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Abstract 

Wheat is one of the three major cereal crops, alongside rice and maize, which together 

supply half of the world population's food energy requirement. Wheat production is 

affected by climatic conditions and biotic factors including weed competition and 

pathogen attack. Around 18% of yield loss in Australian wheat is attributabl<: to root 

diseases. Plant defence against root-invading pathogens often involves multiple 

quantitative resistance genes. 

Rhizoctonia root rot, caused by Rhizoctonia solani AG8 (teleomorph Thanatephorus 

cucumeris), costs Australian farmers around $60 million per annum. The necrotrophic 

fungus attacks seedling roots, resulting in patches of severely stunted plants. During 

root invasion R. solani AG8 secretes a range of enzymes; however specific 

requfrements for pathogenesis are not yet understood. Effective resistance to 

Rhizoctonia is not available in wheat cultivars, so farmers must rely on management 

techniques to control the disease. 

This rese_arch aimed to discover genetic resistance to Rhizoctonia root rot in 

Brachypodium distachyon, a grass developed in recent years as a model for cereals. 

The species has shown strong potential as a model for wheat shoot and crown diseases, 

as well as cereal root architecture. Two B. distachyon germplasm resources were used 

in this project: natural accessions collected from Turkey and Spain, and a T-DNA 

insertional mutant collection. 

Rhizoctonia solani AG8 produced similar disease phenotypes and severity in 

Brachypodium distachyon_ and wheat. A method developed to screen for disease 

resistance in the B. distachyon collections incorporated toothpick baits to check for the 

presence of inoculum and contamination in pots. The major indicator of disease 

severity ,,vas reduced root length, with leaf lengths and plant development rate being 

secondary sympton1s. Resistance of different lines v\ras ranked based on the ability of 

plants grown in infested soil to maintain root and shoot measurements similar to 

uninfested control plants. 

Tv\Tenty-six genetically di\ erse natural accessions and 25 selected T-DNA lines of 

B. distachyon were included in replicated experiments to screen for variation 1n 

resistance to R. solani AG8. Greatest variation in resistance to was identified in the 

natural accession collection. Root length of the least resistant line vlas reduced to 19% 

of the control in R. solani infested soil, while the most resistant line maintained 53% of 
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control root length. This difference is similar to quantitative resistance levels in other 

grasses and wheat mutant lines described in the literature. 

Exploring potential resistance mechanisms, nodal root emergence in response to 

infection correlated with greater resistance in an experiment with natural accessions. 

Increased endogenous seedling vigour was linked with lower resistance, but this factor 

alone did not explain all variation in resistance. Further work is required to validate 

increased resistance associated with a T-DNA tagged gene, Bradi3g14370, that 

encodes a putative beta-1,3-galactosyltransferase. 

Brachypodium distachyon was found to be a useful model pathosystem for wheat root 

diseases. The variation in genetic resistance to R. solani AG8 described in the natural 

accession collection provides a basis for further work to discover genes involved in 

resistance to this pathogen in B. distachyon and subsequently in wheat. 
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Chapter 1 

Introduction 

Summary 

Wheat is one of the world's major cereal crops. In Australia wheat is grown over an 

area of around 13 million hectares. Grain yield is impacted by many factors, including 

root diseases. The extent of crop loss attributable to root pathogens can be difficult to 

measure as disease symptoms may not always be easily diagnosed. 

This chapter describes two root diseases · of wheat that infect the plant soon after 

germination and pave the way for secondary infections. Rhizoctonia solani AG8 and 

Pythium spp. are both necrotrophic pathogens with broad host ranges. Varieties of 

wheat with resistance to these pathogens are not available, so the only means of 

controlling disease is with management strategies, including tillage · and fungicide 

application. Mechanisms that could potentially confer resistance to these pathogens in · 

wheat are discussed. 

Since the turn of this century a grass relative of wheat, Brachypodium distachyon, has 

become a widely used model for the cereals, with its genom_e sequenced in 2010. 

Several B. distachyon germplasm collections are available and have previously been 

found u?eful in studying foliar diseases and root traits. 

This chapter proposes B: distachyon to be a suitable model for studying resistance to 

the wheat root pathogens Rhizoctonia solani AG8 and Pythium spp., and outlines the 

aims of this thesis to develop and apply methods to screen B. distachyon collections for 

resistance to these diseases. 



Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

1.1 Wheat production 

The modern wheat crop is the result of around 12,000 years of domestication of 

ancient Fertile Crescent grasses (Salamini et al. , 2002). The unique character of wheat 

flour, with its high gluten protein content, is irreplaceable in baking. Around the world 

wheat-based products, including breads, cakes and pasta, hold strong cultural 

significance, as well as being a staple source of dietary energy (Shewry, 2009). 

About half of the world population's dietary energy is supplied by cereals (WHO, 

2003). Wheat, maize and rice are by far the world's most important cereal crops, with 

over 650 million metric tonnes of each grain produced every year (FAOSTAT, 2013). 

Hexaploid bread wheat (Triticum aestivum aestivum) n1akes up over 90% of global 

wheat production, with tetraploid durum wheat (Triticum turgidum durum) 

comprising around 5% of total production (Dixon et al., 2009). 

Wheat is the major cereal grown in Australia, with around 23 million tonnes harvested 

from over 13 million hectares annually. Barley is the country's second largest cereal 

crop, with approximately 8 million tonnes produced annually, -followed by sorghum, 

oats, triticale, maize and rice (ABARES, 2013). 

The prevalence of wheat in the Australian agricultural production system and its wide 

geographical range is the result of several factors , including climate, seasonal 

temperature and rainfall conditions, and soil type. These factors also affect the 

distribution and severity of cereal diseases (Murray and Brennan, 2009). 

1.2 Root diseases of wheat 

After weeds, 1nicrobiological pathogens cause the greatest worldwide crop loss in 

wheat (Oerke and Dehne, 2004). On average; around 18% of the Australian wheat 

harvest is lost to diseases caused by fungi, bacteria, viruses and nematodes, with root 

diseases considered to be responsible for ahnost half the loss. The actual impact is 

difficult to esti1nate, as root diseases are not always easily diagnosed (Raaijn1akers et 

al., 2009). 

Root diseases in decreasing order of importance to the Australian wheat crop are root 

lesion nen1atodes (Pratylenchus spp.), crown rot (Fusarium pseudograminearum) , 

Rhizoctonia barepatch (Rhizoctonia solani), cereal cyst nematodes (CCN, Heterodera 

avenae) , comn1on root rot (Cochliobo lus sativus, anamorph Bipolaris sorokiniana), 

take-all ( Gaeu111annomyces gram in is var. tritici) and damping off/ root rot (Pythium 

spp.) (Table 1.1) (Murray and Brennan, 2009). 
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Chapter 1: Introduction 

Commercial wheat varieties are available with resistance to cereal cyst nematode 

(CCN) and some fungal shoot diseases, including flag smut (Urocystis agropyri) and 

leaf, stem and stripe rusts (Puccinia spp.). Apart from common root rot, resistant 

varieties are not available to fungal and oomycete root pathogens (Matthews et al., 

2013). This is partially due to the nature of root diseases. Shoot pathogens are often 

obligate biotrophs, requiring the living host for survival and reproduction, while root 

pathogens tend to be necrotrophic, killing host tissue before consuming it essentially 

saprophytically (Raaijmakers et al., 2009). Some pathogens, known as hemibiotrophs, 

infect plant tissues initially biotrophically before causing necrosis (Oliver and Ipcho, 

2004). Although the categorisation of pathogens as biotrophs and necrotrophs is 

fraught with exceptions, genetic disease resistance mechanisnis generally follow this 

division. In biotrophic interactions, variation of a single plant gene can often be the 

difference between susceptibility and resistance. Resistance to necrotrophic pathogens 

usually requires multiple plant genes, each providing a small increase in resistance. 

Thus resistance to necrotrophic pathogens can be more difficult to identify and select 

for breeding (Poland et al., 2009). 

Biotrophic pathogens have an obligatory association with their hosts that results in co- . 

evolution of resistance, described as a resistance 'arms race'. This often refers to R­

gene resistance, which is a highly specific gene-for-gene interaction between plant and 

pathogen (Poland et al., 2009). For example, resistance to sedentary endoparasitic 

root nematodes Heterodera spp., obligate biotrophs, is conferred by a major gene 

(Trudgill, 1991). This form of resistance is known as qualitative disease resistance. 

In necrotrophic disease the R-gene resistance strategy is seen less often than in 

biotrophic interactions and is limited to host-specific necrotrophs that produce host­

. selective toxins (Mengiste, 2012). 

Host-selective toxins and the avirulence factors recognised in biotrophic R-gene 

resistance are known as effectors. The term 'effector' is increasingly used to encompass 

all molecules produced by pathogens that affect the host cell, allowing easier invasion 

by the pathogen or triggering a defence response (Kamoun, 2006). Hogenhout et al. 

(2009) define effectors as "all pathogen proteins and small molecules that alter host­

cell structure and function". 

3 



Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

Table 1.1 Summary of major root diseases of wheat in Australia . 
\Murray and Brennan, 2009) , 2(GRDC , 2011 ), \Macleod et al., 2008) , 
\Murrumbidgee CMA, 2008), 5(GRDC, 2010). 

Disease and Crop 
Field symptoms2 Resistant Recommended 

disease organism Loss 
varieties?2 control practices2

'
3 

(%~1 

Root lesion 2.9 Poor plant vigour, Yes Sow resistant varieties , 
nematodes; Patches developing Grass-free break crops , 
Praty/enchus spp. from mid-tillering or Weed control , 

no patches, Fertilize 
Yellowing of lower 
leaves, 
Loss of lateral roots 

Crown rot; 1.7 Whiteheads on Partial Grass-free break crops , 
Fusarium single tillers, Control grass weeds, 
pseudograminearum Brown discolouration Fertilize, 

of lower stem, Deep cultivation, 
Pinking on nodes or Sowing rate & inter-row 
stems, sowing , 
Root cysts & Sow less susceptible 
knotting varieties 

Rhizoctonia 1.3 Early severe bare No Deep cultivation , 
bare patch; patches with distinct Weed-free fallow prior 
Rhizoctonia so/ani edges, to sowing, 

Brown spear-tipped _ Fungicide seed 
roots, dressing , 
Severely reduced Fertilize, 
root system Retain stubble to build 

up suppressive 
. . 4 

microorganisms 

Cereal cyst 1.3 Early larger bare Yes Sow resistant varieties , 
nematodes (CCN); patches with Grass-free break crops , 
Heterodera avenae indistinct edges Control grass weeds, 

Fertilize 

Common root rot, 0.7 Poor plant vigour, Partial Grass-free break crops , 
Bipolaris leaf spot; Patches developing Sow less susceptible 
Cochliobolus later or not at all , varieties , 
sativus, anamorph Sub-crown internode Fertilize 
Bipolaris sorokiniana & crown browning 

Take-all ; 0.3 Patches of No Grass-free break crops , 
Gaeumannomyces whiteheads , Control grass weeds , 
graminis var. tritici Black lower stems , Fungicide seed 

sub-crown internode, dressing , 
and 1 ° & 2° roots Fertilize , 

Sowing time 

Damping off/root rot; 0.2 Poor emergence & No Fungicide seed 
Pythium spp . seed ling death from dressing , 

waterlogging Avoid weed 
damage, incorporation , 
Short stubby main Fertilizer placement5

, 

roots Sowing time 
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Chapter 1: Introduction 

While qualitative resistance strategies are often used with biotrophic pathogens, plants 

generally rely on quantitative disease resistance to withstand broad host-range 

necrotrophic pathogens, which tend to attack using a range of toxins and cell-wall 

degrading enzymes (Mengiste, 2012). Quantitative disease resistance is considered to 

be a reduction of disease severity, race non-specific and thus more . durable than 

qualitative resistance (Poland et al., 2009). For example, two quantitative resistance 

loci (QTL) were found together to contribute approximately 30% of the resistance to 
' 

the major root pathogen in Australia, the migratory endoparasitic nematode 

Pratylenchus spp., in a synthetic hexaploid wheat (Zwart et al., 2006). 

Two necrotrophic pathogens, Rhizoctonia solani and Pythium spp., are amongst the 

first inva~ers of wheat roots after sowing. As typical necrotrophs, they are non-obligate 

and have a wide host range (Okuhara and Paulitz, 2005). With no genetic resistance 

currently available in commercial wheat cultivars to R. solani or Pythium spp., farmers 

inust rely on field . management practices to reduce · inoculum levels and disease 

severity. 

Rhizoctonia solani and Pythium spp. are often studied together as they both cause 

poor seedling emergence, and make · way for secondary pathogens and saprophytes to 

invade young roots. While the effects of these organisms are similar, phylogenetically 

they are vastly different. Rhizoctonia solani belong to the kingdom Fungi~ while 

Pythium spp. are oomycetes belonging to a nominally variable group known as, in one 

example, the Straminipila-Alveolata-Rhizaric\ super-kingdom (Levesque et al., 2010). 

1.3 Rhizoctonia root rot 

The wheat disease kn0wn as 'Rhizoctonia barepatch' or 'Rhizoctonia root rot' is caused 

by the fungus Rhizoctonia solani. The genus name Rhizoctonia was derived from 

Greek in 1815, aptly meaning 'death of roots' (Menzies, 1970). The fungus infects roots 

at gennination and the early seedling stage, becoming evident in the field from as early 

as two weeks after sowing. Root rot in wheat manifests as circular patches of stunted or 

dying plants, with a characteristically distinct boundary (Figure 1.1). Plants inside bare 

patches may recover towards the end of the season, but usually yield less than the 

surrounding crop (MacNish and Neate, 1996). In some regions, R. solani damage is 

also evident as uneven growth in the crop (Davis et al., 2008; GRDC, 2012). 

In Australia Rhizoctonia root rot is n1ost severe in the cooler southern latitudes. In 

South Australia, Victoria, Tasmania and southern New South Wales disease is seen in 

half of the wheat crop area in 76% of years. Root rot occurs in around 61% of years in 
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Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

Western Australia, but not at all in Queensland and northern New South Wales 

(Murray and Brennan, 2009). This distribution is consistent with research showing 

that R. solani is most pathogenic on wheat at lower temperatures, in the range of 10 to 

20°C (Smiley and Uddin, 1993; Gill et al., 2001a). 

Figure 1.1 Rhizoctonia disease in a two metre wide plot of wheat near Harden, NSW. 

Rhizoctonia solani is also a 1najor problem in wheat in lower rainfall areas of the 

Pacific Northwest region of the United States of America, where the increase in 

Rhizoctonia root rot seen follovving conversion to no-till has prevented farmers from 

adopting this principle of conservation agriculture (Paulitz et al., 2009). In some cases, 

a strong rise in R. solani disease in the years following conversion to no-till is followed 

by a fall in disease. This phenomenon, known as 'Rhizoctonia decline', was reported by 

Australian farmers and researchers in the 1980s and 1990s (Rovira, 1986; Roget, 

1995). The reduction in disease has been attributed to biological suppression of 

R. solani by soil n1icro-organisms (Smiley et al. , 1996; Wiseman et al. , 1996; Barnett et 

al. 2006) and possibly an increase in earth\r\ orm numbers (Stephens et al. , 1993). 

Men1bers of the Pseudomonadaceae are coming to the fore as plant growth-promoting 

6 



Chapter 1: Introduction 

rhizobacteria (PGPR) that can suppress Rhizoctonia root rot through biological control 

(Mendes et al., 2011; Mavrodi et al, 2012). 

1.3.1 Rhizoctonia so/ani 

Rhizoctonia solani is a basidiomycete fungus. The species 1s subdivided into 

anastomosis groups (AG), in which hyphal fusion is usually only possible between 

members of the same AG (Vilgalys and Cubeta, 1994). It was only in 1985 that the 

specific anastomosis group R. solani AG8, responsible for disease in wheat, was first 

· described (Neate and Warcup; 1985). The disease is still being described for the first 

time in wheat fields of different countries, for example in Turkey (Unal and Dolar, 

2012). 

Hyphal fusion allows gene exchange between compatible fungal isolates. Sexual 

recombination by way of generation of the perfect state of multinucleate R. solani 

(teleomorph Thanatephorus spp.) and formation of basidiospores is rarely observed 

and can be extremely difficult to achieve in the laboratory (Phillips, 1993). Survival 

structures of R. solani are bundles of melanised hyphae, known as sclerotia (Figure 

1.2). 

' ""- hypha 

Figure 1.2 Rhizoctonia solani sclerotia (*) developing on agar medium. Bundles of 
hyphae become melanised, forming the hard brown lumps that are the fungus ' 
survival structures. Scale bar, 200 µm. 
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Chromosome number varies both within and between anastomosis groups of R. solani, 

with between 11 and 16 chromosomes making up a genome of around 40 Mb in size 

(Keijer et al. , 1996). Further heterogeneity exists in the nuclear number of R. solani, 

which can be in excess of 15 nuclei per cell. As cells age nuclei move towards the cell 

wall. The youngest cells at the hyphal tips contain higher numbers of nuclei than more 

mature cells in the mycelium (Shatla and Sinclair, 1966). In bare patches of wheat, it 

was found that multinucleate isolates of R. solani were associated with disease, 

whereas binucleate isolates of Rhizoctonia spp. were not pathogenic (Yang et al. , 

1994). McCabe et al. (1999) reported that segregation of nuclei during hyphal tipping 

can lead to incompatibility with the parent line. This flexibility in chromosomal 

arrangement is considered to be advantageous to fungal evolution and adaptation to 

new hosts and environments. 

Rhizoctonia solani produces a range of enzymes that degrade pectin, which allow the 

further subdivision of anastomosis groups into zymogram groups. The enzymes 

produced by R. solani are visualised by separating proteins with gel electrophoresis 

followed by a pectin-agarose overlay to detect pectinase activity. Yang et al. (1994) 

attributed Rhizoctonia root rot sampled in Western Australian wheat to R. solani AG8 

ZG1-1. Zymogram groups are often not reported. 

The host range of the major Rhizoctonia root rot pathogen of wheat, R. solani AG8, 

extends beyond the cereals. Isolates of AG8 cause disease in tomato (Gao et al. , 2006), 

potato (Woodhall et al. , 2008), onion (Wicks et al. , 2011) and barrel medic (Medicago 

truncatula) (Streeter et al. , 2001). Rhizoctonia solani AG8 ZG1-1 causes disease in 

lupins) subterranean clover) Indian mustard) canola) wild radish) oats, barley and 

annual ryegrass (Lolium rigidum) (Khangura et al. , 1999). Surprisingly, Arabidopsis 

(Arabidopsis thaliana) resists infection to R. solani AG8 ZG1-1 (Perl-Treves et al. , 

2004). 

1.3.2 Mechanisms underlying disease 

Rhizoctonia solani in\ ades seminal and nodal roots of young wheat seedlings (Davis et 

al. , 2008). It has been stated that R. solani AG8 causes damping off in wheat, e.g. Unal 

and Dolar (2012) , but others have found the fungus did not reduce emergence in wheat 

(Mazzola et al. , 1996). Damping off by R. solani has been seen in other crops, including 

soybean, cotton and pea ( elson, 2004). 

urray (1982) studied penetration of barley roots and coleoptiles b R. solani AG1 to 

AG5, isolated from a ·wide range of plants. He found that the specialized infection 
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structures (appressoria or infection cushions) were only formed during coleoptile 

invasion, whereas root entry was by narrow infection pegs. With severe disease, root 

lesions develop into necrosis that spreads throughout the root cortex and the stele 

causing root truncation in a characteristic 'spear tip' (Ogoshi et al., 1990). Kirkegaard 

et al. (1999) asked whether a reduced ability to acquire water and phosphorus by roots 

was responsible for reduced shoot growth in wheat. Their experimental results 

indicated that R. solani AG8 dir~ctly affected shoot growth, possibly through the 

release of effectors ( described in §1.5) or by inducing a plant wounding response. As 

disease severity increased plants also experienced difficulty in transporting water from 

the soil to leaves. 

Root disease can be more difficult to measure than shoot diseases, as damage occurs 

below ground, with the shoot phenotype being a secondary effect. A rating scale, 

measuring root truncation and necrosis, developed by McDonald and Rovira (1985) is 

often used to measure disease severity in wheat under Australian field conditions. The 

authors found that increasing levels of R. solani inoculum added to soil reduced 

seminal root length in wheat. Levels of R. solani in field soil have been measured by 

baiting and plating onto selective media (Paulitz and Schroeder, 2005) and by DNA 

quantification using real-time PCR (Okuhara et al., 2008; Ophet-Keller et al., 2008). 

The ability to reisolate the fungus from roots decreases around shoot tillering (Harris 

and Moen, 1985; de Boer et al., 1991). Quantitative real-time PCR has been used to 

compare R. solani colonization between control and mutant Medicago truncatula 

(Anderson et al., 2010) and . ~as demonstrated to be a useful scoring technique in a 

Verticillium dahlia-potato resistance screen (Dan et al., 2001), but has so far not been 

applied to wheat screening experiments . 

A visual root disease rating may not always be the most quantifiable and reproducible 

assessment of disease (Smith et al., 2003a), so many researchers also measure root 

and shoot length and/or root and shoot weight. Okuhara et al. (2009) concluded that a 

visual root disease rating along with total root · length measurements were better 

indicators of disease tolerance than root or · seedling fresh weight, or shoot length. A 

sun1mary of measurements used to rate disease severity is presented in Table 1.2. 
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Table 1.2 Measurements used to assess R. solani disease severity In pot 
experiments with wheat seedlings . 

Root measurements Shoot measurements Visual root Reference 
disease rating 

✓ (Blair, 1942) 

DW, shoot:root ratio Leaf area, DW (Harris and Moen , 
progression to 40 DAP 1985) 

Seminal root length Shoot height ·✓ (McDonald and 
Rovira , 1985) 

✓ (Rovira , 1986) 

DW ✓ (Roget et al., 1987) 

Shoot length ✓ (Ogoshi et al. , 1990) 

DW DW ✓ (Stephens et al., 
1993) 

DW Leaf & tiller number, DW, ✓ (Wall et al. , 1994) 
FW, leaf nutrients 

TRL, DW Leaf area, leaf 1 length , ✓ (James et al. , 1997) 
DW 

TRL, DW Leaf area, DW, leaf P, ✓ (Kirkegaard et al., 
relative leaf expansion rate 1999) 

Plant FW ✓ (Duffy, 2000) 

TRL, DW DW (Gill et al. , 2000) 

✓ (Smith et al., 2003a) 

Number of root tips , Plant FW ✓ (Okubara et al., 
TRL, FW 2009) 

TRL, FW ✓ (Okubara and Jones, 
2011 ) 

DW, dry weight; FW, fresh weight; TRL, total root length ; OAP , days after planting . 

Rhizoctonia root rot is an important early disease of wheat and makes way for invasion 

by secondary pathogens. Harris and Moen (1985) argued that the invasion of 

secondary pathogens produces a 'disease complex' to increase Rhizoctonia disease 

severity. The disease complex theory vvas supported by Roberts and Sivasithamparam 

(1987) , who shov\red that Rhizoctonia root disease was greater in wheat co-inoculated 

with other root rot fungi and oomycetes. The ability to recover R. solani from affected 

plants using selective media decreases as plants mature, and thus the initial cause of 

the disease may not be identifiable later. James et al. '(1997) go further to suggest that 

yield decline in direct-drilled wheat often attributed to R. solani, may in fact be due to 

other deleterious micro-organisms. 

Research into the factors that promote R. solani growth and virulence has gone on for 

many decades. Studies looking at the growth of R. solani mycelium through soil and 
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sand found that the rate of spread of R. solani in soil is variable, but in the order of 

roughly one centimetre per day (Blair, 1943; Gil.I et al., _ 2001b; Schroeder and Paulitz, 

2008). Increasing_ soil moisture was found by Blair (1943) to reduce R. solani spread 

due to the concomitant effect of reduced soil aeration, however Gill et al. (2001b) saw 

no effect of soil moisture on the rate of spread of R. solani AG8. There is a general 

assumption in rural media tl;iat cultivating soil reduces R. solani disease by breaking 

up hyphal networks, e.g. (GRDC, 2013), but this is not reflected in the scientific 

literature. The role of cultivation in reducing disease appears to be mainly due to th~ 

effect of incorporating carbon-rich stubble into the soil, making it available for 

degradation by soil micro-organisms. Blair's (1943) experiments suggested that 

cellulose-degrading micro-organisms flourish after the addition of wheat straw or 

dried grass and quickly assimilate available nutrients, making them unavailable to 

R. solani. A further hypothesis is that this increase in bacterial metabolism creates a 

flush of carbon dioxide, which inhibits R. solani growth. While R. solani can live as a 

saprophyte for a short time, it does not survive well without a living host and a fallow 

period of two weeks is generally sufficient to reduce disease levels prior to sowing 

(Cook, 2000). 

Otten · and Gilligan (1998) hypothesized that the fungus' faster growth along soil 

surfaces allows R. solani to rapidly colonize biopores and to colonize young seedlings 

before they develop resistance. The development of circular patches of stunted plants, 

with distinct edges, suggests that R. solani hyphae spread from a central point 

infecting plants until such time that the plants become resistant. Active hyphae may 

still be detected in the soil surrounding the patch, although at a lower frequency 

(Paulitz and Schroeder, 2005). This apparent change in the ability of plants to become 

infected with time is reminiscent of . adult plant resistance, a complex widespread 

phenomenon that has rarely been studied in R. solani disease (Develey-Riviere and 

Galiana, 2007). 

1.3.3 Rhizoc·tonia solani effectors 

The poor state of understanding of effectors produced by R. solani is summed up by 

Bent and Mackey (2007), who ask, "Are important broad host-range necrotrophic 

pathogens such as Rhizoctonia or Botrytis successful because they carry a few 

particularly effective effectors, and/ or an unusually broad suite of effectors?" This 

question re1nains to be answered. 

Enzymes are thought to be major effectors in R. solani pathogenicity. Sweetingham et 

al. (1986) created five zymogram groups (ZG) of multinucleate R. solani isolates based 
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on the different enzyme patterns produced in pectic zymograms. In heterokaryotic 

multinucleate isolates of R. solani AG8 ZG1-1, single spore progeny were shown to 

produce different enzyme activity patterns. The pectic enzymes produced in the assay 

were mainly polygalacturonase and pectin lyase. As yet there is no clear correlation 

between any particular pectin degrading enzyme and R. solani AG8 pathogenicity 

(O'Brien and Zamani, 2003). In addition to pectinase, R. solani also produces laccase, 

cellulase and xylanase. Laccase enzymes can break down phenolic defence compounds 

and lignin (Bora et al., 2005). 

Sheath blight, caused by R. solani AG1-IA, is a major problem in rice. Research into 

disease and resistance mechanisms in this system can provide clues about R. solani 

AG8 root infections. Publication of the draft genome sequence of R. solani AG1-IA has 

allowed researchers to look for predicted effectors in rice sheath blight (Zheng et al., 

2013). Following infection of rice, carbohydrate-active enzyme expression in R. solani 

peaked in a sequential order of glucoside hydrolases, followed by hemi-cellulose 

degrading enzymes and then cellulose and pectin degrading enzymes. Xylanase and 

laccase genes were also predicted from the genome, but not cutinases. Three classes of 

effectors, including glycosyltransferase family 2, caused necrosis symptoms in rice, 

maize and soybean in a pattern redolent of host-specific toxins (Zheng et al., 2013). 

Previously, endo-polygalacturonase (endo-PG) produced by R. solani AG1-IA was 

shown to be involved in pathogenicity in rice (Yang et al., 2012). Endo-PG is a cell wall 

degrading enzyme that hydrolyses a component of pectin. 

In addition to protein effectors, R. solani can also produce metabolite toxins. Brooks 

(2007) used the term 'phytotoxin' to describe those compounds acting as virulence 

factors across a broad range of hosts, in contrast with host-selective toxins (HST) that 

are genotype specific. In the rice-sheath blight pathosystem a carbohydrate-based HST 

produced by R. solani AG1-IA causes necrosis in rice lines that carry an allele for toxin 

sensitivity (Vidhyasekaran et al., 1997; Costanzo et al., 2011). Host-selective toxins 

have not been discovered in R. solani pathosystems other than rice. Described by 

Deacon (1996) as a Poaceae family-specific pathogen, R. solani AG8 is more likely to 

produce phytotoxins. Sherwood (1965) patented a method to produce a phytotoxin, 

tentatively identified as o-nitrophenyl-,B-D-glucoside, from an isolate of R. solani 

collected from alfalfa root canker. Rhizoctonia solani AG3, AG4 and AG1-IA release 

phenylacetic acid (PAA) and its derivatives, phytotoxic compounds that are auxinic 

plant-growth regulators (Mandava et al., 1980; Bartz et al., 2013). 
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1.3.4 · 'Resistance' versus 'tolerance' 

-The terms 'resistance' ap.d 'tolerance' are often used interchangeably to describe plant 

disease responses, but they refer to effectively mutually exclusive concepts. Roy and 

Kirchner (2000) summarised the different mechanisms: 

" ... we use resistance to refer to traits that prevent jnfection or limit its 
extent, and we use tolerance to refer to · traits that do not reduce or 
eliminate infection, but instead reduce or offset . its fitness 
consequences. Thus, resistance and tolerance can both improve host 
fitness; resistance does so by reducing infection, whereas tolerance does 
so by reducing the fitness loss under infection." 

When a plant-pathogen interaction is not well characterised, the appropriate term to 

use can be unclear. In a study of oat cultivar yields after infection with crown rust, 

Politowski and Browning (1978) concluded that true disease tolerance was rare and 

suggested that cultivars should therefore be presumed resistant until evidence to the 

contrary emerged. On the other hand, Okubara et al. (2009) preferred to use the term 

'tolerance' to describe the unknown mechanism that led to reduced R. solani disease 

severity in a mutant wheat line, later moving to the term 'resistance' in work with 

Thinopyrum spp. (Okubara and Jones, 2011). 

The effects of resistance and tolerance on a plant population were~ modelled by Roy and 

Kirchner (2000 ), who argued that tolerance is the more favourable phenotype as it 

does not create the same evolutionary pressure on pathogens as resistance. However, 

their model shows that the incidence of infection increases .over successive generations 

of tolerant plants, whereas a decrease is seen over time with resistant plants (Figure 

1.3). In terms of crops, reduction of inoculum levels in the field is a key component of 

managing disease (Strange and Scott, 2005). Crop rotations are often used as a 

management practice to reduce inoculum load when resistant cultivars are not 

available and pathogen host range is limited. 

· Durable quantitative resistance is arguably the most desirable phenotype, leading to 

lower inoculum level in the field butwithout creating a strong selection pressure on the 

· pathogen. Thus, ·the term 'resistance' will be used here to describe reduced disease 

severity where the mechanism is unknovvn. 
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Figure 1.3 The modelled effect of resistance and tolerance traits on the inheritance of 
each trait in the host population and incidence of disease over time. Resistance and 
tolerance traits both have a fitness benefit and are therefore inherited and increase in 
frequency in the host population (a - d) . Resistance traits lead to a decrease in infection 
(a, c) , whereas tolerance traits allow infection to increase over time (b, d) . Modified 
from Roy and Kirchner (2000) . 

1.3.5 Resistance to Rhizoctonia so/ani in close relatives of wheat 

There is little evidence of resistance to R. solani in the wheat or Pooideae cereals, such 

that no R. solani resistance traits are available for commercial breeding programmes. 

Neate (1989) found little overall difference between disease severity ratings across 

cultivars of wheat, barley, oats, rye and triticale, with cereal disease susceptibility 

rankings changing between years and between pot and field experiments. 

Other research has proven more positive and is summarised in Table 1.3. Some varietal 

resistance was found in wheat by Smith et al. (2003a). Okubara et al. (2009) 

generated a wheat mutant with heritable increased tolerance to R. solani, but the genes 

and mechanisms involved are still to be determined. 

Despite the broad host range of R. solani AG8, varying levels of resistance are found in 

the wild Triticeae relatives of wheat. A number of genotypes of Dasypyrum villosum 

(mosquitograss, Pooideae subfamily) are classified as resistant, although they can 

develop some lesions following inoculation with R. solani AG8. Dasypyrum villosum 
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was considered a potential donor of Rhizoctonia resistance genes for cereal crops, but 

D. villosum/wheat amphidiploids remained susceptib~e (Smith et al., 2003b). 

Okuhara and Jones (2011) demonstrated the ability to transfer a partial increase in 

resistance to R. solani AG8 to Chinese Spring wheat, in addition lines carrying 

chromosome 4E or 4J from Thinopyrum elongatum and Th. .bessarabicum, 

respectively. They speculated that the shortening and thickening of diseased roots 

could indicate the involvement of the hormones jasmonic acid and ethylene in the 

defence response. The mechanisms controlling disease resistance in wild relatives of 

wheat are still unknown. 

Table 1.3 Genetic resistance to R. so/ani AG8 in relatives of wheat. 

Plant 

Thinopyrum 
elongatum 

'Chinese Spring' 
wheat addition 
line 

'Chinese Spring ' 
wheat addition 
line 

'Scarlet-Rz1 ' 
wheat mutant 

Wheat 

0asypyrum 
villosum 

Barley 

Wheat 

Nature of resistarnce 

Th. e/ongatum (tall wheatgrass) had 13 - 19% 
greater root length ratio* than 'Chinese Spring' 

Chromosome 4E addition from Th. elongatum 
increased root length ratio* by 14 - 23% compared 
with 'Chinese Spring'. 

Chromosome 4J addition from Th. bessarabicum 
increased root length ratio* by 10 - 50% compared 
with 'Chinese Spring'. 

BC2F 4 EMS mutants of 'Scarlet'. ('Scarlet-Rz1 ') had 
up to 39% greater root length ratio* compared with 
'Scarlet'. 

Varietal differences were found for grain yield in the 
field, as a measure of resistance to R. solani. 
Differences in resistance were not evident in a pot 
assay. 

Moderate host resistance in 0 . villosum 
(mosquitograss) based on root disease scores. 
Wheat synthetic hexaploids, barley and 0. villosum I 
wheat amphidiploids did not show increased 
resistance~ 

(Okubara and 
Jones, 2011) 

(Okubara et al., 

2009) 

(Smith et al., 
2003a) 

(Smith et ar , 
2003b) 

*Increase in inoculated/control root length ratio at 14 days after planting 
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1.4 Pythium root rot 

Pythium root rot in wheat is caused by a number of Pythium species. In the field, the 

disease manifests as pre-emergent seed loss (damping off) and post-emergent loss of 

seedling vigour (Ingram and Cook, 1990). The direct impact of Pythium spp. on cereal 

production is difficult to assess: When disease is present, it generally causes a 

widespread reduction in wheat growth, rather than obvious patches (GRDC, 2010). 

Thus, Pythium root rot is often referred to as the 'common cold' of wheat (Cook and 

Veseth, 1991). 

In Australia Pythium disease occurs in all wheat growing regions, but is most severe in 

the southern cropping zone (South Australia, Victoria, Tasmania and southern New 

South Wales), where disease is seen in 63% of the wheat crop area in 68% of years. In 

Western Australia and in the northern region (Queensland and northern New South 

Wales) Pythium affects a quarter of wheat crops in 49% and 36% of years, respectively 

(Murray and Brennan, 2009). 

Pythium root rot is also a problem in the Pacific Northwest of the United States of 

America, where it is more prevalent in the higher rainfall regions (Paulitz et al. , 2009). 

1.4.1 Pythium spp. 

The broad host range of the oomycete Pythium is not to be underestimated. Species of 

Pythium destroy across the kingdoms, including tropical trees (Augspurger and 

Wilkinson, 2007), seaweed (Hwang et al. , 2009), mushrooms (Godfrey et al. , 2003), 

mosquito larvae (Scholte et al. , 2004), tigers (Buergelt et al. , 2006) and even humans 

(Krajaejun et al. , 2006). Infection in mammals generally occurs in warmer climates 

after exposure to swamps or ponds. The oomycete generally invades opportunistically 

through open wounds in skin or, in the case of mosquito larvae, through 1nechanical 

da1nage. 

Many species of Pythiu111 are found to colonize wheat embryos and roots, but not all 

cause disease. The most pathogenic species of Pythium recorded are P. aristosporum, 

P. volutum, P. ultin1un1, P. sylvaticu111 and P. irregulare (Chamswarng and Cook, 

1985), P. irregulare and P. ultimun1 var. sporangiiferum (Ingram and Cook, 1990) and 

P. debaryanum = P. irregulare and P. ultimum (Higginbotham et al. , 2004b). These 

isolates were all collected fro1n the USA states of Washington and Idaho. Pythium root 

rot of wheat has also been attributed to P. arrhenomanes and P. graminicola in Great 

Britain, P. arrhenomanes and P. volutum in Canada, and P. graminicola in India 
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(Waller, 1979). In Australia P. irregulare is reported to be the most common species 

associated with wheat disease (Pankhurst etal., 1995; Harvey et al., 2008). 

Oospores are the survival structures .of Pythium, allowing the oomycete to survive in 

the soil for lengthy periods (Figure 1.4). Traditionally Pythium root rot has been 

considered a disease of cold wet soils, but recent evidence shows that the disease can 

also occur during drought conditions (GRDC, 2010). This is supported by studies into 

the viability of oospores under different soil moisture conditions. Oospores remain 

viable and pathogenic for longer . under dry soil conditions· (-10 kPa) than moist -

conditions (o and -1 kPa) (Mondal and Hyakumachi, 2000)- and are reported to have 

survived in soil for several years (Martin and Loper, 1999). 

Pythium spp. can cause disease in a complex with other pathogens, such as Fusarium 

spp. (Harvey et al. , 2008). Some species of Pythium, including P. irregulare, may 

stimulate the growth of fungi, such as R. solani, while other Pythium spp. are 

mycoparasites (van der Plaats Niterink, 1981). 

Figure 1.4 An oospore of Pythium irregulare forming on agar medium , stained with 
Trypan blue. The arrow points to the antheridium , the male part of the reproductive 
structure . The antheridium has fertilised the oogonium to produce an oospore. 
Hyphae on either side of the oospore are no longer viable. This oospore could either 
germinate directly or produce zoospores which will encyst and then germinate on 
roots . Scale bar, 20 µm . 
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1.4.2 Mechanisms underlying disease· 

In young seedlings, Pythium hyphae quickly invade the root by penetrating breaks in 

the epidermis, but may also enter the epidermis by forming appressoria (Figure 1.6). 

During zoospore infection appressoria enter root hairs, but this rarely occurs with 

mycelial appressoria. Infection in two-day-old wheat seedlings is highest behind the 

root cap, 1 - 2 mm from the root tip, in the region of root hair formation. An increase in 

root hair length and density in this region is observed within a day of Pythium 

infection. Resistance to penetration is markedly increased for mature tissue further 

than 5 mm from the tip (Mojdehi et al., 1991). 

Hyphal invasion of the root is generally limited to the cortex, with extensive physical 

and enzymatic tissue destruction as the mycelium extends intracellularly. The 

endodermis provides a barrier to invasion of the stele in all but the youngest tissue 

within 2 mm of the tip. Severe infection causes roots to cease growing, becoming 

brown and rotted. This is followed by reproductive oospore formation in the root tip 

(Mojdehi et al., 1991) . 

Researchers have also described Pythium as a vascular pathogen in Arabidopsis, 

finding that invasion of vascular tissue can lead to wilting and cell death in the absence 

of detectable degradative compounds (Staswick ·et al., 1998; Vijayan et al., 1998; Adie 

et al., 2007). 

Temperature is a factor in the development of Pythium pathogenicity. Abad et al. 

(1994) tested the effect of temperature on pre-emergent and post-emergent disease on 

creeping bentgrass by over 30 species of Pythium. They found that the effect of 

temperature on disease severity differed between species of Pythium. Generally, and 

for P. irregulare, the higher temperatures (28 and 32°C) resulted in greater incidence 

of disease than the lower temperature (16°C). 

Ingram and Cook (1990) found that colonisation of germinating wheat embryos by 

P. irregulare in soil occurred at all temperatures in the range 5, 10, 15, 20 and 25°C. 

Emergence was not significantly reduced by P. irregulare at any temperature, but 

there was a significant reduction in leaf 1 length at all temperatures except 20°C. The 

authors concluded that while P. ultimum is generally more pathogenic to wheat than 

P. irregulare, the ability of P. irregulare to grow at low temperatures can make it an 

important pathogen in soils where the temperature is close to freezing. Illustrations of 

gennination and early growth stages of wheat are reproduced from Tottman and Broad 

(1987) in Figure 1.5. 
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Leaf at coleoptile tip (09) 

Three leaves unfolded (13) 
Main shoot and 2 tillers (22) 

Figure 1.5 Illustrations of early wheat seedling development, after Zadoks et al. (1974). 
Pythium infection in seedlings occurs predominantly at the youngest root tissue behind 
the extending root tip, resulting in reduced first leaf length. Zado~s decimal codes for 
growth stages are given in brackets. Modified from Tottman and Broad (1987). 

Pythium infection can cause lesions and degradation of root tissue. However, the 

presence of disease symptoms and isolation of Pythium from field-grown wheat is not . 

always associated with the presence of root lesions (Cook et al., 1980). A lack of visible 

root da1nage has also been reported for Pythium disease in lettuce, tomatoes and 

turfgrass (Abad et al., 1994; Rey et al., 2001). Pythium disease in turfgrass can be 

diagnosed by foliar symptoms and observing Pythium colonisation of roots through 

the presence of oospores (Feng and Dernoeden, 1999). 

In field-grown wheat the presence of oospores within the root tip can be observed in 

Pythium infected plants, along with root tip browning. Disease symptoms include 

distortion of the first leaves, loss of fine roots and reduced plant vigour (Paulitz and 

Adams, 2003). Damage to fine roots is associated with reduced plant vigour and 

delayed maturity (Cook and Haglund, 1982). 

Total root length and nu1nber of root tips are indicators of Pythium disease severity in 

wheat. Higginbotham et al. (2004a) found that the number of root tips was correlated 
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with total root length and thus abandoned laborious root tip number measurements in 

subsequent experiments. In alfalfa (Medicago sativa) it was found that some, but not 

all, species of Pythium caused changes in root growth and architecture. Decreased root 

system size and a lower degree of branching occurred in response to P. ultimun1 and P. 

irregulare (Larkin et al., 1995). 

Germination rate and total plant dry weight have also been used as indicators of isolate 

pathogenicity in wheat, barrel medic and sub-clover (Harvey et al., 2001). When 

Pythium species invade the embryo within 24 h of germination, length of the first leaf 

is reduced (Hering et al., 1987; Higginbotham et al., 2004a). 

Pythium can be recovered from infected roots by plating onto a selective agar medium, 

followed by identification of isolates using PCR (Hering et al., 1987; Harvey et al., 

2008). Pythium levels in soil or root samples can be quantified using real-time PCR 

(Okubara et al., 2007). 

1.4.3 Pythium effectors 

It is unclear whether the wheat-infecting species of Pythium are necrotr9phic or 

hemibiotrophic. In Arabidopsis infection Oliver and Ipcho (2004) described 

P. irregulare as a necrotroph, while Adie et al. (2007) observed hemibiotrophic 

disease progression and haustoria-like structures typical of biotrophs (Figure 1.6). 

Cheung et al. (2008) and Levesque et al. (2010) concluded that the absence of RLXR 
effector sequences in the P. ultimum genome was consistent with its more 

necrotrophic nature than the related oomycetes Phytophthora spp. Effectors carrying 

the RXLR amino acid motif are abundant in Phytophthora spp. The motif is thought to 

be involved in translocation of the protein into the host cell via haustoria (Cheung et 

al., 2008). The P. ultimum genome does encode proteins expected to be capable of 

host translocation. These include secreted proteins of the Crinkler gene family and a 

nevvly discovered YxSL[KR] family of RXLR-like proteins that is present across the 

oon1ycetes (Levesque et al., 2010). 

Cell-vvall degrading enzymes, including pectinases, cellulases and glycoside hydrolases, 

are predicted in the P. ultimum genome (Levesque et al. , 2010). An absence of cutinase 

genes in the P. ultimum genome was also seen in the R. solani 1-IA genome (Zheng et 

al., 2013). Furthermore, P. ultimum lacks xylanase and pectin methylesterase genes. 

This is expected to be vvhy pathogen penetration of roots is limited to unsuberized 

regions near the root tip or damaged areas (Levesque et al. , 2010). 
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Martin (1964) described a phytotoxin, likely proteinaceous, produced by P. irregulare 

that selectively inhibited root growth of beets and other members of the Amaranth 

family at low concentrations .. Other proteiriaceous effectors, including elicitin-like 

proteins and necrosis-inducing proteins, are als·o encoded by the P. ultimum genome 

(Levesque et al., 2010). 

Rey et al. (2001) showed that tomato root stunting was probably caused by 

unidentified toxins or enzymes in P. ultimum filtrate, while root growth was inhibited 

by auxinic conipounds in Pythium group F filtrate . 

. 
ICS 

Figure 1.6 Infection structures of P. irregu/are (stained) on Arabidopsis root (a , b, f) 
· and leaf (d). Scale bar, 10 µm (a , b, d, e) , scale bar 5 µm (c, f) ; an , antheridium ; ap, 
appressoria; app , apposition ; cw, cell wall ; hi , haustoria-like structure ; hs, hyphal 
swellings ; hy, hyphae; ics, intracellular space; oo, oogonium. Reproduced from Adie 
et al. (2007) . 
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1.4.4 Resistance to Pythium spp. in close relatives of wheat 

Genetic resistance to Pythium root rot is not available in commercial wheat varieties 

(Okubara and Jones, 2011) and there are few reports of resistance in other cereals 

(Table 1.4). Raftoyannis and Dick (2006) did not observe zoospore encystment on 

roots of oat or maize by any of the ten species of Pythium tested, while zoospores of 

seven species encysted on wheat roots. The different species of Pythium caused varying 

levels of root length reduction in oat, maize and wheat, with oats consistently the most 

resistant of the cereals. This increased resistance in oats may be due to the release of a 

toxin, possibly avenacin, which lyses zoospores (Deacon and Mitchell, 1985). 

Higginbotham et al. (2004a) measured varying levels of tolerance to P. ultimum and 

P. debaryanum ( = P. irregulare) across thirty diverse lines of wheat. The ratio of 

inoculated/control total root length ranged from 27% to 81% with P. ultimum, with 

least significant difference of 23%. The authors did not find any correlation between 

tolerance and other varietal traits. Okubara and Jones (2011) showed that 

Thinopyrum elongatum was more resistant to P. ultimum than Chinese Spring wheat. 

The inoculated/ control total root length ratios of wheat averaged 44%, while T. 

elongatum ratios were around 71%. This higher level of resistance was present in a 

wheat-Thinopyrum amphidiploid and a wheat addition line carrying T. elongatum 

chromosome 4E. A wheat addition line with T. elongatum chromosome 4J had the low 

resistance level of wheat. Rice genotypes in a cold tolerance breeding program ranged 

from susceptible to moderately resistant to Pythium spp. in the field and to P. 

arrhenomanes in pot experiments (Rothrock et al., 2009). 

Table 1.4 Genetic resistance to Pythium spp. in relatives of wheat. 

Plant 

Thinopyrum 
elongatum 

'Chinese Spring ' 
wheat addition 
line with 
Th . e/ongatum 
chromosome 4E 

'Chinese Spring ' 
wheat -
Th . e/ongatum 
amphidiplo id 

Wheat 
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Nature of resistance Reference 

First leaf length , root weight and root length were not (Okubara and 
significantly lower in seedlings inoculated with Jones, 2011) 
P. ultimum than in control. 'Chinese Spring ' wheat 
has significantly lower values for these 
measurements in inoculated treatments than in 
control. 

As above for P. ultimum. This line also showed some 
increased resistance to P. irregu!are. 

Thirty genotypes of wheat were tested for resistance 
to P. debaryanum (= P. irregulare) and P. ultimum, 
measuring the inoculated/control ratio of number of 
root tips , root length and first leaf length . Variation in 
resistance was found across the genotypes. 

(Higginbotham et 
a/., 2004a) 
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1.5 Disease resistance mechanisms 

Our knowledge about plant disease resistance mechanisms is steadily growing. This 

section gives a broad description of disease resistance mechanisms, focussing on those 

that are relevant to the root diseases Rhizoctonia solani and Pythium species. · Studies 

that have delved into resistance mechanisms and signalling in response to these 

pathogens are summarised in Tables 1.5, 1.6 and 1.7, and Figure 1.7. A diverse range of 

plant and Pythium species, along with different anastomosis groups of R. solani, are 

included in this summary. Not all mechanisms will necessarily be relevant to wheat 

and B. distachyon. 

1.5.1 Genetic resistance 

Genetic resistance mechanisms fall into two groups. Qualitative resistance confers 

immunity to a specific pathogen via a plant R-gene. Quantitative resistance does not 

confer complete resistance, but is considered to be the more durable form of defence 

(Poland et al., 2009). 

Relatively few R-gene resistance mechanisms are seen in necrotrophic disease (Poland 

et al. , 2009). Sensitivity to a carbohydrate-based R. solani AG1-IA host-selective toxin 

(HST) is conferred by the Rsm locus in rice (Costanzo et al. , 2011). The authors · 

speculate that the enzymatic product of the R-gene breaks down the HST, releasing 

a-glucose molecules that interfere with the plant's cytokinin signalling, thereby 

causing necrosis. Nair and Thomas (2013) recently characterised a putative R-gene in 

wild ginger, the presence of which protects the plant from_ P. aphanidermatum. The 

gene has the classic qualitative resistance CC-NBS-LRR (coiled coil-nucleotide binding 

site-leucine rich repeat) amino acid sequence motif. 

Resistance to necrotrophic disease is generally expected to involve multiple 

quantitative disease resistance genes. Quantitative resistance genes may be pleiotropic, 

also involved in resistance to multiple pathogens or in plant grovvth and development, 

or in other instances they may act as vveak R-genes (Poland et al. , 2009). Quantitative 

trait loci (QTL) ha, e been found for resistance to R. solani in rice and sugar beet (Lein 

et al. , 2008; Eizenga et al. , 2013). 

1.5.2 Defence proteins 

A wide array of proteins is involved in pathogen defence, not only in plants, but across 

kingdoms. These proteins can be divided into 1) pathogenesis-related (PR) proteins, 

which are induced in response to biotic attack, but may also protect plants from abiotic 

damage such as cold stress and wounding, and 2) other proteins that are upregulated 
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during the defence response, but are otherwise present in normal cell functioning (van 
Loon et al., 2006). 

Van Loon et al. (2006) summarise pathogenesis-related proteins, the production of 

which is induced by jasmonic acid, ethylene and salicylic acid signalling. Several PR­

proteins are shown to be involved in the plant defence response to R. solani and 

Pythium spp. Lectins play multiple roles in plant defence, symbiosis and in animal 

innate immunity (De Hoff et al., 2009). Cammue et al. (1990) showed that whe?t germ 

agglutinin production is increased in the presence of pathogens, including R. solani 

and P. ultimum, but concluded that the lectin probably does not directly inhibit 

pathogens. Likewise, the protective nature of pectin lyase inhibitor protein (PNLIP) 

produced by sugar beet was thought to be due to three-way binding of PNLIP with 

R. solani pectin lyase and the pectin substrate (Bugbee, 1993). 

A range of proteins produced by wheat has been shown to inhibit the growth of 

R. solani and Pythium spp. in vitro. This offers the possibility of selecting for lines 

with high expression of genes encoding defence compounds or of introducing a novel 

gene by transformation. Liu et al. (2009) showed that a wheat /5-1,3-glucanase gene 

expressed in vitro inhibited the fungi R. solani and R. cerealis, as well as the oomycete 

Phytophthora capsici. Inhibition of R. solarii growth in vitro by wheat xylanase 

inhibitors (TAXI) was suggested to be sin1ply due to binding of fungal /;-D-glucans and 

not degradation of the fungal ceil wall (Dornez et al., 2010). 

1.5.3 The transgenic approach 

The use of transgenic gene expression, primarily of defence proteins, to control fungal 

diseases has been investigated since the early 1990s, beginning with the over­

expression of a bean chitinase gene in tobacco (Broglie et al. , 1991). Barley seedlings 

expressing a chitinase from Trichoderma were more resistant to R. solani AG8 in pot 

assays (Kogel et al., 2010). Recently a rice xylanase inhibitor protein was shown to 

degrade R. solani fungal cell wall via chitinase activity (Wu et al. , 2013a). 

Stefani and Han1elin (2010) sumn1arised the studies that used transgenic methods to 

target fungi. Over twenty research articles showed a decrease in response to R. solani 

in species of Nicotiana (12 articles), Oryza (7) , Solanum (2), Brassica (1) and 

Gossypiun1 (1). The genes effective against R. solani expressed chitinases, glucanases, 

thaumatin-like proteins, ribosome inactivating proteins, wheat puroindolines, 

bacterial and plant anti-fungal toxins, an osmotin promoter binding protein and a 

zinc-finger protein. Genes that were also effective against Pythiun1 spp. included a 
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toxic bacterial peptide expressed in tobacco (Mitsuhara_ et al., 2000) and thaumatin 

expression in tobacco (Rajam et al., 2007). 

Where endogenous gene expression is tissue-specific, the use of traditional breeding 

methods to develop disease resistant plants is difficult. For example, puroindoline 

expression is endosperm-specific. To _ achieve increased resistance to R. solani, wheat 

puroindoline synthesis· genes were transformed into rice under control of an ubiquitin 

promoter to extend expression into leaf tissue (Krishnamurthy et al., 2001). 

To date no crop species carrying transgenic fungal or oomycete resistance genes have 

been approved for commercialization (ISAAA, 2013). This may partly be due to the 

complex nature of resistance signalling, meaning that measurable increases in 

resistance in pot assays may not translate to field experiments. In future, a nuanced 

approach to incorporation of resistance genes into crop pl~nts is needed, such as 

rewiring of hormone signalling pathways to prevent hijack by pathogens and the 

stacking of multiple resistance genes (Grant et al., 2013). 

1.5.4 Secondary metabolites 

Secondary metabolites synthesised by plants for pathogen resistance fall into two 

categories. Phytoanticipins are defence compounds expressed even in the absence of 

attack, while phytoalexins are synthesised in response to pathogen invasion. Some 

compounds may be expressed constitutively, but upregulated in response to pathogen 

attack, in which case they would fall into both categories (Dixon, 2001). The major 
-

defence secondary metabolites produced by cereals are benzoxazinoids, terpenoids, 

flavonoids , cyanogenic glycosides and, only in oats, saponins (Du Fall and Solomon, 

2011). 

Flavonoids and other secondary metabolites are released into the rhizosphere by 

plants as a means of communicating with other plants, symbionts and pathogens 

(Hassan and Mathesius, 2012). Glyceollin is an isoflavonoid derivative that is 

upregulated in soybean roots by R. solani (Wyss et al., 1991). Rosmarinic acid, a caffeic 

acid ester, is exuded by roots of Sv\ eet basil in response to P. ultimum and inhibits 

mycelial growth in vitro (Bais et al. , 2002). The shikonins, napthoquinone derivatives, 

of Lithospermum erythrorhizon inhibit growth of R. solani and Pythium spp. in vitro 

(Brigham et al. , 1999). 

A fascinating split-pot study by J ousset et al. (2011) demonstrated the ability of barley 

to release vanillic acid, p-coumaric acid and fumaric acid from uninfected roots, when 
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other roots of the same plant were infected with P. ultimum. Furthermore, these 

phenolic acids were shown to induce in vitro expression of an antifungal gene in the 

rhizosphere bacterium Pseudomonas fiuorescens .. 

1.5.5 Changes in gene expression and signalling 

Changes in gene expression during infection provide clues to genes and pathways 

required for defence. The major drivers of the plant defence response are the 

phytohormones jasmonic acid (JA), ethylene (ET) and salicylic acid (SA). These 

signalling molecules modulate defence mechanisms to halt invading pathogens with an 

innate immune response and to prime defences against future invasion (van Loon et 

al., 2006; Dodds and Rathjen, 2010). Necrotrophic pathogens are generally met with a 

JA-ET mediated response, while the response to biotrophic and hemibiotrophic 

pathogens relies on SA signalling (Glazebrook, 2005). Rhizoctonia solani and Pythiun1 

spp. are considered to be necrotrophic pathogens, although there is a suggestion that 

some Pythium spp. may be hemibiotrophic (Latijnhouwers et al., 2003). 

Plant defence priming mediated by JA-ET, known as induced systemic resista·nce 

(ISR), occurs in ·response to biotic factors, such as plant growth-promoting 

rhizobacteria (PGPR) or pathogenic organisms, while defence priming mediated by SA, 

known as systemic acquired resistance (SAR), is induced by both biotic and abiotic 

factors (Vallad and Goodman, 2004; van Loon et al., 2006). 

With these distinct roles, the JA-ET and SA pathways often, but not always, act 

antagonistically. The hormones and transcription factors that n1odulate these major 

defence hormones can affect each pathway differently (Pieterse et al., 2012). Auxin 

(indole acetic acid) has an antagonistic effect on SA signalling while acting 

synergistically with JA-ET in response to necrotrophic pathogens (Llorente et al., 

2008; Kazan and Manners, 2009). Abscisic acid (ABA) positively or negatively 

modulates the SA response, but tends to induce JA signalling (Fan et al. , 2009). 

Ethylene signalling, mediated by ET responsive transcription factors, is involved iii the 

defence response of several species to R. solani (On.ate-Sanchez et al. , 2007; Anderson 

et al. , 2010; Guerrero-Gonzalez et al., 2011). 

Many of these defence hormones play separate roles in root development. The 

honnones JA and ET 1nodulate root development by inhibiting elongation and altering 

lateral root formation (Okubara and Paulitz, 2005). Abscicic acid and auxin are 

involved in lateral root initiation (Nibau et al. , 2008; Zhang et al. , 2008). 
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Defence signalling is closely linked with the production of reactive oxygen species 

(ROS), including hydrogen peroxide. Plants increase production of ROS in response to 

pathogens or effectors, leading to localized cell death. This hypersensitive response is 

an effective means of halting the invasion of biotrophic pathogens. Necrotrophic 

pathogens are able to obtain nutrients from dead host tissue and tolerate higher levels 

of ROS, so the hypersensitive response may in fact aid _these pathogens (Mayer et al. , 

2001). 

On the other hand, it does appear that there is a role for the production of ROS in 

combating necrotrophic infection, as plants that are defective in ROS production are 

more susceptible to R. solani (Foley et al., 2013; Nikraftar et al., 2013). Production of 

ROS stimulates the production of flavonoids, which act as antioxidants (Agati et al. , 

2012). This may seem counterintuitive, but flavonoids can also . have antifungal 

properties (Hassan and Mathesius, 2012). Furthermore, hydrogen peroxide activity, 

mediated by peroxidases, is required for cell wall strengthening, lignification of xylem 

vessels and suberisation of the epidermis (Almagro et al. , 2009). Taheri and Tarighi 

(2010) described an example of increased lignification in response to R. solani sheath 

blight in_ rice leading to decreased lesion length. 

It is worth noting that R. solani and Pythium spp. attack seedlings and have the 
-

greatest impact at or soon after germination. At this early stage of a plant's life it is 

heterotrophic, relying on energy stored in the endosperm-to grow and develop. In the 

first few days after germination seedlings are tolerant to dehydration. Signals 

associated vvi.th sucrose metabolism are thought to cause a transition to dehydration 

intolerance and then to autotrophy (Bogdan and Zagdanska, 2009). Thus, defence 

signalling in young seedlings takes place in a constantly changing background 

signalling environment, which may be quite different to that experienced in older 

plants. 
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Table 1.5 Studies into plant defence mechanisms with both Rhizoctonia so/ani and 
Pythium spp. 

Plant 

Wheat 

Lithospermum 
erythrorhizon 
hairy root 
cultures 

28 

Mechanism 

Defence protein (lectin) 
·wheat germ agglutinin (WGA) in wheat roots rose when 
incubated in solutions containing polygalacturonic acid 
fragments , R. so/ani cell wall extract, S-glucan from the 
extracellular mucilage of Schizophyllum commune or 
R-glucan from cell walls of S. commune. The lectin was 
found to be released into the nutrient solution . 
WGA also increased up.on inoculation with R. so/ani, 
Fusarium culmorum, P. u/timum or non-pathogenic 
Neurospora crassa . 

WGA accumulation had previously been demonstrated 
in response to drought and osmotic stress. 
The authors disputed previous findings that WGA has 
an anti-fungal role related to chitin-binding. 

Secondary metabolite 
Rhizoctonia solani elicitor increased shikonin production 
and altered the ratio of shikonin derivatives produced by 
the roots on media, possibly related to pH variation. 
Shikonin inhibited growth of R. solani above 50 µg/ml in 
vitro . R. sofEJni sequestered shikonin from the medium . 
Pythium ultimum and P. aphanidermatum were _ inhibited 
from 5 µg/ml and 50 µg/ml , respectively . 

Reference 

(Cammue et al., 
1990) 

(Brigham et al. , 
1999) 
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Table 1.6 Studies into plant defence mechanisms with Rhizoctonia solani. 

Plant 

Arabidopsis 

Arabidopsis 

Soybean 
Maize 

Mechanism 

Antioxidant activity/ Defence gene expression 
Differences in Arabidopsis gene expression were 
studied , in response to infection with_ non-pathogenic 
R. so/ani AG8 compared with pathogenic R. solanl AG2-
1 at 7 days after inoculation. 
Lines with single mutations in the auxin, camalexin , 
salicylic acid, abscisic acid and ethylene/jasmonic acid 
pathways did not respond qifferently to R. solani. Gene 
expression changes were of greater interest in oxidative 
stress, cell wall associated protein, transcription factor 
and heat shock protein pathways. 
An NADPH oxidase double mutant (AtrbohD AtrbohF) 
allowed greater colonisation by R. solani AGB, while the 
single mutant lines did not. Rboh-NADPH oxidases 
produce ROS in response to infection. 

Antioxidant activity 
A glutathione-S-transferase promoter (GSTFB) is 
induced in Arabidposis after infection with less 
pathogenic isolates of R. solani. The promoter was not 
induced by strains that caused severe disease. 

Antioxidant activity 
Differences were measured in the enzyme activity of 
soybean and maize plants at 10 days after inoculation 
with R. solani AG2-2 111B. Disease symptoms were more 
severe on soybean than maize. 
Reactive oxygen species (ROS; superoxide anion O2-­
and hydroxyl radical ·OH) production increased in 
soybean after infection , but not in maize. 
Superoxide dismutase (SOD) activity increased only in 
infected maize roots . Guaiacol peroxidase (GPX) and 
pyrogallol peroxidase (PPX) activity significantly 
increased in infected leaves, except for a significant 
decrease for PPX in maize leaves. Lipid peroxidase 
(LP) increased in infected soybean leaves and-roots, 
but decreased in maize leaves. Phenylalanine 
ammonia-lyase (PAL) activity increased in infected 
soybean roots and in both maize tissues. 
Polyphenol content increased in infected roots of 
soybean and maize, but decreased in soybean leaves. 
Flavonoids and carotenoids were measured in leaves 
only. Flavonoids increased in infected soybean and 
maize leaves, while carotenoids decreased. 
Glutathione {GSH) content increased only in infected 
soybean leaves . DPPH-free radical scavenging activity 
increased only in infected leaves of soybean and maize. 
The authors concluded that the enhanced non­
enzymatic antioxidant system (eg , GSH, phenolics , 
flavonoids) in maize was more effective at preventing 
ROS increase than the enzymatic antioxidant system 
(eg . SOD, LP , GPX, PPX). 

Referiemce 

(Foley et al. , 
2013) 

(Perl-Treves et · 
a/. l 2004) 

_(Kiprovski et al., 
. 2012) 
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Table 1.6 continued Studies into plant defence mechanisms with Rhizoctonia solani. 

Plant 

Tomato 

Tomato 

Phaseo/us 
vulgaris 
(common bean) 

Rice 

30 

Mechanism 

Antioxidant activity 
Twelve hours post inoculation with R. solani AG3, a 
partially resistant variety of tomato had higher 
accumulation of H20 2 than a more susceptible variety. 
Inhibiting H20 2 production reduced resistance to the 
pathogen. 
Peroxidase and ascorbate peroxidase _activity increased 
after inoculation. Ascorbate peroxidase reduces H20 2 to 
water. 
The partially resistant variety accumulated a higher level 
of phenolics in response to pathogen inoculation than 
the more susceptible variety or control treatments. 
Phenolic accumulation reached a maximum following 
the peroxidase maximum , leading the authors to 
speculate that peroxidase may be involved in phenolic 
production. Phenolics are involved in cell wall 
strengthening and detoxification of mycotoxins . 

Antioxidant activity 
Rhizoctonia solani AG3, AG1-IA and AG4 produced an 
auxinic plant growth regulator phenylacetic acid (PAA) 
and its hydroxyl and methoxy derivatives via the 
shikimate pathway. In uninfected tomato, PAA (0.1 mM 
and above) reduced root system length an increased 
necrosis. 
Quinic acid (QA) is a cyclic polyol released from lignin in 
decomposing plant tissue. QA was found to increase 
the in vitro growth of R. solani AG3 , AG1-IA and AG4. 
The concentration per mycelial weight of PAA and its 
derivatives produced in vitro by R. solani decreased 
following addition of QA. 
There was an improvement in tomato survival of 
R. solani AG3 when grown on medium ·containing QA. 

Defence gene expression 
Inoculation of bean roots with R. so/ani increased 
expression of early defence genes ERF (ethylene 
response factor) , PvRK20-1 (receptor-like kinase) and 
PA (acid phosphatase) , and subsequent increased 
expression of PGIP (polygalacturonase inhibitor 
protein) , PR1 (pathogenesis-related protein) and a-DOX 
(alpha-dioxygenase) . 
The greatest induction was seen with a-DOX. Alpha­
dioxygenases are involved in the synthesis of oxylipins , 
such as JA, from polyunsaturated fatty acids. 

Defence gene expression 
Rhizoctonia solani AG 1-IA growing along the plant 
surface induced expression of the pathogenesis-related 
genes PR1 band PRZ1 . Twenty-five genes were found 
to be induced by R. solani and at least one other 
pathogen . 

Reference 

(Nikraftar et al. , 
2013) 

(Bartz et al., 
2013) following 
on from (Bartz 
et al., 2012) and 
(Liu et al. , 2003) 

(Guerrero­
Gonzalez et al., 
2011) 

(Zhao et al., 
2008) 
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Table 1.6 continued Studies into plant defence mechanisms with Rhizoctonia so/ani. 

Plant 

Rice 

Rice 

Barley 
(transgenic) 

Rice-derived 

Mechanism 

Defence gene expression 
Over-expression of a WRKY transcription factor 
(WRKY30) in rice reduced R. solani and Magnaporthe 
grisea lesion length. 
Expression of WRKY30 could be induced by JA, SA and 
infection with R. so/ani or M. grisea. 
WRKY30 was found to be localized in the nucleus. 
Greater induced transcription of lipoxygenase (LOX), 
allene oxide synthase (AOS2), pathogenesis related 
PR3 and PR10/PBZ1 in WRKY30 over-expressing 
plants in response to R. so/ani infection suggests that 
WRKY30 is involved in the upstream regulation of these 

. genes. 
WRKY30 over-expressing plants accumulated greater 
levels of JA 24 hours a~er inoculation with either 
pathogen; however SA increase was not greater than in 
wild type. 

Defence gene expression 
Gene expression comparison of a moderately 
resistance ric~ cultivar, 'Jasmine 85', with and without 
R. solani inoculation. Sense and antisense transcripts 
were found to be expressed only in inoculated 
treatments for genes encoding endochitinase, lipid . 
transfer protein, phenylalanine ammonia-lyase, 
glutathione-S-transferase, WRKY transcription factor, 
Ras-related protein ARA-3, NAC domain, LRR protein , 
ubiquitin-conjugating enzyme, serine/threonine kinase:, 
lipoxygenase 8 chloroplast precursor, metallothionein­
like protein 1 and hypersentive-induce~ response 
protein. 
Copy number was generally much higher for sense than 
antisense. The role of antisense transcripts is not 
known, but the authors speculate that they may be 
involved in the RNA interference pathway by forming 
double-stranded RNA. 

Defence protein (chitinase) 
Expression of chitinase from Trichoderma reduced 
R. so/ani AG8 disease in barley in a pot assay at one 
week after inoculation. Presence of the transgene was 
found to have a negligible effect on the background 
transcriptome of field-grown barley. 

Defence protein (chitinase) 
A chitinase-like protein (OsCLP) produced by rice had 
chitinase activity and degraded R. solani cell wall in 
vitro. Although it was phylogenetically classed as a 
putative xylanase inhibitor protein (XIP) it did not exhibit 
xylanase activity. OsCLP expression was induced 
.following infection with Magnaporthe oryzae. 

Referernce 

(Peng et al., 
2012) 

(Venu et al., 
2007) 

(Kogel et al., 
2010) following 
on from (Wu et 
a/. , 2006) 

(Wu et al. , 
2013a) 
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Table 1.6 continued Studies into plant defence mechanisms with Rhizoctonia solani. 

Plant 

Sugar beet 

Wheat-derived 

Arabidopsis 

Medicago 
truncatula 

Medicago 
truncatula 

32 

Mechanism 

Defence protein 
A pectin lyase inhibitor protein (PNLIP) extracted from 
sugar beet inhibited R. solani derived pectin lyase in 
vitro. 
Colonisation by R. solani AG2-2 increased the pH of 
above-ground tissues from 6.5 to as high as 8 and 
decreased pH of below-ground tissues to as low a 4. 
Pectin lyase activity increased with increasing pH. 

Defence protein 
A lipid transfer protein (L TP) cloned from Triticum 
aestivum inhibited growth of R. so/ani in vitro. Earlier, 
over-expression of an Allium cepa non-specific L TP was 
shown to reduce R. so/ani sheath blight in indica rice. 

Ethylene signalling 
Application of exogenous ET to wild type Arabidopsis 
increased expression four of ET response factor (ERF) 
genes, defensin (PDF1.2) and basic chitinase (ChiB). 
AtERF14 was required for PDF1 .2 induction following 
ET treatment and, to a lesser extent, induction of ChiB, 
ERF1, AtERF2 and AtERF15. 
AtERF14 loss-of-function mutants were more 
susceptible to Fusarium oxysporum, but not to R. solani 

. ZG 3 & ZG 5. Wild type Arabidopsis was partially 
resistant to the R. solani strains. 

Ethylene signalling 
An ET insensitive mutant (MtSk/1, orthologue of AtEin2) 
was more susceptible to R. solani AG8 ZG 1 and 
Phytophthora medicaginis. 
The mutant had reduced levels of ET and 1-amino­
cyclopropane-carboxylic acid (ACC) oxidase following 
inoculation with Ph. medicaginis and was unable to 
convert added ACC to ET. 
Previously, MtSk/1 had been found to allow 
hyperinfection by the nodule-forming symbiotic bacteria 
Sinorhizobium meliloti. This study found increased early 
infection by G/omus spp . 

Ethylene signalling 
Application of ET reduced damping off in barrel medic 
due to R. so/ani AG8 ZG1-1 , but had less impact on 
reducing disease symptoms in established seedlings. 
Over-expression of an ET response transcription factor 
(ERF) increased resistance to R. solani AG8 and 
Phytophthora medicaginis , but not root rot nematode, in 
barrel medic, independent of nodulation. 
The authors conclude that ET is more important than 
SA and JA in defence signall ing pathways during the 
first 24 h after infection with R. so/ani. 

Reference 

(Bugbee, 1993) 

(Patkar and 
Chattoo, 2006; 
Kirubakaran et 
al. , 2008) 

(Onate-Sanchez 
et al. , 2007) 

(Penmetsa et 
al. , 2008) 

(Anderson et al., 
2010) 
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Table 1.6 continued· Studies into plant defence mechanisms with Rhizoctonia solani. 

Plant Mechanism P(eference 

Rice Ethylene signalling (Helliwell et al. , 
(transgenic) Over-expression of ET increased expression of defence 2013) 

genes and reduced lesion size of R. solani and 
Magnaporthe oryzae. Expression was controlied by a 
pathogen-inducible PBZ1 promoter. 
Suppression of ET biosynthesis increased susceptibility 
to R. solani. 
In rice, flooding can lead to hypoxia-induced ET 
production. 

Phaseolus Induced resistance I Biocontrol (Xue et at: , 
vulgaris Inoculation of one week old seedlings with binucleate 1998) 
(common bean) Rhizoctonia (BNR) 48 hours prior to pathogen challenge 

reduced the severity of disease caused by R. solani or 
Colletotrichum lindemuthianum: BNR protection resulted 
in increased peroxidase activity, increased levels of 1,3-
/3-glucanase in bean hypocotyls arid increased levels of 
chitinase in cotyledons. 
Only peroxidase and 1,3-{3-glucanase was correlated 
with resistance to R. solani. 

Rice l11duced resistance I Lignification (Taheri and · 

Rice plants sprayed with riboflavin or JA had increased Tarighi , 2010) 

lignin formation and reduced R. solani lesion length. 
Suggestion ~hat riboflavin priming effect was related to 
increased H20 2 production in leaves. 
Treatment with the lipoxygenase (LOX) inhibitor 
5,8, 11, 14-eicosatetraynoic acid (ETYA) blocked the IR 
response to riboflavin. LOX is involved in the 

~ 

biosynthesis of JA. 
Riboflavin· treatment increased expression of LOX and 
PAL (phenylalanine ammonia-lyase) more than in the 
control. Induction of PAL was independent of JA. ETYA 
inhibited LOX and, to a lesser extent, PAL. 

Rice Metabolic pathway changes (Mutuku and 
Rhizoctonia solani activated the glycolytic, OPPP, TCA, Nose, 2012) 

shikimate and phenylpropanoid pathways in rice. 
Increase in H20 2 production and glycolytic enzyme 
activity. 

Rice Quantitative resistance (Eizenga et al., 
Found several QTL for resistance to R. solani in a 2013) 
backcross population of Oryza sativa and 0 . nivara . 

Sugar beet Quantitative resistance (Lein et al. , 
Found three major QTL that explained 71 % of 2008) 
resistance to R. solani AG2-2 11IB in sugar beet. 
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Table 1.6 continued Studies into plant defence mechanisms with Rhizoctonia solani. 

Plant 

Rice 

Potato 

Soybean 

34 

Mechanism 

R-gene resistance 
Mapping of the Rsn 1 locus. The dominant allele 
conferred sensitivity to a R. solani AG1-IA host-selective 
toxin (HST) , resulting in necrosis . Leaves of recess ive 
rsn1 plants only exhibited chlorosis at the site of toxin 
infiltration. 
Two candidate genes at the locus are predicted to 
encode a cytokinin-O-glucosyltransferase. The authors 
suggest that the enzyme may directly degrade the 
carbohydrate-based HST. 
Genotypes of wheat and barley were tested and not 
found to be sensitive to the toxin . 

Secondary metabolite 
Gene expression comparison of potato sprouts with and 
without R. solani AG3 inoculation. 
Infection increased production compounds including the 
aglycon solasodine, sesquiterpene phytoalexins, 
oxidised unsaturated fatty acids, fungitoxic colneleic and 
colnelenic acids, the majority of carboxylic acids , /3-
alanine, 4-aminobutyric acid (GABA) , pipecolic acid , 
ferulic acid, a-tocotrienol and phenylacetic acid . 

Secondary metabolite 
Rhizoctonia solani infestation of soil increased 
production of glyceollin in soybean roots . Glyceollin 
production was not increased by infection with the 
mycorrhizal fungus Glomus mosseae. 

Reference 

(Costanzo et al., 
2011) following 
on from , 
(Brooks , 2007) 
and 
(Vidhyasekaran 
et al., 1997) 

(Aliferis and 
Jabaji , 2012) 

(Yvyss et al., 
1991) 
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Table 1.7 Studies into plant defence mechanisms with Pythium spp. 

Plant 

Arabidopsis 

Ginger 

Ph yscomitrella 
patens (moss) 

Tobacco 
Arabidopsis 
(transgenic) 

Arabidopsis 

Mechanism 

Defence gene expression 
PEN2 (glucosyl hydrolase gene)·was involved in 
avoiding penetration by P. irregulare and ERECTA 
(receptor-like kinase gene) was involved in PAMP 
recognition. Following invasion ABA was involved in 
upregulation of a third of genes induced by the 
pathogen, including activation of JA biosynthesis. ABA 
putatively primes callose biosynthesis. 
P. irregulare was seen to have biotroph-like infection 
structures, but had gene expression responses m~re 
similar to necrotrophs. 
Differential expression of JA/SA/ET independent 
defence genes was similar to expression in response to 
abiotic stresses. 

Defence gene expression 
Differential expression of 41 genes in response to SA, 
JA, ET and P. aphanidermatum in lines tolerant or 
susceptible to the pathogen. Resistance of Z. zerumbet 
to P. aphanidermatum appeared to be independent of 
these signalling molecules. 

Defence gene expression 
Infection with P. irregulare or P. debaryanum led to 
ROS production and cell death. The pathogen induced 
synthesis of JA and its precursor 12-oxo-phytodienoic 
acid (OPDA), as well as expressio.n of CHS (chalcone 
synthase), LOX (lipoxygenase) and PAL (phenylalanine 
ammonia-lyase). 
Chloroplasts were moved closer to the cell wall nearest 
the infected area. Cell walls were reinforced with 
phenolic compound accumulation and callose 
deposition in infected plant cells. 

Ethylene signalling 
ET insensitive mutants of tobacco and Arabidopsis were 
more susceptible to P. irregulare, P. sylvaticum, P. 
jasmonium and P. aphanidermatum. 
Greater colonisation of plant tissue by Pythium in 
mutants, including stele, stem and leaf tissues. 
Speculated inability of ET insensitive plants to recover 
from disease due to impaired adventitious root 
production. 

Induced resistance 
Pythium oligandrum is a non-pathogenic species used 
for biocontrol. Treatment with a cell wall protein fraction 
of P. oligandrum induced resistance to two bacterial 
pathogens. CWP is made up of two glycoproteins, 
structurally similar to class 111 elicitins . . 
SGT1 and RAR1 (co-chaperones of HSP90) , NPR1 
(activation of SA signalling and SAR; cross-talk between 
SA and JA/ET signalling) and JAR1 (JA signalling) were 
all required for defence response. 

Reference 

(Adie et al., 
2007) 

(Kavitha and 
Thomas, 2008) 

(Oliver et al., 
2009) 

(Geraats et al., 
2002) 

(Kawamura et 
al., 2009) 
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Table 1. 7 continued Studies into plant defence mechanisms with Pythium spp. 

Plant 

Arabidopsis 

Arabidopsis 

Barley 

. Ginger 

Ocimum 
basilicum 
(Sweet basil) 
hairy root 
cultures 

Mechanism 

Innate immune response 
Wounding , MeJA and ET induced the expression of 
PROPEP1 , which produces the precursor to AtPep1 . 
The AtPep1 peptide acts as a plant-derived elicitor of 
innate immune response. 
Constitutive over-expression of PROPEP1 increased 
root growth , caused over-expression of PDF1.2 
(defensin) and conferred resistance to P. irregulare. 
AtPep1 application induced the production of H20 2 and 
PDF1.2 expression. 

Jasmonic acid signalling 
Increased susceptibility to P. irregulare in a Jar1 
Uasmonate signalling) mutant of Arabidopsis . The 
mutant also exhibits increased sensitivity to ASA. 

Root exudate I Biocontrol 
Pythium ultimum infection increased exudation of 
vanillic, p-coumaric and fumaric acid at a distance. 
These phenolic acids were shown to induce the 
expression of phlA in Pseudomonas fluorescens. phlA is 
involved in synthesis of the compound 2,4-
diacetylphloroglucinol (DAPG) , an inhibitor of Pythium 
growth . 
Infection of barley roots with Pythium ultimum increased 
phlA expression at a distance. 

R-gene resistance 
Induced expression of the ZzR1 resistance gene in 
response to P. aphanidermatum infection. ZzR1 is a 
CC-NBS-LRR type R-gene, which recognises an 
oomycete avirulence factor. 

Secondary metabolite 
Suggestion that P. ultimum induced production of 
rosmarinic acid in sweet basil hairy root cultures grown 
on solid medium . Rosmarinic acid inhibited in vitro 
growth of P. aphanidermatum, R. solani, other fung i and 
oomycetes . 

Chitosan , JA and SA inhibited root growth , while 
Phytophthora cell wall extract increased root growth in 
vitro . 

Reference 

(Huffaker et al. , 
2006) 

(Staswick et al. , 
1998) 

(Jousset et al., 
2011) 

(Nair and 
Thomas , 2013) 

(Bais et al., 
2002) 
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Figure 1.7 Plant-pathogen defence pathways in response to necrotrophs and biotrophs . 
Stars indicate stages that have been previously studied in R. solani or Pythium spp. 
disease. ET, ethylene ; JA, jasmonic acid ; HR, hypersensitive response ; HSTs, host­
selective toxins ; PCD, programmed cell death ; PG, polygalacturonase; PGIP, 
polygalacturonase inhibitor protein; PGPR, plant growth-promoting rhizobacteria ; ROS , 
reactive oxygen species; SA, salicylic acid ; SAR, systemic acquired resistance . 
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1.6 Brachypodium distachyon 
Brachypodium distachyon is a grass in the family Poaceae, which also includes the 
temperate cereals, forage grasses, rice and maize. Brachypodium distachyon 
originated in and around the Fertile Crescent region where other members of the 
Pooideae subfamily (wheat, barley and rye) were domesticated (Salamini et al., 2002; 
Opanowicz et al., 2008; Vogel et al., 2009). 

Although it has not been domesticated, B. distachyon is found growing in the wild in 
regions around the world and was first recorded in Australia in 1894, where it is 
considered a naturalised species (Atlas of Living Australia, 2013a). The distribution of 
B. distachyon in Australia follows the S?uthern cereal cropping zones (compare Figure 
1.8a and 1.8b). B. distachyon accessions found in Australia are polyploid and thus not 
suitable for inclusion in this project (Iain Wilson, pers. comm.). 

1.6.1 Development of Brachypodium distachyon as a model plant 
Brachypodium distachyon was proposed as a model plant for the cereals by Draper et 
al. (2001) because it has a genome size only slightly larger than that of Arabidopsis, it 
is self-fertile and inbreeding, has a short life-cycle, is small in size, easy to grow and 
can be transformed. The authors also recognised the value of the presence of a range of 
susceptibility and resistance phenotypes in the natural accession population to two 
fungal diseases, rice blast (Magnaporthe grisea) and wheat/barley yellow stripe rust 
(Puccinia striiformis). Since its proposal as a model, researchers have increasingly 
been using B. distachyon , as seen by an increasing number of publications featuring 
this species (Figure 1.9). 

Rice was the first cereal genome to be sequenced in 2005, followed by sorghum in 
2007 and maize in 2009. In 2010 B. distachyon became the closest sequenced relative 
of bread wheat (The International Brachypodium Initiative, 2010). Although the 
genome sizes of bread wheat and B. distachyon are dramatically different, at 17 ooo 
Mb and 272 Mb, respectively, the relationship of orthologous genes between 
B. distachyon and wheat reflects the relatively recent divergence of the two genera 
around 32 to 39 million years ago (Figure 1.10). The high quality B. distachyon 
genome sequence is now being used to annotate the sequenced bread wheat genome 
(Brenchley et al. 2012) and to help with fine-mapping of disease resistance genes, e.g. 
Zhang et al. (2013). Draft genomes of Triticum urartu and Aegilops tauschii, from 
which the wheat A- and D-genomes are deri\ed, respecti, el , , ere published in 2013 
(Jia et al. 2013· Ling et al. , 2013). 
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Figure 1.8 a) Distribution of 1,372 occurrence records of Brachypodium distachyon in 
Australia (Atlas of Living Australia, 2013a) , b) Australian wheat crop agro-ecological 
zones (Murray and Brennan , 2009). 
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Figure 1.9 Number of publications prior to 2013 retrieved via a Web of Science® 
search for 'title' ( dark grey, total 118) and 'topic' (light grey, total 27 4) including the term 
'Brachypodium distachyon'. The arrow indicates the paper proposing. B. distachyon as 
a model plant (Draper et al. , 2001 ). Accessed 26 April 2013 . · 
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Figure 1.10 a) Divergence of the Poaceae species , following whole genome 
dup licat ion 56 - 73 million years ago , b) Location of orthologous genes on the five 
chromosomes of 8 . distachyon and the seven chromosomes of bread wheat. 
Reproduced from The Internationa l Brachypod ium Initiative (2010). 
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1.6.2 Brachypodium distachyon resources 

A key reason behind the success of B. distachyon as a model is the development of 

extensive openly available germplasm collections. 

The initial accessions used in making the case for B. distachyon as a model plant were 

developed at Aberystwyth University (Draper et al., 2001; Routledge et al., 2004; 

Catalan et al., 2012). Inbred lines from the USDA ARS Germplasm Resources 

collection were used in the development of transformation protocols (Vogel et al., 

2006; Vain et al., 2008). Line Bd 21 from the USDA collection was used as the 

standard inbred line for the genome sequencing project (The International 

Brachypodium Initiative, 2010). As of April 2013 a further six accessions had been 

sequenced (Mockler Lab, 2013). 

In 2006 187 diploid accessions were collected from a range of locations around Turkey. 

Analysis ·of genotypic diversity using Simple Sequence Repeat (SSR) markers revealed, 

surprisingly, that a high level of genetic diversity was sometimes found at one location, 

as well as across geographic regions. This was put down to the natural inbreeding 

behaviour of B. distachyon. Eighty-four of the Turkish accessions were developed into 

inbred lines, boosting the natural phenotypic diversity in the available B. distachyon 

germplasm (Vogel et al., 2009). 

With the aim to create a model plant as useful as Arabidopsis, researchers went about 

developing genomic resources including mapping populations and T-DNA insertion 

mutant lines. By 2 ·012 eight institutions had developed many thousands of T-DNA 

lines (Thole et al., 2012). The two leading openly available collections were 

BrachyTAG, using line Bd 21, and the Western Regional Research Center (WRRC) 

collection, using line Bd 21-3 (Bragg et al., 2012) . . Recombinant inbred line (RIL) 

mapping populations have been created to hone in on quantitative trait loci (QTL) for 

phenotypic traits including resistance to Puccinia brachypodii (leaf rust) and a Barley 

stripe mosaic virus resistance gene (Barbieri et al., 2012; Cui et al., 2012). 
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1.6.3 Brachypodium distachyon as a model to study cereal disease 

resistance 

The common geographical origin of B. distachyon and wheat would suggest that the 
two species faced similar biotic and abiotic stresses under similar climatic and soil 
conditions. It is only with its domestication, that wheat has been taken to 
environments with different selection pressures. 

Brachypodium distachyon has lent itself to the study of several fungal and viral 

diseases of cereals, as summarised in Table 1.8. Many of the studies report varying 
levels of pathogen resistance in the B. distachyon natural accession collection. 

In using a model plant to study disease in a crop species, it must be kept in mind that, 

in comparison with the whole genome, the evolution of resistance genes can occur at a 
higher rate (Leister et al. , 1998). This means that the inheritance of resistance genes 

cannot necessarily be deduced from phylogenetic trees. For example, orthologues of 

the Lr34 disease resistance gene can be found in a wide range of the Poaceae, including 

sorghum and rice. In Pooide~e this gene has been lost from the B. distachyon and 
barley genomes, but retained in wheat (Krattinger et al. , 2011). Drader and Kleinhofs 
(2010) noted that a highly diverged barley stem rust resistance gene (Rpg1) orthologue 

could be found in B. distachyon, but not in wheat. There was a high level of synteny 

between barley and B. distachyon disease resistance genes in some regions of the 

genome. While this rapid evolution may pose a problem if orthologues of resistance 
genes found in B. distachyon are missing in wheat, it also demonstrates the advantage 

of having several model cereals. 

1.6.4 Brachypodium distachyon as a potential model for root diseases 
While B. distachyon has been used to study a range of cereal shoot diseases, the same 

is not true for root diseases . This probably reflects the generally lower level of interest 
in root diseases, rather than any deficiency in the ability of B. distachyon to be useful 
as a root disease model. Brachypodium distachyon has been used to study roots traits 
including gene expression in iron homeostasis (Yordem et al., 2 011), the effect of 

nitrogen and phosphorus on root system architecture (Ingram et al. , 2 0 12) and in 
comparisons of nodal to primary root ratios in mature plants (Chochois et al. , 2012). 

Brachypodium distachyon interactions with root fungi are being studied in the 
comparison of phenotypic and expression differences during symbiosis with different 

arbuscular mycorrhizae (Hong et al. , 2012). 
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Table 1.8 Previous research into crop pathogens, using 8. distachyon as a model. 

0culimacu/a spp. 
(eyespot) , 
Ramu/aria col/o­

cygm 
(ramularia leaf 
spot) 

Puccinia graminis 
ff. spp. tritici 
avena and 

pha/aridis 
(stem rust; natural 
hosts wheat, oat 
and phalaris grass; 
respectively), 

Pu. triticina 
(wheat leaf rust) 

Pu. striiformis 
(stripe rust) 

Puccinia graminis 
ff. spp. tritici, lo/ii 
and phlei-pratensis 

Fusarium pseudo­

graminearum 
(crown rot) 

Puccinia 
brachypodii 
(leaf rust), 

Pu. striiformis 

Barley stripe 
mosaic virus 

Panicum mosaic 
virus and its 
satellite virus 
(SPMV) 

Magnaporthe 
oryzae 
(rice blast) 

Fusarium spp. 
(head blight) 

Notes 

Quantitative difference in severity of cereal diseases 
0. acuformis and 0 . yal/undae between two 
B. distachyon inbred lines. The line more resistant to 
0cu/imacu/a spp. also developed less necrosis and 
chlorosis after infection with Ra: collo-cygni, with the 
effect stronger under high light conditions. 

Varying susceptibility to Pu. striiformis f. sp. tritici and 
Pu. graminis f. sp. tritici across 8 . distachyon natural 
accessions, with lines more susceptible to one rust 
species tending to be less susceptible to the other 
species: Differences in susceptibility followed the 
major phylo·genetic grouping in 8. distachyon (Garvin 
et al. , 2010). Little variation in Pu. triticina resistance 
between lines. Pu. graminis ff. spp. avena and 
phalaridis infected most lines, but not fuily susceptible. · 
Pu. striiformis f. sp. tritici sporulation only occurred 
under cooler temperatures. 
Lines were crossed to study the inheritance of non­
host resistance and callose deposition. 

Varying levels of susceptibility found across eight 
B. distachyon inbred lines to Pu. graminis ff. spp. with 
natural hosts wheat, perennial ryegrass and timothy 
grass. None were fully susceptible to these isolates. 

Reference 

(Peraldi et al. , 
2013) 

(Ayliffe et al. , 
2013) 

(Figueroa et 
al. , 2013) 

B. distachyon was found to be susceptible to the wl]eat (Fitzgerald et 

pathogen F. pseudograminearum. Mutant lines are al., 2012a) 
being used to look for disease resistance genes. 

Three QTL for resistance to Pu. brachypodii were 
found in a 8. distachyon recombinant inbred Jine (RIL) 
population . 

Most accessions were found to be immune to three 
isolates of Pu. striiformis with natural hosts wheat , 
barley and California brome grass. 

The resistance gene to BSMV, Bsr1 , was mapped in a 
B. distachyon RIL population. 

Gene expression studies on 8 . distachyon infected 
with PMV or both PMV and SPMV. These viruses 
cause disease in turfgrasses. 

B. distachyon was found to be a possible alternate 
host to barley and rice to look for resistance to M. 
oryzae. 

Variation in resistance was found between two 
B. distachyon inbred lines to F. graminearum and 
F. culmorum, necrotrophic pathogens of wheat. 

(Barbieri et 
al. , 2012) 
following on 
from (Barbieri 
et al. , 2011 ) 

(Cui et al. , 

2012) 

(Mandadi and 
Scholthof, 
2012) 

(Wang et al. , 
2012) 

(Perald i et al., 
2011) 
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Table 1.8 continued Previous research into crop pathogens , using 8 . distachyon as 
a model. 

Pathogen. 

Pythium spp. 

Magnaporthe 
gnsea 

(rice blast) 

Magnaporthe 
grisea 

Puccinia striiformis 

8/umeria graminis 

(powdery mildew) ; 

Pu. recondita 
(brown rust) 

Notes 

Observation of Pythium root rot in 8 . distachyon. 

Segregation of resi~tance to a rice-adapted strain of M. 
grisea in a cross between 8. distachyon ecotypes 
suggested a single dominant resistance gene. 
Ecotypes were generally distinctly resistant or 
susceptible to strains of M. grisea adapted to St 
Augustine grass, crabgrass and perennial ryegrass . 

The 8 . distachyon accessions tested were resistant to 
Bl. graminis f. sp. with natural hosts oats , barley and 
wheat, and to Pu. recondita ff. spp. with natural hosts 
barley and wheat. 

Varying levels of resistance were found towards M. 
grisea and to Pu. striiformis ff. spp. with natural hosts 
barley and wheat. 

Reference 

(Vogel and 
Bragg , 2009) 

(Routledge et 
al. , 2004) 

(Draper et al. , 
2001) 

While there are many conserved genes and functions between the dicotyledonous and 
monocotyledonous plants, the use of the dicot Arabidopsis as a model for grass plants 
has its limitations (Watt et al. , 2009). Root development and internal root structure 
differ markedly be~een monocots and dicots. Monocots produce one or several 
pri1nary roots from the base of the e1nbryo, followed by nodal roots , which emerge 
from leaf nodes on the stein. Dicots produce a single tap root from the radicle. Xylem 
and phloem vessels within the stele are arranged differently, and monocots lack 
vascular cambia and a periderm (Chochois et al. , 2012). These divergent root 
anatomies appear to be linked to fundamental differences in water uptake between 
1nonocots and dicots (Bramley et al., 2009). In the model species, recent experiments 
with B. distachyon T-DNA mutant lines showed that auxin signalling pathways differ 
between B. distachyon and Arabidopsis (Pacheco-Villalobos et al., 2013). 

Looking to plant-pathogen co-evolution, the distribution of R. solani and Pythium spp. 
is widespread. Pythium irregulare has been recorded in all continents of the world 
except Antarctica, including in the Fertile . Crescent region (CABI/EPPO, 2011). 

Rhizoctonia solani AGB was recovered fro1n fields in Australia, Scotland and the USA 
soon after it was first described (Ogoshi, 1987). In 2012 R. solani AGB was first 
reported in Turkey, the country in which most natural accessions in the B. distachyon 
collection originated (Unal and Dolar, 2012) . Since the divergence of wheat and 
B. distachyon over 30 million years the region of present-day Turkey has experienced 
warmer and cooler climate conditions, and corresponding shifts in vegetation (Ivanov 

44 



Chapter 1: Introduction 

et al., 2011). Thus it is possible that R. solani AG8 and P. irregulare have long 

interacted with the Poaceae under conditions favourable for pathogenesis. 

At present there is no evidence that B. distachyon is susceptible to R. solani AG8. It 

has been observed that Pythium root disease occurs in B. distachyon, but the 

interaction has not been investigated further (Vogel and Bragg, 2009): 

1. 7 Rationale and objectives 

The wild population of B. distachyon so far has been shown to be divergent for 

susceptibility to a number of fungal and viral cereal diseases. Therefore it is quite 

possible that these genotypes will respond differently to Rhizoctonia solani AG8. As of 

November 2013, there are no reported studies into the interaction of different 

B. distachyon accessions with oomycete or bacterial pathogens. Nevertheless, the 

B. distachyon population may vary in resistance to Pythium irregulare. 

It is however unlikely that a complete resistance phenotype will emerge from the 

population to either R. solani or P. irregulare. There is no known complete resistance 

to these diseases in the cereals or their wild relatives. Disease resistance screening will 

focus on discovery of quantitative resistance, as this is the typical form of resistance 

found towards necrotrophic pathogens and has the advantage of _being more durable 

than qualitative resistance (Poland et al., 2009). 

The aim of this thesis is to discover variation in resistance to wheat root diseases in the 

B. distachyon population, to pave the way towards elucidating markers for genetic 

regions involved in resistance in B. distachyon and, by virtue of their close 

relationship, in wheat. It is hoped that the small genome, diverse population and the 

petite stature of B. distachyon will reveal root disease resistance secrets hidden within 

the complex wheat genome. 

1. 7 .1 Research objectives 

1) To determine whether Brachypodium distachyon is susceptible to Rhizoctonia 

solani AG8 and Pythium irregulare. 

2) To develop methods to screen a population of B. distachyon for differing levels 

of resistance to these root diseases. 

3) To discover and quantify variation in resistance to these root diseases across 

the B. distachyon natural accession and T-DNA mutant collections. 

4) To discover possible mechanisms contributing to variation in root disease 

resistance. 
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Chapter 2 

Developing a phenotypic screen for Brachypodium 

distachyon resistance to Rhizoctonia so/ani AG8 

Summary 

This chapter describes a repeatable phenotyping system to screen Brachypodium 

distachyon for resistance to the. fungal root pathogen Rhizoctonia solani AG8. Four 

experiments identified the following: 

• An isolate of R. solani AG8, previously used in wheat studies that infects 

B. distachyon roots in a similar pattern to that of wheat; 

• A method for soil inoculation and growth conditions to achieve repeatable 

infection patterns of B. · distachyon roots by R. solani, that also included a 

'tooth-pick' assay system to remove contaminated controls and standardise soil 

inoculation levels; 

• That root length was the most robust phenotype for measuring R. solani impact 
-

on B. distachyon, with shoot phenotypes and DNA quantitation also evaluated 

as measures of disease resistance; and 

• Preliminary evidence for variation 1n resistance to R. solani AG8 among 

B. distachyon accessions. 

The results of this chapter provide the foundation for v\rider screening of B. distachyon 

accessions and T-DNA lines in Chapters 3 and 4, respectively. 
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2.1 Introduction 

This chapter describes the development of a phenotyping method to screen 
B. distachyon genotypes for resistance to R. solani AG8. Although R. solani AG8 has a 
broad host range, its effect on B. distachyon had not been reported prior to this thesis. 

Brachypodium distachyon accessions and Triticum aestivum cv. Janz bread wheat 
were used to compare the effect of R. solani on root and shoot growth between the two 
species, and to establish the phenotyping conditions to identify resistance in B. 

distachyon that would be relevant to wheat. Triticum aestivum cv. Janz 1s an 
Australian cultivar known to be susceptible to R. solani AG8 from other experiments 
within this thesis (Appendix B.1), and publications (Yang et al., 1994; Kirkegaard et al., 
1999). The B. distachyon accessions included the two commonly studied reference 
lines, Bd 21 and Bd 21-3. Line Bd 21 was the first genotype sequenced (Vogel et al., 
2010), and Bd 21-3 is the genotype used most widely for transformation, and is the 
parent line of the T-DNA lines used in this thesis in Chapter 4 (Vogel and Hill, 2008; 
Bragg et al., 2012). Eight additional lines from distinctly divergent groups of a 
collection of 187 Turkish inbred, diploid B. distachyon accessions were also included 
(Adi-10, Bd 3-1, BdTR 3c, BdTR 100, BdTR 13a, BdTR 13c, Koz-1 and Koz-3; see Figure 
2.1). The Turkish collection was assembled to maximise geographic and climatic 
origins by Vogel et al. (2009). Phylogenetic analysis of the collection using 43 simple 
sequence repeat (SSR) markers shows a high level of genetic diversity in the 
population (Figure 2.1). This supported the large range of phenotype diversity seen 
across the lines, including vernaJization requirements, shoot architecture and seed size 
observed when the lines were being grown for seed at CSIRO. 

For these phenotyping activities, an isolate of R. solani AG8 ZG1-1 was obtained from 
Jonathan Andersen of CSIRO. This isolate has been used to study R. solani AG8 
disease in Arabidopsis, a resistant host, and Medicago truncatula (Anderson et al. , 
2010; Foley et al., 2013). Rhizoctonia solani AG8 ZG 1-1 also causes disease in wheat 
(Sweetinghain et al. , 1986; Neate et al. , 1988) and is thus an appropriate isolate to test 
against B. distachyon. 
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13 BdTRl lines 

. . 

d21 

Tek-2 

Tek:-8 Tck:-10 

Figure 2.1 Phylogenetic comparison of 187 lines in the Turkish population using 43 SSR 
markers. Circles indicate those lines used in experiments in this chapter: Adi-10 , Bd 3-1 , 
Bd 21 , Bd 21-3 , BdTR 3c, BdTR 1 0o, BdTR 13a, BdTR 13c, Koz-1 and Koz-3 . 
Reproduced from (Vogel et al., 2009) . 

A large number of experimental conditions have been used to test responses of wheat 

to R. solani, and a wide survey of the literature was conducted to arrive at the seed 

preparation, inoculum and growth substrate for the phenotyping (summarised in 

Table 2.1). To achieve a consistent high level of emergence B. distachyon seeds were 

dehusked, surface-disinfected and germinated overnight prior to sowing, consistent 

with previous studies. This method allows seed viability to be checked before sowing to 

achieve a high rate of emergence. Potential pre-gern1ination damping off is also 

. avoided so that the measured effect of R. solani is only on root grovvth. Inoculum was 

prepared using n1illet seeds due to its stability over time (it was able to be stored at -

20°C for over a year without affecting pathogenicity), and its ability to be incorporated 

into growth substrate immediately ·prior to sowing, in order to be able to more 

accurately calculate propagule number at sowing. To standardise level of inoculum 

across pots and ensure no contamination of controls, a toothpick re-isolation n1ethod 

was adapted to ensure the fungus consistently colonised the region of soil at seed level 

within a week after sov\ring. 
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Four growth substrates were considered for screening B. distachyon for resistance to 

R. solani: agar, hydroponics, field soil and potting mix. Agar and hydroponics were not 

used because they do not provide the porosity found in the field. In so1ne respects field 

soil would be considered the ideal growth substrate, as the balance of nutrients, soil 

particles and organic matter are authentic. However, pore spaces are lost in repacking 

field soil into pots and suction in a pot does not compare with suction experienced in 

deep soils. Therefore, the use of unamended field soil in pot experiments carries with it 

a high risk of hypoxia in the bottom 10 - 15 cm (Passioura, 2006). Potting mix was 

chosen as the substrate for these experiments as it is designed to allow healthy plant 

growth in pots and is less likely to contain R. solani or other pathogens that may be 

present in the field. Research from the 1960s onwards has shown that the nutrient 

status of the substrate colonised by a pathogen prior to invasion of a root can influence 

the severity of disease. The pathogenicity of R. solani and Py_thium ultimum increased 

following growth on media with higher nitrogen and sugar concentrations (Weinhold 

et al., 1969; Johnson et al., 1981) and nutrient experiments conducted with R. solani 

resulted in greater lesion size on cotton when grown on soil rather than sand 

(Weinhold et al., 1972). The potting mix chosen for experiments in this chapter was 

rich in organic matter and nutrients. 

Experimental temperature and light conditions were chosen to resemble conditions 

experienced by wheat during sowing and seedling development, the time when 

Rhizoctonia root disease develops in the field. Field sites near the town of Harden 

NSW have been regularly affected by Rhizoctonia root rot. Recommended wheat 

sowing times for this region fall within the months March to June (McRae et al., 2010). 

The mean temperature range for Harden in March is 12 - 27°C, decreasing to 2 - 14 °C 

by June. Over this period day lengths decrease from 13 h to 10 h (Figure 2.2) (Bureau 

of Meteorology, 2010; Geoscience Australia, 2013). Growth cabinet conditions were set 

at 16°C with 12 h day length. While it was possible to approximate temperature and 

day length conditions experienced in the field, field-level irradiance could not be 

achieved in these growth cabinets. An advantage of using day lengths below 14 h is that 

photoperiod-sensitive lines of B. distachyon remain in the vegetative growth phase 

(Vogel et al., 2006). 
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Figure 2.2 Day length and temperature range statistics for Harden, NSW. Calculated 
from data retrieved from Bureau of Meteorology (2010) and Geoscience Australia 
(2013) . Experiment day length (12 h) and temperature (16°C) are indicated over the 
recommended wheat sowing period from March to June._ 

The plant phenotypes tested to establish a resistance screen for B. distachyon were 

based on those. previously described in the literature on vvor k with R. solani disease in 

,,vheat. Many plant phenotypes have been used to quantify or qualify R. solani AG8 

root disease of v,rheat (reviewed in Chapter 1 and presented in Table 1.2, §1.3.2). Root 

measurements include total root length (TRL), dry vveight and fresh Vleight. Shoot 

measurements include leaf area, length, number, fresh ,,veight and dry weight. These 

quantitath e measures are tested in this chapter, based on their use in ,,vheat systems to 

identify resistance responses (Kirkegaard et al., 1999; Okuhara et al. , 2009), and their 

potential to be subjected to quantitative analyses. The visual disease score widely used 

in '"rheat and other species describes the le, el of primary root truncation and root 

system necrosis (McDonald and Rovira, 1985). Despite ,,vi.de use ho\l\rever, the 

sensitivity of visual disease scores in place of quantifiable measurements has been 

questioned (Smith et al. , 2003a). In this chapter the visual score ·was not used so as to 

avoid subjectivity of a qualitati, e score and, further, because B. distachyon generally 

produces only one primary root (v\Tatt et al. , 2009). This means that a visual score 

, ould be limited to a single root and may be less effecti, e in this species than in wheat, 

'"hich produces 3 to 5 primary roots. 
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Table 2.1 Pot experiment protocols for working with R. solani in wheat. 

Wheat seed lnocull!Jm preparation Soil preparation Reference 
preparation 

Hand Corn-meal sand Sand/soil mix, unsterilized or steam- (Blair, 
selected , medium , incubated sterilized at 15 pounds ·pressure for 4 h. 1942) 
surface with R. solani for 18 d. After infestation , water content adjusted 
sterilized to 40% & incubated for 3 d. 

No treatment Millet seeds incubated Soil , unsterilized, air-dry. (McDonald 
with R. solani for 3 wk , After infestation , incubated at 10% and Rovira , 
then air-dried. (w/w) soil moisture at 10°C for 2 wk 1985) 

(also tested O and 4 wk) . 

No treatment Cultured in neutral Dox Soil , unsterilized. (Rovira , 
yeast medium at 25°C Planted directly aft~r infestation , 10% 1986) 
for 28 d. Mycelial mat (w/w) soil moisture. 
washed & macerated in 
distilled water, then 
mixed through soil. 

No treatment Millet inoculum at 75% Soil pasteurised at 80°C moist heat for (Ogoshi et 
(w/w) water content 30 min. Vermiculite layer covered with al., .1990) 
after (McDonald and inoculated soil. 
Rovira , 1985). Watered to near-saturation after 

infestation & incubated in the dark at 10 
or 20°C for 2 wk. 

Surface Millet inoculum after Soil , air-dried , sieved , rehydrated with (Kirkegaard 
sterilized (McDonald and Rovira , modified Hoagland 's solution to (17% et al., 1 999) 
with sodium 1985). lnoculum placed w/w) soil moisture, fumigated with 
hypochlorite at depths of 5 and 1 0 methyl bromide 48 h, aired for 3 d. 

cm . Incubated at 15°C for 2 wk after 
infestation. 

No treatment Millet inoculum after Different soil types and nutrient levels. (Gill et al., 

(McDonald and Rovira , Incubated for 3 wk after infestation. 2000) 
1985). 

Treated with Plugs of 10 d old dilute Vermiculite , autoclaved . (Duffy, 
fungicide , P. potato dextrose agar Planted directly after infestation . 2000) 
fluorescens cultures , placed 2-3 cm 
or both below seeds. 

Seeds pre- Whole oats incubated Soil pasteurised at 60°C moist heat for (Smith et 

germinated with R. solani for 2-3 30 min . Vermicul ite layer covered with a/. , 2003a) 
wk , then air-dried and inoculated soil after (Ogoshi et al. , 
ground . 1990). 

Watered to near-saturation after 
infestation & incubated for 1 wk , 
humidity maintained at 95% . 

No treatment Whole oats incubated Soil pasteurised at 60°C moist heat for (Okubara et 

with R. solani at 23°C 30 min. May add anti-oomycete drench a/. , 2009) 
in darkness for 3-4 wk , at sowing (Okubara , pers . comm ., 24 
then ground & sieved . Sept 2010). 

Watered to near-saturation after 
infestation & incubated at 16°C for 1 wk. 

-- ·-

Seeds pre- Oat inoculum after Soil prepared after (Okubara et al. , (Okubara 

germinated (Okubara et al. , 2009). 2009). and Jones, 
Planted directly after infestation . 2011) 
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This chapter also reports on the use of quantitative real-time polymerase chain 

reaction ( qPCR) alongside the plant growth measures as a possible plant phenotypic 

_screen of resistance. Quantitative PCR is often used to study gene expression in plant 

pathogen interactions, e.g. (Ofiate-Sanchez et al., 2007; Foley et al., 2013). The 

technique has also been used to measure the relative quantity of plant to fungal DNA 

in plant roots, as an estimation of the level of relative pathogen colonisation between 

genotypes (Anderson et al., 2010). Therefore the ability to use qPCR to measure 

relative R. solani colonisation of B. distachyon roots was tested in this chapter. 

The outcome of this chapter is a repeatable, quantitative phenotyping method for 

resistance to B. distachyon to R. solani that is comparable to wheat resistance screens. 

It should be noted that a~empts were made to develop a screening method to study 

Pythium spp. infection of B. distachyon for this thesis, however Pythium disease could 

not be produced in pot experiments with wheat or B. distachyon. As discussed earlier, 

experiments using potting mix are more relevant to studying field crops than more 

simple substrates. Details of experimental work with Pythium are presented 1n 

Appendix B. 
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2.2 Materials and methods 

2.2.1 Seed sources and preparation 

Brachypodium distachyon accessions were donated by Dr Iain Wilson (CSIRO Plant 
Industry, Canberra, ACT, Australia), from the collections of Drs David Garvin (USDA­
ARS, University of Minnesota, St Paul, MN, USA) and John Vogel (USDA-ARS, 
Albany, CA, USA). Triticum aestivum cv. Janz is a commercial Australian spnng 
wheat, and is available from the Australian Winter Cereals Collection. 

In order to synchronise germination, seeds were surface disinfected following the 
method of Alves et al. (2009). The procedure was performed at the bench. 
Brachypodium distachyon seeds were imbibed in tap water for 2 h at room 
temperature in plastic containers. Husks were removed using forceps. Water was 
removed using a 20 mL plastic syringe. Ten to 20 mL of the following solutions were 
added to containers for the specified length of time, swirled occasionally and removed 
using the syringe: ethanol (70% v/v), 20 s; tap water, short rinse; sodium hypochlorite 
(1.3% v/v), 4 min; sterile Milli-Q water, rinsed three times. Seeds were n1oved from the 
final rinse water onto 3% water agar plates (Appendix A) using forceps wiped with 70% 
ethanol. Plates were incubated in a sealed container in the dark at 22°C. Seeds 
germinated overnight and were planted the day .after surface disinfection, unless 
indicated otherwise. Wheat seeds were surface disinfected by the same method. 

2.2.2 Rhizoctonia so/ani inoculum 

The isolate of Rhizoctonia solani AG8 ZG1-1 (WAC10335) was donated by Dr Jonathan 
Anderson, CSIRO Plant Industry, Perth, WA, Australia. The isolate was initially 
collected from lupins in the Avon Wheatbelt region of Western Australia (Atlas of 
Living Australia, 2013b). Inoculum was prepared according to the method of 
McDonald and Rovira (1985). White 1nillet seed (90 g, approximately 18 ooo seeds; 
Kialla Pure Foods Pty Ltd, Greenmount, QLD, Australia) was soaked overnight with 
Milli-Q water in a 500 1nL Erlen1neyer flask. Excess water was tipped off, the flask 
capped with alun1inium foil , then autoclaved for 1 h at 121 °C on three successive days. 
Millet was well shaken after each autoclaving to ensure grains did not clun1p. 
Rhizoctonia solani was grown on potato dextrose agar (Appendix A). Using a sterile 
blade, small cubes of agar totalling around 3 cm2 surface area were cut from the 
growing edge of a R. solani colony and mixed into a flask of sterile millet. The millet 
inoculun1 was incubated at 25°C for 10 d and dried in a la1ninar flow hood for 2 d. The 
dry 1nillet inoculun1 was ground with a coffee n1ill (CG-2, Breville, Botany, NSW, 
Australia) , then sieved through brass screens, retaining the 0.5 - 2.0 mn1 fraction. The 
coffee n1ill and screens were V\riped ,,vith 70% ethanol before use. Millet inoculum was 
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stored for over a year at -20°C in sealed 50 mL Falcon tubes without affecting 

pathogenicity. 

Rhizoctonia solani millet inoculum concentration was approximately 4000 propagules 

per gram (ppg). The method used for propagule enumeration is based on the Pythium 

isolation method described in §2.2.3. Inoculum (200 mg) was shaken for is min in 100 

mL of 0.1% water agar. An aliquot (1 mL) was spread evenly across a quarter-strength 

potato dextrose agar plate. Plates were incubated overnight at 22°C and colonies 

counted the following day. Inoculum density was estimated from two .replicates, each 

with five internal plate replicates. Media preparation details are given in Appendix A. 

2.2.3 Soil 

The soil used for these experiments was a blend of 80% compost and 20% perlite, 

named 'Barley Mix', prepared by the CSIRO Plant Industry potting shed. The compost 

was prepared from a mix of recycled soil, leaf mulch, river loam, peat moss, perlite, 

vermiculite, river sand, straw and fertilizers. The potting mix was sieved to remove 

coarse bark and stones, and then steam-sterilized with aerated steam at 65°C for 45 

minutes, timed from when the sterilization temperature is reached. Soil was supplied 

at approximately 16% (w/w) moisture content, with bulk density of 0.9 g/mL. 

Soil was tested for Pythium contamination using a method first developed by Ali­

Shtayeh et al. (1986), modified by Pankhurst et al: (1995) and by Rosemary Warren 

(pers. comm., 2010 ). Agar media preparati-on details are given in Appendix A. One 

gram of potting mix was shaken for 15 min in 0.1% water agar (100 mL). An aliquot (1 

mL) was transferred onto VP3 Pythium-selective media using a wide-bore pipette tip 

and spread evenly across the plate. Plates were incubated at 22°C for .3 d. No Pythium 

colonies grew from two replicates of potting mix, e·ach vvith five internal plate 

replicates. The presence of Rhizoctonia spp. was tested using a toothpick re-isolation 

check (§2.2.6) to ensure that there was no contamination with the fungus in control 

treatments. 

2.2.4 Cone preparation and sowing 

Plants were grown in narrovv cone-shaped pots (Figures 2.3 and 2.4). "Cones" were 

prepared and inoculated on the day of planting. The cone inoculation system for 

studying R. solani disease on .cereal roots is based on the method of Okubara et al. 

(2009). Low density polyethylene (LDPE, 21 cm x 3.8 cm diameter, 164· mL) cones 

were plugged ,!\Tith a cotton ball and placed in a 7 x 14 hole tray within a medium flow 

tray (Stuewe & Sons, Corvallis, OR, USA). Metal plates manufactured by the CSIRO 
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workshop were used to raise the tray by 2 cm, to ensure the bases of cones did not 

contact drained water (Figure 2.3). 

Millet inoculum was incorporated into potting mix for 10 min at an approximate 

concentration of 0.09 propagules per gram (ppg) of wet soil. Each cone was filled with 

inoculated potting mix (~116 g) and tapped down lightly. In order to minimise 

potential conta1nination, control cones were filled before R. solani-infested cones. 

Infested cones were transferred into trays before control cones were moved into 

position. All cones were watered to near saturation with tap water (25 mL). A 

germinated seed was then placed at the soil surface and gently covered with potting 

mix (~20 mL), as shown in Figure 2.4. 

Control pots were prepared as for R. solani infested treatments, except no inoculum 

was added. In one experiment a second, higher inoculum level of 0.9 ppg was also 

used. 

• 
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Figure 2.3 Components of the cone inoculation system . Cones are arranged in a tray, 
which is placed into a flow tray . Metal plates raise the tray to ensure cone bases do not 
contact drained water in the flow tray . 
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uninfested soil 

tray 

surf ace-sterilized seed 

infested soil 

cotton ball 

/ flow tray base 

Figure 2.4 Cone preparation. Cones are plugged with cotton , filled with infested soil and 
watered. A germinated seed is placed at the soil surface and covered with uninfested soil. 

2.2.5 Growth conditions 

Cones were incubated in a growth cabinet (Conviron CMP 2023; Winnipeg, MB, 

Canada) programmed with 12 h days with cool white fluorescent light (approximately 

200 µE.m- 2 .s-1) at a constant temperature of 16°C. Cones were watered with tap water 

the day after sowing and then every two to four days, as required. All cones received 

the same volume of water. Median emergence date was between three and five days 

after planting (DAP) for all genotypes. Plants that did not emerge from the soil surface 

,vithin seven days of planting were excluded from analysis. 

2.2.6 Re-isolation of Rhizoctonia from soil 

A modified Rhizoctonia toothpick bait method (Paulitz and Schroeder, 2005) was used 

to detect Rhizoctonia in the top layer of soil, and check levels of R. solani in treated 

and control cones. 
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White birchwood splinter . toothpicks (approximate length 57 mm, Alpen Products, 

Australia) were soaked in tap water and autoclaved. After watering at 8 DAP, a 

toothpick was inserted into each cone to a depth of 4 - 5 cm, with a centimetre left 

exposed to grip with forceps (Figure 2.5a). After 24 h the toothpick was removed and 

placed onto Ko and Hora (1971) selective media, modified after Gill et al (2000) 

(Appendix A). Four toothpicks were placed onto each plate (Figure 2.5b). Plates were 

placed into a sealed box and incubated in the dark overnight at 22°C. Each toothpick 

was scored by eye for Rhizoctonia hyphal growth, with · o = no hyphae; 1 = sparse 

hyphae, <10% coverage; 2 = definite, but patchy hyphae, 10 - 80% coverage; 3 = dense 

hyphae with agar browning, >80% coverage. A dark brown corona formed under 

mycelium on medium containing gallic acid · indicates oxidase activity (Bavenda1nm, 

1928) and is a characteristic of R. solani growth (Gill et al., 2000). 

Control treatments with toothpick scores of 1, 2 or 3 were excluded from analysis, due 

to possible R. solani contamination. Rhizoctonia solani treatments with toothpick 

scores of o or 1 were excluded from analysis, due to low or no inoculum present near 

the base of the plant. 
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Figure 2.5 Re-isolation of Rhizoctonia from soil using toothpicks . a) Placement of 
toothpick in soil , b) Placement of toothpicks on selective media . The two toothpicks at left 
were from control cones . The two toothpicks at right have Rhizoctonia growth scores of 3, 
with dense hyphal growth and agar browning . 
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2.2. 7 Phenotype measurements 

2.2.7.1 Total root length 

Plants· were removed from pots at harvest and roots rinsed gently, before being stored 

with intact roots and shoots in ethanol (50% v /v) in plastic sauce containers (WF 

Plastic, Australia). 

Roots were removed from ethanol (50% v/v) and adhering particles were gently 

· removed in water using plastic forceps and _by gently brushing with gloved fingers. 

Roots were stained with toluidine blue solution to enhance contrast (method details in 

Appendix A) and scanned at 400 dpi on an Epson Expression 1680 flatbed scanner 

(Epson, Australia), after Watt et al. (2005). WinRHIZO™ software (Regent, Quebec) 

was used to measure total root length (Figure 2.6). 
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Figure 2.6 A toluidine blue stained R. solani infected root system (original plant shown in 
Figure 2.24) . A section of the WinRHIZO skeleton is magnified , with different colours 
indicating variations in root diameter. Scale bar, 1 cm. 
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2.2.7.2 Leaf number 

Leaf number was measured on the day pnor to harvest using the decimal code 

described by Zadoks et al. (1974) (Figure 1.5). Zadoks' seedling growth scale is 

commonly sub-divided to give a leaf number describing the length of the last emerging 

leaf as a fraction of the previous fully emerged leaf length, as described by Haun 

(1973). 

2.2.7.3 Leaf length 

Length of leaves 1 and 2 were measured using a ruler on the day prior to harvest. Leaf 

length was measured from the crown to the leaf tip (Figure 2. 7). 

2.2.7.4 Leaf area 

Leaf area measurements were made on leaves that had been softened by storing for 

over a week in ethanol (50% v/v). After removal from ethanol, each blade was cut at 

the ligule (Figure 2.7), patted dry and smoothed out onto the surface of a ·sheet of 

transparency film with a small amount of petroleum jelly. Blades were scanned 

imn1ediately at 200 dpi on an Epson Expression 1680 flatbed scanner (Epson, 

Australia). Images were converted to binary and leaf area calculated using ImageJ 

1.43u software (National Institutes of Health, USA) as described in Figure 2.8. 
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Figure 2.8 Calculation of leaf area . a) Leaves 
were scanned at 200 dpi on a flatbed 
scanner; followed by b) conversion of 
greyscale images to binary using lmageJ 
software ; and final ly c) the "Analyze 
Particles ... " command was used to calculate 
the area of objects with area greater than 50 
square pixels . 
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2.2.7.5 qPCR 

At harvest plants were removed from pots and roots were rinsed out gently. Roots and 

shoots required for DNA extraction were immediately frozen in liquid nitrogen and 

stored at -8o°C. 

Plant material was ground in liquid nitrogen, either using a mortar and pestle · or 

micropestles in Eppendorf tubes. DNA was extracted using the method of Edwards et 

al. (1991), with minor adjustments to the timing of steps and an additional wash 
. . 

(ethanol, 70% v/y) following isopropanol precipitation. 

Standard DNA samples were prepared from B. distachyon roots grown on potato 

dextrose agar and R. solani mycelium grown in potato dextrose broth. 

Inoculated root samples were prepared by growing surface-disinfected B. distachyon 

in sieved river sand in rhizoboxes (300 x 10 x 240 mm). Seven days after germination a 

plug of agar was taken from the edge of a growing R. solani colony and placed at each 

root tip. Four days after inoculation roots were harvested in liquid nitrogen. The roots 

of ten plants (average primary root length 85±23 mm) were combined and ground for 

DNA extraction with a mortar and pestle (sample 'Bd root, infected'). 

DNA was extracted using micropestles from individual root systems of plants grown to 

26 days in experimental conditions described in §§2.2.4 and -5. Sufficient quantities of 

DNA were extracted, but PCR amplification was mostly unsuccessful, even with several 

attempts to modify the extraction protocol to reduce contaminants. 

The PCR primers used for these experiments amplify a 200 bp length of the R. solani 

ribosomal internal transcribed spacer (ITS) region, a 201 bp length of wheat 18s r DNA 

(J. Anderson, pers. comm., 20 Sept 2011) and a ~1000 bp length of genomic DNA 

flanking the region of T-DNA insertion JJ3794 (J. Bragg, pers. comm., 3 Oct 2012). 

Further primer details are in Appendix A. 

Primer amplification was checked in genomic DNA using a PCR program with an 

annealing temperature of 58°C (Figure 2.9). Primers for R. solani were specific for the 
I 

fungus , with some non-specific bands appearing in B. distachyon root and shoot 

samples. The B. distachyon and wheat primers both amplified bands of the stated 

length in B. distachyon DNA and did not amplify fungal DNA. _The B. distachyon 

primers did not amplify wheat DNA. 



Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani .AG8 

I-
Q) 

"O 
"O 

C'O 
-+-' 
(/) 

0... 
-< 

I "O I "O I "O 
I Q) I Q) I Q) 

-+-' -+-' -+-' 

IE 0 IE 0 I 
E 

0 
Q) Q) I Q) 

I :::J '+- -+-' I :::J '+- -+-' :::J '+- -+-' 

1-- C 0 1-- C 0 I C 0 
I Q) 

-+-' 0 I Q) 
-+-' 0 I Q) -+-' 0 0 I- 0 I- 0 I-

10 -+-' ...,_;-
0 -+-' 10 -+-' -+-' 0 -+-' I 0 -+-' -+-'-

0 -+-' 

I >- 0 0 C'O .Y I >- 0 0 C'O _y I >- 0 0 C'O 
0 0 ..c 0 0 ..c 

E 0 0 ..c 
iE (/) Q) C iE (/) Q) cl (/) Q) 

I- I- I- I- I- I-

I Cl) "O "O "O ~ 
C'O I Cl) "O "O "O ~ ro I (/) "O "O "O ~ -

I 0::: (lJ (lJ (lJ (lJ I 0::: (lJ (lJ (lJ OJ I 0::: (lJ (lJ (lJ 

Rs primers Wheat primers Bd primers 

Figure 2.9 Amplification of DNA extracted plant and fungal tissues using primers 
designed to target R. solani (Rs), wheat or 8. distachyon (Bd) DNA. Samples were 
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R. so/ani mycelium (Rs mycelium), 8 . distachyon root (Bd root) , 8 . distachyon root 
infected with R. so/ani (Bd root, infected), 8. distachyon leaves (Bd shoot), wheat root 
and water blanks. These samples correspond to samples 2 - 6 in Figure 2.19 . 

Reactions for qPCR were prepared using SYER® Green fluorescent dye and performed 

on a Rotor-Gene 6000 real-tin1e cycler (Corbett Research). Three internal replicates 

were prepared for each sample. 

2.2. 7 .6 General observations 

Colonized roots were observed with a Leica DMR microscope (Leica Microsystems), 

using bright field and UV excitation with fluorescence filters. 

Ernergence of nodal roots vvas counted in Experiment 4 root scans. All emerged 

coleoptile and leaf nodal roots vvere counted, even if they had been severely truncated 

by .infection. 

2.2.8 Statistical analysis 

Statistical analysis was carried out using a residual 1naxin1al likelihood (REML) model 

in GenStat (VSN International, UK). The REML model was chosen as it is appropriate 

for analysis of unbalanced data sets (Robinson, 1987). Data sets could become 

unbalanced when samples vvere re1noved fro1n analysis, either because the plant did 

not en1erge within seven days or if the toothpick re-isolation check failed. 
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Experiments were set up as randomized block designs to evaluate . the interaction 

between different plant hosts (genotypes) and the presence of R. solani AG-8 inoculum 

on various phenotypic measurements. A significant difference in this interaction 

indicated that lines differed in resistance to the pathogen. The blocking factor was 

different flow trays. Thus, in GenStat the REML model was written as 

Fixed Model: Host*Inoculum 

Random Model: Tray 

In some cases the variance component .of the random model term was negative. This 

generally occurred when variation for a treatment between samples within a tray was 

greater than the variation between trays (Fletcher and Underwood, 2002). In these 

cases the random factor was set to zero. 

Total root length was square-root transformed prior to analysis, except in the 

preliminary investigation alongside wheat 1n Experiment 1. Square-root 

transformation improved residuals resulting from differences in growth of control and 

inoculated treatments. The · purpose of root length transformation is described in 

further detail in §3.2.9.2 using a large data set collected in Chapter 3 experiments. 

Shoot mea~urements did not require transformation. 

Standard errors and least significant differences at 5% were_ calculated in Genstat. 

Brachypodium distachyon and wheat were analysed separately, due . to large 

differences in magnitude between measurements in the two species. 

2.2.9 Experiments 

Four experiments were conducted in this chapter to answer six questions towards 

development of a screening method. During this method development phase several 

block designs were tested in an attempt to overcome variation in growth within 

treatments, as well as spatial variation in physical conditions. All experiments were set 

up in randomized block designs across two or three flow trays with the treatments 

Host (genotype) and Inoculum. An overview of experiments and questions is shown in 

Table 2.2. 

Experiment 1 yielded data to answer both Questions i and ii. In this experiment each 

Host*Inoculum treatment was rando1nly allocated once per flow tray. To test the 

variability in plant growth and cabinet spatial conditions, the experiment was set up in 

three blocks, with five plants sown per treatn1ent. Every treatment was made up of five 

replicate pots sown in adjacent positions. After removal of unemerged plants and 

cones that failed the Rhizoctonia re-isolation check, 2 - 5 plants remained for analysis. 
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Wheat was harvested at 14 days after planting (DAP) at around the 2.8 leaf stage and 

the B. distachyon accessions harvested at 20 DAP at around 3.0 leaves. Leaf 1 and leaf 

2 were fully expanded at harvest for both species. For the purpose of testing spatial 

variation, the blocking term was included in the fixed n1odel as Host*lnoculum*Tray. 

In Experiment 2 three replicate pots were sown per treatment in adjacent positions. 

Each treatment was randomly allocated once per flow tray, with two trays in total. 

Treatments for Experiments 2 were Host*lnoculum. This experiment_al design was 

subsequently used for the Screening activity in Chapter 3. Statistical analysis for 

Experiment 2 frequently required_ the blocking factor (Tray) to be constrained positive 

in REML, as described in §2.2.8. 

In Experiment 3 two replicate pots were sown per Host*Inoculum*Days sown after 

disinfection treatment. Every treatment was sown five times across three flow trays. In 

contrast with the other experiments described in this chapter, all three flow trays were 

considered to be one block. 

The experimental design for Experiment 4 was the same as for Experiment 2, except 

that treatments were only Inoculum and Days to harvest, with B. distachyon and 

wheat analysed separately. As in Experiment 2, the randoin model term Tray had to be 

constrained positive for the 18, 22 and 26 DAP harvest time-points for analysis. 

Samples for the experiment to test Question vi were obtained fro1n the Chapter 3 

confirmation activity described in §3.2.8.2. 

Table 2.2 Experiments described in this chapter. 

Broad aims 

Experiments towards development 
of a robust screening method 
using 8 . distachyon 

Experiment Questions of experiments 
number 

1 

1 

2 

3 

i. Do 8 . distachyon and wheat have a 
similar response to R. solani AG8? 

ii . Can a toothpick re-isolation check 
improve screening robustness? 

iii . What is suitable level of inoculum for 
screening experiments? 

--------

iv. Does sowing at different days after 
disinfection reduce root length variation? 

-----------~- - --
Phenotype measurements 4 

* 

V . How does R. solani AG8 affect root and 
shoot measurements over time? 

vi. Can qPCR be used to measure 
differences in disease severity? 

*This experiment was carried out in the Chapter 3 confirmation activity . 
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·2.3 Results 

2.~.1 Experiments . towards development of t~-~ robust screeniing nmethod 

using B. distachyon 

2.3.1.1 Do 8. distachyon and wheat have a similar response to It solani AG~ 

In order for B. distachyon to be a useful model plant for Rhizocton:ia :root rot ·1,.1._ whe.at
1 

both species should be affected by the fungus in a similar manner. This was tested in 

Experiment 1 by comparing phenotypes of five accessions of B.· distachyon with Janz 

bread wheat under control and R. solani AG8 inoculated conditions. 

Means of root and shoot measurements 1n R. solani and control treatments of 

B. distachyon accessions and Janz wheat were predicted using a linear mixed model. 

These measurements and R. solani/ control ratios are presented in Table 2.3. 

The isolate of R. solani infected all five lines of B. distachyon and wheat. Total root 

length was reduced to an average 49% of control in infected B. distachyon (p<o.001) 

and 39% of control in wheat (p<o.001). Leaf number was reduced to an average 96% of 

control in infected B. distachyon (p=o.023) and 95% of control in wheat (p=o.007). 

Leaf 1 length was not significantly affected by R. solani in ~either B. distachyon or 

wheat. A difference between the two species was that wheat leaf 2 length in R. solani 

treatment was significantly reduced to 89% of the control (p=o.001), whereas mean 

B. _distachyon leaf 2 length was not significantly reduced by R. solani, despite both 

species being harvested when leaf 2 was fully expanded. 

Overall, R. solani AG8 has a similar effect on root and shoot measurements in 

B. distachyon and wheat. Rhizoctonia solani/ control root and shoot ratios for Janz 

wheat fell within the observed range of ratios for the five B. distachyon lines tested. 

The level of root growth reduction by R. solani in both species can be seen in Figure 

2.10. 

Comparing the disease response of the five B. distachyon accessions included in this 

experiment, a significantly different response to R. solani was not seen for any of the 

four phenotypic 1neasurements. This result suggests that there was no genetic variation 

in susceptibility to R. solani within these lines. 

It wa_s noted that variation in measurements was sometimes quite high between 

replicates. The sample size left for analysis after removing unemerged plants and those 
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that failed the R. solani re-isolation check was as low as two in some cases. Further, 

there was a significant blocking effect of different trays on B. distachyon root length 

and leaf number measurements, indicating spatial variability of localised conditions in 

the growth cabinet. This variation 1nay have obscured any plant-pathogen interactions 

between lines. Subsequent experiments in this chapter were designed to address these 

issues of growth variation and treatment replication. 

Table 2.3 Comparison of R. so/ani infection on phenotypic measurements of five 
B. distachyon natural accessions and Janz wheat. Predicted means of total root length , 
leaf 1 length , leaf 2 length and leaf number for B. distachyon and wheat in R. solani 
inoculated (Rs) and control (C) treatments . Means are followed by the ratio of R. solani 
treatment values compared with control treatment values . 

Host 
Total root length 

Leaf number 
Leaf 1 length Leaf 2 length 

(cm) (mm) (mm) 

Rs C Ratio Rs C Ratio Rs C Ratio Rs C Ratio 

Adi 10 74 162 0.46 3.1 3.3 0.94 48 48 1.01 62 65 0.96 

Bd 21 91 133 0.68 2.8 2.9 · 1.00 49 46 1.07 64 61 1.06 

Bd 21-3 62 144 0.43 2.8 3.0 0.94 55 55 1.08 66 67 0.98 

Bd 3-1 46 1'51 0.30 2.9 3.1 0.95 40 46 0.88 54 60 0.89 

BdTR 1 0o 84 150 0.56 3.1 3.2 0.99 44 45 0.97 63 63 1.00 
----------------------------------- ------------------

Janz wheat 277 709 0.39 2.7 2.8 0.95 141 145 0.98 213 239 0.89 
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Figure 2.10 Effect of 
R. solani AGB on root 
and shoot growth of a) 
B. distachyon line Bd 3-1 
and b) Janz wheat, at 18 
OAP. All wheat roots 
and some B. distachyon 
roots in control treatment 
have reached the base 
of the 21 cm deep 
cones. Scale bars , 2 cm . 
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2.3.1.2 Can a toothpick re-isolation check improve screening robustness? 

The amount of R. solani inoculum needed to cause disease was quite low, with 

0.09 ppg equivalent to approximately 11 propagules per cone. At this low level there 

was a possibility that, with a poor mixing technique, some cones may occasionally not 

have received many or any R. solani propagules. In Experiment 1 a toothpick re­

isolation method was adapted from the literature to check the consistency of 

inoculation and to pick up cross-contamination in B. distachyon and wheat. 

Toothpick re-isolation checks showed that inoculum was generally well distributed 

through the R. solani treatments, with very little contamination of control treatments 

(Figure 2.11). Plants with a zero score in R. solani treatment had lower average root 

length than plants with zero score in control treatment, suggesting that false negative 

scores can occur in the infested treatment. Non-Rhizoctonia spp. fungi that 
. . 

occasionally grew out from control toothpicks had different morphology and did not 

cause the KHF medium to brown. To err on the side of caution, when identification 

was :uncertain, fungi growing from control treatment toothpicks were generally 

assumed to be R. solani. 

The toothpick re-isolation score at 8 DAP was significantly correlated (p<o.001) with 

total root length at 20 DAP for B. distachyon accessions and bread wheat. It was 

concluded that the toothpick re-isolation check was a useful component of the 

screening protocol. 
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Figure 2.11 Evaluation of R. solani re-isolation from soil to check for consistent 

inoculation and lack of contamination in the control. Individual root length at 20 DAP for 

control and R. solani treatments in a) seven 8 . distachyon accessions , and b) Janz 

wheat , ordered by toothpick re-isolation score at 8 DAP. 
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2.3.1.3 What level of inoculum is suitable for screening experiments? 

In Experiment 1 a low level of R. s_olani inoculum, 0.09 propagules per gram (ppg), 

was found to cause moderate disease symptoms. In this experiment (Experiment 2) the 

effect of a higher level -of inoculum was tested using seven B. distachyon accessions 

from a narrow range of the SSR tree. 

Inoculum was incorporated into soil at 0.09 and 0.9 ppg. Root systems of plants 

growing in soil containing 0.9 ppg of inoculum were severely reduced and fragile, with 

two plants dying during the course of the experiment; however the higher inoculum 

level did not have a significant effect on days to emergence. Toothpick colonisation was 

noticeably higher at the higher level of inoculum, with hyphae often visible at the 

junction between the toothpick and the soil surface. 

Total root length measurements are reported here as the square-root transformed 

means (vTRL), used to normalize the data over the large range of values. There was 

some difficulty including the blocking factor in the statistical analysis, expected to be 

due to the greater variation -of growth within a treatment than between trays (see 

Methods §2.2.8). 

Rhizoctonia solani inoculated treatment measurements were signific•antly reduced 

(p<o.001) from control at both levels of inoculum for all phenotypes measured (vfRL, 

leaf number, leaf 1 length and leaf 2 length). 

A significant variation in the plant-:-pathogen interaction was found between the 

accessions for the measurements vfRL (p=o.019), leaf number (p=o.042) and leaf 1 

length (p=o.036; variation only significant in the 0.9 ppg treatment). Average root and 

shoot measurements of control and R. solani treatment phenotypes are presented in 

Figures 2.12 and 2.13, with values and ratios given in Tables 2.4 and 2.5. Line Koz-3 

was considered the most resistant accession in this experiment, with the highest 

R. solani/ control vTRL ratios at both levels of inoculum. At 0.09 ppg Koz-3 was 

significantly (p<o.05) more resistant than lines Bd 21, BdTR 13c and Koz-1. At 0.9 ppg 

Koz-3 was significantly (p<o.05) more resistant than these three lines, as well as 

BdTR 13a. Several shoot measurement ratios were also significantly reduced (p<o.05) 

in these lines, compared with Koz-3. 

A notable difference between this and the previous experiment was that line Bd 21 had 

the lowest R. solani/ control vTRL ratio at 0.09 ppg inoculum in Experiment 2, while 
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in Experiment 1 the line had the highest TRL ratio at the same level of inoculun1. In 

both experiments, however, there was no significant difference in resistance between 

the two lines common to both experiments, Bd 21 and Bd 21-3, except for a lower leaf 1 

length ratio for Bd 21 at 0.9 ppg. 

The 0.09 ppg inoculum level was chosen for future experiments as it caused disease 

without plant death, thereby allowing the effect of R. solani on root system growth to 

be studied. 
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Figure 2.12 Effect of two levels of R. so/ani inoculum on root growth . Predicted means for 
square-root transformed total root length for seven 8 . distachyon accessions grown in soil 
infested with R. solani inoculum at 0.09 ppg and 0.9 ppg ; ns6 ; columns with the same 
letter are not significantly different at 5% LSD . Values are given in Tables 2.4 and 2.5. 
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Figure 2.13 Effect of two levefs of R. solani inoculum on shoot growth . Predicted means 
for a) leaf number, b) leaf 1 length , and c) leaf 2 length , for seven 8 . distachyon 
accessions grown in soil infested with R. solani inoculum at 0.09 ppg and 0 .9 ppg ; n:56 ; 
columns with the same letter are not significantly different at 5% LSD ; average SE. 
Values are given in Tables 2.4 and 2 .5. 
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Table 2.4 Predicted means of total_ root length , leaf 1 length , leaf 2 length and leaf 
number for se_ven accessions of 8 . distachyon in 0.09 ppg R. so/ani-inoculated (Rs) and 
control (C) treatments. Means are followed by the ratio of R. solani treatment values 
compared with control treatment values ; n = 6. 

Rhizoctonia so/ani 0.09 ppg 

Total root length 
Leaf number 

Leaf 1 length Leaf 2 length 
(✓ cm) (mm) (mm) 

Rs C Ratio Rs C Ratio Rs C Ratio Rs C Ratio 

Bd 21 10 23 0.44* 3.3 3.8 0.87* 44 51 0.85 44 62 0.72* 

Bd 21-3 11 19 0.58 3.4 3.7 0.91 45 50 0.90 51 63 0.82 

BdTR 13a 10 19 0.54 3.7 4.1 0.92 37 42 0.89 47 55 0.85 

BdTR 13c 1 1 21 0.51 * 3.6 42 0.87 39 45 0.88 49 61 0.80 

BdTR 3c 12 18 0.64 3.6 3.6 0.99 47 50 0.94 56 59 0.94 

Koz-1 11 22 0.51 * 3.4 4.1 0.83* 45 54 0.84 53 62 0.85 

Koz-3 13 18 0.74 · 3.8 3.9. 0.97 40 44 0.90 52 58 0.90 

*Plant-pathogen interaction is significantly different from Koz-3 (p<0 .05). 

Table 2.5 Predicted means of total root length , leaf 1 length, leaf 2 length and leaf 
number for seven accessions of 8 . distachyon in 0.9 ppg R. so/ani-inoculated (Rs) and 
control (C) treatments. Means are followed by the ratio of R. so/ani treatment values 
compared with control treatment values; n = 5 to 6. 

Rhizoctonia so/ani 0.9 ppg 

Total root length 
Leaf number 

Leaf 1 length Leaf 2 length 
(✓ cm) (mm) (mm) 

Rs C Ratio Rs C Ratio Rs C Ratio Rs C Ratio 

Bd 21 5.2 23 0.23* 3.0 3.8 0.80 34 51 0.66* 32 62 0.52* 

Bd 21-3 4.9 19 0.26 3.0 3.7 0.79 42 50 0.84 41 63 0.65 

BdTR 13a 3.5 19 0.18* 3.1 4.1 0.75 30 42 0.73 30 55 0.54 

BdTR 13c 3.9 21 0.18* 3.1 4.2 0.73* 34 45 0.77 33 61 0.54* 

BdTR 3c 4.1 18 0.22 2.8 3.6 0.78 37 50 0.74 37 59 0.62 

Koz-1 4.4 22 0.20* 3.0 4.1 0.73* 34 54 0.62* 31 62 0.49* 

Koz-3 6.3 18 0.36 3.3 3.9 0.84 36 44 · 0.81 40 58 0.69 

*Plant-pathogen interaction is sign ificantly different from Koz-3 (p<0 .05). 
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2.3.1.4 Does sowing at different days after disinfection reduce variation? 

In earlier Experiments 1 and 2 there was a high level of variation in root length at 

harvest. In Experiment 3 a variation to the sowing procedure was tested to see if early 

effects would influence measurements at harvest. The environment at germination can 

influence plant development and yield, e.g. Highkin and Lang (1966). It was 

hypothesised that disturbing seedlings at critical times soon after germination by 

transferring from agar to soil could also affect growth. 

The effect of sowing time on variation of root length at harvest was tested with two 

accessions at o, 1 and 2 days after seed surface disinfection. Lines Bd 3-1 and Bd 21 

were chosen as they have been used to generate "inbred lines for SSR-based linkage · 

mapping (Garvin et al., 2010) and subsequently to fine map a J}arley stripe mosaic 

virus resistance gene (Cui et al., 2012). 

At o days after seed surface disinfection (DAD), seeds had not germinated. By 1 DAD 

embryos were enlarged, with roots up to 3 mm long. At 2 DAD roots were 10 - 15 mm 

long, with some having penetrated the agar. Mean days to emergence of the first leaf 

from the soil surface fell within the range 4.9 - 5.9 days after surface disinfection for 

all treatments. Plants were harvested at 22 DAP, i.e. at 22, 23 au.d 24 days after surface 

disinfection. 

Rhizoctonia solani inoculum significantly (p<o.001) reduced TRL, leaf number and 

leaf 2 length, but not leaf 1 length (Figures 2.14 and 2.15). 

Day of sowing had a significa~t influence on TRL (p<o.001), leaf number (p<o.001), 

leaf 1 length (p=o.002) and leaf 2 length (p=o.036). 

The only significant phenotypic difference between the two lines was leaf number at 

harvest (p<o.001). Leaf number was positively correlated with time sown after 

disinfection. Line Bd 3-1 leaf number .was greater than Bd 21 leaf number for any given 

treatment by on average 0.25 leaves. 

While significant differences were betv\Teen root and shoot measurements for different 

sowing days, there was no significant difference in the host-pathogen interaction 

between lines Bd 21 and Bd 3-1 for any measurement. Further, the effect of time of 

sowing vvas not found to influence the plant-pathogen interaction. Days to sowing was 

not an important factor in the variability, measured as standard deviation, of 
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phenotypic measurements at 22 DAP. Thus, subsequent experiments continued to be 

sown at the original time point of one day after disinfection. 
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Figure 2.14 lnflu~nce of time of sowing after disinfection on variation in root length at 22 
OAP. Mean total root length for control and R. solani treatments of 8 . distachyon 
accessions Bd 21 and Bd 3-1. Seeds were sown at 0, 1 and 2 days after surface 
disinfection. Variation in root length measurements was similar for all sowing time-points ; 
SD, n = 5 to 1 O. 



~ 

Q) 
.0 
E 
:::, 
C -co 
Q) 

...J 

-E 
E -.c -O> 
C 
Q) 

~ 

ro 
Q) 

..J 

-E 
E -.c -0) 
C 
Cl) 

N -m 
Cl) 

..J 

4.5 

4 

3.5 

3 

2.5 

2 

70 

60 

50 

40 

30 

20 

10 

0 

80 

70 

60 

50 

40 

30 

20 

10 

0 

Chapter 2: Developing a phenotypic screen for B. distachyon res istance to R. solani AG8 

A 

Bd 21 Bd 3-1 

0 

B 

Bd 21 Bd 3-:1 
0 

C 

Bd 21 Bd 3-1 

0 

. Bd 21 Bd 3-1 

1 

□control 
■ Rhizoctonia 

Bd 21 Bd 3-1 

2 
Days sown after surface disinfection 

Bd 21 Bd 3-1 

1 
Bd 21 Bd 3-1 

2 
Days sown after surface disinfection 

Bd 21 Bd 3-1 Bd 21 Bd 3-1 

1 2 
Days sown after surface disinfection 

Figure 2.15 Influence of time of sowing after disinfection on variation in shoot 
measurements at 22 OAP. Mean a) le·af number, b) leaf 1 length , and c) leaf 2 length , for 
control and R. solani treatments of B. distachyon accessions Bd 21 and Bd 3-1 . Seeds 
were sown at 0, 1 and 2 .days after surface disinfection . Variation in shoot measurements 
was similar for all sowing time-points ; SD, n = 5 to 10. 
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2.3.2 Phenotype measurements 

2.3.2.1 How does R. solani AG8 affect root and shoot measurements over time? 

Rhizoctonia solani causes disease soon after germination. Experiment 4 was set up to 

measure the effect of R. solani from 10 to 26 DAP in order to choose a suitable time­

point to harvest a screening experiment. 

Root and shoot measurements were taken at five time-points for B. distachyon line 

Bd 21-3 (Figure 2~16). Reduced root length in the inoculated treatment was significant 

from 10 DAP (p=o.013), becoming highly significant (p<o.001) from 14 DAP onwards. 

The difference in leaf number due to inoculum became significant at 18 and 22 DAP 

(p<o.05) and highly significant at 26 DAP (p<o.001). Leaf area was also measured in 

this experiment, with the difference between the R. solani and control treatments 

becoming significant at 18 DAP (p=o.004) and then highly significant from 22 DAP 

(p<o.001) onwards. 

In summary, total root length, leaf ntimber and leaf area continue to increase and 

become more significantly different between control and R. solani treatments over 

time. These measuren1ents all became effective indicators of R. solani damage from 18 

DAP onwards. 

On the other hand, leaf 1 and 2 lengths were significantly different (p<o.05) between 

treatlnents only at 22 DAP in this data set. Leaf 1 had fully elongated by 10 DAP, while 

leaf 2 was fully elongated by 14 DAP (Figure 2.16 c, d). Once leaves had reached their 

maxin1um length, there was little change in leaf length over time. Thus leaf 1 and 2 

lengths may be used as a n1easure of the effect of R. solani up to 10 DAP and 14 DAP, 

respectively. 

Variation in total root length and leaf area, as percent standard deviation, tended to 

decrease over time in control treatments and increase in R. solani treatments. 
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Figure 2.16 Growth of line Bd 21-3 in R. solani infested and uninfested control soil over 
time. Means of a) total root length , b) leaf number, c) leaf 1 length , d) leaf 2 length and e) 
leaf area, at 10, 14, 18, 22 and 26 days after planting ; n2:5 , SD 
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In Janz wheat the difference in TRL increase and leaf appearance rate between 

inoculated and control treatments was similar to B. distachyon (Figure 2.17). By 18 

DAP the total-root length of the control wheat treatment was four times greater than 

that of B. distachyon. Control treatment leaf number of wheat was about half a leaf 

ahead of B. distachyon at 18 DAP. 
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Figure 2.17 Growth of Janz wheat in R. solani infested and uninfested control soil over 

time. Means of a) total root length , and b) leaf number at 10, 14 and 18 days after 

planting; n~S. SD 

Plotting the relationships between leaf area and total root length (Figure 2.18) reveals 

a higher shoot:root ratio in R. solani treatments than in the control. The allo1netric 

relationship in control and R. solani-infested conditions between more and less 

resistant lines of B. distachyon may provide clues towards root and shoot responses to 

disease. 

Of the root and shoot n1easurements, total root length was the most sensitive indicator 

of R. solani disease, followed by leaf number and leaf area. Leaf length 1neasurements 

can give infonnation on early infection impacts. 
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Figure 2.18 Correlation between total root length and leaf area for individual plants of line 
Bd 21-3 harvested at 10, 14, 18, 22 and 26 days after planting in control (white) and 
R. so/ani (grey) treatments. 

2.3.2.2 Can qPCR be used to measure differences in disease severity? 

DNA was able to be extracted from B. distachyon roots using a simple rapid method. 

Ground B. distachyon root tissue of ten-day-old plants grown in sand was dark brown 

in extraction buffer (Figure 2.18, 3 and 4), but yielded DNA of-sufficient quantity and 

quality for PCR. When B. distachyon roots were grown on agar, the ground extract was 

a lighter colour, slightly darker than the extract of wheat roots grown on agar (Figure 

2.18, 6). 

I 

Figure 2.19 Ground tissues in extraction buffer. Samples are 1 and 2) R. solani 
mycelium , 3) uninfected 8 . distachyon roots grown in soil, 4) R. solani infected 
B. distachyon roots grown in soil, sample 'Bd root, infected', 5) 8. distachyon leaves, and 
6) wheat roots grown on agar. 
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Amplification of R. solani and B. distachyon DNA was possible in the qPCR system 

using the primer pairs with products of around 200 bp (Figure 2.20). The 1000 bp 

B. distachyon product could not be amplified with qPCR. This was an oversight in the 

experimental design, as it is well documented that target sequence length for qPCR 

using SYER® Green should ideally not be greater than 200 bp (Thornton and Basu, 

2011). A non-specific second peak evident in the R. solani melt curve (Figure 2.20 b 

inset) might be prevented by increasing the annealing temperature. 

A standard curve (R2 =0.98295) was constructed with R. solani DNA concentrations of 

5, 10 and 15 ng. The calculated concentration (3 ng) of a mixed standard (5 ng R. solani 

DNA + 90 ng B. distachyon DNA) fell below the range of the concentration curve, 

indicating that the interaction between plant and fungal DNA must be accounted for 

when measuring R. solani DNA concentration in B. distachyon roots. This can be 

achieved by using a set of standards containing a fixed amount of total DNA with 

varying proportions of fungal:plant DNA. 

In a separate analysis a standard curve (R2 =0.97532) was constructed with R. solani 

DNA concentrations of 5, 10 and 15 ng. The calculated concentration of R. solani DNA 

in an infected young root sample ('Bd root, infected') \Vas 8 ng per 100 ng DNA. 

While qPCR was shown to be possible using DNA extracted from young sand-grown 

roots, attempts to extract amplifiable DNA from roots of plants included in a pot assay 

described in §3.2.8.2 proved unsuccessful. 
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Figure 2.20 qPCR charts showing cycles and melt curves (inset) with a) wheat primers 
and b) R. solani primers . Standards were prepared from B. distachyon roots grown on 
agar (Bd) or R. solani mycelium grown in broth (Rs) . Preparation of sample 'Bd root , 
infected ' is described in §2.2.7.5. 
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2.3.2.3 General observations 

Some general observations made during the course of the experiments for this chapter 

are noted here. 

In infected roots of B. distachyon , hyphae of R. solani AG8 were seen to extend 

longitudinally along epidermal cells (Figure 2.21), as has previously been described in 

pathosystems with other anastomosis groups of R. solani (Weinhold and Sinclair, 

1996). Penetration structures could not be distinguished. 

Figure 2.21 Hyphae of R. solani AG8 , stained with Trypan Blue, growing along the 
surface of a B. distachyon root. Scale bar, 100 µm . 

Yellow vacuolar inclusions were seen under bright field microscopy mainly in 

B. distachyon root border cells released into root cap n1ucigel, but also in cells near the 

root tip (Figure 2.22). There was no apparent influence of R. solani on the number or 

distribution of inclusions. The inclusions fluoresce under UV excitation at 360/ 40 nn1, 

with an FITC filter at 480/ 40 nm and with a rhodan1ine filter at 515 - 560 nn1. These 

inclusions were a darker yellow and n1ore numerous than those seen in wheat. Their 

identity is currently unknown. 
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Figure 2.22 Vacuolar inclusions in uninfected a) root border cells, and b) root cells of 
B. distachyon. Images were captured under a) bright field microscopy, and b) with 
fluorescence excitation at 480/40 nm using an FITC filter. Scale bars, 20 µm. 

Coleoptile (CNR) and leaf nodal root (LNR) emergence was counted in Experiment 4 
root scans for B. distachyo11: line . Bd 21-3 (Figure 2.23). Nodal roots could not be 
retrospectively distinguished from primary roots in wheat scans. Appearance of CNR 
and LNR tended to increase over time in both treatments, with R. solani inoculated 
treatments having significantly greater numbers of nodal roots than control treatments 
(p<0.001). 
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Figure 2.23 Appearance of coleoptile and leaf nodal roots in control (C) and R. solani 
infected. (Rs) B. distachyon at 10, 14, 18, 22 and 26 days after planting. CNR, coleoptile 
nodal root; LNR, leaf nodal root; n2::5; average SE 
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2.4 Discussion 

The first aim of this chapter was to learn whether R. solani AG8 has the same 

pathogenic effect on B. distachyon as on wheat. Subsequently, a screening method was 

developed to compare the response of different lines of B. distachyon to R. solani AG8, 

in order to find lines differing in resistance to the pathogen. Attempts to improve the 

repeatability of the screening protocol and the identification of key phenotypes to 

measure plant disease resistance are discussed. 

2.4.1 Experiments towards development of a robust screening method 

using B. distachyon 

2.4.1.1 Response of B. distachyon and wheat to R. solani AG8 

Visual symptoms of Rhizoctonia root rot in B. distachyon were similar to those 

described in wheat, including primary root truncation and rotting of cortical tissue 

leading to spear tips (Figure 2.24). 

The root and shoot measurements taken from B. distachyon accessions and Janz 

wheat harvested at a similar stage of development, at respective average leaf stages 3.0 

and 2.8, showed that root length reduction was the largest effect produced by R. solani 

treatment. This was expected, as the primary effect of the fungus is root rot. 

Root length reduction was comparable between B. distachyon accessions and wheat, 

with length of R. solani inoculated roots averaging 0.46 and 0.44 of control 

respectively. The range of R. solani/control root length ratios (0.30 - o.68) for 

B. distachyon overlaps with the ratio range of 0.37 - 0.87 recorded by Kirkegaard et al. 

(1999) for wheat cultivar 'Dollarbird' in R. solani AG8 treatments at atmospheric 

pressure, and the ratio range of 0.53 - 0.92 seen across different levels of R. solani 

AG8 inoculum for wheat cultivars 'Scarlet' and 'Scarlet-Rz1' by Okubara et al. (2009). 

In experiments conducted with 'Scarlet' and 'Lr34' wheat lines (Appendix C), R. solani 

AG8 reduced root length to 0.42 - 0-49 and 0.35 - 0.69 of control, respectively. 

A s1naller but still significant effect of R. solani was seen on the rate of leaf appearance, 

measured as leaf number. It is expected that leaf number has a linear relationship with 

leaf appearance rate (the inverse of phyllochron) during the early vegetative growth 

phase of B. distachyon , as this has been shown to occur in Triticum spp. (Cone et al., 

1995; Slafer and Ravvson, 1997). The fungus significantly reduced leaf number in 

B. distachyon and wheat to 0.96 and 0.95 of control, respectively. Masle et al. (1989) 

sho,Yed that temperature and day length are major determinants of leaf appearance 
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rate. Abiotic root stresses, including high soil strength and nutrient deficiency, can 

reduce leaf appearance rate in wheat and barley (Masle and Passioura, 1987; Prystupa 

et al., 2003), as can infection with R. solani AG8 in wheat (Wall et al., 1994; 

Kirkegaard et al., 1999). 
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Figure 2.24 a) Rhizoctonia root rot symptoms in a B. distachyon seedling (line Bd 21-3) 
at 18 OAP. The primary and coleoptile nodal roots are truncated . Areas of rotting cortex 
are evident as floppy roots; scale bar, 1 cm. 
Comparison of b) an intact B. distachyon root tip , and c) a truncated root tip , with the 
central stele extending beyond the cortex to form a spear tip; scale bars, 100 µm . 

Leaf 1 length was not affected by R. solani 1n either wheat or B. distachyon. In 

experiments with Pythium spp, another early pathogen of wheat, first leaf length is 

considered to be an indicator of e1nbryo colonisation by the pathogen (Higginbotham 

et al., 2004a). Rhizoctonia solani AG8 is reported to reduce first leaf length in barley 

(Lee et al., 2012). In these experiments leaf 1 length reduction may not have occurred 

due to seed pre-germination. 

The significant reduction in leaf 2 length in wheat, but not in B. distachyon, suggests 

that the root disease affected wheat shoots by a slightly earlier stage of plant 

development than in B. distachyon. 
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In terms of random effects, spatial variation of the environment within a growth 

cabinet was found to affect disease expression, particularly on root length and leaf 

number of B. distachyon, but not relative disease resistance between lines. 

The growth conditions used produced measureable R. solani disease symptoms 1n 

infected plants, while control plants appeared healthy. 

2.4.1.2 Toothpick re-isolation check 

Achieving consistent levels of inoculum can be difficult and leads to variable results in 

disease resistance assays (Okubara and Jones, 2011). The toothpick re-isolation check 

was a good indicator of the level of disease in each cone, with a significant correlation 

between the toothpick re-isolation score and total root length. 

Based on this result, the toothpick re-isolation score was used in subsequent 

experiments to exclude samples from analysis for which there was the possibility of 

either a) contamination in the control treatment (scores of 1, 2 or 3 in control), orb) a 

low levels of inoculum in R. solani treatment (_scores of o, 1 or 2 in R. solani). 

2.4.1.3 Effect of inoculum concentration on 8. distachyon growth 

The level of inoculum used in the initial assay, 0.09 propagules per gram (ppg), 

produced strong root disease symptoms. A ten-fold higher level of inoculum (0.9 ppg) 

caused severe damage to root systems. The death of two of the 42 plants indicated that 

0.9 ppg was a borderline experimental inoculum level. A live/ dead experiment could 

be developed using an even higher amount of inoculum. On the other hand, the lower 

level of inoculum ( 0.09 ppg) allows all plants to survive, thus providing as complete a 

set as possible for co1nparison of root and shoot traits. For this reason the lower level 

was chosen for subsequent experi1nents. 

The R. solani inoculum level of 0.09 ppg lies within a vast range of concentrations 

used in previous research. It is apparent that comparison of inoculum levels between 

experiments described in the literature is uncertain, likely due to differences in 

inoculum particle size, incubation ti1ne, growth conditions and isolate pathogenicity. 

Calculating initial propagule densities in Kirkegaard et al. (1999) gives approximately 

0.004 - 0.011 ppg for low inoculum (for which little root dan1age was measured) and 

0.008 - 0.023 ppg for the high inoculu1n level, with further inoculum development 

during a two week incubation prior to sowing. Okubara et al. (2009) challenged 

mutant wheat lines ½rith inoculun1 levels starting at 80 ppg, followed by 20, 100 and 

200 ppg, of R. solani AG8 with one week of incubation prior to sowing. Neate (1989) 
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measured increasing root disease from 0.004 _:_ 0.016 ppg R. solani AG8 in a pot 
experiment, with 26 days incubation prior to sowing. 

The variation in resistance ratios seen between Bd 21 and Bd 21-3 in Experiments 1 
and 2, although not significant, again highlighted the importance of replication in 
plant-pathogen interaction experiments. 

The significant differences in plant-pathogen interactions measured between Koz-3 
and other lines included in this experiment indicates that there may be genetic 
differences in resistance to R. solani AG8 within this relatively narrow range of the 
phylogenetic tree that can be explored further in a·natural accession screen. 

2.4.1.4 Does sowing at different days after disinfection reduce variation? 

Sowing at o, 1 or 2 days after surface disinfection did not have an effect on variation in 
root length at harvest. Thus, the most convenient sowing time (1 d after surface 
disinfection) was chosen for all future experiments. At 1 DAD it is possible to select 
viable seeds for sowing. 

Variation in root and shoot growth occurs as a result of interactions between the 
genotype and growth conditions (environment). The variability of these measurements 
show that it is essential to include a large enough number of treatment replicates to 
overcome the effect of growth conditions to discover differences attributable to genetic 
variation between lines. 

2.4.2 Phenotype measurements 

2.4.2.1 Root .and shoot measurements over time 

The best quantitative n1easure to assess resistance of B. distachyon to R. solani was 
found to be root length. Total root length was significantly lower in infested treatments 
over all harve?t time-points (10 to 26 days after planting), with the difference 
increasing o, er time. This result agrees vvith the observation of Okubara et al. (2009) 
that total root length measurements, along with disease severity ratings, are the most 
reliable measurements of Rhizoctonia disease. 

Leaf number and leaf area were also good indicators of disease. A significant reduction 
in these shoot measurements in R. solani treatment was seen from 18 DAP onwards, 
two time-points after root length was significantly reduced. Shoot effects can occur in 
response to reduced root system length, systemic wounding responses or pathogen 
effectors that directly affect shoot growth. Disease responses seen in the leaves are 
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expected to be smaller than root effects (Kirkegaard et al. , 1999). Knipfer and Fricke 

(2011) speculated that in conditions where reduction of root system size does not affect 

transpiration, the explanation for reduced leaf growth rate and leaf lengths n1ay be 

either due to cumulative effects of reduced solute supply or hormone-driven regulation 

of strict root to shoot biomass ratios. 

Leaf 1 and 2 lengths were only significantly different between treatments at one time­

point, when leaves were already fully expanded. Variation in first leaf length is a 

associated with early plant vigour in wheat (Richards and Lukacs, 2002). First leaves 

of B. distachyon were fully expanded by 10 DAP. Reduction in leaf 1 length would 

indicate that R. solani had impacted seedling vigour before this time-point. 

Under the conditions in this assay, leaf 2 reached full expansion between 10 and 14 

DAP. As with leaf 1, leaf 2 length does not vary 1narkedly after it has reached its 

maximum length. Thus, reduction in leaf 2 length is a measure of disease impact in the 

first two weeks after germination. 

The ratio of root to shoot biomass varied between treatments, but remained constant 

over the measured range. Plants in R. solani treatment maintained over 50% more 

shoot biomass per unit of root biomass than plants in control treatments. The greater 

allocation of biomass to the leaves in the diseased treatment could be due to a physical 

stress, such as waterlogging (Poorter et al. , 2012), or may simply illustrate that roots 

are rotted away faster than they can be replaced to regain the allometric balance of the 

control treatment. 

2.4.2.2 qPCR 

The level of colonization of 11-day-old B. distachyon roots infested for four days with 

R. solani was measured to be approximately 8 ng R. solani DNA per 100 ng DNA. This 

is in the range seen in previous studies of pathogen colonization of roots. Harrach et al. 

(2013) n1easured around 6 - 8 ng Fusarium culmorum DNA in 100 ng DNA from 

infected barley roots. In Phytophthora 111edicaginis infection of alfalfa, Vandemark 

and Barker (2003) 1neasured between 0.2 - 4 ng of oomycete DNA in 100 ng of DNA 

from infected roots, depending on disease susceptibility. 

Extraction of DNA fron1 infested soil-grown B. distachyon roots of a suitable quality 

for PCR and qPCR was 1nore successful with younger root tissue than with plants 

harvested at 26 DAP. Mom1ner et al. (2011) discuss several problems that can arise 

with DNA extraction fron1 roots for PCR, including lower DNA quality in roots than 
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shoots, a decrease in DNA yield as roots age and inhibition of PCR reactions by humic 

acid binding magnesium chloride. Better quality DNA might be achieved by developing 

screening experiments using sand as the growth medium and harvesting plants earlier. 

Harrach et al. (2013) also cautioned that extraction of DNA from necrotrophic plant­

pathogen · interactions can potentially overestimate the amount of fungal DNA in a 

root, if plant DNA is degraded during necrosis. 

The potential of qPCR as a measure of the degree of pathogen colonisation of plant 

tissue is of interest, particularly as a means of determining whether differences in 

response between B. distachyon lines are due to tolerance or resistance mechanisms. 

As discussed in §1.3.4, the ability ofa plant to reduce pathogen colonisation points to a 

'resistance' mechanism, while a genotype with reduced disease symptoms under the 

same level of pathogen colonisation exhibits a 'tolerance' phenotype. The difficulties 

with developing a simple protocol for qPCR of infested roots, however, forced this 

me~od not to be used subsequently for phenotypic measurements in the 

B. distachyon-R. solani pathosystem. 

2.4.2.3 General observations 

Root border and cortical cells of uninfected B. distachyon had pigmented vacuolar 

inclusions (Figure 2.19), expected to contain phenolic compo~nds (R. White, pers. 
-

comm., 16 Feb 2011). Some phenolic acids are involved in plant defence response 

against soil pathogens (Jousset et al., 2011). Phenolics can also inhibit DNA extraction 

for PCR. These inclusions are strongly reminiscent of yellow maize vacuolar inclusions 

found by Grotewold et al. (1998) to be accumulated with-the expression of P, a Myb­

related transcriptional regulator involved in flavonoid biosynthesis: The maize vacuole 

accumulated C-glycosyl flavones, luteoforol, ferulic acid and auto-fluorescent 

compounds, which have not yet been identified. Lin et al. (2003) observed that the 

yellow fluorescent bodies resemble anthocyanic vacuolar inclusions (A VIs), while Agati 

et al. (2012) suggest that the unknown compounds may be highly hydroxylated 

flavonoids. Future experiments could include mass spectrometric identification of 

compounds and confirmation using microspectrofluorometry. 

An increase in nodal root emergence was seen in R. solani inoculated B. distachyon 

line Bd 21-3 across all tin1e-points, from 10 to 26 DAP. This trend of increased nodal 

root emergence with R. solani AG8 disease has previously been observed by Schroeder 

and Paulitz (2008). The capacity of barley seedlings to compensate for loss of primary 

root length by increasing the number and length of nodal roots has also been 

demonstrated in solution culture experiments (Crossett et al., 1975). 
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2.5 Summary of findings 

An isolate of R. solani AG8 was demonstrated to be pathogenic to both wheat and 

B. distachyon, producing a similar level of disease severity and symptoms in both 

species. 

The best phenotypic measure of disease severity at harvest was found to be total root 

length, followed by lea:f number and leaf area. The impact of disease on these 

measurements increased over time. Leaf 1 and 2 lengths allowed the effect of R. solani 

in the first two weeks after sowing to be measured. 

A repeatable screening method was developed to compare the relative resistance of 

different B. distachyon lines to R. solani AG8. Prelin1inary indications point to 

differences between the natural accession genotypes for response to R. solani. The 

application of this method to screen B. distachyon natural accessions and T-DNA lines 

for disease resistance is presented in Chapters 3 and 4, respectively. 
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Chapter 3 

Rhizoctonia solani AG8 resistance among genetically 

diverse Brachypodium distachyon natural ·accessions 

Summary 
The phenotyping system to identify resistance to Rhizoctonia solani AG8, described in 

Chapter 2, was applied to twenty-six diverse accessions of Brachypodium distachyon. 

The aim was to identify a low level of rep~atable resistance to R. solani AG8. Complete 

resistance was not expected, as the pathogen is a broad host-range necrotrophic fungus 

that infects all grass genotypes tested to date. In Chapter 3, ten experiments led to the 

identification of repeatable variation _ in root length resistance to R. solani between 

Koz-3 and BdTR 13a (p<o.001). The following activities associated with this finding 

are reported here: 

• Selection of twenty-six B. distachyon accessions from ecotypes collected from the 

Middle East by John Vogel and collaborators, USDA, based on widest genetic 

relationships, diverse geographic and climatic origins, and reported variation in 

resistance to shoot pathogens; 

• Wide screening of 26 accessions to identify four accessions with repeated variation 

in resistance to R. solani across three independent replications; 

• Confirmation that the widest and most repeatable variation 1n resistance was 

between Koz-3 and BdTR 13a (p<o.001). Koz-3 had 33% more total root length · 

when infected with R. solani compared with uninfected roots, compared with 

BdTR 13a infected and uninfected roots; 

• Analyses of root and shoot responses of B. distachyon to_ R. solani across 

accessions confirmed that total root length is the largest and most repeatable 

indicator of infection for phenotyping; 

• Correlation studies to understand mechanisms of resistance indicated that seed 

size and endogenous seedling vigour is associated with lower resistance, but that 

other factors are also involved. Evidence is presented that resistance is positively 

associated (p=o.019) with tendency to make nodal roots in response to infection. 
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3.1 Introduction 

The aim of the experiments described in this chapter was to discover and confirm 

variation in resistance to R. solani AG8 among the B. distachyon natural accession 

collection obtained from Vogel et al. (2009) at the USDA, using the phenotyping 

methods developed in the previous chapter. 

These B. distachyon natural accessions have shown great promise for discovering 

resistance mechanisms for different shoot pathogens. Peraldi et al. (2011) showed that 

B. distachyon lines Bd 21 and Bd 3-1 responded differently to necrotrophic Fusarium 

spp. and the mycotoxin deoxynivalenol (DON), with 32 - 53% more conidia produced 

on florets of Bd 3-1 than Bd 21. Subsequently the group measured quantitative 

differences in resistance to two hemibiotrophic leaf pathogens with these lines (Peraldi 

et al., 2013). Line Bd 3-1 had up to a 40% higher visual necrosis score than Bd 21 for 

Ramularia collo-cygni leaf spot. Line Bd 3-1 also had a 30 - 44% higher visual severity 

score than Bd 21 after infection with Oculimacula acuformis or 0. yallundae-eyespot. 

Barbieri et al. {2012) discovered three QTL for the biotrophic leaf rust fungus, Puccinia 

brachypodii, by crossing a less susceptible (Bd 3-1) with a more susceptible (Bd 1-1) 

line; Earlier, these researchers found that lines Bd 1-1, Bd 2-3, Bd 21, Bd 18-1 and 

Bd 3-1 had different quantitative levels of resistance to four rust isolates of 

P. brachypodii (Barbieri et al., 2011). Varying levels of non-host resistance were found 

in B. distachyon to Puccinici. graminis ff. spp. ttitici, lolii and phlei-pratensis , the 

natural hosts of which are wheat, perennial ryegrass and timothy grass, respectively. 

Lines Bd 2-3, Bd 18-1 and Bd 21-3 were generally most susceptible, Bd 21 and Bd 30-1 

were moderately susceptible,. while Bd 1-1 and Bd 3-1 were least susceptible to the stem 

rust strains (Figueroa et al. , 2013). Ayliffe et al. (2013) noted differences in 

susceptibility of B. distachyon lines to Puccinia striiformis f. sp. tritici and 

Pu. graminis f. sp. tritici, with lines in the TEK group (collected from near Tekirdag, 

Turkey; Figure 2.1) generally more susceptible to Pu. striiformis and less susceptible to 

Pu. graminis. Non-TEK group susceptibility towards these two species tended to be 

the inverse to that of the TEK group. An atypical response to these pathogens was seen 

in the BdTR 10 group. The lines BdTR 13k and Bd 21, along vvith BdTR 10h and Tek-4, 

were crossed to study inheritance of non-host resistance to Pu. striiforn1is f. sp. tritici. 

Further, Cui et al. (2012) mapped the location of the Bsr1 Barley stripe mosaic virus 

(BSMV) resistance gene using inbred lines with Bd 3-1 as the resistant parent and Bd 

21 as the susceptible parent. Variation in resistance to BSMV was found in the natural 

accessions included in these experi1nents: Adi-10, Bd 3-1 and Tek-4 were resistant, 

while Adi-12, Bd 21, Bd 21-3, Bd 2-3, BdTR 10c, BdTR 11i, BdTR 12c, BdTR 13c, BdTR 

2g, BdTR 3c, BdTR 5i, BdTR 9k and Koz-3 were susceptible. 
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There was no published data on variation in root disease resistance or resistance to 

R. solani in B. distachyon prior to this thesis. However, the published evidence above 

on shoot and crown pathogens suggests that the B. distachyon accessions could be a 

source of resistance to R. solani. Chapter 2 also presented preliminary evidence for 

variation in resistance between lines Koz-3, Bd 21, BdTR 13c and Koz-1, suggesting 

that phenotyping the collection more widely could reveal larger and more repeatable 

variation to this root pathogen. The aim was to identify quantitative resistance, as 

multiple genes are usually involved in plant defence against broad host-range 

necrotrophs like R. solani AGB (Mengiste, 2012). 

The B. distachyon accessions selected for phenotyping in this Chapter are presented in 

Table 3.1. These diploid inbred lines were selected for maximum diversity, based on 

the SSR tree published by Vogel et al. (2009) (see phylogenetic tree in Chapter 2, 

Figure 2.1), and to include diverse climatic locations (Table 3.1). It is possible that the 

different accessions had experienced selection pressure to different pathogens. In 

addition, all but three accessions chosen were included in the US Department of 

Energy Joint Genome Institute resequencing project, such that the complete genomes 

of the accessions would be available by the end of this thesis, for future association of 

phenotypes against genomic information. The lines included in the resequencing 

project had been chosen on genetic and phenotypic diversity (pers. comm~ Dr Ludmila 

Tyler, University of California, Berkeley CA, USA), confirming that the selection here 

was diverse. Three non-resequenced lines were included in these experiments, as they 

had been included earlier in method development experiments for R. solani AGB and 

Pythium spp. (Chapter 2 and Appendix B). 

This chapter describes n ,vo broad sets of activities: accession screening (experiments 1 

to 8) and confirmation (experiments 9 and 10). Total root length, fully expanded 

lengths of leaves 1 and 2, and leaf number were taken as measures of root, shoot and 

plant de\ elopmental responses to R. solani, respecth ely. The impact of early plant 

vigour, measured as _seed size and growth under control conditions, was also 

in, estigated, as "'as nodal root development in response to disease. Different analysis 

strategies "'ere considered for ranking accession disease resistance based on the total 

root length (TRL) in R. solani treatment as a proportion of either the accession control 

TRL or R. solani treatment TRL of a reference line. 
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Table 3.1 Origin 'of 8 . distachyon natural accessions chosen for testing with R. solani to 
identify resistance . 

Elevation Prior 

Line 
Genome 

Collection area Latitude Longitude (metres studies 
reseq?a . above with this 

sea level) line?b 

Abr 2 Yes Octon, France4 N 43 .604262 E 3.262939 212 

Adi-10 Yes Adiyaman , Turkey1 N 37 .770694 E 38.352278 510 Yes 

Adi-12 Yes Adiyaman , Turkey1 N 37 .770694 E 38.352278 510 Yes 

Arn 1 Yes Arens , Spain4 N 42 .25651 E 0.72985 681 

Bd 1-1 Yes* Soma, Turkey2·3·4 N 39 .190956 E 27 .607942 na Yes 

Bd 18-1 Yes Turkey2·3 N 39 .367847 E 33 .730253 ~914 Yes 

Bd 21 Yes* Salah ad Din , lraq2·3·4 N 33 .760883 E 44.403075 na Yes 

Bd 21-3 Yes* Salah ad Din, Iraq 1.4 N 33 .760883 E 44.403075 na Yes 

Bd 2-3 Yes lraq2,3,4 N 33.760883 E 44.403075 na Yes 

Bd 30-1 Yes* Dilar, Spain3 N 36.990489 E 3.558733 1220 Yes 

Bd 3-1 Yes* lraq2,3,4 N 33 .760883 E 44.403075 na Yes 

BdTR 10c Yes Turkey 1 N 37.778233 E 31.884911 1288 Yes 

BdTR 1 0o No Turkey 1 N 39 .738164 E 28.040197 363 

BdTR 11i Yes Turkey1 N 39.738164 E 28.040197 363 Yes 

BdTR 12c Yes* Turkey1 N 39 .748181 E 34.650319 1035 Yes 

BdTR 13a No Turkey1 N 39.756486 E 32.43235 787 

BdTR 13c Yes Turkey 1 N 39.412856 E32.988122 1192 Yes 

BdTR 1 i Yes Turkey1 N 38 .093064 E 28 .583061 841 

BdTR 2g Yes Turkey1 N 40 .393647 E 32.985367 1596 Yes 

BdTR 3c Yes TL.irkey1 N 36.783033 E 32 .962975 1957 Yes 

BdTR Si Yes Turkey1 N 40 .393647 E 32 .985367 1596 Yes 

BdTR 9k Yes Turkey 1 N 39 .75295 E 30 .788631 932 Yes 

Cas 2 No Candasnos, Spain5 N 41.46508 E 0.01766 207 

Koz-1 Yes Kozluk , Turkey 1 N 38 .152294 E 41 .609667 853 

Koz-3 Yes* Kozluk , Turkey 1 N 38 .152294 E 41 .609667 853 Yes 

Tek-4 Yes Tekirdag , Turkey1 N41 .011139 E27.519111 20 Yes 
8 lncluded in the Joint Genome Institute (JGI) resequencing project at time of this thesis ; 
*Resequencing completed in 2011 . 
bline used in prior plant-pathogen interaction studies? Refer to text for details. 
Collection references : \Vogel et al., 2009) , \ Vogel et al., 2006) , \ Garvin , 2010) , 
4(USDA-ARS Western Regional Research Center, 2013) , \ Luis Mur via lain Wilson , pers . 
comm ., 28 May 2010) . 
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3.2 Materials and methods 

3.2.1 Seed preparation 

The 26 natural accessions of B. distachyon used for the experiments were donated by 

Dr Iain Wilson (CSIRO Plant Industry, Canberra, Australia), from the collections of 

Drs David Garvin (USDA-ARS, University of Minnesota, St. Paul MN, USA) and John 

Vogel (USDA-ARS, ·Albany CA, USA) (Table 3.1). Seed increase was carried out at 

CSIRO Plant Industry, Black Mountain, by Dr Vincent Chochois. Seeds were dehusked, 

surface disinfected and germinated on agar plates overnight, as described in §2.2.1. 

3.2.2 Rhizoctonia solani inoculum 

Rhizoctonia solani inoculum was prepared with millet seed, as described in §2.2.2. 

Millet seed was inoculated with an isolate of Rhizoctonia solani AG8 received from Dr 

Jonathan Anderson, CSIRO Plant Industry, Perth, Australia. 

3.2.3 Soil 

The soil used for the . screening activity was a steam sterilized mix of compost and 

perlite, prepared by the CSIRO Plant Industry potting shed, known as 'Barley Mix' . 

This is the same soil that was used for experiments in Chapter 2 (see §2.2.3). 

-
The soil used for the confirmation activity was a blend of 50% river sand and 50% 

'Special' potting mix prepared by the CSIRO Plant Industry potting shed. 'Special' 

potting mix was a composted mixture of recycled soil, straw and fertilizers. Soil was 

sieved to remove coarse gravel and steam -sterilized. 

3.2.4 Cone preparation and sowing 

Cone preparation and sowing conditions developed in §2.2-4 were used for · the 

experiments in this chapter. Soil was inoculated with millet inoculum, watered to 

saturation and sown with germinated B. distachyon seeds. 

3.2.5 Growth conditions 

Plants were groviTn in growth cabinets in 12 h day length at a constant temperature of 

16°C (§2.2.5). The screening activity was carried out in Conviron® CMP 2023 cabinets 

(Winnipeg, Manitoba, Canada). The confirmation activity "'as carried out in a 

Conviron® PGW 40 cabinet (Winnipeg, Manitoba, Canada). 

Cones were watered "'rith tap ·water the day after sowing (5 mL) and then with fi, e or 

ten mL e ery two to three days, as required. 
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3.2.6 Re-isolation of Rhizoctonia from soil 

Rhizoctonia was re-isolated from soil to check for contamination 1n the control 

treatment and to ensure the presence. of an adequate level of inoculun1 in the R. solani 

treatment. Rhizoctonia was re-isolated from cones · at 8 days after planting (DAP) 

(§2.2.6). Control cones with toothpick scores of 1, 2 or 3 and R. solani inoculated cones 

with toothpick scores of o, 1 or 2 were excluded from analysis. 

3.2. 7 · Phenotype measurements to identify resistance 

At 22 DAP plants were removed from pots and roots rinsed out gently. Plants were 

stored in plastic sauce containers in ethanol (50% v/v). 

Total root length (TRL) was measured by staining roots with toluidine blue, separating 

them in a water-filled tray and scanning at 400 dpi on an Epson Expression 1680 

flatbed scanner (Epson, Australia). The WinRHIZO™ system (Regent, Quebec) was 

used to calculate total root length (§2.2.7.1). During the course of experiments it was 

found that, by adjusting filters and background analysis parameters, roots could be 

measured just as well without staining. Thus, root systems were not stained for 

confirmation activity root length 1neasurement. 

Leaf number and length of leaves 1 and 2 were measured from the crown (§§2.2. 7.2 

and 2.2.7.3) at 21 DAP. 

Nodal root number was measured by counting roots en1erging fro1n the coleoptile 

( coleoptile nodal root, CNR) and the stem leaf nodes at the crown (leaf nodal root, 

LNR) on root scans (Watt et al. , 2008). All emerged nodal roots were counted, 

including those severely truncated by R. solani. 

To n1easure root fresh weight, soil was first gently ren1oved from roots by rinsing in tap 

water and brushing with a gloved finger. Roots were blotted between a paper hand 

towel (Kleenex® Executive Hand Towel, Kimberly-Clark Professional, Australia), dried 

for 5 s and imn1ediately placed onto the scale. The large root surface area promotes 

water evaporation, so 1nass was consistently n1easured 10 s after being placed on the 

scale and was rounded to the nearest n1illigram. 

Shoot fresh weight was 1neasured in1mediately after cutting the leaves off at the base of 

the plant. Shoot FW readings stabilised within 10 s of being placed on the balance. 
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Seed size was measured by averaging the mass of 16 seeds from the experimental seed 

source, with consistent larger seeds chosen in the same manner as for experiments. 

Seeds were not dehusked prior to weighing. Average seed masses are given in 

Appendix A.4. 

3.2.8 Experiments 

3.2.8.1 Screening activity (experiments 1 to 8) 

A large experiment was set up to screen 26 diverse B. distachyon inbred lines from the 

natural accession collection for resistance to R. solani AG8 (Table 3.1). Each line was 

sown at three time-points · (i.e. in three separate experiments) into two levels of 

inoculum: R. solani-inoculated and control. Three plants were sown per 

Host*Inoculum treatment in adjacent cones of a flow tray, with two flow trays (blocks) 

per experiment. Line Bd 21-3 was included in every experiment. An example of the tray 

layout in an experiment is shown in Figure 3.1. 

1 2 3 4 5 6 7 8 9 10 11 12 

A Bd 21-3, Control· ~<ci 21-3, R. so/ani 

Line 5, R. so/ani 

Line 1, Control 

Line 7, Control 

1 2 3 4 5 6 7 8 9 10 1 1 12 

B Bd 21-3, R. so/ani Bd 21~. Control 

Line 1, Control Line 5, R. solani Line 9, Control 

Line i, Control 

Line 9, R. solani 

l:ine 8, R. -solani 

Line 5, Control 

Figure 3.1 Arrangement of cones across two trays in one screening experiment. Each 
tray holds 7 x 14 cones . Line Bd 21-3 was included in every experi_ment. The ten 
genotypes included in an experiment were randomly allocated as Lines 1 to 10. 
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Eight experiments were sown on 25 October 2011 (1), 1 November 2011 (2, 3), 

22 November 2011 (4), 30 November 2011 (5 , 6) , 31 January 2012 (7) and 7 February 

2012 (8), with several issues arising over this time period (Table 3.2). 

Each of the 26 lines included in the experiments was repeated in three experiments. 

The exception was Bd 21-3, which was included as a reference line in every experiment. 

None of the lines included in experiment 2 was repeated in experiment 3, sown on the 

same date. Likewise, no lines included in experiment 5 were 1:'epeated in experiment 6. 

Adi-12, Bd 21-3, BdTR 13a, BdTR 3c and Koz-1 were included both in experiment 7 and 

8. 

On the 1norning of Dece1nber 13, the growth cabinet was found broken down with the 

temperature at 36°C. Trays of experiments 5 and 6 were immediately moved to an 

adjacent growth cabinet, set at the same conditions, for the final week of the 

experiment. Experiments 7 and 8 were subsequently carried out in the second growth 

cabinet. 

Median emergence date was between three and six days after planting (DAP) for all 

lines. Plants were harvested at 22 DAP. 

Table 3.2 Experiments run for natural accession screen . Each accession, represented by 

a letter a - z , was included in three experiments sown on different dates. 

Expt Lines included Date sown Problems 

1 

2 

3 

4 

5 

6 

7 

b d ghi kl o r u y 25 Oct 2011 

a e h j mo q st v x 1 Nov2011 

C fghi k n p w yz 

ab def h J m q w z 22 ·Nov 2011 

b efghi j k o yz 30 Nov 2011 

a d h 7 n qrs uvw 

Potting mix appeared to contain 
a higher than usual level of 
unidentified fungus . 

Cabinet broke down on Dec 13 
and trays moved to adjacent 2

nd 

cabinet. 

C h l n p rstuv x 31 Jan 2012 Experiments grown in 2nd growth 
----------------------- cabinet. 
8 

100 

C h m p t X 7 Feb 2012 

Lines included : a, Abr 2; b, Adi-1 O; c, Adi-12 ; d, Arn 1; e, Bd 1-1 ; f , Bd 18-1 ; g, Bd 21 ; 

h, Bd 21-3 ; i, Bd 2-3 ; j, Bd 30-1 ; k, Bd 3-1 ; I, BdTR 10c; m, BdTR 100; n, BdTR 11i; 

o, BdTR 12c; p, BdTR 13a; q, BdTR 13c; r, BdTR 1 i; s, BdTR 2g ; t, BdTR 3c; u, BdTR Si; 

v, BdTR 9k ; w, Cas 2; x, Koz-1 ; y, Koz-3 ; z, Tek-4 . 
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3.2.8.2 Confirmation activity (experiments 9 and 10) 

Based on results from the screening activity, four lines were chosen for inclusion in an 

experiment to confirm differences in resistance to R. solani AGB. A different soil mix 

(§3.2.3) was used in this experiment as B. distachyon root systems grew better and 

were more easily cleaned for scanning with this mix. Nodal root number and type were 

also more easily counted from scans of roots grown in this mix. Crucially, the 

pathogenicity of R. solani AGB was not reduced, even though less organic material was 

present in the soil. 

Exp~riments were designed to allow a subset of plants . to be harvested for qPCR 

analysts of R. solani-infested roots, with a second subset harvested for total root length 

and leaf area measurements. Leaf number and fresh weights of roots and shoots were 

measured for all plants. Quantitative RT-PCR analysis could not be achieved for these 

samples (§2.3.2.2). 

Two experiments were sown on different days. Eight replicates of each Host*Control 

treatment and 16 replicates of each Host*R. solani treatment were sown in randomly 

allocated pots in each experiment. An example. of the tray layout of one experiment is 

shown in Figure 3.2. 

......... ...... ... ..... .. .. ..... .. .. . ·.·.·.·.·.·.·.·.· ·.·.·.·.·.·.·.·.·­.·.·.·.·o··.·.·.· ·.·.·.·.·.·.·.·.·. 
=~=~:~:::):~:~:~ ~: ):~:~/~:): 
......... ......... .. .. .. .. .. .. .... .. . ...... .. . ... .. . .. 
:::::::~f\ : :::::::,i:::=: 
:::::::::::::::::: :::::::::::::::::: 

0 

Figure 3.2 Arrangement of cones in one confirmation experiment. Each tray holds 
7 x 14 cones. Four colours represent the random allocation of four genotypes. 
Patterned squares represent cones with R. solani inoculum. Root and shoot weight 
measurements were taken for all samples. Total root length and leaf area 
measurements were only measured for squares marked with 'o' . 
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3.2.9 Statistical analysis 

3.2.9.1 Methods for assessing resistance 

Two methods were considered for ranking B. distachyon accessions with increasing 

resistance to R. solani. 

MethodA 

A way to rank the resistance of different lines to R. solani is to compare the ability of 

infested plants to maintain root length similar to that of plants grown under control 

conditions, e.g. (Okubara et al., 2009). This method compares ratios of 

R. solani/ control measurements (root length ratio, RLR), with lines having higher 

ratios considered more disease resistant. In GenStat (VSN International, UK) total root 

length was square-root transformed before calculating predicted means for each line in 

control and R. solani treatment using a REML linear mixed model, as described in 

§3.2.9.2. The Method A R. solani/control square-root transformed total root length 

ratio ( vRLRA) was calculated in Excel (Microsoft), to give a resistance ranking for each 

line. Shoot measurements were not transformed prior to REML analysis. 

An alternative strategy for assessing resistance to R. solani was considered, in which 

only the root growth values in R. solani inoculated treatments were used. If R. solani 

resistance can be assessed using only plants grown in inoculated treatn1ents, then the 

number of plants included per line for an experiment could be halved. 

MethodB 

The line Bd 21-3 was included in every experiment as a reference line. Only R. solani 

inoculated treatments were included in this analysis. Using Excel, total root length 

(TRL) was averaged for each line in every tray. The ratio of the average TRL for a line 

was divided by the average TRL for Bd 21-3 in the same experiment, to give a total root 

length ratio (root length ratio Method B, RLRB). Predicted means for RLRB were 

calculated for each line, using REML in GenStat to account for variation across 

experi1nents and trays within experin1ents. Using Method B, lines ·with higher RLRB 

were considered n1ore resistant than those with lower ratios. Root lengths were not 

square-root transformed for this analysis. 

3.2.9.2 Statistical analysis 

Plants were excluded fron1 analysis if 1) they did not emerge from the soil surface 

within six DAP, or 2) were in cones that failed the toothpick re-isolation check (§3.2.6). 
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Root length data was skewed by the variation in growth due to growth chamber 

conditions, as well as the greater rate of increase for uninoculated root length than 

R. solani affected roots. Data analysis for total root length using Method A (§3.2.9.1) 

was carried out on square root transformed measurements, as residual plots showed 

an improved distribution for the normalized values (Figure 3.3). Shoot measurements 

did not require transformation prior to analysis (data not shown). Predicted means for 

phenotypic measurements were calculated using a REML linear mixed model in 

GenStat. 

In the screening activity the number of days to plant emergence (3 - 6 DAP) was found 

to have a small but significant negative effect on phenotypic measurements. To 

account for the variation due to Days to emergence this factor was included in the 

fixed model (Dr Alec Zwart, pers. comm., 31 July 2013). Thus, in GenStat the REML 

model (Method A) for the Screening activity was written as 

Fixed Model: Days to emergence + Host*Inoculum 

Random Model: Experiment/Tray 

The Host*Inoculum interaction for pairs of accessions was calculated by including only 

the data for those accessions in the analysis. 

In analysis Method B the variation due to days to emergence and average seed mass 

was accounted for by including the terms as fixed factors ahead of the Host factor. Seed 

mass was positively correlated with endogenous plant vigour. The Method B REML 

model for the Screening activity was written as 

Fixed Model: Average days to emergence + Average seed mass+ Host 

Random Model: Experiment/Tray 

In the confirmation activity plants emerged at 3 or 4 days after planting. The Days to 

emergence factor was not included in the analysis as it did not have a significant effect 

on any phenotypic measurement. 

The REML n1odel for the confirmation activity was written as 

Fixed Model: Host*Inoculun1 

Random Model: Experiment 

Root/ shoot biomass ratios were calculated by dividing either TRL by leaf area or root 

FW by shoot fresh FW for individual plants, prior to analysis in GenStat. Total root 

length was not transformed for biomass ratio calculations. Standard errors and least 

significant differences at 5% were calculated in GenStat. 
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The significance of average seed size as an explanatory variable for the predicted 

means of the screening activity was estimated using a simple linear regression analysis 

in GenStat. 

104 

A 
HistqJranc.t resici.Jas 

250 

2CX) 

150 

100 

-300 -200 -100 0 100 200 300 400 

Nmral pct 

300 

E>pected Nmral qUcJltiles 

B 
sqrtTRL 

HistqJran ct resici.Jas 
250 _,....--------~ 

200 

150 

100 

7.5 

CJ) 5.0 
cii 
:::i 
~ 25 
[I! 
0 00 
CJ) 

~ -2.5 

~ 
QJ -50 
:; 
8 -75 

.75 -60 ..25 00 25 50 ;5 100 

Nana pct 

~ xx 
-1 

E>pected Nmra q uaii I es 

300 

200 

100 

0 

-100 

-200 

Fitted-\0lE pct 

X 

Fitted \0ues 

Half-Ncnral pct 

X X 

xQx 

350 ..,....---------, 

300 

7.5 

5.0 

2.5 

0.0 

-25 

-5.0 

-7.5 

8 

7 

6 

5 

3 

X X 

oo os 1.0 1.s 20 2s ao as 

E>pected Norrral qUcJltiles 

Fitted-\0lE pct 

4 10 12 ·14 16 18 2J 

Fitted \Blues 

Hat-Nana pct 

X X 

0 0 0 5 1 0 1 5 20 25 3 0 3 5 

E>pected Ncrna q UcJlti les 

Figure 3.3 Residual plots for the 914 total root length (TRL) data points included in the 
natural accession screen analysis . Both control and R. so!ani inoculated treatments for 
the 26 accessions are included . Skewness in the fitted-value plot for untransformed TRL 

(a) is reduced by square root transforming the values before analysis (b) . 
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3.3 Results 

3.3.1 Screening activity 

Variation in plant growth occurred due to growth conditions and genotype over the ten 

experiments conducted in the screening activity. 

3.3.1.1 Spatiotemporal variation in plant growth 

Experiments for the screening activity were conducted over a period of 18 weeks in two 

growth cabinets (Table 3.2). Although both cabinets were of the same design and set to 

the same program, a general increase in root growth was seen when experiments were 

conducted in the second cabinet. Mean total root length of control plants increased 

slightly in experiments 5 and 6, compared with the earlier experiments (Figure 3.4a). 

In experiments 7 and 8, root length of control plants was around 245% that of the first 

six experiments, while root length of the R. solani treatments increased to around 

165% of the earlier experiments. It is also possible that unexpected variation between 

batches of potting mix was responsible for part of the difference in growth. Mean root 

lengths of individual lines in each experiment are presented in Figure 3.5. 

Root growth variability due to growth conditions, particularly in the control treatment, · 

was much greater than variability of any of the shoot measurements. Mean leaf 

number at harvest followed the same trend as total root length, increasing from 3.4 

leaves at harvest in the first six experiments to 4.0 leaves in experiments 7 and 8 for 

control plants, and an increase from 3.2 to 3.6 leaves with R. solani (Figure 3.4b). Leaf 

lengths changed only slightly, with a 4 % increase in leaf 1 length and a 3 % decrease in 

leaf 2 length in the latter experiments (Figure 3.4c-d). 

In addition to growth cabinet conditions, a batch of soil may have affected disease 

expression. Soil used in experiments 2 and 3 appeared to contain a higher than usual 

level of an unidentified fungus that grew at a sin1ilar rate to R. solani on selective 

medium. Unlike R. solani, the fungus sporulated and did not cause the media to 

brown. During the toothpick assay it was found that this fungus grew from toothpicks 

inserted into both control and R. solani inoculated cones. Only hyphae growing from 

toothpicks in R. solani inoculated cones caused the agar to brown, indicating that there 

was no R. solani contamination of control cones and that R. solani was growing in the 

inoculated cones. The R. solani to control ratios for total root length (RLRA) and the 

three shoot measurements (Figure 3.4) were greater in experiments 2 and 3 than the 
remaining experiments. 
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Variations in growth cabinet and soil conditions were taken into account by including 

Experiment as a random factor during the analysis of B. distachyon genotype 

responses to R. solani AG8. 
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Figure 3.4 Overall v;;3riation between experiments for a) total root length , b) leaf 1 

length , c) leaf 2 length , and d) leaf number. Each bar represents the mean of the 

means for n=11 lines in an experiment, except experiment 8 with n=6. Every n is the 

mean of up to 3 plants . Experiments 2 & 3, and 5 & 6 were sown on the same date. 

Experiments 7 and 8 were grown in a different growth cabinet. Control treatment (light 
bars), R. so/ani-inoculated treatment (dark bars) ; SD. , 
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Chapter 3: R. solani AG8 resistance among genetically diverse B. distachyon natural access ions 

Abr2 Adi-10 Adi-12 

Arn 1 Bd 1-1 Bd 18-1 

Bd 21 Bd 21-3 Bd 2-3 

Bd 30-1 Bd 3-1 BdTR 10c 

BdTR 100 BdTR lli BdTR 12c 
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Figure 3.5 Variation in root growth of individual lines between experiments . Mean total 
root length (cm) and SD for 26 natural accessions of 8 . distachyon grown in control 
(light bars) and R. solani-inoculated (dark bars) soil across eight experiments. Each bar 
is the mean of up to six plants . All accessions were grown in three of the eight 
experiments , except Bd 21-3 which was grown every time. 
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Figure 3.5 continued Variation in root growth of individual lines between experiments. 
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control (light bars) and R. so/ani-inoculated (dark bars) soil across eight experiments. 
Each bar is the mean of up to six plants . All accessions were grown in three of the 
eight experiments , except Bd 21-3 which was grown every time . 
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3.3.1.2 Variation in resistance across accessions 

The resistance response to R. solani varied significantly across the 26 B. distachyon 
natural accessions included in the screening activity. Predicted means for root and 
shoot measurements, calculated using a linear mixed model (REML), are shown in 
Figures 3.6 and 3. 7, and in Tables 3.3 · and 3.4. The plant-pathogen interaction was 
significant for all phenotypes measured: . square-root transformed total root length 
(vTRL, p<o.001), leaf number (p=o.045), leaf 1 length (p=o.024) and leaf 2 length 
(p=0.022). 

The greatest impact of R. solani was on root length, with all accessions having 
significantly lower root length in the inoculated treatment than in control. Leaf 
number, leaf 1 length and leaf 2 length were significantly reduced by R. solani in 20, 13 
and 21 of the accessions, respectively. 

The three shoot measurements were all significantly reduced by R. solani treatment in 
nine lines, with none of the shoot measurements affected by the pathogen in lines 
Arn 1, BdTR 3c and Koz-3. In addition, lines Arn 1 and Koz..:3 were significantly more 
resistant to R. solani than the T-DNA reference line, Bd 21-3, based on root length 
measurements. 

Using square-root transformed R. solani/control root length ratios (v'RLRA), the three 
most resistant lines were Koz-3, Bd 30-1 and BdTR 12c, with ratios of 0.78, 0.77 and 
0.74 respectively. The three least resistant lines were BdTR 13a, BdTR 1i and Adi-12 
with ratios of 0.48, 0.51 and 0.52, respectively. All line ratios and rankings are 
presented in Table 3.5. 
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Figure 3.6 Screening activity phenotype measurements . Predicted means for a) total 
root length (square-root transformed prior to analysis) , and b) leaf number, for 26 
accessions , each included in three experiments . Values are presented in Table 3.3; 
n:518 , except Bd 21-3 (n:54 7) ; average SE. 
*Genotype response to R. so/ani is significantly different (p<0.05) from Bd 21-3 , the 
reference line used in Chapter 4 T-DNA experiments , for total root length . 
NS , no significant difference between R. so/ani and control treatments at 5% LSD . 
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Table 3.3 Means of total root length and leaf number at harvest for 26 accessions, each 
included in three experiments; n~18, except Bd 21-3 (n~47). 

Line Total root length (✓cm/ Leaf number1 

Control R. solani Control R. so/ani 

Abr2 12.69 hij 8.70 mnopqrs 3.13 tuv 2.92 wx 
Adi-10 15.82 abcde 10.15 lmnopq 3.74 be 3.51 defghijk2 

Adi-12 16.60 abc · 8.69 mnopqrs 3.64 cdefg 3.43 ijl<lmno 

Arn 1 14.44 efgh 10.23 lmnop 3.66 bcdefg 3.48 fghijklm 

Bd 1-1 12.33 ijk 8.45 opqrs 3.33 lmnoqpr 3.12 UV 

Bd 18-1 14.51 efgh 10.37 Im 3.84 ab 3.63 cdefgh 

Bd.21 15.94 abcde 9.46 lmnopqr 3.45 hijklmn 3.25 opqrstuv 

Bd 21-3 15.33 bcde 8.70 pqrs 3.55 efghi 3.26 pqrstu 

Bd 2-3 15.27 abcdef 10.76 kl 3.52 efghijk 3.32 mnopqrstu 

Bd 30-1 9.91 lmnopq 7.68 rs 3.11 UV 2.82 X 

Bd 3-1 14.71 defg 9.63 lmnopq 3.71 bed 3.56 cdefghi3 

BdTR 10c 14.81 cdefg ·8.61 mnopqrs 3.59 cdefgh 3.25 · opqrstuv 

BdTR 1 0o 16.05 abcde 10.05 lmnopq 3.67 bcdef 3.36 jklmnopqr 

BdTR 11i 14.90 bcdefg 8.72 mnopqrs 3.53 defghij 3.15 stuv 
I 

BdTR 12c 14.52 efgh 10.73 kl 3.49 fghijklm 3.59 cdefghi 

BdTR 13a 15.70 abcde 7.47 s 3.94 a 3.52 efghijk -

BdTR 13c 13.56 fghi 8.23 qrs 3.73 be 3.39 jklmnop 

BdTR 1i . 16.84 a 8.54 mnopqrs 3.69 bcde 3.28 nopqrstu 

BdTR 2g 16.31 abed 10.24 lmno 3.74 be 3.51 efghijkl 

BdTR 3c 15.01 · bcdefg 9.58 lmnopq 3.52 efghijk 3.38 jklmnopq 

BdTR Si 16.70 ab 9.64 lmnopq 3.33 -lmnopqrs 3.08 vw 
BdTR 9k 15.81 abcde 10.98 jkl 3.53 defghij 3.35 klmnopqr 

Cas 2 14.40 efgh 9.76 lmnopq 3.38 jklmnopq 3.16 rstuv 

Koz-1 15.31 abcdef 8.38 • mnopqrs 3.61 cdefgh 3.30 mnopqrstu 

Koz-3 13.29 ghi 10.36 lmn 3.53 defgh ij4 3.47 ghijklmn 

Tek-4 12.81 hi 8.50 nopqrs 3.20 qrstuv 3.11 UV 
1
Numbers followed by the same letter are not significantly different at 5% LSD 

2
Adi-1 0 (R. so/am) is not significantly different from Koz-1 (R. so/am) 

3
Bd 3-1 (R. so/am) is not significantly different from Cas 2 (control ), BdTR 3c (R. so/am) 

and BdTR 13c (R. so/am) 
4
Koz-3 (control) is not significantly different from BdTR 9k (R. so/am) 

5
BdTR 13c (R. so/am) is not significantly different from BdTR 1 0c (control) 
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Chapter 3: R. solani AG8 resistance among genetically diverse B. distachyon natural accessions 

Table 3.4 Means of leaf 1 and leaf 2 lengths for 26 accessions, each included in three 
experiments ; n:518, except Bd 21-3 (n:547) . 

Line Leaf 1 length (mm) 1 
Leaf 2 length (mm) 1 

Control R. solani Control R. so/ani 

Abr2 48.9 defghijklm 50.1 bcdefghij 55.8 ijklmno4 52.9 lmnop 

Adi-10 48 .3 ghijklm 43.2 opqrstu 65.5 abed 52.9 lmnopq 

Adi-12 52.2 bcdef 48.4 ghijklm 60.6 defghi 55.0 jklmno 

Arn 1 42.2 qrstu 41 .1 rstuv 52.9 mnopq 47.4 pqrs 

Bd 1-1 38.2 vw 35.7 w 53.7 lmno 47.4 qrs 

Bd 18-1 40.6 stuv 37.4 vw 51.0 opqr 40.8 t 

Bd 21 52.8 abc · 49.4 cdefghijk 66 .0 abc 55.5 ijklmno 

Bd 21-3 52.3 bcde2
. 48.8 ghijklm3 66.8 ab 55.0 lmno 

Bd 2-3 51.3 bcdefg 50.4 bcdefghi 65.0 abcde 57.9 ghijklmn 

Bd 30-1 31.0 X 29.3 X 40.8 t 33.2 u 

Bd 3-1 52.4 bcde 48.5 ghijklm 61.4 cdefgh 54.3 lmno 

BdTR 1 0c 46.4 jklmno 43.3 opqrst 58.6 fghijkl 5 51.4 opqr 

BdTR 100 · 48.1 ghijklm 42.4 pqrstu 63.8 bcdef 54.4 klmno 

BdTR 11i 53 .9 ab 47.3 hijklmn 70.6 a 62.7 bcdefg 

BdTR 12c 50.8 bcdefgh 46.5 jklmno 61.4 cdefgh 54.0 lmno 

BdTR 13a 45.4 mnopq 40 .1 tuv 60.0 efghijk 47.8 pqrs 

BdTR 13c 44.4 nopqr 39.3 'l,JVW 60.2 defghij 46.0 rst 

BdTR 1i 56.1 a 49 .3 cdefghijk 65.9 abc 52.5 noqp 

BdTR 2g 48.5 ghijklm 46.0 klmnop 61.3 cdefgh 53 .1 lmnop 

BdTR 3c 47.3 hijklmn 48.9 defghijklm 62.8 bcdefg 60.6 cdefghi 

BdTR Si 53.8 ab 47 .0 ijklmno 66.9 ab6 52.8 mnopq 

BdTR 9k 52.5 bed 51 .3 bcdefg 64 .5 bcde 58.3 ghijklm7 

Cas 2 45.6 lmnopq 39.4 UV 53 .8 lmno 43.2 st 

Koz-1 48.9 efghijkl 48.4 fghijklm 62.3 cdefgh 56.6 hijklmno 

Koz-3 43.3 opqrst 42.0 . qrstu 58.7 fghijkl 54.3 lmno 

Tek-4 44 .0 nopqrs 37.8 vw 58.4 ghijklm 44.7 st 
1 
Numbers followed by the same letter are not significantly different at 5% LSD. 

2
Bd 21-3 (control) is significantly different from Abr 2 (control) , BdTR 3c (R. so/ant) and 

Koz-1 (control). · 
3
Bd 21-3 (R. so/ant) is significantly different from BdTR 13a (control) and Cas 2 (control). 

4
Abr 2 (control) is not significantly different from Bd 3-1 (control) . 

5
BdTR 1 0c (control) is significantly different from Abr 2 (R. so/ant) . 

6
BdTR Si (control) is not significantly different from Koz-1 (control) . 

7
BdTR 9k (R. so/ant) is significantly different from Abr 2 (R. so/ant) and BdTR Si 

(R. so/ant) . 
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3.3.1.3 The effect of endogenous vigour on disease resistance 

Seed and embryo size is linked with vigorous early shoot growth (Richards and Lukacs, 

2002). With a large range of seed weights across the genotypes in this data set, the 

effect of seed size was able to be measured. Using a simple linear regression, increasing 

seed mass was found to correlate significantly with greater total root length and leaf 

number in control treatments, but not in the R. solani treatment (Figure 3.8). An 

influence of seed size was seen on predicted means for leaf lengths in both treatments. 
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Figure 3.8 Correlations of root and shoot measurements with seed mass. Predicted 

means for a) total root length , b) leaf number, c) leaf 1 length , and d) leaf 2 length , 

plotted aga inst average seed mass for 26 accessions grown in control (white circles) and 

R. solani infested so il (grey circles). 
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Germination rate is another indicator of seedling vigour (Maguire, 1962). The increase 

in early endogenous root and shoot growth was reflected in a small but significant 

(p<o.001) correlation between seed size and days to emergence, with a decrease of 0.3 

days to emergence for every extra milligram of seed mass. 

There was a small negative correlation between seed size and square-root transformed 

R. solani/control root length ratios (vRLRA, p=o.046, Figure 3.9), but not with any 

shoot ratios, as is evident from the parallel lines of best fit in Figures 3.8b-d. Likewise, 

there was a negative correlation between root length in control treatment and vRLRA 

(p<o.001), but not between endogenous shoot growth measurements and their 

corresponding R. solani/ control ratios. 

1 A y = -0.047x + 0.8335 1 B y = -0.0323x + 1.1145 
R2 = 0.1559 R2 = 0.4154 
p = 0.046 p < 0.001 

0.8 • • 0.8 

0.6 0.6 
<{ <{ 

0:: • •• 0:: __J • __J 
0:: 0:: -,,.. 0.4 r0.4 

0.2 0.2 

0 +-----,------.-------.------, 0 
2 3 4 5 6 0 5 10 15 20 25 

Average seed mass (mg) . Control TRL (✓cm) 

Figure 3.9 Correlations with Method A square-root transformed R. solanilcontrol root 
length ratios (✓RLRA) using two different measures of endogenous seedling vigour: a) 
average seed mass, and b) predicted _square-root transformed total root length in control 
treatment. 
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3.3.1.4 An alternative resistance ranking method using only R. solani treatment 

The relative resistance of different accessions to R. solani was calculated using Method 

A, described in §3.2.9.1, with rankings based on ratios of transformed R. solani/ control 

means (vRLRA). Method B, a second ranking method using ratios of line 

mean/Ed 21-3 mean for R. solani treatment only (RLRB), was also evaluated. The aim 

was to be able to use this alternative method to rank resistance of T-DNA lines in 

Chapter 4 screening experiments. Method B does not require plants to be grown in a 

control treatment, so it potentially increases the number of lines that can be screened. 

The strong correlation be~een seed mass and endogenous root growth (Figure 3.8a, 

p<o.001) can be used to improve correlations between root length resistance ranking 

Method A and Method B (Figure 3.10 ). 
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Figure 3.10 Correlation between resistance rankings based on total root length using 

Method A and Method B improved from a) to b) when seed size was included in the 
Method B analysis ; rankings are from 1, least resistant, to 26 , most resistant ; dotted line , 

y=x . 

Using si1nple linear regression analysis of resistance ranks in Table 3.5, with Method A 

root length was positively correlated with leaf number (p<o.001) and leaf 1 length 

positively correlated vvith leaf 2 length (p<o.001). Using Method B these same two 

pairs of resistance ranks vvere also positively correlated (p<o.001). 

The Method B resistance ranking using root length (RLRB)_ gives the three 1nost 

resistant lines as Arn 1, Bd 18-1 and Cas 2, with ratios of 1.99, 1.76 and 1.69, 

respectively. The three least resistant lines with this n1ethod were BdTR 11i, Koz-1 and 

Bd 3-1, Ylrith ratios of 0-47, 0.59 and 0.71, respectively (Table 3.5). 

116 



Chapter 3: R. solani AGB resistance among genetically diverse B. distachyon natural. access ions 

Table 3.5 Summary of R. so/ani/control ratio rankings with different methods to measure 
resistance to R. solani. Rankings 1 to 26 (in parentheses) are from least to most resistant ; 
green , more resistant; orange, less resistant. ✓RLRA , Method A root length ratio ; RLR8 , 

Method B root length ratio; L#, leaf number; L 1, leaf 1 length ; L2, leaf 2 length. 

Line Method A - ratios of R. solanilcontrol Method B - ratios of R. solani treatment 
treatment from linear mixed model line mean/Bd 21-3 mean from linear 

predicted means; (rank) mixed model predicted means; (rank) 

L# L1 L2 RLRs L# L1 L2 

BdTR 13a 0.88 (7) 0.80 (5) 0.96 (7) 1.07 (20) 0.79 (7) 0.83 (4) 

BdTR 1i 0.88 (5) 0.80 (4) 0.71 (4) . 0.91 (6) 1.08 (231 0.96 (17) 

Adi-12 0.94 (16) 0.93 (13) 0.91 (22) 1.05 (13) 1.03 (15) 0.99 (17) 0.95 (14) 

Koz-1 0.55 (4) 0.91 (7) ,0.919 (24) O.tH {23). 

Bd 21-3 0.57 (5) 0.92 (9) 0.93 (15) 0.82 (10) 0.83 (5) 0.96 (8) 1.01 (19) 0.97 (19) 

BdTR Si 0.58 (6) · 0.93 (10) 1.21 (17)' 0.89 (5) 0.98 (15) 0.96 (15) 

BdTR 10c 0.58 (7) 0.90 (4) 0.93 (14) 0.88 (14) 1.02(11) 0.97 (9) 0.87 (10) 0.94 (12) 

BdTR 11i 0.59 (8) 0.88 (4) 0.89 (18) 

Bd 21 0.59 (9) 0.94 (15) 0.93 (17) 0.84 (11) 1.01 (9) 0.98 (10) 1.01 (20) 0.99 (22) 

BdTR 13c 0.61 (10) 0.91 (6) 0.89 ·(8) 0.99 (8) 1'.06 (19) 0.81 (8) . 0.85 (5) 

BdTR 100 0.63 (11) 0.91 (8) 0.88 (6) 0.85 (12) 1.02 (10) 0.93 (7) 0.91 (11) 0.92 (10) 

BdTR 2g 0.63 (12) 0.94 (14) 0.95 (19) 0.87 (13) 1.20 (16) 1.05 (18) 0.91 (12) 0.91 (9) 

BdTR 3c 0.64 (13) 0.96 (23) 1.03 (26) 0.96 (26) 1.11 (15) 0.99 (11) 1.01 (18) · 1.os (25} 

Adi-10 0.64 (14) 0.94 (17) 0.90 (9) 0.81 (8) 

Bd 3-1 · 0.65 (15) 0.96 (22) 0.92 (12) 0.88 (17) 0.99 (12) 

Tek-4 0.66 (16) 0.97 (24) 

Cas 2 0.68 (17) 0.94 (12) 1.69 (24) 1.13 (23) 

Bd 1-1 0.69 (18) 0.94 (13) 0.93 (16) 0.88 (16) 1.04 (12) 1.05 (17) 

Abr2 0.69 (19) 0.93 (11) 1.02 (25) 0.95 (25) 1.34 (20) 1.03 (13) 0.94 (13) 0.98 (20) 

BdTR 9k 0.69 (20) 0.95 (20) 0.98 (22) 0.90 (21) 1.05 (14) 0.88 (4) 1.10(25) 1.00 (23) 

Bd 2-3 0.70 (21) 0.94 (18) 0.98 (23) 0.89 (19) · 0.94 (6) 1.13 (26) 1.01 (24) 

Arn 1 0.71 (22) 0.95 (21) 0.97 (21) 0.90 (20) 1.99 (26) 1.20 (24) 0.79 (6) 0.91 (8) 

Bd 18-1 0.71 (23) 0_·94 (19) 0.92 (11) 0.80 (6) 1.76 (25) 1.24 (26) 0.69 (4) 0.73 (2) 

BdTR 12c 0.74 (24) 1.03 (26) 0.92 (10) 0.88 (15) 1.27 (18) 1.04 (16) 0.98 (16) 0.96 (16) 

Bd 30-1 0.77 (25) 0.90 (5) 0.94 (18) 0.81 (9) 1.28 (19) 1.08 (21) 0.47 (1) 0.63 (1) 

Koz-3 0.78 (26) 0.98 (25) 0.97 (20) 0.93 (24) 1 .40 (22) 1.1 a r22; 0.84 (9) 0.97 (18) 
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3.3.2 Confirmation activity 

Four lines diverging for resistance to R. solani AG8 in the screening activity were 

chosen for inclusion in a confirmation activity: lines Adi-10, Bd 30-1, BdTR 13a and 

Koz-3. In the earlier screen, using Method A, lines Koz-3 and Bd 30-1 had the greatest 

R. solani/ control root length ratio ( vRLRA), while BdTR 13a had the lowest ratio. All 

measurements for Bd 30-1, except total root length in R. solani, were the lowest of all 

the lines tested. Line Adi-10 was chosen for its vigorous growth in the control 

treatment, like BdTR 13a, but with root length in R. solani treatment similar to Koz-3. 

The confirmation activity was designed to test whether resistance rankings would hold 

in a different soil mix, a different growth cabinet and a slightly longer growth period 

(26 days). All plants emerged at 3 - 4 days after planting. Days to emergence did not 

have a significant impact on phenotype measurements and was thus not included as a 

term in the linear mixed model analysis. Total root length and leaf number 

measurements are shown in Figure 3.11. 
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Figure 3.11 Confirmation activity phenotype measurements . Predicted means for a) total 
root length (TRL) , and b) leaf number, for 4 accessions grown in control (light grey bars) 
and R. so/ani-inoculated soil (dark grey bars) ; A , n:512 ; B, control , n:516 ; B, R. so/ani 

n:528 . Values are given in Table 3.6. 

Table 3.6 Predicted means of total root length and leaf number for 8 . distachyon in 
R. so/ani inoculated (Rs) and control (C) treatments . Means are followed by the ratio of 

R. so/anitreatment values compared with control treatment valu~s . 

Total root length 
( cm) 

Line Leaf number 

Rs C Ratio Rs C Ratio 

BdTR 13a 9.2 21 0.44 3.9 4.5 0.88 

Bd 30-1 11 20 0.53 4.1 4.5 0.91 

Adi-10 14 21 0.68 4.0 4.2 0.95 

Koz-3 14 19 0.72 4.1 4.3 0.94 
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Lines Adi-10, BdTR 13a and Koz-3 maintained similar vRLRA ratios and the same 

ranking order as seen in the earlier screen. Ratios were 0.64 and o.68 for Adi-10 

(earlier screen and this activity, respectively), 0-48 and 0.44 for BdTR 13a, and q.78 

and 0.72 for Koz-3 (Tables 3.5 and 3.6). 

Line Bd 30-1 exhibited different growth and resistance behaviour from the screening 

activity under confirmation activity conditions. The line dropped in the resistance 

ranking, with its vRLRA falling from o. 77 to 0.53, largely due to an increase in root 

growth under control conditions. Line Bd 30-1 also differed in having the maximum 

mean leaf number in these experiments and the minimum mean leaf number in the 

earlier screen. 

3.3.2.1 Alternative resistance phenotypes and allometry 

The capacity of alternative phenotypes to measure R. solani disease resistance and the 

relationship of biomass allocation for different lines in infested and control treatments 

was explored by measuring root and shoot fresh weights, . leaf area and by comparing 

root/shoot biomass ratios (Figure 3.12). 

Rankings for the R. solani/ control ratios of root length ( vRLRA), leaf area, root fresh 

weight, shoot FW, TRL/leaf area ratio and root/shoot FW ratio were all in the same 

order, from lowest to highest: BdTR 13a, Bd 30-1, Adi-10 and Koz-3 (Tables 3.6 and 

3.7). The only exception was leaf number. 
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Figure 3.12 Confirmation activity phenotype measurements. Predicted means for a) root 
fresh weight , b) shoot fresh weight , c) leaf area, d) rooUshoot fresh weight ratio , and e) 
root length/leaf area ratio , for four accessions grown in control (light grey bars) and 
R. so/ani-inoculated so il (dark grey bars); A, B, D, control , ns16 ; A, B, D, R. solani n:528 ; 
C, E ns12. Values are given in Table 3.7. 
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Table 3.7 Predicted means of total root length, leaf number, leaf area, root fresh weight, 
shoot fresh weight , root/shoot ratio for root length/leaf area and root/shoot ratio for fresh 
weight for B. distachyon in R. solani inoculated (Rs) and control (C) treatments . Means 
are followed by the ratio of R. so/ani treatment values compared with control treatment 
values. 

Line 

BdTR 13a 

Bd 30-1 

Adi-10 

Koz-3 

Line 

BdTR 13a 

Bd 30-1 

Adi-10 

Koz-3 

Line 

BdTR 13a 

Bd 30-1 

Adi-10 

Koz-3 

Root fresh weight 
(mg) 

Rs C Ratio 

48 169 0.29 

46 140 0.33 

79 177 0.44 

67 141 0.47 

Leaf area (cm2
) 

Rs C Ratio 

2.2 5.2 0.41 

2.4 4.4 0.55 

3.9 5.5 0.71 

3.7 4.7 0.78 

Root/shoot FW 
ratio (mg/mg) 

Rs C Ratio 

1.07 1 :65 0.65 

1.10 1.63 0.68 

1.15 1.59 0.72 

1.13 1.50 0.75 

Shoot fresh 
weight (mg) 

Rs C Ratio 

42 102 0.41 

42 86 0.48 

69 1 1 1 0.62 

60 94 0.64 

Root/shoot ratio 
(cm/cm2

) 

Rs C Ratio 

40 85 . 0.47 

52 98 0.53 

54 - 81 0.67 

54 79 0.69 

The significance of plant-pathogen interactions between pairs of lines for all 

measurements is shown in Table 3.8, using only the data set common to all 

measurements. Lines Koz-3 and BdTR 13a differed in their response to R. solani in 

every case. 

Total root length was the best single phenotypic indicator of the plant-pathogen 

interaction, re, ealing significant interactions between three pairs of lines, with other 

measurements showing a significant interaction between two pairs. 

Only the Koz-3/ BdTR 13a response difference "'as picked up for root and shoot fresh 

"'eights using the total data set of (control n~16, R. solani n~28), although the s1:11aller 

data set used for root length and leaf area, i.e. excluding plants harvested for qPCR 
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analysis, (n~12) picked up an additional significant difference for each fresh "''eight 

phenotype. 

Two root/shoot ratios were tested: TRL/leaf area and root/shoot fresh weight. The 

TRL/leaf area ratio was more informative, with p-values splitting the lines into two 

distinct groups: less resistant BdTR 13a and Bd 30-1, and more resistant Adi-10 and 

Koz-3. 

✓TRL 

Bd 30-1 

Adi-10 

Koz-3 

Table 3.8 Ability of different phenotypic measurements to reveal significant plant­
pathogen interactions between four lines in the confirmation activity, using p-values for 
pair-wise Host*lnoculum interactions; green , p<0 .05; n = 1 Oto 12. 
*Interactions that were not significant (p>0 .05) when additional fresh weight and leaf 
number da·ta was included, i.e. the measurements used for Figure 3.12. 

BdTR 13a Bd 30-1 Adi-10 
Leaf 

BdTR 13a Bd 30-1 Adi-10 number 

0.198 Bd 30-1 0.224 

0.004 0.066 Adi-10 0.005 0.115 

<0.0'01 0.010 0.305 Koz-3 0.015 0.196 0.981 

Root FW BdTR 13a Bd 30-1 Adi-10 Shoot FW BdTR 13a Bd 30-1 Adi-10 

Bd 30-1 0.196 

Adi-10 0.067 0.549 

Koz-3 <0.001 0.016* 

Leaf area BdTR 13a Bd 30-1 

Bd 30-1 0.084 

Adi-10 0.020 0.524 

Koz-3 0.001 0.114 

Root/shoot BdTR 13a Bd 30-1 
FW ratio 

Bd 30-1 

Adi-10 

Koz-3 

122 

0.933 

0.211 

0.008 

0.121 

0.002* 

0.052 

Adi-10 

0.297 

Adi-10 

0.1 23 

Bd 30-1 

Adi-10 

Koz-3 

TRL/leaf 
area ratio 

Bd 30-1 

Adi-10 

Koz-3 

0.163 

0.021* 0.288 

0.005 0.118 

BdTR 13a Bd 30-1 

0.880 

0.007 

0.004 

<0.001 

<0.001 

0.589 

Adi-10 

0.766 



Chapter 3: R. solani AGB resistance among genetically diverse B. distachyon natural accessions 

Even though root length and leaf area were better than fresh weight measurements for 

finding differences in R. solani disease response between lines, correlations between 

root FW and TRL, and shoot FW and leaf area were high (p<o.001) in both control and 

R. solani-inoculated treatments (Figure 3.13). 
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Figure 3.13 Correlation between a) root fresh_ weight and root length, and b) shoot fresh 
weight and leaf area, for individual plants of four accessions grown in control (white) and 
R. solani (grey) treatments. 
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3.3.2.2 Nodal root emergence 

An advantage of the soil and growth conditions used in the confirmation experiments 

was that a substantial number of nodal roots had emerged by harvest and could be 

classified as coleoptile nodal roots (CNR) or leaf nodal roots (LNR). All distinguishable 

nodal roots were counted, even if they had been severely truncated. 

Production of CNR increased slightly (p=o.002) for all genotypes in the R. solani 

treatment (Figure 3.14). 

The ~o least resistant lines, BdTR 13a and Bd 30-1 produced similar numbers of LNR 

in the control treatment. In contrast, LNR rarely or never emerged in Adi-10 and Koz-3 

control treatments. 

While LNR number and total nodal root (TNR) numbers remained the same or 

decreased slightly with R. solani in BdTR 13a and Bd 30-1, mean LNR number and 

TNR number increased (p<o.05) for Adi-10 and Koz-3. · 

124 

4 
I... 
Q) 

..0 
E 
:J 3 C 
+-' 
0 
0 
I... 

cu 2 
-0 
0 
C 

C 1 cu 
Q) 

~ 

0 
C Rs 

BdTR 13a 

C Rs 

Bd 30-1 

C Rs 

Ad i-10 

C Rs 

Koz-3 

■ CNR 

DLNR 

I SE 

Figure 3.14 Emergence of leaf and coleoptile nodal roots in control (C) and R. solani 
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3.4 Discussion 

The purpose of experiments in this chapter was to screen a diverse collection of 

B. distachyon natural accessions for variation in resistance to R. solani AG8. Twenty­

six inbred lines of B. distachyon were grown in replicated experiments in uninoculated 

soil or soil infested with 0.09 ppg R. solani AG8 prior to sowing. Several of the lines 

included in these experiments vary in susceptibility to other plant pathogens. Disease 

resistance was assessed through total root length and leaf measurements. Four lines 

with varying levels of resistance to the fungus were identified in the screening activity 

and further studied in a confirmation activity. 

In the screening activity a large difference was seen i:t;1 root lengths of plants grown 

under control conditions in different cabinets, with a 245% increase between the first 

and final experiments. Differences between the growth cabinet conditions were 

probably due to variation in light quality and quantity as a result of aging fluorescent 

tubes, and variation in airflow, cooling and humidity. Spatiotemporal variation in soil 

temperature of pots, in the range of around 1 °C for daytime temperatures and o.5°C at 

night, v\7as measured over the course of these experiments; however measurements 

were not taken consistently. Variation across experiments was greater for root 

measurements than shoot measurements. In control treatments root length showed a 

greater response to environmental conditions than shoot measurements. This may be 

partly due to the nature of the measurements. The shoot measurements taken in the 

screening activity do not estimate total shoot biomass, whereas total root length does. 

Variation between batches of potting mix may also have contributed to some of the 

growth differences. Contamination of the soil with an unidentified sporulating fungus 

was thought to be behind the variation seen in experiments 2 and 3. The fungus was 

isolated from many of the pots during the toothpick bait re-isolation check and appears 

to be linked ·with greater R. solani/ control ratios for root length and shoot 

measurements in these experiments. Control root length did not appear to increase in 

these experiments. Rather, the fungus may have inhibited the pathogenicity of 

R. solani. This could be due to a m -coparasitism of R. solani by a fungus such as 

Trichoderma or Gliocladium spp. (Raaijmakers et al. , 2009). As the unidentified 

fungus gre"' from toothpicks onto agar, it is not likely to be a mycorrhizal symbiont 

such as Glomus mosseae, v\hich induces systemic resistance to R. solani in maize 

(Song et al. , 2011). Non-pathogenic strains of Rhizoctonia and other fungi can compete 

with virulent strains, induce resistance or e en transmit m ·coviruses to reduce disease 
(Sneh, 1998). 

125 



Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani_AG8 

3.4.1.1 Variation in resistance across accessions in the screening activity 

After correcting for spatiotemporal variation and days to emergence, genotypic 

variation in growth under control conditions and in response to R. solani AG8 was 

measured across the 26 accessions. Both root and shoot measurements were affected 

by R. solani, with the predominant effect being on total root length. 

The maintenance of total root length in the inoculated treatment was earlier 

established to be the best indicator of plant resistance to R. solani with this 

experimental method. Using square-root transformed R. solani/control total root 

length ratio ( -vRLRA) as a measure of relative disease resistance, Koz-3 was rated as the . 

line most resistant to R. solani AG8 in the screening activity, with line BdTR 13a the 

least resistant. The predicted -vRLRA for Koz-3 was o. 78, with a ratio of 0.48 for 

BdTR 13a. 

In Chapter 2 experiments there was not often a significant reduction in B. distachyon 

leaf 1 and leaf 2 length, but in the screening activity half of all a·ccessions had 

significantly lower leaf 1 lengths and 81% of accessions had significantly reduced leaf 2 

length. This difference may be due to disease becoming established earlier in these 

experiments or the higher level of replication allowing these small variations to 

become significant. 

3.4.1.2 An alternative resistance ranking method using only R. solani treatment 

Attempting to reduce the number of plants required for screening per line, two 

methods for ranking relative resistance of each accession were co1npared. The first 

method, Method A, ranks greater resistance as greater square-root transformed 

R. solani/ control total root length ratio (-vRLRA) and untransformed R. solani/ control 

shoot ratios. This is the ideal 1nethod, as it includes both endogenous and disease­

affected grovvth data. A second ranking 1nethod, Method B, was based solely on 

1neasure1nents taken 1n R. solani-infested conditions, using ratios of 

genotype/reference line (Bd 21-3) values (RLRB). Having the ability to rank R. solani 

resistance based only on an infested treatment, would allow double the number of 

genotypes to be grown in each experin1ent. The correlation between ranking Method A 

and Method B for total root length was i1nproved by including average seed mass in the 

Method B n1odel, thereby accounting for some of the influence of endogenous plant 

vigour on resistance rankings. 

For both methods, rankings for the rate of leaf appearance, measured as leaf number at 

harvest, correlated strongly (p<o.001) vvith root length ratio rankings, suggesting that 
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the plant development rate is dependent on root growth. Leaf 1 and 2 length ranks also 
correlated well (p<o.001) with each other, indicating a consistent response to the 
pathogen over the first two weeks of growth. The lack of correlation between root 
length· and leaf number rankings with leaf length rankings and, indeed, a strong· 
negative correlation (p<o.001) using Method B, is intriguing. 

Leaf length is determined by the leaf expansion rate and duration of elongation. 
Granier and Tardieu (2009) state that leaf elongation rate is the more plastic trait and 
thus has the greater influence on final length. In monocots leaf appearance rate ( or its 
inverse, phyllochron) is independently controlled from leaf expansion rate and final 
leaf length, e.g. Tesarova and Natr (1990); Bultynck et al. (2004); Sugiyama and Gotoh 
(2010). This appears also to be the case in B. distachyon, taking leaf 2 length as an 
indicator of leaf expansion rate and leaf number as ·an indicator leaf appearance rate. 
In plants grown in control treatment of the screening activity, the genotype-leaf 2 
length interaction was significant for leaf number (p<o.001), indicating that the 
relationship between these two traits varied between different B. distachyon lines. 

The negative Method B shoot ratio correlations are probably due to the strong 
influence of average seed mass on these ranks. This was not investigated further, as 
root length ratio was the primary resistance rank and correlated well with the Met hod 
A root length rank. 

3.4.2 Confirmation activity 

Experiments for the confirmation activity were carried out in a different growth 
cabinet from the screening activity and with a different soil mix that improved 
emergence, root grovvth and quality of root scans while maintaining the same level of 
R. solani disease severity. 

Lines Adi-10, BdTR 13a and Koz-3 were ranked in the same order of resistance in the 
confirmation activity as in the screening activity. The predicted v'RLRA of 0.72 for 
Koz-3 vvas significantly higher than the ratio of 0-44 for BdTR 13a. Koz-3 and 
BdTR 13a also differed significantly for leaf number at harvest, leaf area, root fresh 
\t\eight, shoot fresh weight and ratios of TRL/ leaf area and root/shoot fresh weight. 

Line Bd 30-1 grovvth and resistance rankings varied bet\t\1een the screening and 
confirmation activity. Root and shoot growth in control conditions of the confirmation 
activity was much greater than in the screening activity. The reason for this 
discrepancy is unknown. It ma be that Bd 30-1 grows poorly in the potting mix used 
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for the screening experiments, perhaps due to an abiotic physical or chemical stress, or 

by succumbing to an unknown pathogen in this soil. The low leaf number resistance 

rank for Bd 30-1 in the screening activity (Table 3.5, Method A) appears to have been a 

better indicator of the line's poor performance in the co~firmation activity than its root 

length resistance rank. 

3.4.2.1 Alternative resistance phenotypes and allometry 

Although there was a strong correlation between· root fresh weight and total root 

length, and between shoot fresh weight and leaf area, fresh weight measurements gave 

weaker plant-pathogen interactions than measurements based on length or area. These 

results align with the view of Okubara et al. (2009) that total root length and disease 

severity ratings are better indicators of tolerance to Rhizoctonia spp. than fresh weight 

measurements. 

Root/ shoot fresh weight ratios were significantly lower in R. solani treatn1ents 

compared with control treatment for all lines. The more resistant lines maintained 

root/ shoot ratios closer to the control ratios in infested treatn1ents, even though shoot 

measurements were also greater in these lines. As discussed in §2.4.2.1, the reason 

behind infected plants having proportionately greater leaf biomass is not understood. 

3.4.2.2 Nodal root emergence 

Coleoptile and leaf nodal roots in cereals are also known as adventitious roots or crown 

roots. Cereal nodal roots emerge in response to abiotic conditions such as availability 

of soil water in the nodal root emergence zone, and timing of nodal root emergence 

may be related with plant vigour (Rostamza et al. , 2013). The role of nodal roots in 

disease resistance has not been established; however in an experiment with R. solani 

AG8 inoculated barley, Schroeder and Paulitz (2008) noted an increase in crown root 

nu1nber once a particular threshold inoculum level was reached. Nodal root initiation 

allows barley seedlings to compensate for loss of primary root length (Crossett et al. , 

1975). 

Not n1uch is known about the n1olecular processes leading to nodal root emergence, 

although auxin does appear to be involved in so1ne stages of the development process 

(Osmont et al. , 2007; Pacheco-Villalobos et al. , 2013). Auxin is known to be in, olved 

in many root processes, including lateral root branching and symbiotic interactions 

with soil bacteria (Mathesius, 2010) . Auxin signalling also appears to have contrasting 

roles in pathogen defence, having a positive effect in resistance to necrotrophs while 

increasing susceptibility to biotrophs (Kazan and Manners, 2009). The complex role of 
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auxin in the interplay between root development and plant defence against pathogens 
is recently starting to be demonstrated (Nibau et al. , 2008). 

The production of leaf nodal roots (LNR) in ·response to R. solani appeared to be 
correlated with increased disease resistance in the confirmation activity. Under control 
conditions lines BdTR 13a and Bd 30-1 produced leaf nodal roots by 26 days after 
planting, while the more resistant lines, Adi-10 and Koz-3, did so rarely or never, even 
though total root length was not si'gnificantly different between the lines. Lines Adi-10 
and Koz-3 produced significantly more LNR in response to R. solani treatment, 
resulting in a negative correlation (p=o.019) between control LNR/total nodal root 
ratio and the vRLRA resistance ranking (Figure 3.15). 
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Figure 3.15 Relationship between the ratio of total nodal roots emerging from leaf nodes 
in control treatment with the R. solanilcontrol total - root length ratio resistance rank 
( RLRA) in the confirmation activity at 26 days after planting . 

These results suggest that the early endogenous production of leaf nodal roots vvas 
disadvantageous for R. solani resistance. In a wheat field experiment Meagher et al. 
(1978) found that R. solani lesions covered a greater percentage of nodal roots than 
seminal roots nine "''eeks after sowing. On the other hand, Harris -and Moen (1985) 
found that R. solani AG2 was less able to infect mature root tissue or nodal roots of 
,,vheat, but allowed secondary infections to continue to cause damage. 
Rhizoctonia solani.AG8 causes "''heat stunting when infected at the seedling stage, but 
plants tend not to be affected to the same extent "''hen infected at later stages of 
development (MacNish and Neate, 1996). 

Certainly it appears that R. solani is more active near the soil surface. In the course of 
this project is has been noted that R. solani hyphae could be seen to proliferate 
betv\reen the soil surface and toothpicks during the re-isolation check, and that 
R. solani grev, aerial ID) celium on plates "'hen placed agar-down, but not when placed 
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agar-up, suggesting the fungus may be negatively gravitropic. Blair (1942) found that 

wheat isolates of R. solani grew faster horizontally than downwards. There are some 

suggestions that the activity of R. solani of different anastomosis grol!-ps can be 

inhibited by increasing concentrations· of carbon dioxide (Blair, 1943; Durbin, 1959), 

which may restrict the fungus' growth and phytopathogenic activity to the surface layer 

of soil. Thus, it may be that emerging leaf nodal roots extend into the zone of highest 

danger for R. solani infestation. 

These results suggest it is worthwhile for B. distachyon to delay endogenous LNR 

emergence, but to initiate LNR emergence in response to R. solani infection. While it is 

interesting to speculate on the role of nodal root develop1nent in plant disease 

resistance, the correlations observed in this small set of genotypes need to be 

investigated further. 

3.4.3 The effect of endogenous vigour on disease resistance 

In the screening activity seed mass was correlated with B. distachyon early vigour, 

n1easured as total root length, leaf number and lengths of leaf 1 and leaf 2. This is 

consistent with the results of Richards and Lukacs (2002), who found a strong 

correlation between seed weight and leaf number, leaf 1 length and leaf 2 length at 

about the 4.5 leaf stage in wheat. In fact, the authors point out that the determining 

factor of early vigour in cereals is generally embryo size. Seed weight was linked with 

e1nbryo size in the wheat study and probably is in B. distachyon too, as these two traits 

are also linked in other cereals (L6pez-Castafieda et al., 1996). The number of days to 

e1nergence was also correlated with phenotypic indicators of early seedling vigour. 

Rapid germination is a characteristic of seedling vigour (Maguire, 1962). 

The results of the screening data suggest that early VIgour 111 B. distachyon is 

correlated with decreased resistance to R. solani. Greater root growth in control 

treat1nent was not con1pensated with increased root growth in R. solani, resulting in a 

negative relationship between root grovvth and disease resistance. The correlation 

between seed mass and v'RLRA was also negative, but less strong. This is consistent 

with the results of Okubara and Jones (2011), v\rho found that in a collectton of wheat­

Thinopyrum addition lines there was a tendency for smaller root systems to have 

greater resistance to R. solani AG8. On the other hand, a wheat n1utant with increased 

tolerance to R. solani AG8 had greater endogenous root weight and length than the 

wild type (Okubara et al. , 2009). 
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The negative correlation between vigour and disease resistance points to a possible 
'fitness trade-off between plant growth and defence. This is a well-studied 
phenomenon, particularly in plant-herbivore interactions and more recently in plant­
pathogen interactions with fungi (Todesco et al., 2010; Garcia-Guzman and Heil, 
2013). Herms and Mattson (1992) showed that under favourable growth conditions, 
when photosynthetic assimilation reaches a maximum, resources are allocated either 
to secondary metabolism or growth, thereby resulting' in a trade-off between growth 
and defence. 

r 

Are B. distachyon resistance rankings entirely dependent on seed size and seedlin'g 
vigour? Do all lines reach a similar R. solani/ control root length ratio when they reach 
the same control root length? The results of the screening activity suggest that there is 
variation in resistance not attributable to seed size and early vigour; however the 
evidence was not conclusive in this data set. In the confirmation activity, line Adi-10 
was significantly more resistance to R. solani than BdTR 13a despite reaching the same 
control root length and having 11% greater seed mass. This demonstrates that there is 
genetic variation in resistance to R. solani separate from early vigour. 

It should be noted that the negative correlation between seedling vigour and disease 
resistance only occured when root length ·was used as the -phenotypic measure of 
resistance. The correlation does not hold if resistance is measured as R. solani/ control 
ratios of shoot measurements. A possible reason for this· observation is that unlike leaf 
length and leaf nu1n~er, root length increases exponentially, facilitated by root 
branching. This difference is seen in the need for transformation of root, but not shoot, 
values prior to statistical an~lysis. The negative · correlation may be an artefact 
emanating from an imperfect transformation equation. Alternatively, it could be that 
as shoot effects follow on from primary effects of root disease, the correlation may not 
be noticeable in shoot data until a later stage of development. In the end, as roots are 
the primary site of R. solani attack, root length is expected to be a more informative 
phenotypic measure of disease severity than shoot observations. 

It n1ay be useful to weigh individual seeds before sowing, although this is a difficult 
and ti1ne-consuming exercise with the seed surface disinfection and germination 
technique used in these experiments. As emergence rate is not affected by R. solani 
disease under these conditions, this measurement could be a useful indicator of 
endogenous vigour of seedlings grown in infested treatments. 
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3.4.4 Variation in resistance to R. solani in the B. distachyon natural 

accessions 

Previous studies that measured differences in resistance based on ratios of total root 

length found large variability in differences between more and less resistant genotypes 

(Table 1.6), partly due to variations in growth conditions (Okuhara and Jones, 2011). 

Calculation of the values given in Table 3 of the study by Okubara et al. (2009) shows 

that, at 14 days after planting, a more tolerant mutant of 'Scarlet' wheat, 'Scarlet-Rz1', 

had inoculated/control total root length ratios (RLRA) of 0.75, 0.92 and 0.79, while 

wild type 'Scarlet' had ratios of 0.81, 0.53 and o. 73 in soil infested with R. solani AG8 

at 20, 100 and 400 ppg, respectively. The change in RLRA from wild type in the mutant 

was -6%, 39% and 6%, respectively. 

The same calculation can be used for the values given in Table 2 of the publication by 

Okubara and Jones (2011) for two experiments with Chinese Spring wheat -

Thinopyrum addition lines grown for 14 days in soil infested with R. solani AG8 at 

200 - 300 ppg. The average change in RLRA from Chinese Spring (CS) wheat for 

Thinopyrum elongatum, CS-Th. elongatum chromosome 4E addition line, and CS­

Th. bessarabicum chromosome 4J addition line were 16%, 19% and 30%, respectively. 

In experiments for this thesis, too, it is difficult to put a numerical value on the 

difference between the most and least resistant genotype. Root lengths in these 

experiments were square-root transformed prior to analysis, so they cannot be directly 

compared with previous root length studies. Back-transfonning predicted total root 

lengths of the least resistant line, BdTR 13a, and most resistant line, Koz-3 , in the 

screening activity gives inoculated/ control total root length ratios (RLRA) of 0.23 and 

0.61, respectively. This represents a 38% greater RLRA for Koz-3 than BdTR 13a. 

Again, back-transformation of predicted root lengths of BdTR 13a and Koz-3 in the 

confirmation activity gives RLRA of 0.19 and 0.53, respectively, representing a 33% 

greater RLRA for Koz-3 than BdTR 13a. 

The difference in resistance between the most and least resistant natural accessions of 

B. distachyon tested here is co1nparable to resistance previously found in close 

relatives or mutants of wheat. Even with a substantial improvement in root grovvth 

between lines, there were no clear observable differences in root system morphology, 

such as branching or root diameter. En1ergence of leaf nodal roots was an exception, 

but even so leaf nodal roots were often truncated in both more and less resistant lines. 
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3.5 Conclusion 

Variation in resistance to R. solani AG8 was found in 26 natural accessions of 

B. distachyon. The level of resistance between the most and least resistant lines (Koz-3 

and BdTR 13a, respectively) in these experiments was consistent and similar to levels 

measured in previous studies with wild relatives of wheat and wheat mutants. 

These results provide a good basis for further work to discover genes involved in 

resistance to R. solani AG8 in B. distachyon. Strategies for gene discovery based on 

observed phenotypic variation are described in the General Discussion . . 
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Chapter 4 

Screening T-DNA lines of Brachypodium distachyon 

for resistance to Rhizoctonia solani AG8 

Summary 
This chapter uses the phenotyping method developed in Chapter 2 and used for 
natural accession screening experiments in Chapter 3 to look for variation in 
Brachypodium distachyon resistance to Rhizoctonia solani AG8 attributable to genes 
targeted in a T-DNA 1nutant collection. Preliminary ·evidence is presented of repeatable 
increased resistance to the fungus associated with disruption of a putative /3-1,3-
galactosyltransferase gene. This chapter describes: 

• Selection of T-DNA mutant lines for screening based on a literature review and 
the likelihood that targeted genes could be involved in disease resistance or 
root development; 

• Screening of 25 lines representing 19 T-DNA insertion events in three 
experiments; 

• Confirmation that line 5088-4, with a disruption 1n a putative /3-1,3-
galactosyltransferase gene, Bradi3g14370, had_ 20% more root length in 
R. solani infested treatment compared with control treatment, compared with 
infested and control treatment root lengths for the reference line Bd 21-3. 

Further lines of the same T-DNA insertion event, 5088-2 and 5088-5, however 
did not have the same significant increase in root length ratios; 

• Confirn1ation that, in uninfested controls, event 2426 and line 9212-15 were 
associated with greater root growth than the reference line Bd 21-3. This 
increased endogenous vigour may be partly due to greater seed mass; and 

• Further investigation of potential resistance mechanisms, showing that the 
relationship between reduced vigour and resistance to R. solani was weaker in 
the T-DNA lines than in the natural accessions. An increase in coleoptile nodal 
root emergence in response to disease was consistent with natural accession 
results, but the link between leaf nodal root e1nergence and resistance was not 
repeated in lines assayed for this chapter. 
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4.1 Introduction· 

The aims of this chapter were to test the effect of genes silenced by transfer DNA 

(T-DNA) insertions in B. distachyon line Bd 21-3 on its resistance to R. solani AG8. 

The T-DNA lines used in this study were developed in John Vogel's group by Jennifer 

Bragg, at the USDA, Albany. The development of T-DNA mutant collections for 

B. distachyon provides an excellent resource to study genes involved in diseases that 

affect both B. distachyon and wheat, such as R. solani AG8. While no plant-pathogen 

studies have been published to date using B. distachyon T-DNA mutants, mutants 

from Arabidopsis collections have previously been used to study R. solani and other 

necrotrophic diseases, e.g. Ofiate-Sanchez et al. (2007); Zheng et al. (2006). 

Brachypodium distachyon T-DNA mutants have been used to study genes affecting 

stem elongation and root growth (Vain et al., 2011; Pacheco-Villalobos et al., 2013). If 

a resistance or susceptibility phenotype is found in the T-DNA collection lines the 

benefits are substantial, as verifying the tagged gene would be far easier than 

identifying a resistance gene in the natural accession collection. 

AT-DNA insertion site in or near a gene is knovvn as an event, with multiple lines 

available for some events. Lines for inclusion in experiments for this chapter were 

chosen based on a literature review of tagged gene descriptions received from J. Bragg 

(pers. com1n.) and then on availability. Even with a limited collection, many of the 

mutants in the available transformed lines carried insertions in genes that have been 

linked to disease resistance, stress tolerance or root development (Table 4.1). 

By selecting candidate lines most likely to respond differently to R. solani, the chances 

of finding variation in resistance are increased. Nevertheless, the chance of discovering 

a gene involved in resistance to R. solani AGB in the chosen lines is still small. This is 

partly due to the small number of T-DNA mutant lines available at the time, but also to 

the expectation that resistance to necrotrophic diseases like R. solani is likely to 

require n1ultiple quantitative gene interactions (Poland et al. , 2009). Furthermore, 

single gene knock-out mutants often do not have an observable phenotype due to 

redundancy in genetic path·ways (Weigel et al. , 2000). 

Lines were primarily chosen if there was evidence of the tagged gene being 

differentially expressed in response to pathogens. These are presented Vlrith their 

sources in the literature in Table 4.1. Reactive oxygen species (ROS) are produced by 

necrotrophic pathogens, but also by plants as a signal to initiate a basal defence 

response. In R. solani infection of ton1ato, this leads to the production of antioxidant 
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enzymes, as well as cell-wall strengthening and detoxifying compounds, such as 

phenolic acids (Nikraftar et al., 2013). Genes involved in the transport or modification 

of antioxidants, including ascorbate, polyols and flavonoids, may thus be involved in 

pathogen defence or stress tolerance (Hoekstra et al., 2001; Mittler, 2002). Genes that 

are known to be upregulated in response to chitin, including transcription factors and . 

ubiquitin-ligase, may also be useful in recognition and defence against R. solani, as can 

genes encoding chitinases (Libault et al., 2007). As R. solani destroys cell walls with a 

multitude of enzymes (Bora et al., 2005), several genes that are involved in cell wall 

processes were chosen for the screen. Genes expressed during root development were 

also included, as root architecture and formation of lateral roots can be influenced by 

pathogens (Nibau et al., 2008) and plant morphological traits can be potentially linked 

with quantitative disease resistance (Poland et al., 2009). Ten of the nineteen tagged 

lines studied in this chapter align with expressed sequence tags (ESTs) in wheat, 

suggesting that orthologues _of these genes are expressed in wheat. Potential markers 

for orthologous genes in wheat are available, with thirteen of the nineteen tagged genes 

aligning with one or more bread wheat single-nucleotide polymorphisms (Gramene, 

2013a). 

The T-DNA lines were phenotyped using the methods developed in Chapter 2. 

Maintenance of total root length in the infested treatment was used . as the primary 

indicator of resistance to R. solani. · The rate of leaf appearance, leaf lengths and 

appearance of nodal roots was also measured in some experiments. 

Two methods for ranking resistance to R. solani, developed in Chapter 3 (§3.2.9.1), 

were used to analyse experimental results in this chapter. The first, Method A, 

compares root or shoot phenotypic measurements in R. solani-inoculated treatments 

with those in untreated controls. Higher R. solani/ control ratios indicate greater 

resistance. Using Method A, root length measurements were transformed prior to 

analysis, to improve comparisons between the large range of values. A second 

resistance ranking method, Method B, was evaluated and used in some screening 

experiments in this chapter. This method requires lines to only be grown in R. solani­

infested treat1nents, thus potentially allowing double the number of lines to be 

screened, compared with Method A. Using Method B, root and shoot measurements of 

lines in R. solani treatment are compared with those of the reference line, Bd 21-3, in 

R. solani treatment. Average seed mass was included in the analysis, as it appears to 

correct for some endogenous variation in plant vigour (Figure 3.10). 
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T-DNA 
event 

77 

654 

705 

2426 

2596 

Table 4.1 Information on genes tagged in the T-DNA lines included in screening experiments in this chapter. UniPROT entry numbers are given ; 
accessed 19 June 2013 unless otherwise specified (The UniProt Consortium , 2012). Wheat expressed sequence tag (EST) and single nucleotide 
polymorphism (SNP) information was acquired through the Gramene database (Gramene_, 2013b) . 

Constructa Tagged gene; Wheat NCBI Protein-BLAST seq:uence hom·ol-o:gy, Notes on p,rediicted g:ene fa.mi1ly homo:l·ogues 
T-DNA ESTs and E-value 
location SNPs?b - - -----~ 

pOL001 Bradi3g3601 O; No Predicted : nucleobase-ascorbate transporter NAT6 expressed in Arabidopsis seedling roots and 
In gene 6-like [B. distachyon] , 0.0 lateral root primordia (UniPROT Q27Gl3) (Maurino et 

al. , 2006) . Ascorbate involved in R. solani-tomato 
pathogenesis (Nikraftar et al., 2013) . 

pOL001 Bradi1923450; ESTs Predicted : polyol transporter 5-like [B. Sugar-proton symporter; highly expressed in 
In gene SNP: B distachyon], 0.0 Arabidopsis roots, induced by wounding and insect 

feeding (UniPROT Q8VZ80) . Polyols have antioxidant 
activity (Williamson et al. , 2002) . 

pOL001 Bradi2g48120; ESTs Predicted : ras-related protein Rab7-like [B. Small GTP-binding proteins; wheat Rab? involved in 
In gene SNP : AD ,B distachyon], 3e-150 response to stripe rust and a biotic stress (Liu et al., 

2012) . 

pJJ2LBA Bradi3g29780; ESTs Predicted : probable aquaporin Tl P3-1-like [B. Aligns with Os TIP3; 1, expressed in leaves and at lower 
activation ~ 250 bases SNP : AD distachyon], 0.0 levels in roots ; 100% coverage, 87% identity , 2e -150 , 
tagging downstream . (UniPROT Q9FWV6, 16 August 2013) (Sakurai et al. , 

2005). 
Aligns with seed-specific AtTIP3; 1, 99% coverage, 64% 
identity, 4e-113 , UniPROT P26587 (Hofte et al., 1992). 
An Arabidopsis TIP3; 1 is expressed in seeds and 
during germination and early seedling development 
(Gattolin et al. , 2011 ). 

pJJ2LB Bradi3g04080; No Predicted : endoglucanase 5-like [B. Glycosyl hydrolase 9 family ; secreted protein 
~240 bases distachyon], 0.0 hydrolyses linkages in cellulose , lichenin and cereal 
upstream beta-D-glucans (UniPROT Q9M995) . 
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T -DNA Constructa Tagged gene; ·. Wheat . NCBI Protein-BLAST sequence homology, Notes on predicted gene family homologues 
event T-DNA ESTs and E-value 

location SNPs?b 

2771 pJJ2LB Bradi3g54950; SNP: AD Predicted: dihydroflavonol-4-reductase-like [8. Involved in flavonoid and pigment biosynthesis 
in gene distachyon] , 0.0 (UniPROT P51102) ; DFR involved in response to 

fungal and bacterial pathogens in rice (Hayashi et al,, 
2005) . 

2892 pJJ2LB 8radi3g3351 O; ESTs Predicted : protein ARABI DI LLO 1.- like [8 . . Promoter of lateral root development in Arabidopsis 
In gene SNP: AD ,B distachyon], 0.0 (Coates et al. , 2006). 

3175 pJJ2LB 8radi3g39050; No Predicted: DNA (cytosine-5)-methyltransferase .May be involved in DNA methylation and gene 
In gene 3-like [8. distachyon] , 0.0 silencing (UniPROT Q8LPU5) . 

3400 pJJ2LB Bradi2g4 721 O; ESTs Predicted: basic endochitinase A-like isoform Glycosyl hydrolase 19 family; hydrolysis of linkages in 
intergenic SNP: AD 1 [8. distachyon] , 0.0 chitin and chitodextrins (UniPROT P29022). 
~4.2 kb 
downstream 

3794 pJJ2LB Bradi1 g54290; ESTs Predicted: uncharacterized protein LEAs are involved in desiccation survival , abiotic stress 
~ 790 bases LOC100842709 [8. distachyon], 2e-175 tolerance (Hundertmark and Hincha, 2008), root 
upstream Late embryogenesis abundant hydroxyproline- architecture and necrotrophic disease response (Salleh 

rich glycoprotein [Arabidopsis thaliana] , 2e.-28 et al., 2012). 
4243 pJJ2LB 8radi5g27660; No Predicted: U-qox domain-containing protein Ubiquitin ligase (UniPROT Q9L T79). Involved in 

~ 590 bases 25-like [Fragaria vesca subsp. vesca] , 5e-54 defence response ; response to chitin (Libault et al., 
upstream Predicted: u ..:box domain-containing protein 2007) . 

25-like [8. distachyon] , 1 e-37 
4774 pJJ2LB Bradi3g39700; SNP: AD Predicted: wall-associated receptor kinase 5- Serine/threonine protein kinase; induced by salicylic 

:- 350 bases like [8. distachyon], 0.0 acid (UniPROT Q9LMN7). 
upstream 



Table 4.1 continued Information on genes tagged in the T-DNA lines included in screening experiments in this chapter. 

T-DNA Construce Tagged gene; Wheat NCBI Protein-BLAST sequence homology, Notes on predicted gene fami·ly homologues 
event T-DNA ESTs and E-value 

location SNPs?b 
-

5088 pJJ2LBP2 Bradi3g14370; ESTs Predicted protein [Hordeum vulgare subsp. Glycosyltransferase family 31 , galectin domain ; protein 
gene trap in gene SNP : AD ,B vulgare] , 0.0 modification and glycosylation; expressed mainly in 

Predicted : probable beta-1 ,3- stems (UniPROT A7XDQ9) (Strasser et al. , 2007) . 
galactosyltransferase 20-like (8. distachyon] , Galectins are involved in mammalian defence response 
0.0 (Sato et al., 2009) . 

7557 pJJ2LBP2 Bradi3g16430; SNP : AD ,B Predicted: probable LRR receptor-like LRRs often involved in plant defence response 
gene trap in gene serine/threonine-protein kinase At3g4 7S70-like (UniPROT C0LGP4 ). 

[B. distachyon], 0.0 

8634 pJJ2LBA Bradi2g50980; SNP : AD ,B Predicted: uncharacterized protein Synonym = glycoside hydrolase family 43 
activation In gene LOC100836340 [B. distachyon], 0.0 (www.cazy.org/GH43 .html , 19 June 2013) . 
tagging Glycosyl hydrolase, family 43 protein (Zea 

mays], 0.0 

8913 pJJ2LBA Bradi1 g6961 O; ESTs Predicted : glucan endo-1 ,3-beta-glucosidase Glycosyl hydrolase family 17; involved in wheat abiotic 
activation ~ 580 bases SNP : AD 3-like [B. distachyon] , 0.0 and biotic defence response (UniPROT PS2409) . 
tagging upstream 

9212 pJJ2LBA Bradi1 g62970; No RING-~-Q finger protein ATLS [Triticum urartu], Aligns with a capsicum RING-H2 E3 ubiquitin ligase 
activation In gene Se-27 protein involved in biotroph defence response , 90% 
tagging Predicted : RING-H2 finger protein ATL2-like query coverage, 32% amino acid identity, 4e-17 

[B . distachyon] , 1 e-14 (UniPROT G0T3B3) (Lee et al. , 2011 ). 
Predicted : E3 ubiquitin-protein ligase ELS-like Aligns with an E3 ubiquitin-protein ligase ELS involved 
[B. distachyon] , 4e-13 in rice root growth , 2S% query coverage, 62% identity, 

3e-17, (UniPROT Q9LRB7) (Koiwai et al., 2007) . 



Table 4.1 continued Information on genes tagged in the T-DNA lines included in screening experiments in this chapter. 

T-DNA Constructa Tagged gene; Wheat NCBI Protein-BLAST sequence homology, 
E-value 

Notes on predicted gene family homologues 
event T-DNA 

location 

9278 pJJ2LBA Bradi1 g68540; 
activation in gene 
tagging 

Bra di 1 g68530; 
~ 3.1 Mb 
upstream 

ESTs and 
SNPs?b 

ESTs 
SNP : AD ,B 

No 

Predicted: translocase of chloroplast 34, 
chloroplastic-like [B. distachyon] , 0.0 

Predicted: U-box domain-containing protein 
21-like [B. distachyon] ; 0.0 , 100% 

GTPase, imports protein precursors into chloroplast, 
light-induced, expressed mostly in roots and flowers 
(UniPROT Q38906). 

Ubiquitin ligase, response to chitin (UniPROT Q38906, 
28 July 2013) (Libault et al. , 2007) . 

9840 pJJ2LBA Bradi1g23640; ESTs Predicted: glucan endo-1 ,3-beta-glucosidase Glycosyl hydrolase family 17; inferred carbohydrate 
activation · in gene SNP: AD 4-like [B. distachyon] , 0.0 metabolism and defence response (UniPROT 
tagging Q94CD8) . 

aDetailed construct information is available in Bragg et al. (2012) . All constructs have the potential to knock out genes. In lines with pJJ2LBA 
expression of nearby genes may be increased by the insertion of the 'activation tagging ' construct. Lines with the 'gene trap ' construct, pJJ2LBP2, 
may express GUS and/or GFP instead of the original gene product if the construct lands downstream of a promoter region . 
bESTs, Triticum aestivum 'Expressed Sequence Tags' {ESTs) are available from dbEST (www.ncbi.nlm.nih.gov/dbEST/, 20 August 2013); SNP: AD, . . SNPs that differ between the A and D genomes (where the B genome is unknown); SNP: B, SNPs that are the same between the A and D genomes, 
but differ in B (www.gramene.org/Brachypodium_distachyon/lhfo/Annotation/, 20 August 2013). 
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4.2 Materials and methods 

4.2.1 Seed preparation 

Brachypodium distachyon T-DNA lines were donated by Dr John Vogel from the 

Western Regional Research Center Brachypodium T-DNA insertional mutant 

collection. Mutant lines were generated in Bd 21-3 background. Four T-DNA 

constructs were used in the transformation of lines used in this chapter (Table 4.1). All 

constructs have the ability to disrupt gene function if they are incorporated into coding 

or regulatory regions. Construct pJJ2LBA contains four copies of the CaMV 35S 

enhancer sequence, which can increase transcription of nearby genes. Construct 

pJJ2LBP2 contains GUS and GFP genes that may be expressed if the insertion occurs 

adjacent to a promoter. Inverse PCR was used to generate flanking sequence tags 

(FSTs), to identify genes v\rith T-DNA insertions and to generate gene-specific PCR 

primers. Homozygous n1utant plants were identified with gene specific PCR, prior to 

distribution of T2 seeds (Bragg et al., 2012). 

The first shipment of seeds arrived at CSIRO Black Mountain in May 2011. The 

quantity of seeds varied from around 10 to over 100 per line, with seed size and 

germination also variable. Lines required a round of seed increase to produce sufficient 

germplasm for replicated experiments. Seed increase for experiments was carried out 

at CSIRO Plant Industry, Black Mountain, by Drs Richard Poire and Vincent Chochois. 

Lines were chosen for inclusion in experiments based on the predicted function of 

genes hit by the T-DNA (Table 4.1) and on availability. At commencement of the first 

screening experiment 50 T-DNA lines with sufficient numbers of seeds were available, 

with the nun1ber increasing over time. 

Seeds were surface disinfected in ethanol and sodium hypochlorite according to the 

method of Alves et al. (2009), then germinated overnight on agar. A detailed method is 

giYen in §2.2.1. 

4.2.2 Rhizoctonia solani inoculum 

The R. solani AG8 inoculum used for experiments in this chapter"' as grown on millet 

and stored at -20°C. The full method is described in §2.2.2. 
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4.2.3 Soil 

The soil mixes used for experiments in this chapter were prepared, sieved to remove 
coarse materials and steam-sterilized by the CSIRO Plant Industry potting shed. 

In the first and second screening experiments the soil mix used was 'Barley Mix', 
described in §2.2.3, a blend of recycled soil, leaf mulch, river loam, peat moss, perlite, 
vermiculite, river sand, straw and fertilizers. 

The soil used for subsequent experiments was a blend of 50% river sand and 50% 
· 'Special' potting mix, described in §3.2.3. 'Special' potting mix was a composted 
mixture of recycled soil, straw and fertilizers. 

4.2.4 Cone preparation and sowing 

Cones were prepared and sown according to the method described in §2.2.4. 
Rhizoctonia solani inoculum was incorporated into soil at 0.09 propagules per gram 
on the day of sowing. Control treatments were prepared in the same manner at 
R. solani treatments, but with no addition of inoculum to the soil. The rate of plant 
emergence from the soil surface was very high, with no difference in emergence or days 
to e1nergence between the R. solani-infested or control lines. 

4.2.5 Growth conditions 

The experiments described in this chapter were conducted during the same period of 
time as those for Chapter 3. Growth conditions were the same as those described in 
§2.2.5, except plants were grown in a PC2 facility in Adaptis A1000 growth cabinets 
(Conviron, Winnipeg, Canada). Cones were watered every two to three days with either 
s n1L or 10 mL. All cones received the same volume of water. 

4.2.6 Re-isolation of Rhizoctonia from soil 

The toothpick bait method, initially described 1n §2.2.6 was used to re-isolate 
Rhizoctonia from soil at 8 days after planting (DAP) to ensure a consistent level of the 
fungus in R. solani treat1nents and the absence of cross-contamination in control 
treatments. Only control treatments with toothpick scores of zero and R. solani­
infested treatments with toothpick scores of 3 were included in analysis. The toothpick 
inoculum check showed that inoculum levels were consistently high, with no 
contamination of control treatments. 
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4.2. 7 Phenotype measurements 

At harvest plants were removed from pots and roots rinsed gently. Plants were stored 

in ethanol (50% v/v) in plastic sauce containers. 

The major phenotypic indicator of resistance to R. solani is maintenance of total root 

length in infested treatments. Roots were scanned at 400 dpi on an Epson Perfection 

V700 Photo flatbed scanner (Epson, Australia) to measure total root length using the 

WinRHIZO™ system (Regent, Quebec). Roots were stained with toluidine blue prior to 

scanning in the first and second screening experiments. 

Emergence of nodal roots was 1neasured, as this trait appeared to be linked v\rith 

resistance in the natural accession confirmation experiment (§3.3.2.2). Coleoptile and 

leaf nodal root numbers were measured by counting emerged roots in scans. Roots 

were counted if they had clearly emerged, even if severely truncated. 

Leaf number and leaf length measurements, when taken, were recorded at harvest. 

These shoot 1neasurements are secondary indicators of R. solani disease severity. 

Further details of phenotype measurement methods are given in §2.2.7. 

4.2.8 General observations for characterisation of infection patterns and 

responses in roots 

Seeds were surface disinfected, germinated overnight at room temperature on agar 

plates and incubated in the dark at 16°C. Six days after disinfection a square of agar 

from the growing edge of a R. solani colony was placed adjacent to B. distachyon roots. 

After 48 h vibratome sections (~100 µin) of the tip regions of colonized roots were 

observed with a Leica DMLB 1nicroscope (Leica Microsystems) under bright field and 

with fluorescence filters. 

Root diameters were measured on six roots per line from seedling growing on 

uninoculated agar plates for 12 days. Root i1nages were captured with a Leica M205 C 

1nicroscope (Leica Microsystems). ImageJ 1.43u software (National Institutes of 

Health, USA) was used to measure dia1neters 1 n1n1 from the root tip and 1 mm from 

the base of the seed. Average diameters and least significant differences were 

calculated using GenStat. 

For GUS (,6-glucuronidase) staining, seedlings were briefly vacuum infiltrated and 

then incubated overnight at 37°C in the histochemical stain, containing 0.1 mM X-Gluc 
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(5-bromo-4-chloro-3-indolyl glucanoride; X-Gluc DIRECT, UK), 5 mM EDTA and a 
mixture of 0.5 mM each of ferri- and ferro-cyanate, after Larkin et al. (1996). 

4.2.9 Experiments 

Four experiments are described in this chapter: three screening experiments and a 
confirmation experiment. 

4.2.9.l Screening experiments 

The first screening experiment was of the same design as the experiments for the 
screening activity described in §3.2.8.1. Three replicates of a treatment were sown in 
adjacent pots in a randomised location within a flow tray and harvested at 22 DAP. 
Each Line*Inoculum treatment was repeated once per flow tray. 

Design of the secoµd screening experiment took a different approach. In an attempt to 
increase the number of lines that could be screened only one control treatment was 
included, the reference line Bd 21-3. Each line was harvested at three time-points: 10, 
18 and 26 DAP. Every Line*Days to harvest treatment was sown in three randomised 
locations within a flow tray. 

The third screening experiment was of the same design as for __the second experiment, 
but treatments were only harvested at a single time-point, at 26 DAP. Control 
treatments were only included for four of the eleven lines, including line Bd 21-3. 

4.2.9.2 Confirmation experiment 

The confirmation experiment included both control and R. solani-infested 
Line*Inoculum treatments for every line. Six replicates per treatment were sown in 
randomised locations within each flow tray and harvested at 26 DAP. Lines carrying 
four T-DNA insertion events were included in this experiment, with additional lines 
included for events 5088 and 2596. 
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4.2.1 O Statistical analysis 

Experiments were set up to test the Line (genotype) x Inoculum interaction in 

randomized block designs across tvvo flow trays, with each flow tray considered to be 

one block. The trays were placed on upper and lower shelves within the same growth 

cabinet. 

Statistical analyses were carried out in GenStat (VSN International, UK) using a linear 

mixed model (REML), which is suitable for unbalanced data sets. Measurements were 

removed from analysis if the plant failed the toothpick re-isolation check (§4.2.6) or 

did not emerge within 6 DAP. 

4.2.10.1 Analysis methods 

Two analysis methods were used to rank resistance in this chapter. Abbreviations used 

to describe these different methods are summarised in Table 4'.2. 

Relative resistance of lines was measured by comparing the ratio of the predicted 

means of square-root transformed R. solani-infested/ control total root length using 

Method A ( v'RLRA), described in §3.2.9.1. In the first screening experiment predicted 

means were calculated using a linear mixed model (REML) in GenStat written as 

Fixed Model: Days to emergence+ Line*Inoculum 

Random Model: Experiment/Tray 

Total root length measurements were square-root transformed prior to analysis. 

The pair-wise Line*Inoculun1 interaction for individual T-DNA lines and the reference 

line Bd 21-3 was calculated by including only the data for those lines in the analysis. 

This model was also used for the confinnation experiment, omitting the tenn 

Experiment. 

A second analysis strategy, Method B, was developed using data in the Chapter 3 

screening 1nethod to compare lines using only R. solani-inoculated treatment values 

(RLRB, §3 .2 .9.1) . The untransformed total root length values were averaged and 

divided by the Bd 21-3 reference line value Ylrithin the same tray using Excel 

(Microsoft). Average seed 1nass was included as this was found to improve correlation 

with Method A resistance rankings, particularly for root length, by accounting for some 

of the endogenous plant vigour. To test Method B with data from the first screening 

experin1ent, predicted means Y1rere calculated using a REML analysis written as 

Fixed Model: Average days to emergence+ Average seed 111ass+ Line 

Random Model: E:>tperiment/ Tray 
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A greater ratio of line/Ed 21-3 was used as an indicator of increased resistance to 
R. solani. This model was also used for the third screening experiment, but without the 
term Experiment. 

The Method B model for the second screening experiment was written as 

Fixed Model: Average days to emergence + Average seed mass+ Days to 
Harvest* Line 

Random Model: Tray 

In this experiment the variance component for Tray was negative (-0.00048), so the 
term was bound to zero. This may partly be due to one line, 8634-6, having a strong 
growth response in the second tray at all time-points, while the other lines did not. 
Daytime soil temperatures in Tray 2 were on av~rage 1 °C lower than in Tray 1. During 
the first eleven days of the experiment Tray 2 had 1 h shorter day length than Tray 1, 

due to an undetected cabinet fault. 

The effect _of moss growth on plant-pathogen interactions was investigated 1n the 
confirmation experiment with the model written as 

Fixed Model: Average days to emergence + Line*Inoculum *Moss growth 
Random Model: Tray 

Table 4.2 Abbreviations used to describe root length and root length ratios. These ratios 
are the basis for comparing resistance to R. solani in 8 . distachyon lines. 

Abbreviation Measurement Notes 

TRL 

RLR8 

Total root fength 

Square-root 
transformed root 
length ratio 
(Method A) 

Root length ratio · 
(Method A) · 

Root length ratio 
(Method 8) 

Ratio of the predicted means for R. so/ani-infested/control 
square-root transformed TRL using Method A. This is the 
primary method used to rank 8. distachyon lines for 
increasing resistance to R. solani. 

Ratio of means of R. so/ani-infested/control untransformed 
TRL using Method A. This ratio is used to compare results in 
this chapter with observations from the literature . 

Ratio of the line/Bd 21-3 predicted means for untransformed 
TRL using Method 8 . This is an alternative method tested 
with the aim to reduce the number of plants per line required 
for screening experiments. 
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4.3 Results 

Results of the screening and confirmation experiments describe variation in plant 

growth due to growth cabinet conditions, followed by variation in resistance to 

R. solani AG8 attributable to genetic differences in T-DNA mutant lines. 

4.3.1 Screening experiments 

4.3.1.1 Spatiotemporal variation in plant growth 

In the preVIous chapter (§3.3.1.1) it was seen that plant growth varied across 

experiments due to variations in growth cabinet conditions. Some spatiotemporal 

variation in growth wa_s also present in experiments for this chapter, as seen in the 

variatiori of root length and leaf number at harvest for the three individual 

experiments within the first screening experiment (Figure 4.1). Variation of growth 

due to cabinet conditions between screening experiments in this chapter was lower 

than in the natural accession experiments. This is likely due to smaller growth cabinets 

with better temperature control and the location of these growth cabinets inside a 

climate-controlled room. 

Differences in mean root length and leaf number across experiments were accounted 
' 

for by including Experiment as a random factor term in statistical analysis. 
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Figure 4.1 Overall variation due to growth cabinet conditions between individual 

experiments within the first screening experiment for a) total root length , and b) leaf 

number. Each bar represents the combined mean of the means of all 11 lines in an 
experiment with control (light grey) and R. so/ani-infested (dark grey) treatments . Every 

line mean was of up to 3 plants , SD. 
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4.3.1.2 Variation across T-DNA lines 

Three screening experiments revealed some variation in levels of resistance to 
R. solani AG8, as well as variation in endogenous growth of different T :-DNA lines 
under control conditions. Twenty-five lines representing 19 T-DNA insertion events in 
the Bd 21-3 wild type background were included in the screening experiments, with the 
reference line Bd 21-3 included in every experiment. 

4.3.1.2.1 First screening experiment 

The plant-pathogen response varied significantly across the twelve lines included in 
the first screening experiment for square-root transformed total root length (vTRL, 
p=o.002) and leaf number (p=o.025), but not for leaf lengths (Figures 4.2 and 4.3, 
Tables 4.3 and 4.4). 

The lines most resistant to R. solani AG8 were 77-5, 3794-5 and 5088-4, with greater 
(p<o.05) R. solani/control root length ratios (vRLRA) than the reference line Bd 21-3 
(Table 4.4). These lines also maintained leaf number in R. solani treatment not 
significantly different from the control. Leaf 2 lengths for lines 3794-5 and 5088-4 in 
R. solani were also not significantly different from the control, indicating that the 
impact of the root disease on leaf measurements was lower in these lines. Leaf 1 length 
was not affected by R. solani in any line. 

The increased resistance ratio of 5088-4 appeared to be partly due to significantly 
lower root length growth thari the reference line in the_ control treatment (p<o.05). 
Lines 2426-11 and 4774-6 also had significantly (p<o.05) greater and lower root 
growth than Bd 21-3 in control, respectively. 
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Figure 4.2 First screening activity phenotype measurements. Predicted means for a) total 

root length and b) leaf number, for 12 lines grown in control (light grey) and R. solani 

(dark grey) inoculated soil. Each line-pathogen treatment was sown in 3 experiments , 

except 3400-2 (one experiment) and 654-9 (2 experiments) ; n:518 , except 654-9 (n:511) 

and 3400 (n:56); average SE. Values are given in Table 4 .3. 

*Pair-wise line response to R. so/ani is significantly different (p<0 .05) from the reference 

Bd 21-3 for total root length . 

NS , no significant difference between R. so/ani and control treatments at 5% LSD . 
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Figure 4.3 First screening activity phenotype measurements. Predicted means for a) leaf 
1 length length and b) leaf 2 length , for 12 lines grown in control (light grey) and R. solani 
(dark grey) inoculated ~oil. Each line-pathogen treatment was sown in 3 experiments , 
except 3400-2 (one experiment) and 654-9 (2 experiments) ; n:518 , except 654-9 (n:511) 
and 3400 (n:56) ; average SE . Values are given in Table 4.4 . 

. NS, no significant difference between R. so/ani and control treatments at 5% LSD. 
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Table 4.3 Means of total root length and leaf number at harvest for 12 lines; n$18 across 
3 experiments, except 654-9 (n$11 , 2 experiments) and 3400 (n$6 , 1 experiment). 

Line Total root length (✓cm ) 1 
Leaf number 1 

Control R. solani Control R. solani 

Bd 21-3 · 12.98 abc 6.81 hij 3.21 cdefgh 3.01 jk 

77-5 12.17 bed 8.52 fg 3.41 ab 3.33 bcd4 

654-9 10.76 de 6.04 IJ 3.27 bcdef 3.04 hijk 

705-4 12.85 abc 8.33 fg 3.41 ab 3.32 bcde 

2426-11 14.09 a 7.98 gh 3.33 bed 3.21 cdefgh 

2771-5 12.68 be 6.97 ghij 3.32 bed 3.12 fghij 

2892-10 12.66 abc 6.06 IJ 3.34 be 3.03 ijk 

3175-12 13.46 ab 6.64 hij 3.51 a 3.09 gh ijk 

3400-2 13.69 ab2 
6.28 hi/ 3.57 a 3.49 ab 

3794-5 11 .83 cd 7.96 gh 3.18 cdefghi 3.16 efgh ij 

4774-6 9.89 ef 5.53 J 3.25 bcdefg 2.94 k 

5088-4 10.76 de 7.30 ghi 3.16 defghij 3.09 fghijk 
1Numbers followed by the same letter are not significantly different at 5% LSD 23400-2 (control) is significantly different from 3794-5 (control) . 
33400-2 (R. so/ant) is not significantly different from 705-4 (R. so/ant) . 
477-5 (R. so/ant) is not significantly different from 3794-5 (R. so/ant) . 

Table 4.4 Means of leaf 1 and leaf 2 lengths at harvest for 12 lines ; n$18 across 3 
experiments , except 6'54-9 (n$11 , 2 experiments) and 3400 (n$6, 1 experiment). 

Line Leaf 1 length (mm) 1 
Leaf 2 length (mm) 1 

Control R. solani Control R. solani 

Bd 21-3 50.9 a 49 .5 abc 67.2 a 58 .6 cd 

77-5 44.4 defghijk 41 .1 ijk2 57.4 cde 49.4 fgh i 

654-9 44 .6 defghijk 41 .3 hijk3 
55 .3 def 48 .8 fgh i 

705-4 45.4 defgh 42 .9 gh ijk 58.1 cd 49 .5 fgh i 

2426-11 49 .9 ab 48 .1 abed 64.5 ab 56 .0 cde 

2771-5 47.7 abcde 44 .1 efgh ij k 61.4 be 52 .3 efgh 4 

2892-10 43 .6 fgh ijk 40 .6 jk2 58.4 cd 47 .7 gh i 

3175-12 45 .9 cdefg 45 .6 defgh 58 .0 cd 52.5 efg5 

3400-2 45.4 bcdefgh 46 .9 abcdefg 58.5 bed 60 .1 abed 

3794-5 47 .0 bcdef 45 .1 defghi 60.5 bed 56.4 cde 

4774-6 35 .3 Im 31 .9 m 46.5 hi 37.0 J 

5088-4 38 .0 kl 38 .3 kl 49 .2 fg hi 45 .2 
1 Numbers followed by the same letter are not significantl y different at 5% LSD 23400-2 (control ) is not significantly different from 77-5 (R. so/ant) and 2892-10 (R. so/ant) . 
3654-9 (R. so/ant) is not significantly diffe rent from 3400-2 (R. so/ant) . 
43400-2 (control) and (R. solani) are not significantly different from 2771-5 (R. so/ant) . 
53400-2 (control) and (R. solani) are not significantly different from 3175-1 2 (R. so/ant) . 
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4.3.1.2.2 An alternative resistance ranking method (Method B) using only R. solani treatment 

The total root length ranking Method B (§4.2.10.1), · using only R. solani treatment 
values, was tested with the first screening experiment data set. More lines can 
potentially be screened _per experiment with this method, as plants do not need to be 
grown in control treatments. 

There was a good correlation with Method A ·resistance rankings based on root length 
when seed mass was included in the Method B model (p=o.005), as seen earlier with 
the natural accession screening data in §3-4.1.2 (Figure 4.4). Seed mass essentially 
becomes a substitute for endogenous plant vigour. 
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Figure 4.4 Correlation between resistance rankings based on total root length using 
Method A (✓RLRA) and Method B (RLR8). Rankings are from 1, least resistant , to 12, 
most resistant; dotted line , y=x . 

Using total root length ratio Method B (RLRB), the two most resistant lines were 
5088-4 and 77-5, with ratios of 1.86 and 1.82, respectively (Table 4.5). These were also 
the tvvo most resistant lines using v'RLRA. Refer to Table 4.2 in §4.2.10.1 for 
explanation of abbreviations. 

While ratios of leaf 1 length and leaf 2 length vvere correlated (p<o.05) within each 
method, leaf length ratios did not correlate with rankings based on root length or leaf 
number ratios. 

153 



Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia so/an~ AG8 

Line 

3400-2 

2892-10 

3175-12 

Bd 21-3 

2771-5 

4774-6 

654-9 

2426-11 

705-4 

3794-5 

5088-4 

77-5 

Table 4.5 Summary of rankings using different methods for measuring resistance to 
R. solani. Rankings 1 to 12 (in parentheses) are from least to most resistant; green , more 
resistant ; orange, less resistant. ✓RLRA, Method A square-root transformed root length 
ratio; RLRs, Method B root length ratio ; L#, leaf number ratio ; L 1, leaf 1 length ratio ; L2 , 
leaf 2 length ratio. 

Method A - ratios of R. solanilcontrol 
treatment from linear mixed model 

predicted means; (rank) 

L# L1 L2 

0.52 (4) 0.94 (5) 

0.55 (5) 

0.56 (6) 

0.56 (7) 0.93 (4) 0.93 (4) 0.88 (8) 

0.57 (8) 0.96 (7) 0.96 (8) 0.87 (6) 

0.65 (9) 0.97 (8) 0.95 (6) 0.85 (4) 

0.67 (10) 0.99 (12) 0.96 (7) 0.93 (11) 

0.68(11) 0.98 (10) 1.01 (11) 0.92 (10) 

0.70 (12) 0.98 (9) 0.93 (3) 0.86 (5) 

Method B - ratios of R. solani treatment 
(line mean)/(Bd 21-3 mean) from linear 
mjxed model predicted means; (rank) 

RLR8 L# L1 L2 

1.08 (11) 1.16 (10) 1.24 (12) 

0.98 (7) 0.98 (6) 0.95 (4) 0.94 (4) 

0.92 (4) 0.97 (4) 1.08 (9) 1.06 (7) 

0.93(5) 0.95(1) 1.17(11) 1.18(10) 

0.90 (3) 0.96 (3) 1.07 (7) 1.08 (8) 

·o.98 (7) 

0.97 (5) 0.94 (3) 0.90 (3) 

0.93 (6) 0.95 (2) 1.17 (12) 1.18 (11) 

1.08 (8) 1.01 (8) 1.07 (8) 1.05 (6) 

1.72 (10) 1.03 (9) 1.04 (6) 1.09 (9) 

1.86 (12) 1.07 (10) 

1.82 (11) 1.08(12) 

4.3.1.2.3 Second screening experiment 

Several changes were made to the screening protocol between the first screening 

experiment and the subsequent screening experiments, as Method B analysis appeared 

to be a useful initial measure of resistance rankings of different lines. The reference 

line Bd 21-3 was included in the control treatn1ent, with all other lines sown only in the 

R. solani inoculated treatment. 

In the second screening experiment lines were sovvn on the same date and harvested at 

10, 18 and 26 days after planting. During method development in Chapter 2, an 

infection ti1ne-course experiment (§2.3.2.1) showed that root length was reduced 

significantly by R. solani from 10 DAP. 

Only one line had a significantly different line-pathogen interaction from the reference 

line, and only at one harvest time-point. Line 9212-15 had a significantly {p<o.05) 
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larger RLRB than Bd 21-3 at 26 DAP (Figure 4.5). Resistance rankings varied 
considerably, with little correlation between harvest dates. 

Reference line Bd 21-3 was included in a control treatment. It was noted that the 
transformed R. solani/ control root length ratio ( v'RLRA) for Bd 21-3 was higher than in 
previous experiments, at 0.74 and 0.70 for the 18 and 26 DAP harvest, respectively. 
The first screening experiment.ratio of 0.52 at 22 DAP was similar to the average ratio 
of 0.50 at 22 DAP for Bd 21-3 in Chapter 3 screening experiments 1, 4, 5, 6, 7 and 8. 
The higher root length ratios of o. 79 seen in Chapter 3 screening experiments 2 and 3 
coincided with the growth of an unidentified fungus. There was, however, no evidence 
of contamination in this second screening experiment. 

The time-course experiment was replaced with greater replication at a single time­
point in subsequent experiments, to increase statistical power. 
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Figure 4.5 Second screening activity root length ratios . Predicted Method B mean ratios 
for total root length of 10 accessions grown in R. so/ani inoculated soil and harvested at 
10, 18 and 26 days after planting ; n=2 , with every n being the mean 9f up to 3 plants ; 
average SE . Values are given in Table 4.6. 
*Line is different from the reference line Bd 21-3 at the same time-point at 5% LSD. 
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Table 4.6 Summary of Method B line/Bd 21-3 total root length ratios (RLR 8 ) for harvest 

time-points 10, 18 and 26 days after planting . Rankings increase from least to most 

resistant. 

Line RLR8 ; (rank) 

10 OAP 18 OAP 26 OAP 

Bd 21-3 1.02 (9) 1.03 (7) 1.04 (2) 

2596-2 0.78 (3) 1.09 (9) 1.23 (7) 

2771-4 0.78 (4) 0.78 (2) 1.13 (5) 

4243-11 0.54 (1) 0.61 (1) 0.85 (1) 

7557-2 0.84 (6) 0.99 (6) 1.07 (3) 

8634-6 0.79 (5) 0.96 (4) 1.42 (8) 

8913-5 0.88 (7) 0.90 (3) 1.10(4) 

9212-15 0.92 (8) 0.97 (5) 1.65 (10) 

9278-8 1.03 (10) 1.06 (8) 1.49 (9) 

9840-9 0.60 (2) 1.13 (10) 1.21 (6) 

4.3.1.2.4 Third screening experiment 

In the third screening experiment a different soil mix was used and plants were 

harvested at 26 days after so-wing. All plants emerged between three and six days after 

planting. The standard error of measurements for this experiment was larger than 

usual. A growth cabinet lighting malfunction may have contributed to the increase in 

root growth of between 5 and 201% in R. solani inoculated treatments in the second 

tray. 

Overall, there vvas no significant difference in response to R. solani between hosts or 

events. Greater RLRB than Bd 2 1-3 at 5% LSD was measured when lines were pooled 

into events, for events 2426, 2596 and 3794 (Figure 4.6). 
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Figure 4.6 Third screening activity root length ratios . Predicted Method B mean ratios for 
total root length of a) 11 lines, and b) these lines grouped into events, grown in R. solani 
inoculated soil and harvested at 26 days after planting. Bars with the same letter are not 
significantly different at 5% LSD; in a) ff=2 , with every n being the mean of up to 6 
plants ; average SE. Values are given in Table 4.7. 
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Table 4. 7 Summary of Method B (line/Bd 21-3) total root length ratios (RLR 8) for 
measuring resistance to R. solani at 26 days after planting . Rankings increase from least 
to most resistant. 

Line Line RLR 8 Event Event RLR8 

Bd 21-3 0.87 (2)8 Bd 21-3 1.00 (1) 

77-5 1.10(4}8 77 1.46 (3) 

2426-8 2.25 (9}8 2426 1.65 (5) 

2426-11 2.25 (10) 

2596-2 2.32 (11) 2596 1.62 (4) 

2596-9 1.12(5) 

2596-10 2.18 (8) 

3794-2 1.39 (6) 3794 1.85 (6) 

3794-5 1.10(3) 

9212-8 0.83 (1) 9212 1.27 (2) 

9212-15 1.45 (7}8 

alines for which a control treatment was included. (see Figure 4.7, Table 4.8) 

The control treatments of three lines, along with the reference line, were also included 

in the third screening experiment. This was essentially a confirmation experiment for 

li.nes 77-5 and 2426-8, as these lines were included· in the first screening experiment. 

The line-pathogen interaction was not significant between these lines for either total 

root length or leaf number measurements, meaning that the greater resistance seen in 

the first experiment for 77-5 could not be confirmed (Figure 4.7). 

Line 9212-15 had a significantly different resistance response from the reference line at 

the 26 DAP ti1ne-point in the second screening experiment. In the third screening 

experiment this line was not more resistant than the reference line, but did display 

greater endogenous root growth than Bd 21-3 (p<o.05). Comparison of untransformed 

predicted means for root length showed that 9212-15 produced 37% more root length 

than Bd 21-3 in the control treatment. 

Likewise, although line 2426-8 was not 1nore resistant to R. solani in the third 

screening experi1nent, it n1irrored the increased endogenous root length of line 2426-

11 in the first screening experi1nent (p<o.05). Con1paring untransformed predicted 

means, line 2426-11 had 20% greater TRL than Bd 21-3 in the first screening 

experin1ent, while line 2426-8 had 32% greater TRL in the third screening experiment. 

Leaf nu1nber at harvest was significantly greater in the control treatment for the three 

tran fonned lines , co1npared with Bd 21-3 (p<o.05). 
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Figure 4.7 Third screening activity phenotype measurements. Predicted means for a) 
total root length , and b) leaf number, for four lines grown in GOntrol (light grey) and 
R. solani (dark grey) inoculated soil. Bars with the same letter are not significantly 
different at 5% LSD; no lines had a significantly different (p<0 .05) Line*lnoculum 
interaction from the reference line Bd 21-3 ; n:512; average SE Values are given in Table 
4.8. 

Table 4.8 Predicted means of total root length and leaf number for B. distachyon in 
R. solani inoculated (Rs) and control (C) treatments . Means-are followed by the ratio of 
R. so/ani treatment values compared with control treatment values . 

Line 

9212-15 

Bd 21-3 

77-5 

2426-8 

Total root length 
( ✓cm) 

Rs C Ratio 

9.2 20 .2 0.45 

9.5 16.9 0.56 

10.8 19.0 0.57 

12.7 19.9 0.64 

Leaf number 

Rs Ratio 

3.7 4 .1 0.90 

3.5 3.9 0.92 

3.9 4.2 0.93 

4.1 4.2 0.96 
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4.3.2 Confirmation experiment 

The confirmation experiment included lines of interest in both control and R. solani 

treatn1ents, to test whether increased resistance phenotypes observed in the screening 

experiment were repeatable. 

An observation of moss growth at the soil surface prompted an investigation into the 

relationship between moss growth and root growth in this section, before the results of 

gene-related variation in the confirmation experiment are presented. 

4.3.2.1 Spatial variation in plant growth 

Moss growth at the soil surface became more apparent in these growth cabinet 

conditions with the use of a different potting mix in the third screening experiment. 

During the confirmation experiment there was an obvious difference in the localization 

of moss growth. A visual score for moss growth was taken a 20 DAP, with a range of o 

(no moss growth) to 3 (maximum growth). 

A contributing factor to moss growth was likely to be the higher light intensity in Tray 

2 than Tray 1 (averaging around 785 and 655 µEinstein, respectively), with light 

intensity increasing toward the centre of each tray. Factors that may influence moss 

growth and also likely to be affected by light intensity, are local temperature and 

humidity. Local temperature and humidity measurements were not taken. 

Correlations were calculated between moss growth scores at 20 DAP and phenotypic 

measurements taken at the conclusion of the experiment (26 DAP). Moss growth was 

significantly correlated with increased root length (p=o.007) , greater leaf number at 

harvest (p<o.001) and n1ore leaf nodal roots (p<o.001). 

The significant Inoculum*Moss interaction for total root length points to greater root 

growth in control plants when 1noss was present, while there was no difference in root 

growth between mossy and bare pots for R. solani infected plants. 

Importantly however, n1oss growth did not appear to affect the Line*Inoculum 

interaction as Line*Inoculum *Moss never became significant. This suggests spatial 

randon1isation of lines and treatments was effective. 

It should be noted that these results cannot be used to suggest that greater plant 

growth '" as caused by the presence of moss or vice, ersa. An environmental factor n1a 

have affected both measurements. 
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4.3.2.2 Variation across lines 

The line-pathogen interaction for total root length was significant (p<o.001) for the 
lines included in the confirmation experiment. The leaf number response to R. solani 
was not significantly different between lines in the overall analysis (Figure 4.8). 

In pair-wise comparisons, the_ only line to differ significantly from the reference line 
was 5088-4, which had significantly greater R. solani/ control ratios for both root 
length and leaf number. The vRLRA for 5088-4 was o. 70 compared with 0.53 for 
Bd 21-3, with leaf number ratios of 0.98 and 0.91, respectively. 

In pair-wise comparisons root growth of line 9212-15 1n control treatment was 
significantly greater (p<o.05) than any other line. Comparison of untransformed 
predicted means for root length shows that TRL for 9212-15 was 19% greater than for 
Bd 21-3 in control treatment. Leaf number was also greater (p<o.05) than the 
reference line for 9212-15 control treatment. 

Root lengths in 5088-2 and 5088-4 were 20% and 30% lower than the reference line in 
the control treatment, respectively, according to linear mixed model analysis of 
untransformed values (p<o.05). In the first screening experiment, line 5088-4 had 
26% less total root length than Bd 21-3 (p<o.05). There was no -significant difference in 
control leaf number compared with Bd 21-3 for lines of event 5088. 

The line-pathogen interaction for total root length remained significant (p<o.001) 
when lines were pooled into T-DNA insertion events, with the interaction also 
becoming significant (p=o.024) for leaf number (Figure 4.9). Again, only event 5088 
was significantly n1ore resistant that the reference line based on root length and leaf 
nu1nber measure1nents. 



Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

25 A 
a 

abc abc abc ab 
be 20 cd * 

....---.. d E 
u I SE ~ 15 ..__, e e ..c ....... 
0) 
C 
Q) 10 

....... 
0 
0 
I.... 

cu 5 ....... 

~ 

0 

"'fl;) re'\, ro'Oj t,('\, ~'\, ~ ~<o ~ 
o'\, f.-)OJ f.-)OJ C\Q) S::)'(, S::)'(, S::)'(, ~ «;; ');; ');; fl;) ~ ~ ~ Oj'\," 

4.5 
B 

....... a (/) 
Q) 

2: 4 ab abc a abc IsE cu 
..c 
....... 
cu 
I.... 
Q) 

..0 

§ 3.5 
C 
C -cu 
Q) 
_j 

3 

Figure 4.8 Confirmation activity phenotype measurements. Predicted means for a) total 
root length , and b) leaf number, for eight lines grown in control (light grey) and R. solani 
(dark grey) inoculated soil (n:512) . Bars with the . same letter are not significantly different 
at 5% LSD; lines with an asterisk had a significantly different (p<0.05) Line*lnocu/um 
interaction to the reference line Bd 21-3 ; average SE. Values are given in Table 4.9. 

Table 4.9 Predicted means of total root length and leaf number for 8 . distachyon in 
R. solani inoculated (Rs) and control (C) treatments . Means are followed by the ratio of 
R. so/ani treatment values compared with control treatment values . 

- Line Total root length 
Leaf number 

( cm) 

Rs C Ratio Rs C Ratio 

Bd 21-3 11 20 0.53 3.5 3.8 0.91 

2596-2 13 20 0.66 3.8 3.9 0.96 

2596-9 13 20 0.64 3.7 3.9 0.96 

3794-2 10 20 0.49 3.7 4.0 0.92 

5088-2 11 18 0.62 3.7 3.9 0.96 

5088-4 11 16 0.70 3.6 3.7 0.98 

5088-5 12 19 0.63 3.7 3.9 0.96 

92 12-15 10 22 0.47 3.7 4.0 0.91 
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Figure 4.9 Confirmation activity phenotype measurements for lines pooled into insertion 
events . Predicted means for a) total root length , and b) leaf number, for four T-DNA 
insertion events grown in control (light grey) and R. solani (dark grey) inoculated soil. 
Bars with the same letter are not sign ificantly different at 5% LSD ; lines with an asterisk 
had a significantly different (p<0 .05) Line */noculum interaction to the wild type Bd 21-3 ; 
average SE . Values given in Table 4 .10. 

Table 4.1 O Predicted means of total root length and leaf number for 8 . distachyon in 
R. solani inoculated (Rs) and control (C) treatments . Means are followed by the ratio of 
R. solani treatment values compared with control treatment va lues. 

Line 

Bd 21-3 

2596 

3794 

5088 

9212 

Total root length 
( cm) 

Rs C Ratio 

11 20 0.53 

13 20 0.65 

10 21 0.49 

12 18 0.65 

10 22 0.47 

Leaf number 

Rs C Ratio 

3.5 3.8 0.91 

3.8 4 .0 0.96 

3.7 . 4 .0 0.92 

3.7 3.9 0.96 

3.7 4 .1 0.91 
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4.3.2.3 Nodal root emergence 

Results of the natural accession screen suggested that the emergence of leaf nodal 

roots in response to R. solani infection may be linked with greater resistance 

(§3.3.2.2). This was further investigated among the lines included in the confirmation 

activity for this chapter. 

Here, an increase in the emergence of coleoptile nodal roots (CNR, p<o.001) in the 

R. solani treatment followed the trend seen in the previous chapter (§3.3.2.2). In 

contrast to the natural accession screen, leaf nodal root (LNR) emergence increased 

(p=o.013) across all lines in the R. solani treatment. The increased appearance of LNR 

was also found to be significantly (p<o.001) correlated with greater moss growth at the 

cone surface (§4.3.2.1). 

In this confirmation experiment a significant (p=o.022) line-inoculum interaction was 

found for total nodal root (TNR) number between individual lines, but this interaction 

was no longer significant when lines were grouped into events (Figure 4.10). The line­

inoculum interaction was not significant for specific nodal root types between 

individual lines or events. 

Overall, the inferred relationship between nodal root emergence and resistance to 

R. solani in the confirmation experiment of the natural accession screen was not 

observed in this group of T-DNA lines. 
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Figure 4.1 O Emergence of leaf and coleoptile nodal roots in control (C) and R. solani 
infected (Rs) treatments for seven T-DNA insertion lines and the reference line Bd 21-3 . 
CNR , coleoptile nodal root; LNR , leaf nodal root; ns12 ; average SE 
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4.3.3 The effect of endogenous vigour on disease resistance 
In the Chapter 3 natural accession screen a correlation was noted between endogenous 
seedling vigour, measured as seed mass or root length in the control treatment, and 
reduced resistance to R. solani (§3.3.1.3). 

The effect of seed mass on phenotype measurements in the first T-DNA screening 
· experiment mirrored the relationship with seedling vigour seen in the natural 
accession screen. Using a simple linear regression analysis, seed mass was again found 
to be correlated with increasing total root length and leaf number in control 
treatments, but not in R. solani treatments (Figure 4.11). Average seed · mass also " 
correlated with leaf length measurements in both treatments. 
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Figure 4.11 Correlations of root and shoot measurements with seed mass. Pred icted 
means for a) total root length , b) leaf number, c) leaf 1 length , and d) leaf 2 length , 
plotted against average seed mass for 26 accessions grown in control (white circles) and 
R. so/ani-inoculated soil (grey circles). 



Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

In the natural accession screening activity vRLRA was negatively correlated with seed 

mass (p=o.046) and root length in the control (p<o.001) (§3.3.1.3). A similar trend 

was seen across the T-DNA experin1ents, but only control root length in the 

confirn1ation experiment correlated significantly with vRLRA (Figure 4.12). 
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Figure 4.12 Correlation between a) average seed mass, and b) predicted square-root 

transformed total root length in control, with resistance rankings based on total root length 

ratfos using Method A (✓RLRA) for all lines sown in both control and R. solani treatment. 

Dark grey circles, first screening experiment; black , third screening experiment; light grey, 

confirmation experiment. 

4.3.4 General morphological and cellular observations of responses 

within infected roots 

Growth on agar plates and response to R. solani 48 h after inoculation was compared 

between line 5088-4 and the reference line Bd 21-3. Roots of 5088-4 were thinner than 

those of Bd 21-3, even though root lengths were not significantly different. The average 

diameter of uninoculated roots of 5088-4 was 155 µm, while Bd 21-3 averaged 209 µ1n 

(p=o.001, LSD 30 µm). Light browning over larger sections of the roots was observed 

on uninoculated plates when roots grew aerially, indicating that this is also an abiotic 

stress response. Shorter (~5 min) sections of dark brown root in the region of 

inoculation were observed mainly in R. solani inoculated roots. Dark brown regions 

appeared more often in Bd 21-3 than 5088-4. In cross-sections generalized browning 

was observed in epidermal cells and cells of the outer cortex (Figure 4.13 a and b). 

Hyphae of R. solani were seen to proliferate in cortical cells of both Bd 21-3 and 5088-

4 without apparent cell deformation. Protoxylen1 appeared to mature earlier and 

fluoresce more strongly in Bd 21-3 than in 5088-4 (Figure 4.13 d). 
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As observed in Chapter 2 , vacuolar inclusions of root border cells fluoresced strongly 
when excited at 420 - 490 nm (Figure 4.13 d and e) in both Bd 21-3 and 5088-4. 

A 

\ -

Figure 4.13 Cross-sections through browned regions of 8. distachyon roots , close to the 
root tip , 48 h after inoculation with R. solani AG8 on agar plates ; a) 5088-4 with the inset 
(b) showing R. so/ani hyphae extending through the cortex (arrows); c) and d) Bd 21-3 
lateral root emerging under bright field and UV fluorescence with Leica H3 filter (black 
arrow, general darkening of root periphery; blue arrow, peripheral metaxylem ; white 
arrow, protoxylem) ; e) and f) Bd 21-3 root border cells in mucilage surrounding the root 
tip under bright field and Leica H3 fluorescence filter (Ex 420 - 490 nm , Em-LP 515 nm). 
Scale bars , 100 µm . 
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The T-DNA insertion construct for event 5088 may result in GFP or GUS expression 

depending on its placement in the gene. Less than 10% of lines with this construct 

express GUS in vegetative tissue (Bragg et al. , 2012). GUS expression could not be 

detected in inoculated or control seedlings of line 5088-4 at 7 days after germination. 

Seedling GFP expression was also not detected using fluorescence microscopy. 

4.4 Discussion 

In this chapter twenty-seven B. distachyon T-DNA insertion lines, representing 19 

insertion events, were tested for increased resistance to R. solani AG8. These lines 

were chosen based on the insertion location near genes that may be involved in biotic 

and abiotic stress resistance or root development (Table 4.1). Of these lines, four 

insertion events were included in a confirmation experiment. 

Most chosen lines had the T-DNA insertion event located within a gene, but for some 

the event was intergenic or near the gene of interest. The effect of a T-DNA insertion 

on genes not directly disrupted by the construct is somewhat unclear. Bragg et al. 

(2012) state that insertions within one kilobase of an adjacent gene may affect the gene 

if the T-DNA lands within a regulatory region. Activation tagging constructs in 

Arabidopsis have been reported to increase transcription of genes located up to 8.2 kb 

from the enhancer (Ichikawa et al., 2003). 

4.4.1 Screening experiments 

Maintenance of total root length in R. solani inoculated treatments, compared with 

control, was used as the primary indicator of disease resistance. Shoot measurements 

were also taken to study changes in plant development. 

In the first screening experiment, lines 77-5, 3794-5 and 5088-4 were significantly 

more resistant to R. solani AG8 than the reference line Bd 21-3, based on transformed 

R. solani/ control root . length ratios ( v'RLRA)- The higher ratio of 5088-4 was 

associated with lower root growth in the control compared with the reference line. 

Lines 3794-5 and 5088-4 also notably did not have significantly lower leaf number, 

leaf 1 length nor leaf 2 length in R. solani treatment than control, indicating that leaf 

growth was less affected by R. solani by 22 DAP in these lines than in the reference line 

Bd 21-3. 

Although analysis Method B looked promising based on the natural accession screen 

and fi rst T-D A screening experiment data, onl one line, 9212-15, was picked up '"rith 

potentially increased disease resistance in the second and third screening experiments 
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using this method. Events 2426, 2596 and 3794 were only significantly different from 
the control in the third experiment when lines of the same event were pooled. This lack 
of identifiable variation may be due to a dearth of resistance variation in the selected 
lines, due to reduced statistical power using this method or a combination of both. 

All lines and events identified in the screening experiments as being significantly · 
different from the control line Bd 21-3 were ins~ances of increased resistance. This is 
somewhat surprising, as in most cases the construct type and insertion location would 
be expected to reduce expression of the targeted gene. With T-DNA tagged genes 
having been . selected for their potential to improved disease resistance, lower 
expression should result in reduced resistance. This may be due to the choice of using 
the wild type parent as a control line in T-DNA experiments, instead of a line that has 
gone through the tissue culture process alongside the lines being tested. A better 
alternative to a wild type Bd 21-3 control would be a transformed line in which the 
T-::DNA construct is located in a non-annotated regi_on of the genome (Pacheco­
Villalobos et al., 2013) or a nil segregant that has lost the T-DNA insert in the T2 
generation (Vain et al., 2011). 

In the screening activity two lines of event 2426 were linked with significantly greater 
endogenous seedling vigour than Bd 21-3. Lines 2426-11 and 2,f26-8 had 20% and 32% 
greater root length than the reference line in control treatments of the first and third 
screening experiments, respectively. Leaf appearance rates for · both lines were also 
significantly greater than Bd 21-3~ This increased vigour is expected to be due to seed 
masses 17% and 10% greater than Bd 21-3 for lines 2426-11 and 2426-8, "respectively. 
While this result is not of interest in the question of pathogen resistance, it may be 
worth investigating the role in seed development of the nearby T-DNA insertion 
downstream of an aquaporin TIP3;1 (tonoplast intrinsic protein) gene, Bradi3g29780. 
The gene has 87% amino acid identity CE-value 6e-152) with a rice aquaporin protein 
(GenBank AAG13544.1) expressed in leaves and roots (Sakurai et al. , 2005). Other 
TIP3;1 genes are seed-specific and may be expressed during initial stages of seedling 
gennination and growth (Hofte et al., 1992; Gattolin et al., 2011). 
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4.4.2 Confirmation experiment 

Seven T-DNA lines representing four insertion events, that had previously been 

included in screening experiments, were included in a confirmation assay to test 

whether these events were involved in B. distachyon resistance to R. solani AG8. 

4.4.2.1 A candidate gene for increased·resistance to R. solani 

Only one line in the confirmation experi1nent, 5088-4, was more resistant to R. solani 

than the reference line Bd 21-3, based R. solani/ control root length ratio. This 

increased resistance was also found in the first screening experiment. 

The effect of R. solani on shoot development of line 5088-4 was also found to be 

minimal at 22 and 26 days after planting, compared with the reference line. In the first 

screening and confirmation experiment, leaf number at harvest for line 5088-4 did not 

differ significantly between the control and inoculated treatments; whereas leaf 

nun1ber was significantly lower in inoculated treatments of Bd 21-3 in both 

experiments. 

4.4.2.1.1 T-DNA event 5088 is an insertion in a putative 8-1,3-galactosyltransferase gene 

The T-DNA insertion location for event 5088 is located within an intron of gene 

Bradi3g14370 (Figure 4.15). The insertion is a bidirectional gene trap vector 

(pJJ2LBP2) containing pro1noterless GUS and GFP genes (Bragg et al. , 2012). In 

practice only a low percentage of tagged lines express GFP (2.3%) or GUS (4.8-7.2%) in 

any tissue (Ryu et al. , 2004; Bragg et al. , 2012), thus it not surprising that expression 

of GUS or GFP could not be detected in seedlings of line 5088-4. 

The construct can nevertheless disrupt a tagged gene. In Arabidopsis research it is 

usually found that T-DNA insertions within intrans have an effect on transcription and 

knock out or reduce protein expression (Wang, 2008). It is unclear how disruption of 

Bradi3g14370, a gene encoding a protein with ,B-1,3-galactosyltransferase (GT31) 

and galectin (galactose-binding lectin) domains, would increase resistance to R. solani. 

51 
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Bradi3g143 70.1 1 kb 

T-DNA, pJJ2LBP2 

Figure 4.15 Location of the T-DNA insertion event 5088 in an intron of gene 

Bradi3g14370.1. 
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Family GT31 is one of the most abundant families of glycosyltransferase proteins in 
wheat, rice and Arabidopsis, members of which have been identified as wheat cell wall 
biosynthesis enzymes (Sado et al., 2009). Griffitts et al. (2001) described a GT31-
encoding gene, bre-5, in Caenorhabditis elegans that is required for susceptibility to 
Bacillus thuringiensis toxin (GenBank accession AY038065). The /3-1,3-
galactosyltransferase is involved in binding Bt toxin at the gut surface, thus allowing it 
to be internalized. 

While /3-1,3-galactosyltransferases are common 1n cereals, galectins are rarely 
described in plants (Strasser et al., 2007; Qu et al., 2008), but are known to be 
involved in the animal immune response as pattern recognition receptors of pathogen­
associated molecular patterns (P AMPs) (Sato et al. , 2009). The galectin domain of 
Bradi3g14370 does not align strongly with animal galectins, the closest match being 
with galectin-8 of Condylura cristata CE-value 0.023, 33% protein sequence identity). 

Dunaeva and Adamska (2001) described a putative /3-1,3-galactosyltransferase 19 gene 
in Arabidopsis, Lsr5, the protein of which also contains the galectin motif and aligns 
"'rith the protein encoded by Bradi3g14370.1 (Figure 4.16, GenBank protein accession 
BAA97209.1, UniProt Q9LV16, E-value o.o, .57% protein sequence identity). Both 
proteins are predicted to be localised to Golgi bodies, which are involved in preparing 
compounds for secretion. Lsr5 was induced by cold stress, wounding, light and 
desiccation stress. It has been shown that necrotrophic pathogens can exploit the plant 
immune response to biotrophic pathogens (Mengiste, 2D12). The interplay between 
abiotic stress tolerance and resistance to necrotrophic pathogens appears to vary. For 
example, in Arabidopsis BOS1 increased resistance to necrotrophic Alternaria 
brassicola and was also required for tolerance to water deficit, salinity and oxidative 
stress (Mengiste et al. , 2003), whereas an exla2 mutant 'with increased resistance to 
this pathogen "'ras more sensitive to salt and cold stress (Abuqamar et al. , 2013). 
Further "'rork may sho"'r that this B. distachyon gene is involved in both biotic and 
abiotic stress tolerance. 
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Figure 4.16 Protein BLAST alignment between Bradi3g14370. 1 and Arabidopsis Lsr5 
(gi j8809658jdbjiBAA97209.1) (NCBI , 2 August 2013). 

4.4.2.1.2 Additional lines of event 5088 were less responsive than 5088-4 

Two additional lines, 5088-2 and 5088-5, were included in the confirmation 
experiment in order to test the validity of T-DNA insertion event 5088 and exclude the 
possibility that increased resistance seen "'rith line 5088-4 was the result of an 
unintended effect of the transformation process . Although root length and leaf number 
ratios for these tv\ o lines "'ere higher than those of the reference line, the differences 
'"' ere not significant. Further v ork is therefore needed to ascertain , hether gene 
Bradi3914370.1 is in, oh ed in B. distachyon resistance to R. solani. 

There \\ as a significant decrease in root growth in control treatments for lines 5088-2 
and 5088-4 producing 20% and 30% less root length in the confirmation experiment 
than Bd 21-3 re pectiYely. Like,"ri e in the screening experiment control treatment 
5088-4 had 26% les root length than the reference line. Thi decrease in endogenous 
root gro\\-th combined \\ith improYed growth in R. solani treatments is reminiscent of 
a trade-off ben\~een plant fitne and di ease re i ta.nee di cus ed briefl · in §3-4.3. 

172 



Chapter 4: Screening T-DNA lines of B. distachyon for resistance to R. solani AG8 

Disruption of an orthologous GT31 gene (protein E-value o.o) in Arabidopsis did not 
result in a noticeably altered endogenous phenotype (Strasser et al., 2007) and indeed, 
this reduction in endogenous root growth may well be due to average seed masses of 
5088-2 and 5088-4 being over 20% lower than Bd 21-3. 

Some of the variation seen between the three lines of event 5088 may be due to 
variation in seed quality. Line 5088-4 had the greatest quantity and best quality · of 
increased seed, with an average seed mass of 3.4 mg. Line 5088-2 had the second best 
seed quality and quantity followed by 5088-5, with average seed masses of 3.4 mg and 
-4.3 mg, respectively. It may be that somaclonal variation during tissue culture has led 
to differences in both seed quality and resistance to R. solani in the three lines of event 
5088 (Barrell and Conner, 2011). Further work is needed to confirm the increased 
resistance phenotype observed for line 5088-4 and. the reason behind its difference 
from the lines 5088-2 and 5088-5. This can be achieved through screening additional 
T-DNA lines with insertions in gene Bradi3g14370.1 or through complementation of 
line 5088 with the wild type gene (Chochois et al., 2012). 

4.4.2.2 .Further observations on variation in T-DNA mutant resistance and growth 

Overall there was little variation seen between most lines in the confirmation 
experiment for resistance to R. solani AG8. Line 3794-5 wa~ more resistant to the 
fungus than the reference line in the screening experiment, but in the confirmation 
experiment a line carrying the same T-DNA insertion event, 3794-2, did not maintain 
the same level of resistance. This may be due to differences in growth conditions, 
namely the different soil mix, or differences between the two lines. 

Event 9212 appeared to have greater endogenous root vigour than the reference line. 
Root length of line 9212-15 in the control treatment was 19% greater than the reference 
line in the confirmation experiment. This significant trend was first observed in the 
third screening experiment, in which line 9212-15 had 37% greater root length than 
Bd 21-3 and may be explained partially by a 6 % greater average seed mass. The T-DNA 
insertion event 9212 is located in the exon of Bradi1g62970 , a gene encoding a protein 
with a RING-finger domain (Figure 4.14). Disruption of this gene is not expected to 
increase root growth as, for example, in rice a weak orthologue E3 ubiquitin-protein 
ligase CE-value 3e-17) is required for maintenance of the root meristem and normal 
root growth (Koiwai et al. , 2007). Another weak orthologue RING-H2 protein (E-va1ue 
4e-17) in capsicum is involved in salicylic acid-mediated defence against biotrophic 

. and hemibiotrophic oomycete and bacterial pathogens (Lee et al. , 2011). Disruption of 
Bradi1g62970 did not have a measurable effect on resistance to necrotrophic R. solani. 
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Bradilg62970 0.1 kb 

T-DNA, pJJ2LBA 

Figure 4.14 Location of the T-DNA insertion event 9212 in the exon of gene 
Bradi1 g62970. 

4.4.3 Phenotypes previous_ly associated with resistance 

In experiments with B. distachyon natural accessions described 1n Chapter 3, 

resistance to R. solani was linked ·with variation in nodal root emergence and 

endogenous seedling vigour. 

4.4.3.1 · Nodal root emergence 

An increase in emergence of coleoptile nodal roots 1n R. solani treatment was 

consistent across the confirmation experiments for natural accessions and T-DNA 

lines. Emergence of coleoptile nodal roots may be the result of lateral root initiation, 

mediated by auxin signalling, in response to primary root truncation (Pacheco­

Villalobos et al., 2013). 

The increase 1n leaf nodal root emergence in R. solani treatment reflects the 

observations of Schroeder and Paulitz (2008) in barley, in which crown roots were 

formed under greater R. solani AG8 disease severity. The apparent relationship 

between leaf nodal root emergence and resistance observed in the natural accession 

confirmation experiment was not seen in the T-DNA data. Genes targeted b T-D A · 

insertions in this screen are not known to be in olved in leaf nodal root initiation, so 

this trait would not be expected to vary between these lines or in response to R. solani. 

4.4.3.2 The effect of endogenous vigour on disease resistance 

A relationship very similar to that seen in the natural accession screening activity 

(§3.3.1.3) ·was found berneen average seed mass and phenotype measurements for the 

first T-D A screening experiment (§4.3.3). Greater seed mass correlated significant! 

v,ith increased total root length, leaf number and leaf lengths in control and inoculated 

treatment , with the exception of total root length and leaf number in the R . solani 

treatment. 

The negatiYe correlation een in the natural acces ion screen between endogenous 

eedling ,igour and re i tance ranking based on R. solani/ control root length ratio 
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(Figure 3.9) was only repeated with root length, but not seed mass, in the T-DNA 
confirmation experiment. 

The negative trend between endogenous plant vigour and resistance to R. solani may 
become significant with more replication or testing of further T-DNA events; however 
it is also possible, as seen-in the natural accession confirmation activity (§3.4.3), that 
vigour is not the only determinant of resistance. 

4.4.4 Variation in resistance to R. so/ani in B. distachyon T-DNA mutants 
As discussed in §3.4.4, there are difficulties with putting a numerical value on the 
difference in resistance between lines. Back-transformation of predicted square-root 
transformed root lengths allows comparison with resistance measured in other studies 
and genotypes. Back-transformed total root lengths of the reference line Bd 2-1-3 and 
5088-4 in the confirmation experiment gives untransformed R. solani/ control ratios 
(RLRA) of 0.30 and 0.50, respectively, representing a 20% increase in RLRA for 
5088-4. The same calculations for the first screening experiment give ratios for 
Bd 21-3 and 5088-4 of 0.28 and 0.44, respectively, or a 17% increase in RLRA for the 
transformed line. 

Less variation in resistance to R. solani was detected between lines in the T-DNA 
screen than in the natural accession. screen. Eight of 25 natural accessions had 
significantly greater root length ratios than Bd 21-3 in the Chapter 3 screening activity, 
compared with four of 25 lines in the T-DNA screening experiments. The most 
resistant line in the natural accession screen had 33 - 38% greater RLRA than the least 
resistant line, while the T-DNA mutant line 5088-4 had 17 - 20% greater RLRA than 
the reference line Bd 21-3. A greater variation in resistance across the natural 
accessions is not surprising as R~ solani is necrotrophic pathogen with a broad host 
range and thus, resistance is expected to require multiple quantitative genes 
(Mengiste, 2012). 
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4.5 Conclusions 

Less variation in resistance to R. solani AG8 was found in B. distachyon T-DNA lines 

than in the natural accessions, as would be expected in quantitative resistance to a 

necrotrophic pathogen. 

Line 5088-4, with a T-DNA insertion in gene Bradi3g14370, displayed a consistent 

quantitative level of increased resistance to R. solani. The failure of two additional 

lines of T-DNA insertion event 5088 to replicate this increased resistance puts the 

result into question. Resistance to R. solani could not be separated from its general 

negative correlation with endogenous seedling vigour for event 5088, with two lines 

having reduced root growth in control treatment. 

Repeatable increase in endogenous vigour was measured for two lines of event 2426 

and line 9212-15, with tagged genes Bradi3g29780 and Bradi1g62970, respectively. 

These lines had slightly increased endogenous root growth over the reference line and 

other T-DNA mutant lines, with no difference in resistance to R. solani. Differences in 

early root growth may be partly due to differences in seed mass. 

Further work is needed to validate these findings. These results indicate that, at this 

stage, the T-DNA collection is a less useful resource than the natural accession 

collection for discovering genes involved in quantitative disease resistance to R. solani 

and other root diseases of wheat. 
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Chapter 5 

General d.iscussion 

• Summary 
This thesis describes the first investigation into disease resistance of Brachypodium 
distachyon to the wheat root rot pathogen Rhizoctonia solani AG8. Both wheat and 
B. distachyon were affected to a similar degree by the pathogen, with reduced root 
length, leaf number and lengths of the first and second leaves. Screening of a diverse 
collection of B. distachyon natural accessions revealed variation in resistance to 
R. solani AG8, providing a basis for future research to discover resistance markers. 
Screening of a collection of T-DNA insertional mutants revealed a gene that may be 
involved in quantitative resistance to the disease. 

This chapter summarises the major findings of the thesis and discusses applications to 
related research questions, the use of B. distachyon as a research model for root 
diseases and future directions in development of R. solani resistant wheat. 



The root pathogen Rhizoctonia solani AG8 is an important disease of wheat in 

Australia and around the world. The impact of R. solani AG8 is often felt most by 

farmers cultivating marginal land, where continuous wheat rotations are common. 

With no varieties of Rhizoctonia-resistant wheat available, farmers must use 

management techniques such as tilling to reduce disease levels, thereby increasing the 

risk of soil erosion (Paulitz et al., 2002). 

There is currently little opportunity to breed resistance into commercial wheat 

cultivars due to limited variation in resistance in wheat germplasm. A mutant line of 

wheat with increased tolerance to R. solani AG8 is being developed (Okubara et al., 

2009) and greater levels of resistance to R. solani found in a wild grass species were 

able to be introgress·ed into wheat (Okubara and Jones, 2011), however resistance 

mechanisms in wheat are still largely unlmown. 

The study of resistance to root diseases in wheat is firstly hampered by a large 

hexaploid genome, currently sequenced but not annotated, which makes finding genes 

or markers for quantitative traits difficult. Secondly, the large vigorous root system of 

wheat quickly reaches the base of pots, restricting the ability to study root traits to the 

very early stages of growth (Watt et al., 2009). 

To this end, the aim of this thesis was to develop Brachypodium distachyon as a model 

for the wheat-R. solani AG8 pathosystem. Brachypodium distachyon is a close relative 

of wheat developed as a model cereal since the tum of the century and has alread 

pro en useful in the study of foliar fungal diseases and root architecture. 



Chapter 5: General discussion 

5.1 Summary of main results 
The development of a robust screening method for B. distachyon response to R. solani 
AG8 was a key component of this project. Researchers have previously written about 
the difficulty of achieving consistent inoculum . pathogenicity, as well as useful 
phenotypic indicators of disease (Smith et al., 2003a; Okubara and Jones, 2011). 

Consistent disease levels were maintained through the use of a millet inoculum based 
on the method of McDonald and Rovira (1985), incorporated into the soil on the day of 
sowing. Rhizoctonia re-isolation from pots using toothpick baits, based on the method 
of Paulitz and Schroeder (2005), was a useful check of inoculation distribution. 
Consistent germination and emergence of B. distachyon was achieved through 
dehusking seeds prior to surface disinfection. Roots of plants grown to the four-leaf 
stage in small volume containers under these conditions were easily separated and 
scanned for root length measurements. 

Maintenance of total root length 1n the inoculated treatment was the primary 
phenotypic measure of resistance to Rhizoctonia root rot. Shoot measurements 
including leaf number at harvest, lengths of first and second leaves and leaf area were 
also affected by the disease. The use of qPCR as a measure of root colonisatio·n was 
tested without success. 

A significant impact of R. solani was seen on root growth from 10 days after planting 
and on leaf number and leaf area from 18 DAP. The sympfoms and severity of R. solani 
disease were very similar in B. distachyon and wheat, with rotting of the root cortex 
leading to truncated root 'spear tips'. 

Total root length was found to be the most sensitive single measure of the disease 
phenotype. Root fresh weight measurements correlated well with root length, but 
could only pick up some of the differences in resistance found using root l~ngth. The 
lack of distinct root architecture differences between more and less resistant lines, 
apart from leaf nodal root emergence, may warrant in future the use of quicker fresh 
weight measuren1ents in initial R. solani disease screens, followed by confirmation 
with total root length measurements for lines of most interest. An experienced 
operator can separate and scan a 26-day-old uninfested root system of B. distachyon 
on average every twelve minutes. Measuring root fresh weight and counting nodal 
roots could considerably reduce the time taken to conduct initial screening 
experiments. Scanning root length is recommended to confirm variation in resistance 
between lines. 
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Variation in resistance to R. solani AG8 was found aeross 26 B. distachyon natural 

accessions that were chosen on genotypic diversity and included in a replicated screen. 

After 26 days growth in infested soil the most resistant line, Koz-3, maintained a 33% 

greater total root length ratio than the least resistant line, BdTR 13a. Across the diverse 

natural accessions screened in this project, endogenous seedling root vigour and, to a 

lesser extent, seed mass were negatively correlated with resistance to R. solani, but this 

was not the only determinant of resistance. 

Variation in resistance to R. solani AG8 was also seen in experiments with T-DNA 

insertion lines, however this was generally not able to be confirmed in subsequent 

experiments. Line 5088-4, an insertion in gene Bradi3g14370, was consistently found 

to be more resistant to R. solani than the reference line Bd 21-3, maintaining a 20% 

greater total root length ratio. This result requires further validation, as two additional 

lines of the same T-DNA insertion event did not display the same level of increased 

resistance. 

An increase in coleoptile nodal root appearance in response to R. solani was seen in 

both the natural accession and T-DNA screen. In the natural accession screen, lines 

that produced leaf nodal roots in response to R. solani inoculation were more resistant 

than those that produced early endogenous leaf nodal roots. The lack of variation in 

leaf nodal root emergence between T-DNA lines derived from the same Bd 21-3 

background is consistent with this being a genetically controlled trait, with the tagged 

genes not affecting leaf nodal root emergence. 

Comparing results of the natural accession and T-DNA resistance screens, greater 

variation in resis.tance was found in the more genetically diverse natural accessions. 

Plant resistance to broad host-range nectrotrophic pathogens such as R. solani is 

generally quantitative, requiring multiple genes for effective levels of resistance 

(Mengiste, 2012), so a greater range of resistance was expected across the natural 

accessions than the mutant lines. 

These results demonstrate that B. distachyon can be a useful model for the study of 

wheat root disease. The variation in resistance to R. solani AG8 found in the 

B. distachyon germplasm provides a basis for further work to determine genes and 

mechanisms involved in reducing the severity of this disease. Hopefully this knowledge 

'"rill eventually be applied to develop wheat varieties \i\rith greater resistance to 

Rhizoctonia root rot. 
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5.2 Genetic variation in resistance to R. solani AGS 
Experiments for this thesis demonstrated genetic variation in B. distachyon resistance 
to R. solani AGB. Phenotypic observations provide clues to genes that may be involved 
in resistance mechanisms. 

Nodal root emergence and hormone signalling 

The emergence of nodal roots in response to R. solani infestation, seen here in the 
B. distachyon natural accessions and earlier noted by Schroeder and Paulitz (2008) in 
barley, points to an auxin signalling response mediated by ethylene and/ or cytokinin 
(Kitomi et al., 2011; Pacheco-Villalobos et al., 2013). It is speculated, e.g. Kazan and 
Manners (2009), that altered auxin signalling patterns may direct external and 
internal root architectural changes that affect plant-pathogen dynamics. Comparison 
of auxin signalling between more and less resistant B. distachyon . lines may reveal 
interesting differences in expression patterns to explain the potential link between 
nodal root emergence and disease resistance. 

As a cautionary note, an intriguing recent result from Foley et al. (2013) suggests that 
the defen,ce-related hormones auxin, ethylene, jasmonic acid, abscisic acid and salicylic 
acid are not involved in Arabidopsis host resistance to R. solani AGB, even though the 
group had previously shown that ethylene signalling was involved in the defence 
response in soybean and barref medic (Anderson et al., 2010). Instead, oxidative 
stress, cell wall associated protein, transcription factor and heat shock protein gene 
families were most affected by R. solani pathogenesis in· Arabidopsis. In light of the 
observations of Pacheco-Villalobos et al. (2013), that the modulation of auxin by 
ethylene differs between Arabidopsis and B. distachyon, it would be worthwhile to 
investigate expression changes seen in the Arabidopsis-R. solani pathosystem in 
B. distachyon. 

Seed size and endogenous root vigour 

Seed n1ass is controlled by a combination of genetic, environmental and seed position 
factors (Martinez-Andujar et al., 2012). In cereals seed size, embryo size and seedling 
vigour are generally correlated (Richards and Lukacs, 2002). A significant increase in 
endogenous root vigour in lines of two B. distachyon T-DNA insertion events appeared 
to be partially related to increased seed mass. 

Considerable variation was seen in the natural accession collection for seed size and 
root vigour. Across all lines these traits were negatively correlated with disease 
resistance, a trend also reported by Okubara and Jones (2011). 
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During the course of experiments attempts were made to remove the effect of 

endogenous vigour from resistance rankings by using different analysis strategies and 

by including Seed size and/ or Days to en1ergence as factors. These factors are both 

correlated with endogenous vigour (Maguire, 1962; Richards and Lukacs, 2002). By 

using a ratio of inoculated to control root length, the possibility always remains that a 

correlation between endogenous vigour and R. solani disease resistance is an artefact 

of the analysis and not biologically relevant. This is a limitation of the current and 

p~evious studies, which could be further explored. Perhaps shoot ratios or seed set 

would be a better indicator of overall plant fitness. Scoring root disease severity is 

problematic, especially with the single primary root of B. distachyon. Quantification of 

R. solani DNA present in roots may be a better way to compare disease severity 

between lines, especially this measurement is not affected by seedling vigour. 

In any case, reduced early seedling VIgour was not the exclusive determinant of 

R. solani disease resistance in the B. distachyon collections, as demonstrated in the 

natural accession confirmation assay. A wheat mutant with increased tolerance to 

R. solani developed by Okubara et al. (2009) also bucked the trend, having greater 

inherent vigour. It is important that disease resistance can be separated from seedling 

vigour, as increased early vigour is a key strategy in breeding wheat for dry 

environments (Richards et al., 2010). 

Based on observations in this thesis, the B. distachyon germplasm collection 1nay be a 

useful resource for further detailed work into the relationship between seed size, 

seedling vigour and R. solani disease resistance. 

A candidate T-DNA. tagged gene 

Screening activities for the T-DNA collection were possibly confounded by an 

inconsistent approach between experiments, such as harvesting at different days after 

planting and using an alternative 1nethod to calculate resistance in the second and 

third screening experin1ents. Thus some lines may have failed to be correctly 

identified as significantly different in resistance to R. solani compared vvith the control 

line Bd 21-3. 

The most promising line identified in the T-DNA screen for R. solani resistance, had 

an insertion in gene Bradi3g14370. This tagged gene, encoding a protein with 

JJ-1,3-galactos ltransferase and galactose-binding lectin (galectin) domains, has few 

described orthologues in plants (Dunaeva and Ada1nska, 2001). Of particular interest 

is the galectin domain, rarel described in plant genes, which is in olved in anin1al 
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innate immunity (Sato et al., 2009). The gene sequence aligns with wheat expressed 

sequence tags (ESTs), meaning that if the increased resistance trait is confirmed in 

B. distachyon, there is a good chance that an orthologous gene is present and . 

expressed, and may thus be manipulated, in wheat. Two additional mutants of this 

insertion event were not more resistant to R. solani than the reference line. Further 

work that would be required to confirm Bradi3g14370 as a quantitative defence gene 

for R. solani is described in the following section. 

Further genes for investigation 

Only a small number of candidate genes were able to be included i? the T-DNA screen. 

Literature and database searches reveal many more B. distachyon genes that could be 

targeted in future investigations into quantitative resistance to R. solani. A selection of 

these genes is listed in Table 5.1. Genes for quantitative resistance cover a broad range 

of functions, including plant architecture, effector perception for basal disease 

resistance and production of detoxification enzymes or phytoalexins (Poland et al., 

2009). Genes that have not previously been associated with defence responses are also 

still being discovered·as mediators of quantitative resistance. 



Table 5.1 Candidate genes for potential future investigations into the Brachypodium distachyon-Rhizoctonia solani AG8 pathosystem . 
UniProtKB/SwissProt descriptions were retrieved from http://www.uniprot.org on 27 Feb 2013. 

BLAST gene prediction for 
B. distachyon 

snakin-1-like 

zeamatin-like 

UDP-glycosyltransferase 
85A2-like 

basic endochitinase C-like 

basic endochitinase A-like 

protein synthesis inhibitor I­
like 

germin-like protein 8-4-like 

germin-like protein 8-9-like 

chitinase 2-like 

polygalacturonase inhibitor­
like 

B. distachyon 
g~nes 

Bradi1 g07890 
Bradi1 g07900 

Bradi1g13060 
Bradi1g13070a 

Bradi1g27270 
Bradi1 g27290 

Bradi1 g29880 

Wheat 
ESTs and 
SNPs?b 

No 
AD 

EST; AD 
EST 

AD 
No 

No 

Predicted gene function 

Involved in resistance to R. solani in potato (Almasia et al., 2008) 

UniProt: (Maize) Has antifungal activity. Inhibits Candida albicans and Trichoderma reesei; 
marginal inhibition observed against Alternaria solani and Neurospora crassa . 
Two of several orthologues of genes within a putative Rsn 1 locus, involved in rice sensitivity 
to R. solani. (Costanzo et al., 2011) 

UniProt: (Rye) Defence against chitin containing fungal pathogens. Binds the hyphal tips of 
fungi and degrades nascent chitin . 

Bradi1g29887 No UniProt: (Rye) Defence against chitin containing fungal pathogens. Binds the hyphal tips , 
Bradi2g47210 EST; AD lateral walls and septa of fungi and degrades mature chitin. 

Bradi1 g63700 

Bradi2g21010 

Bradi3g15190 
Bradi3g15200 
Bradi3g15220 
Bradi3g15230 
Bradi3g15240 
Bradi3g 17330 

Bradi2g26000 

Bradi2g35490a 

No 

EST; AD ,B 

AD 
No 
EST 
No 
EST 
AD 

No 

B 

UniProt: (Barley) Inhibits the elongation phase of protein synthesis. Inactivates fungal 
ribosomes even more effectively than mammalian ribosomes and is thought to function as a 
constitutive antifungal agent in plants. 

UniProt: (Rice) Germin-like protein 8-4 and 8-9 play a role in broad-spectrum disease 
resistance . 

UniProt: (Rice) Hydrolyzes chitin and plays a role in defense against fungal pathogens 
containing chitin . Its overexpression confers enhanced resistance to sheath blight pathogen 
(R.solam) [Sequence caution] . 

UniProt: (Grape) Inhibitor of fungal polygalacturonase. It is an important factor for plant 
resistance to phytopathogenic fungi . 



Table 5.1 continued Candidate genes for potential future investigations into the Brachypodium distachyon-Rhizoctonia so/ani AG8 pathosystem . 

BLAST gene prediction for 
B. distachyon 

glucan endo-1 ,3-beta­
glucosidase GIi -iike 

thaumatin-like pathogenesis­
related protein 3-like 

ethylene-responsive 
transcription factor ERF098-
like 

B. distachyon 
genes 

Bradi2g60490a 

Bradi3g07960 

Bradi3g12565 

Wheat 
ESTs and 
SNPs?b 

EST; AD,B 

No 

No 

Predicted gene function 

UniProt: (Barley) May provide a degree of protection against microbial invasion of 
germinated barley grain through its ability to degrade fungal cell wall polysaccharides. 

UniProt: (Oat) Associated with resistance against stem rust fungi . 

UniProt: (Arabidopsis) Probably acts as a transcriptional activator. Binds to the GCC-box 
pathogenesis-related promoter element. May be involved in the regulation of gene 

· expression by stress factors and by components of stress signal transduction pathways 
~ 4-3-3-like protein GF14-E- Bradi3946960a EST' AD UniProt: (Rice) Induction by wounding, drought and salt stresses, benzothiadiazole (BTH) , 
hke ' ethephon, methyl jasmonate (MeJa) [GF14-E only], hydrogen peroxide, abscisic acid (ABA) 
14-3-3-like protein GF14-B- . a . and incompatible and compatible races of rice blast fungus (M. grisea) and rice bacterial like Brad15g12510 EST, AD blight (X. oryzae) . 

barwin-like (chitinase activity) Bradi4g14920 

uncharacterised Bradi1g63910.1 

uncharacterised Bradi2g02430 

AD 

EST; AD,B 

EST; AD 

Sequence similarity to T. aestivum wPR4a gene (Gen Bank: AJ006098 .1) encoding a 
pathogenesis-related protein. 

WRKY transcription factors are _involved in plant response to biotic and abiotic stresses 
(Pandey and Somssich, 2009) . 

Sequence similarity to 0. sativa OsWAK1 (GenBank: AK065470.1 ). OsWAK1 is involved in 
resistance to rice blast (Li et al., 2009) . 

RbohD (GenBank: ·aradi4g17020. 1a EST; AD ,B , 
AF055357 .1) orthologue Best orthologues of Arabidopsis NADPH oxidase genes atrbohf and atrbohd, a double 

mutant of which is less resistant to R. solani AG8 (Foley et al. , 2013). Atrboh F (GenBank: Bradi2g49040. 1a AD, B 
AB008111 .1) orthologue 

a tagged in JJ T-DNA collection (Feb 2013) . 
bESTs, Triticum aestivum 'Expressed Sequence Tags' (ESTs) are available from dbEST (www.ncbi .nlm .nih .gov/dbEST/) ; SNP: AD, SNPs that differ 
between the A and D genomes (where the B genome is unknown) ; SNP: B, SNPs that are the same between the A and D genomes, but differ in B. 
(www.gramene.org/Brachypodium_distachyon/lnfo/Annotation/) 
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5.3 Applications to related research questions 

Resistance versus tolerance 

The question remains whether the differences in root length ratio found between 

natural accessions and in a T-DNA line are due to 'resistance' or 'tolerance', as 

discussed in §1.3.4. By combining phenotypic resistance measure~ents with qPCR 

data on root colonisation, the plant-pathogen interaction could be classified as 

resistant, moderately resistant, susceptible or tolerant, as demonstrated by Dan et al. 

(2001). During this project quantification of the relative colonisation of root tissue in 

the most and least susceptible natural accessions was attempted using qPCR of fungal 

and plant DNA. Although unsuccessful, some further adjustments to the qPCR 

protocol and the use of appropriate B. distachyon primers may allow the host­

pathogen interaction in this system to be better understood. 

Which genes are involved in B. distachyon resistance to R. solani AGB? 

Quantitative PCR is more often used to measure gene expression. Transcriptomic 

techniques may reveal differences in the level or timing of gene expression between the 

most and least resistant lines (Schenk et al., 2012). In T-DNA lines, changes in the 

expression level of the .targeted gene would show that the targeted gene had been 

disrupted, while expression changes of other genes could reveal downstream signalling 

effects. As discussed in the previous section, auxin signalling could be investigated as a 

link between altered nodal root appearance and disease resistance. 

Chochois et al. (2012) discuss the elucidation of genes responsible for differences in 

traits of interest in a natural accession screen. To find a B. distachyon gene via the 

sequencing/EcoTILLING pathway (Chochois et al., 2012, Figure 6B) at least 200 to 

300 lines, preferably a couple of thousand lines, need to be phenotyped and sequenced 

(Vincent Chochois, pers. com1n.). The second option of finding quantitative trait loci 

(QTL) by crossing more and less resistant lines is discussed in the following section. 

Adult plant resistance 

Plant resistance to diseases can vary depending on the stage of developn1ent. For 

example, resistance to leaf rust 1nediated by Lr34 does not normally occur in seedlings, 

but can be induced by cold treatn1ent (Risk et al. , 2012). Onset of resistance to 

R. solani during the vegetative growth phase has been noted in common bean and 

cotton (Develey-Riviere and Galiana, 2007). In R. solani AG8 bare patch disease of 

wheat, patches often have distinct boundaries, suggesting that wheat may also become 

resistant to the fungus at a defined stage of develop1nent. 
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The short stature of B. distachyon allows plants to easily be grown to later stages of 
development in pot assays than crop cereals (Watt et al., 2009). Thus, onset of cereal 
adult plant resistance to R. solani AG8, if found to be present, could be studied using 
the B. distachyon - R. solani pathosystem. 

Rhizoctonia decline and plant-microbe interactions 

A well-established phenomenon in R. solani AG8 research is 'Rhizoctonia decline' in 
wheat, in which successive rotations of wheat favour disease-suppressive · micro­
organisms that reduce the development of root rot (Barnett et al.., 2006). Current rapid 
developments in the ability to sequence the soil microbiome provide an opportunity to 
revisit 'Rhizoctonia decline' using lines of B. distachyon, to study the interaction 
between plants, R. solani and beneficial soil micro-organisms (Berendsen et al., 2012). 

By comparing 16S ribosomal DNA in R. solani conducive and suppressive soils, 
Mendes et al. (2011) identified the Pseudomonadaceae as key members of the 
consortia of R. solani-suppressive bacteria, and showed that protection was linked 
with production of a putative chlorinated lipopeptide ·by these bacteria. Mavrodi et al. 
(2012) indentified strains of Pseudomonas spp. that suppressed Rhizoctonia r~ot rot 
and Pythium root rot in pot experiments with wheat, but could not attribute disease 
suppression to a partjcular bacterial metabolite. Plants also have some control over the 
activity of resident rhizosphere bacteria, with J ousset et al. (2011) showing that plants 
infected vtith the necrotrophic root pathogen Pythium ultimum could systemically 
increase the production of a Pythium spp. inhibiting compound by Pseudomonas 
fiuorescens in non-infected roots. 

The more and less R. solani resistant lines of B. distachyon could be investigated for 
ariation in root exudate production. If ariation is present, the effect of different root 

exudate compounds on numbers and activity of rhizosphere bacteria may reveal 
biocontrol mechanisms for disease suppression. 

Root exudation and rhizosphere interactions 

The abundant -ello , acuolar inclusions in root and root border cells of B. distachyon 
(Figure 2.21) ma contain phenolic compounds or other metabolites that could be 
exuded in defence against soil pathogens (Jousset et al. , 2011) or in allelopathy (Wu et 
al. 2002). Border cells secrete antimicrobial compounds, proteins and extracellular 
D A into 'slime surrounding the root cap (Driouich et al. , 2013). Although no 
difference in abundance of these inclusions v\ as observed between infected and 
uninfected roots their nature could be in estigated further to see if the) are in oh ed 
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in the defence response of B. distachyon to R. solani AG8 or in other rhizosphere 

interactions. 

5.4 Future directions 

Brachypodium distachyon as a model plant for non-specific quantitative resistance to 

multiple pathogens 

The variation in resistance to R. solani AG8 seen in the B. distachyon collection is not 

necessarily specific to this fungus. In wheat a single locus confers quantitative 

resistance to the foliar fungal pathogens leaf rust, stripe rust, stem rust, powdery 

mildew and spot blotch in wheat, barley leaf rust and barley powdery mildew, as well 

as Barley yellow dwarf virus (Risk et al., 2013). Manosalva et al. (2009) found that 

germin-like proteins were involved in quantitative resistance to both Magnaporthe 

oryzae and R. solani in rice. Again, quantitative resistance suggestive of a basal 

defence response in tobacco was attributed to a calmodulin gene that helped protect 

against necrotrophic pathogens of three different kingdoms: Ralstonia solanacearum, 

R. solani and Pythium aphanidermatum (Takabatake et al., 2007). Thus, the lines of 

B. distachyon most and least resistant to R. solani AG8 may upon further investigation 

be found to also have differing levels of resistance to other pathogens. Although they 

offer only intermediate levels of disease resistance, breeders are becoming more 

interested in quantitative resistance genes as they provide a more durable resistance 

trait (Boyd et al., 2013). 

Discovery of QTL markers in B. distachyon natural accessions 

A first step in learning about inheritance of resistance and which genes are behind the 

variation in resistance seen in the natural accession collection is to cross the most and 

least resistant lines, Koz-3 and BdTR 13a. Barbieri et al. (2012) describe the 

elucidation of quantitative trait loci (QTL) using two B. distachyon natural accessions 

with variable levels of resistance to Puccinia brachypodii. Transgressive segregation in 

a cross between Bd 1-1 and Bd 3-1 resulted in F2 and F3 offspring with a broader range 

of resistance than the parents. Transgressive segregants have previously been found by 

Zhao et al. (2005) for R. solani resistance in crosses of susceptible soybean lines. Thus, 

it is possible that a larger range of resistance to R. solani could be seen in the offspring 

of a cross between Koz-3 and BdTR 13a. Barbieri et al. (2012) developed and used 

AFLP and SNP 1narkers, along with SSR 1narkers developed by Vogel et al. (2009), to 

create a linkage 1nap for resistance in seedlings and adults of the F2 and F3 population, 

finding three QTL for false brome rust resistance that together explained 39-54% of 

variation in resistance in seedlings and 22% in adults. Identifying intermediate 
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resistance phenotypes for R. solani with the root length assay would be more difficult 
than finding intermediate resistance phenotypes for rust resistance, as endogenous 
root growth could also vary in the F2 and F3 population, whereas rust severity scores 
are independent of control scores. 

Confirmation of tagged genes in B. distachyon T-DNA mutant lines 
To confirm that a targeted T-DNA insertion gene is responsible for a phenotype, an 
independent mutant of the sarrie gene should be shown to produce the same phenotype 
or complementation with the wild-type gene demonstrated to restore . the wild-type 
phenotype _(Krysan et al., 1999). A similar gene silencing approach can also be used to . 
verify genes that are found through natural accession screening. If an orthologue of the 
known B. distachyon gene is present in wheat, then reverse genetics techniques can be 
employed to see if it has the same function in both species (Chochois et al., 2012; 
Fitzgerald et al., 2012b). 

It is important that gene expression of T-DNA tagged genes is measured, as gene 
expression is not necessarily completely disrupted by the insert. Expression may be 
down- or even up-regulated depending on insertion type and location (Bragg et al., 
2012). For example, Pacheco-Villalobos et al. (2013) measured mRNA levels of gene 
BdTAR2L in roots of two independent T-DNA tagged liries. Expression in line 
Bdtar2lhypo was 5% of wild type, while expression in line Bdtar2lqnullwas 1-2% of wild 
type. The difference in expression corresponded with differences in severity of 
phenotypes. 

Comparing R. solani AG8 mode of infection in B. distachyon and wheat 
Further histological observations should be made to demonstrate that the R. solani 
AG8 infection process in B. distachyon is comparable with that in wheat, and to 
compare infection between the more and less resistant lines of B. distachyon identified 
in this thesis. Microscopic comparisons between lines can help to deduce and 
substantiate putati e disease resistance mechanisms, e.g. Nikraftar et al. (2013). 

Developing wheat with resistance to R. solaniAG8 
The ultimate aim of this project was to work towards discovering genetic resistance 
that can be used to de elop R. solani AG8 resistance in v\ heat. Chochois et al. (2012) 
outline the steps needed to mo e from observation of a phenotypic trait of interest in 
B. distachyon natural accessions or T-DNA lines to discovery of a gene of interest in 
wheat. Validation is then required to ensure this gene is also associated with an 
increased resistance phenotype in heat. Wasson et al. (2012) describe the subsequent 
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inclusion of a desirable phenotype in breeding programmes to develop a commercial 

wheat cultivar with the trait of interest. 

At present, the reality is that quantitative traits are unlikely to be adopted into 

commercial breeding programs, especially if the trait is not already in an elite 

background. Breeders prefer to have genetic traits associated with single-nucleotide 

polymorphism (SNP) markers at less than one centiMorgan distance (Steve Jefferies, 

pers. comm., 21 May 2013). A strong selection marker is particularly i1nportant for root 

disease resistance traits, as the phenotype is difficult to select in the field and may not 

occur every year. Discovery of SNPs in wheat has advanced along with the bread wheat 

genome sequencing project, with good alignment of wheat SNPs to the B. distachyon 

genome (Allen et al., 2011; Brenchley et al., 2012). This will help with finding n1arkers 

in wheat for genes characterised in B. distachyon. 

Building on cell wall research in plant-pathogen interactions 

Research shows that cell wall associated genes are important 1n different plant­

pathogen interactions (Foley et al., 2013) and that altering the structure of cell wall 

polysaccharides can affect resistance to fungal pathogens (Pogorelko et al., 2013). This 

ties in well with research into the use of B. distachyon as a model for biofuel crops, 

aimed at in1proving the efficiency of energy production from plant bio1nass. For 

example, Bouvier d Yvoire et al. (2013) found a B. distachyon gene that altered 

lignification to improve the saccharification process, while other studies have looked at 

the role of caffeic acid o-methyltransferase in lignification (Dalmais et al., 2013; Wu et 

al., 2013b). Do these genes affect the increased plant cell wall lignification response 

that occurs after inoculation with R. solani (Taheri and Tarighi, 2010) or the 

effectiveness of lignin-degrading laccases produced by R. solani AG8 (Bora et al., 

2005)? 
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5.5 Conclusion 

The aim of this thesis was to develop a method to screen the model grass B. distachyon 

for resistance to the wheat root rot pathogen R. solani AG8. A rigorous repeatable 

method was developed and used to screen a diverse population of B. distachyon 

natural accessions and T-DNA insertion mutant lines for resistance to the fungus. 

Variation in resistance to R. solani AG8 of the magnitude found in wild relatives and 

mutant lines of wheat was found in the B. distachyon natural accession and T-DNA 

collections. The level of resistance was higher across natural accessions than in the 

T-DNA lines, as -would be expected of a quantitative resistance trait. 

The variation in resistance to R. solani AG8 seen in the B. distachyon collections adds 

to previous studies showing variation in resistance to fungal diseases of the shoots and 

crown. This supports the continued use of B. distachyon as a model plant for cereal 

root diseases, with the aim of accelerating the development of disease resistant crops. 
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A.1 Media rec_ipes 

Potato dextrose agar (PDA) 

Potato dextrose agar 

Appendix A 

Difeo Laboratories, Sparks, US 
Milli-Q water make up to 

Quarter-strength Potato Dextrose Agar (¼ PDA) 

After Kirkegaard et al. (1996). 

Potato dextrose agar 
Agar-agar 

Difeo L9-boratories, Sparks, US 
Merck, Darmstadt, DE 

Milli-Q water make up to 

Merck, Darmstadt, DE 

Water agar 3% 

Agar-agar 
Milli-Q water . make up to 

Rhizoctonia-selective medium (KHF). 

After Ko and Hora (1971), modified after Gill et al. (2000). 

NaNO2 Ajax Chemicals·, Sydney, AU -

K2HPO4 Fronine Pty Ltd, Riverstone, AU 

MgSO4.3H2O Ajax Chemicals, Sydney, AU 
KCl BDH, Poole, GB 

FeSO4.7H2O Ajax Chemicals, Sydney, AU 
Agar-agar Merck, Darmstadt, DE 
Milli-Q water make up to 

Autoclave at 121 °C for 20 minutes. 

Cool to 50°C. Add gallic acid and antibiotics: 

gallic acid Sigma, St Louis, US 
Fongarid® Amgrow Garden King, Staplyton, AU 

(250 g/ kg furalaxyl) 

chloramphenicol Sigma, St Louis, US 
streptomycin sulfate Sigma, St Louis, US 

Potato dextrose broth 

Difeo™ Potato dextrose broth BD, Sparks, US 

Milli-Q water make up to 

39 g 
1 L 

10 g 
12 g 

1 L 

30 g · 
1 L 

200 mg 

1 g 

354 mg 

500 mg 

10 mg 

20 g 

1 L 

400 mg 

400 mg 

50 mg 

50 mg 

24 g 

1 L 
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Pythium semi-selective medium (VP3) 

From a Pythium Training Manual prepared by Rosemary Warren (2010), modified 

from the recipes of Ali-Shtayeh et al. (1986) and Pankhurst et al. (1995). 

1oox micronutrient stock solution: 

MgSO4.7H2O 
ZnCL 
CuSO4.5H2O 
MoO3 

M11Cl2.4H2O 
FeSO4 .7H2O 
Thiamine HCl 
CaCl2.2H2O 
Milli-Q water 

ChemSupply, Gillman, AU 
Ajax Chemicals, Sydney, AU 
BDH, Poole, GB 
BDH, Poole, GB 
BDH, Poole, GB · 
Ajax Chemicals, Sydney, AU 
Sigma, St Louis, US 
Ajax Chemicals, Auburn, AU 

make up to 
Autoclave at 121 °C for 20 minutes. Store at 4 °C. 

Media preparation: 

Sucrose 
BBL™ Corn meal agar 
Bacto TM agar 
Milli-Q water 

ChemSupply, Gillman, AU 
BD, Sparks, US 
BD, Sparks, US 

Autoclave at 121 °C for 20 minutes. 
make up to 

Cool to 50°C and add 10 

micronutrient solution and antibiotics. 

Antibiotics: 

Vanco1nycin HCl, (75 mg/mL 
stock in MQ-water) 

Sigma, St Louis, US (included here, 
but may be omitted as very 
expensive) 

Penicillin G sodiu1n salt, (50 
111gjlnL stock in MQ-water) 

Pimaricin, ~2.5% aqueous 
suspension 

Fluka/Sigma, St Louis, US 

Sigma, St Louis, US 

Pentachloronitrobenzene, 95% Sig,na-Aldrich, St Louis, US 
Rifampicin crystalline, (10 Sigma, St Louis, US 

mg/ mL stock in 111ethanol) 
Mix thoroughly and pour im1nediately. Store media at 4 °C. 

Water agar 0.1% for isolation of Pythium from soil 

Bacto™ agar 
Milli-Q water 

BD, Sparks, US 

Prepare in 100 1111 Schott bottles. 
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make up to 

500 111g 

so mg 
1 mg 
1 mg 

1.3 mg 
1 mg 

5 mg 
786 mg 
500 mL 

20 g 
17 g 
23 g 

980 mL 
mL sterile 

1 mL 

1 mL 

200 µL 

100 mg 
1 ITIL 

100 mg 
100 mL 



A.2 Root staining with toluidine blue 
After Watt et al. (2005). 

Preparation.oftoluidine blue solution 
Sodium benzoate Sigma-Aldrich, St Louis, US 
Benzoic acid Sigma, St Louis, US 
Toluidine blue Sigma, St Louis, US 

Appendix A 

Deionised water make up to 

290 mg 
250 mg 
100 mg 
200 mL 

Add sodium benzoate and benzoic acid to water in a Schott bottle. Place on a stirring 
plate and stir on medium speed until dissolved. This may take several hours. Add 
toluidine blue powder and mix until toluidine blue is evenly dispersed. 

Root staining 

Remove plants from ethanol (50% v/v), cut off roots and place in water. Briefly dry the 
root system on paper towel, then place into a container with 0.05% toluidine blue. 
Stain for 3 min, then place roots into a beaker of fresh water. Rinse for a minute. . . . Continue rinsing in fresh water until the rinsate remains clear. Separate roots using 
plastic forceps in water in a glass tray placed on a flatbed scanner. 

Reuse the 0.05 % toluidine blue solution until it loses effectiveness. Dispose of the 
toluidine blue solution and the first rinsate into a waste container with a charcoal tea­
bag. Light blue solutions of stain can be Hushed down the sink with plenty of water. If 
roots are to be viewed using UV fluorescence under the microscope, do not stain with 
toluidine blue, as this interferes with cell autofluorescence. 

A.3 Primers for PCR 

Primer Sequence 5'-3'; primer length Source Primer target; 
produet size 

Rs-F AGAGTTGGTTGTAGCTGGTCC; Dr Jonathan R. solani ribosomal 
21 bp Anderson , CSIRO internal transcribed 

Rs-R CCGTTGTTGAAACTT AGT ATT AGA; Plant Industry, spacer region ; 200 bp 
24 bp Perth , WA, Australia 

Ta-F AT AGGATTCCGGTCCT ATTGTGT; Wheat 18s rDNA 
23 bp ~ (also amplifies 

Ta-R TAGGACGGTATCTGATCGTCTTC; B. distachyon DNA) ; 
23 bp 201 bp 

Bd-F GTTCGCCA TCCATTGCTT; Dr Jennifer Bragg , B. distachyon T-DNA 
18 bp USDA-ARS, Albany, JJ3794 flanking 

Bd-R TGGTGCCCACGGA T AAA T; CA, USA sequence; ~1000 bp 
18 bp 
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A.4 Average seed mass 

Mean seed mass for natural accession and T-DNA lines used in experiments (n=16). 

Natural Average T-DNA line Average 
accession line mass (mg) mass (mg) 

Abr 2 3.3 2426-11 5.1 

Adi-10 4.6 2426-8 4 .8 

Ad i-12 4.2 2596-10 4.9 

Arn 1 3.4 2596-2 5.0 

Bd 1-1 3.6 2596-9 4.1 

Bd 18-1 3.5 2771-4 4.7 

BO 21 4.2 2771-5 4.7 

BO 21-3 4.4 2892-10 4.3 

BO 2-3 5.2 3175-12 4.5 

Bd 30-1 2.9 3400-2 5.0 

BO 3-1 4.8 3794-2 4.4 

BdTR 1 0c 4.3 3794-5 4.0 

BdTR 1 0o 4.8 4243-11 4.8 

BdTR 11i 4.9 4774-6 3.8 

BdTR 12c 4.5 5088-2 3.4 

BdTR 13a 4.1 5088-4 3.4 

BdTR 13c 4.1 5088-5 4.3 

BdTR 1 i 4.7 654-9 4.1 

BdTR 2g 4.2 705-4 4.9 

BdTR 3c 4.4 7557-2 4.0 

BdTR 5i 4.4 77-5 4.2 

BdTR 9k 4.9 8634-6 4.9 

Cas 2 3.2 8913-5 5.2 

Koz- 1 5.0 9212-15 4.6 

Koz-3 3.9 9212-8 4.1 

Tek-4 2.8 9278-8 4.9 

9840-9 4.9 
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Preliminary experiments 

8.1 Exploratory experiment with Pythium and Rhizoctonia 
An exploratory experiment was carried out, prior to the experiments conducted for this 
thesis, to test the effect of five isolates of Pythium spp. and two isolates of Rhizoctonia 
solani AG8 on root and shoot growth of wheat and B. distachyon. The aim was to test 
pathogenicity of these isolates in a pot growth experiment in order to choose an isolate 
to continue with in future experiments. The experimental procedure for this 
experiment differs markedly from that described in the thesis. 

8.1.1 Materials and Methods 

B.1.1.1 Seed source and preparation 

Brachypodium distachyon accession Bd 21-3 and Triticum aestivum cv. Janz were 
sourced as described in §2.2.1. Seeds were surface-sterilized for 2 min in sodium 
hypochlorite (1.3% v/v) and rinsed thoroughly in Milli-Q water before planting. 

B.1.1.2 Inoculum preparation 

Isolates of P. irregulare P15, P. irregulare BH40 and R. sol<ini Rs21 were donated by 
Dr Paul Harvey, . CSIRO Ecosystems Sciences, Urrbrae, SA, Australia. Pythium, 
paroecandrum (KS01) was isolated from the field soil used- in this experiment 
( described in next section) and identified by PCR. The origin of the isolate of R. solani 
AG8 ZG1-1 is described in §2.2.2. 

Inoculum was prepared in large glass jars by seeding a twice-autoclaved mixture of 
1naize meal (15 g, Nature First Organic, Cheltenham, VIC, Australia), coarse sand 
(1500 g) and distilled water (360 mL) with a square cm surface area of mycelium from 
an agar plate. Inoculum was incubated at room temperature for three weeks, with 
gentle mixing every 4 days. The method is similar to one used by Harvey et al. (2001). 

Inoculum levels were enumerated using the method for isolation of Pythium from soil. 
Briefly, 1 g of inoculum was added to 0.1% water agar (100 mL) and shaken for 1 h. A 
1:9 dilution was made into water agar. Aliquots (1 mL) of the original and diluted, agar 
were spread onto Pythium- .or Rhizoctonia-selective media. After two days, water agar 
was washed off the plate and colonies counted. This method was not ideal for 
enumeration of R. solani. 

B.1.1.3 Soil 

Soil was taken from a field trial near Galong, NSW, known to have a history of 
Rhizoctonia and Pythium disease. The trial had been sown to wheat and triticale in 
recent years . Soil was collected in mid-April 2010, while the site was being prepared 
for sowing, fron1 a buffer area that had been sown to triticale in 2008 and fallow in 
2009. The sandy loam was considered to be suitable for pot experiments, with pH (1:5 
CaCl2) 5.0, pH (1:5 H2O) 6.3 and EC 27.7 µScm-1 • Soil was passed through a 3 mm 
sieve to remove large pieces or organic matter and break up large clods. Sieved air-dry 
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soil (4 kg) was mixed with water (200 mL) in a small autoclave bag, placed at room 
temperature overnight and then pasteurised at 6o°C for 1 h. 

Maize meal/ sand mix inoculum was mixed thoroughly with pasteurised field soil to 
give final inoculum levels of 500 ppg (Higginbotham et al., 2004) and 80 ppg 
(Okubara et al., 2009) at a ratio of 1 part maize meal/sand mix to 3 parts soil. Control 
treatments were prepared in the sa1ne ratio, with uninoculated maize meal/ sand mix. 

B.1.1.4 Cone preparation and sowing 

Cones were half-filled with inoculated soil (90 g), placed into medium flow trays and 
incubated at 22°C overnight in a Conviron CMP 2023 growth chamber (Winnipeg, 
Manitoba, Canada). One flow tray was used per inoculum. The following day loose 
uninoculated soil medium mix (approximately 70 g) was added to cones, before being 
watered to saturation with 40 mL deionised water. Cones were incubated overnight at 
70c. 

One seed was placed onto the soil surface in each cone and covered with approxin1ately 
40 g of 'Barley Special' potting mix: river sand (1:1, w/w) (see §2.2.3 for details of 
'Barley Mix'). Cones were incubated in darknes_s at 7°C for five days for seed 
stratification. Following stratification, growth cabinet conditions were set at 14 h days 
with cool white fluorescent light (approximately 270 µE.m -2 .s-1) and a constant 
temperature of 16°C (Harvey et al., 2001; Higginbotham et al., 2004). Logged daytime 
temperature of the air and at the pot surface was 20 - 2i °C, varying within 
approximately one degree around the growth cabinet and due to the heating and 
cooling cycle of the cabinet. Night temperature was 16°C. Pots were watered with 
approximately 5 mL deionised water every three days. Wheat and B. distachyon were 
harvested at 33 and 39 days after planting, respectively. 

B.1.1.5 Phenotype measurements 

At harvest, roots were washed out in water and stored in 50% ethanol in plastic sauce 
containers. Length of the long root was measured using a ruler. Shoots were cut from 
the root system, dried in paper envelopes at 70°C for 3 d and weighed. 

B.1.1.6 Statistical analysis 

Emergence was low for wheat and B. distachyon across all treat1nents, with average 
rates of 56, 65 and 60% at o, 80 and 500 ppg, respectively. The 80 and 500 ppg 
treatments were thus con1bined into a general 'inoculated' treatment for analysis. 
Plants that had not emerged by 7 days after planting were excluded from analysis. 
Statistical analysis was carried out using REML linear regression in Genstat (VSN 
International, UK). Predicted n1eans and p-values were calculated for control­
inoculated pair-wise co1nparisons for all combinations of host and pathogen. 

8.1.2 Results and discussion 

Several problen1s with the experimental procedure were identified and corrected 
before proceeding with experiments for the thesis. 

The pasteurisation technique used did not appear to effectively reduce pathogen load 
in the fi eld soil. A low level of emergence in control treatment of B. distachyon and 
wheat at 30 - 70% and 40 - 70%, respective} , ma have been due to damping off. For 
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example, steam sterilization kills Pythium hyphae in soil, but oospores may germinate 
after a month or so (R. Simpson, pers. comm). 

Shoot dry weight in control treatment-differed markedly between flow trays. Few 
significant differences were found between control and inoculated treatments for shoot 
growth (Figure B1.1). In · wheat there was an increase in shoot growth with 
P. paroecandrum inoculum and a decrease with R. solani ZG1-1 inoculum. 

Root growth in Pythium treatments did not differ between inoculated and control 
treatments. In R. solani inoculated treatments, root growth was restricted to the upper 
half of the pot, with roots not entering into the lower inoculated half of the pot. This is 
seen by longest roots of wheat and B. distachyon reaching the bottom of the 21 cm 
deep cones, with roots in inoculated treatments only reaching around 10 cm (Figure 
B1.2). 

Isolate R. solani AG8 ZG1-1 was chosen for experiments in this thesis. 
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■ Inoculated 
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Figure B1 .1 Average shoot dry weight for wheat and 8 . distachyon (Bd) grown in 
control or inoculated soil and harvested at 39 OAP. lnoculum was stratified into the lower 
half of cones . lnoculum: Pi (BH40) , P. irregulare BH40 ; Pi (P15) , P. irregulare P15 ; Pp 
(KS01 ), P. paroecandrum KS01 ; Rs (Rs21 ) , R. so/ani Rs21 ; Rs (ZG1-1 ) , R. solani AG8 
ZG1-1 ; Wheat control n=3-7 , Wheat inoculated n=10-13 , 8 . distachyon control n=3-6 , 
8 . distachyon inoculated n=9-15; average SE for pair-wise comparisons. 
* Inoculated measurement is significantly different (p<0 .05) from the control. 
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Figure B1 .2 Average longest root length for wheat and 8 . distachyon (Bd) grown in 
control or R. solani inoculated soil and harvested at 39 OAP . I noculum was stratified into 
the lower half of cones . lnoculum: Rs (Rs21 ), R. solani Rs21 ; Rs (ZG1 -1 ), R. solani AG8 
ZG1-1 ; Wheat control n=4-7, W heat inoculated n=10 , 8 . distachyon control n=2-4, 
8 . distachyon inoculated n=9-1 O; average SE for pair-wise comparisons . 
* Inoculated measurement is sign ificantly different (p<0 .05) from the contro l. 

8.2 Experiment with Pythfum infested soil 
The aim of this experiment was to create conditions suitable for Pythium disease 
expression in wheat and B. distachyon. 

8.2.1 Materials and methods 

B.2.1.1 Seed source and preparation 

Brachypodium distachyon natural accessions were received .from Drs David Garvin 
and John Vogel, as described in §2.2.1. Seeds were surface-sterilized using the method 
described in §2.2.1, except that seeds were not de-husked, and then incubated on 3% 
water agar at room temperature for 3 - 5 days until germinated. 

B.2.1.2 Inoculum preparation 

The isolate of Pythium irregulare BH40 vvas donated by Dr Paul Harvey (CSIRO 
Ecosystems Sciences, Urrbrae, SA, Australia). Inoculum was prepared with white 
millet seed, described in §2.2.2. Moist autoclaved millet "''as inoculated with cubes of 
agar fron1 the growing edge of a P. irregulare colony and incubated for 10 d. In 
contrast to R. solani-inoculated millet, P. irregulare-inoculated millet does not remain 
viable after storage at -20°C. 

B.2.1.3 Cone preparation and sowing 

'Barley Mix' potting n1ix, described in §2.2.3, "''as used for this experiment. Millet seed 
inoculum was n1ixed into soil at a rate of approximately 0.5 propagules (individual 
seeds) per grain. Cones were loosely filled with soil and watered with tap water (30 
mL). A pre-germinated B. distachyon seed was placed alongside an inoculated 1nillet 
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seed in the centre of the pot, covered with uninoculated soil and watered with an extra 
5 mL. The control treatment was prepared as for the inoculated treatment, except 
millet was not inoculated with the oomycete. Cones were incubateq at 16°C in 12 h day 
length and harvested 18 days after planting. 

B'.2.1.4 Phenotype measurements 

Shoot measurements taken at harvest were leaf number, leaf 1 length and leaf 2 length. 
Total root length was measured using WinRhizo. Details of phenotypic measurements 
are given in §2.2.7. 

B.2.1.5 Statistical analysis 

Plants that had not emerged by 7 days after planting were excluded from analysis. 
Statistical analysis was carried out using a linear regression model (REML) in GenStat 
with the fixed model written as 'Days to emergence + Host*Inoculum'. Wheat was 
analysed separately from the B. distachyon lines. 

B.2.2 Results and discussion 

· Hyphae were often seen growing through soil in P. irregulare-infested treatments at 
harvest, · but the observed mycelium may not always have been Pythium. In control 
treatments some millet seeds appeared to be covered in Penicillium-like spores. 

Total root length did not differ between infested or control treatments in any of the 
B. distachyon accessions nor in wheat The reason for the lack of root disease is not 
known. Seeds were sown adjacent to inoculated millet seeds. Pythium irregulare grew 
quickly from these inoculated millet seeds on agar and was also shown to cause disease 
in B. distachyon on agar plates (Appendix B.3). 

Leaf number was significantly greater (p<o.05) across all inoculated treatments, while 
leaf 1 length was significantly reduced (p<o.05) by P. irreg·uzare BH40 (Figure B2.1). 
Leaf 2 length recovered to be non-significant for B. distachyon, but remained 
significantly reduced (p=o.003) in wheat .. A reduction in leaf 1 length in response to P. 
irregulare is consistent with reported .disease symptoms (Ingram and Cook, 1990). 

It is curious that leaf · number generally increased in response to P. irregulare 
inoculun1, as abiotic stress reduces the rate of leaf appearance. Leaf appearance rate in 
cereals increases with thermal time and decreases with soil hardness (Masle and 
Passioura, 1987; Masle et al., 1989). The impact of soil pathogens on phyllochron has 
not b'een studied. It may simply be that during pot filling uninoculated soil was 
inadvertently packed harder than inoculated soil. 
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8.3 Experiment with Pythium inoculated plates 
AB Pythium disease could not be achieved in pot assays, the pathogenicity of an isolate 
of P. irregulare was tested on inoculated agar plates. 

8.3.1 Materials and methods 

B.3.1.1 Seed source and preparation 

Seeds of 134 B. distachyon natural accessions were used in this experiment. The 
germplasm source is described in §2.2.1. Seeds were neither dehusked nor surface · 
sterilized before sowing. 

B.3.1.2 Plate preparation 

Water agar plates (1.2% w/v) were inoculated centrally with a 5 mm2 surface area cube 
of agar from the growing edge of a P. irregulare BH40 colony grown on potato 
dextrose agar. Isolate origin is given in §B.1.1.2. Plates were incubated at 25°C for 3 d. 
Eight seeds were placed onto each plate, with embryos oriented toward the centre. 
Plates were incubated at 12°C in darkness. Control plates were prepared in the same 
way, but not inoculated. 

B.3.1.3 Phenotype measurements 

Germination was scored visually. Root lengths were measured by scanning plates on a 
flatbed scanner, then measuring root lengths using ImageJ 1.43u software (NIH, USA). 
Mean seed mass of 16 seeds across all lines was 4.2 ± o.8 mg, ranging from 2.3 ± 0.4 
mg (BdTR 2r) to 5.4 ± 0.7 mg (BdTR10 h). 

B.3.1.4 Statistical analysis 

Statistical analysis was carried out using the REML linear regression analysis in 
GenStat. Root length analysis included only the subset of ~eeds that had germinated. 
Simple linear regression was used to calculate the correlation between seed mass and 
root length. 

8.3.2 Results and discussion 

Significant differences (p<o.001) were observed between lines, between control and 
inoculated treatments, and for the line-inoculum interaction for both germination 
(Figure B3.1) and root length at 7 days after sowing (Figure B3.2). Root length of seeds 
gern1inated on the P. irregulare lawn were reduced.to between 3 - 79% of control root 
length. At 7 DAP some plants growing on inoculum had germinated and produced a 
shoot, but no root. Roots that were able to penetrate into agar appeared to somewhat 
escape infection and tended to be longer than those growing at the plate surface. 
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Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

Seed mass was correlated with greater endogenous root vigour, but not with increased 
root growth on P. irregulare (Figure B3.3). The correlation between seed mass and 
inoculated/ control root length ratio was therefore negative (p=o.031). 

A similar experiment was subsequently conducted with both B. distachyon and wheat 
on R. solani AG8 or P. irregulare BH40 inoculated plates. Pythium irregulare again . 
reduced root length to approximately 22% of control in B. distachyon and 5% of 
control for wheat, but roots growing on R. solani were not reduced in length at 8 days 
after sowing (data not shown). 

While strong root disease symptoms could be achieved on B. distachyon and wheat 
with P. irregulare in plate assays, this pathogen was not studied further as disease 
symptoms were not evident in pot assays. 

25 Control: 
y = 2.6953x + 0.0802 
R2 = 0.0967 0 0 0 

20 p <0.001 0 0 

,.....__ 
E 
E 15 ..__,. 
..c ...... 
0) 
C 
(1) 10 

...... 
0 
0 

0::: 

230 

5 

2 

Pythium: 
y = 0.103x + 2.1044 
R2 = 0.0016 
p=0.641 o 

0 

• • 
3 

0 

4 
Average seed mass (mg) 

0 

5 

0 

0 

Figure 83.3 Correlation between average seed mass and root length at 7 DAP for 134 

B. distachyon natural accessions incubated on P. irregulare BH40 lawns or on control 

plates ; n~8 seeds per treatment. 



Appendix C 

Experiments with wheat germplasm from collaborators 

C.1 Testing Lr34 wheat germplasm for seedling resistance to 
Rhizoctonia solani AG8 

The Lr34 gene encodes an ABC-transporter that confers durable adult plant resistance 
to Puccinia triticina (leaf rust), Pu. striiformis (stripe rust) and Blumeria graminis 
(powdery mildew) in wheat. The Lr34 gene has been lost from B. distachyon 
(Krattinger et al., 2011). Seedling resistance of lines carrying Lr34 can be induced with 
cold treatment (4 to io°C). This form of resistance does not appear to be due to 
increased expression of Lr34, but may be due to an interaction with pathogenesis­
related genes (Risk et al., 2012). 

The airp. of this experiment was to test the efficacy of the durable resistance gene Lr34 
against the root fungal pathogen R. solani AG8. 

C.1.1 Materials and Methods 

C.1.1.1 Seed source and preparation 

Wheat germplasm, described in Table C.1.1, was received from Dr Evans Lagudah 
(CSIRO Plant Industry, Canberra ACT, Australia). Spielmeyer e~ al. (2008) describe 
the generation of mutants. Seeds were surface-sterilized as described in §2.2.1. 

Brachypodium distachyon line Bd 21-3 was included alongside wheat to test the effect 
of R. solani infection at the lower temperature. 

Table C.1.1 Origin of wheat lines used in this experiment 

Genotype Lr34 expression Average seed Notes 
mass (mg) 

Chinese spring wheat + Lr34 42 
CSMU 2215 - Lr34 (knockout) 24 Chinese spring wheat EMS 
CSMU 5101 - Lr34 (knockout) 18 mutants 

La34 R19 + Lr34 43 Indian line (Lalbahadur), 
La34 MU19 - Lr34 34 gamma-irradiated M2 sib pairs 

La34 R21 + Lr34 28 Indian line (Lalbahadur), 
La34 MU21 - Lr34 34 gamma-irradiated M2 sib pairs 
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Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

C.1.1.2 Experimental conditions 

Inoculum was prepared as described in §2.2.2. Plants were sown into 'Barley Mix' 
potting mix (§2.2.3) using the method described in §2.2.4. 

Trays were placed in Adaptis Alooo growth cabinets (Conviron, Winnipeg, Canada) 
programmed with 12 h days at a constant temperature of 10°C. A lower temperature is 
required for seedling expression of Lr34 (Rubiales and Niks, 1995; Risk et al., 2012). 
Soil temperature at seed level was 9°C overnight and ~10.2°C during the day (Figure 
C.1.1). Irradiance was measured to be around 200 µEinsteins. Plants were harvested at 
16 and 26 days after planting. 

When plants were harvested at 16 DAP, the potting mix was quite wet. Therefore the 
remaining plants were only watered once more before the Day 26 harvest. 

12. 

12. 

µ'71_ 
Q) .... 
:::, 11 . 
1u .... 
Q) 
o...10. 
E 
Q) 

I- 10. 

9. 

9. 

a... <( a... <( a... <( a... <( a... <( a... <( a... <( a... <( a... <( a... <( 
D D D D D D D D D D D D D D D D D D D D 
D D D D D D D D D D D D D D D D D D D D 
N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 
r- r- r- r- r- r- r- r- r- r-

9Jun2012 11 Jun 2012 13Jun2012 15Jun2012 17 Jun 2 

Figure C.1.1 Soil temperature recorded at seed level in a Tray 1 cone over nine days 
during the course of the experiment. Temperature spikes on the first and sixth full day 
were due to watering . 

C.1.1.3 Re-isolation of Rhizoctonia from cones 

Rhizoctonia was reisolated from cones (§2.2.6) at 15 days after planting. TI1e toothpick 
analysis was delayed to 15 DAP because 1nany plants hadn't e1nerged by 8 DAP, when 
the toothpick assay is usually carried out. 

C.1.1.4 Phenotypic measurements 

Total root length and leaf nun1ber at harvest were measured according to the protocol 
described in §2.2.7 
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Appendix C 

C.1.1.5 Statistical analysis 

With temperature set at 10°C and humidity at 50%, plants grew more slowly and there 
was far less evaporation than in previous experiments at 16°C. Wheat took on average 
7 days to germinate, and Bd 21-3 took 8 days. Plants were excluded from analysis if 
they had not germinated by 10 DAP. Predicted means were calculated using the REML 
linear regression model in GenStat, with the fixed model 'Days to emergence + 
Host*Inoculum' and 'Tray' included as the random model. Root length was square­
root transformed prior to analysis. 

C.1.2 Results and discussion 

C.1.2.1 Growth under cooler temperature 

All experiments carried out for the main body of this thesis were conducted at 16°C. At 
10°C B. distcichyon and wheat took longer to emerge from soil and plant growth 
decreased. 

Plants used water at a lower rate than in experiments run at 16°C. This affected the 
Rhizoctonia re-isolation toothpick assay, which could not clearly determine the 
presence or absence of -Rhizoctonia in control and R. solarii treatments. Root scans 
clearly showed, however, that there was no Rhizoctonia damage in control treatments 
of wheat and that all R. solani treatments had truncated roots. Previous experiments 
with R. solani have shown that cross contamination between cones rarely occurs in 
this system. 

Factors that could have resulted in fev\7 toothpicks having strong growth of Rhizoctonia 
at 15 DAP with 10°C temperature, may include: 

• Rhizoctonia needing longer than 24 h to colonise toothpicks, due to reduced 
growth rate 13-t cooler temperature. Refshauge (2007) showed that the growth rate 
of R. solani AG8 on agar decreases from 5.5 mm d-1 at.16-°C to 3-4 mm d-1 at 10°C. 
• Inhibiti0n of Rhizoctonia due to reduced evaporation at cool temperatures 
resulting in ,-vetter soil. Evidence of disease ori all inoculated roots indicates this 
"'as not the case (Figure C.1.2). 
• Gro,,vth of other soil fungi and changing population dynamics at this lower 
temperature and delayed time-point. Non-Rhizoctonia colonies with dense hyphae 
emerged from many toothpicks and were tentatively identified as Fusarium spp. 
Rhizoctonia quickly in, ades and damages roots, allowing secondary pathogens to 
enter and exacerbate root rot as a 'disease complex' evoh es (Moen and Harris, 
1985). 

While control, heat roots looked quite healthy at 26 DAP, some B. distachyon control 
roots ,,, ere distorted and ma · have been affected by another soil pathogen. 
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Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

A " 
. . ···\ · 

A:_ . · 

.. { ) 

Figure C.1.2 An example of root scans of Chinese Spring wheat in a) uninfested , and b) 
R. solani infested soil , at 26 OAP harvest; scale bar, 2 cm . 

C.1.2.2 Root and shoot growth 

The plant-pathogen interaction for square-root transformed total root length was only 
significant (p=o.015) at the 26 DAP harvest (Figure C.1.3). This was due to the Chinese 
Spring wheat mutant CSMU 5101 (-Lr34) having a greater control/ R. solani square­
root transformed total root length ratio (RLRA, see Table 4.2) than Chinese Spring 
wheat ( +Lr34). 

A significant plant-pathogen interaction (p=o.037) was also seen at the 16 DAP harvest 
for leaf number (Figure C.1.4), the result of a greater control/ R. solani leaf nu1nber 
ratio for CSMU 2215 (-Lr34) than Chinese Spring Vi7heat ( +Lr34). 

Brachypodiunz distachyon line Bd 21-3 root length and leaf number was calculated 
separately from wheat (Table C.1.4). Growth was strongly reduced at 10°C, con1pared 
with 16°C (co1npare with Figure 2.15). 
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Figure C.1.3 Predicted means for total root length , for 7 lines grown in control (light grey) 
and R. solani (dark grey) inoculated soil and harvested ar a) 16 OAP , and b) 26 OAP ; n=3 
to 6 ; average SE . Values are given in Table C .1.2. 
*Pair-wise line response to R. solani is significantly different (p<0 .05) from CS for CSM U 
5101 for root length at 16 OAP . 

Table C.1.2 Predicted means of square-root transformed total root length (✓cm ) for wheat 
in R. solani inoculated (Rs)' and control (C) treatments . Means are followed by the ratio of 
R. solani treatment values compared with control treatment values ; n=3 to 6 . 

Genotype Lr34 expression 16 OAP 26 OAP 

Rs C Ratio Rs C Ratio 
Ch inese spring wheat + Lr34 5.3 10 0 .52 6 .5 19 0.35 
CSMU 2215 - Lr34 (knockout) 5.3 8 .8 0 .60 6 .7 15 0.44 
CSMU 5101 - Lr34 (knockout) 4 .1 7 .6 0 .53 7 .2 12 0.60 
La34 R19 + Lr34 5.8 8.3 0 .69 7.4 16 0.48 
La34 MU19 - Lr34 4 .8 8.3 0 .58 6 .6 13 0 .50 
La34 R21 + Lr34 4 .3 7 .3 0 .59 6 .5 12 0.54 
La34 MU21 - Lr34 4 .1 7 .3 0 .55 7 .9 13 0.59 
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Figure C.1.4 Predicted means for leaf number, for 7 lines grown in control (light grey) and 

R. solani (dark grey) inoculated soil and harvested at a) 16 OAP, and b) 26 OAP ; n=3 to 

6; average SE. Values are given in Table C.1.3. 

*Pair-wise line response to R. solani is significantly different (p<0 .05) from CS for CSMU 

2215 for leaf number at 16 OAP . 

Table C.1.3 Predicted means of leaf number for wheat in R. solani inoculated (Rs) and 

control (C) treatments . Means are followed by the ratio of R. solani treatment values 

compared with control treatment values ; n=3 to 6. 

Genotype Lr34 expression 16 OAP 26 OAP 

Rs C Ratio Rs C Ratio 

Ch inese spring wheat + Lr34 1.3 1.6 0.82 2.2 2.7 0.80 

CSMU 2215 - Lr34 (knockout) 1.5 1.5 1.00 2.1 2.5 0.86 

CSMU 5101 - Lr34 (knockout) 1.2 1.4 0.88 2.1 2.6 0.81 

La34 R19 + Lr34 1.4 1.4 1.04 2.1 2.7 0.76 

La34 MU19 - Lr34 1.2 1.6 0.80 2.2 2.5 0.89 

La34 R21 + Lr34 1.1 1.4 0.82 2.2 2.7 0.82 

La34 MU21 - Lr34 1.3 1.5 0.92 2.5 2.5 1.01 



Appendix C 

Table C.1.4 Means of square-root transformed total root length (✓cm) and leaf number for 
B. distachyon line Bd 21-3 in R. so/ani inoculated (Rs) and control (C) treatments . Means 
are followed by the ratio of R. solanilcontrol treatment values ; n=3 to 5. 

Bd 21-3 

16 OAP 

26 OAP 

Total root length 
_ (✓cm) 

Rs C Ratio 

1.9 2.9 . 0.64 

3.0 4 .7 0.63 

Leaf number 

Rs C Ratio 

1.0 1.3 0.63 

1.8 2.0 0.91 

C.1.2.3 The effect of endogenous vigour on disease resistance 

Seed mass was not found to have a significant effect of on root, shoot or resistance 
measurements (Figure C.1.5). The trends seen here with wheat are similar to those 
seen in the thesis results with B. distachyon (compare with Figures 3.8 and 4.11), 
suggesting that these correlations may become significant with greater replication. 
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Figure C.1.5 Predicted means for a) total root length , b) leaf number, c) number of 
seminal roots in contro l, and d) the ratio of R. solanilcontro l root length , plotted aga inst 
average seed mass for 7 accessions grown in contro l (light grey circles) and R. so/ani­
inoculated soil (dark grey circles) and harvested at 26 OAP . 
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Genetic variation in resistance of Brachypodium distachyon to Rhizoc(onia solani .AG8 

Total root length in control treatment was positively correlated with the nun1ber of 
primary roots in control treatment (p=o.024). As also observed in two thesis 
experiments with B. distachyon, endogenous root vigour was significantly correlated 
with reduced resistance to R. solani, determined by R. solani/ control total root length 
ratios determined using Method A described in §3.2.9.1 (Figure C.1.6). 
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Figure C.1.6 Correlation between a) total root length in control treatment, and b) number 

of primary roots in control treatment, with resistance rankings based on Method A 
R. solanilcontrol total root length ratios. 

Overall, the presence of the Lr34 gene did not have a significant effect on the growth of · 
R. solani AGB infested wheat in this assay. This indicates that Lr34 is not involved in 
resistance to R. solani, but could also be the result of experimental conditions not 
allowing expression of Lr34, or required complementary endogenous genes, in roots at 
this early stage of development. 

C.2 Effect of Rhizoctonia so/ani AG8 on Scarlet wheat lines 

with reported differences in tolerance to Rhizoctonia 

A 111utant line of wheat cultivar Scarlet, Scarlet-Rz1, was reported to have increased 
tolerance to R. solani AGB than its parent (Okubara et al., 2009). Our laboratory had 
access to seeds fro111 this line, so a sn1all experiment was designed to test the effect of 
our isolate of R. solani AGB on these lines. 

C.2.1 Materials and methods 

C.2.1.1 Seed source and preparation 

Triticum aestivurn cv. Scarlet spring wheat and a Scarlet-derived EMS mutant line, 
'Scarlet-Rz1', were donated by Dr Patricia Okubara (USDA-ARS, Pullman WA, USA) 
(Okubara et al. , 2009). In this experi111ent seeds were stratified to try to synchronise 
germination of B. distachyon (results not reported). Seeds were imbibed o ernight in 
tap water at 4°C, surface-sterilized in sodiu111 hypochlorite (1.3% v / ) and rinsed 
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Appendix C 

thoroughly in water -before being placed onto 3% agar plates. Plates were sealed and 
incubated at 4 °C for 5 days, then at 12°C for 3 days. 

C.2.1.2 Cone preparation and sowing 

Rhizoctonia solani AG8 ZG1-1 inoculum was prepared according to the protocol in 
§2.2.2. Inoculum was mixed through 'Barley Mix' potting mix (§2.2.3) at 0.1 
propagules per gram of soil, as described in §2.2.4. 

C.2.1.3 Growth conditions 

Growth cabinets were set at 16°C ;ind 12 h day length, as described in §2.2.5. The 
toothpick re-isolation check (§2.2.6) was performed at 8 DAP. Plants were harvested at 
12 days after planting. 

C.2.1.4 Phenotype measurements 

Total root length, leaf number, leaf 1 length and leaf 2 length were measured according 
to procedures described in §2.2.7. 

C.2.1.5 Statistical analysis 

This was a small experiment with the values of only 4 - 5 plants per treatment _ 
included after removing those that did not emerge or failed the toothpick re-isolation 
check. Statistical analysis was carried out with GenStat linear regression analysis 
(REML) using a fixed model ·'Host*Inoculum'. 

C.2.2 Results and discussion 

Total root length was significantly decreased by R. solani (p<o.001) in both lines. Leaf 
1 length was not significantly affected by the pathogen, but mean leaf 1 length of the 
combined control and Rhizoctonia treatments for Scarlet-Rz1 was greater than Scarlet 
(p=o.005, 147 mm and 127 mm respectively). Okubara et al. (2009) also noted the 
more vigorous growth of Scarlet-Rz1 compared with Scarlet. 

Ratios of root and shoot measurements between R. solani and control treatments in 
the two lines are presented in Table C.2.1. The genotype-pathogen interaction was not 
significantly different for any measurement. There was also no significant difference 
in leaf 2 length or leaf number between either genotype or inoculum treatment. 

Host 

Table C.2.1 Predicted means of total root length , leaf 1 length , leaf 2 length and leaf 
number for Scarlet and Scarlet Rz-1 wheat in Rhizoctonia inoculated (Rs) and control (C) 
treatments . Means are followed by the ratio of Rhizoctonia treatment values compared 
with control treatment values . 

Total root length 
Leaf number Leaf 1 length Leaf 2 length 

(cm) (mm) (mm) 
Rs C Ratio Rs C Ratio Rs C Ratio Rs C Ratio 

Scarlet 

Scarlet-Rz1 

179 

161 

367 

380 

0.49 2.0 2.2 

0.42 2.2 2.2 

0.90 127 127 1.00 190 207 0.92 

1.00 147 140 1.05 197 202 0.97 

No significant difference was seen between the two Scarlet lines in the resistance 
response to R. solani AG8. The small but significantly greater leaf 1 length of Scarlet­
Rz1 may be the result of higher early vig9ur in this line (Richards and Lukacs, 2002). 
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Genetic variation in resistance of Brachypodium distachyon to Rhizoctonia solani AG8 

While the sample size for this experiment ·was very low, the trend in total root length 

ratio did not follow the results of Okubara et al. (2009), perhaps due to differences 

between the R. solani isolates used in the two studies. Thus, no further experiments 

were conducted to compare the Scarlet lines. 
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