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It's an empty journey to triumph 
if you don't plant the seeds of catastrophe along the way. 

J. Alhson, 2005 
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Abstract 

This thesis investigates the principles behind motion camouflage, in both the theoretical 
sense and as a subset of general interactive insect behavioural strategies. The theory of 
motion camouflage is explored, and an optimal-energy formula for motion camouflaged 
paths is developed using lagrangian mechanics. To determine the key dynamic variables 
used by insects to respond to one another while in flight, interactions between dragonflies 
are analyzed and compared to satellite fly/wasp interactions, with special attention paid 
to instances of natural motion camouflage. 

To use motion camouflage as a robotic stealth or tracking strategy, higher-level control 
algorithms are required. Hence two main control methods for generating camouflaged 
trajectories are explored in the thesis. Firstly, a class of hnear quadratic techniques is 
developed, including optimal cost-based control in two and three dimensions, and sub-
optimal forward-time control using greedy control methods. Secondly, it is shown that 
dynamic gain proportional navigation can be used to mimic recorded insect trajectories, 
and hence a biomimetic camouflage guidance algorithm is theorized using proportional 
navigation. Finally, a method for implementing force-based camouflage control into fixed 
wing aerial robots is discussed. 

IX 
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Chapter 1 

Introduction 

Over millions of years of evolution, biological systems have developed robust strategies of 

achieving complex navigational behaviors. Insects, having small brains and comparatively 

simple nervous systems, yet with an adeptness of performance that far outstrips most 

purpose-built robots, are of especial interest. They are remarkably swift and accomplish 

feats of astonishing agility and accuracy. 

Insects, therefore, have for many years intrigued roboticists, biologists and anyone 

seeking methods of matching sensory input to action. In terms of guidance, flying insects 

are particularly interesting, since they are often quite tiny yet fully capable of movement 

in all three dimensions with six degrees of freedom. 

Most highly adept arthropod fliers rely heavily on vision to navigate through their 

environment. For roboticists and engineers, accurately interpreting and reacting to objects 

and changes in the visual field is a complex task, often requiring much processing power 

and many layers of information filtering. For insects, it is a process which occurs with 

enviable speed. Hence it is likely that much can be learned from insects on how best to 

link vision to action. 

1.1 Background 

1.1.1 An overview of insect vision 

Insect eyes are markedly different from those of mammals or birds. Insects have compound 

eyes consisting of many individual visual units called ommatidia, each equipped with a 

separate lens that focusses light onto a photoreceptor unit that functions like an individual 

'pixel', unlike mammahan eyes where a single lens will focus light onto a retina comprised 

of several million photoreceptors. The number of ommatidia varies between insects, and 

their precise structure and spacing can differ even within a single eye. For instance, the 
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inter-ommatidial angle and the size of the facet lenses, which together determine resolution, 

vary across the eyes of many insects. The acuity of a given portion of an eye is inversely 

related to the interommatidial angles in that region. These regions of high acuity, where 

resolution is considerably better than in other areas, are called acute zones, the location 

of which depend on the species [Lan89]. 

Figure 1.1: Compound eyes are made up of repeating units, the ommatidia, each of which 
functions as a separate visual receptor. Each ommatidium consists of a lens (the front surface of 
which makes up a single facet), a transparent crystalline cone, light-sensitive visual cells arranged 
in a radial pattern, and pigment cells which optically separate the ommatidium from its neighbours. 
Figure adapted from http://soma.npa.uiuc.edu. 

Predatory insects such as wasps and dragonflies tend to have much smaller interom-

matidial angles than non-predatory insects, at least in the forward pointing region of the 

eye (the region generally used for tracking prey). But foveal location and the degree of 

resolution therein can vary even within species; for example, many insects from the order 

Diptera display a sexual dimorphism in the location or even existence of acute zones in 

their eyes [StrSO]. 

The consequence of this eye design is a fixed-focus, low-resolution, panoramic field 

of view, with regions of greater or lesser sensitivity and resolution. Because compound 

eyes cannot be focussed, are not mobile within the head and in most cases are very close 

together, most insects cannot assess range and spatial arrangements in the same way 

mammals do. Instead, they make heavy use of optic flow cues when navigating through 
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their environment using alternative visual strategies. Indeed, most responsive behaviom-

observed in flying insects can be described as reactions to detectible features of motion in 

the visual field, in other words features of the optic flow experienced by the insect. Optic 

flow is the term for the visual field motion experienced by a moving body. It comprises 

both the relative motion induced by the parameters of the body's own movements and 

that caused by the three-dimensional layout and relative velocities of the environment. As 

described by Eckert and Zeil [EZOl]: 

An actively moving or passively displaced observer experiences a distinct optic 

flow structure superimposed on the environmental motion field which depends 

on eye or body rotation, on the direction of translation, on the spatial layout 

of objects, and on contrast in the environment. 

A great deal of the optic flow structure is determined by the observer's own behaviour, 

and so navigation and vision are for insects tightly coupled, with each feeding back on the 

other [SZ04]. 

1.1.2 Visual ly guided behaviour in free-flying insects 

During flight, the retinal image flow can be used to regulate speed and orientation, and 

provide information about the location and movement of objects in the environment. Such 

optic flow has been demonstrated to assist insects in tracking [BKE03], hovering [CL75], 

patroUing [Zei86], foraging [HJZB03] and in migratory flight [BSR92]. The picture of 

insect navigation that has been built up is one where the interaction of a few simple 

guidance rules underlies complex behavioral responses. 

Orientation and attitude control: 

Attitude stabilization can be accomplished by compensating for the rotary component 

of optic flow. This compensation can be readily observed in the well-studied optomotor 

response, where an insect responds to a (horizontally) rotating environment by generating 

a counteractive yaw torque, thus bringing the insect back on course [Rei69]. Similar 

mechanisms are thought to exist to stabilize attitude around the other body axes. For 

example, compensatory head movements to stabihze perceived changes in roll and pitch 

have been observed [Hen93] in flies. 
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Insects are thought to accomphsh course stabilization by the possession of motion-

sensitive neurons with large visual fields [BSO+06], each responding preferentially to mo-

tion in a specific direction [HE89], [KraOO]. These neurons each typically cover particular 

sections of the visual field, and a straight course can be achieved by balancing the re-

sponses of two neurons on either side of the head, sensitive to front-to-back motion in one 

eye. This works well in a symmetrical environment, but in an asymmetric world a slightly 

different mechanism is required. In this case, steering a straight course necessitates com-

pensating for image motion in only a small patch of the visual field, facing the direction 

in which the insect wishes to fly [SZ04]. Hoverfiies have been shown to use just such a 

mechanism [ColSOb]. 

Roll and pitch stabilization are assisted by the ocelli (three single-lens eyes situated on 

the top of the insect's head). Each ocelli has a large visual field, and stabihzes orientation 

by reference to the horizon [SH79]. The two laterally directed ocelli stabilize roll, the 

median oceUi stabilizes pitch [SH79], [Wil78]. 

Obstacle avoidance and landing: 

Flying insects use expansion and contraction of the image of an object to avoid collisions 

and to land on surfaces. When the image expansion exceeds a certain threshold, the insect 

turns away from whichever eye experiences greater image expansion [TD02]. Similarly, 

when approaching a surface for landing, an insect needs to monitor the rate of expansion 

very precisely. Translatory optic fiow plays a large part in the latter. For example, when 

accomphshing grazing landings, bees have been shown to keep the velocity of the horizontal 

surface image approximately constant as they reduce height. In this way, the bee's speed is 

progressively decreased as it approaches the landing surface [SZC+00]. The same principle 

can be used to control head-on landing, where it is the rate of image expansion that is held 

constant. For example, in female houseflies deceleration prior to landing is triggered when 

the ratio of image expansion of a target on the retina to the actual image size exceeds a 

certain threshold [Wag82]. 

Control of flight speed and height: 

The above mechanism for controlling landing can also give us insight into that used for 

monitoring speed during cruising flights [SZ04]. Fruit flies hold the angular velocity of 
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the environment constant and can be tricked into stationary hovering within a tunnel by 

adjusting the apparent speed of the tunnel's walls [Dav82]. Bees appear to use a similar 

method of measuring flight speed [SZLC96]. Both insects have been shown to compensate 

for headwind, and interestingly, measurement of the angular velocity of the image appears 

to be independent of the spatial structure [SLKZ91], [DOLOl], [IbbOl]. The movement-

detecting subsystem mediating this response seems quite different from that governing the 

optomotor response [Sri93]. 

Since the optic flow rate of the ground decreases as height increases, it is possible 

that insects can use this to monitor their altitude, provided they know their own speed, 

although this speculation is as yet unsubstantiated. Apparent optic flow of the ground 

at a known speed has certainly been used extensively to measure altitude in autonomous 

vehicles [BCS03], [NB02], [STS06]. 

Odometry: 

Insects are not simply opportunistic navigators responding only to immediate circum-

stance. They also are capable of navigating great distances in search of food sources and 

returning precisely to their nests [Col96], [ZKV96], or communicating to nest mates the 

location of the food source [SZLC96]. It is increasingly apparent that visual information 

plays a vital role in how insects negotiate and calculate the distance traveled. For exam-

ple, wasps can home accurately when transported away from their nests in transparent 

containers, but not opaque ones [Ugo87]. Bees have been shown to estimate distance flown 

by integrating over time the image motion of the environment [SZB97]. The advantages of 

using visual cues to monitor distance traveled, rather than energy-based cues, for example, 

are several fold. For one, a visually-driven odometer is not affected by wind or the load 

carried. Moreover, it is independent of the speed of the insect, although highly dependent 

on visual texture [TZS+04]. However, there is a disadvantage in communicating location 

in this way, namely that a visual odometer works only if the insect receiving the infor-

mation follows the same route previously traversed (or, if the method is being used to 

return to the nest, the insect must follow the same path on both outbound and inbound 

journeys) [SZ04]. 
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Tracking moving targets: 

Insects must not only move through an often complex but essentially stationary environ-

ment, they also need to interact with other living creatures in order to survive. This 

interaction may take the form of avoiding predators, catching prey, chasing potential 

mates, or warding off intruders into their territory. In all these behaviors, vision is of vital 

importance. 

Pursuit, whether of prey or conspecifics, can be observed in a large variety of insects. 

Male houseflies engage in territorial chases with other males [LC74], [Zei86]. Blowflies 

chase and catch females for mating purposes [BKE03]. Satellite flies visually track the 

position of digger wasps in order to lay their eggs on the wasps prey prior to it entering 

the nest [Wci84]. Dragonflies pursue both prey and each other in fast, acrobatic chases 

[OWVOO], [F095]. Hoverflies pursue and intercept females in mating flights [CL78]. In 

fact, tracking and pursuit behaviour is perhaps one of the more interesting attributes of 

insect flight. 

Tracking is defined as the process of keeping an image of a target on a particular 

region on the retina, whereby the target may be stationary or it may itself be in motion. 

In tracking, the primary purpose is usually to keep the target image in frontal acute 

zone, as observed in praying mantises, for example [Ros80]. When tracking is combined 

with motion towards the target, the activity is termed 'pursuit' [M.F92]. Pursuit may 

encompass shadowing of the target at a certain distance, capture of the target, or some 

combination of both. 

The common feature of all the visual tracking systems noted in mammals and insects 

is a control system which attempts to minimize the angular deviation between the retinal 

position of a target and some region of the eye, often but not always the central or forward 

part of the retina. 

In the simplest control of this type, a target position error thus registered will output 

a corrective movement by the pursuer. However, many permutations on this basic tactic 

exist. The methods humans use to track targets visually are classified into two branches, 

saccadic tracking and smooth pursuit, which serve two diflterent but complementary pur-

poses [CT84]: 

Smooth pursuit and saccades subserve two different functions. The effect of 
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smooth pursuit eye movements is to reduce the shp velocity of the image on 

the fovea and thereby hmit the accumulation of retinal position error. This 

stabilization is not perfect. Therefore saccades frequently interrupt the smooth 

eye movements to correct the eye position. Saccades during pursuit are indeed 

corrective; they bring the image of the target closer to the centre of the fovea. 

In general, a subject makes a saccade during pursuit if the retinal error rises 

above a certain unacceptably high level. The saccade which is generated brings 

the target closer to the fovea and the remaining position error is smaller than 

the average retinal error during pursuit. The level of retinal position error 

is not constant, but varies in time and depends on stimulus conditions. The 

corrective saccades are not perfect and they alleviate the imprecision of pursuit 

only for short periods of time. 

H. Collewijn, E. P. Tamminga, 1984, [CT84] 

Mantids turn their heads in response to a change in target retinal position using two 

different strategies, the choice of which depends on both background features and target 

velocity [Ros80]. Certain species of hoverfly combine the optomotor response additively 

with a tracking response, causing a piursuing fly to track with a small position offset 

[ColSOa]. Houseflies manifest both smooth and saccadic tracking [Wag86] using a single 

continuous control system, where if the tcirget is displaced sufficiently rapidly on the 

pursuers retina it generates saccadic changes of body orientation [BKE03]. In flies, the 

apparent size of the target and the deviation of the angular location of the image from the 

frontal region of the eye drive a simple servomechanism that controls the direction and 

forward speed of a pursuer [BE05]. Dragonflies, too, target and chase potential prey by 

responding to size and angular velocity across the retina [OWVOO]. It is known that male 

flies possess 'chasing' neurons which respond selectively to small, rapid targets [GS91], 

these being distinct from the large-field optomotor neurons [F095], and similar to small-

target selective neurons that have recently been described in female hoverflies [N096]. 

The precise tracking system in use depends on the nature of the tasks it is involved in, 

and the way motion is processed by the visual system of the insect in question. Hoverflies 

have one of the most interesting tracking mechanisms so far observed, because rather than 
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heading directly towards a target as do houseflies, they seem to somehow calculate an 

interception or colhsion course from their target's apparent speed [CL78]. This chasing 

mechanism is primarily used by males in attempting to catch females, and they appear 

to make an assumption about the size of their target to determine an interception point 

from the angular position and velocity of said target. 

Some hoverfly tracking sequences recorded by Collett and Land [CL78] were observed 

by Srinivasan and Davey [SD95] to contain an interesting geometric property. They named 

this feature 'motion camouflage', and it is the intriguing nature of motion camouflage which 

gave rise to this thesis. 

1.2 Motion Camouflage 

Most insects are adept at distinguishing between stationary and moving objects even 

when they themselves are in motion [Leh97]. Motion camouflage provides a mechanism 

by which a pursuer may track a target without revealing itself to be moving at all [SD95]. 

Srinivasan and Davey identified several types of camouflage, all of which fall into one of 

two categories: static point camouflage (illustrated in 1.2(a),(b),(d)), or camouflage at 

infinity (1.2(c)). When lines drawn between the two moving animals at successive time 

intervals intersect at a single point in space, motion camouflage is said to have occurred. 

The point thus defined is called the static, or fixed, point of the engagement, and the lines 

joining the target position and this static point are termed camouflage constraint lines 

(CCLs), because the motion of the shadower is constrained to these hnes if camouflage is 

to be maintained. 

After the presence of this tracking strategy was noted in hoverflies, short sequences 

of camouflaged motion were subsequently observed in the dragonfly Hemianax papuensis 

by Mizutani et al [MCS03]. An implication of this research is that motion camouflage, 

whether a dehberate strategy or simply the byproduct of some other guidance system, 

might be a common phenomenon. By studying those cases where it does occur, we can 

draw insight into not only the nature of motion camouflage, but into the underlying control 

systems. 

Since these initial observations were made, the possibilities for human use of a cam-

ouflage strategy have been seized on by the control and guidance community. Several 
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F i g u r e 1.2: The basic phenomenon of motion camouflage. Shadower and shadowee positions are 
shown at equal time intervals, assuming the shadowee to be on a linear path with constant velocity. 
The shadower can camouflage its motion by emulating a stationary object at location F (the static 
point), which can lie behind the shadower (a); between the shadowee and shadower (b); at infinity 
(c); or at the shadowee's initial position (d). Image taken from Strategies for active camouflage of 
motion, M.V. Srinivasan and M. Davey, 1995 

approaches to defining the geometry of camouflage and the control conditions required to 

produce it have been undertaken. 

1.2.1 A Neural Network Model 

Anderson and McOwen [AMOS] designed a control system for camouflage which was con-

structed using trained neural networks. They assumed the only information about the 

target available to the shadower was its position in the shadower's visual field, and that 

the shadower was aware of the location of the fixed point relative to itself. In addition, 

the speed of the shadower was held constant. It was thought that the combination of the 

latter two input variables would enable the shadower to estimate its distance to the fixed 
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point by path integration, if required, although whether that capabihty was ever utiHzed 

is a matter obscured by the inherent opacity of the neural mechanism. 

Figure 1.3: Control system architecture for Anderson and McOwan's neural network-based con-
troller for motion camouflage. Image taken from Model of a strategy to camouflage motion, A.J. 
Anderson and P.W. McOwan, 2003 

The control system itself was formed from three multilayer neural networks (Figure 

1.3). The first (DIST) is trained to estimate the distance to the fixed point, the second 

(DIR) the direction to move in, and the third (ROT) the appropriate rotation of the 

shadower body required to keep the target in the centre of the visual field. Note that 

this is a meaningless variable when considering a point mass, but may be significant when 

considering real guidance situations. The pursuing body does not, mathematically, have 

to point towards the target in order to maintain camoufiage, but directional sensitivity 

issues in the visual sensory mechanism may make this a preferred strategy. 

The authors postulated that the above control system is able to estimate the approx-

imate range to the target, most likely from a combination of the existence of an outer 

bound on the starting conditions, and the errors in yaw created by the control itself - the 

same lateral movement will produce a greater retinal error when the target is close by 

than when it is at a distance (a motion parallax effect). However, without the exphcit 

incorporation of range estimation into the model, it is not clear how important this di-

mensional information is to the solution offered. In addition, the study suffered from the 

usual hmitations of neural network solutions. An exploration of the entire state-space was 

necessary prior to training the networks. In addition, the resulting controller was tailored 
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to the trajectories it was trained on (a combination of linear trajectories and hoverfly 

paths taken from earher work), and performance quahty was hkely to deteriorate when 

other varieties of movement were encountered. 

1.2.2 Mathematical laws defining camouflage geometry 

Glendinning [Gle04] developed an exphcit mathematical description of ideal motion cam-

ouflage paths. His work examined the consequences of a motion camouflage constraint 

acting on the pursuit curve, rather than trying to use a control algorithm to achieve cam-

ouflage. He then compared camouflage curves with classical pursuit curves (where the 

pursuer heads directly towards the target), and found that a motion camouflage path 

reaches a capture position faster than the classical curve [Dav62]. Moreover he showed 

that if the speed of the shadower is less than that of the target, capture is still possible 

using camouflage from a greater range of starting positions than if classical pursuit were 

used. Much of his analysis made use of the assumption of a constant speed for both pur-

suer and target (a standard approach), however his initial formulation of the camouflage 

geometry remains valid for any dynamic conditions on the participants. 

1.2.3 Further biological inspiration 

Justh and Krishnaprasad [JK06], inspired by insect-capture behaviour in echo-locating 

bats, used these equations of motion camouflaged paths to explore models in both two 

[JK06] and three [RJK06] dimensions, restricting the case to camouflage at infinity (al-

though the principle can be extended to the static point case). The three-dimensional 

extension was accomplished by describing the particle trajectories using natural Frenet 

frames^ They modeled the shadower and shadowee as points subject to curvature con-

trol, with a cost function representing the ratio of the change in radial distance to the 

target (along the hne of sight vector) to the total rate of change of the vector over all. 

Notably, they observed that their formulation of the problem belonged to a subset of mis-

sile guidance laws known as pure proportional navigation, albeit with a range-dependent 

variable gain, of which more will be discussed later. Their contribution used a biolog-

ically plausible sensor data and feedback law, and was key in deriving an infinitesimal 

^Frenet frames are a useful vehicle for analysing invariant Euclidean curves [Bis75]. For more informa-
tion, see [JK06], [JK05],[Bis75]. 
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characterization of the dynamics of the motion camouflage problem. 

1.2.4 Analysis of a difTerential game formulation of motion camouflage 

Finally, Matchyn and Chikrii [MC06] strengthened the already established ties between 

motion camouflage and the field of missile guidance by considering the problem as a 

form of differential pursuit game. Using the method of resolving functions [Chi97], they 

established that given a linear dynamical system where the controls of shadower and 

shadowee are both chosen from defined compact sets, motion camouflage can be achieved 

and the shadower can capture the shadowee in a finite boundary time T for any shadowee 

motion, provided the integral inclusion condition [MC06] holds. 

1.3 Contribution of this thesis 

Although most of the methods described above consider the problem in terms of tar-

get angular position and velocity, and thus use information that is at least qualitatively 

available to insects attempting to perform motion camouflage, little work has been done 

in examining the dynamic behaviour surrounding those instances of camouflage actually 

observed in nature. 

Geometry 

Although the criteria for determining a motion camouflaged path have been well-established, 

it provides a dauntingly broad solution space. The task of selecting an appropriate path 

has heretofore been left to the controller, depending ultimately on assumptions and con-

straints on the dynamics. Therefore, as a preliminary step, I establish for any interaction, 

with no constraints other than the initial conditions and the movement of the target, a 

unique motion camouflaged path which minimizes the energy required by the controller 

(in a local sense). 

Control 

In a previous paper [CFC04], Jason Ford and I created a hnear quadratic method of 

controUing for camouflage in two dimensions. Although this procedure built upon long-

established traditions in missile guidance, ensuring a stable, robust feedback controller, 

it was in certain respects highly limited. The procedure and its limitations are detailed 
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within this thesis, and the theory is extended into three dimensions. An additional result 

which attempts to address and rectify some of the problems inherent in the traditional 

controller is also presented. 

Camouflage in nature 

Little research has been done into the biological examples of motion camouflage, even 

though it was the animal kingdom which first provided inspiration for the technique. 

Examining the flights of insects known to exhibit camouflaged behaviour, I extrapolate 

certain features of the guidance system in use in order to develop a controller which utihzes 

similar inputs and guidance techniques to those of insects. 

1.3.1 Thesis Structure 

Chapter 2 

I first define the common terms used in discussing motion camouflage and write down 

the overall geometric law that describes a motion camouflage path. From this, I derive 

a simple condition that must be satisfled for a path to be classified as non-trivial motion 

camoufiage. Then, using Glendinning's formula for ideal motion camouflage, I develop an 

equation which for any initial condition will describe a unique extremal motion camou-

flaged pathway, using Lagrangian optimization. 

Chapter 3 

I derive a linear-quadratic regulator for achieving camouflage in first two, then three 

dimensions. Using a greedy cost method, an infinite horizon method of Unear dynamic 

control is shown to be successful in creating camouflaged paths. As a demonstration of 

how such force-based control might be later implemented in aerial robotic systems, a force-

based autopilot is developed and several simple navigation tasks are simulated, including 

an LQR-based motion camouflage controller. 

Chapter 4 

Investigating interactive behaviour in two species of insect (dragonflies and satellite flies), 

I seek to establish which visual cues are responsible for guiding the paths and orientation 

of the pursuing or shadowing insect, flrst during all interactive flights, then speciflcally 

those sequences of interaction which may be described as being camouflaged. 
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Chapter 5 

Using the information found in Chapter 4, I develop a prehminary decoupled control law 

which governs the forward speed and turning rate of a simulated insect in a manner similar 

to that observed in dragonflies. I then show that the coupled version of this control law 

fits into the general class of proportional navigation guidance laws, and use this to develop 

a biomimetic camouflage control law which uses information about the perceived location 

and speed of a target to generate a motion camouflaged path. 

Chapter 6 

A discussion of the results, their limitations and imphcations, and some suggestions for 

future work. 



Chapter 2 

An Exploration of Motion 
Camouflage 

2.1 Introduction 

It is simple to write down equations that describe two bodies in a camouflaged trajectory. 

In this prehminary chapter, I introduce a strict mathematical definition for both varieties 

of camouflage as defined in the introduction, and proceed to establish some universally 

applicable dynamic rules which govern the motion of camouflaged bodies. I then derive a 

set of solutions for the motion camouflage problem which can be used to achieve energy-

optimal trajectories. 

Let r ^ be the position vector of an arbitrary static point in Cartesian space, and let 

and be the vectors representing the time-varying paths of the two participants 

in the dynamic engagement. 

shadower 
shadowee 

static point 

shadowee 

(a) Static Point Camouflage 

Shadower 

(b) Infinite Point Camouflage 

Figure 2.1: Depiction of the two primary types of motion camouflage 

15 
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2.2 Defining a motion camouflage interaction 

Variable Definition: In the following section, subscript text is used to indicate the 

frame of reference. Where no subscript is present, a stationary inertial frame located at 

the origin is assumed. 

We define the following terms: 

Definition We say that a static point camouflage between times Ia and i s occurs if 3 

a point r^ such that V t G 

= (2.1) 

for some continuously differentiable function k{t). If such an r^ exists, we term it the 

static point of the engagement. 

• If k{t) < 0 V f G \tA,tB], the engagement is said to be camouflaged between for the 

period 

• If k{t) > 0 y t £ [tA,tB\, the engagement is said to be camouflaged behind for the 

period [t^.^e]-

These cases are often viewed as separate types of interaction [SD95], but in truth their 

geometry shares many salient features and there is no reason that k cannot change sign 

during an engagement. If this occurs, we say the engagement is mixed. 

Definition We say that infinite point camouflage between times tA and t s occurs if 3 a 

vector e such that V t G [<yi, fs], 

- = k{t)e (2.2) 

for some continuous differentiable function k. 

We now derive some basic dynamic rules for motion camouflage engagements. 

2 . 2 . 1 Two-dimensional camouflage g e o m e t r y 

Consider a two-dimensional static point situation, as depicted in Figure 2.2. Without loss 

of generality, we transform the engagement into a polar reference frame with origin at 

r^. So the unit vectors along the polar co-ordinate axes for each point Fp and r^ are 
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(a) Static point behind, fc > 0 (b) Static point between, fc < 0 

F igure 2.2: Static point motion camouflage geometry 

and Since r ^ and rj^ lie on the same line, e^/ 

e^ / = e^/ = e^. Then 

r ^ = rFe'-

and similarly for r]^. Then since r-^ is now the origin, 

= e'̂ ^ -= e'" and 

(2.3) 

r ^ = fcr^ 

= krj^ 

= (icrf + + kr^ffj^e^ 

ir^ = kr^ + krj, 

(2.4) 

hence 0p = 0p, ie when viewed from P, the two points T and D have the same angular 

velocity. Moreover, consider the relative vector r j , defined as v^ -r^. We can -RTite 

rl = r ^ - r ^ 

= r^e'-krle' 

= rj,{l-k)e'-

(2.5) 

hence, differentiating the last equation, we find 

r l = ( r ? ( l - fc) - fcr?) + - k)e'/. (2.6) 
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Since rj) = rp(l - k), the angular velocity of r^ is equal to 0p, ie the angular velocity of 

the line of sight vector between T and D is the same as the angular velocity of the target 

measured from the static point P. 

Figure 2.3: Infinite point camouflage geometry 

For the two-dimensional infinite camouflage scenario (Figure 2.3), we observe that the 

set of lines {r^' - r^' | r^- = = to < ti < tf} form a pencil with a 

meeting point at infinity, P^. Therefore in the projective Euclidean plane encompassing 

this pencil and point, we can use a similar derivation to that above to show 

^p — dp 'oo ^oc (2.7) 

2.2.2 Three-dimensional camouflage geometry 

In three dimensions, the method is similar. First, translate the origin to the static point 

r^ and consider the engagement in a spherical co-ordinate system. 

Proceeding as before: 

pT Op - p'-D - Bp 

Bp - Bp 

Bp — o'^D - Bp = 6^. (2 

rF = r^e'-

- krj, 
= 

(2.9) 
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•T 
rp - - - fj^e'' + cos ^Je^ + r]!,(j>J,e'<'. 

Substituting from (2.9), we find 

hence 

r-p = {kr]!> + fcr+ krj,ej. cos (p^e^p + krj.^^e'^' 

(2.10) 

(2.11) 

9]^cos(p]!> = e^cos^^ 

0F = 

(2.12) 

(2.13) 

Similarly, let rj^ = r^ ( l - k)e''. Then, as in section 2.2.1, we find 

i-S = ( ' ' p ( l - fc) - fc^p) ep^ + r j ( l - k)0j.cos(f>le'^/ + r j ( l - . (2.14) 

So the LOS vector r ^ has the same angular velocity components as rp. (For the infinite 

case, dp^ = 0p , (pp = (j)p ). Therefore we submit the following theorem: 

Theorem: A two-body trajectory described by r^, rj- is motion camouflaged if 3 a 

point P such that 

= n^ , (2.15) 

where O is the angular velocity vector. 

Proof: We have shown in the derivation that equation 2.15 is a necessary component of motion 
camouflage. To show sufficiency requires a little more work. Consider first the two-dimensional 
case. 

It is immediately clear that the simplest scenario 
which satisfies 2.15 is that where P, D and T are collinear. 
In this case, rp may be said to be some scalar multiple of 
rp, and hence the system is camouflaged, QED. Suppose, 
however, that the points P, D and T are not collinear, 
as in figure 2.4. Here, r is the line-of-sight (LOS) vector 
between T and D. The angle of r is denoted by e, the 
length of r is denoted r, and the relative velocity between 
T and D is denoted v^. Hence the angular velocity of 
the LOS vector is given by 

V'' y 

Figure 2.4: Non-collinear pursuer and 
target 

where 
= v^ sin(€ - - v^ sin(e - a^) (2.16) 
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Now, let the direction of the relative velocity vector be denoted cr^, so a'^ = a ' ^ - c r ^ . Similarly, 
let 9^ = 9 ^ - 0 ^ . Then by equation 2.15, e = 9^. So 

— sin(e - cr^) = sin((TT - 9T)-
r r^ 

(2.17) 

By the cosine rule, we can write the following: 

Again from 2.15, we know 9 ^ = 9^, so 

• sinfcr^ — I 

and hence 
D T r" = r' 

= -Y sin((TT - dr) 
7> J 

F i g u r e 2.5: Vector diagram of re-
quired velocity conditions 

t ; r s i n ( < T r - 0 r ) • 

Substituting this value for r ^ into our equations for 
v^ and r, and then into 2.17, we find 

[v'^f [sin2(e - a'') - - + 

[sin2(e - - s in2(a^ - O ] -

s in(a^ - 9'^) sin(cr^ - cos = 0. (2.19) 

hence we can write 

Expanding and simplifying, this reduces easily to 

- {v^")^ = 0 

v''^ = v^ s in (a^ - 9^) - v'' s i n (a« - (2 .20 ) 

The angular conditions under which equations 2.16 and 2.20 hold 
can be easily represented graphically, as shown in the vector diagram 
2.5. Examination of triangle BCD (or ACH, for tha t matter) reveals 
tha t 

a'^ - = 9'^ - 9 ^ (2.21) 

Furthermore, triangle ABE demonstrates tha t the LOS angle ^ is 
equal to (e - + cr'^, and hence 

= <7 .̂ (2.22) 

In conjunction with 2.21, we may now sta te tha t a ^ = and 
therefore the velocities of both pursuer and target are solely in the ^ ' ^ u r e 2.6: Constant 
direction of their respective radial position vectors, as measured from direction 
P. In other words, 

9 " = = 0. (2.23) 

From our initial criterion, e = = 0, which is only possible if the direction of the LOS vector 
between the pursuer and the target remains constant. This scenario is shown in figure 2.6, and fits 
the definition of motion camouflage with a static point at infinity. Hence, if equation 2.15 is t rue 
and P, D, T are not collinear, the pursuer D is camouflaged at infinity with respect to the target 
r . Obviously, if P, D, T are collinear, the camouflage equation is already fulfilled, as stated earlier. 

In a similar manner, we can extend the above proof to three dimensions. We must first break 
down the three dimensional geometry into a vertical and horizontal plane, corresponding with the 
azimuth (9) and elevation (0) of the bodies in question. Figure 2.7 shows the three dimensional 
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case. In the horizontal plane, we observe that 

yR„ = t;^cos(/>^sin(r; - a^) - sin(7? - cr^). 

Applying equation 2.15, we find also that 

In other words, 

u^i = v^l — y'^n (2.24) 
(2.25) 

and hence we find <7̂  = cr^ = We can acquire two similar equations in the vertical plane. 

(2.26) 

(2.27) 

hence e^ = = Therefore the angular velocity of T and D, as measured from the origin 
P , is equal to zero, and the conditions for camouflage at infinity are met. 

Figure 2.7: 3D non-collinear geometry 

The theorem above therefore describes not merely a neces-

sary but indeed a sufficient condition for active motion cam-

ouflage to be deemed to have occurred. Significantly, it does 

not hold for the trivial case of fc = 0, which is helpful in distinguishing active motion 

camouflage from passive. Hypothetically, given a static point corresponding to a physical 

object, a pursuer may remain camouflaged by matching the apparent angular velocities 

of the static point and the target, keeping them at 180° to each other in the visual field. 

This corresponds with Srinivasan and Davey's intuited statements as to how camouflage 

may be accomplished by an insect [SPK99]. 
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2.3 Optimal Motion Camouflage Paths 

2.3.1 Introduction to Lagrangian Mechanics 

In classical and quantum mechanics, equations of motion are derived from what is termed 

the principle of least action. 'Action' is a quantity which has dimensions of energy inte-

grated over time. The energy in question is expressed by the Lagrangian, and is generally 

taken as being equal to the kinetic energy of the system minus its potential energy. This 

is to ensure that the trajectory derived from the variational problem is a second-order 

differential equation, and thus corresponds with Newton's laws of motion. 

The term 'least' in the expression 'principle of least action' is somewhat misleading. 

We don't actually look for the trajectory of least energy, we look for the one where slight 

changes in the trajectory have the least effect on the total action. The favoured trajectory 

is the one of 'stationary variation' in the action, whether this be a minimum, a maximum, 

an inflection point or a saddle. Problems of this nature are hence termed 'variational 

problems', and the approach to the solution is governed by the calculus of variations. 

Once the Lagrangian has been determined, we can solve the relevant Euler-Lagrange 

equations to determine the equations of motion for the system. For example, given a single 

particle moving under the influence of external forces, we determine that the particle will, 

at one time, be at a certain position and moving with a certain velocity, and at a second, 

fixed time will have another position and velocity. Then using the principle of least action, 

we ask what trajectory, connecting these two points, will minimize the action, and claim 

that the particle will follow that trajectory, as long as all external forces have been taken 

into account. In terms of force-based control, we say we are looking for paths which require 

the least control action to achieve, usually while satisfying some other criterion. 

Should the system be more complex, with multiple forces acting on a body, we can 

incorporate their influence with the use of the theory of Lagrange multipliers and solve 

for the equations of motion with these additional constraints. Lagrange multipliers are 

a powerful tool, explained more fully in Appendix A, and they will be returned to in 

Chapter 3, however in this preliminary result their use is unnecessary. Note that [M098] 

and [Ber96] are excellent resources for the theory of Lagrangian optimization. 
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2.3.2 Procedure 

Camouflage with a non-infinite static point 

Glendinning [Gle04] characterized motion camouflaged paths mathematically in the fol-

lowing way: in 3-D Cartesian space, let r£)(t) and vrit) be the vectors representing the 

time-varying paths of the pursuer and the target, respectively, and let rp be the vector 

that represents the position of the fixed point. The camouflage constraint then requires 

that, at all times, 

roit) = roiO) + /c(0(rr(t) - rp) (2.28) 

where rp is the fixed point of the engagement. Clearly this holds true for any continuous 

function k{t). Then if we allow rp to be the static camouflage point for non-infinite motion 

camouflage, we obtain the previous equation defining motion camouflage: 

{ r p - r D { t ) ) = k i t ) { r p - r T i t ) ) Vi > 0 (2.29) 

where k(t) is some continuous scalar function. It should be noted at this time that the 

condition k{t) < 1 V Hs necessary for the pursuer (shadower) to appear stationary to the 

target (shadowee). Should k{t) > 1, the engagement will still be camouflaged, however 

the pursuer would now have become the target, and vice versa. 

Assume the function k{t) to be twice differentiable, and that the initial conditions 

i^D{to),^D{to),k{to),k{to) are all known. We take an action minimization approach to 

finding an optimal path, and we can do this via Lagrangian mechanics. Assume a particle 

of unit mass, then the Lagrangian for the system can be written as kinetic energy minus 

potential energy [M098], that is 

C = KE-PE = i f ' i j fD (2.30) 

(note that since we are ignoring any gravitational force, the potential energy term can be 

neglected). Then the control cost can be written 

J = l r ^D^Ddt. (2.31) 
^ JtQ 

In physical terms, the derivation can be described as follows: instead of assuming 

a freely moving body and then attempting to constrain that motion to a camouflaged 
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path, we instead begin by assuming that the only forces acting on the shadower are those 

required to hold it to a camouflaged path. By solving the Euler-Lagrange equations for 

such a system, we can use Hamilton's Principle of Least Action to find the path the 

particle will take if no other forces are acting on it besides the minimum required to keep 

the motion camouflaged. 

Differentiating equation (2.29) with respect to time, we obtain 

-roit) = k{t){rp - rrit)) - k{t)rT{t). (2.32) 

Since k{t) parameterizes the path of the shadower, finding an appropriate stationary 

value for the energy curve 

i f ' rD{ tyrD{ t )d t (2.33) 
^ Jto 

is equivalent to finding the function k{t) such that 

7" 
'to 

is minimised. 

With £ as before, the Euler-Lagrange equation for the system is then 

i / ^ \k{t)rT{t) - k{t){rp - rrit)]' [k{t)rT{t) - fc(t)(rp - rT{t))]dt (2.34) 
Jtn ^ -I 

dk dt dk ~ • (2.35) 

Q d, 
— = kv^TT - fcrr(rp - TT) (2.36) 

dC 
di " ~ + ~ - tt) 

d d 

= -fcrT(i-p - rr ) - fc [rr(rp - rr ) - ryrr] + 

k{rp - rr)'(rp - r^) - 2fcr^(rp - rj). 

(2.37) 

(2.38) 

Substituting these values into equation (2.35), we get a second-order differential equa-

tion in k: 

k [(rp - rrYirp - FT)] + 

2{-k [r^(rp - rj)]) + k [-rrirp - t t ) ] = 0. (2.39) 



§2.3 Optimal Motion Camouflage Paths 25 

Let (rp - rrit)) = a{t), then we can write (2.39) as: 

ka'a + 2ka'a + ka'a = 0. (2.40) 

Hence the vector quantity 

ka + 2ka + ka 

is orthogonal to a. To find a unique solution for k, note that equation (2.40) is equivalent^ 

to the second-order differential equation 

fcia| + 2fc^(|a|)+fc^(|a|) = 0 (2.41) 

which has a solution of the form 

/c|a| = Cit-I-C2 (2.42) 

for some integration constants ci,c2; therefore 

\rp - rT{t)\ 

This represents a general formula for extremals of k{t). Clearly it encompasses the 

trivial solution, k{t) = Q\f t. Explicit values for the constants depend on the initial 

conditions, so it is evident that the solution is highly sensitive to the choice of starting 

position and velocity, as is often the case with variational problems [M098]. The value of 

C2 is found as follows: 

I- - ^^ krt = 
l r p- r r ( 0 ) | 

C2 = /co(|rp-rT(0)|). (2.44) 

^For any column vector a, the following holds true: 

a'a = | a | ' 

= ( | h ) H ^ 

a a = a'a + ad — ad 

= M^lol 
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For an engagement that ends in an interception, ci can be similarly found from the 

desired terminal conditions, a procedure outlined shortly. However for an open-ended 

interaction, a suitable value for the constant ci can still be estabhshed from the first-order 

initial conditions. Differentiating (2.42) gives us 

r ^ ( r p - r T ) 
k = + ,2 (2.45) 

therefore by defining the initial condition fco, we obtain 

|rp - Ft I 

A positive value of fco generates a trajectory with a pursuit characteristic, a negative 

value gives an escape path. Different engagements are illustrated below. Figure 2.8(a) 

shows a simple pursuit scenario, chasing a target with constant velocity. Figiu-e 2.8(b) 

shows the same starting conditions with the shadower escaping from the shadowee. 

(a) Linear interaction, fc > 0 : fco = 
0.1, fco = 0.2 

(b ) Linear interaction, k < 0 : k > 0,ko 
0.1, fco = - 0 . 2 

Figure 2.8: Optimal solutions to linear trajectories 

To demonstrate the efficacy of these paths, consider two particles with the same start-

ing position and velocity, camouflaging against a shadowee moving along the same straight 

trajectory, where one is using the extremal path derived above and one is moving in a 

straight hne to the interception point (while still maintaining camouflage). Figure 2.9 

demonstrates the paths taken. (For simplicity, we look at only two dimensions in this 

instance). 

Define the following variables: let 9 be the angle between the two participants (what is 

often referred to as the line-of-sight angle in missile guidance), and let a be the direction 
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of the pursuers trajectory (relative to the x basehne). To define a straight camouflaged 

interception hne, in simple terms, set a time horizon in , and from the initial velocity of the 

target and this time horizon, determine a suitable direction a for a straight interception 

path. (Note that this is an open-loop ballistic control system which assumes no change 

in velocity or direction of the target. If such a change occurs, interception will not be 

achieved, since a is constant). The required lateral velocity of the pursuer is found by the 

ratio 
..D 

rD r-T-

Then the total velocity is straightforward: 

- V . 
D 

sm (T -

In cartesian space, the requisite velocity is 

(2.46) 

(2.47) 

v^ = v'^ cos a 

Vy = v^ sin a. 

(2.48) 

(2.49) 

0 

- 1 0 0 

-200 

5-300 
-400 

-500 

-600 

Static Point 
Optimal Energy Path 
Target Path 
Intenaiptioti Path 

0 100 200 300 400 500 600 700 
X-an 

Figure 2.9: Comparison between a straight interception trajectory and an energy optimal tra-
jectory. Initial conditions, in cm, are as follows: XT{0) = [30,60], F t(0) = [650,-20], Xd(0) = 
[300,-650],Kd(0) = [9,11] 

The initial velocity vector of the straight hne path was set to point in the approximate 

direction of the interception point of the optimal trajectory, so that that we can make a 

meaningful comparison. The forward velocity of both pursuers at the beginning of the 

interaction is 14 cm/s. The final speed required for the straight trajectory to still be 

camouflaged at the interception point is 1.14 x 10^ cm/s, whereas that required for the 
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optimal energy path is 187.8 cm/s . Given these initial conditions, then, to pursue a target 

along a straight line while remaining camouflaged a shadower must input more than 40 

times the energy than if an optimal pursuit path were chosen. 

As alluded to previously, if it is desired to intercept the shadower within a predeter-

mined time, or indeed if another geometric condition is to be met, then we can determine 

the necessary constant Ci from the end boundary conditions. In the case of capture in 

some finite time tf, we say k{tf) = 1, so we can write: 

ci = - [|rp - r T { t f ) \ - fcolrp - rT(0)|]. 

Figure 2.10 demonstrates a finite horizon capture path. 

(2.50) 

SOO-I 

450-

400 ~ 

350-

300-

250-

200-

• * / Shadower 

Figure 2.10: Capture trajectory for a shadower with initial conditions ko = 0.1, ko = 0.2, static 
point at rp = [200, -650,500]. Shadowee initial conditions rT(0) = [30, 60,150], constant velocity 
r'r = [200, -20,60], Capture horizon is 12s (CCLs shown here every 0.4s). 

C a m o u f l a g e at Inf ini ty 

A similar method can be used to generate optimal paths with camouflage at infinity [SD95]. 

We again use a general formulation given by Glendinning [Gle04]: 

TT-TD = k{t)e (2.51) 

where e is a constant vector. For the sake of simplicity, we choose e to correspond with 

the initial conditions, so 

e = r T { t o ) - T D { t o ) . (2.52) 



§2.3 Optimal Motion Camouflage Paths 29 

Differentiating and applying the same cost function as before, we obtain the Lagrangian 

and develop a solution of the form 

ke^e = v'j-e + c\t + C2 (2.53) 

for some constants of integration c i , c2 . 

We can again find c\ and C2 from the initial conditions. For a capture trajectory, we 

can determine the optimal ci for a given final time from the terminal boundary conditions. 

so 
1 

ci = - {k{tf)e'e - v'T{tf)e - cs) . (2.54) 

For a capture trajectory, k(tf) — 0. For tracking at a constant distance d = \rTa — tdqI = 

le|, we set /c(^/) = 1. An example of the latter can be seen in Figure 2.11. 

Figure 2.11: Tracking at a constant distance. Initial conditions and velocity of the shadowee are 
identical to Figure 2.10. Starting point of shadower is at [0,0,0]. 

2.3.3 Discussion 

In this chapter, I defined the geometry of motion camouflage and established a necessary 

and sufficient condition for a two-body pursuit to be considered camouflage. This dy-

namic condition has the advantage of not relying explicitly on distance information. Sub-

sequently, I derived a formula for a class of 'natural' three-dimensional camouflage paths 

that maximize energy conservation and can be used for emulating a stationary object at 

a finite distance from the target, or at infinity. The results can be used to examine the 

energy optimality of experimentally observed trajectories that exhibit motion camouflage, 

or in the design of optimal closed-loop guidance systems for motion camouflage 
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Chapter 3 

Control for Camouflage 

3.1 Introduction to LQR control 

A linear state-space model of a system takes the form 

k = Ax+ Bu. 

The Linear Quadratic (LQ) [Ber95] method devises a suitable feedback control law 

u = -A'x. 

The feedback gain K guarantees the stability of the closed loop system, regulating the 

states of the system to zero. The linear nature of the model means that taking an error 

signal e = X - Xr and applying the controller gain such that u = -Ke regulates the error 

signal to zero, instead of the state, x^ represents the vector of desired states, and serves 

as the external input to the closed-loop system 

x = +ATx,. (3.1) 

The objective of dynamic programming is to minimize a certain cost, where cost is the 

term used for a mathematical expression which quantifies an undesirable outcome [Ber95] 

Cost may be expressed in terms of an energy function, as a geometric constraint, or a soft 

dynamic hmitation. Broadly speaking, we consider a sequence of dependent decisions, 

and seek a balance between the desire for low present cost and the possibility that this 

might create a need for a high future cost. To apply dynamic programming to a guided 

trajectory, we model the system using discrete-time dynamics. We ensure the system state 

encompasses the key variables, then examine the evolution of this system state under the 

influence of decisions made at discrete instances of time. 

31 
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In discrete form, the evolution of the system is expressed in the equation 

Xfc+i = Axk + Buk 

where Xk is the state and Uk the control variable (not considered here are noise-dependent 

influences on the system). Our control objective is to select the control input Uk at each 

time in such a way as to minimize the long-term average quadratic cost criterion 

T - l 

J{u) = ^ + + 
k=\ 

where Q is a matrix encompassing the cost on the system state and R represents a cost 

assigned to the control action. In dynamic programming, this cost minimization is ac-

complished by using the solution to a series of dependent subproblems to find an optimal 

solution to a larger problem. 

For example, suppose we wish to drive a given system from a known state S\ to a 

desired state 54, and the path space from 5i to 54 is defined by two sequential sets of 

possible states i = l , . . . , M , j = 1,...,7V. Then to solve this problem using 

dynamic programming, we fist compute the 'best' (cost-minimizing) solution for the sub-

problem of driving the system from each sub-state to 54. We can then find the best 

method of getting from Si to 54, constrained by the already-derived optimal solutions 

from 82-

For a simple problem like the one described above, the dynamic programming method 

gives only a small computational advantage. However as we increase the number of possible 

nodes between Si and 5„ , and thus the solution space of the problem, the savings in 

computational effort increase enormously. In this way, a dynamic programming solution 

to, say, a path-finding problem is solved backwards in time to arrive at an optimal path. 

More detail can be found in [Ber95], [CK98]. 

3.2 Two-Dimensional Linear Quadratic Regulator for Mo-
tion Camouflage 

Using a linear quadratic regulator to govern motion camouflaged trajectories, the aim is to 

design a optimal control policy for the shadower which ensures certain constraints (motion 

camouflage requirements) are met, whilst achieving an overall objective (for example. 
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attack, tracking, or escape). This optimal control approach is not necessarily expected to 

represent the mechanism used by an insect, but simply provides a useful frame in which 

to develop strategies that mimic the observed insect behaviour, and perhaps provide some 

insight into the essential features of the problem. 

The key contribution of this chapter is to describe and solve several varieties of motion 

camouflage behaviors within an LQ framework, and to find optimal strategies for achieving 

both the motion constraints and the overall engagement requirements. I will also discuss 

realistic control constraints, measurement and some higher-level control issues. 

3.2.1 Dynamics of Motion 

We characterize a motion camouflage engagement as two players (shadower and shadowee) 

undergoing constrained dynamic motion over time. Although the terms shadower and 

shadowee are inspired by the insect world, the developed framework can equally be applied 

to other pursuit games including the missile (shadower) and target (shcidowee) problem. 

Initially we will consider simply two dimensions. 

The dynamics are described in an Euclidean reference plane. The shadower position 

and velocity is represented by r© = and r ^ = [i^,?/^]' respectively, where / is 

the transpose symbol. Similarly, the shadowee (target) position and velocity is represented 

by tt = and tt — respectively. We introduce a shadower state vector 

X'^ = and a shadowee state vector = The control 

problem will be examined in terms of a relative state X ^ = - X^ . 

We assume that the motion of both the shadower and shadowee can be represented 

using linear dynamics. Hence, for k = 1,2, . . . , the following discrete-time state equation 

representation of the shadowee and shadowee dynamics is proposed: 

XL, = AXT 

X, D 
fc-l-1 = AXP + B^Uk. 

(3.2) 

(3.3) 

where 

A = 

1 0 At 0 " " 0 0 

0 1 0 At 0 0 

0 0 1 0 1 0 

0 0 0 1 . 0 1 
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At is the sampled period, and Uk is the control. 
The relative dynamics of the shadower-shadowee engagement can hence be written as: 

X^^, = AX^ + B^uk (3.4) 

Remark 

1. Unlike a missile guidance problem [BAY98], the shadower is allowed control over 
both lateral and longitudinal accelerations. That is, control of forward as well as 
lateral velocity is assumed possible. Effective motion camouflage leading to capture 
does not seem viable without control of forward velocity. 

2. The shadowee dynamics in (3.2) describe the trivial case where the shadowee has a 
constant heading and velocity. In practical situations, the shadowee may actually 
maneuver; however, these manoeuvres are typically not known in advance to the 
shadower. The motion camouflage problem is therefore solved assuming no shadowee 
manoeuvres, and then the performance of the resulting guidance algorithm when 
shadowee maneuvers are present is examined. 

3.2.2 Mot ion Camouflage Constraints 

Motion camouflage may be expressed as motion in which the apparent angular position 
of the shadower appears stationary over time from the perspective of the shadowee. This 
angular camouflage constraint corresponds to constraining the motion of the shadower to 
particular hnes in 2D space that correspond to the camouflage constraint lines (CCLs) 
[SD95] at discrete time intervals. We deflne these as the line between the position of the 
shadowee r j = [x l ,y l ] ' at each time instant and the chosen stationary focal point of the 
engagement, rp = [fxjy]'- The slope of these CCLs provides sufficient information for 
the shadower to adequately camouflage its motion. 

At this point, the precise formulation of the problem diverges depending on the par-
ticular type of engagement being modeled. For LQ control, the distinguishing feature 
between the different algorithms is the ultimate goal of the engagement, whether that be 
pursuit from a finite static point, pursuit from an infinite stating point, or tracking at a 
constant distance. 
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To an observer, it seems more natural to pose the problem using a cartesian reference 

frame. However dragonflies and other insects are unlikely to operate in this stationary 

absolute frame; rather they use something akin to a polar reference frame, with themselves 

as the moving centre [FW02]. For these reasons, the motion camouflage problem will first 

be solved in cartesian space, then the simulation will be converted to a polar frame and 

modified to achieve a more biologically realistic situation in Section 3.3. 

3 . 2 . 3 P r o b l e m Formulat ion and Solution 

Performance Index for Motion Camouflage 

Recall the chosen static point of the engagement is given by 

rp = [ / . , / , ] ' . 

We begin by determining the slopes of the required camouflage constraint lines, as shown 

in Figure 3.1. For a pursuit where the focal point is not at infinity, the constraint lines at 

each time interval, g^, have slopes as follows: 

= (3.5) 

For a pursuit where the focal point is taken to be at infinity, the constraint lines have 

constant slope, 

9k = k > 1. (3.6) 

As can be seen in Figure 3.1, the relative reference frame is simply a translation of the 

absolute reference frame. Hence in the relative reference frame, the CCL have the same 

description, and we note that on a perfectly camouflaged path 

y^ = g k X ^ f o r k > l . (3.7) 

Perfect camouflage is not always possible, or at least requires undesirably excessive con-

trol actions, so we represent the requirement to remain close to these CCLs through the 

following soft running constraint term, 

(3-8) 
k=l 

where T is the flnal time instant. 
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We also desire that the shadower intercept the shadowee at time T, and that the 

control action required not be too severe. It is assumed that T is known in advance by the 

shadower. This assumption may be unrealistic, but is a common one in missile guidance 

problems [Zar02]. On the other hand, Collett and Land [CL78] showed that hoverfiies using 

a predictive tracking mechanism which first assumed the target had a certain absolute size 

and specific average flight speed, and then from the apparent size and speed proceeded to 

calculate a likely interception point. So an assumption of a known time horizon may not 

be as unlikely as it first appears. 

Figure 3.1: Reference frames: shadowee and shadower in absolute and relative reference frames. 
Also shown is one camouflage constraint line. 

These motion camouflage and control energy requirements are used to propose a per-

formance index for the motion camouflage problem. The cost function for the problem 

can then be written as: 

T-i 

k=i 
J{u) = ^ + + (3.9) 

where 

Qi = IX 

- 9 i 0 0 • 

1 0 0 

0 0 0 0 

0 0 0 0 

R = 
1 0 

0 1 

and is a weighting factor used to describe the importance of the camouflage requirement 

relative to the control energy requirement. 

The dynamics (3.4) and performance index (3.9) define a linear quadratic problem to 
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which standard techinques can be apphed [CK98]. 

3.2.4 Optimal Motion Camouflage Guidance 

From [Ber95], the optimal control solution to the hnear quadratic problem is 

Uk - -KkXj^ (3.10) 

where K^ is given by 

Kk = [(B^)'PfcB^ + R] ' {B^yPkA (3.11) 

and Pfc is given by the appropriate discrete-form Riccati equation solved backwards in 

time, 

PN = QN 

Pk-i = A ' P t B ^ + rY\B'')'Pk^A + Qk-i. (3.12) 

3.2.5 Infinite point camouflage 

The goal whilst tracking another body in tandem, using camouflage with a static point at 

infinity, is for the shadower to remain at a fixed distance from the shadowee, and the cost 

is determined by how far the challenger deviates from this desired vector. 

The tandem or tracking flight problem can again be considered within an LQG frame-

work. The requirement to remain at a fixed distance from the shadowee can be represented 

by introducing a new relative state, X'^, offset from the shadowee location as follows: 

X^ = X^ + [d,,dy,0,0]' (3.13) 

where [dx,dy]' is the desired displacement vector. 

A guidance strategy can then be developed as a standard infinite-horizon LQG tracking 

problem. 

Remarks 

1. The motion camouflage strategy developed in this chapter assumes that the shad-

ower has knowledge of the correct time-horizon for the engagement. As mentioned 

before, in genuine engagements with an oblivious target, this is not an entirely un-
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realistic assumptions. However a reactive target may complicate the calculations 

considerably. 

3.3 Results 

3.3.1 General Example: Pursuit 

Simulation studies of the proposed motion camouflage guidance were first performed in 

the setting of a generic pursuit problem, without the consideration of realistic biological 

constraints. 

Shadowee I 
Shadower 

50 100 150 200 250 300 350 

(a) Static point behind 
400 SOO GOD 

(b) Static point between 

Figure 3.2: Examples of static point motion camouflage using a two-dimensional linear quadratic 
solution 

Using a weighting factor of = 1 x 10®, initial shadowee and shadower states (in 

mm and mms'^) of [100,210,1300,-800]' and [50,50,3000,1500]', respectively, the pro-

posed motion camouflage guidance algorithm was used to guide the shadower to a non-

manoeuvering shadowee. Figure 3.2(a) shows the resulting camouflaged trajectory, with 

the focal (static) point located at the starting position of the shadower. Figure 3.2(b) 

shows the resulting camouflaged trajectories when a point between the shadower and the 

shadowee (rp = [80,190]) is used as a focal point. Initial conditions for the shadower 

are the same as Figure 3.2(a), the shadowee now starts at [150,400] with the same initial 

velocity. 

A variety of initial conditions and focal point locations were tested, and the proposed 

control law could successfully camouflage a shadower for any predictable shadowee trajec-

tory (an example of a known but nonUnear trajectory is shown in Figure 3.4). 
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(a) Error ratio between desired slope and 
that generated by the LQR controller (e = 1 
indicates no error) 

(b) Control acceleration for the controller 

Figure 3.3: Error and Control Acceleration curves for Figure 3.2(a). Note that the error in 
the result is largely caused by the existence of an upper limit on the control acceleration, and 
the algorithm is sufficiently robust that only large variations in the weighting parameters produce 
visible increases in the error. 

Shadowee 
c Shadower 

100 150 200 250 300 350 400 

Figure 3.4: Example of a nonlinear target trajectory. 

3.3.2 Mimicking Dragonfly Encounters: Realistic Constraints 

In order to simulate the dynamic behaviour of dragonfly engagements more realistically, 

certain modifications were made to the simulation. Motion constraints were added to 

limit the allowable pursuer acceleration and velocity, to values that approximated those 

observed in genuine dragonfly interactions. 

It is likely that insects have an excellent estimation of the apparent angular velocity of 

the shadowee [SPK99], but less is known about their acuity in measuring range [OWVOO]. 

It is possible that dragonflies make assumptions about the size or speed [CL78] of the 

shadowee, and use these assumptions to infer range from dynamic cues. This corresponds 
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with other research indicating that dragonflies, hke most insects, are very sensitive to 

image motion [F095], so they are hkely to be able to fairly accurately measure angular 

velocity and possibly even accelerations. 

To partially represent the measurement process available to dragonflies, a polar repre-

sentation of information was incorporated into the simulation. Although filtering was not 

added, this polar co-ordinate system allowed noise to be introduced into range and angle 

measurements in a crude manner to partially represent the effect of a state estimation 

process. 

Let r be the range from shadowee to shadower, and 8 be the angle of the line of sight 

vector between the two. Then the relative state vector is 

rcosU 
rs'mO 

r cos 9 — rO sin 9 
f sin 6* -I- r9 cos 9 

(3.14) 

In this way we can introduce systematic errors in range and velocity estimation. Fig-

ure 3.5 shows an example of the closed-loop behaviour when the angular position of the 

shadowee is known accurately, but the range is inferred from an (erroneous) assumption 

about the size of the shadowee, and is hence inaccurate. 

Shadowee 
Shadower I 

1 .25 -

g, 1.2-

8 
f 
s I 
d o 1 ;v 
S 0,95-

50 100 150 2 0 0 250 300 350 

(a) Trajectory 
Time (ms) 

(b) Deviation from CCL slope 

Figure 3.5: Trajectory with a (systematic) range estimation error: this figure shows the resulting 
trajectory and a plot of the deviation from the desired slope. Initial conditions were the same as 
Figure 3.2(a) 

It can be seen that errors in range estimation produce an overshoot of the target 

(Figure 3.5(a)), and a slight deviation from the CCLs when a corrective acceleration is 

applied (Figure 3.5(b)). Here, we see tha t although the trajectory remains on the CCLs, 
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once the pursuer crosses the path of the shadowee it is no longer stationary from the 

shadowees perspective (ie in terms of our previous camouflage equations, k > 1, so motion 

lies on the CCL but is not camouflaged in any real sense). Hence unless range information 

is reasonably precise, a pursuit trajectory may require an auxiliary constraint or limitation 

to ensure it remains between the static point and the target. 

Remarks 

1. A systematic approach to estimating the required state information from the partial 

observations available to the dragonfly was not implemented in this study. A Kalman 

filtering approach to state estimation would seem to be one obvious approach. 

2. A second, more subtle, issue is the prediction of future shadowee motion. It appears 

that some sort of prediction of future shadowee behaviour is required for successful 

guidance. However, it is known that when a shadower dragonfly encounters an aeri-

ally and tactically capable shadowee, the shadower's behaviour is more complicated 

than the presented simple motion camouflage strategy [MCS03]. 

3.3.3 Infinite Point Camouflage 

The results of a program to generate camouflage at infinity, using an offset value as 

described in 3.2.5, can be seen in Figure 3.6(a). Slightly modified, the infinite camouflage 

algorithm will produce a successful capture, as in Figure 3.6(b). 

(a) Tracking at constant distance 

Shadower 
Shadowee 

55 

5 0 ' 

4 5 

90 100 110 120 130 140 

(b) Capture using camouflage at infinity 

Figure 3.6: Either shadowing or capture can be accomplished using camouflage with a focal point 

at infinity. 
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3.4 LQR: Extension to 3 Dimensions 

Previously [CFC04], we derived and tested a method of generating motion camouflaged 

trajectories using dynamic programming. This controller was limited to two dimensions, 

and engagements of finite length. Here, we first extend that work to three dimensions, 

then use a dynamic programming method with greedy cost constraints to develop an 

open-ended solution. 

3.4.1 Dynamics of mot ion 

Let the shadower position be designated ro = [x^{t),y'^{t),z^{t)], and the shadowee 

position rr = [x'^{t),y'^{t),z'^{t)]. Similarly, the respective velocities are represented by 

ro = [x^{t),y'^{t),z'^{t)] and vt = [x'^{t),y'^{t), z'^{t)]. Then let the shadower state be 

written 

(3.15) 

and the define the shadowee state similarly, 

r ^ = [a;^, j/^, x^ , z ^ ] ' . (3.I6) 

The focal point of the engagement is written 

P TP P p-[l . (3.17) 

The camouflage constraint lines are the vectors r^ - at any particular time t, or 

in discrete time, r^ - rf at each time interval i. 

3.5 Problem formulation 

3.5.1 Performance Index 

In prior work [CFC04], the slope of the camouflage constraint lines was used to generate a 

cost for the problem. Extending to three dimensions, we could use the normalized gradient 

of the constraint fines to obtain the equivalent information, however since the constraint 

vectors are straight lines, we can more simply use the normalized vector itself as a measure 

of the performance index. To do this, we need to augment the state of the shadower and 
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shadowee in a suitable fashion [Ber95]. So let 

p T 

Si 1 p ^ 
ir^ - r f l 

then for a camouflaged trajectory, at any time interval i, the following holds true: 

.P _ r.T 

(3.18) 

r ' - r r = - r , |=g,|r - r, 

Hence the running cost index for the problem can be written 

We make a coordinate transformation , 

r ^ = r^ - r ^ 

(3.19) 

(3.20) 

and rewrite the cost accordingly: 

(3.21) 

In order to write this running cost in the appropriate format, we need to augment the 

state equation for the controlled variable, so let 

(3.22) 

Including an energy cost to limit excessive control action, the cost function for the problem 

can then be written [Ber95] as 

fc-i 
(3.23) 

i=l 

where 

H^ = 1 
h Si O4 

[ O4 O4 J 
R - ^h. (3.24) 
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3.5.2 Augmented dynamics 

We are now in a position to define the discrete-time state equations associated with the 

system. Let 

A = 

B = 

then the state equation for the system is 

I4 At/4 

O4 h 

O4 
Ath 

(3.25) 

(3.26) 

(3.27) 

where u is the control vector for the system. The optimal control solution to the hnear 

quadratic problem is 

u, = -K^rl. (3.28) 

The gain, Ki, is found by 

K, = [B'P^B + R] B'P^A (3.29) 

where P is given by the appropriate Riccati equation [Ber95]. 

3.5.3 Results 

The following graphs demonstrate optimized paths taken by the above control system in 

response to a linear (Figure 3.7) and nonlinear (Figure 3.8) shadowee path. For the sake 

of simphcity, the starting position of the active participant was assumed to be at the same 

location as the stationary point. For these examples, the weighting factors are as follows: 

7 = 10^, At = 10-5 . 

3.5.4 Spherical co-ordinate transformation 

If we wish to simulate noise and sensor error in a manner similar to tha t used previously, it 

is easier to do so if the system is considered in the spherical frame, centred on the pursuer. 

We first write the system in a relative reference frame, R = T - N (after the coordinate 

shift m (3.20) is taken into account). Then the necessary state equation can be writ ten as 

-= Ar'l, + B u ^ , (3.30) 
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(a) Example of 3D static camouflage using 
an LQR controller 

20 40 60 80 100 120 140 160 180 
Time (ms) 

(b) Control acceleration required for the 
path, in 

F i g u r e 3 .7 : Examples of static point motion camouflage using a three-dimensional linear 
quadratic solution. Initial conditions, in mm and mm/s : rp = rD(0) = [ -200,100,20] , 
r r ( 0 ) = [200,250,380], ro iO) = [250,440,700], r r ( 0 ) = [ - 1 6 0 , 1 3 0 , - 3 0 ] . 

r'J, = (3.31) 

where r^ is the relative state vector {r'^-r^), A and B are as before, and u ^ is the control 

acting on r ^ . Then the transformation to spherical co-ordinates is straightforward, and 

the augmented relative state vector can be expUcitly written 

r cos 9 sin (j) 
r sin 6 sin <p 

r cos (p 
r 

r cos 9sm4> + cos (p — 9s\n 9) 
f sin 9sm(t> + r{(p cos (p + 9 cos 9) 

r cos (p — r sin (j) 
f 

where r is the length of the relative vector 9 is the azimuthal angle and (p is 

the angle of elevation. 

3.6 Greedy Optimal Control 

3.6.1 Problems with LQR 

The previous control equations depended on a cost function that was cumulative over the 

entire interaction, and thus required (a) a predictable shadowee path, and (b) a known end 

point for the engagement. The traditional finite-horizon LQR controller works by solving 

an appropriate Riccatti equation for the desired end-point of the interaction and working 

backwards. While this can be converted into an infinite-horizon controller by continually 

recalculating the end-point as the state information is updated, doing so increases the 
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-6S0- shadower 2.5 
-700- 2 
-750- ' 
-800. 1.5 
-850- t 
-900- 1 
-950- O.'J 

-1000- 1 0 -1050-
-1100-, •0.5 
-1150- shadowee 

300 200 100 

(a) Example against manoeuvering target (b) Control acceleration required for the 
path 

F i g u r e 3.8: LQR against a manoeuvering target. Note the large control effort. In this sim-
ulation, no maximum cap on the control acceleration was used, so the solution was geomet-
rically perfect. Initial conditions, in mm and mm/s , were: r p = r£j(0) = [ - 2 0 0 , 1 0 0 , - 6 0 0 ] , 
r r ( 0 ) = [140,107, -832 ] , rD(0) = [2500, - 2 8 0 , -3000] , r r ( 0 ) = [ -3350 , 462, -895 ] . 

processing power required enormously. 

Greedy optimal control eliminates this problem by considering a piece-wise cost, opti-

mized only over the immediate time interval. It thus removes the need for the shadowee 

path to be completely predictable, or for the time horizon of the engagement to be defined 

beforehand. 

3.6.2 Problem formulation 

Lavretsky [LavOO] outlines a useful greedy control method which can be adapted to this 

problem, also using dynamic programming. The difference is that the cost now takes the 

incremental form 

Jk = ulRuk + xl^^Qxk+i (3.32) 

and at each time-step we attempt to minimise this cost without regard for the steps taken 

before or after. The gain is found by 

Kk=[R + B' QB] ^ B'^QA. (3.33) 

Note that the gain is similar in appearance to that based on the solution to the discrete 

forward-time Riccatti equation [Ber95], however here the matrix representing the running 

cost Q takes the place of the Riccati solution P. When using the equation, then, it is not 

merely sufficient to redefine the cost appropriately, we must also ensure that Q has a form 



§3.6 Greedy Optimal Control 47 

which generates a non-zero solution. In the case of motion camouflage, we find that some 

reformulation is required. 

If we take the control vector u/j to be acceleration input as before, then our state 

matrix B acts directly only on the velocity. However the motion camouflage constraint 

is a geometric constraint, not a dynamic one, independent of the velocity. Therefore the 

resultant form of the state-space matrix H does not produce a solution under the greedy 

optimal equations. (It is trivial to demonstrate that the derivative of the cost constraint 

(3.9) is also not useful in defining a running cost matrix). 

So we consider instead the control vector to be the velocity of the controlled body 

Ufc = xjP, and the (augmented) statespace equation is now: 

M 
f̂c-t-i = A 

IrPl 
+ B •r-Dl (3.34) 

A = h 

B = Ath. 

The cost matrices R and Q need to be defined. We let R represent a unity cost on the 

control, 

R = fih (3.35) 

where fi is the control cost weighting factor. Then Q must encapsulate the same geometric 

constraint previously included in H, however it must now be in a form that matches the 

incremental cost (3.32). Consider the constraint equation (3.9). The necessary geometric 

condition is then 

rfc+i = gfc+ijrfc+il (3.36) 

so we need to obtain an estimate for g^+i (recall that the aim of greedy optimal control 

is to eliminate the necessity of complete predictability of the shadowee path, so that the 

system at future states is no longer known exactly). 

To proceed: we minimize the time increment At^ and assume the moment to moment 

acceleration undergone by the shadowee is relatively small. Then we can make the linear 

'In simulation we can choose the time increment to be as small as we like, so there is no lower bound 

and we can choose a At that is small enough to reduce error to negligible amounts. In practice, however, 

the minimum interval between measurements will be dependent on physical factors, for example delays 

and processing time within the system. 
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approximation 

i-fc+i =rl + Atv^ 

so 
r^+1 rl + Atvl 

= ^ « : 7 'rr (3.37) 

Call this approximation g^+j, and let our running geometric cost constraint be 

(3.38) 

Our cost matrix now takes the form 

Q = h -gfc+i 
' T ' 9 

-gfc+1 gfc+1 
(3.39) 

(The extension to polar co-ordinates for the new state vectors is a trivial reduction of 

Section 3.5.4 and thus is not detailed here). 

3.6.3 Results 

Again, we examine the response to a linear and a nonlinear shadowee path. No limit was 

placed upon the control acceleration, so the paths did not deviate from the camouflage 

constraint hnes. However, capture of the target could only occur under a highly constricted 

set of starting conditions and target dynamics. 

3.6.4 Analysis 

As it stands, the system provides good camouflage, however it does not necessarily produce 

a capture or even pursuit path. Moreover, the control effort required may not differ 

significantly from that needed using a finite-horizon control. It may even be greater (see 

Figure 3.10(b)). 

The crucial difference is that a greedy optimal trajectory, seeking to minimize imme-

diate energy expenditure, will at each time interval seek the shortest path between two 

adjacent camouflage constraint hnes (a perpendicular vector). We can see this is the case 

by examining the included angle between the shadower trajectory and the constraint hnes, 

as in Figure 3.11(a). Compare with Figure 3.11(b), which plots the included angle for an 

LQR path using the same shadowee inputs and weighting scalars as the greedy case. 
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(a) Example: Static Motion Camouflage 
with greedy optimal control - linear trajec-
tory 

(b) Non-linear trajectory 

Figure 3.9: Greedy optimal control performance against (a) a nonmaneuvering target and (b) 
a manoeuvering target. Although in (b) the trajectory of the shadowee is such that it enables 
the shadower to achieve capture, this is not generally the case, (a) has initial conditions rp = 
[-200,100,20], rD(0) = [150,225,100], r r W = [200,250,180], r o W = [190,440,140], rriO) = 
[-60,80,-30]. (b) Starting points are rp = [-200,100,-800], r£,(0) = [144,184,-980], rr(0) = 
[140,107,-832], f£,(0) = [190,440,140], rT(0) = [330,40,-90]. Target trajectory in (b) is taken 
from an interaction filmed by Akiko Mizutani, 2003. 

3.7 Implementing Force-based Control in Flexible Aerial 
Vehicles 

In the preceding section we have examined higher level guidance methods for achieving 

motion camouflage. But how to implement these techniques, requiring a high degree of 

precision and flexibility? We here develop a force-based controller which may be used in 

conjunction with the methods presented both here and in Chapter 5. 

Insects of all kinds hold a significant advantage over artificial craft in terms of ma-

neuverabihty - unhindered by the weight, size and rigidity of inanimate aircraft, they can 

afford to undertake more acrobatically demanding tasks. 

Our motivation stems from the fact that for a particular commanded inertial frame ac-

celeration, there often exist multiple poses that will achieve the desired outcome. Descent, 

for example, may be accomplished either by pitching the nose down or by banking to either 

side, as shown in Figure 3.12. Most autopilots currently in use do not have the flexibihty 

necessary to make use of more than one of these methods for any given command. 

In contrast, we have designed an algorithm which takes a current or desired acceler-

ation as input and extracts the attitude required for a fixed-wing body to achieve this 
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(a) Comparison of greedy/lqr trajectories 
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(b) Comparative control action required 

Figure 3.10: Comparison of trajectories and velocity control inputs required for greedy and LQR 
trajectories, (a) has the same starting conditions as Figure 3.9(a). (b) Greedy control relies on a 
velocity control input, so the appropriate comparision is between the control required for a greedy 
solution and the velocity attained when using a traditional LQR solution 

acceleration. In the case of multiple real solutions, a pose can be selected according to 

some defined optimal criteria. The algorithm can thus be used to estimate attitude from 

wind-frame forces, or to develop a trajectory for use in path-planning and navigation sys-

tems. It eliminates the need for the time- and process-intensive filtering of inertial data 

which is otherwise required to produce a force-based autopilot. It also takes into account 

the aerodynamic coupling between the roll and pitch, by considering the attitude as a 

single two dimensional construct, rather than by trying to control each separately. In ad-

dition, this procedure generates an energy-efficient series of commands, since it primarily 

operates by manipulating the gravity vector, minimizing any acceleration or deceleration 

due to thrust. 

This method can not only be used to simulate a fixed-wing response to motion cam-

ouflage force-based guidance commands, it can also be used to analyze the inertial forces 

acting on a rigid body undertaking a known path in three dimensions. This gives us 

an excellent tool with which to examine the second-order differential equations governing 

patterns of insect flight. 

Initially, we describe a method for determining attitude from provided wind-axis forces. 

Subsequently, we use desired acceleration inputs in the inertial frame to determine the 

attitude that will result in a controlled manoeuvre. 
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Angle between CCL and shadower path Angle between CCL and shadower path 

(a) Greedy control - included angle (b) Velocity controlled LQR - included an-

gle 

Figure 3.11: Angle comparison between greedy and LQR control: Comparing the angle between 

the course of the shadower and the camouflage constraint lines, it becomes clear that the greedy 

optimal control maintains a course perpendicular to the constraint lines. 

3.7.1 Att i tude from Wind-Axis Forces 

We define the transformation matrix from the inertial frame to the body frame in the 

standard way [Ham63]: 

B = 
cos d COS 7 cos 0 sm 7 — sm 0 

sin (?!) sin 0 cos 7 — cos 0 sin 7 — sin 0 sin 0 sin 7 + cos (?!) cos 7 sin cos 0 

cos 0 sin 0 cos 7 — sin (/) sin 7 cos sin 0 sin 7 — sin (/> cos 7 cost/) cos 0 

To avoid singularities brought on by the high degree of non-hnearity in the eventual 

controller, we work in quaternions rather than Euler angles [TW97]. So in quaternion 

form, for 

q = f go qi 92 g3 

B = (3.40) 
2(go + 9?) - 1 2(^1^2 - qsqo) 2 { q m + 92go) 

2(gi® + qsqo) + g^) - 1 2(7293 - qiqo) 
. 2(^1^3 - 9290) 2(9293 + qiqo) ^ql + ql) - i- . 

See Appendix (C) for details on quaternions, their uses and the transformation between 

quaternions and Euler angles. Heading angle has no effect on the exerted forces in the 

body-frame, so we can derive some relationships between the four quaternion elements 

and thus reduce the number of independent variables to two, as follows: 

The fundamental quaternion equation is 

ql + q\ + ql + ql = i- (3.41) 
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changing 
pitch only 

Figure 3.12: Various methods of losing altitude by changing the inertial orientation of the aircraft 

Taking yaw to be zero, then from our knowledge of the structure of the rotation matrix, 

we can write 

2 {q\q2 - qzqo) = 0 ^ go = 9192 
93 

(3.42) 

So using equations (3.41) and (3.42), the relationship between the quaternion elements 

can be described as 

c = ql + q\ 

qs = qi f i - i 
Vc 

92 = 90 ( - - 1 

(3.43) 

(3.44) 

From the body-frame dynamics, we can write the two fundamental equations which will 

then enable us to solve for the attitude, based on the known variables [TW97]. 

aB = Bu) X VB + B g 

a i = 5 - i a B . 

(3.45) 

(3.46) 

We make some approximations and assumptions about the dynamics: 
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• When designing for an aircraft, we desire a steady, snap-to controller, so we define 

the desired roll-rate to be zero. This actually mimics the behaviour of free-flying 

insects, as their attitude adjustments around the longitudinal body axis tend to be 

swift and abrupt [R89], [SvH99]. Therefore it is not an unreasonable approximation 

to make when analysing insect flight trajectories. [Hen93] 

• For a manmade aircraft, the body-frame velocity occurs predominantly along the 

x-axis of the aircraft, so v^g and Vyg are negligible and we assume velocity only in 

the forward direction. 

• As stated already, yaw {ip) is considered to be meaningless, since heading angle exists 

only relative to an arbitrary external frame. In general, insects may use a celestial 

or geocentric compass [Hom04], [LM02] to orient themselves in a global reference 

frame, and this may impact upon navigation decisions. However such considerations 

are outside the scope of this thesis. 

• As the equations above stand, we have six equations but seven unknowns. We need to 

define an external acceleration which can be measured or determined independently 

from the body-frame orientation. So we choose a^j, the vertical inertial acceleration. 

In physical terms, this is equivalent to the vector sum of gravity and any inertial 

vertical forces produced by the thrust and hft generated by the wings of the body. In 

a fixed wing aircraft, we can use the physical characteristics of the plane to determine 

the hft co-efiicient and hence the lift contribution of the aerodynamic forces. In the 

biological world, the procedure is not so simple. We can use previous studies [WE97], 

[BDD04] to make an approximation of the hft and thrust generated by the flapping 

wings of an insect. We find in practise that the controller is quite robust with regard 

to the inertial-frame z acceleration, so this approximation may be sufficient. 

It is then a relatively straightforward procedure to rearrange the equations and solve 

for the quaternion-based attitude, using equations (3.43), (3.44), (3.45) and (3.46). In 

this way, we acquire non-linear functions for the attitude quaternion, q, and the angular 
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velocity, u : 

q = {{aB,azj ,VxB,g) (3.47) 

(3.48) 

where g is the gravity vector. The exact solution depends on the type and capabilities of 

the body in question. 

Example 1: Solving for the a t t i tude of a rigid body aircraft 

For this kind of problem, it is standard to assume that the velocity of the aircraft is 

primarily in the forward direction, ie v^g > > Vyg, v^gWe obtain the following fundamental 

equations for the problem: 

o-XB = M < } m + q2qo) (3.49) 

a,, = 2aa:g{qm-q2qo) + 2ayg{q2g3 + qiqo) + azB{2{ql + q^)-1) (3.50) 

q\q2 
10 = ~ (3.51) 

If we let c = ql + qf, then substituting into 3.49 we can solve for qo and the remaining 

values follow from 3.51 and the fundamental quaternion equation. So 

2 2g 

where g is the magnitude of the gravity vector. Then 

2 
XB (3.52) 

- + 

ai = 4 ^ZB 

ao = ( a i + a L ) - 4 a j B C 

and 

(3.53) 

(3.54) 

+ 2azBaz, (3.55) 

(3.56) 

At least two distinct solutions for the attitude are thus discovered, perpendicular to 

each other in the roll plane. This method has the advantage of also providing the pitch 

and bearing rates of the flying body, if required. 
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3.7.2 Attitude from Inertial Acceleration 

The above section establishes the basic procedure for establishing attitude from body 

forces. It is potentially of great use for an aircraft in flight to be able to assess its attitude 

gi '̂en only gyroscopic input. However, it is in general more useful from a control point 

of view to be able to construct a future attitude from inertial force inputs, rather than 

reconstruct a current one from body force inputs. The former can be used for achieving 

a force-based trajectory, since inputs in the form of control accelerations are generally 

defined in terms of inertial forces. 

^̂  e next determine the attitude necessary to accomplish some predetermined manoeu-

ver, i.e. an attitude that will result in a force operating in the appropriate direction. Hence 

the procedure developed in the preceding section is adjusted so as to take acceleration in-

puts in the inertial frame. The body-frame z acceleration, which is roughly equivalent to 

the centripetal forces experienced during the manoeuver, acts as the controlling constraint. 

It can be set using the physical limitations of the modeled craft or body in conjunction 

with the desired shape of the trajectory. 

Thus, whether the acceleration is commanded directly or derived from a path-planning 

algorithm, we need only concern ourselves with adding a qualitatively appropriate value 

for the turning force. 

Methods for determining acceleration from a given path or waypoint system are ex-

plored in Example 4. In general, our fundamental equations now become 

ai = a . x ( 5 - i v B ) + g (3.57) 

HB = Bai (3.58) 

From there, the procedure is essentially the same, and we develop attitude and attitude-

rate solutions of a similar form. 

q = (3.59) 
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Note 

Naturally, the aircraft has a base speed (dependent on atmospheric conditions) which it 

is not desirable to fall below. In addition, it can be advantageous to attempt to maintain 

speed throughout a manoeuvre, as it reduces the necessity for consumption-heavy acceler-

ations. Hence, when developing a series of acceleration commands, we can interpret these 

desirable speed conditions as a constant velocity constraint. This corresponds well with 

energy minimal control algorithms. In practise, the exact value of the velocity generally 

becomes irrelevant when considering the attitude, as long as the direction of that velocity 

is known. 

Example 2: Direct control of attitude via inertial inputs 

A test of the functions computing attitude from acceleration can be undertaken fairly eas-

ily, by coding the desired inertial accelerations directly into the attitude subfunctions. The 

following results were obtained by inputting the acceleration commands Aj = [ -5 ,3 ,24 ]^ 

and a^g = 12. After a pre-determined interval, the commands were changed to A[ = 

[20, -5 ,20 ]^ and a^g = - 9 . Figure 3.13 shows the relevant attitude of the aircraft. Since 

we are not attempting to control heading angle with this formulation, yaw was not included 

in the attitude figures. 

Roll, set point and actual 

0.25 

i 
1 0.15 

0 1 

0 0 5 

0 

Pitch, set point and actual 

Figure 3.13: Attitude: output/setpoints derived from inertial inputs 
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Figure 3.14(a) shows the angular rates experienced by the aircraft, in radians per 

second. Figure 3.14(b) shows the actual acceleration experienced in the inertial plane. 

With the help of Saul Thurrowgood, an existing flight simulator based on an F16 aircraft 

[SL92] was modified and used to test the implementation of the derived algorithms. Fig-

ure 3.15(b) demonstrates the simulator in action under the command sequence described 

above. The attitude was held stable, even under a steep roll command. 

Inertial X Acceleration 

/ 
0 2 i 6 6 10 ' 12 14 16 16 30 

Inertial Y Acceleration 

Inemol Z Acceleration 

1/ . 
5 10 ^ IS 20 

(a) Aircraft turning rates 

10 13 IJ T6 IB 20 
urnelsl 

(b) Inertial acceleration experienced by the 
aircraft 

Figure 3.14: Angular rates and inertial accelerations for direct attitude control using an F16 
flight simulator 
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(a) First command (b) Second command 

Figure 3.15: Screenshots from flight simulator. The inset in the upper left of each figure shows 
the artificial horizon output from the simulator cockpit at the moment the image was captured. 
The main figure shows the simulated plane as viewed from above. The starting point is marked 
with a star, and the trajectory traversed is shown as a line drawn from the star to the back of the 
aircraft. 
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Example 3: At t i tude of rigid aircraft required for a motion-camouflaged LQR-
derived path. 

Using the above equations, we can simply input the control forces which will obtain a 

motion camouflaged path into a Matlab program, and acquire the desired attitude, as in 

Figure 3.16(a). 

target 

200̂  

150-

1 0 0 -

50-

400 

200 0 

(a) Sample trajectory (b) Attitude 

F i g u r e 3 .16 : (a) LQR t ra jec tory (b) the roll and pitch required to achieve it, using force-
commands derived from LQR motion camouflaged controller and assuming a constant th rus t . 

The camouflaged path was generated using a finite-horizon LQR controller, and the 

requisite attitude commands required to achieve the control acceleration commanded by 

the controller are shown in Figure 3.16(b). Initial conditions for the hypothetical aircraft 

were 20° roll, - 20° pitch. For each time step, the intermediate variable c, was defined as 

_ 1 ^ \ / « + (5 - - a^Aal , + { 9 -
(3.61) 

then the associated quaternion attitude components were found in the following manner: 

qo = / - Q i y/g^ - 4 a 2 a o 
2a2 

(3.62) 



§3.7 Implementing Force-based Control in Flexible Aerial Vehicles 59 

where 

a2 = 4 

ai = 4 

c c c 

- 1 - a, , (2 - + a,, - 2a:,,c^-^ 

ao = {azB + az, - - - 1) 
1 

and 

91. = Y^ (3.63) 

and q2i,q3i follow from equations (3.44) and (3.43). 

Example 4: Path-planning using inertial inputs 

The objective is to obtain a path in a parametric form which may be used to generate 

the requisite inertial equations, so we can use the problem formulation described in §3.7.2. 

Here, hermitian cubic splines have been used, which have the advantage of (approximately) 

minimizing path curvature [JC91]. 

The current attitude of the aircraft is obtained from instrument input, possibly by 

using the results arrived at in §3.7.1. Knowing the current forward body-frame velocity, 

we arrive at the initial inertial velocity quite simply: 

VI ^ B ^VB- (3.64) 

We are now free to set up the general matrices for this problem. Let Mh be the 

Hermitian basis matrix. 
2 - 2 1 1 

- 3 3 - 2 - 1 
0 0 1 0 
1 0 0 0 

(3.65) 

and let the operand matrix of initial and final positions and velocities be designated Gh 

[dBOl], 

GH = 

Xo yo zo 
Vn Zn 

Vxo Vyo Vzo 
Vxn Vyn Vzn -

(3.66) 

Then if T = 1] is the cubic parameter vector, the trajectory QH is found by 
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the matrix operation 

QH - TMhGH- (3.67) 

Our initial assumptions include a constant velocity. Minimising acceleration along a 

curved path is equivalent to minimising the curvature of the path, and hence the following 

method for extracting acceleration commands was inspired by Jackson et al [JC91] and 

their Lagrangian method for constant speed trajectories. 

We constrain the motion to a curved surface containing the spline path, and treat the 

acceleration minimisation as a cost constraint, expressed in terms of derivatives of the 

sphne path. For a given path p, the cost function is 

1 f ' f 1 f f 
J = 7; pjpidt. 

^ Jt=o 

The physical interpretation of the parameters is shown in Figure 3.17. 

(3.68) 

woypoint 

Figure 3.17: Parameterization of the waypoint paths 

We develop a Lagrangian for the problem using this cost function, with the parame-

terized surface and velocity constraints expressed as Pfafiian constraints in terms of the 

first derivative of the spline path [Ros97]. Let A be the constraint matrix, and let s = p, 

then 

. 1 T 
£ = - s ^ s + A^(s)s. (3.69) 
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A is a Lagrange multiplier. Solving the Euler-Lagrange equations gives a solution 

s = (/ - ss^)c - K^s (3.70) 

for constant c, where K is the curvature of the path. 

The control acceleration is then found by 

u = wjsdt (3.71) 

where W is a diagonal matrix of weighting constants dependent on the initial and final 

positions. 

For each path segment, from point x^r to xjv+i, we use a discrete formulation of the 

problem, where the time to go is estimated by 

and then normalized to give a trajectory parameter. We then generate the control com-

mand and hence control acceleration at each time-step and use it as the inertial acceleration 

input to the attitude-based controller defined previously. 

The waypoint algorithm was tested in Matlab, and the results demonstrated that 

the force-based control was comparable to other methods, as can be seen in the following 

figures. This example trajectory was generated by taking a series of waypoints comparable 

to that which would be encountered in the flight simulator, and an initial attitude, then 

following the procedure outlined earlier in §3.7.2. 

The waypoints were located at the cartesian co-ordinates [0,0,1000], [-20000,0,1000], 

[0,20000,2000] and [20000, -500,1000], where the scale is in feet, and the aircraft veloc-

ity was set at 500ft/s. The initial roll was 0, the initial pitch was 10 degrees. Figure 

3.18(a) shows the paths generated by the original cubic spline, by direct integration of 

the Lagrangian-derived control acceleration, and by manipulation of the aircraft attitude 

in accordance with the method developed in §3.7.2. Figure 3.18(b) shows the aircraft 

attitude throughout the manoeuvre, and Figure 3.19 shows the control accelerations gen-

erated by the Lagrangian optimization method, and the actual accelerations experienced 

while traversing the generated path. 
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3.8 Discussion 

In the first part of this chapter, we demonstrated that motion camouflage guidance could 

be achieved via the solution to a hnear quadratic Gaussian control problem. Tracking 

behaviour was also considered. 

The presented motion camouflage guidance strategies were examined in simulation 

studies involving a variety of camouflage focal points. These provide a preliminary illus-

tration of the capabilities of the approach. 

A force-based control system for an autopilot that uses direct attitude control to per-

form curved path maneuvers has been designed. For completeness, a method for using 

the control system along with a waypoint-based trajectory generation algorithm has also 

been included. The simulation demonstrates that a versatile force-based controller can be 

implemented with relative ease. The sample solutions presented here for attitude-based 

control were analytical, but more complex control algorithms can easily be obtained using 

iterative numerical methods. 

Note that the force-attitude procedure is reversible and could be useful in reconstruct-

ing inertial forces on flying insects, if filmed at high enough resolution to accurately obtain 

roll and pitch. Moreover, the error between the attitude required to complete a manoeu-

CutMcSpl.r<«Hlh 
- LaB-aogian Opcmisalion 

Fona-bMM AlHuM Control 

200 400 

Cubic Solina mlti 
- Laa^naian Ootiinitaliar 
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(a) X,Y,Z Trajectory components (b) Attitude (roll and pitch) and path cur-
vature 

Figure 3.18: Results from a waypoint-following trajectory using non-linear attitude control. Note 
that although the first waypoint is achieved in the same time as the ideal cubic spline path, the 
path followed deviates along the x-axis from that proscribed by the spline. This is due to the 
existence of multiple attitudes which generate the same inertial forces. The controller in this case 
was instructed to take the first real solution presented, which did not match that envisioned by 
the cubic spline, yet still achieved the waypoint. 
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ver using just inertial forces, and the atti tude actually observed, can be subtracted to 

obtain a measurement of forces due to wing action, a procedure which is potentially sim-

pler than the direct method of breaking down the aerodynamic forces acting on the wings 

themselves. 
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Chapter 4 

Characteristics of Dragonfly and 
SateUite Fly Pursuit 

4.1 Introduction 

Male dragonflies of the species Hermianax papuensis spend large portions of their time 

chasing and interacting with other insects in territorial patrols over bodies of water. These 

interactions may take the form of chasing prey, pursuing potential mates or warding off 

encroaching males. The first type of engagement often demonstrates incredible adeptness, 

but does not challenge the dragonfly in any serious physical sense, since prey insects 

are usually much less aerodynamically capable than dragonflies. Characteristics of the 

second type of flight vary depending on species, as does the receptivity of the females 

to mating flights of the male, but the number of male-female interactions counted over 

a day of filming tends to be significantly less than male-male [ES04], [PK87]. The third 

type of interaction is perhaps the most interesting. The behaviour seen between two male 

dragonflies of the same species most often resembles a dogfight between fighter planes, or 

a non-contact competition for aerial superiority. These engagements can be lengthy and 

axe difficult to reproduce in a controlled environment, covering as they do a large territory 

at high speed. They are also, unfortunately, the hardest to define qualitatively, as we do 

not know what signals the start or end of such an engagement. As an introduction, we 

examine similar investigations into the guidance systems of other insects. 

To catch and mate with females, male blowflies of the genus Lucilia engage in energetic 

high speed chases over short distances. Examining these chases in detail reveals two 

distinct behavioral modes - either the target is captured after a relatively short pursuit, 

or a fairly precise tracking path is chosen for up to several seconds, with no resulting 

capture [BKE03]. Other flies also demonstrate several chase modes, depending on the sex 
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or behaviour of the target [LC74], [CL75]. However, it has been demonstrated that for 

the blowfly at least, these two modes of behaviour can be explained as the consequence 

of a single control system. The system is calibrated to capture targets of an appropriate 

size and velocity, but can be fooled (and hence will exhibit other apparent behaviors) if 

the target is larger or faster than conspecifics [BE05]. In specific terms, the control of 

yaw rotation in the male fly is governed by the position of the target in the retina, where 

any ofl'set from the central forward position ehcits a turning response towards it [VR76]. 

Forward speed is governed by the size of the target on the retina, decreasing when the 

size is greater than a certain threshold value, but increasing if the retinal size is small 

[BKE03]. 

In certain species of hoverflies, a similar yaw response is engendered by target positional 

offsets [ColSOb]. Others have been shown to manifest an interesting flight characteristic: 

when not aiming at any obvious goal, a hoverfly maintains the angular orientation of 

its body very constant [ColSOb]. When attempting to catch a potential mate, however, 

they do not fly directly towards the target, but rather they adopt an interception course, 

accelerating in a uniform manner in the direction of target movement [CL78]. This appears 

to be a ballistic approach, rather than one under continuous control. 

4.2 Variable definition 

The following describe some of the more common angular variables used in this chapter: 

List of Variables 

a 

a - 9 

a 

Orientation of an insect's longitudinal body axis 
Line-of-sight angle between one insect and another 
in the (2-dimensional) inertial reference frame 
Line-of-sight angle relative to the body axis 
Direction of flight 
Line of sight angle relative to the flight direction 
Sign convention: As is standard, counter-clockwise rotation is 
presumed to be positive, clockwise rotation is taken as negative. 

4.3 Method 

Free flying adult dragonflies of the species Hermianax papuensis and Hemicordulia tau 

were filmed on sunny days over natural bodies of water during the late morning and mid-

afternoon. Territorial behaviour amongst these insects can be observed over most of the 



§4.3 Method 67 

day if the weather is fine, so the filming periods were chosen to maximize the natural light 

available, and to minimize the interference of shadows cast by environmental features. For 

the same reason, filming was restricted to days with little wind activity, which also helped 

to minimize camera shake and ensured the insects were not operating under particularly 

arduous external forces. The inertial reference frame was assumed to be oriented as in 

Figure 4.1. 

//// / / / / 
ground 

Figure 4.1: Inertial, or world axes 

The filming was conducted in several stages, depending on available equipment. 

4.3.1 Monoscopic filming in the horizontal plane 

With Akiko Mizutani, I filmed trajectories from a side view, as shown in Figure 4.2(a). 

The camera used was a Sony XC-HR58, framerate 200fps, attached to a tripod and set up 

on a stable, predominantly flat plane at the water's edge and ahgned with the horizontal 

plane using a spirit level. 

4.3.2 Monoscopic filming in the vertical plane 

With Jochen Zeil, dragonflies were filmed from overhead using a tripod and arm attach-

ment, as in Figure 4.2(b), using a Sony DSR-PD170P camcorder. The equipment used for 

the previous data collection was not available at this time. The frame-rate was 50fps, the 

exposure time was 5ms. Both types of monoscopic footage were uploaded onto a computer 

and converted to .avi format using the program VirtualDub. Extraction of the position 

information of the insects was done manually frame-by-frame, using Matlab 6.5. 
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Figure 4.2: Two-dimensional camera arrangements 

4.3.3 Stereo footage, filmed from the horizontal plane 

Two Pulnix cameras, frame-rate 50fps, were mounted inside an aluminium frame, 30cm 

apart along the y-axis. An anemometer was mounted to the top of the box to record wind 

speed. At first, the cameras were mounted on a static tripod. Later, a 2DOF rotating 

joint was added to allow the camera to pan and tilt. Potentiometers connected to the 

rotary joints measured the degree of rotation, which was also recorded in real time on the 

linked laptop. The cameras were synchronized using a patented telemetry system (APN 

2003245110) to imprint each recording with the time (to within 10 ^s), the frame number, 

the anemometer reading and, later, the output from the potentiometers measuring the 

yaw and pitch of the tripod joint. The film from each camera was then recorded to a tape 

in a double slot VCR recorder, uploaded to a PC and converted to avi format using a 

Matlab toolbox. 

4.3.4 3D reconstruction from stereo cameras 

The cameras are mounted such that their optical axes are coplanar and parallel (Figure 

4.3). 

The missing dimension can be reconstructed from such a arrangement using the fol-

lowing equation: 

y = f -
fL 

(4.1) 

where / is the focal length of the camera, d is the displacement between camera frames. 
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Figure 4.3: Reconstruction of depth from images generated by two parallel cameras 

and L is the camera separation, as shown in the diagram. 

Cahbration of the cameras was accomphshed using a regular checkerboard pattern, 

placed in the viewing field of both cameras. The frames from this stereo sequence were 

used to calibrate the cameras in accordance with Bouguet's Camera Calibration Toolbox 

for Matlab (cite!). This enabled us to reconstruct the left to right camera transformation, 

and hence the images could be converted into parallel camera geometry, enabling us to 

solve the correspondence problem using the epi-polar constraint 

4.3.5 Data processing 

In three dimensions with the pan and tilt information available, the camera rotation was 

accounted for using the following algorithm: 

We attached potentiometers to the rotational axes, and take a reading at the minimum 

and maximum extremes of rotation. For rotation around the camera x-axis (pitch), the 

minimum potentiometer reading (xrmn) was 16385, the maximum (xmax) was 47180. The 

total span of rotation around the x-axis (d^) was 114 degrees, between -24 and 90 degrees as 

measured from the inertial frame. We determine the potentiometer reading corresponding 

to 0 degrees as follows: 

xo = 
Xma. ^ ̂ ^^^ 

ds 

We also define a pitch constant, po = ^max^min. 

We followed a similar procedure for rotation around the y-axis (yaw), di = 118, 

between - 5 9 and 59, ymin = 15742, ymax = 52100. We define the yaw constant, 70 == 
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Vmax ~ '-y^iri _ -pjjgj^ foj. frame i, we obtain the corresponding pitch and yaw readings, 

p̂  = ^ ^ - d - (4.3) 
Xmax Xmin 

= = y -J' di (4.4) 
Vmax Umin 

These values are used to create a rotation matrix, 

Rr = 
cos 0 sin 

sin 7, sin p, cos pi - cos 7̂  sin 
- s in7 iCosp j sinpi c0S7jC0S/9i 

For each point of interest xj in the camera frame, we apply the rotation matrix to 

obtain the corresponding point in the reconstructed world frame, 

yi = R ^ . (4.5) 

When processing the raw position information, post-digitization, an a - /? filter was 

used to smooth the first-order data. This is a special case of a Kalman filter, and is 

generally considered suitable for most tracking applications due to its simplicity and com-

putational efficiency [Bro98]. The filtering procedure is as follows: Let X be the array of 

position information, in two or three dimensions, of length n. Then 

= (4.6) 

Let v\ — Vi, xi = Xi- Then for i = 1, ...,n — 1, 

V^+l = V̂  + ^ ( X i - X ^ ) (4.7) 

Xi+i = Xi+Tvi+i + a{Xi - Xi). (4.8) 

The values chosen for the filter variables were a — 0.2,6 = 0.01, T == 1. 

Second-order data processing was done using an approximate differentiation process. 

For example, the velocity for a particular dragonfly D was determined by filtering the 

position information using a three-frame window, as follows 

2At 

where At is the time interval between frames, or the inverse of the framerate. 
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4.3.6 Error sources 

Possible sources of error include: 

1. inconsistent lighting, light reflected off" the water, and moving shadows induced by 

wind in the surrounding environment 

2. lens abberation in the camera 

3. noise in the recording device 

4. wind shaking or moving the camera 

5. video tape jitter 

6. human error in manual selection of digitized insect positions. 

To eliminate some of the higher-frequency errors caused by video jitter, a low pass alpha-

filter was apphed to the position information before analysis. The frequency of the filter 

was ascertained by filming a stationary object and assessing the frequency of the deviations 

in position. It was assumed that errors in orientation generated by manual inaccuracies 

were at most 1° per frame, so any changes in direction of less than 200°/s were ignored. 

4.4 Results from Dragonfly Interactions 

4.4.1 Results from monoscopic data 

Fixation 

Dragonflies have fully articulated heads providing high mobility in the roll, pitch and yaw 

planes [Gor99]. During pursuit, some dragonflies have been shown to hold the absolute 

angle to the prey constant while the abdominal axis error angle changes, suggesting drag-

onflies stabilize their head against rotation during prey capture [Gor95]. However, for a 

non-perching species in regular flight, this arrestor system does not necessarily activate 

and the head may remain free to rotate [StaSl]. Either way, without precise information 

about the head orientation, we cannot be certain where the image of the other participant 

appears on the retina. Nevertheless, using the orientation of the longitudinal axis of the 

body, we can approximate the horizontal retinal position of the other participant. We do 

this by subtracting the body orientation from the absolute line of sight angle, as in Figure 
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Figure 4.4: Lateral movement of Hemicordulia tau. Top: x-y position of a dragonfly every 20ms 
during a 0.5s flight. Note that the dragonfly can move both along and laterally to the body axis. 
Bottom: plots of longitudinal body axis angle, flight direction and the velocity in the direction of 
flight. Discontinuities in angular position caused by transferring from the negative to positive half 
of the unit circle are marked by a vertical line. 
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(a) LOS angle relative to body axis angle (b) LOS angle relative to direction of flight 

Figure 4.5: Actual retinal angular position and position if the body were aligned with the flight 
direction. Although head angle is still not accounted for, a — 0 is a far more accurate measure of 
angular target position than the approximation (3. However the measure of LOS relative to the 
flight direction, r, is useful in determining the amount of fixation due to changes in body angle, 
compared to the amount occurring due to changes in flight direction. 

4.5(a). The body orientation is derived from the three-dimensional reconstruction of the 

head and tail position, which can be used to determine body axis information. 

Dragonflies also have the ability to move laterally without changing their longitudinal 

orientation, therefore changes in body orientation in response to changes in the hne of 

sight angle are not necessary to enact a dynamic response to the movement. Such shifts 

may therefore indicate an at tempt to fix the other participant in some particular retinal 

location. For example, Olberg et al [OWVOO] found that the rolling component of the 

dragonfly Leucorrhinia intacta's head movement in prey pursuit is such that the image of 

the prey is aligned along the midline of the dorsal acute zone of the eye. 

Retinal position therefore may or may not be influenced by the chosen trajectory. The 

position due to the trajectory can be separated from that due to body orientation by 

considering the hypothetical retinal location of the pursued insect should the body axis 

be aligned with the flight direction for the entirety of the interaction. 

Figure 4.4 shows the path generated by a single dragonfly filmed from overhead - note 

how it frequently moves laterally for significant portions of its flight. This lateral movement 

may be due to manipulation of gravity and wing-beat forces, the dragonfly producing a 

sideways thrust by rolling, in the same way as that described for an automated craft 
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Figure 4.6: Retinal position, in degrees. The angles move from positive to negative in a counter-
clockwise direction. 

in Chapter 3. Alternatively, if no roll along the longitudinal axis is present, sideways 

thrust may be generated by asymmetry in the wing-beat pattern [R89]. To distinguish 

which mechanism predominates (for they are not mutually exclusive), higher resolution 

footage would be needed. Nevertheless, we can discern that the insect's body axis direction 

remains reasonably constant throughout the flight. In this study, we wish to examine this 

axis orientation when another dragonfly is in close proximity. 

Figure 4.5(b) demonstrates the difference between the body axis angle and the course 

angle, a — 0 is the angle between the LOS and the body axis angle, (3 is the LOS angle 

relative to the flight direction. I define the angle of flight at time t as being the direction of 

the tangent vector to the trajectory at time t. This tangent is approximated in the discrete-

time analysis by the vector between the head positions of the dragonflies in question at 

sequential time intervals. Figure 4.6 describes the orientation of the the co-ordinate system 

used in the results. The longitudinal axis is chosen as the 0/180 line, where 0 is directly in 

front of the insect at the anterior visual position, and ±180 is directly behind. As in the 

conventional Euclidean unit circle, the positive direction of rotation is counter-clockwise. 

Figure 4.7 shows histograms of the retinal position of one dragonfly as seen by the 

other for eight typical trajectories. Compare the actual retinal position a - 9 with that 

which would occur were the pursing insect aligned with its direction of flight, (3. Overall, 

the eccentricity (error angle) of the leading fly on the tracking fly's retina is fairly large, 
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especially in comparison to other tracking insects [CL75]. 

Clusters in the front of the visual field (around 0°) are generally concurrent with 

clusters around the posterior of the visual field of the other participant, indicating a true 

chase scenario. However this is not always the case - on occasion, both dragonflies have 

the other in the front portion of their visual field, as in Figure 4.7C. The clusters in (3 

demonstrate that even when body orientation is not taken into account, the trajectory of a 

dragonfly is such that an opponent tends to be placed centrally in the visual field. In other 

words, the target is positioned along the direction of flight. The disparity between the 

histograms demonstrates that the body orientation is often changed in order to increase 

this anterior placement, and we can say that at least some degree of visual fixation is 

occurring. (For comparison, see the satellite fly fixation results in section 4.5). 

Visual Tracking of a moving target - control of body axis orientation 

We attempt first to quantify the visual tracking mechanism being used by a pursuing 

dragonfly. Note that angular tracking can be summarized by the expression 

0 = k{a - 0) (4.9) 

where k is a gain constant [ColSOa]. 

The complexity of the flight patterns observed complicated the analysis significantly. 

Body axis angle was frequently unresolvable when the insects were filmed from the side, as 

the dragonflies would often orient along the camera axis. However filming from above had 

its own problems - the dragonflies would often cross paths above or below each other in the 

vertical plane. Combined with the low frame rate used when filming from this direction, 

this meant care had to be taken not to inadvertently 'swap' the dragonflies during one of 

these cross-overs. Moreover, a third factor could complicate the analysis even when neither 

of the error sources were present - the roles of 'target' and 'pursuer' were not always well-

defined during a sequence. The dragonflies would frequently swap the roles of pursuer and 

target\ making it much more difficult to extract reaction delays, for example, as which 

insect was initiating and which was reacting would change, sometimes more than once. As 

'Perhaps when considering dragonfly conspecific interactions, especially those between males, 'initiator' 
and 'reactor' are more appropriate terminologies, especially since capture of the 'target' does not appear 
to be a goal of the pursuer. 
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Figure 4.7: 2D data: Line-of-sight retinal position, compared with the position if the body were 
aligned with the flight angle, for both dragonflies in eight two-body trajectories. At least one 
participant, and occasionally both, maintain a degree of anterior fixation in all examples. 
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Figure 4.8: An example of pursuer and target swapping roles partway through a pursuit. Nu-

merals mark every 200ms. At point A, D2 is tracking Dl . By point B, D1 has become the pursuer 

(reactor), but then around point C, we observe D2 once again becoming the reactor (rather than 

the initiator). 

a consequence, trajectories where body axis information was not available for more than 

one or two frames, where the pursuer and target were not visibly distinguishable for the 

entire period, or where the roles of the pursuer and target were swapped were not included 

in the analysis. 
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Figure 4.9: (a)Flight trajectory of a two-dragonfly chase, filmed from the side. The head of the 
dragonfly is marked by solid dots, the bodies by lines along the longitudinal axis. Numerals mark 
every 200ms. For clarity, the insect positions are shown only every 20ms, although the recording 
framerate was 200fps. (b) Longitudinal body axis angle (d) for the pursuer, Dl, in degrees, (c) 
Line-of-sight error angle (a - 9) for Dl, in degrees, (d) Body axis angular rate {9) for Dl, in 
degrees per second. 
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Figure 4.10: Filmed from the side: (a)Flight trajectory. As before, numerals mark every 200ms 
and the insect positions are shown every 20ms. Interestingly, D1 makes no correction to its body 
axis orientation until the line of sight error angle is quite large (> 90°). (b) Longitudinal body 
axis angle of D1 (0), in degrees, (c) Line-of-sight error angle of D1 (a - 6), in degrees, (d) Body 
axis angular rate of D1 (9), in degrees per second. 
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Figure 4.11: Filmed from the side: (a) Flight trajectory for both dragonflies. As before, numerals 
mark every 200ms and the insect positions are shown every 20ms. (b) Longitudinal body axis angle 
in D1 (0), in degrees, (c) Line-of-sight error angle of D1 (a-0), in degrees, (d) Body axis angular 
rate of D1 (ff), in degrees per second. 
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Figure 4.12: (a)Flight trajectory of both dragonflies, filined from the side. As before, numerals 
mark every 200ms and the insect positions are shown every 20ms. (b) Longitudinal body axis 
angle of D1 {0), in degrees, (c) Line-of-sight error angle of D1 (q - 6), in degrees, (d) Body axis 
angular rate of D1 (9), in degrees per second. 
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Figure 4.13: Filmed from the side: (a)Flight trajectory of both dragonflies. As before, numerals 
mark every 200ms and the insect positions are shown every 20ms. (b) Longitudinal body axis 
angle of D1 (0), in degrees. Dotted vertical lines mark the discontinuity as the angle switches from 
negative to positive, (c) Line-of-sight error angle of D1 (a - 0), in degrees, (d) Body axis angular 
rate of D1 (ff), in degrees per second. 
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Figure 4.14: (a)Flight trajectory of both dragonflies, filmed from the side. As before, numerals 
mark every 200ms and the insect positions are shown every 20ms. The pursuing dragonfly (Dl) 
initially is on a collision course with the target, which changes to a pursuit as the target position 
moves across the retina. The inset gives an exploded view of the turn made by the pursuer at 
about 400ms. (b) Longitudinal body axis angle of Dl (0), in degrees. Dotted vertical lines mark 
the discontinuity as the angle switches from negative to positive, (c) Line-of-sight error angle of 
D l (q - 0), in degrees, (d) Body axis angular rate of Dl (0), in degrees per second. 
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The analysis was therefore restricted to several longer sequences which demonstrated 

as few of the problems described above as possible. Figures 4.9 - 4.14 show these sequences, 

the body axis angle of the pursuing dragonfly over the length of the interaction, the LOS 

error angle and the body angular velocity. Figure 4.15 shows the correlation coefficients 

between the latter two variables for all six trajectories, at delays from -200 to 200ms. 

/ 

a v e r o g e 
co r r eb - i o r coe'-cie'-^ 

100 0 
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Figure 4 .15: Cross-correlation between error angle and yaw velocity for the six chases shown 
in Figures 4.9 through 4.14. The time lag for the highest coefficient value varies, but is usually 
between 30-40ms, with the average value of lag for the highest co-efficient across all six chases 
being 35ms. 

On many occasions during an interaction, the dragonflies would head towards each 

other on almost a collision course, albeit with a slight offset along one axis. As they passed 

each other, one would turn in pursuit. Figure 4.14 demonstrates one such engagement. 

Large changes in retinal position were generally followed by changes in body axis 

orientation within 30-40ms. A cross-correlation analysis performed on the body axis rate 

and the hne-of-sight angle demonstrated significant coefficient values (p < 0.01) at these 

delays. The LOS retinal position error was usually stabilized to some value, though not 

always at 0°, by changes in the yaw velocity of the pursuing insect. Hence it is hkely 

that the angular velocity of the body axis of the pursuing dragonfly is governed at least 

partially by the position of the target on the retina. 

However, given the large spread of eccentricity, can this alone be governing the body 

axis angle? Changes in the flight direction of chasing muscid flies [LC74] have a yaw 

velocity directed by both angular position and angular velocity. It could be that this, too, 

is a second order system. Cross-correlations between pursuer body axis velocity and error 



§4.4 Results from Dragonfly Interactions 85 

angle velocity of the target were dominated by the negative correlation due to error angle 

changes caused by body axis changes, however the maximum positive correlation was in 

some interactions found at a delay of around 40-50ms (Figure 4.16). 
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Figure 4.16: Error angle rate influencing yaw velocity. The strongly negative peak at 0ms is due 
to the change in error angle rate caused by the body itself turning. For many chases, there seemed 
to be a positive correlation peak between these variables at around 40ms delay. 

If we restrict the data to points where the error angle lies between -30 and 30 degrees 

[Lan97] and examine scatterplots of the error rate and rotational velocity of the body at 

a delay of 40ms (Figure 4.17), a slight positive relationship is observed. This could be 

indicative of a second-order response that is only triggered when the error angle is below 

a threshold value. This is not dissimilar to the first-order response observed in hoverfiies 

[CL75]. 

Visual Pursuit of a moving target - control of flight direction 

Visual tracking tells us how dragonflies might govern their orientation, but as shown in 

Figure 4.4, it may reveal little of the policy controlling the flight direction of the insect. 

Again, several sequences with clear view of body axis direction for the pursuing drag-

onfly were analyzed, this time examining the change in flight direction to changes in 

line-of-sight and line-of-sight velocity. The trajectories and traces are shown in Figures 

4.18 to 4.21. 
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Figure 4.17: Scatter diagrams sliowing LOS velocity and body axis angular velocity for the paths 
illustrated in Figures 4.9, 4.11 and 4.14, showing only those points for which the error angle (q -0 ) 
lay between - 3 0 ° and 30°. A linear line of best fit has been included on each graph. 



§4.4 Results from DragonBy Interactions 87 

a) 
01 

20cm 
D2 

1 ' l 

b) 
-5 

Retinal position 
of target 

a - e 
•45 

C) 0 
Flight airection 

Rate of target 4 9 0 
position 

200 
Time (ms) 

Figure 4.18: (a)Flight trajectory of two dragonflies, filmed from the side. As before, numerals 
mark every 200ms and the insect positions are shown every 20ms. (b) Line-of-sight error angle for 
D1 viewing D2 (a — d), in degrees, (c) Flight direction for D1 {tp) in degrees, (d) Line-of-sight 
error angle rate for D1 {d — 6), degrees per second, (e) Flight direction rate for D1 viewing D2(^), 
degrees per second. 
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F i g u r e 4 .19: (a)Flight t ra jec tory of two dragonfiies, filmed from the side. In this case, numerals 
mark every 100ms though the insect positions are still shown every 20ms. (b) Line-of-sight error 
angle (a - 0), in degrees, (c) Flight direction (•>/>) in degrees, (d) Line-of-sight error angle ra te 
(d — 0), degrees per second, (e) Flight direction ra te (ip), degrees per second. 
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Figure 4.20: (a)Flight trajectory of two dragonflies, filmed from the side. As before, numerals 
mark every 200ms and the insect positions are shown every 20ms. (b) Line-of-sight error angle 
for D1 viewing D2 (q - 9), in degrees, (c) Flight direction of D1 (ip) in degrees, (d) Line-of-sight 
error angle rate for D1 viewing D2 (a - 9), degrees per second, (e) Flight direction rate of D1 
degrees per second. 
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Figure 4.21: (a)Flight trajectory of two dragonflies, filmed from the side. As before, numerals 
mark every 200ms and the insect positions are shown every 20ms. (b) Line-of-sight error angle for 
Dl, viewing D2, (a - 0), in degrees, (c) Flight direction of D1 (ip) in degrees, (d) Line-of-sight 
error angle rate for Dl viewing D2 ( a - d ) , degrees per second, (e) Flight direction rate of Dl (ip), 
degrees per second. 
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Changes in flight direction generally had the eff'ect of stabihzing the line of sight error 

angle, although not necessarily to zero. Looking at the first derivatives of the variables, in 

order to eliminate offset in the eccentricity, we see a correspondence between error angle 

velocity and the flight angular velocity. The correlation coefficients for the latter variables 

in the above four figures reveal a significant peak at delays of 5-30ms, (Figure 4.23). The 

delay was usually quite short, within about 15ms, however on occasion a large delay of up 

to 100ms was observed (for example. Figure 4.21). Figure 4.22 shows one such flight. This 

could be indicative of a threshold on the angular position offset tolerated by the insect 

before a response is deemed necessary - the flight direction is not changed until the target 

is signiflcantly past the frontal portion of the visual field, and then the responsive turn is 

very swift. Or it could be that the pursuing dragonfly was responding to more than one 

moving body, or simply that it did not notice the target initially. 

Fhght direction does seem to be influenced directly by changes in the fine of sight angle. 

However, this rule is not universal. On rare occasion the pursuer will actually change its 

course so as to turn away from the LOS angular movement. This appears to occur more 

often when the target executes a very tight turn. Figure 4.24 shows some examples of 

this phenomenon. As yet it is unknown what might inspire such an inverted response. It 

could be when a threshold is exceeded on the LOS velocity, the direction of the response 

becomes less important, or perhaps the nature of the response changes according to the 

general position of the target in the visual field. 

4.4.2 Pursuit characteristics in three dimensions 

Characteristics of flight speed 

The footage gleaned from stereo filming was unfortunately too low in resolution to consis-

tently identify the body axis orientation of the dragonflies. However, using stereo infor-

mation we can gather a more accurate assessment of variables such as range, range-rate 

and forward speed of both insects. Hence we can attempt to unravel some of the cues 

governing the forward velocity of a dragonfly during pursuit. 

Range to the target and apparent target size have been observed to impact the flight 

speed of pursuing insects [OWVOO], [BKE03]. The angle subtended by a target insect on 

the pursuers retina is one of the simplest visual range cues available to insects. Other 
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Figure 4 .22: Example of significant lag between a change in LOS angular velocity and a corre-
sponding change in flight direction 

means of measuring range using visual cues do exist [Hor86], but their contribution to 

the task of range estimation by dragonflies is not yet known. So instead we examine the 

relationship between range and forward speed, without concerning ourselves with how the 

range information is extracted. Some three-dimensional trajectories and the corresponding 

traces for range and forward speed are shown in Figures 4.25 to 4.29. 

In the flight sequences thus examined, an increase in range was generally marked by 

a corresponding decrease in responsive velocity. Some, perhaps all, manifestations of this 

inverse relationship may be explained phenomenologically. Looking at the flight direction, 

it can be seen that the local minima in forward speed generally correspond with changes 
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Figure 4.23: Cross-correlation between error angle velocity and flight angle velocity. 

in flight direction. Olberg [OWVOO] found evidence that the apparent size of a target 

will affect a pursuing dragonfly's response, so there is some likelihood that range or size 

measurements do play a part in driving the guidance system in use. However the data 

set used in this analysis is not sufficient to disambiguate such a response from the natural 

dynamics of a moving body. 

The speed profiles of the pursuing dragonfly seen here are all quahtatively similar. The 

j) 

Figure 4 .24: A few sequences demonstrated a strange behaviour by the pursuer, where a ma-

noeuvre by the target was matched by a turning response counter to the direction of the LOS error 

motion. 
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Figure 4.25: (a) Side view, (b) Top view, (c)3 dimensional chase, (d) Range (in m), (e) Forward 
speed (in m/s) , (f) Change in flight direction, in degrees/s 
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Figure 4 .26: (a) Side view, (b) Top view, (c)3 dimensional chase, d) Range (in m), (e) Forward 
speed (in m/s) , (f) Change in flight direction, in degrees/s 
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Figure 4.27: (a) Side view, (b) Top view, (c)3 dimensional chase, (d) Range (in m), (e) Forward 
speed (in m/s), (f) Change in flight direction, in degrees/s 
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F igu re 4.28: (a) Side view, (b) Top view, (c)3 dimensional chase, (d) Range (in m), (e) Forward 

speed (in m/s), (f) Change in flight direction, in degrees/s 
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F igure 4.29: (a) Side view, (b) Top view, (c)3 dimensional chase, (d) Range (in m), (e) Forward 

speed (in m/s), (f) Change in flight direction, in degrees/s 
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high-speed segments seems to occur when the insects move past each other in opposite 

but often parallel courses. The flight speed then decreases rapidly, corresponding with a 

change in direction of the pursuing dragonfly. A notable feature is that this change often 

seems to mirror response to changes in the target's flight direction, creating beautiful and 

almost symmetrical manoeuvres. Recall that this tendency was also sometimes observed in 

the two-dimensional footage (Figure 4.24). To determine whether the pursuer is actually 

responding to target manoeuvres, we can compare the total speed and change in flight 

direction of the insects. 

Speed matching 

Indeed, changes in the speed of the target were matched swiftly and accurately by the 

pursuing dragonfly. Figures 4.30 and 4.31 show sample trajectories and the corresponding 

forward velocity profile for both insects. 
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Figure 4.30: (a) Sample trajectory, (b) corresponding speed profiles 

A noteworthy feature is that although the scalar measure of target and pursuer speeds 

are closely matched, the direction of motion is reversed in space (the mirroring effect 

alluded to earlier). 

Moreover, the relative velocity between the insects tended to be small when compared 

to the forward speed of the target. Figure 4.33 shows the average relative speed between 

the pursuer and target corresponding to specific target speeds (incrementing in lOcm/s). 
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Figure 4.31: (a) Sample trajectory, (b) corresponding speed profiles 
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Figure 4.32: (a) Sample trajectory, (b) corresponding speed profiles 
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Figure 4.33: Relative speed between the insects compared to the forward velocity of the target, 
across 23 typical trajectories with length greater than 400ms. Data bins were lOcm/s in width. 

For target speeds up to 4 m/s, the relative speed maintained by the pursuer generally 

remained between 0.5 and 1.5 m/s. The time lag between changes of velocity of the target 

and pursuer was usually 20ms or less (20ms being the minimum time between data points, 

so the latency could not be resolved more accurately). 

These interactions do not seem to involve an attempt at capture. More work is needed 

to unravel the 'rules of engagement' in these territorial disputes. 
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4.5 Results from Satellite Flies 

To assess the success of dragonfly fixation, we can compare the results from section 4.4.1 

to similarly generated results for satellite flies {Sarcophagidae miltogramminae) stalking 

wasps [Cerceris) (Figure 4.34). Satellite fly/wasp interactions have the advantage of clearly 

defined roles for the participants. The satelhte fly reacts to the behaviour of the wasp, 

and the wasp remains predominantly oblivious to the fly. This enables us to examine 

the dynamic characteristics of a system with similar parameters but reduced complexity, 

since only one participant is truly reactive. By studying the similarities and discrepancies 

between these interactions and that of dragonflies, we can make some observations about 

the additional levels of complexity added by multiple maneuverable, reactive bodies. Note 

that shadowing of wasps involves tracking, but not pursuit. 

In satelhte flies, if we compare the actual hne of sight to that engendered if the flight 

direction coincides with the body axis, we perceive a far greater discrepancy between the 

two than in dragonflies. The implication is that the orientation change producing fixation 

of the target (wasp) is distinct from the flight direction chosen. Moreover, the degree of 

target flxation is significantly better than that observed in dragonflies. 

The differences between the fixation behaviours of the two species suggests that the 

line-of-sight angle is important not only to the angular orientation of the dragonfly, but 

also to the course chosen while tracking, unlike satellite flies where changes in the line of 

sight angle impact the body orientation only. Ergo it is likely that in dragonflies, retinal 

position influences the pursuit system used to chase the target insect, but the same cannot 

necessarily be said for satellite flies.. 

4.6 Motion Camouflage in Dragonflies 

Previous research has established the presence of instances of motion camouflage in hover-

flies chasing mates [SD95], in dragonflies warding off encroaching males from their territory 

[MCS03], and in bats attempting to track prey by echolocation [Gho94]. It is yet to be 

determined whether these manifestations of the phenomena occur by design, or as an inci-

dental byproduct of an overall, more conventional guidance strategy, or simply as a quirk 

of the geometry under certain dynamic conditions. 
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satellite fly/wasp interactions 
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4.6.1 Method for determining camouflaged sequences 

To identify instances of motion camouflage, a method is needed to monitor the apparent 

location of a pursuer from the point of view of the target. Figure 4.35 shows a sequence 

of two moving bodies and the lines of sight between them. P is the pursuer, T the target. 

Taking the initial positions. Pi, Ti, and the intersection point of the hnes drawn between 

them, I i , as the start of a camouflaged encounter, the following positions at discrete time 

intervals were examined relative to the initial condition. For a camouflaged trajectory, 

the intersection point of the hnes-of-sight defines the static point of that trajectory, and 

thus the apparent location of the pursuing insect. Assuming an image on an insect eye 

cannot be properly resolved if it subtends at the retina less than 1°, then the trajectory 

was said to be camouflaged if the intersection points / i , . . . ,/„ are not separated by more 

than 1° when viewed by the target. Note: In the cartesian frame, it may seem natural to 

group the intersection points based on the absolute distance between them. By using the 

angular, rather than physical, distance between the points as a measurement, we allow 

for the possibility that the intersection points have a large spread in an elliptical direction 

facing radially away from the target. In this case, the distances between intersection points 

might be quite large, but this movement would not be apparent to the target except as a 

change in size. Camouflage sequences of less than 80ms were discarded as trivial and too 

short for useful analysis. 

Excerpts of Matlab Code for determining motion camouflage sequences 

Determining the intersection points of the line-of-sight vectors between the insects 

k = p(l); % p(l) is the length of the trajectory 

intersectCl,:) = [0 0 0]; '/, initialise the vector that will store 
7. the intersection points 

for t=l:k-l 

XI = [PCOPY(t,l). PC0PY(t,2), PC0PY(t,3)]; % Target position at tl 

X3 = [PCOPY(t+l.l), PC0PY(t+l,2), PC0PY(t+l,3)]; % Target position at t2 

X2 = [DCOPY(t.l), DC0PY(t,2), DC0PY(t,3)]; 7. Pursuer position at tl 

X4 = [DCOPY(t+l,l), DC0PY(t+l,2), DCOPY(t+l,3)]; 7. Pursuer position at t2 

AV = X2-X1; 7. Vector between participants at tl 
BV = X4-X3; 7, Vector between participants at t2 
CV = X3-X1; 7. Vector between target positions at tl and t2 

temp = dot(cross(CV,BV), cross(AV,BV))/norm(cross(AV,BV))'2; 
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P. 
T: 

Figure 4.35: Determining a motion camouflage interaction. The points represent the position 
of the target at time n, the points P„ represent the position of the pursuer. The points I„ are the 
intersection points of the lines of sight between the target and the pursuer. As long as a is less 
than 1° we add that segment of the trajectory to the motion camouflaged period. As soon as a 
becomes greater than 1°, the motion camouflage segment is said to have ended. 

intersect(t,:) = XI + AV+temp; % Intersection point 
end 

Measuring the angular distance between the hne-of-sight intersection points and storing 

those sequences deemed to be camouflaged in an array: 

7. Variable initialisation: big_arc is the resolution of the insect eye, 
'/. chosen to be 1 degree 
big_arc = l*pi/180; 
alphal(l)=0; 
alpha2(l)=0; 
lengthP_l(l)=0; 
lengthP_2(l)=0; 
lengthD_l(l)=0; 
lengthD_2(l)=0; 
dist_c(l) = 0; 
tally=0; 
j=k; 
counter=l; 
store(counter) = 0; 
count1 = 1; 
count2= 1; 
alphasum = 0; 

7. Working backwards from the end of the entire sequence, each LOS pair 
7. has its intersection point compared with that prior. The angular 
7o distance between them is summed. If that sum is less than the 
7o resolution size defined earlier, the positions and velocities of the 
7o insects, and the LOS intersection point, are stored as the count2'th 
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'/o segment of the countl'th camouflaged path. When the sum exceeds 1 
7. degree, that camouflage sequences is considered to be finished and 
'/o the variable count 1 is incremented. 

for t=k-2:-l:2 
lengthP_l = PCOPY(j,:)-intersect(j-l,:); 
lengthP_2 = PCOPY(j,:) - intersect(t-1,:) 
lengthD_l = DCOPY(j,:) - intersect(j-1,:) 
lengthD_2 = DCOPVCj,:) - intersect(t-1) 
dist_c = norm(intersect(j-l,:) - intersect(t-1,:)); 
tempi = dot(lengthP_l, lengthP_2)/(norm(lengthP_l)*norm(lengthP_2)); 
temp2 = dot(lengthD_l, lengthD_2)/(norm(lengthD_l)*norm(lengthD_2)); 
alphal(t) = acos(tempi); 
alpha2(t) = acos(temp2); 
alpha_min(t) = min(norm(alphal(t)), norm(alpha2(t))); 
alphasum = alphasum + alpha_min(t); 
if alpha_min(t) < big_arc 

store(counter)=j; 
camP(count1,count2,:) = PCOPY(t,:); 
camD(count1,count2,:) = DCOPY(t,:); 
camPKcountl, count2, :) = PTCOPY(t,:); 7. PT and DT - positions 
camDKcountl, count2,:) = DTCOPY(t,:); 7. of the tails of the two 
camDveKcount 1, count2, :) =DVEL(t,:); 7. participants 
camPveKcount 1. count2,:) = PVEL(t,:); 7. PVEL, DVEL - velocities. 
inter(countl, count2,:) = intersect(t,:); 
count2=count2+l; 
store(counter+1) = t; 

else 
j=j - i ; 
countl=count1 + 1; 
count2=l; 
counter=counter+2; 

end 
end 

4.6.2 Results 

Various forms of motion camoufiage behaviour were observed in almost all recorded flights 

between dragonflies (Figure 4.36), although some sequences were too short to be of use. 

An immediately noticeable attribute of the static point encounters is that they occur 

predominantly when the dragonflies are passing each other in opposite directions, a feature 

we return to in the discussion at the end of the chapter §4.8. Dynamic analysis on the 

sequences was performed using two dimensional information, for the sake of simplicity 

and also because the higher frame rate meant angular velocity measurements were more 

accurate. 
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Figure 4.36: Distances along the axes are in mm. (a) Motion camouflage with a s tat ic point 
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through the interaction. 
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Recall the geometric condition for camouflage, rp - ro = k{rp - vt), and note that 

if /c = 0 the result is a trivial solution, where r£)(t) = 0 V i, i.e. the pursuer remains 

stationary at the static point of the engagement. The angular criterion on the other 

hand, Qp = — Qp, established in §2.2, excluded this trivial condition. By examining 

the angular velocity of camouflaged sequences with respect to the static point, we can 

eliminate trivial camouflage occurrences. Figures 4.37 - 4.39 show examples of camouflage 

interactions between dragonflies and the corresponding angular velocities of both insects 

relative to the static point. 
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Figure 4 .37: Dragonflies: (a)Motion camouflage with static point between participants (b) cor-
responding angular velocity profiles, as measured from the static point. 
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Figure 4.38: Dragonflies: (a)Motion camouflage with static point behind the participants. Inset 
shows trajectory including static point, main image shows detailed view of pursuer and target, (b) 
corresponding angular velocity profiles. 
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Figure 4.39: Dragonflies: (a)Again, the static point is behind the participants (inset) who are in 
this instance using camouflage to move away from one another, (b) corresponding angular velocity 
profiles 
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Figure 4.40: Dragonflies; (a)At first glance, the interaction fits the criteria for motion camouflage 
(b)Inspection of the angular velocity, however, reveals that this is a trivial occurrence. 
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4.7 Motion Camouflage in Satellite Flies 

As mentioned in 4.6, there are a number of possible reasons why motion camouflage might 

occur with some frequency in the interactions of multiple insect and animal species. One 

insect which might assist in discriminating between these possibilities is the satellite fly, 

genus Sarcophagidae. Female flies wait near the burrows of digger wasps, and larviposit 

on the prey of provisioning wasps before they enter their nests [Eva70]. This parasitic 

behaviour requires an excellent angular tracking mechanism, since the fly must be prepared 

to react very quickly. Stealth is also an important element of the tracking procedure, 

since the fly ideally will remain undetected by the wasp. Moreover, the satellite fly is 

very aerially adept, able to move laterally as well as longitudinally along its body axis. It 

would not be surprising, therefore, if motion camouflage as a stealth strategy had been 

adopted by these insects. The satellite fly guidance strategy has not yet been explicitly 

determined, but it is probably distinct from that used by dragonflies. As already described, 

the retinal fixation of a satellite fly shadowing a wasp is much more accurate than that of 

one dragonfly tracking another. 

4.7.1 Results 

Examining footage of satellite flies tracking wasps, we determined that instances of motion 

camouflage are also observed in these interactions. Most of those observed, however, were 

triA'ial cases where the satellite fly remained stationary or very nearly stationary. There 

were a number of instances of non-trivial camouflage, examples of which are shown in 

Figures 4.41 through 4.44. 

4.8 Discussion 

Retinal fixation and directional response 

Olberg [OWVOO] found that certain species of dragonfly fly directly towards the point 

of prey interception by steering to minimize the movement of the prey's image on the 

retina. Here, I initially found that dragonflies did indeed demonstrate a degree of anterior 

fixation in their target during a pursuit (§4.4.1). Usually, this was evident in only one 

of the participants, but occasionally both would face each other (note that this did not 

necessarily result in a closing trajectory), or pursuer/target roles would swap during an 



112 Characteristics of DragonBy and Satellite Fly Pursuit 

700 

600 

300 

200 

100 

0 

D5 

% 

D1 ^ ^ 

400 500 600 700 600 900 1000 1100 

(a) 

600 

500 

1 400 

g 300 
a 
1 200 
E 

I 100 
S 

I 0 

-100 

50 75 
Time (ms) 

(b) 

Figure 4.41: Satellite flies: (a)A non-trivial motion camouflage instance between a satellite fly 

and a wasp. Framerate is 200fps, line-of-sight vectors are shown every 10ms for the sake of clarity. 

(b)Angular velocity of both insects. 
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Figure 4.42: Satellite flies: (a)A non-trivial motion camouflage instance between a satellite fly 

and a wasp. Framerate is 200fps, line-of-sight vectors are shown every 10ms for the sake of clarity. 

(b)Angular velocity of both insects. 
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Figure 4.43: Satellite flies: (a)A non-trivial motion camouflage instance between a satellite fly 
and a wasp. Framerate is 200fps, line-of-sight vectors are shown every 10ms for the sake of clarity. 
(b)Angular velocity of both insects. 
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Figure 4.44: Satellite flies: (a)A non-trivial motion camouflage instance between a satellite fly 
and a wasp. Framerate is 200fps, line-of-sight vectors are shown every 10ms for the sake of clarity. 
(b)Angular velocity of both insects. 
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engagement. The recorded sequences were usually only segments of an overall interaction 

which could span tens of metres and many seconds. It is likely that the roles of pursuer 

and target are often reversed, perhaps even several times, during an aerial pursuit between 

two male dragonflies. With the current equipment it is not possible to film these extended 

interactions in a way that will capture an entire male/male challenge from start to finish 

while still maintaining sufficient resolution to resolve body axis orientation. 

Retinal fixation is an important feature of tracking and pursuit [LC74], [BKE03], so 

the relatively sloppy nature of the anterior fixation in dragonflies, as compared to satellite 

flies and houseflies for example, is surprising, especially considering their adeptness and 

accuracy of movement in other pursuit-related tasks. It may be that the head orientation, 

not resolvable with the hmitations of the current equipment, is compensating for changes 

in the retinal position of the target insect. Alternatively, perhaps fixation (anterior or 

otherwise) is not a necessary component of the tracking and pursuit strategy being used. 

In flies, tracking is archived by a reflex in which the retinal eccentricity of the target 

governs the pursuing fly's angular velocity with a lag of 10 to 20 ms [BKE03]. The fly 

thus uses the retinal position of the target as an error signal which it continually attempts 

to keep close to zero (straight ahead) by turning to the same side as the target at a 

velocity determined by the size of the error. This system appears to form part of the 

tracking strategy of the dragonfly, although the aforementioned eccentricity in the LOS 

angle means we might not have determined all the key variables at play. Although lateral 

movement at an angle to the body axis can be observed in houseflies, the predominant 

motion is along the longitudinal axis, and hence the shape of the pursuit path is largely 

governed by the direction of the body axis. In dragonflies this is not necessarily so, and 

we have found some evidence that the flight direction is in fact governed by the velocity 

of the hne-of-sight vector, ie 

iP = G{a-e). (4.10) 

Some of the ramifications of this differential guidance law, should it be vahd, are explored 

in the next chapter. 
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General flight characteristics 

By examining the gross flight characteristics of two-body dragonfly flight in all three 

cartesian dimensions, we can draw some conclusions about the way velocity magnitude, 

as well as direction, is governed by the target dynamics. Changes in target velocity 

were matched within 20-40ms by the pursuer, corresponding with results found by Olberg 

[0\WOO] for dragonflies in prey pursuits. Angular velocity, as measured by the time-

derivative of the absolute course angle, tended to have a much longer delay, ranging from 

around 20-60ms in the horizontal plane to anywhere up to 100ms in the vertical plane. 

Part of this increase in apparent response time is probably due to the secondary nature 

of the response, since in the three-dimensional reconstruction used to measure the overall 

angular response, the changes in body axis angles could not be resolved. In addition, the 

dragonfly must first pitch upwards before it can change its elevation, incurring a reaction 

delay. In the horizontal plane, no change in yaw direction is required to make a course 

angle change, although an adjustment to roll angle may be necessary. Depending on the 

organization of the flight motor and musculature of the insect, this may account for the 

greater delay in responses to a vertical movement by the target. 

The strong correlation between the flight direction of the pursuer and target supports 

the notion that flight direction in the vertical plane is governed by the change in apparent 

target velocity just as it is in the horizontal plane (as observed in earlier experiments). 

In addition, the overall flight speed of the pursuer was heavily influenced by that of the 

target. Increases and decreases in flight speed of the target were closely matched by the 

pursuing dragonfly, and the relative speed between the two was kept fairly low. In a pure 

pursuit scenario with capture as the goal, one would not expect the correspondence to be 

so strong since maintaining speed at a maximum level, or at least a value greater than 

the target, would guarantee capture more often. On the other hand, pursuing dragonflies 

do not appear to maintain a constant range between themselves and conspecifics, which 

would be expected if the goal was simply to chase and match the movements of the target 

[LC74]. Moreover, while quantitatively the flight direction of the pursuer was generally 

close to that of the target, in many cases a quahtative analysis reveals that the changes 

in flight direction were mirrored rather than matched. 

The guidance system governing velocity magnitude, then, may have simple overall 
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features but has complex behavioral ramifications, resulting in neither capture nor precise 

mimicry of the target trajectory, but something akin to an attempt to match overall aerial 

maneuverability. 

Motion camouflage in dragonflies and satell ite flies 

When attempting to maintain camouflage, the direction of flight is the most important 

variable. A shadower must remain on the camouflage constraint lines, which can change 

rapidly depending on target motion. The most important clue in assessing current target 

motion or predicting future motion is the angular position and movement of the line-

of-sight vector between the target and pursuer. In the free flights observed amongst 

dragonflies, with or without the presence of camouflaged segments, there did seem to be 

a relationship between the flight direction and the line-of-sight angle, or more accurately 

between the first derivatives of those variables. 
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Figure 4 .45: Cross-correlation between changes in flight direction and changes in LOS angular 
position, for motion camouflaged sequences between satellite flies and wasps. 

In general, we found the flight direction of satellite flies to be unrelated to the change in 

position of the wasp. Examining the correlation between the change in flight direction in 

the satellite fly and the LOS angular velocity during only camouflaged sequences, however, 

revealed a positive relationship. Changes in LOS angular velocity within those segments 
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were usually responded to by changes of the satellite fly flight direction within 30ms (Figure 

4.45). Likewise, changes in flight direction in dragonflies exhibited a positive relationship 

to the LOS angular velocity during camouflaged sequences, also at delays of 30-40ms 

(Figure 4.46). 
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Figure 4.46: Cross-correlation between changes in flight direction and changes in LOS angular 
position, for motion camouflaged sequences between dragonflies. 

Limiting the analysis to only camouflaged sequences in both the dragonfly and satellite 

fly / wasp interactions, we find a significant change in the flight direction occurs in response 

to changes in the line of sight velocity. As discussed, dragonflies tended to change flight 

direction in response to LOS velocity changes. However most of the time, satelhte flies 

did not exhibit a clear correspondence between flight direction and line-of-sight angular 

velocity to the wasp, probably because the flies place more priority on angular tracking. 

Examining the sequences of camouflaged behaviour exhibited by the satellite flies, it 

was observed that they tended to remain close to the nominal 'static point' of the sequence, 

resulting in a passive camouflage state that did not truly qualify under the angular condi-

tion established in Chapter 2. Moving not at all, or at most a very small distance around 

a set 'node' , is perhaps the easiest way of producing a camouflaged sequence if target 

capture is not an objective, especially if the distance between shadowee and shadower is 

relatively large. Satelhte flies tend to keep a relatively constant distance between them-

selves and the target wasp, which reduces the angular movements necessary to keep the 
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target image on the insects' fovea [RW69]. 

The above describes a good reason why the satelhte fly may maintain itself in a moder-

ately stationary position at some distance from the target and change positions by rotating 

around a central 'node'. The fact that these are also ideal conditions for static point cam-

ouflage is simply a feature of the geometry. However, instances of non-trivial camouflage 

were observed between satellite flies and wasps, although they were rare when compared 

with the number of trivial events. Comparing these 'active' camouflage traces with 'ac-

tive' camouflage sequences between dragonflies, the key common feature seemed to be a 

correspondence between the angular velocity of the course and the angular velocity of the 

line of sight vector between the insects, as noted previously. As has been suggested in the 

past [AMOS], [SD95], for the pursuer a correspondence between course angular velocity 

and the angular velocity of the target across the retina is an important, possibly vital 

component of producing motion camouflage using visual cues. 

Regarding the nature of the camouflaged segments observed, the crucial feature of 

camouflaging motion to note in many instances is that it is a purely geometric phenomenon. 

Hence, given the right conditions between two moving bodies, it can occur without either 

participant even being aware of the other. Consider, for example, two cars moving at a 

constant speed on a highway: 

(a) 
VT = VP 

/ « 

(b) 
VT = 2vp 

(c) 
VT = 2vp 

Figure 4.47: (a) Two oblivious bodies moving at constant speeds in opposite directions, vt = vp\ 
(b) Two oblivious bodies moving at constant speeds in opposite directions, vt = 2vp\ (c) Two 
oblivious bodies moving at constant speeds in the same directions, vt = 2vp; 

Given constant speed and a mirrored inversion symmetry in the geometry, motion 
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camouflage patterns are produced whether or not the participants are actively attempting 

to generate them. (Not all geometrical symmetries will produce camouflage - see, for 

example, Figmre 4.48). 

Figure 4.48: Two bodies moving at equal speeds in a symmetrical trajectory that is not motion-
camouflaged - the paths need to be symmetric in time as well as space. 

Many of the instances of camouflage observed between dragonflies matched in quality 

those described in Figures 4.47(a) and 4.47(b) - that of the participants moving in con-

trary directions while maintaining an approximately constant velocity. The question then 

becomes - why do dragonflies so often engage in behaviour which incidentally leads to the 

geometric condition of motion camouflage? One of the notable things about camouflage 

with a static point between participants, of course, is that both dragonflies will appear 

static to each other in an angular sense. Are the insects perhaps merely trying to get a 

good look at one another? 
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Chapter 5 

Proportional Navigation and 
Insect Flight 

5.1 Variable definition 

The following table describes the variables used in this chapter: 

List of Variables 
r 
V 

a 
A p 

a 
0 
^ 

V 

C 

Position vector 
Velocity vector 
Acceleration vector 
Angular distance moved across the pursuers 
retina by the target over one time interval 
Horizontal direction of flight (pursuer) 
Horizontal direction of flight (target) 
Vertical direction of flight (pursuer) 
Vertical direction of flight (target) 
Horizontal line-of-sight angle between pursuer and target 
Vertical line-of-sight angle between pursuer and target 
Angle between the pursuer's acceleration vector and the vector 
normal to the line-of-sight 
Angle between the target's acceleration vector and the vector 
normal to the line-of-sight 

5.2 Introduction 

In Chapter 3 we explored various linear cost-optimal solutions to the motion camouflage 

problem. Although effective, they were cumbersome, required a very thorough knowledge 

of the target states, and often performed sub-optimally against maneuvering targets due 

to the necessary cost constraint on the control effort. 

In Chapter 4 we analyzed the interactive behaviour of dragonflies and established 

some of the key variables which appear to influence the guidance and dynamics of free-

flying dragonflies and sateflite flies engaged in non-predatory chases. Now, using this 

121 
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information, I seek to establish a model for a possible guidance system driving such a 

camouflaging insect. I then approach a camouflage solution using a guidance law based 

around the capabilities of this biomimetic control algorithm. 

Pursuit models based on visual control of flight direction have been examined to differ-

ent degrees in various insects. Land and Collett [LC74] modeled the chasing engagements 

of patroUing houseflies using a line-of-sight dependent angular velocity model. Reichardt 

and Poggio [PR81] suggested a more situationally-dependent control algorithm, wherein 

alterations to the overall form of the dynamic strategy were made depending on the ge-

ometry of the engagement - for example, a control system for angular tracking of a target 

might not kick in unless the line-of-sight error angle is increasing, or greater than a thresh-

old value, or some other geometric or dynamic condition. Boeddeker and Egelhaaf [BE05] 

designed a decoupled system to model chasing behaviour in blowflies. This simulator was 

designed along similar principles to the one initially developed in this chapter, controlhng 

orientation and forward velocity by separate mechanisms. 

Most controllers developed to describe insect guidance systems' focus on goal-specific 

flight control, namely that of target capture. It is possible, of course, that like those of 

the housefly, the dragonfly interactions observed begin as capture attempts, perhaps with 

the pursuing dragonfly mistaking the target for a female or prey. However the length^ 

and close-range nature of the interactions argues against this, and it is known that the 

dragonflies in question are highly territorial and will attempt to drive off encroaching 

males [PK87]. 

5.3 Decoupling the Control Systems 

A useful approach for initial analysis is to decouple the guidance system into two control 

pathways, one governing direction and the other speed. This deconstruction may be a little 

artificial but it enables us to more easily estimate the infiuences of the various aspects of 

the target's appearance and behaviour on different dynamic variables in the pursuer. For 

the sake of simphcity, we consider the control problem in two dimensions, at least initially. 

'Observed interactions often lasted for many seconds, however they ranged over such distances that 
generally only a small portion of the interaction was recorded. Moreover, we would often see several distinct 
engagements with the same participants 



§5.3 Decoupling the Control Systems 123 

5.3.1 Forward Speed Control 

Recall the following information from Chapter 3: 

• the speed of the pursuer is related to the apparent speed of the target across the 

retina 

• a qualitative analysis seems to indicate that the pursuer, or reactive dragonfly, at-

tempts to match the magnitude of the dynamic output of the target, keeping the 

relative (translatory) speed small, no matter the absolute speed of the target. 

• At least a rough ability to estimate range is required to define a 'territory', and it 

is probable that dragonflies are using range information gleaned from a number of 

sources [OWVOO]. Range data may affect the speed and behaviour of pursuer and 

target. 

In our simulation we therefore want the velocity to approximately match that of the target, 

in the inertial frame. However, the absolute velocity of the target will not be available 

to a moving insect, only the apparent velocity. If the model incorporates a scaling factor 

dependent on range, the absolute speed of the target can be approximately reconstructed. 

As a first approximation, I choose the characteristic equation of the speed controller 

during an engagement to be 

VD + (5.1) 

where vq is an estimate of the pursuer's own speed, r^ is an estimate of the range and p is 

the angle the target tracks across the pursuer's retina over one time interval. 71 is a gain 

factor, and is likely to be near 1 in a conflict between similarly capable insects. 

5.3.2 Directional Control 

In a simple predatory or amorous pursuit, the goal is straightforward to define and we 

may assume the directional control is in some way related to the error angle between the 

velocity vector of the insect and the position of the target. However when the goal is not 

interception, we must be wary of making assumptions about the reaction to positional 

change on the retina. Moreover, whereas in artificial systems the velocity vector is often 

assumed to align itself along the body axis, so forward velocity dominates the dynamics, in 
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dragonflies and other aerodynamically capable insects velocity direction is not necessarily 
related to body axis direction. In other words, a dragonfly may head towards a target 
even when it is not positioned frontally on the retina. In Chapter 4, we demonstrated 
that the frontal fixation of a target in a responding dragonflies retina is much less marked 
than that of a wasp's in a responding satellite fly, for example. 

Looking at high-speed films of trajectories, we found that for some flights there exists a 
correlation between the error angle velocity and that of the flight direction of the pursuer. 
We put forward an hypothesis that change in flight direction is linearly related to error 
angle velocity. Land and Collett [LC74] found a similar relationship was a good model for 
angular velocity control in houseflies. 

a = 720 (5.2) 
cr = 72(0+ 0o) 

The scalar gain 72 determines the gain of the course orientation change, a is the flight 
direction, 6 is the hne of sight error angle, and 9o is an ofl'set angle. The latter is included 
because the position fixation which has been observed in dragonflies does not necessarily 
seem to be in the anterior of the visual field, so the offset acts as a non-zero set-point 
which we can drive the system towards. 

5.3.3 Implement ing a Decoupled Control Sys t em 

Discretizing the equations derived in the previous section, we apply the velocity control to 
a point mass imitating the location of the dragonfly, in a direction determined by a discrete 
approximation of the diff'erential equation (5.2). At this stage we do not concern ourselves 
with body axis orientation. From the results in Chapter 3, we use a lag in the relative 
velocity measurement of 20ms, and a lag in the measurement of change in error angle rate 
of 15ms. Choosing four sequences where the relationship between flight direction and LOS 
angle was clearly shown (Figures 5.1 - 5.3), we tested the decoupled controller to see how 
well it matched the real trajectories used by the dragonflies. 

The simulation can be adjusted using the two gain factors and the offset angle, ^o- This 
angle at which the course stabilizes varies between, and even within, sequences. Initial 
conditions at the start of the filmed sequence were used to set the offset, since as yet no 
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F i gure 5.1: (a) shows a two-dimensional two-body trajectory, (b) shows the corresponding flight 

direction for D1 and the line-of-sight error angle between D1 and its target (D2). Both angles have 

been unwrapped so as to remove jumps between negative and positive angular positions, and thus 

show the correspondence between the variables more clearly. 
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F i gure 5.2: (a) shows a two-dimensional two-body trajectory, (b) shows the corresponding flight 

direction for D1 and the line-of-sight error angle between D1 and its target (D2). Both angles have 

been unwrapped so as to remove jumps between negative and positive angular positions, and thus 

show the correspondence between the variables more clearly. 
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Figure 5.3: (a) shows a two-dimensional two-body trajectory, (b) shows the corresponding flight 
direction for D1 and the hne-of-sight error angle between D1 and its target (D2). Both angles have 
been unwrapped so as to remove jumps between negative and positive angular positions, and thus 
show the correspondence between the variables more clearly. 

provision has been made for changing the angle during a pursuit. 

Initial position and velocity conditions of the model dragonfly were matched to the 

recorded data for the first few frames of the interaction, until sufficient previous data ex-

isted for the time delay to be incorporated. Figure 5.4 shows the performance of the tuned 

controller. From the point of view of trajectory matching this is an open-loop system, so 

deviations from the biological flight path we are trying to track will not be corrected. Ad-

justing the velocity gain affects simply the speed of the virtual insect, whereas adjusting 

the angular gain affects the nature of the response. Figure 5.5 shows the tuned results for 

the two other trajectories shown earher. 
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Figure 5.4: Top: Sample lYajectory matching for the interaction shown in Figure 5.2: 71 = 2, 72 

= 0.8. The real pursuit path began with an offset angle OQ = -40° , which remained fairly constant 
for about 300ms, then changed to 160°. This change in offset, however, is not accounted for in the 
model and is the main reason for the divergence between real and model path in the latter part of 
the trajectory. Bottom left: the line of sight angle relative to the flight direction, for both model 
and dragonfly. Bottom right: position error along the x and z axes. 
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(a) 7i = 6, 72 = 0.5 (b) 7i = 3.4, 72 =0.6 

Figure 5.5: Trajectory matching using decoupled controller for the interactions in Figures 5.1 
and 5.3 
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5.4 Acceleration-based Control and PN guidance 

The kind of decoupled controller demonstrated above has been successful in modeling in-

sect behaviors [AMOS], [BKE03]. But for the guidance of artificial systems, and for analysis 

purposes, it may be more useful to present the controller as a non-linear acceleration-driven 

system, controlling velocity and direction simultaneously. This is also advantageous for a 

third reason - it enables us to specialize the controller into one suitable for motion cam-

ouflage, where the necessary velocity is highly dependent on the flight direction chosen. 

Figure 5.6: System geometry and dynamics 

From the geometry, we can write the following equations of motion: 

Vr = r = VT cos(P -6) -VD cos((7 - 9) (5.3) 

VQ = r0 = VTsm{l3-e)-VDsm{cr-e) (5.4) 

cos{a~0 + r]) (5.5) & = 
VD 
ax 0 ^ ^cos{a-d + Ti) (5.6) 
VT 

rj is the offset angle between the acceleration vector and the line perpendicular to the 

LOS. (3 is the direction of flight of the target, CT and 9 are, as before, the direction of 

flight of the pursuer and the line of sight angle between the pursuer and target, ao is the 

pursuer acceleration, ar is the target acceleration. Together with the initial conditions, 

these equations completely define the system. Using our two-dimensional controller, we 
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can then write the necessary acceleration command for a bio-mimicking system as 

= cv'B. (5.8) 

Recall that Q is the angular rate of the error angle, in other words the rate of change of 

the hne of sight vector, v'̂  is an estimate of the target speed, hence, by definition, this 

controller belongs to a class of control laws known as Proportional Navigation Guidance 

Laws. More specifically, it is a form of GTPN, or generalized true proportional navigation, 

where the acceleration is applied at some angle offset to LOS perpendicular. If r/ = 0 V<, 

the law becomes true proportional navigation. Note that for a point mass, p = d. 

5.4 .1 E x p l a n a t i o n of P N g u i d a n c e 

FN guidance has existed for centuries, and has been studied in the theoretical Uterature 

for some decades - in its simplest forms it requires a relative paucity of information input 

compared to other laws [SM90], and yet is also highly robust. 

Many forms of proportional navigation exist, but most of them can be divided into 

two classes - true proportional navigation (TEN) and pure proportional navigation (PEN). 

Eure proportional navigation uses an acceleration command applied laterally to the guided 

body, perpendicular to the velocity vector. True proportional navigation conventionally 

apphes the acceleration perpendicular to the hne of sight direction (which is distinct from 

the velocity vector) [Gho94], however TEN may more accurately be referred to as a special 

case of a more general type of guidance law, 'generalized true proportional navigation', or 

GTPN [MS89]. Bodies using GTPN apply an acceleration at an angle to the line of sight, 

not necessarily perpendicularly. 

Although PPN is generally regarded as the most 'natural' PN law [Tya03], it is not 

necessarily the one best suited to our purpose. LOS-referenced laws are not in common 

usage as they require forward acceleration and deceleration, and are not particularly effi-

cient in terms of control effort. However when attempting to model real biologically-based 

scenarios, a forward acceleration capabihty becomes desirable, even necessary. And the 

inefficiency of the control action is offset by the greater flexibility of the controller when it 

comes to dealing with a maneuvering target [YY96]. In addition, the oft-used argument 
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that TPN is less robust with regards to capturabihty is not that relevant in this situation 

[Adl56], since capture may not be the primary objective in the interaction. 

5.5 Extrapolation into Three Dimensions 

Now consider the three-dimensional dynamics (Figures 5.7, 5.8). 

Figure 5.7: System geometry and dynamics: 3D 

By a similar process to that used in the two dimensional case, we can derive equations 

for the magnitude of the total acceleration, and the acceleration in the x-y plane. 

COS 6 

Figure 5.8: Dynamics in the horizontal and vertical plane 

. VD COS V' 
a 

ao = ip 

cosv 
vp 

cos (5 

(5.9) 

(5.10) 
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where v = a — 9 + r/ and 5 = ip — (f) Q. To pose these equations of motion into a more 

tractable form, we convert to an orthogonal co-ordinate system (6^,60,60) centred on the 

controlled body with the unit vector e^ in the direction of the LOS (Figure 5.9). 

F i g u r e 5.9: Spherical reference frame: unit vectors 

It is a straightforward procedure to express the acceleration vector a^j as 

a o = arGr + 0060 + 

We find the following equations of motion: 

a(t> = CLD cos C 

o-e = <ir,0 cos rj 

Qr = arfi sin t] 

(5.11) 

(5.12) 

(5.13) 

where a .̂e = a^isinC. Note that â ê is equivalent to the quantity a^ derived earher. 

Hence we can write the acceleration a j j as 

vocosipsmn vocostbcosr] -vncosC 
an = <y 777- e^ + a e^ + tp __ ^ e^. cos u cos u cos (5 (5.14) 

In three-dimensions, the decoupled control laws are 

VD = 71 (̂ >0 + rp) 

a = 720 

ij) = 

(5.15) 

(5.16) 

(5.17) 

We can substitute these values into equation (5.14) to close the loop and obtain a 
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three-dimensional model of dragonfly pursuit. 

5.6 P N Guidance and Motion Camouflage 

5.6.1 Background 

Motion camouflage is a natural candidate for a modified PN guidance law. In proportional 

navigation, the corrective (or control) acceleration is applied with a magnitude that is 

proportional to the relative angular velocity. In §2.2 we demonstrated that if we scale 

a camouflaged environment to the stationary frame with origin at P (focal point), the 

relative angular velocity of T with respect to D is the same as that of T with respect 

to P. In other words, with an appropriate PN guidance law in place, deviation from a 

motion camouflage path will result in a corrective acceleration being applied by the PN 

controller. This corresponds with work by Reddy, et al [RJK06], who showed that under 

suitable hypothesis, a version of PPN with range-dependent gain leads to eventual motion 

camouflage in finite time in a precise sense. 

5.6.2 2D Problem Definition 

Suppose we have a two-body motion camouflaged system. The governing kinematics for 

a motion camouflaged path are very simple to write in a spherical co-ordinate system, to 

whit: 
r {rp - ro) k(Tp - t t ) 

(5.18) 
" (rp - ro) ' " k{rp - t t ) ' 

= el 

4>P 

for some scalar function k{t), where r T , r D , r p are the lengths of the vectors r T , r £ . , r p 

respectively. 

First we consider the problem in two dimensions. We make a co-ordinate shift to scale 

the dynamics such that r p is at the origin. The physical positions of a camouflaged 2D 

engagement at a particular instant in time are shown in Figure 5.10. Clearly, 

e D ^ e T = OR (5.19) 

and we have shown in chapter 2 that 

9D = OT- (5-20) 
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LOSt=t. 

P(=0) 

F i g u r e 5 . 1 0 : Motion camouflage dynamics in a spherical inertial reference frame 

Let 

I'D = V£) = rper + roOee 

= v^er + v^ee (5.21) 

so the length of td is r^, the length of vd is vd, etc, and e^, eg are unit vectors along and 

perpendicular to the hne of sight vector, respectively. We are free to choose vjp according 

to any desired criterion (eg minimizing energy expenditure). However to ensure the motion 

remains on the line between the target and the static point of the interaction, we must 

constrain Vg in the following way (from equation (5.20): 

D I'D T 
ve = —v'g 

rr 
V D s m { a - 0 ) = ~VTsin{f3 - e). (5.22) 

tt 

In other words, the dynamic equation that defines the motion camouflage path is 

t d sin(cr - (9) = (5.23) 

where 9 is the angular rate from the origin (P) to the target (T). We now proceed to 

develop an acceleration based controller. Differentiating the above, we find the following 

second-order equation: 

VD sm((7 - e ) + V D { d - 9) cos(cr - 9 ) = fp^ + rD9 (5.24) 
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Now, the dynamic description of the pursuer motion is 

a = + ^^ 25) 
VD 

and our M.C. dynamic constraint is 

VDsm{G - e ) = rDO. (5.26) 

Differentiating and simplifying, we end up with 

a D s i n ( a - 6 ' + r?)sin(cr-6l) = fD0 + r D e - V D { ^ - 0 ) c o s { a - e ) (5.27) 

= 2fDe + r D 0 - & r D . (5.28) 

Substitute (5.25) to find 

aocosT] = 2rD0 + rDO (5.29) 

Expressed in terms of one variable, this fundamental differential equation is: 

f o = (2rD0 + rD0)tanr?. (5.30) 

From this equation, we can determine the requisite acceleration for any particular pursuer 

path r o , as defined by r o = krr- Moreover, if the target angular acceleration 6 = 0, then 

we can find a solution for the pursuer path r o i t ) in terms of the constraining angular 

position of T, 0: 

r o i t ) c, + C2 I (5.31) 

where Ci,C2 are dependent on initial conditions. If 0 is not zero, then the fundamental 

dynamic equation (5.30) is not generally solvable in closed form (at least analytically). 

Some examples of the acceleration required to achieve particular camouflaged pursuit 

trajectories are now derived: 

5.6.3 Required acceleration for a non-maneuvering target 

Let f-T be constant. Then VT = 0, hence 

r r = rrO^ (5.32a) 

e = - 2 ^ 0 (5.32b) 
TT 
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therefore the required acceleration command is 

• rn - ro^ 
a, = 29 (5.33) 

COST] 

Since the engagement is camouflaged, we know rp = krr, ro — hrr + krr, and we can 

extrapolate the desired range and range-rate from these conditions. 

Example: constant k 

Let fc be a constant. If k{t) = /cqV t, and the target does not change speed or direction, 

then no acceleration is required for the pursuer to remain camouflaged. We can thus use 

this scenario as a test-case for the control equations. To proceed: r/j = krT, hence 

r-D = krr- (5.34) 

Moreover, 

VD cos((T - 0) = V 0 = k f r (5.35) 

so together with (5.29) and (5.32b), we obtain 

^AkrT — kfr 
a, = 29— 5.36 cos 77 

= 0 (5.37) 

as required. 

Example: extremal k, from Chapter 2 

Since we have designated rp as the origin, we can write the length of the optimal energy 

path vector as 

r D { t ) = c i t + C2 (5.38) 

for some constants cj and C2 dependent on initial conditions. From the previous calcula-

tions, the magnitude of the control acceleration is 

{krr + rrk) - kfr 
ac = (5.39) cos 7] ^ ' 
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hence for an energy-extremal trajectory the acceleration required of the pursuer to remain 

camouflaged can be written 

: C i r r - r r ( c i < + C2) Qr - 26-
rj, cos T] 

(5.40) 

(a) Acceleration commands (spherical frame) (b) Camouflage path 

Figure 5.11: Motion Camouflage path for a non-maneuvering target using PN-derived acceler-
ation commands, (a) acceleration commands in the spherical frame (b) Resulting 
trajectory, given ko = 0.2, fco = 0.1, r? = 10°. In cartesian co-ordinates, the initial conditions were: 
rj .(0) = [30, 60], f-T = [200, - 2 0 ] , r p = [200, -650 ] . 

Compare the acceleration required for an LQR solution for the same trajectory (Figure 

5.12). Even without the sharp control spike at the beginning of the interaction, the 

command effort required to capture the target in the same time as the PN guided action-

optimal form is considerably higher across the entire interaction. 

"6 To 40 

Figure 5 .12: Control commands for a linear quadratic regulator solution to the same target 

trajectory as Figure 5.11(b). 
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(a) Acceleration commands (spherical frame) 
-400 -200 0 200 400 600 800 1000 

(b) Camouflage path 

Figure 5.13: MCPN path for tracking an oblivious biomimetic target, (a) acceleration commands 
in the spherical frame (Arer-,Atee). (b) Resulting trajectory, initial conditions for the pursuer same 
as the nonmaneuvering case (fco = 0.2, ko = 0.1, rj = 10°, rp = [200 — 650]). Target trajectory 
taken from monoscopic filmed trajectory, r7'(0) = [537,269]. Even when the target dynamics are 
highly variable, the required acceleration commands are quite low. 

5 . 6 . 4 S o l u t i o n for a m a n e u v e r i n g t a r g e t 

If T is also governed by a P N equation of the form 

that is, 

ar = Xr6 

ar = \{fD - rT)0, (5.41) 

then we can write the angular acceleration of the target in the inertial ( P ) reference frame 

(and hence the required acceleration of the pursuer) as 

0 = — [At;£)Cos(cT - d)cosC - VTCOs{a - 6){\cos( + 2)]. 
tt 

(5.42) 

Hence the rate of change of direction of the velocity vector necessary to maintain camou-

flage is 

ac = 
COST? 

2fD-\- — (ArD c o s C - r T ( A c o s C + 2) ) 
tt 

(5.43) 
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Example: constant k 

With constant k, fo = krr, hence the magnitude of the control acceleration for a camou-

flaged path reduces to 
rric r 

(5.44) 
COST? 

which is a straightforward GTPN law. r is the range, r T - r o - Recall that r] is the angular 

direction of ac , offset from the unit vector eg. 

Example: extremal k 

For an energy-extremal camouflaged path against a guided target, the desired acceleration 

command has a magnitude of 

ac = cos 77 
kXcosrjf + Irrk 

{{cit + C2)Xcosrir + 2{cirT - (cit + C2))] (5.45) 
r r cos T] 

where Ci and C2 are the energy constants which can be determined from initial conditions. 

Note that obtaining a path that is locally energy-minimal requires an estimate of the 

target's position relative to the static point of the engagement, which is not necessarily 

biologically plausible. However the trajectory may still be useful for an artificial system 

with range-finding capabilities. 

0 

- 50 

-100 

- 1 6 0 

- 2 0 0 

- 2 6 0 

- 3 0 0 

- 3 5 0 

GTPN Ar 
- - GTPN At 

M C P N A r 
- - MCPN At 

(a) Acceleration commands (spherical frame) 

Motion Camouflage PN Law 

1000 1500 2000 2500 

(b) Camouflage path 

Figure 5.14: M C P N pa th against an active target using G T P N guidance, (a) acceleration 
commands in the spherical frame for both pursuer and target (b) Resulting tra-
jectory: initial conditions for the pursuer are [1803, -1479], (ko = 0.08, ko = 0.1, 77 = 10°, 
r p = [2000 - 1650]). Target initial conditions in the cartesian inertial f rame are rT(0) = [30,60], 
rr(0) = [200,-20]. 
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5.6.5 P N guidance for motion camouflage 

To close the loop and produce a stable guidance law, we proceed as follows. Recall that a 

PN law takes the form 

a c = NVDO. (5.46) 

For 6 — 0, we find 

= (5.47) 
COST? 

If (T is applied at a constant angle to the hne-of-sight vector, then we simply obtain a GTPN 

law. However, this condition may not always be desirable. For a changing {a — 9), N is & 

dynamic gain with known parameter variation. In both cases, we intuit that capturability 

is dependent on then angle the acceleration is apphed at, ry. It has been shown that a PN 

guidance law will produce a capture trajectory if A'̂  > 3 [Fri96]. Clearly, the larger value 

chosen for 77 (ie the greater the proportion of the acceleration apphed in the direction of 

the line-of-sight vector), the higher N becomes, hence the higher the chance of capture, 

as might be expected. 

For 9 0,we require an augmented law which takes the manoeuvres of the target into 

account. The derivation of such a law is of interest, but outside the scope of this chapter. 

5.6.6 Stability 

We can conduct a small-signal analysis to determine the local stabihty of a motion camou-

flage dynamic engagement. Suppose the state-space vector for the engagement is expressed 

as 

• ] (5.48) 

where 9 is the line-of-sight angle between the participants, and r is the range. Then we 

can write the state-space dynamics as follows: 

9 ^ ^{vTsin{p-9)-VDsin{a-e)) (5.49) 

r = vtcos{/3 - 9) - VDCOs{a - 9) (5.50) 

<j = —cos{a-9 + T]) (5.51) 
VD 

/ j = ^ c o s ( c r - 0 - ^ 7 7 ) . (5.52) 
VT 



§5.6 PJV Guidance and Motion Camouflage 141 

To conduct a small-signal analysis, we assume vt and vd are constant over a short time 

period, and examine the system response to small changes in the state-space variables, S9, 

Sr, Sa, 6/3. It is worth noting at this point that if vt and vd are assumed constant, then 

qd and op can be assumed negligible, which simplifies the problem considerably. 

60 ^ ^{vTsm{l3-e)-VDsm{a-e)) + 

^i-VT{6f3 - 69) cos(/3 -9) + VDi6a - 69) cos(a - 9) (5.53) 

6r = VTi6l3 - 69) cos{P - 9)-VD{6a-69) cos{(7-9) (5.54) 

5(7 = 0 (5.55) 

6 / 3 ^ 0 (5.56) 

^ '̂e can write this as 
" 69 - - 69 -

6r 
= H 

6r 
= H 

6& 
= H 

6a 

. 5$ . . . 

such that 

where 

.4 = 

B = 

C = 

" A B c 
. 02,4 0l,2 0l.2 . 

H = 

i ( t ' r cos(/3 -9)-vd COS(CT - 9)) \{vt sm{P - 9) - vd sin((7 - 9)) 
VD COs((T - 9) - VT cos(/? — 9) 0 

^ c o s ( / 3 - 0 ) 
VT cos(^ - 9) 

^ cos(cr - 9) 
VDC0s{a — 9) 

(5.57) 

(5.58) 

The characteristic equation of the above system is det{sl - H). We find 

\sl -H\= - J ( r r - vd) - ^(ttOt - rD9D){rD - vt))- (5.59) 

Substituting the motion camouflage conditions r ^ = fcrr, 9d = 9t into the above equation, 

we discover 

The eigenvectors of the characteristic matrix are therefore real and negative if 

(5.60) 

r 
- < 0 , 
r 

(5.61) 
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hence the system is stable if the following conditions apply: 

i f r T > r £ ) then f r < ro (5.62) 

i f r T < r £ ) then f r > ro- (5.63) 

Note that if equation (5.63) holds, then D is not camouflaged with respect to T, but 

rather T is camouflaged with respect to D. We generally ignore this case as artificial 

pursuit scenarios rarely encompass role-swapping. 

5.7 Discussion 

5.7.1 Limitations of the biomimetic decoupled control 

The proposed controller for a dragonfly is a decoupled first-order model which separately 

controls for flight speed and angular velocity using visual inputs. The forward speed is 

controlled by the apparent speed of the target scaled by the range between the partici-

pants, the angular velocity is modeled as having a hnear relationship to the line-of-sight 

error angle velocity. The controller itself is by no means comprehensive, and other visual 

cues than those incorporated are likely responsible for characteristics of the interactive 

behaviour seen in dragonflies - elevation, predictive tracking and looming effects are but 

a few. In spite of this, in its current form the controller successfully mimics many test 

trajectories, with httle tuning required. 

Although simphcity is a virtue in control laws, it seems likely that the actual con-

troller used by dragonflies is slightly more involved than that presented above. Not every 

interaction could be successfully mimicked in both flight speed or angular velocity using 

a constant gain. It is possible that the gains vary throughout the engagement, affected 

by headwind and other environmental influences. Hence if conditions change during the 

chase, the gain required to match the trajectory may also change, sometimes abruptly. 

Mizutani (unpublished) has had some success in modeling dragonfly encounters using an 

heuristic dynamic gain with PN guidance, however further investigation is required into 

whether these dynamic gain functions correspond to real dynamic features of the engage-

ment which influence the flight paths. 

Simplifications and approximations of the dynamic features were also made. The 

most obvious was the modeUng of the simulated dragonfly as a point mass, with no wing 
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kinematics and, perhaps more importantly, no body axis information. The aerodynamics 

of flapping wing flight influence heavily the inertial forces and body torque acting on 

the insect, but were not included here except as a subset of the heuristic gain. The 

body axis information lost from the controller has possibly a more significant effect on 

the deviations of the model from the real trajectories, especially since we are considering 

the visual mechanisms underlying the flight control. Investigating a way of incorporating 

body axis angle into the current model would be of great value, especially since it does not 

appear to be a straightforward function of visual fixation. Noise was not included in the 

simulation, and the retinal size was modeled as a simple linear function of distance, when 

in reahty there is hkely to be error in the measurement, induced by (a) motion blur, (b) 

retinal location (since resolution differs across the eye), and (c) (perhaps most significant), 

viewing direction, since the target will appear largest when viewed perpendicularly, but 

quite small as seen from the head or directly behind. Forces due to translatory inertia and 

wind effects were not taken into account. 

5.7.2 P r o p o r t i o n a l Nav iga t ion and b iomimet ic control 

Minimizing the angular error between the actual and the desired retinal position of the 

target is a feature of both biological and artificial pursuit systems ([CL75], [RW69], [LC74] 

[Ros83]). Traditionally, in pursuit, the target is held steady in the frontal region of the 

visual field. However dragonflies, whether as a feature of some type of predictive tracking or 

a result of the responsive nature of the target, are apparently poor fixators when compared 

with other insects. What response there is to change in the line-of-sight position is most 

evident in the course angular velocity, ie the change in flight direction, rather than a 

change in orientation. When modeling the control system as a PN guided system, this 

distinction becomes moot since we assume a body axis orientation aligned with flight 

direction. In reahty, this is not necessarily the case. As mentioned above, a method of 

incorporating the body axis orientation into the controller might give valuable insight into 

the behaviour of the insects. 

It was demonstrated that the controller used could be represented by a generalized 

true proportional navigation controller. A GTPN law for achieving motion camouflage 

was then derived. This law does require knowledge about the position of the static point, 
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at least in terms of its position relative to the target, in order to determine the necessary 

angular movement. Range to the target is less vital, although may be required under 

certain conditions in order to ensure capture. In most cases, though, the pursuer may 

only need to have a good estimate of the velocity of the target, and know its own distance 

from the static point of the engagement, a task which is simphfied if the initial position is 

chosen to be the fixed point of the interaction. 

A comparison of the biomimetic law and that derived for motion camouflage shows that 

the dragonfly guidance model will naturally produce motion camouflage if the following 

conditions are met: 

Firstly, we use the proportional navigation version of the biomimetic law, such that 

rp + vo • 
a-D = 7I72 cos((7 — 9 + r]) 

= r . . e (5.64) 
cos((T — 0 + r]) 

where F = 7172 and v"- is an estimate of the target speed. 

Secondly, if v̂  is reasonably accurate and the gain function 7 is not untoward, then 

the forward speed of the pursuer will match that of the target as per the decoupled control 

law, and we can say that a motion camouflaged trajectory will be produced if we choose 

F such that 

(5.65) 
cos r) VT 

This equation depends primarily on the relative distances of the insects from the static 

point, and the heading direction of the pursuer (a). Assuming the insects concerned are 

capable of range measurement, it is possible that certain features of an interaction could 

conspire to bring about an approximation of this gain value, especially given that motion 

camouflage has been shown to be a more effective capture strategy than pure pursuit 

[Gle04]. An insect trying to track or capture prey, a conspecific, etc., may thus stumble 

upon a motion camouflaged trajectory while pursuing an entirely different objective. 



Chapter 6 

Discussion 

6.1 Thesis summary 

The mechanics behind visually-guided pursuit are of enormous interest to investigators 

in the fields of animal behaviour as well as the control of autonomous aerial machines. 

Motion camouflage, a subset of pursuit, has recently received particular attention because 

of its elegant structure and potential for stealth applications. In addition, the observations 

of its use amongst insects imply there must exist methods of achieving camouflage which 

rely neither on extensive and precisely detailed knowledge of the environment, nor on 

intricate and complex computations. 

In this study, I flrst approached motion camouflage from a purely analytical viewpoint. 

Using as a starting point Glendinning's [Gle04] research, I derived in Chapter 1 a dynamic 

law which was both a necessary and sufficient condition for camouflage to have occurred. 

Then by applying the theory of Lagrangian optimization, I estabUshed a 'natural ' form of 

action-optimal motion camouflage - ie the paths a camouflaged trajectory would naturally 

take if these camouflage requirements were the only forces acting on the pursuing body. 

Chapter 2 explored possible algorithms for implementing camouflage in artiflcial sys-

tems, and showed that applying linear dynamics is sufficient to generate camouflaged 

paths that are stable, robust, and unlikely to encounter unexpected singularities. Using 

a linear quadratic-cost based controller, first in two then three dimensions, I was able to 

successfully produce camouflaged trajectories. However the drawbacks of such a method 

were significant. Uncapped, the need to produce an accurately camouflaged path resulted 

occasionally in extreme control actions, to such a degree that most autopilots would not 

be able to respond to the required command in time. On the other hand, if a limitation 

was placed on the control action, or the cost of an excessive action was weighted more 

145 
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heavily, the result was a decline in the system performance. If the path taken by the target 

was highly non-linear, this decrease could be quite marked. In addition, the nature of an 

optimal LQR controller is such that the system is traditionally first solved for its desired 

endpoint, then iterated backwards to arrive at the initial conditions. This method works 

well if the target is on a predictable path, but becomes unwieldy and loses efficacy if it 

is not, because the whole future trajectory must be re-solved each time the target moves, 

increasing the computations required many-fold. 

In an attempt to ehminate the latter problem with the optimal LQR controller, I then 

designed a solution using a three-dimensional greedy controller. This solved the issue of 

backwards iteration by using an engagement horizon limited to the next discrete time 

interval, minimizing cost only over that short instance and removing the requirement for 

costly computations when confronted with a non-predictable target path. 

However the greedy control formulation was still handicapped by the tradeoff between 

large control action and camouflage accuracy. Moreover, its finite-horizon meant that 

while it worked well for stealthy shadowing, it would not result in a capture path except 

under very restrictive and unnatural conditions. Greedy LQR camouflage may certainly 

have its uses in tracking applications, but without additional strictures placed upon it, 

will not result in target capture. 

To find a solution for the performance tradeoff between control commands and cam-

ouflage accuracy, I designed an autopilot which could respond quickly to large control 

actions without becoming unstable. Instead of a rule-based, decoupled atti tude control, 

I sought an holistic solution which could take advantage of the many possible attitudes 

which could potentially produce a given control acceleration vector. 

Although highly non-linear, the resulting autopilot was successfully implemented on a 

hnux-based F16 simulator, where its responsiveness was restricted solely by the physical 

hmitations of the aircraft itself. Several analytic solutions to various controller inputs were 

presented at the end of Chapter 2, including a simulation using greedy LQR commands 

for motion camouflage. 

Even with a flexible autopilot which could respond well to large control accelerations, 

the hnear dynamic solutions to motion camouflage still suffered from their computational 

intensity and inaccuracies in the face of non-linearities, and required precise knowledge of 
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target position and dynamics to achieve a camouflaged path. When noise and measurement 

hmitations were introduced to the controller, the performance suffered, although not to an 

excessive degree. However the linear quadratic cost translated poorly into a moving polar 

reference frame, where the idea of measuring cost as a hnear deviation from an invisible 

'constraint line' seemed contrived and artificial. 

In Chapter 3, I returned to the analysis of insect motion camouflage in the hope of 

identifying relevant control laws. The starting point of my experimental work was an 

earlier behavioral study published by Mizutani, et al [MCS03], where male dragonflies 

in territorial disputes had been recorded apparently using camouflage. I analysed flights 

involving interactions between two or more males, in two and three dimensions, seeking 

information which could be used to build a phenomenological model of the dragonfly 

guidance system. The limitations of filming these interactions in natural settings are 

great, as discussed. Nevertheless, some overall characteristics of dragonfly and satellite fly 

responses to visual targets during instances of motion camouflage could be extracted from 

available video footage. 

The speed of the target influenced the forward speed of the pursuer, such that the 

relative velocity between the insects was small compared to their forward speed. In addi-

tion, the apparent retinal motion of the target was closely related to the changes in flight 

direction of the pursuer. Camouflaged sequences were observed quite frequently in both 

dragonfly and satellite-fly/wasp interactions, although they were often of short duration, 

suggesting they occurred as a behavioral subset of an overall guidance strategy. 

A comparison of the camouflaged sequences in these two distinct types of insect inter-

action revealed that the rate of the line of sight angle from pursuer to target was closely 

related to the rate of the change in flight direction in naturally occurring camouflaged 

flight. 

In Chapter 4, I used the flight characteristics found in Chapter 3 to build an approxi-

mate model of the dragonfly guidance system. The forward speed of the model is governed 

by the apparent speed of the target and the range between the participants; the change 

in flight direction is proportional to the rate of the line of sight to the target insect. Both 

pursuer and target were simulated as point masses, so the effect of body axis direction on 

either pursuer velocity or target retinal size and position were not modeled. Processing 
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delay was incorporated simply as a measurement lag gleaned from experimental results, 

with no attempt made to accurately simulate neuronal processing time. 

The model dragonfly, when compared to that of the 'real' pursuer in filmed two-

body trajectories, performed fairly well in terms of matching gross flight characteristics, 

performing qualitatively similar turns and speed responses to those of the real dragonfly. 

To further refine and improve the controller, it is suggested it be tested on flights of 

dragonflies under more predictable and controlled conditions, for example artificial prey 

pursuit in a fully observable arena. 

A change in flight direction proportional to the line of sight error rate is a key feature of 

a class of guidance laws known as proportional navigation (PN) guidance. I hence manipu-

lated the controller equations and found they could be formulated as an acceleration-based 

control. Thus inspired by the biologically-based guidance model and the successful models 

developed by Justh, et al, [JK06], [RJK06], I developed a PN-based controller for static-

point motion camouflage in two dimensions. The controller fits well into the biomimetic 

model for dragonfly guidence. As designed, even range estimation is not necessary to 

achieve camouflage, although some measurement of range is required for approach or 

capture. However inaccuracies in this measurement will not affect the accuracy of the 

camouflage, although the problems with overshoot outhned in Chapter 3 should still be 

taken into consideration. 

6.2 Future Work 

Models of insect control systems have largely been confined to highly controlled situa-

tions in which control parameters can be easily manipulated. Modeling free-flying insects 

without the benefits of repeatable experimentation is far more of a challenge. Much work 

remains to be done on accurately describing and modeling dragonfly guidance systems. 

The current model does not fully account for some of the more complex and unusual be-

haviour patterns observed in the insects. Nevertheless, it is unlikely that the flight system, 

once unraveled, wifl be revealed to be signiflcantly more complex than that presented here. 

A way to more fully explore the nuances of interaction and gain a more complete picture 

of the significant visual cues used to navigate during a non-predatory chase might involve 

using a dummy target (as has been done by Land and Collett [Lan97], Boeddeker and 
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Egelhaaf [BKE03], etc). However my work suggests clear developmental directions for de-

veloping camouflage strategies in man-made systems. A three-dimensional version of the 

PN system described in Chapter 5 can be developed in a straightforward way. Using this 

model, or even one of the linear models described earher, in conjunction with a force-based 

autopilot such as that developed in Chapter 2, implementing camouflage in a sufficiently 

capable unmanned craft should not be too arduous a task. 
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A p p e n d i x A 

Lagrangian Optimization and 
Lagrange Multipliers 

Lagrange, in his seminal work of 1965 Mecanique Analitique, first introduced the principle 
of virtual velocities, and from that context conceived of the analysis method now known 
as Lagrangian optimization and the constructs termed Lagrange Multipliers. 

A,1 Virtual Velocity 

To quote the man himself: 

By virtual velocity, it has to be meant the one that a body in an equilibrium 
condition would receive if the equilibrium were interrupted, namely, the veloc-
ity that the body would really assume in the first instant of movement; the 
principle consists in this: the forces are in equihbrium if they are in the inverse 
proportion to their virtual velocities. 

J. L. Lagrange, Mecanique Analitique, 1965, 17-18 

The quantity of force times velocity has had a number of different appellations over the 
years, but here we refer to it as Lagrange did, as the 'moment', and hence the product of 
a force and its virtual velocity may be known as the 'virtual moment'. Thus we arrive at 
the formal declaration of the principle of virtual velocity: A body will be in equilibrium 
iff the (algebraic) sum of the virtual moments is zero [Bus03]. 

For example, if there exists a point with two forces applied to it, P and Q, and if p 
and q axe the respective directions of P and Q, then the body is in equilibrium if 

Applying this principle to the study of a system of points at equihbrium, we can analyze 
the conditions of translational and rotational equilibrium. However such a analysis may 
be algebraically complex. By using the method of Lagrange Multipliers, the analysis can 
be conducted in a simpler, more general way, and we can look at the equilibrium of a 
system under constraints. 

A.2 Multipliers and constrained systems 
Firstly, a brief aside: We have explained the virtual moment in terms of the differential 
functions etc. In practise, Lagrange replaced these derivative terms in his analysis 
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with the quantities dp, dq, etc. His justification: 

In order to express this principle by means of formulas, we suppose that the 
forces P, Q, R are directed along given lines and that they are in equilibrium; 
let p,q,r denote the lines that are the directions of the forces P,Q,R. We 
indicate the variations or differences (now called differentials) of these hnes 
with dp, dq, dr and suppose they are caused by an arbitrary infinitesimal change 
in the position of the different bodies or points of the system. It is clear that 
these differences will express the spaces that are covered in the same instant 
by the actions of the forces P,Q,R. In order to simplify the treatment, it is 
possible to consider these differences instead of the velocities. 

J. L. Lagrange, Mecanique Analitique, 1965, 24 

Consider the equilibrium of a material point (or a system of material points) subjected 
to constraints. If the constraining equations are £ = 0, A^ = 0, and if £ and M are 
functions of several variables, it follows necessarily that dC = 0, dM = 0. Hence, let A 
be arbitrary real numbers, then XdC = 0, ^dM = 0, etc. By considering the sum of all the 
moments of the forces that must be in equilibrium, we can add the different differential 
functions that must be zero if the system is to satisfy the requisite constraints. To do this, 
we multiply each function by an indeterminate coefficient and set the whole sum equal 
to zero. We therefore have a differential equation which can be treated as an ordinary 
equation with maxima and minima, etc. Hence the general equation of equilibrium for a 
constrained system is 

Pdp + Qdq+... +XdC +iidM =0. (A.2) 

Considering the problem in an orthogonal reference frame, we can for each orthogonal 
variable develop a particular equation of equilibrium. For example, in the direction x, 

pdp ^ Qdq ^ + A + - 0 
dx dx "' dx ^ dx 

From a physical point of view, the reaction of the constraint is equated to an agent force. 
Hence A, /x are equivalent to forces and the expressions XdC and pdM represent the virtual 
moments realized by these forces. The principle advantage of this method is that it allows 
us to treat the problems with constraints in the same manner as free problems. 

For example: If 3 two forces P,Q on & point, and a constraint represented by the 
equation £ = 0 is added, then in an orthogonal reference frame (x, y, z) we can write 

P^ + Q^ + >^dCdx = Q (A.3) 
dx dx 

P ^ + Q t - + Ad£dy = 0 (A.4) dy dy 

P ^ + Q ^ + Ad£d2 = 0 (A.5) 
dz dz 

£ = 0. (A.6) 

If we interpret the multiplier as a new co-ordinate, then equation A.6 can be replaced 
by the equally valid equation 

P ^ + Q ^ + XdCdX = Q. (A.7) 
dX dX 
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Hence the solution of the problem of the equilibrium of a point (or a system of points) is 
analogous to the problem of determining the maximum or minimum of a function under 
constraints [LeiSl]. 
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Appendix B 

Attitude Representation 

The attitude of a rigid body in space is traditionally represented in one of three ways: (1) 
by a rotation matrix, (2) by a Euler triple angle, (3) by unit quaternions. 

\Mren describing attitude, two co-ordinate systems must be considered. The first is the 
world, or inertial, frame, which is fixed in inertial space and is denoted by I. The second is 
the body co-ordinate system, which is rigidly attached to the object under consideration, 
and is denoted by B. 

B.l Rotation matrices 

A rotation matrix is a matrix whose multiplication with a vector rotates the vector while 
preserving its length. The special orthogonal group of all 3x3 rotation matrices is denoted 
by 5 0 ( 3 ) . The elements of a rotation matrix R are referenced as follows: 

i? - f ri r2 rs 1 (B. l ) 

(B.2) 
r-ii ru ri3 
r21 2̂2 r23 
rsi 3̂2 r33 _ 

There ai-e two possible conventions for defining the rotation matrix that encodes the 
attitude of a rigid body. The matrix can be written in such a way as to map body-fixed 
co-ordinates onto world co-ordinates, or to map world (inertial) co-ordinates onto body 
co-ordinates. Both are equally \'alid, and the two conversion matrices thus defined are 
inverses (and transposes) of each other. 

B.1.1 Co-ordinate transformations 

The rotation matrix for the rest of this appendix is defined as follows: if x G is a 
vector in the world co-ordinates, and x ' € is the same vector expressed in the body co-
ordinate system, then the rotation matrix for conversion between the two has the following 
properties: 

z' = Rz (B.3) _ / ^ 

z = R^z' . (B.4) 

These expressions apply to vectors, which by definition are relative quantities lacking 
a position in space. To transform a point from one co-ordinate system to the other, we 
must subtract the offset to the origin of the target co-ordinate system before applying the 
rotation matrix. Let z, z' be as before, and let the origins of the two co-ordinate systems 
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be designated x / and x b respectively (note that x / , XB are both in the inertial frame, so 
X/ = 0 and x'g = 0 by definition, however x'̂  and x ^ may not). Then we may write: 

z ' = i ? ( z - X B ) = /?z + x'; 
z = R^{Z'-X'J) = R^Z' + XB. 

Substituting z = 0 into B.5 and z' = 0 into B.6 yields 

x.'j = -RXB 

XB = 

(B.5) 
(B.6) 

(B.7) 

(B.8) 

When a rotation and translation are combined in this manner, we call the procedure 
a co-ordinate transformation, and can easily write the necessary equations in the form of 
a matrix termed a co-ordinate transformation matrix, as follows: 

z' • R 
1 1 

z " R^ Z B 

1 1 

Z 

1 

" z' 
_ 1 

(B.9) 

(B.IO) 

B.1.2 Co-ordinate rotations 

A co-ordinate rotation is a rotation about a single co-ordinate axis. Let the co-ordinate 
rotation about the x-axis be designated 1, about the y-axis designated 2, and about the 
z-axis designated 3. Then the corresponding co-ordinate rotations Ri : ^ SO{3), for 
i G [1,2,3] are [Cra89] 

" 1 0 0 " 
Ri{a) = 0 cos a sin a (B . l l ) 

_ 0 — sin a cos a 

cos a 0 — sin a " 
R2{a) = 0 1 0 (B.12) 

sin Of 0 cos a 

cos a sin a 0 " 
Rs ia ) = - sin a cos Q 0 (B.13) 

0 0 1 

B.1.3 Rotation matrix multiplication 

The multiplication of two rotation matrices yields another rotation matrix whose applica-
tion to a point effects the same rotation as the sequential application of the two original 
matrices [Cra89]. 

B.2 Euler Angles 

Recall the definition of co-ordinate rotations from above. Three co-ordinate rotations in 
sequence can describe any rotation. Consider triple rotations in which the first rotation 
is an angle ^ about the k-axis, the second rotation is an angle 6 about the j-axis, and the 
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third rotation is an angle 4> about the i-axis (orthogonal co-ordinate system {i,j,k)). We 
can arrange these angles in a three dimensional vector, termed the Euler Angle Vector u 
[Gre88]: 

u = (B.14) 

The function that maps an Euler angle vector to its corresponding rotation matrix, 
: _ sO{3) is 

= (B.15) 

As in the general case, if z £ is a ^'ector in the world co-ordinates and z' e is 
the same vector expressed in the body co-ordinates, then the following relationships hold: 

z' = (B.16) 
z = (B.17) 

B.2.1 Euler angle rates 

The time-derî •atî ^e of the Euler angle vector is the vector of Euler angle rates. The 
relationship between the Euler angle rates and the angular velocity of he body is encoded 
in the Euler angle rates matrix [Gre88]. Multiplying this matrix by the vector of Euler 
angle rates gives the aiigular velocity in the global co-ordinates. Let be the unit 
vectors in the directions (i.j.k). The function that maps an Euler angle vector to its 
corresponding Euler angle rates matrix, E : ^ is 

= (B.18) 

Hence 

^ = (B.19) 
J = (B.20) 

The angular- velocity in the body co-ordinates is related to the angular velocity in the 
global co-ordinates by 

J = (B.21) 
^ = (B.22) 

Hence we may ehminate and u to obtain 

R , M u ) = (B.23) 
- (B.24) 

B.2.2 Valid rotation sequences 

Only certain sequences of co-ordinate rotations are able to span the space of all three 
dimensional rotations. Of the 27 possible sequences of three integers in {1,2,3}, there 
ai-e only 12 that satisfy the span constraint (that no two consecutive numbers in a vahd 
sequence may be equal). These are 

{i,j.k) = {(1,2,1), (1,2,3),(1,3,1), (1,3,2), (2,1,2), (2,1,3) (B.25) 
(2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3 ,2 ,3) } (B.26) 
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The three bolded sequences are the most common choices for order of rotation. 

B.2.3 Singularities 

The main problem with Euler angle representations of attitude is the pervading presence 
of singularities, such that no one rotation sequence can represent a full rotation space in 
all three dimensions without encountering one or more singularities in the process. These 
singularities are said to arise from gimbal lock, which may be understood in several different 
ways. Intuitively, it arises from the indistinguishability of changes in the first and third 
Euler angles when the second Euler angle is at some critical value. Take, for example, 
the (1,2,3) sequence. When the pitch angle is 90°, the vehicle is pointing straight up, and 
roll and yaw are indistinguishable. In the case of the (3,1,3) sequence, when the nutation 
angle is zero, changes in the spin angle are the same as changes in the precession angle. 

The phenomenon may also be seen mathematically. Again, consider the (1,2,3) se-
quence. In this case, when cosO = 0, then r23 = rss = r ^ = ' 'n = 0, and the expressions 
for (pnsiR) and ipi23{R) are undefined {(pusiR), V'i23(-R) are the Euler angles (j),il; ex-
pressed as a function of rotation matrix elements). 

A common strategy for dealing with this problem is to change representations when-
ever an object nears a singularity. Even more popular is the use of unit quaternions to 
represent an object's attitude. Using unit quaternions to represent the attitude of an 
object completely avoids the problem of gimbal lock. 

B.3 Quaternions 

Quaternions were first devised by Hamilton in the 19th century [Ham63]. The term is used 
to denote a certain quadrinomial expression, of which one term was called (by analogy 
to the language of ordinary algebra) the real part, while the three other terms made up 
together a trinomial, which (by the same analogy) was called the imaginary part of the 
quaternion [Ham63]. Quaternions have many useful applications, but here we are primarily 
interested in their use as a representation of the attitude of an object. 

Generally speaking, a quaternion q G H may be represented as a vector 

q = [90,91,92,93]̂  = 90 
qi23 

(B.27) 

Quaternions are additive but not commutative, and it is often found to be more convenient 
to write a quaternion multiplication as a matrix-vector product of the second quaternion 
pre-multiplied by a matrix-valued function of the first. 

The attitude of a rigid body is usually most conveniently represented as a unit quater-
nion, where 

= (9o + 9? + ql + 93)5 = 1. (B.28) 

Consider a vector z G in the inertial co-ordinate system. If z' G is the same vector 
in the body co-ordinate system, then the following relations hold: 

" 0 • • 0 • 
f = q 

z z 
q - 1 

1 • • 0 • 
RM . z 

(B.29) 

(B.30) 
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where 

Raici) = 

In other words, 

Q0+Q1+Q2+ 4 
2(^192 - qoQi) 
2(9193 + qoqi) 

2(9192+9093) 
9o - 9i + 92 <& 

2(9293 - 9o9i) 

z' = i?<,(q)z 

z = 

2(9193 - 9092) 
2(9293 + 9091) 

9? - 92 + 93 J 
(B.31) 

(B.32) 
(B.33) 

is thus the rotation matrix for the body under consideration, and just as with rotation 
matrices based on Euler angles, sequences of rotations can be represented by products of 
quaternions. That is, for unit quaternions p and q it holds that 

(B.34) 

B . 3 . 1 C o n v e r s i o n s 

Converting between quaternions and Euler angles is straightforward: 

, - 1 2(9092 + 9193) (b — tan ——T \-2{ql+ql) 
9 = sin"^(2(5092 - 9193)) 

^ -1 2(9093 + 9192) = tan 
l - 2 ( 9 | + 9i) 

(B.35) 

(B.36) 

(B.37) 

For the reverse case, moving from a set of Euler angles to the corresponding 
quaternion: 

cos f cos f COS ^ + sin f sin f sin | 
sin f cos f COS I - cos f sin f sin f 
cos f sin f COS I + sin f cos f sin | 
cos f cos f sin I - sin f sin f cos I 

(B.38) 

^ '̂e have shown above that a quaternion rotation matrix is qualitatively equivalent to 
an Euler-angle rotation matrbc. can if necessary convert the elements of an Euler-angle 
rotation matrix directly to a quaternion, which results in four different mappings, of which 
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some will be complex. 

90° = ( 1 + r i i + r22 + r33)2 

^liR) = i 

(1 + r n +r22 + r33)2 
(r23 - ''32)/9O 
(r3i - r-i3)/gg 
(ru -r2i)/qo 

^niR) = o 

(1 + r n - r22 - ^33) 2 

(r-23 - r-32)/go 
(1 + rii - r22 - r33)2 

(ri2 + r2i)/g^ 
(r3i + ri3)/ql 

ciliR) = ^ 

(1 - rii + r22 - r33)2 
(r-31 - r-i3)/?o 
{ri2 + r2i)/qo 

(1 - rii +r22 - r33)2 
(r-23 + r-32)/go 

= ( 1 -

1 
q ^ i ? ) = ;; 

rii - r22 + r33)2 
{ri2-r2i)/qi 
{rsi + ri3)/9o 
(r23 + r32)/9o 

(1 - rii - r22 + r33)2 

(B.39) 

(B.40) 

(B.41) 

(B.42) 

(B.43) 

(B.44) 

(B.45) 

(B.46) 

(B.47) 

(B.48) 

(B.49) 

There exists a composite function which allows us to choose between the four possible 
solutions, depending on the parameters of the rotation matrix [Sch65]. This function, 
qfl : SO{3) ^ H, is 

q%{R) ifr22 > - r33 , r i i > -r22,ru > -r^s 
q}j(i?) ifr22 < - r33 , r i i > -r22,rn > rss 

if r22 > r33,rii < r22,rn < -rss 
q|j(i?) if r22 < r33,rn < -r22,rn < 3̂3 

(B.50) 
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