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Abstract 

Unit sphere signal processing is an increasingly active area of research with appli-
cations in computer vision, medical imaging, geophysics, cosmology and wireless 
communications. However, comparing with signal processing in time-frequency 
domain, characterization and processing of signals defined on the unit sphere is 
relatively unfamiliar for most of the engineering researchers. In order to better 
understand and analysis the current issues using the spherical model, such as anal-
ysis of brain neural electronic activities in medical imaging and neuroscience, target 
detection and tracking in radar systems, earthquake occurrence prediction and seis-
mic origin detection in seismology, it is necessary to set up a systematic theory for 
unit sphere signal processing. 

How to efficiently analyze and represent functions defined on the unit sphere are 
central for the unit sphere signal processing, such as filtering, smoothing, detection 
and estimation in the presence of noise and interference. Slepian-Landau-Pollak 
time-frequency energy concentration theory and the essential dimensionality of 
time-frequency signals by the Fourier transform are the fundamental tools for signal 
processing in the time-frequency domain. Therefore, our research work starts from 
the analogies of signals between time-frequency and spatial-spectral. 

In this thesis, we first formulate the A;-th moment time-duration weighting mea-
sure for a band-limited signal using a general constrained variational method, where 
a complete, orthonormal set of optimal band-limited functions with the minimum 
fourth moment time-duration measure is obtained and the prospective applica-
tions are discussed. Further, the formulation to an arbitrary signal with second 
and fourth moment weighting in both time and frequency domain is also devel-
oped and the corresponding optimal functions are obtained, which are helpful for 
practical waveform designs in communication systems. 

Next, we develop a A;-th spatially global moment azimuthal measure (GMZM) 
and a /c-th spatially local moment zenithal measure (LMZM) for real-valued spectral-
limited signals. The corresponding sets of optimal functions are solved and com-
pared with the spherical Slepian functions.In addition, a harmonic multiplication 
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operation is developed on the unit sphere. Using this operation, a spectral moment 
weighting measure to a spatial-limited signal is formulated and the corresponding 
optimal functions are solved. However, the performance of these sets of functions 
and their perspective applications in real world, such as efficiently analysis and 
representation of spherical signals, is still in exploration. 

Some spherical quadratic functionals by spherical harmonic multiplication oper-
ation are formulated in this thesis. Next, a general quadratic variational framework 
for signal design on the unit sphere is developed. Using this framework and the 
quadratic functionals, the general concentration problem to an arbitrary signal de-
fined on the unit sphere to simultaneously achieve maximum energy in the finite 
spatial region and finite spherical spectrum is solved. 

Finally, a novel spherical convolution by defining a linear operator is proposed, 
which not only specializes the isotropic convolution, but also has a well defined 
spherical harmonic characterization. Furthermore, using the harmonic multiplica-
tion operation on the unit sphere, a reconstruction strategy without consideration 
of noise using analysis-synthesis filters under three different sampling methods is 
discussed. 
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Notations and Symbols 

% Complex Hilbert space 

•) Complex Hilbert space with an inner product 

T{-,-) Bilinear functional 

t 

S^ Unit sphere, also called the 2-sphere 

ds = sin 9 dO dcf) measure on the unit sphere 

X — (6, (f) A point on the unit sphere 

ds) Linear subspace of ds) containing zonal functions 

S0{3) Special orthogonal group with determinant equal to 1 

g = {a, P, 7) Rotation element on 50 (3 ) 

ds = sin 9 dO dcp Lebesgue measure on the unit sphere 

ds) subspace of spatial-limited signals in region P C S^ 

ds) subspace of spectral-limited signas with degree N 

* convolution in time-frequency domain 

O Harmonic multiphcation 

® isotropic convolution on the unit sphere 

• left convolution on the unit sphere 

(g) full convolution on the unit sphere 

[•] Complex Conjugate 

Hermitian Transpose 

Spherical harmonics of degree n and order m 

F„(-) Legendre polynomial of n th degree 

P™(-) Associated Legendre function of degree n and order m 

(5(.) Kronecker delta function 

5{-, •) Spherical Dirac delta function 

D Differential operator 

B Band-limited operator 

V Time-limited operator 

Bn Mode limiting operator 
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Spatial truncation operator 
Rotation operator 
Dilation operator with dilated factor a 
Wigner-D function 
Wigner-(i function 
Characteristic function of region F 
Infinite matrix representation of an operator 
Spatial kernel of an operator 

Real part of one complex number or complex function 
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Chapter 1 
Introduction 

1.1 Motivation and Background 
Unit sphere signal processing is an increasingly active area of research with appli-
cations in computer vision, medical imaging, geophysics, cosmology and wireless 
communications, such as 

• exact reconstruction of a signal from the scattered data in astrophysics, such 
as Wilkinson microwave anisotropy probe (WMAP) [2,3]; 

• highly concentrated spatial beam-forming in wireless communications sys-
tems [4-6]; 

• efficient function analysis and representation in geophysics [2,7-11]; 
• precise surface representation and smoothing in medical imaging [12,13]; 
• proper shape analysis in computer vision [14-16]; 
• correctly detecting objects in an embedded stochastic process and estimation 

of the power spectrum in cosmology [17-19]. 
However, comparing with signal processing in time-frequency domain, these re-
search interests are more common in applied mathematics and physics than in 
engineering, especially ill-suited for practical engineering applications. 

First, the concepts of signals defined on the unit sphere are different from those 
in time and frequency domains [20]: 

• two variables (aziniuthal and zenithal angles), rather than one single variable 
(time or frequency), arise; 
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• spherical harmonics transform replaces Fourier transform, where the Fourier 

coefficients on the unit sphere are discrete, not continuous any more; 

• the region of interest is spatial area, not an interval (time or frequency), which 

requires more mathematical techniques to simple a problem and makes the 

optimization procedure comphcated; 

• translation in time-frequency domain changes into rotation on the unit sphere; 

• dilation is not conformal any more on the unit sphere [21 . 

Accordingly, the processing techniques applied on the unit sphere, such as con-

volution, filtering and smoothing, are different from those in the time-frequency 

domain. Further, it is also improper to apply time-frequency techniques directly 

in practical applications using spherical models. 

Therefore, in order to better understand the current issues using the spherical 

model for engineering researchers, it is necessary to develop a set of systematic 

theory and make it available to the engineering community. This thesis firstly 

explores the analogies of signals and processing techniques between time-frequency 

domain and spatial-spectral domain, then develops new spherical signal processing 

techniques and finally builds up a bridge for theoretical researches and practical 

researches. 

1.1.1 Signal Concentration in the Time-frequency Domain 
and on the Unit Sphere 

A central result in signal processing and information theory is the time-frequency 

concentration and the essential dimensionality of time-frequency signals [6]. Fourier 

theorem states that a signal cannot severely confine itself both in the time domain 

and the frequency domain. Slepian, Landau and Pollak provided an explicit theo-

rem for such an uncertainty principal by introducing a fraction-out-band (FOBE) 

measure [22-26]: a bandlimited signal whose frequency vanishes outside \lo\ > W 

achieves maximum energy in the time in te rva l [ - r / 2 , T /2 ] , or a time-limited sig-

nal which has finite support in the time interval [-r/2,r/2], achieves maximum 

energy in the frequency interval [-W,W]. The optimal function is called prolate 

spheroidal wave function (PSWF) and this theorem plays a key role in waveform 

design [27[, filter window design [28,29[ and signal representation [30 . 

Analogously, a signal defined on the unit sphere cannot be simultaneously con-

centrated in a spatial region and in the spherical harmonic spectrum At present 
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the spherical Slepian simultaneous concentration problems for both a spectral-
limited signal which has finite spectral degree and a spatial-limited signal which 
vanishes outside a specified region on the unit sphere, have been solved in [31-33]. 
However, such an uncertainty principle for an arbitrary signal which is neither 
spatial-hmited nor spectral-limited has not been solved yet on the unit sphere. 
Therefore, a general solution for an arbitrary signal which simultaneously achieves 
maximum energy both in the spatial region and in the spherical harmonic spectrum 
needs to be determined. 

Recent research [34] also shows that a 4th moment bandwidth concentration 
gave a superior frequency roll-off than time-limited PSWFs, which is particularly 
important for an effective practical filter design to reduce the inter-band interfer-
ence. However, a proper formulation for both time-duration and frequency band-
width moment weighting and an investigation of such characteristics and perspec-
tive applications to corresponding set of functions are desirable. Further, for a 
more general case, whether such an analogy as a A;th {k is not necessary equal to 
4) moment weight measure exists on the unit sphere needs to be determined. In 
addition, the comparison should also be done with the spherical Slepian functions 
if such a set of optimal basis functions of this kth moment weighting on the unit 
sphere exists. Finally, the performance of the new set of basis functions to practi-
cal applications, such as analysis and representation of signals on the unit sphere, 
should also be verified. 

Motivated by Franks' general framework which generalizes the uncertainty prob-
lem by measuring the energy concentrations relevant to duration and bandwidth in 
terms of arbitrarily weighted energy distributions in the time domain and frequency 
domain [1], it is natural to explore whether such generally variational framework 
exists on the unit sphere thereby could unify the existing scattered results which 
have been developed for concentration on the unit sphere. 

1.1.2 Spherical Convolution and Reconstruction on the Unit 

Sphere 

In mathematics and functional analysis, convolution is a mathematical operation 
on two functions, producing a third function that is typically viewed as a modified 
version of one of the original functions. The convolution theorem also conforms 
that the Fourier transform in the time domain corresponds to multiplication in 
the frequency domain, and vice versa. However, translation in the time-frequency 
domain changes into rotation on the unit sphere. Due to the invariant rotation on 
the unit sphere, some problems arise: 
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1. The left convolution developed by Driscoll and Healy [35] loses some Fourier 
coefficients of the spherical filter, where only the axisymmetric Fourier coef-
ficients are captured. 

2. The isotropic convolution [36-38] has a strict requirement to the spherical 
filter which must be axisymmetric. This gives a high requirement of telescopes 
and scanners. 

3. Another spherical formulation (termed as spherical correlation), proposed by 
Wandelt and Gorski ]39], renders the convolved function on 50(3) , not on 
the unit sphere any more, therefore, a conformal projection from 5 0 ( 3 ) 
back to the unit sphere is required. 

To overcome such difficulties, a noncircular beam strategy has been proposed [40, 
41], where complicated calculation cost is involved. Therefore, to capture some 
anisotropic properties of the function of interest, such as the sky by cosmology 
microwave background (CMB) [18,42-45], it is desirable to propose a new spherical 
convolution definition. 

Reconstruction on the unit sphere from discretely sampled data is also an in-
terest subject. At present, most of the reconstruction methods are based on the 
spherical wavelet transform [3,46,47], left convolution [15,45] and isotropic con-
volution [39,48,49]. However, for the left convolution, only the zonal part of the 
spherical filter is used; the spherical filter has to be axisymmetric for the isotropic 
convolution; and higher calculation cost is expected for the spherical wavelet trans-
form. Therefore, it is necessary to design a easier and simpler method to reconstruct 
the original signal. 

In aU, it is necessary to develop a new spherical convolution on the unit sphere 
with the following properties: 

1. No requirements of the function of interest and the spherical filter, that is, 
both of the functions involved in the convolution are arbitrary; 

2. The convolved function lies on the unit sphere, so there is no back-project ion 
procedure; 

3. No information is lost, that is, it can utilize all the Fourier coefficients of the 
function of interest and the spherical filter; 

4. It could be equivalent to the isotropic convolution theorem; 

5. The calculation, especially for the reconstruction based on the sample points, 
should be simple. 
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1.2 Aims of the Thesis 

Relating to the problems proposed in the above section, the objective of this thesis 

is to develop a systematic theory for the characterization and processing of signals 

defined on the unit sphere, and use the developed theory in real world applications, 

including those in geodesy, human hearing modeling and wireless channel modeling. 

The prospective work includes: 

1. Further studies of the signal concentration in the time-frequency domain, 

in particular, the formulation of the moment weighting with duration and 

bandwidth; 

2. A general solution to an arbitrary signal which simultaneously achieves the 

maximum energy both in the spatial domain and in the spherical harmonic 

spectrum; 

3. A general variational framework for signal design to the unit sphere; 

4. Development of a new spherical convolution on the unit sphere. 

1.3 Outhne of the Thesis 

The present work is divided into seven chapters: Chapter 1 states the motivation 

and background of this thesis, then introduces the aims, structure and contributions 

of the thesis. 

In the second chapter, we introduce the preliminary technical background of 

this thesis. Starting with the fundamentals of the signal space in Section 2.1, we 

review the Hilbert space, linear transforms, linear operations and linear functionals. 

Then in Section 2.3, we focus on spherical harmonics and their related concepts, 

the spherical harmonic transform and the inverse spherical harmonic transform. 

Motivated by the spherical convolution or the left convolution [35], Section 2.4 

is devoted to the rotation operation, the relation of spherical harmonics and the 

Wigner-Z? functions. Finally, several useful operators and subspaces are introduced. 

Chapter 3 is concerned with time-frequency signals' energy concentration with 

moment weighting both in the time domain and in the frequency domain. First, we 

review the Slepian-Landau-Pollak simultaneous concentration problem in the time-

frequency domain; we also present Franks' general constrained variational method. 

Then, in Section 3.2, we focus on the formulation based on the Franks' method 

for the minimum 4th moment time-duration measure for a strictly band-limited 

signal, investigate the characteristics of this set of optimal basis functions, and 
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the potential applications of this set of functions. After that, we formulate an 
arbitrary time-limited signal concentration with 2nd and 4th bandwidth moment 
weighting for the practical waveform design in Section 3.3. Finally, we summarize 
all the optimal functions of the corresponding concentration problems in the time-
frequency domain. The publication of our work involving this chapter includes: 

• L. Wei, R. A. Kennedy and T. A. Lamahewa, "Band-limited Signal Con-
centration in Time-frequency", Proc. 3rd International Conference on Signal 
Processing and Communication System, ICSPCS'2009, Omaha, Nebraska, 
USA, 28 - 30 September 2009. 

• L. Wei, R. A. Kennedy and T. A. Lamahewa, "Further Results on Signal 
Concentration in Time-frequency", Proc. IEEE International Conference on 
Acoustics, Speech and Signal Processing, ICASSP'2010, Sheraton Dallas Ho-
tel, Dallas, Texas, USA, Mar. 14 - 19 2010. 

• L. Wei, R. A. Kennedy and T. A. Lamahewa, "An Optimal Basis of Band-
limited Functions for Signal Analysis and Design", IEEE Trans. Signal Pro-
cessing, Vol.58, issue.11, pp.12, Nov. 2010. 

The objective of the fourth chapter is to solve the general concentration prob-
lem on the unit sphere, that is, determine the signal that occupies the maximum 
spatial region subjected to fixed maximum spectral degree. In Section 4.2, we first 
introduce an infinite matrix represent to an operator and its corresponding spatial 
kernel. Section 4.3 defines a harmonic multiphcation operation on the unit sphere. 
Then some useful quadratic functional on the unit sphere are derived in Sec-
tion 4.4. Further, Section 4.5 extends the Franks' general constrained variational 
method on the unit sphere. Section 4.6 addresses the full concentration problem 
on the unit sphere. Based on the spherical Slepian functions in Section 4.7 and 
the spherical Franks' framework, we solve the arbitrary signal's simultaneous con-
centration problem on the unit sphere in Section 4.8. The publication of our work 
involving this chapter includes: 

R. A. Kennedy, T. A. Lamahewa and L. Wei, "On Azimuthally Symmetric 
2-Sphere Convolution", Proc. 6th U.S./Australia Joint Workshop on Defense 
Applications of Signal Processing, DASP'2009, Hilton Kauai Beach Resort 
Lihue, Hawaii, USA, 29 Sep. - 1 Oct. 2009. 

R. A. Kennedy, T. A. Lamahewa and L. Wei, "On Azimuthally Symmetric 
2-Sphere Convolution", submitted to Elsevier Digital Signal Processing. 
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• L. Wei and R. A. Kennedy, "A Novel Spherical Convolution on the 2-Sphere", 

submitted to IEEE Signal Processing Letter. 

• L. Wei and R. A. Kennedy, "Signal Concentration on The Unit Sphere", to 

be submitted to IEEE Transactions on Signal Processing. 

Chapter 5 focuses on the formulation of the azimuthal and zenithal moment 

weighting of a spectral-limited signal and the harmonic multiplication operation of 

a spatial-limited signal on the unit sphere, which is an extension of the work intro-

duced in Chapter 3 for time-frequency domain to the unit sphere. Section 5.2 not 

only formulates both global zenithal moment weighting and local zenithal moment 

weighting to a spectral-limited signal, but also makes the comparisons between 

these two sets of optimal functions and the spherical Slepian functions. Section 5.3 

studies a spatial-limited signal concentration situation with harmonic multiplica-

tion weighting. The publication of our work involving this chapter includes: 

• L. Wei, R. A. Kennedy and T. A. Lamahewa, "Signal Concentration on Unit 

Sphere: A Local K-th Moment Zenithal Energy Concentration Measure", 

Proc. 11th Australian Communications Theory Workshop, AusCTW'2010, 

Canberra, Australia, Feb. 2010. 

• L. Wei, R. A. Kennedy and T. A. Lamahewa, "Signal Concentration on 

Sphere: An Azimuthally Moment Weighting Approach", Proc. IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, ICASSP'2010, 

Sheraton Dallas Hotel, Dallas, Texas, USA, Mar. 14 - 19 2010. 

• L. Wei and R. A. Kennedy, "On Spectral Concentration of Signals on the 2-

Sphere under a Generahzed Moment Weighting Criterion", Proc. European 

Signal Processing Conference, EUSIPCO'2010, Aalborg, Demark, August 23 

- 27. 

Chapter 6 deals with the spherical convolution development and the correspond-

ing application on the unit sphere. Section 6.1 points out the shortcomings of the 

existing spherical convolutions. Then, we propose a spherical full convolution on 

the unit sphere in Section 6.4, which is equivalent to the spherical isotropic con-

volutions. However, some unexpected properties are also achieved comparing with 

the present spherical convolution definitions. Section 6.6 reconstructs an original 

signal defined on the unit sphere based on the harmonic multiplication operation. 

The publication of our work involving this chapter includes: 

• L. Wei, R. A. Kennedy and T. A. Lamahewa, "A Novel Spherical Convolution 

on the 2-Sphere", submitted to IEEE Signal Processing Letter. 
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• L. Wei and R. A. Kennedy, "Reconstruction Base on Harmonic Multiplication 
Theorem on The Unit Sphere", to be submitted to IEEE Transactions on 
Signal Processing. 

The last chapter provides conclusions and possible directions for future work. 

1.4 Main Contributions 
The main contributions of this thesis are as follows: 

1. A kth moment time-duration measure of a band-limited signal with Franks' 
general constrained variational method in the time domain is formulated, 
where a complete, orthonormal set of band-limited functions with minimum 
fourth-moment time-duration measure is obtained and the applications of 
this set of functions are demonstrated by the radar waveform design and the 
representation of an arbitrary band-limited signal. 

2. Using Franks' general constrained variational method, a kth moment time-
duration weighting measure for an arbitrary signal with is proposed, and the 
corresponding optimal functions are solved. The bandwidth weighting to an 
arbitrary signal is also discussed. 

3. A harmonic multiplication operation on the unit sphere is developed which 
can be be used for the frequency domain weighting. Then the equivalences 
between the harmonic multiplication operation and the existing convolution 
formulations are made. Further, some quadratic functionals using infinite ma-
trix representation of an operator and the harmonic multiplication weighting 
are derived. 

4. A kth global moment azimuthal measure (GMAM) for a real-valued spectral-
limited signal on the whole unit sphere is developed; later, a A;th local moment 
zenithal measure (LMZM) for a real-valued spectral-limited signal on one 
specified spatial region on the unit sphere is also proposed. The corresponding 
optimal functions for GMZM and LMZM are solved and compared with the 
spherical Slepian function, respectively. 

5. The concentration problem of a spatial-limited signal with the harmonic mul-
tiplication weighting is studied and the corresponding optimal functions are 
obtained. Simulation results show that the decaying rate of the spectrum of 
this set of functions is slower than the spherical Slepian functions. 



1.4 Main Contributions 

6. Franks general constrained variational framework is extended to the unit 

sphere, which generalizes the uncertainty problems by measuring the energy 

concentrations relevant to the spatial region and the spectral angular degree. 

7. The general concentration problem for an arbitrary signal defined on the 

unit sphere is solved by the Franks framework and the quadratic functionals, 

where the arbitrary signal sinmltaneously achieves the maximum energy in 

the spatial region and in the finite spectral spectrum. 

8. A novel spherical convolution definition is proposed based on a linear opera-

tor, which relaxes the requirement of the function of interest and the spherical 

filter and keeps all the information. It also specializes the spherical isotropic 

convolution. 

9. A simple reconstruction method based on the harmonic multiplication oper-

ation on the unit sphere is proposed, which greatly reduces the calculation 

cost. 
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Chapter 2 

Technical Background 

This chapter provides mathematical prehminaries required for the thesis. Sec-
tion 2.1 introduces some fundamentals about the signal space, including Hilbert 
space, linear transformations, linear operators and linear functional. Then Sec-
tion 2.2 describes the Fourier transform in the time-frequency domain. Section 2.3 
deals with the spherical harmonics and the spherical transform on the unit sphere. 
Section 2.4 recalls some basic knowledge about the rotations on the unit sphere. Fi-
nally, several important operators which are often used in this thesis are introduced 
in Section 2.5. 

2.1 Hilbert Space, Linear Transformations, Linear 
Operators and Linear Functionals 

The development of this subsection follows closely to the book "Signal Theory" 
written by Lewis Franks |1 . 

Let T-ii and T-L2 be two complex Hilbert spaces. A continuous hnear transfor-
mation is a linear mapping T : Hi ^ %2- That is, for x ^ Hi and y = H2, we 
have a relation: 

y = T{x). 

The element y in is called the image of x under the mapping T. The set T-Li is 
the domain of the mapping, and the set of all images of elements of Hi (contained 
in H2) is the range of the mapping. When the input space Hi and the output 
space H2 are identical, denoted as H, the linear transformation is called a linear 

operator. 
Let L^ denote a complex Hilbert space that contains all the square-integrable 
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functions defined in (—cx), cx)) with inner product 
/ 

/

oo 

x { t ) y { t ) d t , \ i x , y e L \ •oo 

where [•] denotes the complex conjugate. Note the inner product induces a norm, 

For any function f ^ L"^, a linear operator A is defined as 

/

oo 

A { t , r ) f { T ) d r , ( 2 . 3 ) -oo 

where A{t, r ) is known as the kernel function. 
Suppose C is a set containing all the complex numbers, then a linear functional 

is a linear mapping T : H ^ C having the property, 

T { a x + /3y) = a T { x ) + / 3 T { y ) 

for any a,l3 £ C and any x , y E H . 

A bilinear functional is a mapping of pairs of signals x,y e H into numerical 
values: H x H —^ T { x , y ) . T { x , y ) has the following properties: 

T { a i X i + Q2X2, y ) = a i T { x i , y ) + a2T{x2, y ) 

T { x , I3,y, + P2y2) = W i T { x , y i ) + y^) 

for any a i , a 2 , e C and any X u X 2 , y i , y 2 G n . Note = { A x , y ) also 
denotes a bihnear functional in x and y under the operation of an operator A. 

A quadratic functional is simply defined by replacing y by x in the bilinear 
functional 

I a { x ) = { A x , X ) = J ^ j ^ A { t , T ) x { T ) ' ^ i ) d T dt. ( 2 . 5 ) 

2.2 Fourier Transform in Time-frequency Domain 
Let t, uj and f = w/27r denote time, angular frequency and frequency, respectively. 
A function x € L^ and its Fourier transform are related by 

1 foo 

x { t ) = - du = J d f , 

poo °° 

J—00 
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where i = Then by Parseval's theorem, we have 

{x,y) = { X , Y ) , 

where ( X , F ) = X{f)Y{f) df for any X , 7 G 

Since the Fourier transform is a unitary transform [1], the quadratical functional 
can be expressed by 

I{x) = {Ax,x) = { B X , X ) , ( 2 . 7 ) 

where 

/

oo roc 

oo J-<x -oo J - o o 
fOO /-oo 

/

CO poo 

/ dtdT, 

oo J-oo 

where A{t, r ) is the kernel function for the time domain operator A and B{f, u) is 
the kernel function for the frequency domain operator B. 

2.2.1 Some Quadratic Functionals and Their Time-frequency 
Domain Operators 

Assume w{t) is an arbitrary real function and w{t) > 0 for all t; V{f) is an arbitrary 
real function and V{f) > 0 for all frequency / . Table 2.1 shows some quadratical 
functionals and their corresponding operator kernels A{t,T) in the time domain 
and B{f, v) in the frequency domain [1]. 

2.3 Spherical Harmonics and Spherical Harmonic 
Transform 

2.3.1 Notation 

Let S^ = {a; G R^ : ||®|| = 1} denote the imit sphere in R ^ Let x = (6',0) = 
(sin 6 cos 0, sin 9 sin cos 9) G R^ denotes a point on the sphere, where 9 denotes 
the colatitude with 0 < 9 < ir and 0 denotes the longitude with 0 < (f) <2tt. The 
geodesic angular distance between two points Xi = {9i,(f)i) and X2 = (^2,^2) is 
given by cos A, where 

cos A = Xi • y2 = cos 01 cos 6*2 + sin6'i sin02cos(^i — (P2), (2.8) 
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Quadratic functionals Time kernel frequency kernel 

{Ax,x) = {BX,X) A{t,T) 

h {x,x) = {X,X) S{t - t) S{f -

{wx, x) 
= JZ^witMtrdt w{t)S{t-T) W { f - u ) 

{VX,X) 
V{t-T) Vim/ - ly) 

{w[h (8) x], [h ® X J^oc - T)h{a - t) da HU)H{u)W{f-u) 

{VHX, HX) x/i(7 - a - T)h{'y - t) d'^f da y { m i f ) m f ~ u ) 

{x,g){x,h) 
= {X,G){X,H) h{t)g{T) H{f)G{u) 

Table 2.1: Some quadratic functionals and their time- and frequency-domain op-
erators [1|. 

where Xi • y2 is the dot/inner product between vector Xi and y2-

Let ds) be a complex Hilbert space containing all the square-integrable 
functions defined on the unit sphere S^. Por ds), the inner product is 
defined as 

{f,9)= [ f{x)'^ds{x)^ [ f f{e,^)g{e,(t)) sine del) de, (2.9) 
Jo Jo 

where ds{x) = sm9ddd4>. The induced norm is given by 

= f \fix)\'ds{x). (2.10) 
JS2 
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2.3.2 Spherical Harmonics 

There are two kinds of definitions for the spherical harmonics: real spherical har-
monics and complex spherical harmonics. Both of them are used in this thesis, so 
both of the definitions are introduced. 

The complex spherical harmonics are defined by [50 

= y 47r (n + |m|)! " ^ 

n = 0,1, • • • , m = —n, • • • ,n, (2.11) 

where are the associated Legendre functions, n is the angular (spectral) 
degree and m {—n < m < n) is the angular order. 

The real spherical harmonics are defined by [33,51] 

sin |m|0, - n < m < 0; 

m = 0; 

cos mcp, 0 < m < n, 

(2.12) 

where 

X m = ( 2n + l\i /2 
47r ) 

(n - |m|)! 
(n + m 

1/2 

cost 

Important properties of the spherical harmonics: 

1. {Y^{x)} forms a complete orthonormal sequence in ds), 

where 5nn' is the Kronecker delta function with 

(2.13) 

(2.14) 

Snn' — 
1, n = n'; 

0 , n ^ n'. 
(2.15) 

2. Addition theorem. 

2 n + 1 
^ y™(®)y™(l/) = — Pnix • y), Vic, Vy e S^ (2.16) 

where P„(-) are the Legendre polynomials of degree n. 
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3. The spherical Dirac delta function 5{x,y) is defined by [33] 

oo n Or? + 1 

n=0 m=—n n = 0 
4it 

Note that S{x, y) has the sifting property 

f 5{x,y)f{y)ds{y) = f{x). 

(2.17) 

(2.18) 

2.3.3 Spherical Harmonic Transform 

The inverse spherical harmonic transform of / G ds), can be represented, in 
the sense of convergence in the mean with the norm induced by (2.10), 

(2.19) 
n=0 m=—n 

where the spherical harmonic coefficients are given by the spherical harmonic 
transform, 

fn={Lyr)= [ f{x)Y^)ds{x). (2.20) 

Denote the ordered column vector of spherical harmonic coefficients as 

f— ( / o ' / i / n / i i •••)/") (2.21) 

where denotes the complex transpose. Then the norm of a spatial-domain 
function f{x) and its spectral-domain equivalent f i s 33 

/ i r = [ \f{x)'ds{x), 

According to Parseval's theorem, we have 

= E E i n ' - (2.22) 

n=Q m=—n 

(2.23) 
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2.4 Rotations on the Sphere and Wigner-D Func-
tion 

2.4.1 Basics of Rotations 

In mathematics, a group is an algebraic structure consisting of a set G together 
with an operation " • " that combines any two of its elements o and b to form a 
third element a-b E G. The rotation group 5 0 ( 3 ) on R^ is the special orthogonal 
group. It consists of 3 x 3 matrices defined through 

5 0 ( 3 ) = {5 G : / f f = 1, det5 = l } , 

where p is a rotation on the sphere. 
The rotation g can be parameterized by three Euler anglers, i.e., 

(2.24) 

(2.25) 

where a G [0, 27r), € [0,7r], 7 G [0,27r), Ry and R^ denote the rotation about the 
y- and 2;-axis, respectively [14]. In matrix notation, Ry and R^ take the form 

RyiP) = 
cos /3 0 sin ^ 
0 1 0 

— sin ^ 0 cos 
Rz{a) = 

cos a — sin a 0 
sin a cos a 0 
0 0 1 

(2.26) 

2.4.2 Rotation Operators 

Let Tig = 11(0,13,^) denote a rotation operator TZ under a rotation g. There are 
two different but equivalent viewpoints about the rotation computations. Driscoll 
and Healy, in their paper [35], showed that: under a rotation g, each spherical 
harmonic of degree n is transformed into a linear combination of only those Y^, 

—n <m<n, with the same degree (n): 

(2.27) 
\m'\<n 

where is the Wigner-iD function (explored in more detail in section 2.4.3). 
Then the rotated function f{x) expanded by the spherical harmonics (2.19) takes 
the form ^ „ 

{ n j ) { x ) = J 2 E E f u D - ^ ' M Y f i x ) . (2.28) 
n=0 m=—n m'=—n 
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Another viewpoint says that the rotation operator should be implemented on 
the spherical coefficients [13], i.e., 

= E ^ w ( ^ ) / " ' - (2-29) 
|m'|<n 

Then the rotated function is 

CO n n 

= E fn 'D lm^i9 )Y : ' i x ) . (2.30) 
n=0 m=—n m'=—n 

Comparing (2.28) with (2.30), the results show that they are precisely identical. 
Therefore, in the rest of this thesis, the second definition, whereby the rotation 
operator acts on the spherical harmonic coefficients, is adopted. 

2.4.3 Wigner-L> Function 

The Wigner-D function = can be decomposed into [13]: 

= (2.31) 

where is the Wigner-d function, 

min (n+m,n—m') p — 
d" (/?) A y - r-^y-m'+m + " ! ' ) ! ( « - m ' ) ! ( n + m)!(n - m)! 

{n + m'-j)\j\{n-j-m)lU-m' + m)\ 

X (cos (2.32) 

which is real. Recursion formula are available to compute rapidly the Wigner-d 
function in the basis of either complex [52,53] or real [54,55[ spherical harmonics. 

By Peter-Weyl theorem [56,57[, {g) forms an orthogonal basis in L'^{S0{3)), 

i.e. 
87r2 

Dl.MD" '{g) dg = ^—--SngSmpS^y, (2.33) so(3) 2n + 1 ^ ' ' 

where dg = sin/3dad/3dj [13[. The Wigner-d function also has a similar property 

j ^ d l ^ W l M s m ^ d ^ = i ^ ^ n r (2.34) 

Finally, the rotation can also be decomposed into two separate rotations for calcu-
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lation convenience, 

7^(Q, /?, 7) = n{a + 0)n{i3 + f , f + 7). (2.35) 

2.5 Some Useful Operators and Subspaces 
In this subsection, several operators and subspaces which used in this thesis are 
introduced. 

2.5.1 Operators in Time-frequency Domain 

1. Band-limited Operator Bw is the operator which produces a function 
whose Fourier transform F{f) vanishes on |/| > W, 

/

w 

F i f Y ' - ^ U f . (2.36) •w 

2. Time-limited Operator Vt is the operator which produces a function with 
support [ - r / 2 , T / 2 ] , i.e., 

{-Drfm ^ 
fit), \t\<T/2, 

0, |t| > T/2. 
(2.37) 

2.5.2 Operators on Unit Sphere 

1. Mode Limiting Operator B^ is defined by [20]: 

N n 
{B^f){x) ^ ^ E c n r ( ^ ) 

n=0 m=—n 

= E E ( / ny)Wiy) ds{y))Y;rix) 
n=0 m=-n 

. N n 
= / E E y:r(^)Wiy)fiy)dsiy) 

N 
= f ^ ^ ^ P n { x - y ) f { y ) d s { y , (2.38) 

where we have used (2.20) in the second equality and (2.16) in the fourth 
equality. 
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In the above, the inverse spherical harmonics transform (2.20) and the addi-

tional theorem for spherical harmonics (2.16) have been used. Denote 

N n ^24-1 
E = (2.39) 

n = 0 m=-n n=0 

Then, [ B ^ f ) can be simplified into 

{B^f){x)= [ Br,{x,y)f{y)ds{y). (2.40) 

Bpf{x,y) is the kernel of the mode limiting operator Bn- Bn is proved to be 

a compact, projection, idempotent and self-adjoint operator [20]. 

2. Spatial Truncation Operator V^ is defined by [20]: 

0, a; G 
{Vrf)ix) 4 [ XT{y)6{x - y)f{y) ds{y) = 

where 

D r { x , y ) ^ X T { y ) 5 { x - y ) , (2.42) 

is the kernel function and xr(-) is the characteristic function of the region T. 
It is also proved in the paper [20] that V^ is a projection, idempotent and 
self-adjoint operator; but it is not compact. 

It is easy to prove that 

{B^Vrf){x) = ^ y)f{y) ds{y), x e S ^ (2.43) 

{VrBNf){x) = Js2BN{x,y)f{y)ds{y), xeT, 
0, . e s v r 

which shows Bn and P r do not commute [20]. 

3. Rotation Operator TZ is defined by (see Section 2.4.2), 

oo n n 

n=0 m=~n m'=-n 
where is the Wigner-D function. 
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4. Dilation Operator T>a for a > 0 is defined by [21 

\ taix^ - 1 / 1 (9 \ 
{VJ){e,ct>) = I X - / 2tan-i(-tan-),</> = 

l + (nan|)2 o V « 2 y 
(2.46) 

where 
1 1 + tan^ - 1 6 

+ " " ^ a t a n - H j U n - ) . (2.47) 

When o = 1, AQ = 1 and 9a = 9- That is, Va=if = / is the un-dilated 
function. 

2.5.3 Notations for Some Complete Subspaces 

• LF' {[—W, W]) denotes a complete subspace of L^ which contains all the square-
integrable functions whose Fourier transforms vanish outside [—W, H ]̂. 

• L^ {[—T, r ] ) denotes a complete subspace of L^ which contains all the square-
integrable functions whose supports are in interval [-T,T]. 

• ds) is a complete subspace of ds) which contains all spatial-
limited functions with compact support in the region F G S .̂ 

• ds) is a complete subspace of ds) which contains all spectral-
limited functions with the maximum spectral degree N. 
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Chapter 3 

Results On Signal Concentration in 
the Time-frequency Domain 

This chapter deals with the signal energy concentration problem in the time-
frequency domain. More specifically, in Section 3.2, applying Franks' general con-
strained variational method, the minimum kth moment time-duration concentra-
tion measure for a strictly band-limited signal in the time-frequency domain is 
formulated. Then a complete, orthonormal set of optimal band-hmited functions 
with minimum fourth-moment time-duration concentration measure, high energy 
in the main lobe and fast decaying side lobes is obtained. Further, the properties of 
this set of functions are studied and prospective applications of these functions are 
given. In Section 3.3, the minimum 2nd and 4th-moment weighting for arbitrary 
signals with 7 ratio energy outside of specified interval [—r/2 ,r /2] are solved, 
which completes Franks' framework in the arbitrary signal concentration problem. 
Finally, Section 3.4 summarizes all the optimal functions of the concentration prob-
lem in the time-frequency domain. 

3.1 Introduction 

It is well known that a signal with shorter pulse duration has better range reso-
lution [30] and a signal with small bandwidth better utilizes scarce channel fre-
quency resources. But according to the Fourier transform theory, a signal cannot 
be both time-hmited and band-limited simultaneously. However, in tasks such as 
minimizing the error rate [22,23,27] or minimizing bias for high-resolution spectral 
estimation [28], researchers seek signal designs that have the greatest concentration 
simultaneously in both time and frequency domains [58|. 

Slepian and Pollak [22] developed a set of concentration results which are partic-
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ularly relevant to practical application. For a band-limited signal which is confined 

to the frequency range [—W, W], the fraction out-of-band energy (FOBE) measure 

was proposed to determine a signal that has the greatest portion of its energy in 

the [—T, T] time interval. These signals are the prolate spheroidal wave functions 

(PSWF). There are similar results when we exchange the roles of the time and 

frequency domains. 

Further interest in concentration for time-hmited signals saw the emergence of 

other results, such as minimum bandwidth of M orthogonal signals [59] and mini-

mum root-mean-square (RMS) bandwidth of M time-limited signals [60]. Similarly, 

band-limited signals with minimum time-duration also have wide applicability, such 

as hearing sensation [61], extrapolation of band-limited signals [20,62], optimal 

waveform signal design [63] and resolution enhancement to the near-field acoustic 

holography [64[. 

Slepian [26[ also extended his results to the discrete case. The corresponding op-

timal functions are called the discrete prolate spheroidal wave functions (DPSWF). 

Apphcations of this result include digital filter design [65[, optimal windows design 

in electroencephalogram (EEC) [66|, reduction of the bias of multi-taper spectrum 

estimation in geophysics [9], and local basis expansions for linear inverse prob-

lems [41], Recently, the DPSWF functions have also been applied in constructing 

wavelets for multi-resolution analysis [67-70|, and shown potential in denoising for 

image processing. 

However, no explicit analytical formula for prolate spheroidal wave function 

(PSWF) has been developed. In addition, the cost in calculating such a solution 

to a second order differential operator which commutes with the PSWF integral 

convolution operator [22] is expensive [71]. At present, only the discrete version of 

PSWF is available [22,72-74]. The PSWF decays slowly like l/t for increasing time 

t. In contrast, Gabor's optimal band-hmited function, i.e., the half sinusoid signal, 

which minimizes a second-moment concentration measure, decays more quickly as 

l/t^. In [34[, an optimal time-limited function with the minimum fourth-moment 

bandwidth was determined. This function has larger main lobe and decays as 

l / f . However, a detailed formulation and analysis for band-limited signals and 

their concentration properties with arbitrary moment weighting in the time-domain 

is of interest here. Further, it is also desirable to investigate whether a new com-

plete, orthonormal set of band-limited functions, besides PSWFs, exists which have 

better performances than PSWF in representing and approximating a band-hmited 

function. Furthermore, in reality, it is impossible to construct strictly band-limited 

or strictly time-limited signals. There always is some energy leakage outside of the 
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desired interval in either domain. Therefore, it leads to practical optimal waveform 
(neither band-limited nor time-limited) design issues in communication systems. 

3.1.1 Slepian's Concentration for Band-limited Signals 

Slepian's formulation is addressed: suppose is a band-limited signal in [—Q, $7], 
to achieve the maximum energy in the time interval [ - r / 2 , T/2], i.e., 

^ ^ I / /.N 2 ^̂  = Maximum, (3.1) 

what is the optimal waveform of ipit)? 

Denote ^ ( / ) is the Fourier transform of ijj{t). According to inverse Fourier 
transform, we have 

1 r^/i^TT) 
m = 7 r (3.2) 

rQ rn/(2-K) 

-n/(27r) 

Then this problem is equivalent to maximizing the energy ratio 

under the bandwidth constraint. Slepian and Pollak, in their paper [22], showed 
that the optimal fimction is the eigenfunction of the fohowing eigenvalue equa-
tion (3.4), 

r ^ ^ ' ' ^ " " ^ ^ ' P ^ i f ) df = x m , I/I < (3.4) 

7-n/(27r) - / ) 27r 

This set of optimal functions is called the prolate spheroidal wave functions (PSWFs). 

Remark 3.1 1. The eigenvalue equation in Slepian paper [22j is for the time-

limited signal, not for the band-limited signal, 

r ' ds = XM, N < T/2. (3.5) 
J-T/2 7r(i - s) 

That is, •ijj{t) is a time-limited signal in the time interval [—T/2, T/2] which 

achieves maximal energy in the bandwidth [ — . 
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2. Equivalent eigenvalue equation to (3.5) (for a time-limited signal) is 

s i n c ( i - s ) , fT \ , . , fT^ L -1 7 r ( t - s ) 
^ ds = AV' , \t\ < 1, (3.6) 

where c = Q.^. This equation also shows that ip (^t) is a scaled version of 

m -

3. PSWFs ip{t) in Slepian's paper are normalized. 

4- It also should be noted that the kernel finite, which means there 

are only a finite number of nonzero eigenvalues. 

PSWFs have the following properties [22]: 

1. For any value of c = 2'kWT, there is a countable set of real functions 
{il)i{c, t);i = 0,1,2, • • • } with corresponding real and positive distinct eigen-
values 

1 > Ao(c) > Ai(c) > A2(c) > ••• (3.7) 

where the ordering is maintained for all values of c. 

2. The -̂re band-limited, orthonormal on the real line and complete in the 
(X), oo): 

where is the Kronecker delta function defined in (2.15). 

3. The ij}i(t) are orthogonal and complete in the interval T / 2 , T / 2 

r>T/2 

-TI2 

fT/2 
/ = 0 ,1 ,2 , - - - . (3.9) 

J-TI2 

3.1.2 Landau's Concentration for Arbitrary Signals 

This problem is stated thus: given the total energy constraint on an arbitrary 
signal x{t) G L^( -oo ,oo ) , its partial energy in the time interval [ - r / 2 , r / 2 ] and 
its partial energy in the frequency band [-W, W], to achieve the simultaneous time 
and frequency concentration, what is the optimal waveform of x{t)? 

Landau and Pollak, in their paper [23], proved the uncertainty relations between 
a and /? by Theorem 2, and the optimal signal that does the best job simultaneously 
in the time domain and frequency domain is provided. 



3.2 Band-limited Signal Concentration with kth. Moment Weighting in the Time 
Domain 27 

T h e o r e m 3.1.1 (Uncertainty Principle [23j): given ||3;|| = 1, = a with 

0 < a < 1 and = /3 with 0 < ^ < 1, the uncertainty relation is: 

1. Ifa^ 0, when 0 < /3 < 1; 

S. / / 0 < a < when 0 < ^ < 1; 

3. If \Ao < a < 1, when cos~^ a + cos~^ /3 > cos~^ y/\o; 

4. If a = 1, when 0 < P < V^-

where VT is the time-limited operator and Bw is the band-limited operator defined 

in Subsection 2.5.1, Aq is the largest eigenvalue of the eigenvalue equation (3.4). 

The optimal signal for the general concentration problem is 

x{t) = pV'oIc, t) + qw{t)Mc, t) (3.10) 

where ipo{c,t) is the first order PSWF, w{t) is the window function 

wit) = 
1, \t\ < T/2; 

0, otherwise, 
(3.11) 

and 

where a and (5 satisfy V ^ < a < 1 and cos ^ a + cos ^ P > cos ^ V ^ -

3.2 Band-limited Signal Concentration with kth Mo-
ment Weighting in the Time Domain 

In this section, the general constrained variational method of Franks [1] is applied 
to formulate concentration with a kth time moment weighting for a band-limited 
signal [75-77]. The case A: = 4 is taken as a central example. A complete, or-
thonornial set of optimal band-limited functions in L'^{[-W, W]) with the minimum 
fourth-moment time-duration measure is obtained. The characteristics of the set 
of functions are discussed. Further, the mininmm fourth-moment time-duration 
measure and the time-duration energy concentration measure are calculated. Fur-
thermore, by comparing the PSWF and Gabor's fmictions, our optimal functions 
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can be a seen to be a good alternative in optimal waveform design for communica-
tion systems, and higher range resolution radar systems. Finally, this set of optimal 
functions can also be used for representation of any band-limited signal, extrapola-
tion a band-hmited function known only in the interval [ - T , T] or approximation 
a band-limited function in the interval [—T, T . 

3.2.1 Problem Statement 

Let L? be the complex Hilbert space containing all square-integrable functions 
defined on the real line with inner product defined as 

{x,y)^ x{t)y{t)dt. 
J —oc 

for x,y G L^. This inner product induces the norm such that ||a;|| = (x, 
Find the optimal finite energy signal, x{t) S L^, band-limited to the frequency 

range [—W, W] which minimizes the moment weighted energy f ^ dt. Here 
t'^, k = 0,2,4, •••, is the A;th weighting function in the time-domain. Note that 
odd values of k and k = 0 are degenerate or trivial. For k = 2, this problem has 
been solved by Gabor [61]. In this paper, we concentrate on the k = 4, fourth 
moment time-domain weighting as an exemplar. For fc > 4, the solution can be 
easily extended based on our methods. It is possible to treat the case of time-
limited finite energy signals with frequency domain moment weighting, in an 
analogous way. 

3.2.2 Franks' General Constrained Variational Method 

In this section, Franks' general constrained variational method (FGCVM) [1, Chap. 
6] is revisited. This method is applicable for any properly formulated extremization 
problem in the time and frequency domains, and is ideal for signal concentration 
problems. 

The general constrained variational problem is stated: For a given signal with fi-
nite energy, extremize (minimize or maximize) the arbitrary weighted energy either 
in the time domain or in the frequency domain, to obtain the optimal waveform 
signal? Suppose w{t) > 0 is an arbitrary weighting function in the time-domain 

> 0 is an arbitrary weighting function in the frequency domain. Following 
Franks [1], this general variational problem is equivalent to extremizing 

G = fiih + + h (3.14) 
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where jii and /X2 are two Lagrange multipliers and h - h are three quadratic func-
tionals defined as 

/

oo 

w{t)\x{t)\^ dt (3.15a) •oo 

/

CX3 

V { f ) \ X { f ) \ ' d f (3.15b) -CX) 

h ^ { x , x ) = { X , X ) = l . (3.15c) 

Here, Ii represents a time weighted measure of energy in the time domain, I2 
represents a frequency weighted measure of energy in the frequency domain, and 
I3 represents the total energy of a signal constrained to be unity (finite energy 
without loss of generality). The frequency domain inner product is defined in the 
obvious way. 

By solving this optimization equation (3.14), the necessary conditions are ob-
tained in both time domain and frequency domains [1]: 

poo 

liiw{t)x{t) + v { t - T ) x { T ) d T + x{t) = 0, (3.16) 
J - 0 0 

poo 

/ W { f - du + i i 2 V { f ) X { f ) + X { f ) = 0, (3.17) 
J—00 

where v{t) is the inverse Fourier transform of V{f) and W{f) is the Fourier trans-

form of w{t). 

3.2.3 Optimization Formulation 

Define frequency weighting, corresponding to band-limiting to frequencies [-W, W 

f l , \ f \ < W , 
V { f ) = \ ' ' (3.18) 

[0 , 1/1 

and time weighting w{t) = f^, corresponding to fourth moment time-domain weight-
ing. Then under the general constrained variational method of Franks, the opti-
mization problem is to extremize 

G { x ) = IJ,2l2 + h , 
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where 

fOO 

' 1- • ^̂  x{t) ^ dt 
J —oo 

/

oo pW 

V{f)\X{f)fdf= / \X{f)\'df = l 
•oo J-W 

Now to obtain the optimal function X{f) that renders G(x) or Ii stationary, we 

only need to find the necessary condition in the frequency domain. 

Using the Fourier transform of t"x{t) 

where i = the necessary condition equation (3.17) in the frequency domain 

is obtained 

Mi^^'^H/) + + X{f) ^ 0, I/I < w, 

which further simplifies to the fourth order linear differential equation 

= I/I < (3.23) 
111 

where the notation represents the 4-th derivative of X{f) with respect to 

frequency / . By defining A = -{1 + fi2){2n)ye M (real numbers), this equation 

can be written 

{D'X){f) = XX{f), \f\<W, (3.24) 

where D is the differential operator. Revealing this is an eigen-function equation 

with A the eigenvalue. 

3.2.4 Solutions 

As shown in the Appendix A.l, a general solution to the fourth order hnear differ-

ential equation (3.24) can be written as 

X{f) = Acos{mf) + Bsm{mf) + Ecosh{mf) + Fsmh{mf), \f\<W (3.25) 
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where A, B, E and F are arbitrary constants. Its first derivative is 

X'{f) = m[-Asm{rnf) + Bcos{mf) + Esmh{mf) + Fcosh(m/) ] , | / | < W. 

(3.26) 

According to the characteristic of X(f), the boundary conditions X{-W) = 
X{W) = 0 and X'{-W) = X'(W) = 0 and the total energy of h = {x,x) = 
{X,X) = 1, there are three different solutions. Detailed deduction is provided in 
the Appendix A.2. 

Case a) When X{f) is an even function, i.e., B = F = 0, then 

Xeif) = Ae[cos{mf) + acosh(m/)] , | / | < W, (3.27) 

where Ag = l /-y/(l + a — — cos(mW)/ cosh(mW^) and m is the positive 
solution of the following even condition equation 

Ce(m) = cos(mW) sinh(mVK) + sin(mH^) cosh(mW) = 0. (3.28) 

Case b) When X{f) is an odd function, i.e., A — E — 0, then 

Xoif) = Bo[sm{mf) + /3sinh(m/)], | / | < (3.29) 

where Bo = 1 / — , = — sin(mH^)/sinh(mH^) and m is the positive 
solution of the following odd condition equation: 

Co{m) = cos(mH^) sinh(mVK) - sm{mW) cosh(mVF) = 0. (3.30) 

Case c) When X{f) is neither an even nor an odd function, it can be expressed as 
a linear combination of (3.27) and (3.29). Note the values of m in equations (3.27) 
and (3.29) are not the same. 

3.2.5 Inverse Fourier transform 

Taking the inverse Fourier transform of X{f), the optimal waveform of the signal 
x{t) in the time domain is obtained. 

For I/I < W, according to the Fourier transform pairs: 

W 
2n 

rn 1 r TT) 1 
+ s m c W(t-—) i M c o s ( m / ) y ( / ) 

27r J L Ztt J J 
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and 

-iW C r 777, 
jsinc W(t + — 

27r I L ' 271' 

where sinc(a;) = s inx/x . Similarly, 

W 

— smc W ( t - ^ ) j j ^ s m ( m f ) V ( f ) , 

27r 
I sine W(t + i 

27r' 
+ smc W(t - ^ c o s h ( m f ) V ( f ) 

and 

-zW 

27r I 

Therefore, 

smc — Sine 
7T) 1 

} s i n h ( m / ) F ( / ) . 

smc 
27r ZTT 

2Wt Wm^ 
Wm 

27r ' + )2 
cos(l¥t) sinh( 

Wm, 

(3.31) 

Similarly, 

smc 
. m 

— smc 
-Wm 

sm{Wt) cosh( 
Wm, , 2Wt . Wm 

+ 7777-77 cos{Wt) smh( 27r ' + 27r 
(3.32) 

So the inverse Fourier transform of X{f) leads to: 

Case a) when X { f ) is even, then 

Xe{t) = 
A.W 

+ 
27r 

AW 

smc W{t 

r r Ot ^^ I sine W{t 

m 

m 

+ sine 

+ sine 

W { t -

W { t - i 

m, 

m 

27r'- (3.33) 

where A^ and a have the same definition as before, (3.29). 

Substituting the equation (3.31), Xe(t) equals to 

+ a 

A^W 

271 
AeW 

jsinc W{t + Xe{t) = ^ 
m 

{ 
27r-

+ sine 

2Wt Wm 
s i n ( H / i ) c o s h ( ^ ) 

27r 
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Wm 

- c o s ( m ) s i n h ( ^ ) } . 
m y + i ^ y 

This shows that Xe{t) is a real signal in the time domain. 

Case b) when X{f) is odd, then 

, , -iBoW ^ . 
= — ^ •! smc W{t + 

m 
2tt 

ZTT i L 27r 

27r 
m , 

— sine 

- sine 

W{t 

W{t-

m, 

. m 

where Bo and P are the same as before, (3.29). 

Substituting the equation (3.32), Xoit) equals to 

27r 
BoW ( 

— sine 
-Wm 

'W{t-

Wm. 

m 

This shows that Xo{t) is a complex signal in the time domain. 

(3.34) 

} 
) ] } , (3.35) 

(3.36) 

3.2.6 Properties of the solution functions 

In this section, the properties of the solution functions are studied. The results are 
shown in the following theorems. 

Theorem 3.2.1 1. The sequence {mj},j = 1,2,3,...; consist of the values 

which satisfy the even condition function (3.28) and the even solution (3.27) 
function; and the sequence {m'j],j = 1,2,3,..., consist of the values which 

satisfy the odd condition function (3.30) and the odd solution function (3.29). 
Both of these two sets of sequences are monotonically increasing; rrij and m!^ 

are interleaved with each other. 

2. The union solution set M f ) } = {X^jif) U Xok{f)},i,j,k = 1, 2,3,..., |/| < 
W, which consists of the even optimal functions (3.27) and the odd optimal 
functions (3.29), can be ordered as 

( c o s ( m i / ) + ai cosh(mi / ) ) , 
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( s in(mi / ) + A s inh(mi/ ) ) , 

{l + \l)W + "2 cosh(m2/)), 

^ + smhim'J)), 

(3.37) 

Proof 
See Appendix A.3. • 

Theorem 3.2.2 {ipi{f)} is a complete, orthonormal sequence in L'^{[—W,W]). 

Proof 

See Appendix A.4. • 

3.2.7 Time-dura t ion Measure 

In this chapter, two kinds of time-duration measures in the time-frequency domain 
are defined: the minimum fourth-moment time-duration measure on the whole 
real line and the time-duration energy concentration measure in the time interval 
- T , T . The minimum fourth-moment time-duration measure is defined as 

. i Z ^ M m ^ A 

where A is defined by the fourth order differential equation (3.24). The latter 
equahty is obtained using the Parseval's Theorem: 

1 X 
J\x{t)?dt = {t%x) = ( ^ X ( ^ ) ( / ) , X ( / ) ) = 

Here, the equation (3.23) has been used in the third equality "=". 

The time-duration energy concentration measure in the time interval [ - T , T] is 
defined as 
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3.2.8 Distribution of m and m' 

In Fig. 3.1, the x-axis denotes the values of mW and the y-axis denotes the condition 
function. We take the y-axis as lOlogjQ C{m) . The label "even" means the even 
condition function, Ce(m) in (3.28), and the label "odd" means the odd condition 
function, Co(m') in (3.30). 

<-3 # 

Figure 3.1: Trend of the even condition function (3.28) and odd condition func-
tion (3.30) versus mW. 

The downward peak points in Fig. 3.1 show the zero points of the condition 
functions, respectively. This figure shows: 1) the condition functions present the 
periodicity of cosx and sinx; 2) the zero points mW and m'W for the functions are 
interleaved each other, asserted in Theorem 3.2.1; and 3) the trend of the condition 
functions are increasing by the hyperbolic functions coshx and sinhx. 

Table. 3.1 and Table. 3.2 list the first 8 values of m and m' when W = 0.5 
for the even and odd condition functions in (3.28) and (3.30), respectively. These 
two Tables also include the value of a, /3, eigenvalues A = m^ and A' = (m')^, 
time-duration measure rf, (3.38), and time-duration energy concentration measure 
7e, (3.39), corresponding to each m and m' values. From these tables, we can see 
that for fixed W, the values of a and decrease very quickly. For index j > 3, 

Xej(f) —> Aej cos(mjf), Xojif) Boj sin(m;.)/. (3.40) 
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Table 3.1: Parameters for the even functions for = 0.5. 

Even Functions 
Index mW m A = m^ a n — 7e {T = 5) 7e (T = 13) 

1 2.365 4.7300 500.5467 0.1329 0.3212 0.3495 0.3693 
2 5.4978 10.9956 1.4618e + 04 -0.0058 9.3790 0.2288 0.2387 
3 8.6394 17.2788 8.9136e + 04 2.5031e-04 57.1919 0.1705 0.1806 
4 11.781 23.5620 3.0821e + 05 -1.0817e-05 197.7578 0.1080 0.1328 
5 14.9226 29.8452 7.9341e + 05 4.6744e-07 509.0712 0.0597 0.1157 
6 18.0642 36.1284 1.7037e + 06 -2.0200e-08 1.0931e + 03 0.0312 0.1275 
7 21.2057 42.4114 3.2354e + 06 8.7292e-10 2.0759e + 03 0.0192 0.1517 
8 24.3473 48.6946 5.6224e + 06 -3.7722e-ll 3.6075e + 03 0.0157 0.1679 

Table 3.2: Parameters for the odd functions for W = 0.5. 

Odd Functions 

Index m'W m' A' = {m'Y P _ {mr 7o (T = 5) 7o {T = 13) 
1 3.9266 7.8532 3.8035e + 03 0.0279 2.4404 0.0205 0.0332 
2 7.0686 14.1372 3.9944e + 04 -0.0012 25.6291 0.0564 0.0917 
3 10.2102 20.4204 1.7388e + 05 5.2035e-05 111.5674 0.0900 0.1487 
4 13.3518 26.7036 5.0849e + 05 -2.2486e-06 326.2570 0.1051 0.1803 
5 16.4934 32.9868 1.1840e + 06 9.7172e-08 759.6985 0.0956 0.1797 
6 19.635 39.2700 2.3782e + 06 -4.1992e-09 1.5259e + 03 0.0680 0.1583 
7 22.7765 45.5530 4.3059e + 06 1.8146e-10 2.7628e + 03 0.0358 0.1359 
8 25.9181 51.8362 7.2199e + 06 -7.8417e-12 4.6325e + 03 0.0118 0.1270 
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Figure 3.2: The even fimction X e { f ) and its inverse Fourier transform Xe{t) versus 
variable m with m = 1 ,2 ,3 ,4 for fixed W = 0.5. (a) XemjU) in the frequency 
domain, (b) Xemjit) in the time-domain. 

3.2.9 Characteristics of Basis Functions for Fixed W = 0.5 

The characteristics of the basis functions with different values of rUj for the even 
function and ruk' for the odd function with fixed bandwidth W — 0.5 are shown in 
Fig. 3.2 and 3.3. 

Fig. 3.2 shows the even functions X e i f ) and their corresponding inverse Fourier 
transform Xe{t) vary with different value mj in the frequency domain. Prom 
Fig. 3.2(a), we know that for the even function X e { f ) , except the end points, there 
is no zero point when m = mi, 2 zero points when m = m2, 4 zero points when 
m = ms, and 6 zero points when m = 777.4, etc. So we can establish that there 
are 2j — 1 zero points for the even function when m = nij. The function Xe{t) 
in Fig. 3.2(b) shows the waveform in the time-domain has sharper central portion, 
less main lobe and decays slowly when mj decreases. 

Fig. 3.3 depicts how the odd functions X o { f ) and their inverse Fourier trans-
forms Xo{t) vary with different value m^ in the frequency domain and in the time-
domain. Fig. 3.3(a) indicates that for the odd function except the end 
points, there is 1 zero point when m' ^ m\, 3 zero points when m' = m'^, 5 zero 
points when m' = m'^ and 7 zero points when m' = m'^. It is concluded that there 
are 2k - 1 for the odd functions with m' = m'f.. Fig. 3.3(b) and Fig. 3.3(c) depict 
the real part and the imaginary part of the odd function Xom'^ {t) versus the variable 
m' for fixed W = 0.5 in the time-domain. The magnitude of the real part is much 
smaller compared to the magnitude of the imaginary part. Therefore, as the value 
of m! increases, the odd signal approaches a pure complex signal as the real part 
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approaches zero. 

3.2.10 Minimum Fourth-moment Time-duration Measure and 
Energy Concentration Measure 

Based on the definitions of the minimum fourth-moment time-duration measure (3.38) 
and the time-duration energy concentration measure (3.39), we have calculated 
these values and included them in the Table3.1 and Table3.2 (for W = 0.5). Two 
cases for the time-duration energy concentration measure when T = 5 and T = 13 
are considered. The tables indicate that: 1) the minimum fourth-moment time-
duration measure rj increases quickly; 2) the time-duration energy concentration 
measure 7e decreases roughly as m increases; 3) 7e increases as the measure inter-
val T increases; and 4) Xei{t), the even function, has higher energy concentration 
measure than the other functions. 

3.2.11 Comparison between PSWF, Gabor and our Basis 
Functions 

Slepian's prolate spheroidal wave function (PSWF) is an optimal band-limited 
function bandwidth fi which achieves the maximal energy in the time interval 
—T,T] [22]. PSWF satisfies the following eigenvalue equation, 

/ 
It is well known that no explicitly analytical formula for the PSWF exists. And only 
the discrete approximation of the PSWF by numerical computation is available [22, 
71,73]. 

Gabor's function is defined by [61 

where k E Z\{0}. The corresponding inverse Fourier transform is 
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Figure 3.3: The odd function Xo{f) and its inverse Fourier transform Xo{t) versus 
variable m' with m' = 1,2,3,4 for fixed W = 0.5. (a) Xom'^if) in the frequency 
domain; (b) the real part of in the time-domain, where the amplitude of 
F-axis is 2 X 10"^, the small panel is to show the real part of the waveform of 
Xom' {t) and Xom'S )̂ whose amplitudes are only 2 x 10"^ (c) the imaginary part of 
Xom'it) in the time-domain, where the amplitude of V-axis is 0.1. Comparing with 
the real part in (b), the imaginary part in (c) dominates the whole waveform. 
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(a) (b) 

Figure 3.4: Comparison of the first basis functions among the Slepian PSWF, 
Gabor and our basis functions when W = 0.5 and T = 5. (a) Comparison in the 
frequency domain; (b) comparison in the time-domain. 

Take A; = 1, we have 

and the corresponding inverse Fourier transform is 

VW f 1 M r / 1 M 
+ TTTT) + sine wit ] . V 4WJ. 

+ sine . V 4W . } (3.45) 

Take the first basis functions of PSWF, Gabor and our basis functions as an 
example. Let the bandwidth W = 0.5 and the interested time-duration T = 5 for 
comparison. Then the time-bandwidth product for PSWF is c^QT = 27rWT = 

15.7085. Fig. 3.4 shows the first basis function of Slepian PSWF, Gabor and 
our basis functions both in the frequency domain and in the time-domain. The 
energy for these three functions in [-T,T] is 0.9999, 0.2806 and 0.3495 for PSWF, 
Gabor and our basis function. From this figure, we can see that: 1) Slepian's 
PSWF absolutely holds the best performance both in the time-domain due to its 
maximum energy concentration in the center; 2) our basis functions are a bit better 
than Gabor's function; and 3) our basis functions have larger main lobes. 



3.2 Band-limited Signal Concentration with kth Moment Weighting in the Time 
Domain 41 

3.2.12 Application One - Optimal Waveforms for Commu-

nication Systems 

The following study shows that the set of our optimal functions can be a better 
choice of waveform for some systems, such as radar system with higher range res-
olution requirement and data transmission with higher information rate, due to 
its fast decaying rate 0 { l / t ^ ) which is faster than that of Slepian's PSWF 0 { l / t ) 

and Gabor's functions and higher energy concentration in the main lobe. 

Therefore, our optimal functions are more powerful to counteract the inter-symbol 
interference (ISI) and more robust for the signal detection. 

We now compare our optimal functions with Gabor's function [61] which is 
optimal with respect to the minimum second-moment time-duration measure. Set 
W = 0.5. Our first even function Xei{f) with mi = 4.7300 is compared with 
Gabor's function. Fig. 3.5 shows these functions both in the frequency domain and 
in the time domain. Obviously, comparing with Gabor's function, Fig. 3.5(b) in-
dicates that our basis function: 1) has larger energy concentration in the center 
lobe; 2) higher peak value, comparing the 0.25 with 0.22; 3) and has quicker decay-
ing rate. As Franks [1] showed that PSWF decays^ like 1/t which is slower than 
Gabor's function acting like 1/t^, our optimal function holds the steepest decaying 
rate, a bit like 1/t^ [34]. The embedded small figure denotes that our function has 
a bit larger main lobe than that of Gabor. 

Finally, we compare the time-duration concentration measure of our function 
with that of Gabor's function. The main lobe of the Xei{t) and (J)i{t) are T̂ ^̂ j 
6.3536 and T^^ ^ 6.3236. By (3.39), the main lobe energy concentration is 

= . . ^ ^ = 0-3524, n k(̂ ) dt 

I-tI \Mt)\'dt 

^4>iit) = 

n - i i ) dt 

= 0.2828. 

It shows our function has much higher main lobe energy concentration than Gabor's 

function's, though it has only a bit larger main lobe, which is a good alternative 

for radar system with higher resolution requirement. 

^We noted that although PSWFs decays hke l/t, they are also uniformly small outside the 
interval of concentration and as a result the decay rate is irrelevant. The results obtained from 
the example in Fig. 3.4 confirms this observation. 
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(a) 
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Figure 3.5: Comparison of our optimal function Xei{f) with Gabor's function $ i ( / ) 

with W = 0.5. (a) Our optimal function Xei{f) and Gabor's function $ i ( / ) in the 

frequency domain; (b) Our optimal function Xei{t) and Gabor's function (pi{t) in 

the time-domain. The small panel in (c) shows the main lobes of both functions, 

where the red (our optimal function) is a bit larger than the green one (Gabor's 

function). 

3.2.13 Application Two - Representation and Finite Dimen-

sional Approximations 

The eigenfunctions {ipiif)} form a complete, orthonormal basis in Lp-{—W, W), so 

we can use them to represent any band-limited function with maximal bandwidth 

W, extrapolate a band-limited function known only on the interval (—T, T) and 

make an approximation in an interval to a band-hmited function [22 . 

Suppose 5(/) e L'^{[-W,W]) is a band-limited signal. Since {ipi{f)} is an 

orthonormal basis in W]), then we can represent 

(3.46) 
2=1 

where Sj = S{f)'4)i{f)df. Based on the above Theorem 3.2.2 and the orthonor-

mality of the basis functions, we can make a further detailed representation 

3=1 

(3.47) 
k=l 

with 
fW i-w 

aj = / Sif)X,,{f)df, h = / S{f)Xok{f)df. 
J-W J-W 
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Now we consider the dimensionality of the generic expansion (3.46) or (3.47) 

by a finite number of terms 6,24 , 

N 

i=l 

with squared error 

5^, = ||5( / )-5^ ( / )| f = £ 

i=N+l 

where N is the degree of freedom. Here, we take the square norm in VF, W]). 

It is well known that the dimensionality mainly depends on the basis functions 

{•0i(/)}) the explicit function S{f) and the truncated error S^. As {•0i(/)} is the 

optimum basis, it will achieve the best performance comparing with other basis 

functions. As our basis functions are complete, according to Fourier transform, we 

can also represent a signal in the time-domain, 

N N 

SN{t) = CLjXejit) -H bkXokit). 

i=i /c=l 

Take the rectangle function (also called box function) as an example, 

f l , \f\<W; W 
G(f) = { ' g(t) ^-sinc(Wt). 

[ o , \f\>W. 

Since G{f) is an even function in the frequency interval [—W, W], according to the 

representation (3.47), we get 

/

w 

G{f)Aej{cos{mjf) + (Xj cosh{mjf)) df •w 
nW 

= 2 / Aej (cos{mjf) -I- Qj cosh{mjf)) df 
Jo 

= 

sm{mjW) ^ sinh(mjiy) 

rrii rrii 

4Aej sin{mjW) 

m, 

The last equality is obtained by substituting aj = - cos{mjW)/cosh{mjW). We 
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also have 6/j = 0 for all k. Therefore, 

oo N 

and the truncated squared error is 

j=N+l 

Since Agj = l / \ / ( l + ( ^ j W and ctj —^ 0 as j > 4, we get 

and 
iAej sm{mjW) 

nii 

< 
rrij 

< 
VWm,/ 

therefore, the truncated squared error is 

oo . 2 
16 ^ sm\mjW) 16 ^ 

j=N+l ^ 3' J j = 

As we have shown in the above Theorem 3.2.2 and subsection 3.2.6 that the values 

of mrij —^ oo as j — o o . So 5n can be made as small as desired by making N 

sufficiently large. Similarly, we have 

N 

9N{t) = ^ ^ a j X e j i t ) . 

j = l 

Set W = 0.5. We depict the function 0^(1) and g^it) when TV = 8,16, 50 in 

Fig. 3.6. Obviously, when the number of items N increases, the approximation is 

better. 

3.3 Arbitrary Signal's Concentration with Second 
and Fourth Moment Weighting in the Frequency 
Domain 

In this section, an arbitrary signal's concentration with moment weighting in the 

frequency domain is studied [78j. This is motivated by the practical waveform 
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(a) (b) 

Figure 3.6: Representation of a rectangle function with our optimal basis functions. 
N is the number of basis functions used, here N ^ 8,1650. (a) Approximated 
function GN{ f ) in the frequency domain, (b) approximated function g^it) in the 
time-domain, the small panel in (b) is to show the difference around the peak value. 
When N — 50, is approaching the original function. 

design due to the energy leakage outside of the specified interval. In reality, it is 
impossible to construct strictly band-limited or strictly time-limited signals. 

3.3.1 Problem Statement 

Suppose x{t) is a complex-valued, absolutely square-integrable signal on the Hilbert 
space 00, 00) and X{f) is its Fourier transformation. The problem being 
addressed is: given the total energy constraint on x{t) and its partial energy in 
the time interval [—T/2,T/2] (or in the frequency interval [—ly, VK]), what is the 
signal waveform that achieves the minimum frequency moment weighting (or the 
minimum time moment weighting)? 

The problem can be divided into two parts: i) time moment weighting; ii) 
frequency moment weighting. In this section, we mainly discuss the second part 
and derive the optimal waveforms for second and fourth moment weighting in the 
frequency domain. For the time moment weighting, results are briefly given. 
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3.3.2 Formulation - Moment Weighting in the Frequency 
Domain 

By Franks' general constrained variation method [76], the general concentration 
problem can be formulated as 

/

oo 

w{t)\x{t)\'^ dt = 1-7 
•CXD 

(3.59a) 
-co 

/

oo 

Vif)\X{f)\'df (3.59b) •oo 
h = {x,x) = {X,X) = l. (3.59c) 

Here, w{t) = 1 for |t| < T/2, 0 otherwise; 0 < 7 < 1 is the energy outside the 
interval [-T/2,T/2]-, V { f ) = / " , n = 0,2,4, • • •. According to FGCVM [1], it is 
equivalent to minimizing 

+ + (3.60) 

where jii and are the two Lagrange multipliers. The necessary condition of a 
stationary solution of (3.59) is [1, (6.95) 

Hiw{t)x{t) + (12 v { t - T ) x { T ) d T + x{t) =0. (3.61) 
J —oo 

Let 
represent the nth derivative of x[t). Substituting the inverse Fourier 

transform of / " X ( / ) 

a;H(t) U 2 T r r r X ( f ) , (3.62) 

and w{t) into (3.61), the final necessary conditions are 

= < T/2, (3.63a) 

{t) = - ( j 27 r ) " -x ( t ) , > T/2. (3.63b) 

3.3.3 Second-moment Weighting for n = 2 

In this case, substituting n = 2 into (3.63), for \t\ < T/2, the general solution is 
given by 

x{t) = cos V(-Ai) t + A2 sin (3.64) 
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where Â  and A2 are arbitrary constants, and Ai = 47:^(1 + < 0. For 
\t\ > T/2, due to the finite energy constraint, the general solution is given by 

xit) = 
t > T/2 

t < -T/2, 
(3.65) 

where and A4 are arbitrary constants, and A2 = 4(7r)̂ ///2 > 0. 

Based on different boundary conditions, two solutions are provided: 

Case a) If x{t) is an even function with boundary conditions: x{—T/2) = x{T/2) = 

\t\ < T/2 
x{t) = 

A cos y (—Ai)i, 

\t\ > T/2, 

where A, Ai and A2 satisfy 

(3.66) 

^cos ( \/-Ai—^ = Xo, 
xg 2 ( 1 - 7 ) 

2 — —) 
7 A^ 

= T 1 + 
s i n ( \ / ^ T ) 

Caseb) If x(t) is an odd function with boundary conditions: x{—T/2) = —x{T/2) = 

xo, 

^sin v'(-Ai)t, \t\<T/2 

x{t) = A{sm t > T/2 (3.68) 

-^(s in t < -T/2, 

where A, Ai and A2 satisfy 

. • f /V 2/ 2 ( 1 - 7 ) s i n ( ^ / ^ r ) 
^sm j ^ V - A i - J V>^2 = Xo/-y, — — — = 

Fig. 3.7 shows the variation of the optimal even function with time for 7 = 
0,0.05,0.15 and 0.35. In the figure, T = 3 and xq = A/2. Note that 7 = 0 
corresponds to the time-limited signal, which is the work of Nuttall [59|. This 
figure shows that as 7 increases, i.e., the energy in the main lobe decreases, the 
decaying rate of the function x(t) becomes slow and flat. 
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Figure 3.7: The optimal even functions with the second moment weighting vs time 
for different 7 

3.3.4 Fourth-moment Weighting for n = 4 

In this case, substituting n = 4 into (3.63), for \t\ < T/2, the general solution is 
given by [76 

x{t) = Acos{mt) + Bsm{mt) + Ccosh(mi) + Dsmh{mt). (3.70) 

where A,B,C and D are arbitrary constants, and m^ = —(1 + //2)//^i(27r)'' > 0 
with m > 0. For > T/2, using the stability requirement of the solution, i.e., 
a;(±cx)) = 0, the general solution can be written by 

x{t) = 
t > T/2 

Fe^S t < -T/2, 
(3.71) 

where E and F are arbitrary constants, and t^ = —(27r)''/yU2 ^ 0 with t > 0 
Similar to the n = 2 case considered above, two cases are considered and solutions 
are provided: 

Case a) lix(t) is an even function with boundary conditions: x{-T/2) = x{T/2) = 
xo and x^^\-T/2) = x^^\T/2) = 0, then for \t\ < T/2 

x{t) = A{cos{mt) + acosh{mt)), |t| < T/2 

where A, a and m satisfy 

a = sin(mr/2)/sinh(mT/2) 

(3.72) 
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cos(mT/2) + acosh(mT/2) 

1 - 7 _ n I , 3s in(mr) sinh(mr) 

+ 2m + 2m 

and for \t\ > T/2, 
2 

x(t) = \t\>T/2. (3.73) 

Caseb) If is an odd function with boundary conditions: x{—T/2) = —x{T/2) = 

xo and = = 0, then for \t\ < T/2 

x{t)^ B{sm{mt) +I3sinh{mt)), \t\<T/2 (3.74) 

where B, /3 and m satisfy 

/3 = -cos(mr/2)/cosh(mT/2) 

Xo 
B = 

sin(mr/2) + sinh(mT/2) 

1 - 7 ^ - + 3^^sinh(mr) 

y ) ' 2m 2m 

and for |t| > T/2, 

x{t) = 

Fig. 3.8 depicts the the optimal even functions vs time for 7 = 0,0.05,0.15 

and 0.35. T = 3, Xo = f • Note that 7 = 0 corresponds to the time-limited 

signal which is the work of Fain |34]. As 7 increases, the energy in the main lobe 

decreases and the tail decays slowly. It is shown in [34]- that for 7 = 0, the optimal 

function with minimum fourth-moment weighting has larger main lobe than the 

half sinusoid and the truncated PSWF |22] and a quicker decaying rate of side-lobe 

than the others. As shown in Fig. 3.9, this situation is similar for 7 > 0. Also 

according to the inverse Fourier transform, it shows that: 1) the optimal function 

with the mininmm fourth-moment weighting has more energy in the main lobe in 

comparison with that of the minimum second-moment weighting; 2) it has larger 

amplitude in the tail and quicker decaying rate due to the same out-of-bandwidth 

energy. 
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Figure 3.8: The optimal even functions with the fourth moment vs time for different 
7 

2nd 
4th 

Figure 3.9: The comparison of the 2-nd function and 4-th function when 7 = 0.05 

3.3.5 Moment Weighting in the Time Domain 

For this case, the problem is to minimize / j subject to /a = 1 - <5 and /s = 1 where 
V{f) = 1 if I/I <W,0 otherwise; w{t) = T and 0 < (5 < 1 is the energy outside of 
the bandwidth [-W, W]. The necessary condition of a stationary solution is now 
given by [1, (6.96) 

Â i / ^ { f - ' ^ ) X { u ) d u + f i2V{f)X{f) + X { f ) = 0. (3.76) 
J—00 

Substituting the Fourier transform of ^ , in (3.76) and by similar 

procedure, this problem can be easily solved. 
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3.3.6 Summary of Results of Signal Concentration in Time-
frequency Domain 

Table 3.3 summaries the known and our contributions on the signal concentration 
in the time-frequency domain. In the table, 

X[-T/2,T/2] = ^ 
1, \t\ < T /2 ; 

0, 1̂1 > T/2. 
X[-w,w] = " 

1, \f\<W; 

0, I/I > W. 

3.4 Summary of all the optimal functions for the 
concentration problem 

In this section, all the optimal functions to the different cases of the concentration 
in the time-frequency domain are summarized in Table 3.4. Here, for convenience, 
x(t) is a unit energy signal for all the optimal functions, -^(f) is the Fourier 
transform of x(t). Also due to the huge work required to unify all the parameters 
for the different cases, the original forms are kept. But our work does provide the 
reader a rough understanding of the optimal functions. So for interested readers, 
please refer to the original papers or books referred in Table 3.3. 

Table 3.4: A summary of optimal functions for signal 
concentration work in the time-frequency domain. 

Problem Optimal functions 
SLEPIAN PROBLEM 

Strictly bandlimited signal 
for time concentration Prolate spheroidal Wave functions 'tpi{t) 

Strictly time-limited signal 
for frequency concentration Special solution: X[-T/2,T/2]'0i(^) 

General concentration pMt) + (lX[-T/2,T/2]Mi) 
SECOND M O M E N T WEIGHTING PROBLEM 

Strictly bandhmited signal 
for time concentration ^ c o s ( ^ ) , \f\<W 

Arbitrary signal with 7 ratio 
continued on next page 
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Table 3.4: continuoued 

Problem Optimal functions 

energy for time concentration x{t) = 
Acos2n^, \f\<W 

\f\>W 

Strictly time-limited signal 

for bandwidth concentration Two cases: 

1). Even function: 

x{t) = Acosy/{^t, \t\<T/2, 

2). Odd function: 

x{t) = A sin < T/2, 

Arbitrary signal with 7 ratio 

energy for bandwidth 

concentration 

Three cases: 

1). Even function: 

x(t) = 
^cos \t\ < T/2 

Ae^^^icos \t\ > T/2 

2). Odd function: 

^sin^(-A)t, \t\<T/2 

x{t) = /le2-/3(sin t > T/2 

-Ae^^'^isin t < ~T/2 

Arbitrary signal 

(Heisenberg concentration 

problem) Gaussian function 

FOURTH MOMENT WEIGHTING PROBLEM 

Strictly time-limited 

signal for 

bandwidth concentration 

Arbitrary signal with 7 ratio 

ratio energy for 

bandwidth concentration 

Mt) = 
y j + ak cosh((^fct)), 

T(i+a^) + ak sinh(</)fci)), 

Two cases: 

1). Even function: 

/ l ( c o s ( m i ) + acosh(mt) ) ,|i| < T / 2 

x o e f w i ) , \t\>T/2 

2). Odd function: 

continued on next page 
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Table 3.4: continuoued 

Problem Optimal functions 

x{t) = . 

B{s\n{mt) +I3smh{mt)), \t\ < r / 2 

t>T/2 

Strictly bandlimited signal for 
time concentration 

Two cases: 
1). Even fimction: 

^ i f ) - \ J ( c o s ( m / ) -f a cosh(m/)) 
2). Odd function: 

- ^ J ( s i n ( m / ) + p smh(m/)) 
Arbitrary signal with 7 ratio 
energy for time concentration 

Two case 
1). Even 

x { f ) = • 

2). Odd 

XU) = • 

•s: 
function: 

^ ( c o s ( m / ) + acosh(m/) ) , [/[ < W 

\f\>W 

function: 

' 5 ( s i n ( m / ) + /3sinh(m/)),[/| < W 

f>W 

3.5 Summary and Contributions 
In this chapter, we reviewed Slepian-Pollak-Landau's signal concentration prob-
lem in the time-frequency; then Frank's general constrained variational method 
(FGCVM) was revisited. Based on FGCVM, some specific contributions are made: 

1. Detailed formulation framework to a band-limited signal's energy concentra-
tion with minimum kth moment time-duration measure is set up [77]. 

2. A complete, orthonormal set of optimal band-limited functions with minimum 
4th moment time-duration concentration measure, high energy in the main 
lobe and fast decaying tails are obtained; the prospective applications in radar 
system and representation of any band-limited signal are provided [76,77 . 

3. Detailed formulation framework to an arbitrary signal has 7 energy ratio 
outside of the bandwidth interval [ - l y , VK] and has 2nd and 4th moment 
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Table 3.3: A summary of signal concentration work in the time-frequency domain. 
L-VL/-\R-V-» ' I Y~R~T /-\T->N <-» IM IN-ŶZ-I/-̂  T? Problem Time domain 

weighting 
function w{t) 

Freq. domain 
weighting 

function V{f) 

Ref. 

SLEPIAN PROBLEM 

Strictly bandlimited 
for time concentration X[-T/2,T/2]{t) 1 Slepian [22] 
Strictly time-limited 
for frequency 
concentration 1 X[-w,w]{f) Slepian [22] 
General concentration X[-T/2,T/2] (t) X[-w,w]if) Landau [23[ 

SECOND MOMENT WEIGHTING PROBLEM 

Strictly bandhmited for 
time concentration e X\-w,w]{f) Gabor 61 
Arbitrary signal with 
7 ratio energy for 
time concentration Xl-w,w]{f) Franks [1[ 
Strictly time-limited 
for bandwidth 
concentration X[-T/2,T/2] {t) P Nuttall 59 
Arbitrary signal with 
7 ratio energy for 
bandwidth concentration X[-r/2,T/2] {t) f this thesis 
Heisenberg concentration 
Arbitrary signal e P Well known 

FOURTH MOMENT WEIGHTING PROBLEM 

Strictly bandlimited for 
time concentration X\-w,w]{f) Wei [76] 
Arbitrary signal with 7 
ratio energy for 
time concentration X[-w,w]{f) this thesis 
Strictly time-limited for 
bandwidth concentration X[-T/2,T/2]{t) Fain [34 
Arbitrary signal with 7 
ratio energy for 
bandwidth concentration Xl-T/2,T/2](t) this thesis 

weighting in the frequency domain are given; the optimal function with 2nd 
and 4th moment weighting are solved, which can be apphed to practical 
waveform design [78]. 



Chapter 4 

General Concentration Problem On 

The objective of this chapter is to solve the general concentration problem for an 
arbitrary signal on the unit sphere. To solve this problem, we need to develop 
a class of operators which have an appropriate frequency domain interpretation, 
while could also play an analogous role how convolution enters in defining quadratic 
functionals of interest in the time frequency case. It is convenient to introduce 
the harmonic multiplication in the spectral weighting for this purpose by defining 
quadratic functions of interest on the unit sphere. 

Section 4.2 introduces a matrix representation of a bounded operator on the 
unit sphere. Section 4.3 defines a harmonic multiplication operation on the unit 
sphere, where the equivalence of the harmonic multiplication to the isotropic convo-
lution is given. Section 4.4 also derives some useful spherical quadratic functionals. 
Further, motivated by Pranks general constrained variational method (FGCVM) 
and Landau-Pollak's uncertainty principle in the time-frequency domain, FGCVM 
is extended on the unit sphere in Section 4.5. Section 4.6 proposes the full concen-
tration problem relating to an arbitrary signal on the unit sphere. Finally, based 
on the spherical Slepian functions given in Section 4.7 and the spherical Franks 
framework (FGCVM) in Section 4.5, Section 4.8 solves the spherical general con-
centration problem. 

4.1 Introduction 

According to the Fourier transform, a signal cannot have finite support in the 
time domain and in the frequency domain simultaneously. Similarly, the spherical 
harmonic transform tells us that a signal cannot strictly confine itself in a region on 
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the unit sphere, and in its spherical harmonic coefEcients. As a central result 
in information theory, the simultaneous time-frequency concentration theory and 
the essential dimensionality of time-frequency signals provide a good criterion in 
filter window design, such as the Kaiser window [29], and in signal analysis and 
representation [79]. Whether an analogous simultaneous concentration theorem 
exists on the unit sphere and how it could be applied in analyzing and representing 
signals defined on the unit sphere is central in geophysics, cosmology and medical 
image processing. 

Franks general constrained variational method (FGCVM) in Chapter 3 general-
izes all properly formulated uncertainty problems by measuring the concentrations 
related to duration and bandwidth in terms of arbitrarily weighted energy distribu-
tions in the time domain and the frequency domain [1]. Analogously, the general 
constrained variational concentration problems to functions defined on the unit 
sphere relating to the arbitrary weighting is desirable. In this chapter, we extend 
FGCVM on the unit sphere, which unifies all possibly previous work on the energy 
concentration including not only the spatial region, but also the spherical harmonic 
coefficients, such as Slepian-style simultaneous concentration theorem. 

In the past, httle study has been made on the Slepian-style simultaneous con-
centration theorem for signals defined on the unit sphere, except Gillbert and 
Slepian's work on concentrated Legendre polynomials [80] and Grunbaum et al. 
on the commutativity of an differential operator with a finite convolution integral 
operator [81]. Recently, due to its relevance to engineering applications, such as 
beam-forming and channel modeling in wireless communications [6,79,82], analysis 
and representation of signals in geodesy [8,33] and cosmic microwave background 
(CMB) estimation in astrophysics [49], it has received much attention. Albertella 
et al. extended the Slepian concentration problem on the unit sphere and solved 
this problem for a spectral-hmited signal on the belt and the cap [31]. Miranian 
solved this problem based on a second-order differential operator found by Grun-
baum and his colleagues [81] on the polar cap [32]. And Simons etc. solved this 
problem for both spectral-limited signal concentration on an arbitrary region on 
the sphere and spatial-limited signal concentration in a finite spectral interval 33 . 

It is well known that the uncertainty principle for an arbitrary signal which is 
neither band-limited nor time-limited that "does the best job of simultaneous time 
and frequency concentration" has been proved by Landau and Pollak 23]. But 
whether this relation applies for an arbitrary signal which is neither spatial-limited 
nor spectral-limited on the unit sphere has not been determined. In this thesis, 
it is proved that there does exist such a signal and this relation does exist on the 



4.2 Matrix Representation of Bounded Operators 57 

unit sphere. This is the full concentration problem for a general signal on the unit 
sphere which is solved in this thesis. 

4.2 Matrix Representation of Bounded Operators 

4.2.1 Infinite Matrix Representation of Operator A 

A hnear operator A defined in (2.3) is bounded if there exists a constant M, such 
that 

P/I1<M||/||, 

Theorem 4.2.2 in [83] claims: A boimded operator on a separable infinite dimen-
sional Hilbert space can be represented by an infinite matrix. It has been pointed 
out in Chapter 2 that the spherical harmonics Y^{x ) form a complete orthonor-
mal sequence in ds). Therefore, any bounded linear operator A defined on 

ds) admits an infinite matrix representation with respect to Y^{x ) [38], 

= (4.2) 

for all n = 0,1, 2, • • •, m = —n, • • • , n and q = 0,1, 2, • • •, p = —q, • • • ,q. B™^ 
represents how much of Y^ as an input gets projected along the Y ^ direction of 
the output under A. 

4.2.2 Spatial Kernel A{x,y) of Operator A 

It is useful to find the kernel of operator A. Since 

= [ (^y/) {x)Y^)ds{x) 
JS2 

A{x,y)Y^ny)dsiy)jY^^{x)dsix), 

according to the spherical harmonics transform (2.19) and the inverse spherical 
harmonics transform (2.20), we have 

oo n 
/ A{x,y)Y^{y)ds{y) = Y. E K ^ ^ n i ^ ) - (4-3) 

n=0 m=-n 
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So taking the conjugate on both sides, it is easy to obtain 

00 n 

/ A{x,y)Yi{y)ds{y) = H W^W^)-
n = 0 m=-n 

That is, 

Therefore, 

oo q / oo n 

g=0 p=—g \n=0 m=—n / 

oo ? oo n 

= E E E E (4-6) 
q=0 p=—q n=0 m=—n 

This is the kernel of operator A. 

4.3 Harmonic Multiplication on 

For any f,hE ds), the harmonic multiplication on is defined by [38], 

oo n 

{h KfuYni^). (4.7) 
n=0 m=—n 

where K^ = {h, and f^ = ( / , F™). © is commutative, that is, hQf = fQh. 

If hQ is regarded as a bounded hnear operator, then according to the matrix 
representation (4.2), the elements H Ĵ̂  of the infinite matrix are given by 

^nq' - { h Q >7' = ĥ qSnqSmp. (4.8) 

Introducing a linear operator ICh, we have 

(/C,/)(®) ^{he f){x) = f K,{x, y)f{y) ds{y), (4.9) 

where the kernel function 

oo n 

M x , = K y n { x ) Y ^ ) (4.10) 
n=0 m=—n 

is a compact, Hilbert-Schmidt kernel. 
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4.3.1 Isotropic Convolution on Ŝ  

Define ds), a linear subspace of ds) [38], 

ds) = G ds) : z{e,(t)) - z{d)]. 

Therefore, for any axisymnietric function z{6, (p) = z{9) defined on the unit sphere, 
it can be expressed as 

oo n 

n=0 m=—n 

= = E j ^ - ^ ^ n P n i c O S e ) , 47r n=0 n=0 

where z^ = {z,Y^). For any two points x and y on the unit sphere, according 
to (2.8), we have x • y — cos 7. Further, we have 

4TT n=0 

°° /2n + l 
47r 

n = 0 

ATT 

n=0 m=—n 

where the addition theorem for the spherical harmonics Y ^ (2.16) in the last equal-
ity has been used. 

The isotropic convolution for / G ds) and an axisymnietric filter z{9) G 

ds) is defined by [37] 

{IJ){x)^{z®f){x)= [ h{x-y)f{y)ds{y), (4.12) 

where the kernel function /^(a; • y) is given by 

47r " 
h{x . y) = z(7) = E (4-13) 

n=0 m=—n 

Theorem 4.3.1 Isotropic Convolution Theorem on S^: The Fourier trans-

form of the isotropic convolution between f G ds) and z{9) G ds) is 
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given by: 

(4.14) 

where z^ = (z, and = ( / , Y^). 

4.3.2 Equivalence between Harmonic Multiplication and Isotropic 
Convolution 

If the harmonic multiphcation operation (4.9) is equivalent to the isotropic convo-

lution (4.12), we must have Kh{x,y) = /^(a; • y) [38], 

n=0 m=-n 

n = 0 

^ 0 / 47r 2n + 1 

n = 0 

(4.15) 

or equivalent, h"̂  = ^ ^ y ^ T aH rn and n. Let h^ = then we have 

oo n 

= E (4.16) 
n = 0 m=-r 

We denote this relation as ©, 

( / i © / ) ( x ) = Kn{x-y)f{y)ds{y) (4.17) 

with kernel 

KH{x.y) = j 2 h f ^ P n { x . y ) . 
n=0 47r 

(4.18) 

And the infinite matrix representation (4.8) becomes 

= (4.19) 

That is, if the convolution is isotropic, then the infinite matrix is a diagonal matrix 
with elements 
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4.4 Some Quadratic Functionals On the Spatial-
spectral Domain 

A function d which is obtained by a bounded linear operator A mapping to / G 
ds) can be expressed by 

^ = = E E 
n=0 m=—n 

Where ^ = = = Er=o That is, 

CO ra o o q 

d = = (4.21) 
n=0 m=-n g=0 p=-q 

Therefore, analogous to (2.7) in the time-frequency domain, a quadratic functional 
/ ( / ) under the operator A can be defined as |84] 

/ o o n o o ? o o n \ 

/(/) = {Afj) = ( E E E E E 
\n=0 m=—n q=0 p=~q n=0 m=—n / 

oo n oo q 

= E E i^Y.Y.^nUl (4-22) 
n = 0 m = - n g=0 p—-q 

According to Parseval theorem, we have 

/ ( / ) = M / , / ) = (Bf , f ) , (4.23) 

where B is an infinite matrix containing elements B™^ and f is the ordered column 
vector containing all the spherical harmonic coefficients of / . 

Analogous to Table 2.1 that shows the quadratic functionals in the time-frequency 
domain and their corresponding time- and frequency-domain operators. Table 4.1 
shows the quadratic functionals and the corresponding operators' kernel A{x, y) 
and the infinite matrix representation B™^ on the unit sphere. In this table, 

B:r<r = W O , 
oo q oo n 

A{x,y) = E E E E 
(j=0 p=—q n = 0 m=—n 

O denotes the general harmonic multiplication and O denotes the special harmonic 
multiplication which is equivalent to the isotropic convolution. 



Table 4.1; Some quadratic functionals and their spatial-
and spectral-domain operators' kernels. 0 denotes the 
harmonic multiplication, 0 denotes the harmonic multi-
plication equivalent to the isotropic convolution. 

Ci bO 

Index Quadratic Functionals Kernel A{x,y) Infinite matrix representation B™ '̂ 
/ {Af, f ) A{x, y) rtmp 

^nq 
if J) 
= Js2 fix\'^ds{x) 

h S{x,y) 

(wfj) 

h = Js2w{x)\f{x\'^ds{x) w{x)S{x, y) 

(zQfJ) z{x-y) 

h 
_ Y^oo y^n 01 fm\2 

Z-^n=0 ^m=—n n\Jn 1 in ^n{x y) 
(zQfJ) 

h 
_ Y^oo Y^ra m\fm\2 

/-^n=0 n \ Jn 1 ^pxmp 

h {w{zQf),zGf) 

Ŷ oo 0 2g+l 
Z^5=0 ATX 

'spoo 2n+lTo 
^ /^n=0 4TT '^n 

xP^{x-t) ds{t) 

« X 
J,,w{x)Y^^{x)Y^{x)ds{x) 

ŷ oo spa ^p 

h {wiz&f),zQf) spoo s^n „ Z^Z^ X 
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Table 4.1: continuoued 

Index Quadratic Functionals Kernel A{x,y) Infinite matrix representation B^^ 

{vQ{zQf),zQf) Ŷ oo y^n „0|~0|2 

h 
v'nma' 
{vQ{zQf),zQf) Ŷ oo Ŷ n ml m|2 

Is _ spoo m\^m.\2\fm\2 Z^n=0 n Kn 1 \J n 1 
{vQ{zQf),zQf) 

h Ẑ n=0 n 1 n 1 Un 1 
{vQ{zQf),zQf) Z-/n=0 Z—/m=—n n I'̂ nl 

ho — V " iJ l̂rOpI fnp /L^n=0 ^m=-n n I'^nl \Jn \ vPz^z^S"'^ 
{f,z){f,h) ^oo Y^n mum 

In = (f,z)(f,h) ^oo Ŷ n ^mumXmp 

it^ 
It^ 
C/3 O ^ 
a> 
<0 p; 
P O. i-i P ri-

s o 
o' p 
cF' 
0 
<7+ cr 
CD 

in Xi 
1 p 
cc ^ 
fti o 
ri->-i 

o 
o 
3 p 
5' 

01 
CO 
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4.5 Franks' General Variational Framework on Ŝ  
In this section, a generalization of the uncertainty problem is formulated by measur-
ing the energy concentrations relevant to the spatial region and the spectral angular 
degree in terms of arbitrarily weighted energy distributions in the spatial and the 
spectral domains on the sphere. Then Franks' general variational framework [1] in 
the time-frequency domain is extended to the unit sphere. Two necessary condi-
tions for the general variational problem are obtained both in the spatial domain 
and in the spectral domain. 

4.5.1 The General Variational Problem On S^ 

The general variational problem on the sphere is stated: suppose w{x) is an ar-
bitrary real square-integrable function on the unit sphere and w{x) > 0, ^(a;) is 
an arbitrary square-integrable function on the unit sphere with all the spherical 
harmonic coefficients real and v^ > 0 where v^ = ds(x}. For 
any / G ds), if its spatially weighted energy by w(x) is fixed, to maximize 
(minimize) the spectrally weighted energy by f™, what is the optimal function of 
f(x)? Or if the spectrally weighted energy by i;™ is fixed, to maximize (minimize) 
the spectrally weighted energy by w(x), what is the optimal function of fix)? In 
this section, we solve this problem by Franks' spherical framework [1] which is ex-
tended from the time-frequency domain to the spatial-spectral domain on the unit 
sphere. 

4.5.2 Formulation 

For the purpose of normalization, the function f{x) is constrained to be unit energy. 
Three quadratic functional on the unit sphere are defined, 

h = {AJJ) = {wfj) = J^^w{x)\f{x)\'ds{x) ( 4 . 2 4 a ) 

l2 = {A2fJ) = {vQfJ) 
/ <x> n o o n \ o o n 

= (E E E /r^rw) = E E (4.24b) 
\n=Om=—n n=0 m=—n / n=0 m=—n 

/• o o n 
h ^ (/,/) = (f,f) = / \f{x)\^ds{x) = E E = 1 . ( 4 . 2 4 c ) 

n=0 m=~n 

In the above equations (4.24a) - (4.24c), ^ represents an arbitrary weighted mea-
sure of energy in the spatial domain; I2 represents an arbitrary weighted measure 
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of energy in the spectral domain; I3 represents the total energy of f{x). Ai is the 
spatial multiphcation operator which is defined as 

AJ ^ w{x)f{x). (4.25) 

and A2 is the harmonic multiplication operator which is defined as [38 

00 n 

A2f <fnyn{^)- (4.26) 
n=0 m=—n 

The general variational problem on the sphere being addressed is to find a 
function which maximizes h {h) under the constraints 12 [h) and h . According 
to the analogous property in the time-frequency domain [1], on the unit sphere, 
extremizing / j {I2) subject to I2 {h) and h is also equivalent to extremizing 

G ^ + Ii2l2 + h, (4.27) 

where /̂ i and ^2 are two Lagrange multipliers. This is the objective function. We 
attempt to find the necessary condition for a stationary solution to (4.27) both in 
the spatial domain and in the spectral domain on the sphere. 

4.5.3 Necessary Conditions 

Generally, finding a stationary function / that extremizes a quadratic functional 
/ ( / ) , is usually done in two steps: 1) Obtain the directional derivative £>„/(/) at 
a point / along any arbitrary function u\ 2). Solve the equation Dul { f ) = 0 to 
get the necessary condition. In relation to our problem, it is necessary to find the 
directional derivative Z)„G'(/) and then solve DuG{f) = 0. 

Directional Derivative of a Quadratic Functional 

For a quadratic functional / ( / ) = {Af, f) where .4 is a linear operator, the direc-
tional derivative of at a point / along u, where u{x) G ds) is an arbitrary 
unit vector (function) on the sphere, is defined as 

DJif) ^ {AuJ) + {Af,u) = {Af,u) + {u,A'f), (4.28) 

where A' is the adjoint operator of A. If A is also a self-adjoint operator, i.e., 
A = A', then 

DJ{f) = {Af,u) + {u,Af) = m{{M,u)}, (4.29) 
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where 5R{-} denotes the real part of {Af ,u) . 

Two Self-adjoint Operators 

It is necessary to prove that both Ai and A2 are self-adjoint operators. For any 
f,g e ds), according to the definition (4.25) and the adjoint operator prop-
erty, we have 

{•^if,g) ^ {'wf,g) = / w(x)f{x)g{x)ds{x), 

and 

{f,Aig) = {f,wg)= f f{x)w{x)g{x)ds{x) = [ f{x)w{x)'^)ds{x). 

In the above, w{x) is used as a real-valued function. Therefore, 

{Aif,g) = {f,A[g) = {f,Arg). (4.30) 

So is a self-adjoint operator. 

Similarly, using the definition (4.26), the orthonormality (2.14) of the spherical 
harmonics Y^(x) and real value of w™, we have 

{A2f,g) = {vQf,g) 
! 00 n o o n \ 00 n 

= (E E ^ ffrrw) = E E 
\n=Om=-n n=0 m=-n / n=0 m=-n 

and 

/ ' It 

\ n=0 m=-n n=0 m=~n 
00 n 

= E E = E E 
n=0 m=-n n=0m=-n 

therefore, 

= = (4.31) 

So A2 is also a self-adjoint operator. 
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Directional directive of an Objective Function 

The directional derivative of the objective function G at point / along u is 

DuG{f) = Du + + h] = l^iDJ, + l-t2Dul2 + Duh. 

We must now solve 

DuG{f) = 0. (4.32) 

Since both Ai and A2 are self-adjoint, according to (4.29), we have 

D u h { f ) ^ 2 ^ { { w f , u ) ) , (4.33) 

D u h { f ) = 2 ^ { { v Q f , u ) ] . (4.34) 

For the third quadratic functional /a, it is easy to obtain 

DuhU) = («,/) + (/,«) = 23t{{f,u)}. (4.35) 

Substituting (4.33), (4.34) and (4.35) in (4.32), we obtain 

D^Gif) = {wf, u)] + {vQf,u)] + (/,} = 0, 

i.e., 

^ { { l i iwf + i i2vQf + f , u ) } = Q. (4.36) 

An angle 9{fi,f2) between functions / i , / 2 € ds) is defined by [23] 
(iff fA nr7\ 

Then, 3?{ ( / i , /2 ) } = ||/i|| • II/2II • cos 0 ( / i , / s ) = 0 is obtained under UMI = 1 if and 
only if ll/ill = 0 (i.e., / i = 0, according to the norm definition) or f i is orthogonal 
to /2. 

Therefore, to ensure (4.36), since u is an arbitrary function with ||m|| = 1 on 
the unit sphere, the only posibility is that 

fiiwf + ^ 2 v Q f + f = 0. (4.38) 

Therefore, (4.38) is the general necessary condition for the stationary solution of 
(4.32) in the spatial domain. 
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Note that 

o o n 

= E E ^ f n Y n - ' i ^ ) 
n=0 m=—n 
oc n y „ \ 

= E E / 
t^Or^n V A ^ / 

/ o o n \ 

= / E E f { y ) d s { y ) . (4.39) 
\n=Om=-n / 

In the above, (2.19) and the interchangeability of integration and summation are 
used. Therefore, substituting (4.39) in (4.38), the general spatial necessary condi-
tion for the stationary solution of (4.32) in the spatial domain can also be expressed 
in the form of an eigenvalue equation as, 

rt / /t- \ 

/ f { y ) d s { y ) + { - f c , ) w { x ) f { x ) ^ f { x ) . 

\n=Om=-n / 
(4.40) 

This is a Fredholm integral equation of the second kind. 

Now taking the inverse spherical harmonic transform of (4.38), the general 
necessary condition for the stationary solution of (4.32) in the spectrum domain 
can be written as 

Ml (wix)f{x)y^ + + fn = 0. (4.41) 

Using the spherical harmonic transform (2.20), we can write 

w { x ) f { x ) ) " ' = / w { x ) f { x ) Y ^ { x ) d s { x ) 
« JS2 

OO s ~ 

= E E / H x ) Y : { x ) Y ^ ) d s { x ) 

o o s oo q „ 

= E E E < / y q ' i x ) Y : { x ) Y ^ ) d s { x ) 
s=0 t=-s q=0 p=-q 

o o s oo q 

= (4.42) 
s=0 t=-s q=0p=-q 

where Z)̂ *™ are given by 

Dfsn = Y^n^)Ys\x)YrW)ds{x). (4.43) 

The general necessary condition for the stationary solution of equation (4.27) 
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in the spectrum domain is given by 

oo s oo q 

E E E E + + fn = 0, (4.44) 
s=0 t=—s q=0 p=—q 

or for a given weighting function w{x), 

oo s „ 

E E fs / w{x)Y,^{x)Y^^{x)ds{x)++/r = o- (4.45) 

Finally, sunnning over all n from 0 to oo and - n < m < n for the equation (4.45), 

we have 

oo n oo s „ 

A îE E E E / W u,{x)Y,̂ {x)Ŷ -{x)ds{x) 
n=0 m=-n s=0 t=-s 

oo n oo n 

+ E E < f n + E E = 0- (4.46) 
n=0m=—n n=0m=—n 

Taking K as a matrix containing ah the elements /g2 w{x)Y^{x)Y^{x) ds{x) and 

also introducing two column vectors h whose individual elements are defined as 

, m A ^m cm 
"'n ^n Jn 

and f defined in (2.21), the spectral necessary condition for (4.32) can be expressed 

in the matrix form 
/xiKf+M2h + f = 0 . (4.47) 

4.6 General Concentration Problem on 

In the spatial-spectral domain, the issue of signal concentration for signals defined 

on the unit sphere has not been thoroughly studied. At present, only the special 

cases, i.e., the spectral concentration problem for a spatial-limited signal and the 

spatial concentration problem for a spectral-limited signal, have been solved |31-33, 

85]. But for an arbitrary signal which is neither spatial-limited nor spectral-limited 

on the unit sphere, the concentration problem is still open. In this chapter, this 

problem is solved which fills the gap based on the spherical Franks' framework [84j. 

For the purpose of normahzation, the function f{x) is constrained to be of unit 

energy. The general concentration problem under consideration can be stated as 

follows: Suppose / is any square-integrable function defined on the unit sphere 
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with its total energy ||/|| = 1. Suppose a^ = \\T>rf\\^ is the energy of / in the 

spatial region F C S^, = ||i5iv/|P is the energy of / in the spectral interval 

0, N] where iV is a positive integer, and 0 < a, P < 1. What is the optimal signal 

waveform of f{x) that simultaneously achieves maximum energy concentrated 

both in the spatial domain and maximum energy concentrated in the spectral 

domain? (The definitions of V r f and B ^ f are given below.) 

Here, due to the topologically compact property for a sphere S^, we do not 

consider the situation: a = = 0. Cases a = 1 and /? = 1 have been widely 

studied [31-33J, so they are briefly reviewed and some important results are sum-

marized, such as the relation of the eigenfunctions and eigenvalues and some geo-

metrical properties of the eigenfunctions for the a = I and = 1 cases are deduced. 

More focus of the study is on the 0 < a, /? < 1 case. 

4.7 Special Signals Concentration on 

The special concentration problem on the unit sphere has been solved by [31-33 
In this section, we review them and summarize some results. 

4.7.1 Spatial Concentration of a Spectral-limited Signal = 
1, 0 < a < Af,^^) 

f{x) e ds) is assumed to be a spectral-limited signal with maximum spectral 

degree N, i.e., 
N n 

- E E /r^rr(^)- (4.48) 
n=0 m=—n 

So Bpff = /, where B n is the mode limiting operator defined in (2.38), and 
/ G ds) where ds) is the complete subspace containing all spatial-

limited functions on the region T C To achieve the maximum energy concen-
tration in the spatial region T E S^ we may equivalently maximize 

A ( P r / J ) _ Jr\f{x)\'ds{x) 
i f j ) l.\f{x)\^ds{xy (4.49) 

Substituting (4.48) into (4.49) and interchanging the summation and integration, 
we get 

T^nT" T^V^ Y""' Dmm' fm' 
' (4-50) 

/^m=-n\J n I 
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where f ^ are the spherical harmonic coefficients and 

It has been showed that solving (4.49) or (4.50), is equivalent to solving an algebraic 
eigenvalue equation [33j 

(4.52) 

where Dat is a (iV + 1)^ x (A^ + 1)^ matrix 

Div = 

/ noo now \ ^00 • • • ^ON 

P)NO J^NN \ ^m • • • ^NN / 
(4.53) 

with elements -D^?', and f is the column vector with the elements Solv-
ing (4.52), the eigenvalues and the corresponding eigenvectors 
0,1, • • • , (A''+1)^ — 1, are obtained. Using the spherical harmonics transform (2.19), 

r ^ ( ^ ) = E E i f u r y - i ^ i (4-54) 
« = 0 m=—n 

the associated eigenfunctions { f l ^ \ x ) } are achieved. We have also apphed a nor-
malization to the eigenvectors and eigenfunctions. The following theorem sum-
marises some properties to the eigenvalues and eigenfunctions. Though the de-
tailed proof is not provided, a key reference to understand the theorem based on 
functional analysis is given. 

Theorem 4.7.1 For a spectral-limited signal f{x) with maximum spectral degree 
N, the optimal normalized vector f composed of the spherical harmonic coefficients 
of the signal having the maximum energy in a spatial region F C S^ satisfies (4.52) 
and has the following properties: 

1. The eigenvalues z = 0,1, • • • , (A^ + 1)^ - 1, are the maximum energy 
concentration in the region F; are real and can be ordered: 1 > Aĝ ^ > 

^ AN) ^ AN) Aj > A2 . . . > > u, 

2. The ordered associated eigenfunctions obtained by (4.54) have the 

double orthogonal property: 
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for any i, j = 0,1, • • • , (A^ + 1)^ - 1. 

3. The ordered associated eigenfunctions {fi^\x)} consist of a complete, or-
thonormal basis for the subspace ds); 

4- The ordered eigenvalues are the maximum energy concentration ratio 
in the spatial region F; in particular, Aq̂ ^ is the largest eigenvalue, which is 
also the largest concentration ratio for (4.49); and the corresponding spectral-
limited fQ'^\x) is the largest energy concentrated function in the region P. 

Proof 
Please note that we only provide the key points to the proof. Detailed information 
refers to [33]. The matrix D/v (4.53) is a compact and Hermitian (self-adjoint) 
matrix. According to the finite-dimensional Spectral Theorem [83], ds) 
has an orthonormal basis consisting of the eigenvectors of Dat; each eigenvalue is 
real. 

-{N) 
The self-adjoint property of D v̂ guarantees the eigenvectors { f j } and the 

associated eigenfunctions { f l ^ \ x ) } are orthogonal. 
From definition (4.49), 0 < < 1. We order the eigenvalues into 

and also order the corresponding eigenvectors {f^ } and the associated eigenfunc-
tions { / ^ ^ ( x ) } . • 

Therefore, according to Theorem 4.7.1, for any spectral-limited function e 
ds), it can be also represented by the new basis functions {fl^\x)}, 

(N+lf-l 

/ ' " ' = E -^frrix) (4.57) 
i=0 

with aŜ ^ = f l^ '^x ) ) for ^ = 0,1 • • • , (iV + 1)2 - 1. 

4.7.2 Spectral Concentration of a Spatial-limited Signal (o; = 

1, 0 < ^ < fi^P) 

g{x) e ds) is assumed to be a spatial-limited signal in the region P, i.e., 

/ X A \9{x), xeV; 
Si^) = { (4.58) 

0, x ^ P . ' ^ 
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According to the spatial truncation operator (2.41), we have V^-g = g. Further, 
g E ds) which is a complete subspace of ds) containing all spatial-
hniited functions with compact support in the region F G S .̂ 

Achieving the maximum energy concentration in the spectral interval 0 < n < 
N is equivalent to maximizing 

E 
^ {9.9) Er=o ^ ^ 

where g^ are the spherical harmonic coefficients of g{x). Substituting (4.58) 
into (4.59) and interchanging the order of summation and integration, we obtain 

(D _ fr fr 9(X)BN(X, y)g(y) ds(x) ds{y) 
^ - J,\g{xWds{x) ' 

where BN{X, y) is given by (2.39). 

It has been showed that solving (4.59) or (4.60) is equivalent to solving the 
Fredholm integral equation of the second kind |33] 

I BN{x,y)g{y)ds{y) = XET. (4.61) 

Comparing (4.61) with (2.44), if f{x) = 2?r / (« ) = g{x), i.e., spatial-limited signal 
in the region F, then (2.44) and (4.61) are the same. 

Solving (4.61), the eigenfunctions (optimal spatial-limited functions) are achieved. 
The following theorem summarises some key properties of the eigenfunctions and 
eigenvalues. We have also applied a normahzation to the eigenfunctions. For the 
proof, only basic functional analysis is provided. 

Theorem 4.7.2 For a spatial-limited signal g{x) within a spatial region F, the 
optimal normalized function having the maximum energy in the spectral interval 
0,7V] satisfies (4.61) and have the following properties: 

1. There are {N+l^ ordered orthonormal eigenfunctions {^^^^(a;)} with ordered 
/p^ I'p'i /p\ 

non-zero corresponding eigenvalues I > ^J-o > Mi > • • • > M ( A r+i ) 2 _ i > 0; 
there is also an infinite-dimensional null space of eigenfunctions {^^^^(a;)} 
with associated eigenvalue nf' = 0 when i> {N -\-lY; 

2. The eigenfunctions gf^\x) are orthonorjnal on the whole sphere and orthog-
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onal on the region P; 

[ 9P{x)gP{x)ds{x) = [ gf\x)gf\x)ds{x) = ^if^^S,, 
JS^ JT 

for any i, j = 0,1, • • •. 

3. The eigenfunctions {^l^^l®)}, i = 0,1, - ••, consist of a complete, orthonormal 

basis for the subspace ds); 

4- In particular, /io""' is the largest eigenvalue which is also the largest concentra-

tion ratio for (4.59) and g^Q\x) is the corresponding spatial-limited function 

having maximum energy in the spectral interval [0, A'']. 

Proof 
As Theorem 4.7.1, only the key points are provided. B N { x , y ) is a finite-rank 

(compact) and Hermitian symmetric kernel of the Mode Limiting Operator B^. 

According to the Spectral Theorem for a compact and self-adjoint operator on a 

Hilbert space [83], ds) has an orthonormal basis consisting of eigenfunctions 

of Bn and each eigenvalue is real. Since Bj^r{x, y) is a matrix with rank {N -I- 1)^, 

there are only (A''-I-1)^ non-zero eigenvalues. However, there are an infinite number 

of eigenfunctions corresponding to the eigenvalues equal to 0 in the null space. • 

Similarly, any spatial-limited function G ds), according to Theo-

rem 4.7.2 can also be represented by 

00 
g^ '\x ) = Y ^ b f g f \ x ) (4.63) 

i=o 

with bf = (g(^\x),gf\x)) and j = 0,1, • • •. 

4.7.3 Duality of Basis Functions between Two Operators 

Paper [33] showed that the truncated spectral-limited function in the region P is the 

optimal spatial-limited function. However, as it has been showed in Theorem 4.7.1 

and Theorem 4.7.2, for the matrix operator Djv, there are only (A^ 1)^ eigen-

functions that are spectral-limited signals with maximum spectral degree N] while 

for the integral operator B^ with kernel BN{X, y), there are infinite eigenfunctions 

which are spatial-limited signal in the region P. So it is impossible to determine 

all the eigenfunctions of BN from the eigenfunctions of D^^. Grunbaum etc., in 
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their paper [81], showed the duality between "finite Fourier operators" and "convo-
lution integral operator" on a topological group G and its so-called dual group G 
by Lemma 1. 

In this section, one theorem is given to show the duality of basis functions 
between the matrix D^r and the operator Bim with the kernel BN{x,y) for the 
arbitrary region on the unit sphere. 

Theorem 4.7.3 Given any positive integer N > 0 and any spatial region F C S .̂ 
and {A-^'}, i = 0,1, - • • , (iV-h 1)^ - 1, are the associated eig en functions 

and corresponding eigenvalues to 

Dm}-

where = and f IS the column vector containing 
the spherical harmonics coefficients 

and i = 0,1, - • •, are the eigenfunctions and corresponding eigen-

values to 
Bn{x, y)g{y) ds{y) = x^T. 

For 0 < z < ( A ' ' - | - l ) ^ — 1, there exist relations: 

A!"^ = (4.65) 

(4.66) 

{ w r ) ( - ) - (4-67) 

Proof 
The proof is provided in Appendix A.5. 

Remark 4.1 It should be noted that {fl'^\x)} can be determined from the alge-
braic eigenvalue equation (4.52); while {gf\x)} are the optimal functions of the 
Fredholm integral equation of the second kind (4.61) and they are not determined. 

4.7.4 Least Angle between Two Subspaces 

In this section, one angle between 2)r(S^, ds) and ©^(S^, ds) is introduced, and a 

least angle is also derived. 
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The angle 0 ( / i , / 2 ) between functions / i G ^^(S^, ds) and /a G ds) is 
defined as [23 

The extreme values 0 and tt for 9 { f i , f2 ) are obtained if and only if / i and /a are 
proportional and ( / i , / 2 ) is real. According to $R{( / i , /a)} = ||/i|| • ||/2||-cos6'(/i,/a), 
when both / i and /a are non-zero, 5R{(/i, / g ) } = 0 (i.e., cos0( / i , /a) = 0) is obtained 
if and only if f i and /a are orthogonal. 

Theorem 4.7.4 There exists an least angle OQ between the subspaces ds) 

ds) anditis equalto y AQ^ Yor y//g^^ J. I.e., suppose e ds), 

ĝ ^̂  G S)r(S2, ds), 

0 0 = min inf 

- c o s - y i r 

^ c o s - ' ^ ^ J - P , (4.69) 

the equally is obtained when = /^^(a;) and ^ = kVrf^^\x) = 
/ fr) 

^Y Mo 5o where k is an arbitrary positive constant. 

Proof The proof is provided in Appendix A.6. • 

4.8 Arbitrary Signal Concentration on Ŝ  (0 < a, ^ < 

1) 

In this section, we turn our attention to the general concentration problem on the 
unit sphere: for an arbitrary signal f{x) G ds) which is neither strictly 
spatial-limited nor spectral-limited, we aim to find an optimal function f{x) that 
achieves the most concentrated energy both in the spatial domain and in the spec-
tral domain, i.e., where ||/|| = 1, 0 < ||Pr/|| = a < 1 and 0 < \\BNf\\ = /3 < 1, we 
seek f{x) such that a and are simultaneously maximized. 

For simphcity, we divide this problem into two steps: 1) for fixed a, based on 
our spherical Franks' framework [84], obtain the first optimal function which has 
the maximum weighted spectral energy |[̂ |[2; 2) maximize a to achieve the final 
optimal solution. Here, without loss of generahty, a and can be interchanged. 
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4.8.1 Spherical Franks' framework 

In this section, the spherical Franks' framework derived in section 4.5 is used. 
The first objective is to maximize h = ll^w/lP = f̂ "̂  under the constraints h = 
ll^r/lP = oP' and /a = ||/|p = 1. According to the spherical Franks' framework, it 
is equivalent to maximize 

G ^ l̂2I2 + h , (4.70) 

where and /i2 are two Lagrange multipliers and 

h = {Vrf,f) = j^\f{x)\'ds{x) (4.71a) 

l 2 - { B N f , f ) = j 2 E \fn\' (4.71b) 
n = 0 m=—n 

~ CO n 

/3 = (/,/) = ( f , f ) = / jf(x)j'ds(x) = Y^ = (4-71C) 
n=0 m=-n 

It is well known that finding a stationary function / that extremizes a quadratic 
functional /(/) is usually achieved in two steps: 1) obtain the directional derivative 
DuHf) at a point / along any arbitrary function u; 2). solve the equation Dul{f) = 
0 to get the necessary condition. In our case, since G is a linear combination of 
three quadratic functionals, we can find the directional derivative DuG{f) and then 
solve DuG{f) = 0. 

For a quadratic function /(/) = {Af, f ) where .4 is a linear operator, its di-
rectional derivative at a point / along u, where u is an arbitrary unit vector in 

ds), is defined as [1 

DJif) = {Af,u) + {AuJ) = {Af,u) + {u,A'f). 

And if ^ is a self-adjoint operator, i.e., A = A', then 

DJif) = {Af,u) + {u,Af) = 2^{{Af,u)}, (4.72) 

where 9f?{-} denotes the real part of {Af,u). 

Because both Vy and BN are self-adjoint, we have 

D J , i f ) = 2^{{Vr f,u)} (4.73a) 

D j 2 i f ) = 2^{{BNf,u)} (4.73b) 

DMf) = 2^{{f,u)}. (4.73c) 
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Therefore, the directional derivative of G at a point / along u is given by 

DuG{ f) = Du [mh + I^2l2 + h] 
= HiDuh + fJ'2Dul2 + Duh 

= 2\\t,,Vrf + i^^BnI + /II • ||«|| • cos + + /, u) 
= 0, (4.74) 

where we have used (4.73a) - (4.73c) and the angle definition between two func-

tions (4.68). 

Since 11 

?i|| = 1, the necessary condition of (4.74) for a stationary point f which 

makes D u G { f ) = 0 is \\n,Vrf + fi2BNf + f \\^0 , (4.75) 

or 

c o s e { p ,V r f + ii2BNf + f , u ) = 0. (4.76) 

According to norm property: ||/|| = 0 is satisfied if and only if / = 0, (4.75) is 

changed into 

+ l^2l5Nf + / = 0. (4.77) 

Eqn (4.76) implies /iiVrf + /i2^iv/ + / is orthogonal to u. As u is an arbitrary 

function on the unit sphere, this condition is hard to satisfy. Therefore, only (4.75) 

is possible. Therefore, after adjusting (4.75) and making variable substitutions, we 

get 

/ = A2?r/ + M^N/, (4.78) 

where A = -//i and /i = Eq. (4.78) is the first optimal function with maximum 

/3 for fixed a and ||/|| = 1. Subsequently, we solve the final optimal function to 

obtain the maximum a based on the suboptimal function (4.78). 

4.8.2 General Solution to the General Concentration Prob-
lem on Ŝ  

In this section, we focus on finding a function which maximizes a under the con-

straints / = A P r / + A / , 11/11 = 1, ||Pr/|| = a and ||^^/|| = Following a 

similar procedure as in [23] and taking the inner product of (4.78) with /, V r f 

and BnI, we have 

1 = (/, /) = (APr/ + fiB^f, f) = + (4 
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= ( / , -Drf) = (APr / + I^B^f, V r f ) = Aa^ + li^B^f, V r f ) (4.79b) 

= ( / , Bj,f) = {Wrf + fiB^f, B^f) = A(Dr/, B^f) + (4.79c) 

By eliminating A and fi from (4.79a) - (4.79c), we have 

a^ - 25R{(Pr/,B^f)} + = 1 - • (4.80) 

By definition (4.68), we have 

mVrf,Br,f)} = Ipr / l l • • cos0 (Pr / ,^ /v / ) = « /3cos0(Pr/ ,^iv / ) -
(4.81) 

As 3?{(2?r/,-Bat/)} is only the real part of (Dp/, Syv/), we then have 

m{T^rf ,Br , f ) }\<\{Vrf ,Br , f )\ . (4.82) 

This equality is obtained when {Vrf, BNI) is real. 

By the Cauchy-Schwarz inequality, 

The equality is obtained when V r f is proportional to BNf, which is impossible 
due to the least angle between two subspaces ds) and ds). 

Therefore, 

0 < 1 - < 1 - cos^ eiVrf, B^f ). (4.84) 

Substituting (4.81) and (4.84) into (4.80), we get 

0 < a ' - 2a/3cos0(Pr/ ,^iv/ ) < 1 - cos^ 0(I?r/, ^N/)- (4.85) 

Now our goal is to get the maximum value of a. And we also take as a constant. 
So the variables are a and cos9{Vrf ,BNf) -

The first inequality of (4.85) is satisfied for any a and cos 9{Vrf, Bpjf), since the 
discriminant of cos = 0 is 4/3^ [cos^ e{Vrf , B ^ f ) - 1] < 0. 

For the second inequality of (4.85), after making some changes, we get 

a -Pcose{Vrf,Bj,f)f < (1 - P') sin'9{Vrf, B^f). (4.86) 
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As it has been proved in Theorem 4.7.4 that there exists a least angle 6Q between 
the subspaces Q3iv(S2, ds) and ds), 

0 0 = min inf = cos" V a ^ ^ ) = cos"! ^ 

so we have 0 < sm9{T>rf,BNf) < 1- Therefore, (4.86) changes into 

\a-PcosOiVrf,IS^f)] < ^ T ^ sme{Vrf, B ^ f ) , (4.88) 

I.e., 

/ 3 c o s 0 ( P r / , ^ i v / ) - V r ^ s i n 6 ( P r / , S ^ / ) < a 

< /3cos0(I?r/,^iv/) + y/T^sine{Vrf, Br,/). (4.89) 

As 0 < /? < 1, we take an angle 61 = arccos""^/?, so 61 E [0,7r/2]. We also take 
9 = e{Vrf,BNf) and 9 G [9o,n]. Then (4.89) becomes 

cos{9 + 9i) <a<cos{9-9i). (4.90) 

Since our goal is to find the maximum value of a , we are only interested in the half 
part a < cos {9 — 9i). 

Let f{9) = cos{9 - 61). Then we only need to compare 0 < a < f{9). Let us 
look at Fig.4.L 

Figure 4.1: The variation of a and 9 

If 0 < 00 < 01, i.e., 0 < < -^aJ^^ as 0 varies from 0o to tt, then = 1 

when 0 = 01 and fmin = cos(7r - 9^) = - sin(0) < 0 when 0 = tt. A s it requires 
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f{6) > 0, therefore, we have 0 < ^ !> i-s., (y^nax ~ 1 and OLmxn ~ 0. And 

Giraax = 1 is obtained when 0 < /? < y AQ̂ ^ . This is the spectral concentration 

for a spatial-limited signal case. However, in this section, as we have restricted 

0 < a < 1, this situation will not happen. 

If Q\ < Qq < TT, i.e., cos~^ < 13 < 1, as 0 varies from Oq to vr, fmax = 

cos(0o - ^i) when 9 = Oq and fmin = cos{n - 9i) = -sin(6 ' ) < 0. Therefore, 

Gimax = cos(0o " ^i) and a-min = 0. Therefore, 

ctmax = COS {Oq - 9i) = COS ^cos"^ \JAg^^ - a r c c o s , (4-91) 

and as a < a^ai, we have 

cos"^ P + cos"^ Q > cos"^ y 

The equality obtained as stated before is that { V r f , B n J ) is real and 

cos9{Vrf,13Nf) ^ coseo = \/ 

a 
Vrf ^ - ^ V r C H x ) . 

(N) 

(4.92) 

(4.93a) 

(4.93b) 

(4.93c) 

Substituting (4.93a) into (4.79a) - (4.79c), we get 

A = 

M = 
1 

(N) 

1 - A^^^ (̂ max 1 - A, 
(N) 

Changing (4.91) into 

= + 

and substituting /3 into A and (i, we obtain 

y i " at 

1 - A 
{N) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 
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^ _ ^^ CXmax _ Otmax _ '^max ^^ g g ^ 

^ .RiN) . A ' A ^ ' V-^o^ V I 

Therefore, the optimal function / which simultaneously achieves the most concen-
tration both in the spatial domain and in the spectral domain is 

/ ^ p W r + ' Z ^ ^ r / r . (4.99) 

where p and q are given by (4.97) and (4.98). 

4.9 Summary and Contributions 
In this chapter, we introduced the infinite matrix representation for an operator 
defined on the unit sphere; a spatial kernel is solved by relating to the infinite 
matrix representation of the operator; then some quadratic functionals defined on 
the unit sphere are derived. Based on this work, some specific contributions are 
made: 

1. A harmonic multiplication operation on the unit sphere is proposed, and its 
equivalence to the isotropic convolution is given |38] 

2. Applying the harmonic multiplication weighting in the spectral domain, some 
spherical quadratic functionals are derived. 

3. Franks general constrained variational framework is developed to the unit 
sphere [84]; 

4. General signal concentration problem on the unit sphere is solved by Franks 
framework and the quadratic functions [86 . 



Chapter 5 

Spherical Basis Functions for 
Different Energy Concentration 
Measures On 

The objective of this chapter is to find appropriate spherical basis functions to 
efficiently analyze and represent signals defined on the unit sphere. Motivated by 
the time duration and bandwidth moment weighting in the time-frequency domain, 
Section 5.2 proposes a global kth moment azimuthal measure (GMAM) and a local 
kth moment zenithal measure (LMZM) to a spectral-limited signal on the unit 
sphere. Two sets of spherical optimal eigenfunctions which consist of basis functions 
are obtained, respectively. Comparisons of these two sets of eigenfunctions and 
the spherical Slepian functions are made. Furthermore, a spatial-limited signal 
concentration problem based on a harmonic multiplication operation on the unit 
sphere is studied in Section 5.3. 

5.1 Introduction 

The problem of recovering or reconstructing an original signal defined on the sphere 
corrupted by noise, based on incompletely sampled data, has received attention 
lately, mainly in areas such as cosmic microwave background (CMB) radio analysis 
in astrophysics [43,44,491, surface representation in computer vision 112,14,87], 
and spectral estimation in geophysics [8,11,33|. The spherical filters, including 
analysis, smoothing and synthesis filters, are key tools for this operation. Therefore, 
designing a suitable filter by choosing a set of proper basis functions is a practical 
issue. 

For the present research, most of the signals are assumed to be spectral-limited [13, 
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31,33]. According to the Fourier transform (spherical harmonic transform), a 

spectral-limited signal occupies the whole sphere. However, in practice, only some 

part of the region on the unit sphere is available or of interest, that is, a spatial-

limited signal is more common in reality. At present, a box window function is 

usually used to obtain a spatial function [43,44], which causes infinite spherical 

harmonic coefficients in the spectral domain and therefore a truncation is needed 

for numerical simulation. Therefore, achieving the trade off between a finite spec-

trum and a finite spatial occupation is a practical problem. 

In reality, due to the spatial features of the region of interest on the unit sphere, 

such as the melting of icecaps and surface displacement after large earthquakes ]8], 

together with the numerical requirement of finite hmitation of the spectral band-

width, such a basis of simultaneously spatially and spectrally concentrated func-

tions is needed for efficient data analysis and function representation on the unit 

sphere. Wavelets are often used as a locahzed filter to analyze the data for recon-

struction, de-noising or de-convolution ]47,88-90]. However, the "dilation" of the 

wavelet on the unit sphere is hard to be reconciled on a spatially bounded region; 

further, the stereographic dilation needs a projection back procedure ]21,88 . 

On the other hand, the spherical Slepian functions are another good choice of ba-

sis functions due to their orthonormal property and being simultaneously spatially 

and spectrally concentrated in the spatial region and spectral bandwidth ]31-33 . 

They have also been applied, for example, in analyzing data and representing func-

tions on the unit sphere J8], spectral analysis ]11,91,92], and spherical wavelet (a 

kind of spherical filter) design ]49] for CMB power spectrum estimation, and the 

construction of invertible filter banks on the sphere 113 . 

However, researchers have shown, in the time-frequency domain, that the pro-

late spheroidal wave functions (PSWFs), which are the optimal band-limited func-

tions of the Slepian concentration problem, have longer tails and lower decaying 

rates than the half sinusoids obtained by a second-moment weighting in the time 

domain [61] and optimal functions with a fourth-moment weighting in the time do-

main ]34], [76[. Therefore, PSWFs are not good at offsetting potential interference 

between signals concentrated in different spectral regions. 

Based on similar reasoning, it is necessary to investigate whether there exists 

other basis functions on the unit sphere, which have good limited spectral de-

gree and good energy concentration in the spatial domain and also have better 

performance than the spherical Slepian functions in analyzing data, representing 

functions and reconstructing signals. 
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5.2 Spectral-limited Signal Concentration with Az-
imuthal Moment Weighting On 

In this section, three different concentration measures are defined and the corre-
sponding optimal functions are solved. Further, a comparison between these basis 
functions is made. 

5.2.1 Measures for Spectral-limited Signal Concentration on 
S2 

Assume f{x) G ds) is a spectral-hmited signal of order N, i.e., 

= E E fnYn-'i^), ( 5 - 1 ) 
n = 0 m=—n 

where = (/j^rl") ^̂ e the spherical harmonic coefficients given by (2.20). 
The spherical Slepian simultaneous energy concentration measure is defined by 

As A K l ^ = Maximum. (5.2) 
/s2 p{x)ds{x) 

and the optimal functions are the spherical Slepian functions which achieve the 
maximum energy in the spatial region P G Ŝ  [33 . 

By considering the entire sphere, a global kth moment azimuthal measure 
(GMAM) is defined as [93] 

/g, p{x)ds{x) 

where k = 1,2, - • •. 

The local kth moment zenithal measure (LMZM) XL is defined as [94[ 

where A; = 0,1,2, • • •. 
Comparing with these definitions, we find that: 

• LMZM gives the simultaneous energy concentration measure (5.2) for k = 

0 [33]; 
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• the objective function of GMAM is to minimize Ac, while that of LMZM is to 
maximize XL, though both GMAM and LMZM have the similar formulation 
(shown in the next section). 

5.2.2 Problems Under Consideration 

The objective in this chapter is to find such optimal functions in the specified region 
r that: 1) achieve the minimum azimuthally moment weighting measure on the 
whole sphere(GMZM), and 2) achieve the maximum zenithal moment weighting 
measure(LMZM), respectively. We take A; = 2,4 as examples. Our aim is to 
investigate whether these sets of the optimal functions with minimum global kth 

azimuthal measure and those with maximum local A;th zenithal moment measure 
are good choices for spherical filter design. 

5.2.3 Finite Dimensional Formulation for G M A M and LMZM 

Suppose the region T is a cap with colatitude range (0 ,0 ) . Looking at (5.3) 
and (5.4), we notice that: 

• when 0 < 9 < TT, the concentration measure A corresponds to LMZM; when 
0 = TT, A corresponds to the GMAM; 

• the formulations of these GMAM and LMZM are the same except the different 
extremization [93,94]. 

Therefore, for calculational simplicity and also easy comparison with the spherical 
Slepian function [33], we use one formulation including both GMZM and LMZM 
and we also use real spherical harmonics [51]. However, we must understand that 
the "Global" minimization and "Local" maximization problems are completely 
different. 

Following a similar procedure to [33], after substituting (5.1) into (5.4) and 
interchanging the orders of summation and integration, we obtain 

. _ E l o E L - . r E i o El-, f D f 
v^n = (5.5) 

-^71=0 /L^m=-n Jn \ II 
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where D is a (A'' + 1)^ x {N + 1)^ matrix with elements 

pimp A 
^nq = / # / -Jo Jo \ sin 9 dd 

= 2Tr6mp [ ^ 'X j r l {e)XlP\ {9) sin 9 d9 
Jo 

(2n + l ) i (2g + l ) i 

X 

vap 2 

I . e 

n — m ! 

( ^ - b l ) ! 

_{n+ \m\)\_ 

(cos (cos 9) sin 9 d9, 
0 

and f is the ordered column vector of spherical harmonic coefficients 

rO fO fO r-l f-1 rN fN fJVVr 
I — Uo ' /l ' /2 ! • • • ' /iVi Jl i' " T Jl 1 J2 ' ^ J N ) • 

cN\T 

(5.6) 

(5.7) 

Note that D is a symmetric matrix and the Kronecker delta function S^q separates 

the matrix D into a block diagonal structure: 

D = diag(Do, D_i , Di , • , • • , D_jv, D^) 

and the sub-matrices satisfy 
= D^. (5.9) 

The necessary condition for a stationary solution to (5.5) is the solution of the 

(A'' -f-1)^ X (A'' -H 1)^ algebraic eigenvalue equation [33] 

D f = Af. (5.10) 

Following the same procedure to [33,93], and using the intermediate condition 

= Dm, we only need to solve for a (iV - m -I- 1) x (TV - m -h 1) matrix for 

fixed angular order m (m > 0), 

(5.11) 

where 
pimm r^mm 

pimm p\mm 
-̂ (m+l)™ -^(m+l)(m+l) 

T~imm pimm 

r)mm 
^mN 

pimm 

r)mm 
^NN 
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Solving the eigenvalue equation (5.11), the eigenvectors are obtained where j 
is the index of the eigenvectors with j = 1,2,-- - , {N — m + 1). Then, the associated 

eigenfunctions can be found by (2.19) and (2.12), 

(5-13) 
n=m 

where ^f j^^ j is the element of the eigenvector Finally the optimal spatial 

eigenfunction f j { x ) = f]{(>•, 4>) for fi^ed m are given by 

f S \ O A ) = l f t " ; \ e ) , m = 0; (5.14) 
' { j ) 

'U) 
cos(m</)), 0 < m < iV. 

5.2.4 Numerical Examples 

As an example, we consider a maximum spectral degree Â  = 18 for the spectral-

limited signal /(cc), which is also convenient for comparison with Simons' spherical 

Slepian function presented in [33 . 

Fig. 5.1 (a) depicts the optimal associated eigenfunctions when j = 1 

and m = 0 for A; = 2,4 with minimal eigenvalues for GMAM and Simons' spherical 

Slepian functions with maximal eigenvalues [33] in two caps [0, 20°] and [0, 40° . 

Here, "j" denotes the index of the function. This figure shows that the optimal 

functions for GMAM (5.3) compared with the spherical Slepian function (5.2): 1) 

tend to be more even as k increases, 2) concentrate between 0 and 40°, 3) have 

a higher peak value in the original for A; = 2 compared to those of A; = 4 and 

Simons', and 4) approach the spherical Slepian function in the cap [0,20°] for 

fc = 4. Fig. 5.1 (b) describes the optimal functions / f^ jV) of GMAM and Simons' 

method for m = 1, which is similar to Fig. 5.1 (a). 

Fig. 5.2 shows the comparison of the optimal associated eigenfunctions for 

GMAM, LMZM and the spherical Slepian functions. In this figure, "A; = 0, Si-

mons" refers to the local 0-th moment zenithal measure, which is also Simons' 

spherical Slepian function with maximal energy concentration in the cap; "A: = 4, 

GMAM" refers to the optimal functions obtained using the global 4th moment 

azimuthal measure (5.3). From the figure, it is easy to see that the optimal associ-

ated eigenfunction with LMZM has less energy in the cap than that with "A: = 4, 

GMAM" and Simons' spherical Slepian function. A large portion of the energy for 

LMZM lies outside the colatitude 9 = 20°. Secondly, for LMZM, as k increases, the 
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(a) (b) 

Figure 5.1: Comparison of the optimal associated eigenfunctions corre-
sponding to GMAM (5.3) and Simons' spherical Splepian functions (5.2): (a) 
m = 0; (b) m = 1. 

curve inclines to larger values in the main lobe and concentrate much more energy, 
from which we can deduce that the tail decays quicker. However, there seems no 
advantage for the optimal function of LMZM in the side-lobe's decaying comparing 
over Simons' Slepian function, which differs from the time-frequency case [34,76]. 

Figure 5.2: Comparison of the optimal associated eigenfunctions f corre-
sponding to the kth {k = 0,1,2,3,4) moment zenithal measure (5.4) in the cap 
with 0 = 20°, global 4th moment zenithal measure (5.3) and Simons' spherical 
Slepian concentration measure (5.2) in the cap with 9 = 20°. N = 18. 

The optimal associated eigenfunctions f^{0) of LMZM for k = 4 and Simons' 
spherical Slepian functions for different cap sizes are shown in Fig. 5.3. From these 
two figures, it is easy to see that the main-lobe of LMZM moves and the peak value 



90 Spherical Basis Functions for Different Energy Concentration Measures On 

lies on the left-side to the cap edge as the cap colatitude increases. However, the 
spherical Slepian function shows better spatial concentration than LMZM, though 
roughly when © > 65° it tends to concentrate its energy away from the North 
pole [91]. For k = 4, the optimal function with minimum GMAM is shown in 
Fig. 5.2 with "/c = 4, GMAM" and it is invariant by definition. 

(a) (b) 

Figure 5.3: The optimal associated eigenfunctions correspond to LMZM 
and Simons' spherical Slepian functions in the different cap. (a) LMZM and (b) 
spherical Slepian function. N = 18. 

Fig. 5.4, Fig. 5.5 and Fig. 5.6 show our optimal associated eigenfunctions 
with maximal local 4th moment zenithal measure (LMZM) in the cap [0, 20°] and 
minimal global 4th moment azimuthal measure (GMAM) on the whole sphere along 
with Simons' spherical Slepian function with the maximal energy concentration 
measure in the cap [0, 20°] for m = 0 to m = TV. Apparently, the function for 
GMAM has a good spatial concentration region in the [0, 20°] colatitude region. 
It also shows that as m increases, both GMAM eigenfunctions and the spherical 
Slepian functions leak their energy to the south hemisphere. However, the tails of 
GMAM decay much faster than Simons' as m > 3, which means the important 
eigenfunctions (those with most of the energy in the spatial region) of Simons' 
method are less than GMAM. Further, the optimal associated eigenfunction with 
LMZM has less energy concentration in the cap than that of GMAM and the 
spherical Slepian function; and it also has a similar side-lobe to Simons' Slepian 
function, both of which are worse than that of GMAM. Further, the side-lobes 
of both the function with LMZM and the spherical Slepian function decay more 
slowly than the optimal function with GMAM. 

Finally, the first four optimal spatial functions 0) of the three measures 
considered for m = 0,1 and j = 1 ,2,3,4 on the unit sphere are shown in the 
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Figure 5.4: The optimal associated eigenfunctions with the maximal local 
4th moment zenithal measure (LMZM) (5.4) in the cap [0,20°]. N = 18. 
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Figure 5.5: The optimal associated eigenfunctions f̂ ^ îO) with the minimal global 
4th moment azimuthal measure (GMAM) (5.3) on the whole sphere. N = 18. 
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Figure 5.6: Simons' splierical Slepian functions with the maximal energy 
concentration measure in the cap [0,20°]. N = 18. 

Fig. 5.7 and Fig. 5.8, respectively. These figures also show that there is no notable 
advantage of the optimal function with LMZM in the specified region on the sphere 
over Simons' Slepian function and the optimal function with GMAM neither in the 
energy concentration in the main lobe nor the side-lobe decaying rate. However, 
the GMAM functions have good spatial concentration regions and quicker decaying 
tails than Simons', which is a good alternative for spherical filter design. 

5.3 Spatial-limited Signal Concentration Based on 

the Harmonic Multiplication Operation on 

In this section, the focus is on the energy concentration of a spatial-limited signal 
/ under a weighting function of v based on the harmonic multiplication operation 
given in the Section 4.3, Chapter 4. 
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Figure 5.7: The first four Optimally spatial functions 0) of our LMZM and 
G M A M when fc = 4 and Simons' spherical Slepian function in the cap [0, 20°] for 
m = 0. The top row is our LMZM, the middle row is G M A M and the bottom is 
Simons'. 
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Figure 5.8: The first four Optimally spatial functions 4>) of our LMZM and 
G M A M when k = A and Simons' spherical Slepian function for m = 1 in the cap 
[0, 20°]. The top row is our LMZM, the middle row is G M A M and the bot tom is 
Simons'. 
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5.3.1 Problem Statement 

For a spatial-limited signal / with compact support F C 

jfix), xer-, 
fix) = (5.15) 

[0, xesyr, 

we seek some / which achieves the extrema (maxima or minima) of the energy 
concentration ratio under the weighting function v whose spherical coeffients are 
positive, 

, {vQf,vQf) 
^ ^ 7TT\ ^ extremum, (5.16) 

\ / ' j) 
where © is the harmonic multiplication operation defined by [38], 

N n 
{v (5.17) 

n=0 m=—n 

Here, the spectral-limited function v is given by 

N n 
= E E (5.18) 

n=0 m=—n 

where v"^ are real and v™ > 0 for all n,m. 

5.3.2 Problem Formulation 

Substituting (5.17) into the objective function (5.16), we have 

T " f /-^n=0 /-^m=—n \ n Jj A = 
2 

y-oo y.n ,rm\2 ' 
/-^n=0 /—'m=-n iJn I 

(5.19) 

It is well known that to render the Rayleigh quotient (5.16) stationary, f{x) must 
be the solution of the Fredholm integral equation. 

N n 
' fiy)ds{y) = \f{x),xeT. (5.20) 

. r e=0 m=-n 

Denote the integral kernel as 

N n 
D{x,y) = E E K?yn{x)Y^{y). (5.21) 

r i = 0 m=—n 
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For the simple calculation, we restrict the region to the polar cap [0,©], where © 
is the maximum colatitude of the region. 

According to the separability of the spherical harmonics, we have 

N / iV \ 

m=-N 
f{eA)= E E / " ^ r W = E (5-22) 

\ri=|m| / 

N 

m=-N 

where 

N 

ue) = ^ (5.24) 
n=|m| 

Similarly, for the kernel function, we have 

D{x,y) = D{e,cj),e\cl>'[ 
N n 

n=0 m=—n 
N n 

n=0 m=—n 
N N 

= E E (5.25) 
m=—N n=\m\ 

Substituting (5.22) and (5.25) in (5.20), for 0 < 0 < ©, we have 

N .e N N 

/ 27r ̂  K\'S':{e)Si:^{e')UO')sme' de' = X J] 

That is, (5.20) can be decomposed into a series of fixed-order, one-dimensional 
Fredholm eigenvalue equations [33), 

rD{e,e')fm{e')sine'de' = XU9), o<e<e, (5.27) 
Jo 

where -N < m < N and the kernel 

N 

D{e, e') = 27^ (5-28) 
n=|m| 
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Solving the integral equation (5.27), the optimally associated spatial-limited func-
tion fm{G) for fixed m is obtained, 

= (5.29) 

From here, we can conclude that the optimally spatial-limited function that max-
imizes the concentration ratio (5.16) is only related to the spectral degree n for 
fixed m. Therefore, only the variable n in the weighting coefficients v^ has some 
effect to the optimal eigenfunction fm{Q)- In the following, we take special values 
of i;™ as examples to solve the corresponding optimal functions and discuss their 
properties. 

5 . 3 . 3 < = 1 f o r a l l 0 < n < iV a n d -n<m<n 

This case has been well studied in [31-33], and the measure A is the maximum 
energy concentrated in the spectral interval [0, A''] for a spatial-limited function / , 
that is, 

En \fmi2 
^ Y-oo ^ n T ^ = max imum. (5.30) 

The optimal signals are called the spherical prolate spheroidal wave functions 
(PSWFs), or the spherical Slepian functions. 

5 . 3 . 4 < = ( f ^ ) ^ f o r a l l 0 < n < TV a n d - n < m < n 

Just like the bandwidth moment weighting in the frequency domain [34,61,76], we 
formulate the spectrum weighting on the unit sphere. 

Take w™ = fc = 1, 2, • • •. It should be noted that fc = 0 is the special 
case of u™ = 1. The objective function in this case is changed into 

^N spn / n+l \2fc| fm 
^ Z^n=0 ^m=-n\N+l ^ \Jn 2 

— ^ lit- — — It ^ J V - t - i ' ' " ' * ' • 

^00 y^n = m a x i m u m . (5.31) 

As we have proved before, it is equivalent to solve 

f̂c) / I 1 \ 
fm{e')sm9'de' = \ f^{e ) . (5.32) 

We use Gaussian-legendre quadrature method [95[ to solve the above integral equa-
tion and find the associated eigenfunctions. 
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5.3.5 Numerical Examples 

Take Â  = 18 and 0 = 40° for convenient comparison with the spherical Slepian 
functions presented in [33]. We also take A; = 0 ,1 ,2 as examples to study the 
properties of the optimal functions. 

Fig. 5.9 shows the normalized eigenfunctions with maximum concentra-

tion ratio A for m = 0 and their corresponding squared spherical harmonic coeffi-
cients Fig. 5.9 shows that: 1) the optimal waveform of fo{0) does not vary 
much as k increases; 2) the peak value of the optimal fimctions moves to the right 
as k increases; 3) most of the energy of the optimal function concentrated in the 
first spectral degree [0,18] for all t , and 4) the spherical harmonic spectrum decays 
faster as k increases, but the decaying rate is much slower than that of the spherical 
Slepian function, which is a different result to the time-frequency case ]34]. The 
non-zero value for fo{9) when k > I at the boundary 9 = 40 also shows the hmita-
tion of the Gaussian-legendre quadrature method for inverse problems. A similar 
situation is shown in Fig. 5.10 for m = 1. However, the calculation error this time 
is much larger, for /i(40°) = -0.0495 for A; = 1 and /i(40°) = -0.0615 for k ^ 2 . 

15 20 25 
colatitude 

60 
spectral degree n 

(a) (b) 

Figure 5.9: The normalized eigenfunctions fm{0) with the maximum concentration 
ratio Afc = 0.9999,0.7155,0.5802 under different weighting v̂ ^ = ( f ^ ) ' ' for varied 
A; = 0,1, 2. Here, m = 0. k = 0 corresponds to the spherical Slepian function. 

Fig. 5.11 shows the corresponding normalized optimally associated spatial-
limited functions fmid,4>) with the first four maximum concentration ratios A for 
m = 0 and m = 1. Obviously, these figures show that the functions obtained from 
the weighting have more side lobes than the spherical Slepian function and the 
increasing k has little effect on the spatial-limited signals. Fig. 5.12 shows the nor-
malized optimally associated spatial-limited function fm{0,4>) with the maximal 
concentration ratio under the weighting v"̂  = ( f ^ ) ' ' for fc = 0,1 from m = 0 to 



98 Spherical Basis Functions for Different Energy Concentration Measures On 

10 15 20 25 
colatitude e 

60 80 
spectral degree n 

(a) (b) 

Figure 5.10: The normahzed eigenfunctions /m(^) with the maximum concentration 
ratio Xk = 0.9999,0.7023,0.5836 under different weighting u™ = for varied 
fc = 0,1,2. Here, m — 1. k = 0 corresponds to the spherical Slepian function. 

m — 11. It is easy to see that these two functions approach the same as m increases 

up to 7. 

5.4 Summary and Contributions 

In this chapter, we have formulated both the azimuthal moment weighting measure 
to a spectral-limited signal and the harmonic nmltiphcation weighting measure to a 
spatial-hmited signal on the unit sphere. The corresponding optimal functions are 
obtained through numerical simulation and some comparisons with the spherical 
Slepian functions have been made. Main contributions of this chapter are: 

1. A global minimum azimuthal moment weighting (GMAM) of a spectral-
limited signal is formulated; the set of optimal signals obtained has a faster 
decaying side lobe and good spatial concentration in comparison to the spher-
ical Slepian functions [93]; 

2. A local minimum zenithal moment weighting (LMZM) of a spectral-limited 
signal is also formulated; in contrast to the optimal functions of GMAM and 
the spherical Slepian functions, the peak values or the main lobes of the 
optimal functions of LMZM are moving as the cap increases; other than that , 
no other obvious advantages are found [941; 

3. An arbitrary spectral-limited function weighted to a spatial-limited function 

by the harmonic multiplication operation is formulated; simulation results 
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Figure 5.11: The normalized optimally associated spatial-limited functions (p) 
with the first four maximum concentration ratio imder different weighting w™ = 

for varied A; = 0,1, 2. /c = 0 for the top line, fc = 1 for the middle and k = 2 
for the bottom, (a) m = 0 and (b) m = 1. A; = 0 corresponds to the spherical 
Slepian function. 
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Figure 5.12: The normahzed optimally associated spatial-hmited functions 0) 
with the maximal concentration ratio for fixed m obtained from the weighting 
Vn = ( f r i ) ' ' m = 0 to m = 11. m increases from left to right and from top 
to bottom, (a) A: = 0 and (b) /c = 1. k = 0 corresponds to the spherical Slepian 
function. 
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show that the spherical spectrum of the obtained optimal function has slower 
decaying side lobe than that of the spherical spectrum of the spherical Slepian 
function [96], which is a totally different result to the time-frequency case [34 . 
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Chapter 6 

Spherical Convolution and Signal 
Reconstruction on 

The present chapter develops results towards a systematic theory for signal pro-

cessing on the unit sphere, including filtering, smoothing and estimation. In this 

chapter, one novel spherical convolution theorem based on a linear operator that 

combines tow rotations of the filter function defined on the unit sphere into a 

quadratic functional, which not only exhibits a well defined spherical harmonic 

characterization, but also specializes the isotropic convolution. Further, a simple 

reconstruction approach using the spherical harmonic multiplication is proposed, 

where a simple calculation method is shown comparing with the existing recon-

struction algorithms. 

Section 6.2 reviews the existing convolution theorem in the time-frequency do-

main. Section 6.3 recalls several existing spherical convolution formulations on the 

unit sphere. Further, the shortcomings of the corresponding spherical convolution 

formulations are pointed out. Section 6.4 proposes a spherical fuh isotropic convo-

lution theorem based on a hnear operator by a quadratic functional, which not only 

specializes isotropic convolution, but also relaxes some requirements of the spherical 

filters. Theoretical reconstruction algorithms by the existing spherical convolutions 

are discussed in Section 6.5. Finally, Section 6.6 reconstructs the original signal by 

the harmonic multiplication operation based on the analysis-synthesis filter idea. 

6.1 Introduction 

Unit sphere signal processing is an increasingly active area of research, such as 

smoothing and denoising in computer vision [13,15,97], spectral analysis in geo-

physics [11,33], power spectrum estimation in cosmology [36,40,43,44] and wireless 
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channel modeling and 3D beamforming/sensing [6,79,98]. Among these applica-

tions, linear convolution, corresponding to the filtering operation, is among the 

most fundamental operations. However, the convolution on the unit sphere is not 

consistently well defined. 

In Euclidean space, for any two complex-valued functions / and g defined on 

the real line M, the linear convolution is defined by 

{ f * 9 m = f g{t-T)f{r)dr. (6.1) 

Convolution on the Euclidean space satisfies commutation, i.e., f * g = g * f-

The convolution theorem states that convolution, or filtering, in the time domain 

corresponds to multiplication in the frequency domain. However, for functions 

defined on the unit sphere, the analogy of the frequency domain is to consider the 

spherical harmonic expansion. Therefore, multiplication in the spherical harmonic 

Fourier coefficients should also have the analogy of multiplication in the frequency 

domain. Further, translation in the time domain changes into rotation on the unit 

sphere. 

At present, there exist three different approaches to define the spherical convo-

lution: 1) isotropic convolution [36-38], 2) left convolution [35], and 3) spherical 

correlation [39|. These definitions are not consistently well defined compared with 

the linear convolution theorem in the Euchdean space. In addition, these defini-

tions implicitly have some other extra requirements: isotropic convolution needs 

the filter axisymmetric, and spherical correlation, which strictly is not considered 

as a convolution due to the convolved values lying on the rotation group 5 0 ( 3 ) , 

requires a rotation operation which needs high computation cost, and one projec-

tion back procedure. For the left convolution, though it has a simple spherical 

harmonic characterization which makes computation very easy, only the zonal part 

of spherical coefficients of the fiher are used, that is to say, some non-zonal part 

information is lost. 

In this chapter, we propose a novel spherical convolution theorem by defining a 
linear operator that combines two rotated functions from one fixed arbitrary filter 
function defined 

on the unit sphere, which specializes the isotropic convolution 

without axisymmetric requirement to the spherical filter. Comparing with the left 

convolution, our convolution theorem not only holds some of the same qualitative 

features with a in a non-trivial way difference, but also keeps all the information of 

the spherical fiher. We also show the spherical harmonic multiplication operation 

can not be considered as a kind of isotropic convolution. Further, the spherical 
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harmonic multiplication operation is considered as a kind of anisotropic convolution 
and is used to reconstruct, or equalization, the original signal based on the analysis-
synthesis filter method. 

6.2 Convolution on Euclidean Space 

Suppose / and g are complex-valued functions on R'^, d-dimensional vector space 
over R, then their convolution is given by 

{f*g){x)= f f{y)g{x-y)dy (6.2) 

= / f{x-y)g{y)dy. (6.3) 

Here, x = (xi,X2, • • • ,Xd). Obviously, convolution satisfies the commutation prop-
erty in the Euchdean space. Introduce an integral operator Q, then the convolution 
can be expressed as 

{Gf){x) = {f*g){x)^ [ g{x-y)f{y)dy. (6.4) 

Obviously, the convolution kernel in the Euclidean space is g{x — y). We denote 
the Fourier transform of / by J'(-), which is defined by 

Jm'' (6.5) 

Theorem 6.2.1 Convolution Theorem: For both f,g e R'^, the Fourier trans-
form of the convolution is the poiniwise product of the Fourier transforms: 

nf*9) = nf)-n9)- (6.6) 

6.3 Convolution on 

6.3.1 Isotropic Convolution on Ŝ  

In Section 4.3.2 we have defined the isotropic convolution between function / G 
ds) and an axisymmetric function h e ds) as 

ilCHf){x)^{h®f){x)= [ K,{x-y)f{y)ds{y), 
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where Kn{x-y) = ZZo Tl^-n The isotropic convolution 2n+l 
theorem is given by 

where hi = (ft, Y«) and / „ " = ( / , r " ) . 
From this definition, we can observe that: 

1. The filter function h must be axisymmetric, and the convolved function is 
also on the unit sphere. 

2. Isotropic convolution does not satisfy the commutation property, i.e., h® f ^ 
f®h. 

3. Isotropic convolution differs from the classical linear convolution theorem (6.6) 
due to the scaling factor ^ 2n+I' 

6.3.2 Left Convolution on Ŝ  

The left convolution on the sphere is developed by Driscoll and Healy [35], 

{-Rfh) (x) = if i. h) {x)=( f f{grj)ng dg) h{x) 
\Jg€SO{3) J 

= [ f{grj)h{g-'x)dg, (6.9) 
Jgesoia) 

where f,h e ds), rj is the north pole, 7^ is the rotation operator defined in 
Section 2.4.2 and g is a rotation element on the rotation group 50(3). 

Theorem 6.3.1 Left Convolution Theorem onS^; For functions h, f e ds), 
the Fourier transform of the left convolution is a pointwise product of the trans-
forms: 

•— m / Ajr 
( f - h ) ^ (6.10) 

where = ( / , F-) and hi = {h, Y^). 

This definition shows that: 

1. The left convolution integrated on 5 0 ( 3 ) can be understood to be analogous 
to the convolution on Euclidean space after substituting translation with 



6.3 Convolution on S^ 107 

rotation, 

{ f ^ h ) { x ) = [ f{p'n)h{p-'x)dp 
JsO{3) 

= [ [7^p-l/(r7)][7^p/i(a;)] dp. 
JsO(3) /SO(3) 

The above equation also equivalently shows that only the points of the func-

tion / at the north pole, /(r/), is considered in the integration on 5 0 ( 3 ) . Due 

to the rotation invariant property at the north pole, all the spherical Fourier 

coefficients of are kept without effect from the integration, while different 

situation happens to h^, where only is rotation invariant. The 27r factor 

is from the all rotations. 

2. The left convolution is not commutative, i.e., h-k f ^ f -k h. 

3. Some part of the information, /i™ with m 0, is lost. 

4. Except a scaling factor 27r, the left convolution theorem is same as the 

isotropic convolution theorem. Or more generally, the left convolution is 

equivalent to the isotropic convolution when both of the filters are axisym-

metric [38,97]. 

6.3.3 Spherical Correlation on 

The spherical correlation is proposed by Wandelt and Gorski who aimed to estimate 

the cosmic microwave background (CMB) power spectrum in astrophysics [39], 

{f,ngh)= [ [ngh]{x)f{x)dx^ I hig-^x)f{x)dx 
00 n n 

= E E E (6.11) 
n=0 m=—n m'=—n 

where f , h e and is the Wigner-D function defined in Sec-

tion 2.4.3. This definition sometimes is called the spherical convolution [13|. 

This definition shows that: 

1. The spherical correlation is not consistent with the linear convolution theo-

rem, where both of the functions in the convolution and the finally convolved 

function are in the same Euclidean space. The resulting function is in 5 0 ( 3 ) , 

except when h is an axisymrnetric function which can be explained to be on 

the unit sphere; 
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2. It has close correlation to the spherical wavelet transform and is popularly 
applied in physics and signal processing [21,45,99]; 

3. It requires a high calculation cost to reconstruct an original signal by a dilated 
and rotated wavelet 3 . 

6.4 Full Isotropic Convolution on 
As discussed above, the existing convolution definitions have some shortcomings: 
1) for the isotropic convolution, the spherical filter has to be axisymmetric and 
it also causes "parallel lines to be blurred into a single line" [100]; 2) for the left 
convolution, the function of interest must be centered on the north pole, which 
is not practical in applications due to the difficulty of implementation; 3) for the 
spherical correlation, the resulting function is on 50(3) , so an additional projection 
procedure is needed to project the intermediate function back to the sphere. 

Therefore, it is desirable to set up a new definition for the spherical convolution, 
which applies to any function of interest and the spherical filter and in which the 
convolved function lies on the unit sphere. Motivated by the left convolution [35], 
the filter bank design idea [13[ and the optimal filter design on the unit sphere [18, 
42,45,101[, a spherical full isotropic convolution theorem induced by a new operator 
is proposed, which 1) has no requirements to the functions participated in the 
operation, or simply, no extra rotation before the convolution is needed, 2) no 
information is lost. 

6.4.1 Kernel Function 

Without loss of generahty, assume h e L^iS"^, ds) to be a spherical filter. Let V^ 
be an operator with kernel function Dh{x,y). Define 

Dh{x,y)= / Hp-^y)h{p-^x)dp. (6.12) 
JS0(3) 

Theorem 6.4.1 

oo n n „ 2 

= E (6.13) 
n = 0 m=~n m'=-n ^^ ^ 

= E E (6.14) 
n=0 m=—n 

where = and P^i-) are the Legendre polynomials. 
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Proof 
According to (2.28), we have 

QO q q 

h{p-'x) = E E E WM^^i^i 
9=0 p=-qp'=-q 
oo n n 

n=0 m—-n m'=-n 

Substituting them into the definition of the kernel function (6.12), we have 

Dh{x,y) 
„ oo n n oo q q 

= / E E E E 
JSO(3) rn'=-n q=0 p^-q p'=-q 
oo n n (X q q „ = E E E E E E / D̂ )Di,̂ {p)dp. 

n=Om=-nm'=-n q=0 p=-qp'=-q JSO{3) 

By the Peter-Weyl theorem on compact groups that (p) forms an orthogonal 
basis on the Hilbert space 1^(50(3) , dp) [13,56,57], 

^^ ^ Dl,MDl,,{p) dp = (6.15) 
ISO{3) 

Therefore, 

Dh{x,y) 
oo n n oo q q o 2 

- E E E EE E 
n=0 m=—n m'=-n q=0 p=-q p'=—q 
oo n n „ 2 = E E E 

n=0 m=—n m'=—n 

= E E 
n=0 m=-n 

where, in the last equation, we have used the addition theorem of the spherical 

harmonics, 

X; = • y). • 
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Comparing with the isotropic convolution kernel (6.17), if we let 

= 27r f ] (6.17) 
m=—n 

which is a function of the variable n, then 

oo 

Dn{x,y) = J 2 a n P n i x - y ) (6.18) 
n=0 

is an isotropic kernel function. Therefore, Dh{-) can be expressed in terms of a 

univariate function and 

= (6.19) 

The kernel function is also commutative: Dh{x,y) — Dh{y,x). 

6.4.2 Spherical Full isotropic Convolution 

The full isotropic convolution on the unit sphere is defined by 

{VMx)= [ Dh{x,y)f{y)ds{y). (6.20) 

Theorem 6.4.2 Spherical Full isotropic Convolution Theorem: For any 
f,h e ds), the Fourier transform of the full convolution on the unit sphere 
is: 

E (6.21) 
m =—n 

where Vh is an operator with a kernel function (6.12) and an = ^ 
given by (6.17). 

Proof 
Using the definition of convolution, this is 

(2?ft/)(x)= / Dh{x,y)f{y)ds{y) 
JS2 

/ OO n n „ 2 \ / oo q \ 

= £ E E E E E w w i^iy) 
\„=Om=-nm'=-n / \g=Op=-q / 

oo n n oo q 

= E E E E E ^ w P / J C ' w / wW)Y^{v)is(y) 
n=0 m=—n m'=-n q=0 p=-q 
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oo n n oo q _ 2 

= E E E E E 
n=0 m=-nm'=-n g=0 p=-q 

2n + l 

According to the Fourier transform on the unit sphere (2.20), this is 

oo n n Q 2 

= E E E ^ m w i ^ y 
n=0 m=—n m'=—n 

w C = E ^ K f f f -2n + 1' m=—n 

After changing the notation of m! by m, there has no affect to the deduction. Let 

Q„ = 27r X]m=-n ^^^ proof is done. • 

Remark 6.1 Comparing with the spherical diffusion smoothing which uses the left 

convolution theorem with a axisymmetric Gaussian kernel Zn = [15, 38], 

the bandwidth is controlled by a continuous spatial frequency kt, while the bandwidth 

of our full convolution is discrete due to an which is controlled by m. 

As the multiplication in the spectral spherical coefficients domain acts as an low 
pass filter, so when we use the full convolution in the practical applications, it is 
necessary to pay attention on the detailed values of the bandwidths of / and h. Sup-
pose the allowable bandwidths of / and h are [Bfmin, Bfmax] and [Bhmin, B hfudx], 
respectively. According to the spherical fuh isotropic convolution theorem, for any 
spectral degree 0 < n < A'', the Fourier coefficients of the convolved function must 
satisfy 

Taax{Bfmin, Bhmin) <n< mm{Bfmax, Bhmin)- (6.23) 

Corollary 6.4.1 If the spherical filter function h is an axisymmetric function, 

then the full isotropic convolution is a kind of isotropic convolution. 

Proof 
Since h is axisymmetric, h{x) = T,n=oKYn{x) with /i™ = h^Smo- Therefore, the 

kernel function is isotropic, 

oo 

D n { x , y ) = J2^7v\h'n\Pn{x-y). (6.24) 
n=0 

And the full convolution is given by 

oo n „ 2 

{VJ){x) = (6.25) 
n=0 m=—n O 
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Remark 6.2 Comparing with the isotropic convolution, the left convolution and 

the spherical harmonic multiplication, the full convolution has the following char-

acteristics: 

1. No special requirement for the spherical filter functions is needed. 

2. No information is lost. 

3. Does not conform to the classical convolution Theorem 6.2.1, where the full 

convolution is using the absolute square of the Fourier transform of the filters. 

4- A special case of the isotropic convolution. 

6.5 Theoretical Reconstruction Based on Existing 
Spherical Convolution 

Recovering or reconstructing original signals defined on the unit sphere based on 
sampled data is a practical problem in geophysics, cosmology and medical image 
processing. At present, most of the reconstructions are based on the outputs from 
the continuous spherical wavelet transform [88], left convolution [35] or isotropic 
convolution ]49] between the function of interest and the spherical filter. However, 
for the left convolution, the function of interest has to be centered on the north 
pole; for the isotropic convolution, the spherical filter is axisymmetric; while for the 
spherical wavelet transform, the resulting function is on 50 (3 ) , not on Further, 
these reconstructions involve huge computation cost. 

Actually, no matter what kind of convolution is used, the key point is whether 
this analysis filter can capture the full or at least most of the important information 
of the function of interest, such as component separation and feature detection, 
and further whether this convolution can provide an easy and exact reconstruction 
method to recover the original signal based on the convolved result. Of course, it 
still relates to the convenient reahzation of the spherical (analysis and synthesis) 
filters. 

6.5.1 Reconstruction Based on Isotropic Convolution 

The isotropic convolution is well defined on the unit sphere 136-38]. It is com-
monly used in astrophysics that convolves an axisymmetric beam function h{x) = 
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regarded as an analysis filter) with the sky function / , 

d^{h®f){x)^ [ h{x-y)f{y)ds{y) 

oo n I -j 

- E E 
n=0 m=—n 

It is well known that the observed signal is contaminated with noise and the sampled 
data is discrete. Usually, a map-making procedure [48] based on the sampled 
data is operated to construct the sky map. Here, for simplicity, we consider the 
map-making is perfect and no noise is added, that is, d is the exact continuous 
intermediate analysis result. For the discrete reconstruction, it has been discussed 
in the paper [49]. 

Therefore, to recover the original signal / , a synthesis filter h (azimuthal func-
tion) is used, 

oo n I T 

T={h®d)ix) = J2 E y^i^'d'^Y-ix) 
n=0 m=—n 

An = E E 
n=0 m=—n 

If the reconstruction is exact, that is, T = / = E^^o E m = - n i t is only 
possible when 

2n + l " " ' " 47r 

Based on this definition, the calculation is simple. However, this method has 
a strict requirement of the spherical filter - axisymmetric about the north pole, 
which is very hard to be implement in practice. Therefore, some non-circular beam 
function or some isotropic assumption for the power spectrum of the function of 
interest is needed [40], which distorts the accuracy of the measurements and the 
computational cost is also increased. 

6.5.2 Reconstruction Based on Left Convolution 

It has been shown that there is only a scale factor 27r difference between the isotropic 
convolution and the left convolution. Therefore, the reconstruction is similar as 
the isotropic convolution. However, the shortcomings of this method, except the 
disadvantages given to the isotropic convolution, are that the function of interest 
/ must be centered at the north pole and only the h^ part is contributable. 
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6.5.3 Reconstruction Based on Spherical Correlation 

According to (6.11), the spherical correlation between the function of interest and 
a rotated beam function b is given by 

7S2 
oo re re 

- E E E (6-27) 
re=0 m=—n m'=—n 

As we have stated that this convolved result S{g) lies on SO {3), not on the unit 
sphere therefore, a back projection procedure with conformal mapping is de-
sired, where extra computation cost is added. 

Suppose 6 is a synthesis filter. Based on the inverse spherical convolution defi-
nition [13], 

^ oo n re „ 2 
fix) = / [TZMx) S{g) dg = J 2 Y . E i ^ X K ' f n V : ix), 

the reconstruction is obtained if and only if 

Stt" 
Y E ^nk' = 1- (6.28) 2n + m'=—n 

Exact quadrature, including the equal-angular lat-lon grid sampling [35], Gauss-
Legendre sky pixelization (GLESP) [102[ and the generalized samphng theorem [13[, 
exists for this method. However, the computation is complicated and the cost is 
high due to the rotation operation and the Wigner-D functions. 

6.5.4 Reconstruction Based on Spherical Wavelet Transform 

The spherical wavelet transform for the function of interest / and a rotated and 
dilated spherical wavelet is defined by [88 

Wl{g,a)i9,cP) = {f,n{g)V{a)^) 

= / f {9, (I)), sine ded(f) 

= E E E fn^at (6.29) 
n = 0 m=-n m'=-n 
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where V is the dilation operator [3,991 defined in Section 2.5.2 and ^a is the dilated 
spherical wavelet 

l + tan^f 1 / , 1 e , 
^a = n X 2 t a n ~ ^ - t a n - ,( l + ( i t a n f ) 2 a V « ^ 

The resulting function hes on S0{3), though which could be considered on the unit 
sphere when \I/ is an axisymmetric function. Therefore, the equivalence between 
the harmonic multiplication theorem and the spherical correlation is only obtained 
when is axisymmetric. 

The reconstruction of the original signal / is given by 

f{9,cP)= [ dfx{a) [ dgWlig,a)[}ZgU^a]{0,4>), (6.31) 
JSO{3) 

if and only if the admissibility condition is satisfied, 

0 < CS - ^ E i < oo. (6.32) 

Here, the operator C ,̂ is defined as C^f^ = f n / ^ l -

Using this definition, it is easy to detect some features or separate components 
of / through the rotation and dilation to a mother wavelet. However, looking 
at (6.32), though the theoretical reconstruction is ensured through the integration 
on the continuous dilation factor a, exact quadrature rules do not exist for it. 
Therefore, a discretization of the dilation factor is required [3]. Further, even using 
the kernel dilation method [3], where the reconstruction is exact, it is still relating 
to the integration where high calculation cost is required. This is why most of 
the papers at present are restricted to the case where the spherical wavelet is an 
axisymmetric functions [13,49,99]. 

6.6 Reconstruction Based on Harmonic Multipli-
cation Operation on Ŝ  

Due to the difficulty in implementing the isotropic convolution and the high com-
putational cost of the spherical correlation, it is desired to develop another recon-
struction method with less computation and higher quantity recovery performance. 
In this section, since the harmonic multiplication can be regarded as a kind of 
anisotropic convolution from the operator concept. It is used to reconstruct the 
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original signal based on the sampled points. The analysis-synthesis filter bank 
concept [3,13,49] is used. 

6.6.1 Theoretical Reconstruction Based on the Harmonic 
MultipHcation Operation 

We use the anisotropic property of the harmonic multiplication operation to analyze 
and synthesize the function of interest. Theoretical reconstruction based on the 
harmonic multiplication operation is verified. And the simplified calculation is also 
shown. 

From the operator concept or the system theory, if we suppose h is an arbitrary 
asymmetric function, which is to be an analysis filter, / is the function of interest, 
such as the sky, then according to the harmonic multiplication operation, we have 

„ o o n 

I = hQf= lK,{x,y)f{y)ds{y) = Yl E ^^/r^Tl®)-
n=0 m=-n 

It is well known that constructing an axisymmetric beam is hard and all of the 
practical beam in the measurements are non-axisymmetric or non-circular [39,40 . 
In our scheme, h is asymmetric which is easily to be realized; further, the interme-
diate result I is still on the unit sphere, where no back projection procedure in the 
synthesis is required. Therefore, the calculation would be reduced. 

To recover the original signal, we need to convolve the analysis result I with a 
spherical synthesis filter h. Of course, some intermediate procedures are needed, 
such as denoising and discrete sampling. However, for simplicity, we suppose there 
is no noise in the synthesis procedure. It is easy to reahze the synthesis, 

oo n oo n 

g = = ^ n K Y n = E E K K f T Y ^ . (6.34) 
ra=0 m=-n n=0 m=—n 

For the exact reconstruction, that is g = f = ^^^^ Em=-n fn^r^ we only need 

K K = 1. (6.35) 

That is, = l/Zi^f. Therefore, we have 

_ oo n o o n 

M - ) = E E k y - x = J : X ; ^ y ^ x . (6.36) 
n=0m=-n n=0m=~n " 

In this method, it is only the multiphcation of the spherical harmonic coefficients 
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between the function of interest and the spherical filter, no additional requirement 
is needed. Therefore, the calculation cost is greatly reduced in contrast with the 
isotropic convolution, the spherical correlation and the spherical wavelet transform 
methods. 

6.6.2 Analysis Results 

According to the spherical harmonic transform, a function on the unit sphere cannot 
simultaneously have finite support both in the spatial domain and the spectral 
domain. For a spatial-hmited signal on the unit sphere, it occupies infinite spherical 
harmonic coefficients, which is impossible for the practical implementation and 
then a truncation procedure to finite spherical modes is always made. Therefore, 
a spectral-limited function is always used in the simulation. 

In this section, we take some special functions of h to analyze the function of 
interest / . For simpficity, we assume that the maximum spectral degree of both / 
and h are N ^ 5. According to the harmonic multiplication definition, even the 
spectral degree of one of these two functions are larger than 5, its spherical harmonic 
coefficients would be truncated by another 0 spherical harmonic coefficients. We 
also assume that the spherical harmonic coefficients are given by 

5 n 

/ - E E fnYr, 
n=0 m=—n 

where = 1, / r ' = 2, = 3, / / = 4, • • • , / | = 36. Three special analysis filters 

are also assumed: 

1. is an axisymmetric function with = <5̂ 0, 

n=0 

2. h is not an axisymmetric function, but all of its elements equal to 1, 

= E E 
n=0 m=—n 

3. The spherical harmonic coefficients of /i are /i™ = n + |m| + 1, 

5 n 
= + + (6-40) 

n=0 m = - n 
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According to the harmonic multiplication operation, 

^ = E E 
n = 0 m=—n 

we have 

5 n 

A - E E fn^n, 
n = 0 m=—n 

= E E f n Y n ^ = 

n = 0 m=—n 

n = 0 m=—n 

This shows that /i only contains part of the information of the original signal / , 

I2 is exactly the original signal and /a is the weighted signal. 

Simulation results are shown in Fig. 6.1. In each sub-figure, the left is the 

original function / , the middle is the analysis filter hi for i = 1,2,3 and the 

right is the corresponding analysis result /j. Fig. 6.1(a) shows the output is also 

axisymmetric; in Fig. 6.1(b), the output is precisely identical to the original image; 

and in Fig. 6.1 (c), the output is fairly similar to the original image, especially in the 

important features, which might be the perspective application for the harmonic 

multiplication theorem. 

6.6.3 Synthesis Results 

In this section, we do some synthesis experiments based on the analysis results. 

According to the theoretical reconstruction analysis in the subsection 6.6.1, we 

have known that only if the spherical harmonic coefficients of the synthesis filter 

reverse to those of the analysis filter, the reconstruction is achieved. That is, the 

synthesis filters are 

n = 0 

n=0 m=-n 

^ 5 n 

= E E — ^ ^ — n r -
Z—/ n -I- Un J- 1 " n+\m +1 " 
n = 0 m=-n ' 
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mmim 
Original function f 

Original function f 

Axisymmetfic function h Harmonic multiplication g 

(a) 

© 1© 
Nonsymmetric furxrtion h l-larmon>c multiplication g 

(b) 

-0 5 —̂ -0 6" 
Original function f 

•0 6 

Nonaxisymmetric function fi 

0 6 

'-0 6-^ .0 6" 
Harmonic multiplication g 

(c) 

Figure 6.1: (a) The original function / , the axisymmetric spherical filter h with 
/i™ = Smo and the harmonic multiplication output g ^ f Q h; (b) The original 
function / , the non-axisymmetric spherical filter h with K^ = \ and the harmonic 
multiplication output g = fQh] (c) The original function / , the arbitrary spherical 
filter h with /i™ = n + |m| + 1 and the harmonic multiplication output g = f Q h. 
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Theoretical reconstruction in the subsection 6.6.1 does not need the sampling 
algorithms. However, in reality, we usually obtain some distributed data. There-
fore, the reconstruction is discretized and some exact quadrature rules are need. In 
this chapter, we use three sampling algorithms: equidistant cylindrical projection 
(ECP) [99], equal-angular sampling method [35] and Gauss-Legendre sky pixeliza-
tion (GLESP) [102], The first method is only approximated and the later two are 
exact quadrature rules. 

Reconstruction 

As we have stated that, in the real experiment, only the sampling values of g{9, 0) 
are obtained, its spherical harmonic coefficients = are not known. There-
fore, the reconstruction can be only made based on these sample points. According 
to the spherical harmonic transform (2.20), we have 

5™= / g{x)Y^{x)dx= r j g{e,(t>)Y^{e,<l)) 
Jo Jo 

And when we do the synthesis, we actually use the estimates of g^. Denote the 
estimates g'^. Substituting these estimates into the synthesis formula, 

N n 

n = 0 m=—n 

we obtain the reconstructed function. 

It should be noted that if we use the exact value of g'^, the reconstruction is 
exact. Since we have known the function of interest and the spherical filters exactly, 
the actual synthesis result is also known to be exact. For comparison, the actual 
synthesis results are shown in Fig. 6.2. In the first example, we have deployed the 
axisymmetric function as the analysis filter which only captures the information 
of the original signal, so even if we use the right synthesis filter to the analysis 
filter, the synthesis result is /o = P^i't of the original function, and 
completely different from the original signal. Therefore, we must avoid using an 
axisymmetric function as an analysis filter. The second and the third synthesis 
outputs are precisely identical to the original signal. The former is that we are 
using the filter with all the spherical harmonic coefficients 1, therefore, the analysis 
output and the synthesis output are both same as the original output. The latter 
is the exactly reconstructed function. 
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# 
Synthesis output 1 Synthesis output 2 Synthesis output 3 

Figure 6.2: Synthesis output: (a) axisyminetric synthesis spherical filter with 
= (b) non-axisymmetric synthesis spherical filter with [h]^ = 1; (c) 

non-axisymmetric synthesis spherical filter with [h]'^ = ^ «+|m| + l ' 

Equidistant Cylindrical Projection (ECP) Method for Reconstruction 

Now we deploy the equidistant cylindrical projection (ECP) method [99] to recover 

the original signal. Equal angular sampling is taken and the number of sample 

points is L, that is, 6j = (7rj ) /L and (pj = {2iTj/L) for j = 0,1, • • • and 

L2 

L- l 

j=o 

(6.44) 

Here, for simplicity, let L = [2(Af + 1)]^ = 144. The synthesis results are shown 

in Fig. 6.3. Note that we have rotated this figure's view for easy comparison 

by "view([-65,65,60])" in the Matlab simulation code, but no other things have 

changed. Comparing this figure to the exact reconstruction result Fig. 6.2 (Here, 

though we have wrongly used the axisymmetric in the first example, we still think 

it is the exact reconstruction based on the exact spherical harmonic coefRcients 

g ^ ) , the result is not good. In Fig. 6.3 (a), the reconstructed function captures the 

important feature (red part) centered on the north pole. For Fig. 6.3 (b) and (c), 

the red part or the important feature is captured, though it has been expanded; 

further, the axisymmetric property of the side spots of the original function is lost. 

So the ECP method is quite inadequate in recovering the original signal. 

Equal-angular in Lat-lon Grid Sampling for Reconstruction 

The equal-angular in lat-lon grid sampling theorem 135] and the Gauss-Legendre 

sky pixelization (GLESP) [102] are claimed to be the exact reconstruction algo-

rithms. In this section, we use them to recover the original signal and also verify 

these algorithm's performance. As the spectral degree of is A'' = 5, to avoid the 

Nyquist restriction, at least [2(iV + 1)]^ = 144 points need to be sampled to ensure 

the exact reconstruction. We take the number of samples L = [2{N + 1)]^ = 144. 

For the equal-angular lat-lon grid method, according to Theorem 3 [35[, the 



122 Spherical Convolution and Signal Reconstruction on 

Synthesis output l Synthesis outpiJt2 Synthesis outpiit 3 

Figure 6.3: Synthesis output based on the direct calculation: (a) axisymmetric 
synthesis spherical filter with [h]'^ = S^o] (b) non-axisymmetric synthesis spherical 
filter with [h]^ = 1; (c) non-axisymmetric synthesis spherical filter with [h]^ = 

1 r!+|m| + l ' 

estimated spherical harmonic coefficients are 
2N+12N+1 

2(iV + l) ^ 
(6.45) 

fo rn < iV and |m| < n, Q̂  = 7rj/(2(iV +1)) , = 7rA;/(2(iV +1)) and the weighting 
coefficients are 

a (iV+l) V2 . TTJ sm 
N + 1 2(iV + l ) - ^ 

J = ,2iV + l. 

f 1 . .r 21 + l ] j 
2(iV + 1) ' 

(6.46) 

This reconstruction is shown in Fig. 6.4. Comparing this figure to the exact re-
construction result Fig. 6.2, the result is quite good: in all of the three examples, 
the important information, including the red part and the axisymmetric property 
in Fig. 6.4 (b) and (c) is captured. However, Fig. 6.4 (a) exhibits some error, es-
pecially near the equator. Also the left bottom of the center part in both Fig. 6.4 
(b) and Fig. 6.4 (c) has been elongated. Fig. 6.4 (b) shows better recovery than 
Fig. 6.4 (c), for the sizes of the side spot of Fig. 6.4 (c) have changed, from the 
originally large to small, into the small to larger presently. This might relate to 
the choice of the spherical filter, for we have restricted all the spherical harmonic 
coefficients of both the analysis and synthesis filter to 1 in the second example 
(Fig. 6.4 (b)), while the coefficients of the third example are nonlinear {l + n ' ' 
and 1/(1 + n + |m|) in Fig. 6.4 (c). 

m 
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Synthesis output 1 Synthesis output 2 
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Figure 6.4: Synthesis output based on the direct calculation: (a) axisymmetric 
synthesis spherical filter with [h 'mO, ; (b) non-axisymmetric synthesis spherical 
filter with [h 

1 

n+\m\+\• 

= 1; (c) non-axisymmetric synthesis spherical filter with [h]^ = 

Gauss-Legendre Sky Pixelization (GLESP) for Reconstruction 

For the Gauss-Legendre sky pixelization (GLESP) [102], according to 

C2tt f-K pZTT l-TT 

9 n = / 
Jo Jo 

= j j j ^ g { x , 4 > ) Y ^ { x A ) dx dcP 

' M 2-k 

lj=l 
M 2M 

(t>k)y^{xj, (pk)- (6.47) 
j=i fe=i 

In the above, we have made some operations: 1) X j = cosdj; 2) the Gaussian-
quadrature method [95] is used, Wj are the weighting coefficients and Xj are the 
net of roots of the Legendre polynomial PM{xj) = 0 where M is the maximum 
rank of the polynomial; 3) the Nyquist sampling theorem is also used that makes 
the sampling points 2M around the (j)-, 4) (j) is equally sampled, (pk = irk/M for 
fc = 1,2, • • • , 2M; and 5) M = 2{N + 1). 

According to the above operations, the number of samphng points of (0,0) 
are 2M^ = [2(A^ -I- 1)]^ = 144. But it should be noted that 6 is not equally 
sampled. The synthesis result is shown in Fig. 6.5. Note that: in (a), the original 
function means the function that only contains /o = Yln=ofnYn- Comparing this 
figure to the exact reconstruction result in Fig. 6.2, we can see that both (a) and 
(b) are quite similar to the original function, which has better performance than 
the equal-angular sampling method; (c) does not compare well with the original 
function, which strangely enlarges the even side spots and also connects the first 
two side spots together and given them a higher value than the center spot. 
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Figure 6.5: Synthesis output based on the direct calculation: (a) axisymmetric 
synthesis spherical filter with [/i]™ = ^^o; (b) non-axisymmetric synthesis spherical 
filter with [h 

1 
n+\m\+l-

= 1; (c) non-axisymmetric synthesis spherical filter with [h m • 

Summary 

Among three sampling methods, we find the ECP sampling has the worst perfor-
mance; the equal-angular lat-lon grid sampling theorem shows better performance 
if the spherical harmonic coefficients of the spherical filter, including the analysis 
and synthesis filter, are nonlinear or are functions of the spectral degree n and 
spectral order m; while the GLESP is better when the spherical harmonic coeffi-
cients of the spherical filter are constant. If the exact spherical coefficients of the 
analysis output are obtained, the exact reconstruction is realized. 

6.7 Summary and Contributions 
In this chapter, the classic convolution in the time-frequency is reviewed and the 
existing spherical convolutions are revisited; then the shortcomings of these defini-
tions are discussed. Further, some theoretical reconstruction algorithms based on 
the current spherical convolutions are discussed. Based on these weak points, some 
specific contributions are made: 

1. A novel spherical full isotropic convolution theorem based on a new operator 
is developed, which not only specializes the isotropic convolution, but also 
relaxes the requirement to the the spherical filter. Comparing with the left 
convolution, all the Fourier coefficients of the spherical filter are included, 
though the phase information is lost due to the quadratic formulation [103]; 

2. An simple reconstruction method based on the harmonic multiplication oper-
ation on the unit sphere is proposed by three different samphng methods [104 . 



Chapter 7 

Conclusions and Future Research 
Directions 

In this chapter we state the general conclusions drawn from this thesis. The sum-
mary of contributions can be found at the end of each chapter and are not repeated 
here. We also outline some future research directions arising from this work. 

7.1 Conclusions 
In this thesis, we firstly studied some further results concerning about the sig-
nal concentration in the time-frequency domain, including an orthonormal basis 
development and a general arbitrary signal concentration solution. Then, some 
analogous concentration properties, such as arbitrary moment weighting both in 
the special domain and in the spectral domain, were extended to the unit sphere. 
Furthermore, one spherical convolution theorem was developed. Finally, one simple 
reconstruction method on the unit sphere was proposed. 

In Chapter 3, applying Franks general constrained variation method, we for-
mulated a kth moment time-duration and bandwidth weighting measure in the 
time-frequency domain. A complete, orthonormal set of band-limited functions 
with minimum 4th moment time-duration concentration measure was obtained. 
Simulation results showed that this set of functions can be applied in radar system 
and representing any band-hmited signals due to its higher energy concentration 
in the main lobe and fast decaying side lobes. Finally, an arbitrary signal with 
2nd and 4th moment bandwidth measure were formulated and the correspond-
ing optimal functions were obtained, which might be of use in practical waveform 
design. 

In Chapter 4, we not only developed a harmonic multiplication operation on 
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the unit sphere, but also provided the equivalence with the isotropic convolution. 
Then some quadratic functional relating to an linear operator and its infinite ma-
trix representation were made. Further, we also made an extension of the Franks 
general constrained variational method on the unit sphere. Finally, the general 
concentration problem on the unit sphere was solved based on the spherical Franks 
framework and the spherical Slepian functions. 

Chapter 5 not only formulated the global azimuthal moment weighting but also 
the local zenithal moment weighting measures to a spectral-limited signal defined 
on the unit sphere. Two sets of optimal functions were obtained. Comparisons 
between these sets of optimal functions and the spherical Slepian functions were also 
made. Furthermore, the optimal solution to a spatial-limited signal with harmonic 
multiphcation in the frequency weighting was studied. 

Chapter 6 first reviewed the properties and shortcomings of the existing spher-
ical convolutions, then proposed a new spherical full isotropic convolution, which 
speciahzes the isotropic convolution and relaxes the requirement of the spherical 
filter to the classical isotropic convolution and also keeps all the information. Fur-
ther, the discussion to reconstruct an original signal was given. Finally, an exact 
reconstruction by the harmonic multiplication on the unit sphere was implemented 
by three different sampling methods. 

7.2 Future Research Directions 

In this section, we sketch out broad outlines of future research directions: 

1. The prospective applications of our three set of basis functions obtained from 
the global minimum azimuthal moment measure on the whole sphere, the 
local maximum zenithal moment measure in one specified spatial region and 
the harmonic multiplication in the spectral weighting on one specified spatial 
region need to be explored, especially for the spatial filter design in geoph-
ysis [8], cosmology [49] and EEC/MEG [66] comparing with the spherical 
Slepian functions. 

2. Surface representation and surface shape analysis can be based on the spheri-
cal basis functions in our thesis. Wavelets are the usually method to represent, 
denoise and smooth signal on the unit sphere [14,97]. However, due to the 
sparse property and the heavy resulting calculation, it is necessary to find 
suitable basis functions and other methods. 
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3. Spherical filtering, smoothing and denoising by our spherical full isotropic 
convolution theorem is desirable comparing with the left convolution and 
the wavelet transform [90], especially the comparison to the spherical diffu-
sion 151. 

4. Using our spherical full isotropic convolution theorem, the optimal spherical 
filter design [19], detection some components embedded in the stochastic 
process [45] and estimation the power spectrum of the signal [11[, is required 
in cosmology and geophysics. 

5. Applying the uncertainty principle of minimum product of concentration mea-
sures into practical applications, a statistical reconstruction approach using 
a temporal-spatial model and wavelet analysis is promising from some dis-
cretely sampled data. 
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Appendix A 

Appendices 

A.l General solution of the fourth-derivative equa-
tion 

The goal is to solve the equation (3.23) with the boundary conditions X{-W) = 
X{W) = 0, X'(-W) = X'(W) = 0. The characteristic equation of (3.23) is 

r^ = A. (A.l) 

As we point out that X{f) is a real signal, so its fourth power is real, too, i.e., 
A > 0. However, if A = 0, the equation has the zero solution. Because the general 
solution is 

X{f) = af + bf + cf + d, 

where a, b, c and d are constants. Its first derivative is 

X'if) = 3a f + 26/ + c. 

Substituting the boundary value X{W) = 0 and X'{W) = 0, we get a = 6 = c = 
d = 0. Obviously, the zero solution is not we want. So A > 0. 

For A > 0, take m^ = A and choose m positive. Then solving the characteristic 
equation (A.l), according to (r - im){r + im){r - m){r + rn) = 0, the general 
solution is 

X{f) = Aie'""^ + + + D^e'""^, 

where Ai,Bi, C\ and D^ are arbitrary constants. Due to coshx = sinhx = 
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cosx — and sinx = ^ the general solution can also be 
represented into 

X{f) = Acos{mf) + Bsm{mf) + E c o s h ( m / ) + Fs in l i (m/ ) , |/| < W, 

where A, B, E and F are arbitrary constants. And its first derivative is 

X'{f) = m[-Asm{mf) + Bcos{mf) + Es inh (m/ ) + Fcosh (m/ ) ] , |/| < W. 

A.2 Special solution of the fourth-derivative equa-
tion 

Based on the boundary values X(-W) = X{W) = 0, X'{-W) = X'{W) = 0 and 
the total energy of I3 = {x,x) = {X,X) = 1, we get five equations: 

X { - W ) = A cos(mW) - B sm{mW) + E cosh{mW) - F smh{mW) = 0 ( A . 5 a ) 

X{W) = A cos{mW) + B sin(mW^) + E cosh(mVK) + F smh{mW) - 0 (A.5b) 

X'{-W) = m[Asm{mW) + B cos{mW) - Esmh{mW) + Fcosh{mW)] = 0 

(A.5c) 

X'{W) = m[-Asm{mW) + B cos{mW) + Esmh{mW) + F c o s h ( m i y ) ] = 0 

(A.5d) 

/

w 

A cos(mf) + B sm(mf) + E c o s h ( m / ) + F smh(mf)fdf = 1. w 
(A.5e) 

We have pointed out that m ^ 0. Solving above equations (A.5a), (A.5b), 
(A.5c) and (A.5d), we get 

A cos(mVF) + E cosh{mW) = 0 (A.6a) 

B sin(mH^) + F sinh(mH^) = 0 (A.6b) 

^sin(mVF) - £;sinh(ml/t^) = 0 (A.6c) 

B cos{mW) + F cosh{mW) = 0. ( A . 6 d ) 

As cosh(mH^) ^ 0, from equation (A.6d), we get 

F = - f icos(mVK)/cosh(mW^). 



A.2 Special solution of the fourth-derivative equation ^ 

Substituting F into equation (A.6b), we obtain 

Bsm{mW) - Bcos{mW) smh.{mW)/ cosh{mW) = 0. 

Therefore, 

B = 0 

or 

sm{mW) cosh(mH^) — cos{mW) sinh(mVK) = 0. 

In sum, 

• 1). When B = 0, from equation (A.6d), F = 0; 

• 2). When 5 0, sin(mH/) cosh(mH/) - cos(mTy) sinh(mH/) = 0. 

Similarly, from equations (A.6a) and (A.6c), we get: 

• 1). When ^ = 0, from equation (A.6a), E = 0. 

• 2). When Aj^O, sm{mW) cosh{mW) + cos{mW) smh{mW) = 0. 

Therefore, when we take B = F ^ 0, due to the non-zero solution, A ^ 0 and 

E ^ 0 and sin(mW) cosh(mW) + cos(mW) sinh(mH^) = 0. This case shows that 

X ( f ) is an even function, i.e., 

X , ( f ) = Acos(mf) + Ecosh(mf). 

When B^O, A = E = 0 and sm{mW) cosh(mVF) - cos(mH^) sinh(mVF) = 0. 

This case shows that X { f ) is an odd function, i.e., 

Xoif) = Bsm{mf) + Fsinh(m/). 

When B ^ 0 and A ^ 0, from sin(mVK) cosh(mVK) -h cos{mW) sinh(mVK) = 0 

and sin(mH^) cosh(miy) - cos(miy) sinh(mM/') = 0, we get sm{mW) = 0 and 

sinh(mVF) = 0. From equation (A.6a) and equation (A.6d), we get F 0 and 

F ^ 0. Therefore, the solution for this case is the linear combination of the 

even solution Xe (/ ) = Acos{mf) -h Fcosh(m/) and the odd solution X o i f ) = 

B sin(m f ) + F sinh(m/). 

For the detailed value of B, C and D, substituting X { f ) into the equa-

tion (A.5e), we get 

Xe{f) = Ae[cos{mf) + Qcosh(m/)], 
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where Ae = l / i / ( l + a = -cos(mW^)/cosh{mW). And 

X,{f) = Bo[sm{mf)+psmh{mf)], 

where Bo = /3 = - sin(mVF)/sinh(ml^). 

A.3 Distribution of m and m' (Theorem 3.2.1) 
Proof 
Let us consider the following three functions, firstly, 

fi{x) = tan(x) 

f2{x) = — tanh(a;) 

fsi^x) = tanh(a;). 

As 0 < tanh(x) = ^ ^ ^ < 1, for all x > = 0, so the function /2(x) is a strictly 
monotonically increasing function with /2(oo) —> 1; and faix) is a strictly mono-
tonically decreasing function with /2(oo) — — 1 . 

It is well known that: tan(a;) is a periodical function with the period vr, for any 
k eZ, tan(A;7r) = 0, tan[(A;7r + |)"] —^ +oo and tan[(A;7r + |)+] —)• - o o . 

In a period, take {kir — fcvr + |), k — 1,2, 3,... as an example, tan(2;) mono-
tonically increases from —oo to +cxd as x increases from feyr — | to /ctt + |. So there 
must have and only have a crossing point x̂ k with — tanh(x) in the down half of 
the plane. And it also has a unique crossing point Xuk with tanh(2;) in the upper 
half of the plane. And the values of Xdk < Xuk-

Now it is necessary to show that there has no crossing point for tan(x) and 
tanh(x) in the interval [0,7r/2). Take another function g{x) = fi{x) — fsix) = 
tan(x) — tanh(a;), for x € [0,7r/2). Let take the first derivative of g'^^^x), 

= 
1 1 

cos^{x) cosh^(x) 
cosh^(x) — cos^(x) 

cosh^(x) cos2(x) 
_ (cosh(x) + cos(x))(cosh(x) - cos(a;)) 

cosh^(2;) cos2(x) 
cosHx) + cos(x), 

= cosh^(.)cos^(x) 

As cosh(x) = > 1 for ^ny a: > 0; when x G [0,7r/2), 0 < cos(x) < 1. 
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Therefore, 

9'{x) > 0. 

So g{x) is a strictly monotonically increasing function. And ^(0) = / i (0) - = 

0, so in the interval (0,7r/2), g{x) > 0, i.e, tan(x) > tanh(x), which means there is 

no crossing point between them. Fig. A.l shows the relations between these three 

functions. 

4 5 6 7 

• 

J 

tan{x) 
\ 

tanh(x) \ 
A \ J 

-tanh(x) 

f 

9 10 11 

Figure A.l : The functions of tanh(x),—tanh(x) and tan(a;). 

It has been proved above that in (0,7r/2), tan(x) > 0, - tanh(a; ) < 0 and 

tanh(x) > 0 and there is no crossing point for the functions tan(x) and tanh(3;). 

So the first crossing point Xi is the crossing point xai of tan(x) and - t a n h ( x ) ; 

the second crossing point X2 is the crossing point Xui of tan(x) and - tanh(x); the 

third crossing point x ,̂ is the crossing point Xd2 of tan(x) and - tanh(x); the fourth 

crossing point X4 is the crossing point x„2 of tan(x) and - t a n h ( x ) ; and so on. 

Now relating to our proof of the theorem, let us check the condition functions. 

For fixed W, the even condition function is 

cos(mW) smhimW) + sm{mW) cosh{mW) = 0 

and the odd condition function is 

cos{mW) sinh(mH^) - sm{mW) cosh{mW) = 0. 

So if cos(mVK) 0, i.e., mW {kn + n/2),k G Z, the even condition is changed 
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into 
tan(mVF) = - t a n h ( m H ^ ) 

and the odd condition is changed into 

tan(mVK) = tanh(miy) . 

From the above, the points {rrijW} satisfying the even condition equation and the 
points {m'l^W} satisfying the odd condition equation are interleaved, i.e, m i , m [ , m 2 , m'2, 01,3, mg,, 
and the values are monotonically increasing. 

So the even solution functions X e j { f ) and the odd solution functions X o k { f ) can 
be ordered by the values of the value rrij and m'^, i.e., as equation (3.37) shown.• 

A.4 Proof of Theorem 3.2.2 
Proof 

From the subsection 3.2.4, we have got an infinite set of complete optimal band-
hmited functions {ipi} = { X e j { f ) i J X o k { f ) ] = 1 ,2 ,3 , . . . in the frequency inter-
val [—VK, W] which consists of the even solution (3.27) and the odd solution (3.29). 
The completeness is from the fact that based on the boundary conditions and the 
initial conditions, we have got ah possible functions satisfying the fourth-order 
equation (3.23) by the general solution equation (3.25). Now we want to show that 
this set is orthonormal. The orthonormality in the frequency interval [—W, W\ can 
be obtained from two methods: 1). by direct calculation of the orthonormality 
between any two functions; 2). by fimctional analysis with spectrum theorem for 
the compact self-adjoint operator: the corresponding eigenfunctions for distinct 
eigenvalues are orthogonal. 

For the eigenvalue equation (3.24), D'̂  is a differential operator which is un-
bounded and its inverse operator does not exist. Therefore, we define another 
operator 

L = D^ + Id, 

where Id is the identity operator. So the eigenvalue equation is changed into 

LX = (1 + A ) X 

Now we will show that the new operator L is self-adjoint and its inverse operator 
exists. 



A.5 The Duality of Basis Functions between Two Operators 

As we have discussed before that eigenvalue equation (3.24) has a real solution 
if and only if A > 0. And when A = 0, the solution is zero function. Similarly, for 
the new eigenvalue equation (A. 13), LX = 0 if and only if X = 0. So according to 
Theorem 4.5.2 in the book [83]: An operator L is invertible if and only if Lm = 0 
implies u = 0. So L is invertible. Then its inverse operator exists. 

Suppose u,v E { i p i } , then 

{ L u , v ) = {D^u + u,v) = [ v{D'^u)dn+ / vudQ = 
Jl^ JL^ L2 

/ / / / 

U V +UV dn. 

And 

{v, Lu) = {v, D'^u + m) = / v{D^u)dVL + / vudQ. = / uv" +uv dVL = {Lu, v) 

So L is a self-adjoint operator. 
Therefore, according to inverse differential operator Theorem 5.10.2 |83], 

is a self-adjoint compact operator from L ' ^ { - W , W ) . According to the Spectral 
theorem of self-adjoint compact operator, has a complete set of orthonormal 
eigenfunctions and its eigenvalues are real. Based on the Theorem 5.10.5 [83], L 
and have the same eigenfunctions and have the reciprocal eigenvalues. So 
L has an complete set of orthonormal eigenfunctions. As we also know that for 
distinct eigenvalues, their corresponding eigenfunctions are orthogonal. 

From the Theorem 3.2.1, we have known that the values of r r i j and m'^. are 
different. So the eigenvalues of L equaling to m^ are different, too. Therefore, the 
eigenfunctions are orthogonal. As Xe { f ) and Xo { f ) are band-limited, unit energy 
signals, i.e., they are orthonormal. • 

A.5 The Duality of Basis Functions between Two 
Operators 

Proof 
We use Grunbaum's Lemma 1. The assumptions about this lemma are that: 
suppose G is a topological group and G is its dual group; A is a compact subset of 
G, i.e., A C G-, B is a compact subset of G, i.e., B C G; F is the Fourier transform 
and is its inverse Fourier transform; h is a function that has support on A, 
i_e.. Ah = h. Then the Grunbaum's Lemma states: 

Grunbaum's Lemma: If h is an eigenfunction of A F ' ^ B F A with eigenvalue 
H then BFh is an eigenfunction of BFAF~^B with eigenvalue jj,. 
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Now we take A = DP, B = BN, F is the spherical harmonics transform, 
is the inverse spherical harmonics transform and we have mixed F and into 
Pr and B^. Then the operator AF~^BFA becomes VRBPFDR and the operator 
BFAF~^B becomes B^VYB^- Then according to Grunbaum 's Lemma, we have 

VrBNVrh = ^ih, (A. 14) 

BNVrBN{BNh) = ^i{BNh). (A.15) 

where h is a spatial-limited signal, i.e., Vrh = h. 

According to Dr definition (2.41) or (2.43) directly, we have 

VrB^Vrh = J^ BN{X, y)h{y) ds{y) = NH{X), xeT. 

This eigenvalue equation is the same as (4.61). Therefore, h = = 0,1, • • •, 
is the optimal spatial-function in the region F that achieves the maximum energy 
in the spectral interval [0, N'. 

Let / = B^h, then / is a spectral-limited signal with maximum spectral degree 
N, i.e., BNJ = /• According to (A.15), we have 

B^VrB^f = ftf. 

And according to BM'S definition (2.38) or (2.44) directly, we get 

BN-DRB^F 

= / B^{x,t) 

= J^BNIX,T) 

XR{t) / B^{t,y)f{y)ds{y) 

L 
ds{t) 

BN{t, y)f{y)ds{y) ds{t) 

BN{X,T)BN{T,Y)DS{T) fi.y) ds{y). 

Using (2.39), we have 

(A.17) 

(A. 18) 

BN{X, t)Br,{t, y) 
N N N N' 

N=0 M=—N 
N N N N' 

= E E E E {ynWiy)) • (A.iq) 
N=0 M=-NN'=OM'=-N' 
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Substituting (A. 19) into (A. 18), we have 

B N V r B ^ f 
N n N n' 

= / E E E E y n " ' { ^ ) y n ^ \ y ) ( f y n ^ \ t ) y n " ' { t ) d s { t ) ) f { y ) d s i y ) 

N n N n' , „ \ r 

= E E E E y n i ^ ) ( Y ; ; ' i t ) Y ^ ) d s { t ) ] / f { y ) Y f { y ) d s { y ) 

= E E E E ( / y n ^ ' { t ) ^ ) d s { t ) ) 
n=0 m=-nn'=Om'=-n' ^ ^ ' -EE (E E f:^' 
n=Om=-n \n'=Om'=-n' / 

= M f ( x ) 

n=0 m=—n 

Then, we obtain 

N n' 

E E f::)' = 
n'=0 m'=-n' 

Summing over all n from 0 to iV and - n < m < n, we finally get 

D ^ f - /if. 

(A.20) 

(A.22) 

f is the column vector containing the spherical harmonic coefficients of / . It proves 
that BNVrBNf = m/ is equivalent to Djvf = Iji for / = B^f -

Comparing (A.22) with (4.52), it is obvious that 

\ = j i . 

Since the eigenvectors {fj^^} and the associated eigenfunctions { / -^^(x) } of (4.52) 
are orthonormal, we also make a normalization to (A.22), 

D N i ^ ^ (^ ̂  = M (A.24) 
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This is equivalent to 

(A.25) 
v V ^ / V ^ 

Now relating to the spectral concentration for a spatial-limited signal, 

So when h = gf\x), we have 

AN) _ (r) -

( X ) = 

Similarly, as we take A = B^, B = Dr, F is the spherical harmonics transform, 
is the inverse spherical harmonics transform and we have mixed F and 

into VY and B^. Then the operator AF~^BFA becomes B^VYB]^ and the operator 
BFAF~^B becomes VTB^VY- Using the Grunbaum ' s Lemma, taking h = B^h 
and following the same procedure, we get 

-Drfn (-) = • 

A.6 Least Angle between Two Subspaces 
Proof 
The proof is similar to the procedure in [23], The difference is that we are dealing 
with the problem in the spatial-spectral domain, while the former was in the time-
frequency domain. 

Suppose G ®iv(S^ ds), g^^^ G ds). According to the angle's defini-

tion (4.68), we have 

As cosine function is a monotonic decreasing function, to obtain the least angle 
it is equivalent to find the maximum value of 



A.6 Least Angle between Two Subspaces 

First, we fix to get the maximum value when varies. As is a 
spectral-hmited function, according to the Fourier transform, occupies the 
whole sphere in the spatial domain. Therefore, can be decomposed into 
two parts: ©r/^^^ in the region F and - Vrf^^^ in the region SVF. And 
the two functions f^^^ - are orthogonal since the inner product 

/(w) _ = 0. Therefore, we have 

The equality is obtained when = 1. That is, Vrf^^^ is positively 
proportional to i.e., 

gir) ^ k V r f ^ ' ^ K (A.29) 

where k is an arbitrary positive constant. 

Now we have , , . 

| |/(N)||.| |^(r)|| - ||/(iv)|| • 

Our next step is to maximize ^ ^ y y p when changes. According to Theo-

rem 4.7.3 and (4.57), we have 

(7V+1)2-1 

i = 0 

with a f ^ = ( f o r z = 0,1 • • • , (iv + 1)' - 1. According to Parseval's 

theorem 2.22 and the orthonormality of { f i ^ \x )} , we have 
(JV+1)2-1 

i=0 

( N + l f - 1 

i=0 

As 1 > Aq > > A2 • •. ^ ^(]v+i)2-i ^ "J' 

, 2 

' w r n r < Ao 
(iV) 
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The equality is achieved when aj,̂ ^ 0 and = 0 for all 1 < z < (A^ + 1)^ - 1, 

(A.32) 

Obviously, ag^^ can be any nonzero number. We usually take â ^^ = 1. 

In sum, 

||/W||.|| (̂r)|| - V^o - V ^ o -

where AQ̂ ^ = ^^p has been proved in Theorem 4.7.3. The equality is obtained 

when (A.29) and (A.32) are both satisfied simultaneously, i.e., 

with /c > 0. Therefore, the least angle OQ equals to 

00= min inf 

= cos \l Â  

= cos ^ J u P . • 
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