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A b s t r a c t 

The coherent sheaves defined on a separated noetherian scheme X reflect the underlying 

geometry, and they play a central role in modern algebraic geometry. Recent results have 

indicated that there are subtle relationships between projective varieties that are reflected 

in the properties of bounded complexes of coherent sheaves, and so far the most promising 

way to organize this information is in the bounded derived category of coherent sheaves, 

which is a triangulated category. There are several other triangulated categories that one 

can associate to a variety, including the triangulated category of perfect complexes and 

the triangulated category of singularities, and in each case one finds information about 

the variety reflected in the behaviour of complexes. 

In this thesis we introduce a compactly generated triangulated category Km(Proj X ) , 

called the mock homotopy category of projectives, which extends the derived category of 

quasi-coherent sheaves by adjoining the acyclic complexes of flat quasi-coherent sheaves. 

These acychc complexes carry the same information about the singularities of the scheme 

as the triangulated category of singularities. Moreover, bounded complexes of coherent 

sheaves can be viewed as compact objects in the mock homotopy category of projectives, 

as we establish a duality between the compact objects in this category and the bounded 

derived category of coherent sheaves on the scheme. 

There is another triangulated category, the homotopy category K(Inj X) of injective 

quasi-coherent sheaves, which was introduced earlier by Krause and plays a dual role. In 

the presence of a dualizing complex we give an equivalence of the mock homotopy category 

of projectives with the homotopy category of injective quasi-coherent sheaves, interpreting 

Grothendieck duahty as an equivalence of categories of unbounded complexes. 
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Chapter 1 

Introduction 

The philosophy of derived categories is that we should work with complexes rather than 
their cohomology, which contains less information. This insight continues to be influential, 
and derived categories now pervade mathematics. As examples of important developments 
that use the language we quote the duahty theory of Grothendieck [Har66], the Riemann-
Roch theorem [SGA6], the Riemann-Hilbert correspondence [Kas84], the Kazhdan-Lusztig 
conjecture [BK81], the Broue conjecture [BroOO], the McKay correspondence [BKROl], the 
geometric Langlands conjecture [Fre07], homological mirror symmetry [Kon95] and the 
study of algebraic varieties via their derived categories of coherent sheaves [B002, BriOG]. 

However, there is a problem with the derived category, which arises from singularities. 
Not all invariants must come from cohomology groups: in fact, it has been known for a long 
time in commutative algebra that there is information about singularities in complexes 
with no cohomology at all (such complexes are said to be acyclic). The relevant invariants 
occur as syzygies (i.e. modules of cocycles) in acyclic complexes. In the derived category it 
is not possible to talk about such complexes, because we have identified them all with zero. 
In this thesis we will study a compactly generated triangulated category, which we call the 
mock homotopy category of projectives, that extends the derived category of quasi-coherent 
sheaves on a scheme by including the acyclic complexes of interest. This builds on earlier 
work of Krause [KraO-'j], Jorgensen [.l0r()5], lyengar-Krause [IK()6] and Neeman [Nce06a]. 

We begin this introduction with modules over a ring (all our rings are commutative) 
where it is easier to convince the reader that there is something interesting about acyclic 
complexes. After explaining the theory in the affine case, which is due to other authors, we 
state our results which concern the generalization to schemes. Let be a local Gorenstein 
ring, and suppose we are given an acyclic complex of finitely generated free ^-modules 

L - 2 . r - 1 

The syzygy M = Ker{L° — • L ' ) is such that depth(A'/) = dim(yl), and finitely generated 
modules with this property are known as maximal Cohen-Macaulay (MCM) modules. In 
fact, every MCM module over A occurs in this way, as the syzygy of some acyclic complex 
of finitely generated free yl-modules, called the complete resolution-, see Lemma 5.11. The 
category of MCM modules measures the complexity of the singularity of the local ring. 
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and there is a ricii algebraic literature on the study of these modules. Let us quote some 
of the results in the field (suppressing various details): 

• Any MCM module can be decomposed into a direct sum of indecomposable MCM 
modules, and a ring has finite Cohen-Macaulay type if there are only finitely many 
indecomposable MCM modules. 

• A hypersurface singularity has finite Cohen-Macaulay type if and only if it is a simple 
singularity; see [Kn687] and [BGS87]. 

• A surface singularity defined over an algebraically closed field of characteristic zero 
has finite Cohen-Macaulay type if and only if it is a quotient singularity; this is due 
independently to Esnault [Esn85] and Auslander [Aus86]. 

A lovely survey of rings of finite Cohen-Macaulay type is given in Yoshino's book [YosOO], 
and see [Dro04, BD06, Ene07] for surveys of more recent work. Having briefly suggested 
the way in which MCM modules contain information about the nature of singularities, it 
now remains to argue that the relationship between MCM modules and acychc complexes 
is more than a curiousity. This connection is best understood in the context of a body of 
results now known as Gorenstein homological algebra; see [E.106, ChrOO] for background. 

Results of Auslander, Auslander-Bridger [AB69] and Auslander-Buchweitz [AB89] on 
maximal Cohen-Macaulay modules led to the study by Enochs and Jenda of Gorenstein 
projective modules in [EJ95]. A Gorenstein projective module over the local Gorenstein 
ring ^ is a module occurring as syzygy of an acychc complex of projective ^-modules (see 
[ChrOO, §4.2] and [IK06, Corollary 5.5]) 

^ > > P^ > P^ > p'^ > 

One motivation for introducing Gorenstein projective modules is that the MCM ^-modules 
can now be understood as the Gorenstein analogues of vector bundles: a finitely generated 
^-module is MCM if and only if it is Gorenstein projective (see Lemma 5.11). To formahze 
the relationship between Gorenstein projectives and acyclic complexes, we introduce two 
categories: 

• The homotopy category Kac(Proj>l) of acyclic complexes of projective yl-modules. 
The objects are the acyclic complexes, and the morphisms are homotopy equivalence 
classes of cochain maps. 

• The stable module category G p r o j ( M o d ^ ) of Gorenstein projective yl-modules. The 
objects are the Gorenstein projective ^-modules, and the morphisms are morphisms 
of yl-modules modulo the relation that identifies two morphisms if their difference 
factors via a projective module. 

By the definition of Gorenstein projective modules, there is an essentially surjective functor 
sending an acyclic complex of projective ^-modules to its syzygy in degree zero 

Z°{~) : Kac(Proj A) Gproi(Mod>t) (1.1) 



It turns out that this functor, which pairs a module with its so-called complete projective 
resolution, is an equivalence of categories (see Proposition 5.10). Since the MCM modules 
are precisely the finitely generated Gorenstein projective modules, the equivalence (1.1) 
clarifies the relationship between MCM modules and acychc complexes: the stable module 
category of MCM modules is equivalent to a full subcategory of the honiotopy category of 
acyclic complexes of projective modules. We call the triangulated category Kac(Proj>4) 
the {projective) stable derived category, this terminology is explained at length in Krause's 
paper [Kra05] which had a large influence on how we view the subject. 

The information about singularities present in the stable derived category is orthogonal 
to the information in the ordinary derived category D(v4) of j4-modules, where acyclic com-
plexes vanish. To reconcile the two, we need a way of glueing the triangulated categories 
Kac(Proj A) and D(^) together; phenomenon such as the Cohen-Macaulay approximation 
of Auslander and Buchweitz [AB89] suggest that it is fruitful to let the two types of derived 
category interact. Fortunately, the notion of a glueing or recollement of two triangulated 
categories has already been worked out by Beilinson, Bernstein and Dehgne [BBD82]. 

The triangulated category that glues Kac(Proj A) and D(>1) is the homotopy category 
K(Proj A) of projective ^-modules, which has arbitrary complexes of projective >l-modules 
as objects, and the homotopy equivalence classes of cochain maps as morphisms. There is 
a recollement (for any ring, not necessarily local or Gorenstein, see Theorem 5.1.5) 

K a c ( P r o j y l ) > K ( P r o j v l ) ' >'D(^) (1.2) 

in which the six functors describe how to glue the outside objects within the central one. 
The derived category D(>1) embeds as a subcategory of K(Proj A) by identifying a complex 
with its projective resolution (which makes sense even for unbounded complexes) and as 
part of the glueing we obtain, for any complex X of projective ^-modules, a unique triangle 

P — — — ( 1 . 3 ) 

in which P is the projective resolution of an object of D(^) and Z belongs to Kac(Proj ^4). 
The triangle (1.3) associates X with two kinds of invariants: the cohomology groups of P 
and the degree zero syzygy of Z, which is a Gorenstein projective module. 

The recollement (1.2) gives the desired extension K(Proj yl) of the derived category 
by the objects of the projective stable derived category. However, homological algebra is 
about more than projective resolutions, and the theory we are describing is not complete 
without its injective aspect: the homotopy category K(Inj A) of injective v4-modules and 
the injective stable derived category Kac(Inj/l). In what follows we review the results 
of Krause [Kra05], Jorgensen [JorOS], lyengar-Krause [IK06] and Neeman [Nee06a] which 
describe the structure of K(Proj A) and K(Inj A) in more detail. In a surprising twist, we 
can view Grothendieck's theory of duality as the statement that these two extensions of 
the derived category are equivalent. First, a brief reminder about compact objects. 

1.1. Compact objects in triangulated categories. A triangulated category does not 
have a lot of structure, so it can be difficult to identify interesting objects without resorting 
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to an underlying model. In a triangulated category T with infinite coproducts, the most 
interesting objects are the "finite" ones, known as the compact objects. These are objects 
X gT with the property that any morphism from x into an infinite coproduct 

iei 

factors via a finite subcoproduct, indexed by a subset of indices {io, • • • ,in} Q I 

iei 

We denote the full subcategory of compact objects by T'̂  C T. This notion makes sense 
for any category with coproducts, and apphed to abelian categories it identifies the finite 
objects in the usual sense (for example, finitely generated modules or coherent sheaves). 

It is by now a complete triviahty to observe that in order to study finitely generated 
modules, or coherent sheaves, it is worthwhile to study all modules, and all quasi-coherent 
sheaves. In many contexts it is appropriate to replace coherent sheaves (and thus abelian 
categories) by bounded complexes of coherent sheaves (and triangulated categories) and it 
becomes important to know the "infinite completion" which is the triangulated category 
where such complexes are the compact objects. Moreover, the infinite completion should 
be generated by these compact objects, just as the category of quasi-coherent sheaves is 
generated by the coherent sheaves (abelian and triangulated categories are very different, 
and the sense in which objects generate also differs, see Chapter 2). 

The emphasis on compact objects, and compactly generated triangulated categories, 
was motivated by topology and introduced to the algebraists by Neeman in [Nee92, Nee96]. 
The main feature of these triangulated categories is that Brown representability theorems 
and other infinite techniques of homotopy theory are available to study them. There are 
many apphcations and we direct the reader to the surveys in [CKNOl] and [Nee07]. 

Given a ring A, the compact objects in the derived category D(^) are those complexes 
quasi-isomorphic to a bounded complex of finitely generated projective ^-modules. Thus, 
in the derived category, every "finite" object has finite projective dimension. This seems 
to be at odds with our intuitive understanding of what a finite complex should be: surely 
any bounded complex of finitely generated modules 

0 — — — > — > 0 (1.4) 

deserves to be a "finite" object. If is a regular noetherian ring of finite Krull dimension 
then this is actually true in the derived category: complexes of the form (1.4) are compact 
in D(^). But in the presence of singularities this no longer holds. In order to make every 
bounded complex of finitely generated modules a compact object, that is, in order to find 
the infinite completion of the bounded derived category of finitely generated modules, we 
have to extend the derived category by adjoining acyclic complexes. In other words, we 
pass to homotopy category K(Proj A), or its injective analogue K(Inj A). 



1.2. The homotopy category of injective modules. Let be a noetherian ring. The 
homotopy category K(Inj A) of injective yl-modules has as objects arbitrary complexes of 
injective v4-modules 

7 - 2 . r - l I' 

and as morphisms the homotopy equivalence classes of cochain maps. This is a triangulated 
category, first studied by Krause in his paper [Kra05]. Apart from the homotopy category 
of injectives, the central object of this paper is the homotopy category Kac(Inj A) of acychc 
complexes of injective >l-modules, which Krause calls the (injective) stable derived category 
of >1'. The relationship between these two categories is given by a fundamental recollement 
[Kra05, Corollary 4.3] 

Kac(Inj K(Inj /I) D(^) 

which glues the derived category D(yl) together with the stable derived category Kac(Inj A) 
by identifying objects of the derived category with their injective resolution. Adjoining the 
acychc complexes of injectives to D(/l) has the effect of making every bounded complex of 
finitely generated /1-modules into a compact object: there is an equivalence of triangulated 
categories [Kra05, Proposition 2.3] 

P ' ' (mod^) ^ K ^ ( I n j ^ ) (1.5) 

sending a complex on the left to its injective resolution, where ©''(modyl) is the bounded 
derived category of finitely generated ^-modules. Since K(Inj A) is compactly generated it 
has the necessary properties to play the role of the infinite completion of D''(mod A). The 
stable derived category lKac(Inj A) is compactly generated and contains, as its subcategory 
of compact objects, the bounded stable derived category Dgg(^) described by Buchweitz in 
[Buc87]. There is an equivalence up to direct factors [Kra05, Corollary 5.4] 

= D ' ' (mod^) /K ' ' (p ro j^ ) ^ K^c(Inj (1-6) 

where IK''(proj A) is the subcategory of bounded complexes of finitely generated projectives. 
The quotient in (1.6) describes the additional compact objects that appear in the passage 
from D(^) to its extension K(Inj A), where the injective resolution of any bounded complex 
of finitely generated modules is a compact object. There is a second approach to embedding 
the objects of D' '(mod^) as compact objects, which goes via projective resolutions and 
behaves differently with respect to morphisms. 

1.3. The homotopy category of projective modules. Given a noetherian ring A, we 
have already defined the homotopy category K(Proj A) of projective ^-modules: it has as 
objects arbitrary complexes of projective >l-modules 

. . . > p - 2 ^ p - \ ^ pO ^ p i ^ p 2 ^ 

'Krause 's results are more general, and also apply to schemes; we will discuss the general results shortly. 
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and cis morphisms the homotopy equivalence classes of cochain maps. This is a triangulated 
category, studied by J0rgensen [JorOS], Iyengar and Krause [IK06] and Neeman [NeeOGa]. 
As discussed above, there is a recollement (Theorem 5.15) 

Kac(Proj A) \ K(Proj A) \ D(^) 

and after adjoining the acychc complexes of projectives to D(.4) we can identify bounded 
complexes of finitely generated ^-modules with compact objects, but the details are more 
subtle than in the injective case, because the compact object of K(Proj A) corresponding 
to a finitely generated ^-module is not its projective resolution (if this were compact, the 
module would be compact already in the derived category, and thus have finite projective 
dimension). Instead, there is an equivalence of triangulated categories 

D' ' (mod^)°P ^ K'^(Projyl) (1.7) 

sending a bounded complex of finitely generated j4-modules to the dual Hom^(P, of 
its resolution P by finitely generated projectives; see [.l0rO5, Theorem 3.2] and a related, 
more general, result of Neeman [Nee06a, Proposition 6.12]. Since K(Proj A) is compactly 
generated (see Theorem 2.30) it is the infinite completion of D''(mod The stable de-
rived category Kac(Proj A) follows the same pattern; this category is compactly generated 
and there is an equivalence up to direct factors [IK06, Theorem 5.3] 

(1.8) 

In D(yl) there is no difference between a module and its projective or injective resolutions; 
this is the point of inverting the quasi-isomorphisms. However, in the extensions K(Proj A) 
and K(Inj A) of the derived category that we are describing, the projective and injective 
resolutions of a module exist in completely different categories. The equivalences (1.5), 
(1.6), (1.7) and (1.8) hint that these categories are related, and in fact the connection is 
a manifestation of Grothendieck duality. 

1.4. Grothendieck duality. Let ^ be a noetherian ring of finite Krull dimension. The 
duahty theory of Grothendieck describes a special complex D, called the dualizing complex, 
which exists for many rings one encounters in algebraic geometry, including any finitely 
generated algebra over a field; see [Har66, §11.10] and [ConOO, Lemma 3.1.4]. The existence 
of a dualizing complex for A tells us that the bounded derived category of finitely generated 
^-modules is self-dual; there is an equivalence 

MHom^( - , D) : D ' ' ( m o d A f ^ ^ D ^ m o d A ) (1.9) 

We recognize the two categories involved in this equivalence as the compacts in K(Proj A) 

and K( In j^ ) , respectively, from (1.5) and (1.7). It is natural to ask if the equivalence of 
Grothendieck duality extends to an equivalence of the infinite completions, and a theorem 
of Iyengar and Krause asserts that it does; there is an equivalence [IK06, Theorem 4.2] 

- : K(Proj ^ K(Inj (1.10) 



which restricts on compact objects to the equivalence of (1-9)- Over a regular ring this is 
essentially trivial, since K(Proj A) and K(Inj A) are both equivalent to the derived category 
(Section 9.2) but in general it gives a new perspective on the role of the dualizing complex. 
For example, we can apply - (8)̂  £> to acychc complexes, which are certainly not subject 
to classical Grothendieck duality; some consequences are discussed in [IK06]. 

This completes our discussion of the afRne case, which involved three main actors: the 
homotopy category of injectives, the homotopy category of projectives, and Grothendieck 
duality which relates them. The first of these generalizes immediately to arbitrary schemes, 
as described by Krause in [Kra05]. In the rest of this introduction we describe our results, 
which generalize the remaining two. 

Setup. For the rest of this introduction, X denotes a separated noetherian scheme, 
and all quasi-coherent sheaves are defined over X . 

1.5. The generalization to schemes. In modern algebraic geometry the study of X is 
largely the study of the coherent sheaves that live on it. We now know that some interesting 
relationships between varieties only become visible once we enlarge the class of objects 
under consideration from single coherent sheaves to complexes, and in this connection the 
bounded derived category D^QJJ(OcoX)- of coherent sheaves becomes a natural object of 
study; see [B002, HdB04, Bri06]. A fundamental property of this triangulated category 
is Grothendieck duality, which describes a special complex the dualizing complex, with 
the property that there is an equivalence 

: ^ (1 .11) 

Many schemes admit dualizing complexes, including any variety over a field [Har66, §11.10]. 
Over a noetherian ring there is an extension of Grothendieck duahty (1.9) to the infinite 
completions (1.10). From the work of Krause we know the infinite completion of the right 
hand side of (1.11): the homotopy category K(Inj X) of injective quasi-coherent sheaves'' 
is compactly generated, and there is an equivalence [Kra05, Proposition 2.3] 

^ K ^ ( I n j X ) (1.12) 

For an affine scheme K(Proj is the infinite completion of the left hand side of (1.11), 
but over general schemes there is a gaping hole on the "projective" side of the equivalence, 
because there is no good notion of a projective quasi-coherent sheaf: to give an example, 
for a field k the only projective quasi-coherent sheaf over is the zero sheaf [EEG004, 
Corollary 2.3]. This is the problem that is solved in this thesis. 

^There are several equivalent definitions of this category, and the expert can find a comparison of our 
notation to her favourite definition in Remark 7.1. 

^In fact, Krause works with K(Inj A) for an arbitrary locally noetherian abelian category A, so he treats 
the afiine case and the generalization to schemes simultaneously. 
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We define a triangulated category Km(Proj X), referred to as the mock homotopy cat-
egory of projectives on X, which generalizes the homotopy category of projective modules 
over a ring. Objects of this category are not complexes of projective quasi-coherent sheaves; 
rather, they are complexes of flat quasi-coherent sheaves. A description of morphisms in 
this category is a little more subtle, so we delay it until after stating our theorems. The 
characterization of the compact objects is the first sign that this generahzation is correct, 
as combining Theorem 4.10 and Theorem 7.4 yields: 

T h e o r e m I. The category ]Km(Proj X) is compactly generated and there is an equivalence 

When X has enough vector bundles, for example when it is a quasi-projective variety, 
this equivalence identifies a coherent sheaf 'S with the dual complex Jffom{y,Ox) where 
y is a resolution of ^ by vector bundles (see Remark 7.5). The next theorem describes the 
relationship between the mock homotopy category of projectives and the derived category 
D(£2coX) of quasi-coherent sheaves. The objects of Km(Proj X) are all complexes of flat 
quasi-coherent sheaves, so it makes sense to define the subcategory Km,ac(Proj X) of acyclic 
complexes, which we call the mock stable derived category of X. Theorem 5.5 then asserts: 

T h e o r e m II . There is a recollement 

K„,ac(Proj X) ; K„ (P ro j X) ] B{QcoX) 

We have seen that there is information about singularities in the category Kac(Proj A). 
In the special case of a local Gorenstein ring this arises from the fact that MCM modules 
can be identified with their complete resolutions, which are acyclic complexes of projective 
modules. This is precisely the information present in the bounded stable derived category, 
because there is an equivalence up to direct factors (1.8) 

This connection is treated in [Buc87], which has unfortunately never been published. Over 
a scheme the bounded stable derived category also goes by the name of the triangulated 
category of singularities, as studied by Orlov [Orl()4] 

D ,yX)=D,^„„ (QcoX) /Pe r f (X) 

where Perf(X) is the full subcategory of perfect complexes. The properties of singularities 
reflected in this quotient are also visible in the compact objects of the triangulated category 
Km,ac(Proj X), as Theorem 5.5 and Theorem 7.9 state: 

T h e o r e m I I I . The category IKrn,ac(Proj X) is compactly generated, and there is {up to 
direct factors) an equivalence 



In the case where X admits a duahzing complex & (which we may always assume is a 
bounded complex of injective quasi-coherent sheaves) Theorem 8.4 gives the extension of 
Grothendieck duahty to the infinite completions: 

T h e o r e m IV. The equivalence of Grothendieck duality 

extends to an equivalence of triangulated categories 

IK„(Proj X) ^ K(Inj X) 

Many triangulated categories are closed monoidal categories. For example, the derived 
category of modules over a ring with the derived tensor product and derived Horn is a 
closed monoidal category. In Proposition 6.2 we prove that: 

Propos i t ion V. The triangulated category Km(Proj X) is closed symmetric monoidal: it 
has a tensor product and function object RMat{-, - ) compatible with the triangulation. 

Prom the equivalence of Theorem IV and the closed monoidal structure on Km(Proj X) 
we obtain a closed monoidal structure on K(Inj X), which has the surprising property that 
the dualizing complex is the unit object of the tensor product (Proposition B.6). Finally, 
the role of lKm,ac(Proj X) as an invariant of singularities is expressed by Proposition 9.11, 
which states that passing to an open subset with the same singularities leaves the mock 
stable derived category unchanged. 

Propos i t ion VI. If U C X is an open subset containing every singularity of X then the 
restriction functor is an equivalence 

{-)\u : K„,ac(Proj X) K„,ac(Proj U) 

It follows from this result that IKm,ac(Proj X) vanishes over regular schemes, in which 
case we deduce from Theorem II that there is a canonical equivalence of Km(Proj X) with 
the derived category D(QcoX) of quasi-coherent sheaves. In fact, this is an equivalence of 
closed monoidal categories; the structure described in Proposition V above reduces to the 
usual derived tensor and Hom over a regular scheme (Remark 9.8). 

This completes our description of the major results. Next we give the definition of the 
mock homotopy category Km(Proj X). The full details can be found in Chapter 3. 

1.6. Def ining tlie mock homotopy category of projectives. In the situations where 
there are not enough projectives one turns to some kind of fiat objects, and this is certainly 
true in algebraic geometry where resolutions by locally free sheaves play a significant role. 
We define Km(Pro jX) by taking these fiat resolutions seriously. What is it that makes 
flat resolutions so inferior to projective resolutions? Their main problem is that they fail 
to be unique in the homotopy category, but fortunately the theory of Verdier quotients or 
localizations of triangulated categories gives us a natural way to remedy this defect. 
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In order to make fiat resolutions unique, we have to kill the difference between any 
two competing resolutions. This difference will take the form of a special type of complex, 
but before we can describe these "enemy" complexes we need to explain exactly what a 
flat resolution of a complex is. A complex ^ of quasi-coherent sheaves is K-flat if ® ^ 
is acyclic whenever is an acyclic complex of quasi-coherent sheaves. Given an arbitrary 
complex ^ of quasi-coherent sheaves, a K-flat resolution is a quasi-isomorphism ^ —> ^ 
with ^ a K-flat complex. Let us agree that all our K-flat resolutions are complexes of flat 
quasi-coherent sheaves (such resolutions always exist, by Corollary 3.22). Now suppose 
that we have two K-flat resolutions of the same complex as in the diagram 

(1.13) 

If ^ were a K-projective resolution (the analogue of a projective resolution for complexes) 
then by a standard argument we could find a morphism of complexes (p making the above 
diagram commute, up to homotopy. Suppose, for the sake of argument, that (p exists and 
connects our two K-fiat resolutions via a commutative diagram (1.13) in the homotopy cat-
egory K(OcoX) of quasi-coherent sheaves. It is clear that (p must be a quasi-isomorphism, 
and extending to a triangle in the homotopy category, we have 

^ ^ —» ^ —^ E ^ 

We deduce that is acyclic and K-flat, because K-flatness is stable under mapping cones. 
Here is our enemy: the difference between two K-fiat resolutions of the same object is an 
acyclic K-flat complex of flat quasi-coherent sheaves. Denoting by K(Flat X ) the homotopy 
category of flat quasi-coherent sheaves (the natural home of K-flat resolutions) we set 

E(X) = {<? G K(FlatX) I ^ is acychc and K-flat} 

and deflne Km(Proj X) to be the Verdier quotient where such complexes are zero 

K„ (Pro j X) = K(Flat X)/E{X) 

This definition is speculative, because the morphism (p in (1.13) will not exist in general, 
but it turns out that K-fiat resolutions really are unique and functorial in this category; 
see Remark 5.9. Our simple demand, that flat resolutions should behave like projective 
resolutions, defines a triangulated category Km(Proj X ) with many nice properties. 

As often happens in mathematics, this exposition is not historically correct. The afline 
case was understood flrst, by Neeman, from a different direction not motivated by solving 
any problems with flat resolutions. In [Nee06a] and [Nee06c] Neeman studies, for a ring A, 
the homotopy category K(Proj A) as a subcategory of the homotopy category K(Flat A) 
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of flat modules, and he produces many interesting relationships, many of which can be 
summarized in a recollement [Nee06c, Remark 3.2] 

' . IK(Flatyl)" TKfPro iy l ) (1.14) 

where E(J4) is the triangulated subcategory of complexes E G K(Flat A) with the property 
that Hom^(P, E) is acyclic for every complex P of projective modules; in a more compact 
notation, E( / l ) is the orthogonal^ K(Proj^)- ' - . It follows almost immediately from one of 
Neeman's results [NeeOGa, Corollary 8.4] that the objects of E ( ^ ) are precisely the acyclic 
K-flat complexes; see Proposition 3.4. One consequence of the recollement (1.14) is that 
the following composite is an equivalence [NeeOGa, Remark 1.12] 

K(Projyl ) ^ K ( F l a t y l ) K(Flat ^ ) /E (y l ) (1.15) 

The interesting thing about this equivalence is that the right hand side makes no mention of 
projective modules, and the definition of K(Flat A) and E ( ^ ) both generahze immediately 
to schemes. It was this interesting result of Neeman that suggested the generalization of 
K(Proj A) to schemes, which motivated the research that led to the results in this thesis. 

Setting X = Spec{A) in (1.15) gives an equivalence K(Proj A) Km(Proj X), so that 
the mock homotopy category Km(Proj X) reduces to the homotopy category of projective 
modules over an afRne scheme. 

1.7. Contents. We begin in Chapter 2 with a review of background material on triangu-
lated categories, resolutions of complexes and relative homological algebra. In Chapter 3 
we define the mock homotopy category Km(Proj X) of projectives and estabhsh the tools 
needed to work with it effectively. In particular, we prove that it has small Homs. We 
demonstrate in Chapter 4 that it is compactly generated, which is the first half of Theorem 
1 above. In Chapter 5 we study the mock stable derived category Km,ac(Proj X) and prove 
Theorem II. 

In Chapter G we give the closed monoidal structure on IKm(Proj X), described above in 
Proposition V, which is immediately appUed in Chapter 7 to classify the compact objects in 
lKm(Proj X) and Km,ac(Proj X). This completes the proofs of Theorem I and Theorem III. 
In Chapter 8 we prove Theorem IV, which gives the equivalence KT„(Proj X) = K(Inj X) 
extending Grothendieck duality. In Chapter 9 we study two vignettes on the themes of 
earher chapters: the analogue of local cohomology for the mock homotopy category of 
projectives, and Proposition VI, which involves a new characterization of regular schemes 
in terms of the existence of complexes of flat quasi-coherent sheaves that are not K-flat. 

This brings us to the appendices. In Appendix A we prove that the inclusion of the 
homotopy category K(Flat X ) of flat quasi-coherent sheaves into the homotopy category 
K(QcoX) of arbitrary quasi-coherent sheaves has a right adjoint. In Appendix B this fact 
is applied to define a closed monoidal structure on K ( F l a t X ) and K(Inj X). Appendix C 
is more interesting: we communicate a result of Neeman which says that in any triangu-
lated category with coproducts that you are likely to encounter, the existence of tensor 

•"We put the orthogonal 1 on the opposite side to Neeman, see Chapter 2 for our conventions. 
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products automatically implies the existence of function objects which respect the trian-
gulation. This fact is used in Chapter 6 to give a quick construction of function objects 
in K „ ( P r o j X) and D(QcoX) . 

Setup. In this thesis schemes are all quasi-compact and separated and rings are 
commutative with identity, unless specified otherwise. The interested reader will note 
that "separated" can be replaced throughout with "semi-separated". 

A note on some foundational issues: we work in a fixed Grothendieck universe U, so a 
class is a subset of U and a set is an element of it. For the sake of the present discussion, 
anything else is called a conglomerate. Apart from the exceptions we are about to name, 
all categories have a class of objects and between each pair of objects, a set of morphisms. 

Exceptions arise by taking the Verdier quotient of two triangulated categories. Such a 
construction has a class of objects, but the morphisms between a pair of objects may not 
form a set, or even be small (i.e. bijective to a set). If in such a quotient the conglomerate 
of morphisms between every pair of objects is small, then we say it has small Horns and 
treat it as a normal category with complete safety. The Verdier quotients arising here are 
all of this type. 



Chapter 2 

Background and Notation 

In this chapter we review some background material, which is not intended to be read 
hnearly: the reader can skip to Chapter 3 and refer back as needed. We begin with trian-
gulated categories, focusing on recollements, Bousfield localization and standard properties 
of compactly generated triangulated categories. Then we recall in Section 2.1 and Section 
2.2 some properties of homotopy categories, including a review of K-projective, K-injective 
and K-fiat resolutions. In Section 2.3 we translate some theorems of relative homological 
algebra into the language of homotopy categories, which is the form in which we will use 
it in the body of the thesis. 

For background on general triangulated categories our references are Neeman [NeeOlb] 
and Verdier [Ver96] while for homotopy categories we refer the reader to Weibel [Wei94]. 
In a triangulated category T we always denote the suspension functor by E. 

Adjunctions. Let F,G . T —> S be triangulated functors. A trinatural transformation 
T] : F — » G is a natural transformation such that for every X £T the following diagram 
commutes in S 

^Vx 

Given triangulated functors F : A —> B and G : B —> A a triadjunction G 1 F is an 
adjunction between G and F, with G left adjoint to F, in which the unit rj : 1 —> FG and 
counit e : GF —> 1 are trinatural transformations. In fact, one of these transformations 
is trinatural if and only if both are. A triangulated functor has a right (left) adjoint if 
and only if it has a right (left) triadjoint [NeeOlb, Lemma 5.3.6]. Between triangulated 
functors we only ever consider trinatural transformations, and all our adjunctions between 
triangulated functors are triadjunctions, so we drop the prefix "tri" from the notation. 
Given a triangulated functor F : A —> B, we write Fx for the left adjoint and Fp for the 
right adjoint, when they exist. 

Localizing subcategories. A triangulated subcategory 5 C T is thick if every direct 
summand of an object of S lies in 5 , localizing if it is closed under coproducts in T , and 
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colocalizing if it is closed under products. Given a class of objects C C T we denote by 
Thick(C) the smallest thick triangulated subcategory of T containing the objects of C. 

Given a triangulated functor F : T —> <S the kernel Ker{F) is the thick triangulated 
subcategory of T consisting of those Y & T with F{Y) = 0. The essential image Im{F) 
is the full subcategory of objects in S isomorphic to F{Y) for some Y eT. Provided F is 
full, the essential image Im{F) is a triangulated subcategory of S. A triangulated functor 
F : T —» S is an equivalence up to direct factors if it is fully faithful and every X € S is 
a direct summand of F(Y) for some Y eT. 

We say that idempotents split in a triangulated category T if every endomorphism 
e : X —> X with ee = e admits a factorisation e = gf for some / : X —> Y,g:Y —» X 
with f g = ly . If T has countable coproducts then idempotents automatically split in T 
[NeeOlb, Proposition 1.6.8]. 

Lemma 2.1. Let T be a triangulated category with countable coproducts, and S a trian-
gulated subcategory closed under countable coproducts in T. Then S is thick. 

Proof. Since >S is a triangulated category with countable coproducts, idempotents split in 
5. Suppose X e y G 5 for X, r e T and let u : X —> X®Y,p : X®Y —y X he canonical. 
Then 9 = up is idempotent in S and therefore splits; let p : X © y —> Q,f:Q —> X ®Y 
be a sphtting with Q e S, so 6 = fg and gf = 1. We have (1 — 6)f = 0, so there is 
t : Q —> X with ut = / . One checks that t is an isomorphism, so X G 5 as required. • 

In light of this lemma, most of the triangulated subcategories that we encounter are 
automatically thick. 

Orthogonals. For a triangulated subcategory 5 of a triangulated category T, the follow-
ing triangulated subcategories of T are called the left and right orthogonals, respectively 

= { X G T I Homr(X, 5) = 0 for all S e S} 

S-^ = {X €T \ Homr(5, X ) = 0 for all 5 G 5 } 

Both are thick subcategories of T, with 5-'- colocahzing and localizing. Given a class 
of objects CCTwe write ^C for Thick(C) and C-^ for Thick(C)-L. It is clear that C-^ is 
the full subcategory of all X G T with Hom7-(S'C', X ) = 0 for every i G Z and C and 
similarly for -"-C. 

Verdier sums. Let T be a triangulated category with triangulated subcategories S, Q 
and denote by 5 * Q the full subcategory of T consisting of objects X eT that fit into a 
triangle with S e S and Q € Q 

S X ^ Q ^ES 

This subcategory is called the Verdier sum of S and Q. If HomT(5, Q) = 0 for every pair 
S e S,Q G Q then it is an exercise using [BBD82, Proposition 1.1.11] to check that S-kQ 
is a triangulated subcategory of T . 
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Verdier quotients. Recall from [Ver9G] or [NeeOlb, Chapter 2] the construction of the 
Verdier quotient of a triangulated category P by a triangulated subcategory C. We will 
need a slightly weaker notion; a weak Verdier quotient of P by C is a triangulated functor 
F : V —> T that satisfies C C Ker{F) and is "weakly" universal with this property, in 
the sense that given any triangulated functor G : V —> S with C C Ker{G) there exists a 
triangulated functor H : T —> S together with a natural equivalence HF = G. Moreover, 
we require that any two factorizations H, H' with this property be naturally equivalent. 

A triangulated functor F : V —> T is a weak Verdier quotient of P by C if and only 
if it factors as the Verdier quotient V —> VjC followed by an equivalence of triangulated 
categories V/C T. We have the following properties: let F : P —> T be a weak 
Verdier quotient of P by C. Then 

(i) Given X,Y eV the canonical map Homr)(X, Y) —• HomT(FA', FY) is an isomor-
phism if either X e^C ox Y eC^. 

(ii) Given triangulated functors H,H' : T —• S and a natural transformation $ : 
HF —> H'F, there is a unique natural transformation cp : H —> H' with 0 F = 

F G (iii) Suppose we have a diagram of triangulated functors V >-T >-Q. If GF has a 
right adjoint H then G has right adjoint FH. 

For proofs of these statements see [NeeOlb, Lemma 9.1.5] and [AJSOO, Lemma 5.5]. 

The notion of a recollement or glueing of triangulated categories was introduced by 
Beilinson, Bernstein and Dehgne in their influential paper [BBD82, §1.4]. In our study of 
hornotopy categories, (co)localization sequences and recollements will provide a powerful 
organizing principle. 

Recollements. We often encounter pairs of functors that, up to equivalence, are the inclu-
sion of, and Verdier quotient by, a triangulated subcategory. This situation is axiornatized 
as follows: a sequence of triangulated functors 

T ' — ^ T — ^ T " (2.1) 

is an quotient sequence if the following holds 

(El) The functor F is fully faithful. 

(E2) The functor G is a weak Verdier quotient. 

(E3) There is an equality of triangulated subcategories Im{F) = Ker{G). 

In this case G is a weak Verdier quotient of T by Im{F). The sequence (2.1) is a quotient 
sequence if and only if {T')°P —> T°p —> (7"")°? is a quotient sequence. We say that the 
sequence of triangulated functors (2.1) is a localization sequence if 

(LI) The functor F is fully faithful and has a right adjoint. 
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(L2) The functor G has a fully faithful right adjoint. 

(L3) There is an equality of triangulated subcategories Im{F) = Ker{G). 

On the other hand, we say that (2.1) is a colocalization sequence if the pair (F°p,G°p) of 
opposite functors is a localization sequence, which is equivalent to replacing "right" by 
"left" in (LI) and (L2). A sequence of functors is a recollement if it is both a localization 
sequence and a colocalization sequence. In this case, the various adjoints are often arranged 
in a diagram of the following form: 

T'; r , T" 

The original reference for locahzation sequences is Verdier's thesis; see [Ver96, §11.2] and 
[Ver77, §1.2 no.6]. The results were rediscovered by Bousfield [Bou79] and the reader can 
find more recent expositions in [AJSOO, §1], [NeeOlb, §9.2] and [Kra05, §3]. The next easy 
lemma tells us that any (co)localization sequence is a quotient sequence; in particular we 
have an equivalence T / T ' T " . 

Lemma 2.2. Every localization or colocalization sequence is a quotient sequence. 

Proof. It is enough to show that every localization sequence (2.1) is a quotient sequence. 
We prove that the induced functor M : T/Im{F) —> T" is an equivalence. Let Op be the 
right adjoint of G with unit r] : 1 —> GpG and set N = QoGp where Q : T —> T/Im{F) 
is the Verdier quotient. Then MN = MQGp = GGp = 1 and it is not difficult to check 
that Qri : Q —• QGpG is a natural equivalence. Therefore NMQ = NG = QGpG = Q 
from which we deduce that N M = 1, as claimed. • 

The following lemma gives a useful list of characterizations of localization sequences. 

Lemma 2.3. Suppose we have a quotient sequence of triangulated functors 

T ^ > T — ^ T " (2.2) 

The following are equivalent: 

(i) The sequence (2.2) is a localization sequence, 

(a) F has a right adjoint. 

(Hi) G has a right adjoint. 

(iv) The composite Im{F)-^ —> T —> T" is an equivalence. 

(v) For every X eT there is a triangle 

L ^ X R^T.L 

with L € Im{F) and R £ Im{F)^. 



17 

Proof. Up to equivalence a quotient sequence is of the form S —> T —» T/S for some 
triangulated subcategory S, so (i) {ii) (in) is [Kra05, Lemma 3.2]. For (v) (iv) 
(i) see [AJSOO, Proposition 1.6], • 

Remark 2.4. The dual of Lemma 2.3 characterizes colocalization sequences. To be pre-
cise, we replace "right" by "left" in {ii) and (Hi), replace Im{F)-^ by ^Im{F) in (iv), and 
replace {v) by the condition that for every X eT there is a triangle L —> X —> R —> 
EL with L € ^Im{F) and R G Im{F). 

Remark 2.5. In a quotient sequence C —> V —> V/C the Verdier quotient P / C may 
not have small Homs. But if the quotient sequence is a (co)localization sequence, then 
V/C is equivalent to a subcategory of "D, and thus has small Homs if V does. 

We say that a triangulated functor G : T —» S induces a localization sequence (resp. 
colocalization sequence, recollement) if the pair Ker{G) —> T —> 5 is a localization 
sequence (resp. colocalization sequence, recollement). 

Lemma 2.6. A triangulated functor G : T —> S with a fully faithful right adjoint (resp. 
fully faithful left adjoint) induces a localization sequence (resp. colocalization sequence). 

Proof We only prove the statement about locahzation sequences, as the statement about 
colocalization sequences is dual. Given X eT extend the unit morphism X —> GpG(X) 
to a triangle in T 

r ^ X ^ GpG{X) EY 

The counit of adjunction is a natural equivalence because Gp is fully faithful, so applying 
G to the triangle we infer that G ( r ) = 0 (using eG o Gr] = 1). That is, Y G Ker{G). 
One checks that GpG{X) G Ker{G)^ so the inclusion Ker{G) —> T has a right adjoint 
[AJSOO, Proposition 1.6]. Now, by definition, we have a localization sequence. • 

Compactness. Let T be a triangulated category with coproducts. An object C € T is 
said to be compact if every morphism G —> 0 - g ; Xi to a coproduct in T factors through 
a finite subcoproduct 

C » Xi^ © • • • © Xi^ —> ^ ^ 
iei 

The triangulated category T is compactly generated if there is a set Q of compact objects 
with the property that any nonzero X in T admits a nonzero morphism q —» X from 
some q E Q. In this case Q is called a compact generating set for T. For any triangulated 
category T we write T'^ C T for the thick subcategory of compact objects; if T is compactly 
generated with compact generating set Q then T'^ is the smallest thick subcategory of T 
containing Q and a locahzing subcategory of T containing Q must be all of T . For proofs 
of these statements see [NeeOlb] or [Kra02]. 

Many deep questions about triangulated categories involve the existence of adjoints, 
so the next result explains the relevance of compactly generated triangulated categories. 
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Proposition 2.7. Let F : T —> Q be a triangulated functor with T compactly generated. 

(i) F has a right adjoint if and only if it preserves coproducts. 

(ii) F has a left adjoint if and only if it preserves products. 

Proof See [Nee96, Theorem 4.1], [NeeOlb, Theorem 8.6.1] and [Kra02]. Note that it is 
crucial that T , Q have small Homs; this result will not necessarily hold if Q is a "category" 
where the morphisms between pairs of objects do not form a set. • 

Let T be a triangulated category with coproducts. A locahzing subcategory S C T 
is compactly generated in T ii S admits a compact generating set consisting of objects 
compact in the larger category T . In this case the inclusion S —> T has a right adjoint 
by Proposition 2.7, so there is a localization sequence S —> T —> T/S. 

Theorem 2.8. Let T be a compactly generated triangulated category and S a localizing 
subcategory compactly generated in T. Then = and T/S is compactly generated 
[with small Homs). Moreover, there is an equivalence up to direct factors 

r / S ' { T / S y (2.3) 

Proof. This is the Neeman-Ravenel-Thomason locahzation theorem; for the history of this 
result see [Nee06b]. We apply [Nee92] and JNeeOlb, Chapter 4] to deduce that the compact 
objects in S are precisely the compact objects of T that happen to lie in <S, that the Verdier 
quotient Q : T —> T/S preserves compactness, and that the canonical functor (2.3) is an 
equivalence up to direct factors. Observe that by Lemma 2.3 the pair S —> T —> T/S is 
a locahzation sequence and in particular the right adjoint Qp : T/S —> T is fully faithful. 
This shows that T/S has small Homs. Finally, it is not difficult to check that Q sends a 
compact generating set for T to a compact generating set for T/S, which proves that the 
latter category is compactly generated. • 

Lemma 2.9. Let F : T —» S be a triangulated functor with right adjoint G. Then 

(i) If G preserves coproducts then F preserves compactness. 

(ii) If T is compactly generated and F sends compact objects to compact objects, then G 
preserves coproducts. 

Proof See [Nee96, Theorem 5.1]. • 

Corollary 2.10. Suppose that we have a recollement with T compactly generated 

S I > T - : ^ Q (2.4) 

Then S is compactly generated, and provided Q is also compactly generated there is an 
equivalence up to direct factors T'^/Q'^ ^^ S'^. 
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Proof. Let F : 5 —> T and G : T —> Q be the pair of triangulated functors that forms 
the recollement, and denote the left adjoints of F and G by Fx and Gx respectively. There 
is a localization sequence 

Q ^ T - ^ S 

Since G\, F\ both have coproduct preserving right adjoints it follows from Lemma 2.9 that 
they preserve compactness. It is not difficult to check that Fx sends a compact generating 
set for T to a compact generating set for S, which is therefore compactly generated. Now 
assume that Q is compactly generated. If we identify Q with a triangulated subcategory 
of T via the fully faithful functor Gx, then Q is compactly generated in T . Prom Theorem 
2.8 and the equivalence TjQ S induced by the weak Verdier quotient Fx : T —> S 
we obtain an equivalence up to direct factors T^ jQ^ —> S'̂ , where we identify Qp with a 
subcategory of T^ via Gx- • 

When triangulated categories T and S are equivalent, the full subcategories of compact 
objects are equivalent. The next result proves a kind of converse, provided we know that 
the equivalence on compacts lifts to a functor on the whole category. 

Proposition 2.11. Let F : T —> S be a coproduct preserving triangulated functor between 
compactly generated triangulated categories. Provided F preserves compactness, it is an 
equivalence if and only if the induced functor F'^ : T'^ —> S'^ is an equivalence. 

Proof. This is straightforward to check; see for example [Miy07, Proposition 6]. • 

Bousfield subcategories. A Bousfield subcategory iS of a triangulated category T is a 
thick subcategory S CT with the property that the inclusion S —> T has a right adjoint 
(a Bousfield subcategory is automatically localizing). By Lemma 2.3 this is the same as a 
thick subcategory S that admits for each X £ T a triangle with L e S and R € S^ 

L —> X —> R —> EL (2.5) 

We note that triangles of this form are unique up to isomorphism; see [BBD82, Proposition 
1.L9]. There is an equivalence 5-*- T/S, so the quotient has small Homs. 

Rouquier introduced in [R.ouOl}, (5.3.3)] the concept of a cocovering of T by a family 
of Bousfield subcategories { 5 o , . . . ,5^}. Thinking of the subcategories as closed subsets 
and the quotients T/Si as open subsets, he shows how to prove statements about T by 
arguing over each element T / S i of the "open cover". This idea will be crucial in the proof 
of one of our major theorems in Chapter 4, so we give the definitions here in some detail. 

Elements of a cocovering (defined below) are required to satisfy a technical condition 
that is automatically satisfied in most examples. Let T be a triangulated category and 
let Ii,l2 CT he Bousfield subcategories. We say that I j and I2 intersect properly if for 
every pair of objects Mi e 1\ and M2 G 12 any morphism in T of the form 

Ml —> M2 or M2 —> Ml 

factors through an object of the intersection Ji n J2. Given a triangulated category T and 
Bousfield subcategories J i , I2 we follow the notation of Rouquier and denote the inclusions 
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by i i . : I i —> T and 12. : I2 — ' T with right adjoints i\,i2- Let j l : T — » T / J i and 
j ^ - . T — » T / I 2 be the Verdier quotients with right adjoints j i * j 2 * -

Lemma 2.12. Let T be a triangulated category with Bousfield subcategories I\,l2- The 

following conditions are equivalent: 

(i) The subcategories 1\ and I2 intersect properly. 

(ii) iiti[{l2) C I2 and 12^2(^1) Q Ii-

(in) juji(T2) CI2 andj2*j2{Ti) QTi. 

Proof. See [Rou03, Lemma 5.7]. • 

Let T be a triangulated category with coproducts. A cocovering of T is a nonempty 
finite set .F = { T o , . . . , Td) of Bousfield subcategories of T with the property that any pair 
Ti,Tj of objects in T intersect properly and 7̂ ) n • • • n contains only zero objects. 

Theorem 2.13. Let T be a triangulated category with coproducts and a cocovering T by 
Bousfield subcategories. Assume that for all I e f and T' C {1} the quotient 

/ \ / ^ n^' / n 
Vi'eJ^' / \x'€Jf'u{i} 

is compactly generated in T/I. Then T is compactly generated and X e T is compact if 
and only if it is compact in T / I for all J G JF, Moreover, if J is a Bousfield subcategory 
of T intersecting properly every element of T with the property that for every I e T and 
T' CT \ { ! } the subcategory 

\ I'er 

\ 

j n f | I ' / j n f l I ' 

is compactly generated in T / I , then J is compactly generated in T . 

Proof. See [Rou03, Theorem 5.15]. Note that the subset T' is allowed to be empty, so in 
particular the quotients T / X must be compactly generated for X ^ T . • 

2.1 Homotopy Categories 

The triangulated categories of interest to us are homotopy categories and their quotients. 
Let A' be an additive category and denote by C(A') the category of all complexes in A'. 

Complexes are usually written cohomologically, as in the following diagram 

an s- + ̂  

The homotopy category K(A') has as objects the complexes in X and as morphisms the 
homotopy equivalence classes of morphisms of complexes. Given an abelian category A we 
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denote by Kac(.4) the triangulated subcategory of consisting of the complexes X with 
H^{X) = 0 for all n € Z. Such complexes are called exact or acyclic. The (unbounded) 
derived category D ( ^ ) is defined to be the Verdier quotient of by the triangulated 

subcategory Kac(>t), with the quotient usually denoted by q : —> 
Let A he a ring and denote by Modyl the abelian category of yl-modules. We write 

for K ( M o d / l ) and D ( ^ ) for D(Modv4). Let X be an additive subcategory of Modyl . 
Then we can form the homotopy category K(A'), which is a triangulated subcategory (not 
closed under isomorphism) of K ( ^ ) . This defines homotopy categories ]K(Proj A), K(Inj A) 
and K ( F l a t / l ) of projective, injective and flat ^-modules, respectively. 

If X is a ringed space and OTot)(X) the category of sheaves of modules on X , then K(A') 
denotes K(OToOX) and D(X) denotes D(OToOX). If X is a scheme then Oco(X) denotes 
the category of quasi-coherent sheaves, D(QcoX) the derived category of quasi-coherent 
sheaves and Dqc(X) the triangulated subcategory of D(X) consisting of the complexes 
with quasi-coherent cohomology. 

Given an abelian category A an important operation on complexes in A is truncation. 
For a complex X m A and n G Z our notation for the s tandard truncations are: 

X<n • • •• ^ ^ Kerd^ 

X>n • • • • » 0 —> 0 - Cokerd';.-^ ^ 

bX<n • • • • ^ x"-^ —> —» 0 — • 0 —» • • • 

bX>n • • •• — • 0 —> 0 > Y^ > ) > 

The complexes bX<ri and bX>n are called the brutal or stupid truncations. 

R e m a r k 2.14. Let X, Y be complexes in an abehan category A and suppose tha t Y^ = 0 
for i > n. Composition with the canonical morphism X —> b^<n defines an isomorphism 

Hom|K(^)((,X<„,y) H o m K ( ^ ) ( X , r ) 

On the other hand, if = 0 for i < n then composition with the canonical morphism 
of complexes bX>n —> X gives an isomorphism HomK(_4)(X, V) HomK(^)(6J'('>„, V). 
There are analogous results where we truncate in the second variable. 

Given a morphism / : X —> Y of complexes we define the mapping cone complex 
cone( / ) with the sign conventions of Conrad [ConOO, §L3]. For a morphism / : X —• Y 
in an arbitrary triangulated category T we refer to any object C completing / to a triangle 
X —> Y —> C —> E X in T as the mapping cone of / , by a s tandard abuse of notation. 

L e m m a 2.15. Let A be an abelian category and suppose that we have a degree-wise split 
exact sequence of complexes in A 

0 ^ X - ^ Y - ^ Z - 0 (2.6) 

There exists a canonical morphism z : Z —> HX in K(^) fitting into a triangle in IK(yt) 

X - ^ - ^ Y ^ - ^ Z ^ ^ H X (2.7) 
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Proof. There is a factorization Y —> cone( / ) —> Z of g through the mapping cone, and 
the degree-wise spht exactness of (2.6) makes the factorization ^ : cone ( / ) —> Z into a 
homotopy equivalence. Consider the canonical mapping cone triangle in IK(^) 

(2.8) 

and set 2 = - w o ^ - ^ . The candidate triangle (2.7) is isomorphic to (2.8) and is therefore a 
triangle. The sign on 2 exists to ensure compatibility of H"-{z) with the classical connecting 
morphism. • 

It is often useful to write a complex as the limit or colimit of bounded complexes, and 
in triangulated categories these hmits and colimits become homotopy limits and cohmits; 
see [NeeOlb, §1.6] and [BN93] for relevant background. Since we are often working in 
homotopy categories, we will most often write complexes as homotopy (co)limits of their 
brutal truncations. 

Remark 2.16. Let be a cocomplete abelian category and suppose that we are given a 
sequence of degree-wise spht monomorphisms of complexes in A 

X , - X s (2.9) 

We have a degree-wise spht exact sequence, in the notation of [NeeOlb, Definition 1.6.4] 

0 I z ^ ^ lim Xi ^ 0 

Prom Lemma 2.15 we deduce that the direct limit Im X j is isomorphic, in K ( ^ ) , to the 
homotopy colimit of the sequence (2.9). There is an important special case: let Vl̂  be a 
complex in A and for arbitrary n e Z write W as the direct limit of the following sequence 
of brutal truncations 

bW>n bW>^„-i) —> bW>^„-2) ^ • • • (2.10) 

Each of these morphisms is a degree-wise split monomorphism, so W is isomorphic in K ( ^ ) 
to the homotopy cohmit of the sequence (2.10). If A is complete rather than cocomplete, 
then W is the inverse hmit of the following sequence of brutal truncations 

> 6W'<(n4-2) ^ ^ bW<n (2.11) 

and W is the homotopy hmit in K ( ^ ) of this sequence. 

Bicomplexes. Let ^ be a cocomplete abelian category. A bicomplex in ^ is a complex of 
complexes: it is a collection of objects and morphisms : B^^ —> ; 
Bii —> for e Z such that 5i o = 0, o = 0 and o 02 = o 
Represented on the page the first index is the column and the second the row; indices 
increase going to the right and upwards. The totalization of a bicomplex B is the complex 
Tot(B) defined by 

T o t ( 5 ) " = with differential = u^i+i)jdy + 
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where u^ is tiie injection of B^^ into the coproduct. A morphism of bicomplexes ^p : B —» 
C is a collection of morphisms : B^^ —> C^^ }i,jex with <podi = di oip and (pod2 = d20ip. 
Any such morphism induces a morphism of the totahzations Tot(!/3) : Tot(B) —> Tot(C) 
defined in degree n by Tot((/?)" = , making the totalization into an additive 
functor from bicomplexes to complexes. The next lemma proves that this functor is exact. 

L e m m a 2.17. Suppose that we have a short exact sequence of bicomplexes, split exact in 
each bidegree 0 —> B —> C —> D —> 0. The sequence of totalizations 

0 Tot(B) —^ Tot(C) —^ Tot(£') 0 (2.12) 

is split exact in each degree, and there is a canonical triangle in K(^) 

Tot(B) ^ Tot(C) ^ Tot(D) ^ ETot (B) 

Proof. Saying that the sequence is split exact in each bidegree means that for every i,jeZ 
the sequence 0 —» B®-' —> C^^ —> D^^ —> 0 is split exact. In this case it is not difficult 
to check that (2.12) is split exact in each degree, so from Lemma 2.15 we deduce the 
desired triangle. • 

Next we review some standard facts that tell us how to assemble the totalization of 
a bicomplex from its columns, or rows, via triangles in K ( ^ ) . Let B be a bicomplex in 
A. Given /c G Z we write B*'^ for the fcth row of the bicomplex and B'^' for the fcth 
column. Let denote the bicomplex B with rows < k deleted. Graphically, this is 
the following diagram 

: : : (2.13) 

I 
. jg(i+l)(fc+l) 

I 

I 
. Qik 

o-

There is a morphism of bicomplexes Brows>fc+i —> Brows>fc with cokernel If we agree 
that this row is placed in the correct vertical degree, then we have an exact sequence of 
bicomplexes 0 —» Brows>A:+i —> Brows>k —» —» 0 which is split exact in each 
bidegree. This yields by Lemma 2.17 an exact sequence of the totahzations, split exact in 
each degree 

0 Tot(Brows>fc+i) ^ Tot(B rows 

from which we infer a canonical triangle in IK(^) 

Tot(Brows>fc+i) ^ Tot(B,ows>fc) — 

-k r>»k T.-'^B 0 

ETot(Brows>fc+l) (2.14) 
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and a sequence of morphisms of complexes, all degree-wise split monomorphisms 

T o t ( B „ w s > f c ) ^ T o t ( B r o w s > f c - i ) ^ T o t ( B r o w s > f c - 2 ) ^ ' ' ' ( 2 - 1 5 ) 

The totalization of B is the direct hmit of the totalizations Tot(B) = liin Tot(i3rows>A:-i)-
By Remark 2.16 this agrees with the homotopy cohmit in IK(^), so we have a triangle 

0 T o t ( B , o w s > f c - i ) — 0 T o t ( S , o w s > f c - i ) ^ T o t ( B ) ^ E 0 T o t ( B „ w s > f c - i ) 

j>0 i>0 i>0 

Remark 2.18. Suppose for example that B vanishes in rows > k. Then Brows>fc = B''^ 
and we have constructed Tot(B) as the homotopy cohmit of a sequence (2.15) beginning 
with the fcth row and adding at each stage a new row, via the triangle of (2.14). In 
particular, if there is some locahzing subcategory of K ( ^ ) (or D(>1), provided A has exact 
coproducts) containing each row of B, then it must contain the totalization Tot(B). 

We say that B is bounded vertically if there exist integers s, t with the row B''^ equal to 
zero unless s <k <t. \n this case Tot(Brows>i) = Tot(B) for i < 0, and a finite sequence 
of triangles (2.14) connects the row B*^ to the complex Tot(B). Hence, if any triangulated 
subcategory of K ( ^ ) or D(.A) contains the rows of B, it contains the totalization Tot(B). 

There is a similar technique for columns. Denote by Bco1s>A: the result of deleting all 
columns < kin B. There is a morphism of bicomplexes Bcois>fc+i —> Bcois>k with cokernel 
B ' " and an exact sequence of bicomplexes 0 —> Scols>fc+i — ' ^cols>fc —* B ' " —> 0 
split exact in each bidegree, which yields a triangle in K ( ^ ) 

T o t ( B e o i s > f c + i ) ^ T o t ( B e o i s > ) c ) ^ B'"' ETot{B,o\,>k+i) ( 2 . 1 6 ) 

Lemma 2.19. Let A be a cocomplete abelian category and B a bicomplex in A that is 
bounded vertically and has contractible (acyclic) columns. Then Tot(B) is a contractible 
(acyclic) complex. 

Proof. Both claims are standard; we prove the statement about contractibihty, since it is 
probably less well-known. Exactly the same argument shows that if the columns of B are 
acychc then Tot(B) is acyclic. We observe that complex X in ^ is contractible if and only 
if it is acyclic and for every n G Z the following short exact sequences is split exact 

0 ^ Ker{d^) ^ X " — . 0 

Since B is bounded vertically, the totahzation complex Tot(B) in degree n only "sees" a 
horizontally bounded region of the bicomplex. To be precise, let s, t be integers such that 
the row B*'' is the zero complex unless s < k <t. Then 

Tot(B)" = = ® • • • e 

Thus in checking contractibihty of Tot(B) we may as weU assume that B is horizontally 
bounded as well as vertically bounded. In that case, there is an integer n such that the 
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column B^* is zero for k > n. Using (2.16) we have a series of triangles in K(^) , beginning 
with Beols>n = 

E-^B"* ^ Tot(Bcols>n-l) 

Tot(Beols>n-l) ^ Tot(Z?eols>n-2) ^ E-"+2B(n-2). ^ E Tot(i?eols>n-l) 

Since the columns are all contractible, we deduce that Tot(Bcois>n-i) is contractible for 
i > 0. But for i » 0 this totalization is equal to Tot(B), because B is horizontally 
bounded, which proves that Tot(S) is contractible. • 

2.2 Resolutions of Complexes 

Given an abehan category A the correct notion of injective and projective resolutions for 
complexes was first elaborated by Spaltenstein [Spa88]. Following his notation, complexes 
in the orthogonal Kac(^) C K(^) are called K-projective, and those in Kac(^)"'- C K(^ ) 
are called K-injective. Using the isomorphism Horn^(X, y ) = HomK(_4)(X, E " y ) , we 
have the following alternative characterization: 

A complex P is K-projective Hom^(P, Z) is acychc for every acychc complex Z 

A complex I is K-injective Hom^(Z, I) is acyclic for every acyclic complex Z 

Any bounded above complex of projectives is K-projective, and any bounded below com-
plex of injectives is K-injective. A K-projective resolution of a complex X is a quasi-
isornorphism P —> X from a K-projective complex P, and a K-injective resolution is a 
quasi-isomorphism X —> / to a K-injective complex I. 

If ^ is a category of modules over a ring, or sheaves of modules over a ringed space, a 
complex in ^ is called K-flat if ^ ® <? is acyclic for any acyclic complex (f in A. The 
K-flat complexes form a localizing subcategory of K(^) , any bounded above complex of 
flats is K-flat and the class of K-flat complexes is closed under direct hmits and homotopy 
colimits in K(^) ; see [Spa88, §5] and [Lip, §2.5]. A K-fiat resolution of ^ is a quasi-
isomorphism —> ^ from a K-flat complex J^. Let us clear up a possible point of 
confusion: given a scheme X and a complex of quasi-coherent sheaves, we say that JT 
is K-flat when it is K-flat as a complex of sheaves of modules in the sense just defined. 

Be careful to observe that the definitions of K-projectivity and K-injectivity are relative 
to the abelian category A. If we have an abehan subcategory B C A the K-injectives in 
the two categories may differ, and this is a distinction to keep in mind when we come to 
study categories of quasi-coherent sheaves Oco{X) C 9)toO(X) for a scheme X. 

Remark 2.20. A complex X has a K-injective resolution if it fits into a triangle in K ( ^ ) 

C ^ X ^ / EC (2.17) 
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with C e K a c ( ^ ) and / G K a c ( ^ ) - ' " - If this triangle exists for every complex X we say 
that A has K-injective resolutions. By Lemma 2.3 it is equivalent to say that the Verdier 
quotient q : K ( ^ ) —> D(>1) has a right adjoint, or that there is a localization sequence 

Qp 

The right adjoint qp sends X G D(^ ) to the complex I fitting into a triangle (2.17), which is 
unique up to homotopy equivalence. To be perfectly clear, the adjoint qp takes K-injective 
resolutions. It is well-known that K-injective resolutions exist for any Grothendieck abelian 
ca tegory^; see [Spa88] and [A.JSOO]. There is a dual discussion of K-projective resolutions, 
when they exist. 

There is a standard construction of resolutions of unbounded complexes that we review 
below. In what follows A denotes a Grothendieck abelian category; see [Ste75, Chapter 5] 
for the definition. Let V Q Ahe & class of objects that is closed under isomorphism and 
arbitrary coproducts, contains the zero objects, and has the property that every X £ A 
admits an epimorphism P —> X with P e V. We say that a complex P is in V when 
F" £ V for every i G Z. The dual of [Har66, Lemma 4.6] constructs, for any bounded 
above complex X in A, a quasi-isomorphism P —> X with P a bounded above complex 
in v. The next lemma proves that, if we choose our resolutions correctly, we can make 
this process functorial. This seems to be due to Spaltenstein; see [Spa88, Lemma 3.3]. 

Lemma 2.21. Let X —> Y be a morphism of bounded above complexes in A, and suppose 
P —> X is a quasi-isomorphism with P a bounded above complex in V. There exists a 
commutative diagram in K(^) 

P - Q (2.18) 

X - K 

with Q —> Y a quasi-isomorphism and Q a bounded above complex in V. 

Proof. Let T be the mapping cone of P —> X —> Y. There is a canonical morphism 
—> P and we can find a quasi-isomorphism P' —• E ^ ' T with P' a bounded above 

complex in P. Take Q to be the mapping cone of P' —> —> P. • 

Using homotopy cohmits, we can construct a resolution for any complex. 

Lemma 2.22. Any complex X in A admits a quasi-isomorphism P —» X with P a 
complex in V that is the homotopy colimit in IK(^) of a sequence 

Po ^ Pi ••• 

of bounded above complexes in V. 
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Proof. By the dual of [Har66, Lemma 4.6] we can find a quasi-isomorphism Pq —> X<o 
with PQ a bounded above complex in V and, using Lemma 2.21, construct a commutative 
diagram in K(^ ) 

PO - P i (2.19) 

y Y 
Xco X<i X<2 

in which every vertical morphism is a quasi-isomorphism, and each Pj is a bounded above 
complex in V. Taking the homotopy colimit of the rows of the diagram (2.19) in K ( ^ ) 
we obtain a quasi-isomorphism holirnn>oPn —> X (using exactness of coproducts in A). 
Since P = holimn>oPn is, by definition, the mapping cone of a morphism of two complexes 
in V, it is also a complex in V. • 

2.3 Relative Homological Algebra 

Throughout this section /I is a ring (commutative, as usual) and modules are defined over 
A by default. For a variety of reasons, we are interested in the homotopy categories of 
injective, projective and fiat modules 

K(Inj/l), K(Projyl), K(Flatyl) 

so it is worthwhile studying ways to construct compact objects in these categories. The 
subject of relative homological algebra provides a rich set of tools for this purpose: there 
is a unified way of constructing, from a finitely generated module M, a compact object in 
]K(A') for A" one of Inj(^), Proj(yl), Flat(yl). 

In this section we introduce some relevant concepts from the literature, and explain how 
to view results of relative homological algebra in the context of homotopy categories. Many 
of these ideas have now appeared in a comprehensive paper of Holm and J0rgensen [H.]()7] 
which treats the material in greater generality than we need to here. The observations of 
this section were obtained independently of their paper. 

Setup. In this section X denotes a class of modules closed under isomorphism, finite direct 
sums and direct summands. In practice, X will be one of the classes Inj(^), Proj(^) or 
Flat(>l). We denote by K(A') the corresponding homotopy category. 

In constructing objects of K(A) the key concept is that of a preenvelope, which has 
been studied extensively in the literature; we recall the basic definitions from [Xu9G, §1.2]. 

Definition 2.23. An X-preenvelope of a module M is a morphism ^ : M —> X with 
X e X such that any morphism / : M —• X' where X' e X factors as f = gcj) for some 
morphism g : X —> X'. We do not require the factorization to be unique. Taking X to be 
the classes Inj(yl), Proj(^) and Flat(^) we obtain, respectively, the notion of a injective, 
projective and flat preenvelope. Some observations: 

• An injective preenvelope is precisely a monomorphism 0 : M —> X with X injective, 
so every module M has an injective preenvelope. 
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• Over a noetherian ring every module has a flat preenvelope [Xu96, Theorem 2.5.1] 
and every finitely generated module has a projective preenvelope (see Remark 2.26). 

Even over a noetherian ring not every module has a projective preenvelope, and those 
projective or flat preenvelopes that exist are not always monomorphisms; for example, see 
[AM93, Corollary 3.6] and [Din96, Corollary 3.9], 

A flat resolution of a module M is an exact sequence with each F ' flat 

> iT-i — , F^ —> M —> 0 (2.20) 

Over a noetherian ring we can take flat preenvelopes and cokernels repeatedly to construct 
a complex (not necessarily exact) extending to the right with each F ' flat 

0 — » M — > F ° — > F^ — ^ F ^ — ( 2 . 2 1 ) 

This is called a proper right flat resolution of M (see below for the precise definition). Such 
resolutions were introduced by Enochs in [Eno81] where they were known as resolvents. In 
this article, we use the notation of Holm [Hol04, §2.1]; see also [Xu96, §3.6] and [E.JOO, §8.1]. 
We prove that applying the construction (2.21) to finitely generated modules produces 
compact objects in K(Flatyl) (resp. K(Proj .4), when we use projective preenvelopes). 

Definition 2.24. An augmented proper right X-resolution of a module M is a complex 

5 : 0 — . M ^ ^ —^ ^ ••• (2.22) 

with X^ ^ X such that Hom^(5, X ) is acychc for every X £ X. We call the complex X 
consisting of just the objects X ' a proper right X-resolution of M. Note that the complex 
S in (2.22) need not be exact. 

A proper right injective resolution is simply an injective resolution. Over a noetherian 
ring every module has a proper right flat resolution because flat preenvelopes exist; see 
the next remark. We show in Remark 2.26 that over a noetherian ring a finitely generated 
module has a proper right projective resolution. 

Remark 2.25. Let M be a module with an augmented proper right A'-resolution 5 

5 : 0 — . . . . (2.23) 

Then the morphisms M —> X® and Coker{M —> X°) —> X\Coker{X'-^ —> X') —> 
for i > 1 are A"-preenvelopes. In fact this property characterizes the complexes S of 

the form given in (2.23) that are augmented proper right A'-resolutions. 
On the other hand, suppose that every module has an A'-preenvelope and let M be 

a module. We construct an augmented proper right A'-resolution of M as follows: take 
an A"-preenvelope M —> with cokernel X° —> then take an A"-preenvelope 
C —> X^ and let C^ denote the cokernel of the composite X° —> C° —> XK Take an 
rY-preenvelope of C ' and repeat to construct an augmented proper right A'-resolution. 
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Remark 2.26. Let ^ be a noetherian ring and M a finitely generated module. Then 
the dual M* = Hom^(M, yl) is a finitely generated module, so it admits a resolution by 
finitely generated projectives (in the ordinary sense) 

y P2 —» Pi —> Po —> M* —> 0 

Applying Hom4( —, ̂ 4) and composing with the canonical morphism M —> M** we have a 
complex of finitely generated modules with each P^ a finitely generated projective module 

5 : 0 —> M —> Pq* —y P; —> P^ — » • • • (2.24) 

It follows from [.l0r()5, Lemma 1.3] that S is an augmented proper right projective resolu-
tion; that is, P* is a proper right projective resolution of M. In particular, the morphism 
M —> PQ is a projective preenvelope. 

The next result gives the connection between proper right resolutions and orthogonals. 

Proposition 2.27. Let M be a module and suppose that we are given a complex 

S-.0 ^ M X° ^ X^ X"^ ••• 

with X^ £ X. The following conditions are equivalent: 

(i) S is an augmented proper right X-resolution. 

(ii) S belongs to ^ K(A'). That is, HomK(^)(5, Z ) = 0 for every Z G K{X). 

Proof (i) (a) By definition, Hom4(5, X ) is acyclic for X e X. Taking cohomology we 
deduce that HomK(/i)(E'5, X ) = 0 for every i e Z, so X belongs to {S}"^. It follows by a 
standard argument that any bounded complex in K(A') also belongs to {S}-*-. 

By Remark 2.16 every bounded below complex Z in K(A') is the homotopy limit of 
its truncations bZ<n, which are bounded complexes and therefore belong to {S'}-^, This 
orthogonal is colocalizing, so it is closed under homotopy limits, and thus Z is in {5}-'-. 
Finally, given any complex Z G K(A'), we have by Remark 2.14 

HomK(,i)(5, Z) ^ HomK(^)(5,6Z>_i) = 0 

which shows that 5 belongs to IK(A'), as required. 
(ii) (i) For X € X we have F ' H o m ^ ( 5 , X ) ^ HomK(^)(5, E^X) which is zero by 

assumption. This proves that Hom^(5, X ) is acychc and that S is an augmented proper 
right A'-resolution. • 

A proper right A'-resolution of M is the closest approximation to M among complexes 
in K(A'). More precisely, such a resolution represents M in the homotopy category K{X). 
It follows that the proper right -^-resolution XM of M (if it exists) is unique up to canonical 
isomorphism in K(A'). 
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Corollary 2.28. Let M be a module with proper right X-resolution Xm- The canonical 

morphism of complexes M —• XM extends to a triangle in K(^) 

S M ^ Xm (2.25) 

with S in -'-K(A'). For any complex Y in K(A') there is a natural isomorphism 

HomK(;t)(XM, Y) ^ HomK(^)(M, F ) (2.26) 

Proof. Let S be the augmented proper right A'-resolution of M corresponding to XM, 
where we agree that in the complex 5 the module M has degree zero. Then E S is 
canonically isomorphic to the mapping cone of M — • XM and fits into a triangle (2.25). 
By Proposition 2.27 we have 5 G -'- IK(A'), so given Y G K(A') we can apply the homological 
functor HomK(^)(—iK) to (2.25) to deduce the isomorphism (2.26). • 

Let us state this result for our special examples of the class X. Let ^ be a noetherian 
ring and M a module with injective resolution IM and proper right flat resolution FM-

By the previous corollary we have isomorphisms 

UOMKDM A){IM, -] ^ HomK(^)(M, - ) (2.27) 

HomK(Fiat/i)(^^M, - ) ^ HomK(^)(M, - ) (2.28) 

If M is finitely generated then it has a proper right projective resolution FM and 

HomK(P,ojA)(^M, - ) ^ HomK(^)(M, - ) (2.29) 

A finitely generated module M is compact in K ( ^ ) , so in this case the proper resolutions 
IM, PM and FM are compact in their respective homotopy categories (here we use the fact 
that these choices of X are closed under coproducts). Letting M vary produces a compact 
generating set for K(Inj A) and ]K(Proj A); see [Kra()5, Proposition 2.3] and Theorem 2..30. 

These isomorphisms are not new; in the injective case we have reproduced [Kra05, 
Lemma 2.1] and in the projective case [,]0rO5, Lemma 1.5], since the proper right projective 
resolution FM is precisely the complex P* of J0rgensen's [.l0r()5, Construction 1.2], The 
point of this section is that these results are special cases of a general principle: 

Meta-Theorem 2.29. To represent a module M in the homotopy category K(A') take a 

proper right X-resolution of M. To construct compact objects in K(A'), represent finitely 

generated modules. 

The next result is an improvement on a result of J0rgensen [j0rO5, Theorem 2.4] made 
possible by recent work of Neeman^ To be clear, nothing about the next theorem is new; 
the fact that K(Pro j A) is compactly generated can be found as ]Nee06a, Proposition 6.14]. 
We state the result here for the reader's convenience. 

' W e should clarify what we mean by an "improvement". j0rgensen's theorem is, in some sense, more 

general, but specialized to commutative noetherian rings he requires, roughly speaking, that the ring have 

finite Krull dimension. See [.]0rO.5] for the precise details. 
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T h e o r e m 2.30. If A is noetherian then K(Proj A) is compactly generated, and 

S = {TI^PM \M is a finitely generated module and i G Z} 

is a compact generating set, where PM denotes a proper right projective resolution of M. 

Proof. Up to isomorphism there is a set of finitely generated modules. Pick one module 
from each isomorphism class and let 5 be a set containing a proper right projective reso-
lution for each of these chosen modules, together with all shifts of such complexes. These 
objects are compact, and we claim that S generates K(Proj A). To prove the claim, we 
have to show that if a complex Q of projective modules satisfies 

HomK(Proj4)(E'PM,Q) = 0 for all finitely generated M and i G Z (2.30) 

then Q is zero in K(Proj A). The proof of [.l0rO5, Theorem 2.4] shows that the condition 
(2.,'50) forces Q to be an acyclic complex with flat kernels. At this point J0rgensen uses 
his hypothesis that all flat modules have finite projective dimension to conclude that each 
kernel module of Q is projective, which implies that Q is contractible. 

This hypothesis is not necessary: Neeman proves in [NeeOGa, Theorem 7.7] that any 
acyclic complex of flat modules with flat kernels belongs to the orthogonal K(Proj A)^ as 
an object of K ( F l a t ^ ) . Since Q belongs to both K(Proj>l) and K(Proj^)- '- it must be 
zero, which is what we needed to show. • 

Remark 2.31. Let .4 be a noetherian ring. Given a finitely generated module M, we 
can construct a proper right flat resolution FM of M with each finitely generated and 
projective [E,]85, Example 3.4]. By (2.28) we have a natural isomorphism 

HomK(Proj/l)(^'M, - ) = HomK(Flat/l)(^M, " ) ^ HomK(^)(M, - ) 

This is the unique property of the proper right projective resolution, so we deduce that 
FM is isomorphic in K(yl) to the proper right projective resolution of M. 

This is consistent with a result of Neeman [NeeOGa, Remark 6.13] which says that the 
inclusion K(Proj —> K(Flatyl) preserves compactness: by Theorem 2.30 there is a 
compact generating set for ]K(Proj A) consisting of proper right projective resolutions PM 
of finitely generated modules M and, as we have just observed, such a complex is compact 
in K ( F l a t ^ ) as it agrees with the proper right flat resolution. 

There is a dual theory of precovers and proper left resolutions that can be used to 
contravariantly represent a module in K(A'). Our reference is once again [Xu96, §1.2]. 

Defini t ion 2.32. An X-precover of a module M is a morphism cj) : X —> M with 
X e X such that any morphism / : X' —> M with X' e X factors as f = (f)g for some 
g • X' —> X. We do not require the factorization to be unique. Taking X to be the classes 
Inj(^) ,Proj(yl) and Fla t (^) we obtain, respectively, the notion of a injective, projective 
and fiat precover. Some observations: 
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• A projective precover is precisely an epimorphism 0 : X —> M with X projective, 
so every module M has a projective precover. 

• Over a noetherian ring every module has an injective precover; see [Xu96, Theorem 

2.4.1], 

• Every module has a flat precover. This was a conjecture of Enochs for almost twenty 
years and was settled in the affirmative by Bican, El Bashir and Enochs [BEBOl]. 

The reader should note that flat precovers are always epimorphisms, but injective precovers 
are not necessarily epimorphisms and can even be zero; see [Xu96, Theorem 2.4.8]. 

Definition 2.33. An augmented proper left X-resolution of a module M is a complex 

5 : , x - 2 ^ X - i ^ M —> 0 (2.31) 

with X^ £ X such that Hom^(X, 5 ) is acychc for every X & X. We call the complex X 
consisting of just the objects X^ a proper left X-resolution of M. Following tradition, we 
will sometimes index the complex X homologically rather than cohomologically (that is, 
writing Xi for X"'). Note that the complex 5 in (2.31) need not be exact. 

A proper left projective resolution is simply a projective resolution. Every module has 
a proper left flat resolution and over a noetherian ring every module has a proper left 
injective resolution, because precovers of both type exist; see the next remark. 

Remark 2.34. Let M be a module with augmented proper left A'-resolution 

S : > —> —• —> A/ —> 0 (2.32) 

Then the morphisms ^ M and Ker{X° M) and X " ' " ! ^ Ker{d^') 
for i > 1 are A'-precovers. In fact this property characterizes the complexes S of the 
form given in (2.32) that are augmented proper left A'-resolutions. If every module has an 
A'-precover then we can take repeated precovers and kernels to construct an augmented 
proper left A'-resolution of M. 

The next pair of results give the connection between left resolutions and orthogonals. 
The results are dual to Proposition 2.27 and Corollary 2.28, so we omit the proofs. 

Proposition 2.35. Let M be a module and suppose that we are given a complex 

5 : » —> ^ ^ M — » 0 

with X^ e X. The following conditions are equivalent: 

(i) S is an augmented proper left X-resolution. 

(ii) S belongs to K(A')-'-. That is, HomK(A)(^, 5 ) = 0 for every Z G K(A'). 

A proper left A'-resolution contravariantly represents a module in K(A'). 
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Corollary 2 .36 . Let M be a module with proper left X-resolution XM- Then the canonical 

morphism of complexes XM —> M extends to a triangle in K(^) 

XM —> M — > 5 —> EXM (2.33) 

with S in K(A')-'-. For any complex Y in K(A') there is a natural isomorphism 

HomK(4,(y,M) (2.34) 

The triangle (2.25) of Corollary 2.28 can be taken as the definition of a proper right 
resolution. This has the advantage that the generalization to complexes is immediate; we 
will make use of proper resolutions of complexes in Chapter 4 and again in Appendix B. 

Definition 2 .37 . Given a complex M of modules and a triangle in K(yl) 

S ^ M ^ XM (2.35) 

with XM € K(A') and 5 G -*- IK(A') we call the complex XM a proper right X-resolution. 
The complexes M fitting into a triangle of the form (2.35) form a triangulated subcategory 
of K(yl) (called the Verdier sum). Hence, if every module has a A'-preenvelope then every 
bounded complex of modules admits a proper right A'-resolution. Similarly, a proper left 
X-resolution of a complex M is a morphism of complexes XM —> M fitting into a triangle 

XM —> M —> S —> ^XM 

with XM G K{X) and 5 € K(A')-'-. When M is a module these two definitions agree with 
the original definitions; see Corollary 2.28 and Corollary 2.36. 
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Chapter 3 

The Mock Homotopy Category of 
Projectives 

In this chapter we introduce the mock homotopy category Km(Proj X ) of projectives and 
give its basic properties. In Section 3.1 we define the Cech triangles, enabling us to pass 
from local statements to global ones; an important example is Theorem 3.16, where we 
show that Km(Proj X) has small Homs. In Section 3.2 we prove that every quasi-coherent 
sheaf is a quotient of a flat quEisi-coherent sheaf, a fact that will be needed in the sequel. 

Setup. In this chapter X denotes a scheme, and sheaves are defined over X by default. 

Definition 3.1. Let K(Flat X) be the homotopy category of flat quasi-coherent sheaves. 
Its objects are the complexes of flat quasi-coherent sheaves 

an —1 Qn 
— J^" — — ^ jrn+1 • • • 

and its morphisms are the homotopy equivalence classes of morphisms of complexes. The 
category K ( F l a t X ) is a triangulated category with coproducts. 

Let E ( X ) denote the full subcategory of K(Flat X) consisting of complexes S with the 
property that ^ ® S \s acyclic for every sheaf of modules Taking ^ = Ox shows 
that all such complexes are acyclic. It is worth mentioning the following fact, though we 
will make no use of it: in the definition of E ( X ) it is equivalent to require that ^ ® S he 
acyclic for every quasi-coherent sheaf see Lemma 3.25. 

Lemma 3 .2. E ( X ) is a localizing subcategory o /K(Flat A"). 

Proof. Given a triangle — • ^ —> —> E.s/ in K(Flat X) with and ^ in E ( X ) 
we have to show that e E ( X ) . For any sheaf of modules J^ there is a triangle in the 
homotopy category K ( X ) of sheaves of modules 

^ i ^ j y — > ^ — — > (S> 

From the long exact cohomology sequence we infer that ^ \s acyclic, thus G E ( X ) . 
Tensoring with a complex preserves coproducts, so E(Js:) is a locahzing subcategory. • 
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Definition 3.3. Let IKm(ProjX) be the Verdier quotient 

K „ ( P r o j X ) = K ( F l a t X ) / E ( X ) 

which is a triangulated category with coproducts; the objects are the complexes of flat 
quasi-coherent sheaves and a morphism ^ —>'S 'm. ]Km(Proj X) is an equivalence class 
of "fractions" given by pairs of morphisms in K ( F l a t X ) 

where / has mapping cone in E ( X ) , and is in particular a quasi-isomorphism. The quotient 
functor Q : K ( F l a t X ) —> Km(Proj X ) preserves coproducts [NeeOlb, Corollary 3.2.11] 
and sends morphisms with mapping cone in E ( X ) to isomorphisms in K m ( P r o j X ) . It is 
universal with this property. 

The subscript "m" for mock is a reminder that IKm(ProjX) is not defined to be the 
homotopy category of any additive category. In particular, it is not the homotopy category 
of projective quasi-coherent sheaves. There is no danger of confusion, because we do not 
consider such sheaves. 

The next result gives several characterizations of the complexes in E ( X ) . In the proof 
we use the Tor sheaves, so it is worth reminding the reader of the definition. For complexes 

of sheaves of modules there is a tensor complex ^ defined in degree n G Z by 
= ® with an appropriate differential; consult [Lip, (1.5.4)], The 

derived tensor product is a bifunctor on the derived category P ( X ) of (arbitrary) sheaves 
of modules, which is triangulated in each variable 

- (|) - : D(A:) X D ( X ) — » D ( X ) 

and defined by J^ (§ = (g) where is a K-fiat resolution of see [Lij), §2.5]. In 
the next result, and throughout this thesis, we will speak often of K-flat complexes, which 
are the generahzation of fiat modules; see Section 2.2 for the definition. 

If are sheaves of modules, we have for n £ Z a sheaf = 
The sheaf ^ is flat if and only if = 0 for every sheaf of modules ^ and i > 0. 

Proposition 3.4. Let S he a complex of flat quasi-coherent sheaves. The following are 
equivalent: 

(i) S belongs to E ( X ) . 

(ii) S is acyclic and the kernel of (9^)" : —> is flat for every n e Z . 

(Hi) S is acyclic and K-flat. 

(iv) For any complex ^ of sheaves of modules the complex ^ ® S is acyclic. 
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Proof. Roughly speaking, the conditions all say that i is not just acycUc, it is acyclic in a 
strongly flat way, whatever that means, (i) => (ii) If belongs to E(A') then it is acyclic, 
and we need to show that the quasi-coherent sheaf Ker{dg) is flat. Note that 

» gn-2 ^n- i ^ Kerid'l) 0 

is a flat resolution of Ker{dg). Given a sheaf of modules ^ the complex ^ \s acyclic 
by assumption, so the complex 

has vanishing cohomology except in the last position. This is another way of saying that 
the Tor sheaf , Ker{dg)) vanishes for i > 0. Since ^ was arbitrary, this imphes 
that Ker(dg) is flat, as claimed. 

{ii) => (Hi) Let S be an acyclic complex of flat quasi-coherent sheaves with flat kernels. 
For each n > 0 the truncation §<n (see Section 2.1 for the notation) is a bounded above 
complex of flat quasi-coherent sheaves, hence K-flat, from which it follows that the direct 
Hmit S = lmS'<„ is K-flat [Lip, §2.5]. 

{Hi) {iv) Given a complex of sheaves of modules, we can find a quasi-isomorphism 
^ —> ^ with ^ a K-flat complex [Lip, Proposition 2.5.5]. Extending to a triangle, and 
tensoring with (ff, we have a triangle in K(X) with ^ acyclic 

Since S" is K-flat, ^(gx? is acyclic. Moreover, S" is acyclic and is K-flat, so must 
also be acyclic. Pi-om the triangle we conclude that ® is acyclic. Finally, {iv) =4> (i) 
is trivial, so the proof is complete. • 

Every result about Km(Proj X ) for schemes speciahzes to a statement about complexes 
of flat modules over a commutative ring; in fact, the theory also makes sense over noncom-
mutative rings. In the next remark we recall some features of the afline case established 
earlier by Neeman. 

Remark 3.5. Let be a noncommutative ring, and let K(Flat yl), K(Proj A) denote the 
homotopy categories of flat (resp. projective) left yl-modules. Let E(^) be the triangulated 
subcategory of K(Flat A) consisting of acychc complexes with flat kernels, and define 

K„ (Pro j A) = K(Flat A)/W.{A) 

In this situation the characterizations of Proposition 3.4 hold and are due to Neeman, who 
gives a difl'erent proof; see [NeeOGa, Theorem 7.7, Corollary 8.4], As many of our theorems 
rely crucially on Neeman's papers [Nee06a] and [NeeOGc] we recall here some of his results: 

(i) The subcategory E(^) is equal to the orthogonal K(Proj A)^ in K(Flatvl) [Nee06a, 
Theorem 7.7]. Thus, a complex E of flat yl-modules belongs to E(^) if and only if 
Hom^(P, jB) is acyclic for every complex P of projective ^-modules. 
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(ii) The category ]K(Proj A) is well generated, so by Brown-Neeman representability the 
inclusion ]K(Proj —• K(Flat/l) has a right adjoint [Nee06a, Corollary 7.1]. The 
reader unfamiliar with well generated triangulated categories is referred to [NeeOlb]. 
We use the theory to avoid noetherian hypotheses in Theorem 5.5. 

(iii) Using flat covers, Neeman proves that the inclusion E(>1) —• K(Flat^) has a right 
adjoint; see [Nee06c, Theorem 3.1]. This inclusion has a left adjoint by (ii) and the 
standard theory of Bousfield localization, so we have a recollement 

E(yl) ^ ]K(Flat A) ' IK„(Proj A) 

There is an equivalence of K(Proj as a subcategory of K(Flat A), with the orthog-
onal -'-(K(Proj = -'-E(y4). Prom Lemma 2.3{iv) we conclude that the composite 

K(Proj A) ^ ^ ^ K(Flat A) K„ (Pro j >1) 

is an equivalence of triangulated categories. 

The class E(^) appeared in the literature well before Neeman's [NeeOGa], where it is 
denoted S. In [EGR98] Enochs and Rozas call these complexes flat. But apart from some 
overlap between [NeeOGa, Theorem 7.7] and [EGR98, Theorem 2.4] the two papers are 
very different. One can also think of the complexes in E(^) as the pure exact complexes 
of fiat modules; see for example [Chr98, §9.1]. 

Over an affine scheme, the mock homotopy category is the ordinary homotopy category. 

Lemma 3.6. Let X = Spec{A) be an affine scheme. There is an equivalence 

K(Proj A) K„ (Pro j X) 

of triangulated categories. 

Proof. The equivalence M o d ^ ^ i3co(A:) identifies fiat >l-modules with flat sheaves, and 
induces an equivalence of triangulated categories IK(Flat^) = K(FlatX), which becomes 
an equivalence Km(Proj A) ^ IKm(Proj X) of the quotients. Combining this observation 
with Remark 3.5(iw) we have an equivalence of triangulated categories 

K(Proj A) ^ K„ (Pro j /I) ^ K„ (Pro j X ) 

sending a complex of projective modules to the associated complex of flat quasi-coherent 
sheaves on the affine scheme. • 

Remark 3.7. Let us given an elementary reason to care about the triangulated category 
Km(Proj A), as opposed to the equivalent category K(Proj A). Of course, there is no formal 
difference, but it can be clearer to work with flat complexes rather than the associated 
complexes of projective modules. 
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For example, let ^ be a ring. Given an ^-module M with projective resolution P and 
flat resolution F, there is a morphism of complexes P —> F lifting the identity 

^ p-2 ^ ^ po ^ M ^ 0 

1 
1 i " 

^ p-2 ^ p-1 ^ pO ^ M ^ 0 

Taking the mapping cone E determines a triangle in IK(Flat A) 

P F ^ E 

where E is an acyclic, bounded above complex of flats. Any bounded above complex of 
flats is K-flat, so E belongs to ]E(yl) by Proposition 3.4. We conclude that 

P F is an isomorphism in Km(Proj A) 

In particular, this shows that any two flat resolutions of M are isomorphic in Km(Proj A). 
More generally, any two K-flat resolutions by flat quasi-coherent sheaves of a complex of 
quasi-coherent sheaves are isomorphic in Km(Pro jX ) ; see Remark 5.9 below. 

Taking stalks at a point x £ X and restricting to an open subset U C X both preserve 
flatness, so we have coproduct preserving triangulated functors 

( - ) l i / : K ( F l a t X ) ^ I K ( F l a t C / ) (3.1) 

: K(Flat X) K(Flat Ox,x) (3.2) 

Let / : U —> X be the inclusion of an affine open subset. Then / « ; £lco(U) —> Oco(X) 
sends flat sheaves to flat sheaves, and there is a triangulated functor 

f , : K(Flat U) — • K(Flat X) (3.3) 

which, by a standard argument, preserves coproducts and is right adjoint to (3.1). 

Lemma 3.8. Let S he a complex of flat quasi-coherent sheaves. Then § G E ( X ) if and 

only if Sx £ E(Cx,x) for every x € X. It follows that 

(i) IfUCXisan open subset and S G E ( X ) then <S'\u € E{U). 

(ii) If is an open cover of X then S G E ( X ) if and only if S'lvi € lE(Vj) for all 

i G I. 

Proof We know from Proposition 3.4 that S' belongs to E ( X ) if and only if it is acyclic 
with flat kernels, both of which can be checked on stalks, so the claims are immediate. • 

Definition 3.9. Taking stalks at a point x & X sends E ( X ) into E{Ox,x), while restricting 
to an open subset U C X sends E ( X ) into E(L''), so the functors of (3.1), (3.2) induce 
coproduct preserving triangulated functors on the quotients 

( - )|y : K „ ( P r o j X ) ^ K „ ( P r o j U) (3.4) 

( - ) x : K „ ( P r o j X) K „ ( P r o j Ox,x) (3.5) 
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Let / : U —> X be the inclusion of an affine open subset. Then /» : Oco{U) —• iJco(X) is 
exact and sends flat sheaves to flat sheaves, and using characterization {ii) of Proposition 
3.4 we infer that /.E(J7) C E(X). It follows that (3.3) induces a triangulated functor 

A : K„(Proj U) K„ (Pro j X ) (3.6) 

which, by a standard argument, is coproduct preserving and right adjoint to (3.4). 

Given an additive category A, an object X is zero in A (or just, is zero, when there 
is no chance of confusion) when Hom^(X, X ) = 0. We are often dealing with complexes, 
so it is worth being clear: a complex X of objects in A is zero in the homotopy category 
K(^) if and only if it is contractible. 

Remark 3.10. A complex ^ of flat quasi-coherent sheaves is zero in ]Km(Proj X) if and 
only if it belongs to E(X) , ' which by Lemma 3.8 is a local question. That is, 

(i) ^ = 0 in K„(Pro j X) if and only if ^^ = 0 in Km(Proj Ox,x) for every x £ X. 

(ii) If {Vj}jg/ is an open cover of X then ^ = 0 in Km(Proj X) if and only if = 0 
in Km(Proj Vi) for every i G I. 

Being an isomorphism is also local, because a morphism / : ^ —» ^ is an isomorphism 
in lî yĵ  (Proj X ) if and only if the mapping cone in Km(Proj X) is zero. 

The triangles in Km(Proj X ) are the candidate triangles isomorphic, in Km(ProjX), 
to a triangle from K(FlatX) [NeeOlb, §2.1]. Isomorphism in Km(ProjX) is weaker than 
homotopy equivalence, so there are triangles in the mock homotopy category not apparent 
in the homotopy category of flat sheaves. For example, suppose we have an exact sequence 
of complexes of flat quasi-coherent sheaves 

0 - 0 (3.7) 

It is standard that there is a triangle s i —> SS —» ^ —> Ejz/ in the derived category 
D(i3coX). The next lemma observes that this triangle exists already in Km(Proj X) . 

Note that a short exact sequence of complexes of projective or injective modules must 
split in each degree and determine a triangle in IK(Proj or K(Inj^), by Lemma 2.15. 
Flats do not spht sequences, but they do determine triangles. 

Lemma 3.11. Given an exact sequence (3.7) of complexes of fiat quasi-coherent sheaves, 
there is a canonical morphism z : —» E.c/ and triangle, both in ]Km(Proj X ) 

(3.8) 

Proof. The morphism ip factorizes as ^ —> cone((/5) ^ where cone((^) is the mapping 
cone and /z is a quasi-isomorphism, by a standard argument of homological algebra. We 

^Here we actually use thickness of E ( X ) , see [NeeOlb, Lemma 2.1.33]. 
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are claiming that fi is actually an isomorphism in Km(Proj X ) . That is, if we claim that 
if you extend // to a triangle in K(Flat X) 

cone{ifi) — » ^ —> E cone((/j) (3.9) 

then S belongs to E ( X ) . In each degree (3.7) is exact and consists of flat sheaves, so it is 
degree-wise exact and K-flat, and remains exact after tensoring with any sheaf. That is, 
for any sheaf of modules ^ we have a short exact sequence of complexes of sheaves 

0 — s i — — — » 0 

and a quasi-isomorphism c o n e ( ^ ® p̂) —* ^ Tensoring with ^ is a triangulated 
functor, so cone{^®ip) = and is a quasi-isomorphism for every sheaf of 
modules FYom the triangle (3.9) we conclude that is acychc, whence S belongs to 
E ( X ) , as claimed. Let w : cone((fi) —> E s / denote the canonical morphism of complexes 
out of the mapping cone, and set 2 = in Kr,j(Proj X ) . The candidate triangle (3.8) 
is isomorphic in Km(Proj X ) to the mapping cone triangle ^ —> ^ —> cone(v5) —• Ej^, 
and is therefore itself a triangle. • 

3.1 Cech Triangles 

In this section we construct a sequence of Cech triangles in Km(Pro jX ) that assemble a 
complex of flat quasi-coherent sheaves from its restrictions to an open afRne cover. This 
will allow us to prove global statements about K „ ( P r o j X) using local arguments. 

Setup. In this section X is a scheme with afHne open cover U = {UQ, •••, UD} and sheaves 
are defined over X by default. 

Given a quasi-coherent sheaf ^ we have an exact sequence of quasi-coherent sheaves 
called the Cech resolution which is, in the notation of [Har77, §111.4] 

0 ^ —> —^ » J?) 0 

= 

where the Cech sheaf J^) is a direct sum over sequences io <•••< ip of length p in 
{ 0 , . . . , d} and / : —> X is the inclusion of the open set t/io,...,ip = f/io n • • • n 
Taking the pth Cech sheaf defines an exact coproduct preserving functor 

For a complex of quasi-coherent sheaves ^ we can take Cech resolutions of each term to 
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obtain a bicomplex of quasi-coherent sheaves (see Section 2.1 for background) 

0 0 0 
I 

I I I 

(3.10) 

t + 

0 0 

n+1 

0 

Denote by the upper part of this bicomplex formed by just the Cech sheaves 
(that is, delete the bottom row containing In column i eZ and row j > 0 the sheaf 
in this bicomplex is 'if (U, ̂ Y ^ = '^^{li, The next lemma tells us that in Km(Proj X ) 
the complex ^ is isomorphic to the totalization of this bicomplex. 

Lemma 3.12. Given a complex ^ of flat quasi-coherent sheaves there is a triangle in 
K(FlatX) with S an object ofE{X) 

In particular, there is an isomorphism ^ Tot'^(il, in IKm(ProjX). 

Proof. Note that is a bicomplex of flat quasi-coherent sheaves because each Cech 
sheaf (11, is a coproduct of direct images of flat sheaves under a flat affine morphism, 
and such direct image sheaves are flat. 

Let D denote the bicomplex in (3.10) which has the bicomplex '^{U.,^) in rows > 0 
and the complex ^ in row - 1 . Actually, to get the signs right in what follows we should 
take D to be the bicomplex in (3.10) but with some signs modified, as indicated in the 
following diagram 

I 
(3.11) 

- 1 

The -1s t row ^ of (3.10) gets negative signs on its morphisms in D, and we alternate 
the signs on the morphisms between the and "^"(U, as indicated. Everywhere else 
the signs on the morphisms in D agree with the natural ones in (3.10). 

There is a canonical morphism of bicomplexes '^{ii,^) —• D, whose cokernel is a 
bicomplex nonzero only in row —1, where it is ^ with a negative sign on all its differentials. 
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as in (3.11). This gives rise to a short exact sequence of bicomplexes, split exact in each 

bidegree, and then by Lemma 2.17 we obtain a triangle in ] K ( F l a t X ) 

Tot ^ ( i l , To t (£ ' ) V E ^ ^ ^ E Tot 

where u " : J?" — > Tot "^"^(il, is the first morphism — > in the Cech 

resolution composed with the inclusion of into the coproduct 

Shifting, we have 

^ T o t ( £ ) ) ^EJ^ (3.12) 

It is well-known that the bicomplex D j of Ox,i-niodules has contractible columns [Har77, 

III.4.2] so Lemma 2.19 implies that the totalization Tot (L 'x ) = To t (Z ) ) i is contractible, 

and therefore in the subcategory E{Ox,x), for every x £ X. Using Lemma 3.8 we conclude 

that Tot (Z ) ) G E{X), sou:^ — • T o t '^(U, is an isomorphism in K „ ( P r o j X). • 

Now we are ready to define the Cech triangles. Given a bicomplex B, we denote by 

•Brows>fc the brutal row truncation of B which deletes the rows < k. Recall also that our 

scheme X comes with an affine open cover U with d+ 1 elements. 

Proposit ion 3.13. Associated to every complex ^ of flat quasi-coherent sheaves is a 

canonical sequence of triangles in Km(Proj X) 

^ ^ J?) ^ 

where = Tot('!#'(U, ^)rows>d-!)- Moreover, these triangles are natural in ^. 

Proof. Associated to the bicomplex B = "^(U, are the brutal row truncations Brows>d-i 

and their totalizations = Tot(J5rows>d-i)- For i > 0 there are canonical triangles in 

K ( F l a t X ) that relate successive truncations (see the triangle (2.14) in Section 2.1) 

—^ ^ i + i ^ E - ' ^ + ' + V - ' - n ^ , ^ ) ^ (3.13) 

By inspection we have ^ o = and ^ ^ = Tot ^ ( i l , This yields a sequence 

of triangles in K ( F l a t X ) , and therefore K m ( P r o j X ) , accounting for all the triangles in 

the statement of the proposition except for the first. From (3.13) we have a triangle 

^ d - i - ^ T o t ' r ( U , J ? ) — ( 3 . 1 4 ) 
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In Km(Proj X) we can replace by the isomorphic object which completes 
the construction of the Cech triangles. It only remains to discuss naturality. 

Given a morphism 0 : ^ —> ^ of complexes of flat quasi-coherent sheaves there is an 
induced morphism of bicomplexes —> ^(U,?^) which truncates to a morphism 
of complexes —» for each i > 0, where = Tot('^(il,^)rows>d-i)- We deduce a 
morphism of triangles in ]K(FlatX) for i > 0 

+1 

When i = d - 1 we use naturality of the isomorphism ^ —• Tot ^(11, of Lemma 3.12 
to check that the following diagram commutes in ]Km(Proj X) 

.^d-i ^ 

^d-i ^ "^"(U, E ^ d - i 

which proves naturality of the Cech triangles with respect to morphisms in ]K(Flat X). • 

We give three apphcations of the Cech triangles, the first of which says that lKm(Proj X) 
is generated by complexes defined over its afRne open subsets. This is the form in which 
the previous result will usually be applied. 

Corollary 3.14. Let C be a triangulated subcategory o /Km(Proj X) and ^ a complex of 
flat quasi-coherent sheaves. Suppose that for any intersection V = Uig fl • • • fl [/jp of open 
sets in the cover ii we have ft{.^\v) £ where f : V —• X denotes the inclusion. Then 
^ belongs to C. 

Proof. Taking finite direct sums we deduce that the Cech complex ^^( i l , in degree p 
belongs to £ for every Q < p < d. The last Cech triangle of Proposition 3.13 has the form 

Because the Cech complexes belong to C we deduce that belongs to C. Climbing up 
the sequence of Cech triangles, we find that every B^i belongs to C. Finally, from 

we conclude that ^ belongs to C, as required. • 

Lemma 3.15. Given a cover {Va}aeA of X by quasi-compact open subsets, an object 3€ 
is compact in ]Km(Proj X) if and only if is compact in IKm(Proj Va) for every a e A. 
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Proof. First we prove that a locally compact object is globally compact. That is, given a 

complex ^ of flat quasi-coherent sheaves with compact in Km(Proj Va) for every 

Q € A, we have to prove that H o m ( ^ , —) preserves coproducts (to reduce clutter we omit 

subscripts on Homs. It is understood that all Homs are taken in Km(Proj -) over an open 

subset of X that will be clear from the context). The first step in the proof is the following 

observation: 

(•) Let / : U —> X be the inclusion of an affine open subset, so that we know, 

by Definition 3.9, that (-)|(/ : K„(Pro jX) —• Km(Proj[/) has a coproduct 

preserving right adjoint and therefore preserves compactness by Lemma 2.9. 

Let U = {Uo,..., Ud} be an affine open cover of X with each Ui contained in some Va. 
Every finite intersection U of open sets in the cover H is an affine open subset of some VQ, 

so from the hypothesis and (*) we infer that is compact. We prove that H o m ( ^ , - ) 

preserves coproducts by using Cech triangles to reduce the problem to compactness over 

such finite intersections. 

Suppose that we are given a family {^s}seT of complexes of flat quasi-coherent sheaves 

and let be the coproduct in K(FlatX). The Cech triangles of Proposition 3.13 

assemble each complex .^s, as well as the coproduct from their restrictions to affine 

open subsets, and the inclusion ^ s —> ©s^a induces morphisms of these triangles. More 

precisely, for each s € T and 0 < i < d we set 

= Tot(^(H, ^ . ) r o w s > d - i ) , = Tot(<^(U, ( 3 . 1 5 ) 

We are working in Km(Proj X], so by Lemma 3.12 we can assume that = and 

^ d = The totalizations ( 3 . 1 5 ) fit into a morphism of triangles in Km(ProjX) for 

every s eT and 0 < i < d — 1 

^ ( 3 . 1 6 ) 

i 

Applying Hom( ^ , -) yields a morphism of long exact sequences for every s £ T and 

0 <i < d-1. Fixing i and taking the coproduct of the top row (of this morphism of long 

exact sequences) over all s e T produces a morphism of long exact sequences of which the 

following diagram is an excerpt 

Hom( ^ , ^ Hom( ^ , • • • 

Hom( ^ , ^ i+i) ^ Hom( ^ , • • • 

( 3 . 1 7 ) 
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In this diagram every third vertical morphism is an isomorphism of the following type 
= 

= ©to<-<ip . J (Adjunction) 

= ®io< -<ip ip.-^slt/io .p) (Locally compact) 

= ®to<-" <ip ©3 Hom(.£",f*{^^3\u^g ,„)) (Adjunction) 

^ H o m ( ^ , )) 

We proceed by inductively climbing the sequence of Cech triangles, beginning with the 
last one (in the order listed in Proposition 3.13) which corresponds to i = 0. With this 
value of i, an isomorphism of the above type occurs in two out of every three columns of 
(3.17) because S^gfi = ^s)- Prom the Five Lemma we deduce an isomorphism 

H o m ( j r , ^ , , i ) H o m ( ^ , ^ i ) (3.18) 

Next, for i = 1, every third column of (3.17) is once again an isomorphism and, using (3.18) 
and the Five Lemma, we conclude that every column is an isomorphism. Proceeding in 
this way we eventually reach the final Cech triangle (i = d - 1), and from it we infer that 
there is an isomorphism 

^ (3.19) 

which proves that ^ is compact, as required. It remains to check that when is compact 
the restrictions are all compact. More generally, let t/ C X be a quasi-compact open 
subset and U = {WQ, . . . , WD} an affine open cover of U. By (*) the restrictions are 
all compact; applying the first part of the proof to the scheme U, cover U and object 
we conclude that is compact. • 

The next theorem generalizes a result of Neeman to schemes; see Remark 3.5(iM). 

Theorem 3.16. There is a localization sequence 

E(X) 1 " K(Flat X) ^ K^(Proj X ) (3.20) 

In particular Km(Proj X) has small Horns. 

Proof. The existence of a locahzation sequence (3.20) is equivalent by Lemma 2.3 to the 
existence, for every complex ^ in ]K(FlatX), of a triangle in K(FlatX) with in E(X) 
and ^ in the orthogonal E(X)-'-

— — — ( 3 . 2 1 ) 

Let C denote the full subcategory of K(Flat X) consisting of the complexes ^ that fit into 
such a triangle; this is a triangulated subcategory, the Verdier sum of E(X) and E(X)-'-. 
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The proof will be complete if we can show that every complex ^ in lK(Flat X) belongs to 

L. By Lemma 3.12 we have a triangle in K{FlatX) 

^ —» Tot " (̂11, —>S —» E (3.22) 

with § in E(X). Taking ^ = 0 in (3.21) demonstrates that E(X) C £ , so proving that 

^ belongs to C is equivalent to proving that Tot'^(U, J^) belongs to The bicomplex 

•^(U, c^) is bounded vertically, so to show that the totalization belongs to C it suffices to 

argue that the rows "^''(U, of the bicomplex all belong to £ (Remark 2.18). 

Each row is a finite direct sum = ®io<--<ip/»('^li/,Q i^) so to complete the 

proof we need to show that is in £ whenever / : V —> X is the inclusion of an 

afhne open subset and ^ is a complex of flat quasi-colierent sheaves on V. The scheme 

V is affine, so by [NeeOfic, Theorem 3.1] we have a triangle in K(Flat V) with <? in E(V) 

and in the orthogonal E(V')-'- (note that Neeman writes S for what we call E(l/)) 

—> ^ —> ^ —> E ^ 

Applying the functor /» : IK(Flat K) —» IK(FlatX) we have a triangle in K(FlatX) 

where /,(<#") belongs to E(X) and belongs to the orthogonal E(X)-'-, because for S" 

in E(X) we have Hom((? ' , / . (^)) ^ Hom((?'|v-^) = 0- This proves that belongs 

to the subcategory C, and completes the proof of the theorem. • 

Remark 3.17. For affine schemes the quotient Q : K(Flat/l) —» IKm(Proj^) has a left 

adjoint, so the localization sequence of the theorem is a recollement; see Remark [i.5{iii). 

This is false for arbitrary schemes, and X = P^ gives a counterexample; see Remark A. 15. 

The point is that when Q has a left adjoint products in Oco(X) must be exact, and this 

is known to fail for the projective line. 

3.2 Enough Flat Quasi-coherent Sheaves 

Over a quasi-projective variety any quasi-coherent sheaf can be written as a quotient of a 

locally free sheaf; see [TT90, Lemma 2.1.3]. In particular, every quasi-coherent sheaf is a 

quotient of a flat quasi-coherent sheaf. We prove in this section that this weaker condition 

holds for all schemes (recall that, by our standing hypothesis, schemes are quasi-compact 

and separated). This fact will become very important in Chapter 5. 

The key observation is contained in Proposition 3.19. First, we give a technical lemma 

that is well-known, but for which we could not find a convenient reference. 

Setup. In this section X denotes a scheme, and sheaves are defined over X by default. 
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Lemma 3.18. Let T he a triangulated category, S a thick triangulated subcategory, and 
suppose that we have a commutative diagram in T with triangles for rows 

A - B - C - E v l (3.23) 

/ a h 

A' B' C EA' 

If any two of f , g, h have mapping cone in S, then so does the third. 

Proof. Assume without loss of generality that f,g have mapping cone in S, and therefore 
determine isomorphisms in the quotient T/S. Applying [NeeOlb, Proposition 1.1.20] to 
the image of (3.23) in T/S we infer that h is an isomorphism in T/S. Using the fact that 
S is thick and [NeeOlb, Proposition 2.1.35] we conclude that h has mapping cone in S. • 

Flat resolutions are not unique in the homotopy category, and in this sense they are 
inferior to projective and injective resolutions. One solution is to work with a more rigid 
kind of resolution, known as a proper resolution. Suppose that we have an exact sequence 
of modules over a ring 

5 : — • p - i —» p o — — > 0 (3.24) 

If this is a projective resolution of M then a morphism from a projective module to a 
kernel of the complex S (for example M itself, or its syzygy Ker[P^ —> M)) must factor 
through the relevant projective object (for example or This property allows one 
to prove that the projective resolution is unique up to homotopy equivalence. 

If a flat resolution has this property with respect to morphisms from flat modules, it is 
called a proper flat resolution. This is a flat resolution (3.24) with the additional property 
that P" —> M and P"^ — » Ker{P° —> M) and so on are all fiat precovers in the sense 
of Definition 2.32. We review the relevant hterature in Section 2.3, but for our purposes 
in this section only two facts are really necessary: proper (left) flat resolutions exist, and 
can be encoded in triangles; see Definition 2.33 and Corollary 2.36. In the next result we 
use proper flat resolutions of modules to prove a useful fact about quasi-coherent sheaves. 

Proposition 3.19. Every quasi-coherent sheaf ^ is isomorphic mD(QcoX) to a bounded 
above complex of flat quasi-coherent sheaves. 

Proof. This is imphcit in the proof of [A.JL97, Proposition 1.1] but we give another proof 
using flat precovers. Let H = {UQ, ...,UD}he an affine open cover of X , and consider the 
Cech resolution 

0 ^ —^ ^ ^ > ^ 0 

This defines a quasi-isomorphism ^ —> "^(il, J^) so it is enough to prove that the complex 
^( i l , is isomorphic, in D(QcoX) , to a bounded above complex of flat quasi-coherent 
sheaves. This is true, because locally ^ has proper flat resolutions. 
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In detail: given a finite sequence a : io <•••< ip oi indices in the set { 0 , . . . we 

write Ua = Uig n • • • n Ui^ for the corresponding intersection; this is an affine scheme, so 

we can find a proper left fiat resolution of in the sense of Definition 2.33 

^ a : > — —^ ^ ^ 0 (3.25) 

To be clear, we choose an isomorphism [/„ ^ Spec{A) and use the equivalence Oco(C/a) ^ 

Mod/l to pair with an ^-module Fa. Then we take a proper left flat resolution 

3-2 , D- l 
Pa^ (3.26) 

which is an exact sequence with each P^ flat, such the canonical morphism of complexes 

Pa —> Fa fits into a triangle P^ — * F^ —> Sc, — • EP^ in K{A) with in K(Flatyl)-L. 

This resolution exists because flat precovers exist; see Remark 2.34 and Corollary 2.36. 

Passing back to Oco{Ua) we have an exact sequence (3.25) of quasi-coherent sheaves 

that fits into a triangle in K{£lcoUa) with in K(Flat {/„) and ^c, in K(Flat C/^)^ 

^ ^ ^ (3.27) 

Moreover, the complex ^ ^ is acyclic. The inclusion f •. Ua — • X is flat and affine, so the 

direct image sends (3.27) to a triangle in K ( O c o X ) 

M^a) — M^luJ — Mya) ^M^a) 

with U i ^ a ) G K ( F l a t X ) and G Kac(OcoX) n K(Flat X ) ^ . To see that 

belongs to the orthogonal K(FlatX)- ' - we use the adjunction between direct image and 

restriction. Taking the coproduct over all sequences a : zq < • • • < ip of length p, we have 

a triangle in K( l3coX) 

with ^ p e K ( F l a t X ) and ^p G Kac(QcoX)nlK(Flat X)-^. In particular ^ p '^^(U, J^-) 

is a quasi-isomorphism. This shows that the individual Cech sheaves are quasi-isomorphic 

to bounded above complexes of flat quasi-coherent sheaves, and it remains to argue that 

these resolutions can be combined to give a resolution for the complex '^(U, J^). 

Any bounded complex can be built, in a finite number of triangles, from the objects 

occurring in the complex. Using proper fiat resolutions provides enough ridigity for us to 

assemble the resolutions of the Cech sheaves into a resolution of " ^ ( U , ^ ) . The complex 

• (̂11, is the mapping cone of the following morphism of complexes (each arranged in 

the correct degree) 
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More generally, we can adjoin the fcth Cech sheaf to the brutal truncation 

to form (our notation for truncations is given in Section 2.1). This is reflected 

by a triangle in K ( i J c o X ) 

Suppose that for some integer 0 < k < d we have defined a bounded above complex of 

flat quasi-coherent sheaves and a quasi-isomorphism ĵ /k —> with mapping 

cone ^ k in K(F la t X)-^. This has been done for k = d, where ^'^(It, = 

and we can take ŝ d = and ^ d = as defined above. Returning to the case 

of general 0 < k < d we have a diagram with triangles for rows 

(3-28) 

(I) 

b^iil, ^)>k ^fc E^fc 

The following composite vanishes 

because G K ( F l a t X ) and SSk e K(F la tX) - ' - (this is the point where we use the 

properness of our resolutions). We deduce unique vertical morphisms making (3.28) into 

a morphism of triangles. Now extend the commutative square in (3.28) marked (I) to a 

morphism of triangles in the vertical direction 

/ (I) 9 h 

6-^(11, ^)>k ^)>k-i E - ' = + ( U , 

As both have mapping cone in Kac(OcoX) n K(F la tX) - ' - it follows from Lemma 3.18 

that h has mapping cone in this subcategory, which completes the inductive step. 

Taking A; = 1 we deduce a quasi-isomorphism ^o —> "^(11 ,^) with /̂q a bounded above 

complex of flat quasi-coherent sheaves, as required. • 

In the next lemma, let A be an abelian category and V C A a class containing the 

zero objects and closed under isomorphism, with the property that for any short exact 

sequence 0 —> L —> M —> N —> 0 in ^ with M,N e V we have also L e V. For 

example, this apphes when A is the category of quasi-coherent sheaves and V the class of 

flat quasi-coherent sheaves (or vector bundles over a noetherian scheme). 

Lemma 3.20. Let A be an abelian category and V C A a class as above. If M G A is 
isomorphic in D(^) to a bounded above complex in V, there exists an exact sequence 

P - 2 , Z 7 - 1 M ^ 0 (3.29) 

with every F' an object ofV. 
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Proof. Let P be a bounded above complex in V, isomorphic in D ( ^ ) to the object M . 
Assume that M is nonzero, and let d be the largest integer with P'^ If d = 0 then we 
are done. If d > 0 then we have a series of short exact sequences 

0 —^ K'^-^ pd 

0 —> K'^-'^ — » P^-'^ — » —> 0 

0 ^ A-' —> ^ —> 0 

Q ^ K"^ ^ P° ^ K^ 

where K' = Ker{P' —> P '+ i ) . We deduce that K° belongs to V, so 

* P-^ —> P-^ —> K° — » A/ — • 0 

is a resolution of the desired form. • 

Corollary 3.21. Every quasi-coherent sheaf ^ admits an epimorphism —> ^ with 
a flat quasi-coherent sheaf 

Proof. By Proposition 3.19 the sheaf ^ is isomorphic, in D(OcoX) , to a bounded above 
complex of flat quasi-coherent sheaves. If we take V to be the class of flat quasi-coherent 
sheaves in ^ = Qco (X ) , then Lemma 3.20 provides an epimorphism ^ —> ^ with ^ a 
flat quasi-coherent sheaf. • 

Corollary 3.22. Any complex ^ of quasi-coherent sheaves admits a quasi-isomorphism 
—> ^ with ^ a K-flat complex of flat quasi-coherent sheaves which is the homotopy 

colimit in K ( F l a t X ) of a sequence 

—^ —> ^ • • • (3.30) 

of bounded above complexes S^i of flat quasi-coherent sheaves. 

Proof By Corollary :5.21 the class V of flat quasi-coherent sheaves satisfies the hypotheses 
needed for Lemma 2.22, which then constructs a quasi-isomorphism ^ — » J? with ^ a 
complex of flat quasi-coherent sheaves. Moreover, ^ is the homotopy colimit in K ( O c o X ) 
of a sequence (3.30) of bounded above complexes of flat quasi-coherent sheaves. Because 
each is K-flat the homotopy colimit ^ is K-flat, completing the proof. • 

Remark 3.23. Enochs and Estrada have shown that flat precovers exist in the category 
£ !co(X) of quasi-coherent sheaves on X [EE05a, Corollary 4.2]. Prom Corollary 3.21 we 
learn that flat precovers in Qco(A:) are always epimorphisms, which answers an imphcit 
question of Enochs and Estrada in [EEOfja, §5]. If we knew a priori that flat precovers 
were epimorphisms in l3co(X) , then Corollary 3.21 would be unnecessary 

The reader may safely skip the next pair of results, which will not be used elsewhere. 
We include them to clarify a small point in the definition of the category E(J(:). 
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Lemma 3.24. For a quasi-coherent sheaf the following are equivalent: 

(i) ^ is flat. 

(ii) S^orii^^= 0 for every quasi-coherent sheafand i > 0. 

(Hi) For every exact sequence of quasi-coherent sheaves 

0 — — — — > 0 

the following sequence is also exact 

0 — — — y ^ ® " ^ — 

Proof, (i) (ii) and (i) => (Hi) are obvious, (ii) ^ (i) We prove that ^ is flat by showing 
that ^x is a flat Ox,i-module for every x £ X. Let an Ox,x-module G be given. We can 
find a quasi-coherent sheaf on X with stalk G at x (take an afline open neighborhood 
U ^ Spec{A) of a; with inclusion f •. U —> X and let Sf be / . (G '~) ) . Then for i > 0 
we have 0 = = Torj(J^xi G). Since G was arbitrary this proves that ^ ^ is 
flat. {Hi) ^ (i) Given x e X find an afline open neighborhood U = Spec{A) of x, and let 
/ : U —> X denote the inclusion. Let —» be a monomorphism of quasi-coherent 
sheaves on U. Then ftSi^ —> f^SS is a monomorphism, whence —> 
is a monomorphism, and restricting again to U we find that ® s^ —> (g) is a 
monomorphism. If M is an >l-module with J^lu = M~ then we deduce that M is flat. If 
p is the prime ideal corresponding to x, then ^ ^ — Mp is a flat module over Ox,x — ^p-
Since x was arbitrary, this proves that is flat. • 

Lemma 3.25. A complex S of fiat quasi-coherent sheaves belongs to E (X) if and only if 
^ S is acyclic for every quasi-coherent sheaf ^. 

Proof. If belongs to E(X) then it has the stated property. For the converse, assume 
that ® is acyclic for every quasi-coherent sheaf From the proof of (i) (ii) in 
Proposition 3.4 we learn that , Ker(dg)) is zero for every quasi-coherent sheaf ^ 
and i > 0, so Lemma 3.24 imphes that Ker{dg) is flat. Hence S is an acyclic complex of 
flat quEisi-coherent sheaves with flat kernels, and therefore an object of E(X) . • 



Chapter 4 

Compact Generation of X) 

This chapter contains our proof that Km(Proj X ) is compactly generated for a noetherian 
scheme X. In outhne, here is the proof: an affine open cover of X determines a cocovering 
of Km(Proj X) by Bousfield subcategories, and the appHcation of a theorem of Rouquier 
[Rou03, Theorem 5.15] to this cocover reduces the theorem to a statement about complexes 
of projective modules over a ring. 

For a noetherian ring A we know that the homotopy category K(Proj A) of projective 
^-modules is compactly generated, by the work of J0rgensen and Neeman (Theorem 2.30). 
To apply Rouquier's theorem to our cocover, we need something more: we need to prove 
that for / i , . . . , / r G ^ the intersection over 1 < i < r of the kernels of the locahzations 

K(Proj .4) —• K(Proj 

is compactly generated in K(Proj A). An element of this intersection of kernels is a complex 
of projective v4-modules that becomes contractible after localizing at each fi . We introduce 
the following notation for the triangulated subcategory of such complexes 

V ( / i , . ••,fr) = {Pe K(Proj A) I Pf^ is zero in K(Proj Af^) for 1 < i < r } 

In Section 2.3 we studied how to produce compact objects in IK(Proj A): given a finitely 
generated /1-module M , the complex of projective ^-modules PM that "represents" M is 
compact in K(Proj A). This representing complex of projectives is called the proper right 
projective resolution; we recall the details in Definition 4.3 below. With this in mind, here 
is our recipe for producing compact objects of the category V ( / i , . . . , fr): 

(a) Let M be a finitely generated yl-module with proper right projective resolution PM-

(b) For / € ^ the Koszul complex K{f) = 0 ^A^-^A becomes contractible 
after locahzing at / , and given integers B i , . . . , > 0 the tensor product 

(4.1) 

belongs to V ( / i , . . . , fr)- We prove in Lemma 4.4 that it is compact. 
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In Proposition 4.5 we prove that the complexes of the form (4.1) form a compact generating 
set for V ( / i , . . . , /r) consisting of objects compact in the larger category K(Proj A). This 
removes the only obstacle to applying Rouquier's theorem, so we proceed in Section 4.1 
with the proof that Km(Proj X ) is compactly generated. 

Setup. In this section yi is a noetherian ring, and modules are defined over A by default. 

Throughout we fix a family of elements /i , . . •, /r £ A. 

We begin with Koszul complexes, which are complexes that become contractible after 
localization for the most trivial reason possible. 

Definition 4.1. Given an element f £ A the corresponding Koszul complex K { f ) is the 
following complex concentrated in degrees - 1 , 0 

• 0 -
/ - y l - • 0 - (4.2) 

For a family hi,... ,hn & A we introduce the notation 

Clearly K { f ) becomes contractible after localizing at /. For a complex of modules X the 
tensor product K { f ) (g) X is isomorphic to the mapping cone of / = / • 1 : X —> X, so 
there is a triangle X ^ X —> K { f ) ®X —> E X in K(yl). 

The next lemma tells us that Koszul complexes arise naturally. 

Lemma 4.2. Let ip ; M —> X be a morphism of complexes of modules, with M bounded 
and M' finitely generated for every i eZ. Then 

(i) Given f £ A with Xj zero in K(yl/) there exists an integer B > 0 such that • (p 
is null-homotopic. 

(a) If X/. is zero in for every I < i <r then there are integers Bi,... ,Br > 0 
such that the morphism ip can be factored in K(^) as 

M-

Proof, (i) Let t : X —> Xj be the canonical morphism of complexes of ^-modules, and 
choose a contracting homotopy A of Xy as a complex of ^/-modules. We have a diagram 

M ' - i -

- x - i - •X'+i 

:X 
A>+1 



^ 

For i e Z there is an isomorphism Hom^(M\ Xj."^) ^ ^ HomA{M^, f which must 
identify A î̂ tp̂  with a fraction X^/f'^' for some morphism A' : M ' —> and ki > 0. 
Because M is bounded, we can take the ki to be equal to some fixed integer fc > 0, so that 

^i-i^i ^ fk^i^i^i foj. alH g Z 

Since A is a contracting homotopy for Xf, there is an equahty for every i € Z 

Composing with t'cp® and multiplying by f ' ' yields 

d'^h'-^X' + I'X'+^di^ = / '^ tV ' 

This equality in Homyi(M\X^) determines an equality in of fractions 
(S^^A' + = ( / V O / 1 - We can make this into an equality in Hom^CM', X') by 
multiplying the numerators by a sufficiently high power of / , and since M is bounded we 
can make a fixed integer N > Q work for every i G Z. That is, 

A' + = for alH € Z 

If we set B = yv + /c then = f^X^ gives a homotopy of f ^ • p̂ with zero, as required. 
(ii) The proof is by induction on r > 1. For r = 1 we apply (i) to find an integer 

B > 0 and a null-homotopy of the morphsim f f • if. From the triangle 

fB 

M — M K { f ^ ) ® M EA/ 

we obtain the required factorization of (/? : A/ —> X through M — • K { J ^ ) ® M . Suppose 
that r > 1 is given and assume the lemma for all smaller values of r. In particular, we can 
factor V? as a composite in K ( ^ ) of the form 

M / ^ ( / f ' , . . . , f^:-,') ® M X ( 4 . 3 ) 

for some integers , . . , , B^-i > 0 . The complex G = /^^"f ') ® M is bounded 
and has finitely generated terms, so we can apply the case r = 1 to the morphism G —• X 
coming from (4.3) to obtain a factorization of (p as the following composite in K ( ^ ) 

M ^ G K i j f ' - ) <S>G — ^ X 

Since ) (g. G ^ K ( / f ' , . . . , (gi M this completes the proof. • 

For a complex P of projective modules, K(ff' belongs to V ( / i , . . . , A ) 
for any integers B i , . . . , > 0. To produce compact objects we apply this construction 
when P is the proper right projective resolution of a finitely generated module. Let us tell 
the reader what these proper resolutions are. 

Proper resolutions belong to the subject of relative homological algebra, and we give 
an exposition of the relevant theory in Section 2.3. Our approach is slightly different to 
the hterature, because we need to talk about proper resolutions of complexes (for modules, 
our terminology agrees with the standard definitions). The following is Definition 2.37 in 
the case = Pro j (^) , the class of projective ^-modules. 
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Definition 4 .3. Let G be a complex of modules. A proper right projective resolution of 
G is a morphism of complexes G —> Pa fitting into a triangle in 

S-^G ^ Pa-^^S 

with Pg in IK(Proj A) and S in the orthogonal K(Proj A). Given Q £ K(Proj A) we can 
apply HomK(^)( - , Q) to this triangle to obtain a natural isomorphism 

HomK(P™j.i)(fG,Q) ^ HomK(^)(G,Q) (4.4) 

Hence Pq represents G amongst the complexes of projective modules. 

Every finitely generated module has a proper right projective resolution by Remark 
2.26. It follows that every bounded complex of finitely generated modules has a proper 
right projective resolution, but we are only interested in resolutions of very special bounded 
complexes: those of the form , . . . , ) igi M for some finitely generated module M, 

and for these complexes we can describe the resolution explicitly. 

Lemma 4.4. Let M be a finitely generated module with proper right projective resolution 

Pm • Given Bi,... ,Br >0 the complex of projective modules 

(4.5) 

is a proper right projective resolution of , • • •, fr^) ® M. It follows that the complex 

{4-5) is a compact object in K ( P r o j ^ ) . 

Proof. By definition we have a triangle S —• M —> Pm —> in K(yl) where S belongs 
to the orthogonal K(Proj A). Tensoring with K = we have a triangle 

To prove that K^Pm is a proper right projective resolution of we need only show 
that K ® S \s left orthogonal to every complex Q of projective modules. But 

HomK(A)(^ ® 5, Q) ^ HomK(^)(S, HomA(/^, Q)) = 0 

as HomA(/^, Q) is a complex of projective modules, so K ® S belongs to ]K(Proj A) and 
K ® Pm is a proper right projective resolution o{ K ®M. By definition, or more precisely 
(4.4), we have a natural isomorphism 

HomK(Pro j> i ) (^®f 'M, - ) ^ HomK(A)(A:® M , - ) (4.6) 

Because K®M is a bounded complex of finitely generated modules it is compact in IK(v4), 
and from (4.6) we conclude that K ® Pm is compact in K(Proj A). • 

Finally, we construct a compact generating set for V ( / i , . . . , f r ) . Recall from Chapter 
2 that a locahzing subcategory <S of a triangulated category T is compactly generated in 
T if it has a compact generating set consisting of objects compact in T . 
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P r o p o s i t i o n 4.5. The subcategory V ( / i , . . . , f r ) is compactly generated in K (P ro j A) with 
compact generating set 

TZ = ,..., f^") ® Pm\M is a finitely generated module, 

Bi,...,Br>0 and j e Z} 

where Pm denotes a proper right projective resolution of M. 

Proof. Up to isomorphism there is a set of finitely generated modules. Pick one module M 
from each isomorphism class and let Pm be a proper right projective resolution. Tensoring 
with Koszul complexes and shifting gives the set TZ, which by Lemma 4.4 is a set of objects 
of V ( / i , . . . , f r ) compact in K(Pro j A). We claim tha t this set generates V ( / i , . . . , fr). 

Given a nonzero object X e V ( / i , . . . , f r ) we have to find a finitely generated module 
M, integers Bi,...,Br > 0 and j G Z, and a nonzero morphism in K(Pro j A) (from now 
on, nonzero means nonzero in the homotopy category) 

(4.7) 

By Theorem 2.30 the proper resolutions of finitely generated modules compactly generate 
K(Pro j A), and since X is nonzero in K(Pro j .4) there must be a finitely generated module 
M with proper right projective resolution Pm and a nonzero morphism 

— X (4.8) 

After shifting we may assume that j = 0. By assumption the localization Xf^ is zero in 
K(AfJ for 1 < i < r so by Lemma 4.2(M) there is a factorization in K ( ^ ) of the composite 
M —> Pm —> X through a Koszul complex tensored with M 

M ,..., ® M X (4.9) 

Since M —» Pm —> X is nonzero the morphism ip in (4.9) must also be nonzero. Setting 
^ = - ' ^ ' ( / f ' , • • •, f r ' ' ) we know from Lemma 4.4 that K ^ Pm is & proper right projective 
resolution of K (g) M, so there is an isomorphism 

^om^iPvoi A){K <^Pm,X) ^ HomK(^)(K ® M, X) 

We deduce tha t ip : K i^i M —> X factors through a nonzero morphism K (8) Pm —> X 
in K(Pro j .4), which provides the necessary morphism (4.7) and completes the proof. • 

4.1 The Proof of Compact Generation 

Given a noetherian scheme X we prove tha t K„i(Proj X) is compactly generated by taking 
an affine open cover of X and "cocovering" the triangulated category K „ ( P r o j X ) by a 
family of Bousfield subcategories determined by the open cover. This reduces the problem 
to a question over affine schemes, where Proposition 4.5 of the previous section gives the 
input necessary to complete the proof 
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S e t u p . In this section X is a fixed scheme and all sheaves are defined over X by default. 

First we describe the triangulated subcategory of IKm(Proj X) associated with an open 
subset of X, then we show that this subcategory is Bousfield. 

Def in i t ion 4.6. Let t/ C X be a quasi-compact open subset and write K„_x\t / (Proj X) 
for the kernel of the triangulated functor 

( - ) l t / : K „ ( P r o j X) ^ K „ ( P r o j U) 

A complex ^ of flat quasi-coherent sheaves belongs to K^^ x \ t / (Pro j and only if the 
restriction is acychc and K-flat, in which case we say that ^ is mock supported on 
the closed set X \ U. 

L e m m a 4.7. If f : U —» X is the inclusion of an affine open subset, then the functor 
ft : Km(Proj U) —> Km(Proj X) is fully faithful and there is a localization sequence 

inc (-)lt' 

Km,x\t/(Proj X) , K „ ( P r o j X) , ^ ' K „ ( P r o j U) 

Hence Km,x\t/(Proj " a Bousfield subcategory o/IKm(Proj X). 

Proof There is an adjunction between (-) |c/ and / , on the level of the mock homotopy 
categories; see Definition 3.9. The counit (—)|[; o —> 1 is a natural equivalence, so a 
result of category theory tells us that the right adjoint /* is fully faithful. As a consequence 
of Lemma 2.6 we have the desired locahzation sequence. • 

These Bousfield subcategories determined by open subsets intersect properly with one 
another, in the sense of Rouquier; see [Rou03, Lemma 5.7] for the definition, which is also 
given in Chapter 2. 

L e m m a 4.8. For quasi-compact open subsets U,V C X the subcategories x\L'(Proj X) 
and ^^^ properly intersecting and Bousfield in Km(Proj X). 

Proof. To keep the notation hght, set Ty = (Proj X) and Ty = x \v(Pi 'o j X) . 
First we treat the case where U and V are affine. By the previous lemma Ty is a Bousfield 
subcategory of Km(Proj X) and the functor ( - ) |c ; : Km(Proj X) —> ]Km(Proj U) is a weak 
Verdier quotient, with the same statements holding for V. Let / : U —> X,g :V —> X 
and h: U nV —» V be the inclusions, and observe that for in Ty we have 

/ » K | t / ) | v = h,{^\unv) = 0 in K „ ( P r o j V) 

Hence ft{£/\u) belongs to Ty and by symmetry gt{^\y) belongs to Ty for any ^ in Ty. By 
Lemma 2.12, Ty and Ty are properly intersecting Bousfield subcategories of Km{Proj X). 

Now let U be an arbitrary quasi-compact open subset of X, keeping V affine. Take an 
affine open cover U = U • • • U Wn and suppose that for some 1 < i < n we have checked 
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that the subcategory S î = Bousfield and properly intersects 
every subcategory in the following list: 

. . . , K„ , ; ,\H'„ (Pro jX) , (4.10) 

When 1 = 1 this is the afRne csise we have just verified. For arbitrary i, the subcategory 
is the intersection of two properly intersecting Bousfield subcategories 

Using [Rou03, Lemma 5.8] and [Rou03, Lemma 5.9] we conclude that Yi+i is a Bousfield 
subcategory of lKm{Proj X ) intersecting properly with what remains of the list in (4.10) 
after we delete the first item. Proceeding inductively, we conclude that Tu is Bousfield 
and intersects properly with Ty for any affine open subset V C X. A similar argument on 
V now completes the proof. • 

A cocovering of Km(Proj X) is a finite family of Bousfield subcategories, intersecting 
pairwise properly, with the intersection over all elements of the cover equal to zero. 

Lemma 4.9. Let U = {(/q. • • •, Ud} be an affine open cover of X and set 

The family of Bousfield subcategories T = { 7 ^ , i s a cocovering of Km(Proj X). 

Proof By Lemma 4.8 the triangulated subcategories Ti are Bousfield subcategories that 
intersect properly with one another. An object of the intersection ToCi - ' -nTa restricts to 
zero on an open cover of X, and is therefore by Remark 3.10 zero in Km(Proj X). Hence 

is a cocovering of !Km(Proj X ) . • 

The next result is the major theorem of this chapter. The proof does not construct an 
explicit set of compact generators; we delay such a construction until Chapter 7. 

Theorem 4.10. If X is a noetherian scheme then Km(Proj AT) is a compactly generated 
triangulated category and, for any open subset U C X, the subcategory K„_x\(7(Proj AT) 
is compactly generated in Km(Proj A"), 

Proof Take an affine open cover U = {UQ, ...,UD} of X and let denote the associated 
cocovering by Bousfield subcategories defined in Lemma 4.9. To match our notation with 
the theorem of Rouquier (Theorem 2.13) that we will use, set J = IK:„^x\[/(Proj A:) and 
T = Km(Proj A ) for some open subset U C X, which may be empty. The proof consists 
of verifying the hypothesis in Rouquier's theorem. 

Pick an arbitrary element I of the cocover J". Reindexing if necessary, we may assume 
that the chosen element is I = % . For any subset T' C {TI,... ,TD} we prove that the 
following quotient is compactly generated in T/I 

[J n ripg^-j') / ( J n (4.11) 
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Let W C X be the union of U with all those open sets UI with € T'. Since J7'n(ni/gjr'2') 
is the category X ) , we have to prove that the essential image of the composite 

^^..^^^(Proj X ) ^ K„ (Pro j X ) K„ (Pro j X)/K^,x\Uo (Proj 

is compactly generated in Km(Proj quotient is equivalent to 
Km(Proj UQ) by Lemma 4.7, so it is enough to show that the essential image of the following 
composite (call the essential image S) is compactly generated in Km(Proj Uq) 

K„,A'\w(Proj X ) K„ (Pro j X ) K„ (Pro j UQ) 

We claim that the image 5 is the kernel of (-)|c;onw : Km(Proj UQ) —> Km(Proj UO n W). 
It is clear that S is contained in the kernel. To prove the reverse inclusion, let a complex 
^ in the kernel be given, write / : UQ —> X,h : UoOW —> W for the inclusions, and set 

= Then = h,{^\uonw) is zero in K„(ProjVK) and ^ = ^ V o ' hence 
is an object of S, which proves the claim. 
Because UQ is affine there exists a noetherian ring A and an isomorphism of schemes 

Uo = Spec{A), which identifies Uar\W with a finite union D{f\) U • • • U D( /r ) for some 
elements / i , . . . , / r G A, where D{fj) is the open set of prime ideals not containing fj. 
The kernel of the restriction functor 

{-)\uonw •• Km(Proj Uo) IK„(Proj Uo n W) 

corresponds under the equivalence K(Proj A) = Km(Proj UQ) to the subcategory 

V( / i , . .•,fr) = {PE K(Proj A) I PF^ is zero in K(Proj for 1 < i < r } 

We proved in Proposition 4.5 that V( / i , . • •, fr) is compactly generated in K(Proj A), from 
which it follows that S is compactly generated in ]Km(Proj Uo)- This completes the proof 
that (4.11) is compactly generated in T / J . 

If we take U to be empty in the above, then nC„_x\t;(Proj X ) is just K„ (Pro j X ) and 
Theorem 2.13 allows us to conclude that Km(ProjX) is compactly generated. Given an 
arbitrary open subset U C X another application of Theorem 2.13 (using Lemma 4.8 to 
check the hypothesis about proper intersection) proves that ;^\[;(Proj X ) is compactly 
generated in IKm(Proj X ) , and completes the proof • 



Chapter 5 

The Mock Stable Derived 
Category 

Let X be a scheme and let Km,ac(Proj X) denote the full subcategory of acycHc complexes 

in Km(Proj X). This triangulated category, called the mock stable derived category of X, 
will turn out to be an invariant of the singularities of X (see Section 9.2). Our main result 

in this chapter asserts tha t there is a recollement (Theorem 5.5) 

K m , a c ( P r o j X) K „ ( P r o j X) D(QcoX) 

from which we deduce tha t Km,ac(Proj X) is compactly generated when X is noetherian. 

Here ©(OcoX) is the derived category of quasi-coherent sheaves on X , and the recollement 

adjoins to this derived category the mock stable derived category, whose objects are acycHc 

complexes of flat quasi-coherent sheaves (we review recollements in Chapter 2). 

The recollement says something about K-flat resolutions: using it, we prove in Remark 

5.9 tha t K-flat resolutions are unique in Km(Proj X). Together with the closed monoidal 

s tructure studied in the next chapter, this observation will lead to our characterization in 

Chapter 7 of the compact objects in K m ( P r o j X ) . Specializing to an afRne scheme, there 

a recollement for any ring A 

K a c ( P r o j A) I K ( P r o j A) I D ( y l ) 

which exists even for noncommutative rings (Theorem 5.15). It follows tha t the homotopy 
category IKac (Proj A) of acyclic complexes of projective modules is always well generated, 
and tha t it is compactly generated whenever A is right coherent (Corollary 5.17). 

S e t u p . In this chapter X is a fixed scheme and all sheaves are defined over X by default. 

Before embarking on the proofs, let us explain the connection between stable module 
categories and the triangulated category Km,ac(Proj X). In the same way tha t the mock 
homotopy ( P r o j X ) glues together the homotopy categories K(Pro j over 

afRne open subsets, the mock stable derived category glues together homotopy categories 
Kac(Proj A) of acychc complexes of projectives, so it is worth talking a little bit about 
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acyclic complexes of projective modules over a ring A. Let P be such an acyclic complex, 
and consider the kernel (also called the syzygy) K = Ker(P^ — » pn+i ) degree n 

. pn-2 pn-1 pn pn+1 

The truncation • • • —> pn-2 —^ pn-i jg ĝ  projective resolution of K so, up to homotopy 
equivalence, P is determined in degrees < n - \ hy K. In some cases the entire complex 
is determined by this syzygy. To give a noncommutative example, A = kG is the group 
ring of a field k and finite group G then the projective and injective .4-modules coincide, 
and in the above diagram P is an injective resolution in degrees > n. The complex P is 
determined, up to homotopy equivalence, by K. The best way to describe this correspon-
dence between acyclic complexes and syzygies is via stable module categories. 

There is a generic notion of stabilization in algebra. Abstractly, this is the process of 
modding out the "free" or "smooth" parts of the representation theory of some structure. 
The stable module category of a (noncommutative) ring A, denoted M o d A , has the same 
objects as the ordinary module category but morphisms are identified if their difference 
factors through a projective. This category does not see projective summands of a module; 
it sees only the "hard" part of the representation theory of A. For some entry points into 
the literature, see the work of Auslander and Bridger [AB69], Happel's book [Hap88], the 
papers of Rickard [Ric89, Ric97], Benson-Carlson-Rickard [BCR97) and Rouquier [CROC)]. 

A canonical example is the stable module category ModfcG of a field k and finite 
group G. Over the group ring A = kG & module is projective if and only if it is injective, 
and acychc complexes of projective modules are in bijection with modules. To be precise, 
there is an equivalence of triangulated categories [Kra()5, Theorem 8.2] 

Z \ - ) : K a c ( I n j A) = K a c ( P r o j A ) ^ M o d A ( 5 . 1 ) 

defined by taking the kernel in degree zero; see [KraQ5, §8] for further details. However, we 
are primarily interested in the commutative rings occurring in algebraic geometry, and for 
such rings the injective and projective modules rarely agree. To rescue the correspondence 
between acyclic complexes and their syzygies we restrict to the acyclic complexes for which 
the correspondence survives, called the totally acyclic complexes. 

Rather than define total acychcity, let us work over a (commutative) Gorenstein ring A 
of finite Krull dimension, where acychc complexes are totally acyclic [IKO(j, Corollary 5.5]. 
Even then, not every module occurs as a syzygy of an acyclic complex of projectives; those 
that do are called Gorenstein projective modules, and we denote by Gpro j (ModA) the full 
subcategory of M o d A consisting of these modules. Having arranged things correctly, we 
have the analogue of (5.1): there is an equivalence of triangulated categories (Proposition 
5.10) defined by taking the kernel in degree zero 

Z°{-) : Kac(Proj A) ^ Gpro i (ModA) 
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The compact objects on the right hand side are, up to isomorphism, the finitely generated 
Gorenstein projective modules, which agree in this case with the maximal Cohen-Macaulay 
(MCM) modules- see Lemma 5.11. The stable module category of MCM modules contains 
information about the singularities of the ring; see for example [Yos90]. This completes our 
local description of the mock stable derived category: over a finite dimensional Gorenstein 
scheme, the triangulated category Km,ac(Proj X) is locally equivalent to the stable module 
category Gproj(Modyl) which contains, as its subcategory of compact objects, the stable 
module category of MCM modules. Results of this type explain how Km,ac(Proj X) carries 
information about the singularities of X. 

The theory of homotopy categories that we are describing comes to us in two fiavours: 
projective and injective. In this chapter we study the projective version Km,ac(Proj X) of 
the stable derived category, but the injective aspect was developed first, by Krause. In 
[Kra05] he introduced the (injective) stable derived category Kac(InjX) of a noetherian 
scheme and proved many interesting results about it, including the existence of a recolle-
ment whose projective analogue the reader will encounter in Theorem 5.5 below. 

Having explained the motivation, let us proceed with the results. The first proposition 
tells us that the orthogonal Km,ac(Proj X) in Km(Pro jX) is the subcategory of K-flat 
complexes (the definition of K-fiatness in given in Section 2.2). But first we need to check 
that being K-flat is a property stable under isomorphism in Km(Proj Z ) . 

L e m m a 5.1. Let ^ b e two complexes of flat quasi-coherent sheaves isomorphic in 
K „ ( P r o j X). Then ^ is K-flat if and only if ^ is K-flat. 

Proof. Assume that ^^ is K-fiat and let Q : K(Flat X) —> K „ ( P r o j X) denote the quotient 
functor. Every morphism a •. ̂  —> in K „ ( P r o j X) can be written as Q{b)Q{a)~'^ for 
morphisms a : W —» and 6 : ^ — > i n K(F la tX) with a having mapping cone in 
E(X). If a is an isomorphism in Km(ProjX) then 6 must also be an isomorphism, and 
we deduce that b has mapping cone in E(X) as a morphism of K(Flat X). Extending b to 
a triangle in K(F la tX) we have 

W — ^ ^ ^ ^ ^ Y.W 

where ^ and are both K-flat, because complexes in E(X) are K-flat. We deduce that 
W is K-flat. Extending a to a triangle W —» —• —> E ) ^ we have in E(JC) by 
construction, so both and W are K-flat. We conclude that ^ is K-flat, as required. • 

It is a basic fact of homological algebra that flat modules are close to projective mod-
ules, despite the former being defined in terms of tensor products and the latter in terms 
of Hom. The generahzation of these notions to complexes (K-projectivity and K-fiatness) 
follows the same pattern; see Section 2.2. This makes the following characterization of 
K-flatness slightly surprising; informally, passing to the mock homotopy category has the 
effect of making K-flat complexes behave like K-projective complexes. 
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Proposi t ion 5.2. A complex ^ of flat quasi-coherent sheaves is K-flat if and only if it 
belongs to the orthogonal Km.acCProj X) as an object o / K m ( P r o j X ) . 

Proof First we prove the claim when the complex ^ is bounded above. In this case ^ 
is already K-flat, so we have to show that it belongs to the orthogonal IKm,ac(Proj X). 

This is a local question: suppose that we know it is true for affine schemes, and take 
an afRne open cover {UQ, ... ,U(I} oi X. Then, by assumption, for any finite intersection V 
of open sets in the cover the restriction belongs to the orthogonal Km,ac(Proj V). 
Denoting the inclusion by / : V —• X we have, for any acyclic complex ^ 

Setting C = in Corollary 3.14 we conclude that ^ is left orthogonal in ]Km(Proj X) 
to acychc complexes. Therefore, to prove that every bounded above complex ^ belongs 
to ac 

(Pro jX) , we can reduce to the afRne case where X = Spec{A) and ^ = F~ 
for a bounded above complex F of flat v4-modules. In this situation, let P —> F be a 
quasi-isomorphism with P a bounded above complex of projective yl-modules. Extending 
to a triangle in K(Flat A) 

P —V F —^ E —• E P 
the mapping cone E is an acyclic, bounded above complex of flat modules. Such complexes 
belong to IE(>1) so P —• F is an isomorphism in Km(Proj A). We want to show that F is 
left orthogonal to acyclic complexes. Up to isomorphism every complex in Km(Proj A) is 
a complex of projectives (Lemma 3.6) so it suffices to check that F is left orthogonal to 
every acyclic complex Z of projective modules. In this case 

HomK„(Proj Z) = Z) ^ HomK(ProjA)('P, Z)=0 

since P is K-projective and Z is acychc. This completes the proof of the proposition when 
^ is a bounded above complex. For an arbitrary complex ^ 6 ]Km(Proj X) we can by 
Corollary 3.22 find a sequence of bounded above complexes of flat quasi-coherent sheaves 

^ ^ • • • 

whose homotopy colimit in K(F la tX) is a K-flat complex ^ quasi-isomorphic to J^. The 
localizing subcategory Km,ac(Proj X) contains the by the above discussion, and thus 
contains the homotopy colimit We have a triangle in K ( F l a t X ) with ^ acyclic 

^ — — » —> E ^ 

Using this triangle we make the following chain of deductions 

^ is K-flat is K-flat, since ^ is known to be K-flat 

© is zero in IT̂ TTX (Proj X), since it is already acychc 

^ belongs to Km,ac(Proj X) 

^ belongs to K„,ac(Proj X) 

which is what we needed to show. • 
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Definition 5.3. Let Km_ac(ProjX) denote the full subcategory of acyclic complexes in 
]Km(ProjX). The canonical functor K(F latX) —> D{QcoX) vanishes on complexes in 
E(A'), so there is a unique triangulated functor U making the following diagram commute 

K(Flat X) > K(QcoX) D(QcoX) 

( P r o j X ) 

where Q is the Verdier quotient. Clearly Km,ac(Proj X) is the kernel of U, and in particular 
it is a localizing subcategory of Km(Proj X ) . 

Unsurprisingly, the proof of the major theorem in this chapter is easier for noetherian 
schemes. The reader willing to assume noetherianness can skip the next result, which is 
superfluous in the noetherian case. 

Proposition 5.4. The inclusion 

K „ , a c ( P r o j X ) — . K „ ( P r o j X ) 

has a right adjoint. 

Proof. The proof is by reduction to the affine case, which is true even for noncommutative 
rings so we delay it until Section 5.1; see Theorem 5.15. Assuming the afBne case, the 
proof follows the now famihar pattern of a Cech argument (cf. the proof of Theorem 3.16). 
Let JC be the full subcategory of Km(Proj X) consisting of the complexes ^ that fit into 
a triangle in Km(Proj X) 

—> ^ —• . y — » E-r (5.2) 

with belonging to Km,ac(ProjX) and in K„,ac(Proj X)-*-. This subcategory £ is a 
triangulated subcategory called the Verdier sum. We claim that C = Km(Pro jX) . 

To prove this claim it suffices, using Corollary 3.14, to show that belongs to £ 
for every affine open subset V C X and 'S in Km(Proj V), where / : V —> X denotes the 
inclusion. But the result is true for affine schemes by Theorem 5.15, so we have a triangle 
in K „ ( P r o j V) with ^ in K„,ac(Proj V) and in the orthogonal K„,ac(Proj V)^ 

—> ^ — » ^ —> E ^ 

Applying the functor / , : ^^ (Pro j V) —> K:„(Proj X) we have a triangle in K „ ( P r o j X) 

M'^) f*m —> M^) E / . c r ) 

where M ' r f ) is acyclic, because / is affine, and M Y ) belongs to Km,ac(Proj X)-^ because 
of the adjunction between direct image and restriction. We conclude that every complex 
in IKm(ProjX) fits into a triangle (5.2) of the desired form, which is enough by Lemma 
2.3 to prove the existence of the required adjoint. • 

We are now ready for the proof of the theorem. 
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T h e o r e m 5.5. The sequence 

K„^,ac(Proj X) ^ K„ (P ro j X) D(£JcoX) (5.3) 

induces a recollement 

K„,ac(Proj X ) K„ (P ro j X ) P (QcoX ) (5.4) 

It follows that Km,ac(Proj X) is compactly generated when X is noetherian. 

Proof. Let us outline the proof: Lemma 2.6 tells us that any triangulated functor with a 

fully faithful left adjoint is, up to equivalence, the Verdier quotient by its kernel. We want 

to prove that U has this property. It will be enough to show that the composite 

T : ^ K„,ac(Proj X) K„ (P ro j X) D (QcoX) (5.5) 

is an equivalence, which follows from our identification in Proposition 5.2 of the orthogonal 

]Km,ac(Pi'oj X) with the subcategory of K-flat complexes. This will prove that (5.3) is a 

colocalization sequence; we then invoke Proposition 5.4 to see that it is a recollement. 

Now for the details. In order to prove that U has a fully faithful left adjoint, we show 

that for complexes ^ and ^ in Km(Proj X) with ^ a K-flat complex, the map induced 

by the canonical functor U 

is a bijection. The following simple observation is the crux of the argument: 

(•) Let —> be a quasi-isomorphism of K-flat complexes of fiat quasi-

coherent sheaves. The mapping cone is acyclic and K-fiat, and thus vanishes 

in Km(Proj X ) , so —> ^ is an isomorphism in Km(Proj X). 

To check surjectivity of $ let a morphism a •. ^ —> ^ in D(OcoX) be given. This can 

be represented by a "roof" diagram in K (QcoX) 

W 

where a is a quasi-isomorphism. Denoting the quotient by q : K (OcoX ) —> D (OcoX) this 

means that a = q{b)q{a)~''^ in D(OcoX) . Using Corollary 3.22 we can, by replacing W with 

its resolution if necessary, assume that is a K-flat complex of flat quasi-coherent sheaves. 

It now follows from (•) that a is an isomorphism in K „ ( P r o j X ) , so a = $ (Q(6 )Q(o )- i ) 

is in the image of where Q : K(Flat X) —> Km(Proj X) is the quotient. 

To see that $ is injective, it suffices to show that a morphism of complexes s •. —> J?" 

sent to zero in D (QcoX) is already zero in Km(Proj X). If s is zero in D(£2coX) then by 

[NeeOlb, Lemma 2.1.26] we can find a quasi-isomorphism t : W —> ^ of complexes of 

quasi-coherent sheaves with the following composite zero in K (OcoX ) 
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Let t' : —> be a K-flat resolution of ^ by a complex of flat quasi-coherent 
sheaves. The composite t o t' a, quasi-isomorphism —> ^ of K-flat complexes, 
therefore an isomorphism in Km(Proj X) by (*). Since s composes with this morphism 
to give zero in HCTT̂  (Pro jX) , we deduce that s is zero in KmlProjX) , as required. This 
completes the proof that $ is a bijection, and shows that T in (5.5) is fully faithful. 

The functor T is an equivalence, because every object of D(QcoX) admits a K-flat 
resolution by flat quasi-coherent sheaves (Corollary 3.22) and these resolutions are objects 
of Km,ac(Proj X) (Proposition 5.2). Composing the quasi-inverse with the inclusion 
of the orthogonal Km,ac(Proj X) —> Km(ProjX) gives a fully faithful left adjoint for 
U, so it follows from Lemma 2.6 that (5.3) is a colocahzation sequence. 

When X is noetherian, Km(Proj X) is compactly generated and U has a right adjoint, 
because it preserves coproducts (Proposition 2.7). More generally, Proposition 5.4 ensures 
the existence of a right adjoint to the inclusion Km,ac(Pi'oj X) —> Km(ProjX) for any 
scheme. This gives two different proofs, via Lemma 2.3, that (5.3) is a recollement. Finally, 
when X is noetherian the category Km(ProjX) is compactly generated (Theorem 4.10) 
so it follows from Corollary 2.10 that Km,ac(Proj X) is also compactly generated. • 

A weaker version of the theorem holds for K(Flat X). 

Corollary 5.6. There is a localization sequence 

K a c ( F l a t X) , K(Flat X) , D(l3coX) 

Proof. It is enough by Lemma 2.6 to prove that K(Fla tX) —> D(QcoX) admits a fully 
faithful right adjoint. This functor is the composite of K(Fla tX) —> K„(ProjA' ) and 
K „ ( P r o j X ) —> D(QcoX), which by Theorem 3.16 and Theorem 5.5 both have fully 
faithful right adjoints. Hence so does their composite. • 

Remark 5.7. The localization sequence of the corollary is a recollement when X is affine, 
see Corollary 5.16 below, but this is not true over general schemes. For a counterexample, 
see Remark A. 15. 

Remark 5.8. In particular, we have equivalences of triangulated categories 

K „ ( P r o j X ) / K „ , a c ( P r o j X) ^ D(QcoX), K(Fla t X)/Kac(Flat X) D(QcoZ) 

Remark 5.9 (Adjoints and flat resolutions). The existence of K-injective and K-projective 
resolutions can be phrased as the existence of a recollement (see Remark 2.20) involving 
the homotopy category and derived category of an abelian category A 

K a c ( A ) ^ = K ( A ) ^ = D ( A ) (5.6) 

When A is the category of modules over a ring this recollement exists, and the left adjoint 
qx of the quotient q : K(^ ) —> D(^) sends a complex to its K-projective resolution. Given 
an arbitrary Grothendieck abelian category, for example the category of quasi-coherent 
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sheaves over a scheme, (5.G) is a localization sequence but not necessarily a recollenient, 
because there may not be enough projectives. 

For an abelian category A that lacks projectives there may be a weaker notion of a flat 
object, and in many examples such flat objects are plentiful. Theorem 5.5 tells us that by 
passing to the mock homotopy category we can make flats imitate projectives: 

(i) Flat resolutions are unique up to isomorphism in Km(Proj X) . It follows from the 
theorem that we have an equivalence 

^ K„,ac(Proj X) ^ K „ ( P r o j X) ^ D(QcoX) (5.7) 

The left adjoint U)^ factors SS 3-11 6C[Uiv£LlGnCG O(OcO-i^) ^ ĤTTĵac (Proj X) followed 
by the inclusion, and this defines the quasi-inverse of (5.7). Recall from Proposition 
5.2 that the orthogonal Kac(Proj X) is the full subcategory of K-flat complexes. 

We infer that K-flat complexes are isomorphic in Km(Proj X) if and only if they are 
isomorphic in D(QcoX). Hence K-flat resolutions by flat quasi-coherent sheaves are 
unique up to isomorphism; note that such resolutions exist, by Coroflary 3.22. 

(ii) Flat resolutions are functorial in Km(ProjX) . Let ^ —> /̂K be a morphism in 
D(CJcoX) and choose K-flat resolutions —> ^ and —> yK consisting of 
flat quasi-coherent sheaves. We have a diagram in D(l2coX) 

(5.8) 

The composite ^ J( —> ^ j/ m. D(OcoX) lifts by (5.7) to a unique 
morphism —> ^ ^ in Km(Proj X) making (5.8) into a commutative square in 
D(iJcoX). This demonstrates the functoriahty of flat resolutions. 

Let us retreat for a moment from sweeping generality and construct this hfting in the 
affine case. Let ^ be a ring and / : M —• N a morphism of yl-modules. Let Fm,Fn 
denote flat resolutions of M and N, respectively, and choose a projective resolution 
P of M. In the standard way, we construct morphisms of complexes a : P —> Fm 
and P : P —> Fn lifting the identity and / , respectively, as in the following diagram 

We already observed in Remark 3.7 that a is a morphism with mapping cone in 
E(4) , that is, it is an isomorphism in Km(Proj A). The composite (f = (3 o cc"! is a 
morphism Fm —> F^ in K „ ( P r o j A) that hfts / to the flat resolutions. 
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(iii) Flat resolutions are calculated by the left adjoint of U. Let ^ be a complex of 
quasi-coherent sheaves and ^ ^ —> ^ a K-flat resolution by flat quasi-coherent 
sheaves. As belongs to the orthogonal Km(Proj X) we have an isomorphism 

in IKm(Proj X), so sends a complex to its K-flat resolution. 

We conclude this section by giving a local description of Km_ac(Pi'oj X) in an important 
special case, proving the claim made in the introduction about stable module categories 
of Gorenstein projective modules. But first, let us set up some notation. 

Let ^ be a noetherian ring. An acyche complex P of projective ^-modules is totally 
acyclic if the complex Hom^(P, Q) is acyclic for every projective ^-module Q. We denote 
by lKtac(Proj A) the full subcategory of totally acyclic complexes in IK(Proj A), which is a 
triangulated subcategory; these complexes are also called complete projective resolutions. 
See [AB69], [ChrOO, §4.2], [AM02] and [IK06] for properties of these complexes. 

We say that an ^-module is Gorenstein projective if it is isomorphic to for some 
totally acyclic complex P of projective ^-modules. When A is Gorenstein and has finite 
Krull dimension, a complex of projective /1-modules is totally acychc if and only if it is 
acyclic; see [IK06, Corollary 5.5]. Denote by Gproi (Mod^) the full subcategory of the 
stable module category Modv4 given by the Gorenstein projective objects. In light of 
the definition of Gorenstein projective modules as syzygies of objects of Ktac(Proj A), the 
following equivalence comes as no surprise. 

Propos i t ion 5.10. Let A be a noetherian ring. There is an equivalence 

•• Ktac(Proj A) Gpro j (Mod/ l ) (5.9) 

defined by taking the kernel in degree zero. 

Proof. The proof is dual to [Kra05, Proposition 7.2]. • 

The relationship between maximal Cohen-Macaulay modules and Gorenstein projec-
tive modules is part of the motivation for the subject; see the survey in [EE()5b]. For the 
benefit of the reader who is not familiar with relative homological algebra we include the 
following statements, most of which can be found in Christensen's excellent book [ChrOO]. 

Let be a noetherian ring. The G-dimension, or Gorenstein dimension, of a finitely 
generated yl-module M is denoted Gdim4(M). This dimension was defined by Auslander 
and Bridger in [AB69]. The /1-modules of G-dimension zero form a class G(yl), called the 
G-class of A. If A is local, a finitely generated ^-module M is maximal Cohen-Macaulay 
(MCM) if depth^(M) = dim(^) . When A is an arbitrary noetherian ring, we say that a 
finitely generated .4-module M is MCM if Mp is a MCM module over Ap for every prime 
ideal p G Spec{A). 

L e m m a 5.11. Let A be a Gorenstein ring of finite Krull dimension. The following con-
ditions are equivalent for a finitely generated A-module M: 
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(i) M is maximal Cohen-Macaulay. 

(ii) M is Gorenstein projective. 

(Hi) M occurs as a syzygy of an acyclic complex of finitely generated free A-modules. 

Proof. By [ChrOO, Theorem 4.2.6] the module M is Gorenstein projective precisely when 
it belongs to G(A). Membership in the G-class is local; that is, M € G{A) if and only if 
Afp G G(>lp) for every prime p £ Spec{A) [ChrOO, Lemma 1.3.1]. In the local ring Ap we 
have the Auslander-Bridger formula [ChrOO, Theorem 1.4.8] 

Gdim^^(Mp) + depth^^(Mp) = dim(/lp) (5.10) 

Here we use the fact that Ap is Gorenstein, so every finitely generated module has finite 
G-dimension [ChrOO, Theorem 1.4.9]. Now M e G(.4) if and only if Gdim4p(A'/p) = 0 for 
every prime p, which by (5.10) is equivalent to depth^^ (Afp) = dim(vlp) for every p. This is 
the statement that M is maximal Cohen-Macaulay, so we have estabhshed (i) <=> {ii). For 
the equivalence of (ii) and (iii) see [ChrOO, Theorem 4.1.4] and [1K06, Corollary 5.5]. • 

5.1 The Stable Derived Category of Projective Modules 

The material of the previous section specializes to results about the homotopy category 
K(Proj A) of projective modules over a commutative ring A. In this section we point out 
that commutativity is superfluous; the results hold in complete generahty. 

Setup. In this section ^ is a noncommutative ring and modules are left v4-modules. 

The results of this section are straightforward consequences of the results estabhshed 
by Neeman in his papers [Nee06a] and [Nee06(-]. We are only able to work in such com-
plete generality (no finiteness conditions on A) by exploiting the theory of well generated 
triangulated categories, so it is appropriate to say a few words about these categories. 

Remark 5.12. In [NeeOlb] Neeman introduced the well generated triangulated categories 
as a generalization of the compactly generated ones; see also [KraOl], Neeman's book shows 
why this is the correct generality in which to prove theorems like Brown representability. 

There are natural examples of triangulated categories that are well generated but not 
compactly generated. For example, the derived category D(^) of a Grothendieck abelian 
category A is always well generated, but it is not necessarily compactly generated [NeeOla]. 
Of more relevance to us here, it is known that K(Proj A) is compactly generated for right 
coherent rings [NeeOGa, .l0rO5] but Neeman has shown that this is not true in general. The 
homotopy category K(Proj is, however, always well generated [NeeOGa, Theorem 4.8]. 

Our first task is to prove some technical results characterizing K-projectivity. 

Proposition 5.13. The inclusions 

K : K(Proj A) ]K(^), J : K(Flat A) —^ K{A) 



5.1 The Stable Derived Category of Projective Modules 

both have right adjoints that are exact. That is, the right adjoints send acyclic complexes 

in K(^) to acyclic complexes. 

Proof. We know from the work of Neeman that K(Proj A) is well generated, so it satisfies 
Brown representability [NeeOGa, Corollary 4.9]. It follows from [NeeOlb, Theorem 8.4.4] 
that the inclusion K has a right adjoint. The existence of a right adjoint for J is connected 
with flat covers, and is due to Neeman; see [Nee06c, Theorem 3.3]. It remains to prove 
that the adjoints are exact. For M € K ( ^ ) the counit KKp{M) —> M fits into a triangle 

KKp{M) ^ M ^ S ^i:KKp{M) (5.11) 

with 5 G K(Proj A)^. By Lemma 2.22 we can find a quasi-isomorphism P —» S with P a 
complex of projectives; this morphism must be zero in K(^ ) , from which we deduce that 5 
is acychc. From the triangle (5.11) we conclude that the adjoint Kp : K(J4) —> K(Proj A) 
sends acyclic complexes to acyclic complexes, and the same argument apphes to Jp. • 

Recall from Section 2.2 the definition of K-injective, K-projective and K-flat complexes. 
To be clear, over the noncommutative ring A a complex X of left v4-modules is K-flat if 
Z ^A X is acyclic for every acyclic complex Z of right j4-modules. 

Corollary 5.14. We have the following classification of orthogonals 

(i) A complex X of projective modules is K-projective if and only if X e Kac(Proj A). 

(ii) A complex X of flat modules is K-projective if and only if X e Kac(Flat yl). 

(Hi) A complex X of flat modules is K-flat if and only if X e Km,ac(Proj A). 

where the orthogonal in {Hi) is taken in IKm(Proj^). It follows that 

(iv) A complex X of projective modules is K-flat if and only if it is K-projective. 

Proof. Note that orthogonals are always calculated relative to some ambient triangulated 
category. In (i) and (ii) above this category is K(>1) and in {Hi) it is Km(Proj ^4). 

(i) If X is K-projective then it is left orthogonal to every acyclic complex, and in par-
ticular it is left orthogonal to the acyclic complexes of projective modules, so X belongs to 

Kac(Proj A). In the other direction, let X be a complex of projectives left orthogonal to 
every acyclic complex of projective modules. For an acyclic complex C of modules it follows 
from Proposition 5.13 that Kp{C) is acyclic, so HomK(4)(X, C) = H o m K ( P r o j ^ ^ ^ ( C ) ) 
vanishes, proving that X is K-projective. The claim {ii) is proved similarly. 

{Hi) The complex X has a K-projective resolution consisting of a K-projective complex 
P of projective modules and a triangle in K ( ^ ) with C acychc (see Lemma 2.22) 

P ^ X —^C (5.12) 

Any acyclic complex Z of flat modules is isomorphic, in Km(Proj A), to an acychc complex 
Z' of projective modules, and using Remark 3.5(iii) we have 

HomK„(p,oj Z) ^ HomK(ProjA)(-P, Z') = 0 
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from which we deduce that P € Km,ac(Proj A). If X is K-fiat then from (5.12) we infer 
that C is K-flat and thus zero in Km(Proj A). Hence X = P belongs to Km,ac(Proj A). In 
the other direction, if X belongs to this orthogonal then so does C, whence C is orthogonal 
to itself and therefore zero. We conclude that X = P is K-flat (K-flatness is stable under 
isomorphism in IKm(Proj A), by the argument of Lemma 5.1). 

(iv) The equivalence IK(Proj A) IKm(Proj A) of Lemma 3.6 identifies Kac(Proj A) 

with ]Km,ac(Proj/l) and therefore identifies Kac(Proj with Km,ac(Proj/I). By (i) 

the first orthogonal consists of the K-projective complexes of projective modules and by 
(Hi) the second orthogonal is the full subcategory of Km(Proj A) consisting of the K-flat 
complexes of flat modules. The claim is now immediate. • 

The injective analogue of the next theorem is known for noetherian rings [Kra05] but 
for general rings it must be more subtle, because it is not even clear a priori how to define 
coproducts in K(Inj .4) for rings without some noetherian hypothesis. 

Theorem 5.15. The sequence 

K a c ( P r o j y l ) ^ K ( P r o j ^ ) - ^ D ( ^ ) (5.13) 

induces a recollement 

Kac(Proj K(Proj D(yl) (5.14) 

Proof. The proof is the same as that given for Theorem 5.5, but since many details simplify 
it is worth giving the full argument here. Firstly, we note that the composite 

T : Kac(Proj A) —^ K(Proj A) —> D(y4) 

is fully faithful, because by Corollary 5.14(i) the objects of Kac(Proj yl) are precisely 
the K-projective complexes of projectives. By Lemma 2.22 every complex X in D(yl) 
admits a K-projective resolution by a complex of projectives, so T is an equivalence. The 
composite of the quasi-inverse T " ' with the inclusion Kac(Proj A) —> K(Proj A) gives a 
fully faithful left adjoint for the functor u : K(Proj A) — » D(^ ) , so it follows from Lemma 
2.6 that (5.13) is a colocalization sequence. The triangulated category K(Proj A) satisfies 
Brown representability by [Nec06a, Corollary 4.9], so the coproduct preserving functor u 

admits a right adjoint. We conclude that (5.13) is a recollement, as required. • 

Next we give the flat analogue. Note that the recollement above generalizes to schemes, 
but the recollement below does not. 

Corollary 5.16. The sequence 

Kac(Flat ^ K(Flat A) ^ ^ n{A) (5.15) 

induces a recollement 

Cac(Flat A) K(Flat A) > D(yl) (5.16) 
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Proof. Let I : lK(Proj A) —> K(Flat A) denote the inclusion, which has right adjoint Ip by 
Remark 3.5 (this is another result of Neeman). Given a complex F of flat modules, there 
is a triangle IIp{F) —> F —> S —> T,IIp{F) with 5 in lK(Proj A)-^. We deduce that 5 
is an acyclic complex, and that the following diagram commutes up to natural equivalence 

K(Flat A) D(^) 

• K(Proj A) 

We know from the theorem that K(Proj A) —> D(^) has fully faithful left and right 
adjoints. The same is true of Ip by [NeeOGc, Remark 3.2], We conclude that the canonical 
functor K(Flat A) —> D(^) has fully faithful left and right adjoints, and therefore induces 
a recollement. • 

The next result adds to the list of well generated triangulated categories. 

Corollary 5.17. The triangulated category Kac(Projyl) is well generated. If A is right 
coherent, then it is compactly generated. 

Proof. We use a characterization of well generated triangulated categories given by Krause 
[KraOl] since it is more convenient for our purposes. In [Nec06a, Theorem 4.8] Neeman 
proves that the category IK(Proj A) is Ki-compactly generated: there is a set S of complexes 
in ]K(Proj A) satisfying the conditions of [KraOl, Theorem A] for the cardinal a = 

(Gl) An object X G K(Proj .4) is zero provided H o m K ( P r o j = 0 for every S e S; 

(G2) For every set of maps Xj —> Yi in K(Proj A) the induced map 

HomK(Proj>l)(5,®iXj) » HomK(Proj/l)(-5,®ii;) 

is surjective for every 5 € 5 provided HomK(Proj^){5, Z,) —> HomK(Proj V )̂ is 
surjective for all i and S e S. 

(G3) The objects of S are Ni-small. 

Let F : Kac(Projv4) —» K(Pro j^ ) denote the inclusion, which by Theorem -5.15 admits 
a left adjoint F^. It is straightforward to check that the set S' = {Fx{S) | 5 e 5} satisfies 
the above conditions (Gl)-(G3) for the triangulated category Kac(Proj^). From [KraOl, 
Theorem A] we conclude that K a c ( P r o j A) is Ki-compactly generated and, in particular, is 
well generated. If A is right coherent then K(Proj A) is compactly generated by [Nee06a, 
Proposition 6.14], One checks that F^ sends a compact generating set for K(Proj A) to a 
compact generating set for K a c ( P r o j A), so this latter category is compactly generated. • 

There is nothing surprising about this corollary It is essentially the argument given by 
Iyengar and Krause in [IK06, Theorem 5.3] who prove the result when A is commutative 
and noetherian of finite Krull dimension, apphed to the new fact that K(Proj A) is always 
well generated. 
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Chapter 6 

Closed Monoidal Structure 

Many triangulated categories are also closed monoidal categories. The topological example 
is the homotopy category of spectra with the smash product — A — and function spectra, 
while the algebraic example is the derived category D ( ^ ) of a (commutative) ring, which 
has the derived tensor product - - and derived Hom, denoted RHom^(—, - ) . 

It is hardly possible to overstate the importance of these objects. On the algebraic 
side, the derived structures contain in their cohomology the derived functors Tor and Ext 
underlying classical homological algebra: for yl-modules M, N we have isomorphisms 

^ov^{M,N) ^ N), Ext'{M,N) ^ H'REomA{M,N) 

In this chapter we define the closed monoidal structure on Km(Proj X ) . The tensor product 
is the ordinary tensor product of complexes, while the function object R ^ a t { - , - ) is more 
exotic. By analogy with the homotopy category of spectra, we call the functor 

the Spanier- Whitehead dual on the mock homotopy category of projectives; see [HPS97, 
Definition A.2.4]. Taking the dual, in this sense, of flat resolutions of bounded complexes 
of coherent sheaves produces compact objects in Km(Proj X ) , and we will prove in Chapter 
7 that all the compact objects are of this form. 

Another category of interest is the derived category D ( Q c o X ) of quasi-coherent sheaves. 
Its closed monoidal structure is identical to the structure on the derived category D ( X ) of 
arbitrary sheaves of modules, modulo some technical points, discussed in Section 6.1. The 
relationship between the derived category and K „ ( P r o j X) is a recollement (Chapter 5) 

Km,ac(Proj X) : K „ ( P r o j X) ] D ( Q c o X ) 

When X is regular the mock homotopy category is equivalent to the derived category, and 
the closed monoidal structure on Km(Proj X) reduces to the derived tensor product and 
derived Hom (Remark 9.8). In general, however, the tensor product and function object 
in K „ ( P r o j X) extend the corresponding structures of D(£2coX) to take into account the 
acyclic complexes, which carry information about the singularities of X . 
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We refer the reader to [HPS97, Appendix A] and [MVWOG, Definition 8A.1] for general 
background on triangulated categories that are also closed monoidal categories. 

Setup. In this section X is a noetherian scheme and sheaves are defined over X by default. 

First we define the tensor product on IKm(Proj X). In the homotopy category K ( Q c o X ) 
of quasi-coherent sheaves we have a tensor product - ® - defined for complexes of 
quasi-coherent sheaves by [Lip, (1.5.4)]. In degree n, this complex is 

0 
i+j—n 

This tensor product makes IK(£JcoX) into a tensor triangulated category, in the sense of 
[MVW06, Definition 8A.1]. The corresponding closed structure is discussed in Section 6.1. 
Because the tensor product of flat sheaves is flat, the tensor product on K ( Q c o X ) restricts 
to make K(Flat AT) into a tensor triangulated category. 

Lemma 6.1. If ^ is a complex of flat quasi-coherent sheaves and S belongs to lE(A') then 
^ also belongs to E ( A ) . 

Proof. Complexes in E ( A ) are characterized by the fact that tensoring with them sends 
arbitrary complexes to acyclic complexes; see Proposition 3.4. Given a complex ^ we have 

® ® ( f ) ^ ® ® <f, which must be acyclic, whence ^^^ e E(A'). • 

The lemma tells us that E ( A ) is a tensor ideal, and it follows that the tensor product on 
K(Flat AT) descends to a tensor product on the quotient Km(Proj A ) = K(Flat X ) / E ( A ) , 
which thus becomes a tensor triangulated category. The precise argument can be found in 
[MVWOG, Proposition 8A.7]. Because Km(Proj A ) is compactly generated, we can deduce 
function objects from Brown represent ability, as follows. 

Proposition 6.2. The triangulated category Km(Proj A ) is a closed symmetric monoidal 
category, in which the tensor product and function object R^at{-, - ) are compatible with 
the triangulation. In particular, there is a natural isomorphism 

Proof. When we say that the structure is compatible with the triangulation, we mean it in 
the precise sense of [HPS97, Definition A.2.1]. We have already shown that IKm(Proj A ) 
is a tensor triangulated category with the ordinary tensor product of complexes. For any 
object ^ e Km(Proj AT) this tensor product gives a coproduct preserving functor 

- ® ^ : K „ ( P r o j A ) ^ K „ ( P r o j A ) 

which has, by Brown representability, a right adjoint - ) . Here we use the fact 
that a: is noetherian to see that K m ( P r o j X ) is compactly generated (Theorem 4.10), so 
that the Brown representability theorem of Neeman applies (Proposition 2.7). 

This defines the function object R ^ a t { - , - ) , but now some work is required to verify 
that the conditions given in [HPS97, Definition A.2.1] are satisfied. The only problem is 
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that it is not immediately clear that R ^ a t { — , - ) is a triangulated functor in the first 
variable. We give a general argument in Appendix C that settles this point for arbitrary 
tensor triangulated categories satisfying Brown representability and an extra mild axiom 
on the tensor product, which holds for Km(Proj X) and the other natural examples (see 
Proposition C.13 and the subsequent remark). 

Alternatively, one can prove that R ^ a t { - , - ) is triangulated in the first variable by 
giving a more explicit description of this complex, along the same lines that one defines the 
derived Hom in © ( X ) . This development is given in Appendix B. Using either approach, 
we find that the function object is a triangulated functor in both variables. Since the other 
conditions of [HPS97, Definition A.2.1] are easily checked, the proof is complete. • 

The reader may be left cold by this definition. Although the adjunction (6.1) tells us 
everything we need to know about the function object as an object of Km(Proj X ) , we have 
said nothing about it as a complex. In practice we will study —) by reducing to 
the local case, where Lemma 6.G below computes the function object exphcitly. In some 
important special cases, the global function object simplifies; see Corollary 6.13. 

Remark 6.3. The reason for the notation R ^ a t { - , - ) is that there is a closed structure 
Mat{-, - ) on K(Flat X ) , whose derived functor is the function object in ]Km(Proj X). The 
closed structure on K ( F l a t X ) is not important here, so we relegate it to Appendix B. 

We will give a more traditional exposition on the closed monoidal structure of D (QcoX) 
in Section 6.1, but using Brown representability it is possible to give a shorter proof that 
bypasses some nonsense about coherators. 

Proposition 6.4. The triangulated category ]S}(£lcoX) is closed symmetric monoidal, with 
tensor productand function object Rjeom^c{-, - ) compatible with the triangulation, 
and there is a natural isomorphism 

HomD(QcoA-)(^ (g) cf, J f ) ^ RJ^om^d'^, Jf)) 

Proof. In Chapter 5 we identified D(i3coX) with the full subcategory of K-flat complexes 
in Km(Proj X), by identifying a complex with its resolution. To be precise, we established 
an equivalence of triangulated categories (see Remark 5.9) 

^ K„,ac(Proj X ) K „ ( P r o j X ) ^ D ( Q c o X ) (6.2) 

where -*- Km,ac(Proj X) consists of K-flat complexes of flat quasi-coherent sheaves (Propo-
sition 5.2) and the quasi-inverse of (6.2) sends a complex to its K-flat resolution. Because 
the tensor product of K-flat complexes is K-flat, Km,ac(Proj X) is a tensor triangulated 
category, and from (6.2) we deduce that D (OcoX) is a tensor triangulated category with 
the induced structure, which is just the derived tensor product in the usual sense. 

Since » ( O c o X ) is compactly generated by [Nee96, Proposition 2.5] the argument given 
in Appendix C now applies to prove that D (OcoX) has a function object R J ^ o m ^ ^ - , - ) 
making it into a closed monoidal category in a way compatible with the triangulation; see 
Remark C.14. g 
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The function object RJfbmqc( — , —) agrees with the usual derived Horn in the derived 
category of arbitrary sheaves of modules, denoted here by RJfbm(—, —), whenever 
such agreement is possible. 

Lemma 6.5. There is a morphism in D(X) natural in both variables 

— » RJfomi^,'^) 

If has quasi-coherent cohomology, this is an isomorphism in D ( X ) . 

Proof. The canonical functor D(£2coX) —> D ( X ) is fully faithful and induces an equiva-
lence of D (DcoX) with the subcategory Dqc(X) C D ( X ) of complexes with quasi-coherent 
cohomology; see [BN93, Corollary 5.5]. We have a canonical natural isomorphism 

^ ( A d j u n c t i o n ) 

^ H o m D ( x ) ( ^ <i> (Inclusion) 

^ Homnj(;s:)( .e/ ,Rjfbm(^,?^)) (Adjunction) 

The desired morphism corresponds to the identity on the left, when is R J f o n i q c i ^ 
This proves that R J ^ o m q d ^ , ^ ) represents amongst the complexes with 
quasi-coherent cohomology; if is already one of these complexes, then the 
two complexes must be isomorphic in D ( X ) . • 

In the rest of this section we study the function object RMat{-, - ) . In good situations 
it is local, and over an open afiine it simplifies. Over a ring A we work with modules rather 
than sheaves, so in place of Km(Proj X) we use the equivalent category (Remark 3.5) 

K „ ( P r o j A) = K(Flat A)/E{A) 

The function object on K „ ( P r o j A) given by Proposition 6.2 is denoted R F l a t ( - , - ) rather 
than R ^ a t { - , - ) to emphasize that it is a complex of modules. In the following lemma 
we relate this complex to the ordinary Hom complex. 

Lemma 6.6. Let A be a noetherian ring, F a complex of fiat A-modules and P a complex 
of finitely generated projective A-modules. There is an isomorphism in ^^(Proj A) 

Hom4(P, F) ^ RFlat(P, F) (6.3) 

natural with respect to morphisms of complexes in both variables. 

Proof First, let us make some general comments. Recall that the objects of the orthogonal 
-'-E(^) in K(Flat A) are, up to homotopy equivalence, the complexes of projective modules 
(Remark 3.5(iii)), so given a complex p of projective yl-modules and a complex / of flat 
^-modules, there is an isomorphism (see [NeeOlb, Lemma 9.1.5]) 

HomK(Fiat/i)(P,/) HomK„(ProjA)(P,/) (6.4) 
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The quotient Q : K(Flat A) —> Km(Proj A) has a left adjoint Qx (Remark 3.5) and given 
a complex Z of flat j4-modules, Qx(Z) is a complex of projective ^-modules isomorphic, 
in the quotient Km(Proj^) , to Z . 

Now for the proof of the lemma. An infinite product of flat modules over a noetherian 
ring is flat, so Hom^(P, F) is a complex of flat yl-modules and it makes sense as an object 
of Km(Proj A). Given a complex Z of flat ^-modules, we have an isomorphism 

HomK„(Proj4)(^,Hom4(P,F)) ^ H o m K ( F i a t H o m ^ ( P , F ) ) (Adjunction) 

HomK(Fiat/i)(<5A(^) ® P, F) (Adjunction) 
(By 6.4) 

^ HomK„(Proj^)(^,KFlat(P,F)) (Adjunction) 

This isomorphism is natural in the variables P, F with respect to morphisms of ]K(Flat A), 
and natural in Z with respect to all morphisms of Km(Proj A), so we deduce the desired 
natural isomorphism (6.3) in IKm(Projyl). • 

In the cases where we care about the complex ^ will often be something 
like a complex of vector bundles, which is locally a complex of finitely generated projectives, 
so the lemma calculates the function object locally in many cases of interest. To exploit 
this knowledge globally, we need to know when there is an isomorphism of the form 

We will prove in Proposition 6.12 that this holds whenever J^ is locally a complex of vector 
bundles and ^ is bounded. The first step towards the proof is understanding restriction 
between affine schemes: that is, we study how RFlat( —, —) behaves under extension along 
a flat ring morphism. 

Proposition 6.7. Given a flat morphism A —• B of noetherian rings and complexes F 
and G of flat A-modules, there is a natural morphism 

(Proj B) 

RFlat4(F,G) (8>4 B — » MFlatB(F B, G B) (6.5) 

If each F' is finitely generated and G is bounded, this is an isomorphism in Km(Proj B). 

Proof. In any closed monoidal category there are unit and counit morphisms relating the 
tensor product and function objects. For example, there is a morphism in Km(Proj A) 

RFLATA{F,G) IS)AF —>G 

Applying - igî  B and rearranging produces a morphism in Km(Proj B) 

{RFlat^(F, G) ^A B} ^B {F (S>A B} ^ (RFlat^(F, G) ® a F ) ® a B — ^ G ® a B 

that corresponds under adjunction to a morphism (6.5) in IKm(Proj B). Suppose that each 
F ' is a finitely generated projective module and that G is bounded. By Lemma 6.6 we can 
replace RFlat ( - , - ) by H o m ( - , - ) and reduce to checking that the canonical morphism 

H o m ^ ( F , G ) ® 4 B —>Y{omB{F ® a B , G ® A B ) (6.6) 
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is an isomorphism in K{B). This reduction involves checking some compatibihty diagrams, 
but the verification is routine. The right hand side of (6.6) is canonically isomorphic to 
the complex of B-modules Hom^(F, G B) and we are in the situation of the tensor 
evaluation isomorphism: boundedness of G and finiteness of the objects in F imply the 
necessary isomorphism 

Hom^(F,G) ®aB ^ Hom^(F,G(8i^ B) 

which completes the proof. • 

Setup. In the rest of this section U C X is an open subset with inclusion / : U —> X. 

The restriction functor (—)|[/ : Km(Proj X) —> Km(Proj U) preserves coproducts and 
admits by Brown representability a right adjoint (see Proposition 2.7 and Theorem 4.10) 

M/ , : K „ ( P r o j U) K^(Pro j X ) 

If U is afRne this agrees with the ordinary direct image; see Definition 3.9. The adjunction 
between restriction and direct image can now be "enriched". 

Lemma 6.8. Given complexes of flat quasi-coherent sheaves ^ on X and Jf on U there 
is a natural isomorphism in IKm(Proj X) 

,'kf^jr) J f ) 

Proof. For a complex of flat quasi-coherent sheaves on X we have the following natural 
isomorphism, with Homs taken in Km(Proj X) or Km(Proj U) as appropriate 

^ Hom( ® E / , J f ) 

^ Hom(^|f / ,R^a<(^|{ / , J f ) ) 

from which we infer the desired isomorphism. • 

Definition 6.9. A complex ^ of flat quasi-coherent sheaves is locally a complex of vector 
bundles in K m ( P r o j X ) if every point a; € X has an open neighborhood V C X such 
that is isomorphic to a complex of vector bundles in Km(Proj V). It will not cause 
confusion if we drop the qualifier "in Km(Proj X ) " and we will usually do so. 

Let us give two examples that will be of importance later. 

Lemma 6.10. A compact object in ] K „ ( P r o j X ) is locally a complex of vector bundles. 

Proof Compactness is local by Lemma 3.15, so it suffices to check that for a noetherian 
ring A every compact object in K(Proj A) is isomorphic to a complex of finitely generated 
projectives. This follows from [Nee06a, Proposition 6.12]. • 
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Lemma 6.11. For a bounded above complex 'S of coherent sheaves, the K-flat resolution 

by flat quasi-coherent sheaves of ^ is locally a complex of vector bundles. 

Proof. Such a resolution ^ —> ^ exists, and is unique in Km(Proj X), by Remark 5.9. 
Locally, ^ is a bounded above complex of finitely generated modules over a noetherian 
ring, which admits a resolution by a complex of finitely generated projectives. Uniqueness 
of K-flat resolutions in the mock homotopy category implies that, locally, ^ is isomorphic 
to such a resolution, which is what we needed to show. • 

Finally, the main result. 

Proposition 6.12. Given complexes ^ o f flat quasi-coherent sheaves on X there is a 

canonical natural morphism in Km(Proj U) 

When ^ is locally a complex of vector bundles and is bounded, this is an isomorphism 

in Km(Pro j { / ) . 

Proof. Using the unit of adjunction ^ —> and Lemma 6.8, we have a canonical 
natural morphism in Km(Proj X) 

corresponding under adjunction to the morphism T. Assume that ^ is locally a complex 
of vector bundles and that ^ is bounded. To prove that r is an isomorphism we use two 
reductions: firstly to the case of affine open U, and secondly to the case where both X 
and U are affine. For the first reduction, note that for an open affine W C U we have a 
commutative diagram in Km(Proj W) 

Ivv 

Suppose that the proposition holds when U is affine. Then T',T" are both isomorphisms in 
Km(Proj W), and we conclude that T\W is also an isomorphism. Since W was an arbitrary 
affine open subset, r is an isomorphism and the proof is complete. 

Thus, we have reduced to the case where U is affine. With ^ fixed, we denote by C 
the triangulated subcategory of K m ( P r o j X ) consisting of complexes that make r an 
isomorphism in lIC77i(Proj A^). To show that a particular bounded complex ^ belongs to 
this subcategory it suffices, by Corollary 3.14, to show that belongs to C for every 
affine open subset V C X with inclusion g : V —> X. Writing h : U CiV —> U for the 
inclusion, we have 
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We conclude that it is enough to establish the isomorphism 

R^at{^\v,^\v)\unv ^ RJnat{^\unv,^\unv) (6.7) 

so we reduce to the case where both X and U are affine. In fact, examining the statement 
of Corollary 3.14, it suffices in (6.7) to consider open affines V that are finite intersections 
of elements in an affine open cover of X , so we can reduce to the case where X and U 
are both affine and ^ is a complex of vector bundles on X. In this case, Proposition 6.7 
apphes to complete the proof. • 

Corollary 6.13. For a complex y of vector bundles there is an isomorphism 

Jfom{r,Ox) ^ M.mat{y,Ox) (6.8) 

in the category Km(Proj X) 

Proof. The morphism O x ) ® ^ —> O x corresponds, via the adjunction between 
the tensor product and RMat{-, - ) , to a morphism (6.8) that we claim is an isomorphism. 
By Proposition 6.12 this is a local question. Over an affine scheme we must show that for 
a complex P of finitely generated projectives the canonical morphism 

}iomA{P,A) —. RF\at{P,A) 

is an isomorphism in Km(Proj A), which is a consequence of Lemma 6.6. • 

6.1 The Derived Category of Quasi-coherent Sheaves 

A significant role is played in modern algebraic geometry by the derived category D ( X ) of 
sheaves of modules over a scheme X. We are really only interested in the quasi-coherent 
sheaves, so one often restricts to the subcategory Dqc(X) C D ( X ) of complexes with quasi-
coherent cohomology. This has the advantage of being compactly generated. By [BN93, 
Corollary 5.5] there is an equivalence of triangulated categories 

D(QcoX) Dqe(X) (6.9) 

It would be cleaner to work entirely in D(QcoX) , but unfortunately our constructions may 
produce sheaves that are not quasi-coherent. A common example is the sheaf 
for quasi-coherent sheaves ^ and , which need not be quasi-coherent unless there is some 
finiteness hypothesis on J^. 

The solution is to replace , by a sheaf J f om^^i^ , that is quasi-coherent 
for arbitrary quasi-coherent sheaves and which agrees with ,'S) whenever 
this sheaf happens to be quasi-coherent. This much is well-known, but less well-known is 
the definition of the derived tensor product and Hom in D ( O c o X ) that does not appeal to 
(6.9). We give two approaches: one short, and one long. The short definition via Brown 
representabihty has already been given in Proposition 6.4. The long definition is the more 
traditional one via derived functors, given at the end of this section. The main focus of 
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this section is the definition of the function object in the homotopy category K ( O c o X ) , 
which we will need in Chapter 8. The subsequent "long" definition of the function object 
in the derived category D ( i } c o X ) is optional and the reader can safely skip it. There is an 
independent treatment of the closed monoidal structure on D(£3coX) in a recent paper of 
Alonso, Jeremi'as, Perez and Vale [A.1PV07] who go on to show that D ( O c o X ) is a stable 
homotopy category. See also the discussion following Corollary 2.5 in [HovOl]. 

Se tup . Throughout this section X is a fixed scheme and sheaves are defined over X . 

In the homotopy category K ( X ) of sheaves of modules we have internal structures 
and Jfom{ — , - ) defined for complexes of sheaves of modules by [Lij), (1.5.3),(1.5.4)]. 
In degree n, these complexes are defined by 

= 0 
i+j=n 

qez 

Given a quasi-coherent sheaf ^ the functor J i f o m { ^ , —) may not preserve quasi-coherence. 
Nonetheless, the category O c o ( X ) of quasi-coherent sheaves must possess an internal Hom, 
because the functor — 0 : Qco{X) — • O c o ( X ) preserves colimits, and therefore has a 
right adjoint J( fomqc{^, —). Over an afiine scheme X = Spec{A) the uniqueness of such 
an adjoint implies that for ^-modules M,N we have an isomorphism in O c o ( X ) 

Jffomqc{M,N^ =liomA{M,N)~ 

The sheaf can be calculated by a Cech argument [TT9(), Appendix B.14] 
and it must agree with when ^ is locally finitely presented (e.g. coherent on 
a noetherian scheme). We find it convenient to define ^ o m q c ( —, —) using the cohemtor. 
Recall that OToO(X) denotes the category of arbitrary sheaves of modules on X . 

L e m m a 6.14. The inclusion £3co(X) —> 9Jtoc)(X) has a right adjoint C, that we call the 

coherator. 

Proof. By our blanket hypothesis the scheme X is quasi-compact and separated, so Q c o ( X ) 
is Grothendieck abelian and the inclusion has a right adjoint by the Special Adjoint Func-
tor Theorem. • 

For the next pair of results we fix the coherator C for our scheme X. 

P r o p o s i t i o n 6.15. The category Q c o ( X ) is a closed symmetric monoidal category with 
the usual tensor product and the function object ^omqc(—, —) defined by 

In particular, there is a natural isomorphism 
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The internal structures in Oco(X) pass to complexes in such a way as to make the 
triangulated category K(l}coX) into a closed symmetric monoidal category. There is one 
subtle point involving products in iJco(X), which may not agree with products in 9HoO(X). 

Remark 6.16. Because iJco(X) is Grothendieck abelian it has products, denoted here by 
These are calculated by applying the coherator to products in Note that 

the product in Oco(X) is not exact, and therefore not local; see [Kra05, Example 4.9]. 

Proposi t ion 6.17. The triangulated category K(iJcoX) is closed symmetric monoidal, 
with tensor product and function object Jfornqd-, —) compatible with the triangulation, 
and in degree n we have 

qc 

Jifom^^i^, ' ;^) = = J ] (6.10) 

In particular, there is a natural isomorphism 

Proof. The function object Jlfom{-,-) in K(X) becomes, after applying the coherator, 
a function object J f b m q c ( - , - ) = CJfom{-, - ) for K(QcoA'). Together with the usual 
tensor product this makes K(OcoX) a closed symmetric monoidal category, and the struc-
ture is clearly compatible with the triangulation. We deduce (6.10) from the fact that C 
has a left adjoint, so it sends products to products. • 

In the rest of this section we give the "long" definition of the closed monoidal structure 
on the derived category D(£JcoX) of quasi-coherent sheaves. This will not be used in the 
sequel and is included only for completeness. To make D(OcoX) into a closed monoidal 
category we derive the tensor and Horn in K(£JcoX). The definitions are standard: replace 
one variable in - (g) - with a K-flat resolution and the second variable in J fomqc{- , - ) 
with a K-injective resolution, working throughout with quasi-coherent sheaves and keeping 
in mind the distinction between K-injective complexes in £jco(X) and OTo5(X). Despite 
this simple description there is some effort involved in getting the details right; one way to 
avoid some of these details is using adjoints: because Oco(X) is Grothendieck abehan the 
quotient q : K(£2coZ) —• D(OcoX) induces a localization sequence (see Remark 2.20) 

Kac(QcoX) , K(i3coX) , " ' D(QcoX) 
Qp 

where the right adjoint Qp sends a complex to its K-injective resolution. This is well-known, 
but new to this thesis is the construction of K-flat resolutions by an adjoint functor. By 
Theorem 5.5 the canonical functor U : K „ ( P r o j X ) —> D(OcoX) induces a recollement 

^ C/A 
K„»,ac(Proj X) ; K „ ( P r o j X) ] 0(£}coX) 

u. 

The left adjoint Ux sends a complex to a K-flat resolution by flat quasi-coherent sheaves, 
and does so functorially; see Remark 5.9. We will use these adjoints to define the tensor 
product and function objects in D(l2coX), but first we need to prove a technical lemma. 
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Lemma 6.18. Given complexes ^ and J of quasi-coherent sheaves that are, respectively, 

K-flat and K-injective, the complex Jlfomqc{^, J^) is K-injective. 

Proof. When we say that a complex of quasi-coherent sheaves is K-injective we mean that 
it belongs to the orthogonal KaclOcoX)-*- in K( l3coX) . Given € Kac(QcoX) we have 

which is zero, because (8) ̂  is acychc. This proves the claim. • 

Proposition 6.19. The triangulated category D(QcoX) is a closed symmetric monoidal 

category, with tensor product — (g) - and function object Rj(fomqc{-, - ) compatible with 

the triangulation. These complexes are defined by 

In particular, there is a natural isomorphism 

HomD(OcoX)(>^ HomD(Oco.Y)(^, J f ) ) 

Proof. The tensor product and function object, as given, are well-defined on objects. Let 
us check that these definitions make sense for morphisms in the derived category, beginning 
with the tensor product — (§ - . Fix a complex J^ 6 D (QcoX) and consider the composite 

K(Flat X) ^ K{QcoX) K ( Q c o X ) D(£3coX) (6.11) 

For <f in E ( X ) the complex is acychc, by Proposition 3.i{iv). Hence the composite 
(6.11) vanishes on E ( X ) , so it induces a triangulated functor out of the Verdier quotient 
Km(Proj X). Composing with the left adjoint Ux, which takes a K-fiat resolution, we have 
the derived tensor product with ^ 

D (QcoX) > IK„(Proj X) > D ( Q c o X ) 

Functoriality in the first variable is handled similarly, so we have defined a bifunctor - ® — 
triangulated in each variable. The functoriality of RJifornqd — , —) is identical and left to 
the reader. Observe that we use a subscript "qc" for the function object but not the tensor 
product; this is because our K-flat resolution is of the same type used to define 
the derived tensor product in D ( X ) , so the two tensor products agree up to canonical 
isomorphism and there is no need to distinguish them in the notation. It remains to give 
the adjunction between the tensor product and function objects. Given complexes 
and J f of quasi-coherent sheaves we have 

= HomD(QcoX)(^ ® JT) (Definition) 

^ HomK(Qcc,X)(^ ® Ux{ '^) ,qp{Jf ) ) (Adjunction) 

= HomK(QcoX)(^,^omqc(C/A(^^),9p(^)) ) (Adjunction) 

^ qp{Jf)) (Lemma 6.18) 

= J^^)) (Definition) 
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The coherence diagrams that make D(QcoX) closed symmetric monoidal are verified to 
be commutative in the same way that one checks the analogous properties for D(X), and 
similarly one checks compatibility with the triangulation. • 

Remark 6.20. The two function objects RJ(^omqc(—, —) defined in Proposition 6.4 and 
Proposition 6.19 must agree, because they are uniquely determined by the adjunction with 
the tensor product which is the same in both cases. 



Chapter 7 

Classifying the Compact Objects 

Let X be a noetherian scheme. We have defined the mock homotopy category Km(Proj X) 
of projectives and its subcategory Km,ac(Pi'oj X) of acyclic complexes, and shown that both 
are compactly generated triangulated categories (see Theorem 4.10 and Theorem 5.5). In 
this chapter we study the compact objects in these categories, and achieve a classification 
in terms of an equivalence (Theorem 7.4) 

(7.1) 

and an equivalence up to direct factors (Theorem 7.9) 

Perf(X))°P ^ K^,ac(Proj (7-2) 

where denotes the bounded derived category of coherent sheaves, and Per f (X) 
is the full subcategory of perfect complexes. This was already known for afRne schemes; 
see [j0rO5, Theorem 3.2] and [IKOfi, Theorem 5.3]. Our approach is different, because the 
lack of projective sheaves dictates that we work throughout with flat resolutions. 

Setup . In this section X is a noetherian scheme and sheaves are defined over X by default. 

The equivalence (7.1) sends a coherent sheaf to a complex of flat quasi-coherent sheaves 
which is compact in Km(Proj X). Let us describe briefly how this identification works. A 
result of Krause identifies compact objects in the homotopy category K(Inj X) of injective 
quasi-coherent sheaves with bounded complexes of coherent sheaves, via an equivalence of 
triangulated categories [Kra05, Proposition 2.3] 

coh (QcoX) ^ K'^(InjX) 

which identifies a coherent sheaf with its injective resolution. The projective case must 
be more subtle, because the flat resolution of 'S is not necessarily compact in Km(Proj X) 
(if it were, then ^ would be a perfect complex). Instead, the Spanier-Whitehead dual of 
the flat resolution is compact, which explains the contravariance in (7.1). This dual was 
introduced in Chapter G and denoted there by 

i - r = R^at{-, Ox) 
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More generally, the compact object in Km(Proj X) corresponding to a bounded complex of 
coherent sheaves is the Spanier-Whitehead dual of its K-flat resolution. To deal effectively 
with K-flat resolutions, we use the results of Chapter 5. Recall that the canonical functor 
U : IKm(Proj X) —> D(OcoX) determines a recollement (Theorem 5.5) 

Ux 
K„,ac(Proj X ) IK„(Proj X ) D ( Q c o X ) (7.3) 

Up 

where the left adjoint Ux of U sends a complex in D(£3coX) to its K-flat resolution by flat 
quasi-coherent sheaves (Remark 5.9). Before continuing, let us clear up a technical point. 

Remark 7.1. One advantage of noetherian schemes is that we are never confused about 
the meaning of the term "bounded derived category of coherent sheaves", for which there 
are three candidates 

(i) D''(Co(]X): the bounded derived category of the category (ro[)(X) of coherent sheaves. 

(ii) Dpjjjj(OcoX): the subcategory of complexes with bounded coherent cohomology in 
the derived category D(i!5coX) of quasi-coherent sheaves. 

(iii) the subcategory of complexes with bounded coherent cohomology in the 
derived category D ( X ) of sheaves of modules. 

The inclusions Co[)(X) —> llco{X) and Oco (X ) —> OToO(X) yield equivalences of trian-
gulated categories, by [Ver96, Proposition III.2.4.1] and [BN93, Coroflary 5.5] respectively 

D^ColiX) ^ D L ( Q C O X ) ^ (7.4) 

Due to our preference for quasi-coherent sheaves, the bounded derived category of coherent 
sheaves hereafter means D^Q^(OCOX). It is useful to know that every object of this category 
is, up to isomorphism, a bounded complex of coherent sheaves. This consequence of (7.4) 
will be used often, and without exphcit mention. 

In the first proposition we show that taking the Spanier-Whitehead dual of a K-flat 
resolution is right adjoint to sending a complex of flat quasi-coherent sheaves to its Spanier-
Whitehead dual, considered as an object of D ( £ I C O X ) ° P . 

Proposition 7.2. There is an adjoint pair of triangulated functors 

u{-r 

K „ ( P r o j X) , D(QcoX)°P 

where U{-)° is left adjoint to {-)°Ux. 

Proof. Let a complex of quasi-coherent sheaves and a complex J^ of flat quasi-coherent 
sheaves be given. Writing " H o m K ( - , - ) " for H o m K ^ ( p r o j ; f ) ( - , - ) and " H o m D ( - , - ) " for 
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HomD(Qc(,x)(~> there is a natural isomorphism 

HomD(^, HomK([/A(^), , Ox)) (Adjunction) 

^ HomK(C/A(^) <8> Ox) (Adjunction) 

^ HomK(^ ® Ux{s^), Ox) (Symmetry) 

^ HomK(J^, (Ux{s^))°) (Adjunction) 

which establishes the desired adjunction. • 

We will show that U{-)° restricts to an equivalence of the subcategory K^(Proj X ) of 
compact objects with the subcategory D^Q|,(OCOX)°P of complexes with bounded coherent 
cohomology. But first we need to make some small observations. 

Lemma 7.3. If ^ is a complex of fiat quasi-coherent sheaves that is locally a complex of 
vector bundles in Km(Proj X) then also has this property, and the canonical morphism 

j r — , 

is an isomorphism in Km(ProjX). If ^ is compact in Km(ProjX) then is K-flat. 

Proof By Proposition 6.12 these are all local questions, so we can reduce to proving the 
following statements for a noetherian ring A (using the notation of Chapter 6): 

(a) If P is a complex of finitely generated projective yl-modules, then RFlat(P, A) is a 
complex of finitely generated projectives (up to isomorphism) and 

P RFlat(RFlat(P,^) ,^) 

is an isomorphism in Km(Proj A). 

(b) Any compact object P in K„ (Pro j A) has K-flat dual RFlat(P,^) . 

In (a) we can, by Lemma 6.6, replace RFlat(P, A) by the isomorphic complex Hom4(P, .4) 
in which case the claims are obvious, (b) We know from [Nee06a, Proposition 6.12] that 
any compact object P in K(Proj A) is, up to homotopy equivalence, bounded below. Hence 
Hom/i(P, >1) = RFlat(P, yl) is, up to homotopy equivalence, a bounded above complex of 
projective modules, therefore K-flat. • 

Theorem 7.4. The functor U{-)° restricts to an equivalence 

U{-)° : K^(Proj X ) ^ 

with quasi-inverse { — )°Ux. 

Proof. The proof has two parts. In part (A) we will prove that the functors of Proposition 
7.2 restrict to an adjoint pair between K ^ ( P r o j X ) and by showing that 
U { - ) ° sends compact objects to complexes with bounded coherent cohomology, and vice 
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versa for {-)°U\. In part (B) we prove that the unit and counit of this adjunction are 
isomorphisms, so the two functors involved are actually equivalences. 

(A) Given a compact object ^ in lKm(Proj X), proving that has bounded coherent 
cohomology is, by Proposition 6.12, a local question. Locally we are working in Km(Proj yl) 
for a noetherian ring A, where a compact object is by [Nec06a, Proposition 6.12] a bounded 
below complex P of finitely generated projectives with W Hom4(P, = 0 for i < 0. So 
in this case it is clear, using noetherianness of A, that R F l a t ( P , = Hom^(P,yl) has 
bounded coherent cohomology (here we use Lemma 6.6). 

Next, we show that for a bounded complex ^ of coherent sheaves with K-flat resolution 
the dual is compact. By Lemma 3.15 and Proposition 6.12 this is a local question. 

Given a noetherian ring A let G be a bounded complex of finitely generated yl-modules 
and P a projective resolution of G by finitely generated projectives; the dual RFlat(P,yl) 
is compact in Km(Proj A) by Lemma 6.6 and [Nee06a, Proposition 6.12]. This proves that 
the adjunction of Proposition 7.2 restricts to an adjunction 

K ^ ( P r o i X ) — ^ (7.5) 

(B) Given a complex ^ that is compact in Km(Proj X), the counit e : U\U{^°) —» 
of the adjunction between U and Ux is a K-flat resolution, by Remark 5.9. But by Lemma 
7.3 the complex is already K-flat, so e is an isomorphism in Km(Proj X). The unit of 
the adjunction (7.5) is the composite 

of two isomorphisms, by Lemma 7.3 (recall that compact objects are locally complexes of 
vector bundles by Lemma 6.10). This proves that the unit of (7.5) is a natural equivalence. 

Given a bounded complex ^ of coherent sheaves the unit morphism / : ̂  —> UU\{'^) 
is an isomorphism in D(QcoX), as the left adjoint Ux is fully faithful. Moreover, the K-fiat 
resolution Ux{'^) is locally a complex of vector bundles (Lemma 6.11) so the counit of the 
adjunction (7.5) is the composite 

UUxm UiUxi^D 

of two isomorphisms; see Lemma 7.3. This proves that the counit of (7.5) is a natural 
equivalence, and establishes that U{-)° is an equivalence with quasi-inverse (-)°C/a- • 

We say that X has enough vector bundles if every coherent sheaf can be written as the 
quotient of a vector bundle; in this case, the theorem simplifies. Note that this condition is 
satisfied by any quasi-projective variety or, more generally, by any scheme with an ample 
family of hne bundles; see [TT90, Lemma 2.1.3]. 

Remark 7.5. Assume that X has enough vector bundles, so that every bounded complex 
of coherent sheaves has a resolution r —> by a bounded above complex f of vector 

bundles. This is a K-flat resolution, and by Corollary 6.13 we have 

r° = jeom{y, Ox) 
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so the equivalence {—)°Ux of Theorem 7.4 identifies ^ with the sheaf dual Jifom{y, Ox) 
of its resolution by vector bundles. The theorem also implies that every compact object 
in Km(Proj X) is of this form. 

Up to isomorphism the coherent sheaves form a set that generates the bounded derived 
category of coherent sheaves. From the theorem we learn that the Spanier-Whitehead duals 
of flat resolutions of elements of this set generate K^(Pro j X ) as a triangulated category; 
such resolutions exist, and are unique in Km(Proj X), by Remark 5.9. This constructs an 
explicit compact generating set, as described in the following. 

C o r o l l a r y 7.6. The category KmiPro] X) is compactly generated, and 

{ E ' ^ ^ I is a coherent sheaf and i € Z } 

is a compact generating set, where ^^ denotes a resolution by flat quasi-coherent sheaves 

> ^^^ —^ 

Our attention now turns to the mock stable derived category Km.acCProj X). We know 
from the defining recollement (Theorem 5.5) that this category is equivalent to the quotient 
of Km(Proj X) by the derived category D(QcoX) , identified with the subcategory of K-fiat 
resolutions in Km(Proj X). A classification of the compact objects in Km,ac(Proj X) will 
therefore follow from the Neeman-Ravenel-Thomason localization theorem. As part of the 
proof, we will need the following comparison of function objects. Recall that the function 
object RJifoniqci-,-) in D (OcoX) was defined in Section 6.1. 

L e m m a 7.7. There is a canonical morphism in D( iJcoX) natural in both variables 

e : —> Rjffomqci^,.^) 

which is an isomorphism in D (OcoX) if ^ is K-flat. 

Proof If we agree to write " H o m K „ ( - , - ) " for H o m K „ ( P r o j X ) ( - , - ) and " H o m D ( - , - ) " 
for HomD(i3coX)( —1 —) then we have a natural morphism 

(Adjunction) 

^ HomK„(C/A(.2^) ® (Adjunction) 

— • llomo{Ux{.e/) ® (Quotient) (•) 

HomD(i / (§ J^) (Definition) 

^ H o m D ( ^ , R ^ o m q c ( ^ , ^ ) ) (Adjunction) 

which yields a canonical morphism 6 : —> R J f o m ^ c i ^ , ^ ) in D(QcoX) . 
If is K-flat then the tensor product ® is K-flat and the step marked (•) is an 
isomorphism, by Remark 5.9(i), so we conclude that 0 is an isomorphism in D(QcoX) . • 
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The Spanier-Whitehead dual on ©(iJcoX) is the usual derived dual 

i - y Ox) 

Recall that a complex of quasi-coherent sheaves is perfect if it is locally isomorphic, in 
the derived category of quasi-coherent sheaves, to a bounded complex of vector bundles. 
These are the compact objects in D(QcoX) [Nee96, Proposition 2.5] and for the sake of 
having emotive notation we denote the full subcategory of perfect complexes by 

Perf(X) = D<^(iJcoX) 

The perfect complexes are very well studied in the literature; the most complete accounts 
can be found in [SGA6, §1.4] or [TT90, §2]. In particular, a great deal is known about 
the interaction between perfect complexes and the function object Rjfom{-, - ) in D(X), 
and using Lemma 6.5 most of these results translate directly to D(QcoX). Properties of 
perfect complexes can also be viewed as consequences of the fact that ©(QcoX) is a stable 
homotopy category; see [A.JPV07] and [HPS97, Appendix A.2]. 

Lemma 7.8. Let be a perfect complex. There is an isomorphism in Km(Proj X) 

Proof. These complexes are K-flat by Lemma 7.3, and to show that they are isomorphic in 
lK„(Proj X) it suffices, by Remark 5.9(i), to prove that they are isomorphic in D(QcoX). 
This is a consequence of Lemma 7.7. • 

In the next theorem we identify compact objects in lKm,ac(Proj X) with objects of the 
triangulated category of singularities [0rl04] 

» s g ( ^ ) = D c o h ( Q c o X ) / P e r f ( X ) 

We have described compact objects in the mock homotopy category of projectives as the 
duals of resolutions, and something similar is true for Km,ac(Proj X). However, to give the 
exact statement it would be necessary to develop the properties of complete flat resolutions 
over schemes, so we will give it elsewhere. 

Theorem 7.9. There is a canonical equivalence up to direct factors 

Proof By Theorem 5.5 we have a recollement 

K m , a c ( P r o j X) ; K „ ( P r o j X) ] D(OcoX) 

in which Km(ProjX) is compactly generated (Theorem 4.10) and D(QcoX) is compactly 
generated [Nee96, Proposition 2.5]. The inclusion I : K„,ac(ProjX) —> lK„(Pro jX) has 
left adjoint h and applying the Neeman-Ravenel-Thomason localization theorem (in the 
form of Corollary 2.10) we deduce that the restricted functor 
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induces an equivalence up to direct factors ]K^(Pro j X ) / P e r f ( X ) ^ ^ It 

remains to identify this quotient with the one occurring in the s tatement of the theorem. 

B y Theorem 7.4 we have an equivalence 

i - r U x : ^ K ^ ( P r o j X ) 

which we claim identifies the subcategory P e r f ( X ) ° P of the left hand side with the copy 

of P e r f ( X ) existing in K J ^ ( P r o j X ) as the essential image of Ux on compact ob jec ts . To 

prove this, let be a perfect complex. T h e n by L e m m a 7.8 the Spanier-Whitehead dual 

{ U x ^ Y is the K-f lat resolution of the perfect complex 'io'^, thus an ob jec t of the image of 

Ux on compacts . Conversely, we have 

UxC^) ^ Uxi'^"''^) ^ 

so every ob jec t in the image of Ux on compacts is of the form U x { & ) ° for some perfect 

complex proving the claim. It follows that there is an equivalence 

(D,^„„(OcoX)/Perf (X))°P = P e r f ( X ) ° P 

^ K ^ ( P r o j X ) / P e r f ( X ) 

which completes the proof of the theorem. • 
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Chapter 8 

The Infinite Completion of 
Grothendieck Duality 

Let X be a noetherian scheme with a dualizing complex. We argued in the introduction to 
this thesis that the mock homotopy category Km(Proj X) of projectives and the homotopy 
category lK(Inj X ) of injectives should be understood as extensions of the derived category 
of quasi-coherent sheaves D(i3coX), which adjoin acyclic complexes of interest. We prove 
in this chapter that the dualizing complex assumed to be a bounded complex of injective 
quasi-coherent sheaves, induces an equivalence of these two extensions (Theorem 8.4) 

- ® ^ : K „ ( P r o j X ) ^ K ( I n j X ) (8.1) 

Restricting to compact objects recovers the equivalence of Grothendieck duahty 

RJfbmqe( - , : ^ B l ^ i ^ c o X ) (8.2) 

where D^Q||(OcoX) is the bounded derived category of coherent sheaves (see Remark 7.1). 
For affine schemes this result is due to Iyengar and Krause [IKOfi], and we refer the reader 
to the introduction of this thesis for a discussion of their work. We will not try to survey the 
hterature on Grothendieck duality, as the subject is too vast, but the reader can find a very 
good introduction in Conrad's [ConOO]. For us, the central object is the dualizing complex 
[HaxGC, §V.2]. This is a bounded below complex ® in D ( X ) with coherent cohomology 
and finite injective dimension, such that the canonical morphism 

^ —> RJifom{RJifom{^, 9) (8.3) 

is an isomorphism in © ( X ) for every complex ^ G Djoh(^) ' which is to say, every complex 
of sheaves of modules with bounded coherent cohomology. We deduce from (8.3) that there 
is an equivalence (8.2), modulo one technical point; see Lemma 8.1 below. 

Dualizing complexes are very useful, and exist for a large class of schemes. For example, 
any scheme of finite type over a field (and thus any variety) admits a dualizing complex 
[Har66, §n.lO]. A duahzing complex is quasi-isomorphic to a bounded complex of injective 
quasi-coherent sheaves [HarGG, II 7.20(i),c]. Hence, if X admits a dualizing complex, it 
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admits a dualizing complex that is a bounded complex of injective quasi-coherent sheaves, 
so we are free to adopt the following convention. 

Setup. In this section X is a noetherian scheme with dualizing complex and sheaves 
are defined over X by default. We will always assume that ^ is a bounded complex of 
injective quasi-coherent sheaves. 

One technical point is that we want to work with rather than 
order to deal throughout with quasi-coherent sheaves; see Remark 7.1 for an explanation 
of the notation and Chapter 6 for a discussion of the function objects in D(QcoA') , denoted 
here by R J f b m q c ( - , - ). The next lemma consists of replacing one version of the bounded 
derived category by another in the defining property of a dualizing complex. 

Lemma 8.1. There is an equivalence of triangulated categories 

: Bl^iilcoXr ^ nl^(QcoX) 

Proof. This is a consequence of Lemma 6.5 and the definition of the dualizing complex. • 

We need to explain why tensoring with & sends complexes of flat sheaves to complexes 
of injective sheaves. This functor should also send acychc K-fiat complexes to contractible 
complexes in order to be well-defined on Km(Proj X). Note that the next lemma applies 
just as well to an arbitrary complex ^ of injective quasi-coherent sheaves. 

Lemma 8.2. If ^ is a complex of flat quasi-coherent sheaves then ^ is in K(Inj X). 
If moreover ^ belongs to IE(X) then ^ ® Qi is contractible. 

Proof We have ® = (g) and an arbitrary coproduct of injectives in 
Oco (X) is injective, so we reduce to the case where ^ and ^ are single quasi-coherent 
sheaves. The claim can now be checked on stalks [Har66, Proposition II.7.17] so we reduce 
to showing that F ® ^ Z3 is injective for a noetherian ring A, flat ^-module F and injective 
>l-module D. By Lazard's thesis [Laz64], F is the direct limit of a family of finitely 
generated free modules. The functor - ® A D commutes with colimits and any direct limit 
of injective ^-modules is injective [Mat58] so we reduce to the case of F free of finite rank, 
which is trivial. 

Now suppose that ^ belongs to E ( X ) , so that it is acyclic and K-flat. We prove that 
the complex ^ (g) ^ is contractible. It is enough to show that it is acychc and has injective 
kernels, both of which can be checked on stalks, so we can take X = Spec{A) affine. For a 
noetherian ring A, acychc K-flat complex F of flat yl-modules and complex D of injective 
^-modules we have to prove that £> F is contractible. The proof of this statement is 
given in [Nee06a, Corollary 8.7]. • 

Tensoring with ^ defines a triangulated functor from K ( Q c o X ) to itself. By the lemma 
this functor sends K ( F l a t X ) into IK(InjX), and the restriction K ( F l a t X ) —> IK(InjA') 
vanishes on E ( X ) . We deduce a triangulated functor out of the Verdier quotient 

- ® ^ : IK„(Proj X) —> ]K(Inj X) (8.4) 
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We will prove that this is an equivalence, but first we need to understand how to relate 
the tensor product — (g ^ and function object R J f b m ( - , ^d). 

Lemma 8.3. Let ^ he a complex of flat quasi-coherent sheaves that is locally a complex 

of vector bundles. There is a natural isomorphism in K(X) 

TT : ® ® ^ 

If further ^ is K-flat then ® ^ is K-injective. 

Proof. To be clear on some notation: in Chapter 6 we defined the closed monoidal structure 
on Km(Proj X) and in particular the Spanier-Whitehead dual ( — W e also explained in 
Definition 6.9 what it means for a complex of flat quasi-coherent sheaves to be locally a 
complex of vector bundles. Applying — ® ^ to the canonical morphism ® ^ — • O x 
in Km(Proj X) we obtain a morphism 

(8) «> ^ ^ ® i^ ) ® ^ ^ ^ 

which is adjoint to the desired morphism tt in K ( X ) . Suppose we can show that n restricts 
to an isomorphism in K(L'') for every affine open subset U C X. Then the mapping cone 
J^ = cone(7r) is a complex of injective (not necessarily quasi-coherent) sheaves contractible 
on every open affine. For any afRne open cover U = {UQ, • • •, U^} the Cech resolution 

0 ^ J^ ^ "T^IU, J^) ^ "^'(U, J^) ^ > '^''(U, J^) ^ 0 

decomposes into short exact sequences of complexes of injective sheaves, each degree-wise 
split. Prom the corresponding triangles in K ( X ) and the local vanishing of J^ we deduce 
that y vanishes in K ( X ) , which implies that tt is an isomorphism in K ( X ) . 

Because ^ is locally a complex of vector bundles, we can apply Proposition 6.12 to 
reduce to tlie case where X = Spec{A) for a noetherian ring A with dualizing complex D 
(as always, assumed to be a bounded complex of injectives) and ^ is replaced by a complex 
F of finitely generated projectives. In this case we have to show that the morphism 

TT ; RF\at{F,A) ®AD —• HonM(F,D) 

is an isomorphism in K ( 4 ) . Happily, we are in the situation where R F l a t ( - , - ) simphfies. 
By Lemma 6.6 there is an isomorphism Hom^(F, A) ~ RFlat(F, A) in Km(Proj A) and we 
have reduced to checking that the canonical morphism 

H o m 4 ( F , ^ ) (8)4 D — • Hom^(F,Li) 

is an isomorphism in K(>1), which is straightforward. It remains to prove the second claim. 
If ^ is K-flat then J f f o m { ^ , QJ) is K-injective, and thus the homotopy equivalent complex 

must also be K-injective. • 

Combining our major results, we have the infinite completion of Grothendieck duahty. 
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Theorem 8.4. There is an equivalence of triangulated categories 

- ® ^ : K „ ( P r o j X) K(Inj X) 

making the following diagram commute up to natural equivalence 

^ ^ ^ - K ^ ( I n j X ) (8.5) 
I 

i-ru^ 

Proof. We begin by reminding the reader of the functors in the diagram (8.5). By Theorem 
5.5 the canonical functor U : Km(Proj X) —• D(£}coX) has a left adjoint U\ that takes 
K-flat resolutions. The left side of (8.5) comes from Theorem 7.4, which proves that there 
is an equivalence 

{-fUx •• D^„„(OcoX)°P ^ K;;,(ProjX) 

The right side of (8.5) comes from [Kra05, Proposition 2.3], where Krause shows that the 
canonical functor IK(Inj X) —> D(£}coX) induces an equivalence 

The bottom side of (8.5) is the defining property of the dualizing complex (Lemma 8.1). 
For the top to be well-defined, we have to prove that the functor - ® ^ of (8.4) preserves 
compactness. Consider the diagram 

K „ ( P r o j X) . K(Inj X) 

D(QcoX) 

The two ways around this diagram are naturally equivalent, as follows 

{Ux{-)Y ® ^ ^ M'om{Ux{-),S>) (Lemma 6.11 and Lemma 8.3) 

RM'om{Ux{-), 9) ( ^ is K-injective) 

^ K j f b m q c ( - , 9 ) (Lemma 6.5) 

Let a compact object in ]Km(Proj X) be given. By Theorem 7.4 we can assume that this 
compact object is of the form for some in The resolution is 
locally a complex of vector bundles and is K-flat, so Lemma 8.3 implies that UxC^Y ® ^ 
is K-injective. From the following isomorphism in D(OcoX) 
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we learn that U x { ' i ^ ) ° h a s bounded coherent cohomology, and is consequently compact 
in K(Inj X ) by Krause's classification [Kra05, Proposition 2.3]. This proves that — ® S) 
preserves compactness, and that the induced functor 

^ : K ^ ( P r o j X ) ^ K ' ^ ( I n j X ) (8.6) 

fits into a square (8.5) commuting up to natural equivalence. Since every other side of this 
square is an equivalence, we infer that (8.6) is an equivalence, and a standard argument 
(Proposition 2.11) now allows us to conclude that - (g)^ : ^^(Pro j X) —• K(Inj X) is an 
equivalence, because it is a coproduct preserving triangulated functor between compactly 
generated triangulated categories (see Theorem 4.10 and [Kra05, Proposition 2.3]) which 
restricts to an equivalence on compact objects. • 

Let us explain the significance of the commutative diagram (8.5) of the theorem. 

Remark 8.5. Bounded complexes of coherent sheaves can be viewed as compact objects in 
both Km(Proj X ) and K(Inj X), in the former category by taking the Spanier-Whitehead 
dual of a K-flat resolution, and in the latter by taking a K-injective resolution; see Chapter 
7. Given a bounded complex ^ of coherent sheaves, the equivalence 

- ® ^ : K„ (Pro j X) ^ K(Inj X) (8.7) 

does not interchange the two compact objects corresponding to It sends the compact 
object of Km(Proj X) determined by ^ to the compact object of lK(Inj X) determined by 
its Grothendieck dual RJ^ornqd'^, To be precise, writing p ( - ) for a K-flat resolution 
and i( —) for a K-injective resolution, we have an isomorphism in K(Inj X) 

This is the content of (8.5) and the sense in which (8.7) extends Grothendieck duality. 

Remark 8.6. We have recollements, by Theorem 5.5 and [Kra()5, Corollary 4.2] 

K„,ac(Proj X ) K„ (Pro j X ) D(OcoX) 

Kac(Inj X ) K(Inj X ) ^ D(QcoX) 

One can ask whether the equivalence of Theorem 8.4 identifies the recollements, in the 
sense that it sends acyclic complexes to acyclic complexes. In fact, this can only happen 
when X is a Gorenstein scheme: if the functor - g) ̂  identifies the subcategories of acyclic 
complexes, then it identifies their orthogonals, and we have an equivalence 

- (f ^ : D(QcoX) -L K„,ac(Proj X ) Kac(Inj X ) ^ ©(OcoX) 

This equivalence must preserve compactness, so ^ = ^ g) Ox is perfect and we can 
conclude that X is Gorenstein [Har66, V.9.1]. 

Next we study the quasi-inverse of the equivalence in Theorem 8.4, using the function 
object Jiforriqci-, - ) in the homotopy category K(QcoX), as defined in Section 6.1. 
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Lemma 8.7. / /J^, J^' are injective quasi-coherent sheaves then Jfbmqc(J^, J^') is flat. 

Proof. Let 11 = {Uq, ... ,UD} be an affine open cover of X and consider the Cech resolution 

O—^J"'^ "^"(H, J^') —^ ^ — » 0 

This is an exact sequence of injective quasi-coherent sheaves that decomposes into a series 
of short, split exact sequences. The functor M'omqci^, —) preserves split exact sequences, 
so to prove that Jifornqd-^, is flat it suffices to show that J^om^^^J, is flat 
whenever / : U —> X is the inclusion of an affine open subset. In this case there is an 
isomorphism of sheaves (using adjointness, see Lemma 6.8) 

The functor /» preserves flatness of quasi-coherent sheaves, so we have reduced to the 
case where X = Spec{A) is affine, and Jfornqd-J^, -y') = H o m ^ ( 7 , f o r some injective 
modules 1,1'. This module is flat, by a standard argument. • 

Given a complex J^ of injective quasi-coherent sheaves the complex Ji^omqd^, y) is, 
in degree n e Z, the following product in the category i}co{X) of quasi-coherent sheaves 

qc 

qel. 

Because S is bounded this is a finite direct sum of flat sheaves, which is flat, so we have 
defined a triangulated functor Jfom^ci^, - ) : K(Inj X) —> K(F la tX ) . Composing with 
the quotient K ( F l a t X ) —> ] K „ ( P r o j X ) defines a triangulated functor 

- ) : K(Inj X) K „ ( P r o j X) 

We show in the next proposition that this is an equivalence. 

Lemma 8.8. Let y be a complex of injective quasi-coherent sheaves. Then Jfom^d^, y) 
belongs to the orthogonal E{X)-^ as an object o / ]K(FlatX) . 

Proof This follows from the adjunction between - ^ 9 and Jifomqc{9, - ) and the fact 
that ^ ® ^ is contractible whenever belongs to E ( X ) (Lemma 8.2). • 

Proposition 8.9. There is a pair of equivalences of triangulated categories 

K „ ( P r o j X) . K(Inj X) 

each quasi-inverse to the other. 

Proof. For a complex ^ of flat quasi-coherent sheaves and a complex J of injective quasi-
coherent sheaves, there is a natural isomorphism 

Hom|K(injx)(^® ^ HomK(F ia tx ) (^ ,^omqc (^ , J^)) (Proposition G.17) 

^ Jfbrnqc(^, J^)) (Lemma 8.8) 
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This defines Jfforriqci^, - ) and — (8) ^ as an adjoint pair of functors between Km(Proj X) 

and K ( I n j X ) . We know from Theorem 8.4 that - 0 ^ is an equivalence, which implies 
that Jforriqci^, - ) is an equivalence, and it must be the desired quasi-inverse. • 

Using this equivalence we can define a closed monoidal structure on K(Inj X). Let us 
tell the reader what the structure is over a noetherian ring A, but delay the proof until 
Appendix B where we can treat schemes on the same footing. Let D be the dualizing 
complex (which is, as always, a bounded complex of injectives) and observe that D is the 
unit object for the tensor product in the following closed monoidal structure. 

Proposition 8.10. The category K(Inj >1) is closed symmetric monoidal: it has a tensor 

product - (8)inj - and function object Inj(—, - ) defined by 

I ^ini J = A Horn A{D, J) 

Inj( / , J) = D^a Hom^( / , J) 

which are compatible with the triangulation. 

Proof See Proposition B.6 and Remark B.7. • 
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Chapter 9 

Applications 

9.1 Local Cohomology 

The local cohomology theory of Grothendieck [Har67] arises from a Bousfield localization 
of the derived category of quasi-coherent sheaves; see [BN9li, §6]. In this section we give 
the analogue for the mock homotopy category of projectives. 

To see the connection between local cohomology and Bousfield localization, let X be 
a scheme with quasi-compact open subset U C X and inclusion / : U — » X, and set 
Z = X \ U. For a quasi-coherent sheaf ^ there is an exact sequence 

o — (9.1) 

where Fzi-^) is the subsheaf of sections with support in Z. Passing to the derived category, 
we have for every complex ^ of quasi-coherent sheaves a triangle in D ( D c o X ) 

R T z { ^ ) — ^ ^ R M ^ l u ) ^ ^ ^ ^ z i ^ ) (9.2) 

The next proposition realizes R r z ( — ) as one of the six functors in a recollement. To be 
precise, it is the right adjoint of the inclusion in D (OcoX) of the triangulated subcategory 
D z ( Q c o X ) C D ( O c o X ) of complexes with cohomology supported on Z. We note that the 
existence of this recollement is certainly known to the experts. 

Proposition 9.1. There is a recollement 

D(OcoC/) ^ D (QcoX) ^ D z ( Q c o X ) 

Proof. The restriction functor D (QcoX) —> D(QcoC/) admits a fully faithful right adjoint 
R / , , so we have a colocahzation sequence (Lemma 2.6), where B denotes the inclusion 

( - ) ! [ / B 
D(Qco[ / ) ' D ( Q c o X ) ' D z ( Q c o X ) 

R/. Bp 

The functor R / , has a right adjoint; this is the Grothendieck duahty theorem of Neeman 
[Nee9G]. Using Lemma 2.3 we conclude that the pair (Bp ,R / » ) is recollement. • 
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Remark 9.2. Let B ; D2(QcoX) —> D(OcoX) be the inclusion, with right adjoint Bp. 
By the proposition, for any complex ^ of quasi-coherent sheaves there is a triangle 

B B p { ^ ) ^ (9.3) 

Let us explain why Bp[-) is the local cohomology functor R r 2 ( —) of Grothendieck. For 
simphcity, we assume that X is noetherian. If ^ is flasque then (9.1) is short exact, and 
thus defines a triangle in the derived category. Replacing ^ by its K-injective resolution by 
injective quasi-coherent sheaves (which are flasque) we obtain a triangle (9.2). Comparing 
with (9.3) we deduce an isomorphism Bp{^) = as claimed. 

Setup. In this section X is a noetherian scheme and U C X denotes an open subset with 
complement Z. We write / : U —> X for the inclusion. 

Let Km ^(Proj X) be the triangulated subcategory of Km(Proj X) consisting of those 
complexes that are "mock supported" on Z, in the sense that they are acyclic and K-flat 
on the complement; see Definition 4.6. Next we give the analogue of local cohomology for 
the mock homotopy category. 

Theorem 9.3. There is a recollement 

K „ ( P r o j U) I K„ (P ro j X) [ K„.2 (Proj X) 

Proof. We aim to copy the proof of Proposition 9.1, and in fact the argument is identical. 
However, in the present situation some work is required to show that the right adjoint of 
restriction, the analogue of R/« in the earlier proof, is fully faithful. 

The restriction functor ( - ) | [ / : Km(Proj X) —> K „ ( P r o j U) preserves coproducts and 
admits a right adjoint R/» by Brown representability. To prove that this functor is fully 
faithful it suffices, by a basic result of category theory, to prove that the counit 

£ : ( - ) i l / —• 1 

is a natural equivalence, and this is what we do. The idea is that R/» must be fully faithful 
"on" an open afRne subset W C U because, denoting hy g : W —> U and h : W —> X 
the inclusions, we have a natural equivalence 

R/» o 9* h, 

and and K are both fully faithful, by Lemma 4.7. Given a complex ^ of quasi-coherent 
sheaves on W, the counit is the isomorphism 

Hence the triangulated subcategory £ of K „ ( P r o j U) on which £ is an isomorphism con-
tains the complexes defined over affine open subsets, and using Corollary 3.14 we conclude 
that e is a natural equivalence. Thus R/» is fully faithful and, by Lemma 2.G, we have a 
colocalization sequence 

(-)l(/ inc 
K „ ( P r o j U) ' K „ ( P r o j X) ' K„ , z (P ro j X) 

K/. 
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Now we apply the machinery of compactly generated tr iangulated categories. Restriction 

preserves compactness, by Lemma 3.15, so the right adjoint R f , must preserve coproducts; 

see Lemma 2.9. But Km(Proj U) is compactly generated, so by Brown representabihty 

R/» has a right adjoint, and from Lemma 2.3 we deduce the desired recollement. • 

Bounded complexes of coherent sheaves correspond to compact objects of K „ ( P r o j X) , 

by Theorem 7.4. As one would expect, those complexes with cohomology supported on Z 
determine compact objects of Km,z(Proj X). We introduce the following notation 

:= Dlu i^coX) n Dz(QcoX) 

for the triangulated subcategory of D(QcoX) whose objects are complexes with bounded 
coherent cohomology supported on Z. Our next result gives a classification of the compact 
objects in X) . We use the notation of Chapter 7, so tha t Ux is the adjoint which 

calculates K-flat resolutions and is the Spanier-Whitehead dual. 

Corol lary 9.4. The triangulated category ]Km_^(Proj X) is compactly generated and there 
is an equivalence 

with quasi-inverse {—)°Ux. 

Proof. By Theorem 4.10 the locaUzing subcategory Km,z(Proj X) is compactly generated 
in Km(Proj X) . Prom the Neeman-Ravenel-Thomason locahzation theorem (Theorem 2.8) 
we deduce tha t 

X ) = Km,2(Proj X ) n K ^ ( P r o j X) (9.4) 

Taking the Spanier-Whitehead dual in Km(Proj X) commutes with restriction for compact 
objects (Proposition C.12) so the following diagram commutes, up to natural equivalence 

K ^ ( P r o j X ) > K ^ ( P r o j U) 

u(-Y u{-r 

The kernel of the top row is, by (9.4), the subcategory of compact objects ^ ( P r o j X) , 

and the kernel of the bot tom row is so we have the desired equivalence. • 

The local cohomology recollements for D(QcoX) and Km(Proj X), given in Proposition 
9.1 and Theorem 9.3 above, are related. In fact, they fit into a kind of "exact sequence" 
of recollements, in which the "kernel" is a recollement involving the subcategory of acyclic 
complexes Km_ac,z(Proj X) in K „ , 2 ( P r o j X). 
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Proposition 9.5. There is a diagram in which each row and column is a recollement 

K„,ao(Proj U) 

K „ , a c ( P r o j X ) ; 

^m(Proj U): 
I 

•MOcoU) 

The diagram commutes if one restricts to arrows in the south and east directions. 

Proof. Except for the left column and bottom row, these recollements are a consequence of 
Theorem 5.5 and the results of this section. With the notation of Chapter 5 the left adjoint 
U\ of the canonical functor U : Km(Proj X) —> © ( O c o X ) calculates K-flat resolutions 
and therefore commutes with restriction; taking right adjoints we find that the following 
diagram commutes up to natural equivalence (using the notation Rf, for the right adjoint 
of restriction, introduced just prior to Lemma 6.8) 

IK„ (Pro jX ) 

K „ ( P r o j [ / ) -

•D(OcoX) 

K/. 

-D(QcoC/) 

By Theorem 9.3 the functor M/ , is fully faithful, so we have a fully faithful functor M/« : 
]Km,ac(Pi'oj U) —> Km,ac(Proj X) right adjoint to restriction. It preserves coproducts, and 
therefore has a right adjoint, because Km,ac(Proj U) is compactly generated (Theorem 5.5). 
By Lemma 2.3 and Lemma 2.6 we have a recollement 

c(ProjC/); W c ( P r o j X ) : ; K „ , a c , z ( P r o j X ) 

The functors U and U>, restrict to an adjoint pair between Km,z(Proj X) and Dz(£ }coX) . 
Since U preserves coproducts and the category K„_z(Pro j X) is compactly generated, the 
restriction of U has a right adjoint. Prom Lemma 2.3 and Lemma 2.6 we conclude that 
there is a recollement 

Km,ac,z(ProjX): 

which completes the proof. • 

9.2 Characterizations of Smoothness 

In this section we use our previous results to give a characterization of regular schemes, 
and show that Km,ac(Proj X ) is an invariant of singularities, in the sense that it does not 
change upon restriction to an open subset containing all the singularities of X . 
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Setup. In this section X is a noetherian scheme and sheaves are defined over X by default. 

The celebrated theorem of Serre [Scr56] and Auslander-Buchsbaum [AB56] states that 
a local noetherian ring is regular if and only if every finitely generated module is quasi-
isomorphic to a bounded complex of finitely generated projectives. When this hypothesis 
fails, it is worthwhile to have an invariant that measures how badly. This invariant is called 
variously the bounded stable derived category or the triangulated category of singularities, 

and is defined to be the quotient 

m)sg(^)=DL(i3coX)/Perf (X) 

of the bounded derived category of coherent sheaves, by the category of perfect complexes. 
It is a consequence of the classification of regular local rings that Dgg(X) vanishes precisely 
when X is regular. We include a proof for the reader's convenience. 

P r o p o s i t i o n 9.6 . If X has finite Krull dimension then it is a regular scheme if and only 

U i f B U X ) = 0. 

Proof Being a perfect complex is a local property, so the vanishing of D5g(X) is local. 
That is, if 11 = {UQ, . . . , UD} is an affine open cover of X and Dgg([/i) = 0 for each 0 < i < d 
then D5g(X) = 0. Since being a regular scheme is also a local property, it suffices to prove 
the proposition when X = Spec{A) for a noetherian ring A of finite Krull dimension. 

Suppose that A is regular and let M be a finitely generated ^-module. For each prime 
ideal p the projective dimension of Mp over Ap is at most the Krull dimension of A, from 
which we deduce that pd^(M) < oo. It follows that M is perfect as an object of ©(.A), 
whence any bounded complex of finitely generated modules is perfect and ID'sg(v4) = 0. 

For the converse, we are given that Dsg(^) = 0 and we must prove that A is regular, 
for which it suffices to show that ylm is regular for every maximal ideal m. Given m, the 
residue field K(m) = Am/mAm = A/m is a finitely generated >l-module, so there is a finite 
resolution 

0 > y P i ^ P o ^ K{m) 0 

of K(m) by finitely generated projective yl-modules. Localizing at m we have produced a 
finite projective resolution of K(m) as an ylm-module, which imphes that Am is regular. • 

From results earlier in this article and Krause's paper [Kra05] we know the infinite 
completion of the triangulated category of singularities and also of its opposite; combining 
Theorem 7.9 and [Kra05, Corollary 5.4] we have equivalences up to direct factors 

D s g ( ^ r ( 9 . 5 ) 

D 3 ^ g ( X ) ^ K ^ ( I n j X ) (9.6) 

This leads to a new characterization of regular schemes, given below. One point we want 
to emphasize is that over regular schemes the mock homotopy category Km(ProjX) is 
canonically equivalent to the ordinary derived category. 
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Proposi t ion 9.7. The following conditions are equivalent 

(i) D^g(X) = 0. 

(ii) K „ , a c ( P r o j X ) = 0 . 

(Hi) Every complex of flat quasi-coherent sheaves is K-flat. 

(iv) The functor Km(Proj X) —> D(i3coX) is an equivalence. 

Proof. The triangulated category Km,ac(Proj X) vanishes if and only if its subcategory of 
compact objects vanishes, which proves (i) {ii). By Theorem 5.5 we have a recollement 

K„,ac(Proj X) ^ ^ K „ ( P r o j X) D(QcoX) 

The rest of the proof follows by staring at this recollement. Firstly, we note that there is an 
equivalence IKm(Proj X)/IKm,ac(Proj X) ^ D(OcoX) so the subcategory Km.acCProj X) 
is zero if and only if the canonical functor Km(Proj X) —> D(i3coX) is an equivalence, 
hence (ii) (iv). Next, observe that the subcategory Km,ac(Proj X) vanishes if and only 
if the orthogonal Km,ac(Proj X) contains all complexes of flat quasi-coherent sheaves. 
This orthogonal is, by Proposition 5.2, the subcategory of K-flat complexes, which implies 
{ii) ^ (Hi) and completes the proof. • 

Remark 9.8. Suppose that X is regular and of finite Krull dimension, so that Dgg(X) = 0 
by Proposition 9.6. Then by the previous proposition we have an equivalence 

K „ ( P r o j X) ^ D(iJcoX) (9.7) 

Since every complex of flat quasi-coherent sheaves is K-flat, this is an equivalence of tensor 
triangulated categories; see also the proof of Proposition 6.4. If an equivalence identifies 
the tensor structures it must also identify the closed structures, so (9.7) is an equivalence 
of closed monoidal categories. 

Combining several results of [Kra05] we have the injective analogue. 

Proposit ion 9.9. The following conditions are equivalent 

(i) D3yX) = 0. 

(ii) Kac(Inj X) = 0. 

(Hi) Every complex of injective quasi-coherent sheaves is K-injective. 

(iv) The functor K(Inj X) —» D(C!coX) is an equivalence. 

Proof The relevant results are [Kra05, Corollary 5.4] for (i) (ii) and [Kra05, Corollary 
4.3] for (ii) (iv). The identification of the orthogonal Kac(Inj X)-"- with the subcategory 
of K-injective complexes occurs in [Kra05, Corollary 3.9]. • 

SpeciaUzing, we have the following characterization of regular rings. 
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Corollary 9.10. Given a noetherian ring A of finite Krull dimension, the following are 
equivalent: 

(i) A is regular. 

(ii) Every complex of infective A-modules is K-injective. 

(Hi) Every complex of projective A-modules is K-projective. 

(iv) Every complex of flat A-modules is K-flat. 

Proof. To prove (i) (ii) (iv) one combines Propositions 9.6, 9.7 and 9.9. To see that 
(Hi) is equivalent to the other conditions, consider the recollement of Theorem 5.15 

Kac(Proj A) ; IK(Proj A) [ D(yl) 

As in Proposition 9.7 we argue that Kac(Proj A) vanishes precisely when is a regular ring. 
Moreover, the left orthogonal Kac(Proj A) is the subcategory of K-projective complexes 
(Corollary 5.14) from which we deduce (i) {Hi). • 

We can now give a simple proof that Km,ac(Proj X) is an invariant of the singularities 
of our scheme. The coarse version of this statement, which says that the category vanishes 
when X is regular, we have already seen. 

Propos i t ion 9.11. If U C X is an open subset containing every singularity of X then 
the restriction functor 

( - ) l t ; ; K „ , a c ( P r o j X) K„,ac(Proj U) (9.8) 

is an equivalence of triangulated categories. 

Proof. By Proposition 9.5 the restriction functor fits into a recollement (setting Z = X\U) 

( P r o j X ) ^ ^ (P ro jX) 

In particular the functor (9.8) induces an equivalence 

K„,ac(Proj X) /K„,ac ,z (Pro j X) ^ K„,ac(Proj U) 

To prove that (9.8) is an equivalence, we show that the kernel Km,ac,z(Proj X) vanishes 
whenever U contains all the singularities of X. Intuitively, Km,ac,z(Proj X) is the invariant 
of singularities of X contained in Z, which should vanish under the stated conditions. 

Let ^ be an acyclic complex of flat quasi-coherent sheaves on X that is mock sup-
ported on Z, so that is K-flat. For any point x ^ U the local ring Ox,x is regular, 
so is K-flat by Corollary 9.1()(it;). We deduce that is K-flat on stalks for every 
point of X, whence ^ is K-flat globally and thus zero in KTO(Proj X). This proves that 
Km,ac,z(Proj X) is the zero category, as required. • 
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Appendix A 

Flat Covers of Complexes 

In this appendix we prove that for any noetherian scheme X the inclusion 

J : K(Flat X) —» K(QcoX) (A.l) 

has a right adjoint. This adjoint will be used in Appendix B to introduce a closed monoidal 
structure on K(FlatX) and K(Inj X). The proof consists of generalizing an argument of 
Neeman for rings [Nee06c] using some ideas of Enochs and Estrada from [EE05b]. Let 
us first outline the proof in the affine case and then explain the argument that will lead 
to our generalization. Given a ring A there exists by [Nee06c, Remark 3.2] a recollement 
(using the notation of Remark 3.5) 

E(^) ' = ^ K ( F l a t . 4 ) ' >K(Proiyl) (A.2) 

The inclusion J : K(Flat A) —> can be "decomposed" into two pieces, the respective 
inclusions of the two subcategories in the recollement 

E{A) K(^), K(Proj A) K(^) (A.3) 

To prove that J has a right adjoint one constructs a right adjoint for each piece in (A.3). 
The second inclusion has a right adjoint by Brown-Neeman representability, as K(Proj A) 
is well generated [Nee06a, Theorem 4.8], and for first inclusion Neeman uses the following 
result on constructing adjoints from precovers. 

Definition A . l . Let T be a category and S a full subcategory. A morphism s —• t 
is called an S-precover of i if s G <S and every morphism s' —> t with s' e S factors 
(not necessarily uniquely) through s —» t. An important example is the notion of a flat 
precover of a module, which we have already seen in Definition 2.32. 

Proposition A.2. Let T be a triangulated category and S C T a thick triangulated 
subcategory. Assume that 

(i) Every object t G T admits an S-precover. 

(ii) Every idempotent in T splits. 
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Then the inclusion F : S —> T has a right adjoint. 

Proof. See [NecOGc, Proposition 1.4]. • 

In our case, we learn that to construct a right adjoint of E(yl) —> K ( ^ ) it is enough to 
construct E(j4)-precovers. To do this, Neeman introduces an auxiliary (noncommutative) 
ring, denoted here by N(yl), such that the category of complexes of ^-modules embeds in 
the category of N(yl)-modules. Flat precovers over N(^) give E(^)-precovers of complexes, 
so both pieces in (A..3) have a right adjoint and thus so does J. 

It is worth mentioning an earlier result of Enochs and Rozas [EGR,98]. They call the 
complexes in E ( ^ ) flat and prove that over a commutative noetherian ring of finite Krull 
dimension, any complex of modules has a "flat precover". The difference is that Neeman 
works in the homotopy category (and with arbitrary noncommutative rings) while Enochs 
and Rozas work in the category of complexes. 

We aim to prove that, for a noetherian scheme X , the inclusion J of (A . l ) has a right 
adjoint. The proof arises by generahzing each step in the above argument for rings, and 
the first ingredient is the following localization sequence (Theorem 3.16) 

E ( X ) , K(Flat X) , K „ ( P r o j X) 

by which we reduce to constructing a right adjoint for the inclusion E ( X ) —> K(OcoX). 
Prom Proposition A.2 we learn that it is enough to construct E(X)-precovers. Following 
[EGR98, §2] we think of quasi-coherent sheaves on X as modules over a representation R 
in the category of rings of a certain quiver Q. We introduce an auxihary presheaf N{R) of 
(noncommutative) rings, and observe that the category of complexes of i?-modules embeds 
in the category of N(i?)-modules. Flat precovers in the latter category give rise to E(7?)-
precovers in the former (Lemma A.11) and using the correspondence between /^-modules 
and sheaves, this will yield the desired E(X)-precovers. At this point it is a short step to 
Theorem A.13 where we prove that J has a right adjoint. 

Setup. In this section rings may be noncommutative, and X denotes a fixed scheme. 

Let us define Neeman's auxiliary ring. The following construction and its properties 
are described in [Nee06c] but we repeat the definitions here for the reader's convenience. 

Definition A .3 . [Nee06c, Notation 2.3] Let ^ be a ring, which, by the conventions of this 
section, may be noncommutative. We study the ring constructed from A and the quiver 

with the relation d'+^d' = 0. To be precise, we introduce the set 5 = and the 
graded ring A{S) (the free noncommutative /l-algebra on 5 ) which is the free yl-module 
on the set of sequences in S (including the empty sequence). There is a canonical ring 
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morphism A —> A(S). Consider the two sided ideal I of A(S) generated by the following 
relations 

e'e^ = 0 U i ^ j 

e'e' = e' 

d'd^ = 0 

e'+^d' = d'e' = d' 

ê d^ = 0 unless j = i + 1 

d^e^ = 0 unless j = i 

Write N(v4) for the ring A{S)/I. It is not difficult to check that N(^) is free as an yl-module 
on the basis {1, 9®, e'jjgz. A morphism of commutative rings A —> B induces a morphism 
of rings A{S) —• B{S) and thus N(/l) —» and this makes the construction N ( - ) 
into a functor from commutative rings to rings. 

Definition A.4. Let A he a ring, Z a complex of ^-modules 

» Z ' - ' — — » —» • • • 

and denote by T{Z) the N(^) = /I(5)//-module, which as an yl-module is the coproduct 

j€Z 

with the action of N(^) defined by the action of the generators as 

Given a morphism (p : Z —» Q of complexes of ^-modules, T{4>) = is a morphism 
of N(yl)-modules, so this defines an additive functor T : C(A) —» N(/l)Mod. One checks 
that T is fully faithful. In the other direction, let a N(>l)-module M be given, and let 
Tp{M) denote the following complex of ^-modules 

• e M ^ e'M e'+^M 

A morphism M —> N of N(^)-modules restricts to a sequence of maps e®M —> e^N, 
defining a morphism of complexes Tp{M) —> Tp{N). This defines an additive functor 
Tp : N(>l)Mod ^ C{A). 

Given an N(^)-module M the inclusions e 'M —> M give a morphism of N(>l)-modules 
£ : TTp(M) —> M natural in M. This is the counit of an adjunction, with T left adjoint to 
Tp. In [Nee06c, Proposition 2.8] it is shown that Tp sends flat N(^)-modules to complexes 
in E(^), and in the reverse direction T sends complexes from E(^) to flat N(^)-modules 
(the notation lE(yl) was introduced in Remark 3.5, and agrees with Neeman's S). 

Lemma A.5. Let A —> B be a flat morphism of commutative rings. The induced ring 
morphism N(^) —» N(B) makes N(B) flat as both a left and right N{A)-module. 
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Proof. The ring N{B) = B{S)/I is isomorphic as a left and right N(yl)-module to the 
algebra B (g)̂  N(^) , which is a module via the ring morphism N(/l) —• B ®A N(>1) 
sending a to 1 ® a. Given this observation, the claim is straightforward to check. • 

It is known that flat covers exist in the category of quasi-coherent sheaves on a scheme 
[EE05b]. The proof works by replacing the category of quasi-coherent sheaves by a category 
of modules over a presheaf of commutative rings, defined on a certain quiver Q. Let us 
recall this construction. Let Q be a quiver and ^ ( Q ) the path category of Q. Denoting 
by Rng the category of (noncommutative) rings, a contravariant functor '^(Q) —> Rng 
is a presheaf of rings on Q. In [EE05b] a dual definition is used, but presheaves are more 
natural in the present context and the distinction is trivial, in any case. 

Let i? be a presheaf of rings on Q. A left module over 7? is a presheaf M of abelian 
groups on Q with the property that, for every edge a : v —> w, the morphism M(w) —> 
M{v) is a morphism of i?(u;)-modules. The category _RMod of left modules over R is 
Grothendieck abehan. Similarly we define the Grothendieck abehan category Mod/? of 
right modules over R. Given a left module M over R and an edge a : v —> w we have a 
morphism of i?(t;)-modules natural in M 

r ® m r • M{a){m) 

We say that M is quasi-coherent if this is an isomorphism for every edge a : v —> w. The 
quasi-coherent modules define an abelian subcategory Qco(/?) of i?Mod, provided that 
R is flat: this means that for each edge a : v —> w the ring morphism R(w) —> 
makes R{v) a flat right 7?(w)-module. There is a natural tensor product for modules over 
R, that we can use to define flat right and left i?-modules; see [EE05b]. In this section, 
modules over a presheaf of rings are left modules unless indicated otherwise. 

Combining the following results of [EE05b] gives flat covers for quasi-coherent sheaves. 

Proposit ion A.6. There exists a quiver Q and a flat presheaf of commutative rings R on 
Q, such that the category of quasi-coherent R-modules is equivalent to Oco(X). Moreover, 
this equivalence preserves flatness in both directions. 

Proof. See [EE05b, §2], • 

Theorem A.7 (Enochs,Estrada). Let Q be a quiver and R a fiat presheaf of rings defined 
on Q. The category of quasi-coherent R-modules ^ admits flat precovers. 

Proof See [EE05b, Theorem 4.1]. • 

For the remainder of this section let Q be a quiver and R a presheaf of commutative 
rings on Q. Applying the functor N ( - ) we have a presheaf N(i?) of rings on Q, defined 
by N{R){v) = N{R{v)), which is flat if R is flat, by Lemma A.5. We want to construct 
the ]E(i?)-precover (defined below) of a complex of i?-modules by "packing" the complex 
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into a single module over and taking the flat precover of this N(i?)-module. To do 
this we generalize Definition A.4, and we hope the reader will bear with us through some 
technical detail. For each v e Q we have an adjoint pair, described by Definition A.4 when 
A = R{v) 

T 

C(;?(?;)Mod) , N{R){v)Mod (A.4) 

Let a complex Z of modules be given. If we fix i; € Q then we have a complex of 
i?(t;)-modules Z{v) and thus an N(/?)(v)-module T{Z){v) = Ty{Z{v)). This defines an 
N(i?)-module T(Z) and a fully faithful additive functor 

T : C(/?Mod) —» N(/?)Mod 

realizing complexes of /i-modules as modules over the presheaf of rings N(i?). 
It remains to define the right adjoint, which unpacks an N(/?)-module to give a complex. 

Given an N(i?)-module M we have for an integer i £ Z and vertex v an i?(w)-module 
Ty,p{M{v)y, and we define a complex Tp{M) of H-modules by Tp{My{v) = Ty^p{M{v))\ 
With a httle checking this defines an additive functor 

Tp : N(/?)Mod —» C(i?Mod) 

Define a natural transformation e : TTp —» 1 by setting eM{v) = ey^M{v) for an N(/?)-
module M, where Sy : TyTŷ p —> 1 is the counit for the adjunction (A.4). One checks 
that £ is the counit of an adjunction, with T left adjoint to Tp 

C(f iMod) 7 ^ ' N(fl)Mod (A.5) 
Tp 

Next we show that the adjoint functors T and Tp interchange flat N(i?)-modules and 
acyclic complexes of flat /^-modules with flat kernels. 

L e m m a A.8. If Z is an acyclic complex of fiat R-modules with flat kernels then T{Z) is 
a flat N{R)-module. In the other direction, if M is a flat N{R)-module then Tp{M) is an 
acyclic complex of flat R-modules with flat kernels. 

Proof. Given an acychc complex Z of flat /?-modules with flat kernels, the complex Z(v) 
of i?(t;)-modules belongs to E(R{v)), so T{Z{v)) is flat as an N(fi)(v)-module by [NeeOGc, 
Proposition 2.8]. It follows that T[Z) is a flat N(i?)-module. For the second claim, let 
M be a flat N(/?)-module. Then M{v) is flat for every vertex v, from which we deduce 
that Ty^p{M{v)) belongs to IE(i?(t;)). We deduce that Tp{M) is an acyclic complex of flat 
i?(u)-modules with flat kernels. • 

We are interested in quasi-coherent sheaves and thus, quasi-coherent i?-modules. An 
important property of the functors T and Tp is that they both preserve quasi-coherence; 
before giving the proof, we need a technical lemma. 
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L e m m a A . 9 . Let a : v —» w be an edge, and S a left N{R){w)-module. The map 

R{v) S N{R){v) ^niRKw) S 

A ® X A (g) X 

is an isomorphism of left R{v)-modules. 

Proof. Such a map clearly exists. Its inverse is the morphism induced out of the tensor 

product N(fl)(v) ®n{R){w) S by the following N(i?)(w)-bihnear map 

N{R{v)) X 5 ^ R{v) S 
\ 

A + ^ + A (g) X + '^{Hi ® d'x) + ^ ( r , - (gi e^x) 
\ i i / i j 

where we use the fact that N(i?(t;)) is free as an ]R(i;)-module on the set to 

write an arbitrary element in terms of coefficients € R{v). • 

The following result shows that the constructions T and Tp preserve quasi-coherence. 

L e m m a A . 1 0 . Suppose that R is flat. Then 

(i) If Z is a complex of quasi-coherent R-modules then T{Z) is a quasi-coherent N{R)-

module. 

(ii) If M is a quasi-coherent N{R)-module then Tp{M) is a complex of quasi-coherent 
R-modules. 

Proof, (i) Let Z be a complex of quasi-coherent i?-modules, and a : v —> w an edge. We 

have to show that the canonical morphism N(i?(v)) T{Z)(w) —> T{Z){v) is an 

isomorphism. Using Lemma A.9 this reduces to showing that the map 

T{Z){W)-.T{Z){V) 

ri^m^r-T{Z){a)(m.) 

is an isomorphism. As an i?(w;)-module we have T{Z){w) = and similarly for 

V, and moreover the tensor product commutes with coproducts, so it is enough to show 

that the map R{v) —> is an isomorphism for every i e Z. But this is 

known, because each was assumed quasi-coherent. 

(ii) Given a quasi-coherent N(i?)-module M and an edge a : v 

following commutative diagram for / G Z 
w, consider the 

m { v ) ) ^NiRM) M{w) 
H 

•e'M{v) (A.6) 

•M{v) 
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where e'M{'w) —> M(w) is the inclusion, and we again use Lemma A.9. To show that 
Tp{M) is a complex of quasi-coherent i?-modules, we have to show that h is an isomor-
phism. By assumption the bottom row is an isomorphism, and since R is flat the map 
marked t is injective. Prom this we infer that h is injective. 

To see that h is surjective, let x G M{v) be given. Because M is quasi-coherent, 
we can write x = ® "^i) for some Xi G N(i?(f)) and m^ £ M{w). Therefore 
e'x = H{e'Xi ® m,) for any / G Z. For each i we can write Xi using the canonical 
basis in N{R{v)) 

t s 

and one calculates 

e'x = ^ h{Xi (gi e'rrii + ® e'd'~^mi -I- n j ® e'rrii) 
i 

which shows that h is surjective, hence an isomorphism. • 

Let Rhe & flat presheaf of commutative rings, so that Oco{R) is an abelian category. 
Denote by K(Flat R) C K(l3co/?) the homotopy category of flat quasi-coherent /?-modules 
and by E{R) the full subcategory of acyclic complexes with flat kernels in K(Flat R). 

L e m m a A . l l . Let Q be a quiver and R a flat presheaf of commutative rings. Every 
complex of quasi-coherent R-modules has an E{R)-precover in the category K{£lcoR). 

Proof. To be clear: we are claiming that for any complex Z of quasi-coherent /^-modules 
tliere is a complex E in E(7?) and morphism of complexes E —> Z with the property that 
any morphism of complexes E' —> Z with E' in E{R) factors (not necessarily uniquely) 
via E —> Z in K(Ocoi?). In fact, the factorization will happen on the level of complexes. 

Let Z be a complex of quasi-coherent i?-modules. Packing the complex into a single 
module will produce, by Lemma A.10, a quasi-coherent N(i?)-module T{Z). We know 
from Theorem A.7 that modules over such a presheaf of rings have flat precovers; let 
F —• T{Z) such a precover, in the category of quasi-coherent N(i?)-modules. 

Applying Tp to unpack our modules into complexes, and using the equivalence TpT = 1, 
we have a morphism Tp{F) —» Z in the category of complexes of i?-modules. Together, 
Lemma A.8 and Lemma A.10 tell us that Tp{F) is a complex of flat quasi-coherent R-
modules with flat kernels, and one checks that this is the desired E(i?)-precover. • 

P r o p o s i t i o n A.12 . The inclusion E(X) —> K(OcoX) has a right adjoint. 

Proof. By Proposition A.6 there is a quiver Q and a flat presheaf of commutative rings R 
on Q, together with an equivalence of categories 

Oco(i?) ^ i3co(X) 

identifying the subcategories of flat objects on both sides. We will apply Proposition A.2 to 
deduce a right adjoint for the inclusion E(X) —> K(QcoX). The category K(QcoX) has 
coproducts, so any idempotent splits [NeeOlb, Proposition 1.6.8], and we already know 
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that E(X) C K(l}coX) is thick, so it remains to prove that every object in K(Oco^ ) 
has an IE(X)-precover. If we identify, up to equivalence, the category K(OcoX) with the 
category K(Ocofi) and E(X) with E(R), this follows from Lemma A.11. • 

Theorem A.13. If X is noetherian then the inclusion 

J : K ( F l a t X ) —»K(QcoX) 

has a right adjoint. 

Proof. We prove that J has a right adjoint by constructing, for every complex of quasi-
coherent sheaves, a triangle in K(QcoX) with 'if in K(F la tX) and in IK(FIatX)-'-

"(S ^ ^ ^ ^ (A.7) 

This is done in two stages: first we construct the triangle in IK(£5coX) modulo E(X), then 
we hft the triangle to K(iJcoX). If T denotes the quotient K(QcoX) —• K(QcoX) /E(X) 
then from Lemma 2.3 and Proposition A.12 we deduce a localization sequence 

E(X) , ' K(QcoX)^'^-^K(!DCOX)/E(X) (A.8) 

Recall the following fact; given a triangulated category T and triangulated subcategories 
>S ̂  Q C T the induced triangulated functor Q/S —> T/S is fully faithful. In our specific 
case, the inclusion J : K(Flat X) —> K(£!coX) induces a fully faithful triangulated functor 
M making the following diagram commute 

K(i3coX) - K ( Q c o X ) / E ( X ) 

J M 

IK(Flat X) ^ K „ ( P r o j X) 

Because M preserves coproducts and Km(Proj X) is compactly generated (Theorem 4.10) 
M has a right adjoint Mp. Thus, for our given complex ^ of quasi-coherent sheaves, we 
can find a triangle in K(i3coX)/E(X) 

with HomK(QcoAr)/E(X)(^,-^') = 0 for every ^ in IK(FlatX). This is the triangle (A.7) 
that we are looking for, modulo E(X). It remains to lift the triangle to K(OcoX). 

Write the counit M M p { ^ ) —» ^ as a composite T{g)T{f)-'^ for a pair of morphisms 
g : ^ —» ^ and / : ^ —> M M p { ^ ) in K(QcoX) with / having mapping cone in E(X). 
Since ^ can be written as the mapping cone on a morphism between M M p { ^ ) and an 
object of E(X), both of which are complexes of flat quasi-coherent sheaves, we can assume 
that ^ is a complex of flat quasi-coherent sheaves. Extending 5 to a triangle in K(OcoX), 
we have 

^ ^ ^ ^ E ^ (A.9) 



119 

with = 0 for every s^ in K(F l a tX) , because J i and J i ' are 
isomorphic in K(OcoX)/E(X) . As IE(X) is a Bousfield subcategory of K(QcoX) we can 
find a triangle in K(QcoX) with ^ in E(X) and S/' in the orthogonal 

Si —> ^ —> ^ —> E ^ (A.IO) 

Since ^ vanishes in the quotient K(i3coX)/E(X) we deduce that for s i in K(F la tX) 

HomK(QcoX)(^, = HomK(QcoX)/E(X)(-^- ST) ^ H o m K ( Q c o X ) / i E ( X ) ( ^ , = 0 

where the first isomorphism is a standard property of Verdier quotients. We have shown 
that belongs to K(Flat X)-*- with the orthogonal taken in K(QcoX). From (A.9), (A.IO) 
and the octahedral axiom, we deduce two new triangles in K(£3coX) 

^ —• — * ^ —» E ^ 

^ —> -if — — » E ^ 

Since both ^^ and Si belong to K(F la tX) , we can assume that is also a complex of flat 
quasi-coherent sheaves. Hence the first triangle of this pair has ^ in K(F la tX) and 3 ' in 
]K(FlatX)-'- and the proof is complete. • 

Next we give a counterexample to show that certain adjoints do not exist in general. 

C o r o l l a r y A.14 . / / X is noetherian and either of the canonical functors 

K(F la tX) —>D(QcoX), K(Flat X) —^ K „ ( P r o j X) (A. l l ) 

have left adjoints then products are exact in Oco(X). 

Proof. By the theorem the inclusion J : IK(FlatX) —> K(OcoX) has a right adjoint, so 
for every complex ^ of quasi-coherent sheaves there is a triangle in IK(OcoX) 

JJp(J^) ^ J? ^ ^ —^ 

with belonging to K(FlatX)-'- and therefore acyclic (every complex has a K-fiat reso-
lution by flat quasi-coherent sheaves). Applying the quotient q : K(QcoX) —> D(OcoX) 
to this triangle we deduce a natural equivalence 

q qJJn 

The following diagram therefore commutes up to natural equivalence (by Definition 5.3 
we have U o Q = q o J) 

K(OcoX) - D ( Q c o X ) 

Jp 

K(Flat X) ^ K „ ( P r o j X) 

By Theorem 5.5 the functor U has a left adjoint. It follows that if either of the functors 
in (A. l l ) has a left adjoint, then q has a left adjoint. This implies that products are exact 
in Qco(X), completing the proof. • 
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Remark A.15. In particular, this shows that for a field k neither of the functors 

K(Flat P^) ^ D(QcoP^), IK(Flat P[) K„(Proj P^) 

admits a left adjoint, because products in Oco(Pj.) are not exact [Kra05, Example 4.9]. 



Appendix B 

Flat Function Objects 

We define the closed monoidal structure on the homotopy category K(Flat X) of flat quasi-
coherent sheaves, using the adjoint constructed in Appendix A. This result is applied to 
give an alternative description of the function objects in Km(Proj X) and to define a closed 
monoidal structure on IK(Inj X) in the presence of a dualizing complex. 

Setup. In this appendix X is a noetherian scheme and sheaves are defined over X. 

We make use of two functors, the inclusion and quotient, respectively 

J : K(Flat X) K ( Q c o X ) , Q : K(Flat X) K „ ( P r o j X) 

Both functors admit right adjoints, by Theorem A.13 and Theorem 3.16, and these adjoints 
are denoted by Jp and Qp as per our usual notational conventions. The tensor product of 
flat quasi-coherent sheaves is flat, so the tensor product on IK(OcoX) restricts to K(Flat X ) , 
making it into a tensor triangulated category; see Chapter 6. The corresponding closed 
structure, denoted by - ) , is defined as follows. 

Definition B . l . Let be complexes of quasi-coherent sheaves, and 
the corresponding function object in K ( Q c o X ) , given by Proposition 6.17. We define 

which is a complex of flat quasi-coherent sheaves. 

We refer the reader to [HPS97, Definition A.2.1] for the definition of a closed monoidal 
structure compatible with the triangulation. 

Proposition B.2. The triangulated category K ( F l a t X ) is closed symmetric monoidal. 
It has a tensor product and function object Mat{-, —) compatible with the triangulation, 
and there is a natural isomorphism 

H o m K ( F l a t X ) ( ^ ® ^ , ^ ) ^ (B. l ) 

Proof. From Definition B.l it is clear that - ) is functorial, contravariantly in the 
first variable and covariantly in the second, and is a triangulated functor in both variables. 
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We already know that the closed symmetric monoidal structure on ]K(OcoX) is compatible 
with the triangulation (Proposition 6.17), and it follows that the same is true of IK(Flat X). 

The adjunction isomorphism (B.l ) is an easy consequence of the adjunction isomorphism 
between J and Jp and the corresponding isomorphism for K(l3coX). • 

In Chapter 6 we defined the function object in Km (Proj X) via Brown representability. 
Using Appendix A. 13 we can give a description more in hne with the usual definition of the 
derived Hom in the derived category of modules over a ring. First, a technical observation. 
Recall that E ( X ) C K ( F l a t X ) is the subcategory of acyclic, K-flat complexes. 

L e m m a B.3 . Given complexes ^ of flat quasi-coherent sheaves with ^ in E(X)-'-, the 

complex belongs to 

Proof Given S' in E ( X ) we have Rom{<S', X ) ) H o m ( ^ ® J^, '^) which is zero 
because, by Lemma 6.1, the tensor product S belongs to E ( X ) . • 

P r o p o s i t i o n B .4 . The function object in Km(Proj X) can be defined by 

'S) = Qpi'S)) (B.2) 

Proof. The function object was defined in Proposition 6.2 to be the right adjoint to the 
tensor product, so the following calculation shows that , —) can be defined by the 
construction in (B.2). We have a natural isomorphism 

^ (Adjunction) 

^ HomK(FiatX)(^, Qp{3^)) ) (Adjunction) 

^ (Lemma B.3) 

which completes the proof. • 

L e m m a B.5 . There is a canonical morphism in Km(ProjX) natural in both variables 

"S) 'S) (B.3) 

which is an isomorphism if'S belongs to E(X)-'". 

Proof. From the adjunction between Q and Qp we have a unit transformation 1 — » QpQ, 

which determines a morphism natural in both variables ^ a t { - , - ) — » ^ a t { — ,QpQ( — )) 
as required. If ^ belongs to E(X)-'- then —> QpQ{^) is an isomorphism in K(Flat X ) , so 
the canonical morphism — » is an isomorphism, as claimed. • 

Assume that X has a duahzing complex which is always assumed to be a bounded 
complex of injective quasi-coherent sheaves. By Theorem 8.4 there is an equivalence 

- ® ^ : Km(Proj X) ^ K(Inj X) (B.4) 

which by Proposition 8.9 has quasi-inverse 

J fbmqc (^ , - ) : IK(Inj X) ^ IKm(Proj X) (B.5) 

From the closed monoidal structure on Km(Proj X ) , described in Chapter 6, we obtain an 
induced structure on lK(Inj X ) , with Q! the unit object of the tensor product. 
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Proposition B.6. If X admits a dualizing complex ^ then K(Inj X ) is closed symmetric 
monoidal: it has tensor product - ®inj - and function object J^nj{-, -) defined by 

^ ®Inj = ^ ® J " ) 

J'njiJ', = Mat{y, y') 

which are compatible with the triangulation. 

Proof. For any complex / of injective quasi-coherent sheaves we have by Proposition 8.9 
a natural isomorphism in K(Inj X) 

f (B.6) 

Let J^ and J ' be complexes of injective quasi-coherent sheaves. The tensor product on 
K(Inj X) induced by the equivalence of Theorem 8.4 is given by 

^ ®inj J' = Si® (Jfbmqe(^, y) ® Jfbmqc(^, J')) ^J® J') (B.7) 

Applying (B.6) to J ' instead of J in the above, we find that the definition of the tensor 
product is actually symmetric. The function object in K(Inj X) is defined by 

J') = 9® JTomqcC^, J"')) 

This needs some simplification. By Lemma 8.8 the complex J^') belongs to the 
orthogonal lE(X)-'- so we have an isomorphism 

^ ^ ® J'), J')) (Lemma B.5) 

J) ® J') (Adjunction) 

-^S® ^atiJ', J'') (By (B.6)) 

We already know that K„ (Pro j X) is closed symmetric monoidal, and that this structure 
is compatible with the triangulation, so this completes the proof. Note that it really should 
be possible to replace J^') by Jfom^ci-^, after some technical improvements; 
see the next remark. • 

Remark B.7. Over a noetherian ring A any product of flat modules is flat. For complexes 
I and / ' of injective yl-modules, Hom^(/, I') is a complex of flat modules and we have an 
isomorphism Flat ( / , / ' ) ^ Hom4( / , / ' ) . Thus the function object in K(Inj yl) has the 
form Inj(7,/ ' ) = D ®a Hom4( / , / ' ) . I do not know if the same is true of schemes; that 
is, given a noetherian scheme X , I do not know if flat quasi-coherent sheaves are closed 
under products in the category Oco{X). 
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Appendix C 

Function Objects from Brown 
Representability 

Let T be a tensor triangulated category. This is an additive category with the structure 
of a triangulated category and the structure of a symmetric monoidal category, such that 
the tensor product - (g) - respects the triangulation; see [MVW06, Definition 8A.1]. If 
cohomological functors on T are representable and the tensor product commutes with 
coproducts, then we obtain function objects in T for free: simply define Map(a;, y) to be 
the object representing the cohomological functor 

2 H-» Homrl^ ® x,y) 

This makes T into a closed symmetric monoidal category, but it is not immediately clear 
that the closed structure respects the triangulation. While it is well-known that Map(a;, - ) 
is a triangulated functor (it is the right adjoint of the triangulated functor - (g x) the 
argument which shows that Map( —, —) is triangulated in the first variable does not appear 
to be widely known. In this appendix we give the proof, assuming one mild compatibility 
condition on the tensor product introduced by May in [MayOl]. It is a pleasure to thank 
Amnon Neeman for explaining the result to us, and kindly allowing us to include it here. 

Before proceeding, it is worth making some general comments about the state of tensor 
triangulated categories in the hterature. The definition we adopt from [MVW06] is what 
everybody agrees on: the tensor product is triangulated in each variable, and there is some 
bookkeeping involving signs and the suspension; see also [HPS97, Definition A.2.1]. This is 
enough for many applications, but there are further properties of the tensor product in the 
natural examples that one could consider adding as axioms. The first person to really take 
this seriously was May, who in [MayOl] gives several additional axioms (TCl)-(TC5). A 
later article by Keller and Neeman [KN02] sheds further light on May's axioms. Assuming 
that T satisfies May's axiom (TC3) we will prove that Map(—, —) is triangulated in both 
variables. To be precise, we prove the following for any tensor triangulated category T. 

Theorem C. l (Neeman). Suppose that T satisfies (TC3) and that every cohomological 
functor on T is representable. If the tensor product in T commutes with coproducts, then 
T has a closed structure Map(—, - ) compatible with the triangulation. 
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When we say that the closed monoidal structure is compatible with the triangulation, 
we mean it in the sense of [HPS97, Definition A.2.1] and when we say that a functor is 
cohomological we mean that it is a cohomology functor in the sense of [HPS97, Definition 
1.1.3]. This theorem resolves a difficulty pointed out in [HP.S97, Remark 1.4.11]. 

The example we care about is the mock homotopy category K „ ( P r o j X ) of projectives. 
The monoidal structure on this category is simple, and using the theorem we deduce the 
closed structure very cheaply A word on the structure of this appendix: to begin with 
we keep the arguments general, then in Section C.l we check that the results apply to our 
examples of interest, Km(Proj X ) and D(i3coX). We will make heavy use of the concept 
of a homotopy pushout, so for the reader's convenience we include the definition. 

Definition C .2 . [NeeOlb, §1.4] Let T be a triangulated category A commutative diagram 

Y ^ Z (C.l ) 

is a homotopy pushout if there is a triangle in T of the following form 

^ s r (C.2) y A h l r ^ z ^ z ' 

What we call a triangle in this thesis is sometimes quahfied as a distinguished triangle in 
the hterature. There is a weaker notion of an exact triangle, and if in (C.2) we have only 
an exact triangle, then we say that (C.l) is a pushpull square; see [MayOl, Definition 3.5]. 
Any homotopy pushout is a pushpull square. Any pushpull square (C.l) has the property 
that, given morphisms a : ¥' —* Q,b : Z —y Q with aog = bof, there is a (non-unique) 
morphism 9 : Z' —> Q with a = 9 o f and b = 6 o g'. 

To explain the axiom (TC3) of May that we need, consider the following situation: let 
T be a tensor triangulated category, and suppose we are given two triangles 

— Ex' 

(C.3) 

(C.4) 

We can form the tensor product of these triangles. This is a diagram in which all columns 
and rows are triangles, and every square commutes except for (*) which anticommutes 

X (g) X 

•y®y 

- ^ E x i (C.5) 

X ® 2' ^ y ^ z ' ^ z® z' ^ Ex ® z' 

(*) 

Ex ® x' ^ Ey ® x' ^ Ez ® x' E^x » x' 
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In the natural examples it is possible to associate an additional object w and several 
morphisms with this diagram, satisfying some conditions. May axiomatizes this situation, 
in two equivalent ways, in his axioms (TC3) and (TC3'). It is actually his presentation 
(TC3') of the axiom that is closest to our needs, so it is what we will state. 

Definition C . 3 . Following May [MayOl, §4] we say that a tensor triangulated category 
T satisfies (TC3) if, for any pair of triangles (C.3), (C.4) as above, their tensor product 
(C.5) comes with Verdier structure, by which we mean that there exists an object w and 
six morphisms fci,/c2, fca, gi, 93 fitting into a commutative diagram 

- E - 1 

(1) 

>y ( 

> y[ 

(5) 

• 2 ® X 

(4) fc3 

k2 
• w 

fc2 

ki 
w 

We also require that various other diagrams commute, and that certain triangles exist, 
but we direct the reader to the statement of [MayOl, Lemma 4.7) for the list. The diagram 
above is all that we need to prove Theorem C.l . If further we can arrange for the squares 
labeled (l)-(6) to be homotopy pushout squares, we say that T satisfies (TC3+) . Note 
the sign carried by the lefthand side of (6). 

Remark C . 4 . The examples of interest to us will satisfy (TC3+) , but we will only need 
the weaker (TC3) to prove the main theorem. The emphasis on homotopy pushouts can 
be traced to the approach of Keller and Neeman in [KN()2] where the large diagram in 
Definition C.3 is given as (**) on p.547. 

Let T be a tensor triangulated category with the property that cohomological functors 
on T are representable, and the tensor product commutes with coproducts. Given objects 
X and 2/ in T we define Map(x, y) to be the object of T that represents the cohomological 
functor 2 I—• Homr(2 ® x,y). In the standard way we make Map( —, —) into a bifunctor 
contravariant in the first variable, such that the following isomorphism is natural 

Homr(2 ® X, y) = Hom7-(2, Map(x, y)) 

This definition makes T into a closed monoidal category. 

Proof of Theorem C.l. For a fixed object x eT, the functor Map(a;, —) is triangulated, 
because it is the right adjoint of a triangulated functor. Replacing x by its desuspension 
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E X we have a natural isomorphism 

Homr(2, Map(E"^x, y)) = Homr(2 (gi y) 

= Homx(2, E Map(a;, y)) 

(C.6) 

which yields a natural isomorphism Map(E~^x, j/) = EMap(a:,y). Let r be the additive 
inverse of this isomorphism (-T makes the diagram coming from (C.6) commute, but the 
correct morphism makes it anticommute, so we change the sign). To complete the proof of 
the theorem it suffices to check that the pair (Map ( - , y), T) defines a triangulated functor 
T°P —> T , because the other conditions of [HPS97, Definition A.2.1] are already verified. 
Let a triangle in T be given 

x ^ x ' ^ x " ^ Ex (C.7) 

We have a candidate triangle 

Map(a;",j/) —• Map(a:',j/) — » Map(a;,j/) —> E Map(x", j/) 

that we have to show is actually a triangle. The trick is to take the mapping cone of the 
first morphism in (C.8), and then argue that it agrees with Map(x, y). That is, we extend 
to an actual triangle in T 

Map(a;",2/) ^ Map(a:',2/) E Map(x", y) 

Take the tensor product of this triangle with the original triangle (C.7) to obtain a diagram 
of the form (C.5). The large diagram is not so important; what we need are the following 
commutative squares, provided by (TC3) 

Map(x' ,y) ®x- •T®x Map(a:",y) (gi x'• 

(4) (5) 

• Map(x', 2/) (g x ' 

• w Map(a;", y) ® x" • 

E - i T ( • Map(x", y) (8) x" 

(6) 

• w 

From the adjunction between the tensor product and function object in T , we obtain a 
counit morphism e : Map(i, y)®t —> y for any object t G T . Moreover, this morphism is 
natural in t, and in particular the following diagram commutes 

Map(a:", y) x' -

Ma.p{x",y) iSi x" • 

• Map(x', y) ® x' (C.9) 
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By [MayOl, Lemma 4.9] the commutative squares (4)-(6) provided by (TC3) are pushpull 
squares, so from (C.9) we deduce / : w —> y making the following diagram commute 

Map(x", y) ® x' ^ Map(a;', y)®x 

(5) 

M&\>{x\y)®x" 

By adjunction the composite T ®x —> w y determines a morphism T —> Map(x, y) 
fitting into the following diagram, in which the top row is a triangle and the bottom row 
is a candidate triangle 

Uap{x",y) M&p{x',y) •EMap(a:",j/) (C.IO) 

(i) (it) 

Map(x", y) Map(x', y) ^ Map(x, y) ^ E Map(a;", y) 

We deduce commutativity of (i) from commutativity of (4), but commutativity of (ii) is 
more subtle. To prove it, it suffices to establish that applying Hom7-(<,—) to (ii) leaves 
a commutative diagram of abehan groups for t eT. By the adjunction, this diagram of 
abelian groups is 

H o m r ( i , T ) . 

H o m r ® X, y) ^ Homrl^ <8) E - ' x " , y) 

Chasing a morphism t —> T around this diagram, we conclude that commutativity of (ii) 
follows from commutativity of (6), so (C.IO) is a morphism of candidate triangles. Apply-
ing Homr(f , - ) to this morphism of candidate triangles yields a morphism of complexes of 
abelian groups, the top row of which is exact because the top row of (C.IO) is a triangle. 
The bottom row is exact because of the adjunction isomorphism 

Homr(i , M a p ( - , y ) ) = HomT(< ® -,y) 

From the Five Lemma we deduce that T —> Map(x, y) is an isomorphism, so the bottom 
row of (C.IO) is a triangle and the proof is complete. • 

C.l Examples satisfying May's axiom 

We prove that, given a symmetric monoidal abelian category A, the homotopy category 
K ( ^ ) is a tensor triangulated category satisfying the axiom (TC3+) of the previous section 
(see Definition C.3). It will follow easily that the mock homotopy category Km(Pro jX) 
and the derived category D(l3coX) satisfy this axiom for any scheme. The reader can find 
similar arguments in [MayOl, §6] and [KN02, §3], but one of our results (Proposition 6.2) 
depends crucially on these facts, so we feel it is worth including a detailed proof here. 
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Setup. In this section A is an abelian category with a tensor product — ® - making it 
into a symmetric monoidal category. We assume that the tensor product commutes with 
coproducts. The examples we have in mind are categories of modules over a commutative 
ring, and quasi-coherent sheaves over a scheme. 

The structure that makes into a triangulated category is the mapping cone. 
In verifying that IK(^) satisfies ( T C 3 + ) we will be inevitably drawn into some technical 
details involving mapping cones and homotopies; since sign errors are the bane of such 
verifications, we remind the reader of our conventions: given a morphism u : x —> y of 
complexes, the mapping cone is the complex cone(M) with differential 

0 
: X n+l r.n+2 , '2/ ,n+l 

Next we recall some definitions. 

Definition C .5 . A morphism of triangles in a triangulated category T is a commutative 
diagram in T , with triangles for rows 

•y- y- - E x 

K/ 

•Ex' 

We say that this is a good morphism of triangles if its mapping cone is a triangle; this idea 
is due to Neeman, and is explained at length in [NeeOlb, §1.3]. 

Example C .6 . Suppose that we have a commutative diagram of complexes in A 

D 

The morphism of complexes cone(£') : cone(M) — » cone(u') given by cone(L' )" = / 
makes the following diagram a good morphism of triangles 

n _ fn+las_n 

•cone(u) 

y 

cone(D) 

— c o n e ( M ' ) • 

•Ex 

S/ 

- E x ' 

Example C .7 . Suppose that we have a commutative diagram of complexes in A 

b 0 - X • 

f 

- x ' 

•y- •0 
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where the rows are degree-wise spht exact. By Lemma 2.15 there are canonical morphisms 
2 : 2 —> Ex and z' : z' —> Ex' in K ( ^ ) , making a morphism of triangles in K ( ^ ) 

b 
X • y-

f s / 

( C . l l ) 

•y' T E x ' 

Comparing this morphism of triangles with the one in Example C.6, we find after a short 
calculation that (C . l l ) is also a good morphism of triangles. 

Lemma C.8. Let T he a triangulated category, and suppose that we have a good morphism 

of triangles 
X ^y - 2 ^ E x (C.12) 

/ 9 (I) (11) 

•y' •Ex' 

/ / / = 1 then (I) is a homotopy pushout, and if g = I then (II) is a homotopy pushout. 

Proof. To prove that a square is a homotopy pushout, we have to prove that a triangle of a 
certain type exists. In the situation where / = 1 (resp. g = 1) a suitable triangle exists as 
a direct summand of the mapping cone of (C.12), which is a triangle by assumption. Any 
direct summand of a triangle is a triangle; see the proof of [NeeOlb, Lemma L4.3]. • 

To prove that (TC3+) holds for K ( ^ ) , we need to construct six homotopy pushouts. 
The idea is to construct good morphisms of triangles using Example C.7, and apply Lemma 
C.8 to these morphisms to produce the desired homotopy pushouts. 

Proposition C.9. Suppose that we have a commutative diagram of complexes in A 

^ f •y 

where g and f are degree-wise split monomorphisms. There is an induced degree-wise split 

exact sequence of complexes 

If we extend f,g,gf 

0 y/x —• y'/x —> y'/y 0 (C.13) 

(C.l3) canonically to triangles in IK(v4), using Lemma 2.15 

f -y- •y/x—^Ex 

9f 
y' ^ y'!^ • 

y' ^ y'/y • 

y/x- • y'/x • •y'/y 

•Ex 

n 
- E y / x 

then these triangles fit into a commutative diagram in K(>1.) 
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Y^yjx 

in which (q) and (/?) are homotopy pushouts. 

Proof. We have commutative diagrams of complexes with degree-wise split exact rows 

„ f 
•y-

gf 

-y/x-

h 

•y'/x-

• v't^ • 

i 

-y'/y-

•0 

•0 

• 0 

•0 

(C.14) 

(C.15) 

We deduce that is a split monomorphism in each degree, so there is a third morphism 
of degree-wise split exact sequences of complexes 

0 - ^y- •y' y'/y-

1 

• 0 (C.16) 

0 - •y/x- • y'/x y'/y • •0 

Applying Example C.7 to the diagrams (C.14-C.16) produces the desired large diagram, 
and Lemma C.8 yields that (a) and {(3) are homotopy pushouts. • 

We will need the following variant, where g is a degree-wise split epimorphism. 

Proposition C.IO. Suppose that we have a commutative diagram of complexes in A 

x ^ ^ y 

af 
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where f,gf are degree-wise split monomorphisms, and g a degree-wise split epimorphism. 
There are degree-wise split exact sequences of complexes, where k = Ker{g) 

O^k-^y-^y'—^O 

y'/x 0 

(C.17) 

(C,18) 

If we extend f,gf and (C.17, C.18) canonically to triangles in K ( ^ ) , using Lemma 2.15 

„ f 

X ^ y ' . 

•y/x-

• y'/x • 

•Ex 

•Ex 

•Ex 

k ^ y j x - ^ y ' j x ^ H k 

then these triangles fit into a commutative diagram in K(y^) 

^y/x 

in which {a) and {(3) are homotopy pushouts. 

Proof We have a commutative diagram of complexes, where the rows are degree-wise split 
exact sequences 

0- f 

0-
gf 

-yjx-

h 

y'/x-

(C.19) 

•0 

One deduces that h is & degree-wise split epimorphism, and using the Nine Lemma we 
obtain a commutative diagram of complexes where the rows are degree-wise split exact 

0 • k - ^ y ^ ^ y ' - - 0 (C.20) 

• k —y y/x y'/x • 
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Applying Example C.7 to these two diagrams takes care of commutativity in the larger 
diagram of every square except for the one marked (/3). Commutativity of this square will 
be established at the same time that we check it is a homotopy pushout: we claim that 
the following diagram is a good morphism of triangles in K ( ^ ) 

(I) 1 w' ( 0 ) 
f 

• y ' / x Ex 

s / 

(C.21) 

•Efc 
T.t 

To prove this, compare (C.21) with the good morphism of triangles arising, 2is in Example 
C.G, from the commutative square (I). Here z ' , w , w ' are the "connecting morphisms" from 
degree-wise split exact sequences of complexes. These morphisms are described abstractly 
in Lemma 2.15, but one can describe them more explicitly by choosing, in each degree, a 
sphtting of the relevant exact sequence. For example: choose a splitting of (C.17) in each 
degree, given by s{t)" : ŷ" —> fc" and s(c/)" : {y')" —> y" such that 

= 5 " o s ( 5 r = l, o + o = 1 

Then we can choose w (which is, after all, only claimed to be canonical up to homotopy) 
to be the morphism with w" = ° ^y ° ^idT- we also choose a splitting s ( / ) " of 
/ " in each degree, such that s(<)" o / " and s ( / ) " o i " both vanish (this is possible: first 
take sphttings of k —> y/x and x —» y') then it is straightforward to check that there are 
homotopy equivalences c o n e { g f ) y ' / x and cone(g) ^ ^ Efc making (C.21) isomorphic 
to the good morphism of triangles coming from Example C.6. We conclude that (C.21) is 
good, so by Lemma C.8 the square marked (/5) is a homotopy pushout, as claimed. • 

It is well-known that, up to isomorphism, every triangle in ]K(^) is obtained via Lemma 
2.15 from an exact sequence of complexes that is degree-wise spht exact (the proof usually 
goes by way of the mapping cylinder). Therefore, in verifying (TC3-I-) for K ( ^ ) , it suffices 
to understand the tensor product of two such triangles. For the rest of this section, let us 
fix two degree-wise split exact sequences of complexes in A 

X - ^ y 

I 9 I V 
X —> y — 

2 • 

•2' 

(C.22) 

(C.23) 

We can take the tensor product of these exact sequences, to obtain a commutative diagram 
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in which each row and column is degree-wise split exact 

0 0 0 (C.24) 

0 • z<^x 

-x®y -y®y •z®y' ^ 0 

• x® z •ySiz' 

O D D 

From (C.22) and (C.2;i) we obtain canonical triangles in K ( ^ ) 

X ^ y z —^ Ex 

I 9 IV > -Q > X —> y —> z —• L,x 

(C.25) 

(C.26) 

whose tensor product is the diagram (C.5) given at the beginning of this appendix. To 
estabhsh ( T C 3 + ) we have to produce an object w and six morphisms k\,k2,kz,q\,q2,q3 
that fit into six homotopy pushout squares, marked ( l ) - (6 ) in Definition C.3. For our choice 
of triangles (C.25, C.26) we define the object w to be the cokernel of f®g : x®x' —> y®y'. 

Note that we have a degree-wise split exact sequence 

0 - •x®x •y®y • w • •0 

Applying Proposition C.9 to the degree-wise split monomorphisms x i® x' —> y ® x' and 
y <E>x' —> y <®y' in the first instance, and x ® x' —> x ® y' and x®y' —> y®y' in the 
second instance, we deduce the following four homotopy pushout squares in K ( ^ ) 

y ® X 

y®y 

(4) 

fc2 

x®y •y®y 

k3 (5) fc2 

• w 

E - i y 

( 1 ) 

• w 

S-192 

(2) 

•x®x 

X® x' • •y®x' •x®y' 

For the two remaining homotopy pushout squares (3) and (6), observe that we have com-
mutative diagrams of complexes, in which the rows are degree-wise split exact 

0 - •X ®x 

1 

•X ®x' 

-^x ®y 

•y®y 

•X®z'-

h' 

-^w 

- ^ 0 
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•y®x' 

0 ^ x ® x ' ^ y ® y ' ^ w ^ 0 

We infer that the morphism marked h' is a degree-wise spht monomorphism, and the mor-
phism marked i a degree-wise spht epimorphism. The composite ih' is just the morphism 
X® z' —> y®z' from (C.24), which is a degree-wise split monomorphism, so we are in a 
position to apply Proposition C.IO to construct two homotopy pushout squares 

(3) (6) ki 

ks 

Note the sign in the second square: we desuspend the morphism z® z' —• Tj{z ® x') and 
change the sign. This happens in our case because w' occurs without a sign in the large 
diagram of Proposition C.IO. 

Proposition C . l l . The tensor triangulated category K{A) satisfies (TC3-I-). 

Proof. Every triangle in is isomorphic to a triangle arising from a degree-wise split 
exact sequence of complexes, so in verifying (TC3+) we can work exclusively with such 
triangles. In this case, the discussion above constructs homotopy pushouts ( l ) - (6) of the 
necessary form, and when one checks the details of the diagrams produced by Proposition 
C.9 and Proposition C.IO the other conditions for (TC3') given in [MayOl, Lemma 4.7] 
are satisfied. • 

Given a tensor triangulated category T , we say that 5 is a tensor triangulated subcate-
gory of T if it is a triangulated subcategory closed under the tensor product, that contains 
the unit object of the tensor product in T . Clearly S is then a tensor triangulated category. 

Lemma C .12 . Let T be a tensor triangulated category satisfying (TC3-I-), and let S be 
a tensor triangulated subcategory of T. Then S also satisfies (TC3+) . 

Proof Let two triangles in S be given, and let the object w be part of the Verdier structure 
on the tensor product of these triangles in T . It is clear from the triangles hsted in [MayOl, 
Lemma 4.7] that w is an object of 5 , and it follows that (TC3-I-) holds for S. • 

Proposition C.13. Given a scheme X the tensor triangulated categories 

IK(QcoX), IK(FlatX), K „ ( P r o j X ) , D ( Q c o X ) 

all satisfy (TC3-f-). 

Proof We know from Proposition C .11 that ]K(OcoX) satisfies the axiom, and by Lemma 
C.12 it must also hold for K (F la tX) . The quotient K „ ( P r o j X ) has the tensor product 
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that descends from K(FlatX), and every triangle in the quotient is, up to isomorphism, 
tlie image of a triangle in K(FlatX), so it follows that Km(Proj X) satisfies (TC3+). 

Now consider the subcategory S = Km,ac(Pi"oj X ) in Km(Proj-Y). By Proposition 
5.2 this is the full subcategory of K-flat complexes in Km(Proj X), and from Theorem 5.5 
we have an equivalence of triangulated categories 

5 ^ K„ (Pro j X) ^ D(OcoX) 

As observed in Proposition 6.4, this is an equivalence of tensor triangulated categories. 
Because <S is a tensor triangulated subcategory of Km(Proj X) it satisfies (TC3+) by 
Lemma C.12, so the same must be true of D(i!3coX). • 

Remark C.14. If X is a noetherian scheme then Km(ProjX) is compactly generated 
(Theorem 4.10) and thus cohomological functors on T are representable. Tensor products 
in ]Km(Proj X) commute with coproducts, and May's axiom (TC3) holds by the previous 
proposition, so we conclude that Theorem C.l applies to Km(ProjX). The same is true 
of D(QcoX) without the noetherian hypothesis. 
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