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Figure 1.1: (a) In a 2D optical lattice, the atoms are confined to an array of tightly con-
fining 1D potential tubes. (b) In the 3D case, the optical lattice can be approximated by
a 3D simple cubic array of tightly confining harmonic oscillator potentials at each lattice
site (Taken from [13]). (c) Images of the velocity distributions of the trapped atoms, taken
by the expansion method. The left frame shows the velocity distribution just before the
appearance of the Bose-Einstein condensate; the middle frame, just after the appearance
of the condensate; the right frame, after further evaporation leaves a sample of nearly
pure condensate. The field of view of each frame is 200 ymx270pm, and corresponds
to the distance the atoms have moved in about 1/20 s. The colour corresponds to the
number of atoms at each velocity, with red being the fewest and white being the most.
Areas appearing white and light blue indicate lower velocities (Taken from [14]).

questions regarding ultracold atomic systems:

e What are the effects of the many-body interaction in the ground-state of the system
and the spectrum of excitations?

e What is the role of interactions in the formation of localised atomic states and sym-
metry breaking effects?

These questions are relevant to the study of ultracold atoms in the following aspects.
The possibility to prepare states by manipulating interactions with useful configuration
properties for the implementation of quantum computing protocols [37] and atomtronics
[38-40]. Once we know the ground state and the spectrum of excitations we can for-
mulate approximation schemes and study phenomena such as the transition from the
quantum to the classical regime [41, 42], decoherence, understand mechanisms behind the
selection of certain configurations in the ground state or formulate effective theories to
explain and predict behaviour in experiments. The structure of the ground state has pro-
found consequences on the transport properties of these systems where quantum phase
transitions [43] might emerge and phenomena such as superfluidity [44] and the forma-
tion of insulating states [18, 45] are closely related.
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Figure 1.2: Right Panel: Weakly linked Bose-Einstein condensates in a symmetric double-
well potential as indicated in the schematics. Observation of the tunnelling dynamics of
two weakly linked Bose-Einstein condensates in a symmetric double-well potential as
indicated in the schematics. Bose-Josephson junction in the Josephson regime (a) and the
macroscopic quantum self-trapping regime (b) (Taken from [46]). Left Panels: (c) Sketch
of a Feshbach resonance. The phenomenon occurs when two atoms colliding at an energy
close to zero in the entrance channel resonantly couple to a molecular bound state with
energy . supported by the closed channel potential. The resonant coupling is realised by
magnetically tuning £ near 0 if the magnetic moments of the closed and open channels
differ. (d) The behaviour of the scattering length a, as a function of the magnetic field,
where AB is the distance with respect to the resonance where @ — 0 (Reproduced after
[47]).












Interacting bosons in a double-well potential

states, and the separation between them is small.
The energy levels and the corresponding eigenfunctions are given by the solution of
the following equation:
(T + \"'mp) ou(x) = evipu(T)s
and the qualitative picture of the solutions is given in Fig. 2.1, where we have that the
lowest mode is symmetric and the first excited mode is anti-symmetric.

Figure 2.1: Schematics of the solutions of the single particle states of the double well
potential. The lowest energy state eigenfunction (symmetric) is given by () and the
first excited eigenfunction (antisymmetric) is given by ¢ (x).

The interaction term in (2.1) has been rewritten in terms of the two particle collision
integral, w,, s = 9/2 [ dx wulx)ey(x)p, (x)ps(x), and here we assume that g > 0. Since
the atom number states basis is appropriate to study the expectation value of the popu-
lation of the right and left wells, we perform the following linear transformation:

: | ;
b[=——.—((.l()+(.u). b =

A
‘/z 2 J‘E ()] '] .

and substitute in (2.2) to obtain,

X + a7 i i X e
H = (‘Lz_‘_') (b1, + blb,) - (“ 2‘“) (b}b, + i) 2.3)

wy wy 3wy 1 afaga a
+ (_l Fegit T) (b|b|b|b1 + b-tzbz"zbz)

("—;2 + '—’31 - yf) (z}}i;{i;._,l}z + i)l,i).t,i)li)l - -Ii)ti)gitli;._,)
uy uwy X3 4 afaya-a apaga = X
(7 = 7) (B161;b, + bb} by by + blbbyb, + Bybliub, ) 2.4)

where the interaction constants in each term depend on the overlapping between modes
and are given by, wy = g/2 [ dx |gol|*, w2 = g/2 [ dx |gol*|e1/?, ws = g/2 [ dx |¢1|". The
relevant terms of the Hamiltonian (2.4), are the second and third terms from above, since
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§2.2 Density matrix of a N-body system
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Figure 2.2: The real part of the density matrix p'™ of 20 particles for different interaction
values and times, A=0 (top row, Rabi regime), 0.2 (middle row, Josephson regime), 2.0
(bottom row, Fock regime). Time units of each matrix correspond to 0.5 (left), 2.5 (mid-
dle), 30.0 (right). Here each square represents a matrix element of the density matrix.

non-interacting case case when A = 0 (Rabi regime), we observe the expected coherent
oscillations for the purely tunnelling regime [58, 70]. This behaviour is reflected in the
density matrix elements [Fig. 2.2, top row],which have no transition between positive or
negative values from the main diagonal and there are oscillations on the main diagonal
with a Rabi frequency, wr = 2. In the second case when A = 0.2 (Josephson regime)
we pictorially observe that the density matrix elements evolve in time from having non-
interacting features (oscillations on the main diagonal), in the time [ Fig. 2.2 left and
middle panels]. Then the system, starts to slowly change to a stationary state charac-
terised by checkerboard-like structures [Fig. 2.2, middle row (right)], where there is a
mixture in the behaviour between positive and negative elements, with small amplitude
oscillations as a function of time. Revivals are captured in the matrix elements through
coloured oscillations in the main diagonal elements and are due to the finite number
of atoms. Finally, in the third case, when the interaction contribution exceeds the criti-
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Interacting bosons in a double-well potential
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Figure 2.3: Particle population in well 1 {\}),, as a function of the energy eigenvalues <,
for N = 1000 and A = 0.1, A = 1.0and A = 10.
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Figure 2.4: The two particle correlation (C),,, as a function of the energy eigenvalues <,
for N = 1000 and A = 0.1, A = 1.0and A = 10.

(red) dotted line in Fig. 2.5. The (blue) solid lines correspond to the lowest and highest
eigenenergies for each value of A, namely, =4(A) and =x(A). Hence, for =,(A) < =.(A) the
state |0, (A)) is delocalised, while it is self-trapped for =,,(A) > =.(A). We further observe
that there exists a critical value of the interaction A, below which there is no transition.
For N = 1000 we numerically find A, & 0.539, see the inset in Fig. 2.5.

The transition from delocalisation to self-trapping in these systems has been predicted
and found, both by exact diagonalization of the Hamiltonian (2.5) [68, 70-72, 74-76] and
from the mean-field calculations [58, 66, 69, 73]. To highlight the similarities and dis-
crepancies between the results of this and of the next section, we now briefly review the
mean-field approximation®. Mean field approximation may be achieved by first setting
the creation and annihilation operators as c-numbers, h — b and b — b;, and further

, = |bjlexp(iv;). Then, one may identify the relative populatnon p = (|by]* = |b2?)/N
and the phase difference = 1/, — ¥, as classical canonical conjugate variables. Their full
dynamics is then determined by the corresponding Hamiltonian (2.5) in those variables
[65, 67, 69].

The ensuing mean-field phase diagram is strikingly similar to the one shown in Fig.

*We follow closely the discussion and results of [69].

18



§2.3 Observables and eigenstates properties

Figure 2.5: Phase diagram /N vs A for N = 1000 particles. The allowed states are those
within the (blue) solid lines, z5(A) and =5 (A). The (red) dotted line is the transition from
delocalised to self-trapped states, =.(A) for A > A, = 0.539, see the inset. The states with
energy greater than =.(\) are self-trapped.

2.5 (see Fig. 1 in Ref. [69]). It is found that, for each value of A, there are just fwo
stationary states that resemble those of 54(A) and = y(A) in Fig. 2.5, with the mean-field
critical interaction being AMF = 1/2. To be precise, for A < AM¥, the energies of the
stationary states are ¢;(A) = (A — 1)/2 and ¢;/(A) = (A + 1)/2, where the sub-index U
and L correspond to the highest and lowest energy in the spectrum. For values A > AMF,
there are three stationary states, ¢1.(A), e(A) and ep(A) = A + 1/8A, where D stands for
the delocalised boundary. The function ¢, (A), for all values of A, essentially coincides
with the function ¢y(A), the lowest eigenenergy shown as the lower (blue) solid line in
Fig. 2.5. For A < AM”, the highest eigenvalue ¢yv(A) coincides with ¢;/(A), while for
A > AME, the eigenvalue ¢y (A) is well approximated by ¢p(A). In this region, ¢;(A)
corresponds to the transition (red) dotted line in Fig. 2.5, but the mean-field stationary
state turns out to be unstable [66, 67]. There are no other mean-field stationary states
within those boundaries, which is one of the main differences between mean-field and
the exact solution. While all the states bounded by the (blue) solid lines in Fig. 2.5 are
non-stationary in the mean-field approach, they represent stationary states in the exact
quantum calculation.

The mean field states are non-stationary because the population p(7) shows coherent
oscillations for any allowed initial condition and for any allowed value of the mean field
(conserved) energy ¢. Those states certainly show the transition from delocalisation to
self-trapping but in the following way. For A < A" and for a given value of ¢, the
population p(7) oscillates between the boundary values +p., (¢) determined by the en-
ergy. Thus, a time average yields p(r) = 0, giving rise to a mean population in well 1:
Ny = N(1 + p(7))/2 = N/2, i.e. a delocalised state. For A > AM" and for the energies
€, < € < ¢, again, the time average yields p(r) = 0, Ny = N/2, a delocalised state.
However, for energies ¢;; < ¢ < ¢p, the time average may be accurately approximated by

19



Interacting bosons in a double-well potential

s/N N

Figure 2.6: Left Panel: Population in well 1 as a function of energy for A = 10.0. Mean-
field N, in purple lines. Eigenstate expectation value (\.),, in blue dots, N = 20(X).
In mean-field, for each value of the energy ¢, there exists an infinity number of possi-
ble initial values p(0) and (0) for the system; all of those have the same time average
value N, differing only in the sign of p(0) for self-trapped states, p(0) > 0 localises in
well 1, p(0) < 0 localises in well 2. Right Panel: The behaviour of the ratio 7;/7, as
a function of the number of particles for the initial state: |[N,0). The dots correspond
to the results from the evolution in time of the eigenstates obtained from direct diago-
nalization of (2.5), the lines are the fits to the function C'(A)N*N). We have considered
A = 0.2 (green). (.8 (blue). 2.0 (purple). The parameters of the fit are: (’(0.2) = 22.7,
8(0.2) = —0.98, C(0.8) = 71.4, 5(0.8) = —0.93, and C(2.0) = 6175, 5(2.0) = —1.56.

(1) = pe()(1 + /1= 1/k%)/2, yielding Ny # N/2,i.e. a self-trapped state. The values
of p; and k? are given by [69, 73]:

iy ,\z (2A(2e = A) — 1+ VAR + T—4A (2z - N), (2.12)

. 2A(2z — A) — 1
kz =-=11 .
2 ( i VANE 1 - 4A (2 - A)) (2.13)

In Fig. 2.6 we show a comparison of the mean-field solution and the exact diagonalization
solution for the population of well 1, for A = 10, as a function of the energy. We find that,
while the transition energy «.(A) agrees well quantitatively for both cases, there is a clear
discrepancy for the population values in the self-trapped regime. The transition as a
function of the energy in mean-field approximation is a classical “pitch-fork” bifurcation
[79-82]. In the next section, we shall analyse the quantum dynamics of coherent states
and find that, while the periods of the oscillations agree fairly well with their mean-
field counterparts, the expectation values of one- and two-body properties in the basis of
coherent states decay or collapse to stationary values that agree with those of the basis of
energy eigenstates.

‘The mean-field time average value may be estimated as the algebraic mean of the largest and lowest

value of the elliptic Jacobi functions dn(z,¢) (valid in the self trapped region) which are +1 and /T - ¢2
[69]. An exact numerical evaluation of this mean shows a deviation of few parts in 10°.

20









2]

124 Statistically stationary states

(a)

()
L0 )

[

€N+l 0
N

= =

STE
1915

Y

e

\
2
n

Figure 2.7: Density plot of the probabilities of the components |1y, N —n,) of the coherent
states as a function of # and the number of particles n; in well 1, on the right axis is the
corresponding energy eigenstate ¢,,. The parameters are: N = 20, (a,) A = 0.2, (bd)
A =2.0.

cally average values denoted as Ni and C*. This family is built in the following man-
ner. For given values of N and A, and taking ¢ = 0, we find the values of # such
that the expectation values of the energy in the coherent states span the whole inter-
val z(A) £ 2(0.0) = =x(A). Then, we evaluate the time evolution of the corresponding
coherent state |, 0. ) and calculate N} and C*. Clearly, the value of # for a given energy is
not unique. We see below that, depending on the value of #, the coherent state can break
the symmetry. If it does, it localises either near the well 1 or the well 2, once the condition
for self-trapping is satisfied, i.e. for A > A..

Figs. 2.12 and 2.13 show the stationary values N} and C* for N = 10" and for A
0.1, 1.0 and 10.0 as a function of the expectation value of the energy of the state. In the
same graph we have included the expectation values calculated in the basis of energy
eigenstates (c.f. Figs. 2.3 and 2.4). In general, we see that the stationary values from
the coherent states N and C* agree fairly well with the corresponding eigenstate values.
Hence, we can conclude that the statistically stationary states, follow the same behaviour
as the eigenenergy states. Their macroscopic behaviour is described by the phase dia-
gram shown in Fig. 2.5. That is, there exists a critical value A, for a self-trapping transi-
tion as a function of the energy (or as a function of the initial state). Additionally, these
states may be well characterised by both one- and two-body properties, that is, while the
one-body properties remain constant below the self-trapping transition, two-body vari-
ables discriminate among different states. Both quantities clearly signal the transition
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Interacting bosons in a double-well potential
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Figure 2.8: The variation of the the angle # of the coherent state as a function of the energy
eigenstates. The parameters are: A = 0.2 (blue). 2.0 (purple) and N = 20.
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Figure 2.9: Time evolution of the expectation value of the number of particles in well 1,
(N1)e, calculated in the coherent states basis. Parameters are: ¢ = 0, N = 10* and, (a)
O0=n+01A=015DbO0=n+0.1,A=1.0;(c)0=m—-1.0, A = 10.0.

point. As an additional aspect, note in Figs. 2.12 and 2.13 that the transition appears
continuous for the statistically stationary states.

The transition from the delocalised to the self-trapped states displays a symmetry-
breaking phenomenon. That is, the Hamiltonian is symmetric with respect to the ex-
change of the wells, or internal states, 1 and 2. However, the stationary states can be
prepared to become localised is one of the wells depending on the angle of the coherent
states 0. To be precise, one can show that for A > A, if & = 0 and ¢ yields a state localised
in well 1, then # = 7 — § and ¢ = 0, localises in well 2. This is illustrated in Fig. 2.12:
for A = 1.0 (red) solid line signals localisation in well 1 and for A = 10.0 (red) solid line
localises in well 2.

2.5 Intrinsic decoherence

Decoherence in quantum mechanics is a process usually associated to the behaviour of a
state of a system, when it interacts with its environment. If the interaction of the system
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§2.5 Intrinsic decoherence
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Figure 2.10: Comparison of the dynamics of the number of particles in well 1, Ny (¢)/N in
the basis of coherent states (blue solid line) and the eigenstate basis (red dotted line) for
a fixed energy ¢. The parameters of the coherent states are ¢ = 0, (a) 0 = 7 + 0.1, A = 0.1;
b)) =7+0.1,A=10;(c) 0 =7~ 1.0, A = 10.0; N = 10°. The corresponding energies
are ¢ = (.15, 1.04 and 6.03, respectively.
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Figure 2.11: Time evolution of the expectation value of the tunnelling correlation, (C),,
calculated in the basis of coherent states & = 0, N = 10%, and (a) # = = + 0.1, A = 0.1; (b)
0=n+01,A=10;0=7—1.0, A = 10.0.

with its surroundings is weak, such a process is reflected by the vanishing of off-diagonal
elements of the system density matrix. To describe this behaviour, one may write down
master or kinetic equations for the system density matrix evolution only, in which the
role of the environment is appropriately taken into account to produce the observed re-
laxation to a stationary state and decoherence. The environment is usually modelled as a
collection of bosonic modes representing the thermal fluctuations with the environment.
However, if one considers the coupled system-environment as a large composite closed
system, the evolution of this composite system remains, strictly speaking, coherent in
the full system plus environment Hilbert space. Thus, if attention is focused on the be-
haviour of the small system only, by means of the evolution of its reduced density matrix,
decoherence is also observed in the sense that arbitrary initial states tend to relax, or de-
cohere, to stationary “incoherent” states. Revivals to states close to the initial states do
occur but become more improbable to observe as the environment becomes larger. Con-
sideration of these facts, underpins derivations of master or kinetic equations for systems
interacting with a thermal bath or environment [91-100].
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Interacting bosons in a double-well potential
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Figure 2.12: Statistically stationary value of the number of particles in well 1, N7, in the
family of coherent states |0, 0:1), as a function of their expectation value of the energy
£(6.0), for N = 1000, (red) solid line. For comparison, in (blue) dots line the correspond-
ing expectation values in the energy eigenstates (\V;), (same as in Fig. 2.3). In the second
panel, we show the statistically stationary states localised in well 1, while in the third
panel, the statistically stationary states localised in well 2. See text.
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Figure 2.13: Statistically stationary value of the tunnelling correlation, C*, in the family
of coherent states |0, 0: t), as a function of their expectation value of the energy =(0.0), for
N = 1000, (red solid line). For comparison, the corresponding expectation values in the
energy eigenstates (C),, are shown (blue dotted line) same as in Fig. 2.4.

On the other hand, according to the basic assumptions of statistical physics, a closed
system with a large number N of degrees of freedom relaxes to equilibrium stationary
states [101], manifested through the behaviour of few-body properties, such as temper-
ature, pressure and energy [44, 101]. This is also a form a decoherence, that we will call
“Intrinsic”. Since the mentioned properties are averages or expectation values of few-
body operators, their corresponding values may be obtained by following the evolution
of the appropriate reduced density matrices only. Formally, this relaxation to a stationary
state is exhibited by the fact that the matrix elements of the reduced density matrices no
longer evolve in time. As a consequence of this, one can always find a basis in which
the off-diagonal matrix elements of such matrices vanish in the stationary state. We shall
call this the preferred basis, in analogy to the notation used when dealing with systems
interacting with its environment [41, 42, 102, 103]. In this basis, the signature of deco-
herence may be explicitly seen by tracking the evolution of the reduced density matrices
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Interacting bosons in a double-well potential
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Figure 2.14: (a) Real part of the matrix element p;; as a function of {. Parameters are:
A = 0.2 (purple). 0.8 (blue). 1.6 (green) and N = 10* particles. (b) Real part of the matrix
element pi, as function of A with N' = 107,

: ’ : 1)
this, one can calculate the one-body reduced density matrix elements: p,; = I'f..; =

Tr (im pN l)",). The single-body reduced density matrix can be generally written as,

a pult)  pi2(t)
prit) = ( pha(t) pa(t) ) . (2.17)
In this basis the terms p;(t) and p2(t) give the particle population fraction for each of
the wells, and Re(p)»(t)] gives the difference in population between the symmetric and
antisymmetric modes per particle of the double well potential and Im|p;.()] gives the
momentum per particle of the BEC. However p;,(f) is not an appropriate measure of
the decoherence in this basis, since the Re[p;2(f)] never becomes zero as shown in Fig.
2.14 (a), thus apparently showing no decoherence. Nevertheless the system does reach a
stationary state, as shown in the previous section, and therefore decoherence is present.
Next, we establish this result by finding the preferred basis in which the off-diagonal
values of the reduced density matrix vanish as time increases.

Let pj; be the reduced density matrix associated to the stationary state that is, g (t) —

Py in the limit ¢ > 7

s _ [ P PRz )

PR = - I 2.18)

! ( P2 P22 i

where we have already taken into account that, for the initial condition used throughout,
P2 is real for all values of A. The behaviour of p}, is shown in Fig. 2.14 (b). We now define
the preferred basis as that one in which 7}, is diagonal. Let U be the unitary operator that
performs such a diagonalization, that is,

gy ) ~5 111 _ [I';" 0
fp = UpiU —( o &) (2.19)

By assuming that the matrix jg(t) in (2.17) is wri_tten in the representation in which the
Pauli matrix o. is diagonal, the unitary operator U is found to be given by,

U =e 4o, (2.20)
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Interacting bosons in a double-well potential
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Figure 2.16: Time evolution of the matrix elements (a) g, (f) and (b,c) p{,(t) for A =
0.2 (purple) , 0.8 (blue) and 1.6 (green), in its own preferred basis. Calculations were
performed using N = 10%.

above the transition indicates also a continuos change of preferred bases. For values of A
below the transition, namely # = 7/2 one finds that the preferred basis is that in which
the tunnelling term in Hamiltonian (2.5) is diagonal, (i.e. that of the Pauli matrix o) . At
the transition, a sharp change occurs until in the very strong interaction regime A > A,
! — 0, and the corresponding preferred basis is the basis that diagonalises the interaction
term (i.e. that of the Pauli matrix ¢.). One thus finds that the particle interaction plays a
fundamental role in the coherence properties of this simple system.

We illustrate our results for three different values of A. In Fig. 2.16 we show the be-
haviour of the matrix elements p/,(t) and o/, (t) for A = 0.2, 0.8 and 1.6. From this figure
one can see that the matrix elements that give us the information about the decoherence,
12(t), effectively tend to zero, while ¢, (t) and g5, (t) become constant, and equal to '
and pf,,, respectively.

2.7 The Entropy

An additional and illustrative characteristics both of the stationary state and of the tran-
sition to the self trapping regime can be performed with the calculation of the von Neu-
mann entropy defined as: § = ~Tr(plnp), where pis a density matrix. This measure is
important because is independent of the basis. The N particle density matrix pV) is that
of a pure state and therefore S5 = 0. In contrast, the entropy of the reduced density ma-
trix changes with time and interaction strength since the single-particle state is always
mixed, Tr[(p'"))?] # 1. In Fig. 2.17 we show the von Neumann entropy of the single-
particle reduced density matrix in the stationary state. One finds that for A < A, (as long
as A # 0), the entropy takes its largest values (S,.,, = In2 & 0.69), since the stationary
states are delocalised, because |p},| = [(b{b,z)l # 1/2, see Fig. 2.14. Then, it displays an
abrupt decay in the transition to self-trapped states. In the limit of large interactions,
A > A ittends to S = (), i.e. a pure state completely localised in one of the wells. It is
also important to emphasise that, the knowledge of the entropy S(A) and the angle #(A)
for a particular initial state conveys complementary information on the reduced density
matrix. This is clearly seen for values of A < A,, for which the preferred basis is the same,
namely # = /2, while the entropy is different for different values of A, as seen in Fig.
2.17. While # = 7 /2 implies that in the stationary state the population in each well is the
same, i.e. p}; = pj, = 0.5, it gives no information on the value of p},, which varies with
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Figure 2.17: Von Neumann Entropy of a stationary state as a function of A. Calculations
were performed using N = 10°.

A. One the other hand, the entropy does depend on the stationary values of all the matrix
elements, thus providing a measure of the coherence term, p7,, .

2.8 BEC in a cavity

Recently the possibility to have a BEC inside a high finesse cavity has been realised and
exciting physics have been explored [85]. Some of the physics of this system can be in-
vestigated using a simple model considering two harmonically confined bosonic species
in different spin or angular momentum states, that are coupled to a light field . Inside the
cavity the BEC is loaded and we consider that the atom decay rate and the cavity field
decay rate are small compared with the atom-photon coupling. Under these assumptions
effects due to quantum dissipation are negligible, and a single-mode photon can be con-
sidered. Considering two modes for the BEC, one for each species, the Hamiltonian of
the system can be constructed as follows [116],

5 ; PUS ot Uj sins s = o niaga =
H = wa'a + (M)Ib[ + 621)3/}2 + ?lb'l[ﬂblbl + ?21)51111)262
+Un9bl b, bYb, + g(at +a )(blby + bib,), (2.22)

where b (f)T) annihilates (creates) an atom, @ (a') annihilates (creates) a photon, and the
subindex of b refers to different species of bosonic atoms, the operator of the number of
atoms is N = blb, + bib,. The photon field in a single mode is represented by a , the
atom-photon coupling is g, and the energy of a photon is w. For the atoms, the inter-
atomic (intra-atomic) interaction is U;2 (U; and Uy) and the energy of the lowest state due
to the kinetic energy and the harmonic confinement for different species (or modes) is
¢1.2. In this system particle exchange due to photon absorption or emission is controlled
by the coupling parameter g. The parameter g = A/V'N, where A is the dipole coupling
strength. Typically A can be of the same order of magnitude other energy scales in the
system, recently large coupling amplitudes have been achieved [117] due to nonlinear
effects in a BEC.
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Figure 2.18: (a) The ground state energy as a function of a = N,/N. Parameters are:
N =10, I' = 10, A = 1 (green). 10 (blue), 100 (purple). (b) The energy width w, of the
quantised population N; /N (2.25) as a function of the number of photons N,. Parameters
are: N =10, A = 100, I' = 0.1, m/N = 0 (green). £1/10 (blue) and [m/N| = 1/5 (purple).

This Hamiltonian, can be mapped into as a two-site problem, similar to that consid-
ered in the previous sections. This is because having an extra species and a single mode
for each species has a very similar representation to the two-site problem, as we have em-
phasised with the notation. Still there are some differences because now the “tunnelling”
between the two modes is controlled by the photon field, and there can be an indeter-
minate number of photons in the system. Thus, in principle the dimension of Hilbert
space is infinity. Therefore solving the above Hamiltonian relies on limiting the number
of photons N, = (a'a ), and therefore truncating the Hilbert space. We do this by notmg
that after a certain number of photons (depending on the number of atoms N = (N)),
the change in the ground state energy asymptotically tends to go zero [see Fig. 2.18 (a)].
In practice one can achieve this limit of negligible change in the ground state energy for
Na ~ aN, where a ~ 3 — 5. Using the Schwinger boson representation [90] one can write
an effective Hamitonian from (2.22), as follows:

X . S G .
Heog = wala +woN + AJ. + Y"f + f\j((a* +a ). (2.23)
where,
P e N
B o= 3 (b by + bib, ).
: B Ao -4
1S 3 (bzbl - 1)2112) .

The parameters are defined as: wy = (¢€; +€2)/2, A =€) — €3, A = (U, + Uz)N/2 — UyaN,
and I' = 2¢N. The above Hamiltonian is the Dicke model with a non-linear term (J2)
[116]. If we would consider a system on-resonance w = A, we could employ the rotating
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Figure 2.19: (a) Density plots of the order parameter W. (b) The tunnelling correlation C
and (c) the fluctuations in the population of mode “1”, o, (right) in the ground state for
N =10, N, = 30.

wave approximation to (2.23), in this case we have 7,

- ; A &
Hogg = wa'a + woN + AJ: + — l' - ——(u 3 120 U 57 ) & (2.24)

N
where Ji = J, + iJ,.

The ground state phase diagram can be constructed by diagonalising the Hamiltonian
(2.23) in the truncated Hilbert space for a fixed number of atoms. In this system the size
of a vector in the truncated Hilbert space grows like (N, + 1)(N + 1) ~ aN?. The ground

state phase diagram in terms of the order parameter \ll = 1 + 2(J.)/N is shown in Fig.
2.19 (a). Here we have considered units relative to A = 1, and w = wy = 1. This choice
of parameters correspond to the experimentally relevant situation from [117], where the
system under study is in the strong atom-coupling regime at zero detuning, A = w. As
the order parameter goes to zero, the system has populated one of its modes maximally,
equivalently the system is “localised”. In the case W = 1 the two species are equally
populated, and the system is dclomhwd” Still, for this system there is no coherence
between the two species such that (J,) = 0 always. The fluctuations of J,. are small but
non-zero, so that the tunnelling correlntum, Ci= 1\‘.1,. ), is @ measure of the conversion
between the two species [see Fig. 2.19 (b)]. Also, one can see that the fluctuations in
the particle number in one of the species drop to zero in the region where we have the
localised state [Fig. 2.19 (c)]. Somehow surprising is the finding that for small I' and
large A the fluctuations are suppressed, in clear contrast with the large I' regime. The
effect of A in the phase diagram is to control the size of the localisation region. As A
approaches zero, the system is always in the delocalised regime and V¥ = 1, while as we
increase it, the region where W ~ 0 becomes larger. The shell structure seen in the order
parameter and other quantities is characteristic of the Dicke model, when the non-linear

7Since our scheme of solution relies on the exact diagonalisation of the Hamiltonian by numerical means
it bears no advantage to use the rotating-wave approximation, which is only valid for small atom-photon
coupling. Instead we focus on the resonant case and we consider arbitrary atom-photon coupling.
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Figure 2.20: The number of atoms in mode “1” as a function of the energy eigenstates
for different interaction parameters. The columns show the variation in the atom-photon
coupling (I' = 0.1, 1,10, 100 from left to right), while the atom-atom interaction varies in
the rows (same colours: A = 0.1(green). 1(blue). 10(purple). 100(red)).

term is absent, and is due to the photons in the system®. Above the first shell the system
is “super-radiant” [57], the process of emission and absorption of photons by the atoms
becomes coherent. Therefore the localised to delocalised transition is equivalent to the
transition to the super-radiant state when A = 0. As we increase A the system is in a
crossover where quantum fluctuations are suppressed below the critical value of I' for
the super-radiant transition at A = (0.

The characteristic dependences of one-body and two-body correlations on the en-
ergy eigenstates differ from those of the simple Bose-Hubbard double-well. For this sys-
tem, there are relaxation processes with very small relaxation times but the fluctuations
around the mean value of the correlations can be very large. Therefore we can’t talk
about statistically stationary states, because the photons induce excitations preventing
the relaxation to a stationary state. Still, because (bib,) = 0, the reduced one-body den-
sity matrix is in a preferred basis, but without a stationary state. Thus, the few-body
properties of the system are strongly influenced by quantum fluctuations and the photon
field *. We consider the behaviour with respect to the basis of eigenstates motivated by

"By shells we mean the different plateaus in the density plots of Fig. 2.19. In (a) these occur for I' = 0 at
A=1214,20,33,...,with¥ =0.2,04,06,08,....

“In the Hamiltonian (2.22) we have not included losses, if we would include losses phenomenologically
in the photon field, then relaxation to a stationary state should occur. Alternatively, one could introduce
losses in the system using Heisenberg-Langevin equations i.e. [118].
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Figure 2.21: The tunnelling correlation of the atoms as a function of the energy eigenstates
for different interaction parameters. The columns show the variation in the atom-photon
coupling (I' = 0.1, 1, 10, 100 from left to right), while the atom-atom interaction varies in
the rows (same colours: A = 0.1(green). 1(blue). 10(purple). 100(red)).

The behaviour of the fluctuations in the particle number o; = /(NZ) - (N})? and
the tunnelling correlation C correlate with each other. The tunnelling has the same kind
of behaviour as the occupancy of the higher energy modes in the sense that, as we in-
crease the atom interaction, we observe the emergence of discretised degenerate curves
[see Figs. 2.21 and 2.22 last column]. The interaction with the photons induces exchange
between species (tunnelling). As one would expect, the interaction between atoms sup-
press the fluctuations in the population of species “1”, as long as the interaction with the
photons is moderate [see Fig. 2.22]. As one increases the interaction of the atoms with
the photons, fluctuations are enhanced, and can be of the same order as the population of
the mode [see Figs.2.22 and 2.20 last column] . The limit where we have large amplitude
of the photon field such that @ — 3 ~ const. we have that the effective Hamiltonian is
equivalent to the simple two-site problem, where the “tunnelling” amplitude between
modes effectively depends on the photon amplitude, or alternatively we have a two site
problem with the effective interaction scaled by a function of 3, i.e. [119]. The behaviour
of the energy spectrum in the limit of large atom-photon coupling is remarkably different
from the strongly interacting atom limit and one could think of two kinds of symmetries
manifesting in these extreme limits, this requires further investigation.

36



§2.9 Summary of results

I'=]00
A=01
A=1
-~
o, | vt , 5 %,
V 0.28- R o . 2y Q.\... A= 10
i . Oy SIS (e “Pssesseces
— ’at\ps v £ 3 " s
0.0¢ . —4*_ S, I M
03 2 ] . k S -3 pi 6 -40  -10 20 30
1 2d RV g
— 0.2%- oM roeg 1] AV
N '_Q ok A =100
I wean sevn,, @ )
Uw:_w_ﬁ%_—ﬁ - :" ,
g g - g g 7
N N N N

Figure 2.22: The atom number fluctuation of the atoms in mode “1” as a func-
tion of the energy eigenstates for different interaction parameters. The columns
show the variation in the atom-photon coupling (I' = 0.1.1.10,100 from left to
right), while the atom-atom interaction varies in the rows (same colours: A =
0.1(green). 1(blue). 10(purple). 100(red)).

2.9 Summary of results

We have analysed one- and two-body properties of the full quantum solution of the two-
mode Bose-Hubbard fluid. We have discussed the transition from delocalised to self-
trapped states, which occurs as the energy of the system is increased, provided that the
pair-interaction strength is above a critical or threshold value. The full quantum solution
for a large number of atoms differs from the mean-field approximation, since the latter
predicts coherent Josephson-like oscillations while the exact solution shows that those
oscillations decay to stationary like states in which the system spends most of its time.
Since, measuring or having access to the N-body wave function appears as an imprac-
tical task in real systems, most of our understanding of macroscopic systems is based
on knowledge of properties of few bodies. In this context, we argue that the decay, or
relaxation, to a stationary state can be considered as decoherence, even if no interaction
with an external environment is included. Such a decoherence is a consequence of the
interatomic interactions.

We concluded our work in this Chapter with the analysis of another system whose
representation is similar to the double well configuration, which was the BEC in a cavity.
In this system we have two species coupled by a photon field under harmonic confine-
ment. Thus, effectively the system can be treated within a two mode model with some
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modifications. In this section we analysed the quantum Hamiltonian of the system in
a truncated Hilbert space. We found that the behaviour of the system, yet amenable to
the use of the same methods as the others considered in this chapter, is very different.
We found that the coupling to the photon field strongly affects the configurations of the
system. The photon field tends to destroy the analogous self-trapped states. Due to the
symmetries in the Hamiltonian, the strong atom-atom interaction leads to quantisation
of the population configurations. The analysis of the two-body correlations gave us the
finding that for very large atom-photon coupling the fluctuations are large and get quan-
tised, which deserves further investigation.
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Figure 3.2: Parametric plots of the typical solutions to the system of equations given by
(3.9), for x¢ = 1.1(left). 1.5(middle), 2.5(right) for r, = 0. (Reproduced after Ref. [56]).

3.3 Self-trapping regimes

Our aim is to establish the parameter space where MQST occurs in the mixed-species
system. To this end, we use the ansatz, B;(t) = \/n;(t) exp[—i¢;(t)|, which allows us to
rewrite the system (3.8) in terms of the the difference in relative populations of the modes
A = n; — ng and the relative phase shift, ¢ = 2(¢g — ¢1) — Qt [56]:

@ = gCp (n? — A?) sin (,
dt
dip : i DT ey
= —040(Co+ C1)A — 20Cp1(2 + cos p)A, (3.9)
dt
where § = 2(u1 — pg) + o[(n — 2ng)Cy — (n — 2ny)C,], and n = ng + n; = const. The

self-trapped states correspond to the regime where the relative phase shift is fixed to an
integer of 2, ¢ = 2mm. The difference in the population for the MQST states is given by
the self-trapping parameter:

Elee il el D LSl (3.10)
n O’(C() +C) — ()C()l) n

The limiting cases correspond to the situation when only the symmetric or antisymmetric
mode is populated, resulting in the equal number of atoms in each well. The ultimate self-
trapped state, when all the atoms are localised in one well, corresponds to Ay, = 0. The
value of the self-trapping parameter A is strongly influenced by the mode coupling
strengths Cj; and the effective energies 1, of the nonlinear modes. In our model these
can be determined semi-analytically by means of a variational approach. This approach
employs an ansatz for the macroscopic wavefunction of the condensate, @, in the form
of a linear combination of the symmetric $(, and anti-symmetric ¢, eigenstates of the
double-well potential: ®(x) = dy(x) + @, (), where:

_ “"*;;‘u) o (-"+-(')'u)2
‘1)().1 (.‘I') — /’1()‘1 e M1 4e %01 3 (311)

4



§3.3 Self-trapping regimes

Figure 3.3: Left panel: The difference in energies, j1; — 11, as a function of the double well
separation g, for attractive inter-species interaction. Inset: variation of the widths of the
condensate wavefunctions, ag 1, vs. . Parameters are: a = 25, g, = 0 (green), 2.5 (blue),
7.5 (purple). Right panel: The macroscopic quantum self-trapping parameter Ay /n as a
function of the well separation, r, for attractive inter-species interaction. Parameters are:
a = 25, ry, = 0 (green), 2.5 (blue), 7.5 (purple). The roman numerals stand for regions
with different symmetry properties of the BEC wavefunction (see text).

and the amplitudes, A;, and widths, a;, are the variational parameters to be determined
for each y;. The details of the variational calculations of the chemical potential and self-
trapping parameters are presented in the Appendix. Parametric plots of the typical so-
lutions to the system of equations given by (3.9), at different separations using the varia-
tional ansatz to calculate the corresponding mode couplings €' and the effective energies
s, are shown in Fig. 3.2. The solutions clearly have a running phase for small separations
and as we increase the separation, solutions with self-trapped phases appear at ¢ = 27m
(where m an integer). The variational approach allows us to identify clearly the origin
of the different behaviour in the self-trapping depending on the type of the inter-species
interaction. We stress here that that width and peak density of the bosonic cloud in the
ansatz are strongly dependent upon the form of the fermionic density, p(x) due to extra
term in the GPE, (3.7).

For each value of the well separation, .y, the density p/(x) can be determined by em-
ploying a self-consistent numerical relaxation routine. Namely, we solve the eigenvalue
problem for each fermion, initially without the coupling to the bosons. In the next steps,
we adiabatically turn on the interaction with the bosonic cloud and calculate, iteratively,
corrections to the fermionic density due to the interaction with bosons. The spatial shape
of the bosonic fraction is obtained from our variational computation in the absence of
coupling. The resulting fermionic density profile takes into account the feedback of the
bosons on the fermions, as well as the nonlinear interaction between bosons. This ap-
proach enables for a semi-analytical treatment of the model equation (3.5) governing the
behaviour of bosons in the presence of moderate to large (N, ~ 10 — 10*) number of
fermions. Alternatively, the whole procedure can be performed numerically, with the
variational solution for the BEC wavefunction replaced with that determined from the
stationary mean-field model by means of a standard relaxation method [142]. In all our
calculations we tested that our variational solution for the BEC component is in good
agreement with the numerical solution of the stationary equation (3.7).
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3.3.1 Inter-species attraction

We start our discussion by analysing the difference in energies, j1; — g, as a function of
the double well separation xy (see Fig. 3.3), in the case of a,y < 0, i.e. attraction between
the fermions and the BEC. In this case the growth in the concentration of fermions, s,
leads to the increase of energy splitting between anti-symmetric and symmetric states,
as compared to the pure BEC. More importantly, the attractive inter-species interaction
leads to stronger localisation of the condensate wavefunction in each well (see the inset
in Fig. 3.3), which in turn results in the suppression of tunnelling and the onset of the
MQST at smaller well separations, compared to the pure BEC case.

The behaviour of the population imbalance, Ag(xg), is shown in Fig. 3.3. In the
region marked 0 there is no self-trapping effect. In contrast, for region /, self-trapping
occurs at smaller separation than in the pure bosonic system. As we increase the sep-
aration, the system moves deeper into the self-trapped regime, where the macroscopic
wavefunction is completely localised in one of the two wells, and both the symmetric
and antisymmetric modes are equally populated (see region /7).
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Figure 3.4: Evolution of the bosonic density |¢4/|* for attractive inter-species interaction
at the separation x; = 2.625 with concentrations r, = 0.0(a), 2.0(b), and a = 50.

In order to test the prediction regarding the onset of the MQST, we perform numer-
ical simulations of the propagation of the stationary solution obtained numerically for
moderate number of particles (~ 10%) of each species. We can see that the effect of the
fermions on the bosons is consistent with the results of our variational solution, seen in
Fig. 3.4. In the case of the pure BEC for the separation considered in Fig. 3.4, self-trapping
at such small well separations can not be achieved yet, thus an unbalanced state exhibits
oscillations between left and right wells. The inclusion of the fermions in the system
changes the behaviour of the BEC at the same value of well separation, making the cloud
narrower while driving the BEC component into the self-trapping regime. The numerical
simulations were done using a relaxation routine to generate the initial unbalanced solu-
tions of the pure BEC from the Gross-Pitaevskii equation (3.7) with u, 0. We turned
on the interaction with the fermions and used the static density profiles from solving the
eigenvalue problem of the stationary Schrodinger equations derived from (3.4) with the
potential given at a certain separation x for each fermion in the system. Finally, we let
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Figure 3.5: Left panel: The difference in energies, 11 — 1, as a function of the double well
separation g for repulsive inter-species interaction. Inset: the variation of the widths,
ap,; vs. xy . Parameters are: a = 25 ry, = 0 (green), 2.5 (blue), 7.5 (purple). Right
panel: The macroscopic quantum self-trapping parameter Ag; /n as a function of the well
separation, rg, for repulsive inter-species interaction. Parameters are: a = 25, rp, = 0
(green), 2.5 (blue), 7.5 (purple). The roman numerals stand for regions with different
symmetry properties of the BEC wavefunctions (see text).

the system evolve in time solving (3.5) by using a Runge-Kutta method in the Fourier
domain and we transform back to real space at each time step.

3.3.2 Inter-species repulsion

The energy splitting between the ground and the first excited state of a BEC in the double-
well potential in the case of repulsive inter-species interaction, ay, > 0, has the opposite
behaviour compared to the attractive case. In the limit of small separations, the energy
difference of the mixture is smaller than that of the pure BEC [Fig. 3.5].

The dependence Ay (xg) is shown in Fig. 3.5. The MQST states exist in all regions
except from the region 0. The onset of the MQST effect in a mixture occurs at greater
well separations compared to that of a pure BEC system (see region /). This is due to
the fact that the presence of repulsive fermions leads to the effective broadening of the
BEC wavefunction [see inset in Fig. 3.5], which extends the regime of enhancement of
inter-well tunnelling to larger well separations. Therefore localisation of an unbalanced
state is achieved only for larger values of well separation compared to the pure bosonic
case. Our numerical simulations of the dynamics of the mixed cloud confirm that, in the
case of inter-species repulsion for a moderate number of particles (N, ~ 10?), the self-
trapping regime is suppressed, as compared to the purely bosonic case, and the bosonic
cloud suffers from broadening, see Fig. 3.6.

3.3.3 Signatures of self-trapping

The nontrivial nature of the self-trapping in the case of the mixture of the BEC and the
degenerate Fermi cloud can potentially be explored in an experiment with a double-well
potential, similar to that presented in [46]. In an experiment, however, one would mea-
sure the difference in atom numbers between the BECs occupying two different wells
of the potential, AN, rather than the populations of two nonlinear modes ® . Possi-
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Figure 3.6: The order parameter |v|* for repulsive interaction at the separation g
3.625 with concentrations r;, = 0.0(a), 2.0(b) and a = 20.

ble results of such a measurement are shown in Fig. 3.7, as predicted by (a) variational
results, and (b) numerical simulations. It can be seen that, in contrast to the case of a
pure BEC (green line), the mixture with the attractive inter-species interaction facilitate
the self-trapped state for smaller separations (blue line) and the repulsive interspecies
interaction shifts the onset of self-trapping to larger separation values (purple line). The
population imbalance, AN/Ny¢, where Ny, is the total number of BEC atoms, is a func-
tion of well separation [see Fig. 3.7 (a)] given by:

AN n* A(-‘l. . erf(y) £y -
Faniat o | a2 T R T T T LA £ (3.12)
N n®+ 44,/ (1 - exp(-2y%))!/2 a
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Figure 3.7: (a) Variational result of the relative population imbalance between the two
potential wells in a self trapped state for attractive fermions (blue), repulsive fermions
(purple) and pure bosons (green), the system with fermions has a concentration vy = 1.5
as a function of well separation. (b) Time averaged population imbalance between two
potential wells, where an initially unbalanced state has been evolved over time. Parame-
ters are the same as in (a).
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Figure 3.8: Schematics of the on-site state configurations of three bosons (blue circles) and
one fermion (red circle), with the lowest energy. The figures correspond to the states: (a)

1)+, (b) 12), (c) |3)+, and (f) |4) . for repulsive inter-species interaction, and (d) |1) _, (e)
[2)—, (¢) [3)—, and (f) |4)— for 1nter—>pec1es attraction.

particle number fluctuations, we can construct the phase diagram of the ground state and
examine the transition to the insulating states in our small-scale Bose-Fermi system.

3.5 Phase diagram

The typical characteristic quantity for different quantum phases of an ultracold quantum
degenerate gas in a the lattice system is the spatial (tunnelling) correlation for the bosonic
component i and the tunneling correlat:on of the fermionic component 7y, given by
Ne = IETE,. M/nSvg g & € {b. [}, where nj avg = Ne¢/3. The boson tunnelling correlation can
be used to construct the phase diagram of the model, depending on the interactions. In a
bosonic lattice this quantity tends to zero when the system is in the Mott-insulator regime,
and approaches one when the system is in the superfluid regime. Similarly, in our small,
finite, mixed-species system, this quantity can be used to delineate between an insulating
and a superfluid state. The fermion tunnelling correlation measures the mobility of the
fermion in the system. When its value is close to one, the fermion is mobile, and when it
is zero, the fermion is pinned to one of the sites.

3.5.1 Commensurate boson filling

As a start, we analyse the componcnte of the ground state for the system with a commen-
surate number of bosons, N, = 1 ("m». = 1/3), and for the fixed mtcr—spccws interaction
strength |Uy| = 10. The boson tunnelling correlation for N}, = 3.9 is shown in Fig. 3.13.
Due to the small number of particles, there exists a distinct crossover region between the
SF (1, = 1) and insulating (i, = 0) regimes [138], where 0 < 7, < 1. When this quantity
is closer to either of the two extreme values, we will refer to it as a SF- or Ml-enhanced

51



Bose-Fermi mixtures

regime, respectively. It can be seen that the system exhibits a rich phase diagram with
an asymmetric behaviour depending on the sign of the inter-species interaction and the
number of bosons.

For the case of attraction between bosons and fermions, U/;; < (), a new insulating
phase corresponding to the ground state |1). (Fig. 3.8, d) appears. It is strikingly dif-
ferent from the regular MI-like insulating state in the pure bosonic system, |1). (see Fig.
3.8), which appears at Uy = 0 and dominates the phase diagram for larger inter-species
interaction strength. In this interaction-induced insulating phase the bosonic occupa-
tion of the ring sites is strongly unbalanced, in analogy with the mean-field macroscopic
self-trapped states of a Bose-Fermi mixture, as seen in the previous sections of this Chap-
ter [3]. As one increases the repulsion between bosons, a new SF enhancement region
appears and then the ground state of the system is once again dominated by the reg-
ular insulating state [4) . With the increasing inter-species interaction and the number
of bosons, the SF enhancement region breaks into several filaments separated by the in-
sulating states [2)_ that appear due to interaction between bosons and fermions. This
change in the structure of ground state can also be followed in Fig. 3.9 (left). Due to
the change of symmetry of the ground state at the points where different configurations
become degenerate (level crossings in Fig. 3.9) we have the appearance of SF-enhanced
regions where 7, has a local maxima lines.

In the case of inter-species repulsion, U, > 0, the system is superfluid for small U,
In Fig. 3.9 (a) one can clearly see that the ground state in this region is superposition of
degenerate states |1), and |2) ., which is a typical sign of frustration. Insulating regions
appear for larger inter-species interaction and are dominated by the |2}, state [see Fig.
3.13 (b)]. For large Uy, transition to the regular insulating state |4) . occurs.

For both signs of inter-species interaction, the behaviour in the regions where [/, ~
Uyy is SF-enhanced. The effect of increasing the number of bosons is to scale up the
regions of SF behaviour and introduce additional insulating regions due to inter-particle
interactions. The appearance of the gap in the energy spectrum (Fig. 3.12) correlates
exactly with the insulating regions in the phase diagram.

While the phase diagrams in Fig. 3.13 (top) are based on the behaviour of the bosonic
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Figure 3.9: The energy of the states with the largest contribution to the ground state as
a function of Uy, for inter-species (left) repulsion and (right) attraction with the fixed
magnitude |Uy(| = 10. States with different symmetries are in different colours as: [1).
(blue), [2). (red), |3). (purple), [4).+ (green).
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Figure 3.10: Schematics of the on-site state configurations of four bosons (blue circles)
and one fermion (red circle), contributing to the lowest energy band. The panels (a),
(b), (¢), and (f) correspond to repulsive inter-species interaction and (d), (e), and (f) - to
inter-species attraction.

fraction, it is useful to examine the tunnelling correlation of the fermion in the system.
As seen in Fig. 3.13 (bottom left), in the region corresponding to the regular bosonic
insulating state, (i.e. for |Uy| > 1) and for low inter-species coupling, the fermions are
free to hop between the ring sites, which can also be deduced from the symmetry of the
1)+ state [see Fig. 3.8]. In the mean-field picture [3] this behaviour reflects the fact that
the effective interaction-induced potential seen by the fermion is weak and completely
symmetric. As one increases |Uy/, the fermions localise and no tunnelling is possible. In
contrast to the regular insulating phase, the bosonic insulating phases that arise purely
due to the inter-species interaction and correspond to symmetry-broken states (e.g. 1)
or |2).), naturally give rise to the regions of suppressed tunnelling of the fermion.

To characterise the interaction-induced insulating phases further, we look at the boson
number fluctuations in the system given by 7 = | (A?) — ()2 /nfy,, see Fig. 3.13 (bot-
tom right). As expected from the MI behaviour, the fluctuations in the regular insulating
phase (with the [1). symmetry) approach zero as one increases the strength of repul-
sion between bosons. In contrast, for attractive inter-species interaction the interaction-
induced insulating region at low values of Uy, is dominated by fluctuations, which can
be taken as a signature of the new insulating state.

3.5.2 Incommensurate boson filling

It has been noted (see, e.g. [138, 144]) that for a few-particle pure bosonic system at in-
commensurate filling a small superfluid fraction is always present, therefore no insulat-
ing state can occur. We find that this is indeed the case in our system with no fermions (or
Uys = 0). The insulating phases in this case occur only in the presence of fermions, with
non-zero inter-species interaction strength. For the repulsive inter-species interaction the
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insulating phase at large Uy, is suppressed, as shown in Fig. 3.14 (a), which is typical for
N, = 3m + 1 bosons with m being a positive integer. In contrary, the interaction-induced
insulating region is very prominent for small N, and is broken up by regions of enhanced
superfluidity for larger Nj,. For inter-species attraction both the regular Ml-like insulat-
ing region at large Uy, and the insulating region at lower values of Uy, are retained due
to the inter-species interaction. As in the case of commensurate filling, at large Uy, the
new insulating domains that appear due to the inter-species interaction are dominated
by the ground state configuration (f) in Fig. 3.10. In general, both for incommensurate
and commensurate filling of bosons the boundaries of the insulating regions are pushed
to larger interaction strength values as one increases the number of bosons.

In striking difference from the commensurate case, the tunnelling of fermions is al-
most completely suppressed in the attractive inter-species interaction region, U/,; < 0
[see Fig. 3.14 (right)]. For repulsive inter-species interaction, {/;; > (), the fermion gains
mobility as one increases the boson interaction strength, Uy,. This is due to the fact that,
for larger Uy, and repulsive inter-species interaction, the insulating phase is dominated
by the state (¢) in Fig. 3.10 [see also Fig. 3.11 (left)]. In this case the fermion is always able
to hop between the sites with lower bosonic occupation numbers. In contrast, in the case
of inter-species attraction the insulating phase is dominated by the state (f) in Fig. 3.10
[see also Fig. 3.11 (right)] and the fermions are pinned to a site with the highest occupa-
tion of bosons. For weaker inter-species interaction, U,y < Uy, the fermion is delocalised
as in the commensurate case.

3.5.3 Role of the fermion filling factor

So far, we have considered one fermion interacting with N, bosons. Therefore, the results
presented above are also applicable to a mixture of two bosonic species (see, e.g. [145])
with a single atom in one of the components. In the case of N; # 1, the Bose-Fermi-
Hubbard model is still valid for the fermion filling factor less than 1 (the system with no
fermions is equivalent to the system with three fermions), and the fermion statistics influ-
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Figure 3.11: The energy of the states with the largest contribution to the ground state
as a function of Uy, for inter-species (left) repulsion and (right) attraction with the fixed
magnitude of inter-species interaction |U,¢| = 10. Energies of states with different sym-
metries shown in Fig. 3.10 are for repulsion (a) blue, (b) red, (c) purple, (f) green and for
attraction (d) blue, (e) red, (c) purple, (f) green.
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Uh/

Figure 3.12: Right panel: Structure of the energy spectrum vs. U, for commensurate
filling of bosons (U, = 1, N}, = 3). Left panel: The dependence of the gap, A = £, — £y
on the intra- and inter-species interaction strengths for N, = 3.

ences the ground state configuration. In particular, the system is particle-hole symmetric
for 1/3 and 2/3 filling of fermions. This fact is reflected in the behaviour of the phase
diagram, so that the case of 1/3 fermion filling with repulsive inter-species interactions
corresponds to the case of 2/3 fermion filling with attractive inter-species interaction. For
example, in the case of 2/3 filling of fermions the interaction-induced insulating regions
appear for repulsive rather then attractive interaction between species, as seen in Fig.
3.15. Other characteristic properties of the system, such as the behaviour of the fermion
tunnelling correlations and bosonic number fluctuations, are qualitatively the same as for
Ny = 1. If one would consider larger fillings of fermions then one needs to move away
from the single band picture of the standard Bose-Fermi-Hubbard model. One needs to
include additional bands depending on the number of fermions and the number of sites
due to the Pauli principle and additional couplings between bands must be considered
[146-149].

3.6 A variational solution

In order to gain deeper understanding of the system and verify the non-trivial nature
of the inhomogenous phases, we performed mean-field calculations using the following
SU(3) coherent state ansatz ' [138],

1 T re
ﬁ—_—__' If l",l“).

0,) = -
VNN

"The coherent state ansatz is equivalent to using a Hartree-Fock state, or alternatively to do mean-field
theory.
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Figure 3.14: Density plot of the (left) boson and (right) fermion tunnelling correlation for
Ny =1,Ny =4
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Figure 3.15: Density plot of the (left) boson and (right) fermion tunnelling correlation for

Ny =2,N, = 10.

- : . PO aH
One can derive the equations of motion for the above Hamiltonian, i 75—, One
gets,
dy : \ R
bl o r Vb 2 ’ 2 2
¢ e c ’hL".., +Up | - - Uptl Ypa ’Ib."" ARYNYE (3.22)
di b.n -\!. f { f
I#m 3
dv,, - 9
jde tr > Uy + Ubglton s (3.23)
dt % &3 . '
ft¥rm

We look at solutions of the form v, = Agjexp(—ipel + @¢y), £ € {b. [}. The stationary

homogenous solutions are, Ay \ 'N;,/3 with ¢y, = ¢, and Ary 1/V3withopp = &r.
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Figure 3.16: The fidelity of the variational ansatz |(W,,|W.)|, for (a) repulsion and (b)
attraction between bosons and fermions with [Uy¢| = 0 (blue), 1 (green). 2 (purple). The
number of bosons in the system is: 3 (solid), 9 (dotted).

For the ground state we have:

U U,

o = —"‘(\,,_l)+ i B TS (3.24)
l-. .

By = #,\,,-2:, (3.25)
1 v l".) v

B = S2Ny+pp— N (3.26)

The state that corresponds to the ground state of the variational ansatz, using the multi-
nomial theorem, can be written as:

()77

N,

- b b
——-In n, nd) > |nd, no. 1)y,
n"'n"'n"' 2 31/ &

where the sum over n, goes over all the combmahons glven by u, + n{ +n) = 1and the
sum over n{ goes over the combinations given by n? + n} + n = N,. The agreement be-
tween the variational solution and the exact energies is good for small interaction U/, < 1,
at fixed Uys. As long as the inter-species interaction strength is small compared to Uy, the
variational ansatz gives a good estimation of the ground state energy. Still, if we look
at the variation of the ground state energy for fixed repulsion Uy, and we vary Uy, the
agreement with the variational ansatz breaks down from the start. The system is very
sensitive to the variation of Uy;. From the exact solution, in the case of Uy, > 0 for fixed
Uw, we see that the ground state energy saturates as we increase the inter-species inter-
action. This doesn’t happen for the variational ansatz. We see the competition of the
interaction energy with the kinetic terms, which when Uy > Uy, compensate each other.
In contrast, for the attraction between bosons and fermions in the exact solution, we see
that the ground state energy decreases. This is because the interaction energy is negative
thus the total energy has monotonic character and no saturation, the effective interac-
tion energy and kinetic energy have the same sign. Therefore in the case of attraction
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Figure 3.17: Schematics of our two dimensional topological insulator Bose-Fermi system.

scale version of an interacting topological insulator,

H ="Hy+Hy + Hw + Huy. (3.27)
where,
H{ o —-T{ Z (‘,r;{(l.m]é‘iém o ’,A'y‘g(l."l)éfnél ) . (328)
<l,m>
U
Hw = '2"" ny (fzf - l) ; (3.29)
l=1
1
Hb! = l/';,IZJ‘I?lAl,!. (330)
=1
where for simplicity we have chosen: ¢(1.2) = ¢(2,3) = we(3.1) = 9e(4,2) =
ve(3.4) = ¢ and pe(l.m) = —pe(m.1). This simplified model has the essential ingre-

dients for the emergence of topological states [29].

We construct the ground state phase diagram of the model by calculating the tun-
nelling correlation 1, as a function of the interactions for fixed number of bosons, with
different fermion filling factors and different > in Fig. 3.18. We can see that, as expected
from our results in the previous section in the case where ¢ = 0 (real hopping ampli-
tudes), the system has the particle-hole symmetry in terms of the fermion filling, so that
we recover the behaviour seen in attraction for 1/4 filling for repulsion in 3/4 filling, and
vice-versa.

For ¢ # 0 and in particular, when ¢ = £7/2 (imaginary hopping amplitudes), the
particle hole symmetry in the fermion filling is broken. Now we have that for 1/4 filling
for inter-species repulsion the region where the system is superfluid extends to larger
intra-species interaction values as compared to the ¢ = 0 case (compare Fig. 3.18 (a) and
(d)). As one increases the number of fermions, now in addition to the 1/4 and 3/4 filling
cases we also have the half-filled case [Fig. 3.18 (b) and (e)], which are robust against

60



§3.8 Summary of results

" «©,
! I
AR Sy I)\
0.6 U o0 0.6
bb
04 o) .4
Iu_‘ 201 ‘ l'?
0 0 ’ 1)
100

) 100 ! (M 100 1
S0 'II\ S0 'n
‘”."-- 06 | 60 0.6
MU W4 s ] A
2 |u: 20 ‘ 0.2
foo (V 100 0 1‘;’ 100 ©

by hf

Figure 3.18: Density plots of the boson tunnelling correlation m, for ¢ = 0 (top panels)
and ¢ = 7/2 (bottom panels) with Ny = 1 (a,d). 2 (b,e). 3 (c,f), and N, = 4.

the vector potential applied, so that the effect of the phase is to marginally suppress
the superfluid region in the whole phase space, as it happens with other fillings. In the
case of 3/4 filling now the system presents strong suppression of the SF enhanced region
corresponding to attraction (compare Fig. 3.18 (c) and (f) for small Uy).

The suppression and enhancement of the superfluid components in the system at dif-
ferent fermion fillings as compared to the 2 = 0 situation correlate with the enhancement
of fluctuations for Uy, small (see Fig. 3.19). This increment in fluctuations correlates with
the behaviour seen in 7, due to the symmetry breaking. In generally the boundaries with
the localised states are marginally shifted to lower values of the interactions (see Fig.
3.18).

3.8 Summary of results

In conclusion, we have analysed the formation of self-trapped states in a BEC cloud
mixed with degenerate fermions and confined in a one-dimensional double-well poten-
tial. Our semi-analytical approach is reliable in the limit of moderate to large number
of fermions (N; ~ 10? — 10%) . The properties of the bosonic macroscopic wavefunction
are analysed by means of a variational method, which allow us to comprehensively de-
scribe the spatial properties and symmetry of the self-trapped state and identify the rea-
sons for enhancement or suppression of self-trapping. The self-trapping regimes in the
Bose-Fermi mixture are predicted to be markedly different for repulsive and attractive
inter-species interaction and highly sensitive to the fermion concentration. For the attrac-
tive interaction, the growth of the fermionic fraction leads to the MQST at smaller well
separations. This is due to the effective suppression of tunnelling due to the narrowing of
the bosonic wavefunction. In the repulsive case, the growth in the fermionic fraction has
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Figure 3.19: Density plots of the fluctuations oy, for ¢ 0 (top panels) and ¢ /2

(bottom panels) with Ny = 1 (a,d).2 (b,e). 3 (c.f), and N}, = 4.

a stronger effect on the dynamics of bosons and promotes the onset of the MQST regime
to greater well separations, as a result of the tunnelling enhancement due to the fermion-
induced broadening of the BEC wavefunction. In both attractive and repulsive cases, the
effect could be accentuated by enhancing the strength of the interspecies interaction via
Feshbach resonance.

Both the enhancement and the suppression of self-trapping in the BEC cloud mixed
with degenerate fermions may signal the existence of the new regimes of the dynamics
and switching of BECs in atomic waveguides and nonlinear interferometers with mixed
atomic species. They are expected to have profound consequence for the formation and
dynamics of the self-trapped gap states in the Bose-Fermi mixtures loaded into periodic
potentials. Beyond the mean field, as we found in our later work on the ring configura-
tion, these effects have implication for the onset of the superfluid to Mott insulator (MI)
transition in a lattice potential [18, 45, 126, 154), leading to the in-homogeneous suppres-
sion of the MI regime, and the appearance of new insulating states.

We also have analysed the ground state of a small-scale system of quantum degener-
ate bosons and fermions in a three-site ring configuration. We have restricted the consid-
eration to the fermion filling factor less or equal than one, which as allowed us to employ
a standard Bose-Fermi-Hubbard Hamiltonian. By examining the tunnelling correlations
and particle fluctuations in the system, we have found that the system admits mobile
and insulating states that are analogous to the superfluid and Mott insulator states in
infinite lattices. The novel insulating states identified in this small-scale system for both
commensurate and incommensurate filling of bosons, are purely due to the inter-species
interactions and can be controlled by controlling the interaction strengths and the num-
ber of fermions injected into the system.

Further we have considered an extension of this model. This extension was a simpli-
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Canonical transformations and the BCS-BEC crossover
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Figure 4.1: The behaviour of the scattering length as a function of the magnetic field for
the broad resonance of °Li, and a qualitative description of the regimes in the BCS-BEC
crossover. The many-body interaction is A = 47/h%a/m. On the left we have the BEC limit
of the molecules, at resonance where B =~ 834 we have the unitary limit and on the far
right we have the extended Cooper pairs of the BCS limit.

size of the order of the inter-particle spacing of constituent fermions. In essence, the Sys-
tem has two different objects, Cooper-pairs and molecules that transform into each other
depending on the many-body interaction. As one moves across the Feshbach resonance
the Cooper-pairs collapse to molecules and the molecules break into correlated pairs. In
the limit when the interaction becomes singular and changes sign we have the system in
a state where strong correlations are dominant, see Fig. 4.1.

Experimental findings in these ultracold neutral systems have confirmed the forma-
tion of BEC of molecules from fermionic atoms below a certain temperature with an in-
teraction controlled by a Feshbach resonance [158, 159). The existence of a pairing gap in
these systems [160] lead to the search of a superfluid state, sometimes referred to as Hi-
Te superfluidity. This is because of having a high critical temperature compared with the
Fermi Energy of the system [161]. The confirmation of the superfluidity came from the
observation of quantum vortices. This quantum vortices form a characteristic pattern, the
so-called Abrikosov lattice, analogous to the phenomena seen in type Il superconductors,
when a magnetic field is applied [162]. There have been also measurements that contrast
the thermodynamical properties of the strongly interacting system with those of a non-
interacting system [163]. In the limit where the system is at the resonance, corresponding
to the singular point of the scattering length, it is thought that the thermodynamic prop-
erties of the system can be described by a re-scaled version of the non-interacting Fermi
8as [164, 165]. This universality hypothesis implies that the energy of the system is pro-
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Figure 4.2: The parameters of the extended BCS mean-field theory, ji = u/ep, A= Alep
and the condensate fraction, ng/n.

suitable for the analysis of the BCS side of the resonance. Also, the two-body scattering
amplitude doesn’t have the characteristics of scattering via a resonant state. Consider-
ing that a resonance is a positive energy state with finite lifetime, the Hamiltonian (4.2)
only has true bound states,thus the description is insufficient [52]. One may ask if this
scheme of regularisation and mean-field approximation is justified at all very close to
the resonance where the formation of the molecules is actually taking place, and if so
up to which point? Still, it is true that the qualitative agreement in both BEC and BCS
limits with experiment is surprisingly good considering the interpolation nature of the
theory. Another problem, comes from the fact that the extended BCS mean-field theory
has only zero total momentum pairs and forbids density fluctuations. This has the conse-
quence of incorrectly describing the low energy excitations of the system, eliminating the
Bogoliubov-Anderson mode, which should exist for superfluidity to be present, as seen
in the experiments [51, 161]. The absence of the collective Bogoliubov-Anderson mode
implies that the leading corrections to the ground state energy of (4.2) in powers of kpa
are incorrect from the start [51].

In order to treat the problem of the bound state in the BEC side of the resonance and
verify the validity of the assumption of only considering the atoms and not the molecules,
a single channel, a number of multi-channel models were proposed [181, 190-193]. The
channels in these models refer to the lowest energy hyperfine states of the system close
to the Feshbach resonance. The most simple of these is a model based on the possi-
ble interaction between molecules in a non-degenerate configuration formed due to the
Feshbach resonance on the BEC side and the atoms in the BCS side. This hybrid atomic-
molecular Hamiltonian, contains the relevant features of the crossover while having a
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Figure 4.3: Left Panel: Energy diagram for for the position of magnetic impurity energy
levels ¢, and ¢ + U. The effect of the detuning with respect to unitarity, induces Zeeman
splitting in the equivalent single impurity picture. The spin up states (red) correspond
to the configuration that minimises the energy for positive detuning (BCS side of the
resonance) and the spin down states (yellow) correspond to negative detuning (BEC side
of the resonance).Right Panel: The equivalence in representations between the magnetic
impurity models and the crossover problem. A molecular bound state, Feshbach boson,
is equivalent to the spin-flip process in the impurity level (a). A Cooper-pair is equivalent
to a particle hole excitation of a fermion carrier in the impurity model (b).

which means that the density of states is considered constant and equal to its value at the
Fermi level over the energy span 2D.

As one decrease the temperature there is a critical temperature called the Kondo tem-
perature Ty where the perturbation theory used to to derive the resistance minimum
breaks down. At this energy scale, high energy processes in the self-energy become dom-
inant and the theory diverges. This is called the Kondo problem, here the theory needs to
be modified because the resistivity and other quantities become infinity as we approach
T = T}, this being un-physical. Renormalization Group Theory [196] was devised as a
way to solve divergency problems of this kind, when suddenly all energy scales become
relevant. The Kondo temperature T is given by [60, 184],

kT ~ Dexp <~- (4.13)

1
2| J|ple :--)) '
The Kondo temperature signals the energy scale where the interaction becomes non-
perturbative as we decrease temperature.

In contrast to the Kondo model, the Anderson model is based on the assumption that
the fermion carriers in the dilute magnetic alloy interact with other “localised” electrons.
This interaction is controlled by the Coulomb repulsion of the two localised electrons of
opposite spin and the probability of overlap of their orbitals with the conduction elec-
trons, i. e. the hybridisation. The Anderson model is thought to have a more realistic
description of the processes that occur in the system [60]. In the BCS-BEC crossover
problem because we have neutral atoms there is no Coulomb repulsion but instead we
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Figure 4.4: Graphical solution of the equations 4.14, with parameters {z, y} for {3}, 5}
(left), {—%, 5} (middle), {%, 1} (right). The solutions are magnetic with valence one (left),
non-magnetic with valence different from one (middle) and non-magnetic with valence

one (right).

localised fermion generating a Cooper-pair. Once the Cooper-pair is formed and when
another free fermion interacts with the occupied impurity level a FB is formed and the
cycle starts again.

The solution in mean-field for U # 0 gives some qualitative behaviour, one approxi-
mates the interaction term as,

Ungng = U(ng)ng +Ulng ng, —Ulng )(ng, ),

where (-) is the ground state average. The above approximation allows to solve the model
as shown by Anderson [62]. The regimes of the model are controlled by the solution of
the following well known system of equations for the expectation value of the impurity
populations of opposite spins [62],

[l

cot (mny) Y| =YL,

cot(mn|) = yn; —y, (4.14)

with, z = (er—¢;, = V) /U,y = U/T,and T' = mp(er)V2. Plots of the equations for
the magnetic and paramagnetic cases can be seen in Fig. 4.4. One can see in the left
plot of Fig. 4.4 that the magnetic regime has 3 points where the two curves for n; and
n|, intersect, two of them (the extrema) are the magnetic solutions (n; # n|) and the
one in the middle is the non magnetic one (n; = n;). One can check that the energy
is minimised for the magnetic solution, if it exists. As one changes the parameters of
the model the three mean-field solutions collapse to a single solution, which is always
non-magnetic but can have integer or non-integer valence (ny = ny +n).

The model is symmetric [184] when the impurity levels are placed symmetrically with
respect to the Fermi level. Therefore, the model has particle-hole symmetry and ¢, =
—U/2. In this case then ny = 1, always. If the model is asymmetric, then there is no
particle-hole symmetry, and ¢, # —U/2. In this case the valence n can take non-integer
values, having fluctuations [60].

Assuming that we have a macroscopic sample, the solution where n; # n| ®, gives

*In the zero temperature limit at the microscopic level this criteria is an artefact of mean-field where one
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Figure 4.5: The Anderson model regimes depending on the impurity level ¢, and the
interaction U’ for V' = 0, mixed valence regime (a), magnetic regime (b) and the non-
magnetic regime [Reproduced after [184]].

qualitatively the regime where the magnetisation in the system is different from zero and
develops a local moment. This is the Kondo limit of the model.

In order to further understand the model is useful to look at the solutions when the
hybridisation is zero, as discussed in [184]. The possible regimes of the model in this
limit are controlled by value of U and the position of the impurity level relative to the
Fermi energy. In the case when one of the impurity levels is at the Fermi energy or very
close to it while the value U is large, we are in the valence fluctuation regime [Fig. 4.5
(a)]. When one of the impurity levels is below and the other one above the Fermi energy
while U is large then we are in the magnetic or Kondo regime [Fig. 4.5 (b)]. The remaining
configuration is when both impurity levels are well above or below the Fermi level; then
the system is non magnetic [Fig. 4.5 (¢)]. As the hybridisation is turned on, the picture
becomes more subtle and one needs to take care properly on how the effective impurity
levels are defined [184, 197]. In BCS-BEC crossover problem, the Kondo regime is when
we have a FB in the BEC side of the resonance. As we move towards the BCS limit the
system is in a crossover moving from the Kondo limit to the valence fluctuation regime
and deep in the BCS regime to the configuration when both impurity levels are above or
below the Fermi level.

The hybridisation V' turns on the scattering on and off the localised energy states and
U regulates the correlations, these in combination with the value of ¢ give a rich variety
of physics. The full solution of all the different regimes according to the parameters was
done by Krishna-murthy, Wilkins and Wilson [187, 188].

The AM can be related by a canonical transformation to the Kondo Hamiltonian. This
procedure gives the equivalence in the limit of large U/ of the AM [60, 184]. The following
well known canonical transformation is used [194],

H = eSHe S,

has broken the symmetry between different spins.
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where, to construct §, we impose,
[S,Ho] _ = —Hy.
Then to the first order, neglecting all other higher order commutators, we have:
~ 1
H="Hy+ §[S.H\'J_

Using the resulting commutator and taking the limit where double occupancy of the
impurity is forbidden (U >> 0), one can write the result of the transformation in the
following form:

Ham = Ho+ Z ']k.qg('(k~ q) - gf
k.q
W, Teagiy Yyt ¢ 4.15
e Z A k.q+ —1 FEF cx Feq? ( 5 )
k.q

where the second term has the form of the spin-fermion carrier interaction of the Kondo
model. In the above, we have defined, Ji q = 2ViVqZk, Wi q = ViVq Ak, with

|

Ay, = — :
€lc — Ef
U 1
Zy = — =— — Ay, 4.16
(Gk—ff) ((khff—U) fk—('/‘*(/‘r * ( )
and the spin operators are,
- I Dl
Sy = 3 Z <\I!}(7-’\IJ_/-> By
J€{zy,2}
- 1 ek )
Ska) = 5 > (w,'.kg-f \y(.q) &),

j€{z,y,z}

where o7 are the Pauli matrices. The unitary vectors in Cartesian coordinates are denoted
by ¢;, and the “spinors” \Dz and W, are defined as follows:

- (). ve= ()

The interaction strength and the impurity levels are renormalized in Hy to U = U/ +
dxdexand € = ep + 37, Wiy (see the Appendix B for details). In the limit when
k| =~ kp, neglecting the renormalisation in H,, while transforming the electron states to
include the last term, we arrive to the situation when only the term with the spins of the
Hamiltonian (4.15) adds to H,. This limit gives the Kondo model. Then it follows that
the Kondo coupling .J* = J in (4.12) is given by:

Ve U

=t 4.17
F./' ((j' S (]) ( )
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consider H and the first two odd terms of H,, that have the correct symmetry in (4.18)
[199]. Then, equivalent to sixth order perturbation theory, in the large U limit, taking
k ~ ¢k, = ¢ = const., while considering the sum over k close to the Fermi momentum,
we have the following (see the Appendix B for details),

ﬁeff = r}:i() o 7%('—(‘ 4= 7:[57(‘- (4]9)

where the effective carrier-carrier interaction is:

ZPR T T TR T (4.20)

o k.q.ki.ko

and the effective spin-carrier interaction is:

ZZ{ % ”‘ qr7+](k(7q L f}. (4.21)

with,
A = VA,
J = V2A(2v24%-1),
:;1 = '—i
and A = —(e — ef)“. Next, we take the limit where k; = q and k; = k, considering

only scattering processes between fermions of opposite spin with the same momentum
and pairs of holes with the same momentum. At the same time, we neglect the ~; term in
(4.21), which is equivalent to imposing, ('L.L('q.l ~ ('L 1Cq.1» Making the model amsotroplc

and having no Kondo .J. component. Thus, the effective Hamiltonian i is ?

= ‘a et A + ;
HEH_ZZ{((R.UCKU V(k (rq O'an' ko’+ ](ko.q—(yf } +Z(’”H

g slcy
(4.22)
where, é = e+ V?A (V2A? — 1) and é;, = ¢f, +V2A (1 - V2 A?%). Similar results, obtained
via canonical transformations, have been used to analyse the periodic Anderson model in
three dimensions [201], and the two band model for the high-Tc superconductivity [202].

Using the above equations, the effective Hamiltonian can be related to the two-
channel hybrid model of the BCS-BEC crossover problem language as follows. We start
by relating the impurity operators to their spin representation and this to its approximate
equivalent bosonic representation. We interpret f, (f1) as the annihilation (creation) op—
erator of the spin o component of the FB composed of two fermions, b, — S~ — / -

~and bT — 8t — fl jl, while nf —ns = 8% — b()bo We consider that a FB can be rep-

resented by by and restrict the sector of Hilbert space of the bound state to the one of
two levels with an empty or occupied molecular state, with a single particlelo. Then we

"Where the volume factor 1/V comes from eliminating the sums over k; and k», in the A term.
""The molecular condensate operator in (4.8) is by ~ /Nybp, in this section we work with one molecule.
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have!!

. : B J 2 +
i =8l e Ll f e o e
Hett = ”k.a(k.a+o(3)b6bo+\/—v > (bn k1%, T %k, 1%, |b0> Ty > k1€, 11y

k.o k k.q

where the term 37, (¢; + VZA (1 — V?4%))n,  has been omitted since it only shifts the

energy and we have taken the limit where k ~ q in the .J term. Following the same
procedure as in [181], it follows to identify the fermion carrier operators with a suitable
spin representation. This can be done by the following pseudo spins,

S ST e e
G, 1%, T %0 %1% T %% Gk T Sk 1% T K0

with oy, the Pauli matrices. We can relate the above pseudo spin representation to the so
called symmetrised atom-pair operators d. Then the remaining terms in the Hamiltonian
can be written in terms of the fermionic atom creation and annihilation operators. With
the following constraint on the algebra, [d,, (ZU _ =~ of . Thus,

; 1 1
di = ;Z—(Uk ioy) =0, and d ((rk +ioy) = oy .
It follows that the symmetrised atom-pair operators can be defined as,

1
dy = ﬁ (“‘—k.iak.r e (‘k.i"Ak.r> !

1
s Ul U i
dy, = ﬁ <ak.ia~k.1 + “—k.]”k.i) g

Therefore, d, and d;’( obey (in terms of the atom operators a):
¥ 1
i B+ -
[dk.dk]_ =g (n.nk + L 2) : (4.23)

where, ac 1t T a5 Ggy =M, € {0.1,2}. Next we restrict n ,such that,n, +n,6 €

{0,4}, empty or doubly occupled in which case the representatlon in pseudo spins is
meaningful [182]. One has for the anti-commutator of the d’s,

) 1 ‘
[dk.dl'(]+ Shis <nak + n,  ~ 2)

1= ”’I(.Taik.iuk.la—kj + “T—kir(”;l‘hk.l”k.x

T T o 1
Al Oy, O 1T — Cpe 10y 19k |0k |-

In the limit of empty or double occupancy we have,
[dk.(l;r(h_ = lgie

where 1 is the identity matrix, in this basis, 1y = > u.L_nuk_U — 0. Next, using the

'Where the volume factor, 1/1/V comes from eliminating the sum over q, in the .J term.
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84.4 Anderson model physics in the crossover
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Figure 4.6: The ratio of U and the hybridisation parameter, UU/I" at unitarity, as a function
of the number of atoms NV (left). The magnetisation m at unitarity as a function of the
number of atoms N (right). The solid (green) curves correspond to the parameters of i
while the dashes (blue) correspond to 'K, see main text.

4.9 x 10'/NY4, and U /€. = 2|es| /e ~ 3.2 x 10°.

In the case of "’K we have ¢} ~ 2.16uK, py = 3x 10" m~3, A, /e} ~ 4.8x10'V/N, and
90/€% = 2.8 x 10°/V/N. Then , V/e}. ~ 1.8 x 10*/N'/4, and U/c}. = 2|es|/e} ~ 8.9 x 10"

The regime of the system is controlled by the impurity level ¢, and the ratio U/I" =
4VVe}/(3v27go), as seen in Fig. 4.6. The ratio U/I" is dependent on the width of the
resonance, the background scattering length, and the number of atoms for a fixed Fermi
energy. With these parameters and at the unitary limit (B = Bj) we can see that the
situation corresponds to the symmetric single impurity Anderson model. As we move to-
wards the BCS side of the resonance the model becomes asymmetric. Depending on these
quantities the system will go between being frozen, developing a local moment, in the va-
lence fluctuation, or in the empty impurity regime [184, 188, 197]. The magnitude of the
aforementioned quantity suggests that Anderson model physics are very relevant in the
BCS-BEC crossover near unitarity, note that in the estimation of parameters we have con-
sidered the broad resonances of °Li and ‘°K. Because the ratio {//¢}. is much larger than
one, this length scale dominates the behaviour in the crossover region, and the equiva-
lent Kondo temperature can be very large relative to ¢}, which is the temperature scale
of the system. Therefore different energy length scales are relevant and we are indeed in
the region of the Kondo Problem. Because of this, we take the mean-field solution of the
AM and use the results that have been extracted from the renormalization group solution
and the Bethe ansatz to have a qualitative understanding of the behaviour. The Kondo
temperature for the AM is [184]:

“ 1/2 i
- + U
kT =U (2%)-) exp (—”l(]—H(]—l) (4.28)

Using our equations (4.26) we have that at unitarity as we increase the number of atoms,
ki Ty decreases being the same order of magnitude as e} for large N [see Fig. 4.7 (left,
dashed lines)). For different particle numbers, as we change the magnetic field in the BCS
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Figure 4.7: The Kondo temperature relative to the Fermi energy. Left Panel: The Kondo
temperature as a function of the number of atoms at the resonance (dashes), and when
m = 0 (solid), where blue corresponds to 'K and green to °Li. Right Panel: Kondo Tem-
perature for 'K at fixed particle number as a function of the magnetic field on the BCS
side of the resonance, By = 202.1G. We consider N = 5 x 10°(purple). 2 x 10(blue), 5 x
10%(green).

side of the resonance the Kondo temperature increases having a maximum when one of
the impurity levels is at the Fermi level, see Fig. 4.7 (left, solid lines) .

Since the possible regimes depend on both the width of the resonance and the back-
ground scattering length, the range of number of particles to observe the crossover be-
tween Anderson model regimes would be extended for a narrow resonance, and [//I
varies in magnitude over a larger scale. The energy difference between the two im-
purity levels U, is proportional to the width of the resonance. Therefore, the consid-
eration of single occupancy of the impurity is valid for a broad resonance, and in the
limit of a narrow resonance we would recover a system with a higher ratio U//I, because
U/T ~ |ApAB|~ "2, In the unitary limit the impurity level ¢; = —U//2, while U is large
and can be of the same order of magnitude of I' for experimentally relevant number of
atoms N ~ 10° — 107, in the case of Li. Therefore, as we move from unitarity to the BCS
side with these parameters, the system is moving towards the valence fluctuation regime
of the AM, defined as the regime where: —¢; < I' < U see [188]. The calculations using
mean-field theory suggest this behaviour, as seen from the dependency of the magneti-
sation m on the number of particles plotted in Fig. 4.6. Clearly the plots show that m
increases as a function of the particle number moving to the Kondo regime, towards sat-
uration m = 1. As one decreases the number of atoms, I' increases and the system moves
towards the frozen impurity regime, which is equivalent in the symmetric AM to the
strong coupling regime [187, 188]. The valence at unitarity is always one independent of
the number of particles, because the AM is symmetric.

The AM in the valence fluctuation regime physically corresponds to the situation
where depending on the number of atoms, the system evolves from the formation of
the FB to having degeneracy between states for free particles (empty impurity) and
the molecule (occupied impurity state). This fact is relevant to recent experiments
[160, 163, 167, 168], where a contribution of non-condensed pairs has been measured.
This suggests that the valence fluctuation mechanism is complementary to other ap-
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Figure 4.8: The magnetisation equivalent to the average occupation of the molecular state
(bibo) = m = n; — n, and the valence n ¢ = ny + n, from the mean-field solution of the
AM Eq. (4.14) [62]. Left Panel: The behaviour for the parameters of “Li, with N = 10"
(dashes) and 5 x 107 (solid), By = 834G. Right Panel: Results for *’K, we have considered
N = 5x 107 (dashes) and 3 x 10" (solid), B, = 202.1G. Note the limit where 1 /kpa — —~c
for K is B = 209.9.

average, the highest impurity level starts to move below the Fermi level and then the
system starts to move towards the frozen impurity regime. The frozen impurity regime
is defined as n; = 0, with the lowest energy level being the one with no impurity. As
the impurity energy reaches I/ above a certain critical energy, the system moves from the
frozen impurity regime towards the empty orbital regime. In the empty orbital regime
all the impurity configurations have the same probability, thus this is the regime domi-
nated by thermal fluctuations at high temperature. In this region, the mapping between
the two-channel model and the AM breaks down because all the configurations for the
impurity fillings must be considered, not only n, < 1. Same situation happens for fields
lower than B, where the mean-field solution of the AM would predict a decrease in the
magnetisation moving towards the doubly populated impurity limit, s = 2, thus the
model is un-physical. Away from the resonance in the BEC side, the description based
on the single impurity breaks down since we expect the number of molecules to grow
and ultimately achieve the conversion to a molecular gas. Therefore, depending on the
density and temperature the interaction among molecules needs to be taken into account
and Bose-Einstein condensation should also be considered. In addition, the mapping to
a singly occupied molecular state by means of pseudo-spins is implicitly taken in the
mapping by truncating the Hilbert space, and occupation numbers of the impurity larger
than one are thus un-physical. However, we think that by including higher spin states,
equivalent to additional modes occupied and/or degeneracy some progress could be
made, and a degenerate Anderson model [184], lifting the constraint on the Hilbert space
should be more adequate to describe the situation, while still being in the dilute limit.
Still, to describe the superfluid behaviour seen across the resonance interactions between
molecules should be included at some level, i.e see [44, 204).
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Figure 4.9: The mean occupation of the Feshbach boson (bhy) in the BCS side of the
Feshbach resonance for “Li. The solid lines are the solutions using the Anderson model
mean-field and the dashes correspond to using the formula (4.29) with A from the ex-
tended BCS mean-field approach. Parameters are: N = 5 x 107(green). 1 x 10%(blue), 1 x
10?(purple), in (4.29) we have considered: N, /N = 1x 10 %(green), 1.2x 10~%(blue), 1.4 x
10-%(purple).

4.41 Comparison between single-channel predictions and the Anderson
model mapping

We use the relationship given by (4.10), to relate the gap to the occupation of one Fes-
hbach molecule using the solution of (4.5) and (4.6) in the BCS side of the resonance,
namely we have,

"~

Sy SA
(”:lbu) 2 V\y ' (4.29)
N,

AB = B I kpapg ¢
e=e\z5+5-8) ~"\! T )’

with, po = €3V/ (ApuABAyg) and the number of FB’s given by Nj,. We fix the concentra-
tion of of molecules such that r, = N;/N < 1. We can tune the concentration, by fixing
it at the unitary limit, to have a qualitative comparison with the solution of one molecule
given by the Anderson model, see Fig. 4.9. We find that as we move deeper towards the
BCS side of the resonance the solution given by the standard BCS framework predicts al-
ways a finite number of molecules that asymptotically approach zero. On the other hand
the AM solution predicts, as noted before, a critical field B = B. ~ By + |AB]| for which
above the mean occupation of the FB is zero. This discrepancy most likely has to do with
the fact that we have used the mean-field solution of the AM in our estimations, and the
full renormalization group approach should be used, this requires further investigation.

In order to further compare the results from the AM approach a desirable quantity
to know would be the equivalent of the gap. Still, since a single impurity cannot possi-
ble open a gap in the many-body system we can analyse what happens to the fermions
near the impurity levels and calculate a local “gap” seen only by fermions with energy
close to the impurity energy levels. In order to estimate this “gap” we need to calculate
(a_g 10y ) = ("L.f"k.x)/\/é- Basically, we need to calculate the expectation value of a
spin-flip process of a fermion carrier. In general these process are instantaneous and in

where
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the thermodynamic limit their average should be zero. Still, close to the impurity energy
levels some progress may be achieved by relaxing some considerations.

Using the Green’s function mean-field calculation of the AM by means of the method
of equations of motion [62], we can generalise the results to calculate the corresponding
Green’s function for (¢} ¢, ). We have,

Gk()’.k{)" = (Sﬁ_ﬂ/ (("U il Vz(;’{;(;?) 5 (430)
where,
(\v s, 1 CY(T wiy 1
i i m—rE bl B T

with F; = ¢; + Un_,. Here Gy is the non-interacting Green'’s function and G"f’ =00
corresponds to the energy state o of the impurity. The Green’s function is defined as
[206]:

o0 ) ] ;
- S —1:/ dteilHim(t=t >0(f,—f’)<[ckﬂ(f).«ﬁw,(r')}+>
v —0Q

The problem with (4.30) is that is zero strictly if o # o’. Still, if we relax the constraint
due to the canonical anti-commutation relations and write the following,

Gkrx| = limn ((}0 I V"ZG'(‘;G}) . (4.31)
b n—0

using that,
d(e(k) — Ey)

Vver

263G, ~ (6} — Go —verG?).

with v = (e(k) — Ey)/ep. Welet n — v — 0 and we obtain,

T f5E
<('I<.T('k_1> — —4/ Im (G x| ) dw (4.32)

Y
V2
= — (ng — O(cp — e(K))) 8(e(k) — Ey) (4.33)

ER

Using the density of states, It follows that,

) V2 [oo N
> e o) = — (ny — O(ep — €)) d(e — Ep)p(e)de (4.34)
k Fl“ J —00
V2p(ep
I Mm (4.35)
(F

we can calculate similarly for <('L.L('k‘l ). We let,

V2]
R }kj<<«.-L,lck_r> + (k1)) (4.36)
V2| M pler
% (n +my), (4.37)
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Figure 4.10: The gap A/c}. and its logaritmic derivative —1/AdgA for °Li. Parameters
are;: N = 5 x 107(green). 1 x 105(blue), 1 x 10°(purple) using (4.37) also is shown the
solution from the extended BCS mean-field (black, dashes).

In the BCS limit n; = n; = nys/2 therefore,

;A— X I—’\—ln (ep) — 0

ey rPler) 5
consistent with the extended BCS mean-field result. However, a closer analysis with the
parameters of °Li shows [see Fig. 4.10] that the valence doesn’t decrease fast enough as
compared to the BCS solution. We can see that as we increase the magnetic field B > By
the change in the gap decreases, and the gap itself decreases qualitatively with the same
behaviour of the of the BCS solution. Still, the qualitative agreement is lost in the case
of "’K since we approach the point where the scattering length is zero (what we call a
Fermi point) too fast for the valence to have a significant effect. Better agreement should
be possible with a better approximation for the dependency of the Feshbach resonance
on B deep into the BCS regime for "’K in principle this might be an artefact of the sim-
ple form used. Also, the interaction strength for the equivalent “gap” must be properly
renormalized since in our simple estimation we have used the divergent expression for
the interaction at unitarity, this could be cured by including effects beyond mean-field in
the Anderson model. Due to our results, a pausible strategy would be to treat the Fesh-
bach bosons and the Cooper pairs in an independent manner, as we consider in the next
section.

4.4.2 Possible origin of the pseudo-gap

Now we move back to the crossover language and use the single impurity solution for
a dilute ensemble of FB. We independently determine the contribution from the Cooper
pairs and the Feshbach bosons. If we apply the mean-field decoupling scheme to Eq.
(4.8), while considering an ensemble of N}, Feshbach bosons in the lowest state such that
the interaction in the two channel model is scaled as gy = go/N;. This is equivalent to N,
single impurity contributions. As a result we will obtain the following Hamiltonian:

- Y)Wk | {
Hegs = Z (e(k) — “")”:(,a"k.n + + Z (Ab“k.i"—k.x + Apa k.z"k.!) ;
k.o k
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where,

90
Vv

( ~
Ag= \;)V<b0> + Agcs-

A} = 2= () + Abcs,

On the other hand, from the AM representation, we know that,

) = <ff 2\/11[%—171\/11/4,”{—‘7
<bo>: f f \/1117117\/11/+m+

where, m = n; —n|, ny = n; + n|, depend on the interaction strengths of the single
impurity problem. Here we are assuming that the molecules are very far apart, and we
can define a collection of isotropic sets of molecules and “Fermi seas”. In addition,

A
ABCS = g Z<”k.I"7k41>‘
k

is the usual BCS gap equation. In this theory we have assumed that the mean occupation
of the molecular state is independent of the gap, contrary to the BCS extended mean-
field scenario and the regular two channel equivalence of section 4.1, see (4.10). Then,
diagonalising the Hamiltonian, we have:

Hett = Z B %, + constant,
k,o

where the 7’s are the Bogoliubov modes and the dispersion relation for the excitations is
given by Fy = \/(((k) — 1up)? + |Ap|2. On the BCS side of the resonance, we have:

Ey = \/(‘(k) — ) -+ g\(;gb (<b()> <b(J>)ABC 5 /(i;b <1T><b()> S AéCS' (4.38)
where, without loss of generality, Agcs € R. One can see that if Agcg = 0 (no superfluid,
T > T;), there is a pseudo-gap contribution to the excitations given by the valence and the
magnetisation so that: A2 = g N} \/(11/ —m?)((ny +2)? —m?)/(4V), as the one seen in
experiments [167, 168]. From our analisys in the previous sections this contribution can
be attributed to valence fluctuations and the average population of the FB. At unitarity,
since ny = 1 the pseudo-gap contribution only depends on the average population of the
FB, see Fig. 4.11. As we increase the number of atoms N, m saturates to one and the
contribution vanishes [see Fig. 4.6 (right)]. Moving away from unitarity the pseudo-gap
depends on both the magnetisation and the valence which in general has fluctuations,
ny #Integer. These results are relevant since in the regular treatment using the single
channel model there is no way to obtain a contribution for the pseudo gap, because the
molecules vanish as the Cooper pairs disappear and the usual BCS gap is zero.
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Figure 4.11: Left: The pseudo gap contribution to the dispersion relation Dy =
Re(A,,)4V /(g3 N7?). Right: The scaled dispersion relation E(k) = (p, = E(k))/c} for
non-interacting fermions (upper branch) and the strongly interacting fermions at unitar-
ity (lower branch) as a function of the magnchsatlon equivalent to the average occupa-
tion of the molecular state \h“h.. = m = n; — n; and the scaled momentum k= k/kr .
Parameters are: g2 N2 /(4V) = 10, ju,/ (, == 1.5’ and ng=1.

4.5 Outstanding problems

The remaining question is how do the valence and the magnetisation change as a function
of temperature, so far the calculations were performed at 7' = 0. From what we know
about the AM, one would expect that the valence and the magnetisation start to drop
significantly at a temperature, 7* = E*/kp not necessarily 7.. This should depend on
the effective energy level of the impurity closest to the Fermi level [184]. From our results
at unitarity in mean-field approximation of the AM [see Fig. 4.6], we can see that the
magnetisation is strongly dependent on the number of atoms or, alternatively the Fermi
energy. As one increases the particle number the magnetisation increases, the while as
we move the effective energy level of the impurity, the magnetisation and the valence
are suppressed. These processes being opposites suggest that there should be a regime
where they compensate each other. This regime would probably represent the boundary
for the suppression of the magnetisation and the valence. It seems that one would need
to go beyond the large U limit that we have considered (where the mapping is valid) and
consider the effect of additional terms from the Schrieffer-Wolff transformation [194, 200]
(4.18) to determine the relationship with effective parameters of the crossover considering
excitations and part of the spectrum.

On the other hand, the single impurity picture should become less reliable as one in-
creases the density or moves towards the BEC side, since we would expect the FB's to
interact with each other. Therefore, it is possible that the situation could be pictured in
a more realistic manner in terms of the periodic Anderson model (PAM) [207, 208], where
more than one impurity is considered and there is interaction among them. This model
has been shown to have a non-Fermi liquid ground state for certain parameter regimes
[209]. This is relevant since in strongly interacting Fermi systems, like the one under
consideration, the normal state might not be a Fermi liquid [19]. For moderate particle
numbers, where the single impurity picture should be reliable, one would hope to be
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Conclusions

super-solid state [220] or Fermi-Fermi mixtures, providing alternative means to find the
properties of the ground state and the effect of interactions in the spectrum of excitations.

Finally, the BEC in a cavity [85] and Bose-Fermi mixtures in optical lattices [220-222]
are systems where super-solid behaviour is currently being investigated. The investiga-
tion of the properties of this phase and the interplay with other quantum phenomena
has just started to attract the attention of the researchers, therefore new experimental and
theoretical developments are on their way.
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Variational solution of coupling parameters for a Bose-Fermi mixture

/ dzx Lp[Pg] = /1,0(1.(,/1;2,\/E(1 + wp) (A.2)
gapAgV/m ( a2y g B02
+ ——F 1+ 3wj + 4w , (A.3)
2\/5 0 0 )
T .
o= m 4xderf L ag — dx} (A4)
2 a
8rpag
—  (a§ + 225) wo + —= v n()) : (A.5)
/dJ' Lp[®1] = ma1 AT (1l —w) (A.6)
R
oa; A}/ 3/2
g et ] e Gl 4w (A7)
2v/2 ( )

A2 . T 5
+ w (4.1‘(),(‘1'1” <ﬂ> aj — JJU (A.8)
Z aq

N

+ (a7 + 21'5) w) . (A9)

where, wo,, = exp(—x}/ad | ), and the square amplitudes, A3 | = ng1/(2a01v/7(1 £wg 1 )).
The coupling coefficients C, (', and Cy; can now be computed explicitly as a function
of the widths ag and a;:
o ¢ 3/2
! 1 + 3w? + 4w
Co = - 0 ok (A.10)
2V 2mag (1 + wy)

. . 3/2
1 + 3wy — 4w
g5, il - (A11)
2v2may (1 —wy)

qug "y " +wy twyt — 2 (“'()ﬂ] —w, "+ 1)
Cor = S (A.12)
2¢/7 (a8 + a?) (wy ' + 1) (wy' = 1)

where, 70,1 = aj, /(ag + a?) and ¢ = exp(—223/(a3 + a})). The computation of all quan-
tities follows from numerically minimizing the functional (A.1) with all numerical con-
stants fixed, and ag,; as variational parameters. In the limit of tb — 0 our variational

results are consistent with the numerical results for the pure BEC system presented in
[56].
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§B.1 The Schrieffer-Wolf transformation to first order

[ used the following results:

{ k0 Mg ] = /! [('k.n"’{.q,,L = d”-f'(jkqur(qﬂ'
leoforme, ] = [ehoine, ) fo==ssdachnls:
[ ko My, | = [f(];'”fﬁ}f(‘k.ﬂ = O Stk o
[ceoforng ] = dolforny ] =boad oty

and the usual anti-commutation relations for fermions of the same kind, ¢ or f, using the
Kronecker deltas in the corresponding summations, I then have for (B.4),

[H() S Z Vi (llk + an ”> (Fk —lEf— U”f,ﬁ> ( i(*kﬁ + CLU)‘U) .

From the condition (B.3), I have the following set of equations:

Ak(fk—ff)—l—l =0
(A + Z)U + (ex—e5) 2 = 0,

where, [ have used that for fermions, n? = ng. The solutions for the coefficients of S can
be written as:
1

A = - .
€k — €fF

U 1
= — =— — Ay, B.5
Zi (ex —€f) (ex —€p = U) € —Er— U = (B:o)

fullfiling the condition for S to be dimensionless. It follows to compute for first order,

{S‘H"]‘ - Z Va Vi (Ak + Zk”ffﬁ) . (];(ka . (k(r/U fw a. +FT ~ts ]
k.q,0.y
T B L R R ( flo, — (’,Lﬁ_f(,) . (B.6)
k.q,0.v

The commutators needed are:
ot 3 + N - 3 S gt : § f .
[flews — chofos flean+ehialy] . = 8oy (a (F5 + £1£,) = (chrico + hatan))

% + - T § . .
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Canonical transformations

where, [ have used the following computations:

Now, [ write for (B.6),

[S,Hyv]_

+

+

/(1 [('km ('“(i;l_"/] +f~, = (7(2_7 [I‘q ) /;] + %= (5(7‘7 <(5k.q.f:;f~, - ('L,A,('kﬁ) )
('Ln Uﬂ' fﬂﬂ'q-w ] '/L‘"T [(fqn'('L.n]Ar-fv = 0o,y ("lt.n('qn - (5k~(1fj'/'ff> ,
["lf,(,' b _Cqny = O—0py fiﬂ('q.v’

A = Se e

Z Va Vi (Ak + Zk”f,ﬁ) <26k‘q n, — ('Im Cho — (‘Tk.rr(‘q.”x)
k.q.0

¥ ol ( f 0y o= ol s) (ke = fs)

k.q.0

2 Z VoV (Ak =i Zk”f ) <6kiqn o ('L_U(‘qﬂ>
k,q.0 7 \

23 VoV (copta ot tots)

k.q.0

£ VaViZi (('LU('L Ty U(.qfn(fkﬂ) . (B.7)
k.q,0

where in the last equality, | used the symmetry in momentum indices. We define, Ji =
2WiVqZic, Wi,q = VicVq Ak, and we can write the transformed Hamiltonian as,

Ham

_'_

+

o )
Ho + Z <W’k.q - l;q”_/, > (qu”/}, - ('L.a('q.rr)

k.q.0
']k.q i T p
Z T ((‘k,n(‘q.f(rj—(r.frr)
k.q.0
Jx, b e o
B S e R e
k.q.0

Now using the following identity,

k.q,0
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§B.1 The Schrieffer-Wolf transformation to first order

where,

o
Il

(wholw,) e,

25:(k,q) = (who'w.,) e,

>
i€{z,y.z}
b

je{z,y,z}
with ¢/ the Pauli matrices,

(0 1 0 —i 10
(T'I: - = ) e
(1 0) (i 0) % (0 —1)'

while the unitary vectors in cartesian coordinates are denoted by ¢;, and the “spinors”
\Ill( and \I/E are defined as follows,

q—-

v = (g€])

W

|
N
Iy
r
N’
=]

3

The Hamiltonian to first order can be re-written as:

7’2,\3[ = Ho+ Z Jk.qg(‘(k. q) - 5/‘
k.q
K 0 1 B
o3 30 e (Ot T I i)
k.q.0
i Jea o\
i Z <II kAq + TA\[’> (All(.n'()q.ﬂ
k.q.0
== Z Wik + Jk—'kn n
kT —9~ "¢ ) "5
k.o
w where, Ny =n f. +n = Note that equivalently, one can write:
ANE e T
Ny o= (whe,).
Z('llcﬂ()qﬂ h (w(l'klpfq) :
g
with this equivalencies one can directly identify that under the transformations: k = —1,

A — —A, Z — —Z, which imply J — —J, W — —IV, one recovers exactly the result
given by Schrieffer and Wolff. Their interpretation for the additional terms from H in
H Ay is that, the first term is an s-d exchange interaction term, the second one is called the
two particle channel term, the third one is referred to as, the direct (spin-independent)
s-d interaction, and the last one renormalizes U/ and ;.
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Canonical transformations

B.2 The Schrieffer-Wolf transformation to second order

The next order of the canonical transformation can be computed by starting from the first
order commutation,

k.q.0 ’ '
4 Z Jkq (KILU(TQ‘,{,,/"L,/‘U)
k.q.0
Fe . ey
+ Z Tq (('.L.J(‘g‘fnffo'fﬂ o '/(.TT'/iff('q_”(‘k'”) '
k.q,0

[ will use the anticommutation algebra,

[('T. fw+ = [('. /Lr = [(;T. ]‘Lr — [fT,('}+ =10

For the second order I need to compute, [S. [S. 'H\f] 7] _=C + Cy+ C5, with

7

Cro= 8, Y (2Wiq+ .Jki(,,;h) (an,, - ({mpq‘(,) ]
k.q,0

€5 = |8, Z Jiq (('Tkﬂcq.,afi(,,/}) L
k.q.0

CVZ{ - [5 Z j_;g (()L.g(lil,—(r./;afrr + ./‘.(’Jih'./'i;rr(fqﬂ—-n(".kA(r) } =
k.q.0

I'will use the following identities,

[A,BC]_ = [A,B],C-B[C,A],
[AB,CD]_ = A[B,C],D~[C,A],BD+CA[B,D], - C[D,A] B

For the first term [ have, (| = Zkl_k_q ZUW Vi, a1,

a;y = [ <Ak1 + Zkl n./,.?) (.fi(:kl'"f — (jLI _.),f'y) y (21/Vk.q + Jk‘q”fi_ﬂ) (O‘k'qnj',, — (:L,ocq.ﬂ’) ] :
= Lhig (Akl + Zx, ”LA,) Al ((5k_qnfn — ('L.a"q,a)
— % (Qqu + Jieqn j) Ay (ficm - ({mf;)

(2l"Vk.q + ']k~(1‘"_[7ﬂ) (Ak1 + Zx, nj',a,> A3

+
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§B.2 The Schrieffer-Wolf transformation to second order

where,

= s _ of J

A= [~‘\,(k1.7 (klh,-fﬁ'”fin]—
B J .t T
= —dfﬂ."; (./‘_—\’('k]..\f i ('1|<1~‘r'/"‘/> R
Lo I

Ag = {Ok‘q"j}, =18 % HLJ B
= il
o [ 0 =l o e

Azl = Uw(kl.«, - (kl.“,f".v‘bkqnf,, — (Lﬁ(q_aL

= v(‘;ﬂﬂ {6k.q ( ‘;(lk].", =F ('Tkl.‘} Il(r) S (5k.k1 (.fj,-{‘q.c e (I](J’f'-)} 3

After some algebra and adding over v we can write ('} as,

a klAk.q
v B, ch_eqo) (e, + b ols) (B.8)
with,

By = 2“(1 ((Skl.qnvk‘kAkl = (5k1.k["k1.Q‘4q) 5
By = Vi .]k.qu] ;
By = Vi, (Okqlkq (Ak, + Zk,) + 0k, ,q (Wi k2K, + Jik (Ak; + Zx,))

= (5k,.k (2”“'1{1.qu =+ ']k;Aq (Aq + Zq))) X
B = —VlikAqZkl.

We continue with the next term and write Cy = Zkl . Zm Vi, Jk,q0r2, Where,

Qg = [ (Ak] == Zkl nf,ﬂ'> (’fj'-(‘kL", = (Ll_a’f«,) '(’L.”('(I-‘rrf;f_n] )
Zkl [‘,lf,.v ? FI(‘U('q.vUv/'(j’f—fT} — (f’:,iv-(’kl.",r I ('I(l a1 f’))

+ (A + Zan, ) By = oy nfr thate-oflf-o]_

After some algebra and adding over v we can write Cy as,

5. = Z ZVlikAq ((Akl +Zk1 (”fﬂ +”f.,,,)> (.-lr(.—rr(‘kl.frr
k].k.q a
~ Ok (Akl - Zkl"’fn) ”f_,,) ( oCac T ('Il-”f”>
- 3 Y ViekaZia (ot —aficqs + Satan g Ot (5]
ki.kqg ©

111



Canonical transformations

The last term remains and we write ('3 = Zkl Ka > o Vi Ji g3, where,

I

[ (Ak1 + Ziey n, > (fj('kw — (:Lm,f},) : (('L-I(TL..I fl f[ + h.c.) ]f
= F [”.', < Che 1€ q S fy +he > ]_ (.fi(‘km — ('lT(mfv>
<Ak| ot Zk| ”f,ﬂ:> [.fj;(‘kl,‘,-' — ()I‘(]_r\l‘f"‘,. <('L_I(:L.lfl ff e hC) ]7

3

-

After some algebra and rearranging the terms in the summations we can write ('3 as,

C; = Z ka,—]k.q (Zkln./'_ﬂcL.—n.("kl.*(f

kl.kAq a

+ (Akl o Zklll . > <6k_k]”’- o “lT(.fanl.—rr>> (/ﬁ A llﬂ/17>

= Y Y ViadkaZia (oot oCho s +aany flcqo)  (B10)
kl.kq a

The sum of ('; and C'5 can be simplified and yields,

Co+C3 = Z Z Vi, Ik 21, ((ZHLH -~ 1) (jl-(.frr(:kbfrr — O ke nL”> ( '(TT('qﬁ - (,'L_”,/'n)

ki kg o
(B.11)
So finally we can write,
[S. [S.HVL]_ = Z Z <(1,1 + amn; + (1,3(';_“('(]‘7”
o k;.k.gq
e (1,171[7”(-;7”(.(1.*”) ( ; Cps i (k] i ) . (B.12)
where,
ay = *QVk, ((Skl.qw/’k.kAk; = (5k1.k”’k1,qu)-
az = —Vi (Ok,qJiq Ak, + 2k, ) + Ok;.q CWikkZk, + Jik (Ak, + Zx,))
A (5k1.k (2‘thqu s Jk]_q (Aq e Zq))) — Vq']kAkl Zq.
az = Vk1~]k.qu| — Vq.]k_kqu.
ay = Vk,']k.qZkl + Qqu]k.kIch
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§B.3 The Schrieffer-Wolf transformation to third order

B.3 The Schrieffer-Wolf transformation to third order

We start by using the second order commutation result of the previous section, for the
third order I need to compute, [S. [S.[S. Hy| | | = Dy + Dy + D3+ Dy, with,

Dy = Z Z (11[5. (.f}i(‘k,ﬁﬂ‘f(..a.f'o)L

a k14k4q

Py = Z Z a» {S'(l}tfn(‘q.—n ( ‘(TT(.kI«” -1—('1].(,./21) ],

a k[.k.q

Z Z as [S.”.ﬁn (.f;('klﬁ + ()IT(l.rTffT) ]~

a kl.k.q

Z Z y [S. nfw(*;r(._ﬂ('q__(, (f;('k].(7 = ('Llﬂf(r> ],

o ki.k.q

D3

Dy

Using the result from first order, I have for Dy,

P = QZ Z Vi, ai {(Ak;, == Zk._,n,fi”) <6k2.kl'r1./.” - (’qu.a('kg.n)

o ko.kik.q
+ Zk2 ((,I('zﬂ(‘kl.—nfjo’fn>
Zk') i T 5 X oF
+ 2 (o fofot .fi.fﬂ,ch_dckzﬁ)} . (B.13)

The remaining terms can be rewritten as,

Dy = ¥ > (zg{[S.nL”L (f);('kl_(, +('L.U./',7>

7 kikq
g . (fj,Cklﬂ + ('Llﬂf”) L} )

25 Z as { {S. (’L;n('q.ﬂ,} B (]"j,('kl_n + ('L]ﬁ.fn>

o k;.k.q
.t T ;
+ o CqolS: < P (km,fn> ]_} ;

Z Z ay { {S ”fr_”(‘f(.fg(.q—n} - (-fi(.klﬂ + ("I(l.rrff">

o ki.k.q

& L ."[ i
+ “f_(,(lll(-_”()QA—(" [S < ;(Akl.d + (k].n-fr7> ]*} .

+

D3

Dy

I

For the first two commutators of the remaining terms, one has,

= Z Vi, (.41(._, + ZkA_,nfﬂ> (,/’L,('ke.w + ('L_‘”j;(,> .
ko

+ y N A Y 1 ;
[,5 ('L‘fn('q.fﬂ] B Z Vs (A]Q 1 Zk?”fn) (()kg.k.f—d(q.*ﬂ + dkz-(l({(.frrj*ﬂ)
ko

If

[S. n, }_

o

=~ Z (Skﬁ‘k‘sz (;11(,_, + Zkgllj.n) <f1f7(‘q<—” + (Aj]ﬂ—nffn> X
ko

113



Canonical transformations

the term with ", (’Lwrcq._”, yields,

[S "'l"/‘ﬁn(ﬁ;r(,—n('q.f(f] o [S ”’j_n] ~('1l-(.Ao'Cq.—r7 + ”‘fﬁﬂ [S (,;F(‘_”(‘.q._aJ =
~ Z Vi, (A;Q s Zk,znfﬂ> {CL,—va.—cr
ko

+ Ok k (n,f_” — 1)} (,f'j(,(.'q‘70 + (-L_fﬂfﬂ>

we will use the next identity,

Il

; : : : 4 4 : F ot )
(fiff("kg‘—n s ('Lg.—m/—”> (j(i(akl_ﬂ == (’I(l.rr'/ﬂ) <(Lg.n(k1.—ﬂf*0~/‘ﬁ + -/(’ff—ff(’klfﬂ(kz.(r>
; + d g
(()Lz.*ﬁ(:kl.o'f;j—” + (’k] .G‘C'kz.—(ffiﬂ'/”>

Using the above for D> after some algebra we have,

Dy = QZ Z Vi, @2 {(Ak2 + Zx,) <5k2'k1".fﬂ”,/]ﬁ - 71-/;('];(]_(r('kwr
a kg.k[.ltq

4 e Ay, ; : 4 o
+ (szl_(TCkg_—q-fir)'-lff) = 2~ ((.Tkg.(T()Ll.—ﬂ'/‘—fff(T + f"]’-/“(f('klifn'(‘kg.(7> }

Thus, next term D5 can be written as,

Z Z Vi, a3 {(Skz-kl Ak, ILp Wi

o kikikq

D3

—a

1

§r (5k2~k1 Zkz”/',,('L.frr('q.—rr = Ak‘z(‘L.—n(‘qfﬂcl’(l.a('k»_;‘n
- Zkzu.f_ (:Jrk'7U(,'qﬁ{7(‘;[(1‘”('kwr — Okks (Al = D) (',L]ﬁ('qﬁme_af,T
s dk‘kz (Akg =i Zkg) (CLI _g(.LAfﬂ-/.*ﬂ-}rﬂ' =5 jjf‘-ﬂt—ﬂ(‘q.fﬁ(‘klin) }

we have after some simplifications for Dy,

= 7 5 - il : Ji . T
Dy = Z Z V04 (Ax, + Zi,) (()kg,kl R R G oCaio = ”./'7”‘k.fo(’q.~rr‘k,.n(kg.n) .
a kz.kl.k,q

We have that the third oder expansion gives the following,

[S‘ [S- [&HV]J_]_ = Z Z {[’1""/”+b‘2(3;f(1,nck2ﬁ

a k.q.k].kg

bii”’f,, n . + byn L,,CI‘I 0%%ks.0

il . e P T
b”(’kfd(/qv,*(f( ki .0(’k2.(7 + b(’n/f,r nfﬁn(k] .U('kg,n

+ + +

o ) . < T ET "
b'”’fﬁﬂ‘k.—o(’q.frf‘klAa(‘kz,a - bx(kg,o'(/kl,~n'~f4r7-/(7

b0 (el ool + £21E s o)

_|_
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