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Abstract 

The recent advances in trapping, cooling, and manipulation of alkali atoms have opened 
the possibility to create and study novel states of matter. The quantum nature of mat-
ter becomes relevant at ultracold temperatures and emergent phenomena, such as Bose-
Einstein condensation (BEC), are strongly affected by the interaction between atoms and 
their statistics. 

In this thesis we will address some of the physics in ultracold quantum gases, with 
Bose (Chapter 2, Refs. [1, 2] and Chapter 3, Ref. [3]) and Fermi statistics (Chapter 4), 
as well as ultracold Bose-Fermi mixtures (Chapter 3, Refs. [3, 4]). We will discuss phe-
nomena driven by nonlinear interactions, such as, localisation, macroscopic quantum 
self-trapping, intrinsic decoherence, Mott insulating symmetry states, formation of bro-
ken symmetry states and the BCS-BEC crossover. 

In this thesis new major results can be summarised as follows: 

• The establishment of the relation between stationary states and decoherence origi-
nated from many-body interactions in double well bosonic systems. Chapter 2. 

• The suppression or enhancement of localisation related phenomena (Superfluid 
and Mott-Insulator states or Macroscopic Quantum Self-trapping) in Bose-Fermi 
mixtures due to the presence of fermions and the interplay with many-body inter-
actions in few site systems. Chapter 3. 

• The mapping of the BCS-BEC crossover problem to a magnetic impurity problem 
in the BCS side of a Feshbach resonance, and the possible origin of the pseudo gap 
in strongly interacting ultracold fermion systems. Chapter 4. 
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Chapter 1 

Introduction 

Ultracold atomic quantum systems are dilute gases where the atoms have been trapped 
using electromagnetic fields [5]. The electromagnetic radiation interacts with the atoms 
coupling with their dipole moment and by different processes, one can confine the atoms 
in a region of space, with magnetic, electric and optical means or a combination of these 
means. Due to the confinement the process of evaporative cooling [6] can be imple-
mented after laser cooling [7]. Thus, by lowering the trap depth, the most energetic atoms 
escape the trap and it is possible to reach temperatures of the order of 1-100 nK due to 
re-thermalisation. At these temperatures Bose-Einstein condensation (BEC) [8, 9] occurs 
for bosonic alkali atoms. In a Bose-Einstein condensate atoms macroscopically occupy 
the lowest energy state of the system. In an experiment, this is detected by a bi-modal 
distribution of atoms where a peak in the velocity distribution due to the fraction of the 
atoms that has condensed is surrounded by a thermal cloud of non-condensed atoms 
[see Fig. 1.1 (c)]. This new state of matter was demonstrated in 1995 by the groups of 
Cornell and Wieman, Hulet, and Ketterle [10-12]. The ultracold gases can be optically 
trapped using the Stark effect, by an intense standing wave of off-resonant light. The 
atoms effectively see a periodic potential, known as an optical lattice [13] [see Fig. 1.1 
(a, b)]. Optical lattices present the possibility to study systems analogous to ionic lat-
tices of solid state physics and thus study systematically microscopic models of strongly 
interacting particles. 

In ultracold systems interactions can be manipulated by means of Feshbach reso-
nances, and the geometry of the lattice can be controlled at will, as well as, the inclu-
sion of defects. One can even address single sites and control the concentration of atoms 
across the optical lattice [15, 16]. Therefore they are ideal to mimic the physics of mod-
els of interacting particles from solid state physics, such as the Hubbard model [17] and 
the Bose-Hubbard model [18]. The study of these kind of models may lead to a greater 
understanding of the behaviour of complex phases of matter, such as the Hi-Tc supercon-
ductivity [19], quantum magnetism [20, 21] or properties of exotic phases, such as, the 
supersolid state [22-25] . Also, because of recent developments in the creation of artifi-
cial magnetic fields [26, 27], they could be used to investigate topological states of matter 
[28-30] and implement quantum computing algorithms resilient to decoherence [31, 32], 
From the immediate practical point of view, applications of interacting ultracold atomic 
systems for metrology are currently being investigated [33-36]. 

The rich variety of behaviour investigated in these systems poses the difficult problem 
of addressing the above mentioned general questions. In order to gain some insight about 
the different aspects of the problems at hand, we concentrate on studying the following 
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Figure 1.1: (a) In a 2D optical lattice, the atoms are confined to an array of tightly con-
fining ID potential tubes, (b) In the 3D case, the optical lattice can be approximated by 
a 3D simple cubic array of tightly confining harmonic oscillator potentials at each lattice 
site (Taken from [13]). (c) Images of the velocity distributions of the trapped atoms, taken 
by the expansion method. The left frame shows the velocity distribution just before the 
appearance of the Bose-Einstein condensate; the middle frame, just after the appearance 
of the condensate; the right frame, after further evaporation leaves a sample of nearly 
pure condensate. The field of view of each frame is 200 //mx270//m, and corresponds 
to the distance the atoms have moved in about 1 /20 s. The colour corresponds to the 
number of atoms at each velocity, with red being the fewest and white being the most. 
Areas appearing white and light blue indicate lower velocities (Taken from [14]). 

questions regarding ultracold atomic systems: 

• What are the effects of the many-body interaction in the ground-state of the system 
and the spectrum of excitations? 

• What is the role of interactions in the formation of localised atomic states and sym-
metry breaking effects? 

These questions are relevant to the study of ultracold atoms in the following aspects. 
The possibility to prepare states by manipulating interactions with useful configuration 
properties for the implementation of quantum computing protocols [37] and atomtronics 
[38^0]. Once we know the ground state and the spectrum of excitations we can for-
mulate approximation schemes and study phenomena such as the transition from the 
quantum to the classical regime [41,42], decoherence, understand mechanisms behind the 
selection of certain configurations in the ground state or formulate effective theories to 
explain and predict behaviour in experiments. The structure of the ground state has pro-
found consequences on the transport properties of these systems where quantum phase 
transitions [43] might emerge and phenomena such as superfluidity [44] and the forma-
tion of insulating states [18,45] are closely related. 



We studied quantum degenerate systems that demonstrate a rich variety of behaviour 
depending on their statistics. In particular, we consider the many-body interaction in 
Bose systems, Bose-Fermi mixtures, and strongly interacting fermion systems. In such 
systems, the atoms of fermionic character (i.e. ®Li or or bosonic character (i.e. ®'̂ Rb) 
are subject to a confining potential [5] in a chip [48], optical lattice [13], or magnetic trap 
[49]. We also assume that the interaction between atoms can be controlled by means of 
a Feshbach resonance [47, 50]. A Feshbach resonance occurs when, due to a external 
magnetic field, there is a difference in the potential seen by free atoms and bound states 
such that low energy particle collisions can be enhanced or suppressed [see Fig. 1.2 (c)]. 
The scattering length of the atoms effectively becomes dependent on the magnitude of 
the applied field [see Fig. 1.2 (d)] and one can manipulate the nature of the many-body 
interactions to be effectively repulsive or attractive [47, 50]. 

The systems under consideration in this thesis can be studied by analysing the fol-
lowing many-body Hamiltonians written in the second quantisation formalism [44]. 

The description of the Bose systems that we will study in Chapters 2 and 3, is based 
on the following Hamiltonian in second quantisation form, 

Wbos = [ + 
JIR^ 

+ \ f (1-1) 

where the fields: '4)1 create (annihilate) bosonic atoms. The bosons obey canonic 
commutat ion algebra. The kinetic energy is denoted by fb and the trapping potential 
is t/fjgp, the integration is over 3 dimensional space. The interaction between bosons is 
a contact interaction, gbb{x,x') = gbbS{x - x'), which is assumed to be repulsive, and 
Qbb ~ Anfi^abb/m, where abb is the s-wave scattering length between bosons. 

The Bose-Fermi mixtures considered in Chapter 3 were studied by employing the 
following Hamiltonian describing fermions interacting with bosons, 

Wmix = Wbos + ( f ; + 

+ f dxMx '^^ l {x )^^ {x ' )gbf {x ,x ' )^\{x ' ) iP^ {x ) . (1.2) 

where we have considered spin-polarised fermions, effectively spin-less, because they 
all have the same spin. The fields (ipj-) create (annihilate) fermionic atoms and obey 
anti-commutation algebra. The kinetic energy of the fermions is denoted by f j and the 
trapping potential seen by the fermions is V/^^^, note that the trapping potential seen by 
the fermions and the bosons is not necessarily the same. The interaction between different 
species is the last term in the above expression. This inter-species interaction is assumed 
to be of contact nature such t h a t = gbj6{x - x'), can be attractive or repulsive and 
gbf ~ Airh'^abf/mii, where tur = rribnif/irnb + rrij) is the reduced mass and abf is the 
s -wave scattering length between atoms of different species. 

The strongly interacting fermions described in Chapter 4 can be treated by the so-
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called "single-channel model" [51], 

^elT.i}-^® 

K3 
(1.3) 

alternatively, one can consider the so-called "two-channel" or atom-molecule Hamilto-
nian [52], 

= Wa 

dx-̂  -hh.c.j , (1.4) 

where the fields: ip̂  (ip) create (annihilate) atoms of different species given by their 
sub-indexes, where b corresponds to bosons and / corresponds to fermions. The 
bosons (fermions) obey canonic commutation (anti-commutation) algebra. In the case of 
fermions the index a corresponds to the spin, were we consider equal number of fermions 
in each spin. The kinetic energy is denoted by f^ and the trapping potential is for 
the species ^ e {b,f}. The interaction A is the many-body interaction strength between 
fermions of opposite spin and g is the interaction strength between molecules and pairs 
of fermions. 

The general strategy that we followed to understand the behaviour of the systems in 
this thesis is to start with a second quantised Hamiltonian from which we constructed a 
continuum model or a lattice model. We constructed a continuum model by doing the 
standard mean-field decoupling scheme [53-55]. In order to construct a lattice model for 
atoms in an optical lattice, we employed the tight-binding approximation and expanded 
the field operators in Bloch states using Wannier functions well localised in lattice sites 
[45, 51]. Once we have these representations, we took the lowest modes with the sym-
metries relevant to the dynamics for low energies [56]. Then, we solved the eigenvalue 
problem for the effective Hamiltonian, either by direct diagonalisation for arbitrary in-
teraction strengths depending on the size of the Hilbert space or we constructed a Gross-
Pitaevskii type theory [44, 53, 54] valid for large atom numbers and weak interactions. 
Our strategy scheme was as follows: 

Hamiltonian 

Lattice model Continuum model 

Lowest modes approximation 

Direct diagonalisation Gross-Pitaevskii theory 

Once the eigenvalue problem was solved or the mean-field theory was constructed. 



we looked at the properties of the ground state and the spectrum of excitations. Using 
this information, we looked at the emergence of localised states and the effect of the 
interaction on the formation of broken symmetry states. 

The structure of the thesis is as follows. In Chapter 2 we considered systems of inter-
acting bosons in a double-well potential. We started by analysing interacting ultracold 
bosons in a double-well potential, where we considered the effects beyond mean-field ap-
proximation in the dynamics of prepared states, and the formation of broken symmetry 
states. We considered the effect of the relaxation on stationary states and the emergence 
of intrinsic decoherence. We continue this Chapter with the study of a BEC inside a laser 
cavity, where the super-radiant transition [57] can be interpreted as a transition from lo-
calised to delocalised states. In Chapter 3, we study Bose-Fermi mixtures. We start this 
Chapter with the analysis of a Bose-Fermi mixture in a double well potential, using the 
mean-field approximation where we consider experimentally relevant parameters. We 
studied the effect of fermions on the formation of macroscopic quantum self-trapped states 
(MQST) [58] [see Fig. 1.2 (a,b)] and analysed possible experimental signatures of this 
effect. The MQST states are many-body atomic states localised in space due to the non-
linear interaction between bosonic atoms. We continued with the analysis of a Bose-Fermi 
mixture in a three-site ring configuration, where we diagonalised directly the Hamilto-
nian of the system and investigate the properties of the ground state and the formation 
of localised states of different atomic species with broken symmetry. We finish this Chap-
ter with the study of a simplified model of a Bose-Fermi topological insulator [29, 30] in 
a double three-site ring configuration and the effect on the ground state phase diagram 
of a synthetic magnetic field [26, 27]. The synthetic magnetic field induces a position 
dependency to the kinetic energy which breaks symmetries and has consequences on 
the ground state configurations of atoms of different species. In Chapter 4 we analyse 
the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BCS-BFC) crossover prob-
lem realised in ultracold atoms [51]. In the BCS-BEC crossover problem the atoms of 
fermionic character evolve from their weak coupling limit having a BCS state described 
by Cooper-Pairs [59], to the strong coupling regime having state described by tightly 
bound molecules that undergo Bose-Einstein condensation. In the crossover the interac-
tion was controlled via Feshbach resonance. We introduce the typical Hamiltonians of 
the problem and consider their relationship with magnetic impurity models [60], such 
as the Kondo model [61] and the Anderson model [62]. We established an alternative 
formulation of the BCS-BEC crossover problem in terms of the single impurity Anderson 
model relating the magnetic impurity state with a molecular state of the crossover. We 
related our results to the experimental parameters of ®Li and '"'K to describe the forma-
tion of a molecular state induced by a Feshbach resonance, the so-called Feshbach boson 
[63], and we give an alternative interpretation for the gap in the spectrum of excitations 
seen in experiments above the critical temperature for superfluidity to occur. Finally, in 
Chapter 5 we summarise our results and consider possible applications of our findings, 
and extensions to our work. 
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Figure 1.2: Right Panel: Weakly linked Bose-Einstein condensates in a symmetric double-
well potential as indicated in the schematics. Observation of the tunnelling dynamics of 
two weakly linked Bose-Einstein condensates in a symmetric double-well potential as 
indicated in the schematics. Bose-Josephson junction in the Josephson regime (a) and the 
macroscopic quantum self-trapping regime (b) (Taken from [46]). Left Panels: (c) Sketch 
of a Feshbach resonance. The phenomenon occurs when two atoms colliding at an energy 
close to zero in the entrance channel resonantly couple to a molecular bound state with 
energy Ec supported by the closed channel potential. The resonant coupling is realised by 
magnetically tuning E^ near 0 if the magnetic moments of the closed and open channels 
differ, (d) The behaviour of the scattering length a, as a function of the magnetic field, 
where AB is the distance with respect to the resonance where a 0 (Reproduced after 
[47]). 



Chapter 2 

Interacting bosons in a double-well 
potential 

The experimental realisation of a single bosonic Josephson junction in two weakly linked 
Bose-Einstein condensates (BEC) has revealed fundamental features of the dynamical na-
ture of an ultracold interacting Bose gas in a double-well potential [46]. This system is 
composed of a dilute gas of alkali atoms (i. e. ®^Rb) below the temperature for BEC to 
occur. The gas is in a trap that effectively confines the gas to a quasi-one dimensional ge-
ometry where a double-well potential is seen by the atoms. This double-well potential is 
generated optical dipole trap consisting of two couterpropagating, focussed laser beams 
[46]. 

The study of this double-well system is important in three different aspects. The first 
one is the application of BEC for interferometry and metrology [64]. The second one is the 
study of the Bose Hubbard model [45] that describes the physics of the system. The third 
one is the control of quantum states to achieve atomtronics and their possible application 
for implementing quantum computing algorithms [39,40]. 

The atomic transport has shown the existence of Josephson tunnelling or macroscopic 
quantum self-trapping regimes depending on the interatomic interactions, on the initial 
populations in the wells and the strength of the the trapping potential. What we want 
to understand of this system is the effects beyond mean-field approximation that occur 
due to the interaction between atoms and the double-well geometry. To this end we will 
study the Bose-Hubbard model in this geometry. 

The theoretical analysis of this double well system has mainly been based on the two-
mode approximation of the Bose-Hubbard model [54, 58, 65-76]. Besides providing a 
fairly good description of the experimental situation [46], this model has been extensively 
studied on its own, specially within a mean-field or semiclassical approximation. This 
model has lead to significant understanding of the richness of the physical problem at 
hand; additionally, it can incorporate asymmetric two-well potentials and external time-
dependent driving fields [69]. One should also point out the relevance of this model in 
analysing problems in other fields, such as in nonlinear optics [77, 78]. 

Beyond the mean-field approximation, this model is amenable to numerical full quan-
tum calculations, so far up to iV = 10'̂  particles [65, 68-72]. Mean field, by approximating 
the iV-body dynamics by a set of non-linear coupled dynamical equations, is limited and 
incomplete since it describes the evolution of the expectation values of one-body opera-
tors only. In contrast, from the full quantum description one may, in principle, enquire 
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about the dynamics of one-, two-, three-, and up to jY-body properties. Due to the rel-
ative simplicity of the Bose-Hubbard model model in the two mode approximation one 
can calculate the full TV-body wave function and the full A^-body density matrix (for a 
system up to TV = lO' atoms, say). Thus, full information of the state of the system 
may be obtained. However, from a macroscopic point of view, most of the measurable 
thermodynamic and /o r many-body properties, such as energy, temperature and Green's 
functions, in general, are given in terms of one- and two-body operators [44]. These in 
turn are exhaustively described by the one- and two-body reduced density matrices. 

The study of the system has revealed from its mean-field treatment, the delocalised to 
self-trapping transition as a function of the energy and the strength of interaction between 
atoms [58, 66, 69, 73]. The solution in mean-field has allowed to identify this transition as 
a function of the energy as a classical "pitch-fork" bifurcation due to the degeneracy in 
configurations and the many-body nonlinear interaction [79-82]. The approaches based 
on direct diagonalization [68, 70-72, 74-76] have revealed that recurrences of oscillations 
occur in the time evolution of expectation values such as the population of the wells. 
These recurrences happen in between stationary values of the populations, [72, 74, 75]. 

We proceed as follows. Since we are dealing with a macroscopic system, we choose 
to describe the state of the system by specifying the number of particles N and the expec-
tation value of the energy e. For this to be meaningful, we must limit ourselves to states 
whose root-mean-square energy deviation is small; in other words, to states localised in 
energy. For our analysis we choose both the energy eigenstates and a well-known family 
of coherent states [83, 84] such that the energy requirement is satisfied. We point out here 
that the particular state with all particles initially in one of the wells, analysed in most of 
the studies with full quantum solutions [68, 69, 71, 72, 75], belongs to the family of these 
coherent states. 

^ We first analyse the expectation values of the operators, TV, = and J^ = {b\b.2 + 
blbyf, in the energy eigenstates, where bl .̂  (b^^) create (annihilate) atoms of the BEC 
in the right and left sides of the double-well. We study their values as a function of 
the interaction strength A = NU/A, where A/h is the tunnelling frequency and U the 
two-body interaction and N is the number of atoms. The expectation value of operator 

corresponds to the population of one of the two wells, and the expectation value of 
operator J j is related to the fluctuations A J^ in the tunnelling since (A,^)^ = (j2) _ 
with (•) the ground state average. We find that the expectation values of iVj and J^ in the 
eigenstates signal the transition from delocalisation to self-trapping. This behaviour is 
summarised in a phase diagram. The main result being that there exists a critical value 
of the interaction, such that if the interaction is greater than this value, the self-trapping 
transition occurs as a function of the energy of the system. Then we make a brief review of 
the mean-field stationary solutions to contrast and point out similarities. In particular, we 
show that the phase diagram separating delocalised from self-trapped states is essentially 
the same for direct diagonalization of the Hamiltonian and mean-field calculations [69]. 

We will analyse the dynamics on the expectation value of Ni and J j and we will show 
that stationary states exist for long times. As a consequence of this stationary behaviour 
we consider the emergence of decoherence in the one-body reduced density matrix due 
to the many-body interaction, we call this "intrinsic" decoherence. 

Finally, we will analyse the behaviour of a similar system, a BEC in a cavity. This 
kind system has very interesting physical properties. The first interesting phenomena 
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is the study of the transition to the "super-radiant" regime of the Dicke Model [57], In 
the super-radiant regime the emission and absorption of photons by the atoms becomes 
coherent. Therefore, the whole system radiates like a single atom. In addition to this, 
the dynamical transition to a self-organized state and behaviour with the characteristics 
of a supersolid phase have been measured [85]. In the supersolid phase both diagonal 
(crystalline) and off-diagonal (superfluid) long range orders co-exist [23, 25]. We will 
study the behaviour of the system due to the many-body interaction and the atom-photon 
interaction, and the role of quantum fluctuations. 

The structure of the Chapter is as follows. We study the transition from the delo-
calised states to the self-trapping states, comparing the results from the mean-field ap-
proximation and the calculations using direct diagonalization of the Bose Hubbard model 
in the two-mode approximation. Then we consider the time evolution of the system for 
long times with different initial conditions and we compare the results obtained using a 
basis of coherent states and the eigenstate basis of the Hamiltonian. It follows that, we 
will analyse the effect of this relaxation to a stationary state and the relation to decoher-
ence in the system due to the many-body interaction. We will conclude the chapter with 
the analysis of the BEC in a cavity and a summary of our work. 

2.1 The model and the effective Hamiltonian 

We consider a BEC of repulsive interacting atoms (i.e. ®^Rb) in a one dimensional geom-
etry confined by a symmetric double well potential. The Hamiltonian of the system can 
be written in second quantised form as follows: 

n= I dx (T + Ktap) M^) + J / 'Ix dx'ipl{x)^l{x')w{x, x')Mx')Mx) (2.1) 

where the field operators: xpl (creation) and tpi, (annihilation) obey the usual commutation 
algebra for bosonic fields. The kinetic energy is T and the trapping potential is Vtrap. The 
many-body interaction is a contact potential, w{x,x') = g6{x - x'), with g ~ AnH^a/m, 
where the effective particle-particle interaction strength is written in terms of the (posi-
tive) s-wave scattering length a. Next, our aim is to have a simplified model that contains 
the essential ingredients to describe the physics of the BEC considering the effect of the 
many-body interaction between the atoms and the symmetry properties due to the trap-
ping potential. Therefore, we assume that the system can be described by the lowest 
modes in of the field that describes the BEC. We consider that the energy of the lowest 
two modes is well below all other modes in the BEC. Thus, the dynamics and the en-
ergy of the BEC are mainly due to these two modes. We expand the field operators in 
these two modes, iĵ bix) = -h {x)au where ao corresponds to the lowest mode 
(symmetric) and ai to the first excited mode (anti-symmetric). Then the Hamiltonian is: 

= ^ (2.2) 

where eo,i are the two lowest eigenenergies of a single particle in the double well. The 
main assumptions that we have made and give validity to the effective theory given by 
(2.2) are that the two lowest energy states of the system are well below any other energy 
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states, and the separation between them is small. 
The energy levels and the corresponding eigenfunctions are given by the solution of 

the following equation: 
{T + Virap) 'PA^) = f'^'P'^i^)^ 

and the qualitative picture of the solutions is given in Fig. 2.1, where we have that the 
lowest mode is symmetric and the first excited mode is anti-symmetric. 

Figure 2.1: Schematics of the solutions of the single particle states of the double well 
potential. The lowest energy state eigenfunction (symmetric) is given by and the 
first excited eigenfunction (antisymmetric) is given by ipi{x). 

The interaction term in (2.1) has been rewritten in terms of the two particle collision 
integral, = .g/2 / dx ipl{x)(f* {x)y:}-y{x)ips{x), and here we assume that g > 0. Since 
the atom number states basis is appropriate to study the expectation value of the popu-
lation of the right and left wells, we perform the following linear transformation: 

= ^ ( a o + a i ) , 62 = ^ ( 0 0 - 0 1 ) , 

and substitute in (2.2) to obtain. 

n = 

+ 

+ '4k) - + k h ) (2.3) 

4 4 
W4 ^ '•iW2\ + 

+ ( t T - T ) + + 
(2.4) 

where the interaction constants in each term depend on the overlapping between modes 
and are given by, wo = fy/2 / dx = (j/2 J dx W4 = g/2 J dx The 
relevant terms of the Hamiltonian (2.4), are the second and third terms from above, since 
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the first term is an energy shift and the last two terms are dropped because their contri-
bution is considered marginal. Therefore, we will study the following effective Hamilto-
nian, which is the Bose-Hubbard Hamiltonian considering the two-mode approximation 
[70, 86, 87], 

^eff = - J (b\k + + ^̂  + . (2-5) 

where A = ei - eg is the energy difference, or alternative A/h is the tunnelling frequency 
of the two lowest energy modes and u = (wq + + 'iw2l1 ~ gjl^ ~ AT:K^a/Tna]_. 
The length a^ is the characteristic length of the transversal direction of the anisotropic 
confinement, thus [ / /A ~ 1 - 10 is an effective one-dimensional interaction strength 
[88]. We shall specify the different regimes by the dimensionless interaction parameter, 
A = NU/A. We use units with h = A = m = 

As it has already been established, both from mean-field [58, 66, 69, 73] and full quan-
tum calculations [68, 70-72, 74-76] , the system described by Hamiltonian (2.5) exhibits 
a transition from coherent oscillations to a self-trapping regime [54, 73]. The solution of 
the above model in the limit were A < 1/A^^, the non-interacting limit, is the Rabi regime; 
then as we increase the interaction the system is in the Josephson regime, provided that, 
l/N"^ < A < 1; while when A > 1, we are in the Fock regime [54, 89]. The Rabi regime 
is equivalent to a pendulum with variable length depending on its angular momentum 
while in the Josephson and Rabi regimes the length is fixed. For non-interacting atoms 
u = 0, (2.5) describes sinusoidal Rabi oscillations of the populations between the two 
wells with frequency LOR = 2A/h = 2. The behaviour of the pendulum in the Fock and 
Josephson regimes is semiclassical while in the Fock regime the system is strongly quan-
tum. In general the description given by (2.5) is appropriate for the BEC in a double well 
in the Josephson and Fock regimes [54], since g is different from zero. 

The transition from delocalisation to self-trapping occurs in the Josephson regime, 
very close to the Fock regime. This transition has been described to occur as either when 
the parameter A is increased from zero to above a critical value Ac for a fixed initial 
condition, or for a fixed value of A > Ac by varying the initial state, which is equivalent 
to varying the energy of the system. As a matter of fact, the experiment by Albiez et. 
al. [46] using Bose atoms at very low temperatures, reports the observation of a self-
trapped state as a function of the initial population imbalance between wells. It proves 
convenient to change the representation using the Schwinger transformation [90], where 
we introduce the following one-body operators [70], 

4 = 

Jy = 

Jz - (2.6) 

which are angular momentum operators and obey the SU(2) commutation relations: 
Jk, Ji] _ = iSkimJm- The number of atoms N = b\b^+ is conserved. The operator J^ 

corresponds to the difference in population between the symmetric and anti-symmetric 
modes of the confining potential, Jy represents the momentum of the condensate, while 
Jz is the difference in population between the two wells [70]. Then, the Hamiltonian can 
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be written as ' , 
Weff = - 4 + 2UJl 

where U = u/A and we have omitted terms proportional to N, because they only intro-
duce a constant shift to the ground state energy. From the form of the above equation 
it is evident that depending on the ratio U the Hamiltonian will be diagonal in differ-
ent basis. When the tunnelling term (Jx) is dominant, the basis corresponds to the basis 
where Pauli matrix CTX is diagonal and when the interaction term (J^) is dominant, we 
have the basis where the Pauli matrix a^ is diagonal. These considerations allow us to 
construct the Heisenberg equations of motion for the J^ operators, which may be trans-
formed to their mean field counterparts by the transformation ,4. —> NKk where Kk is a 
c-number function of time. This approximation is valid iov N oo,U 0, but A finite 
[69], because as the number of atoms increases the system approaches the classical limit 
and quantum fluctuations are suppressed. For small values of the interaction strength, 
typically, the expectation values of one-body operators such as, N\, and two-body op-
erators like, Jj, oscillate following the coherent oscillations predicted by the mean-field 
calculation for a brief period of time, then "decay" to a stationary value for a long pe-
riod of time followed by revivals, seen in the solution by direct diagonalization of (2.5) 
for a fixed number of atoms [69, 70]. The mean-field approximation on the equations of 
motion gives information on one-body properties only, and is unable to capture features 
such as revivals. 

2.2 Density matrix of a iV-body system 

We work in the basis of atom number states \Ni,Nr), where Ni {Nr) is the number of 
particles in the left (right) well. These Fock states are constituted by all the different 
combinations of populations in each well given a total number of particles N {N = Ni + 

Nr). The evolution in time of the A^-body quantum state state \ ̂ {t)) is determined using 
|5'(0)) = Î V, 0) as the initial condition for the Schrodinger equation: 

(2.7) 

where H = TYeff from (2.5). It is important to mention that such an initial condition 
corresponds to a particular case of the family of the so called coherent states [83, 84]. 
Evolution in time of the coherent states leads qualitatively to the same features for the 
density matrix as those that we expose below, and we will show in the following sections 
(see also [2]). 

At the same time that we propagate the initial state over time by numerically solv-
ing (2.7), we construct the density matrix /5jv(i) = of the A^—particle sys-
tem. The study of the evolution in time of the A'^-particle density matrix leads to three 
qualitatively different behaviours in terms of the scaled interaction \ = UN. For il-
lustration purposes we select the case for N = 20. As indicated in the caption of Fig. 
2.2, each square represents a matrix element of the A^-body density matrix. First, in the 

'This model is also a particular case of the so-called LMG model in nuclear physics, H.j. Lipkin, N. 
Meshkov, and A.J. Click, Nuclear Physics, 62 188, (1965). For recent developments in the eigenstate structure 
of such a model, see [86] and [87] . 
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-0.5 

- 1 . 0 

10 15 21 

Figure 2.2: The real part of the density matrix of 20 particles for different interaction 
values and times, A=0 (top row, Rabi regime), 0.2 (middle row, Josephson regime), 2.0 
(bottom row, Fock regime). Time units of each matrix correspond to 0.5 (left), 2.5 (mid-
dle), 30.0 (right). Here each square represents a matrix element of the density matrix. 

non-interacting case case when A = 0 (Rabi regime), we observe the expected coherent 
oscillations for the purely tunnelling regime [58, 70]. This behaviour is reflected in the 
density matrix elements [Fig. 2.2, top row],which have no transition between positive or 
negative values from the main diagonal and there are oscillations on the main diagonal 
with a Rabi frequency, LUR = 2. In the second case when A = 0.2 (Josephson regime) 
we pictorially observe that the density matrix elements evolve in time from having non-
interacting features (oscillations on the main diagonal), in the time [ Fig. 2.2 left and 
middle panels]. Then the system, starts to slowly change to a stationary state charac-
terised by checkerboard-like structures [Fig. 2.2, middle row (right)], where there is a 
mixture in the behaviour between positive and negative elements, with small amplitude 
oscillations as a function of time. Revivals are captured in the matrix elements through 
coloured oscillations in the main diagonal elements and are due to the finite number 
of atoms. Finally, in the third case, when the interaction contribution exceeds the criti-
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cal value Ac « 0-92 ( approximate boundary between the Josephson and Fock regime), 
which depends on the chosen initial condition [2], the system experiences the transition 
to the localised or self-trapping regime [70]. In the self-trapping regime, the particles are 
concentrated mainly in one of the wells. In this case, the density matrix elements have 
the distribution of a checkerboard lattice as a function of their sign [Fig. 2.2, bottom row 
(middle and right)] . In this regime there are small amplitude oscillations in the main di-
agonal. The system decays abruptly to the stationary state [transition from Fig. 2.2 left to 
middle] and the amplitude of the oscillations in the main diagonal is suppressed. From 
the behaviour seen in Fig. 2.2 it is clear that as we increase the interaction the symmetry 
between diagonal and off-diagonal terms is broken as we increase the interaction and 
quantum fluctuations are relevant for the dynamics of the system. 

In general one can state that the property of stationarity is complicated to deduce from 
the information encoded in the iV-body density matrix, still we can see that fluctuations 
due to finite number of particles play a major role as we increase the interaction, and the 
stationary state is characterised by the checkerboard pattern in Fig. 2.2. However, the 
stationary behaviour of the system can be observed directly from the expectation vakie 
of few body operators [2, 71]. One can summarise the behaviour towards the stationary 
state as follows. For any value of the interaction parameter A and for any initial condition, 
in particular the one we selected here, any element of the one-particle reduced density 
matrix starts at its value given by the initial condition, then it oscillates, for a short time 
following the mean-field solution [73, 76], decaying towards a constant value that we 
identify as the stationary one. After remaining in such a state for a long time , the matrix 
element shows revivals close but not equal, in general, to the initial condition. The main 
point we stress here is that the ratio of the time spent during the revivals to the time 
spent in the stationary state, vanishes as the number of particles increases to infinity [2]. 
This implies that if we observe the system at a long but arbitrary time, it will mostly be 
found in the stationary state. As we shall see below this leads to the phenomenon of 
decoherence at the level of few-body properties. 

2.3 Observables and eigenstates properties 

In this section we shall analyse the behaviour of the one- and two-body observables on 
the quantum eigenstates along the transition from delocalised to self-trapped states and 
we shall also briefly review the corresponding predictions of the mean-field approxi-
mation. We will point out their similarities and discrepancies. The next section will be 
devoted to the study of the full time quantum evolution of the quasi-classical coherent 
states along the transition. 

As shown in the previous section, within a quantum calculation one can obtain the 
full TV-body wavefunction and density matrix = j i / ' / v F r o m the 
latter, one may further find the the reduced one- and two-body density matrices, and 

whose matrix elements are given by. 

= (2.8) 

and 

16 

(2.9) 
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with the subindices a and (3 taking the values 1 and 2, and a = [jjiv] and h = {ki/}, that is, 
the values {11}, {12} and {22}. Knowledge of these two operators suffices to determine 
all one- and two-body properties of the system. However, even though we can calculate 
all the matrix elements of and as a function of time, we find it more illustrative 
to limit ourselves to the analysis of two properties, one is the number of particles in well 
1, namely, 

Ni = b\h (2.10) 

a one-body operator. And the other is a "tunnelling correlation", i.e. a two-body operator: 

C = 4 J l (2.11) 

where Ja: = (S|62 + f4^i)/2 the tunnelling operator. The expectation value of this operator 
is related to the fluctuations in the tunnelling, or alternatively the fluctuations of the 
difference in the population of the antisymmetric and symmetric modes of the confining 
potential AJ^ by means of: (AJ^)'^ = (J^) - (J^), with (•) the ground state average. 

To analyse the properties of the eigenstates of the system, we numerically solve ^ the 
eigensystem with H given by (2.5): W(A)|(/)„(A)) = e„(A)|0„(A)), where the dependence 
of different set of eigenstates and eigenvalues on A has been indicated an the sub-index 
n goes from 0 to N. For N particles there are A'̂  1 eigenstates, the energy of the sys-
tem being finite and bounded by the lowest eo(A) and largest eA'(A) eigenenergies. In 
Figs. 2.3 and 2.4 we show the expectation values of N\ and C in the energy eigenstates, 
namely, (yVi(A))„ = (0n(A)|yVi|<^„(A)) and (C(A))„ = (</.„(A)|C|0„(A)) as a function of 
the eigenenergy £:„(A) of the corresponding eigenstate |(̂ ri(A)), for three values of the 
interaction, A = 0.1, A = 1.0 and A = 10, and N = 10 .̂ 

From Figs. 2.3 and 2.4 we can deduce the dependence of the observables (VVi) and 
(d) on the energy eigenstates and at the same time the transition to self-trapping as A is 
varied. For A = 0.1 all the stationary states show, on the one hand, {N\)n = N/2 while 
{C)n shows a simple continuous behaviour. For obvious reasons, we call delocalised states 
those with {Ni)n = N/2. Thus, for A = 0.1 all states are delocalised. For A = 1.0 and 
A = 10.0 a transition from the delocalised regime to the self-trapped regime is observed. 
One finds that there exists a "critical" energy ec(A), above which the average number of 
particles deviates from N/2 for equally populated wells, i.e. (iVi)„ ^ N/2. These are the 
self-trapped states, which appear as a breaking of the symmetry 1 2 of the Hamiltonian 
(2.5). In the case of the tunnelling correlation the transition is signalled by a cusp at 
£C(A). We also performed calculations with N = 10̂  and found that the difference with 
N = 10̂  is almost indistinguishable, except very near the transition. Note that in Fig. 2.3 
there are two isolated points near the transition; for N = 10"' there are few more isolated 
points around the transition. 

The transition is best summarised in the phase diagram of Fig. 2.5. This was obtained 
by the diagonalization of the Hamiltonian (2.5), considering N = 10'̂  particles, for values 
of A ranging from 0.0 < A < 10.0 in steps of 0.01. For each set of eigenstates we found 
the value ec(A) where the delocalised to self-trapping transition occurred. This is the 

^The eigensystem n{A)\(l)n{A)) = £„(A)|(/)„(A)) was numerically solved by means of Fortran, Math-
ematica and Matlah diagonalization subroutines. The time evolution of an arbitrary initial state, IV') = 

an|<^'n(A)) was performed, both, by direct evaluation of = ^ ^ a^ exp(-i£„(A)t)|(/>n(A)) with 
Mathematica, Matlab and by a finite-difference method within a Fortran code. 



Interacting bosons in a double-well potential 

A = 0.1 A= 1.0 A = 10.0 

- (a) (b) (c) ^ ^ 

- V 
- 0 4 - 0 2 0.0 0.2 0.4 0.0 0.2 0.4 0.6 0.8 1.0 4.5 _-)..-> 6..-1 7.5 8.5 9.5 

^ — — 

N N N 

Figure 2.3: Particle population in well 1 (iVi)„ as a function of the energy eigenvalues 
for N = 1000 and A = 0.1, A = 1.0 and A = 10. 

A = 0.1 A = 1.0 A = 10.0 

Figure 2.4: The two particle correlation (C)„, as a function of the energy eigenvalues e„ 
for N = 1000 and A == 0.1, A = 1.0 and A = 10. 

(red) dotted line in Fig. 2.5. The (blue) solid lines correspond to the lowest and highest 
eigenenergies for each value of A, namely, eo(A) and £:̂ v(A). Hence, for e„(A) < £c{A) the 
state |(^„(A)) is delocalised, while it is self-trapped for e„(A) > ec(A). We further observe 
that there exists a critical value of the interaction Ac below which there is no transition. 
For N = 1000 we numerically find A^ « 0.539, see the inset in Fig. 2.5. 

The transition from delocalisation to self-trapping in these systems has been predicted 
and found, both by exact diagonalization of the Hamiltonian (2.5) [68, 70-72, 74-76] and 
from the mean-field calculations [58, 66, 69, 73]. To highlight the similarities and dis-
crepancies between the results of this and of the next section, we now briefly review the 
mean-field approximation^. Mean field approximation may be achieved by first setting 
the creation and annihilation operators as c-numbers, ^ h* and b. bi, and further 
bi = \bi\exp{i'di). Then, one may identify the relative population p = - 162|''̂ )/iV 
and the phase difference ip = '62- Si as classical canonical conjugate variables. Their full 
dynamics is then determined by the corresponding Hamiltonian (2.5) in those variables 
[65, 67, 69]. 

The ensuing mean-field phase diagram is strikingly similar to the one shown in Fig. 

We follow closely the discussion and results of [69]. 
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Figure 2.5: Phase diagram e/N vs A for N = 1000 particles. The allowed states are those 
within the (blue) solid lines, £o(A) and eAr(A). The (red) dotted line is the transition from 
delocalised to self-trapped states, ec(A) for A > Ac w 0.539, see the inset. The states with 
energy greater than £c(A) are self-trapped. 

2.5 (see Fig. 1 in Ref. [69]). It is found that, for each value of A, there are just two 
stationary states that resemble those of eo(A) and eAr(A) in Fig. 2.5, with the mean-field 
critical interaction being A^"^ = 1/2. To be precise, for A < , the energies of the 
stationary states are eL(A) = ( A - l ) /2 and e [ / ( A ) = ( A -h l)/2, where the sub-index U 
and L correspond to the highest and lowest energy in the spectrum. For values A > A^^^, 
there are three stationary states, eL(A), E 6 ' ( A ) and E D ( A ) = A 1 / 8 A , where D stands for 
the delocalised boundary. The function €L(A), for all values of A, essentially coincides 
with the function EG (A), the lowest eigenenergy shown as the lower (blue) solid line in 
Fig. 2.5. For A < the highest eigenvalue €j\/{A) coincides with e[/(A), while for 
A > A ^ " ^ , the eigenvalue CAT ( A ) is well approximated by E O L A ) . In this region, eu{A) 
corresponds to the transition (red) dotted line in Fig. 2.5, but the mean-field stationary 
state turns out to be unstable [66, 67]. There are no other mean-field stationary states 
within those boundaries, which is one of the main differences between mean-field and 
the exact solution. While all the states bounded by the (blue) solid lines in Fig. 2.5 are 
non-stationary in the mean-field approach, they represent stationary states in the exact 
quantum calculation. 

The mean field states are non-stationary because the population p(r) shows coherent 
oscillations for any allowed initial condition and for any allowed value of the mean field 
(conserved) energy e. Those states certainly show the transition from delocalisation to 
self-trapping but in the following way. For A < A^'^ and for a given value of e, the 
population p(r) oscillates between the boundary values ±p+(e) determined by the en-
ergy. Thus, a time average yields P{T) = 0, giving rise to a mean population in well 1: 
IVJ = 7V(1 -H P{T))/2 = N/2, i.e. a delocalised state. For A > A^'^ and for the energies 

< t < eu, again, the time average yields p(r) = 0, iVi = 7V/2, a delocalised state. 
However, for energies eu < e < ep, the time average may be accurately approximated by 
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Figure 2.6: Left Panel: Population in well 1 as a function of energy for A = 10.0. Mean-
field Ni in purple lines. Eigenstate expectation value (iVi)„ in blue dots, N = 2000. 
In mean-field, for each value of the energy e, there exists an infinity number of possi-
ble initial values p(0) and (/j(0) for the system; all of those have the same time average 
value A î, differing only in the sign of p(0) for self-trapped states, p(0) > 0 localises in 
well 1, p(0) < 0 localises in well 2. Right Panel: The behaviour of the ratio r^/r,. as 
a function of the number of particles for the initial state: 0). The dots correspond 
to the results from the evolution in time of the eigenstates obtained from direct diago-
nalization of (2.5), the lines are the fits to the function We have considered 
A = 0.2 (green), 0.8 (blue), 2.0 (purple). The parameters of the fit are: C(0.2) = 22.7, 
(5(0.2) = -0 .98 , C(0.8) = 71.4, (5(0.8) = -0 .93 , and C(2.0) = 6175, (5(2.0) = -1 .56 . 

* P{T) = p+((^)(l -F v^l - l/fc2)/2, yielding Ni ^ N/2, i.e. a self-trapped state. The values 
of and /ĉ  are given by [69, 73]: 

= ^ (2A (2£ - A) - 1 + + 1 - 4A (2e - A 

1 -h 
2A(2£ - A) - 1 

^4A2 -h 1 - 4A(2£ - A) 

(2.12) 

(2.13) 

In Fig. 2.6 we show a comparison of the mean-field solution and the exact diagonalization 
solution for the population of well 1, for A = 10, as a function of the energy. We find that, 
while the transition energy ec(A) agrees well quantitatively for both cases, there is a clear 
discrepancy for the population values in the self-trapped regime. The transition as a 
function of the energy in mean-field approximation is a classical "pitch-fork" bifurcation 
[79-82]. In the next section, we shall analyse the quantum dynamics of coherent states 
and find that, while the periods of the oscillations agree fairly well with their mean-
field counterparts, the expectation values of one- and two-body properties in the basis of 
coherent states decay or collapse to stationary values that agree with those of the basis of 
energy eigenstates. 

''The mean-field time average value may be estimated as the algebraic mean of the largest and lowest 
value of the elliptic Jacobi functions dn(2, (?) (valid in the self trapped region) which are -1-1 and - q'̂  
[69]. An exact numerical evaluation of this mean shows a deviation of few parts in lO '. 
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2.4 Statistically stationary states 

As already pointed out in the literature [69-72, 74, 75], the dynan^ical evolution of arbi-
trary states of the interacting Bose system with Hamiltonian (2.5) reveals, in addition to 
delocalised and self-trapped states, a clear decay or collapse to "stationary" states with 
recurrent revivals which mean-field treatments are unable to capture. The existence of 
these stationary states is due both to the pair-particle interaction energy and to the fact 
that we are looking at expectation values of few-body operators. The revivals are a con-
sequence of the finite number of eigenstates comprising any conceivable state in this 
system. Although this phenomenon has been thoroughly reported, we would like here 
to emphasise an aspect that makes the revivals relevant to the description of the dynam-
ics of these systems. This is the fact that as the number of particles N is increased, the 
relative time spent in the collapsed "stationary" region grows much faster than the time 
spent in the revivals intervals, such that, if one lets the system evolve for an arbitrary 
long time, it becomes more and more probable to find it in the stationary region. 

One finds, generally, that the time between recurrences scales as r^ = A{A)N°' while 
the time during the recurrence, that is, the relaxation time, scales as r^ = B{A)N'^. The 
coefficients A and B are A-dependent. The behaviour of the ratio Td/rr = C{A)N^, with 
(5 = 7 - a and C = B/Ais shown in Fig. 2.6 (right panel), where we have considered 
the evolution of the state 0), for different values of A. From the behaviour seen in 
Fig. 2.6 (right panel) one can deduce that the ratio Td/r^ —> 0 as Â  oo. This is in 
marked contrast to the mean-field behaviour, as we will see below. The purpose of this 
section is to analyse this dynamical behaviour for a family of coherent states [83, 84] and 
to compare it with that of the energy eigenstates and the mean-field predictions. 

The coherent states are expected to behave semi-classically and to follow quite closely 
the mean-field dynamics. Here, we consider the following set of coherent states [83, 84], 

N , X 1/2 

where ni and N — ni are the number of particles in wells 1 and 2, and \ni,N -ni) are the 
(N +1) Fock states. The angles 9 and (p determine the particular initial state. These angles 
may be given by fixing the expectation value of the energy and of the initial population in, 
say, well 1. To be precise, for given values of the number of particles N, we characterise 
the coherent states by their energy expectation value, s{0,(j)) = {9,(l)\ H \0,4>) and leave 
the initial population to be adjusted by arbitrarily setting = 0. 

Taken any of these states as the initial one for the system, we evolve it numerically''^, 
|6», (j)-, t) = ex.Y>{-i'Ht/h)\6,4>) and calculate the expectation values of Ni and C, 

{Mt))c={0,<l}-,t\N,\e,cP;t) (2.15) 

and 
{C{t))c = {e,(p-,t\C\e,cl);t). (2.16) 

As mentioned in the first section of this chapter, the coherent state initially with the N 

' i t is worth to mention that for the initial condition lA'', 0) analytical expressions for the collapse and 
revival t imes may be found [75] that are in agreement with our results for different values of A. 
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particles in well 1 is given hy 0 = n and (p = 0. The evolution of this state has been 
extensively studied [58,65-76]. Here, we shall study all possible coherent states with (p = 
0. It can then be shown that by varying the angle 6 from 7r/2 to a maximum allowed value 
'̂max(A), the energy e(6',0) almost spans the whole range of values from £o(A) to e;v(A), 

namely, e(7r/2,0) > eo(A) and e(6',nax(A),0) < £Af(A). The angle 6'max(A) is calculated 
numerically by solving: e(^^max(A),0) = eN{h), where eyv(A) is the largest eigenvalue 
of the spectrum of the Hamiltonian (2.5) for a fixed number of particles and interaction 
strength A. If 0 is increased beyond 6'tnax(A) or reduced below 7r/2, the energy remains in 
the same interval e(7r/2,0) < e(6',0) < e(0max(A), 0). However, the expectation value of 
the number of particles {Ni{t))c registers this change, as we discuss below. The variation 
of this angle 6 selects the probability amplitude of the components of the coherent states, 
namely the proportions of the states in the number state basis as a function of the energy. 
As the angle varies the components change and therefore the energy also. We show the 
behaviour of the components of the coherent state in the number basis as a function of 
the energy and the corresponding number state component in Fig. 2.7. As we increase 
the interaction and 0, states with population imbalance give the dominant contribution to 
the coherent state [compare the results for A = 0.2 (a,c) and A = 2.0 (b,d) in Fig. 2.7]. The 
dependency of 9 on the energy eigenstates can be deduced from Fig. 2.8, where we show 
the behaviour for the parameters of Fig. 2.7. For A = 2.0 as we change above (below) 
9 = 7r/2 the states that have the largest contribution to the coherent state are the ones that 
localise the well 2 (1) [see Fig. 2.7 (b,d)]. 

Figs. 2.9 and 2.11 show the time evolution of the expectation values {N\{t))c and 
(C{t))c for two arbitrary initial coherent states, see the figure caption, and for three typical 
values of A. Fig. 2.10 show the comparison of {Ni{t))c with the corresponding mean-
field calculations. The latter are obtained by setting the energy of the mean-field solution 
equal to the expectation value of the energy in the coherent state, namely, e = e{9,0) for 
the given value of A. 

For the case A = 0.1, first panels of Figs. 2.9 and 2.10, the system shows coherent 
oscillations initially, then it falls into a stationary value with {Ni{t))c = N/2 within nu-
merical accuracy, followed by revivals at almost periodic intervals. The stationary value 
agrees with the mean-field time average, as shown in Fig. 2.10. For A = 1.0, second pan-
els of Figs. 2.9 and 2.10, the system is already in the self trapped regime for the chosen 
initial condition. The mean-field counterpart does show coherent oscillations and their 
time average 0.855), for this value of A, agrees with the stationary value of the state 
evolved in time in the eigenstate basis (« 0.845). 

At A = 10.0, third panels of Figs. 2.9 and 2.10, the system is well into the self-trapped 
regime and there again appear regions of coherent oscillations followed by stationary in-
tervals in the full quantum evolution, while the mean-field calculation oscillates around 
an average value close but different from the stationary value of the evolution in the 
eigenstate basis. The discrepancy in the averages comes from the effect of quantum fluc-
tuations, which are minimized in the coherent state basis. 

We observe that the behaviour of the two-body correlation {C{t))c in Fig. 2.11 follows 
essentially the same pattern of stationary collapsed regions followed by revivals, as the 
population (TVi {t))^ in Fig. 2.9. 

Because the system reaches statistically stationary states, we can describe their prop-
erties by the given values of the mean of (A^i(i))c and ( d( i))c , namely, by their statisti-
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Figure 2.7: Density plot of the probabilities of the components of the coherent 
states as a function of 0 and the number of particles ni in well 1, on the right axis is the 
corresponding energy eigenstate The parameters are: N = 20, (a,c) A = 0.2, (b,d) 
A = 2.0. 

cally average values denoted as N^ and C .̂ This family is built in the following man-
ner. For given values of N and A, and taking </> = 0, we find the values of 6 such 
that the expectation values of the energy in the coherent states span the whole inter-
val eo(A) < 0) < eyv(A). Then, we evaluate the time evolution of the corresponding 
coherent state \0,0, t) and calculate Nf and Clearly, the value of 0 for a given energy is 
not unique. We see below that, depending on the value of 9, the coherent state can break 
the symmetry. If it does, it localises either near the well 1 or the well 2, once the condition 
for self-trapping is satisfied, i.e. for A > Ag. 

Figs. 2.12 and 2.13 show the stationary values Â f and C for N = 10'̂  and for A = 
0.1, 1.0 and 10.0 as a function of the expectation value of the energy of the state. In the 
same graph we have included the expectation values calculated in the basis of energy 
eigenstates (c.f. Figs. 2.3 and 2.4). In general, we see that the stationary values from 
the coherent states Nf and C® agree fairly well with the corresponding eigenstate values. 
Hence, we can conclude that the statistically stationary states, follow the same behaviour 
as the eigenenergy states. Their macroscopic behaviour is described by the phase dia-
gram shown in Fig. 2.5. That is, there exists a critical value Ac, for a self-trapping transi-
tion as a function of the energy (or as a function of the initial state). Additionally, these 
states may be well characterised by both one- and two-body properties, that is, while the 
one-body properties remain constant below the self-trapping transition, two-body vari-
ables discriminate among different states. Both quantities clearly signal the transition 
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Figure 2.8: The variation of the the angle 6 of the coherent state as a function of the energy 
eigenstates. The parameters are: A = 0.2 (blue). 2.0 (purple) and N = 20. 
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Figure 2.9: Time evolution of the expectation value of the number of particles in well 1, 
{Ni)c, calculated in the coherent states basis. Parameters are: (j) = Q, N = 10'̂  and, (a) 
0 = ^ + 0.1, A = 0.1; (b)0 = 7r + O . l ,A= 1.0; (c) 0 = tt - 1.0, A = 10.0. 

point. As an additional aspect, note in Figs. 2.12 and 2.13 that the transition appears 
continuous for the statistically stationary states. 

The transition from the delocalised to the self-trapped states displays a symmetry-
breaking phenomenon. That is, the Hamiltonian is symmetric with respect to the ex-
change of the wells, or internal states, 1 and 2. However, the stationary states can be 
prepared to become localised is one of the wells depending on the angle of the coherent 
states e. To be precise, one can show that for A > Ac, if = 0 and 9 yields a state localised 
in well 1, then 9 = n - 9 and (p = i), localises in well 2. This is illustrated in Fig. 2.12: 
for A = 1.0 (red) solid line signals localisation in well 1 and for A = 10.0 (red) solid line 
localises in well 2. 

2.5 Intrinsic decoherence 
Decoherence in quantum mechanics is a process usually associated to the behaviour of a 
state of a system, when it interacts with its environment. If the interaction of the system 
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Figure 2.10: Comparison of the dynamics of the number of particles in well 1, Ni (t)/N in 
the basis of coherent states (blue solid line) and the eigenstate basis (red dotted line) for 
a fixed energy e. The parameters of the coherent states are (/> = 0, (a) 0 = tt + 0.1, A = 0.1; 
(b) 0 = TT + 0.1, A = 1.0; (c) 6* = TT - 1.0, A = 10.0; N = lO^. The corresponding energies 
are e = 0 .15 ,1 .04 and 6.03, respectively. 
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Figure 2.11: Time evolution of the expectation value of the tunnelling correlation, {C)c, 
calculated in the basis of coherent states cf) = 0, N = 10^, and (a) 0 = tt + 0.1, A = 0.1; (b) 
e = TT + 0.1, A = 1.0; 0 = TT - 1.0, A = 10.0. 

with its surroundings is weak, such a process is reflected by the vanishing of off-diagonal 
e lements of the system density matrix. To describe this behaviour, one may write down 
master or kinetic equations for the system density matrix evolution only, in which the 
role of the environment is appropriately taken into account to produce the observed re-
laxation to a stationary state and decoherence. The environment is usually modelled as a 
collection of bosonic modes representing the thermal fluctuations with the environment. 
However , if one considers the coupled system-environment as a large composite closed 
system, the evolution of this composite system remains, strictly speaking, coherent in 
the full system plus environment Hilbert space. Thus, if attention is focused on the be-
haviour of the small system only, by means of the evolution of its reduced density matrix, 
decoherence is also observed in the sense that arbitrary initial states tend to relax, or de-
cohere, to stationary " incoherent" states. Revivals to states close to the initial states do 
occur but become more improbable to observe as the environment becomes larger. Con-
sideration of these facts, underpins derivations of master or kinetic equations for systems 
interacting with a thermal bath or environment [91-100] . 



Interacting bosons in a double-well potential 

A = 0.l A= 1.0 A = 10.0 

: (a) (b) ^ ( c ) ^ ^ ^ ^ ^ ^ 

-

Ni 0.1 
~N 

0 . 2 -

N 
e 
N 

E 
N 

Figure 2.12: Statistically stationary value of the number of particles in well 1, Nf , in the 
family of coherent states j^, 0; t), as a function of their expectation value of the energy 
e{9,0), for N = 1000, (red) solid line. For comparison, in (blue) dots line the correspond-
ing expectation values in the energy eigenstates {Ni )„ (same as in Fig. 2.3). In the second 
panel, we show the statistically stationary states localised in well 1, while in the third 
panel, the statistically stationary states localised in well 2. See text. 

A = 0.1 A = 1.0 A = lO.O 

Figure 2.13: Statistically stationary value of the tunnelling correlation, in the family 
of coherent states \6.0; t), as a function of their expectation value of the energy £{9,0), for 
N = 1000, (red solid line). For comparison, the corresponding expectation values in the 
energy eigenstates {C)„ are shown (blue dotted line) same as in Fig. 2.4. 

On the other hand, according to the basic assumptions of statistical physics, a closed 
system with a large number N of degrees of freedom relaxes to equilibrium stationary 
states [101], manifested through the behaviour of few-body properties, such as temper-
ature, pressure and energy [44, 101]. This is also a form a decoherence, that we will call 
"intrinsic". Since the mentioned properties are averages or expectation values of few-
body operators, their corresponding values may be obtained by following the evolution 
of the appropriate reduced density matrices only Formally, this relaxation to a stationary 
state is exhibited by the fact that the matrix elements of the reduced density matrices no 
longer evolve in time. As a consequence of this, one can always find a basis in which 
the off-diagonal matrix elements of such matrices vanish in the stationary state. We shall 
call this the preferred basis, in analogy to the notation used when dealing with systems 
interacting with its environment [41, 42, 102, 103]. In this basis, the signature of deco-
herence may be explicitly seen by tracking the evolution of the reduced density matrices 
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in the preferred basis for all times. It is important to mention, that because the number 
of particles is finite, the stationary state we are referring to is punctuated by recurrences 
to states close to the initial one. However, as we have shown in the previous section, as 
the number of particles is increased, the time spent in the stationary part of the evolution 
grows without bound with respect to the time spent in the revival intervals, such that in 
the thermodynamic limit the stationary state is robust. 

The fact that relaxation to stationary states in large closed systems is exhibited 
through the dynamics of few-body properties, is also appealed to in derivations of 
Boltzmann-like equations, where the relaxation of the one-particle distribution function 
leads to a stationary state due to particle collisions. 

Decoherence of a BEC in a double well potential and systems of this type in con-
tact with external environments have already been considered using both full quantum 
and mean-field approaches [104-112]. We should also mention that the phenomenon of 
decoherence in closed systems has been recently readdressed with applications to spin 
systems [113,114]. 

Since the system under consideration is closed, i.e. BEC in a double-well potential, 
decoherence cannot be traced from the information encoded in the A^^ particle density 
matrix. However, decoherence can be and is observed when one looks at the expectation 
values of few-body operators. In particular, we study the time evolution of the compo-
nents of one-body reduced density matrix, pR{t) = (defined in 2.8), to investigate the 
effect of the interactions on the inherent relaxation towards a stationary state. 

2.6 The preferred basis 

Given the fact that all the information associated with any single particle property is en-
coded in the matrix pR{t) = p̂ ^̂  which remains unchanged over time in the stationary 
regime, decoherence can be formally observed by finding an appropriate basis which 
leads to the vanishing of the off-diagonal elements of the one-body reduced density ma-
trix. In other words, in order to speak of decoherence in the usual sense, the reduced 
density matrix must be expressed in a proper basis in which the mixed state represent-
ing the stationary state becomes a completely incoherent state. Decoherence in the usual 
sense tells us that the system becomes classical, so that the addition of probability am-
plitudes approaches the limit of addition of probabilities. Namely in a quantum sys-
tem described by the wave function, ijj = xpi + ip2 the probability density is given by 
PQ = = Itpil"̂  -I- + ^iV'2 + V'̂ V'i- Iri a classical system we have that the state of 
the system would be given by the addition of probabilities, pc = IV'i P + The de-
coherence processes are the ones that change the system from quantum to classical such 
that P Q ^ PC- This is equivalent to monitoring the evolution of the off-diagonal elements 
of the one-body reduced density matrix , with respect to some arbitrary parameter and 
observing transition to a classical regime signalled by the vanishing values of the the off-
diagonal elements. Equivalently, one can find the basis that diagonalises is usually 
called the preferred basis. To illustrate these ideas we select N = lO'' particles and the 
initial condition j Â , 0). Discussion of decoherence in few-boson systems can be found in 
[115]. 

As mentioned before, we follow the exact dynamics of the iV-particle system and 
construct the corresponding Af-body density matrix = From 
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Figure 2.14: (a) Real part of the matrix element pn as a function of t. Parameters are: 
A = 0.2 (purple). 0.8 (blue), 1.6 (green) and N = 10'̂  particles, (b) Real part of the matrix 
element pj2 as function of A with N — 10^. 

this, one can calculate the one-body reduced density matrix elements: pag = 
Tr f 6q The single-body reduced density matrix can be generally written as, 

PR{t) = Pn{t) 
P22{t) (2.17) ( Pn{t) 

V Phit) 
In this basis the terms pn{t) and P22{t) give the particle population fraction for each of 
the wells, and Re[/c>i2(i)] gives the difference in population between the symmetric and 
antisymmetric modes per particle of the double well potential and Im[pi2(0] gives the 
momentum per particle of the BEC. However pviit) is not an appropriate measure of 
the decoherence in this basis, since the Re[pi2(i)] never becomes zero as shown in Fig. 
2.14 (a), thus apparently showing no decoherence. Nevertheless the system does reach a 
stationary state, as shown in the previous section, and therefore decoherence is present. 
Next, we establish this result by finding the preferred basis in which the off-diagonal 
values of the reduced density matrix vanish as time increases. 

Let be the reduced density matrix associated to the stationary state that is, pn{t) 
Pff in the limit T^ TQ\ 

PR = Pu 
\ Pvi 

Pu 
P22 (2.18) 

where we have already taken into account that, for the initial condition used throughout, 
Pi2 is real for all values of A. The behaviour of p f j is shown in Fig. 2.14 (b). We now define 
the preferred basis as that one in which is diagonal. Let U be the unitary operator that 
performs such a diagonalization, that is. 

P'o- f^Dl 0 
0 Pd2 / (2.19) 

By assuming that the matrix pfi{t) in (2.17) is written in the representation in which the 
Pauli matrix a^ is diagonal, the unitary operator U is found to be given by. 

U = e-'^^y^ (2.20) 
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Figure 2.15: 0 as a function of A. This angle defines the unitary transformation that di-
agonalizes the stationary reduced density matrix, see (2.21) Calculations were performed 
using yV = 10^. 

where sin(9 = -pf^//?, coaO = {pf^ - py/2R. and R^ = (pfj - p'22f/4 + {pl^f. An 
interesting result is that, in general, the angle 0 depends on A as discussed below. By 
performing such a unitary transformation on the reduced density matrix pR{t) for all its 
temporal evolution^, we obtain the reduced density matrix in the preferred basis. The 
reduced density matrix in such a basis is given by. 

(2.21) 

The matrix elements of are as follows: 

Pnit) = \ + \{pu{t)-p22{t))cose-Repu{t)sm9, 

P22W = \-\{pu{t)-p22{t))cosO + Repu{t)sm9, 

= \ipnif)-P22{t))sm0 + Repv2{t)coiie, 

lm/5^2(0 = irnpv2{t), 

and therefore, for t > tq. After we evaluate the values of 9 at the stationary 
state, we find their dependence on A as depicted in Fig. 2.15. One finds that the depen-
dence of 9 on A shows that below a critical value A^ 9 = -Kj'I, while for A > A^ 0 takes 
values ranging from 9 « 7r/2 to 0 « 0. The critical value is Ac ss 0.92 for the chosen initial 
state of the whole system; we recall that here we have used \'i'{t)) = jiV.O), namely, all 
particles initially in well 1. Thus, the angle 9 registers the transition from delocalised to 
self-trapped states; one may even considered it as a kind of "order parameter" for the 
transition. The variation of 9 indicates that the dependence of the preferred basis on A 
has two very different behaviours. For values of A below the transition, 0 is constant 
and defines a unique basis for all values of A. Its continuous variation as a function of A 

^The unitary transformation is static and the parameters for it are determined from the stationary state 
for different effective interaction strength values. 
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Figure 2.16: Time evolution of the matrix elements (a) and (b,c) ^ ~ 
0.2 (purple) , 0.8 (blue) and 1.6 (green), in its own preferred basis. Calculations were 
performed using N = 10'̂  

above the transition indicates also a continuos change of preferred bases. For values of A 
below the transition, namely 6 = 7r/2 one finds that the preferred basis is that in which 
the tunnelling term in Hamiltonian (2.5) is diagonal, (i.e. that of the Pauli matrix ax) • At 
the transition, a sharp change occurs until in the very strong interaction regime A > Ac, 
9 0, and the corresponding preferred basis is the basis that diagonalises the interaction 
term (i.e. that of the Pauli matrix a^). One thus finds that the particle interaction plays a 
fundamental role in the coherence properties of this simple system. 

We illustrate our results for three different values of A. In Fig. 2.16 we show the be-
haviour of the matrix elements p î2{t) and /ĵ j (t) for A = 0.2 , 0.8 and 1.6. From this figure 
one can see that the matrix elements that give us the information about the decoherence, 
Pi2{t), effectively tend to zero, while p^^it) and become constant, and equal to p^j 
and respectively. 

2.7 The Entropy 

An additional and illustrative characteristics both of the stationary state and of the tran-
sition to the self trapping regime can be performed with the calculation of the von Neu-
mann entropy defined as: S = -Tr{p In p), where p is a density matrix. This measure is 
important because is independent of the basis. The N particle density matrix is that 
of a pure state and therefore S = 0. In contrast, the entropy of the reduced density ma-
trix changes with time and interaction strength since the single-particle state is always 
mixed, Tr[(p(i))2] ^ 1. In Fig. 2.17 we show the von Neumann entropy of the single-
particle reduced density matrix in the stationary state. One finds that for A < Â  (as long 
as A ^ 0), the entropy takes its largest values {Smax = lti2 « 0.69), since the stationary 
states are delocalised, because \p\2\ = [(S^Sa)! ^ 1/2, see Fig. 2.14. Then, it displays an 
abrupt decay in the transition to self-trapped states. In the limit of large interactions, 
A > Af, it tends to 5 « 0, i.e. a pure state completely localised in one of the wells. It is 
also important to emphasise that, the knowledge of the entropy S{h) and the angle ^(A) 
for a particular initial state conveys complementary information on the reduced density 
matrix. This is clearly seen for values of A < Â ., for which the preferred basis is the same, 
namely 0 = it/2, while the entropy is different for different values of A, as seen in Fig. 
2.17. While 0 = 7r/2 implies that in the stationary state the population in each well is the 
same, i.e. pfj = p?22 = 0.5, it gives no information on the value of pfg' which varies with 
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Figure 2.17: Von Neumann Entropy of a stationary state as a function of A. Calculations 
were performed using A'" = 10"^ 

A. One the other hand, the entropy does depend on the stationary values of all the matrix 
elements, thus providing a measure of the coherence term, PI2 . 

2.8 BEC in a cavity 

Recently the possibility to have a BEC inside a high finesse cavity has been realised and 
exciting physics have been explored [85]. Some of the physics of this system can be in-
vestigated using a simple model considering two harmonically confined bosonic species 
in different spin or angular momentum states, that are coupled to a light field . Inside the 
cavity the BEC is loaded and we consider that the atom decay rate and the cavity field 
decay rate are small compared with the atom-photon coupling. Under these assumptions 
effects due to quantum dissipation are negligible, and a single-mode photon can be con-
sidered. Considering two modes for the BEC, one for each species, the Hamiltonian of 
the system can be constructed as follows [116], 

n = Loa^a + eib\b^ + + Y^^'V^lKh + 

+ gia^ + a )ib\b., + S.^Sj, (2.22) 

where b (b^) annihilates (creates) an atom, a {a'') annihilates (creates) a photon, and the 
subindex of b refers to different species of bosonic atoms, the operator of the number of 
atoms is yV = b\b̂  + The photon field in a single mode is represented by a , the 
atom-photon coupling is g, and the energy of a photon is w. For the atoms, the inter-
atomic (intra-atomic) interaction is U12 {U\ and U2) and the energy of the lowest state due 
to the kinetic energy and the harmonic confinement for different species (or modes) is 
£1,2. In this system particle exchange due to photon absorption or emission is controlled 
by the coupling parameter g. The parameter g = \/\fN, where A is the dipole coupling 
strength. Typically A can be of the same order of magnitude other energy scales in the 
system, recently large coupling amplitudes have been achieved [117] due to nonlinear 
effects in a BEC. 
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Figure 2.18: (a) The ground state energy as a function of a = Na/N. Parameters are: 
iV = 10, r = 10, A = 1 (green). 10 (blue). 100 (purple), (b) The energy width w^ of the 
quantised population Nx/N (2.25) as a function of the number of photons Na. Parameters 
are: N = 10, A = 100, F = 0.1, m/N = 0 (green), ±1/10 (blue) and \m/N\ > 1 /5 (purple). 

This Hamiltonian, can be mapped into as a two-site problem, similar to that consid-
ered in the previous sections. This is because having an extra species and a single mode 
for each species has a very similar representation to the two-site problem, as we have em-
phasised with the notation. Still there are some differences because now the "tunnelling" 
between the two modes is controlled by the photon field, and there can be an indeter-
minate number of photons in the system. Thus, in principle the dimension of Hilbert 
space is infinity. Therefore solving the above Hamiltonian relies on limiting the number 
of photons Na = {d^a ), and therefore truncating the Hilbert space. We do this by noting 
that after a certain number of photons (depending on the number of atoms N = (N)), 
the change in the ground state energy asymptotically tends to go zero [see Fig. 2.18 (a)]. 
In practice one can achieve this limit of negligible change in the ground state energy for 
Na ~ aN, where a ~ 3 - 5. Using the Schwinger boson representation [90] one can write 
an effective Hamitonian from (2.22), as follows: 

Heff = Lua^d • ujoN + AJ , + A j 2 + ^ ( ^ t + ^ (2.23) 

where. 

•h = 

J. = 

The parameters are defined as: ojq = (e, -h e2)/2, A = ei - e2, A = {Ui + U2)N/2 - U^N, 
and F = 2gN. The above Hamiltonian is the Dicke model with a non-linear term (J^) 
[116]. If we would consider a system on-resonance w = A, we could employ the rotating 
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Figure 2.19: (a) Density plots of tiie order parameter (b) The tunnelling correlation C 

and (c) the fluctuations in the population of mode "1", ai (right) in the ground state for 
N = 10, Na = 30. 

wave approximation to (2.23), in this case we have 

Weff = cua^d + uJoN + AJ^ + ^J^ + ^{a^J- + ), (2.24) 

where J± = Jx^iJy 

The ground state phase diagram can be constructed by diagonalising the Hamiltonian 
(2.23) in the truncated Hilbert space for a fixed number of atoms. In this system the size 
of a vector in the truncated Hilbert space grows like {Na + l ) ( iV + 1) ~ aN"^. The ground 
state phase diagram in terms of the order parameter vt = 1 + 2{J^)/N is shown in Fig. 
2.19 (a). Here we have considered units relative to A = 1, and uj = ujo = I. This choice 
of parameters correspond to the experimentally relevant situation from [117], where the 
system under study is in the strong atom-coupling regime at zero detuning, A = lu. As 

the order parameter goes to zero, the system has populated one of its modes maximally, 
equivalently the system is "localised". In the case = 1 the two species are equally 
populated, and the system is "delocalised". Still, for this system there is no coherence 
between the two species such that (Jx) = 0 always. The fluctuations of J^ are small but 
non-zero, so that the tunnelling correlation, C = 4 ( j2 ) , is a measure of the conversion 
between the two species [see Fig. 2.19 (b)]. Also, one can see that the fluctuations in 
the particle number in one of the species drop to zero in the region where we have the 
localised state [Fig. 2.19 (c)]. Somehow surprising is the finding that for small T and 
large A the fluctuations are suppressed, in clear contrast with the large T regime. The 
effect of A in the phase diagram is to control the size of the localisation region. As A 
approaches zero, the system is always in the delocalised regime and = 1, while as we 
increase it, the region where vl* ~ 0 becomes larger. The shell structure seen in the order 
parameter and other quantities is characteristic of the Dicke model, when the non-linear 

^Since our scheme of solution relies on the exact ciiagonalisation of the Hamiltonian by numerical means 
it bears no advantage to use the rotating-wave approximation, which is only valid for small atom-photon 
coupling. Instead we focus on the resonant case and we consider arbitrary atom-photon coupling. 
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Figure 2.20: The number of atoms in mode "1" as a function of the energy eigenstates 
for different interaction parameters. The columns show the variation in the atom-photon 
coupling (r = 0.1,1,10.100 from left to right), while the atom-atom interaction varies in 
the rows (same colours: A = O.l(green), l(blue), lO(purple), lOO(red)). 

term is absent, and is due to the photons in the system®. Above the first shell the system 
is "super-radiant" [57], the process of emission and absorption of photons by the atoms 
becomes coherent. Therefore the localised to delocalised transition is equivalent to the 
transition to the super-radiant state when A = 0. As we increase A the system is in a 
crossover where quantum fluctuations are suppressed below the critical value of F for 
the super-radiant transition at A = 0. 

The characteristic dependences of one-body and two-body correlations on the en-
ergy eigenstates differ from those of the simple Bose-Hubbard double-well. For this sys-
tem, there are relaxation processes with very small relaxation times but the fluctuations 
around the mean value of the correlations can be very large. Therefore we can't talk 
about statistically stationary states, because the photons induce excitations preventing 
the relaxation to a stationary state. Still, because {blb^} = 0, the reduced one-body den-
sity matrix is in a preferred basis, but without a stationary state. Thus, the few-body 
properties of the system are strongly influenced by quantum fluctuations and the photon 
field We consider the behaviour with respect to the basis of eigenstates motivated by 

By shells we mean the different plateaus in the density plots of Fig. 2.19. In (a) these occur for F = 0 at 
A « 1.2, 1.4, 2.0, 3.:5, . . . , with = 0.2,0.4,0.6, 0 . 8 , . . . . 

' i n the Hamiltonian (2.22) we have not included losses, if we would include losses phenomenologically 
in the photon field, then relaxation to a stationary state should occur. Alternatively, one could introduce 
losses in the system using Heisenberg-Langevin equations i.e. [118]. 
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the possibility of preparing the system for combinations of population of the two species, 
polarised states and their behaviour. Other applications of the current analysis are the 
evolution of a state of the system for T > 0, where one needs the analysis of the full 
spectrum of the Hamiltonian (2.23), and the finite temperature analysis of the behaviour 
of the super-radiant transition and the effect of the many-body interaction of the atoms. 

One can see that the particle number in one of the species has a remarkably different 
behaviour from the single species double-well model, in the sense that the photons have 
induced the appearance of a series of quasi-degenerate in number stationary eigenstates. 
In the limit where we have an infinite number of photons one would get that the energy 
difference between the values of the population of the lowest mode in the BEC Ni in Fig. 
2.20 will approach zero. As a consequence, one would have a number of curves of the 
order of the number of atoms in the system. As seen from the ground state phase diagram 
the ground state energy ranges from being localised for A < 1 and moderate F < 1, to be 
delocalised for A > 1 and F > 10. In general as one increases A the population Ni can 
only take certain quasi degenerate values for a certain energy. The variation of Ni as we 
increase A for small atom-photon interaction changes from favouring unbalanced states 
to favour highly degenerate balanced configurations as a function of the energy. Above 
a critical energy this process reverses, see first two plots in the first column of Fig. 2.20, 
and unbalanced configurations are favoured. For A > 10 the behaviour as a function 
of the energy changes, now balanced configurations occur for low energy and for high 
energy unbalanced multiply degenerate configurations are present [see first plot third 
row of Fig. 2.20]. For A > F we have the appearance of a double ladder of unbalanced 
population configurations. This is because the energy levels of the Hamiltonian when 
the atom-photon coupling is negligible, are quantised as follows. 

Em = A + ^m)m, m = -N/2, -N/2 + 1...., N/2 - I, N/2 

Since the atoms de-couple and = m|4'), the spin operator in the z component, is 
approximately a good quantum number. Therefore the possible populations of the atoms 
in mode "1" are simply, 

^ = 1 + ™ . (2.25) 
N 2 N ^ ' 

so the quantised structure happens at the above energies and the width of the "steps" 
depends on the number of photons in the system. Without photons we would get a 
spectrum given just by the number of particles with very localised energy levels, like 
in the case of the simple double well, but the photons make the state to have a width 
proportional to Na [see Fig. 2.18 (b)] . Therefore these states have a shorter life-time, than 
the purely atomic system. The ladder structure is a consequence of the finite number of 
atoms and, as we increase the number of atoms, we increase the number of steps, so that 
in the large N limit the behaviour becomes smooth. 

As one increases F the photons destroy these configurations due to interaction and the 
population of the two species become equal for F > A, see the last column in Fig. 2.20. 
The interaction with the photons effectively suppress the emergence of these "quantised" 
population states. If both interaction parameters are of the same order of magnitude, still 
the behaviour of the atoms is dominant, and one needs larger atom-photon coupling to 
reach the completely balanced state in the whole energy spectrum. 
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Figure 2.21: The tunnelling correlation of the atoms as a function of the energy eigenstates 
for different interaction parameters. The columns show the variation in the atom-photon 
coupling ( r = 0.1.1,10.100 from left to right), while the atom-atom interaction varies in 
the rows (same colours: A = O.l(green), l(blue), lO(purple), lOO(red)). 

The behaviour of the fluctuations in the particle number a i = \J {Nf) - (iVi)2 and 
the tunnelling correlation C correlate with each other. The tunnelling has the same kind 
of behaviour as the occupancy of the higher energy modes in the sense that, as we in-
crease the atom interaction, we observe the emergence of discretised degenerate curves 
[see Figs. 2.21 and 2.22 last column]. The interaction with the photons induces exchange 
between species (tunnelling). As one would expect, the interaction between atoms sup-
press the fluctuations in the population of species "1", as long as the interaction with the 
photons is moderate [see Fig. 2.22]. As one increases the interaction of the atoms with 
the photons, fluctuations are enhanced, and can be of the same order as the population of 
the mode [see Figs.2.22 and 2.20 last column] . The limit where we have large amplitude 
of the photon field such that a ^ /3 ^ const, we have that the effective Hamiltonian is 
equivalent to the simple two-site problem, where the "tunnelling" amplitude between 
modes effectively depends on the photon amplitude, or alternatively we have a two site 
problem with the effective interaction scaled by a function of (3, i.e. [119]. The behaviour 
of the energy spectrum in the limit of large atom-photon coupling is remarkably different 
from the strongly interacting atom limit and one could think of two kinds of symmetries 
manifesting in these extreme limits, this requires further investigation. 
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show the variation in the atom-photon coupling (T = 0.1,1,10.100 from left to 
right), while the atom-atom interaction varies in the rows (same colours: A = 
O.l(green), l(blue), lO(purple), lOO(red)). 

2.9 Summary of results 

We have analysed one- and two-body properties of the full quantum solution of the two-
mode Bose-Hubbard fluid. We have discussed the transition from delocalised to self-
trapped states, which occurs as the energy of the system is increased, provided that the 
pair-interaction strength is above a critical or threshold value. The full quantum solution 
for a large number of atoms differs from the mean-field approximation, since the latter 
predicts coherent Josephson-like oscillations while the exact solution shows that those 
oscillations decay to stationary like states in which the system spends most of its time. 
Since, measuring or having access to the A^-body wave function appears as an imprac-
tical task in real systems, most of our understanding of macroscopic systems is based 
on knowledge of properties of few bodies. In this context, we argue that the decay, or 
relaxation, to a stationary state can be considered as decoherence, even if no interaction 
with an external environment is included. Such a decoherence is a consequence of the 
interatomic interactions. 

We concluded our work in this Chapter with the analysis of another system whose 
representation is similar to the double well configuration, which was the BEC in a cavity 
In this system we have two species coupled by a photon field under harmonic confine-
ment. Thus, effectively the system can be treated within a two mode model with some 
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modifications. In this section we analysed the quantum Hamiltonian of the system in 
a truncated Hilbert space. We found that the behaviour of the system, yet amenable to 
the use of the same methods as the others considered in this chapter, is very different. 
We found that the coupling to the photon field strongly affects the configurations of the 
system. The photon field tends to destroy the analogous self-trapped states. Due to the 
symmetries in the Hamiltonian, the strong atom-atom interaction leads to quantisation 
of the population configurations. The analysis of the two-body correlations gave us the 
finding that for very large atom-photon coupling the fluctuations are large and get quan-
tised, which deserves further investigation. 



Chapter 3 

Bose-Fermi mixtures 

The ability to load ultracold quantum degenerate gases into periodic or quasi-periodic 
potentials of different geometries, created by optical lattices [13], has opened the way 
to realisation of well known condensed matter systems with atoms of fermionic [120-
122] and bosonic character [123-128]. Such model systems allow us to gain deeper un-
derstanding of the fundamental problems in many body physics beyond the mean-field 
regime, such as transition between superfluid and Mott-insulator [51]. 

Self-trapping phenomena are among the most dramatic effects of atomic interactions 
[54] in the systems of quantum degenerate gases of restricted (e. g. one-dimensional) 
geometries . The so-called macroscopic quantum self-trapping (MQST) effect [58] manifests 
itself as localisation of most of the particles in the system in a particular region in space, 
as we have seen in the previous Chapter. The MQST and related effects in purely bosonic 
systems have been extensively analysed in different physical contexts, from the Joseph-
son effect in superconductors [129] and the study of superfluid He'' [130] to the alkali 
Bose-Einstein condensates [89]. 

In multi-site systems in the strongly interacting regime, new phenomena can emerge, 
such as quantum magnetism [20, 21] and the supersolid phase [22-25]. In general, these 
emergent phenomena belong to the class of quantum phase transitions and their mech-
anisms are strongly dependent both on the geometry of the lattice and the interaction 
between the atoms loaded into the lattice. The theoretical and experimental studies of 
these effects in large many-sites lattice systems are important both from the fundamental 
and applied points of view. For example, the physics of ultracold lattice systems where 
frustrations can occur is important for quantum computing [28, 31, 37,131]. 

In the first sections of this chapter we will describe the effect of degenerate fermions 
on the self-trapping behaviour of ultracold bosons in a quasi-one dimensional symmetric 
double-well potential [46], in the limit of a finite number of fermions [132], which could 
be of the same order of magnitude as the number of bosons. In the presence of a confining 
potential, the fermions form a Fermi sea around the bosonic cloud (see Fig. 3.1). In order 
to analyse the static properties of the system we develop a quasi-analytical treatment of 
the system, based on a mean-field density approximation for the fermionic component 
and a coupled-mode theory for the bosonic component. In addition, a self-consistent 
numerical approach [55] is employed to analyze the self-trapping regimes in detail. We 
consider both attractive and repulsive interactions between bosons and fermions, which 
can be modified by means of Feshbach resonances [46, 132-137]. In particular, we take 
physical parameters corresponding to the mixture of ultracold '^''K-^^Rb atoms. We de-
scribe the effect of a Fermi sea on the formation of MQST states in the interacting bosonic 
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Figure 3.1: Schematics of the atomic density distribution for fermions (solid Une) and 
bosonic condensate (dotted) in a macroscopic self-trapped stationary state formed in a 
one-dimensional double-well trapping potential (dashed), in the case of attractive inter-
species interaction. In the repulsive case the picture is similar, however the inter-species 
interaction leads to the suppression of the fermionic density in the areas where the con-
densate density peaks. 

component of the system and demonstrate, numerically, the difference in the dynamics 
of the systems with the attraction or repulsion between fermions and bosons. The two 
types of interaction between the atomic species can be achieved experimentally [133], 
which offers a unique opportunity to explore different MQST phases in the system. 

After we address the effect of fermions in MQST, we will consider a minimal finite 
two-dimensional lattice model, namely a three-site ring of a Bose-Fermi ultracold mix-
ture. Such a three-site system may be realised experimentally by engineering magnetic 
microtraps on an atomic chip, or by combining a harmonic potential with a triangular 
or Kagome lattice, as suggested in [138]. With the small number of atoms, this system 
lends itself to the Bose-Fermi-Hubbard model solvable by means of direct diagonaliza-
tion. We consider the ground state of the system and investigate how the admixture of 
fermions leads to various phases, depending on the filling factor and inter-species in-
teraction strength. In particular, we consider unusual insulating phases resulting from 
the inter-species interaction, which are connected to the existence of macroscopic self-
trapping states in the mean-field regime [3]. 

In continuation to our analysis of minimal two-dimensional lattice systems, we con-
sider a system with the essential ingredients of a topological insulator [29]. This model is 
a Bose-Fermi ultracold mixture in a double three-site ring configuration with four-sites. 
We employ direct diagonalization similar to the treatment we follow for the three-site 
ring, and we see the effect of an artificial position dependent vector potential applied. 
These artificial position dependent vector potentials have been recently realised in ex-
periment [26, 27]. 

The Chapter is organised as follows: Section 3.1 introduces the second quantised and 
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the effective one-dimensional mean-field model for the quantum degenerate Bose-Fermi 
mixture trapped in a one-dimensional double-well potential. Section 3.2 presents the 
derivation of the coupled mode theory for the BEC cloud coupled to the Fermi sea. Sec-
tion 3.3 presents the analysis of the self-trapping regimes based on the coupled-mode 
theory and numerical self-consistent approach for inter-species attraction and repulsion. 
Section 3.4 introduces the three site ring model of the Bose-Fermi mixture, and the con-
figurations of the ground gtate. Section 3.5 discusses the ground state phase diagram of 
the system depending on the filling factors of both statistics. Section 3.6 compares the 
states from a homogenous variational ansatz with the results from direct diagonalisa-
tion. Section 3.7 introduces our simplified model of a topological insulator, and analyses 
the effect of an artificial position dependent vector potential in the ground state phase 
diagram. Section 3.8 summarises our work. 

3.1 Bose-Fermi mixture in a double-well potential 

We consider a Bose-Fermi mixture trapped in a one-dimensional symmetric double well 
potential. This is the quasi-one dimensional limit of a strongly elongated trap in three 
dimensions {3D) with the transverse trapping frequency The Hamiltonian of the sys-
tem can be written in second quantised form in terms of single particle operators for each 
of the particle species and the inter-species interaction between bosons and fermions: 

n= f dxl Y1 + Y'^l'PlA^b + dbf^Ul^b'^f } , (3.1) 

where the bosons and fermions in the system are represented by their corresponding field 
operators: (creation) and (annihilation); ^ e {f,b}. The field operators 
obey the usual commutation (bosons) and anti-commutation (fermions) algebra. 

The longitudinal (x-component) single-particle part of the Hamiltonian (3.1) includes 
a one-dimensional double-well trapping potential: H^ = pl/{2m^) + - xof /2. 
where the trapping frequencies and the masses for each of the species are denoted by 
and mj, respectively. The distance between the minima of the double well is given by 
2x0. 

The interaction strengths gbh and g^j in (3.1) represent the scattering between bosons 
and boson-fermion, respectively. These coefficients are considered to be constant in the 
relevant region near their resonances and approximately proportional to their s-wave 
scattering length. The on-site fermion-fermion interaction is Pauli suppressed. We as-
sume that the ground-state energy of the transverse trapping potential hwî  is larger than 
both ground-state energy of the bosons and the Fermi energy of noninteracting fermions 
in 3D. Within this approximation the bosonic and fermionic fields in 3D can be factor-
ized in transverse and longitudinal components with the transverse field taken as the 
ground state of the trapping potential independent of the longitudinal behaviour and 
statistics. This leads to to the one-dimensional interaction coefficients gu, = and 
ghf = 2hw±ahf. Where the interaction strengths have been scaled from their the 3D values 
as in [55]. In the following sections we discuss both the inter-species repulsion and at-
traction, and show that the sign of the interaction leads to differences in the self-trapping 
regimes. 



Bose-Fermi mixtures 

Following the treatment given in [55], we derive the equations of motions from the 
Hamiltonian (3.1) by using the Green's function method, and perform a mean-field ap-
proximation. We define the condensate wavefunction tp̂  « (^b) ' each of the wave-
functions corresponding to the fermions, •i/'j « Thus, we arrive to a set of Â / -I- 1 

coupled mean-field equations: Nj equations corresponding to each of the fermions and 
one for the BEC wavefunction [55]: 

ihdtrf = {Hf + gbfPb)i^], ' (3.2) 

ihdti'^h = iHb + gbbPb + gbfPf)i^l (3.3) 

where, pj = J2nii IV'/Î / arid Pb = IV'bP- The number of bosons (fermions) in the system 
is given by: N^ = fj^dxp^, and the ratio rjb = Nj/Nb defines the concentration of 
fermions. By introducing the scaling units of time, 2/uJb, length, ^h/{rnbUJb), and energy, 
hujb, the model can be cast in the following dimensionless form: 

= + + (3.4) 

= -dl^Pl + Vb̂ Pl - aj^op^o + u.pf^Pl, (3.5) 

where the bosonic wavefunction and fermionic density are rescaled as Vfc ^ 
i;l[riWb/{2\gbb\)V''̂  and p j pfhu}}/{2\gbb\), respectively, uq = gbjrnj/{\gbh\rnb), ui = 
9hf^^fl{\gbb\^b) = gbf\/Kfmb/mf/\gbb\, a = -sgn{gbb). The double-well potential for 
bosons or fermions, V̂  = - x )̂"̂  jmb, is parametrized by the ratio of the trap-
ping strengths, = {m^J^^j(m^Jl) which determines the spatial scale of the effective 
trapping potentials experienced by the different species of atoms. 

3.2 The coupled mode theory 

Numerical solutions of the model equations (3.4) are tractable when the number of 
fermions is small [55]. However, the current state-of-the art experiments [132] suggest 
that the system should be considered in the regime of moderate to large number of 
atoms, both for bosonic and fermionic components. We therefore consider the density of 
fermions p j taking its stationary limit near the condensation temperature of the bosons. 
In this limit, the fermions can be described in the first approximation by a filled Fermi sea, 
where the Fermi points i/ty are invariant upon the interaction, and Luttinger's theorem 
holds for the fermionic component [139, 140]. If the Fermi energy is sufficiently higher 
than the chemical potential of the BEC cloud, then it can be assumed that the dynamics 
of the fermionic cloud occurs on a much larger time scale than that of the bosons and 
consider the dynamics of the bosonic component under the influence of the quasi-static 
distribution of fermionic density p/(x). 

Next, following the coupled-mode theory for Bose-Einstein condensates trapped in 
a double-well potential, developed in [56], we assume that the main contribution to 
the bosonic condensate wavefunction comes from the two lowest nonlinear modes of the 
double-well potential, corresponding to the symmetric ground state, '1>o(a;), and anti-



§3.2 The coupled mode theory 

symmetric first excited state, <J'i(a;): 

1 

= expi-i^ijt + a C j U j t ) / ^ , (3.6) 
j=o 

where Bj{t) is the time-dependent amplitude of the relevant state (j = 0,1), nj is its 
energy, rij = Jj^ d;c and Cj = Jĵ  dx 4>j/rij. The nonlinear modes <l>j obey the following 
stationary equations derived from (3.5): 

^ + - (|x| - xof<Pj + a4>] + u^Pf(x)<P, = 0, (3.7) 

The equation (3.7) is equivalent to a standard mean-field Gross-Pitaevskii equation (GPE) 
for a BEC with a position dependent potential term modified by the nonlinear interaction 
with the fermionic cloud. 

Substituting the ansatz (3.6) into (3.5) and using (3.7), we recover the system of two 
coupled equations for the mode amplitudes [56]: 

^ aColBof'Bo + aCoi (21^1 + So^S?®"'"^) , 

i ^ = aCilBif 'Bi + aCoi + ZJ^^oV"') , (3.8) 

where: Coi = /jj <J>o<&idx/(noni), and = 2(/ii - //q) + 2cr(Cini - Cono). This system 
of nonlinear coupled equations describes the dynamical population exchange between 
the lowest energy states of the condensate cloud in a double-well potential. In this sys-
tem of coupled equations the constants / / j , Cj, Cqi and Uj depend on the solution of 
(3.7) (see the Appendix) and therefore on the shape of the fermionic density distribution 
and the strength of the inter-species interaction. As shown in [56] for the case of a pure 
bosonic system, the dynamical system (3.8) admits phase-locked solutions correspond-
ing to macroscopically self trapped states, characterized by the arrest of tunnelling and 
formation of a stationary BEC density distribution which is nonzero in each well but 
strongly unbalanced. 

In order to analyse possible regimes of the self-trapping in the presence of the Fermi 
component, we will set the physical parameters of the system to those of a "̂ "K - '̂̂ Rb 
quantum degenerate mixture [46,132-135]. We study the system where the rescaled one-
dimensional s-wave inter-species interaction parameter is attractive, aj,/ « -234 aao for 
•ioK -̂ •̂ Rb and for the repulsive case, we consider a^j « -1-234 aao, where ao is the Bohr 
radius and a is a strength parameter. The boson-boson scattering parameter is abb ~ 
98.98 ao [132]. The double well angular frequency for '̂̂ Rb is k, 2-k x 263 Hz (see 
[46]) and oJj = uih^/mb/irrifKf). In a realistic experimental situation k / ~ 1 [141]. In 
the following section, we examine the difference in the self-trapping scenario for bosons 
caused by the different types of inter-species interactions. 
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Figure 3.2: Parametric plots of the typical solutions to the system of equations given by 
(3.9), f o r x o = l.l(left),1.5(middle),2.5(right)forr/6 = 0. (Reproduced after Ref. [56]). 

3.3 Self-trapping regimes 

Our aim is to establish the parameter space where MQST occurs in the mixed-species 
system. To this end, we use the ansatz, Bj{t) = \/nj{t) exp[-\(j)j{t)], which allows us to 
rewrite the system (3.8) in terms of the the difference in relative populations of the modes 
A = rii - no and the relative phase shift, (p = 2{(j)o - ipx) - [56]: 

= (tCoi (n^ — A'̂ ) sin 
dA 

dt 

^ = -(5 + ct(Co + Cj ) a - 2(jCoi (2 + cos (/?)A, (3.9) 

where 6 = 2(^i - /xq) + o-[(n - 2no)Co - (n - 2ni)C,] , and n = tiq + n\ = const. The 
self-trapped states correspond to the regime where the relative phase shift is fixed to an 
integer of 27r, ip = 2Trm. The difference in the population for the MQST states is given by 
the self-trapping parameter: 

Aoi 2(/ î - /io) 
a{Co + Ci-6Coi)' 

- 1 < 
A 01 < 1. (3.10) 

The limiting cases correspond to the situation when only the symmetric or antisymmetric 
mode is populated, resulting in the equal number of atoms in each well. The ultimate self-
trapped state, when all the atoms are localised in one well, corresponds to Aqi = 0. The 
value of the self-trapping parameter Aoi is strongly influenced by the mode coupling 
strengths Cy and the effective energies ^ij of the nonlinear modes. In our model these 
can be determined semi-analytically by means of a variational approach. This approach 
employs an ansatz for the macroscopic wavefunction of the condensate, <I>, in the form 
of a linear combination of the symmetric <t>o, and anti-symmetric <I>i eigenstates of the 
double-well potential: <&(a:) =:: <I)o(a;) -I- <l>i(x), where: 

0.1 ± 6 (3.11) 
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Figure 3.3: Left panel: The difference in energies, — //o, as a function of the double well 
separation XQ, for attractive inter-species interaction. Inset: variation of the widths of the 
condensate wavefunctions, aQ.i,vs. xq. Parameters are: a = 25, Tfh = 0 (green), 2.5 (blue), 
7.5 (purple). Right panel: The macroscopic quantum self-trapping parameter Aoi/n as a 
function of the well separation, XQ, for attractive inter-species interaction. Parameters are: 
a = 25, Vfb = 0 (green), 2.5 (blue), 7.5 (purple). The roman numerals stand for regions 
with different symmetry properties of the BEC wavefunction (see text). 

and the amplitudes, Aj, and widths, aj, are the variational parameters to be determined 
for each iij. The details of the variational calculations of the chemical potential and self-
trapping parameters are presented in the Appendix. Parametric plots of the typical so-
lutions to the system of equations given by (3.9), at different separations using the varia-
tional ansatz to calculate the corresponding mode couplings C and the effective energies 
ji, are shown in Fig. 3.2. The solutions clearly have a running phase for small separations 
and as we increase the separation, solutions with self-trapped phases appear at c/j = 27rm 
(where m an integer). The variational approach allows us to identify clearly the origin 
of the different behaviour in the self-trapping depending on the type of the inter-species 
interaction. We stress here that that width and peak density of the bosonic cloud in the 
ansatz are strongly dependent upon the form of the fermionic density, p/(x) due to extra 
term in the GPE, (3.7). 

For each value of the well separation, XQ, the density PF{x) can be determined by em-
ploying a self-consistent numerical relaxation routine. Namely, we solve the eigenvalue 
problem for each fermion, initially without the coupling to the bosons. In the next steps, 
we adiabatically turn on the interaction with the bosonic cloud and calculate, iteratively, 
corrections to the fermionic density due to the interaction with bosons. The spatial shape 
of the bosonic fraction is obtained from our variational computation in the absence of 
coupling. The resulting fermionic density profile takes into account the feedback of the 
bosons on the fermions, as well as the nonlinear interaction between bosons. This ap-
proach enables for a semi-analytical treatment of the model equation (3.5) governing the 
behaviour of bosons in the presence of moderate to large {Nj ~ lO^ - number of 
fermions. Alternatively, the whole procedure can be performed numerically, with the 
variational solution for the BEC wavefunction replaced with that determined from the 
stationary mean-field model by means of a standard relaxation method [142], In all our 
calculations we tested that our variational solution for the BEC component is in good 
agreement with the numerical solution of the stationary equation (3.7). 



Bose-Fermi mixtures 

3.3.1 Inter-species attraction 
We start our discussion by analysing the difference in energies, /ii - /IQ, as a function of 
the double well separation XQ (see Fig. 3.3), in the case of a^/ < 0, i.e. attraction between 
the fermions and the BEC. In this case the growth in the concentration of fermions, rjh, 
leads to the increase of energy splitting between anti-synnmetric and symmetric states, 
as compared to the pure BEC. More importantly, the attractive inter-species interaction 
leads to stronger localisation of the condensate wavefunction in each well (see the inset 
in Fig. 3.3), which in turn results in the suppression of tunnelling and the onset of the 
MQST at smaller well separations, compared to the pure BEC case. 

The behaviour of the population imbalance, Aoi(xo), is shown in Fig. 3.3. In the 
region marked 0 there is no self-trapping effect. In contrast, for region I, self-trapping 
occurs at smaller separation than in the pure bosonic system. As we increase the sep-
aration, the system moves deeper into the self-trapped regime, where the macroscopic 
wavefunction is completely localised in one of the two wells, and both the symmetric 
and antisymmetric modes are equally populated (see region II) . 

Figure 3.4: Evolution of the bosonic density for attractive inter-species interaction 
at the separation XQ = 2.625 with concentrations r = ().0(a), 2.()(b), and a 50. 

In order to test the prediction regarding the onset of the MQST, we perform numer-
ical simulations of the propagation of the stationary solution obtained numerically for 
moderate number of particles 10^) of each species. We can see that the effect of the 
fermions on the bosons is consistent with the results of our variational solution, seen in 
Fig. 3.4. In the case of the pure BEC for the separation considered in Fig. 3.4, self-trapping 
at such small well separations can not be achieved yet, thus an unbalanced state exhibits 
oscillations between left and right wells. The inclusion of the fermions in the system 
changes the behaviour of the BEC at the same value of well separation, making the cloud 
narrower while driving the BEC component into the self-trapping regime. The numerical 
simulations were done using a relaxation routine to generate the initial unbalanced solu-
tions of the pure BEC from the Gross-Pitaevskii equation (3.7) with U] = 0. We turned 
on the interaction with the fermions and used the static density profiles from solving the 
eigenvalue problem of the stationary Schrodinger equations derived from (3.4) with the 
potential given at a certain separation XQ for each fermion in the system. Finally, we let 
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Figure 3.5: Left panel: The difference in energies, /ii - //q, as a function of the double well 
separation XQ for repulsive inter-species interaction. Inset: the variation of the widths, 
ao.i vs. xq . Parameters are: a = 25 rff, = 0 (green), 2.5 (blue), 7.5 (purple). Right 
panel: The macroscopic quantum self-trapping parameter Aoi/n as a function of the well 
separation, xq, for repulsive inter-species interaction. Parameters are: a = 25, r/b = 0 
(green), 2.5 (blue), 7.5 (purple). The roman numerals stand for regions with different 
symmetry properties of the BEC wavefunctions (see text). 

the system evolve in time solving (3.5) by using a Runge-Kutta method in the Fourier 
domain and we transform back to real space at each time step. 

3.3.2 Inter-species repulsion 

The energy splitting between the ground and the first excited state of a BEC in the double-
well potential in the case of repulsive inter-species interaction, afb > 0, has the opposite 
behaviour compared to the attractive case. In the limit of small separations, the energy 
difference of the mixture is smaller than that of the pure BEC [Fig. 3.5]. 

The dependence Aoi(a:o) is shown in Fig. 3.5. The MQST states exist in all regions 
except from the region 0. The onset of the MQST effect in a mixture occurs at greater 
well separations compared to that of a pure BEC system (see region I). This is due to 
the fact that the presence of repulsive fermions leads to the effective broadening of the 
BEC wavefunction [see inset in Fig. 3.5], which extends the regime of enhancement of 
inter-well tunnelling to larger well separations. Therefore localisation of an unbalanced 
state is achieved only for larger values of well separation compared to the pure bosonic 
case. Our numerical simulations of the dynamics of the mixed cloud confirm that, in the 
case of inter-species repulsion for a moderate number of particles {Nj ~ lO'-̂ ), the self-
trapping regime is suppressed, as compared to the purely bosonic case, and the bosonic 
cloud suffers from broadening, see Fig. 3.6. 

3.3.3 Signatures of self-trapping 

The nontrivial nature of the self-trapping in the case of the mixture of the BEC and the 
degenerate Fermi cloud can potentially be explored in an experiment with a double-well 
potential, similar to that presented in [46]. In an experiment, however, one would mea-
sure the difference in atom numbers between the BECs occupying two different wells 
of the potential, AN, rather than the populations of two nonlinear modes <I>oj. Possi-
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Figure 3.6: The order parameter for repulsive interaction at the separation XQ = 
3.625 with concentrations rfb = 0.0(a), 2.0(b) and a = 20. 

ble results of such a measurement are shown in Fig. 3.7, as predicted by (a) variational 
results, and (b) numerical simulations. It can be seen that, in contrast to the case of a 
pure BEC (green line), the mixture with the attractive inter-species interaction facilitate 
the self-trapped state for smaller separations (blue line) and the repulsive interspecies 
interaction shifts the onset of self-trapping to larger separation values (purple line). The 
population imbalance, AN/Nxot, where NTOI is the total number of BEC atoms, is a func-
tion of well separation [see Fig. 3.7 (a)] given by: 

AN 
Iv^ ot 

- A2 \ 
A^i / 

erf(?y) ^ ^ 
(1 -exp( -2y2) ) i /2 ' ^ a, (3.12) 

Figure 3.7: (a) Variational result of the relative population imbalance between the two 
potential wells in a self trapped state for attractive fermions (blue), repulsive fermions 
(purple) and pure bosons (green), the system with fermions has a concentration rjb = 7.5 
as a function of well separation, (b) Time averaged population imbalance between two 
potential wells, where an initially unbalanced state has been evolved over time. Parame-
ters are the same as in (a). 
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Finally, we note that the effect of the fermions on the MQST is detectable for as long 
as the amount of fermions is not very large, so that the spatial structure of the fermionic 
density is still affected by the double-well nature of the potential. For a very large Fermi 
sea the fermionic density is nearly homogeneous across the spatial extent of the trap, 
which results in the homogeneous shift of the energy levels for the bosonic component. 
The effect of the fermions for fixed number of bosons on the MQST parameter at a fixed 
separation disappears as the concentration of fermions grows, and the value of the self-
trapping parameter, Aoi/n, asymptotically approaches that corresponding to the pure 
BEC system for that separation. As an example, for the repulsive mixed system at the 
separation xq — 2 and a = 5 the MQST parameter differs from that of a pure BEC by 10% 
of its value when the number of fermions exceeds the number of bosons by the factor of 

3.4 The three-site ring model and the ground state configuration 

We consider a mixture of ultracold bosons and fermions in a ring configuration of three 
sites. This system can be realized experimentally on an atomic chip or using optical lat-
tices [138]. In the limit of small number of atoms this system can be described by the Bose-
Fermi-Hubbard model and the ground state of the Hamiltonian can be obtained by direct 
diagonalization. In our model the atoms of different species are able to "hop" between 
nearest neighbour sites emulating the kinetic energy that they have and the bosons inter-
act on-site while we consider spin-polarized fermions with on-site interactions excluded 
by the Pauli principle. The different species in the mixture interact, i.e. via Feshbach 
resonance, and have an effective attractive or repulsive many-body interaction. 

We will obtain the ground state configuration of the model and construct its ground 
state phase diagram for different interaction parameters. We will see the effect of in-
teractions in emergence of localised phases which are different from the regular "Mott-
Insulator" phases of the pure Bose system [45]. We will show the effect of interactions on 
the superfluid order parameter, and the relation of these new phases with the enhance-
ment of quantum fluctuations in certain parameter regimes. 

Based on the standard Bose-Fermi Hubbard model (see, e.g. [143]), the Hamiltonian 
for the three-site ring can be written as follows: 

n = nb + n f + nbb + nbf. (3.i3) 

where. 

= E [ ^ J L + i U i ) , (3-14) 
<l,m> 

= (3.15) 
i=\ 

3 

^bf = UbfY^h^hl (3.16) 
i=\ 

Here {h ) are the creation (annihilation) operators for the bosons and P ( / ) the creation 
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(annihilation) operators for the fermions; the number operators are: n^ = ^^^ , ^ e {b, /}. 
The nearest neighbour tunnelling coefficient is T^, the intra- and inter-species interaction 
strengths are Uhi, > 0 and U^f, respectively. 

In general, one can write a state vector of the system as follows: j'l') = I*!")/ (8 j't');, = 
|n{, Uj. M3)/ ® I'̂ i J ''4' where, n { -F n j n^ = Nj, and n\ + 122 + = ^h-

In the case of inter-species repulsion Nf = 1 and Nf, = 3, the states corresponding to 
the lowest energy levels are the ones with the following on-site particle distributions: 

|1)+ ^ | 1 , 0 , 0 ) / ^ 10,3,0)6, 

|2)+ t l , 0 , 0 ) /®|0 , l , 2 )b , 

|3)+ j 0 , 0 , l ) / ® | 0 . 2 , l ) b . 

|4)+ |1 .0 ,0) /^|1,1 ,1)6 , 

where j l )+ , |2)+ and |3)+ have six-fold degeneracy, while |4)+ is a triplet. These states 
are schematically shown in Fig. 3.8 and the corresponding energies are plotted in Fig. 3.9 
(left). 

For attraction with N j = 1 and TVf, = 3 (see Fig. 3.8 and Fig. 3.9 (right)), the lowest-
lying energy states are as follows: 

|i)_ |o.0,1)/® 10,0,3)5, 

|2)_ ^ |1,0,0)/® 12,0.1)6, 

|3)^ 11,0.0)/® 11,0,2)6, 

|4)_ ^ |0,1,0)/®|1,1.1)6, 

where the states with symmetry |1)_ and |4)_ are triplets and |2)_ and |3)_ have six-
fold degeneracy. Similar ground state configurations occur at incommensurate filling, as 
shown in Fig. 3.10. 

As the bosonic interaction strength changes, the ground state of the system is chang-
ing symmetry. The hierarchy of the lowest lying energy levels corresponding to different 
states is shown in Fig. 3.9 for the commensurate and in Fig. 3.11 for incommensurate 
filling of bosons. In the case of commensurate filling, for a fixed value of the inter-species 
interaction and growing Ubb, the ground state structure evolves from a mixture of degen-
erate states (a) and (b) to the state ( / ) (in Fig 3.8) in the case of inter-species repulsion, 
and from (d) to (e) and ( / ) in the case of inter-species attraction. Similarly, in the case 
of incommensurate filling, the ground state evolves from a mixture of states (a) and {h) 
to (c) and to the mixture of degenerate states (c) and ( / ) (see Fig. 3.10) for inter-species 
repulsion, and from {d) to (e), to the mixture of states (c) and ( / ) for the attractive inter-
species interaction. 

The energy spectrum of this small scale system exhibits a gap. A, given by the energy 
difference between the ground state and first excited manifold [see Fig. 3.12 (a)]. For the 
commensurate filling of bosons this gap opens up at sufficiently strong boson repulsion 
for both repulsive and attractive inter-species interaction, as well as for Uhj = 0 [see Fig. 
3.12 (b)], and its magnitude is proportional to the interaction strength. It is reminiscent 
of the gap in the excitation spectrum of bosonic systems in lattices that indicates super-
fluid (SF) to Mott-insulator (MI) transition. Indeed, using the exact diagonalization of the 
Hamiltonian (3.13) and extracting characteristic behaviour of tunnelling correlations and 
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Figure 3.8: Schematics of the on-site state configurations of three bosons (blue circles) and 
one fermion (red circle), with the lowest energy. The figures correspond to the states: (a) 
|1)+, (b) |2)+, (c) |3)+, and (f) |4)+ for repulsive inter-species interaction, and (d) |1)_, (e) 
|2)_, (c) |3)_, and (f) |4)_ for inter-species attraction. 

particle number fluctuations, we can construct the phase diagram of the ground state and 
examine the transition to the insulating states in our small-scale Bose-Fermi system. 

3.5 Phase diagram 

The typical characteristic quantity for different quantum phases of an ultracold quantum 
degenerate gas in a the lattice system is the spatial (tunnelling) correlation for the bosonic 
component % and the tunneling correlation of the fermionic component rjf, given by 

= |(4^4+i)l/"'avg/ ? G / } / where navg = The boson tunnelling correlation can 
be used to construct the phase diagram of the model, depending on the interactions. In a 
bosonic lattice this quantity tends to zero when the system is in the Mott-insulator regime, 
and approaches one when the system is in the superfluid regime. Similarly, in our small, 
finite, mixed-species system, this quantity can be used to delineate between an insulating 
and a superfluid state. The fermion tunnelling correlation measures the mobility of the 
fermion in the system. When its value is close to one, the fermion is mobile, and when it 
is zero, the fermion is pinned to one of the sites. 

3.5.1 Commensurate boson filling 

As a start, we analyse the components of the ground state for the system with a commen-
surate number of bosons, TV/ = 1 (n{vg = 1/3), and for the fixed inter-species interaction 
strength \Ubj\ = 10. The boson tunnelling correlation for Nb = 3.9 is shown in Fig. 3.13. 
Due to the small number of particles, there exists a distinct crossover region between the 
SF {tjb = 1) and insulating (r^ = 0) regimes [138], where 0 < % < 1. When this quantity 
is closer to either of the two extreme values, we will refer to it as a SF- or Ml-enhanced 
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regime, respectively. It can be seen that the system exhibits a rich phase diagram with 
an asymmetric behaviour depending on the sign of the inter-species interaction and the 
number of bosons. 

For the case of attraction between bosons and fermions, Ubj < 0, a new insulating 
phase corresponding to the ground state |1)_ (Fig. 3.8, d) appears. It is strikingly dif-
ferent from the regular Ml-like insulating state in the pure bosonic system, |4)± (see Fig. 
3.8), which appears at [/;,/ = 0 and dominates the phase diagram for larger inter-species 
interaction strength. In this interaction-induced insulating phase the bosonic occupa-
tion of the ring sites is strongly unbalanced, in analogy with the mean-field macroscopic 
self-trapped states of a Bose-Fermi mixture, as seen in the previous sections of this Chap-
ter [3]. As one increases the repulsion between bosons, a new SF enhancement region 
appears and then the ground state of the system is once again dominated by the reg-
ular insulating state |4)_. With the increasing inter-species interaction and the number 
of bosons, the SF enhancement region breaks into several filaments separated by the in-
sulating states |2)_ that appear due to interaction between bosons and fermions. This 
change in the structure of ground state can also be followed in Fig. 3.9 (left). Due to 
the change of symmetry of the ground state at the points where different configurations 
become degenerate (level crossings in Fig. 3.9) we have the appearance of SF-enhanced 
regions where rjb has a local maxima lines. 

In the case of inter-species repulsion, Ubj > 0, the system is superfluid for small Ubh-
In Fig. 3.9 (a) one can clearly see that the ground state in this region is superposition of 
degenerate states |1)+ and \2)+, which is a typical sign of frustration. Insulating regions 
appear for larger inter-species interaction and are dominated by the |2)+ state [see Fig. 
3.13 (b)]. For large Ubh transition to the regular insulating state [4)+ occurs. 

For both signs of inter-species interaction, the behaviour in the regions where Uhb ~ 
Ubf is SF-enhanced. The effect of increasing the number of bosons is to scale up the 
regions of SF behaviour and introduce additional insulating regions due to inter-particle 
interactions. The appearance of the gap in the energy spectrum (Fig. 3.12) correlates 
exactly with the insulating regions in the phase diagram. 

While the phase diagrams in Fig. 3.13 (top) are based on the behaviour of the bosonic 

0.01 100 

Figure 3.9: The energy of the states with the largest contribution to the ground state as 
a function of Ubb for inter-species (left) repulsion and (right) attraction with the fixed 
magnitude \Ubf\ = 10. States with different symmetries are in different colours as: |1)± 
(blue), i2)± (red), |3)± (purple), |4)± (green). 



§3.5 Phase diagram 

(a) (b) (c) 

Qr-i?) 
W 

(d) 

Q-P 
¥ 

(e) (f) 

8 
Figure 3.10: Schematics of the on-site state configurations of four bosons (blue circles) 
and one fermion (red circle), contributing to the lowest energy band. The panels (a), 
(b), (c), and (f) correspond to repulsive inter-species interaction and (d), (e), and (f) - to 
inter-species attraction. 

fraction, it is useful to examine the tunnelling correlation of the fermion in the system. 
As seen in Fig. 3.13 (bottom left), in the region corresponding to the regular bosonic 
insulating state, (i.e. for \Ubb\ > 1) and for low inter-species coupling, the fermions are 
free to hop between the ring sites, which can also be deduced from the symmetry of the 
|4)± state [see Fig. 3.8]. In the mean-field picture [3] this behaviour reflects the fact that 
the effective interaction-induced potential seen by the fermion is weak and completely 
symmetric. As one increases \Ubf\, the fermions localise and no tunnelling is possible. In 
contrast to the regular insulating phase, the bosonic insulating phases that arise purely 
due to the inter-species interaction and correspond to symmetry-broken states (e.g. |1)_ 
or |2)+), naturally give rise to the regions of suppressed tunnelling of the fermion. 

To characterise the interaction-induced insulating phases further, we look at the boson 
number fluctuations in the system given by CT = y^{'n\n\) - /n^^^, see Fig. 3.13 (bot-
tom right). As expected from the MI behaviour, the fluctuations in the regular insulating 
phase (with the [4)± symmetry) approach zero as one increases the strength of repul-
sion between bosons. In contrast, for attractive inter-species interaction the interaction-
induced insulating region at low values of Uhb is dominated by fluctuations, which can 
be taken as a signature of the new insulating state. 

3.5.2 Incommensurate boson filling 

It has been noted (see, e.g. [138, 144]) that for a few-particle pure bosonic system at in-
commensurate filling a small superfluid fraction is always present, therefore no insulat-
ing state can occur. We find that this is indeed the case in our system with no fermions (or 

= 0). The insulating phases in this case occur only in the presence of fermions, with 
non-zero inter-species interaction strength. For the repulsive inter-species interaction the 
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insulating phase at large Ubb is suppressed, as shown in Fig. 3.14 (a), which is typical for 
Nh = 3m + 1 bosons with rn being a positive integer. In contrary, the interaction-induced 
insulating region is very prominent for small Nb and is broken up by regions of enhanced 
superfluidity for larger Nb- For inter-species attraction both the regular Ml-like insulat-
ing region at large Ubb arid the insulating region at lower values of Ubb are retained due 
to the inter-species interaction. As in the case of commensurate filling, at large Ubb the 
new insulating domains that appear due to the inter-species interaction are dominated 
by the ground state configuration (/) in Fig. 3.10. In general, both for incommensurate 
and commensurate filling of bosons the boundaries of the insulating regions are pushed 
to larger interaction strength values as one increases the number of bosons. 

In striking difference from the commensurate case, the tunnelling of fermions is al-
most completely suppressed in the attractive inter-species interaction region, Ubf < 0 
[see Fig. 3.14 (right)]. For repulsive inter-species interaction, Ubf > 0, the fermion gains 
mobility as one increases the boson interaction strength, Ubb- This is due to the fact that, 
for larger Ubb and repulsive inter-species interaction, the insulating phase is dominated 
by the state (c) in Fig. 3.10 [see also Fig. 3.11 (left)]. In this case the fermion is always able 
to hop between the sites with lower bosonic occupation numbers. In contrast, in the case 
of inter-species attraction the insulating phase is dominated by the state ( /) in Fig. 3.10 
[see also Fig. 3.11 (right)] and the fermions are pinned to a site with the highest occupa-
tion of bosons. For weaker inter-species interaction, Ubf < Ubb, the fermion is delocalised 
as in the commensurate case. 

3.5.3 Role of the fermion filling factor 

So far, we have considered one fermion interacting with Nb bosons. Therefore, the results 
presented above are also applicable to a mixture of two bosonic species (see, e.g. [145]) 
with a single atom in one of the components. In the case of Nf ^ 1, the Bose-Fermi-
Hubbard model is still valid for the fermion filling factor less than 1 (the system with no 
fermions is equivalent to the system with three fermions), and the fermion statistics influ-
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Figure 3.11: The energy of the states with the largest contribution to the ground state 
as a function of Ubb for inter-species (left) repulsion and (right) attraction with the fixed 
magnitude of inter-species interaction \Ubf\ = 10. Energies of states with different sym-
metries shown in Fig. 3.10 are for repulsion (a) blue, (b) red, (c) purple, (f) green and for 
attraction (d) blue, (e) red, (c) purple, (f) green. 
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Figure 3.12: Right panel: Structure of the energy spectrum vs. Ubj for commensurate 
filling of bosons {UBB = I, NB = 3). Left panel: The dependence of the gap, A ^ EI - EQ 
on the intra- and inter-species interaction strengths for Nb = 3. 

ences the ground state configuration. In particular, the system is particle-hole symmetric 
for 1/3 and 2/3 filling of fermions. This fact is reflected in the behaviour of the phase 
diagram, so that the case of 1/3 fermion filling with repulsive inter-species interactions 
corresponds to the case of 2/3 fermion filling with attractive inter-species interaction. For 
example, in the case of 2/3 filling of fermions the interaction-induced insulating regions 
appear for repulsive rather then attractive interaction between species, as seen in Fig. 
3.15. Other characteristic properties of the system, such as the behaviour of the fermion 
tunnelling correlations and bosonic number fluctuations, are qualitatively the same as for 
A ĵ = 1. If one would consider larger fillings of fermions then one needs to move away 
from the single band picture of the standard Bose-Fermi-Hubbard model. One needs to 
include additional bands depending on the number of fermions and the number of sites 
due to the Pauli principle and additional couplings between bands must be considered 
[146-149]. 

3.6 A variational solution 

In order to gain deeper understanding of the system and verify the non-trivial nature 
of the inhomogenous phases, we performed mean-field calculations using the following 
SU(3) coherent state ansatz ^ [138], 

lyv^ 
FfFb\0), 

'The coherent state ansatz is equivalent to using a Hartree-Fock state, or alternatively to do mean-field 
theory. 
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Figure 3.13: Top panels: Density plots of the boson tunnelling correlation, rjhiUbj, Ubb), 
for (left) Nb = 3 and (right) Nb = 9. Bottom panels: Density plots of the (left) fermion 
tunnelling correlation, rif{Ubf, Ubb) and (right) boson number fluctuations, (j{Ubf. Ubb) for 
TVfc = 3. 

where, 

Ff = T . ' P f J l 1=1 
\ N, 

\(=i / 

(3.17) 

(3.18) 

with, ^ e {b, / } as variational parameters, and |0) the vacuum state, conserved quan-
tities are: = Nb and J^Li = 1- The classical Hamiltonian can be de-
rived a s , / / = (vI'̂ lWIvI/̂ ), we have: 

<l,m> 1 = 1 
Hf = -tf E + 

<l,m> 

Hbf = Ubjf^li^b/l^f/-

(3.19) 

(3.20) 

(3.21) 
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Figure 3.14: Density plot of the (left) boson and (right) fermion tunnelling correlation for 
Nf = l,Nb = 4. 

Figure 3.15: Density plot of the (left) boson and (right) fermion tunnelling correlation for 
Nf = 2,Nb = 10. 

One can derive the equations of motion for the above Hamiltonian, i — ^ = g : ^ / one 
gets, 

d^ = - h E + Ukb I^mIVw + (3-22) 
l^m dt 

dipji (3.23) 
l^m 

We look at solutions of the form ^^ , = A^j + ^ G {h, /}• The stationary 
homogenous solutions are, Ahj = \/Nh/3 with cph^i = (f)^ and Aj^i = 1/A/3 with (pj^i = (j)f. 
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Figure 3.16: The fidelity of the variational ansatz |(*l'var|^ex)|/ for (a) repulsion and (b) 
attraction between bosons and fermions with \Ubf \ — 0 (blue). 1 (green). 2 (purple). The 
number of bosons in the system is: 3 (solid), 9 (dotted). 

For the ground state we have: 

fJ-b = 
M/ = 

E, 

Ui bf 
3 f 

(3.24) 
(3.25) 
(3.26) 

The state that corresponds to the ground state of the variational ansatz, using the multi-
nomial theorem, can be written as: 

N^ + i I 

nj 
where the sum over nj goes over all the combinations given by n{ + + = 1 and the 
sum over n\ goes over the combinations given by n\+n\-\- n\ = N^. The agreement be-
tween the variational solution and the exact energies is good for small interaction Uhb < 1, 
at fixed Ubj. As long as the inter-species interaction strength is small compared to Uhh the 
variational ansatz gives a good estimation of the ground state energy Still, if we look 
at the variation of the ground state energy for fixed repulsion Uhb and we vary Ubf, the 
agreement with the variational ansatz breaks down from the start. The system is very 
sensitive to the variation of Ubf. From the exact solution, in the case of Ubf > 0 for fixed 
Ubb we see that the ground state energy saturates as we increase the inter-species inter-
action. This doesn't happen for the variational ansatz. We see the competition of the 
interaction energy with the kinetic terms, which when C/fe/ > Ubb compensate each other. 
In contrast, for the attraction between bosons and fermions in the exact solution, we see 
that the ground state energy decreases. This is because the interaction energy is negative 
thus the total energy has monotonic character and no saturation, the effective interac-
tion energy and kinetic energy have the same sign. Therefore in the case of attraction 
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qualitative agreement can be achieved with the variational solution. The fidelity of the 
variational ground state K^I'varl^ex)!, calculated as follows: 

\ ^^^ I 
( ^ v a . l ^ ' e x ) - Q j ^ 

where the C's are the amplitudes corresponding to components of the ground state from 
the solution by direct diagonalization of the Hamiltonian (3.13). The fidelity can be seen 
in Fig. 3.16 for repulsion (a) and attraction (b). Here we can see that, as we increase the 
interactions, the fidelity goes down rather dramatically depending on the inter-species 
interaction strength, and the increment in the number of bosons (see Fig. 3.16). 

From the results of the variational ansatz we learn that, as we increase the interactions 
the broken symmetry states start to play a major role in the behaviour of the system. The 
variational ansatz can be used to search for unbalanced solutions such that: i ^ 

Solutions of this type for Utf 0 can have energies lower than their homogenous 
counterparts. The possibility to use these states to extend the validity of the variational 
solution requires further investigation. 

3.7 Toy model of a topological insulator 

Motivated by the robustness of topological states for their use in quantum computing 
[31, 37], it is of interest to understand the behaviour of systems with these kind of states 
and the role of interactions. Following the very recent work of Stanescu, Galitski and Das 
Sarma [29], on simplified models that can have topological states similar to the Haldane 
model [150], we study a Bose-Fermi system with these characteristics. 

Topological states are useful for quantum computing, because as shown by Kitaev 
[31] are robust against decoherence introduced by the environment. These states are pro-
tected by an energy gap that isolates a sector of the Hilbert space and therefore arbitrary 
controlled unitary operations on them can be performed. The robustness of combinations 
of these states forming a qubit happens because as one applies a unitary operation the 
result only depends on the topology of the braiding of qubits and small fluctuations in 
the operation have negligible effect [32]. 

In this section we will understand the effect of the artificial vector potential in the 
behaviour of the insulating states, the superfluid phase and the quantum fluctuations in a 
simplified model. Besides from affecting the structure of the phase diagram as compared 
with the system without vector potential, we will see how, the vector potential breaks the 
particle-hole symmetry of the fermions. 

We construct our model by having 4 sites, two triangles, where we have a position 
dependent vector potential. This vector potential generates an effective magnetic field 
with opposite flux in each triangle, see Fig. 3.17. This kind of vector potential can be 
generated in optical lattices artificially by means of dressing the atoms in an optical field 
that couples different spin states [26, 27], or by moving the atoms in a spatially varying 
laser field [30,151-153]. 

This has the consequence that the hopping amplitudes acquire a position dependent 
phase. We propose the following extension of the Bose-Fermi ring as a simplified small 
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Figure 3.17: Schematics of our two dimensional topological insulator Bose-Fermi system. 

scale version of an interacting topological insulator. 

H = 'Hh + Hf + Ti-bb + Ti-b}^ 

where. 

n^ = 
<l,m> 

^hf = UhfY^fi'lnj. 
4 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
( = 1 

where for simplicity we have chosen: = = 1) = </?5(4,2) = 
= if and = This simplified model has the essential ingre-

dients for the emergence of topological states [29]. 
We construct the ground state phase diagram of the model by calculating the tun-

nelling correlation r]b, as a function of the interactions for fixed number of bosons, with 
different fermion filling factors and different p̂ in Fig. 3.18. We can see that, as expected 
from our results in the previous section in the case where (p = 0 (real hopping ampli-
tudes), the system has the particle-hole symmetry in terms of the fermion filling, so that 
we recover the behaviour seen in attraction for 1/4 filling for repulsion in 3/4 filling, and 
vice-versa. 

For If ^ 0 and in particular, when tp = ±7r/2 (imaginary hopping amplitudes), the 
particle hole symmetry in the fermion filling is broken. Now we have that for 1 /4 filling 
for inter-species repulsion the region where the system is superfluid extends to larger 
intra-species interaction values as compared to the ip = 0 case (compare Fig. 3.18 (a) and 
(d)). As one increases the number of fermions, now in addition to the 1/4 and 3/4 filling 
cases we also have the half-filled case [Fig. 3.18 (b) and (e)], which are robust against 
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Figure 3.18: Density plots of the boson tunnelling correlation r/̂ , for (/? = 0 (top panels) 
and ip = tt/2 (bottom panels) with Nj = 1 (a,d), 2 (b,e), 3 (c,f), and Nb = 4. 

the vector potential applied, so that the effect of the phase is to marginally suppress 
the superfluid region in the whole phase space, as it happens with other fillings. In the 
case of 3/4 filling now the system presents strong suppression of the SF enhanced region 
corresponding to attraction (compare Fig. 3.18 (c) and (f) for small f/(,fe)-

The suppression and enhancement of the superfluid components in the system at dif-
ferent fermion fillings as compared to the cp = 0 situation correlate with the enhancement 
of fluctuations for Ubb small (see Fig. 3.19). This increment in fluctuations correlates with 
the behaviour seen in % due to the symmetry breaking. In generally the boundaries with 
the localised states are marginally shifted to lower values of the interactions (see Fig. 
3.18). 

3.8 Summary of results 

In conclusion, we have analysed the formation of self-trapped states in a BEC cloud 
mixed with degenerate fermions and confined in a one-dimensional double-well poten-
tial. Our semi-analytical approach is reliable in the limit of moderate to large number 
of fermions {Nf ~ 10^ - 10^) . The properties of the bosonic macroscopic wavefunction 
are analysed by means of a variational method, which allow us to comprehensively de-
scribe the spatial properties and symmetry of the self-trapped state and identify the rea-
sons for enhancement or suppression of self-trapping. The self-trapping regimes in the 
Bose-Fermi mixture are predicted to be markedly different for repulsive and attractive 
inter-species interaction and highly sensitive to the fermion concentration. For the attrac-
tive interaction, the growth of the fermionic fraction leads to the MQST at smaller well 
separations. This is due to the effective suppression of tunnelling due to the narrowing of 
the bosonic wavefunction. In the repulsive case, the growth in the fermionic fraction has 
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Figure 3.19: Density plots of the fluctuations a^, for = 0 (top panels) and ip = 7r/2 
(bottom panels) with Nj = 1 (a,d), 2 (b,e), 3 (c,f), and Ni, = 4. 

a stronger effect on the dynamics of bosons and promotes the onset of the MQST regime 
to greater well separations, as a result of the tunnelling enhancement due to the fermion-
induced broadening of the BEC wavefunction. In both attractive and repulsive cases, the 
effect could be accentuated by enhancing the strength of the interspecies interaction via 
Feshbach resonance. 

Both the enhancement and the suppression of self-trapping in the BEC cloud mixed 
with degenerate fermions may signal the existence of the new regimes of the dynamics 
and switching of BECs in atomic waveguides and nonlinear interferometers with mixed 
atomic species. They are expected to have profound consequence for the formation and 
dynamics of the self-trapped gap states in the Bose-Fermi mixtures loaded into periodic 
potentials. Beyond the mean field, as we found in our later work on the ring configura-
tion, these effects have implication for the onset of the superfluid to Mott insulator (MI) 
transition in a lattice potential [18,45,126,154], leading to the in-homogeneous suppres-
sion of the MI regime, and the appearance of new insulating states. 

We also have analysed the ground state of a small-scale system of quantum degener-
ate bosons and fermions in a three-site ring configuration. We have restricted the consid-
eration to the fermion filling factor less or equal than one, which as allowed us to employ 
a standard Bose-Fermi-Hubbard Hamiltonian. By examining the tunnelling correlations 
and particle fluctuations in the system, we have found that the system admits mobile 
and insulating states that are analogous to the superfluid and Mott insulator states in 
infinite lattices. The novel insulating states identified in this small-scale system for both 
commensurate and incommensurate filling of bosons, are purely due to the inter-species 
interactions and can be controlled by controlling the interaction strengths and the num-
ber of fermions injected into the system. 

Further we have considered an extension of this model. This extension was a simpli-
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fied model with the ingredients of a topological insulator. In this model we see the effect 
of the inclusion of an artificial position dependent vector potential. The vector potential 
introduces a phase dependence into the hopping amplitudes, and as a consequence, the 
hopping amplitudes can take complex values. Due to this, the vector potential breaks 
the symmetry with respect to the fermion filling. We find that the suppression and en-
hancement of superfluid components in the system is strongly dependent on the vector 
potential. This strongly affects the region where the system has insulating phases and 
these phases can be selected by controlling the number of fermions in the system and the 
artificial vector potential. We find that there is enhancement of the quantum fluctuations 
due to the symmetry breaking. 

The results of our "toy model" may be useful for the study of topological insulators 
in the sense that many-body interactions have been considered. The properties of the 
ground state of this small scale system can be used to construct representations with 
the correct symmetry properties and study the effect of interaction in topological invari-
ants, such as the Chern numbers [155]. This can help to understand the categorisation of 
topological states and the effect of interactions. We learned that by manipulating the in-
teractions and the vector potential one can generate insulating states that could be useful 
for the implementation of quantum computing protocols. Still, the study of the config-
urations of the ground state and the robustness against decoherence of the states with 
localised fermions, need to be further investigated. 
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Chapter 4 

Canonical transformations and the 
BCS-BEC crossover 

Motivated by the theoretical work of Eagles [156] and later Leggett [157] with the ob-
jective of understanding the strong coupling limit of the theory of Bardeen-Cooper-
Schrieffer (BCS) on superconductivity [59], the possibility of a crossover to a Bose-
Einstein condensate (BEC) has been a important problem to address. The implemen-
tation of the crossover regime is performed with ultracold fermions and it is one of the 
most challenging problems in physics both theoretically and experimentally. In the BCS-
BEC crossover, ultracold atoms of fermionic nature, i.e ®Li and that constitute the 
system interact by means of a Feshbach resonance. A Feshbach resonance happens be-
cause the magnetic moment of two colliding atoms is different from a molecular state, 
therefore by applying a constant magnetic field one can select the components of the sys-
tem. This is due the fact that the interactions between atoms only depend on the spin of 
the valence electrons of the colliding atoms [50]. As the intensity of the magnetic field 
changes the atoms either behave closer to Cooper pairs (BCS side of the resonance) or to 
a BEC of molecules (BEC side of the resonance). 

The BEC of molecules is the macroscopic occupation of the lowest energy state at tem-
peratures below a critical temperature where the system can be described as a collection 
of tightly bound molecules of two fermionic atoms of opposite spin. These molecules be-
have as a collection of point like bosons. The Cooper-pairs are extended objects in space 
where two fermions of opposite spin and opposite momenta pair, as a consequence of the 
many-body interaction and the behaviour of the atoms near Fermi energy in the Fermi 
surface that contains them. Because of the interaction via the Feshbach resonance in the 
BCS side, the atoms form Cooper-pairs and a pairing gap Ages forms in the energy spec-
trum. As this gap opens, the Cooper-pairs condense in the lowest energy state giving 
rise to a coherent state. This coherent state is a superfluid, a fluid that can flow without 
friction. As one increases the temperature the pairs break and the gap vanishes while 
superfluidity ceases to happen. 

Due to properties of the bound states on either side of the resonance, the BCS limit 
is often referred to as the weak coupling limit and the BEC of molecules is the strong 
coupling limit [157], In either limit, the system has well defined properties, while in the 
region near the resonance, also known as unitary limit, the description becomes prob-
lematic. The limit is called unitary limit because the effective interaction strength coming 
from the two-body scattering amplitude when the scattering length diverges is one. The 
ground state near the unitary limit is a strongly interacting superfluid of pairs, with a 



Canonical transformations and the BCS-BEC crossover 

Figure 4.1: The behaviour of the scattering length as a function of the magnetic field for 
the broad resonance of ®Li, and a qualitative description of the regimes in the BCS-BEC 
crossover. The many-body interaction is A = 47rfi^a/m. On the left we have the BEC limit 
of the molecules, at resonance where B « 834 we have the unitary limit and on the far 
right we have the extended Cooper pairs of the BCS limit. 

size of the order of the inter-particle spacing of constituent fermions. In essence, the sys-
tem has two different objects. Cooper-pairs and molecules that transform into each other 
depending on the many-body interaction. As one moves across the Feshbach resonance 
the Cooper-pairs collapse to molecules and the molecules break into correlated pairs. In 
the limit when the interaction becomes singular and changes sign we have the system in 
a state where strong correlations are dominant, see Eig. 4.1. 

Experimental findings in these ultracold neutral systems have confirmed the forma-
tion of BEC of molecules from fermionic atoms below a certain temperature with an in-
teraction controlled by a Feshbach resonance [158,159]. The existence of a pairing gap in 
these systems [160] lead to the search of a superfluid state, sometimes referred to as Hi-
Tc superfluidity This is because of having a high critical temperature compared with the 
Fermi Energy of the system [161]. The confirmation of the superfluidity came from the 
observation of quantum vortices. This quantum vortices form a characteristic pattern, the 
so-called Abrikosov lattice, analogous to the phenomena seen in type II superconductors, 
when a magnetic field is applied [162]. There have been also measurements that contrast 
the thermodynamical properties of the strongly interacting system with those of a non-
mteracting system [163]. In the limit where the system is at the resonance, corresponding 
to the singular point of the scattering length, it is thought that the thermodynamic prop-
erties of the system can be described by a re-scaled version of the non-interacting Fermi 
gas [164, 165]. This universality hypothesis implies that the energy of the system is pro-



portional by a universal function to the energy of the non-interacting system. This uni-
versal function only depends on the ratio of the temperature with the Fermi temperature, 
and is independent of the microscopic details of the model used to describe the system. 
Still one finds that provided this holds, the system has anomalous exponents in its ther-
modynamic properties [166] in the sense that they do not correspond to either bosonic or 
fermionic degrees of freedom. Recently [167,168], studies in '̂ ^K have shown that the sys-
tem presents a dispersion relation for its excitations above the critical temperature with 
a contribution referring commonly in the literature as a pseudo gap or a normal state ex-
citation gap [19]. The dispersion relation is given by E]^ = yjie{k) - î taY + A^^g -h A^^, 
where the pseudo gap is Apg, e(k) = /i'^|kp/(2m), and iia is the chemical potential of 
the atoms. The importance of this finding is linked to the fact that in BCS theory a su-
perconductor should have a vanishing gap in the energy spectrum as one increase the 
temperature above the critical one, Eŷ  e(k) — l̂a- This suppresses the superconduct-
ing state [44], and therefore in the analogous neutral atom system one could expect the 
same for the superfluid behaviour [51]. Still instead, there is a non vanishing contribu-
tion in the dispersion relation above the critical temperature, E-^ ^ ( e ( k ) - ^aY + A^^. 
This fact remains a mystery, with many different interpretations of its origin, and is a 
common feature of the Hi-Tc superconductors [19]. Due to these similarities, ultracold 
strongly interacting fermions are thought to be the analogous neutral system to the Hi-Tc 
superconductors. This has strongly motivated research in the field since ultracold atoms 
have the advantage of being very clean systems, where interactions can be manipulated 
at will. Therefore, one could use ultracold atomic systems to study the properties of this 
kind of strongly correlated ground states [51]. 

Theoretical approaches to understand the crossover problem are based mainly in the 
study of either the single channel model or the two channel model [169]. The two-channel 
model description is based on molecular bound-states, or Feshbach bosons (FB's) corre-
sponding to a bosonic channel interacting with a collection of free atoms in a fermionic 
channel. The single channel model, constructed in terms of fermions only, is primar-
ily based on the BCS mean-field picture of Leggett [157], using an ad-hoc, many-body 
interaction which becomes singular at the Feshbach resonance and changes sign. Essen-
tially, these two approaches map to each other in the limit of enslaved bosons, or a broad 
resonance [50, 52]. In the limit of enslaved bosons, the molecules are defined in terms 
of the pairs of the atoms. The common goal of these theories is to interpolate between 
the BCS and BEC limits. Other treatments involve the Hubbard model with negative U 
(attraction) to represent the pairing present in the problem where they use Monte-Carlo 
methods to find the ground state energy and the energy of the bound state representing 
the molecules [170]. This approach was originally suggested by Nozieres and Schmitt-
Rink [171]. A number of studies have been considered doing numerical simulations of 
the BCS Hamiltonian extended to the strong coupling regime. These studies concentrate 
in the behaviour of the bound state energy as a function of the interaction based on Jas-
trow functions for a variational ansatz of the ground state and Monte-Carlo methods to 
calculate the ground state energy [172-175], These approaches, give insight to the rele-
vant scaling properties of the energy in the system, but unfortunately they don't answer 
questions regarding the possible mechanisms responsible for the pairing or the spectrum 
of excitations. 
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One of the most difficult questions to answer is what happens near the unitary limit, 
when the system is at the resonance. This is because the regular perturbation theory in 
powers of the gas parameter n'/^a, with n — kp/iSn'^) which is proportional to product 
of the Fermi momentum kp and the scattering length a, ceases to be valid when the 
Feshbach molecules form and the fermions are strongly interacting. In this limit, the 
scattering length diverges, therefore, there is no good perturbation parameter and the 
Fermi energy is thought to be the most important parameter that controls the behaviour 
of the energy of the system [176]. This is because expansions of the energy in terms of 
powers of this dimensionless quantity are not convergent. For example, the well known 
results of Huang, Yang and Lee [177,178], state that the energy per particle can be written 
as follows, 

£ 3 / 10, 4(11 - 2 1 n 2 ) , , \ 
N b \ Q-K ZItt y 

where ê ? is the Fermi energy, the term proportional to kpa is due to the two-body colli-
sions and the terms proportional to higher powers than one of kpa are due to the many-
body processes and they are the energy due to correlations [44]. The expansion in (4.1), is 
only valid in the limit were kpa 1 and positive scattering length, a > 0, since as noted 
in [179] the gas would collapses for a < 0. Therefore, there is not a small perturbation 
parameter in the theory in this sense, and correlations are dominant. In principle, many 
questions remain open upon the nature of the system in this regime, since the properties 
seem to be a mixture of fermionic and bosonic behaviour [166,180]. One of the problems 
is that there is no satisfactory model Hamiltonian that represents the mixed character of 
the low energy effective degrees of freedom, they are neither purely bosonic nor purely 
fermionic fields. Beyond the aforementioned interpolation scheme based on [157], alter-
native theories are scarce and one needs to assume usually a BCS type theory modified by 
a regularised many-body interaction and Feynman diagram resumations to renormalise 
the interaction and recover the correct two-body physics. 

The two channel model has some of the essential ingredients needed to address the 
BCS-BEC crossover problem. The approximation of this model in the limit where a sin-
gle bound-state exists, while neglecting the interaction between atoms has been recently 
mapped by Falco and Stoof [181] to the anisotropic Kondo model [60]. In this repre-
sentation, the FB and the atoms map into spin and pseudo-spin variables in a restricted 
Hilbert space of double occupancy. This representation can be readily identified with 
Cooper-pairing in the sense of Anderson's random phase approximation (RPA) for the 
superconducting state [182]. The pseudo-spin variables are defined in terms of the cre-
ation and annihilation of the fermions of different spin, this is the so-called Abrikosov 
representation for spins in terms of pseudo-fermions [183]. In Falco and Stoof treatment, 
the magnetic detuning with respect to the Feshbach resonance that controls the position 
in phase space of the model, shifts the chemical potential of the FB only, and acts as an 
external field in the Kondo model picture. This external "magnetic" energy in the Kondo 
picture is proportional to the detuning from the Feshbach resonance. In the absence of 
the external field, at the resonance, due to the mapping in spin and pseudo spin represen-
tation, the interaction between Cooper-pairs and FB has the same properties as the one 
of the Kondo model considering fermionic carrier and spin channels. In this sense, flip-
ping a local spin and creating a bound-state are equivalent descriptions, while fermion 
carriers correspond to the free atoms. In the Kondo picture, the energy cost of the scat-



tering favours the formation of certain ground state configurations, where the scattering 
between spins and carriers is correlated. Incoming carriers can only interact with cer-
tain local spin configurations and this local spin configurations promote the interaction 
with only particular carriers, generating feedback. This ultimately results in the well 
known Kondo problem as one decreases the temperature below the Kondo temperature 
[184]. The Kondo problem is region of the parameter space of the Kondo model where 
perturbation theory breaks down. Perturbation theory doesn't work because there is a 
non-physical divergency at the Kondo temperature, because high energy contributions 
due to the interactions become dominant below this energy scale. Therefore, physical 
quantities such as the resistivity become infinity. In the two-channel picture, from the 
many-body perspective, the interactions between the Cooper-pairs and the FB occur in 
analogous manner to the Kondo model. This is because a FB will be created or destroyed 
depending whether or not a Cooper-pair will have the same energy and vice-versa, thus 
the processes induce correlations. In this respect, the mapping done by Falco and Stoof 
gives the possibility to understand in a clear picture, the nontrivial nature of the many 
body process involved. 

However, when one neglects the interaction between Cooper-pairs, one removes the 
important length scale which affects the possible processes to take place. Such descrip-
tion only seems appropriate in the limit close to the resonance on the BEC side of the 
crossover, once the molecules have been formed, since the interaction between Cooper-
pairs is not accounted for in the theory. An alternative more consistent description, could 
be the one given by the single impurity Anderson model (AM) [62]. This model, besides from 
being purely fermionic in nature, can be used to understand the processes that generate 
the correlation between the FB and the atoms, and possibly answer questions about the 
formation of the molecules. In this model, these processes are mediated by the interplay 
between the repulsion between localised energy states corresponding to the molecules 
and the probability of overlapping between atoms and localised energy states, which has 
a more realistic origin than the spin-flip processes from the Kondo descrition. The AM 
gives the possibility to look for alternative mechanisms to understand how the spectrum 
of excitations is affected in the crossover problem depending on the FB, and the conse-
quences from correlations in the configuration of the ground state, as well as, dynamical 
processes that take place as we move away from the resonance. Also, it opens the possi-
bility to look for a precise interpretation of the unitary limit, where regular perturbation 
theory becomes inapplicable [176]. Besides these possibilities, the AM has been solved 
exactly under some approximations by Bethe ansatz [185,186] and very robust methods 
such as the Renormalization Group Theory [187,188] can be applied. This type of meth-
ods have been designed to understand the non-perturbative region of models of this kind 
where different parameters move the system towards fixed points in the phase space and 
where contributions from different energy scales need to be considered. The possibility 
of using the well known results and techniques to tackle the AM may prove fruitful in 
the BCS-BEC crossover problem. This because, in the usual formulation there is no ad-
equate framework to solve the problem of determining the characteristics of the ground 
state and the behaviour of the excitations due to correlations. These reasons strongly mo-
tivated us to study an alternative formulation to extended BCS mean field type theories 
which could be able to address some of the characteristic features of this problem. 

In this Chapter, we will study single impurity models, in connection with the possi-
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bility of using them to gain some insight on the dynamical processes that take place due 
to the interaction between FB and Cooper pairs and the basic fermionic nature of atoms 
in the BCS-BEC crossover problem. Our aim is to have a Hamiltonian theory that can de-
scribe the physics near the unitary limit, on both sides of the crossover. This Hamiltonian 
theory should provide a description to the formation of the Feshbach bosons and have 
the possibility of answering questions such as, the appearance of the pseudo-gap regime 
in the system, the role of non-condensed Cooper-pairs and effect of the FB. To this end, 
we will show for the first time, how a typical Hamiltonian used in the crossover problem, 
i.e. the two-channel model, and the AM relate using results from perturbation theory by 
means of canonical transformations. Also, we will establish the relationship between the 
parameters of the two models and give the regime where the crossover corresponds to in 
the equivalent magnetic impurity picture. Finally, we will use our results to understand 
some of the features seen in recent experiments with ®Li and and possibly give an 
explanation to the origin of the pseudo-gap contribution with our framework. 

4.1 Models of the BCS-BEC crossover and their relationship 

In order to get some insight in the relevant properties of the BCS-BEC crossover problem 
it proves useful to introduce the reader to the behaviour of the crossover. We do this 
by means of the extended BCS mean-field approach, as well as the two channel hybrid 
model. At the end of the section we will formally establish the equivalence of these two 
models in the broad resonance limit. 

Based on the concepts by Leggett and Eagles [156, 157] one can formulate the prob-
lem in terms of the single channel model of the BCS-BEC crossover^ In this model one 
assumes that the fermions interact by a contact pseudo-potential with a strength given 
by the low energy two-body scattering amplitude (S-wave interaction). The interaction 
being of contact nature has in principle a range ro that is assumed to be negligible in the 
region of interest. Because we use a Feshbach resonance to control the scattering ampli-
tude the scattering length depends on an applied external magnetic field B. 

The single channel model can be approximated in momentum space, in the subspace 
of states in the centre of mass of motion as, 

nir.h = Y . - + «lq,i«cV[«k.r«-k.i' (4-2) 
k.u q,k 

where the single channel model interaction is, 

^ _ 47r/j^abg A _ AB 
nia V B - Bo 

where, k and q are the momenta, a the index corresponding to the spin, the dispersion 
relation is £(k) = /I'̂ jkp/(2771a) and ai,g is the background scattering length, the scattering 
length at zero magnetic field. The background scattering length is approximately equal 
to the magnitude of the scattering length of the interaction potential of the lowest energy 
state when the magnetic field B is zero. The field where the Feshbach resonance occurs 

'The Hamiltonian in real space in terms of fields is in the Introduction (1.3). 
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is Bo, rua the mass of the atom, fia is the chemical potential of the fermionic fields a, AB 
the width of the resonance measured with respect to BQ and the position of zero of the 
scattering length ^ , and the so-called quantization volume is denoted by V. The quanti-
zation volume is the region in space where the density is different from zero, the effective 
size of the system. The above Hamiltonian is nothing more than the BCS Hamiltonian 
[59], Here the interaction has been described in terms of a short range pseudo-potential 
characterised by the scattering length in the low energy limit and is controlled by the 
magnetic field. In order to have a convergent theory in limit where the scattering length 
becomes infinity an implicit regularisation must be employed in the sum over momenta. 
This regularisation is performed by subtracting an infinite contribution to the inverse of 
the scattering length such that the scattering amplitude derived from the two-body T-
matrix has the right pole structure to have a bound state. The single channel model with 
zero total momentum pairs in the limit where we do a mean field approximation and we 
regularise the interaction to keep the integrals that describe the variation between the gap 
in the system and the chemical potential convergent is often referred to as the extended 
BCS mean-field theory ^ [51]. In order to analyse the system one performs the mean-field 
solution of the model which can be done easily by substituting the BCS ansatz in (4.2) 
while doing mean-field decoupling. 

|BCS> = n («k + 

where |0) is the filled Fermi sea, Uk and û  are variational parameters and correspond to 
the probability amplitudes of a pair of fermions with opposite momenta to be empty or 
occupied. The variational parameters obey the constraint + = because they are 
probability amplitudes. Then it follows to use the Bogoliubov procedure for the quadratic 
Hamiltonian one obtains, and use the relationship between amplitudes of the BCS ansatz 
to minimise the energy. Thus, the variational parameters are related as follows [44], 

/ \ 
^ ^ e ( k ) - Ma 

\ 
/ \ e(k) - /ia 

1 -

"kt'k = 
Ak 

^ A B is negative if the zero of the scattering length is at a field lower than the resonance ('' Li case, abg < 0 
and A B < 0), positive if at a higher field ('^"K case, , abg > 0 and A B > 0). The significance of this detail has 
to do with the fact that the '̂ ''K system would have a Fermi liquid point when the scattering length is zero, 
by this we mean that at higher fields the system is a Fermi liquid. For ®Li we would have a non-interacting 
Bose system limit at zero scattering length, and the system beyond this point would be a pure BEC. 

'The exact solution of (4.2) is actually mean-field. 
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The equations for the number of particles N and the gap Ak are, 

Ak = y ^MkWk, (4.3) 

(4.4) 

where, Uk'-'k = («k t®-k ].) ~ (' '-k i^k t^' know equations [51, 156, 
157] for the gap^ (4.5) and the number of particles (4.6), 

Jo -m)2 + A V 

\/x{x - A) 

X-/i )2 + A2y 

dx = 

Jo 
/ X -

TT 

dx = -

(4.5) 

(4.6) 

where the dimensionless chemical potential is jj = ^la/^F, the dimensionless gap is 
A = A/ef/ the Fermi energy ep = h^k\/[2jna), with kp the Fermi momentum. The 
dimensionless parameter \/{kFa) controls the behaviour in the crossover so that in the 
weak coupling limit \/{kFa) - o o (BCS) and in the strong coupling limit 1 /{kpa) oo 
(BBC). In the above equations the interaction has been regularised to make the integrals 
in (4.5) and (4.6) convergent. Namely the coupling of the interaction term is modified as 
follows, 

V V ^ 1 
A A 

k 
2e(k)' 

The regularisation amounts to integrating out the high energy modes in the gap equation 
(4.5) [51]. The solution of equations (4.5) and (4.6) is show in Fig. 4.2, where we have also 
included the condensate fraction which can be calculated from [189]: 

n 
3tt A2 
16 ImW/1 + iA 

In the DEC limit (l/ikpa) oo) where we have a gas of tightly bound molecules, the 
solution of the above equations gives the correspondence between the chemical potential 
and the energy of a bound state: E^ = = Yi^HmaC?). In the BCS limit, the gap has 
the usual dependence on the interaction parameter given by A = S/̂ a exp(-7r/(2A:F|a|)). 
The size of the Cooper-pair can be estimated [189] by using i.e. Pippard's coherence 
length ^ = 4/(tt/cf A), so as we move from the BCS limit to the BEC limit the Cooper-pairs 
become "smaller" collapsing to the tightly bound molecules. In the BCS limit A 0, and 
the pairs are separated in space on a macroscopic scale. 

One unphysical feature of the single channel model is that it only supports one bound 
state independently on how strong the attraction is [171], Therefore, it could be more 

In the derivation of the gap equation we have assumed that the gap is constant, such that Ai< 
const, in the region of interest. Also we have taken the limit where: 1/V J ] ^ « l/(27r)^ /' dk. 

A = 



§4.1 Models of the BCS-BEC crossover and their relationship 

- 3 - 2 

(kf-a) 

Figure 4.2; The parameters of the extended BCS mean-field theory, /} = i_i/ep, A = A/ep 
and the condensate fraction, no/n. 

suitable for the analysis of the BCS side of the resonance. Also, the two-body scattering 
amplitude doesn't have the characteristics of scattering via a resonant state. Consider-
ing that a resonance is a positive energy state with finite lifetime, the Hamiltonian (4.2) 
only has true bound states,thus the description is insufficient [52]. One may ask if this 
scheme of regularisation and mean-field approximation is justified at all very close to 
the resonance where the formation of the molecules is actually taking place, and if so 
up to which point? Still, it is true that the qualitative agreement in both BEC and BCS 
limits with experiment is surprisingly good considering the interpolation nature of the 
theory. Another problem, comes from the fact that the extended BCS mean-field theory 
has only zero total momentum pairs and forbids density fluctuations. This has the conse-
quence of incorrectly describing the low energy excitations of the system, eliminating the 
Bogoliubov-Anderson mode, which should exist for superfluidity to be present, as seen 
in the experiments [51, 161]. The absence of the collective Bogoliubov-Anderson mode 
implies that the leading corrections to the ground state energy of (4.2) in powers of kpa 
are incorrect from the start [51]. 

In order to treat the problem of the bound state in the BEC side of the resonance and 
verify the validity of the assumption of only considering the atoms and not the molecules, 
a single channel, a number of multi-channel models were proposed [181, 190-193]. The 
channels in these models refer to the lowest energy hyperfine states of the system close 
to the Feshbach resonance. The most simple of these is a model based on the possi-
ble interaction between molecules in a non-degenerate configuration formed due to the 
Feshbach resonance on the BEC side and the atoms in the BCS side. This hybrid atomic-
molecular Hamiltonian, contains the relevant features of the crossover while having a 
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well defined bound state, virtual bound states and resonant states. Some analytic results 
can be obtained in certain limits, i.e. in the limit of an infinitely narrow resonance [52]. 
The so-called "two-channel hybrid", or atom-molecule Hamiltonian ^ can be written as 
follows [181], 

W2C/1 = Wo -t- Ti-ha + "Haa- (4-7) 

where, Hq refers to the kinetic energy of the atomic and molecular degrees of freedom, 
Hba is the coupling between the molecules (bosons b) and pairs of atoms (fermions a) and 
Haa defines the interaction between atoms. The latter is also referred to as the background 
interaction. 

Tin = + 
k,(T 

k,q 

Waa - y ^(^)°k'+q/2J®-k'+q/2,T"-k-q/2,T"k-q/2,i' 
k.k'.q 

where, e(k) is the kinetic energy of the atoms, /̂t̂  is the chemical potential of the atoms, 
b̂are is the microscopic detuning from the Feshbach resonance. This detuning is intro-

duced by the application of the external magnetic field close to the Feshbach resonance. 
The couplings g and A are the interaction strengths between the molecules and the atoms, 
and the atoms, they depend on the scattering length. Note that the above Hamiltonian 
does not have a molecular interaction term, since we have assumed that the density is low 
enough such that molecules do not interact with each other, and the gas is cold enough 
such that this kind of interactions are energetically unfavourable. As mentioned previ-
ously, the above Hamiltonian has all the basic ingredients of a well defined theory for 
the crossover, but in order to find an alternative picture it further requires some sim-
plifications. We need an alternative picture because the Hamiltonian as it is can't answer 
questions regarding the formation of the molecules, and on the BCS-side of the resonance 
their effect is usually not considered. 

In the limit when only one bound state exists, corresponding to the centre of mass 
momenta mode q = 0 in (4.7), and letting (̂ bare - 2//a ^ ^(B) we have, 

n2ck ~ + 
k,a 

Ah 
+ i f (4-8) 

q,k 

where 6{B) = AFI{D - Dq), the difference in magnetic moments between the two lowest 
hyperfine states (the states of the two atoms and the molecule) is A/̂  and the Feshbach 
resonance is situated at Bq, while Abg = Airh^a^Jm, is the background interaction. The 

' The Hamiltonian in real space in terms of f ields is in the Introduction (1.4). 
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Hamitonian in (4.8) corresponds to the situation where if the temperature is low enough 
bo corresponds to an homogenous molecular condensate. The two channel model (4.8) 
may be related to the single channel model by looking at the equation of motion of the 
operator ĥ  and imposing the constraint go = Following the results from 
[52], then we have. 

90 = -i{S{B)b, 

k 

5o , , 30 I 

because 50 is the only relevant scale, the stationary solution of the above equation gives 
the following relation for enslaved bosons. 

with go = ,JiTTh^abgAi.iAB/m. The interaction in the single channel model is given 
by, A = Abg + Ares, with Ares == -AbgAB/(B - Bo), the contribution due to the Fesh-
bach resonance. Using (4.9) in (4.8) we have H2ch Wic/,. We call the bosons enslaved 
because they can effectively be defined in terms of the atom pairs with opposite mo-
mentum. In the broad resonance limit, the above mapping suggests the possibility that 
the single channel model could describe the physics of the system very well. The broad 
resonance limit is defined as: k^ro < 1 with the range of the interaction defined as 
To = 8TTh:̂ /{m^go). The interpretation of ro comes from the fact that the two-body s-wave 
scattering cross section of the two-channel model is given by [50, 52,169]: 

from the above expression it is clear the when jaj ^ 00, and ro ^ 0, the effective interac-
tion strength is given by Aeff ~ A;F|/o(fcF)t = 1, therefore the name unitary limit. When 
kpro oc, this is the infinitely narrow resonance limit. One can relate the gap to the 
mean value of the molecular condensate with (4.3) as: 

i b X ) « f ^ A ' ^ = ^ A ^ (4-10) 

where, 
f AB V (. kira^A' 

a dimensionless function of the magnetic field, at unitarity ipo = ej^V/(A/iAZ?Abg). How-
ever, if diverges at B = Bo + AB, thus could be thought of being unphysical near this 
point. In the case of "̂ K̂ because AB > 0 the divergence is in the BCS side and we would 
expect the system to be absent of molecules, still we know that the gap vanishes expo-
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nentially as we approach the limit l/kp-a - o o thus the gap falls faster that ip and we 
have that the molecules disappear. In the case of ®Li things are "easier" to interpret since 
we expect a pure BEC, but still the number of molecules should be finite and in fact if we 
had no losses, half the number of fermions. Therefore, this identification is problematic 
and clearly the point B ^ BQ + AB should be studied more carefully in the BEC side of 
the resonance. On the other hand, we may argue that the approximation to represent the 
variation of the scattering length in terms of the magnetic field ceases to be valid away 
from the Feshbach resonance. Therefore a more accurate expression for a{B) most be 
used such that we have the correct behaviour in the BEC limit, depending on the sub-
stance under study, i.e. ®Li or ^"K. Since we have a molecular condensate one can write 
bo « y/T^bo, where iV(, is the number of molecules and 60 refers to a single molecular 
state. In the BEC limit Nt, N/2 and {bib Q) ^ 1, thus we have the following condition, 

lira ipA"̂  = —, (4.11) 

Since we know from the solution of (4.5) and (4.6) that the gap increases in the BEC side, 
we arrive at a contradiction, because the gap should go as A ~ (kpa)'^ 0 in the BEC 
limit from using (4.11). This gives some understanding of the partial success of the simple 
extended mean-field picture in the asymptotic BCS limit, and motivates the possibility to 
modify theories of this kind to address the problem in the strongly interacting region. 
Still, one must bear in mind that in the problem with a medium or a small size resonance 
one should include more channels in the theory to analyse the problem even qualitatively 
[52,181]. The approach that we will follow here differs from that of modifying the single 
channel model and we refer the reader to the vast literature in the subject, see for example 
the relevant sections of [19, 51, 63] and references there in. 

4.2 IVlagnetic impurity models 

In the early 1960's the search for theories and mechanisms to describe and understand the 
behaviour seen in non-magnetic metals with magnetic impurities motivated the develop-
ment of new descriptions such as the one given by Kondo model [61] and the Anderson 
model [62]. The relevance of these models for ultracold atoms comes from the fact that 
under the approximation of having only one molecular bound state while neglecting the 
atom-atom interaction in the two-channel hybrid model, the BCS-BEC crossover problem 
is equivalent to the anisotropic Kondo model [181]. In this context we will summarise 
the well known characteristics of the Kondo model, and we will show that by means of 
a canonical transformation the Anderson model will allow us to include the terms nec-
essary to consider the atom-atom interaction missing in the Kondo model mapping of 
the two-cannel model. This will allow us to extend region of validity of the mapping to 
an equivalent magnetic impurity problem and study the crossover in both BEC and BCS 
side of the Feshbach resonance. With this in mind, we will also summarise the param-
eter regimes of the Anderson model from well know results [184], we will review the 
well known results of the Schrieffer-Wolff canonical transformation that maps the Kondo 
model and the Anderson model [194]. 

The Kondo model considers the interaction between the conduction electrons in the 



§4.2 Magnetic impurity models 

non magnetic metal with the spins of magnetic impurities, which can take any allowed 
quantum number and don't interact with each other. The Kondo model is the following 
6 

Hk + E ( r i f . ^ , - ^ a S a ) + '^k+q^^^^.i^q-T + ' 
k.fT k.q 

(4.12) 
where c'^ (c) creates (destroys) a conduction electron or fermion carrier, and the occupa-
tion of the electrons is n^ = f:̂ , The operators S" are the spin components of the 
impurity, and they obey: [5 " , 5+ ] _ = such that: 5 + = + iSy and 5 " = - iSy. 
The sub-indices k and q denote momenta and a's spin. The energy of the conduction elec-
trons relative to the Fermi energy is given by Ck and the Jj^ ^ are the interaction strengths 
for different spin, u G {x, tj, zj. When all the J's have the same value (,/'' = J W i^), the 
model is referred to as isotropic while if the J's are different it is called anisotropic. The 
sign of the J ' s determines if the coupling is anti-ferromagnetic (./ > 0) or ferromagnetic 
( J < 0). This meaning that the spins tend to align in the same direction (ferromagnetic) 
maximising their magnetic moment or the they minimise the energy by forming oppo-
site spin pair configurations (anti-ferromagnetic) to minimise their magnetic moment. 
The relationship to the two-channel hybrid model follows from identifying that the spins 
correspond to the Feshbach bosons and the conduction electrons are analogous to the 
free atoms. Therefore, a spin-flip corresponds to the creation of a FB and a particle-hole 
excitation to a Cooper-pair, see Fig. 4.3 (right). Because the spins do not commute, the 
interaction of the spins with the fermion carriers has the effect of flipping the local spins 
introducing local correlations. This changes the contribution to the energy due to inter-
actions, the self-energy S of the fermion carriers and therefore the collective excitations 
of the system have a finite life-time which leads to have a contribution to the resistivity. 
The resistivity is defined as, 

g ~ Im[E] 

The self energy E can be defined by using the Dyson equation and the interacting G and 
the non-interacting Go Green's functions as [44], 

E = - ' 

When J 0, Kondo did a perturbation theory calculation of the energy of (4.12) to 
third-order and a minimum in the resistivity appears which depends on the temperature 
[61]. This phenomena is now called the Kondo effect. The resistivity of the system is then 
given by, 

g{T) = Q{0) (l -4,7M^p)ln 

The Kondo term is the J term, the temperature independent part and the h term is 
due to phonons. The density of states at the Fermi level is p(€f) and D is the bandwidth, 
such that: 

^^^^^ ^ I Pier), for -D<e<D, 
0, elsewhere. 

''In the old days, this model was called the s-d model, and was originally introduced by Zener [1951. 
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Figure 4.3: Left Panel: Energy diagram for for the position of magnetic impurity energy 
levels e/ and ej + U. The effect of the detuning with respect to unitarity, induces Zeeman 
splitting in the equivalent single impurity picture. The spin up states (red) correspond 
to the configuration that minimises the energy for positive detuning (BCS side of the 
resonance) and the spin down states (yellow) correspond to negative detuning (BEC side 
of the resonance).Right Panel: The equivalence in representations between the magnetic 
impurity models and the crossover problem. A molecular bound state, Feshbach boson, 
is equivalent to the spin-flip process in the impurity level (a). A Cooper-pair is equivalent 
to a particle hole excitation of a fermion carrier in the impurity model (b). 

which means that the density of states is considered constant and equal to its value at the 
Fermi level over the energy span 2D. 

As one decrease the temperature there is a critical temperature called the Kondo tem-
perature Tk where the perturbation theory used to to derive the resistance minimum 
breaks down. At this energy scale, high energy processes in the self-energy become dom-
inant and the theory diverges. This is called the Kondo problem, here the theory needs to 
be modified because the resistivity and other quantities become infinity as we approach 
T = Tk, this being un-physical. Renormalization Group Theory [196] was devised as a 
way to solve divergency problems of this kind, when suddenly all energy scales become 
relevant. The Kondo temperature T^ is given by [60,184], 

ksTK ~ Dexj) 2\J\p{ei (4.13) 
The Kondo temperature signals the energy scale where the interaction becomes non-
perturbative as we decrease temperature. 

In contrast to the Kondo model, the Anderson model is based on the assumption that 
the fermion carriers in the dilute magnetic alloy interact with other "localised" electrons. 
This interaction is controlled by the Coulomb repulsion of the two localised electrons of 
opposite spin and the probability of overlap of their orbitals with the conduction elec-
trons, i. e. the hybridisation. The Anderson model is thought to have a more realistic 
description of the processes that occur in the system [60]. In the BCS-BEC crossover 
problem because we have neutral atoms there is no Coulomb repulsion but instead we 
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have the energy that takes to have a doubly occupied impurity and this is proportional to 
the difference in magnetic moments from the two lowest hyperfine states and the width 
of the resonance. As we move away from the resonance the detuning from the resonance 
shifts the local chemical potential of the impurities depending on their spin inducing a 
Zeeman type splitting, see Fig. 4.3 (left). 

Still, the Kondo model has the essential ingredients to solve the problem of the mini-
mum in the resistivity seen in experiments. The Anderson model solves the problem of 
explaining the ferwmagnetism seen in dilute magnetic alloys, and provides a picture on 
how to interpret the flipping of the spins that leads to correlations in the Kondo model. 
The ferromagnetic phase in the AM represents the formation of the Feshbach Boson in 
the mapping to the BCS-BEC crossover problem. The AM is written as follows. 

WAM = HO+ 1-1 v-

where. 

k.CT ' cr 

Hv = + 
k.cr 

where p ( / ) creates (destroys) a magnetic impurity with number operators = faU-
The energy cost of having a doubly occupied impurity is U and the hybridisation is V 
which is proportional to the probability of of overlap between the localised impurities 
and the conduction electrons. The impurity energy levels are e/ and e/ + U. In the limit 
where U = 0, the AM is sometimes referred to as the Fano-Anderson model [60] and 
can be solved exactly by the Green's function technique, its solution for the case ( 7 ^ 0 
can be found exactly in the limit where Vi, = V =constant by means of Bethe ansatz ^ 
[185,186] and it was first solved for all parameter regimes using Renormalisation Group 
theory [187,188]. 

In the AM picture the localised electrons can jump to the conduction band because 
of the hybridisation, and vice-versa. This induces the possibility of occupation of the 
localised state by a conduction electron by Pauli blocking the state with the same spin 
polarisation. If = 0 then the process of "flipping" happens without any preferred 
sequence. Still, if f/ ^ 0 then there is an energy cost to populate the state by two elec-
trons. Therefore, hopping on and off the localised energy state becomes correlated, for 
one electron of a certain spin to populate the localised state from the conduction band 
the localised electron with the same spin must leave. This then gives the appearance 
of flipping the spin, while there is no flipping actually taking place. In the BCS-BEC 
crossover picture the creation of a Cooper-pair and a Feshbach boson occur in an analo-
gous way Depending on the energy cost to have a doubly occupied impurity a FB will be 
created and as this happens a Cooper-pair disappears, then a free atom interacts with the 

^The solution using Bethe ansatz of models of the type of the Anderson model or the Kondo model can be 
done in the limit where the system is isotropic with constant hybridisation and when the dispersion relation 
can be linearised provided that the Fermi energy is much larger than all other energy scales. In this limit the 
system is quasi-one dimensional and these kinds of models are integrable. 
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Figure 4.4: Graphical solution of the equations 4.14, with parameters {.r, y} for 5} 
(left), { - 5 , 5} (middle), {i , 1} (right). The solutions are magnetic with valence one (left), 
non-magnetic with valence different from one (middle) and non-magnetic with valence 
one (right). 

localised fermion generating a Cooper-pair. Once the Cooper-pair is formed and when 
another free fermion interacts with the occupied impurity level a FB is formed and the 
cycle starts again. 

The solution in mean-field for U ^ 0 gives some qualitative behaviour, one approxi-
mates the interaction term as, 

Urif^nf, +U{nf^)nf^ - U{nf^){nf^), 

where (•) is the ground state average. The above approximation allows to solve the model 
as shown by Anderson [62]. The regimes of the model are controlled by the solution of 
the following well known system of equations for the expectation value of the impurity 
populations of opposite spins [62], 

cot(7m|) = yrii — yx, 

cot(7rn|) = yri-f—yx, (4.14) 

with, X = {ef — ej — V) /U, y = U/T, and F = 7rp(f/.') V"̂ . Plots of the equations for 
the magnetic and paramagnetic cases can be seen in Fig. 4.4. One can see in the left 
plot of Fig. 4.4 that the magnetic regime has 3 points where the two curves for n j and 
n | , intersect, two of them (the extrema) are the magnetic solutions (n| ^ n^) and the 
one in the middle is the non magnetic one (n^ = n^). One can check that the energy 
is minimised for the magnetic solution, if it exists. As one changes the parameters of 
the model the three mean-field solutions collapse to a single solution, which is always 
non-magnetic but can have integer or non-integer valence ( n j = n | + nj) . 

The model is symmetric [184] when the impurity levels are placed symmetrically with 
respect to the Fermi level. Therefore, the model has particle-hole symmetry and e/ = 
-U/2. In this case then n ; = 1, always. If the model is asymmetric, then there is no 
particle-hole symmetry, and e/ ^ -U/2. In this case the valence nj can take non-integer 
values, having fluctuations [60]. 

Assuming that we have a macroscopic sample, the solution where n^ ^ n^ ® , gives 

"In the zero temperature limit at the microscopic level this criteria is an artefact of mean-field where one 
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Figure 4.5: The Anderson model regimes depending on the impurity level c j and the 
interaction C/ for V = 0, mixed valence regime (a), magnetic regime (b) and the non-
magnetic regime [Reproduced after [184]]. 

qualitatively the regime where the magnetisation in the system is different from zero and 
develops a local moment. This is the Kondo limit of the model. 

In order to further understand the model is useful to look at the solutions when the 
hybridisation is zero, as discussed in [184]. The possible regimes of the model in this 
limit are controlled by value of U and the position of the impurity level relative to the 
Fermi energy. In the case when one of the impurity levels is at the Fermi energy or very 
close to it while the value U is large, we are in the valence fluctuation regime [Fig. 4.5 
(a)]. When one of the impurity levels is below and the other one above the Fermi energy 
while U is large then we are in the magnetic or Kondo regime [Fig. 4.5 (b)]. The remaining 
configuration is when both impurity levels are well above or below the Fermi level; then 
the system is non magnetic [Fig. 4.5 (c)]. As the hybridisation is turned on, the picture 
becomes more subtle and one needs to take care properly on how the effective impurity 
levels are defined [184,197]. In BCS-BEC crossover problem, the Kondo regime is when 
we have a FB in the BFC side of the resonance. As we move towards the BCS limit the 
system is in a crossover moving from the Kondo limit to the valence fluctuation regime 
and deep in the BCS regime to the configuration when both impurity levels are above or 
below the Fermi level. 

The hybridisation V turns on the scattering on and off the localised energy states and 
U regulates the correlations, these in combination with the value of e/ give a rich variety 
of physics. The full solution of all the different regimes according to the parameters was 
done by Krishna-murthy, Wilkins and Wilson [187,188]. 

The AM can be related by a canonical transformation to the Kondo Hamiltonian. This 
procedure gives the equivalence in the limit of large U of the AM [60,184]. The following 
well known canonical transformation is used [194], 

n = e'^He'^, 

has broken the symmetry between different spins. 
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where, to construct S, we impose. 

SjHo = —TLv-

Then to the first order, neglecting all other higher order commutators, we have: 

ii = Ti-o + — iS, Tiy _. 

Using the resulting commutator and taking the limit where double occupancy of the 

impurity is forbidden {U ^ 0), one can write the result of the transformation in the 

following form: 

n AM = Wo + ^ J k . q5c ( k , q ) • 5/ 

k.q 

k,q 

(4.15) 

where the second term has the form of the spin-fermion carrier interaction of the Kondo 

model. In the above, we have defined, ./^.q = 2VkVqZk, W-̂ .q = ^kKj^k/ with 

^k = -
ek - £/ 

^k = -
(fk - £/) (ek - £ / - {/) € k - e / - f / 

(4.16) 

and the spin operators are. 

= 2 E ( ^ y ^ f ) e . 
je{x,y,z} 

je{x,y,z} 

where a^ are the Pauli matrices. The unitary vectors in Cartesian coordinates are denoted 

by ej, and the "spinors" and are defined as follows: 

/ 

The interaction strength and the impurity levels are renormalized in Wq to C/ = [/ + 

Ek-^k.k and i f = e/ + H'̂ k.k (see the Appendix B for details). In the limit when 

|k| Ri kf , neglecting the renormalisation in Wo while transforming the electron states to 

include the last term, we arrive to the situation when only the term with the spins of the 

Hamiltonian (4.15) adds to Ho- This limit gives the Kondo model. Then it follows that 

the Kondo coupling J " = J in (4.12) is given by: 

J ^ -

^f uy 
(4.17) 
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For the symmetric Anderson model is J = and the coupling is anti-
ferromagnetic. 

4.3 From the Anderson model to the BCS-BEC crossover 

In this section we will show how the Anderson model and the two channel model of 
the BCS-BEC crossover can be mapped to each other in the limit where it only exists one 
molecular state or Feshbach boson. We will give the relationship between parameters 
of the equivalent pictures of these two crossovers. We consider the following Anderson 
model, 

"̂ AM = "ho + Hv, 

where. 

k,(T ' cr 

k.cr 

(c) creates (destroys) a fermion carrier which is a projected representation of the atom â  
(a) creation (annihilation) operator, (/) creates (destroys) a fermionic impurity which 
corresponds to an atom with the energy necessary to form a FB. They have number oper-
ators, n = /a/cr and n = ĉ̂ . The sub-indices k's denote momenta and cr's spin 
. The energy of a carrier relative to the Fermi energy is given by et/ the energy required 
for double occupancy of the impurity is U, the hybridisation is V. The impurity energy 
levels at zero field are e/ and e j + U, while in this model the impurity energy levels for 
opposite spins are modified by a detuning such that, e/̂  = £/ + sgn{a)d{B) and S{B) is 
the detuning with respect to the Feshbach resonance. This means that there is a shift in 
the impurity energy levels of different spin [see Fig. 4.3]. A similar Hamiltonian has also 
been considered in the study of quantum dots coupled to ferromagnetic leads [198]. We 
can perform a canonical transformation as follows, 

n = e^HAue-^ = + E 
n = l 

1 

n! ( n + l ) ! j 
nn, (4.18) 

with. 

while. 

n times 

Hn = [<S, [<S, [ 5 , . . . \S,Ux 

S.na\_ = -Uv-

From Section 4.2 we know that, in a first order expansion, the first two terms of H 
reproduce the Kondo Hamiltonian [60]. This is equivalent to second order Rayleigh-
Schrodinger perturbation theory [199]. If we go to higher orders, we have the generation 
of terms with BCS-like symmetry [200-202] which will allow us to relate the AM and the 
BCS-BEC crossover problem including the background interaction between atoms. We 
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consider Ho and the first two odd terms of Tin that have the correct symmetry in (4.18) 
[199]. Then, equivalent to sixth order perturbation theory, in the large U limit, taking 
fk ~ fkp — e = const., while considering the sum over k close to the Fermi momentum, 
we have the following (see the Appendix B for details), 

n,if = no + nc~c + ns-c, (4-i9) 

where the effective carrier-carrier interaction is: 

Wc-c - A ^ E (4.20) 
<T k.q.ki,k2 

and the effective spin-carrier interaction is: 

- E E + , (4.21) 
<T k.q 

with. 

A = -VU'\ 
/2 A /-oi/'i a2 J = V'^A - 1 ) , 

71 = - J . 

and A = —(e — £/)"'• Next, we take the limit where ki « q and k2 w k, considering 
only scattering processes between fermions of opposite spin with the same momentum 
and pairs of holes with the same momentum. At the same time, we neglect the 71 term in 
(4.21), which is equivalent to imposing, ĉ̂ ^ ^ « cĵ  j , making the model anisotropic 
and having no Kondo component. Thus, the effective Hamiltonian is ^ : 

^eff = E E ] ^^.a^k.a + + ' H . ^ ^ q . - J - ^ f a f ' + E " 
T k.q I J <T 

(4.22) 
where, e = e + V^A (V'̂ A'̂  - l) and e/^ = ^U + V'̂ A (l - V'^A^). Similar results, obtained 
via canonical transformations, have been used to analyse the periodic Anderson model in 
three dimensions [201], and the two band model for the high-Tc superconductivity [202]. 

Using the above equations, the effective Hamiltonian can be related to the two-
channel hybrid model of the BCS-BEC crossover problem language as follows. We start 
by relating the impurity operators to their spin representation and this to its approximate 
equivalent bosonic representation. We interpret {fl) as the annihilation (creation) op-
erator of the spin a component of the FB composed of two fermions, S~ 

and ^ S+ , while rif̂  - r i f , = ^ Ĵfeg. We consider that a FB can be rep-
resented by b() and restrict the sector of Hilbert space of the bound state to the one of 
two levels with an empty or occupied molecular state, with a single particle^". Then we 

'Where the volume factor 1 /V comes from eliminating the sums over ki and k^, in the A term. 
"'The molecular condensate operator in (4.8) is bo Ri \/N^bo, in this section we work with one molecule. 
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have^': 

k.cr V ^^ 

2A 

where the term + V'^A ( l - has been omitted since it only shifts the 

energy and we have taken the limit where k « q in the J term. Following the same 
procedure as in [181], it follows to identify the fermion carrier operators with a suitable 
spin representation. This can be done by the following pseudo spins, 

'"k.T'̂ k.i = ^k • '̂ ka'̂ k.T — '^k' '̂ Lr'̂ k.T ~ '̂ k.i'̂ 'ka - ^k' 

with â . the Pauli matrices. We can relate the above pseudo spin representation to the so 
called symmetrised atom-pair operators d. Then the remaining terms in the Hamiltonian 
can be written in terms of the fermionic atom creation and annihilation operators. With 
the following constraint on the algebra, [d̂ ,̂ _ « • Thus, 

and + 

It follows that the symmetrised atom-pair operators can be defined as. 

A. = X(a 

Therefore, and dl obey (in terms of the atom operators a): 

dl.d^ = - (n + n - 2 (4.23) 

where, a^^ia^,! + "" "a ^ ^^ restrict n^ ,̂ such that, n^^ + n^^^ e 

{0,4} , empty or doubly occupied, in which case the representation in pseudo spins is 

meaningful [182]. One has for the anti-commutator of the d's, 

d^.di n + n — 2 
2 V «k '̂ k̂ 

- 4k,i«-k,l4,T«k,T - «-k,T«-k,T«-k,ia-k,i-

In the limit of empty or double occupancy we have, 

where 1 is the identity matrix, in this basis, Ik = E a ~ ^k- using the 

"Where the volume factor, 1/V^ comes from eliminating the sum over q, in the J term. 
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relationship with the c's we have the following equations from the commutator and anti-
commutator of the d's, 

- = -CTk-

"ck.T = Ik. 

where the solutions are, 

rtck and = J (Ik + fT )̂ • 

Therefore, we have that, 

I ] " ' c , = I Z + constant. 
k.cr k.<7 

for the kinetic energy of the atoms. The term in (4.19) that comes from the carrier-carrier 
interaction transforms as follows, 

where we used: f'k ~ "̂ k ^ ^ ' ^ k f J^^^e we can readily identify that a Cooper-
pair corresponds to a particle-hole excitation in the impurity picture [see Fig. 4.3]. Alter-
natively we can perform a canonical transformation and obtain the following correspon-
dence between the c's and the a's. 

4 a 
21/4 

2 
21/4 

+ 2 1 - «-k.T 

'k,t 
21/4 

2 ( « - k . i + « L T ) - I H.l " "-k.T 
21/4 

2 (« -k . i+«k ,T) 
21/4 

+ 2 ( - «-k,T 

4 . , 
21/4 

2 («-k,i + «k,T) 
21/4 

2 ' - «-k,T 

we can write the effective Hamiltonian as follows: 

k.o- ^ ^ 

t t 
- y Z^«k.i«-kj«-q.T«q,i- (4-24) 

q.k 

where, the a's correspond to the fermion atoms and the bo's to the molecular bound state 
in the center of mass frame of reference. This is the so called two-channel hybrid model 
used in the BCS-BEC crossover problem in the limit where we have one bound state 
as seen from comparison with (4.8). From this correspondence, we can identify, i = 

- M/ = go and -2A = Abg, with the parameters from the crossover problem: 
.90 = i/AbgA/iAS and Abg = 
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At this point, we have established the connection between the AM and the BCS-BEC 
crossover problem. Since, we can map between the two models in the above limits, we 
can rewrite the parameters of the AM in terms of J and A from the ultra-cold gas system. 
To this end we need to solve the following system of equations: 

J 

T P 
= Vx{2x^-\), 

^ = - V x ' . (4.25) 

where, x = VA, and we scaled the coupling coefficients properly, so that the equations are 
in the units of energy. Close to the Fermi energy, A « 1/e/. We have for the parameters 
of the equivalent impurity problem, 

V ^ 

ef « 

e = 

3/2 % 
2l/4yl/4 

e - e ; (4.26) 

From our equations it is evident that if one would consider the background interaction to 
be zero then one would have a divergent hybridisation which would be unphysical, and 
the identification with a Kondo-like model questionable. Thus including the interaction 
between atoms fixes this problem. The last parameter to be determined for the AM is the 
interaction energy of the impurity U. We consider U to be given by the maximum value 
it can have in terms of the relationship with ./, from the Kondo limit of the symmetric 
Anderson model, therefore, 

J l^bgl 

From the estimation of e/ and U, we can see that at unitarity the AM is symmetric, 
ej = -U/2 and as we move to the BCS side the AM becomes asymmetric. The results 
are consistent with Falco and Stoof that obtain the Kondo model at unitarity [181]. Be-
cause the hybridisation depends explicitly on the quantization volume V, we estimate it 
following the same procedure as in [203], we have then, 

S t t 

" 15 V J ' 

where PO is the peak density and UJ/2TT is the trapping frequency The trapping frequency 
for a fixed Fermi energy depends implicitly on the number of atoms. For typical parame-
ters of ®Li and ''^K the estimation of the hybridisation as a perturbation parameter breaks 
down, because of the dependence on the trapping frequency in the quantization volume. 
But the proper perturbation parameter is x = V A. In order to verify this, we need to 
consider the full commutator expansion in (4.18). This expansion has been calculated 
to infinite order by Chan and Gulacsi [200]. The resulting equations for the coupling 
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parameters when the value of U is large are: 

J 

yv 
= ~2VxF{2V2x) 

^ = 2Vx(F(2y2x) - F(2x)), (4.27) 

where, 
, sin a; c o s x - l 

I^(x) = + 2 • 
X 

The equations (4.27) reduce to (4.25) when x 0. Therefore, the proper perturbation pa-
rameter is X and the solutions we obtain from taking the first two odd terms in the series 
in (4.18) hold provided |.t| < 1. There are infinitely many solutions of (4.27) for V and 
X for fixed ,7 and A, due to the oscillatory nature of F(x). The solution that corresponds 
to X < 0 closest to zero corresponds to the solution from the third order expansion, for 
small |a:|. Using experimentally relevant parameters we have verified that the condition 
for using the third order expansion (|x| < 1) is fulfilled with the available data of '''Li and 

In the mapping of the two-channel model to the Anderson model, we can trace back 
the origin of the the interaction between atoms with different spin projections in the two-
channel model to the interplay between V and (7. The probability amplitude of hoping V 

of an effective particle or hole and the difference in energy U between the two projections 
of the localised energy state of the impurity, generates by means of the canonical transfor-
mation the expansion that explicitly exhibits the correlation between the localised energy 
levels representing the Feshbach boson / ~ bg and the atoms c ~ a. The impurity or 
molecule induces higher order scattering processes that effectively induce correlations 
between the atoms in the c representation as in the regular picture of the generation of 
multi-particle processes of the Anderson model [60]. 

4.4 Anderson model physics in the crossover 

In order to know the regime where the BCS-BEC crossover problem corresponds to the 
AM, we need to know the hybridisation parameter, T = The hybridisation pa-
rameter is the energy width of the impurity level assuming that the density of states that 
represents the impurity state is a Lorentzian or Cauchy distribution [184]. To estimate 
the value of F, we use the semiclassical approximation of the density of states per parti-
cle of a non-interacting Fermi gas in a harmonic potential [204, 205], p{e) = re^/(h^^uj^N), 

where w is the angular trap frequency, and the proportionality constant is r = 1, which is 
fixed by the relation: 

/ Pie)de = 1 
Jo 

. It follows that: e^ with N being the number of atoms. Then we have 

= 3/eF- Therefore, the angular trap frequency can be defined as: uj = e^/ft(37V)i/3 
and we can parametrize in terms of the number of particles for fixed Fermi energy 

For ®Li, typical experimental values are e% ~ .58/iK, N ~ 10̂  — and pQ ~ 7 6 x 
IQis m-3 with Abg/e?. ~ -13.7V/yV, andgo/e^,, = 7.83x 10^/iViV. Then we have: V/e% ~ 
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Figure 4.6: The ratio of U and the hybridisation parameter, [//T at unitarity, as a function 
of the number of atoms N (left). The magnetisation m at unitarity as a function of the 
number of atoms N (right). The solid (green) curves correspond to the parameters of ®Li 
while the dashes (blue) correspond to ''^K, see main text. 

4.9 X lOViVi/4, and U/ê p = 2|e/|/eO ~ 3.2 x lO'l 
In the case of'^"K we have ~ 2.16/iK,po = axioms m'^, Abg/e^ ~ 4.8x lO'V/A^, and 

= 2.8 X lO^yvTiV. Then, V/e^ - 1.8 x and U/e% = 2 | e / | / 4 - 8.9 x lOl 

The regime of the system is controlled by the impurity level £/ and the ratio U/T = 
4v^e^/(3v/27r5o)/ as seen in Fig. 4.6. The ratio U/T is dependent on the width of the 
resonance, the background scattering length, and the number of atoms for a fixed Fermi 
energy. With these parameters and at the unitary limit {B = BQ) we can see that the 
situation corresponds to the symmetric single impurity Anderson model. As we move to-
wards the BCS side of the resonance the model becomes asymmetric. Depending on these 
quantities the system will go between being frozen, developing a local moment, in the va-
lence fluctuation, or in the empty impurity regime [184,188,197]. The magnitude of the 
aforementioned quantity suggests that Anderson model physics are very relevant in the 
BCS-BEC crossover near unitarity, note that in the estimation of parameters we have con-
sidered the broad resonances of ®Li and Because the ratio U/e% is much larger than 
one, this length scale dominates the behaviour in the crossover region, and the equiva-
lent Kondo temperature can be very large relative to which is the temperature scale 
of the system. Therefore different energy length scales are relevant and we are indeed in 
the region of the Kondo Problem. Because of this, we take the mean-field solution of the 
AM and use the results that have been extracted from the renormalization group solution 
and the Bethe ansatz to have a qualitative understanding of the behaviour. The Kondo 
temperature for the AM is [184]: 

ksTK = u 
/ r y / 2 / _ + 

y2Uj 
exp 

2UT 
(4.28) 

Using our equations (4.26) we have that at unitarity as we increase the number of atoms, 
ksTK decreases being the same order of magnitude as e^ for large N [see Fig. 4.7 (left, 
dashed lines)]. For different particle numbers, as we change the magnetic field in the BCS 
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Figure 4.7: The Kondo temperature relative to the Fermi energy. Left Parcel: The Kondo 
temperature as a function of the number of atoms at the resonance (dashes), and when 
m = 0 (solid), where blue corresponds to '"'K and green to ^Li. Right Panel: Kondo Tem-
perature for ''"K at fixed particle number as a function of the magnetic field on the BCS 
side of the resonance, BQ = 202. IG. We consider N = 5x 10® (purple). 2 x 10^ (blue), 5 x 
10® (green). 

side of the resonance the Kondo temperature increases having a maximum when one of 
the impurity levels is at the Fermi level, see Fig. 4.7 (left, solid lines) . 

Since the possible regimes depend on both the width of the resonance and the back-
ground scattering length, the range of number of particles to observe the crossover be-
tween Anderson model regimes would be extended for a narrow resonance, and U/T 
varies in magnitude over a larger scale. The energy difference between the two im-
purity levels U, is proportional to the width of the resonance. Therefore, the consid-
eration of single occupancy of the impurity is valid for a broad resonance, and in the 
limit of a narrow resonance we would recover a system with a higher ratio U/F, because 
U/r ~ In the unitary limit the impurity level ej = -U/2, while U is large 
and can be of the same order of magnitude of P for experimentally relevant number of 
atoms N ~ 10® - 10®, in the case of ®Li. Therefore, as we move from unitarity to the BCS 
side with these parameters, the system is moving towards the valence fluctuation regime 
of the AM, defined as the regime where: - e / < P < {/ see [188]. The calculations using 
mean-field theory suggest this behaviour, as seen from the dependency of the magneti-
sation m on the number of particles plotted in Fig. 4.6. Clearly the plots show that m 
increases as a function of the particle number moving to the Kondo regime, towards sat-
uration m = 1. As one decreases the number of atoms, P increases and the system moves 
towards the frozen impurity regime, which is equivalent in the symmetric AM to the 
strong coupling regime [187,188]. The valence at unitarity is always one independent of 
the number of particles, because the AM is symmetric. 

The AM in the valence fluctuation regime physically corresponds to the situation 
where depending on the number of atoms, the system evolves from the formation of 
the FB to having degeneracy between states for free particles (empty impurity) and 
the molecule (occupied impurity state). This fact is relevant to recent experiments 
[160, 163, 167, 168], where a contribution of non-condensed pairs has been measured. 
This suggests that the valence fluctuation mechanism is complementary to other ap-
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proaches employed to understand the formation of the so-called "preformed pairs", non-
condensed Cooper-pairs, in strongly interacting fermion systems. 

As one moves away from the resonance at a fixed number of atoms, the only param-
eter that changes is the impurity level of each spin, effectively a local chemical potential. 
If we change the magnetic field from its resonant value, the local chemical potential of 
the impurity changes the position of the lowest energy of the impurity which can now be 
either be well below - t / / 2 (negative detuning) or well above -U/2 (positive detuning). 
From the regimes of the Anderson model (4.5), it is implied that the system should satu-
rate in the magnetic regime below the resonance, to correspond to the BCS-BEC crossover 
problem. Still, here the description in terms of the Anderson model needs to consider the 
corrections away from the large U limit, because configurations with valence n/ > 1 can 
occur. This is in agreement with what we would expect from our results plotted for the 
Kondo temperature [see Fig. 4.7], This implies that the magnetisation is different from 
zero and maximal, equivalent to have a FB in the system on average at the resonance. In 
contrast, as one moves to positive detuning the system moves towards to partially mag-
netic and non-magnetic regimes with the highest impurity level moving towards Fermi 
level and then well below the Fermi level. This fact signifies that there is less than one FB 
in the system on average, and the system moves away to the valence fluctuation regime 
and later to the empty impurity regime [188]. As one would expect, the system is partially 
magnetic away from the resonance while the magnetisation is maximal at the resonance 
in the mean-field picture, thus we are in the Kondo limit of the AM at unitarity. Since 
U/r is proportional to as one decreases the number of atoms one moves away from 
the Kondo regime of the AM [187,188] in the BEC side close to unitarity, see Fig. 4.6. 

The behaviour of the system in the strongly interacting region of the crossover with 
the parameters of ®Ti and "̂ K̂ is shown in Fig. 4.8. In order to understand this region we 
have used the mean-field solution of the Anderson model [62]. Here we show the region 
where mapping to the AM is vaUd, which is for the valency: 0 < n/ < 1, for the mean-
field solution the upper limit is when B = Bq. One can see that, as we move towards 
the BCS side of the crossover, we are equivalently moving across different parameter 
regimes of the single impurity Anderson model. The formation of the FB is conveniently 
represented by the magnetisation in the system in mean-field approximation. We can see 
that in the unitarity limit the occupation of the molecules grows to a saturation value 
where for fields B < Bq the mapping ceases to be valid. In the BCS side of the resonance 
the system becomes non-magnetic, reaching the minimum in magnetisation for B ^ Bo + 
I ABj , here there is no FB on average. The discontinuous change in the slope, in Figs. 4.8, 
when there is no FB on average in the valence is probably an artefact of the mean-field 
solution of the Anderson model. One would expect things to be smooth concerning n j in 
a more sophisticated solution scheme. On the other hand, we would expect the transition 
to the magnetic regime qualitatively the same. The limit where the valence in mean-field 
is one, corresponds to the symmetric Anderson model, because e/ = - f / / 2 , here the 
system has its maximum magnetisation in mean-field. 

Away from unitarity, using the renormalization group results from [187,188], one can 
deduce the following facts. For moderate and experimentally relevant particle numbers, 
r f/, starting at unitarity, the system moves from being the symmetric AM to become 
asymmetric as we move from the resonance. The system moves from the Kondo regime, 
to the mixed valence regime as we increase the magnetic field. Once there is no FB on 
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Figure 4.8: The magnetisation equivalent to the average occupation of the molecular state 
(PqIq) = rn = n-i - ni and the valence n / == n^ + n^ from the mean-field solution of the 
AM Eq. (4.14) [62]. Left Panel: The behaviour for the parameters of ®Li, with N = 10^ 
(dashes) and 5 x 10^ (solid), Bq = 834G. Right Panel: Results for "Or, we have considered 
Af = 5 X 10® (dashes) and 3 x 10^ (solid), Bg = 202. IG. Note the limit where l / k f - a - o c 
for 40k i s B = 209.9. 

average, the highest impurity level starts to move below the Fermi level and then the 
system starts to move towards the frozen impurity regime. The frozen impurity regime 
is defined as n / = 0, with the lowest energy level being the one with no impurity. As 
the impurity energy reaches [/ above a certain critical energy, the system moves from the 
frozen impurity regime towards the empty orbital regime. In the empty orbital regime 
all the impurity configurations have the same probability, thus this is the regime domi-
nated by thermal fluctuations at high temperature. In this region, the mapping between 
the two-channel model and the AM breaks down because all the configurations for the 
impurity fillings must be considered, not only Uf < 1. Same situation happens for fields 
lower than Bg, where the mean-field solution of the AM would predict a decrease in the 
magnetisation moving towards the doubly populated impurity limit, r i j = 2, thus the 
model is un-physical. Away from the resonance in the BEC side, the description based 
on the single impurity breaks down since we expect the number of molecules to grow 
and ultimately achieve the conversion to a molecular gas. Therefore, depending on the 
density and temperature the interaction among molecules needs to be taken into account 
and Bose-Einstein condensation should also be considered. In addition, the mapping to 
a singly occupied molecular state by means of pseudo-spins is implicitly taken in the 
mapping by truncating the Hilbert space, and occupation numbers of the impurity larger 
than one are thus un-physical. However, we think that by including higher spin states, 
equivalent to additional modes occupied and /o r degeneracy some progress could be 
made, and a degenerate Anderson model [184], lifting the constraint on the Hilbert space 
should be more adequate to describe the situation, while still being in the dilute limit. 
Still, to describe the superfluid behaviour seen across the resonance interactions between 
molecules should be included at some level, i.e see [44, 204]. 
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Figure 4.9: The mean occupation of the Feshbach boson (6g6o) in the BCS side of the 
Feshbach resonance for ®Li. The solid lines are the solutions using the Anderson model 
mean-field and the dashes correspond to using the formula (4.29) with A from the ex-
tended BCS mean-field approach. Parameters are: N = 5x lO'^(green), 1 x 10^ (blue), 1 x 
10^(purple), in (4.29) we have considered: Nb/N = 1 x 10~®(green), 1.2x 10-®(blue), 1.4x 
10"®(purple). 

4.4.1 Comparison between single-channel predictions and the Anderson 
model mapping 

We use the relationship given by (4.10), to relate the gap to the occupation of one Fes-
hbach molecule using the solution of (4.5) and (4.6) in the BCS side of the resonance, 
namely we have, 

{bib,) « ^ 

where 

if = ipo 
AB 

\AB + Bo-Bj = V>o 

(4.29) 

1 -
kpdbg 
kpa 

with, ifo = e|,V/(A/xABAbg) and the number of FB's given by Nb- We fix the concentra-
tion of of molecules such that n = Nb/N < 1. We can tune the concentration, by fixing 
it at the unitary limit, to have a qualitative comparison with the solution of one molecule 
given by the Anderson model, see Fig. 4.9. We find that as we move deeper towards the 
BCS side of the resonance the solution given by the standard BCS framework predicts al-
ways a finite number of molecules that asymptotically approach zero. On the other hand 
the AM solution predicts, as noted before, a critical field B = Be Bq + \ AB\ (or which 
above the mean occupation of the FB is zero. This discrepancy most likely has to do with 
the fact that we have used the mean-field solution of the AM in our estimations, and the 
full renormalization group approach should be used, this requires further investigation. 

In order to further compare the results from the AM approach a desirable quantity 
to know would be the equivalent of the gap. Still, since a single impurity cannot possi-
ble open a gap in the many-body system we can analyse what happens to the fermions 
near the impurity levels and calculate a local "gap" seen only by fermions with energy 
close to the impurity energy levels. In order to estimate this "gap" we need to calculate 

i)/V^. Basically, we need to calculate the expectation value of a w c, 
spin-flip process of a fermion carrier. In general these process are instantaneous and in 
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the thermodynamic limit their average should be zero. Still, dose to the impurity energy 
levels some progress may be achieved by relaxing some considerations. 

Using the Green's function mean-field calculation of the AM by means of the method 
of equations of motion [62], we can generalise the results to calculate the corresponding 
Green's function for (c|[. p . We have. 

Gka.k.' = (Go + V^GlC} ) , (4.30) 

where, 
1 ^ 1 

Gn = , Gf = uj-e{k)' ^ LO-E^ + iT' 

with Ea = e j + Un-a . Here Gq is the non-interacting Green's function and G J = G j a j a 
corresponds to the energy state a of the impurity. The Green's function is defined as 
[206]: 

/
OO , 

-OO + 
The problem with (4.30) is that is zero strictly if cr a' . Still, if we relax the constraint 
due to the canonical anti-commutation relations and write the following, 

GkT,ki = lini n (GO + V ' g I G ] ) , (4.31) 

using that, 

iGpG/ (^GJ - Gq - vepG^^ j , 

with 1/ « (e(k) - E'i)/eF. We let q v 0 and we obtain, 

= - - /" ' Im(GkT,ki)^;w (4.32) J-co 

= ^ { n ^ - 0 i e F - e ( k ) ) ) 6 { e { k ) - E ^ ) (4.33) 

Using the density of states. It follows that, 

r2 /-OO 
(4.34) 

k 

-nt (4.35) 
(F 

,t we can calculate similarly for (cĵ  ^c^ We let. 

2s/2eFV 

^ - + (4.36) 

(n| + n^), (4.37) 
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Figure 4.10: The gap A/e^ and its logaritmic derivative - ] / A d a A for ®Li. Parameters 
are: N = 5 x lO'^(green). 1 x 10'^(blue),l x lO'^(purple) using (4.37) also is shown the 
solution from the extended BCS mean-field (black, dashes). 

In the BCS limit n-̂  = n^ = n / / 2 therefore, 

- ^ ) ^ 0, 
ep V 

consistent with the extended BCS mean-field result. However, a closer analysis with the 
parameters of ®Li shows [see Fig. 4.10] that the valence doesn't decrease fast enough as 
compared to the BCS solution. We can see that as we increase the magnetic field B > Bq 
the change in the gap decreases, and the gap itself decreases qualitatively with the same 
behaviour of the of the BCS solution. Still, the qualitative agreement is lost in the case 
of ^''K since we approach the point where the scattering length is zero (what we call a 
Fermi point) too fast for the valence to have a significant effect. Better agreement should 
be possible with a better approximation for the dependency of the Feshbach resonance 
on B deep into the BCS regime for in principle this might be an artefact of the sim-
ple form used. Also, the interaction strength for the equivalent "gap" must be properly 
renormalized since in our simple estimation we have used the divergent expression for 
the interaction at unitarity, this could be cured by including effects beyond mean-field in 
the Anderson model. Due to our results, a pausible strategy would be to treat the Fesh-
bach bosons and the Cooper pairs in an independent manner, as we consider in the next 
section. 

4.4.2 Possible origin of the pseudo-gap 

Now we move back to the crossover language and use the single impurity solution for 
a dilute ensemble of FB. We independently determine the contribution from the Cooper 
pairs and the Feshbach bosons. If we apply the mean-field decoupling scheme to Fq. 
(4.8), while considering an ensemble of iVf, Feshbach bosons in the lowest state such that 
the interaction in the two channel model is scaled as .go = goNf,. This is equivalent to Ni, 
single impurity contributions. As a result we will obtain the following Hamiltonian: 

Weff « ^ ( e ( k ) - fla) + + E + ^ ' ^ ^ U a ^ . r ) 

k.CT k 
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where. 

On the other hand, from the AM representation, we know that, 

{bl) = ( / | / t > « ^ V^IYR ^ x A T ^ - ^ ^ ^ ' 

(bo) = i f j f i ) ~ -y/uf - my/nj +m + 2, 
where, m = n^ — n^, n j = + n^, depend on the interaction strengths of the single 
impurity problem. Here we are assuming that the molecules are very far apart, and we 
can define a collection of isotropic sets of molecules and "Fermi seas". In addition, 

A B C S = 
k 

is the usual BCS gap equation. In this theory we have assumed that the mean occupation 
of the molecular state is independent of the gap, contrary to the BCS extended mean-
field scenario and the regular two channel equivalence of section 4.1, see (4.10). Then, 
diagonalising the Hamiltonian, we have: 

Weff = + constant, k,cr 
where the 7's are the Bogoliubov modes and the dispersion relation for the excitations is 
given by = i/(e(k) - + |A(,p. On the BCS side of the resonance, we have: 

^k = ^(e(k) - + ^ ( ( 6 0 ) + (^4))Abcs + + ^Ics- (4-38) 

where, without loss of generality, A B C S E One can see that if A B C S = (no superfluid, 
T > Tc), there is a pseudo-gap contribution to the excitations given by the valence and the 
magnetisation so that: A^^ = - rn'^){{nf + 2)2 - rn^)/{4V), as the one seen in 
experiments [167, 168], From our analisys in the previous sections this contribution can 
be attributed to valence fluctuations and the average population of the FB. At unitarity, 
since n/ = 1 the pseudo-gap contribution only depends on the average population of the 
FB, see Fig. 4.11. As we increase the number of atoms N, rn saturates to one and the 
contribution vanishes [see Fig. 4.6 (right)]. Moving away from unitarity the pseudo-gap 
depends on both the magnetisation and the valence which in general has fluctuations, 
Tif y^Integer. These results are relevant since in the regular treatment using the single 
channel model there is no way to obtain a contribution for the pseudo gap, because the 
molecules vanish as the Cooper pairs disappear and the usual BCS gap is zero. 
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Figure 4.11: Left: The pseudo gap contribution to the dispersion relation Apg = 
Re{Apg)AV/{g^N'^). Right: The scaled dispersion relation E{k) = {̂ la ± E{k))/t°p for 
non-interacting fermions (upper branch) and the strongly interacting fermions at unitar-
ity (lower branch) as a function of the magnetisation equivalent to the average occupa-
tion of the molecular state {̂ o^o) = m = n^ - n^ and the scaled momentum k = k/kp . 
Parameters are: g lNl/{W) = 10, L̂a/ê p = and n/ = 1. 

4.5 Outstanding problems 

The remaining question is how do the valence and the magnetisation change as a function 
of temperature, so far the calculations were performed at T = 0. From what we know 
about the AM, one would expect that the valence and the magnetisation start to drop 
significantly at a temperature, T* = E*/ks not necessarily Tc- This should depend on 
the effective energy level of the impurity closest to the Fermi level [184]. From our results 
at unitarity in mean-field approximation of the AM [see Fig. 4.6], we can see that the 
magnetisation is strongly dependent on the number of atoms or, alternatively the Fermi 
energy. As one increases the particle number the magnetisation increases, the while as 
we move the effective energy level of the impurity, the magnetisation and the valence 
are suppressed. These processes being opposites suggest that there should be a regime 
where they compensate each other. This regime would probably represent the boundary 
for the suppression of the magnetisation and the valence. It seems that one would need 
to go beyond the large U limit that we have considered (where the mapping is valid) and 
consider the effect of additional terms from the Schrieffer-Wolff transformation [194,200] 
(4.18) to determine the relationship with effective parameters of the crossover considering 
excitations and part of the spectrum. 

On the other hand, the single impurity picture should become less reliable as one in-
creases the density or moves towards the BEC side, since we would expect the FB's to 
interact with each other. Therefore, it is possible that the situation could be pictured in 
a more realistic manner in terms of the periodic Anderson model (PAM) [207, 208], where 
more than one impurity is considered and there is interaction among them. This model 
has been shown to have a non-Fermi liquid ground state for certain parameter regimes 
[209]. This is relevant since in strongly interacting Fermi systems, like the one under 
consideration, the normal state might not be a Fermi liquid [19]. For moderate particle 
numbers, where the single impurity picture should be reliable, one would hope to be 
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able to use AM and all the results from the exact solution by Tsvelick and Wiegmann 
[185,186], but the conditions on the solutions by Bethe ansatz are not that simple in these 
ultracold systems. Specifically the condition upon the magnitude of the Fermi energy 
compared to all the other relevant parameters and the fact that one should consider a 
quadratic density of states due to the trap complicates matters. Thus, one would hope 
that the usual methods could be applied, but up to which point requires further investi-
gation on its own. 

The study of Anderson physics and its effects in the phase diagram of the ultracold 
fermions is work in progress, we are investigating the effect of the impurity states in the 
excitation spectra and the effect of the BEC and the density is under consideration too. 
We are in the process of extending of our results to consider a collection of bosons and 
the BEC, instead of one molecule, along the lines of what has been done in the study of 
mixed valence compounds [207, 210] with the proper modifications. 

4.6 Summary of results 

In our work on this topic we have managed to address the possibility of using an al-
ternative fermionic formulation to the single channel model of the BCS-BEC crossover 
problem having a well defined Hamiltonian theory near the unitary limit that can be 
treated exactly in some limits. Our work extends the application of the mapping of the 
two-channel model to the Kondo model in the unitary limit in the limit of one molecule, 
using the Anderson model to move towards the BCS side of the Feshbach resonance. We 
have achieved a way to describe the formation of a Feshbach boson and at the level of 
mean-field theory, interpret the effect of pre-formed pairs as a consequence of valence 
fluctuations in the equivalent impurity picture of the Anderson model. Finally using the 
AM we were able to give a possible interpretation to the emergence of the pseudo gap 
in the BCS-side of the resonance at the Hamiltonian level, in the limit that the molecules 
could be considered non-interacting, for small molecule numbers in a single mode. 



Chapter 5 

Conclusions 

As described in the Introduction, the purpose of this thesis has been to study effects of 
many-body interactions on the formation and behaviour of localised states in ultracold 
atomic systems. We have analysed systems where atomic interactions and localisation ef-
fects play a fundamental role in the macroscopic behaviour of ultracold atoms. The study 
of the model systems presented in this thesis is motivated by possible applications. First, 
the control of interaction effects in the behaviour of collective states suggests the possi-
bility to employ these states in quantum computing [32] and atomtronics [38-40, 211]. 
Secondly, the study of ultracold systems can be used to explain analogous behaviour in 
solid state systems. Third, the possibility to manipulate interactions and use their effect 
in applications of interferometry and metrology [64, 212]. We now summarise the major 
results of this thesis and provide an outlook for future possible directions of research on 
the basis of these results. 

To address the question regarding the effects of the many-body interaction beyond the 
mean-field approximation in the transition from delocalised to localised states in a Bose-
Josephson junction, we performed the direct diagonalization of the Bose-Hubbard model 
in the two mode approximation in the limit of large number of atoms in Chapter 2. We 
found that the nonlinear interaction between atoms induces the relaxation to stationary 
states. The property of stationarity was found by analysing behaviour of the populations 
and the transition from delocalised to self-trapped states in a symmetric double-well po-
tential in the basis of energy eigenstates. In relation with the relaxation to stationary 
states we found the preferred basis of the system, depending of the interaction, and its 
relation with the emergence of decoherence in the one-body reduced density matrix. 

The next system we have analysed in Chapter 2, was the BEC inside a high finesse 
cavity. In this system atoms of different angular momentum of hyperfine states couple 
to the lowest photon mode inside the cavity. We analysed the system in the limit where 
the ground state energy has negligible change as the number of photons is increased. 
We worked in a truncated Hilbert space, where we constructed the ground state phase 
diagram. From the ground state phase diagram it appears that the transition to the super-
radiant state in the absence of interaction between atoms for strong interaction between 
photons and atoms can be identified with a localised to delocalised transition, thus giving 
an alternative point of view to the quantum phase transition of the Dicke model [57]. We 
found that, as the interaction between atoms increases, the system is in a crossover from 
the super-radiant state to a state where as a function of the energy shows quantisation of 
the population of the atoms, and suppression of quantum fluctuations. A surprising find-
ing was that, in the limit of strong atom-photon interaction, the system shows a different 
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kind of quantisation, this time in the fluctuations of the population and the fluctuations 
of the tunnelling correlations. We found that, in general, the interaction with the photon 
field enhances quantum fluctuations inducing transitions of the atoms from the localised 
to the delocalised regimes. 

Moving from purely bosonic systems, in Chapter 3 we have considered Bose-Fermi 
mixtures. First, we considered the effect of fermions on the macroscopic quantum self-
trapping (MQST) phenomenon. We considered experimentally relevant values of pa-
rameters for the mixture using mean-field approximation for the equations of 
motion of the system. We found that, depending on the nature of the inter-species interac-
tion, MQST occurs for smaller separations between the double-well minima for attraction 
and the opposite for repulsion. We found agreement between our variational calculations 
and the numerical solution of the evolution of the wave function for the BEC localised in 
one of the wells. The onset of MQST is affected by the fermions in the system because the 
interactions narrow and widen the wave function of the BEC for attraction and repulsion, 
respectively. The expected experimental signal of the effect due to fermions was obtained 
where one can clearly discriminate between both the enhancement and suppression of 
the MQST regime. 

In the second part of Chapter 3, we considered a Bose-Fermi mixture in a three-site 
ring configuration. We considered a system in the limit of small number of atoms of 
each species where the fermion filling was equal or less than one. We constructed the 
ground state phase diagram of the system depending on the intra- and inter-species in-
teraction between atoms by directly diagonalising the Bose-Fermi-Hubbard model. The 
system is particle-hole symmetric in the fermion filling, such that 1/3 filling for inter-
species attraction corresponds to 2/3 filling for inter-species repulsion and vice-versa. 
The ground state phase diagram is strongly dependent on the inter-species interaction 
that promotes configurations with in-homogenous states. Besides from the states with 
the regular Mott-Insulator symmetry of the pure Bose system, we found new insulat-
ing states characterised by in-homogenous configurations of bosons and strong quantum 
fluctuations. 

The third part of Chapter 3 was devoted to the study of a simplified model with 
the necessary ingredients of a topological insulator. We considered a system with four 
sites, two three-site rings with interacting bosons and fermions and a position dependent 
hopping depending on an artificial vector potential. This vector potential breaks the 
particle-hole symmetry between fermion fillings and changes the structure of the ground 
state phase diagram. As a consequence of this symmetry breaking, an additional region 
with insulating characteristics appears in the case of inter-species attraction for 3/4 filling 
of fermions. On the other hand, for 1/4 filling of fermions in the case of inter-species 
repulsion, a region appears with the superfluid component of the system being enhanced. 
These regions in the phase diagram are characterised by enhanced quantum fluctuations. 

In Chapter 4, we considered a strongly interacting Fermi system. We studied the 
BCS-BEC crossover and its relation to magnetic impurity models. We found the equiv-
alent representation of the problem in terms of localised energy states and particle-hole 
excitations for the Feshbach bosons and the Cooper-pairs respectively. We were able to 
map the two-channel model of the BCS-BEC crossover to the single impurity Anderson 
model. We used the results of the mapping to extend the impurity model equivalency to 
the Kondo model beyond the unitary limit into the BCS-side of the Feshbach resonance 



where the Anderson model holds. We analysed the formation of the Feshbach bosons, 
equivalent to the magnetisation in the system, as a function of the magnetic detuning 
with respect to the Feshbach resonance. We considered experimentally relevant parame-
ters of ®Li and "^"K. We found that a pseudo-gap forms depending on the number of the 
Feshbach bosons in the system and the valence fluctuations of the equivalent magnetic 
impurity picture. Finally, we identified the parameter regimes of the Anderson model in 
the BCS-BEC crossover. 

In this thesis new major results can be summarised as follows: 

• The establishment of the relation between stationary states and decoherence origi-
nated from many-body interactions in double well bosonic systems. 

• The suppression or enhancement of localisation related phenomena (Superfluid 
and Mott-Insulator states or Macroscopic Quantum Self-trapping) in Bose-Fermi 
mixtures due to the presence of fermions and the interplay with many-body inter-
actions in few site systems. 

• The mapping of the BCS-BEC crossover problem to a magnetic impurity problem 
in the BCS side of a Feshbach resonance, and the possible origin of the pseudo gap 
in strongly interacting ultracold fermion systems. 

In all these systems the emergence of quantum fluctuations has profound conse-
quences in the ground state configurations and the role of localised states. The prop-
erties of delocalised states of the BFC in the double-well potential and the control of the 
nonlinear interaction can be used for interferometry using BEC's [212-215]. Recently, a 
nonlinear atom interferometer surpassed the classical precision limit [212]. Our results 
connected with the relaxation to stationary states could be used to interpret the results 
seen in recent experiments in the dynamics of tuneable superfluid junctions in atom chips 
[216]. 

The new insulating states found in few-atom systems, such as the three-site ring, 
could be used for quantum information processing, since they are protected by an en-
ergy gap and different state configurations can be created depending on the interactions. 
It remains to be seen up to how resilient these states are to decoherence. The natural 
extension of these systems is to consider more sites and other geometries where might 
be possible to generate circuits with new properties. These systems could also be used to 
study quantum magnetism [217-219] where, in the strongly interacting regime, the spins 
of the atoms have effective interactions that can give rise to frustrated configurations. 
Our simplified model of a topological insulator can be used as a basis to understand 
more complicated geometries and investigate the role of interaction in the configurations 
of the system and its relation to topological invariants [155]. 

The new approach that we have suggested for the treatment of the BCS-BEC crossover 
problem can be used to construct models taking into account the interaction between 
Feshbach bosons and the possible role these might have in the formation of non-Fermi 
liquid ground states in strongly interacting Fermi systems. We have found a well defined 
Hamiltonian representation to describe the BCS crossover where we can identify effec-
tive degrees of freedom that induce correlations in the ground state due to the many-
body interaction. The techniques used for the study of this system could be applied to 
other systems of ultracold gases in optical lattices, such as the Bose-Fermi mixture in the 



Conclusions 

super-solid state [220] or Fermi-Fermi mixtures, providing alternative means to find the 
properties of the ground state and the effect of interactions in the spectrum of excitations. 

Finally, the BEC in a cavity [85] and Bose-Fermi mixtures in optical lattices [220-222] 
are systems where super-solid behaviour is currently being investigated. The investiga-
tion of the properties of this phase and the interplay with other quantum phenomena 
has just started to attract the attention of the researchers, therefore new experimental and 
theoretical developments are on their way. 



Appendix A 

Variational solution of coupling 
parameters for a Bose-Fermi mixture 

The dynamics of the system (3.9) and the population imbalance characterizing a self-
trapped state (3.10) are determined by the interaction dependent coupling parameters, 
Cj, Coi, and the mode energies, Hj. To compute them, we use the variational method with 
the trial function given by Eq. (3.11). The mode energies are found from the following 
functional: 

Hj = 
2 

— max f d x £ [ $ , ] 
n j Jr 

(A.l) 

where the Lagrangian density £[<l>j] corresponding to the equations of motion (3.7) for 
each nonlinear mode can be separated in three parts: C = Ck + Cb + Cj, The kinetic energy 
contribution (£fc), the bosonic (£&) and the fermionic (£/) mean field contributions are: 

Ck = — ^k 2 
1 

2 

1 /d<l>^2 
dx 

With the trial function (3.11), and the fermionic density pj{x) is extracted from the nu-
merical computations, all the components of the Lagrangian density except from £/, can 
be calculated analytically: 

2aQ,i 



Variational solution of coupling parameters for a Bose-Fermi mixture 

dx = + ^o) 

+ aoAl^/n 
4.Xoerf 

- {al + 2x1) '̂-'0 + 

Vao / 
8x0 ao 

v/^ 
- U ' o 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

aa\A\^/^T / 
2 ^ 2 

ayA\^ / 
2 4xoerf 

/ 

V 
\ 2 . 2 ) - a, - 4.X0 

+ {a'l + 2x1) wy 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

where, wo.i = exp(-XQ/ao i) , and the square amplitudes, ylgj = '^o,i/(2a(),i l iti-'o,]))-
The coupling coefficients Co, Ci, and Coi can now be computed explicitly as a function 
of the widths ao and ai: 

Co = 
3/2 1 + 'iwl + Ail 

^ _ 1 + -
' 2A/^ni (1 - wi)^ ' 

Coi = 
- 2 hx;-^' - + 1 

2^7r {al + a'i) {w, k r ' - r 

(A.IO) 

( A . l l ) 

(A.12) 

where, 70,1 = Hq,1/(^0 + a?) and q = exp{-2xl/{a^ + aj)). The computation of all quan-
tities follows from numerically minimizing the functional (A. l ) with all numerical con-
stants fixed, and ao,i as variational parameters. In the limit of rjb ^ 0 our variational 
results are consistent with the numerical results for the pure BEC system presented in 
[56], 
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Canonical transformations 

B.l The Schrieffer-Wolf transformation to first order 

Let the single impurity Anderson (AM) be, 

"Ham = Ho + Hv, 

where, 

U 
no = + 

k . C T a- a 

Hv = 
k . ( 7 

with the nun^ber operators, n . = fa fa and n = ^ a'̂ 'k a- 'The sub-indices k's denote 
k . i T ' • 

momenta and cr's spin projection. The onsite repulsion is given by U, the hybrization 
between the conduction electrons and the impurity is V and the energy of the impurity 
is given by e/. I perform a canonical transformation. 

n = e'^He'^, (B.l) 

the cannonical transformation acts like a rotation over the Hilbert space, where, 

= E ( ^ k + Z^n^ J ( / t c ^ ^ - cl j , ) , 
k . C T 

where the /Ik and Zk are determined depending on the the perturbation parameter of the 
model. The canonical transformation (B.l), is equivalent to applying perturbation theory 
for V. This reads. 

n^no + \[s.nv]_ + l[s, [s,Hv]_]_ + ^ [ 5 , [<s.n, 

with the condition to remove^ Hv from the expansion of TL, 

Hv — Ho, S = Q. 

+ (B.2) 

(B.3) 

'I use the convention, [A.B]^ = AD± BA 
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I have: 

k.q.a,7 

k.q.(T,7 
(B.4) 

with. 
Ho = e^n. U 

and I have used the convention that if there is no explicit dependence of an index in the 
elements of the sum, the sum for that index is discarded. Since, 

nj_ , Wo] _ = 0, 

because, 
n ,n. n , n == 0 . 

The requirement on the commutation of the number operators imply that for c and / , 
C.f c ^ / 

while, the following commutator algebra gives exactly the same answer in all the com-
putations of the first order regarding the elimination of the hybridiazation, and the com-
mutation of number operators. 

c j c'.J f,c]_=0. 
Still the final result regarding the ordering of operators and the form in first order expan-
sion depends on this choice we will denote by k = ±1 corresponding to either choice in 
the final answer. I employed the following identities: 

A.BC A,B\^C - B[C,A 
AB,CD]_ = A[B,C]^D-[C,A]^BD + CA[B.D]^-C[D,A]^B 

It follows that the second term in (B.4) is identically zero. The commutator in the first 
term of (B.4) gives: 

I'^'h.a 'k.aJo- V + r'^ f 

- Un 



5.1 The Schrieffer-Wolf transformation to first order 

I used the following results: 

- It _ = Sa.jSy^.dflc 

^ cl 

and the usual anti-commutation relations for fermions of the same kind, c or / , using the 
Kronecker deltas in the corresponding summations, I then have for (B.4), 

.^0-5] _ = - ^ ( ^ k + J (e^ - £/ - Un^ J ( / j c ^ ^ + c l j , ) . 
k.a 

From the condition (B.3), I have the following set of equations: 

^ k ( e k - e / ) + l = 0, 

- ( A k + Z k ) f / + ( e k - e / ) ^ k = 0, 

where, I have used that for fermions, = n^. The solutions for the coefficients of S can 
be written as: 

^ k = -
fk - £/ 

^k = - -
U 

-Av (B.5) 
(ck - e/) (ek - £ / - C )̂ 

fullfiling the condition for S to be dimensionless. It follows to compute for first order, 

nv]_ = Y. ( ^ k + J [flc^,, - c I j , , + cl^f^ _ 
k.q.CT,7 

+ X ] + (B-6) 

The commutators needed are: 

fW,. - + < . 7 / 7 ] - = ('̂ k.q ( / ] A + / 7 / O - + 
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where, I have used the following computations: 

r-t f r t f 

f f ^ r 

^ f : 
J —(7 

= 0 , 

= 0. 

= / ] 

= rt 

'"-'k.CT''̂ q.l 

k.a 

= 
q>7 

^^ f 1/7 _^q,7 o',7/—o-Cq ,̂ J —fT 

TT-r ^ f-y _ ~ —fr,7C'q_-)./-cr-

Now, I write for (B.6), 

'Hv]_ = Y. (^k + J (2'^k.qn^^ - ct ^r:̂  ̂  - 4 
k.q.(7 

C q.7 

k.q.iT 

= 2 ^ V q l i (^k + ^kn 
k.q.cr 

f - C 

+ 2 
k,q,fT 

(B.7) 
k.q,(7 

where in the last equality, I used the symmetry in momentum indices. We define, ./k.q = 
2VkVq-̂ k/ W k̂.q = HcKi^k/ and we can write the transformed Hamiltonian as. 

Wam = H o + ^ 
k.q.CT 

A.c 

w , k . q 
2 " f -

n , ('5k.. 

k.q,(T 

k.q.CT 

Now using the following identity. 

E = 2 ^ q) . - 1 ^ (n 
k.q,(T k . q k,q,(T 



3.1 The Schrieffer-Wolf transformation to first order 

where, 

2Sj 

with cr-' the Pauli matrices, 

= E 
je{x,y.z} 

( " 1 ^ 
cry = ( " -t \ 1 ( 1 0 \ 
cry = ^ = i 

V 1 0 y 
cry = 

v ^ 0 y 
^ = i V 0 - 1 ) 

while the unitary vectors in cartesian coordinates are denoted by e^, and the "spinors' 

and are defined as follows. 

The Hamiltonian to first order can be re-written as: 

Ham = Wo + ^ Jk.q5c(k. q ) • 5/ 
k.q 

+ 4 E ('"k.CT'"q.-o-/-o'/(T + /iZ-o-Cq -o-C^ , 

l A ' f V i . c . - i : 
k.q.(7 

+ 1 : 
k,(T 

k.q.(7 
/ 

IVk.q + 
\ 

I T ' , 
k.k+ - i r n , 

I J-0 

w where, Nr = n, + n , . Note that equivalently, one can write: 
h h 

Nj = 

E 4 , r = ( vlft \p 

with this equivalencies one can directly identify that under the transformations: k = - 1 , 

A -A, Z ^ - Z , which imply J ^ - J , H' ^ - H ' , one recovers exactly the result 

given by Schrieffer and Wolff. Their interpretation for the additional terms from Ho in 

Wam is that, the first term is an s-d exchange interaction term, the second one is called the 

two particle channel term, the third one is referred to as, the direct (spin-independent) 

s-d interaction, and the last one renormalizes U and ej. 
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B.2 The Schrieffer-Wolf transformation to second order 

The next order of the canonical transformation can be computed by starting from the first 
order commutation. 

k.q.cr 

+ A.q 
k.q.CT 

r)"̂  ('''k,Cr'̂ q.-(T/-cr/CT + /ct/-o-'-q.-a-'̂ k.iT 
k.q.fT 

I will use the anticommutation algebra. 

ct ,/t Cj 

For the second order I need to compute, [S, [S, Hy] _]_ = C[ +C2 + C3, with. 

k.q.CT 

C2 = [5, E (cLcq.-CT/lCT/, 
k.q.fT 

k.q,<T 

1 will use the following identities. 

A,BC A,B],C - Die, A 

AB,CD]_ = A[B,C] n - [C, A] BD + CA[B,D]. -CtD, A] 

For the first term I have, Q = Eki,k.q ^ki^i. 

Oil = Ak, + J (/t.,^^^ - ci^ j ; ) , + Jk. 

= ik.q (^ki + ^kin^ J Al ((̂ k.qn^^ - 4,<TCq,CT) 

- ^k. (2V^k,q + ./k,qn,_ J A, (/tc,^,^ - c l j ; ) 

'2iyk,q + -^.qnj J (^ki + Zk.n^ J A3 

- ^.CTCq.a) 
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where. 

A, = 

ki,yf-7) ' 

f - a 
A2 = -f'k.aCq.a''^ 

= 0, 

= -Sa.y { 4 . q + 4 i ,7/a) + <̂ k.ki + 

After some algebra and adding over 7 we can write Ci as. 

f̂ i = - E E + 
<y ki.k.q 

+ (/tc^^^^ + cI j^) . 

with, 

= 214i ((^ki.ql-Vk.k^ki +4i.kM'ki.q^q) , 
B2 — -M<i'/k.q^ki-
B-i = ((5k.q./k.q (^ki + ^ k j + (̂ ki.q (2VFk.k^ki + ^k.k (^k, + ^ k j ) 

+ (2M4i.q^q + iki.q (^q + ^q))) , 
B4 = -Vki<^k.q^ki-

We continue with the next term and write C2 = Hki.k.q ^^a ĵ •̂ k.qa2/ where, 

"2 = [ (^k, + J { f W u l - 4^,7/7) • 

= 2'ki [nC'l^ _ ~ '^ki,7/7) 

+ (^k, + ^kin^ J U W i , ! -

After some algebra and adding over 7 we can write C2 as, 

'̂ 'k.-rr'̂ ki.-cr = E E .4.q ( (Ak. + ^k. (n;^ + 
ki.k.q o-

- <5k.ki (^ki + ^kin^J J (/Jcq., + 

(B.8) 

(B.9) 
ki.k.q CT 
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The last term remains and we write C3 = X^ki k q -^k.qas, where, 

J^k, + ) - cl^J-y) , {(iAjlf^ + a-i = 

= 2k, n i t ^ i / i / t + h-c. 

After some algebra and rearranging the terms in the summations we can write C3 as, 

= E 
ki.k.q CT 

+ (^ki + ^ki"^ 

- I ^ ^ k i ^ k . q ^ k i 
k i . k . q u 

The sum of C2 and C3 can be simplified and yields. 

(B.IO) 

+ C3 = E E A. A - 1) - '^k.k.n^ J + cl^l 
ki.k.q (T 

(B. l l ) 
So finally we can write. 

5 , = E E («i + + as^k.-tT^q.-T 
o- ki.k.q 

(B.12) 

where. 

a2 = - V i , ( 4 . q . 4 . q ( ^ k i +2ki)+'5ki.q(21'Fk,k2ki + . /k.k(Ak, + 2 k i ) ) 

+ 4 i , k (2V^ki,q2q + ./ki,q (^q + ^q))) " KjJk.ki^q. 

13 = Vki Jk.q^ki - Kj-'k.ki-^q, 

a4 = ^ki'/k.q^ki + 2KiJk.ki-^q. 
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B.3 The Schrieffer-Wolf transformation to third order 

We start by using the second order commutation result of the previous section, for the 
third order I need to compute, S, S, S. H\ = Di + D2 + Ds + Da, with, 

CT ki.k.q 

f ki.k.q 

<J ki.k.q 

D4 = E E 
<r ki.k.q 

k̂i,<T + '^'ki.afcT 

Using the result from first order, I have for Di , 

Dl = 2 E E ^k^ai J ((^k .̂k!",̂ ^ 
(7 k2.ki.k.q 

+ ( J t f /• _!_ ft /-t ^ ^ 

The remaining terms can be rewritten as, 

CT ki.k.q 

<y ki.k.q 

<J ki.k.q 

J —a 

For the first two commutators of the remaining terms, one has. 

'"k-a'^q.-o-

k2 

(B.13) 

k2 

« E '̂ k2.kVk2 (^k2 + (/ia^q.-a + 



Canonical transformations 

the term with n^ c]̂  ^^Cq yields. 

J —(J J —(J ' J —(J 

k2 

+ - l ) } ( / L c q + 

we will use the next identity, 

- + -af-rrfc 

Using the above for D2 after some algebra we have. 

o- k 2 , k i , k , q 

Thus, next term £>3 can be written as, 

A3 = ^ X ] |'5k2,kl^k2^ 
a- k 2 , k i , k , q 

+ '5k.k2 (^k2 + ^k2) {clA-'rf^J^ + } 

we have after some simplifications for D4, 

CT k 2 . k i , k , q 

We have that the third oder expansion gives the following. 

S, S, S,Hv 
<7 k.q.ki.k2 
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with. 

= 24l.k2Hf2^k2ah 
62 = -2Vk2/lk2«l, 

ki = 2dk,.k2Vk2 + Zk,)ai + Zk,a2). 

h = Vk2 - ^k2«l - (^k2 + ^k2) "2) , 
b-O = -Vk2^k2«3, 
hi = (5k , .k2 Vk2 (^k2 + ^k2 ) 04 • 
bl = -Vk2 (^k2«3 + (^k2 + ^k2) "4) , 
bs = 2Vk2 (^k2ai - (^k2 + ^k2) 0-2 - '5k2.k (^k2 + Zk.2) ag), 
bd = ^42 (^k2«l - (^k2 + 2'k2)«2 + (̂ kj.k (^k2 + ^k2)a3) , 

with. 

Am = -2Vki (^i.qVVk.k^k, +<5ki.kl'Fki,q^q), 
0-2 = ^cr-'k.q^ki - V'qJk.ki^q-
03 = -Vki (<5k.q./k.q (^k, + ^ki) + 4 i ,q (2Wk.k^ki + ./k,k (^k, + ^ k j ) , 

+ 4 i .k (2Vl'ki,q^q + ./ki.q (^q + ^q))) " KjJk.ki^q-
a-i = Vki Jk.q^'ki + 2V'qJk.k^^q• 

and Jk.q = 2V^^VqZk, IFk.q = VkVqAk.In the limit where f / ^ 00, we have that. 

CT k2.ki.k.q 
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