-

gered (i.e. unstable) ring configuration, what are the decay channels for this mode? 

Will it transition to the low-power, single-site stable mode, or will it change into the 

staggered (stable) ring, or perhaps it will dissipate as radiation? To look for an an-

swer, I follow the dynamical evolution of an initially completely localised ring mode 

configuration: A^ = AQ around the six sites surrounding the missing guide, = 0 

otherwise. Long-time evolution of this mode over large propagation distance for a 

finite sample of N = 168 sites is shown in Fig. 3.14. Clearly, after a long transient 

behaviour, where the diffracted beam bounces several times from the boundaries 

of the array, the beam becomes eventually self-trapped in one of the six possible 

fimdamental mode configurations. It is interesting to note that this self-trapping 
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Figure 3.13: Hexagonal waveguide array with central hole, (a) Example 
of an staggered 'ring' surface mode (/3 = 5.75, P = 47.95). Amount of 
shading denotes the distribution of the mode amplitude, going from white 
(amplitnde=—3) to dark grey (amplitude—+3). (b) Power vs. propagation 
constant curve for this kind of mode. Solid (dashed) curve denotes stable 
(unstable) portions. 

transition is quite abrupt, as evideiicexl in Fig. 3.15. 

3.3.3 Continuous Model 

Given the geometry of the array, it is conceivable that tlie addition of vorticity 
coulcl stabilise this (unstable) ring mode. After all, we know that in two-dimensional 
square arrays, the addition of vorticity can stabilise some low-i)ower modes that are 
otherwise, unstable [54 . 

In order to test this idea in conditions tliat are closer to an actual experiment, 
I sinuilate next the beam evolution in the structure by solving the contdnuous 2D 
nonlinear Schrociinger equation for the slowly varying electric field envelope A: 

OA ^ f 
dz + 0'' 27r 

^\AYA + —F{x,y) = () (3.7) ^Ox^ d j p ) " ' A " ' A 

Where = Ol + d'y is the transverse Laplacian, D = A/47rn/, is the diffrac-
tion coefficient, 7 is the nonlinear coefficient, A is the wavelength of light, n^ is 
the background refractive index, and F(x, y) is the refractive index profile defined 
numerically as a hexagonal lattice of circular holes with a diameter of d, pitch A 
which is the distance between the centre of two adjacent holes, and refractive index 



Figure 3.14: Evolution of unstable ring mode configuration over large prop-
agation distance (a) z = 50, (c) z = 100, (d) x = 136, (e) ^ = 137, 
( f ) 2 = 138(g) z = 150, (h) 2 = 200. The initial amplitude in all six sites 
around the 'hole' is 2, with no phase differences. 

contrast An. While the general description of the thermal nonlinearity is nonlocal 
(Sec. 3.1), here I use the simpler approximation of Kerr type nonlinearity. 

Such model is commonly used to investigate guidance properties in periodic 
arrays [27]. Using a hole diameter of rf = 5yum and pitch A = lOfim, closely matching 
a commercial fibre (F-SM 15 by Newport) I am able to provide a theoretical basis 
for experimental observation. 

I propagate an input mode with profile A{z) = rl™l e x p ( - ^ + imO), where A is 
the amplitude of the mode, m = 1 is the charge of the vortex, r, 9 and 2 are the 
cylindrical coordinates of the system, and w = \/2/|m|A is the width of the vortex 
mode. 

I find that even though the input mode is symmetric, linear diffraction causes 
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Figure 3.15: Evolution of unstable ring mode configuration over large prop-

agation distance: Power content vs. longitudinal evolution distance, at the 

position of the center of the eventually self-trapped beam. 

some asymmetry in the output mode after z = 2 cm of propagation (Fig. 3.16(a)) 

and index contrast An = 0.0032. The vortex phase is somewhat maintained at the 

output for linear propagation (one can pick a point in the cladding, and trace the 

phase in a circle around the core from 0 to 27r). This linear beams diffracts in the 

array as it propagates. Nonlinear output with 7 = 1 x lO""^ shows localisation of the 

beam to the first ring of waveguides surrounding the solid core defect (Fig. 3.16(b)), 

and the loss of vorticity in the phase. Similar to the discrete model, we can see that 

the vortex mode is unstable when adjacent waveguides are not out of phase. These 

nonlinear modes are surface modes, largely confined to waveguides around the core 

for large propagation distance {z = 20 cm). 

To test the stability in the contiiuious model I next propagate a beam with 

m = 3, which satisfies the condition of staggered phase between adjacent waveguides 

in the six waveguides surrounding the core. We can see that linear propagation is 

indeed more stable, and even more confined in the form of a ring mode, even though 

the vortex phase is lost (Fig. 3.17(a)). The linear beam diffracts as it propagates in 

a similar fashion to m = 1 modes. In the nonlinear regime we see the mode begins 
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Figure 3.16: (a) Linear propagation of an optical vortex mode with m = 1 
at z = 2 cm (upper) and its phase (lower) in an hexagonal array of nonlinear 
waveguides. This linear mode diffracts as it propagates, (b) Nonlinear prop-
agation of the same mode at z = 2 cm (upper) and its phase (lower) with 
7 = 1 X 10"''. The nonlinear mode propagates as a surface mode around a 
solid core defect. Pale dots on lower plots indicate waveguide location. 

to break up as the staggered phase is lost (Fig. 3.17(b)). Again these nonlinear 
modes are surface modes, although this time more confined to waveguides around 
the core over large propagation distance (z = 20 cm), due to the initial staggered 
phase profile. 

The linear and nonlinear modes produced with this m = 3 input mode are more 
strongly confined to the waveguides adjacent to the core defect, when compared to 
modes produced with an input with m = 1. While the vr staggered phase between all 
six waveguides around the core is lost in the nonlinear propagation, the sites which 
liave the highest intensity maintain this staggered phase. The initial vorticity of 
the m = 3 beam seerns to stabilise the linear output into a vortex which survives 
for long propagation distances. In the nonlinear regime the vorticity is lost, but the 
ring mode structure is maintained with a somewhat staggered phase between some 
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Figure 3.17: (a) Linear propagation of an optical vortex mode with m = 3 
at 2 = 2 cm (upper) and its phase (lower) in an hexagonal array of nonlinear 
waveguides. This linear mode diffracts as it propagates, (b) Nonlinear prop-
agation of the same mode at 2 = 2 cm (upper) and its phase (lower) with 
-y = 1 X 10"'*. The nonhnear mode propagates as a surface mode around a 
solid core defect. Pale dots on lower plots indicate waveguide location. 

waveguides. 

3.3.4 Experimental Setup 

The propagation of these surface vortex states was also tested in an experimental 
setup utilising liquid infiltrated PCFs as an array of tuneable nonlinear waveguides. 
A CW laser with A = 532nin was split by a polarising beamsplitter (PBS) into 
a probe beam and a reference beam (Fig. 3.18). Tlie probe beam is focused by a 
/ = 25 mm lens through a 50 /xm pinhole and recollimated to a larger size (diameter 
of about 15 nnn) with a lens of / = 250 unn. This larger beam is given a horizontal 
polarisation and reflected off the si)atial light modulator (SLM) at a very shallow 
angle ( « 10"'̂  rad). This modulated beam is then focused by a lens of / = 125 nun 



and passed through a 30 //in pinhole to remove any pixilation noise caused by the 
SLM. This beam is recolhniated by a / = 50 mm lens, passed through an iris and 
focused onto the sample fibre by a lens of / = 75 mm. The iris before the focusing 
lens is used to remove any noise outside the vortex, and make fine adjustments to 
its size. 

The liquid infiltrated fibre sample is held at a constant temperature inside a 
temperature controlled oven. The fibre is pressed between two glass plates, with 
a small drop of the infiltrating oil on each end of the fibre to improve coupling 
into the fibre and imaging. After propagating through the fibre the output beam 
is collected by a 20x microscope objective and focused onto a camera. The output 
beam is passed through an iris to remove higher order modes from the image. An 
unmodified beam from the laser (which is not reflected by the PBS) is used as a 
reference beam to test the phase at the output of the fibre. It is combined with the 
output beam on the camera using a beamsplitter (BS). 

Laser X=532 nm 

m 

PBS 

-1 .7 m 

f=25 mm f=250 mm 
I 

SLM 

C P f=125 mm 

J 
50 |am pinhole X,/2 

\ 
^^^ 30 |am pinhole 

— J - A 
N ^ p f = 5 0 mm Oven 

f=75 mm 20x objecti . 
Camera 

Iris Fibre Iris BS 

Figure 3.18: Experimental setup for propagating a vortex mode inside a 
liquid infiltrated PCF. Key: PBS- polarising beamsplitter; SLM- spatial light 
modulator; BS- beamsplitter. 

This vortex beam is coupled into a liquid infiltrated PCF such that the minimum 
at the centre of the vortex is positioned on the core of the fibre (Fig. 3.9(inset)). 
The width of the vortex is adjusted using the / = 50mm collimating lens before the 
input lens. Any noise in the beam is removed with the iris before the input lens. Not 



all iiihomogeneity can be removed due to consideration of the transmitted power 
through the iris, as well as enlargement of the vortex mode caused by diffraction 
from the iris. 

The vortex was generated on the SLM in phase modulation mode, with the laser 
polarisation parallel to the neniatic axis. Examples of the phase used to generate a 
vortex beam are shown in Fig. 3.19. The phase is generated with a function: 

(t){r, e) = me (3.8) 

where (j) is the phase, m is the vortex charge, and r, 9 are the cylindrical coordinates. 
The vortex charge can be altered to suit the application, charge one (Fig. 3.19(a)) 
has a single phase jump (from 0 to 2tt), while charge two has two phase jumps 
(Fig. 3.19(c)). Some distortion appears in the reflected modulated beam due to 
protective coatings and glass in front of the modulating liquid crystals. This can be 
corrected by adding a corrective phase to the beam, provided by the mamifacturer 
(Fig. 3.19(b)). 

Figure 3.19: Phase profile used to generate vortex beams with (a),(b).((i) 
charge 1, and (c) charge 2. (b) and (d) contain a phase correction for the 
shape of the protective glass plate on the modulator, (d) Adds a small angle 
to the modulated beam so it can be separated from any unmodulated light. 

Some unmodulated light is reflected from a protective glass plate on the SLM, 
situated in front of the liquid crystals which modulate the phase. This unmodulated 
reflection distorts the vortex and adds noise to the modulated beam. The vortex 



phase was modulated by adding a constant phase gradient (Fig. 3.19(d)), effectively 

adding a small angle to the modidated beam. These two images are then separated 

by a spatial filter in the form of a 30 //ni pinhole. The result of this is to separate 

any unmodulated reflection from the modulated beam from the SLM, in order to 

improve the vortex quality. Combined with the correction for any non-uniformity 

(Fig. 3.19(d)) in the SLM it is possible to produce a vortex beam of high quality. 

3.3.5 Linear and Nonlinear Beam Interactions With PCF Core 

Experimentally a vortex beam is lavuiched into a liquid infiltrated PCF. The 

central minimum of the vortex mode is placed on the core defect of the fibre. The 

maximum of the vortex mode coincides with the first ring of holes surrounding the 

core defect. The infiltrating liquid is castor oil doped with gold nanoparticles to 

increase absorption and nonlinearity. The nanoparticles absorb approximately 30% 

of light over a 1 cm bulk sample of the liquid. The increased nonlinearity is required 

due to power restrictions of the SLIM, and other losses through the optical system. 

The input (Fig. 3.20(a)) is generated as a charge one vortex, and separated from 

any mimodulated light. 

0 
linear I 74.5°C Linear I 75.5°C Linear 

73°C Nonlinear! 74.5°C Nonlinear I 75.5°C Nonlinear 

Figure 3.20: (a) Vortex mode input, (b)-(d) linear output of vortex mode 

propagating around the core in liquid infiltrated fibre (e) at (b) 73°C, (c) 

74.5°C, (d) 75.5°C. (f)-(h) Nonlinear output of vortex mode around the core 

in liquid infiltrated fibre (e) at (f) 73°C, (g) 74.5°C, (h) 75.5°C. 

Fig. 3.20 shows the experimental linear and nonlinear propagation observed for 

a vortex mode propagating around the solid core. In the linear regime (Fig. 3.20(b)-



(d)) the output broadens as the couphng is increased due to smaller refractive index 
contrast caused by the higher temperature. In the nonlinear regime (Fig. 3.2()(f-h)) 
the output is broader than in the linear case, for each temperature. This indicates 
self defocusing caused by the nonlinearity. This self defocusing in this case is caused 
by the nonlocal response, not considered in the theoretical model (Fig. 3.16). The 
nonlocal parameter of the fibre is close to 2 (the nonlocal parameter is the ratio 
between the cladding size and the size of the array (Sec. 3.1)) (Fig. 3.20(e)). 

The asymmetry in the beam conies not only from the asynnnetry in the input 
mode, but also from inhomogeneity in the fibre itself. Wliile the cladding in general 
is quite homogenous the holes around the core are subject to further stresses during 
the drawing process due to the missing hole in the centre. \Mien comparing an 
input beam such as that in Fig. 3.2()(a) propagating in the cladding (such that 
the minimum at the centre of the beam falls on a single waveguide) seen in Fig. 
3.21(a), and the same beam propagating aroimd the core (Fig. 3.21(b)) it is obvious 
that the beam propagating in the cladding has a greater symmetry. This is most 
likely due to asymmetric coupling between the waveguides around the core due to 
inhomogeneity in the fibre structure around the core. 

Figure 3.21: Linear output for a vortex produced by the SLM propagating 
(a) in the cladding of the infiltrated PCF at 74°C, away from the core, and 
(b) around the core. 

This can also be shown using a highly symmetric vortex beam produced with a 
reflective phase plate (Fig. 3.22(a)) (a reflective piece of brass with a height profile 
producing the phase profile in Fig. 3.19(a)). When this beam is propagating around 
the core at 72°C when there is little coupling between the waveguides, the output 



profile is syniinetric (Fig. 3.21(b). As the coupling is increased to 74°C and the 

waveguides begin to couple, the output profile is seen to become less symmetric 

(Fig. 3.21(c)). This is due to asymmetric coupling between these waveguides and 

their neighbours, caused by inhomogeneity in the fibre structure. All symmetry is 

lost when the coupling is increased again at 76°C (Fig. 3.21(d)). 

Figure 3.22: (a) A vortex produced by a reflective phase plate, and its output 

when propagated around the core of an infiltrated PCF at (b) 72°C, (c) 74°C, 

and (d) 76°C. 

The observed asymmetry is most likely caused by inhomogeneity in the waveg-

uides surrounding the core. Dm'ing the fibre drawing process it is highly likely that 

structural stresses in the fibre preform can cause slight deviations in the structure 

around the core, and at the boundary of the cladding structure. This can occur 

because of the defect of a missing hole or the edge of the array, and was seen in 

many of the early fibres produced [62, 67]. 



Vortex modes propagating around the core defect of a hexagonal nonhnear peri-

odic waveguide array can be stable, provided the mode symmetry matches natural 

Bloch modes of the system. Using the discrete and continuous model I have shown 

that a charge 3 vortex mode is stable because of its staggered phase profile for the 

six waveguides around the core. The discrete model shows that charge 1 surface 

vortex modes decay to a single site surface mode. I experimentally tested the prop-

agation of linear and nonlinear vortex modes from the continuous model, and was 

able to show that asymmetry in the output is caused by inhomogeneity of the fibre. 

3.4 Chapter Summary 

In this chapter I have shown my theoretical and experimental work on nonlin-

earity in 2D periodic structures. I have utilised liquid infiltrated PCFs as an array 

of tuneable hexagonal nonlinear waveguides. I have studied theoretically and gener-

ated in experiment nonlocal gap solitons in liquid-infiltrated photonic-crystal fibres. 

I have shown a possibility to control nonlocality in a realistic periodic structure by 

varying its boundaries. 

I have utilised a liquid infiltrated PCF as a 2D periodic structure with highly 

tuneable refractive index modulation to study the crossover behaviour of a the sys-

tem from periodic to homogeneous. The crossover is observed as the point where 

the defocusing nonlinear response of the propagating beams abruptly switches from 

beam localisation to defocusing. Through numerical simulations and detailed exper-

imental analysis I have determined the threshold index contrast for such crossover. 

Near this threshold point the output beam is highly sensitive to index modulations 

and power fluctuations in the system, and therefore this regime can be applied 

for high-sensitivity refractive index or temperature sensing. Furthermore, my re-

sults may have implications beyond the field of optics relating e.g. to the crossover 

behaviour of conductivity in graphene sheets [157]. 

I have examined the localised surface modes around the core defect of a PCF 

surrounded by a hexagonal array of nonlinear waveguides. I find that the stable 

modes in both the discrete and contiiuious models have a staggered phase profile 

for the six waveguides surrounding the core. Ring shaped surface modes are studied 

in the discrete model and shown to always decay to a single site fundamental surface 

mode. The contirmous model shows a similar decay of the surface modes and loss 

of vorticity in the phase at high nonlinearity. These vortex states are explored 

experimentally but due to the nonlocal nature of the fibre and asymmetry in the 

structure, soliton formation was not achieved. 



CHAPTER 4 

Conclusions 

The propagation of light in periodic photonic structures offers a new way to 

control light interactions, and opens new areas for research into how light can be 

used to control light. The invention of the laser opened up the possibility for the 

study of nonlinearity in optics, allowing high intensity beams of light to interact 

through a nonlinear medium. To further study and utilise nonlinear media to fit 

in with our current technological world we need to create new structures to further 

understand and explore the physics behind these systems, leading to real world 

applications. 

In this thesis I have studied light propagation in tuneable nonlinear periodic 

photonic media. There are three main areas to my research: (i) the experimental 

development of ID periodic platforms for liquid infiltration and their character-

isation; (ii) the experimental and theoretical observation of truncated nonlinear 

Bloch-wave solitons in ID waveguide arrays; (iii) and theoretical and experimental 

study of nonlinear cladding modes in liquid infiltrated Photonic Crystal Fibres. 

I have developed platforms for the study of light propagation in ID structures. 

SU8 polymer was used to photolithographically define square channels which were 

infiltrated with an index matching oil. By choosing an index matching oil it is 

possible to precisely control the refractive index of the waveguides, and hence their 

coupling. This refractive index can further be tuned by changing the temperature 

of the whole structure. I showed linear propagation in this system in the form of 

discrete diffraction. I was able to demonstrate temperature tuneable linear discrete 

diffraction and performed accompanying theoretical calculations from which I was 

able to estimate the temperature of the liquid inside the waveguides. 

I expanded on these waveguides by utilising existing arrays of capillaries in 

Photonic Crystal Fibres. I developed a simple and cost effective method for the 

selective infiltration of a PCF, using a tapered glass fibre to convey droplets of liquid 

into place on one end of a PCF to be infiltrated. I blocked the inverse pattern to 

be infiltrated on one end of the fibre, then filled the unblocked holes by submerging 



the other end of the fibre into a reservoir of infiltrating hquid. I demonstrated a 

ID array of coupled waveguides, and showed linear temperature tuneable discrete 

diffraction and nonlinear defocusing. 

I have studied truncated nonlinear Bloch-wave solitons in Lithium Niobate 

waveguide arrays. These states are excited with a broad Gaussian input beam. 

After j)ropagation and above a threshold nonlinearity these beams maintain a sta-

ble width, even as the nonlinearity increases. This nonlinearity independent width 

is maintained as the width of the input is changed. These states have already been 

demonstrated in an application of image transmission in photonic lattices [fl6]. 

I also studied light propagation in hexagonal 2D arrays using liquid infiltrated 

Photonic Crystal Fibres. After infiltration I utilise the cladding striicture of the 

fibre as a 2D periodic array of tuneable nonlinear waveguides. I used similar index 

matching oils from my experiments in fD structures. 1 was able to observe non-

local gap solitons, where the width of the soliton depends on the properties of the 

structure far from the light field due to heat flow and thermal nonlocality. Above 

a certain temperature these solitons are no longer excitable, leading me to discover 

the crossover from focusing to defocusing in periodic nonlinear waveguide arrays. 

This crossover occurs before the refractive index contrast is reduced to zero because 

the bandgap closes before this point. 

I was able to show that vortex surface states can be stabilised by utilising a 

vortex charge which mimics natural Bloch modes of the system, where neighbour-

ing waveguides are out of phase. Through theoretical studies of the discrete and 

continuous model the stability of vortex modes propagating around the surface of 

a core defect in a liquid infiltrated PCF were studied. Modes not matching the 

symmetry of the waveguide structure (such as charge 1) break up and confine to 

a single waveguide after long propagation distance. Other modes (such as charge 

3) can propagate for long distances without breaking up because of their staggered 

phase structure. 

This research can be used as a basis for the construction of devices based on re-

fractive index sensitivity and beam propagation. Such devices have been suggested 

158], but can benefit from larger interaction between the probe beam and infil-

trating liquid. Using for example nonlocal gap solitons to confine light to a single 

infiltrated waveguide, it would be possible to increase the exposure of an infiltrating 

licjuid to the probe light by orders of magnitude. 

The point at which a system switches from focusing to defocusing is similar in 

many ways to a system switching from a higher dimensional behaviour, to different 

behaviour in lower dimensions. This has been studied in graphene sheets, as the 

thickness is increased and the material moves from 2D to 3D its conductivity changes 

[157]. By studying this in optics we have another method for studying other physical 



problems involving system behavioural change. 

More advanced structures such as 2D arrays of gold and silver nanowires have 

shown waveguiding and plasmon resonances properties [159], following on from ear-

lier work on guided modes in arrays of metallic nanowires [160]. This could be 

expanded to include plasmonic effects in periodic structures, including coating the 

inside of a PCF with a thin layer of silver. This could be infiltrated with a liq-

uid or not. and may show some interesting coupling effects between waveguides. 

These waveguides could even be modified using selective infiltration to produce a 

wide variety of structures or networks, perhaps allowing for some external (electric, 

magnetic etc.) interaction to control light propagation. 
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