
THE AUSTRALIAN NATIONAL UNIVERSITY 

Fabrication and characterisation of 
tellurite planar waveguides 

Khu Tri Vu 

January 2012 

A thesis submitted for the degree of Doctor of Philosophy of the 
Australian National University 

Laser Physics Centre 
Research School of Physics and Engineering 

College of Physical and Mathematical Sciences 
The Australian National University 





Declaration " 

Declaration 
The contents of this thesis are the result of original research and have not been 
submit ted for a higher degree to any other university or institution. This thesis is 
entirely my own work, unless explicitly stated otherwise. 

Khu Tri Vu 
a 2...January 2012 



Acknowledgment Hi 

Acknowledgment 
There has been so much help f rom everyone who I know and have met during the 
course of this work that I would like to thank deeply. Although I am trying to name 
some people that 1 can think of at the moment of writing, there are many others who I 
might fail to mention and for this I apologise. 

First of all 1 would like to say thank you to my supervisors, Dr. Steve Madden 
and Prof. Barry Luther-Davies. They have done their best for me throughout this time. 
Dr. Steve Madden has been inspiring and given me all of the guidance that I needed all 
the way. Prof. Barry Luther-Davies has always been the point of contact whenever I 
needed help. His expertise in every field makes all problems become simple. I also 
acknowledge the help of Prof. Andrei Rode, Prof. Neil Manson with thoughtful advice. 

1 would like to specially thank other members of Laser Physics Centre with 
whom I have shared many ideas, joy and, sometimes, frustration. I express my deepest 
gratitude to Dr. Duk-Yong Choi, Dr. Douglas Bulla, Mr Craig Macleod, Mr John 
Bottega, Ms Anita Smith, Mr Sukhanta Debbarma, Ms Belinda Barbour, Ms Sonia 
Padrum and specially Mrs Maryla Krolikowska. I also thank all of the administrative 
and technical support staff at the Research School of Physics and Engineering for their 
assistance at various times. 

I am also grateful for the contribution of all other student members at the Laser 
Physics Centre and at the Research School of Physics and Engineering. They also made 
the student life so much more enjoyable. 

I specially thank Ian McKerracher , Dr. Fouad Karouta and Dr. Kaushal Vora for 
help with sputtering and other fabrication facilities. I would like also thank Prof. Rob 
Ell iman and Dr. Avi Shalav for helping with RBS and photoluminescence 
measurements . The electron beam characterisations such as SEMs and E D X A s have all 
been carried out with help f rom staff at the Australian National University Electron 
Microscopy Unit. I express my deepest appreciation to Dr. Frank Brink for helping me 
all the time. The mass spectrometer measurements were performed by Dr. Charlotte 
Alan at the Research School of Earth Sciences. 1 thank her for all of the help. 



Acknowledgment iv 

This project is f unded by the Austral ian Research Counci l under Discovery 

Project Grand DP()70333 with Dr. Steve Madden is the chief invest igator . I also have 

had the pr iv i lege of work ing with and being partial ly suppor ted by the Cen t re for Ultra-

high bandwid th Devices for Optical Sys tems ( C U D O S ) . M y study w a s only poss ib le 

with f inancia l support f r o m the Austral ian G o v e r n m e n t Depar tment of Educat ion , 

Sc ience and Tra in ing with the International Pos tgraduate Research Schola rsh ip ( IPRS) 

and the Austral ian National Univers i ty PhD scholarship . I am, therefore , very grateful 

to all these organisat ions . 

I a lso thank all m e m b e r s of the Vie tnamese Society in Canber ra ( A C T V O S A ) 

and the Vie tnamese Embassy in Canberra for provid ing a h o m e a w a y f r o m home . I 

express my thanks to m e m b e r s of Univers i ty House and Gradua te House for provid ing a 

f r iendly l iving envi ronment for the durat ion we stayed there. 

Most of all, this is tr ibute to my fami ly w h o are a lways my love and 

encouragemen t at any momen t . They are a lways my motivat ion for every thing. I would 

like to thank my wife , Uyen Nguyen , for be ing a patient, devoted and uncondi t ional 

compan ion . M y life has been so much more j o y f u l with the arrival of our son, Minh Vu. 

For that, saying " thank" is jus t not enough. 



Abstract 

Abstract 
Telluri te glasses, which contain tel lurium dioxide (Te02) as the main component , have 
some remarkable optical propert ies which are well recognised and exploi ted in the bulk 
optics and f ibre f ields. They include a high acousto-opt ic f igure of merit , wide mid 
infrared t ransparency, the highest optical nonlinearity amongst oxides, and excellent 
rare earth hosting, etc. Despite these attractive properties, until now, no one has 
succeeded in fabricat ing low loss planar waveguides in these materials. 

This work develops high quali ty optical planar waveguides in T e 0 2 for the first 
t ime. The project investigates the materials science for optical T e 0 2 f i lms and discovers 
an appropriate waveguide fabrication method. The thin f i lms have been fabricated by 
reactive radio f requency magnetron sputtering using a Tellurium target in an oxygen 
and argon a tmosphere . Propagation losses at 1550nm in the planar f i lms are O. ldB/cm 
or lower in s toichiometr ic composi t ion. The properties of f i lms have been also found to 
be stable with thermal annealing up to 300°C. Plasma etching of tellurite glasses has 
been systematical ly studied. High quali ty etching of T e 0 2 and chalcogenide glass f i lms 
has been demonst ra ted with a Methane /Hydrogen/Argon gas mixture. As a result, a 
fabricat ion recipe which produces low loss (O. ldB/cm) planar waveguides has been 
discovered. The nonlinear coeff icient of the sputtered T e 0 2 has been characterised by 
self-phase modulat ion (SPM) exper iments and the nonlinear coeff icient n2 has been 
measured to be 65xlO"^%^W ', around 25 t imes that of silica. Signif icant signal 
convers ion, -4dB, has achieved with large bandwidth of 30nm in the four -wave mixing 
( F W M ) exper iment pumped at 1550nm in a slightly normal dispersion waveguide. 
Erb ium doped Tel lur ium oxide thin f i lms have also been fabricated by co-sputtering of 
Erb ium and Tel lur ium targets into an Oxygen and Argon atmosphere. The obtained 
f i lms have been found to have good properties for Erbium doped waveguide amplif iers . 
The Erb ium concentrat ion can be controlled within the range of interest with 
Erb ium/Tel lu r ium ratios ranging f rom 0 .1% to 3% or more. The 1.5|am 
photo luminescence propert ies of the f i lms are excellent with effect ive bandwidth of 
more that 6 0 n m and intrinsic l i fet ime of order of 3ms. Despite the fact that there was 
O H contaminat ion in the f i lms, single mode Erbium doped waveguide amplif iers with 
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high internal gain have been successfully obtained. The 148()nm pumped amplifier 

achieved internal gain from below I520nm to beyond 1600nm. The peak gain of 

2.8dB/cm and 40nm 3dB gain bandwidth have been accomplished. These results are a 

major stepping stone towards "system-on-chip" optical applications for telecom and 

mid infrared optics given the multifunctional nature of tellurite materials. 
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1.1 General background 

Chapter 1: 
Introduction 

1.1 General background 
1.1.1 Integrated optics 
Since the 1980s, electronics has been slowly supplemented by and in some cases even 
replaced by optics, in te lecommunica t ions systems in particular. The appeal of optical 
techniques originally s temmed f rom the wide bandwidth available and the ultra low 
attenuation possible in optical f ibres compared to the best available f rom the coaxial 
cables required to carry high data rate signals. The advent of the optical amplif ier 
accelerated this process and led to the replacement of repeaters with all optical amplif ier 
devices. New fields of application such as astronomy, biological /chemical and other 
sensing devices, consumer electronics, on chip and intra-chip connect ions etc. have 
emerged since the original te lecoms based drive towards integration [1-3] and the field 
has matured to the point that integrated optics devices are routinely deployed. The 
appeal and possibil i t ies of integrated optics are essentially the same as integrated 
electronics, namely that bulk components can be el iminated and multiple 
funct ional i t ies can be integrated on one stable robust, mass producible, low cost device. 
However , progress has been much s lower than in the electronic domain and a number of 
key funct ional i t ies remain to be integrated together due to materials l imitations. 

The basic concept in optical integrated circuits is the same as that in optical 
fibres: the conf inement of light. Light conf ines within high refract ive index regions of 
the guiding structure. In a channel waveguide, light propagates within a region 
embedded in a p lanar substrate or within a portion of a film deposited upon a planar 
substrate. The channel has refract ive greater than that of the substrate/surrounds. The 
thin film type optical circuit a ims to perform multiple funct ions by integrat ing laser 
light sources, funct ional components such as switches/modulators/f i l ters /amplif iers , 
in terconnect ing waveguides , and detectors all on single substrate. Through integration. 
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more compact, stable and functional optical systems can be achieved. The key 

components are slab (2-D) waveguides or channel (3-D) waveguides. [4]. 

There are a number of basic properties of integrated optical devices that make 

them attractive [1]: 

• Good confinement: Wider choice of materials enabled by not needing to 

draw fibres allows guided modes to be confined to very small mode areas 

(<l|a.m^) if desired to enhance active or nonlinear optical effects and enable 

very tight bend radii (down to ~2 |j,m in silicon [5|). Multimaterial 

integration also allows modes to be expanded as desired for low interactions 

or coupling to standard optical fibres. 

• Stable alignment: a key performance factor in optical systems is the 

stability of alignment between the various optical components. Integrated 

photonic devices are by definition free of internal alignment issues as 

everything is monolithically integrated. Also with the application of simple 

design principles, the devices can be stable against vibrations and thermal 

changes. 

• Fast operation: The small size of the control electrodes in integrated 

photonic devices implies low capacitance which allows fast switching 

speeds and high modulation bandwidth in electro-optic devices. 

• Effective accousto-optic interactions: devices using accousto-optic 

interactions such as surface acoustic wave (SAW) switches and filters can 

operate very effectively because of the SAW and optical waveguide mode 

overlap strongly. 

• Compact and low weight: The use of single substrate with an area of 

several centimetre square for integrating photonic components makes the 

optical devices very compact and very light weight. 

• Low cost: The fabrication of integrated optics devices can leverage the 

techniques routinely employed in the semiconductor industry enabling true 

low cost mass production. 

• System on a chip opportunity - realisation of a whole optical system on a 

single chip, integrating a wide range of functionalities together to achieve 

devices that are not possible with fibre or bulk optics alone 
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T o attain the desired goal of low cost high functionali ty system on a chip devices there 

are a number of funct ions and capabilities that have to be attained in a planar geometry 

that can be compatibly integrated together. Ideally any given materials system would 

provide as many capabili t ies as possible, for instance including: 

• On chip laser source (CW and mode locked) capability 

• Optical amplif ication where desired on the chip 

• Large third order optical nonlinearity where desired on the chip 

• Large second order nonlinearity where desired on the chip 

• Accousto-optic effects for widely tunable filters 

• Tight bending capability 

• Means to interface to standard optical fibre 

• Wide transmission range 

• Stable photosensitivity for per formance tuning and Bragg grating devices 

• Light detection capability 

So a key challenge is to find materials systems that can satisfy as many as 

possible of the above capacities, and that are compatible with integrating other 

technologies to supply those that it cannot. Established integrated optics technologies 

meet this list of desirable criteria to varying degrees, but not suff iciently that there are 

no opportunit ies for alternate materials, and it is this opportunity that inspired the work 

reported in this thesis. 

1.1.2 Established materials for integrated optical devices 

While the range of optical materials that can be used to fabricate optical devices is large, 

ranging f rom glasses, dielectrics such as silicon dioxide, silicon nitride, or silicon 

oxynitr ide, dielectric crystals (e.g. lithium niobate), semiconductors (silicon, indium 

phosphide) , polymers , etc.[6J each material has some advantages and disadvantages 

over the others, and varying levels of maturi ty in individual technologies have been 

attained. Despite the fact that these materials categories have been extensively studied, 

there are still a l imited number of functionali t ies can be obtained f rom any single 

material . A brief review of the most available technologies will now be given with a 

summary of their known capabilities and shortcomings. Table 1.1 summaries the 

refract ive indices and waveguide refract ive index contrast of these key materials 
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(contrast defined to a demonstrated top cladding other than air). Higher index contrast 

leads to smaller waveguides (better nonlinear or active device performance) and more 

compact optical circuits. 

Table 1.1: Basic optical properties of key established materials [6J. 

Materials Refractive index Channel/rib waveguide 

index contrast 

Silica 1.44-1.47 0-2% 

Silicon 3.47 60% 

Polymers 1.3-1.7 0-30% 

Lithium niobate 2.1-2.2 0-0.5% 

Semiconductors (e.g. InP, GaAs) 3.1-3.4 0-14% 

Chalcogenides (e.g. AS2S3) 2.5-3.3 60% 

Silicon oxynitride (SiO^Ny) 1.44-2.0 0-30% 

Silica on Silicon technology is the most widely used and best established planar 

technology. It involves growing silica layers on silicon substrates mainly by plasma 

enhanced chemical vapour deposition (PECVD) or flame hydrolysis, followed by 

plasma etching to form waveguides [7-9], The core material is usually raised in 

refractive index from pure silica by doping with germanium, index contrasts of up to 

3% being commonly attained. The silica on silicon platform has been used to produce 

lasers, amplifiers, couplers, array waveguide grating (AWG) multi/demultiplexers, 

filters, and millisecond response time thermo-optic based switches and attenuations [6, 

10, 11]. Commercial products on silica platforms have been available for many years 

now. However, silica based waveguides have low refractive index leading to low 

integration density, low Kerr nonlinear coefficient and no second order nonlinear 

coefficient . Silica cannot be used for wavelength conversion or other desired nonlinear 

effects with device lengths that can feasibly be integrated on a chip. Furthermore, silica 

is not a very good host of rare earth ions. The maximum concentration before the ions 

cluster is very low. For instance, silica can only contain -lOOOppm of Erbium before 

clustering starts and quenching effects dominate over radiative process [12], This leads 

to very low gain per unit length of the device. Whilst silica will remain the workhorse 

of the passive planar integrated optics industry for some time to come, it is not the ideal 
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materials platform for system on-a-chip type devices, and additionally has no mid 

infrared (MIR) transparency. 

Silicon on insulator (SOI) planar waveguide technology has been developed in 

the last few years with co-integration with high speed electronics and leveraging the 

existing worldwide silicon foundry capacity and capability in mind. Silicon on insulator 

has been used to produce couplers, filters, switches, microring and other types of 

resonator, photonic crystals, etc. There have also been a wide variety of nonlinear 

optical experiments in SOI waveguides [5, 13-17J, though silicon is not the ideal 

material for this due to the two photon absorption it displays at 1550nm on account of 

its ~1 lOOnm band edge. Additionally there are demonstrations of modulators running at 

up to 5()GHz [18J, silicon based lasers by wafer bonding active III-V layers [19, 20J, 

high speed waveguide detectors based on Germanium selective area growth [21, 22], 

and recently some commercial products have become available, e.g. Luxtera [23], 

Silicon is additionally transparent to 5-6|J.m offering some useful MIR capabilities. 

Thus silicon has demonstrated a wide range of capabilities and is an "accessible" 

technology due to the massive infrastructure investments in silicon processing. 

However many of the techniques that enables some of these capabilities (e.g. wafer 

bonded III-V gain, selective area Ge growth, etc) are not standard CMOS technologies 

and will therefore not be low cost readily available methods. Additionally silicon 

nanowire waveguides typically employed for this technology are very small 

(200x40()nm is typical) meaning very high end lithographic tools are required, losses 

are high (the record for a nanowire device is ~2dB/cm propagation loss at I550nm [24-

26]) and the extremely high index contrast makes devices sensitive to phase errors 

much harder to make (e.g. AWG multiplexers). Further silicon accousto-optic devices 

have not been demonstrated, taper type structures have to be employed for efficient 

fibre coupling. Silicon technology is very expensive unless there is a mass market such 

as consumer electronics to reduce the cost per unit product; however this scenario is not 

yet anywhere in sight. 

Polymers can use fast turnaround spin-and-expose techniques for low cost 

fabrication. Some polymers however are not photosensitive and require photo-resist 

assisted patterning and plasma etching reducing this advantage. One of the advantages 

of polymers is the tunability of the refractive index difference between the core and the 
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cladding enabl ing high index contrast and high density, and the sheer range of 

funct ional groups than can be incorporated for second and third order nonlinearity, gain, 

etc. Fur thermore, polymers can often be used in unconventional techniques such as 

moulding, s tamping, and embossing permitt ing rapid, low cost fabrication. Polymers 

have been used to produce interconnects, lasers, amplifiers, detectors, modulators, 

polarization controllers, couplers, filters, switches and attenuators [21-22], Polymers 

generally contain CH or 0 - H bonds which have vibration overtone absorption in the S-

C - L band, overcoming this loss for broadband telecom type applications requires other 

compromises (e.g. f luorination) that can deactivate some of the other desirable active 

effects . Polymer passive and active devices are commercial ly available (e.g. Gemfi re 

makes V O A arrays [33J, Gigoptix markets 40-10()GHz modulators [34J), But two key 

chal lenges remain for polymers. Firstly, polymers usually exhibit large temperature 

dependence of key properties (e.g. refractive index) and excepting a very few classes of 

materials (acrylates and polysiloxanes) often exhibit poor stability in harsh 

environmental condit ions [28J. Secondly, there is no one polymer that can support the 

full range of effects . All of the active functionalit ies in particular listed above were 

attained in very specific and very different optimised materials. Whilst polymers offer 

the ult imate toolbox and the promise of great things, much work remains to realise a 

true single material capable platform. 

Lithium niobate has been studied extensively for more than three decades 

because of its good second order nonlinear coefficient , electro-optic coeff icient and 

accousto-optic coefficient . It is readily available commercial ly and is currently the 

material of choice for external modulators, periodical poled crystal for waveguide 

conversion. Ti tanium diffusion, nickel diffusion and proton exchange are generally used 

to fabricate of waveguides in LiNb03. The lithium niobate platform has been used to 

produce lasers, amplifiers, modulators, polarization controllers, couplers, wavelength 

converters , filters and switches [35-39]. There has however been no report of low loss 

rib channel waveguide in this material. The waveguide critical bending radius remain 

high, therefore, the devices are not yet compact . The third order nonlinearity n2 in 

L i N b 0 3 is only order of 5 t imes of silica, therefore, it is not suitable for Kerr nonlinear 

applications [40-42]. Additionally the fact that the material is a relatively fragile single 
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crystal makes capabilities such as integration of pump diodes or detectors quite 

challenging f rom both the thermal and bonding perspectives. 

Semiconductors such as indium phosphide and gallium arsenide are also well 

investigated and can be used to produce both active and passive optical devices [43-49]. 

These semiconductors are usually grown by epitaxial methods. The integration of active 

component with passive components is typically achieved by epitaxy of different 

material compositions. They have been used to produced laser, SOAs, detectors, 

modulators, couplers, filters, and switches. In many regards, the indium phosphide 

waveguide system is the one which has currently achieved the most impressive resuls in 

terms of system level integration, with companies such as Infinera now selling 10x10 

GB/s transceiver chips and other researchers demonstrating chips with 240 active and 

passive components integrated [49, 50]. Cost remains a concern for the InP system as 

does scalability into the MIR or to a wide range of emission wavelengths. Widely 

tunable filters are also problematic. 

More recently, chalcogenides, which contain one or more of the chalcogen 

elements S, Se or Te compounded with network forming elements such as Ge, Si, P, As, 

Sb, have been fabricated and used for low loss and highly nonlinear waveguides [51-56]. 

Chalcogenides have high third order nonlinearity, therefore, very high nonlinear 

interaction with even CW laser beams. This allows effective wavelength conversion in 

four-wave mixing or supercontinuum generation. They have high accousto-optic 

coefficients, can be good hosts for rare earth dopants at a range of wavelengths, and are 

transparent across the whole MIR band. Chalcogenides also hold the record for poled 

second order nonlinearity at 9 pm/V with larger numbers likely possible. There are also 

chalcogenide solar cells indicating the potential for light detection, but no 

demonstrations of integrated waveguide photodiodes. On the other hand, they are soft 

glass and have low glass transition temperature glasses. Also, chalcogenides have two-

photon absorption, even much lower than silicon, which is still unsuitable for a number 

of applications involving high optical power. Chalcogenide glasses have great potential 

in nonlinear signal processing and integrated optics but the long term stability for real 

world application have yet to be demonstrated. 

Silicon oxynitride (SiO^Ny) and silicon nitride (Si3N4) have also been studied 

extensively for optical integrated circuits [57-72]. This class of material has some 
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proper t ies that are s imi lar to tellurite g lass such as re f rac t ive index of 2, t ransmiss ion 

w i n d o w f r o m U V to Mid- IR. Sil icon oxyni t r ide planar wavegu ides are genera l ly 

fabr ica ted by low pressure chemica l vapour deposi t ion [63j or thermal chemical vapour 

depos i t ion [71 J, or p l a sma enhanced chemica l vapour depos i t ion ( P E C V D ) [60, 63-65J 

and react ive ion e tch ing (RIE) [60, 63, 68J. There are a lso several high tempera ture 

annea l ing processes b e f o r e the low stress and low loss wavegu ide can be ful ly obta ined. 

T h e index of the mater ia l varies be tween 1.45 of S I O T to 2 .0 of Si3N4. This material 

a l lows monol i th ic integrat ion into current si l icon t echnology using current C M O S 

techniques . The re has been s o m e progress in pass ive dev ices with this class of mater ia l . 

For instance, w a v e g u i d e with loss of less than 0. I dB /cm has been demons t ra ted and that 

leads to the success fu l fabr icat ion of r ing cavi ty with qual i ty fac tor of 3x10^ [63J. 

H o w e v e r , there are n u m b e r of shor tcomings that make sil icon oxyni t r ide a less 

at t ract ive candida te for optical integrated opt ics . There is still s ignif icant absorpt ion loss 

at ISOOnm due to the N-H bond [72J, which is inherent in all process ing steps. T h e 

f i l m s and w a v e g u i d e s are general ly under stress due to high process ing tempera ture . 

T h e nonl inear i ty of si l icon nitride f i lm was reported to be around 10 t imes of silica [57J. 

T h e rare earth ions host ing capabil i ty of si l icon oxyni t r ide is still unclear [58, 59J. 

Si l icon oxyni t r ide thin f i lm has been poled to achieve only small of 0 .23 [73]. 

So far, there no single material p la t fo rm has been able to realise all the required 

c o m p o n e n t s on one p la t fo rm to achieve a truly integrated circuit . This is because , that 

mater ia l has to sa t is fy some strict opt ical , mechanica l , chemica l proper t ies etc. 

Mul t i func t ion optical circui ts of ten require hybridisat ion to util ise the di f ferent s t rengths 

of d i f fe ren t mater ia ls . Even the ease of hybridisat ion is an important at tr ibute of a 

mater ia ls sys tem. T h e search for mater ia ls with more diverse funct ional i ty that 

m i n i m i s e the need for complex fabr icat ion is cont inuing. 

Tel lur i te g lasses have been k n o w n for a whi le to p rovide some excel lent 

proper t ies . Th i s pro jec t will concentra te on demonst ra t ion of tellurite glass p lanar 

t echno logy in a r ange of c o m p o n e n t s f r o m pass ive wavegu ide to nonl inear convers ion 

and act ive ampl i f ie r s . 
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1.2 Tellurite planar waveguides 

Telluri te glasses are a broad class of mult i -component oxide glasses containing 

predominant ly Tel lur ium dioxide (TeOi) . Tellurite glasses are promising for a wide 

range of applications of generating mid-infrared light for sensing, spectroscopy, 

te lecommunicat ions . Important optical properties of tellurite include: having refractive 

index at around 2.1, being a very good hosts for rare earth ions (Erbium, Thul ium etc. 

which can be used for laser amplifiers), having high Raman gain coefficient (30-60 

t imes higher than silica) and Raman shift at about double that of silica [74j . At 

refract ive index of 2.1, the single mode waveguide can be obtained with relatively large 

cross-section leading to lower susceptivity to fabrication errors. This also allows 

eff icient coupling between different components or f rom an external fibre. Furthermore, 

the critical bending radii remain relative low allowing high density integration. The 

propagation loss can be lower than more tightly confined waveguides in silicon or 

chalcogenides. Interestingly, tellurite glasses can be poled to achieve second order 

nonlinearit ies with coeff icient comparable with those of crystalline materials [75J. This 

property can be used for electro-optic devices or frequency conversion via parametric 

mixing. Tellurite glasses have also been recognised for its third order nonlinearity as 

having the largest coeff icient between oxide based glasses [76]. Because they have band 

edge at very short wavelength, 300-400nm, they also can handle very high optical 

intensity without the multi-photon absorption and photo darkening that affect most of 

current materials currently used for thin f i lm optical applications. 

In comparison with other optical glasses such as silica, f luoride and 

chalcogenide, tellurite has some excellent competi t ive properties. Table 1.2 summaries 

important properties of the mentioned glasses and indicates several advantages of 

tellurites over the others. For instance, the refractive indices of tellurites are much 

higher than silica and f luoride but not as high as chalcogenide. This makes it possible to 

make small mode area tightly bendable clad waveguides that cannot be made in low 

index materials whilst easing single mode device fabrication by allowing core sizes in 

the region where high end li thography tools are not required, and at the same t ime 

a l lowing greater surface roughness thus easing the etch criteria. The nonlinearity of 

tellurite materials is 30-60 t imes that of silica, which whilst less than the m a x i m u m 

value in chalcogenides of ~500x silica is still large enough to make compact nonlinear 
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planar devices. The mechanical properties of tellurites are also superior to those of 

fluoride and chalcogenide glasses. Those are just a few of the advantages of tellurites 

over other well-known optical materials. 

Table 1.2 Basics properties of tellurite in context with other optical glasses [77] 

Property Tellurite Silica Fluoride Chalcogenide 

Refractive index 1.8-2.3 1.46 1.5 2.5-3 

Nonlinear refractive index (n2. 30-60x10"-" 1-3x10"^" -10"^' 300-1000x10"'° 

m'AV) 

Highest phonon energy (cm"') - 8 0 0 - 1 0 0 0 - 5 0 0 - 3 0 0 

Bandgap (eV) ~3 - 1 0 - 1 0 1-3 

Acousto-optical FoM (10"'^s'/kg) 24 ,750 8 - 164 

Glass transition (Tg, C) 300-450 -1000 - 3 0 0 110-280 

Thermal expansion (10"'"C) 120-170 - 5 - 1 5 0 - 1 4 0 

Solubility in water <10"^ <10"' Soluble <10"^ 

Mohs Hardness 2 6 1 1 

Despite of all of their excellent properties, the detailed investigations in thin film 

and waveguide formats have not yet been conducted in the literature. Although there is 

some previous research on tellurite glass devices, they are mainly aimed at making 

optical fibres and as hosts for rare earth ion based amplifiers. There are tellurite fibre 

amplifier products available on the market. Only small amount of research [78-83] has 

experimentally examined tellurite as materials for planar waveguides but non 

considered non-linear optical devices. This work will target the understanding of the 

materials science, processing technology, and optical science of Tellurite materials for 

integrated planar waveguides. This project is to thoroughly characterise and optimise 

the materials; the deposition technology; the waveguide fabrication approach; and 

performance of passive and active planar tellurite waveguides. 

1.3 Outline of this work 

This work mainly concentrates on fabricating and characterising Tellurium dioxide 

planar waveguides. The aim is to provide a platform for a future integrated system 
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based largely on a single highly functional material. The remainder of the thesis is 

organised as follows: 

Chapter 2 introduces comprehensively the important properties of Tellurium 

oxide and tellurite glasses as excellent choices for a wide range of optical applications. 

Basic structural, physical and chemical properties of tellurite glasses are reviewed. Then, 

important optical properties such as refractive index, chromatic dispersion, nonlinearity, 

Raman properties are discussed. The applications of tellurite glasses in bulk, and optical 

fibre forms are introduced. The properties of tellurite glasses outlined in this chapter 

will be referred to in the later chapters, h is the foundation of the work for the 

development of thin film and waveguide using Tellurium oxide and tellurite glasses. 

Chapter 3 reports the use of reactive RF sputtering to fabricate as deposited 

films with the required stoichiometry and optical propagation losses below 0. IdB/cm, 

low enough to enable high quality integrated optics devices. A wide range of sputtering 

parameters was explored using the design of experiment (DOE) method to obtain the 

desired stoichiometry, high index, and low loss planar waveguides. The obtained films 

from these series of runs had O/Te ratios ranging from 1 to 3.5. The refractive index 

variation and planar waveguide propagation losses at 1550nm are reported as a function 

of oxygen content over a wide range. The bandgap, Raman spectra, and effects of 

annealing against stoichiometry are reported and it is shown that there are compositions 

which are completely thermally stable. 

Chapter 4 studies the reactive plasma etching properties of Tellurium dioxide. 

A high quality etching process using Hydrogen, Methane and Argon was demonstrated. 

Plasma etching of Te02 using standard parallel plate Reactive Ion Etching (RIE) and 

toroidal winding Inductively Coupled Plasma (ICP) machines are covered in detail. The 

quality of etching in the two systems was slightly different but the outcome of this study 

was recipes for etching high optical quality Te02 waveguides. The etch process is also 

shown to be highly suitable for chalcogenide glass thin films which may be of 

importance in applications such as phase change memory, nonlinear integrated optics, 

etc. 

Chapter 5 characterises the linear and nonlinear properties of RIE etched Te02 

waveguides. First, modal simulations were performed to obtain some important 

properties of the waveguides such as effective indices, dispersion, mode area, etc. Then, 
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the attenuation of the fabricated waveguides was measured by several techniques 

including non-destructive mode overlap estimation and destructive cutback methods. 

Nonlinear experiments were also performed. The self-phase modulation simulation gave 

the nonlinear refractive index of sputtered Te02 at 6 5 x , which is around 

- 2 5 times that of silica. The four-wave mixing experiments also gave significant signal 

conversion to idler when pumped at 1.550|jm in 3|am wide waveguide. 

Chapter 6 develops Erbium doped co-sputtered Tellurium Oxide films. The 

fi lms were fabricated by reactive radio-frequency magnetron sputtering. Erbium was 

incoiporated directly into the fi lms by co-sputtering of an Erbium metal target on a 

separate gun. Fabrication and characterization processes and properties of Erbium 

doped thin f i lms are described in detail. The main task was to deal with experimental 

measurement of the lifetime of thin films. The lifetime of l .Spm radiation was found to 

not only depend on the Erbium concentration, Oxygen content of the film but to heavily 

depend on OH contamination. 

Chapter 7 details the production of Erbium doped Tellurium oxide waveguide 

amplifiers fabricated by co-sputtering. Waveguides were fabricated using standard 

lithography and reactive ion etching with Hydrogen/Methane/Argon gas mixture. The 

obtained low loss waveguides were pumped at 1480nm to obtain signal gain f rom 1520 

to 1630nm. An amplifier with peak gain of 14dB over 5cm length was achieved. The 

gain was achieved over 1520nm to beyond 1600nm when bidirectionally pumped with a 

total of 250mW at 1475nm. The simulation of the performance of the amplifier shows 

very good agreement with the experimental data. The results show that rare earth 

tellurite waveguides have great potential for use in integrated nonlinear optics as loss 

compensators or as C W lasers or short pulse lasers. 

Chapter 8 summarises the main challenges, achievements of the work then 

suggests future work to further advance the field of tellurite planar waveguide. 
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Chapter 2: 
Tellurite glass properties and 

applications 
This chapter reviews important properties of Tel lur ium dioxide and tellurite 

glasses as choices for a wide range of optical applications. First, basic structural, 
physical and chemica l properties of tellurite glasses are reviewed. Then, important 
optical propert ies such as refract ive index, chromatic dispersion, nonlinearity, Raman 
propert ies are discussed. The applicat ions of tellurite glasses in bulk and optical fibre 
fo rms are introduced. The propert ies of tellurite glasses outl ined in this chapter are 
important for the work in the later chapters. 

2.1 Tellurium and Tellurium dioxide: a brief introduction 
2.1.1 Tel lur ium and Tel lur ium dioxide 
Tel lur ium is one of the rarest e lements on Earth with an abundance of only 1 part per 
billion by weight on crustal rocks [84]. The reason for its scarcity is due to the 
format ion of volatile fo rms of Tel lur ium hydride which meant most Tel lur ium escaped 
Earth during its format ion. Pure Tel lur ium in crystalline form is a p-type semiconductor . 
Te^^j has the electron configurat ion of [KrJ 4d" ' , 5 s ^ p'^. It has oxidation states of 4, -2 

and 6. It readily reacts to fo rm different oxide, hydride or halide compounds [85]. 
Tel lur ium oxide can exist in three forms depending on the oxidation, 

temperature and pressure. The most stable fo rm of Tel lur ium oxide is Tel lur ium dioxide 
(Te02) . The other less stable fo rms are Tel lur ium monoxide (TeO), Tel lur ium trioxide 
(TeOs) and Tel lur ium pentoxide (Te205) [86]. T e O can be detected when TeSOa is 
heated to 180-230°C. However , the existence of T e O in solid form is doubtful . TeOs is 
reported to exist in two phases: a , and (3 [86]. a - T e O j , coloured bright yel low, is 
f o rmed by thermal decomposi t ion of orthotelluric acid HeTeOe in air at 300-320°C, (3-
T e 0 3 is fo rmed by heat ing the orthotelluric acid with a trace of sulphuric acid in a 
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sealed tube. Te205 is formed by heating orthotelluric acid HeTeOG or a - T e 0 3 at 406' 'C 

for 25hr, and is stable at room temperature [86J. 

The most stable form of Tellurium oxide, Te02, occurs naturally as the mineral 

tellurite or paratellurite with two different crystal structures. Te02 can be prepared by a 

number of methods including: burning of Tellurium in air, reaction with nitric or 

sulphuric acids, thermal decomposition of orthotelluric acid or its anhydride (Tellurium 

trioxide), oxidation of Tellurium dichloride by liquid N2O4 and the oxidation of 

Tellurium in water or sodium hydroxide solution with oxygen at 60atm at 150°C[86]. A 

most convenient method is the reaction of nitric acid on Tellurium [86|. The basic 

Tellurium nitrate is formed which is then thermally decomposed into Tellurium dioxide 

with 80% yield. Tellurium dioxide has a melting point and boiling point of VSS^C and 

1245°C, respectively [85J. These temperatures are very attractive for fabrication as they 

are high enough for stable device operation yet low enough for convenient processing. 

2.1.2 Tellurium dioxide crystal states 

Tellurium dioxide traditionally exists in two polymorphous forms, paratellurite or a -

Te02, first described by Leciejewicz, 1961 [87J, and tellurite or P-Te02, first described 

by Beyer in 1967 [88]. In both structures, Tellurium atoms have four neighbouring 

oxygen atoms forming a basic trigonal bipyramid Te04 structural unit as shown in 

Figure 2.1. In this trigonal bipyramid, the two equatorial oxygen atoms are separated 

f rom the Te atom by a distance shorter than the two axial oxygen atoms as shown on 

Figure 2.1 a). The distances of Te atom to the axial and equatorial O atoms are 2.1 A 

and 1.9A, respectively. The distance between the two axial oxygen atoms is 3.0 A while 

the distance between the two equatorial atoms is 4.1 A [89, 90]. 

The a - T e O i and (3-Te02 nomenclatures describe the f rameworks of the Te04 

units, where they are linked by a highly asymmetric bridge Te-axOeq-Te. In the a - T e 0 2 

structure, the Te04 units share the corners forming a three-dimensional network as 

illustrated in Figure 2.1 b). In (3-Te02 the units share the corners and edges forming a 

two-dimensional network of sheets as shown in Figure 2.1 c). 
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Figure 2.1: a) Structure model for TeO^ trigonal bipyramid unit (large atom are Te 

and smaller atoms are O); b), c) and d) are lattice projection on xy plane of a , P 

and y-TeOi, respectively [90], 

Single paratellurite ( a -Te02) crystals can be grown by the Czochralski method 

[91-93], or Bridgman technique [94, 95J. The crystal belongs to the tetragonal system 

with lattice parameters of a=b=4.81A and c=7.61 A. The tellurite ((5-Te02) crystals have 

orthorhombic symmetry with eight formula units per unit cell. The dimension of the 

unit cell are a=12.0A, b=5.46A and c=5.61 A [90, 96], 

Recently, some authors [89, 91] reported the existence of two more forms of 

Tellurium oxide: y- and 5-Te02. The Y-Te02, as shown in Figure 2 . Id) represents a new 

structural type different f rom the a - and [3-phases and 6-phase seems to exist as a 

superposition of domains of a - , p- and y-phases. The Raman spectrum of 5-phase 

suggests that it is an intermediate structure between the crystalline and glass states [98-

101]. The y-Te02 can be obtained by slowly heating, up to 390°C, pure Te02 glass and 
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then anneal ing it for 24h at this temperature. The crystal forms an or thorhombic cell 

with a=4.90A, b=8.57A and c=4.35A. 

In Y-Te02, one Te -O bond is substantially longer than the other three and by 

breaking this bond in a three-dimensional visualization of the network, a chainlike 

structure is formed as shown in Figure 2.1 d). The y-Te02 phase can be seen as a 

polymeric form of T e 0 3 units. From the results of Raman spectra of T e 0 2 glass, it has 

been suggested that the chainlike structure of Y-Te02 would represent the main structure 

of the glass [90, lO l j . 

2.1.3 Accousto-optic properties of Tellurium oxide crystals 

Arlt etai, 1968 [91, 102], and Uchida a/., 1969 [103J and 1971 [104J first suggested 

the potential use of Tellurium oxide as an ultrasonic-light deflector while analysing the 

piezoelectric and photoelastic properties of paratellurite crystals. Single crystal 

paratellurite, a - T e 0 2 , is an excellent acousto-optic (AO) material. It has a high A O 

figure of merit (defined below), good optical rotation of 8 7 7 m m , and a slow 

propagation velocity along the [1 lOJ direction of 616m/s [94, 105, 106J. 

The f igure of merit, M2, of an accousto-optical material is defined as: 

(2.1) 

^ PV 

where n is the refractive index, P is the photoelastic constant, p is the density and v is 

the sound velocity [88J. 

The figure of merit of a - T e 0 2 is around 750xl0"'^s^/kg for circular polarisation 

or 34xlO' '^s^/kg for random polarisation [107, 108]. These numbers are significantly 

larger than those of quartz at 2.2xl0"'^s^/kg or lithium niobate at 15xlO '^s^/kg. Due to 

the high f igure merit of Te02 , the drive power required to achieve high eff iciency is 

very low. This property makes T e 0 2 crystals widely used in accousto-optical 

modula tors [107-110]. 
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2.2 Tellurite glasses 

2.2.1 Basic properties 

Amoi-phous Te02 and tellurite glasses exhibit a range of unique properties which give 

them great potential in a wide range applications such as near and mid-infrared devices, 

new laser hosts, Raman amplifiers [88], etc. Although the physical properties and 

structure of crystalline solids are now relatively well understood, this is not yet the case 

for amorphous materials including bulk glasses, fibres and especially thin films [88], 

The stability and other excellent optical properties of Tellurium dioxide crystal 

materials gave incentive to produce glassy Tellurium dioxide based fibres and 

waveguides. Brady [111, 112J reported the first tellurite glass. Brady reported that Te02 

forms a glass when fused with a small amount of Li20. The molten glass of 98.15% 

Te02 and 1.84% Li20 by weight was poured onto a flat steel surface, and cooled rapidly. 

To achieve glassy product, the ratio of Te02 units over Li20 was 10:1. 

Since Te02 is a conditional glass former, it requires special procedures to obtain 

pure Te02 glass. It has been obtained by melting a small amount of crystalline P-Te02 

powder in Pt-5% Au crucible at 800°C for 20min. Then, the melt was rapidly quenched 

down to -1 r C by dropping the bottom of the crucible into a freezing mixture consisting 

of ice, ethanol and NaCl [113, 114J. Transparent Te02 glass, confirmed to be 

amorphous by X-ray powder diffraction, was obtained. Akagi et al, 1999 [115] 

prepared xK20-(100-x)Te02 (x=5, 10, 15, 20 and 30 mol%) glasses using a roller-

quenching technique. The mixtures were melted at 700-900°C for Ih in a platinum 

crucible. The resultant liquid was poured into twin rollers rotating at 3000rpm to yield 

amorphous thin flakes. The estimated cooling rate was between 10^-10^ K/s. 

A large number of modifiers can be added to Te02 to form glasses [116], The 

most studied tellurite glasses are for use in tellurite optical fibres [77]. Tellurite glasses 

with BaO or WO3 modifiers were found to have good durability and rare earth solubility. 

Glasses with alkali oxides have poor chemical durability to water. Zn0-Te02 glass has 

a short wavelength UV edge and good durability but low rare earth solubility, but the 

addition of sodium oxide to Zn0-Te02 glasses significantly improves the rare earth 

solubility without affecting the other two properties. It was later observed that Na20 

could be replaced by other monovalent ions, such as Li20, K2O, Rb20, CS2O, or Ag20, 
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without deteriorating the UV edge, chemical durabihty, and rare earth solubihty [77J. 

Thus, for the RjO-ZnO-TeOj system, R can be Li, Na, K, Rb, Cs, or Ag or 

combinations thereof. Also, the relative amounts of these constituents can be varied 

over a wide range without seriously affecting glass stability. Therefore, a wide range of 

compositions can be achieved to match specific needs in the R20-Zn0-Te02 family. 

Furthermore, these compositions also give better loss characteristics in fibres [117]. 

Optical properties of tellurites can also be modified at will with addition of 

different elements [88J. For instance, Na, Li, K or Rb can be added to lower the 

refractive index from 2.1 down to 1.7. Addition of F or 1 based dopants can extend the 

mid infrared transmission. Ba and Li can improve the UV transmission. Specially, the 

nonlinearity can also be tailored to increase ~2-3x by adding W, Nb, T1 or to reduce by 

up to -0 .3 by adding La, Mb, K, Li comparing to that of Te02. 

2.2.2 Structure 

Because of the high technological potential of tellurite glasses, their basic structures 

have been studied intensively by X-ray [111, 112, 118J, electron energy loss 

spectroscopy [119J, neutron diffraction [114, 118, 120, 121], nuclear magnetic 

resonance [89, 118, 122-127], Raman studies [76, 89, 99, 101, 123, 124, 126, 127] and 

by ab initio cluster calculation [90, 98, 99, 101, 114, 123, 128-131], 

Brady [111, 112] first undertook a detailed study of the structure of Tellurium 

dioxide based glass by radial distribution of electrons using X-ray analysis. Brady found 

that there are two well-resolved primary peaks, one at about 1.95A and the other at 

about 2.75A; and two other well-resolved peaks are 3.63A and 4.38A. The first two 

peaks correspond to the two sets of equatorial and axial Te-O bonds. The later two 

peaks overlap, their extracted distances correspond to the two preferred sets of Te-Te 

distance. 

The presence of the two peaks at equivalent distances and with the same nearest 

neighbour numbers as in the crystal strongly suggests that the basic unit that forms the 

crystalline structures is preserved and relatively unchanged when the crystalline 

materials are transformed into glass. This finding agrees with the experimental results 

on Si02 glasses, where the same form of tetrahedral Si04 unit is present in all the known 

crystalline forms and glassy states [132], These tetrahedral blocks are assembled in 
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different ways to accomplish various states. The angle of the Si-O-Si bond is varied 

slightly. There are however fundamental d i f ferences between glass formation in Si02 

and Te02. It is s imple to prepare Si02 glass from the pure material because the 

mechanism of glass formation is a simple distortion of one of the corner of the 

tetrahedral Si-O-Si angle. The essential d i f ference between a glass and a crystal is found 

in the fact that al though the essentially the same local order exists in each, the glass 

lacks the regularly repeating long range order of the crystal [132). 

In crystalline Te02 , four basic units share three edges. A major breakdown of 

the structure is necessary to break one edge in T e 0 2 to obtain a corner-sharing structure 

for the glass. Brady [111, 1 12J first observed that it is necessary to add a modifier M 

such as N a 2 0 or L i20 to Te02 before the material solidifies into a glass and attempts to 

melt the pure material and quickly quench it to a glass were unsuccessful because the 

melted material quickly crystallised. The minimum mole ratio of Li20 to Te02 actually 

required is approximately 1:10. This number was in agreement with theoretical 

calculations for the ratio required to break all shared edges in the Te02 crystalline 

structure. 

Detailed studies of the structure of pure Te02 and alkali tellurite glasses using 

neutron diffract ion, N M R , X-ray diffraction and ab intitio molecular orbital calculations 

[114, 118, 120, 121, 125] concluded that the T e 0 4 units are in fact transformed in TeOs 

units in glassy networks [76, 89, 98, 114, 118, 120, 121, 123, 125]. The experimental 

radial distribution funct ions along with the calculated results demonstrated that the 

basic structural units of tellurite glasses change f rom highly strained T e 0 4 trigonal 

b ipyramids (tbp) to more regular T e 0 3 trigonal pyramids (tp) with increasing modif ier 

content (see Figure 2.2). It has also been shown that the T e 0 3 trigonal pyramids do not 

exist in the form of isolated units in the glass network but interact with each other to 

fo rm inter-trigonal Te. . .O linkages. The present results suggested that nonbridging 

oxygen (NBO) a toms in tellurite glasses do not exist in their "pure" form; that is, all the 

N B O atoms in TeOs trigonal bipyramids will interact with the first- and/or second-

neighbour Te atoms, resulting in a three-dimensional continuous random network even 

in tellurite glasses with over 30 mol% of alkali oxides. 
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Figure 2.2: Transition from the Te04 to TeOj unit structure [76] 
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Figure 2.3 a) Raman spectra of various piiase of TeOa: a) a-Te02, b) (3- TeOi, c) y-

TeOj and glassy TeO. [89, 133]; b) Raman spectra of xZn0+(l-x)Te02 for x=0.15 

to 0.35 [134]. 
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The Raman spectra obtained for tellurite glasses have three Raman bands at 

around 770, 670 and 460 cm ' as shown in Figure 2.3a). These bands are ascribed to the 

stretching mode of the TeOs trigonal pyramid (tp) units containing terminal T e - 0 bonds 

such as T e = 0 and T e - 0 with NBO atoms, the stretching mode of Te04 trigonal 

bipyramid (tbp) units with bridging oxygen (BO) atoms and the bending mode of Te-0-

Te or O-Te-O linkages, respectively. The amplitude of the 770cm"' band becomes larger, 

and the amplitudes of the 670 and 470cm"' bands become smaller as the modifier 

content increases (Figure 2.3b). It is suggested that these results show the addition of 

modifier brings about the conversion of the Te04 tbp units with BO into the TeOs tp 

units with NBO [98, 115J. 

2.3 Optical properties and applications of tellurite glass 

2.3.1 Refractive index and dispersion 

At optical frequencies, the dielectric constant is entirely determined by the electronic 

polarisation. The relation between the refractive index, dielectric constant, number of 

polarisable atoms N in the volume V of the solid, is expressed by the Clausius-Mossotti 

equation [135]: 

= ' ' L ^ (22) 
3V e + 2 n"+2 Ue^m vj-v^ 

where a is the polarisability of the material, £ is dielectric constant, n is the refractive 

index {£=n^), e is electron charge, m is electron mass,/! represents the oscillator strength, 

Vi is the electron plasma frequency and v is the frequency of the incident photons. The 

refractive index depends on the composition of an optical material, the more polarisable 

the outer electrons, the higher the refractive index. The molar refractive index, the 

measure of the total polarisability of a mole of the substance, = A T ^ , NA is the 

Avogadro's number, is also expressed as: 

where p is the density of the material and M is the molecular mass. The above equation 

is known as Lorentz-Lorenz equation. It can also be written in the form: 
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(2.4). 

The molar refraction RM and index of refraction n depend on the polarisabilty of the 

materials. 

The measured refractive indices for the tellurite glasses are higher than those of 

fluoride glass, silicate glass, phosphate glass, and close to those of chalcogenide glass. 

To understand how tellurite glasses have high refractive index, the number of 

polarisable units per volume N/V, the electronic polarisability of the ion, ttionic, must be 

considered. The values of n for Te02 vary from 37 due to the 

density variation from Pgtuss =5.1g/cm to Pcrysi.=5. 99g/cm^ [I35J. The atom density 

decreases f rom 6.78x10^^ cm'"^ for TeOz crystal to 5.77x lO^^cm'^ for glass[135]. The 

polarisability has been decreased from 7.37x10'^'^cm^ to 6.96x10'^'^cm^ or o^rys./ 

ccf,ia.s.s=1 • i • The ratio between the density, dielectric constant and static polarisability of 

Te02 crystal to Te02 glass is in range from 1.18 to 1.27. Therefore, tellurite glasses 

have a lower refractive index than the crystal due to low electronic polarisabilty and 

lower density. El-Mallawany, 1992 [135J has calculated the refractive indices and 

various electronic properties of binary and ternary glasses. The indices are in the range 

f rom 2.01 to 2.15 depending on the exact composition. 

The refractive indices of the materials are also dependent on the frequency or 

wavelength of the electromagnetic wave travelling within the medium. This gives raise 

to refractive dispersion often described by Sellmeier equations. The Sellmeier equation 

of the refractive index of binary tellurite (xMniOn-(100-x)Te02, where MmOn was 

network modifier) have been studied in details by Ghosh, 1995 [136]. The single 

oscillator model is described as: 

+ ^ (2.5) 

where n is the refractive index, B and C are constants, X is the wavelength in 

micrometers. C also is the average electronic absorption bandgap. For pure Te02: B and 

C are approximately 3.46539, 3.27652xlO"^(iim^), respectively [136J. This model is not 

usually accurately representing the refractive indices. 

A two pole Sellmeier equation represents the dispersion of tellurite materials 

much more accurately than single pole Sellmeier equations [136]: 
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W A + -
B D 

(2.6). 
1 - C / i ' \ - E / A ' 

For pure TeOz glass, the values of B, C, D and E arc 3 .5483034, 0 .9783726, 

8 .2669346x1 O ̂ iam^) , 6 .6510879 and 225 (^m^). 

A more common method used for dispersion assessment is the dispersion 

coeff icient around the wavelength of interest. From the curve of refractive index versus 

wavelength, the dispersion coefficient can be calculated by using the expression [137]: 

Ad-nU) 
D = — (2.7). 

c dA' 

Figure 2.4 shows the material dispersion coefficient for pure Te02 glass with refractive 

index represented by the above two pole Sellmeier Equation (2.6) [136]. The zero 

dispersion wavelengths for tellurite glasses are typically around 2.2|Lim whereas it is at 

1.3|jm for Si02. At 1.5|jm, the dispersion coefficient of bulk tellurite glass is 

approximately -lOOps/nm/km depending on exact composit ion. The dispersion of 

tellurite at 1550nm is much smaller than most other nonlinear optical materials such as 

chalcogenide glasses. However, the dispersion can be engineered in waveguiding 

structure to shift the zero dispersion wavelength to 1.5|jm such as with the use of 

microstructured fibres [138-140], This dispersion engineering will be applied to 

Tellurium oxide waveguides in the Chapter 5. 
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Figure 2.4: Dispersion coefficient of bulk a tellurite glass using dispersion with 

two pole Sellmeier equation [ 136]. 
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2.3.2 Optical loss and bandgap 

The absorption coeff ic ient a,, can be determined using the relation: 

( 2 . 8 ) 

d I 

where d is the length of propagation, / and Iq are the intensity of the transmitted and 

incident beam, respectively. For semiconductor materials in the high absorption region, 

the absorption coeff ic ient a,,(Q)) can be represented by the Davis-Mott model [141, 142]: 
A{hco-EY 

a^co)^ — ^ for hco>E„^„ 
nco 

a S o ) ) = () for ho)<E,,^„ (2.9) 

where /\ is a constant, Eop, is the optical bandgap, &>is angular frequency. The value of n 

depends on the nature of the transition; whether it is al lowed (n=l/2) or forbidden 

{n=2/3). From the above formula, when the value of cx„(a)) is measured against the 

f requency or wavelength, the plot of {cdicoY'" against fico when extrapolated to zero 

gives the value of the bandgap Eop,=Egap- The bandgap energy for tellurite glasses are in 

order of 2.5ev to 4eV. Pure T e 0 2 has a band gap energy of 3.79eV [88], which 

corresponds to a wavelength of 330nm. 

On the mid-IR edge of tellurites, the cut off wavelengths for thin sample (1mm) 

are around 5 to 7)J.m depending on the exact composit ion [143], For instance, W O 3 -

T e 0 2 has mid-IR transmission at 5.5 ^ m whereas BaCl2-Ba0-Te02 has mid-IR 

transmission at 6.7|J.m. These long cut off wavelengths make tellurite glasses excellent 

UV to Mid-IR transmissive materials. 

Tellurite glasses are oxide glasses therefore usually contain OH bonds. The OH 

bond has fundamenta l vibration at 3 .3 | jm [144-148] and first overtone at 1.48nm [148]. 

However , the concentrat ion of OH bond can be significantly reduced with the 

incorporation of halogen element contain components such as BaF2 [149]. 

2.3.3 Nonlinear optical properties 

When an intense light beam interacts with materials, the intensity of the response 

polarisation is nonlinear with the electric field. The resulting polarisation of the material 

can be given by: 
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P = •£ + : EE + z"' : EEE+ - ) (2.10) 

where = 1,2,3...) is the f order susceptibility. In general, j ' -^ ' is a tensor of rank 

j+1. The first term expresses the linear polarisability and j ' " generates the linear 

refract ive index, n, of the material. The second-order j ' " ' is responsible for such 

nonlinear effects as second-harmonic generation and sum-frequency generation, is 

a lways equal to zero in centrosymmetr ic materials such as un-poled amorphous glasses. 

The third term represents the nonlinear polarisability or hyperpolarisabili ty. is at 

the origin of the variation of the refract ive index, A« , with the intensity, 

1 = £^^cn\E ^ / 2 , of the electromagnetic field, the coefficient of proportionality, n2, being 

called the nonlinear index. In the simplest form, the refractive index can be written as 

the fol lowing [137J: 

n{(0\E^) = n{C0) + n,l (2.11) 

where n{Q)) is the linear part. The nonlinear index is related to the nonlinear 

polarisability. by: 

2n 

The third-order susceptibili ty is responsible for phenomena such as third harmonic 

generat ion, nonlinear refract ion, self phase modulation, cross-phase modulation, four-

wave mixing, etc. 

Several models have been proposed to predict the nonlinear refractive index 

f rom the dispersion of the linear refract ive index at photon energies lower than the 

resonant energy. The simplest formula is given by Miller [150J: 

(2.13) 

which means higher linear refract ive index is corresponding to higher nonlinear 

coeff ic ient . Mi l le r ' s rule reflects the general trend very well for a wide range of 

materials [151]. Figure 2.5 shows a summary of nonlinear refract ive index against linear 

refract ive index for d i f ferent types of glasses and Mil ler ' s rule. In general. Mil ler ' s rule 

ref lects the data relatively well. 
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Figure 2.5: Nonlinear index (nz) versus liner index (no) for a range of glasses and 

Miller's rule (black line) .Source Ref. [1511. 

The major contributions to the total nonlinear refractive index are [152]: 

n^ = Wj (electronic) + n^ (nuclear) + n^ (electrostrictive) + n^ (thermal) (2.14). 

The electronic component is due to the deformation of the electron orbits and exhibits a 

nearly instantaneous (typically femtosecond) response. The nuclear term is on the time 

scale of nuclear motions, about Ips. The electrostrictive effect is due to the refractive 

index variation resulting from the strain induced by electric field of the laser. The final 

term is the thermal effect produced by refractive index change by local heating from 

absorption at the laser frequency. The latter two are much slower than the former two 

therefore their contributions are generally ignored [152]. For tellurite oxide glasses, the 

nuclear contribution to the nonlinear index of refraction is about 20% compared to 10% 

in lead silicate glass [153]. 

Ab initio calculation of the molecular orbital's energy for TeO^ trigonal 

bipyramid and TeO^~ trigonal pyramid show that, for both clusters, the highest 

occupied orbital is of the anti-bonding type and essentially combines the 5s atomic 

orbital of tellurium and 2p of atomic orbital of oxygen [154, 155]. A large part of this 

orbital is localized on the Tellurium atom and is oriented toward the external side of the 

cluster. This orbital can be correlated with the Lewis 5s^ free pair of Tellurium. The 

corresponding electrons are highly polarisable and therefore responsible for 

macroscopic high linear and nonlinear indices. 
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The nonlinear indices of tellurite glasses are the highest found for oxide glasses. 

The values depend on both the concentration and the nature of the modifier introduced 

into the glassy matrix. Usually in tellurite glasses, the introduction of a modifier ion 

changes the basic structural Te04 disphenoid entity progressively into a TeOs trigonal 

pyramid via an intermediate TeOs+i polyhedron [76, 89, 98, 114, 118, 120, 121, 123, 

125J. This evolution leads to a decrease of the nonlinear refractive index nj. However, 

addition of elements with similar electronic structure with a second lone pair such as T1 

or Bi can increase the nonlinearity of tellurite glasses [76, 156J. This is related to the 

hyperpolarisatibility of Thallium oxygen units, which has been evidenced by the 

structural study of both Thallium(I) tellurite crystals and glasses of the same 

composition. Nonlinearity of thallium tellurite oxide of n2=9xlO"''^ m^AV, which is 

around 40 times higher than that of silica glass, is highest in oxide glasses. Others [157, 

158J have also reported compositions with similar nonlinearity, for example, (100-

x)Te02-10ZnO-10Nb205-xMo03 (x=0, 2, 4, 6, 8 and 10). 

2.3.4 Second order nonlinear effects 

It has been observed that with poling by laser irradiation or the application of an 

external voltage at elevated temperatures, that glassy materials are capable of generating 

second harmonic light, ie effects are present in apparent defiance of the need to break 

centrosymetry for such effects. Second harmonic generation was initially observed in 

Ge-doped silica glass fibres [159, 160J and thermo-electrically poled silica glass fibre 

[161 J. This led to a number of investigations in optical second-order nonlinearity of 

silica-based glasses [162-165] and tellurite glass [75, 166-175]. Because tellurite glasses 

have very large optical third-order nonlinear susceptibility, they also have significant 

potential as second order materials when poled. Tellurites have high linear refractive 

index which leads to large third-order nonlinear optical susceptibility according to 

Miller's rule. Because second order nonlinearity, , is proportional to j*^ ' in an 

electric-field-induced SHG, a material with a large is an excellent candidate for 

poling for high second-order nonlinearity according to the relation [176]: 

(2.15) 

where, ZT̂ c ^he internal DC electric field. 
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Of previous results, that of Fujiwara et ai, 1997 (165J who obtained 

J * ' ' = 6 . 8 / 7 m / V for Ge doped silica glass with UV poling stands out. Whilst it is 

believed to be a real result the exact means by which it was obtained and how to repeat 

it are unknown. The electron beam irradiation of lead silicate glass produced second-

order nonlinear susceptibility of 4pm/V [177J with the field being directly built in by 

the charged particles and the ionisation they produce on their damage tracks, and figures 

of up to Ipm/V have been reported in silica by various means. Tanaka et ai, 2000 [75] 

obtained comparable second-order nonlinear susceptibility of 2.1pm/V in Tungsten 

tellurite glass (20W03-80Te02) using thermo-electrical poling. Taniquchi et at., 2001 

[170J first demonstrated the electrical poling of RF sputtered pure Te02 thin film with 

second-order nonlinear susceptibility of 1.35pm/V. Kassab et ai, 2007 [178J reported 

second order optical susceptibilities in optically poled 2%wt. Erbium doped tellurite 

(Te02-Ge02-Pb0) glass near the melting temperature with second-order nonlinearity of 

3.6pm/V. The introduction of rare earth ions enhances the second-order optical effects 

as well as second order-optical effects because of increase in third order susceptibilities. 

Whilst the results obtained so far have been only modestly above those in silica glass, 

the 30x larger third order nonlinearity promises much and makes tellurites of serious 

interest as second order materials. 

2.3.5 Tellurite fibre and supercontinuum generation 

Tellurite glass fibres have been demonstrated in two formats to date: conventional step-

index and microstructured fibres such as holey fibre (HF) or photonic bandgap fibre 

(PBF). Tellurite glass is classified as one of the soft glasses. Conventional step-index 

fibres are all solid while the microstructured fibres consisted of air holes surrounded by 

the material. HF [138, 140, 179, 180] has a solid core surrounded by a cladding region 

defined by array of holes extending along the fibre length. This fibre is similar to 

conventional fibre where the guiding mechanism is due to total internal reflection due to 

higher refractive index in the core than the cladding. This design can maintain single 

mode operation even with a very large core making it possible to carry high intensity 

with low nonlinear effects. In PBF, the hollow core is surrounded by holes confined by 

thin walls of material. With carefully designed parameters, these fibres can have 
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tailored properties that are suitable for number of linear and nonlinear applications 

1151], 

Tellurite fibre fabrication technology has become mature in the last few years. 

Like the majority of soft-glasses, tellurite microstructured fibre preforms are produced 

by extrusion. This technique allows for the fabrication of preforms with millimetre-

scale featured directly from bulk glass [151 J. Another technique for tellurite glass fibre 

fabrication is by moulding 1117, 179]. Small mode area (3.5|jm^) HF with loss at order 

2dB/m has been made from dehydrated tellurite glasses [117J. This fibre had a 

nonlinear coefficient y of around 700W 'km ' and zero dispersion around the l .Spm 

region. Recently, Qin et ai, 2010 [139J reported fibre with a core diameter of 4.2|jm 

with loss as low as 0.18dB/m at 1550nm. Larger core HF fibres have been also 

fabricated with very low loss such as the one by Kumar et ai, 2003 [140] with loss of 

2.3dB/m at 1055nm. Feng et ai, 2008 [179] reported a very large core single mode HF 

with mode area of 3000|jm^. 

Because tellurite fibres can have high nonlinearity coefficients, low dispersion, 

and a wide transmission window, they can be used to efficiently generate very 

wideband supercontinuum (SC) from visible to the mid infrared beyond 3|am. There 

have been a number of reported IR supercontinuum generation experiments in compact 

tellurite fibres [139, 180-186]. As the bulk tellurite glasses have zero dispersion 

wavelengths at around 2|jm, the zero dispersion wavelengths can be easily shifted down 

to the l-1.5| jm region where most of the pump lasers are readily available. SC 

generation in fibres can be achieved in small core HF [181, 184], large mode HF [179, 

180, 185, 187]. Liao, 2009 [186] reported SC generation using a 1064nm source to 

generate wideband light from 800nm to 1.6|jm. The author also reported SC generation 

from L5|jm to 2.4|am when the fibre was pumped with a 1557nm source [183]. 

Similarly, Domachuk et at., 2008 [180] generated SC from 600nm to beyond 5000nm 

in an 8mm length HF tellurite fibre. Surprisingly, SC generation is not only possible in 

very small core HF, but also in very large core holey tellurite fibre with a mode area of 

3000|am^ pumped at 2.15|jm [179]. The generation of SC in tellurite fibre can be 

relatively easy with the use of tapered fibre with core from 4.2pm to 1.2|jm as reported 

recently [139]. Visible-to-mid-IR SC generation from tellurite fibres is a very promising 
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source for a wide variety of applications f rom instruments, biological sensing, to 

defence . 

2.3.6 Rare earth doped tellurite glasses 

Since tellurites have a low maximum phonon energy of 600-800cm"' and high rare earth 

solubility, rare earth doped tellurite glasses have been extensively studied. Tellurite 

glasses have a very wide transparency range (33()nm to 5 | jm), relatively low phonon 

cut-off energies, and good corrosion resistance and mechanical stability. They have 

high refract ive indices, which in turn can result in increased radiative transition rates for 

rare earth ions [188J. A large number of rare earth ions can be incorporated into tellurite 

glasses to produce a wide range of possible laser transitions f rom the visible to beyond 

3)lm. Some transitions are not possible in other glass. For instance, Pr doped tellurites 

[189J have photoluminescence at 1.3)a.m due to the low phonon cut-off energy. This 

photoluminescence is complete quenched in higher phonon energy glasses such as silica. 

Table 2.1: Optical parameters of Er^^ in a range of popular rare earth host materials 

reproduced from |188, 190] with updated/additional details from the cited 

references. 

Glass hosts Index Peak emission Emission Lifetime Maximum Er Max 

at 1.5 cross-section FWHM ms concentration phonon 

jjtn ctn bandwidth 

nm 

energy 

cm' 

Silica -1 .5 7x10- ' 20 12 0.1% at. 1200 

Alumina -1 .7 6x10-'' 55[191] 8 >1.4% at. [192] 1000 

[193] 

Aluminosilicate -1 .6 6 x 1 0 " 43 10 500ppm 1100 

Phosphosilicate -1 .6 6 x 1 0 " 27 10 2.5% at 1200 

Tellurite -2 .1 13x10 " [194J 80 4 >5% mol [147], 

10"cm' '[195] 

700 

Chalcogenide -2.4-3 15x10'" 45 2.5 2%at. 400 

[196] 

ZBLAN[197] 1.5 4 .2x10" 82 9 4%mol. 500 



2.3 Optical properties and applications of tellurite glass 31 

Amongst rare earth materials. Erbium has been most widely studied because the 

1.5|jm emission falls within the low loss window of fibre for long distance 

telecommunication. Table 2.1 summaries properties of Er doped tellurites in 

comparison with other major materials for Er doped amplifiers. Apart from the 

comparative advantages in terms of peak emission, bandwidth, solubility and phonon 

energy outlined in the Table 2.1, a study by Hu et ai, 2001 |194J on highly Erbium 

doped tellurite glasses shows excellent figures for upconversion coefficients and excited 

state absorption rates. In particular, the ' ^ \ \m-> \ i2 cooperative upconversion 

coefficients of 2.74xl0"'^cm^s"' were found to be more than an order of magnitude 

lower than that in phosphosilicate hosts (9.0x10 '^cms ') and comparable to that in silica 

(3.0xl0"'^cm^s"'). Another comparison of tellurite glasses (75mol% Te02) with binary 

fluorides (AlE, ZrF, etc.) as host materials for Erbium suggested that both co-operative 

upconversion and excited state absorption are reduced in the tellurite host [198]. 

Measurements on Erbium doped material have shown that high concentrations 

of optically active Erbium can be incorporated without clustering (at least 5 at%), and 

emission cross-sections at 1535 nm of up to 1.3x10'^° cm^ are achievable [194, 199j. Er 

doped Ti02-Te02-Al203 has been reported with a concentration as high as 10^'cm"' and 

a lifetime of 2ms with more than 50% quantum efficiency and 8 x lO '^cm^ stimulated 

emission cross section [195]. 

Ce-Er or Eu-Er codoped tellurite glass can reduce excited absorption and 

increase efficiency of the transition rate between the metastable state and the ground 

state for pumping at 980nm by reducing the population at the pump level quickly [200-

202]. Because the energy gap between I11/2 and ''I, 3/2 of Er is resonantly matched with 

the gap between ^F7/2 and ^F4/2 in Ce "̂̂  or in Eu^^, the population at the pump 

level ^̂ 111/2 is rapidly decayed to the metastable state reducing the ESA absorption of the 

pump significantly [203]. 

In some instances, tellurite glasses can be used as efficient hosts for 

upconversion processes for laser emission in the visible using near IR pumping. The co-

doping of Er-Yb [204] or Er-Yb-Nd codoped tellurite system [205] can improve the 

upconversion processes when pumped at 800nm. Yb doping also helps the pump 

absorption at 980nm through the energy transfer between Yb and Er. 
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Beside Er as a dopant, rare earth doped tellurite glasses with other emission lines 

such as 1.47jjm, l .3 | jm, Ipm, 1.9|jm and 2.8| jm have also been studied. Tellurites have 

been investigated as hosts for Thulium for application in optical amplifiers in the 1.4|jm 

region because of their low phonon cut-off energies [74, 201, 206-211 J. Also, the 

system allows very efficient pumping using the 800nm line of Tm^"" because of its 

hypersensitivity [210], The performance of Tm^"" in tellurite is much superior to that in 

Z B L A N glasses [210J. 

Although Tm^^ concentrations must remain low in order to reduce cross-

relaxation and OH quenching, Tm^'^-tellurites codoped with Holmium show sufficiently 

high quantum efficiencies to be considered for amplifiers [208, 211, 212], Wang 1994 

[212J reported Tm^"" and Tm^'^-Ho^'" for emission at 1.47|jm, 1.88|jm and 2.8|jm in 

tellurite glasses. The upper limit for Tm203 concentration without quenching is 0.4wt% 

for 1.47|am emission. By adding a cladding layer doped with Neodymium, the 

competit ive Tm^"^ emission at 800 nm can be effectively quenched by coupling to the 

Nd^^ absorption band [208J. 

Co-doping of Er and Tm in tellurite glasses results in ultra-high bandwidth 

fluorescence emission systems and therefore the potential for much wider bandwidth 

amplifiers than exist today. Huang et ai, 2004 [213] reported broadband emission from 

1.35|am to 1.6|am (160nm F W H M bandwidth) in Er^^-Tm^"^ codoped tellurite glass. 

Emission at 1.3|jm in tellurite glasses can be achieved by two routes. The first is 

by doping with Nd [74]; the second is by doping with Pr [214, 215]. Tellurites with low 

phonon energy generally provide high fluorescence quantum efficiency therefore it is 

possible to measure 1.3|jm fluorescence from 'G4 to ^Hs transition of Pr̂ "̂  whereas it is 

impossible to obtain this emission in silica-based glass because the level 'G4 is next to 

which can be quenched by emission of three photons in silica-based glass but 5 

phonons in tellurite glasses [214]. Man, 1999 [189] reported Pr̂ "" doped zinc-tellurite 

glasses emitting 1.33|am with bandwidth of lOOnm and lifetime of 24|as and quantum 

eff iciency of 2.6% pumped at 488nm or 980nm. 

Nd doped tellurite glasses for laser and amplifier at l | jm have been studied and 

demonstrated [74, 214, 216]. Wang et at., 1994 [216] was the first to demonstrate 

operation of a single mode Nd^"" doped tellurite glass fibre laser at 1061nm pumped at 
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818nm with a slope efficiency of 23% to prove the possibihty of using tellurite as a low 

phonon host. 

Another milestone in rare earth doped tellurite glasses is the achievement of 

2 | jm emission of Tm and Ho [212], Tm^'^and W'^ -Ho^" ' doped tellurite can fluoresce at 

1.47 (jm, 1.88|jm and 2.8 pm. The upper limit for Tm203 concentration without 

quenching is 0.4%wt. for 1.47pm emission. Tsang et ai, 2008 [217j demonstrated a 

triply-doped tellurite fibre laser pumped at l . l p m giving 25% slope 

efficiency for 2 .1pm emission. Recently, Richards et ai, 2010 [218] obtained Q 

switched operation at 2 p m in a fibre laser doped with Tm''"' (1.8pm emission) and Ho^"" 

(2.0pm emission) pumped at 800nm. 

The presence of OH in tellurite glass can have detrimental effect on the 

performance of the device due to quenching of number of levels such as 1.4-1.6pm of 

Er^^ [144-147, 219J and Tm^^ or 2pm of Tm^^ and Ho^^ [211, 220J. The solution to 

overcome this effect is to reduce the OH contamination using highest quality materials 

[117J, preparing and storing samples in dry conditions and dehydration after glass 

fabrication using dry oxygen bubbling [146, 219, 221J and halogenation of tellurite 

glasses [144, 220J. 

2.3.7 Erbium doped fibre amplif ier 

The Er doped tellurite fibre amplifier (EDTFA) has been intensively studied for use in 

the telecommunication window at 1.5pm [117J. High gain Erbium doped tellurite fibre 

amplifiers (EDTFA) were first demonstrated by NTT labs in 1997 [199J. An 85cm long 

Er doped tellurite fibre was pumped with 130mW of 975nm and provided a small signal 

gain of 16dB. The slope efficiency was 0 .29dB/mW. After further investigation, the 

authors found that the gain per unit length in fibre for Er doped tellurite fibre is five 

times larger than that for Er doped Silica fibre with almost the same fibre parameters. 

With the help of a fibre-grating-type gain equalizer, it was possible to achieve gain of 

more than 25dB and noise figure of less than 6dB over a wavelength range f rom 1561 to 

1611nm [117, 222-224] well beyond what silica based devices can achieve. Higher gain 

(over 25dB) and lower noise (less 5dB) EDTFA have been obtained for pumping at 

both 980nm [225] and 1480nm [226]. 
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Devices with gain-flattened bandwidtiis of up to 80 nm have been reported [222, 

223, 2271. A hybrid fibre amphfier using a combination of a teilurite EDFA and a Tm^""-

doped fibre was reported, exhibiting a gain bandwidth of 113 nm [222, 223J. 

EDTFAs have been demonstrated in wavelength-division-multiplexing 

transmission systems in the C- and L- band [228, 229J. The system employing EDTFAs 

has a number advantages over the system employing silica based amplifiers, such as 

transmission capacity and higher gain from the shorter length of fibre amplifier [229]. It 

has been shown that EDTFAs provide the highest capacity in broadband system 

compared to common Er doped fibre materials such as aluminum-phosphate-silicate, 

zinc-sodium-germanate-silicate [227, 230], 

2.3.8 Raman amplifiers 

Tellurite fibre Raman amplifiers (FRAs) have been used in multi-wavelength pumping 

experiments to achieve ultra-wideband amplification [231], The gain-bandwidth 

expansion that can be achieved by this scheme is determined by the magnitude of the 

Stokes shift. The maximum shift for ERA using silica fibre is lOOnm while the shift for 

tellurite is at least 170nm at l .Spm. The Raman gain coefficient is about as high as 30 

times larger in tellurite than silica. These features indicate that tellurite devices are more 

promising than silica for making ultra-wideband FRA with much shorter device length 

and fewer pumps. Mori et oL, 2001 [232] demonstrated the first wideband tellurite 

based RFA with 160nm bandwidth (1490nm to 1650nm) with gain over lOdB and noise 

figure below lOdB. It required only 4 different wavelength laser diodes to pump a 250m 

length of tellurite fibre. The tellurite FRA has been used in a large capacity wavelength 

demultiplexing (WDM) system with 313 channels of 10 Gb/s. Error-free operation 

across a 124nm band was achieved as the widest seamless application ever reported 

[231,233], 

Gain flattening in tellurite RFA, apart from large number of pump wavelengths, 

can be achieved by using hybrid system of tellurite and silica fibre [117, 232, 234] or 

using complex tellurite glass with flat Raman gain spectrum [235, 236]. Some 

compositions of tellurite glasses can also increase the Raman shift limit to even 

1000cm"' (or 284nm shift when pumped at 1550nm) such as in WOsrich tellurites [236-

241] or/and PO4 rich tellurites [239, 241, 242] or T b O rich tellurites [243]. These 
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composit ions also exhibit much higher gain coefficients with peak as high as 30-60 

times that of siHca [236, 243J. With this development in tellurite glass technology, 

better ultra-broadband tellurite Raman amplifiers are on the horizon and the capacity 

limits on a single strand of optical fibre can be further extended. 

2.3.9 Summary 

From the above discussions, it is clear that tellurite glasses offer a rich range of 

functionalities for integrated optical devices potentially all of which can be integrated 

together to form much of a system-on-a-chip. Passive devices with high refractive index, 

small mode areas, broad transmission windows from UV to Mid-IR and high 

nonlinearity are certainly possible. Also, the possibility for wavelength conversion via 

supercontinuum in short devices, four-wave mixing etc. is another advantage. Active 

devices such as Raman amplifiers, lasers or rare earth doped amplifiers and lasers 

provide loss compensation or on board laser sources. Despite all this promise there have 

been no demonstrations of even low loss planar waveguides in tellurite glasses, and as 

discussed in the next section this is what is preventing the field developing. This project 

will be the stepping stone for the development of tellurite glass planar integrated optical 

platform. 

2.4 Development of tellurite and Tellurium oxide waveguide fabrication 

There are various methods to make 2D waveguides but they can essentially be divided 

into two main categories [244J: 

a) Direct patterning processes where the pattern is directly written on 

the substrate using a focused laser, electron, or ion beam to produce a 

refractive index change. This is often performed on bulk glass 

substrates due to the inherently 2-D confinement produced, but 

photosensitive thin films for example have also been used. 

b) Masking processes where the circuit is first written on the substrate 

(which may include a core layer) as a mask layer by photolithography. 

Then either an additive step (eg lift off using the mask to add the core) 

or a modification process (etching away unwanted parts of the core 
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layer, or raising the index of the core layer/substrate by ion exchange, 

diffusion, UV or ion beam to provide a 2D core) is used. 

Each of the techniques has advantages and disadvantages. For instance, direct 

patterning usually results in low index contrast leading to low confinement of the mode. 

Therefore, mode areas are usually large and the waveguides cannot be bent sharply. 

However, the direct patterning method allows the use of an optimised bulk glass with 

known good properties. Masking processes followed by etching on the other hand 

provide strong confinement for the mode leading to mode area of only a few square 

micrometers. Long waveguide structures can also generally be coiled compactly in a 

very small area yielding small devices, or alternately the opportunity to integrate 

multiple amplifiers on one chip. However, masked processes usually involve more 

fabrication steps, making fabrication more challenging, longer and generally requiring 

more sophisticated facilities. Furthermore, fabricated thin films generally have different 

properties from the bulk requiring extensive film characterisation and further treatments, 

such as thermal annealing, are sometimes are needed in order to make the films bulk-

like. 

2.4.1 UV, femtosecond and ion direct writing 

The first reports of direct writing used a 244nm laser to form single mode channel 

waveguide in tellurite glasses (Te02-Zn0-Na20-xGe02, x=0, 10, 20%) [78, 79]. 

Refractive index change of 1.5x10'^ was reported with a waveguide dimension of 

around lOpm diameter. However, the total insertion loss for a 1cm waveguide was 8dB 

including coupling losses, though the waveguide mode field appeared to be a reasonable 

match for single mode fibre and so most of this loss would be considered propagation 

loss. The mechanism of formation of the waveguides is not completely understood, 

however, it has been concluded that it does not relate to the photosensitivity of 

Germanium but a local densification of the glass most likely caused by localised heating 

of the glass as the 244nm radiation is well above the bandgap of the glass and therefore 

very strongly absorbed. 

An alternative method of direct laser writing is using femtosecond pulsed lasers 

at a wavelength below the band gap. Tokuda et al, 2003 [81] reported guiding of a He-

Ne laser beam in fs-pulse direct write tracks in niobium tellurite glasses (xNb205.(l-
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x)Te02, x=5, 15, 23). The permanent index change was 9x10"^. The author suggested 

that the change in index was due to the breaking of Te-O bonds which caused re-

arrangement of glass structure. Sundaram et ai, 2003 [245J experimented with tightly 

focused femtosecond laser pulses in tellurite glasses (10Na20-90Te02 doped with 2 

mol% La203 and 1 mol% AI2O3). There was no structural change observed when 

comparing the bulk regions and laser-written regions. There was no structural change 

evident even in the microexplosion regime. Righini et ai, 2005 [246] used 50-fs pulses 

with a repetition rate of IkHz at 800nm to modify refractive indices in tungsten-tellurite 

and zinc-tellurite glass samples. The pulse energy used was in the range of 0.1-1 |jJ and 

at writing speeds of 20 or iOO|um/s. The refractive index change was detectable but 

unfortunately, the induced refractive index change was negative and so conventional 

waveguiding was not possible. 

Improvements of this technique have been recently reported [247J. Direct 

writing in Erbium doped tellurite (Te02-P205, AI2O3, La203 and Er203) glasses 

produced waveguides with estimated losses below 2dB/cm. The glass was modified 

using 45 fs-pulses at 806nm with IkHz repetition rate. The addition of phosphate seems 

to favour waveguide formation. The best reported results so far in direct writing of 

tellurite waveguides were reported in 2008 [248J. Tellurite based Erbium doped active 

waveguides fabricated by femtosecond laser pulses were produced in a glass 

composit ion of 10ZnO-10Na20-80Te02 doped with 0.5wt% Er203 or ion concentration 

7x10 ions/cm^. An index change of 1x10'^ at 633nm was achieved in waveguide 

length of 2.5cm. Waveguide loss was estimated to be ~1.35dB/cm. 

An analogy to direct laser writing, ion irradiation, has also been used to fabricate 

tellurite waveguide [249, 250]. A 24| jm gap created by two 75| jm thick silicon covers 

was used to gate the N"̂  ions. The N^ ions had an energy of 1.5MeV and penetrated 

1.5|jm into the tungsten sodium tellurite (WNT) glass. Despite the fact the introduction 

of N"̂  into the sample induces a negative density change due the volume expansion of 

the implanted region, there is light confinement via a barrier structure formed by 

ionisation processes induced by the implanted N"̂  ions. No losses or index chances were 

reported. 

Despite their flexibility in terms of the geometry of the formed waveguide and 

3-D structure capability, direct writing techniques are restricted to low index contrast. 
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The modes are generally large and compact devices are not easily obtained due to 

bending loss. Low loss waveguides have yet to be accomplished. 

2.4.2 Ion-exchange 

Ion-exchange techniques have long been known to produce high quality waveguides in 

phosphosilicate glasses [251, 252J. Therefore, it was a natural extension to apply the 

same methodology to tellurite glasses [83, 253-255j. All reported ion exchange in 

tellurites were performed by Ag-Na exchange at elevated temperature (~300°C) and in 

planar slab waveguide form. Index changes of up to 0.2, diffusion depths of up to 4 | jm 

and propagation loss of 3.7dB/cm have been reported [254, 255]. Severe surface 

degradation was reported with exchange temperatures of 330°C and above. Because all 

the obtained waveguides f rom ion-exchange have been in slab planar forms there is no 

direct comparison with other techniques outlined here for channel waveguides. 

2.4.3 Physical sputter etching 

Lanata, at al. 2008 [256] and Pietralunga, at al. 2008 [257J chose dry etching methods 

for TeOi using Ar sputter etching. They made this choice to avoid the micromasking 

effects observed in reactive ion etching of Te02 when halogen-containing gas mixtures 

are used f rom non volatile Fluoride or Chloride compounds of Tellurium. The 

waveguide obtained had a width of 4.5 | jm with a refractive index of 2.05. The authors 

claimed that the roughness was negligible with this etching method. However, the 

propagation loss was estimated to be 6.3dB/cm and 11.4dB/cm for TE and T M modes at 

1.55(jm, respectively. Certainly, this was a novel approach to Te02 etching but the 

propagation losses were an order of magnitude too high for any useful functional optical 

devices. 

2.4.4 Wet etching 

O'Donnel l 2007 [258] studied the possibility of wet etching tellurite glasses using a 

number of solutions including NaOH, H2SO4, HCl, HF and H2O. It was found that 

tellurites react very quickly with these solutions. NaOH, H2SO4 and HCl are poor 

etchants due to severe hydrolysis on the glasses leaving very poor surfaces. HF leaves 

relatively clean etched surfaces, however, subsequent IR spectroscopy studies showed 

that there was large amount of OH bonds formed inducing high IR loss. 



2.5 Conclusion 

2.4.5 Fibre-on-glass 

Benson et ciL, 2005 [259] suggested the fibre-on-glass (FOG) method to fabricate 

waveguiding structures on substrates. The FOG method is to thermally bond high 

quality fibre onto glass substrates. This method can be used to obtain high contrast 

waveguides without the roughness due to etching in conventional fabrication. Rivera et 

al., 2007 [260J used this technique to demonstrate the applicability to tellurite fibre on 

tellurite substrates. However, in this demonstration, a lOOjam thick rod was used as a 

fibre core leading to a highly multimode structure, and it is not clear how this can be 

used to make more complex waveguide devices. 

2.4.6 Summary 

The results reported so far have not yet come close to achieving planar tellurite 

waveguide with losses low enough to be useable in real worid integrated devices. It was 

clear at the outset of the project that attaining low loss waveguides would be of 

fundamental importance to the field and so this was considered initially to be the major 

aim of the project. The availability of facilities for film deposition by sputtering or 

ultrafast pulsed laser deposition, and high quality UV lithography and plasma etching at 

the ANU allowed us to seriously consider the subtractive approach using thin film, 

lithography and plasma etching, and to investigate this route thoroughly for the first 

time. 

2.5 Conclusion 

The excellent optical properties of tellurite are well known and extensively exploited in 

the fields of accousto-optic devices, fibre based optical amplification, and non-linear 

optical processing. However, planar tellurite devices have, until now, proven to be 

rather problematic. There have been a number of reports of planar waveguides 

fabricated in tellurite glasses using techniques such as UV direct write, femtosecond 

laser direct write, ion exchange, ion implanting, and sputter etching. Whilst some of 

these methods have realized small channel waveguides, propagation losses were high 

(lowest reported loss of 1.3dB/cm) and there are no reports of losses even approaching 

0.2dB/cm, the allowable values for useful linear or non-linear optical integrated devices. 

The best reported result using plasma etching was 6.3dB/cm. Hence, to date no high 
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qual i ty fabr ica t ion process has yet been demons t ra ted for tellurite mater ia ls for p lanar 

integrated opt ics . 
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Chapter 3: 
Reactive sputtering deposition of 

opticai Teilurium oxide films 
This chapter reports the use of reactive radio frequency (RF) sputtering to fabricate as 
deposited f i lms with the required stoichiometry and optical propagation losses below 
0 . IdB /cm, low enough to enable high quality integrated optics devices. In doing so, a 
wide range of sputtering parameters was explored using the design of experiment (DOE) 
method to obtain the desired stoichiometry, high index, and low loss planar waveguides. 
The obtained f i lms f rom these series of runs had 0 / T e ratios ranging from 1 to 3.5. The 
refractive index variation and planar waveguide propagation losses at 1550nm are 
reported as a function of oxygen content over this wide range. The bandgap, Raman 
spectra, and effects of annealing against stoichiometry are also reported and evidence 
provided that there are composit ions which are completely thermally stable. 

3.1 Tellurite glass and Tellurium oxide thin film development 
Thin f i lms of amorphous tellurite glasses and Tellurium oxide have been produced by 
several methods including glass blowing [142, 261-263J, chemical and sol-gel [264-
267J, large dose ion implantation [268J, thermal evaporation [269-271 J, plasma-
activated reactive, bias-assisted deposition (PARBAD) [272, 273J, reactive radio 
f requency sputtering using pure Tellurium [274-281 J; and pulsed laser deposition [282-
284J. Despite this variety of fabrication methods, the previous works on tellurite thin 
f i lms have not reported low propagation losses at 1550nm for useful functional planar 
applications. The latest achievements f rom some of the mentioned technologies are now 
summarised. 

3.1.1 Glass blowing 
Tellurite glass thin f i lms can be achieved by a glass blowing technique. A number of 
binary tellurite glass such as V205-Te02 [261], Cu-Te02 [262], B a 0 - T e 0 2 [263] and 
M o 0 3 - V 2 0 5 - T e 0 2 [142] obtained f rom this technique have been reported. The glasses 
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were melted at temperature around 700-900'^'C in air before being blown into films. 

Thicknesses of a few micrometers can be achieved. The obtained films have amorphous 

characteristics. This is an interesting method to achieve thin films for characterization 

but it remains to be demonstrated that the thin films can be transferred onto a planar 

substrate to make practical integrated devices. 

3.1.2 Sol-gel 

Sol-gel and related chemical processing routes are attractive options for thin film 

fabrication as they utilise only spin on coatings and thermal processing and so can be 

performed quickly on relatively low cost equipment. It can be used to make thin film 

coatings, waveguides, and other planar devices [264-267J. To obtain tellurite glass films, 

tellurium alkoxide compounds, Te(OR)n, where R is normally a simple organic alkyl 

group, are used as precursors. Challenges with these compounds are their tendency to 

form precipitates rather than gels. In addition, there are a number of other precursors 

such as telluric acid Te(0H)6 or Tellurium (VI) methoxide Te(OCH3)6 which can be 

employed in chemical processing routes for tellurites. There are significant challenges 

in producing low loss optical thin films with sol-gel. Transparent films with reasonable 

mechanical and optical properties could only be obtained via heat treatment to densify 

the films and eliminate residual OH and other contaminants [265, 285]. However, 

devitrification can appear in sol-gel tellurite films at temperatures above 290°C. 

Hodgson et al. 2006 [265] concluded that it is impossible to obtain pure and dense Te02 

thin films via the sol-gel route. Only multicomponent glasses such as 10Ti02-90Te02 

can be made into thin films with properties similar to the bulk after high temperature 

thermal treatment. [265, 285]. The refractive index of the obtained film at 679nm was 

2.19, which was close to that of the bulk sample of the same composition which 

measured 2.13 at 633nm. Additionally, this is not a suitable technique for rare earth ion 

doping (e.g. Er̂ "̂ ) as the significant levels of OH contaminant present quenches the 

1.5|jm Er emission lifefime very effectively. So far, there has been no report of 

propagafion loss in tellurite thin films fabricated by sol-gel method. 

3.1.3 Thermal evaporation 

Thermally evaporated tellurite films can be achieved via electron beam heating or 

electrical heating. Takenaga et ai, 1983 [286] first reported TeOx (x<2) thin film by 
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thermal evaporation of Te and Te02 powder for optical memory disk applications due 

to its sensitivity to laser diodes and excellent stability for archival recording. When pure 

T e 0 2 is used as the source to produce films, the stoichiometry of the fi lms is known to 

not only depend on the source temperature but also strongly on the substrate 

temperature [287, 288], Films produced by resistive heating of the Te02 were wholly 

amorphous when the substrate was kept at room temperature [288J. Thermal 

evaporation is relatively easy to apply to Te02 films, due to the low melting 

temperature of Te02, around 650°C . However, the stoichiometry of the films is hard to 

maintain as the initial materials can decompose, phase separate, or reduce during the 

deposition. There has been no report of propagation loss in tellurite films produced by 

this technique. 

3.1.4 Laser deposition 

Most tellurite glasses are multicomponent because of the need for inclusion of network 

modifiers to make them glassy. Stoichiometry transfer is critical as the glass properties 

change with composition. Maintaining the amorphous state to the films to reduce 

scattering loss is also important. Obtaining films with properties that are the same as the 

bulk glass is a difficult task in most fabrication methods. Laser deposition techniques 

are known to fulfil many of these requirements. Laser deposition of fi lms has so far 

been demonstrated by two types of laser: UV pulsed lasers such as excimer lasers at 193 

or 248nm with typically nanosecond pulses [282-284, 289, 290] or ultrafast lasers such 

as Ti-Sapphire femtosecond pulsed lasers at 800nm [291 J. The two laser ablation 

mechanisms are significantly different. The absorption of the radiation by the material 

differs between the long pulse UV excimer laser and the NIR femtosecond pulse [292, 

293]. The energy absorption is linear in the former and nonlinear in the latter. In the 

femtosecond regime, the ablation is a result of multiphoton ionizations followed by 

avalanche ionization which evaporates the materials f rom the target. 

Most reported results using laser deposition are for complex glasses with rare 

earth doping. Earlier experiments suggested that the films were nearly stoichiometric 

with respect to the target when the substrate was kept at room temperature and the 

chamber was filled with Oxygen at around 5Pa [282-284]. The lowest thin film loss was 

0.8dB/cm at 633nm. Very recently, Irannejad et ai, 2010 [289, 290] have reported 
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phospho-tellurite glass thin fi lms deposited on silica substrates using an ArF laser at 

193nm with 20ns pulse width and 3.2J/cm^ fluence. The deposited films had refractive 

indices and stoichiometries close to that of the bulk. The fi lms obtained had propagation 

losses in range of 0.13-0.75dB/cm at 633nm despite the fact the fi lms were in 

microstructure form with a particle size of 50nm. Still, obtaining large-area uniform 

films f rom this technique remains a challenge 1284]. 

3.1.5 Plasma technique 

Reactive R F sputtering of Tellurium in Oxygen and Argon has been reported to be the 

most promising method to produce Te02 thin films [274-281 J. The stoichiometry of the 

deposited f i lms can be controlled precisely by adjusting sputtering power, chamber 

pressure, gas flows and Oxygen content in the sputtering chamber [276-281 J. Totally 

amorphous stoichiometric thin films are generally obtained relatively easily by 

sputtering [276J. Suitable sputtering tools and conditions lead to high energy species 

creating denser as deposited films eliminating the need for thermal annealing. The 

optical quality of the films depends on all deposition parameters, and the production of 

high optical quality films requires optimization of more parameters than just Oxygen 

flow. 

Since the report of RF sputtered Tellurium oxide films in 1992 [294], most 

works on plasma deposition of Te02 use the Oxygen flow percentage to tune the 

stoichiometric properties of the films. Di Giulio et ai, 1993 [275J reported the properties 

of sub-stoichiometric oxide fi lms with 0 / T e ratio in the range of 1.0-2.0. These films 

are very lossy due to the presence of excess Tellurium. They also tend to exhibit 

crystallization when subjected to post deposition thermal treatments. Recently, more 

work has been done on targeting stoichiometric and oxygen rich films, which have 0 / T e 

ratio ranging f rom 2.0 to 3.0 [278, 279, 281]. It has been proved that stoichiometric 

amorphous T e 0 2 thin films can be consistently obtained by room temperature RF 

sputtering [276], but increasing the substrate temperature (usually desirable in thin film 

manufacture to promote adhesion and obtain a more bulk like film) can result in 

crystallization and increases in grain sizes, and therefore higher optical loss. Nayak et 

at., 2003 [278] reported losses of 2.2dB/cm in as deposited films and 0.26dB/cm in 

films annealed at 200°C. Whilst the losses in the annealed film were almost at the level 
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required for planar devices, annealing is undesirable in planar devices as it often leads 

to restructuring of the film at the anneal temperature which results in frozen in stress on 

cooling due to the different thermal expansion coefficient of the substrate. Ideally, as-

deposited fi lms would be amorphous, stable, and low loss straight from sputtering at 

room temperature without any further heat treatment. However, low optical losses in as 

deposited thin f i lms have not been reported previously. 

One of the priorities of this project is to obtain low loss tellurite films. Therefore, 

the RF magnetron sputtering route was chosen because of the many advantages over 

other techniques as outlined above. Ultrafast pulsed laser deposition may also be a 

viable route, but funding and time restrictions and the need to develop means to 

generate DUV Ultrafast pulses at multi-Watt powers meant the resources to explore this 

route were unavailable. 

3.2 Magnetron reactive RF sputtering deposition 

3.2.1 Sputtering principle 

Sputtering is one of the most versatile deposition techniques for fabricating device-

quality fi lms [295]. Sputtering processes give particulate free films on large substrates 

and provide f i lms with good adhesion, homogeneity and high control of film thickness 

[296J. It involves creating plasma (usually with an inert gas such as argon) by applying 

a voltage between a cathode (target holder) and anode (gun shield, rest of vacuum 

chamber). The target is consequently subjected to bombardment by high energy ions. 

The target surface ejects atoms or atom clusters which diffuse away finally depositing a 

thin film on the substrate by condensation. Sputtering is normally performed at a 

pressure of 10"^-10"^ Torr due to the need to support the plasma, although there are 

means to enable lower pressure plasmas than this (e.g. low pressure ion sources) which 

provides greater mean free paths for the sputtered material. 

There are two modes of powering the sputtering guns. In DC sputtering mode, a 

direct voltage is applied between the cathode and the anode. This process is restricted to 

conducting targets, such as A1 or In. In RF sputtering, which is suitable for both 

conducting and insulating targets, a high frequency generator (usually at 13.56MHz as 

assigned by the FCC) is connected between the electrodes. The use of magnets, as in 
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magne t ron sput ter ing, is part icular ly useful to conf ine the p lasma increasing its densi ty 

near the target su r face p roduc ing high deposi t ion rates and low substra te tempera ture . 

R F sput ter ing a l lows all mater ia ls whether metal or insulator to be used as 

targets . Low pressure (5 -15mTor r ) can be used. Osci l la t ing e lect rons at high 

f r equenc ie s cause increased coll is ion with the gas contr ibut ing to enhanced ionizat ion. 

Unl ike DC, e lec t rons do not reach the anode sur face since both e lec t rodes in an R F 

d ischarge are at nega t ive potential with respect to the p lasma [295j and so e lec t rons are 

ref lec ted back and forth be tween the e lec t rodes and cause ionizat ion. R F sput ter ing is 

poss ib le because the target se l f -biases to a negat ive potential due the mobil i ty d i f f e rence 

be tween e lect rons and ions [297). 

T h e sput ter ing rate can be improved for all mater ia ls via the use of magne t rons 

in R F sput ter ing guns . T h e eff ic ient use of e lectrons to p romote ionization of the gas in 

the sput ter ing c h a m b e r is possible with the assistance of a magne t ic field. Appl ica t ion 

of an axial magne t i c f ield in a p lanar d iode glow discharge sys tem increases the path 

length of the e lectron because e lect rons fo l low longer helical path orbi ts be fo re they 

reach the anode. In addit ion, the magnet ic field helps the e lectrons to stay a w a y f r o m 

the wal ls of the sput ter ing chamber , therefore , reducing the losses of e lectrons due to 

recombina t ion process at the walls . Magne t rons greatly enhance the capabi l i ty of the 

sput ter ing process by increasing the ionization ef f ic iency. Magne t ron sput ter ing 

ach ieves high depos i t ion rates [297]. 

Wi th magne t ron sputter ing, the target surface erodes unevenly due to the 

magne t i c f ield which leads to the fo rmat ion of a racetrack. T h e racetrack region sput ters 

preferent ia l ly whe reas the rest of the target barely erodes. Special des igns of magne t ic 

and electric f ield conf igura t ion and target shapes are necessary to assure un i fo rm 

eros ion of targets. T h e electron b o m b a r d m e n t of substrates is virtually e l iminated in a 

magne t ron source . 

T h e pr inciple advantage of the magnet ron conf igura t ion is the fo rmat ion of 

dense p l a sma near the ca thode at low pressure (2-40mTorr ) [297]. This means ions can 

be accelera ted f r o m the p l a sma to the ca thode without loss of energy due to physical or 

e x c h a n g e col l is ions. T h e result is an increase in the average kinetic energy of the 

sput tered a toms and an increase in the probabi l i ty of a toms f r o m the ca thode to the 

substra te . 



i.2 Magnetron reactive RF sputtering deposition 47 

In the case of reactive sputtering of metallic targets, the deposition rate and 

structure properties of transparent f i lms strongly depend on the reactive gas content in 

the sputtering chamber . The sputtering rate at low partial pressure tends to be high but 

suddenly drops to a much lower rate when the partial pressure increases above a 

particular level. At a low partial pressure, metal is sputtered f rom the target and the 

oxidation reaction takes place only on the substrate. At higher partial pressures, 

oxidation of the target face occurs and the sputtering rate drops rapidly since oxides 

sputter generally much more slowly than pure metals [296J. 

The reactive gas pressure, the f low rate of gases and sputtering rate determine 

whether the compound formation occurs at the target or at the substrate. The 

stoichiometry of the f i lm depends on the rate of arrival of sputtered atoms at the 

substrate compared to the arrival rate of gas a toms from the reactive gas. The removal 

of compounds that may have formed at the target surface occurs much slower than the 

removal rate of the material f rom the target. Therefore, when reactive gases such as 

Oxygen , Nitrogen are introduced into the chamber, the sputtering rate can be 

significantly reduced. Higher RF power or lower pressure can be used to compensate 

for the reduction. 

3.2.2 Sputtered film composition 

Consider ing the example of sputtering a Te target in partially Oxygen-fi l l plasma, it is 

known that the oxidation rate of the Te atoms is directly related to the ratio of the 

number of O2 molecules striking the substrate surface to the number of Te atoms getting 

onto the surface of the substrate. The flux of O2 molecules striking a unit area of the 

substrate surface is [298]: 

= (3.1, 
4 4 kT^ \ mn ^mT^ 

where Vav is the average velocity of O2 molecule, P(02) is the partial pressure of O2 in 

the chamber , T^ is the temperature of the sputtering, k is Boltzmann constant, and rn is 

molecular mass of O2. 

The flux of Te a toms getting to the substrate surface per second is: 
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™ , pRN^ 
= ^ (3.2) 

TeOx 

where p is the density of the film and R is the deposition rate of the TeOx film, NA is 

Avogadro's number, MjeOx is the molar mass of the TeOx. Alternatively, the flux of Te 

atoms getting to the substrate surface per second can also be calculated from the 

sputtering rate of the target as: 

n { T e ) ^ N ^ d l S (3.3) 

where N^ is the sputtering rate of the target, and J is the efficiency of the atoms getting 

from the target to the substrate, S is the substrate area. N^ is approximately proportional 

to the RF power for a fixed gas mix, and S is determined by the geometry of the 

substrate and the gun. It also depends on the pressure of the chamber as this determines 

the mean free path. 

From the Equation (3.1 -3.3), the ratio of niOj) to n(Te) is: 

^ = (3.4). 
n{Te) ^niT^pN^R 

The ratio of n(02) to n(Te) will increase with the increase of oxygen pressure in the 

sputtering gas and decrease of the sputtering rate of the Te target. The composition of 

TeOx films are determined by the parameter P(02)/R or PiOjj/Ns-

3.3 Experimental measurements of refractive index and thickness of 

thin films 

A dual angle spectroscopic reflectometer (SCI Filmtek 4000 [299]) was used to measure 

the refractive indices and thicknesses of the films. The wavelengths of the spectrum is 

from 450nm to I650nm. The reflectometer uses the normal incidence and polarized 70 

degree reflection data to calculate the properties of the measured films. An appropriate 

model of refractive are selected for the parameters to be solved. For optical thin films 

Tauc + Lorenz model, which is a generation of the Lorentz Oscillator model, are 

selected. 
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3.4 Deposition and characterisation of Tellurium oxide films fabricated 

by reactive RF magnetron sputtering 

All deposit ions were performed on an AJA International ATC 2400-V sputtering 

system equipped with A330 guns. The targets used were pure (>99.95%) Te powder 

pressed in to a 3" plate bonded to a copper cup for good heat dispersion and were 

commercial ly sourced to AJA international. The RF magnetron sputtering chamber had 

a load lock and was usually pumped to base pressures below 3xlO"^mTorr. The RF gun 

was cooled with water at 20°C. The rotating substrate holder was placed at a distance of 

- l O c m f rom the target and the substrate was not actively cooled. The schematic of the 

gun-substrate relative position is on Figure 3.1. 

Rotating 
substrate 
holder 

Magnetron rf 
gun with 
^water cool 

Target 

Figure 3.1: Sputtering gun and substrate configuration 

It has been reported that the properties of reactively sputtered TeOx films are 

influenced by the running parameters such as RF power, pressure of the gas mix, ratio 

of gases (Ar/02), substrate temperature etc. [274, 276]. Thus there are number of 

variables to optimise the condition of the TeOx films. 

The effects of several sputtering parameters were investigated to obtain suitable 

thin films. The sputtering parameters that were investigated were: chamber pressure 

(2.0mTorr to 20mTorr), RF power (120W to 360W), and percentage of Oxygen in the 

gas mix (20% to 80%). The total flow of O2 and Ar was kept at 15sccm (standard cubic 

centimetre per minute or cm^/min at standard room temperature and atmospheric 

pressure). This flow was chosen as it was the maximum possible whilst allowing 
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chamber pressures across the whole desired range (Umited by the turbomolecular 

pump's pumping speed). The thin films produced from this investigation had thickness 

in the range 500nm to 2)j.m. Since there were 3 varying parameters and several 

optimization targets, the design of experiment (DOE) method was employed using 

software ("D.O.E Fusion" from S-Matrix or "Essential Regression and Experimental 

Design" written by D. Steppan, J. Werner, and R. Yeater, available from 

http://www.iowerner.homepage.t-online.de/. last visited on 12 May 2010), to screen the 

experimental conditions to achieve the desired properties. In the initial experiments, the 

refractive indices of the films were used as a response function to map out its 

dependence on the various sputtering parameters such as 02/Ar content, pressure and 

sputtering power. Based on the outcome of the experiment, a smaller set of runs was 

performed to find the best sputtering conditions under which the films were 

stoichiometric, dense and low loss. 

Once conditions close to optimum were identified from the DOE, a series of 

TeOx films was deposited at various O2 flows with all other parameters fixed at the 

optimum conditions. A number of different substrates were used in each run including 

4" thermally oxidised silicon wafers (2 microns of thermal oxide), Silicon pieces, silica 

slides and 200nm thick silicon nitride membranes on silicon (back etched to make a 

very thin window for Raman measurements). 

The DOE data for the initial screening experiment is in Table 3.1. The first 

column is the order of the run, the second to fourth are the values of chamber pressure 

(mTorr), RF gun power (as % of 600W) and O2 flow (as % of ISsccm) as produced 

using the DOE software. The fourth column is the measured refractive index at 1550nm. 

The experimental data is then fitted with the relationship: 

y = + b^Of + +b,P^P + b^P^O^ +b,PP + b^PO^ + b^O^O^ 

(3.5) 

where b„ are fitting coefficients, Pr is the pressure (mTorr), P is power in percentage of 

600W, and Of is the flow of Oxygen in seem. The values of /?„ are in Table 3.2. The 

predicted value of index and the residuals of the fitting are the sixth and seventh column 

on Table 3.1. The values indicate relatively good fitting. Figures 3.1-3.3 show contour 

plots of the predicted refractive index against the conditions. 
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Table 3.1: Series of depositions to screen the sputtering conditions effects on 

optical properties. 

Case Pressure Power 02 Index Predicted 
Index 

Residuals 

1 2 20 20 2.69 2.64 0.05 
2 15 40 50 2.07 2.09 -0.02 
3 15 40 20 2.09 2.09 0.00 
4 5.25 35 35 2.08 2.04 0.04 
5 5.25 35 35 2.09 2.04 0.05 
6 1 1.75 25 65 1.87 1.80 0.07 
7 8.5 30 50 1.92 1.89 0.03 
8 15 40 20 2.08 2.09 -0.01 
9 2 30 80 1.97 2.01 -0.04 
10 2 30 80 1.97 2.01 -0.04 
11 8.5 30 50 1.91 1.89 0.02 
12 5.25 35 65 1.95 1.98 -0.03 
13 2 20 20 2.62 2.64 -0.02 
14 15 20 50 1.87 1.91 -0.04 
15 8 30.75 33.75 1.91 1.95 -0.04 
16 6 30.5 42.5 1.92 1.98 -0.06 
17 2 31 60 2.30 2.07 0.23 
18 6 30 60 1.89 1.93 -0.04 
19 10 30 25 2.01 1.92 0.09 
20 5 30 30 2.08 2.06 0.01 
21 4 30 25 2.11 2.12 -0.01 
22 6 30 25 2.05 2.04 0.01 
23 4 30 40 1.96 2.07 -0.11 
24 3 30 40 1.99 2.11 -0.12 
25 8 30 20 1.97 1.99 -0.02 

Table 3.2. Values of fitting parameters for the refractive index in Table 3.1. 

Coefficients Average Std Error 
bO 5.215 0.779 
bl -0.103 0.04913 
b2 -0.160 0.06605 
b3 -0.01125 0.01491 
b4 0.00142 0.00225 
b5 0.00156 0.000993 
b6 0.000121 0.000450 
b7 0.00223 0.00117 
b8 0.000228 0.000361 
b9 4.31E-06 8.8E-05 
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Figure 3.2: Contour plot of fitted refractive index vs power and pressure at oxygen 

flow o f 4 2 % ( o f 15sccm). 
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Figure 3.3: Contour plot of fitted refractive index vs power and Oxygen flow at 

pressure of VmTorr. 
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Figure 3.4: Contour plot of fitted refractive index vs pressure and Oxygen flow at 

power of 30.5 (% of 600W). 

There are some notable trends in those contour plots in Figure 3.1. First of all, 

the indices are increased with a decrease of pressure. Secondly, as the Oxygen partial 

pressure increases, the refractive index reduces. The dependence of index on power is 

slightly different. It is inverse saddle like. At low power, the index is high, then at 

middle value, it reaches a minimum before increases again at higher power. 

Highest refractive index is however not the main target. For optical application, 

lowest optical propagation loss is also an important criterion. In order to achieve this, it 

is generally the case that the films should be stoichiometric and densely packed. Since 

non-stoichiometry leads to higher porosity, the first target should be films with a 

composition equalling Te02. Once stoichiometric films are achieved, the highest 

packing factor or density should be then targeted. Due to the Lorentz-Lorenz equations 

(Equation 2.4 from Chapter 2) [300], then for stoichiometric films the higher the 

refractive index the higher density. 

The refractive index of Tellurite glasses at 1550nm is around 2.1 as quoted in 

the previous Chapter 2. Therefore, it is expected that, high quality Tellurium oxide thin 

films should have refractive index in this vicinity. From the DOE results in Figures 3.2 

to 3.4, the areas corresponding to refractive index of 2.0-2.1 are around SmTorr 

pressure, 0 2 flow of 40 % (of ISsccm) and power of 25% (of 600W). 
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Figure 3.5 summar izes the dependence of the refractive indices at 1.55^m of the 

sputtered f i lms against the ratio of Oxygen to Tel lur ium in the f i lms as determined by 

energy dispersive X-ray analysis (EDXA). Each data point corresponds to one 

sputtering run. As a wide range of sputtering parameters was used during fi lm 

deposit ion the obtained f i lms had a range of optical and physical properties. The as-

deposited amorphous TeOx f i lms were classified into three types: Tellurium rich (x<2); 

s toichiometric (x~2); and Oxygen rich (x>2). Tellurium rich fi lms were produced when 

there was an Oxygen def ic iency in the chamber, or a high flux of Tellurium from the 

target. This condition occurred at high RF power, low Oxygen flow or low chamber 

pressure. Tellurium rich f i lms had excessive levels of metallic Te atoms and were 

therefore highly absorbing. These f i lms had an effect ive band edge high up in the red or 

infrared and refractive indices at 1.55|am greater than 2.1. Oxygen rich fi lms on the 

other hand were highly transmissive down to ~350nm, had low absorption in the 

infrared as well as lower density and refractive index at 1.55|am below 2.0. These f i lms 

were produced when the sputtering power was low, or the Oxygen flow or chamber 

pressure were high. Stoichiometric f i lms were obtained when the balance of all three 

parameters was maintained which corresponded to SmTorr pressure; 150W R F power; 

6 .75sccm Oxygen f low (45%) and 8.25sccm Argon f low (55%). 
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Figure 3.5: Dependence of refractive indices at 1550nm on composition. The index 

also depends on the sputtering conditions. The dots with error bars are data points; 

the large dot is represents bulk TeO: glass. 
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The results of Figure 3.5 represent a much wider range of composit ions and 

refractive indices than reported by previous work [279J. The graph shows that the 

refractive indices of f i lms around Te02 composition are very close to bulk Te02. At an 

O/Te ratio of 2.0, the film refractive indices are as high as 2.08 compared to bulk 

amorphous T e 0 2 glass of 2.12 [88J. Furthermore, the slope of the composition/index 

relationship appears to flatten in the vicinity of the stoichiometric point, with a plateau 

in the refractive index between about 1.9 and 2.2 O/Te. The refractive indices remain 

almost constant for O/Te higher than 2.6. This is slightly different to the results from 

[279J which reported a constant index of around 1.98 (at ISOOnm) for O/Te ratios 

between 2.3 and 2.6. The thin films obtained here have higher refractive indices and are 

therefore denser than previously reported according to the Lorentz-Lorenz relation 

[300J. 

Furthermore, the refractive index does not only depend on the stoichiometric 

coordination but also the sputtering conditions. The cluster around the O/Te ratio of 2.2-

2.4 on Figure 3.5 clearly shows a significant range of refractive indices for the same 

stoichiometries. Higher index fi lms were usually obtained with lower Oxygen flow, 

therefore, higher deposition rate. This indicates that higher deposition rate increases the 

density of the fi lms leading to higher refractive indices. 

Figure 3.6 a) shows the dependence of the O/Te ratio against the flow of 

Oxygen into the sputtering chamber. Figure 3.6 b) graphs the variation of film index 

against composition when only Oxygen flow is varied. The graphs show that 

stoichiometric, close to bulk refractive index films of Te02 were obtained when the 

oxygen flow percentage was around 45% of the total flow. The index difference from 

bulk was around 0.04 at 1550nm. One would expect f rom these results that the optical 

properties of the films should be very similar to that of the bulk glass. 

Figure 3.6 c) shows the variation of optical band gaps inferred f rom Tauc plots 

of (oE)'^ vs E, where a is absorption and E is photon energy (see Equation 2.9). The 

band gaps reach a maximum of 3.7eV at stoichiometric composition. This is closely 

approaching the value of bulk TeOa glass of 3.79eV [88], With Te rich films, the optical 

band gaps decrease very rapidly due to metallic absorption. On the other hand Oxygen 

rich fi lms retain relatively high optical band gaps. 
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Figure 3.6: a) Film composition vs Oxygen flow around the optimum point, the 
horizontal line representing stoichiometric composition 0 /Te=2 , the solid curve is 
a polynomial fit of 3rd order b) film index at 1550nm vs composition for films 
deposited around the optimum conditions, the single dot represents bulk Te02 glass 
index, the solid curve is a polynomial fitting of 3rd order; c) Variation of optical 
band gaps with composition. 

3.5 Raman spectra 
The Raman spectra measurement was performed on a home made instrument. The 
Raman spectra were obtained using a backscatter configuration with a pump laser at 
808nm. Since the Tellurium oxide films for this characterization were deposited on very 
thin Silicon Nitride membranes, the substrate background signal was effectively 
suppressed leaving only the unobscured Raman signal f rom the Tellurium oxide film. 

The Raman spectra of the f i lms with various 0 / T e compositions are shown in 
Figure 3.7. The figure also contains a spectrum from a Te02 crystal for comparison. 
There are some significant trends in the result. For thin films with 0 / T e > 2, there are 
three broadened peaks at 770cm' ' (stretching vibration of Te=0) , 660cm' ' (coupled 
symmetric vibration along Te-O-Te axes), 450cm' ' (symmetric and bending vibration of 
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Te-O-Te linkage at corner sharing sites). The spectra for this case are in agreement with 

those reported in literature [88], The spectra for films with 0 /Te < 2 are remarkably 

similar to that of the a - T e 0 2 crystal with relatively narrow peaks at 660cm"' and 

400cm' ' . However, X-ray diffraction measurements showed no indication of 

crystallization in any of the as deposited films. In the crystal case, the two peaks at 150 

and 120cm ' are due to vibrational modes of Te04 units [90]. However, in Tellurium 

rich films, the peaks between 100 and 200cm'' are dominated by the vibrations of Te-Te 

bond [301], 
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Figure 3.7: Raman spectra of TeOx thin films, x value is on the right side of the 

graph. The curves have been normalized based on the main peaks between 600-

700cm ' and shifted upward by 1 unit consecutively. 

In a pure Te02 crystal and in Te rich films, Te04 bi-pyramid structures and Te-

Te bonds dominate. Te04 units are linked by corner or edge sharing Oxygen atoms 

resulting in very similar Raman spectra. With the additional of Oxygen, the Te04 

trigonal bipyramid units evolve into Te03 trigonal pyramid resulting in non-bridging 

Oxygen in T e = 0 bonds with strong stretching vibration at 770cm'' as shown in Figure 

2.3 in Chapter 2 [89, 98, 302]. 
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3.6 Effect of annealing 

In general thin films deposited onto cold substrates are expected to be far from a 

minimum entropy state immediately after deposition, and therefore perhaps vulnerable 

to refractive index drift over time at even room temperature. Hence thermal annealing is 

often used to "relax" the films and remove any possible index drift. Films with various 

0 / T e compositions from 1.2 to 3.2 were annealed in an Oxygen atmosphere. The 

surfaces of films were observed with optical microscopy during the annealing process. 

Refractive indices of the films were also monitored. 
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Figure 3.8: Effect of annealing at 200°C on the a) refractive indices and b) 

thicknesses of samples at different compositions. 



i.7 Thin film propagation loss 59 

It has been reported that annealed Te rich amorphous films contained crystalline 

Te metal with subsequent crystallization o f T e 0 2 at higher temperatures [269, 286J . A 

number o f Te rich films from this work annealed at 200"C indeed showed 

crystallization as evidenced by X R D patterns, but this was not visible with optical 

microscopy. 

In order to observe the behaviours o f films with excess Oxygen during annealing, 

a set o f TeOx thin films on Silicon substrate that had 0/Te ratios of 2.04, 2 .29, 2.5 and 

3 .24 were annealed in an air-filled oven for durations of more than 33 hours. The 

refractive indices and thicknesses were measured at different times and are shown on 

Figure 3.8 a) and b). 

There are significant trends evident in the plots. For an 0/Te ratio o f 2.5 there 

was essentially no change in refractive index upon annealing, which is an interesting 

result not previously reported for T e 0 2 thin films. Away from this composition, small 

index shifts {An<3xl0'^) occurred upon annealing but the change was complete within 

- 1 0 0 minutes. Increases in refractive index upon annealing are generally explained by 

the rearrangement of atoms to a more relaxed, lower energy state with higher density 

and film thickness shrinkage. Conversely, decreases in index can occur when a 

compressively strained film relaxes by expansion to lower the density and therefore 

refractive index according to Lorentz-Lorenz relation (Equation 2.3) . 

E D X A measurements at the end of the annealing study showed unchanged 

overall composition. Furthermore, X-ray diffraction measurements suggested that the 

films annealed at 200' 'C maintained their amorphous phase. Therefore the changes 

observed were not brought about by either oxidation or crystallization, but by density 

changes from film shrinkage. 

3.7 Thin film propagation loss 

The optical propagation loss o f the as deposited films was measured by prism coupling 

[303, 304] , where the beam is coupled into the TeOx films deposited on a 2jam thermal 

oxide layer on a 100mm diameter Silicon wafer. The prism coupling technique was 

used to couple the light into each of the modes in turn and both polarisations o f the 

propagation mode. An external cavity tunable laser at 1550nm was used along with an 

E D F A to boost the power for this experiment. As the laser beam propagated in the TeOx 
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layer, light scattered. A cooled InGaAs CCD camera was used to image the streak of 

light propagating along the path. Image processing software written in Labview 

captured the image and analysed the scattering streak to extract the propagation loss. 

The light streak image was cropped and integrated in the transverse direction. The data 

was then plotted against distance on a semi log scale, and a variable degree of rejection 

of data lying away from the best fit line was used to eliminate discrete scattering centres. 

The reduced data set was then subjected to the same fit/reject procedure to leave a data 

set with minimised discrete scattering to which a best fit line was used where the slope 

of the straight fitting line is the loss per length (dB/cm). Figure 3.9 shows an example of 

the front panel of the software. A critical assumption is that the films are homogenous 

throughout the wafer and the lens vignetting is negligible. 
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Figure 3.9: Front panel of the Labview software to calculate propagation loss of 

thin film 

The propagation losses at 1550nm were determined from observation of the 

light streaks from a set of as-deposited TeOx thin films on thermally oxidized silicon 

substrates with film thickness of around 1.5|am and composition 0 /T e ratios of 1.6 to 
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2.4. The results are shown in Figure 3.10. The minimum loss observed was less than 

O. ldB/cm at 1550nm, which is the first time such low losses have been reported in this 

material and is even more remarkable given that this is an as-deposited Tellurium Oxide 

film. As argued above, an excessive level of Te in the films, x<2, is expected to produce 

high losses and this is indeed observed. However, the loss curve dips to a minimum 

right at the stoichiometric point before gradually increasing as the Oxygen content 

increases. There are two possible explanations for the increase in the loss. Firstly, the 

Oxygen rich thin films are relatively more porous and inhomogeneous than the 

stoichiometric Te02 films. This leads to a potential increase in scattering loss in Oxygen 

rich f i lms [300], The losses of Oxygen rich films would be expected to be lower when 

they are annealed to lower porosity [278]. 
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Figure 3.10: a) light streak image acquired by the camera, in the 0/Te=2.0 film for 

a length of 6cm, light propagates from right to left; b) data analysis with fitting to 

obtain a slope of less than O.ldB/cm; c) propagation loss at various 0 /Te ratios. 

3.8 Conclusion 

This chapter has reported the fabrication method for high quality Tellurium dioxide thin 

films. A pure Tellurium target was used in a reactive RF sputtering system and 
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Tel lu r ium ox ide f i lms were fo rmed in Argon and O x y g e n p lasma chamber . Us ing a 

D O E study, the o p t i m u m condi t ions for f i lm depos i t ion were obtained. Propaga t ion 

losses at 1550nm of light in the planar f i lms were as low at O . ldB /cm in s to ich iometr ic 

f i lms . Other proper t ies of the f i lms have also been s tudied. It was found that the f i lms 

are robust to anneal ing even at 300C. There fo re , react ive R F sputter ing is a sui table 

t echnique for Te l lu r ium dioxide f i lm fabr icat ion for p lanar devices . 
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Chapter 4: 
Fabrication of high quality Tellurium 

oxide rib waveguides 
Detailed studies on the reactive plasma etching properties of Tellurium dioxide are 
reported in this chapter. A high quality etching process using Hydrogen, Methane and 
Argon is demonstrated. Plasma etching of TCOT using standard parallel plate Reactive 
Ion Etching (RIE) and toroidal winding Inductively Coupled Plasma (ICP) machines are 
covered in detail. The quality of etching in the two systems is slightly different but the 
outcome of this study was recipes for etching high optical quality Te02 waveguides. 
The etch process is also shown to be highly suitable for chalcogenide glass thin films 
which may be of importance in other additional applications such as phase change 
memory. 

4.1 Plasma etching technology 
4.1.1 Introduction to plasma etching 
Plasma etching (also commonly referred to as dry etching) is the most widely used 
technique for pattern transfer in semiconductor electronic and optoelectronic devices. It 
is a crucial process in very large scale integrated circuits which may consist of billions 
of individual devices. It is also an extremely important technique for fabricating optical 
quality devices. The key advantages of this technique over wet liquid based etching 
techniques include high anisotropy, waste management, profile control, and precise 
etching control and monitoring [305, 306]. 

Plasma etching can occur in two ways. The first is by physical sputtering 
through high energy ion bombardment. This is not a widely used technique as the 
etching rate tends to be slow, selectivity to the mask is limited (essentially the ratio of 
the sputtering rates of mask to etched material), comer mask erosion often leads to non-
vertical profiles, and the re-deposition of sputtered material often leads to high surface 
roughness. 
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The second more frequently used method is reactive ion etching (RIE), which 

was pioneered by Hosokawa et al, in 1974 [307J. The etch gas mixture is chosen so 

that ions and radicals are formed in the plasma that chemically react with the substrate 

to form volatile products which are then pumped away. At the same time, physical 

sputtering also occurs due to the acceleration of ions in the plasma toward the substrate 

and more importantly this enhances the etch rate on horizontal surfaces leading to 

anisotropy of the etch rate and hence the possibility to etch vertical structures. The 

presence of ions in the chamber also acts not only as a physical bombardment process 

but also help the generation of radicals [305). 

Plasma etching is a highly favourable method for the fabrication of tellurite and 

chalcogenide devices due the extreme chemical reactivity of these materials to aqueous 

bases which makes precise and smooth wet etching problematic [258, 308J. Plasma 

etching has been shown to be capable of generating extremely smooth sidewalls, as 

required for example for air clad silicon nanowire devices where the sidewall roughness 

allowable is around the nm rms level [5, 14]. In optical waveguide fabrications, the 

etching induced roughness is very critical to determine the quality of the etching 

process. The propagation loss is proportional to the product of squared of the interface 

roughness and squared of the refractive index difference between the care and cladding 

[5, 14, 309, 310J. Therefore, high index waveguides required to have the interface 

roughness as low as possible to avoid the additional loss introduced by etching. Given 

the excellent results in silicon and chalcogenides, it was considered appropriate to 

investigate the etching of tellurite waveguides with plasma etching rather than other 

fabrication methods. 

Etching rate, selectivity to the mask material, anisotropy, and uniformity are 

some of the most important factors in plasma processing. High etching rate and high 

uniformity across large diameter wafers are necessary to ensure that all of the devices 

fabricated have similar characteristics. Tuning the process chemistry and machine 

configuration can enhance all the above properties. For example, the etch rate is 

essentially proportional to the number of reactive ions present in the plasma. High 

density plasma sources such as ICP systems, discussed in a moment, produce sufficient 

ions and reactive species to meet high throughput commercial demands even on 

relatively slow etching materials such as silica [306J. For deep feature etching, etch 
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anisotropy and high selectivity between the material being etched and the mask are 

required, and this is generally decided by gas selection. 

Isotropic or anisotropic etching can be defined quantitatively by the degree of 

isotropic etching of lE=di/dy, where di, is the horizontal undercut and d,, is the vertical 

etched depth as shown on Figure 4.1. The degree of anisotropic etching then is 1-IE. 

Isotropic etching in a plasma results from purely chemical gasification reactions 

between the etchant species and a substrate which have no preferred orientation and so 

will undercut and etch masked feature. The plasma plays little role other than to create 

the etchants [311 J. 
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Figure 4.1: Isotropic and anisotropic etching profile taken from Ref. 13111. 

The profile of the etched feature depends generally on the anisotropy of the etch 

which is in turn determined by the interactions between the etching and any deposition 

processes that may occur simultaneously, and also by the ratio of free radicals to ions 

and the ion energy and mean free path in the plasma. Species sputtered from the target 

can be deposited back on the wafer, especially on the side-walls. Etching and deposition 

rates depend in a complex manner on various factor such as materials present and the 

geometry of the features being etching [306]. Since anisotropy is enhanced by processes 

that depend on ion bombardment and selectivity is improved by processes that depend 

on chemical reactions, an optimum process is often a balance between anisotropy and 

selectivity. All processing parameters such as gas composition, flow rate, pressure, 

power density and wafer temperature, play important roles. The induction power 
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determines the generation rate of radicals and ions in the plasma. Electron collisions 

transfer the energy from the RF field to the reactive gases and fragment the molecules 

into atoms, radicals and ions that perform the deposition or etching process. An increase 

in power density leads to an increase in density of radicals and ions hence an increase in 

etch rate. Lowering the pressure and increasing the power density will increase the 

energy of ions bombarding the surface hence improving anisotropy but decreasing 

selectivity. 

4.1.2 Machine configurations 

There are a number of configurations for plasma etching machines. A typical standard 

RIE machine is normally driven at 13.6MHz and pressure less than lOOmT. There are 

two parallel electrodes, typically the smaller below the larger one carries the sample to 

be etched and is driven by the radio-frequency (RF) field via a coupling capacitor, the 

larger one is grounded. Upon striking a plasma, there is a dark space above the driven 

electrode, the ions are accelerated across this area and land on the sample in a vertical 

direction. A DC voltage is developed across this dark space, its magnitude depending 

on the pressure and frequency. This rectification occurs because the electrons, having 

very low mass, can follow the variation of a high-frequency field whilst the ions having 

much heavier mass, may no be able to. Generally, only a small portion of the gas 

molecules are ionized in a parallel plate RIE chamber, but the proportion can be 

increased by increasing RF power. Increasing the power however also increases the ion 

energy as they are directly coupled, at the expense of substrate heating, increased 

energetic bombardment, etc. Enhanced RIE methods were developed where the ion 

density can be decoupled from the ion energy with the aid of additional fields. 

There are several enhanced plasma sources, such as, magnetically enhanced 

reactive ion etching (MERIE), electron cyclotron resonance (ECR), helicon, helical 

resonator and inductively/transformer coupled plasma (ICP/TCP) [306]. M E R E has 

additional electromagnetic coils which produce a rotating magnetic field that improves 

ionization efficiency and minimizes plasma losses to the walls, hence enhancing the 

etch rate. However, etch rate uniformity using MERIE may be low because of 

nonuniformities in the magnetic field. ECR sources generate high plasma densities 

using 2.45GHz microwave power by confining electrons in magnefic field cusps 
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provided by twelve equally spaced permanent magnets. The complexity of ECR 

systems prompted the development of simpler high density plasma sources. The helicon 

source is made up of an upper antenna section and a lower confinement section. RF 

power is inductively coupled into the plasma via an antenna which is wrapped around 

the upper chamber. Four solenoid magnets are used to control the magnetic field. The 

helical resonator consists of a helical coil wrapped around a quartz/ceramic tube. RF 

power is inductively coupled into the plasma through the coil. The ICP etching machine 

also has a RF coil wrapped around the chamber and generates the plasma through 

inductive coupling but the ions are extracted by another RF field (see Figure 4.2). This 

configuration allows much higher ion density to be generated above the substrate and 

for independent control of the ion energy [312, 313J. 

At the time of this project, there were RIF and ICP plasma systems at the 

Australian National University. Therefore, only these two systems were used in the 

etching studies of Tellurium oxide and chalcogenide films. 

4.1.3 Gas selection 

The choice of gases for etching materials is very important in REE. The gases are 

required to be reactive with the compounds to be etched resulting in chemical species 

that are volatile in vacuum at achievable temperatures, and also often to provide 

polymerizing species that provide sidewall passivation to achieve highly anisotropic 

etching. The gas mixture and process conditions must also allow the sidewall polymer 

to remain on the sidewalls preventing them from being etched whilst simultaneously 

removing it f rom the flat surfaces (usually by sputtering) to allow etching to proceed 

there. The most common ingredients for etching glassy and semiconductor materials are 

halogen-containing gases such as CI2, HBr, CF4, CHF3, CH3F [306, 311, 313, 314]. 

Fluorine is commonly used to etch Silicon and Silicon compounds while Chlorine is 

used with Ga, A1 and As containing III-V compounds. Methane and Hydrogen are also 

frequently used to etch a number of important II-VI [315, 316], III-V [317-319], and 

IV-VI [320] compounds. The idea in this instance is to form hydrides and metal-organic 

compounds. CH4 contributes to the etching process in two ways. The first is to form 

volatile metallo-organic compounds. The second is to create active radicals CnHm and 

ions CnHm^ such as CH3, CH2^ [321, 322] to act as polymer precursors for sidewall 
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polymerization and passivation. Additives and dilutants such as Argon [319J or 

Nitrogen [323J are also often used to help the plasma etching process. They provide 

additional ions which help to stabilise the plasma and prevent over polymerization at 

the etched surface. 

Thus, there are a number of features in the selection of the etch gas mix that 

have to be balanced to attain the desired etch rate, selectivity, and anisotropy. With the 

availability of Ar, O2, CHF3, CH4 and H2 in the RIE and ICP plasma etching systems 

and the versatility of these gases, the etching study was conducted around them. 

4.2 Plasma etching study of Tellurium oxide and chalcogenide glasses 

As discussed so far, the properties of tellurites are well known and extensively exploited 

in the fields of acousto-optic devices,[ 103J fibre based optical amplification,[74, 215, 

324, 325) and non-linear optical processing [78, 180, 232J. However, planar tellurite 

devices have, until now, proven to be rather problematic. There have been a number of 

reports[78, 79, 81, 83, 247, 248, 253, 257, 326, 327] of planar waveguides fabricated in 

tellurite glasses using techniques such as UV direct writing, [78, 79] femtosecond laser 

direct writing, [81, 247, 248] ion exchange, [83, 253, 326] ion implantation, [327] and 

sputter etching [257]. Whilst some of these methods have realized small channel 

waveguides, propagation losses were high (lowest reported loss of 1.3dB/cm[78]) and 

there are no reports of losses even approaching 0.5dB/cm, about the highest allowable 

value for useful linear or non-linear optical integrated devices. The best reported result 

using plasma etching was 6.3dB/cm[257]. Hence, to date no high quality plasma 

etching process has been demonstrated for tellurite materials. 

4,2.1 Equipment: ICP and RIE plasma systems 

All of the etching work was performed on either an ICP system (PlasmaLab 100 from 

Oxford Instruments) or a parallel plate RIE system (PlasmaLab 80 from Oxford 

Instruments). The schematic configurations of both machines are shown on Figure 4.2. 

The ICP system had an exchange chamber and sample chamber which were pumped 

separately. The chamber pressure was maintained by a turbomolecular pump (Alcatel 

ACTIOOOT) with 900L/s pumping speed in conjunction with a position controlled gate 

value acting as an automatic pressure controller. The base pressure was around -2x10'^ 

Torr and the system can pump up to lOOsccm of gas and still maintain 8mT pressure. 
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T h e m a x i m u m permiss ib le opera t ing pressure is lOOmT but in pract ise the sys tem had 

p r o b l e m s stabi l is ing that high pressure. Etch gas flows were control led by individual 

thermal mass flow control lers (MFCs) . T h e induct ion coils that sur rounded the source 

tube were driven at 1 3 . 5 6 M H z by a separate 3 k W R F power source. The w a f e r was held 

in p lace by a mechan ica l c l amp and Hel ium was used as a heat t ransfer m e d i u m 

be tween the w a f e r and the lower e lectrode. T h e lower e lect rode itself was water cooled 

and could be t empera tu re control led be tween 10"C and 90°C . The etch rate of 

t ransparent thin f i lms was moni tored by an in-situ laser in ter ferometer opera t ing at 

6 7 7 n m . At the beg inn ing of this work , there were only O2, Ar, C H F 3 and C F 4 gases 

connec ted to the ICP sys tem. 

T h e RIE sys tem was qual i ta t ively s imilar to the ICP system in design and 

implementa t ion , but lacked in-situ e tching rate moni tor ing and wafe r cool ing. T h e RIE, 

howeve r , had C H 4 and H2 gases avai lable at the beginning of the project . There fore , it 

w a s used as the main mach ine for the e tching studies in this project . 

Figure 4.2: Configuration of a) ICP and b) RIE plasma etching systems 

4.2.2 T e 0 2 film preparation and photolithography 

Pure TeOa f i lms were deposi ted us ing react ive sputtering of Te l lur ium metal in an 

A r g o n / O x y g e n mix ture as descr ibed in Chapte r 3. The o p t i m u m sputter ing condi t ions 

fo r the s to ichiometr ic state were with a pressure of SmTorr , an O x y g e n flow of 6 .4sccm, 

an A r g o n flow of 8 .6sccm, and an R F p o w e r of I SOW. Fi lms were deposi ted at 1.8|am 
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th ickness on < 1 0 0 > or iented lOOmm silicon wafe r s with 2 | jm of thermal ox ide as a 

b o t t o m c ladding . T h e re f rac t ive index of the as depos i ted f i lms was measured to be 2 .08 

(wi th in 0 .03 of that of bulk a m o r p h o u s T e 0 2 ) at 1550nm. An etch mask was then 

pa t te rned us ing s tandard M i n e contact pho to l i thography methods ut i l izing ~0.9)im thick 

Clar ian t A Z 701 M i R photores is t and ~ 1 5 0 n m thick Brewer Science X H R i C - 1 6 bo t tom 

anti re f lec t ive coat ing ( B A R C ) . T h e B A R C layer also crucial ly acted as a protect ive 

layer dur ing the photores is t deve lopmen t process to avoid wet e tching of the f i lm [256-

258J. N o m i n a l wavegu ide wid ths were 1, 2, 3 and 4 | jm . Photoresis t coat ing and 

d e v e l o p m e n t was carr ied out in an S V G 8600 series track to ensure repeatabil i ty, and 

resist exposure was under taken in a Karl Suss M A - 6 with 3 5 0 W mercury arc l amp 

f i l tered to provide jus t the 3 6 5 n m i-line emiss ion . Before e tching the TeOo structures, 

the B A R C layer was r e m o v e d by expos ing the wafe r to an Oxygen p lasma using the 

ICP sys tem set at 2 0 0 W ICP power , 2 0 W forward power , lOmTorr pressure and 

3 0 s c c m O x y g e n gas flow. This was known f r o m previous work to result in vertical 

e tch ing of the B A R C fi lm [328, 329]. T h e achieved structure is shown on Figure 4.3. 

T h e b o w l i n g e f fec t in the B A R C layer is due to the ef fec t of c leaving. T h e wafe r was 

c leaved into small p ieces of - I x l c m ^ for e tching studies. The small pieces were 

a t tached to sil icon wa fe r s us ing vacuum grease for better thermal contact . 
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Figure 4.3: SEM image of a lithographed photoresist mask on top of a thin layer of 

BARC above a Te02 film on thermal oxide. 
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4.2.3 Physical etching in Ar plasma 

The first attempt to etch Te02 was with a non-reactive Argon sputter etching process, 

motivated by the fact that it is simple and has been reported to give relatively low 

surface roughness on Tellurium oxide waveguides [2481. The operating condition of the 

ICP was as laid out in Table 4.1. An etched depth of 800nm was achieved in around 

13mins. The waveguide profile exhibited relatively vertical sidewalls with trenches on 

both sides due to ion reflections off the sloped sidewalls (Figure 4.4). This profile is 

typical of physically etched waveguides [313]. The physical sputtering process occurs 

purely through momentum transfer where the atoms on the film surface are knocked out 

by the impinging flux of ions. The process left the side walls of the waveguide very 

rough under even in low resolution electron microscopic imaging. The level of sidewall 

roughness was considered far too high for low loss propagation in an optical waveguide 

given the large index contrast of Tellurium oxide, and so attention was turned to 

reactive processes where control of the sidewall morphology could be attempted. 

Table 4.1 Ar plasma etching of T C O T waveguide in ICP machine 

Parameter Values 

Pressure 5mTorr 

Ar Flow lOOsccm 

ICP power 500W 

Table power 200W 

Rate 60nm/min 
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Figure 4.4: SEM image of etched TeO, waveguide using dry physical etching with 

Ar plasma 

4.2.4 CHF3 based etching of TeOz 

Halogen containing gases such as CHF3 and CF4 have been used for etching a number 

of materials [306], and of particular relevance to the current study have demonstrated 

low loss waveguiding in silica [330], silicon nitride [306] and even in high index 

contrast chalcogenide glass waveguides [328]. Plasmas from these gases produce active 

fluorocarbon and Fluorine radicals. The Fluorine radical reacts with many compounds 

to form volatile products [85]. The CFx (x=l,2,3) fluorocarbon radicals, especially CF2, 

form polymer which is deposited on the sidewalls to passivate the waveguide structure 

producing vertical sidewalls [331]. Therefore, etching of a Te02 film was attempted 

using the standard oxide etch recipe for the ICP system using a gas mix of CHF3 and Ar 

with the conditions tabulated in Table 4.2. This recipe produces smooth sidewalls with a 

positive slope angle exceeding 80 degrees in silica, with an etch rate of about 35nm/min 

[330]. The etch rate monitor indicated the etch rate at typically between 50-60nm/min 

with Tellurium dioxide. 

The SEM image of the etched surface after 15mins is shown in Figure 4.5. 

Beside the clear visibility of a two layer structure of TeOi underneath and the 

photoresist layer on top, the side walls of the waveguide structure are vertical and 

smooth but badly corrugated. There are also regions far from the waveguide with 
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significant columnar growth. The structure has the appearance that something has 

grown on the outside of the mask and the etched waveguide. Considering the fluoride 

compounds of Tellurium, Tellurium hexafluoride-TeF6 is a volatile compound, but 

Tellurium tetratluoride-TeF4, which has melting point and boiling point at 129°C and 

195°C [85], respectively, is not volatile at the set table temperature of 20°C . This 

results in re-deposition and micromasking making the side walls rough and forming 

col umns on the surface. Other halogen compounds of Tellurium also have melting 

points at elevated temperature. In the particular case of TeF4, it might have been 

possible to overcome the lack of inherent volatility by raising the table temperature to 

the maximum 90C, but this also comes at a price in terms of increased chemical (ie 

isotropic) etching. In the light of this, the inherent unsuitability of other halogen based 

plasmas, and the corrosive nature of halogen based etchants and their environmental 

unfriendliness, a move to another etch chemistry was decided upon. 

Table 4.2 Ar and CHF, plasma etching of TeO: waveguide. 

Parameter Values 

Pressure 30mTorr 

Ar Flow SOsccm 

CHF3 flow SOsccm 

ICP power OW 

FW power 200W 

Rate 55nm/min 
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Figure 4.5: SEM image of Te02 waveguide after etciiing by CHF, and Ar plasma 

4.2.5 Hj /CHj /Ar plasma etching of Te02 

The idea behind H2 and CH4 based etching is to form volatile hydrides and metallo-

organic compounds. The exhaust products of RIE using H2 and CH4 are easier to handle, 

less toxic, less corrosive and more environmentally friendly than halocarbon gases, 

once scrubbed likely by combustion. Hydrogen/Methane gas mixes have been used for 

a range of semiconducting compounds such as groups III-V [317-319], II-VI [315, 316, 

332], IV-VI [320] and Oxides [333]. CH4 contributes to the etching process in two ways. 

The first is to form volatile metal-organic compounds. The second is to create active 

radicals CnHm and ions CnHm"̂  such as CH3, CHj^ [321, 322, 334]. These very active 

species can also react with each other to form polymers and help to passivate the 

sidewalls of the masked areas and increase the selectivity and anisotropy of the etching 

process. The combination of Tellurium oxide with highly reactive hydrogen and 

methane radicals form all volatile compounds under vacuum and plasma such as 

Tellurium hydride-TeH2 [335], dimethyl tellurite-Te(CH3)2 [85] and water. Some of the 

possible chemical reactions between the film and the plasma are [318, 320]: 
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T e 0 2 + 3 H 2 ^ TeH2 +2H2O (4.1) 

T e 0 2 + 2 H + 2 H 2 ^ TeH2 +2H2O (4.2) 

Te02+ 1 0H+2CH3-> TeH2 +4H20+Te(CH3)2 or (4.3) 

Te02+ 4H+3H2+2CH3^ TcHj +4H20+Te(CH3)2 (4.4) 

The reactions (4.1)-(4.4) are just a small sample of the possible reactions that 

can occur on the surface of the films due to the fact that there a large number of radical 

species of Hydrogen and Methane generated in the plasma. Argon is added to the mix to 

stabilize the plasma as it can add more electrons to the plasma mix [305]. The Argon 

ions are also accelerated under the bias electric field toward the film to clean up 

polymers on the etched horizontal surfaces. 

4.2.6 Design of experiment: screening 

Since there are a nontrivial number of RIE parameters that can be varied, the design of 

experiments (DOE) method was used to screen the etch characteristics of the Te02 in 

H2, CH4, and Ar plasma and to determine the best condition. The linear Plackett-

Burman design [336J was applied to 5 factors, namely pressure, Ar flow, H2 flow, CH4 

flow and RF power. Table 4.3 shows the detailed parameters of 14 randomized runs 

including 2 repeats for consistency monitoring. The etching runs were performed using 

an Oxford PlasmaLab 80 RIE system. The lower and upper limits used for the variables 

were 15/30mTorr for pressure, 30/60sccm for Ar flow, 10/30sccm for H2 flow, 

5/20sccm for CH4 flow and 200/300W for RF power. The limits were chosen based on 

the constraints of pumping speed and the plasma operating condition. Each sample of 

around 1cm x 1cm was etched for 3 minutes in a separate run. 
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Table 4.3: Experiment design for TeOj etching using RIE with H2, CH4, and Ar. 

The response 0-3 corresponds to from bad to very good etch. 

Exp. # Press. 
,mTorr 

Ar, 
seem 

H2. 
seem 

CH4, 
seem 

Power, 
\N 

DC b\as 
voltage (V) 

Observation Response 

1 30 60 30 5 300 185 Rough, damaged 0 
2 30 30 10 5 300 196 Rough, resist damaged 1 
3 30 60 10 20 300 192 Polymer build up 0 
4 15 60 30 5 300 179 Etched, resist damaged 2 
5 22.5 45 20 12.5 250 165 polymer build up 1 
6 22.5 45 20 12.5 250 166 Polymer build up 0 
7 30 30 30 20 200 139 polymer build up 1 
8 30 30 30 5 200 143 Good etch 3 
9 15 60 30 20 200 140 Etched, resist damaged 1 
10 30 60 10 20 200 150 Polymer build up 0 
11 15 30 30 20 300 174 Etched, resist damaged 2 
12 15 30 10 20 300 181 Polymer build up 1 
13 15 30 10 5 200 149 Etched, resist damaged 1 
14 15 60 10 5 200 152 Etched, polymer build up 1 

A scanning electron microscope (SEM), Hitachi S4300, was used to observe the 

profile and the morphology of the etched waveguides. Quantitative responses were 

scored based on the observation of the SEM images as follows: 0 for no etching or a lot 

of polymerization, 1 for rough etching, 2 for better etching and 3 for very good etching. 

Some SEM images of the waveguides with the etching conditions of Table 4.3 are 

shown on Figure 4.6. Clearly, the quality of the etching processes varied significantly 

between different conditions. The results a-d respectively show badly damaged 

photoresist with rough etching, damaged resist with some etching, a lot of polymer 

build up with no etching and good photoresist remaining with good etched surfaces. The 

response of the etching quality varies nonlinearly significantly with different parameters. 

The last column shows the values of the responses for each etching condition. However, 

the applied DoE only works with linear formalism. The regression fitting can be written 

as: 

Response-bo+bi*Press,m+h2*Ar.sccm+b3*H2,sccm+b4*CH4,sccm+hs*power,W (4 .5) 
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Figure 4.6: Some SEMs of the DOE screening runs; from a) to d) corresponding to 

Experiment 2, 3, 4 and 8 on Table 4.3, respectively; a) and c) show significant 

photoresist damage and some degree of Te02 etching; b) shows polymer build up; 

and d) shows good etch. 

The fitting coefficients b,, {n=0..5) and their standard errors are shown in Table 

4.4. They indicate that the best etching conditions correspond to lower pressure, lower 

Ar flow, higher H2 flow, lower CH4 flow and lower power. The screening design only 

uses a linear approximation, therefore, there are some limitations. The pressure cannot 

be too low as the plasma will stop. It is also limited by the capability of the 

turbomolecular pump. Too low CH4 flow will produce no polymer and hence no 

sidewall passivation resulting in very fast etching and large undercutting the 

waveguides. Furthermore, the lower limit RF power is also capped because the plasma 

can only be maintained when the power is above a certain limit. Too low RF power also 

results in very low etching rate. Therefore, the screening DOE test gives only a rough 

picture of the dependence of etching quality against the tested parameters within the 

tested range and extrapolation cannot be relied upon. 
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Table 4.4: Statistical analysis for the linear screening of the Table 4 .3 

Coefficient Average Value Standard Error 
bo 3.0 1.5 
b, -0.033 0.028 
bs -0.027 0.014 
b3 0.042 0.021 
b4 -0.033 0.028 
bs -0.002 0.004 

The response function is highly nonlinear, therefore, Unear fitting is not entirely 
suitable as indicated by the standard errors in Table 4.4. Despite that, the coarse 
screening of the RIE parameters indicated that a suitable condition might correspond to 
30mT pressure, 30sccm Ar, 30sccm Hj, 5sccm CH4, and 200W RF. However, since the 
response was qualitative further investigation was required. 

4.2.7 Design of experiment: fine tuning 
Further investigation of the etching conditions around experiment 8 on Table 4.3 was 
undertaken. Since the largest coefficients in Table 4.4 are those of the CH4 flow and 
pressure, two sets of samples with dimension of around 1cm by 1cm were etched: one 
with varying CH4 flow from 3sccm to lOsccm while keeping all other parameters fixed 
as on Table 4.5 (5mins etching time, 30mTorr pressure, 30sccm Ar, 30sccm H2, and 
200W RF power); another set with varying pressure from 20mTorr to SOmTorr while 
keeping all other parameters fixed as on Table 4.6 (5mins etching time, 30sccm Ar, 
30sccm H2, 5sccm CH4, and 200W RF power). The etched samples were then imaged 
using the Hitachi S4300 electron microscope. 

Figure 4.7 shows the SEM images of the etched samples for varying CH4 flows. 
In all cases, the etched surfaces are clean and smooth. The differences in the four 
images are in the etched thickness and the amount of undercut. The waveguide in 
Figure 4.7 b) corresponds to 5sscm CH4 flow and shows no undercut. The SEM images 
of the etched samples for varying power input to the sample table are shown on Figure 
4.8. One obvious trend from these images is that the degree of isotropic etching 
increases with the chamber pressure. Furthermore, the roughness both on the horizontal 
area and sidewalls appears increased. 



4.2 Plasma etching study of Tellurium oxide and chalcogenide glasses 79 

Table 4.5: Fine tuning of etciiing study with RIE machine, varying CH4 flow 

Parameters 
Pressure (mTorr) 

Ar flow (seem) 
H2 flow (seem) 

CH4 flow (seem) 
Power (W) 

Values 
30 
30 
30 

3, 5, 7,10 
200 

c) M a M f f m r i i f P f l i i W i ^ i ' ' d) i 

Figure 4.7: Effec t of varying C H 4 flow on the etched profile. The etching 

parameters (as on Table 4.5) were: 5mins etching time, SOmTorr pressure, 30sccm 

Ar f low, 30sccm H2 flow, and 2 0 0 W R F power. The flows of CH4 were varied: a) 

3, b) 5, c) 7, d) lOsccm. The sample d) has bad cleaving and produce chipping on 

the facet. 

The Te02 film etch rate, photoresist etch rate and degree of isotropic etching 

{IE=dt/dv) were chosen as the response functions. These response functions are plotted 

in Figure 4.9. Since CH4 can form polymer which not only passivates the vertical side 

walls but even builds up on the photoresist layer, then the photoresist etching rate can 

become slightly negative with large amounts of CH4 in the chamber leading to negative 

selectivity as shown on Figure 4.9 a) and c). The Te02 etching rate was generally 
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greater than lOOnm/min for all conditions. There were dips in the etching rate and 
undercut with varying CH4f low. The opt imum point for low isotropic etching was with 
5sccm CH4 f low. With increasing chamber pressure, the etching rate increased but the 
isotropic etching got worse. The opt imum operating pressure was at 30mTorr. It 
therefore can be concluded that the best profile has been obtained with etching 
condition of 30mTorr pressure, 30sccm Ar, 30sccm H2, 5sccm CH4, and 200W RF 
power. 

The reactive etching mechanism is a complex process that involves the 
interaction of the plasma with the substrate and the chamber setting. However, the 
etching mechanism of a particular material can be deduced f rom its etching rate and 
profile dependence on the process parameters. As the pressure increases, the etching 
rate of the Te02 surface increases monotonically but at the same time, the etching 
becomes more isotropic. An increase in the gas pressure without power increase 
normally leads to an increase in the radical density but a decrease in the ion density 
[328J. This means that the predominant etchant in the chamber are radicals. 

One the other hand, the dependence of etching rate and profile on CH4 f low are 
highly nonlinear with a minimum in their representing curves as on Figure 4.9 a) and b). 
This etch rate dependence on CH4 f low has also been seen previously [337]. The 
sidewall becomes vertical with the CH4 f low at 5sccm indicating highly anisotropic 
etching. This is an indication that the side wall is well passivated while the flat surface 
is still etched away at a reduced rate. The precursors from the CH4 initial gas have now 
become the polymer on the side wall and the proportion of CHx radicals as etchant are 
reduced. At low CH4 f lows, the density of hydrogen radicals and ions are higher leading 
to higher etching rate. At high CH4 f lows, the CHx radicals ' density increases to 
compensate for the decrease in hydrogen radicals and maintain a higher etch rate. 
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Table 4.6: Fine tuning of etching study with RIE machine, varying processing 
pressure 

Parameters Values 
Pressure (mlorr) 20, 30, 50, 80 

Ar flow (seem) 30 
H2 flow (seem) 30 

CH4 flow (seem) 5 
Power (W) 200 

I B M i i i i W ^ M i l d) I 
Figure 4.8: Effect of varying pressure on the etched profile. The etching parameters 
(as in Table 4.6) were: 5mins etching time, 5sccm CH4 flow, 30sccm Ar flow, 
30sccm H2 flow, and 200W RF power. The pressure was varied: a) 20, b) 30, c) 50, 
d) SOsccm. The sample a) had bad cleaving and produced chipping on the facet. 
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Figure 4.9: Response functions against the varied parameters; a) etching rates of 

TeOi and photoresist at various CH4 f lows b) degree of isotropic etching at various 

CH4 f l ows c) etching rates of T e 0 2 and photoresist at various pressures and d) 

degree of isotropic etching at various pressures. 

4.2.8 Hi/CHVAr plasma etching of chalcogenide glasses 

Chalcogenide glasses contain Chalcogen elements (S, Se or Te) as substantial 

components typically covalently bonded to network forming elements such as Ge, As, 

Sb, or Si. These glasses have significant applications ranging from non-volatile random 

access memories [338] to integrated nonlinear optical devices [53, 339] due to their 

high optical nonlinearity. Chalcogenides have a unique set of properties among optical 

glasses that make them an excellent choice for mid-infrared technology and nonlinear 

optics. The current etching technology to make devices from these materials uses 

halocarbon gases such as CHF3 [329] or CF4.[340]. Halogen containing gases are 

considered increasingly harmful to the environment. Therefore, an alternative option 

which uses more friendly and easier to handle gases would be a big advantage for large 

scale industrial applications involving these materials. 
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A 1 .80 | jm thick Geii.5As2i.5Se67 thin f i lm was deposi ted us ing thermal 

evapora t ion s imilar to Javis et ai, 2007 [341 J. T h e f i lm was then pat terned with the 

same s teps as the T e 0 2 f i lms . T h e s a m e etch condi t ion as in the o p t i m u m case for T e 0 2 

was used to etch a pat terned Gei i.5As2i.5Se67 cha lcogen ide glass f i lm. T h e f i lm was 

e tched fo r 25 minutes . T h e observed etch rate w a s 4 0 n m / m i n . The S E M image of the 

e tched w a v e g u i d e is shown on Figure 4 .10 a). T h e th ickness of the photores is t layer 

a f te r the e tch ing process is still 0 . 4 1 | j m leading to a select ivi ty of 1/2.5. Again , the 

e tched w a v e g u i d e clearly has smoo th sur faces and qui te vertical s idewal l s though in 

contras t to the T e 0 2 resul ts they have a slight pos i t ive angle. There is a lso a slight 

t renching e f fec t on the side of the wavegu ide indicat ing that the physical e tching plays 

an impor tan t role at this e tching condi t ion . The relat ively s low etching rate of 4 0 n m / m i n 

also s h o w s the low chemica l e tching componen t . There fore , fur ther change to the 

current e tch ing recipe can potent ia l ly improve the e tching rate and the sidewall 

vert icali ty. 

In contrast to the above result , a pat terned sample of thermal ly evapora ted AS2S3 

f i lm e tched with the same recipe resulted in very rough sur face (Figure 4 . 1 0 b). The 

etch rate in this case was ~ 1 2 0 n m / m i n , which is s ignif icant ly higher than e tching rate of 

Geii.5As2i.5Se67- It is suspected that the rapid fo rmat ion of H2S may have resul ted in 

poor su r face morpho logy or there is a non-volat i le As meta l lo-organic c o m p o u n d . 

Fur ther s tudy by chang ing the key parameters such as reduct ion of Hydrogen content to 

s low d o w n the e tching rate might lead to better qual i ty e tched surfaces . 

P 

a ) H i r b)l 

Figure 4.10: a) Geii.5As2i.5Se67 and b) AS2S3 glass thin films using RIE with 

H^/CHVAr plasma mix. 
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4.2.9 Etching of full wafers of TeOz 

The above studies were performed on small sample sizes of around However, 

when a full 4" wafer is etched, there is loading effect due to the significant depletion of 

the etching species due to the consumption during the etching process. Mogab et ai, 

1977 [342] analysed the relationship between the etch rate, R, and area, A, of wafer 

loaded and found the expression |343J: 

(4^6, 
X^KBtA 

where G is the generation rate of active species, B is the reaction rate constant, r i s the 

lifetime of the active species in the absence of etchable material. A' is a constant for a 

given material and reactor geometry and A is the surface area of the etchable material. 

For a large wafer, the Equation (4.6) approximately becomes R = G/ KA. The etch rate 

varies inversely with the wafer loading area. A. 

Therefore, it was expected that the etch rate would be significantly lower when a 

full wafer was being etched. To quantify this change, a patterned full wafer was etched 

using the optimum recipes from the previous section. Since there was no in situ etching 

rate monitor in the Oxford PlasmaLab 80, the etch rate was measured from the pre and 

post etch thicknesses. After 16mins, the etched depth was 750nm, giving an etch rate of 

47nm/min. This value is about half of the value of the small sample etch rate. Therefore, 

for practical applications, where the etching depth is in order of a few hundred 

nanometres, the etching duration is still only a few minutes. 

The SEM images of an etched waveguide from the full 4" wafer are shown in 

Figure 4.11. Figure 4.11 a is as-etched Te02 whereas Figure 4 . l i b is after the exposure 

to the Oxygen plasma to remove polymers/photoresist. There are a number of features 

that are different to the small samples etched in Figures 4.6, 4.7 and 4.8 above. 

Firstly, the photoresist has become significantly thinner. This leads to the 

sidewall being divided into two parts, a near vertical section and a curve section above 

it. This structure is a clear indication that the photoresist has been attacked whereas it 

was barely etched when the samples were small. This effect can be explained by the fact 

that it is an oxide film that is being etched. The etching of large areas of oxides can give 

rise to the release of sufficient numbers of oxygen radicals [311] that the photoresist is 
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attacked by them during the etch. The selectivity has now been reduced significantly to 

roughly 1:1. 

Secondly, post etch the etched surface appears to have a large number of 

submicron particles sitting on the surface. The nature of these is uncertain but they were 

clearly removed after the Oxygen plasma. Despite those differences, the fabricated 

waveguides still have very high surface quality that should be suitable for low 

propagation loss optical waveguides. 

Figure 4. I I : Etching of Te02 wafer with 30mTorr pressure, 30sccm Ar, 30sccm 

H:, 5sccm CH4, and 200W RF power a) before Oxygen plasma, b) after Oxygen 

plasma. 

4.2.10 Etched surface characteristics 

a) Surface roughness 

After the Te02 etching process, the photoresist was removed by a standard Oxygen 

plasma (50sccm O2 flow, 200W forward table power, 500W ICP power, and 30mTorr 

chamber pressure). The etched surfaces were then imaged using two different 

techniques to determine the nanoscale properties: atomic force microscopy (AFM) and 

optical white light interferometry. A Veeco Nanoscope Ilia AFM was first used to scan 

the etched surface. Due to the low hardness of Te02 surfaces, the tapping mode was 

utilized. In this mode, the cantilever was driven at a frequency near one of the cantilever 

tips mechanical resonances at ~313kHz. As the cantilever is scanned across the sample 

surface, the interaction of the sample with it varies with the surface topography. 

Because the cantilever is oscillating at its mechanical resonance, the oscillation 

amplitude changes with sample surface topography. The measured root mean square 
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(RMS) roughness of an etched surface using this equipment was ().8nm calculated over 

a scanned area of 25|im^ as shown on Figure 12 b). This is a relatively small increase of 

the roughness from the un-etched sample which had a measured RMS roughness of 

0.3nm as shown on Figure 4.12 a). It is also clear that the spatial frequency components 

of the roughness are lower for the etched surface appearing to be moved from around 

0.5|j.m to the l-2)j.m range. 

a) " > "" b) 
Figure 4.12: AFM images of an a) un-etched surface RMS roughness of 0.3nm, z 

range 5nm and b) etched surface RMS roughness of 0.8nm, z range 11 nm. 

The alternative measurement was an optical interferometric profiler model 

Wyko NT9100 from Veeco. This technique is a noncontact, non-destructive 

measurement of surface profile using interference of broadband light and special 

objectives with buih in reference mirrors [344]. In this technique, a LED light source is 

split into two paths, one arm is used to probe the sample surface, one arm goes to a 

reference surface. The reflected beams are then combined to form an interference 

pattern. Due to the low coherence length of broadband light, interference is only 

obtained when the two paths are very nearly equal, typically within ±10}im which 

provides immediate height profiling capabilities. By monitoring the interference pattern 

as the objective lens is scanned in vertical direction, the surface profile is calculated to 

sub nanometre accuracy by fitting the interferogram. Figure 4.13 shows the result of a 

scan of the un-etched and etched Te02 surface. The scan area was 40x50|jm^ with 

resolution of 0.5|Lim. The RMS roughness was measured to be 0.8nm for etched surface 

compared to 0.3nm for un-etched surface. The two techniques are in good agreement 

with each other, and clearly there is insignificant attack of any grain structure in the film 
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or any other chemical roughening effect which imphes the etched sidewalls should also 

be smooth barring lithography limitations. 
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Figure 4.13: Optical profiler images of an a) unetched surface (RMS=0.3nm) and 

b) etched surface (RMS=0.8nm) magnifications X50 objective, X2 eye piece. 

b) X-ray photoelectron spectroscopy 

The etched surface was further studied under X-ray photoelectron spectroscopy (XPS). 

XPS involves irradiation of a sample under high vacuum by X-rays of known energy. 

This causes the photo-ejection of electrons f rom atoms near the surface. The emitted 

electrons have a kinetic energy Ek, which is given by: Ek=hv-Eb-0, where hv is the 

photon energy, Eb is the binding energy relative to the Fermi level of the solid, 0 is the 

work function and Eb is the binding energy of the electrons. XPS may involve the 

concurrent emission of photoelectrons and Auger electrons. XPS can probe the first few 

nanometres ( -5 -1 Onm) of the surface and give a significant amount of information such 

as identification of all elements (except H and He), molecular environment, bonding 

structures, depth profile (destructive measurement). 
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Two samples, one un-etched, the other etched, in the same condition under 

H2/CH3/Ar plasma as the previous section, were analysed. The film has composition 

O/Te of 2.20+0.05 measured by EDXA and RBS. The XPS composition analysis gives 

the films with the composition O/Te of 2.14+0.05. The XPS spectrum of Tellurium has 

the strongest peaks due to the 3d orbital. In general, binding energies decrease with 

formal oxidation state; for example, those reported for elemental Te 3d5/2 range is 

around 573.3 [286, 345J and 3d3/2 is at 583.5eV [286, 346] while values reported in the 

literature for 3d5/2 Tellurium oxides are 575.8-576.5eV for Te02, 576. leV for TeOs, and 

577. l e v for Te(OH)6 and the value for 3d3/2 for Tellurium oxide are 586.4eV for TeOj, 

587.7 for TeOs and 587.1 for Te(OH)6 [281, 286, 298, 346-348J. The Te 3d spectrum of 

the as-deposited (un-etched) sample is shown on Figure 4.14 a). It comprises a single 

doublet, with the 3d5/2 component at 576.8eV and 3d3/2 component at 587.3eV. It is 

confirmed that the Te atoms are all in binding states with Oxygen. 
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Figure 4.14: Te 3d XPS spectra of a) un-etched b) etched surfaces 

The Te 3d spectra of etched sample contain a second doublet at lower binding 

energy and of lower intensity (Figure 4.14 b). The 3d5/2 components of these are at 

576.9 and 573.8eV. The 3d3/2 components are at 587.3 and 584.2eV. The etched surface 

therefore contained both Te in pure form (Te-Te bond) and Te in oxide form (Te02 or 

TeOa). The relative contribution of the minor components to the overall area under the 

Te 3d spectrum is 21%. From the composition analysis, the Oxygen over total amount 

of Te ratio was 4.3. This indicates that the etched surface contains large amount of 

Oxygen. However, from the measurement, it is not conclusive which form the Oxygen 

is in, water, bonded Oxygen atoms or trapped O2. Despite this, the composition changes 

are confined to the surface of order of few nanometres, the affected layer can be 
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removed easily through a short Oxygen plasma etch. Thus the surfaces created by the 

etch process appear to be suitable for waveguide applications, and perhaps could even 

be functionalised in the future through OH groupings. 

43 Etching of Tellurium oxide with ICP machine 

At the latter stages of the project, the ICP machine had Methane and Hydrogen gas lines 

added to it. Therefore, the etching process for Tellurium oxide with 

Methane/Hydrogen/Ar was studied using ICP. As Equation 4.6 indicated, the etching 

rate and therefore etching process occurring inside an ICP machine is different from 

that inside the RIE machine due to the differences in chamber geometry, configuration 

of the plasma, and the sample cooling arrangements. In order to determine if this leads 

to a difference in the optical quality of the etched waveguide, ICP etching using some of 

the parameters from the successful RIE processes was trialled. From the full wafer 

etching experiments in the RIE machine, it is clear that products of oxide thin film 

etching lead to the photoresist layer also being etched due to the present of Oxygen 

inside the chamber. However, for most waveguide applications this is not a major 

concern with micron thick resists as the etch depth is usually below for rib or 

nanowire type waveguides, therefore, resist erosion may not be a limiting factor except 

in cutting the corner of the waveguide. 

A fundamental difference between RIE and ICP is the ion density control and 

the plasma location. As ICP can have much higher ion density than RIE, the etching 

rate can be much higher if needed. Another difference is in the location of the plasma 

centre (schematic in Figure 4.2). One of the obviously different characteristics of the 

two plasmas in the RIE and ICP is that the bias voltage in RIE is only around half of 

that in the ICP. The plasma in an ICP machine is located high above the sample 

therefore it can have higher degree of anisotropy at a given power and pressure. 

In the first instance, the same parameters that gave the best etching results using 

the REE chamber were used as a starting point. The best etching conditions were with 

30mTorr pressure, 30sccm Ar, 30sccm H2, 5sccm CH4, and 200W RF power. Initially 

small samples ~lcm^ were trialled. For the first series of experiments, the CH4 flows 

were varied from 3sccm to lOsccm whilst keeping all other parameters constant (see 

Table 4.7). Also, the ICP power was still set to zero because the etching rate was 
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a l ready suf f ic ien t ly h igh. A second series of exper iments was run varying the c h a m b e r 

pressure in the range lOmTorr to 3 0 m T o r r (see Table 4.8) with a CH4 f low of lOsccm. 

A lower pressure l imit of lOmTorr was chosen because this is jus t within the l imit of the 

p u m p capabi l i ty at the selected gas f lows . Similar response func t ions of e tching rates 

and aniso t ropy were chosen to the R I E s tudy. Figure 4 .15 s h o w s S E M images at three 

condi t ions of a) 3 sccm C H 4 f low at 30 mTor r pressure b) lOsccm C H 4 f low at 3 0 m T 

pressure c) lOmTorr pressure at lOsccm C H 4 . It is c lear f r o m the inspect ion that all 

condi t ions give high qual i ty e tched sur faces and all obta ined prof i les were undercut to 

s o m e degree . 

Table 4.7: Fine tuning etching study with ICP machine, varying CH4 flow 

Parameters Values 
Pressure 30mTorr 
Ar flow 30ssccm 
H2 flow 30sccm 

CH4 flow 3, 5, 7, lOsccm 
FW Power 200W 
ICP power OW 

Table 4.8: Fine tuning etching study with ICP machine, varying pressure 

Parameters Values 
Pressure 10, 20, SOmTorr 
Ar flow 30ssccm 
H2 flow 30sccm 

CH4 flow lOsccm 
FW Power 200W 
ICP Power OW 
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Increased CH4 and 
decreased pressure 

Decreased 
pressure 

Figure 4.15: Some SEM images of ICP DOE results a) 3sccm CH4 flow at 30mT 

pressure b) lOsccm CH4 flow at 30mT pressure c) lOmTorr pressure at lOsccm 

CH4. 

The response functions at various CH4 and pressures are shown on Figure 4.16 a) 

to d). While there are some similarities between these results and the RIE (Figure 4.9), 

the ICP etch behaviour was slightly different to the RIE machine. At the sample setting 

of lOsccm CH4, 30mTorr pressure, the ICP etching rate is 150nm/min while the RIE 

was at lOOnm/min. As the pressure increases, the Te02 etching rate raise sharply as was 

the case with the RIE. The TeOi etch rate doubles for a rise from I OmTorr to 30sccm. 

This is perhaps to be expected as there are more ions and radicals in the chamber as the 

pressure increases. As more CH4 was added to the chamber, the Te02 etching rate 

reduced slightly, but remained relatively high (more than 150nm/min) indicating 

sufficient ion bombardment was occurring to clear the polymer deposition on horizontal 

surfaces or the CHx radicals are the main etchants. 
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Figure 4.16: ICP DOE results a) TeO. and resist etch rate vs. CH4 flow at 30mT 

pressure b) Etch Anisotropy vs. CH4 flow at 3()mT pressure c) TeO: at resist etch 

rate vs. pressure at lOsccm CH4 flow and d) Etch anisotropy vs. pressure at lOsccm 

CH4 flow. Polymer build up on top of the mask leads to negative photoresist etching 

rate. 

The etch rate of photo resist follows the etch rate of Te02. This is due to the fact 

that Oxygen from the film has now formed active species to etch the resist away. With a 

very high rate of Oxygen coming into the plasma from the film, the Oxygen species are 

not removed fast enough by the pump. At high Te02 rates, the ratio of Oxygen species 

over other gases is high therefore the photoresist etching rate increases. 

The etch anisotropy was relatively goods under all conditions tested. Both trials 

showed a local minimum in the anisotropy with the highest anisotropy coming at the 

highest trailed CH4 flow and pressure. The local minimum is believed to result from a 

trade off between two processes in each case, namely the polymerization process/Te02 

etch rate for the CH4 based study, and the ion directionality/polymerization process for 

the pressure study. At low CH4 flow, anisotropy is high due to the high Te02 etch rate. 

At high CH4 flow, the anisotropy is increased again because of increasing passivation 

due to polymer formation. Similarly with low pressure, anisotropy is enhanced due to 

increased directionality of active species whilst at high pressure, the etch rate is higher 
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leading to more anisotropy. The results indicated that operating at lOsccm CH4 and 

30mT were the best option for etching Te02 in RIE mode in the ICP system. 

4.4 Conclusion 

High quality RIE etching process using Hydrogen, Methane and Argon has been 

demonstrated. Plasma etching of TeOz involved RIE and ICP machines are studied in 

details. The quality of etching in the two systems is slightly different from each other. 

The RIE machine gives better surface quality but the lack of etch rate monitor leads to 

the use of ICP machine in process that requires precise etch rate control. The outcome 

of this study is recipes for etching high optical quality Te02 waveguides. The etch 

process is also shown to be highly suitable for chalcogenide glass thin films. 
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Chapter 5: 
Characterisation of Te02 

waveguides 
This chapter investigates the linear and nonlinear properties of Te02 waveguides 

fabricated by RIE. First, modal simulations were performed to obtain some important 

properties of the waveguides such as effective indices, dispersion, mode area, etc. Then, 

the attenuation of the fabricated waveguides was measured by several techniques 

including non-destructive mode overlap estimation and destructive cutback methods. 

Nonlinear experiments were also performed. The self-phase modulation simulation of 

the experiment gave the nonlinear refractive index of sputtered Te02 

at65 X , which is - 2 5 times that of silica. A four-wave mixing experiment 

also gave significant signal conversion to idler when pumped at 1.55|am in a 3|jm wide 

waveguide. 

5.1 Waveguide geometry and modelling method 

5.1.1 Waveguide geometry 

The basic element of integrated photonic technology is the optical waveguide. 

Waveguiding can be achieved by using a number of configurations to guide light in a 

particular direction. In this work, the main purpose is to fabricate high quality rib 

waveguides through a top down approach using thin film deposition, lithography, and 

plasma etching. Rib waveguides are the most commonly used geometry for 

semiconductor optical waveguides and for many dielectric nonlinear optical waveguides 

[1]. Rib geometry waveguides are important elements in integrated optics as they allow 

for potentially single moded operation with waveguides several microns wide in 

structures with high index contrast. The high index core is defined by a width W, etched 

depth h and total height H as shown on Figure 5.1. In this geometry, the confinement is 

due to total internal reflection not only from the upper and lower interface but also at 

the effective lateral boundaries. 
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h' 
'1 Te02 ' H 
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Figure 5.1: Ridge waveguide of Tellurium Oxide with SiO^ lower cladding and air 

or inorganic polymer glass IPG™ upper cladding 

5.1.2 Maxwell equation 

Assuming that the light is propagating in a purely dielectric medium (no conductivity, 

no magnetic effects, isotropic and linear), then Maxell 's equations can be reduced to [IJ: 

VxH^ey- — 
dt 

where E and H are the electric and magnetic fields respectively, /jq is the free space 

permeability, £b is the permittivity of the free space and n is the refractive index of the 

medium where the light propagates. If the medium is optically inhomogeneous its 

properties are position-dependent, n-n(r). The wave equations for E and H can be 

derived as [1].: 

V^E + V 
n' 

Vn-E 
(5.2) 

n dt 

These two full vectorial equations generally describe the all coupled components 

of electric and magnetic fields. Each component cannot be reduced to a scalar equation. 

Furthermore, because of non cylindrical symmetry, the optical mode of the waveguide 

cannot be solved analytically. Instead, numerical techniques must be used to solve for 

the eigenvalues of the eigenmode equation which describes the modes of propagation of 

the waveguide. 



5. / Waveguide geometry and modelling method 96 

5.1.3 Simulation techniques 

Optical waveguide mode solving is a key task in the area of integrated optics. The 

modal analysis gives information such as the number of modes supported by the 

structure, the propagation constants, modal intensity distribution and via overlap 

integrals, the modal excitation in response to a given input field. There are several 

techniques commonly used to compute the electromagnetic modes of waveguides 

including finite element methods, mode-matching techniques, methods of lines, beam 

propagation method and finite difference methods [349]. 

Mode solvers may be classified as scalar wave equation solvers and vector wave 

equation solvers, with semi-vectorial being considered as a part scalar method. For 

many waveguides, the refractive index varies by only a small fraction across the 

waveguide cross-section. The index at the core where the light propagation occurs is 

only slightly higher than that of the cladding region. These types of waveguides are 

classified as weakly-guiding waveguides. Modal analysis can be then greatly simplified 

for these waveguides by replacing the full-vector eigenmode equation with a simple 

scalar equation for single field component. 

For high index contrast waveguides, the full vector finite difference (FDM) and 

finite element (FEM) methods are the best known and most accurate [137, 349]. The 

FEM is particularly useful when analysing inhomogeneous core (graded-index) planar 

waveguides whereas FDM is easier to implement and can be used to effectively 

simulate wave propagation in homogenous core (step-index) waveguides. 

a) The finite difference method 

From Maxwell 's equations, the wave equation in a uniform region can bed reduced to 

[349]: 

+ = Q (5.3) 

where the time harmonic variation of is included in kl which is equal to co^e^jn^ and 

e(x,y) is a function describing the relative dielectric constant over the cross-section of 

the waveguide. 

In the finite difference method, the domain of the analysis is discretised into a 

rectangular grid of points, which might be of constant or variable spacing. A scalar 

formulation for a quasi-TE mode may be written in term of E^ or the H^ component. The 
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advantage of the H- component analysis is that no boundary conditions are required to 

be set on any of the dielectric interfaces since it is continuous across them. A vector 

formulation involves both and Ey or H^ and and the two components of the wave 

equation have to be solved simultaneously [350J. 

b) The finite elements method 

The finite-element method uses a variational formulation for solution of waveguide 

problems. For dielectric waveguides, the usual approach is to use all three components 

of the H or the E vector. The advantage of using the three components of H is that no 

boundary conditions need to be set except at the exterior boundary. From Maxwell 's 

equations [349j: 

V x £ ; \ V x H ) ^ k l H (5.4) 

leads to a functional of form: 

E = \{VxH)\£;\yxH)-klH.H' \dxdy (5.5) 

In the finite element method, an approximate function is used as a trial function 

for an expansion of H. If the trial function coefficients are then it is required that 

dE / 3a, = 0 . The trial function must span the whole domain and satisfy the exterior 

boundary conditions. The full-wave three-vector method may suffer from the 

appearance of spurious, nonphysical modes in its solution [351]. There are a number of 

schemes to overcome this difficulty such as one proposed by Abid et ai, 1993 [351]. 

5.1.4 Effective mode area and mode overlap calculation 

Once the modal properties of the waveguide are available from the modal calculation, 

several important parameters can be evaluated. Effective mode area is important for 

nonlinear optics calculations and active devices as it influences the strength of 

interaction of light with the waveguide structure and the material. The mode area is 

often evaluated using the expression [137]: 

\E{x,y)\^ xdy l{x,y)dxdy 

E{x,y) dxdy l{x,y)\' dxdy 
(5.6) 

where E(x,y) is the electric field amplitude, l{x,y) is the intensity profile. This evaluation 
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of mode overlap is accurate for scalar scenarios, which is a good approximation for low 

index contrast waveguides such as optical fibres. For a Gaussian beam, A^j^ = nor , O) is 

the mode radius at l/e^ in intensity. However, a full vector variant should be used for 

the case of high index contrast and tightly confined structures such as nanowires [352J. 

The mode overlap calculation estimates the amount of light launched into or 

collected out of the waveguide by another structure with its own defined mode field. 

This parameter can be modelled using an overlap integral or by the beam propagation 

method [353]. The beam propagation method takes much longer to calculate so the 

overlap integral is usually used as a quick and easy method to estimate this coupling 

parameter. 

Assuming the fields are approximated to be scalar quantities, the coupling 

efficiency C can be expressed by the overlap integral between the fields E^. of the 

waveguide mode and E^ of the external field [354J: 

2 

E^^.{x,y)E/{x, y)dxdy 
C = 2 f 2 

E^Xx,y) dxdy- EAx,y) dxdy 
(5.7) 

Again, this calculation is only applicable for scalar approximation, the full 

vector versions are significantly complicated. With the full vector version, all 

components of the field need to be taken into account as well as the number of modes 

that are bound [353J. 

5.1.5 Tellurium oxide waveguide 

Very high quality Te02 waveguides were successfully fabricated by CW^HilAx plasma 

using an RIE etcher as described in Chapter 4, Section 4.2. A full 4" (100mm) wafer of 

Te02 (coded Te02_12) with thickness of 1.81|jm was patterned and etched. The etched 

waveguide had a O.Spm etch depth. Post etch resist removal was accomplished by an 

oxygen plasma strip. The waveguides were then clad with a ISpm thick film of UV 

cured inorganic polymer glass (RPO Pty Ltd, IPG™) which has a refractive index of 

1.51 at 1550nm. End facets were then prepared on the waveguides by hand cleaving the 

silicon substrate with a diamond scriber. The resulting waveguide chips were 

approximately 6cm wide and 7.8cm long. 



5.1 Waveguide geometry and modelling method 99 

The refractive index and the thickness of the T e 0 2 film were measured using a 

spectroscopic dual angle reflectometer (SCI Filmtek 4000 (299J) in the range from 

450nm to 1650nm. The thickness it reported was 1.81|jm and the refractive index at 

1550nm was 2.082, which is around 0.03 less than the value of pure Te02 glass [88, 

135J. 

Figure 5.2: S E M micrograph of c leaved waveguide in the 1.8|jin thick Te l lur ium 

oxide f i lm (the apparent layer be tween T e 0 2 and silica is due to c leaving ef fec t , i t ' s 

part of the T e 0 2 layer). 

Figure 5.2 shows an SEM micrograph of the end facet of a finished waveguide. 

The nominal widths of the waveguide sets were 4 | jm, 3| jm, 2| jm and l | jm. However, 

due to the variations in lithography and etching, those widths became 3.5| jm, 2.5|jm, 

l .Spm and -O.Spm measured under the optical microscope. 

Simulations were performed using Matlab finite different code written by 

Fallahkhair et ai, 2008 [355], the Rsoft - FemSim package, and C2V Olympics generic 

FD software. The Matlab finite different mode solver is a full-vector simulation based 

on the transverse magnetic field components. It is versatile and reprogrammable to 

allow custom properties to be calculated. The C2V Olympios and Rsoft- FemSim are 

both commercial tools, widely used to simulate planar waveguide and integrated optics. 

The optical mode solver module in Olympios and the Matlab code both use the finite 

difference method (generic full vector) whereas FemSim utilizes the finite element 

method to calculate the optical eigenmodes within a waveguide. 

In most instances, the full vector finite difference discretisation method was 

employed for calculating the electromagnetic modes of isotropic, homogeneous optical 
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waveguides with transverse, non-diagonal anisotropy. This technique was implemented 

usmg Matlab, as this allowed us a degree of customization and integrated post 

processing, unavailable with the commercial applications. 

5.1.6 Mode properties 

Figure 5.3 shows the profile of the TEO and TMO calculated by the FD method 

implemented in Matlab. The modelled waveguide used a grid size of 30nm and 

calculation window of 8 | jm in horizontal direction and 5| jm in the vertical direction. A 

summary of the modal properties is tabulated in Table 5.1. The two modes show high 

confinement with effective mode areas of 4.1|jm^ and 3.8|jm^ for the nominally 4 | jm 

waveguide, respectively. The index of the TMOs are lower than that of the TEOs, 

however, the TMOs are more confined than the TEOs. Also, the calculation of the 

overlap to a Gaussian beam with 1/e^ diameter of 2.5|jm shows only slight difference 

between TEOs and TMOs. This will lead to lower polarization dependent total insertion 

loss (PDL). 

Table 5.1: Mode properties of Te02_12 waveguides with film thickness of 1.81pm, 

etched depth of 0.74|am. The overlap calculation is with a Gaussian beam with 1/e^ 

diameter of 2.5 | jm. 

Nominal 
width 
(jjm) 

Measured 
width (fjni) 

TEO TMO Nominal 
width 
(jjm) 

Measured 
width (fjni) 

Index Area 
(tJtn) 

Overlap 
(dB) 

Index Area 
(tJm') 

Overlap 
(dB) 

4 3 . 5 2 . 0 3 9 7 4 . 1 0 . 7 0 2 . 0 3 4 3 3 . 8 0 . 7 5 
3 2 . 5 2 . 0 3 3 7 3 . 7 0 . 6 2 2 . 0 2 8 5 3 . 0 0 . 6 5 

2 i . 5 2 . 0 1 9 7 2 . 7 0 . 8 5 2 . 0 1 3 9 2 . 3 0 . 8 5 

1 - 0 . 5 1 . 9 9 9 1 4 . 5 2 . 5 0 1 . 9 8 0 5 3 . 0 1 . 6 1 

At wavelength of 1.55|jm, beside the two TEO and TMO modes, there are higher 

order modes present in the nominal 4 | jm and 3| jm waveguides, also supporting T E l and 

T M l modes (Figure 5.4). The 2|um waveguides are single mode with only TEO and 

TMO modes, but the I p m only supports the weakly bounded fundamental modes. 

Therefore, for applications that require high quality mode control, the 2 | jm width 

waveguides are the most suitable ones. While the l | j m are also single moded they 

would likely suffer f rom higher loss due to the lower confinement and thus the higher 

electric field of the modes at the waveguide sidewalls. 
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Figure 5.3: Mode profile of TEO (left images) and TMO (right images) for 4nm, 

3nm, 2nm and l | im width Te02 waveguide with KSl^m thicic and 0.74|im etched 

(Te02_12). 
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Figure 5.4: Mocie profile of TEl (left images) and T M l (right images) for4 |am ancJ 

3 | im width T e 0 2 waveguide with l.Sfxm thick and 0 .8 | im etched (Te02_12) . 

5.1.7 Bend loss 

The waveguide design must also be suitable for use in integrated structures where tight 

bending is required (e.g. compact long length amplifier coil). Therefore, a bending loss 

simulation was also performed to determine how tightly the Tellurium dioxide 

waveguides could be bent without inducing large amounts of radiative loss. The 

bending loss was calculated using C2V Olympios. The loss was calculated against the 

bending radius for a 4 | im wide waveguide with l . S l ^ m thick film, 0.74nm etch depth. 

Figure 5.5 shows the results of the bending loss per turn for the first four modes, TEO, 

TMO, TEl and T M l . Clearly, the fundamental modes TEO and TMO are very robust to 

bend with no loss at bends as tight as 400nm. The next first order mode TEl and TMl 

can suffer significant bending loss around TOO îm bend radius. Therefore, for any bend 

less than this order, the waveguides will experience significant degradation in 

propagation loss especially if significant mode coupling or conversion is present. The 
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bend loss behaviours of the fundamenta l modes are very similar in 4|am, S^im and 2 | im 

wide waveguides as shown on Figure 5.6. The TEO losses are always higher than the 

TMO due to the lower conf inement of the TE modes. The critical bend radius is around 

400-500^Am. 

Bendding loss of modes of 4um waveguides 
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Figure 5.5: Bending loss at various bending radius for 1.8nm thick, O.Sum etched. 

The loss axis is measured in dB/tum. Four modes were simulated, TEO, TMO, TEl 

and TM1. 
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Figure 5.6: Bending loss of the fundamental mode at various bending radius of 

4nm, 3nm and waveguides with l.Sl^Am thick, 0.74^m etched. The loss axis 

is measured in dB/turn. 

These values are purely based on bending induced radiation loss. The effects of 

sidewall roughness and microbending have not been considered. Therefore , in reality, 

the critical radii may be larger. 
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5.2 Dispersion properties 
5.2.1 Introduction 
A propagat ing mode in a waveguide has ampl i tude and phase variation along the 
propagat ion direction as fo l lows: 

A{x,y,z)^A{x,y)e''^~~ (5.8) 
where A{x,y,z) is the complex ampli tude of light and P is the (complex) propagat ion 
constant . If P is complex, the real part represents the phase change per unit distance and 
the imaginary part relates to the optical gain or loss. The propagation constant is related 
to the ef fec t ive index and wavelength as: 

^ con. 2mi„-P ^ ^ ^ ^ J L (5.9) 
c A 

where i ie j fh the effect ive index of the propagat ing mode at wavelength X. 
The propagat ion constant depends on the wavelength or optical f requency of 

light through changes in the field distribution between core and cladding with 
wavelength and changes of the waveguide mater ia l ' s refract ive index with wavelength. 
The relation between these propert ies determines the group velocity and chromat ic 
dispersion of the waveguide. Chromat ic dispersion is very important for short pulse 
propagat ion as different spectral components of the pulse propagate at d i f ferent velocity. 
The dispers ion induced broadening of pulses can be very detrimental to the quality of 
the signal transmitted in optical systems over even a few metres at TB/s rates for 
example and in nonlinear planar optical devices with tens of picoseconds or less pulse 
widths . 

Mathemat ica l ly , the effect of waveguide dispersion can be approximately 
expanded by a Taylor series about the centre angular f requency as [137]: 

OM „i(0) 1 
^ + (5.10) c 2 

where 

P.- d'"P 
dO)" 

(m = 0,1,2...). (5.11) 

There fore , P\ and P i can be calculated f rom the effect ive index of the mode as 
fo l lows: 
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(5.12) 
v^ c c dco 

and A = + (5.13) 
da) c dco dco 

where tig is the group index and v^ is the group velocity. While the phase of each 

component of the pulse spectrum travels at the phase velocity, the envelope of the 

optical pulse moves at group velocity. The parameter f h represents dispersion of the 

group velocity and is responsible for pulse broadening. This is known as group-velocity 

dispersion (GVD) and ^ is GVD parameter. The GVD parameter can be positive 

(normal dispersion), negative (anomalous dispersion) or zero (zero-dispersion). 

The dispersion of a guiding structure depends on the both of the material 

dispersion and the waveguide dispersion. Material dispersion arises because of the 

Kramers-Kronig relationship linking absorption to refractive index, and all real 

materials have absorptions. In optical communications, the GVD parameter is usually 

represented by D in ps/(nm.km) units and is equal to the sum of material dispersion and 

waveguide dispersion. It can be written as [137J: 

dA A c dA 

The GVD parameter can be tailored to suit different applications by a process 

referred to as dispersion engineering. Since, the GVD has two components, one from 

the material dispersion and one from the waveguide design, the two can be played off 

against each other to achieve a desired dispersion figure. Operation at or close to the 

zero-dispersion wavelength (ZDWL), io , is preferred in number of nonlinear optics 

applications such as supercontinuum generation (SCG) and four wave mixing (FWM). 

Even though the ZDWL is at around the dispersion does not vanish at X=XY). Pulse 

propagation around this wavelength is governed by the cubic term (or third-order 

dispersion parameter (is) and other higher order dispersion parameters. 

One example of dispersion engineering in optical fibre is the use of double clad 

(depressed clad) or quadruple-clad fibres. Conventional step index single mode silica 

fibres have Z D W L at 1.3|am. With double clad, the zero dispersion can be red-shifted to 

1.5|am. while quadruple-claddings can flatten the dispersion to as low as Ips/km.nm 

over a wide wavelength range [137]. In planar waveguide geometry, the dispersion of 
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the waveguide can most easily be engineered by varying the thickness of the films, etch 

depth or cladding materials. 

5.2.2 Simulation of dispersion 

The refractive index of a Te02 film coded Te02_12 was measured using the SCI 

Filmtek 4000 in the range from 450nm to 1650nm. The refractive index against 

wavelength is plotted on Figure 5.7a and the dispersion parameter D was calculated for 

the 1550nm region using the Equation (5.14). The refractive index around 1550nm is 

relatively flat leading to a quite low (for a high index glass) material dispersion of 

around -150ps/km.nm (see Figure 5.7b). The Abbe number for this film was calculated 

as 17, which is in good agreement with reported range of 15-20 [88, 356J. 

The calculation is then extended to the dispersion of different modes (TEO, TMO, 

TEl and T M l ) in three different waveguide nominal widths of 2|jm, 3|jm and 4|jm. 

This exercise is a part of a dispersion engineering process to design a waveguide with 

ZDWL at around 1550nm. Figure 5.8 shows the results of the calculations. Here, the 

first 4 modes are corresponding to TEO, TMO, TEl and T M l . However, it is also 

necessary to note that modes 3 and 4 are not of primary interest because they are usually 

not excited at the launch point at the beginning of the waveguide due to the use of a 

Gaussian beam. These modes might, however, be excited by the propagation of the low 

order modes due to the presence of roughness and scattering centres. 
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Figure 5.7: Dispersion parameter of the films a) refractive index of the film vs 

wavelength and b) dispersion parameters around 1550nm region. 
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Figure 5.8: Dispersion calculation of modes in Te02 waveguide (mode 1-4 are 

corresponding to TEO, TMO, T E l , T M l , respectively) 
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A range of des igns can achieve 1550nm Z D W L wavegu ides . Figure 5 .9 plots the 

Z D W L for d i f fe ren t d imens ions of the wavegu ide with 5 0 % etched depth . T h e general 

t rend is that the Z D W L shif ts to shorter wave leng th as the th ickness of the f i lm 

decreases . T h e Z D W L of all m o d e s shift to shorter wave leng ths as the width of the 

w a v e g u i d e decreases . T h e TEO m o d e of all wavegu ides is normal ly d ispers ive around 

L5[ im, whils t the dispers ion of the TMO can b e c a m e anomalous in this region when the 

w a v e g u i d e wid ths and f i lm th ickness are proper ly chosen. T h e Z D W L s for var ious 

w a v e g u i d e s are also sensi t ive to the etch depth. T h e Z D W L s of TMO shif t to shorter 

wa ve l eng t h s as the etch depth increases as shown on Figure 5.10. T h e etch depth can be 

used to f ine tune the Z D W L and to compensa te for f i lm deposi t ion and fabricat ion 

var ia t ions . 

T h e Z D W L at 1550nm for the TMO m o d e can be achieved with the critical 

d i m e n s i o n s listed in Table 5.2. T h e trend is clear for wavegu ides with width of 2-4( jm. 

T h e smal le r the wavegu ide , the thinner the f i lms should be for the Z D W L to be at 

1550nm. Howeve r , the I p m wavegu ides does not fo l low the trend as its m o d e is very 

c lose to cut off . As will be shown, loss measuremen t s indicated that the l |am wavegu ide 

only w e a k l y supports the TEO mode , and the TMO is very lossy because its index is 

lower than the index of the slab modes and therefore , couples to an ou tgo ing slab m o d e 

at an ang le where phase ma tch ing is sat isfied [357]. High qual i ty wavegu ides with 

th ickness of order 1 . 6 - L 8 | j m are easily achievable because they are relat ively large. T h e 

variat ion in e tching and th ickness will not be a very critical factor . T h e accuracy of 

these ca lcu la t ions is yet to be conf i rmed due to the dif f icul ty in access ing dispers ion 

m e a s u r e m e n t set ups for such short devices. 
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Figure 5.9: Z D W L of TMO for different l -4 | im waveguides against different film 

thicknesses with 50% etch depth, TMO in l ^ m might be very lossy due to its 

refract ive index being close to the slab modes. 
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Figure 5.10: Z D W L of TMO mode for ISlOnm thick, 1500nm wide waveguides at 

dif ferent etch depths 

Table 5.2: Waveguide dimensions to achieve Z D W L at 1.55|im for T e 0 2 rib 

waveguide with 50% etch depth. 

Waveguide width (fiinj 

4 

3 

2 

1 

Film Thickness{nm) 

1575 

1675 

1800 

1650 
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5.3 Waveguide attenuation measurements 

5.3.1 Principle 

One of the most important properties of optical waveguides is the propagation loss. It is 

the single most obvious measurement parameter to determine the quality of the 

deposition and fabrication processes. Loss measurement is generally undertaken by 

launching light (laser lines or white light sources) into the waveguide and collecting the 

transmitted light at the other end of the waveguide as shown on Figure 5.11. In the work 

reported here, the input and the outputs are fibre coupled using tapered fibre lenses with 

a 2.5| im 1/e^ spot diameter due to the small sizes of the waveguides. The total loss also 

included the coupling loss into the waveguide, Fabry-Perrot cavity losses within the 

chips due to the relatively high reflectivity facets and coupling loss at the output of the 

waveguide: 

cavity'^ ^out 

(5.15) 

where L,,, and L,„„ are the input and output overlap of the launching/collecting fibre lens 

fields and the mode at input/output; U-avity is due to standing wave inside waveguide 

with the reflectivity of the facets of the waveguide and the propagation loss between the 

two end faces included in this cavity loss. 

The propagation loss of the waveguide can be measured in several ways: 

conventional cut back, Fabry-Perrot method, side scatter, and overlap calculation. The 

conventional cut back method involves measuring the waveguide total loss at different 

lengths. As the length changes, the only loss component that should change is the 

propagation loss. Therefore, a plot of the total insertion loss against the length will give 

the propagation loss per unit length. This method relies on the consistency of the 

alignment and cleaving of the input and output ends to maintain over all accuracy. Also, 

there is a limit on how low a propagation loss can be measured by this technique. If the 

propagation loss is very low, the fluctuation in the total insertion loss might be larger 

than the total propagation loss itself leading to a very substantial uncertainty of the 

propagation loss per unit length. 
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Figure 5.11: Loss measurement experimental set up. 

The alternatives to cutback are non-destructive methods including the Fabry-
Perot, side scatter, and overlap coupling calculation. The side scatter method involves 
imaging the light scattered out of the waveguide and plotting its intensity versus 
distance to derive the waveguide attenuation. However for losses below ~0.3dB/cm in 
rib waveguides it is very difficult to implement reliably due to signal to noise 
limitations caused by waveguide inhomogeneities, scattering of uncoupled light off 
other structures on the chip, and noise in the camera/digitisation. 

The Fabry-Perot method depends on measuring the finesse of the cavity formed 
between the end facets of the waveguide and uses calculation based on the expected 
mirror reflectivities to extract the propagation loss. The overlap calculation uses 
measurement of the total insertion loss from which the calculated coupling of the 
launch/receive beam to the mode at the input/output are subtracted along with the 
calculated reflective/cavity losses leaving the remainder as the propagation loss. Both of 
these techniques are dependent on the quality of the cleaving such that the facets behave 
as a perfect end faces. 

Both techniques are convenient and non destructive, but potentially less 
deterministic than the conventional cutback method. However, the overlap technique 
usually gives an upper limit on the waveguide propagation loss as the coupling losses 
are under-estimated because of imperfect cleaving. The facets are often not 
perpendicular to the waveguide nor perfectly flat. The maximum launch efficiency 
depends not only on the angle of the cleave to the waveguide but also the launch beam 
direction relative to the waveguide [354], Since the cleaving of the fabricated wafers 
was done by diamond tip scriber, the control of the angle of the end facets is relatively 
poor. The roughness of the facets also plays an important roles as it determines the 
reflectivity of the mode [358]. Furthermore, the Fresnel reflectivities are usually 
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calculated by approximation of the modal fields with planar wave form, which is not the 

case because of the presence of longitudinal field. The modal reflectivities are different 

f rom Fresnel reflectivities [359j. In order to minimize the effects of these variations to 

the propagation loss measurement it would be desirable to estimate the propagation loss 

solely based on the properties of the waveguide, independent of the launch conditions. 

The FP technique offers this advantage over the cutback method, but instead substitutes 

uncertainty about the quality of the end facet and its precise reflectivity. 

5.3.2 Fabry-Perot method 

The Fabry-Perot method relies on the fact that the waveguide with two reflective ends is 

a Fabry-Perot cavity. In the ideal case when the end faces are symmetric with no 

scattering loss and perpendicular to the waveguide, the transmittance P, at the output 

varies periodically with the optical phase difference between the successive waves in 

the cavity as [360J: 

_ ( 5 . 6 ) 

where is C is the coupling efficiency to and from the cavity, Po is the incident power, P 

is the propagation constant in the waveguide, a is the intensity attenuation coefficient 

and R is the facet reflectivity. R may under some circumstances be approximated using 

the Fresnel reflectivity for smooth waveguide end facets perpendicular to the 

waveguides axis, and is expressed as: 
{ 

(5.17) 

where tiejf is the effective refractive index of the waveguide mode, no is the refractive 

index of the adjacent medium (often air, no=\). 
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Figure 5.12: A calculated transmittance of a Fabry-Perot cavity with end face 

reflectivity R-0.1, length of L = 5 c m and loss of a=0 .5db /cm. 

The loss coefficient is related to the maximum and minimum output intensity as 

shown on Figure 5.12 and separately corresponding io <p- i p t = 0 or multiples of 271 

and (f)-K or n+riK by [361]: 

2 -aL 

' 0 

P 

' 0 

(5.18) 

(5.19) 

Therefore, it can be deduced that 

r = 

Or 

l + R-e-"'^' 

\-R.e -aL (5.20) 

aL - In R 
l r - \ 

rr + \ 
(5.21) 

where r - P / i s the modulation ratio. iTlaX / IIIIIl 

From Equation (5.21) above, if the transmitted power has been obtained by 

experimentally sweeping the waveguide cavity through cycles of nlz, the normalized 

attenuation G=exp(-ccL) can be estimated without the knowledge of the coupling 

efficiency, provided the coupling efficiency does not change during the measurement. 

The phase difference can be changed by varying the optical path length, for instance, by 
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changing the temperature of the waveguide or by varying the wavelength of the light. 

With the availabihty of finely tunable lasers, wavelength tuning seems to be a better 

solution. 

Tittelbach et ai, 1993 [362j calculated the relative mean errors for this 

technique. The modulation depth measurement only gives acceptable results 

(uncertainty of less than 10%) on the condition that reflectivity R is greater than 0.15 

and at is around 1. The author shows that for aL > 1 the error increases with 

attenuation aL, which is caused by the increasing modulation ratio r and decreasing 

finesse. For aL<\, the relative error increases with decreasing attenuation aL due 

mainly to the proportionality 1/ aL and to the increasing relative errors in the P„,/„. The 

maximum facet reflectivity for a tellurite waveguide is around 0.11 and therefore the 

Fabry-Perot resonance technique is not quite suitable for attenuation measurements. 

Furthermore, there are some other systematic errors that can lower the measurement 

accuracy of the attenuation «L . One problem is the evaluation of the facet reflectivity R 

which in reality can be significantly different from the value calculated in Equation 

(5.17) due to roughness of the end face as well as the off-normal orientation to the 

waveguide [354, 358, 3591. 

For the case with a reflectivity of around 0.1 (corresponding to nef)-2 with no=l), 

the lowest relative mean error is around ±12% at aL ~1. This loss corresponds to the 

value of ~4dB over the length. For a 5cm long waveguide the propagation loss should 

be around ~ldB/cm. For very low loss waveguides such as the ones fabricated in this 

project, this simple FP method is not a suitable way of measuring propagation loss. 

Furthermore, optical waveguides often exhibit mode coupling either between the 

different polarizations or between different mode orders. The FP fringes are generally 

not of a simple pattern leading to higher uncertainties. 

5.3.3 Fabry-Perot cutback 

The critical effect of the value of reflectivity R of the end face in FP loss measurement 

technique can be removed by eliminating it from the calculation by using the FP 

cutback method. We can obtain the following expression from Equation (5.21): 

- l n ( ^ ^ ) = «L + l n ( - ) (5.22) 
+ l R 
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Therefore, an alternative is to use simple FP measurement with several different 

lengths of waveguide, ideally all on one chip with common shared cleaved facets so 

there is no variation in the facet reflectivity with length. By plotting the 

value = - 4 . 4 3 l n [ ( V r - l ) / ( V r +1)] with respect to length x=L(cni), one can deduce 

the loss a(dB/cm) from the slope of the curve and the reflectivity R from the intercept b 

{R=exp(-b/4.43)) of the curve to L=0. 

5,3.4 Conventional average power cutback 

As noted above, the basis of the conventional cut back is that only the propagation loss 

term is varied as the length varies. However in terms of average power transmission, 

strictly speaking the chip is a Fabry-Perot cavity with loss inside the cavity and 

therefore the potential for resonant enhancement. The correct way to perform the 

measurement is to use a broadband source and a detector or a tunable laser swept over 

many fringes of the cavity with time averaging of the detected signal. Under these 

circumstances, the propagation loss component should strictly be the integration of 

function described by Equation (5.16) over a complete cycle of n7l. The result of the 

integration has no simple analytical form. It must be numerically calculated or it can be 

approximately estimated. The average power can be evaluated by setting the phase to 

the centre between the minimum and maximum transmission, ei. (f) = nl2+n n which 

results in: 

P, '•XHR-e-'^f * * 

Alternatively, average power transmission can also be approximated as the 

average of the maximum and the minimum transmission values, i.e.: 

Pa.era,e _ ^ {\ - Uf e'"" {\ + {Rt"" f ) 
Po i X - i R . e - ' f f ^^ ^ 

Both of the above equations can be further reduced if (/? • is considered to 

be negligible compared to 1. This is usually the case as R~0.1 and Under this 

condition: 
p 

(5.25) 
Po 
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Physically speaking, this is simply the transmission formula taking into account 

the coupling efficiency to and from the waveguide, transmission of the two facets and 

the propagation loss. 

5.3.5 Experiment 

a) Direct estimation of very low propagation loss waveguide 

A simple approach to estimate the propagation loss is to measure the total insertion loss 

and subtract the theoretical estimation of all other losses such as mode coupling and 

reflectivity. The Equation (5.25) is the basis of this technique. This technique is still 

dependent on the end facet quality, the accuracy of the alignment, and the accuracy of 

the modelling used to determine the mode mismatch loss. However, this technique has 

the valuable advantage of being non-destructive and provides an upper limit of the 

waveguide propagation losses since most errors will cause the coupling losses to be 

under-estimated. 

The measurement of the loss can be done by single laser or a broadband source 

such as the set up in Figure 5.11. Wideband measurements were made using a fibre 

coupled Mercury arc lamp and optical spectrum analyser operated with a lOnm 

resolution bandwidth to smooth out the chip Fabry-Perot resonances. Figure 5.13 shows 

the insertion loss data after normalization through the fibre tapered lens for a typical 

4|am wide waveguide of 7.8cm length from 1000-1700nm measured with the arc lamp 

source. Normalization spectra were recorded before and after the measurement to 

eliminate source drift, and there was a measurement uncertainty of about 0.2dB from 

fibre connector insertion repeatability induced during the alignment procedures. The 

minimum observed insertion loss in Figure 5.13 was 2.8dB at 1400nm including all 

coupling, overlap, and reflective losses, and the insertion loss at 1550nm was 3.5dB. 

The laser based measurement verified that from the OS A at 1550nm to within 0.05dB. 
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Figure 5.13: Broadband total insertion loss of a 4um waveguide from chip 

Te02_12. 

The non flat nature of the response is believed to be attributable to mode 

coupling and beating phenomena which generate wavelength dependent coupling 

effects as the waveguides support 3 modes at 1550nm (more at shorter wavelengths) 

and the input fibres become multimode below ~1250nm. Also clear from Figure 5.13 

are that there are some absorption dips in the spectrum; one centred at 1166nm, one 

band from 1450nm to about 1610nm, and one strong dip centred at 1680nm. The 

1680nm dip is related to strong C-H overtone absorption in the top IPG cladding of the 

waveguide, and the other two bands likely result from OH absorption in the tellurite 

film (further details will be discussed in Chapter 6). 

The modal calculations give the Gaussian to waveguide mode coupling of 0.7dB 

at each end (Table 5.1). The reflectivity R is estimated to be 0.11 or a loss of 0.5dB at 

each facet. Therefore, the total loss due to the coupling efficiencies and reflectivities is 

2.4dB. This means that at the best point on the spectrum on Figure 5.13, the attenuation 

is ~0.05dB/cm around 1.4|am. At 1550nm, the loss is ~0.15dB/cm. The values reported 

here are more than an order of magnitude better than the best previously reported results 

[78] and a two order of magnitude improvement over the best prior plasma etched 

waveguides [257]. The connector induced measurement uncertainty is of the same order 

as the total measured propagation losses and therefore prevents the derivation of an 

accurate loss figure, but it is clear that the losses are very low indeed. 
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b) Fabry-Perot cutback and average power cutback. 

The waveguides of wafer Te02_12 have very low loss, therefore, the normal FP 

technique did not provide sufficient attenuation for an accurate measurement as 

discussed above. The clad waveguide chip was cleaved into a 7.5cm long piece and a 

3mm long piece. Because of its high quality, the maximum length was being preserved 

for future experiments. The cutback estimates were made using only these two lengths. 

The 4|jm nominal width waveguides were used to study propagation loss. Figure 5.14a 

and b proves the difficulties of applying the FP cutback to the loss measurement. In 

these graphs, the x axis is the length while the y axis is valued 

as j = - 4 . 4 3 1 n [ ( V r - l ) / ( V r + 1)], and r = is the fringe modulation. Clearly, 

the graphs a) and b) on Figure 5.14 are unphysical as the attenuation in a passive 

waveguide can not have a negative value. On the other hand, the conventional cutback 

method gives a loss of 0.25dB/cm for the TE and 0.24dB/cm for the TM at 1550nm 

compared to the 0.15dB/cm estimate from the transmission loss. The reasons for the 

difference in loss cannot easily be quantified without destroying the existing chip, and 

this was not desirable as it was required for further experimentation. 
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Figure 5.14: a) and b) are the TE and TM FP cut back and c) and d) are the TE and 

TM average power cut back for 4|jm waveguide from wafer coded Te02_12 
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5.4 Self phase modulation 

5.4.1 Principle: nonlinear Schrodinger equation 

The study of nonlinear effects in planar optical waveguides usually involves short 

pulses with pulse widths often substantially below - lOps . At such levels, both 

dispersive and nonlinear effects influence the pulse shape and spectrum. Pulse 

propagation inside the waveguide is governed by the Nonlinear Schrodinger Equation 

(NLSE) [137J: 

.dA . a , P.d-A , 2 , ^ , , , , 
+ — T + i — — T + r ^ '4 = 0 (5.26) 

dz 2 2 dT' 6 dT' 

where A is the slowly varying amplitude of the pulse envelope, a is the linear 

attenuation coefficient of the material, is the group velocity dispersion (GVD) 

parameter, /^j is the third order dispersion (TOD) parameter, T is time measured in the 

moving f rame at group velocity v^, T=t-z/vg=t-l3iz and / i s the nonlinear parameter as 

defined by: 

(5.27) 

The value of / i s determined mainly by the nonlinear refractive index rii and the 

effect ive mode area Agfj. Therefore , for a given material, /can be increased by reducing 

the effect ive mode area. 

5.4.2 Self-phase modulation 

The N L S E can be used to study self-phase modulation. By setting up an initial pulse, 

the N L S E is used to propagate it along the waveguide. The N L S E may be solved 

analytically if the dispersion is set to zero and the effects of SPM can be estimated. 

Assuming that the input field of the pulse is AiO,T), the general solution of the NSLE 

under this condition is [137J: 

A(L,T) = AiO,T)exp[i</)^,(L,T)] (5.28) 

where ^^^ = I / \ ( 0 , r ) P , the nonlinear length is defined as the - - jp 

effect ive length is L ^ = 1 exp( aL) ^ ^ ^^^ ^^^^^^ length. 
a 
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The maximum temporal phase shift of a signal pulse propagating through the 

waveguide due to SPM is [I37J: 

- \ " (5.29) 

It can be understood that a temporally varying phase implies an instantaneous 

optical f requency difference across the pulse from its central value ftf;. This is given by 

[137]: 

= (5.30) 
dT L^^ dT 

The time dependence of Ao) is referred to as frequency chirping. The chirp 

induced by SPM increases in magnitude with the propagating distance. New frequency 

components are generated continuously as the pulse propagates down the waveguide. 

This leads to a spectral broadening effect. 

In general, the spectrum depends not only on the pulse shape but also on the 

initial phase of the spectrum. The actual shape of the pulse spectrum 5((M) is obtained 

by taking the Fourier transform of Equation (5.28): 

A{(o) = °A(0,T)exp[i(/)^, {L,T)+i{Q)-0)„ )r]dT (5.31) 

The Figure 5.15 shows examples of an unchirped Gaussian pulse at the input 

and the broadened output pulse at various values of phase shift due to SPM. In general, 

for nonlinear phase shifts exceeding 7i the output spectrum is split into multiple peaks. 

This approximation is only accurate for the simple case with no dispersion. When the 

dispersion is included, this simple analysis is invalid. Therefore, numerical methods are 

usually utilised. 
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Figure 5.15: Example of SPM broadened spectra of an unchirped Gaussian pulse in 

nonlinear medium at various maximum nonlinear phase shift [137]. 

5.4.3 Numerical method: split-step Fourier propagation 

Except in certain special cases eg. solitons, the complete NLSE does not have analytic 

solutions and numerical methods are used to propagate an initial pulse. A common 

technique used is the split-step Fourier (SSF) method [137, 363]. To understand the 

method, we can write the propagation equation for the pulse envelope, A(z,T), in term of 

operators as: 

aA 

dz 
= iN + D)A 

where N is the nonlinear operator, and D is dispersion operator: 

N = iY\A\^ 
' 2 

ip^ d' A3 d'A 

(5.32) 

(5.33) 

(5.34) 
2 dT' 6 dT' 

As written IV includes only the SPM nonlinear term and a loss term, but higher 

order nonlinear terms can be included if necessary to represent other effects. By 

assuming that nonlinearity and dispersion act approximately independently over a small 

propagation distance delta z, the split-step Fourier method applies the two operators 

sequentially: 

A(z + A z , r ) = exp(AzyV)exp(AzD)A(z , r ) (5.35) 



5.4 Self phase modulation 123 

The differential with respect to time equates to multiphcation by id) in the 

f requency domain, so the dispersion operator is easily treated in the frequency domain 

by using a fast Fourier transform (FFT), before returning to the time domain using the 

inverse transform (IFFT) in order to apply the nonlinear operator. The procedure is 

implemented in the fol lowing manner: 

A{v) = FFT [A{T)} 

Aiv)^A{v)exp[i-j32(i)' 

Ait)^IFFT{Aiv)} 

A{t) = A(t)exp[{ir\Ait)\' 

Repeat until ^ Az = L 

This method is accurate to second order in step size and unconditionally stable 

[363J. Therefore, the accuracy of the simulation only depends on the step length. It is 

necessary to repeat the calculation by reducing the step size to ensure the accuracy of 

numerical solution. The time window needs to be wide enough, typically about 10-20 

times the pulse width, to ensure that the pulse energy remains confined within the 

window. 

5.4,4 Experiment and results 

To characterize the nonlinear properties of the waveguides we observed the nonlinear 

spectral broadening of pulses propagating through low loss 3 | jm wide waveguides of 

chip Te02_12. The G V D was calculated to be 30ps/km.nm for the TMO mode based on 

the measured fi lm refractive index dispersion and the effective mode area was 3.48|jm^. 

Pulses of ~ l p s duration at a 10 M H z repetition rate were generated using a passively 

mode-locked fibre laser and launched into a fibre tapered lens pigtail I m long 

containing a coiled loop polarisation controller as in Figure 5.16. The input power to the 

waveguide was varied by backing the launch fibre away f rom optimum focus, and the 

polarisation controller was used to set the input to the desired polarisation mode in 

conjunction with an imaging system with a bulk polariser inserted in the parallel beam 

path part of the microscope. 
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Figure 5.16: SPM setup using an high peak power pump laser and an OSA and a 

FROG to characterized the input and output pulse. 

The pulse exiting the launch fibre tapered lens was characterized by Frequency 

Resolved Optical Gat ing-FROG (Southern Photonics model HR150) with the 

waveguide chip removed and the receiving lens backed away to reduce the collected 

power ~20dB thereby avoiding nonlinear effects beyond the tip of the launch fibre. This 

showed that the input pulse had been compressed to ~660fs in the launch pigtail. For an 

average power of 1.8mW of laser output, the power at the beginning of the waveguide 

corresponds to 0 .9mW or a peak power of 1 lOW. There is a total of 3dB (1.5dB due to 

fibre lens and connectors and 1.5dB due coupling and facet reflectivities) loss f rom the 

laser to the mode of the waveguide. 

Table 5.3: Waveguide parameters for SPM simulation 

Parameters Value 

Waveguide length (L) 0.07m 

Input peak power (Po) now 
Mode area (Aeft) 3 .5x lO ' 'W 

Propagation loss (a ) 0.2dB/cm 

Nonlinear refractive index (n2) 

Nonlinear parameter (y) 0 . 6 W ' m ' 

GVD parameter (yft) 2 x l 0 " V m ' ' 

TOD parameter {/̂ s) 5xlO-^"sV' 

Figure 5.17 shows the experimentally observed self phase modulation (SPM) 

spectral broadening of the pulses resulting in 3 spectral lobes. No nonlinear absorption 

(i.e. two photon absorption) was observed. Agreement with the measured spectrum 

f rom the recovered F R O G spectrum was good. Also plotted in Figure 5.18 are the 
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results f rom simulations solving the nonlinear Schrodinger equation by the split-step 

Fourier method using the measured input pulse and parameters based on the 

experimental setup and waveguide modelling described above, with ' 

as shown in Table 5.3. Good agreement with the experimental data is obtained 

confirming the non-linearity of the deposited tellurite film at an estimated 25x silica 

[137] and that the TeOi displays a very fast nonlinearity. 
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Figure 5.17. Spectral broadening of pulses inside waveguide compared with results 

from Split Step Fourier modeling of waveguide with measured input pulse with n2 

varied to obtain best fit a) temporal pulses and b) spectra 
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5.5 Four-wave mixing: ultra-fast wavelength conversion 
Four-wave mixing (FWM) is a nonlinear phase matching process resulting from the 
third order susceptibility. As the name indicates, the process may involve four different 
photons. This interaction would involve four coupled partial differential equations [137]. 
However, in practice, the F W M phenomena are commonly used as a wavelength 
conversion process with only two input sources: one as pump and one as signal. A third 
wavelength (idler) is generated in a process similar to parametric conversion (Figure 
5.18). The two photons at frequency are converted to a signal photon at frequency cî  
and an idler at 

col 

0)2 

co3 

C04 

Figure 5.18: Schematic of four wave mixing effect a) energy transfer b) phase 
matching process 

F W M can be used to amplify a low signal using a large pump at a different 
wavelength in parametric applications or as a wavelength converter when the signal is 
converted to an idler using a strong pump. The use of F W M for wavelength conversion 
has a number of important applications in optical communication systems. It has been 
used in ultrafast demultiplexing in an optical time-division-multiplexed system (OTDM) 
[53, 54], If a high power pump pulse train at the base data rate is injected together and 
in phase with the signal multiplex pulse train, the idler wave is generated through F W M 
only when the pump and signal are present simultaneously. The idler is therefore 
generated at the pump rate. F W M transfers the signal data to the idler at a new 
wavelength with perfect fidelity. Recently, with the development of highly nonlinear 
waveguides such as in chalcogenide [53], error-free OTDM at 640GB/s has been 
demonstrated [54]. 

Another interesting feature of the idler wave is that it is the complex conjugate 
of the signal field [137]. Therefore, F W M process is also referred to as phase 
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conjugation. It is an important technique in dispersion and optical nonlinearity 

compensation in optical communication systems [364], It can be used in a number of 

other areas such measurement of the phase of optical signal without homodyne or 

heterodyne detection [365J, all-optical storage of picosecond pulse packets [366], 

suppressing frequency shifts of solitons [3671 and reducing the timing jitters by 

amplifiers and soliton collisions [368J. 

FWM can also be used to determine the dispersion and the nonlinearity of 

waveguide structure or fibre [369). As the gain spectra of the FWM conversion strongly 

depend on the dispersion and nonlinearity, the experimental data can be used to fit a 

calculated curve from a number of fitting parameters. Those parameters, such as 

dispersion, dispersion slope, nonlinear coefficient, are captured in a single FWM 

conversion spectra. 

5.5.1 Basic theory 

Energy conservation infers that The efficiency of the FWM process 

depends strongly on how well the phase matching condition is satisfied [137] ie: 

AA: = 2 k - k^ - k, = -n^O)^- ) = 0 (5.37) 

where Ak is the phase mismatch due to linear dispersion and np, n, and are the 

effective indices of the waveguide modes at pump, signal and idler wavelength. FWM 

efficiency depends critically on the phase mismatch between the pump, signal and idler 

wavers. 

A complete description of parametric amplification often requires numerical 

solution of coupled partial differential equations. However, considerable understanding 

of the physics is gained with approximations if the pump waves are assumed to be 

intense compared to the signal or idler waves and remain undepleted during the 

parametric interaction. Furthermore, the overlaps between the waves are assumed to be 

complete because they are very close in wavelength. The signal and idler at the output 

at z=L is under these conditions given by [137, 370, 371]: 

P^ (L) = P^ (0)[1 + (1 + / (4g^ ) ) smh ' igL) ] ^^ 

P,iL) = P^ (0)(1 + K- /(4g'))sinh\gL) 

where the parametric gain g is given by: 
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/c = Ak + 2)f^ 
(5 .39) 

Parametric gain (/?! ' ) 
3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

yP(F3 

Ak 
- 1 4 - 1 2 - 1 0 - 8 - 6 - 4 - 2 0 

Figure 5.19: Parametric gain at various values of yP^ against the wave-vector 

phase mismatch value 

F igure 5 .19 s h o w s the d e p e n d e n c e of g wi th Ak f o r var ious va lues of fo r the 

pa ramet r i c ga in . F r o m gain express ion 5 .39, the m a x i m u m gain g = jP^^ occurs at / r=0 

or at Ak =-2yPp. T h e range in wh ich the gain exis ts is g iven by 0 > A A : > - 4 } f p . T h e 

shi f t of the gain p e a k f r o m Ak-O is due to the con t r ibu t ion of se l f -phase modu la t i on 

and c r o s s - p h a s e m o d u l a t i o n to the phase m i s m a t c h . 

In o rde r to m a x i m i z e the F W M gain g, the phase ma tch ing condi t ion mus t be 

sa t i s f ied . T h e r e are a n u m b e r of m e t h o d s to m a k e k-O. B e c a u s e ic=Ak-{-2yP^ f o r / r t o 

be zero , Ak m u s t be nega t ive . Because Ak = {2npO)^ -n^o)^ -n.co^) and 

P^ = rijCOj /c(j=p, s or /), the d i f f e r e n c e in w a v e v e c t o r Ak can be app rox ima ted to [53, 

372] : 

A k ^ P . Q ' , (5 .40) 

w h e r e Q.^ is the f r e q u e n c y shif t , QJ^-0),= CQ-cq„ [52 is the G V D coef f i c ien t at the p u m p 

f r e q u e n c y . T h i s equa t ion is val id if the p u m p w a v e l e n g t h is not too c lose to the zero 

d i spers ion w a v e l e n g t h Xd of the w a v e g u i d e . In w a v e g u i d e s t ructures , it is poss ib le to 

des ign w a v e g u i d e s so that the p u m p w a v e l e n g t h is in the a n o m a l o u s region <0) 

c lose to the Z D W L in o rde r to have a pe r fec t p h a s e m a t c h i n g condi t ion . 
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However, if perfect phase matching is not satisfied, as long as 

there is still parametric gain as shown in Figure 5.19. Also, when the pump wavelength 

lies in the anomalous-GVD regime but significantly far f rom the Z D W L /ID, A ^ is 

significantly large at low pump power. It is still possible to achieve better phase 

matching by increasing the pump power to compensate the wave-vector mismatch. 

Perfect phase matching can be achieved when the pump power PQ satisfies the equation: 

V 
(5.41) 

Thus, a pump wave propagating in the anomalous-GVD regime can still develop 

sidebands located at o)̂ , as a result of F W M which is phase-matched by the SPM 

nonlinear process. 

a) Parametric amplifier 

The parametric amplification is driven by the gain factor derived from Equation (5.38). 

The amplification gain factor can be written as [137, 370, 371 J: 

G^ = P^{L)I = + g f ) s\nh\gL) (5.42) 

If the phase mismatch is relatively large, then in the limit of K » yP̂ ,̂ the gain 

factor becomes: 

G^^iX + i'^P.^LI gf)sm\KLI2)l{id.l2f (5.43) 

The parametric gain is relatively small, and increases with pump power as P ^ . 

However, if the phase matching is perfect K^Q and g L » l , the amplification increases 

exponentially with PQ as: 

(5.44) 

b) Wavelength conversion 

Parametric amplifiers can be useful for signal amplification but in addition, these 

amplifiers also generate an idler wave at frequency O). = 20)^ - (Ô  where (Op and (O, are 

the pump and signal frequencies. Thus they can also be used for wavelength conversion 

with or without phase conjugation depending on the pumping configuration [137]. 
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Equat ion (5.38) measures the conversion efficiency in the fo l lowing alternative form 

[53, 137, 372J: 

(5.45) 

2 2K\D\^X^ 
where g = - + AyP^,) with H I = ^ 

V4 

A l l o f the gains above are approximations for the case of a lossless waveguide, 

when the attenuation loss is taken into account, the gains should be reduced due to loss 

o f p u m p power at the end of the propagation length. The conversion efficiency and 

gains become [53, 372]: 

where g = + with A^ff =1 jS, IQ'^ 

Figure 5.20 plots conversion gain at 1540nm pumped at 1550nm for a typical 

case o f a Te02 waveguide with D=-8ps/km/nm, P=50W, a=0 .2dB/cm, -jfcO.ew'm"', 

figures that represent the performance of the low loss waveguides demonstrated earlier. 

The gain increases rapidly with length at the beginning o f the waveguide then reaches a 

saturation level. It clearly indicates that, the max imum available conversion gain o f 2dB 

can be obtained with a waveguide length o f about 8cm. 

Conversion efficiency (dB) 

Length (m) 
0.06 0.08 0.10 

Figure 5.20: Calculation of conversion gain pumped at 1550nm, seed at 1540nm vs 

length with D=-8ps/km/nm, F=50W, a=0.2dB/cm, Y = 0 . 6 W " ' m ' ' . 
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5.5.2 Experimental results 

The experimental set up to measure FWM in T e 0 2 waveguide is shown in Figure 5.21. 

Here, a 3 | jm nominal width waveguide of the Te02_12 wafer was used due to its low 

loss and because its TMO Z D W L was simulated to be at 1575nm which was close to 

1550nm. The GVD at 1553nm is D=-8ps/km/nm. The waveguide length was 7.7cm 

with loss of ~0.2dB/cm. The dispersion slop was dDI dA = 0.34 ps/km/nm/nm. A high 

peak power pump (Pritel Er doped mode-locked fibre laser) was set up to produce: Ips 

pulse width, lOMHz repetition rate, average power of ImW, centre wavelength at 

1553nm. A 10/90 combiner was used to couple the high peak pump and tunable laser 

(Photonetics Tunics Purity tunable external cavity laser) set at ImW. The tunable laser 

has an ASE suppression filter to attain very high side mode suppression ratios >70dB. 

Two polarisation controllers were used to independently adjust the polarisation of pump 

and signal to achieve TM for both. The spectra at output of the waveguide were 

captured by an OSA and results analysed. The pump laser was kept fixed while the 

wavelength of the tunable laser was tuned in range from 1490nm to 1530nm. 

Figure 5.21: Experimental set up for FWM in TeO^ waveguide 

Figure 5.22 shows the results of the output spectra recorded by the OSA. Clearly, 

the 1550nm pump was slightly broadened due to SPM. The pump power was kept at a 

low level to avoid significant distortion f rom SPM. The idler peaks on the right hand 

side of the pump from 1580nm to 1610nm show transfer of the pump modulation and 

some spectral dependence. Figure 5.23 shows the measured F W M conversion efficiency 

defined as the integral of the idler power divided by the signal power taking into 

account the pump duty cycle of Ips with the repetition rate lOMHz. So the C W signal is 

only 10'^ of the total signal. It is clear from the F W M efficiency curve that there is good 

conversion over a band of at least 30nm. Figure 5.23 also plots the calculated F W M 

efficiency as a function of signal wavelength with D=-8ps/km/nm, dD/dX = 034 
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ps/km/nm/nm, P=50W, ot=0.2dB/cm and The difference between the 

measured and calculated conversion gains is within 5dB. There are a number of possible 

causes for this discrepancy such as the phase matching condition, peak pulse power 

deterioration due to SPM and incorrect values of powers, dispersions and the nonlinear 

coefficient. Also, there is variation of the waveguide dimension along the length of the 

waveguide due to deposition and etching conditions. This leads to variable dispersion. 

Furthermore, the pump is pulsed; the model works best for CW case. 

—1490nm 
—1500nm 
—1510nm 
—1520nm 
—1530nm 

1470 1490 1510 1530 1550 1570 1590 1610 1630 
Wavelength (nm) 

Figure 5.22: The optica! spectra for various C W probe signal wavelengths 
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Figure 5.23: Measured and calculated F W M eff ic iency as a function of signal 

wavelength. 

The amplitude of FWM efficiency reported here is comparable with the value 

reported by Galili et al, 2008 [54] in the AS2S3 waveguide used in 640Gbit/s 

demultiplexing despite the fact that the nonlinear parameter in the AS2S3 case was an 

order of magnitude higher than the waveguide used here,. The lower nonlinearity is 

compensated by higher peak power used in the pump (~50W here compared to ~17W). 
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However, the gain spectrum width is much higher in this situation due to the very low 

dispersion of the Te02 waveguide used. 

Recent work on F W M in microstructured fibres suggests that is possible to 

increase the gain further by using the tapering method 1187], As the demonstrated in 

fibre by tapering the fibre f rom 4.2 | jm diameter to 1.2}am along the propagation 

direction, there is a continuous change of the zero-dispersion wavelength that enables 

the phase matching condition of F W M or the generation of dispersive waves for a wide 

range of wavelength. The nonlinear behaviour of the tellurite waveguides modelled here 

is very similar as the width is reduced from 4| jm to Ipm but the dispersion of the TMO 

mode make a gradual transit of the Z D W L therefore, it should behave in very similar 

manner as in tapered fibre and enable the same benefits. Tapering in waveguides can be 

achieved by varying the dimensions of the waveguide gradually along the waveguide. 

The waveguide width can be varied via mask design while the thickness can be varied 

via thin film deposition process. 

5.6 Conclusion 

The results in this chapter demonstrate a significant advance in tellurite planar 

waveguide technology. Very low loss waveguides were fabricated f rom reactive RF 

sputtering TeOi fi lms by reactive ion etching with CH4/H2/Ar plasma. The obtained 

Te02 waveguides have been optically characterised. A propagation loss of less than 

O.ldB/cm, an order of magnitude better than any reported values for tellurite 

waveguides in the literature, has been achieved in small mode area Te02 rib waveguides. 

The nonlinear coefficient of the sputtered Te02 was characterised by a self-phase 

modulation experiment. The nonlinear coefficient n2 was measured to be 

30 times that of silica. Four-wave mixing experiments were also 

conducted on the low loss and low dispersion waveguides. Significant signal conversion 

was achieved with large bandwidth. This chapter confirms the excellent potential of 

tellurite glasses and the capability of plasma etching approach to waveguide fabrication 

in these glasses. 



6.1 Properties of rare earth doped glasses 134 

Chapter 6: 
Erbium doped Tellurium oxide films 

This chapter will investigate Erbium doped co-sputtered Tellurium Oxide films. The 
films are fabricated by reactive radio-frequency magnetron sputtering. Erbium is 
incorporated directly into the films by co-sputtering of an Erbium metal target on a 
separate gun. Fabrication, characterisation processes, and properties of Erbium doped 
thin films are described in detail. The main goal is the fabrication and measurement of 
fi lms with long excited state lifetimes. The lifetime of 1.5|jm radiation was found to 
depend on the Erbium concentration. Oxygen content of the film and the OH 
contamination. 

6.1 Properties of rare earth doped glasses 
6.1.1 Rare earth ions in crystalline solid or glass hosts 
The rare earths, also referred to as the Lanthanides, consist of the series of elements in 
the sixth row of the periodic table stretching from Lanthanum to Ytterbium. They have 
a partially filled 4f shell which is shielded from external fields by 5s^ and 5p^ electrons, 
therefore, their energy levels are relatively insensitive to the host environment. They 
exist as or sometimes valency ions in crystalline or amorphous hosts. As a result 
of shielding of the 4f electrons, the rare earth energy levels are influenced much more 
by spin-orbit interactions than by the applied crystal field. The intra-4f transitions are 
parity forbidden and are made partially allowed by crystal field interactions. 
Luminescence lifetimes are often long (in the millisecond range) and narrow linewidths 
are possible in crystal hosts. Figure 6.1 shows the effect of spin-orbit and crystal field 
interactions on the energy levels of Erbium ions in a solid host [188]. 

The standard notation for the quantum levels of an element is ^^""'LJ, where L is 
the overall angular momentum number, S is the overall spin and J is the total angular 
moment. For an isolated atom, the states with the same total angular momentum have 
the same energy. However, this degeneracy is no longer valid when ions are close to 
other ions or are placed in glass or crystalline hosts due to the Stark splitting effect 
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resulting f rom the electric field of the local environment. Although shielding of the 4f 
shells means that the rare earth ion energy levels are largely independent of host, Stark 
splitting broadens the levels as the result of the applied crystal filed. The energy level is 
divided into J+1/2 sublevels of slightly different energy. However, these levels may 
only be resolved in low temperature measurement of the emission spectra of crystalline 
hosts; at room temperature the Stark levels broaden and overlap to produce an 
inhomogeneously broadened emission band. For Erbium, the ground state is split into 8 
levels and the first excited state is split into 7 levels. 

5l4nn<' 

O-Wnm 

7l5nm 
" f & ^ ' S 514nTTi 

532nm 
670nm 

/ 800nn<' 

1550nn<' 

790nm 
850nm 

ll40nm 

1680niT 

2u n=5 Hq/2 ^m 
'F3/2 

-'512 
^la n=4 

980n 

i m j / 2 ^ 
S¥2 

4c. n=5 _ ro 

4T n=5 hn 
: I n=6 li 1/7 ^ ^ 
4t n=7 M3/2 = 

% n=8 
512 

3.0eV 

2.5eV 

2.0eV 

1.5eV 

l.OeV 

0.5eV 

OeV 
Figure 6.1: Energy levels of Erbium quantum energy with effect of spin-orbit and 
crystal splitting and excitation wavelengths from and ''I11/2 to various 
levels [188]. 

In the case of Erbium in Silicon dioxide for example, the \ y 2 level is a 
metastable state. The radiative lifetime f rom this level to the ground state is often very 
long (potentially tens of ms) compared to those of the higher states (ps). Therefore, 
there are a number of possible pumping schemes for Erbium. Typically, a 980nm pump 
is usual in a three level system. The ion in its ground state is excited to the higher 
energy \ \ i 2 . Since the lifetime of this level is extremely short due to interactions with 
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phonons in the silica host, the Er ion rapidly relaxes non-radiatively to the metastable 

state '̂ Ii3/2- High population inversion may be possible for this scheme limited only by 

co-operative upconversion, cross-relaxation energy transfer and excited state absorption. 

1480nm pumping is treated as a quasi two level system. The ions in the ground state can 

be directly excited to the first excited manifold ('̂ 113/2)- The disadvantage of this quasi 

pumping scheme is that the pump photons also induce stimulated emission instead of 

being completely absorbed. Therefore, there is a limit on the population inversions can 

be achieved. It is also possible to pump with 800nm, 670nm and 532nm. 

6.1.2 Absorption and emission cross-sections 

Absorption and emission cross-sections represent the probability of the interaction of 

the photon (pumping and signal) with the medium it is travelling in. The spectra of 

absorption and emission cross-sections determine suitable pump and signal wavelengths 

in the amplifier and laser systems. 

a) Absorption cross-section 

Absorption cross-section can be measured by direct light transmission measurements. 

To obtain a spectrum, a broadband light source such as white light, a supercontinuum 

source, or an amplified spontaneous emission (ASE) source is usually used in 

conjunction with a monochrometer to provide wavelength discrimination. When a 

sample is illuminated with beam of intensity /o(A) the attenuation can be written 

according to Lambert-Beer law: 

I(L,A) = Ia(A)expia{A)L) (6.1) 

where a iA) is the absorption coefficient and L is the length (or thickness) of the 

sample along the propagation direction. The absorption cross-section (7̂  ( i ) is then 

defined as the absorption coefficient. The relation between and a(A) can be 

normalized by the doped ion concentration N as: 

= (6.2) 
" N NL 1(1,A) 



6.1 Properties of rare earth doped glasses ]37 

b) Emission cross-section 

The emission cross-section measurement is usually more difficult than the absorption. 

In order to detect the emission a pumping scheme is required and a detection set up 

which usually involves a monochrometer and a sensitive detector. During the 

measurement, the ions are excited into higher energy level and spontaneously emit a 

photon at a certain wavelength. For Erbium, the main emission of interest is in the range 

from 1400nm to 1650nm. Once an un-normalized emission spectrum is obtained, 

appropriate scaling must be performed to determine the value of the peak. If the 

metastable state radiative lifetime is known, the following Ladenburg-Fuchtbauer 

relationship can be used [190, 373]: 

2 

c 
v~G^{v)dv (6.3) 

where r i s the radiative lifetime, n is refractive index of the sample, c is the speed of 

light in vacuum. The integration is over the emission spectrum of one level. The method 

has been known to work very well for Erbium doped glasses [374]. 

An alternative method is to use the dependence of absorption and emission 

cross-section spectra as they are ultimately linked to each other. One such fundamental 

relationship is the Einstein relation [190, 374]: 

g y ^ G^{v)dv ( 6 . 4 ) 

where g, is the degeneracy of level i, v is the photon frequency and (7<, are 

absorption and emission cross-section, respectively. The Einstein relation is only valid 

if either all components of the multiples involved are equally populated or all transitions 

have the same oscillator strengths. In Er doped glasses neither of the two conditions is 

fully qualified. This is because the manifold width of the ground state and metastable 

states of Er doped glass are typically a few meV (300-400cm"') so at room temperature 

the first condition is not satisfied. Moreover, at low temperature, absorption and 

emission measurements indicate that the transition strength is quite sensitive to the 

Stark level involved [374]. Therefore, an alternative method known as McCumber 

theory is used. 
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c) McCumber theory 

McCumber , 1964 [373j proposed a theory to describe phonon-terminated masers. The 

relationship between absorption and emission cross-sections is proposed as following: 

= a ( v ) e x p ( ^ ^ ^ ) (6.5) 
kT 

where o ; is the stimulated emission cross-section, v is the photon frequency, h is 

Plank 's constant, k is the Boltzmann constant, and f is the effective energy required to 

excite one ion from the 115/2 to 113/2 state (ie ground to metastable state) at 

temperature T. This formula was first used for the study of transition metal ions but later 

applied to rare earth ions by Miniscalco, 1991 [374], It was found that it generally links 

the absorption and emission spectrum very well once the correct energy £ is used. 

Miniscalco, 1991 [374J suggested a simple method for £• approximation by using the 

room temperature absorption and emission spectrum half-width. Under low optical 

excitation, it can be written that: 

N F 
^ = e x p ( — ) (6.6) 
N^ kT 

where Nj and N2 are the population of ground level and excited level at temperature T. 

However, this ratio can also be expressed as [374]: 

yv ' + 
^ ^ (6.7) 

1 + > exp( - ) ^^ i r ' kT 

where Eij is the energy difference of the Stark level j and the lowest component of level 

i. It is also appropriate to assume that the Stark level spacings for a given manifold are 

equally distributed. This reduces the number of unknowns from 14 to 3: Eg and the 

manifold spacing AE/ and AE2. The final formula can then be simplified as follows: 

— = - e x p ( - £ o / / t r ) (6.8) 
N2 B ^ ° 

7 6 
where = 1+ ^ e x p ( - « A £ , 7^7) and 5 = 1 + 2 ] e x p ( - « A £ 2 / ^ O 

n=\ "=1 

A and B can be evaluated as: 
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Therefore: 

e x p ( — ) = e x p ( — ) ( ^ i - ! - ) (6.11) 
kT kT l - e x p ( - A £ , / / t r ) \ - t x p { - l / ^ J k T ) 

A good approximation of EQ, AEI and AE2 can be made from the shape of the 

absorption and emission spectra. The highest absorption and emission peaks are usually 

due to the transition between the lowest components of each manifold, or EG. The 

bandwidth of the ground state is approximately LAEJ and given by low-energy half-

width of the room temperature emission spectrum. Similarly, the bandwidth of the 

excited state is 6AE2 and given by the high-energy half-width of the absorption 

spectrum. For tellurite. EG is approximately 6547cm"' [147]. 

In comparing the bandwidth between various rare earth doped glasses, the 

effective bandwidth is more meaningful than the full-width at half-maximum (FWHM) 

due to the asymmetric nature of the emission spectrum. The definition of the effective 

bandwidth is: 

A A = f ^ ^ (6.12) 
/ A , ) 

where I (A) is the emission intensity at the wavelength A, and /(A^) is the intensity at 

the peak wavelength A^. For Er doped tellurite, the effective bandwidths generally 

increase with Er concentration in the range f rom 60-70nm, which is around 50% more 

that of silicates [147, 244J. 

6.1.3 Judd-Ofelt theory 

In order to determine the transition probabilities or oscillator strength of any particular 

transitions between energy levels in rare earth ions, Judd-Ofelt theory [375, 376] is used. 

The theory states that the oscillator strength for the transition between two states ^^""LJ 

and is given by [377, 378]: 
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/ = ^ ^ X I / / P (6.13) 

where is an average frequency corresponding to J ^ J' transition, in is electron 

mass, h is Plank's constant and \ is the matrix element of the electric dipole 

moment, which can be approximated by parameterized in form of a reduced matrix 

elements [377]: 

= (6.14) 
/=2,4.6 

are Judd-Ofelt intensity parameters whose values have been extensively 

measured are generally readily available for most hosts, and \ {aJ l i t / ' " is the 

reduced electric dipole matrix elements which can be calculated and are generally host-

independent. These numbers for many rare earths have been tabulated by Carnall et al, 

1968 [379-383]. This means that the oscillator strength for any absorption or emission 

transition can be determined if the ^ 2 4 6 ^^e known. 

The Judd-Ofelt intensity parameters can be obtained for a material system by 

analysing the room temperature absorption spectrum of rare earth ion doped materials 

provided that the concentration of these ions and the refractive index of the material are 

known. The main advantage of the Judd-Ofelt formalism is that when parameters 

are known, the oscillator strength can be calculated for any given transition between any 

pair of J states. For instance, the transition strength of the electric dipole component of 

Er in glassy materials from 

3/2->'I,5/2 is [384, 385]: 

['/,3/2 ] = 0.019112 + 0 . 1 1 + 1 . 4 6 2 1 1 , (6.15) 

And the magnetic dipole interaction for transition '̂ Ii3/2->'̂ Ii5/2 is given by: S"" ' [ (5 ' ,L ' )y ' ; ( 5 ,L ) i ] = — ^ l ( ( 5 ' , L ' ) y ' I I L + 2 y i l ( S , L ) y ) P (6.16) 
{2mc) 

In the absence of a strong magnetic field, the magnetic dipole interaction is 

approximately independent of the host. The spontaneous emission probability, Aj-j, is 

calculated by taking into account both electric and magnetic dipole interactions: 
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+ (6.17) 

The X terms coiTect the effective field at the localized centre of the medium of 

isotropic index n and are given by Zed + l f l 9 andj,,,,/ =n\ Webber, 1967 [384J 

has calculated the magnetic dipole spontaneous probability for '^Ii3/2->''li5/2 of Er in LaFa, 

which has index of 1.5, to be 37.6 s '. For materials such as Tellurium oxide with index 

of ~2, the value would be ~90s"'. Meanwhile, the typical values of ^^2,4.6 for Tellurite 

glasses are: ^ 2 = 5 . 9 3 x 1 0 ' ^ ^ , r i , = 1 . 5 0 x l 0 - ^ W , and r i , = 1.07xl0-^°cm^ [147, 386J. 

The electric dipole spontaneous probability for '̂ Ii3/2->'*Ii5/2 approximately equals 180s"' 

leading to the total spontaneous emission probability of 270s"' or theoretical lifetime of 

3.7ms. This number is lower than that of Er doped silica (as high as 12ms) or 

phosphosilicate glasses (up to ~20ms), however, it is still an excellent value for a laser 

or amplifier system and is compensated by the correspondingly high emission cross 

section also resulting f rom the high refractive index. 

6.1.4 Solubility in solid hosts 

Rare earth ions tend to form precipitates in most solid hosts beyond a critical 

concentration. This can be in the form of clusters of rare earth ions or can be 

compounds or alloys formed within the host matrix. Such processes serve to quench 

luminescence either by increasing ion-ion interactions between rare earth ions or groups 

of ions or forming compounds that are not optically active. This places a clear 

technological limitation on short Erbium doped silica fibre amplifiers. Therefore, 

typical silica based fibre amplifiers contain several meters of lightly-doped fibre in 

order to obtain substantial gain. Quenching concentrations for silicate glass and 

phosphate glass are in range from 4-9x10^'' ions/cm^ [188], However, tellurite is known 

to have very high rare earth solubility. Brovelli et al, 2007 [195] reported Er 

concentration in tellurite at 5 mol.% without any evidence of clustering. This is due to 

the fact that Tellurium atoms are significantly larger than Silicon or Phosphorus leading 

to further separation of Er ions in the matrix. Also, the bond f rame work of Tellurium 

has some degree of flexibility in order to create more sites for rare earth ions. Grew, et 

a.I 2006 [386] made Er doped sodium zinc tellurite samples with various Er 
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concentrat ions. There were crystals in the 12.5% Er by mass but not in any other 

samples with lower concentrat ions. 

6.1.5 Phonon interaction 

Mult iphonon transitions can under some circumstances rapidly depopulate the upper 

excited state and therefore quickly quench luminescence. Mul t iphonon effects occur 

when a small number of phonons are required to bridge the energy gap between the 

levels. As a guide, if the phonon cut-off energy of the host is greater than 25% of the 

energy gap, rare earth luminescence will be completely quenched [188J. For phonon 

energy between 10% and 25% of the gap, the quenching will result in a temperature-

dependent lifetime, while for phonon cut off energy smaller than 10%, the mult iphonon 

relaxation will be negligible. In the case of Erbium, the gap is 6500cm"' for the ^̂ 113/2 to 

•̂ 115/2 transition. The phonon cut-off energy is 1100 cm ' for silica, therefore, it is only 

weakly quenched at room temperature. Low phonon hosts such as f luoride and tellurite 

glasses can reduce the contribution of mult iphonon relaxation and allow transitions that 

are otherwise unavailable in silica based materials.[188, 190, 378]. 

In a given multiplet, when there is no or low population inversion due to 

external excitation such as optical pumping and at room temperature, the higher-lying 

states tend to relax very fast to the lowest state within the multiplet again via phonon 

interaction. The lifetime of the lowest lying state is strongly governed by the transition 

rate to the next lower multiplet . 

The lifetime, r, of a level is the inverse of the probability per unit t ime of the 

exit of an ion f rom that excited level. The decay of the population in a given level drops 

exponential ly with a t ime constant equal to the lifetime. There are a number of 

pa thways for the populat ion decays. The total probability is equal to sum of the 

individual probabili t ies for each pathway. Each pathway can have a separated lifetime. 

Usually they can be classified as radiative l ifet ime or nonradiative l ifetime z;,̂ . The 

total l i fet ime can then be written as: 

l = i - + — (6.18) 
7 
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Radiative lifetime comes f rom the f luorescence f rom the excited level to all the 

levels below it. h can be determined directly f rom Judd-Ofel t analysis. Radiative 

l ifet imes tend to be long, on order of microseconds to mill iseconds. 

Nonradiat ive l ifetime depends mainly on the glass or crystal host, dopant 

interactions with other dopants or contaminants (discussed below in Section 6.1.6), and 

the interaction between phonons and the ions. The phonon component of the 

nonradiat ive transition probabili ty drops exponential ly with the number of phonons n 

required to bridge the energy gap to the next lowest level. The most commonly used 

formul ism for the relationship between the mult iphonon relaxation rate and the 

energy gap AE, phonon energy ho) at temperature T i s [190J: 

V ^"'P Jn.T 

= fiexpl-aAE) l - e x p ( - ) (6.19) 

where is the number of phonons needed to bridge the gap, AE is the 

energy gap, and //^y„, is the maximum phonon energy of the phonons that can couple to 

the ion. The known measured constants B and a are tabulated in Table 6.1. The 

nonradiat ive transition rates for Er^"" in several glass hosts are plotted in Figure 6.2. For 

Er transition f rom '^Ii3/2->''li5/2, the energy gap is around 6500cm '. The mult iphonon 

relaxation rate is low compared to the radiative rate. Even with silica where the phonon 

cut off energy is 1100cm"' the Er luminescence at 1530nm is only weakly quenched at 

room temperature. Selection of lower phonon hosts such as fluoride or tellurite glasses 

can reduce the contribution of mult iphonon relaxation and allow radiative transitions 

that would otherwise be quenched (for example, the 2.7|am transition in Er) 

[188]. The nonradiative transition rate of Er^"" in tellurite is one of the lowest, just 

behind Z B L A N glasses. This al lows the strong competi t ion of tellurite with Z B L A N as 

an alternative low phonon energy host for number of important laser lines such as the 

1.3pm transition in 
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Table 6.1: Multiphonon transition parameters for some glasses [190, 197|. 
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Host B (s') a(cm) (an') 

Tellurite 6 .3x10 '" 4 . 7 x 1 0 ' 700 

Phosphate 5 . 4 x 1 0 " 4.7x10" ' 1200 

Silicate 1 .4x10" 4.7x10"' 1000 

Germanate 3.4x10'" 4.9x10"' 900 

ZBLAN 1.6x10'" 5.2x10'" 500 
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Figure 6.2: Nonradiative lifetime in different materials 1190] 
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6.1.6 Dopant interaction mechanisms 

Ion-ion interaction involves various, usually gain limiting, processes which take place 

in highly doped materials and results in non-radiate decay, luminescence quenching and 

dissipation of energy. There are quite a number of possible interactions in rare earth 

doped materials of which the most important include: co-operative upconversion, 

energy migration, cross-relaxation, excited state absorption (ESA), and OH quenching. 

Figure 6.3 shows schematic diagrams of several of these processes [188, 190]: 

a) Co-operative upconversion. Ions in the metastable state can couple 

in such a way that the decay of ion I promotes a nearby ion 2 into a 

higher level. Thus ion 1 loses its energy non-radiatively. Once in the 

higher state, ion 2 radiates to lowest level to emit light or may then 
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decay rapidly non-radiatively and return to the metastable state and 

subsequently emits light. This process results in loss of excitation to 

heat. In Erbium, the process is 2^ \ \y2=>\ i2 + ''l 15/2-

b) Energy migration. An ion in the metastable state can interact with a 

nearby ground state ion, exiting it to the metastable state. Although 

radiative decay might occur from the second ion, the probability of 

non-radiative decay is increased with each successive transfer, making 

it a lossy process for the overall efficiency. In Erbium, the process is 

ll3/2-> 113/2-

c) Cross relaxation. This process involves an ion in a highly excited 

state transferring energy to a nearby ion promoting it from the ground 

state to the metastable state. This process is only in effect if there is 

significant population at very high energy level as a result of other 

interactions. In Erbium, the energy gap between "̂ 19/2 and "̂ 113/2 levels is 

close to that of the "̂ 1:3/2 and '̂ Ii5/2 levels. As a consequence, at high 

Erbium concentrations, the population of the metastable state may be 

increased by the decay of an ion from the ''I9/2 level. The process is: 

•̂ 19/2 + '^I|5/2=>2 ''II3/2-

d) Excited state absorption (ESA). Here an ion in the metastable state 

is further excited into an upper state by the absorption of another 

pump photon. Clearly this requires an available energy level which is 

roughly the pump energy above the metastable state to occur. The 

upper state excited ion can return to the metastable state by 

multiphonon relaxation or radiative decay or bypass the metastable 

state entirely by high energy emission. However, the process results in 

two absorbed photons of which at least one photon is lost to either 

heat or emission at different wavelength. Excited state absorption 

therefore constitutes a loss mechanism and impacts pumping 

efficiency. Figure 6.3 d) illustrates ESA for Er̂ "̂  ion. 

e) Pair-induced quenching (PIQ). Pair induced quenching is similar to 

the cooperative upconversion process in that the interaction occurs 

when two ions are closely coupled together that they cannot be both 
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simultaneously excited to level ''I13/2. The energy transfer rate between 

the two ions is on time scale that is significantly faster than that of the 

pumping rate so that the pump is unable to keep both ions excited. In 

this pair model, the ions are no longer considered independent. When 

one of the ions of the pair is in the ''I13/2, it then assumes that the other 

ion must be on the ground state. The overall ion population can be 

considered as two sets of ions one is isolated single atoms and one 

with paired-ions. The rate of pair-induced quenching process depends 

on the number of ions already in the excited state and the pump 

intensity, which excites the second ions. The dependence is similar to 

ESA. 

f) OH quenching. Another deleterious process involves energy transfer 

f rom ions in the metastable state to the OH complex which has a bond 

resonance in the 1550nm region, which serves a quenching centre and 

is extremely effective at quenching excited rare earth ions. At high OH 

concentrations, this can occur through direct transfer from the excited 

ions, at lower OH- concentration, a more likely process is fast energy 

transfer between interacting donor ions until the excitation reaches one 

near an OH- centre. 

All of the transitions in Figure 6.3 can occur resonantly and/or with phonon 

assistance. At resonant conditions, the energy is transferred between different ions 

without the involvement of a phonon from the host, whilst in phonon assisted processes, 

the total energy of the involved ions either increases or decreases due to the absorption 

or emission of one or more phonons. The host can provide phonons with energy up to a 

cut off phonon energy as in Table 6.1. For instance, in tellurite, the maximum phonon 

energy is around 700cm"' . Therefore, when the total energy of the two ions before and 

after the nonlinear transition is less than this maximum phonon energy, the transition 

probability is reasonably high due to the ready availability of suitable phonons in the 

host. 
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a) Co-operat ive upconversion b) Energy migration 

c) Cross-relaxation d) Excited state absorption 

Figure 6.3 Ion-ion interactions in Er doped glasses and excited state absorption 

1188, 190). 

6.2 Rate equations for photoluminescence study 

For lifetime and fluorescence studies, Erbium doped samples are pumped with a 980nm 

source as shown in Figure 6.4. The fluorescence signal at 1.5|im is generally very week 

and unguided and therefore, its contribution to the stimulated emission process can be 

neglected. The pump power is usually modulated on for a sufficient duration to produce 

a population inversion. Then it is turned off and the decay signals are monitored. There 

are a number of approximations that can be made to simplify the treatment of the 

system. 

With a 980nm pump, the system is basically a 3 level scheme in the ideal 

situation where there is no effect of ion-ion interactions or excited state absorption. The 

ions at ground state are excited by the pump to level 3. They quickly make a non-

radiative transition to the metastable state at level 2. The population inversion is built up 

between the metastable level 2 and ground state 1. The next transition f rom 2 to 1 

would be a photon emission via stimulated or spontaneous process. However, when 

taking into account all ion-ion interactions and excited state absorption as shown on 
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Figure 6.4, there are popula t ions at h igher levels as well . The popula t ion at level 5 CVia) 

is exc i ted via exci ted state absorp t ion and upconvers ion f r o m level 3 (''I11/2). There are 

a lso upconvers ion and re laxat ion e f fec t s that change the popula t ion of level 4. In 

addi t ion, the popula t ions at higher levels non-radia t ive ly decay via single or 

mu l t i phonon processes to the lower level because of the close spac ing be tween them. 

T h e coup led rate equa t ions can be writ ten as [194, 387, 388J: 
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Figure 6.4: Schematic diagram of main transitions of Er in glasses pumping at 

980nm. The curves arrows indicate non-radiative transitions and solid arrows 

indicate the radiative transidons. 
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dN, 
dt 

dN, 

dN 

dN 
dt 

Ni.5 are the concentrations of Er̂ "̂  in excited states 1-5 as in Figure 6.4. The total Er 
concentration is Nq. Ai/s are the non-radiative rate f rom level / to level j. A21 is the 
f luorescence rate. R13 and R31 are the pump rate and rate of stimulated emission of the 
pump. W/2 and W21 are the signal rates of stimulated absorption and emission. 
Upconversion is accounted for with coefficient C2 for upconversion f rom level 2 to 4 
and C3 for upconversion f rom level 3 to 5. The upconversion effect is related to the 
square of the populations. The excited state absorption is included by R35. The cross-
relaxation is represented by C14 and is proportional to the products of population NJ and 
N4. The rates R,^ and Wij are equal to /cr,^ I hv where / is the intensity, G-- is the cross-

section, and hv is the photon energy. At the moment , the OH-quenching effect is being 
ignored, but its effect on lifetime will be discussed in the latter section of this chapter. 

In addition to the transitions shown on Figure 6.4, there are also other radiative 
branches such as 5 - > l , 4 - > l . These transitions are responsible for the visible light such 
as the green when the Er doped devices are pumped at high intensity. However , 
populat ions at level 4 and 5 are small due to very fast nonradiative decay rate to lower 
levels near by leading to insignificant contributions. They are ignored in the rate 
equations. 

These coupled differential Equations (6.26) represent a relatively complex 
system. It is usually t ime consuming to calculate even numerically. During the 
photoluminescence lifetime measurement , the pump is modulated. There are certain 
approximat ions that can be used to reduce the complexity of the system. When the 
pump is off , all of the pump-st imulated terms are zero or Ri3=R3i=R35=0. Furthermore, 
because the signal is not confined the signal intensity is very low meaning the W,/s can 
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be considered equal to zero. The pump level population N3 can be deemed negligible 

since the pump is off. Also, it can be assumed that the non-radiative decay transitions 

f rom between level 3 to 5 are dominate over the optical transitions. Therefore, once the 

pump is turned off, the above rate Equations (6.20) then simplify to become: 

dN, 

dN 
= ,6.21) 

dN, 

dt 

A further assumption can be made for the system. The population N4 and N3 are 

significantly less than the metastable level population N2. The two terms A32N3 and 

2C14N1N4 in the first line of Equation 6.21 are therefore small compared to the other 

terms. Therefore N2 is decoupled f rom the rest of the population levels or: 

dN 
(6.22) 

dt 

This simple differential equation can be solved to have the following analytical solution 

[192, 388J: 

^ , ( 0 = (6.23) 
[1 + yVj ( 0 ) Q r J e x p ( / iO)C,T, 

where N^iO) is the Er ion population in level 2 at the moment the pump is turned off, 

and Tj = 1 / ^ 2 1 is the radiative lifetime of level 2. The decay PL signal only depends on 

the lifetime T^, the initial population N^iO) and the upconversion coefficient C2 In the 

absence of upconversion C2=0, the decay is single exponential. The decay signal forms 

a straight Hne in a logarithmic scale graph with the slope depending on the lifetime of 

metastable level. In the upconversion regime, the signal decay is non-exponential at the 

beginning of the curve but become an exponential as the signal gets weaker. The 

intrinsic lifetime r^ can be measured by the slope of the semi-logarithmic scale graph 
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of the decay signal at the low signal end. The analysis so far relies on the assumption 

that the rate Azi is purely due to radiative transition. However, in reality, there is also 

energy transfer rate between Er ions and OH contaminant. The next section further 

analyses the effect of OH quenching on the measured lifetime. 

6.3 Effect of OH quenching centre concentration on lifetime 

The measured lifetime of the 1.5|jm transition of Er doped sample is influenced by 

not only the intrinsic (radiative, t^ ) , the multiphonon assisted transition lifetime 

but also the quenching effect due to the presence of OH impurity represented by r^,^ . 

The OH quenching dependent PL lifetime can be simply expressed as: 

1 1 1 1 
— = — + + (6.24) 

The bandgap between '*Ii3/2->''li5/2 is 6500cm"', the multiphonon transition rate is 

very negligible for tellurite glasses as seen on Figure 6.2. Therefore, only the intrinsic 

lifetime 72 and OH quenching rate T^^ affect the measured lifetime . 

Further insight can be revealed if the following assumptions are proposed [389]: 

a) the OH quenching centres are only coupled to a fraction of the Erbium ions, b) the 

fraction of Er ions coupled to OH groups is dependent on the OH concentration and c) 

non-radiative quenching occurs after the excitation energy is transferred to Er ions and 

then coupled to OH group via energy migration. Taking into account these assumptions, 

the concentration of Er ions coupled to OH Ngr-OH can be written as [147, 221, 389j 

^ (6-25) 

where CEr-Er is the migration rate which has been measured in tellurite hosts to be 

46 X10"'° c m V [147, 221]. By plotting the value of 1 / r ^ against the Er concentration 

Nsr, the value of Nsr-OH can be calculated f rom the slope and the intrinsic radiative 

lifetime can also be measured from the intercept. 
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6.4 Fabrication of Er doped Tellurium oxide by sputtering 

6.4.1 Film deposition 

Erbium doped thin films were obtained by co-sputtering of Er and Te targets in an 

Ar/02 atmosphere. The Te target is a pure sintered powder Tellurium metal at 99.95% 

purity in a copper cup to help with heat dispersion. The Er target is solid metal piece 

with 99.99% purity. The gas mix was ultra high purity O2 and Ar. The flow of Ar was 

9.5sccm and of O2 was 5.5sccm. The pressure of the chamber was maintained at 

SmTorr during the deposition process. The Te gun was supplied with a power of 150W 

(25% of the 600W maximum power of the gun), all as per the fabrication of 

stoichiometric Te02 films. The power to the Er guns was varied depending on the 

required concentration of Er. Generally, the Er gun powers are in the range 5% to 15% 

(30W to 90W). These produced films with Er/Te ratios in the range from 0.1% to 3%. 

Generally, the wafer used during this entire project is 4" Silicon wafer with 2\xm 

thermal oxide layer, which will act as a lower cladding for the fabricated devices. Small 

pieces of bare Si substrate (cut in 100 plane) were also used for characterization such as 

refractive measurement, composition analysis etc. A small piece of glass slide was also 

used as a substrate for photospectral measurements and lifetime. 

6.4.2 Laser ablation ICP mass spectrometer 

The compositions of the obtained films were measured using an ICP mass spectrometer 

and excimer laser ablation attachment at the Research School of Earth Science, the 

Australian National University. A COMPex 110 Excimer laser using ArF (193 nm 

wavelength) was connected to an Agilent 7500s ICP-MS through an in-house-

developed ablation chamber. Helium filled the main part of the chamber and carried the 

sample from the ablation site. That aerosol was mixed with Argon in a cone-shaped 

space above the ablation site, and was mixed down stream with Hydrogen and delivered 

to the torch of the ICP. The laser pulse energy was approximately 50mJ at 5Hz 

repetition rate. The aperture was chosen to produce a 40|jm diameter pit. The beam was 

fixed and the sample was moved at rate of 10|jm/second. Gas flows were 1.11/min 

Argon, 0.341/min Helium and 0.11/min Hydrogen. Sample ablations were typically 30 

seconds of background followed by up to 3 minutes of "laser-on" signal. Concentration 
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data were produced using the method of Longerich et al, 1996 [390] using an Excel 

workbook. A certified standard, coded 610 from NIST, was used to calibrate the 

measurements. 
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Figure 6.5: Excimer laser ablation ICP mass spectrometer a) a image of ablated site 

and b) a typical mass spectrometer spectrum using exciter laser ablation (x axis is 

time and y axis is number of count, the four vertical bars are for selection of the 

background and data for calculation of the composition). 

A typical spectrum obtained is showed on Figure 6.5. At the time the laser is 

switched on, there is a spike due to the sudden flux of the materials from the ablation 

chamber to the ICP. After a few seconds, the spectrum stabilises and the count levels 

become flat. The flatness of the spectrum indicates that the elements are uniform and 

the system is in a good operation condition. The fluctuation is highest in Silicon due to 

the fact that the films are deposited on the Silicon substrates. The laser drills to the 

Silicon slightly unevenly. This indicates that the laser pulses only drilled to the Silicon 

substrate after a number of shots. 

Also, the background level for Tellurium is relatively high for both measured 

isotopes at round 10^ or 10^. This indicates that Tellurium has relatively long lifetime in 

the system. The materials could stick to various elements of the system such as the 

ablating cells, the tubes, and the torch. Despite that, the background count is around 10"̂  

lower than the signal when ablation is on. Therefore, the effect of the background is 

negligible. Other contaminants including Ni, Cu, Zn, Ga, Ge, Cd and In are at very low 

concentrations at only 100 counts compared to Er at a million counts. These 

contaminants are either from the original targets or from the sputtering chamber. 

The extracted data of Er/Te ratio against the RF Er gun power are plotted in 

Figure 6.6. It is clear that the Er concentration can be accurately controlled by simply 
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setting the Er gun RF power. The plasma threshold for the Er target was around SOW. 

After that, the increase tended to be exponential. To achieve sufficient optical gain, the 

Er concentration should be at order of 2xlO'"ions/cm^ or around 1% Er/Te. This 

criterion is readily obtained by setting the Er RF power to around 10% (of 600W). 
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Figure 6.6: Dependence of Er/Te in co-sputtered film. 

6.5 Characterisation ofEr doped Tellurium oxide films 

6.5.1 Photoluminescence using free space set up 

The experimental setup as shown on Figure 6.7 was used to characterize the 

photoluminescence spectrum, using a CW Argon ion laser (Spectra Physics Stablite 

2017) emitting 488nm wavelength as a pump. The laser beam was modulated by a 

mechanical chopper with a disc having two cut outs providing a duty cycle of 50%. The 

power of the laser was set to lOOmW at the sample. The beam was focused onto the 

film surface using a 200mm lens to produce a spot of ~200microns waist diameter and 

the fluorescent emission was collected and collimated by lenses with a diameter of 

75mm and focal lengths of 200mm. A long pass filter was placed in front of the 

monochrometer entrance to filter the pump. The dual grating monochrometer was set 

with 2mm front and back slits. The gratings had 900groove/mm rulings. The signal was 

picked up by a Liquid Nitrogen cooled Ge detector. The signal was then amplified by an 

SRS lock-in amplifier before being sent to the computer for acquisition and analysis. 

Since the interesting emission is around 1550nm, the monochrometer was set to scan 

from 1450nm to 1650nm with 7s integration time and at a bandwidth of 2nm. 
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Figure 6.7: A free-space set up for photoluminescence measurement 

There are some difficulties in collecting photoluminescence spectra f rom thin 
films. First, due to very low optical path length, only l -2 | jm, the amount of light 
absorbed is very low. Furthermore, due to Fabry-Perot effects in the film, the pump 
wavelength might fall on the reflection maximum (which can be close to 100% for a 
multilayer film stack) reducing the available pump power very considerably; the 
luminescence signal might also be at a resonance at the same time leading to very low 
signal levels out of the film. This can result in a low signal to noise ratio of the 
photoluminescence spectrum in some instances as some traces in Figure 6.8 a) show. It 
is not the case that the highest Er concentration produces the cleanest signal as might be 
expected purely on the basis of the emission power. The peak emission in all cases was 
at 1533nm. The effective emission bandwidth was calculated by Equation 6.12 and is 
plotted on Figure 6.8 b). The bandwidth is about 60nm, with only slight variation of the 
width over the concentration range studied. The values obtained f rom these fi lms are 
comparable with reported values in the literature [147, 221, 244J. Unlike the spectra 
reported by Jaba et ai, 2009 [147J and Dai et at., 2006 [221], there is no significant sign 
of spectral broadening due to Er concentration increase. This is because those authors 
measured l ifet ime in bulk samples where the re-absorption of the 1.53|am signal leads to 
a lowering of the peak and so an effective bandwidth increases while the f i lms 
measured here are so thin, there is no re-absorption effect. 



6.5 Characterisation of Er doped Tellurium oxide fdms 156 

Normalised photoluminescence 
spectra 

1.2 
1 -

80 n 
£ 7 0 -

I 60-
- I „ 5 0 -

E40 
•M ~30 H 
S 20-
E 10 

0 

Effective PL width (nm) 

a) 

1 5 0 0 1 5 5 0 1 6 0 0 

Wavelength (nm) 
1 6 5 0 

b) 

0 . 5 1 

Er doped (%) 
1 . 5 

Figure 6.8: Photoluminescence of Er doped Tellurium Oxide fi lms a) Normalised 

emission spectra at various Er/Te and b) Effective width of the emissions. 

The Ladenburg-Fuchtbauer analysis (Eq. 6.3) \ / T = (Sm^ /c^) jv^<T^(v)dv 

applied to the spectra gives the radiative lifetime of tratisition %v2-\m in Er doped 

Te02 films at 2.4ms. This number is smaller than those quoted in the literature using 

Judd-Oftelt analysis for bulk multicomponent tellurite glasses of 3.7ms to 4ms [144, 

147, 188, 386, 391-395]. Since there has been no Erbium doped Tellurium oxide work 

reported in the literature before this work, the comparison is questionable, although the 

predicated lifetime is not much less than that for the multicomponent glasses. 

6.5.2 Lifetime measurement using all fibre setup 

To avoid the Fabry-Perot effects and maximize the collection efficiency of the 

photoluminescence signal an all-fibre set up as shown in Figure 6.9 was used. A grating 

stabilized 975nm pump was modulated by a pulse train from a function generator, with 

typically 5ms pulses and ~50Hz repetition rate. A broadband 980nm/1550nm W D M 

was used to couple the pump light to a tapered fibre lens. The lens focused the pump to 

a spot size of 2.5um (1/e") diameter at 14jim distance from the tip. The beam 

illuminated the sample from the edge of the film, top down to the film or via the end 

facet of a waveguide. The same lens acted as a collector for the PL signal. The PL 

signal travelled backward to the W D M where it was coupled through to the 1550nm 

output port. A second identical W D M is used to further suppress the pump signal. An 

InGaAs detector (Fermionics) was used to measure the l.S^im PL signal. The electrical 

signal was amplified using a low noise pre-amplifier (Signal Recovery Inc. 

transimpedance amplifier). The amplified electrical signal was then displayed on a 

digital oscilloscope or fed to a data acquisition device attached to a PC. The system had 
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an intrinsic rise time of ~8|is, could rapidly average several thousand traces to reduce 

noise and allow measurements over potentially 4-5 decades of signal decay, and could 

pump the sample with intensities f rom levels approaching those experienced in an 

actual amplifier down to its lowest detection limit, thereby, enabling the intensity 

dependence of lifetime and the various non-linear effects to be captured. Additionally 

the short focal length of the detection means the probed path was very short as the insert 

in Figure 6.9 illustrates, thereby enabling the elimination of absorption/re-emission 

issues previously observed [221, 386J. 
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Figure 6.9: All fiber setup for photoluminescence measurement of film and 

waveguides 

Further advantages of this method include the fact that the fibre lens only 

collects PL signal f rom the volume where the pump is most intense. The depth of focus 

is noly few micrometer long, therefore this helps to avoid the effect of signal 

reabsorption enhancement of lifetime seen in heavily doped bulk samples [147, 221, 

386]. Furthermore, the directly modulated pump has a fall time of less than lOps. This 

is significantly better than the normal modulation method using a mechanical chopper 

which produces modulated pumps with fall times of a few hundred micro seconds. This 

means films with short lifetimes can be measured which is helpful in determining 

concentration dependent effects. In addition, this setup can be used under normal room 

lighting as the tapered fibre lens only collects light from an extremely small volume 

inside the sample. 
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6.5.3 Lifetime and measurement configuration 

A measurement technique dependence for the high power lifetime was seen. The role of 

the waveguide structure has been previously identified [396J through its modification of 

the emission modes and so the high power lifetime was measured in three geometries; at 

the unstructured film edge, perpendicular to the film, and at the facet of two different 

waveguide lengths (4mm and 5cm). The results for the 1/e lifetime are presented in 

Table 6.2. The first three film lifetime measurements on the Table 6.2 were performed 

on film deposited on glass slide, whereas the measurements of lifetime of Er doped 

waveguides were performed on those fabricated on thermal oxide wafer. 

Table 6.2: Lifetimes for different measurement geometries (sample coded 45 with 

Er concentration of 1.3% or 2.9x10"" cm'^) 

Sample Measurement Pump power Lifetime at 1/e 
geometry level (ms) 

Film on Si02 Edge Low 0.56 
Film on Si02 Edge High 0.44 
Film on Si02 Perpendicular High 0.38 

4mm long waveguide End High 0.31 
5cm long waveguide End High 0.19 

The waveguide geometries considerably shorten the observed lifetime. The 

longer waveguide produces lower lifetime than the shorter waveguide. We believe this 

is due to the depletion of the excited Er ions in the measurement region by stimulated 

emission with photons generated elsewhere in the waveguide. Clearly the rate of 

stimulated depopulation depends on the number of incident photons which is a function 

of both the length of the waveguide and the pump power. Consequently a longer 

waveguide generates more photons outside the measurement region which propagate to 

the measurement region and depopulate the excited Er ions faster thereby reducing the 

observed lifetime further. Measuring perpendicular to the film surface also has a shorter 

l ifetime than measuring through the film edge. Here, although no photons are generated 

outside the measurement region to depopulate the excited Er ions by stimulated 

emission as in the waveguide case, the measurement region is in fact contained inside a 

Fabry-Perot cavity comprising the film (high index) and air/the silica substrate (both 

low index). Thus some photons initially generated by spontaneous emission in the film 

are reflected at the surfaces and produce repeated stimulated emission events as they 
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"bounce" inside the film thereby again reducing the number of excited ions by a non-

spontaneous decay process thereby shortening the observed Hfetime. In contrast to the 

two prior cases, measuring through the film edge results in the pump diffracting away 

quickly in the plane of the film as it is unguided there, so little spontaneous emission 

occurs outside the measurement zone and any that is generated is not guided back into 

the measurement zone. Thus the number of stimulated emission results is considerably 

reduced and the measured results are expected to be far more representative of the true 

spontaneous decay rate of the film than the other measurement modalities. However the 

results of Table 6.2 pose the question of whether this measurement modality remains 

completely unaffected by backward propagating spontaneous emission. The definitive 

measurement to clarify this would be to deposit the Er doped Tellurite film on an index 

matched substrate with top side anti-reflection coating and then measure perpendicular 

to the film. In this case there is by definition no spontaneous emission outside the 

measurement region, and no reflections of spontaneous photons generated inside the 

measurement region back into it for stimulated emission to occur. Therefore, it would 

be expected that this geometry would measure only the spontaneous decay rate. 

Unfortunately, no suitable substrates were available to try this. 

6.5.4 Decay and upconversion 

In the first set of experiments, a sample with Er/Te ratio of 1.5% was measured at 

various pump pulse durations f rom 2ms to 30ms. Most of the obtained decay curves are 

non-exponential as shown on Figure 6.10. They consisted of a rapid decay initial part 

fol lowing by exponential lines in the semilog scale graph. The decay curves were 

almost identical with the pump period ranging f rom 2ms to 30ms. There is only slight 

deviation after 3ms or after the signal has dropped to 0.01 below the initial signal. The 

deviation is mainly on the 2ms pulse. This is because the signal at this particular pump 

duration was very low even at the delay 0ms, by the time it gets to 3ms, the signal 

becomes very weak leading to large detection error. 
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Figure 6.10: Typical decay curves for a sample with various pumping on periods. 

The fitting is using upconversion expressions as in Equation (6.23) in form of: 

Iit) = - (6.26) 
[\ + K]expit/T,„)-K 

where K = N . ^ T ^ represents the upconversion effect, is the lifetime of the 
metastable state, I{t) is the normalised signal. The fitting of the data on Figure 6.10 
results in Figure 6.11 with a) lifetime r,„ and b) upconversion coefficient K. The 
upconversion fitting process produces not only good fitting but also reflects the physical 
evidence. The lifetime after a long decay is roughly constant. The saturation parameter 
A" is lower at first because the population N2(0} has not been fully saturated. As the 
pump duration increases, the population N j is in steady state and independent of the 
length of pumping pulse. At a very short pumping duration, the upconversion is less 
profound because the initial population is well below saturation. 
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6.5.5 Lifetime and sputtering condition 

A series of f i lms with different sputtering conditions were fabricated to determine 

whether the lifetimes of the films were dependent on the fabrication parameters. In the 

first experiment, the chamber conditions and Te target setting were fixed while varying 

the RF power of the Er gun to increase the Er concentration in the deposited films. The 

dependence of Er content on Er gun RF power in the deposited film is plotted on Figure 

6.6. The next set of data is the dependence of lifetime against the Oxygen content in the 

film. The Oxygen content is controlled by the amount of Oxygen flow. The starting 

point for the Oxygen flow was the condition that obtained stoichiometric Te02. 

Increased Oxygen flow results in higher Oxygen incorporation into the films. 

2.50 -

-S- 2.00 • 
E 
0) 1.50 -E 
2 1 .00 
LJ 

0.50 -

0.00 

Lifetime vs Er content 

• O/Te-2,05 

lO/Te-2.25 

2.50 

2 . 0 0 -B 
^ 1.50 -

11.00 H 
0.50 -

Lifetime vs O/Te 

0.00 

• E r / T e - O . 3 % 

i E r / T e - 1 . 3 % 

0.00 0.50 1.00 
Er/Te ratio (%) 

1.50 2.00 2.20 2.40 
O^e 

2.60 2.80 

a) b) 

Figure 6.12: Lifetime of sputtered film with varying sputtering condition a) 

lifetime vs Er/Te when the Oxygen flow is kept at 5.6 (0/Te~2.05) and 6.6 

(0/Te~2.25) and b) lifetime vs O/Te when the Er target is set at 7.5% 

(Er/Te~0.3%) and 12.5% (Er/Te~1.3%) 

The lifetime was measured by fitting an exponential function to the tail of the 

decay curve. This is when the upconversion effect has become negligible. The data are 

plotted on Figure 6.12 with a) showing the lifetime against Er concentration and b) 

showing the lifetime against Oxygen content in the films. Clearly, the trends of both set 

of data are very similar. At low Er concentration and low Oxygen content, the lifetime 

is highest at around 2.4ms. This value is in excellent agreement with one calculated 

f rom the PL spectra using McCumber analysis detailed above. As either parameter 

increases, the lifetime was reduced. This trend indicates that there is a quenching 

mechanism that depends on the concentration of Er and the amount of Oxygen in the 

films. 
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The measured l ifetime is the effect ive decay rate f rom level ''I13/2 to \ y 2 . 

Upconvers ion has been eliminated in obtaining the l ifet ime represented in Figure 6.12. 

There are several possible l ifetime quenching mechanisms including cross relaxation, 

energy migration, pair- induced quenching (PIQ) or OH contamination as discussed in 

Section 6.1.6. Cross relaxation involves the population of higher level. However, when 

the p u m p is turned off , the effect is very small. Energy migration only conserves the 

excited ion population as the energy is directly transferred f rom one ion to the other. 

PIQ only can be a factor at very high level pumping when the excited ion concentration 

is significant. It is not the case here where the lifetime is measured f rom the fit to the 

decay curve after a significant delay after the pump is turned off. Therefore, a possible 

cause for the reduction in lifetime is the effect of OH contamination. 

Indeed, when the passive f i lms were fabricated into waveguides, there are 

occasions where there are absorption bands at 1480nm and 1280nm. These bands 

clearly indicated that there were OH bonds in the waveguides. The effects of OH 

required fur ther investigation in the Er doped films. 

6.5.6 Effect of OH 

It is well understood that water contamination in Er doped glasses can strongly quench 

the l ifet ime of the I .5 | jm emission [144, 146, 147, 219, 221, 397]. This is because the 

Er ions can be in direct interaction with the OH bond. When the Er ions are excited, the 

energy can be resonantly transferred to the OH unit as OH has an overtone vibration in 

the I .5 | jm region, and so the energy is lost via the vibrational mode of the OH units. 

The O H groups are coupled with the cation in the glass network, especially with the 

network forming cat ions (in this case, Te"̂ "̂ ). 

The detailed spectroscopic properties of OH in silica have been investigated 

[398, 399]. In silica, the main OH fundamenta l vibration is at around 2.1 \xm , the while 

the first overtone is around 1.4pm, and the third overtone (OH vibration and S i 0 4 

vibration) is at around 1.25|jm [398, 399]. The ratio of the fundamental and the first 

overtone absorption in Silica is around 160 times. The ratio of the first overtone to the 

second overtone is 23 t imes [398]. 

Detailed studies of OH absorption in tellurite are limited [144-148]. The 

absorption peaks for tellurite are shifted to longer wavelengths due to the larger mass of 
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Tellurium compared to Silicon, with a fundamental at 3.3|am , and first overtone at 

1.48|jm [148], The strength of the absorption at 3.3| jm is around 667 times stronger that 

that of 1.48|jm peak. Until now, there has been no reported direct measurement of the 

second overtone at 1.3nm in Tellurite glass. We now are in the position to study this 

because of the availability of long low loss waveguides. 

10000 

a) 

1000 1500 2000 2500 3000 
wavelength (nm) 

3500 

100000 

10000 
E ^ 
m x> 
c o 
3 
C 

s TO 

1000 

b) 

400 600 800 1000 1200 
wavelength (nm) 

dry (F300) 

1400 1600 

Figure 6.13: Absorption spectrum of OH in silica glass [398]. 

a) OH concentration estimation 

The content of the OH groups can be estimated f rom the measured absorption 

coefficients at ~3|am by the formula [144, 147]. 

a. OH 
(6.27) 

where Na is the Avogadro number, £ is the molar absorptivity of the free OH groups in 
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the glass, a is the peak loss per unit length. The absorptivity adopted was the silicate 
value of 49.IxlO'cm^/mol because there is no report on this parameter in tellurite 
glasses [144, 147, 400]. Since, there was no practical method available to measure the 
absorption at 3|jm directly in Tellurium oxide thin films or waveguides, the value of the 
absorption at 3|jm is estimated by the measurement of the first overtone at l.Spm and 
the ratio has been determined to be 667 times [148]. However, because the Er doped 
sample has strong and broad absorption at l .Spm, the absorption at 1.5|jm due to OH 
cannot be deconvolved easily. Therefore, an alternative method to estimate the loss at 
1.5|am has to be used. 

1100 1300 1500 1700 
wavelength (nm) 

Figure 6.14: Propagation loss spectrum of high OH content Tellurium Oxide 
waveguide with length of 7cm. 

Tellurium oxide waveguides which had large amounts of OH bonds were 
available by good fortune, though the source of the high OH levels is uncertain (thought 
most likely to be water absorption onto the sintered Te sputtering target). The loss 
spectrum was measured in the range from 900nm to 1700nm in the set up as discussed 
in Chapter 5. The Figure 6.14 is a loss spectrum of Te02 waveguide coded 11. The 
spectrum shows clearly two dips due to OH absorption. The dip at 1.48|jm is due to the 
first overtone and the dip at 1.3|im is due to the second overtone. The dip at 1.7|jm is 
due to the absorption of the IPG cladding. Clearly, the absorption loss at 1.3|jm is 
around 4.5 times less than that at 1.5(am. This ratio is significantly less than that of OH 
in Silica as in Figure 6.13 where it is - 2 0 times. In summary, the ratio of first to second 
overtone is 4.5, the ratio of fundamental vibration to the first overtone is 667 thus the 
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loss at the fundamental vibration can be calculated f rom the second overtone using 

factor of 4 .5x667=3002. 

Table 6.3 give the results of the measurement for some Er doped waveguides. A 

very large amount of OH groups, with concentration higher than the Er doping level, are 

presented in the first 3 f i lms. Because this method only works if there is a measurable 

absorption at I .Spm, the samples that give absorption of less than O.ldB at 1.3fam over 

the whole waveguide length are not absorbing enough to give a reasonable degree of 

conf idence in this analysis. 

Table 6.3: Estimation of OH content in Er doped Tellurium oxide films 

Sample 
ID 

Loss at 
1300 

(dB/cm) 

Lifetime 
(ms) 

NE,/Nre 
(%) 

NEr 
(!&" 
cm'^) 

loss at 
3/jm 

(an') 

Noh 
(10"' 
cni^) 

NE,-OH 
(10" 
cm" 

OH 
coupled to 
Er (%) 

Er 
coupled to 
OH (%) 

44 0.36 0.3 2.7 6.0 241.8 30 3.8 1 6 
45 0.14 0.8 1.5 3.3 96.7 12 1.9 2 6 
46 0.45 0.14 1.3 2.9 307.8 39 18 5 62 
64 -0.02 1.3 1 2.2 -13.5 -1 .3 -1 .3 8 6 

It is clear that, the lifetime is not only directly proportional to the Er 

concentrat ion. For instance, sample 46 has a relatively low Er concentration compared 

to #44 but the lifetime of #46 is highly quenched to 0 .14ms while #44 has a l ifetime of 

0.3ms. However , the l ifet ime seems directly related to the OH concentration as the 

lower the O H concentration the higher the lifetime. Figure 6.15 plots the lifetime 

against the 1300nm loss, data taken f rom Table 6.3. The trend is clearly that as more 

OH is incorporated into the f i lms the lifetime is quenched more quickly. 
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Figure 6.15. Measured lifetime against I290nm absorption loss in waveguide with 

-1-3% Er/Te 
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According to Equations (6.25), the inverse of the measured hfe t ime is 

proportional to the product of Er concentration and the Er-OH coupled pair 

concentrat ion. However , not all Er ions are coupled to quenching centres due to the 

random distribution of both Er and OH groups. It is possible to evaluate the Er-OH 

coupling pair concentrat ion as in the fol lowing method. 

b) OH quenching centre concentration 

A series of Er doped fi lms with exactly the same sputtering condition except the Er 

concentrat ion was made. These f i lms were assumed to have similar amount of OH. This 

assumption is sensible due to the fact that the first run when the chamber is open was a 

precondit ioning run and the sample is not included in the characterisation. The 

fol lowing samples in this series were fabricated in consecutive runs with the chamber 

and targets in the same conditions. Figure 6.16 plots the dependence of 1 / r ^ against Er 

concentration. The slope of this graph gives the value of NEr-OH of 1 . 5 x l O " c m ' ^ , and 

the radiative decay lifetime of (2.8±0.4)ms, which is consistent with the value obtained 

f rom the Ladenburg-Euchtbauer calculation in Section 6.5.1 

Once the intrinsic lifetime is known, the concentration of Er-OH coupled pairs 

for the samples in Table 6.2 are calculated f rom Equation 6.25. The values are tabulated 

in the 3'̂ '' column f rom the right on the Table 6.3. Also, the last two columns are the 

percentage of Er coupled to OH and percentage of OH coupled to Er, respectively. Most 

numbers are below 10% except sample 46. The sample 46 has more than 60% of Er 

concentration coupled to OH groups resulted in measured lifetime of only 0.14ms. This 

makes the l ifet ime of this sample quenched well below the expected value. 
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Figure 6.16: T h e dependence of total rate of decay against Er concentration 

The high concentration of Er-OH inside the film can come from three main 

possible sources. The first possible source is from the vacuum in the sputtering chamber 

and water desorbed f rom the system surfaces. The second option is from the Tellurium 

sintered powder target and the remaining option is from the Er target. The base pressure 

for the sputtering chamber is 2xlO"^Torr. The chamber is usually pumped down 

overnight after a target change. Unfortunately, the residual gas analyser (RGA) was 

inoperable for an extended period, therefore, the remnant water in the chamber could 

not be measured. The Tellurium target was a sintered powder construction and therefore 

had a large surface area which could absorb a fair amount of OH when it was left in the 

air for extended durations. Similarly the Er target could also carry water on it though it 

had far smaller surface area as it was a solid metal target. Further work is required to 

clearly identify the source that leads to most OH contamination and the measures 

necessary to prevent it. 

6.6 Conclusion 

High quality Er doped Te02 thin fi lms have been achieved by reactive RF magnetron 

co-sputtering. The obtained fi lms have been characterised extensively. Concentration of 

Er can be precisely controlled via changing the Er gun power in range f rom 0.1 % Er/Te 

to more than 3% Er/Te. The photoluminescence spectra were measured with both free 

space and fiberised set ups. A highly sensitive fiberised set up was used to measure the 

lifetime of the 1.5|im emission in thin films and waveguides. These fi lms are highly 

suitable for compact Er doped waveguide amplifier with broad l .Spm 
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photoluminescence spectra with effective bandwidth of more that 60nm and intrinsic 

lifetime of 2.8ms. The measured lifetimes depend on a number of factors such as Er 

concentrations, O/Te ratios in the fi lms and critically OH contamination concentration. 

Therefore, avoiding OH contamination is a very crucial task in producing high lifetime 

Er doped Te02 films. However fi lms suitable for experimental amplifiers have been 

obtained. 
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Chapter 7: 
Erbium doped Tellurium oxide 

waveguide amplifiers 
This chapter investigates Tellurium dioxide Erbium doped waveguide amplifiers 
fabricated using reactive radio-frequency magnetron co-sputtering of Erbium and 
Tellurium, lithography and inductively coupled plasma (ICP) etching. The obtained 
waveguides were bi-directionally pumped at 1480nm to obtain signal gain from 1520 to 
1630nm. An amplifier with a peak gain of 13dB in a 5cm length was achieved. 
Simulation of the amplifier performance shows very good agreement with the 
experimental data. The results show that rare earth doped tellurite waveguides have 
great potential for use in integrated nonlinear optics as loss compensators, CW lasers, 
short pulse amplifiers, or mode locked lasers. 

7.1 Development of Er doped planar waveguide amplifier 
The advent of Er doped fibre amplifiers (EDFAs) in the 1980s led to a revolution in 
optical fibre networks propelling optical communications to the status of one of today's 
key technologies [378J. The EDFAs removed the need for repeaters making very long 
distance communication possible and enabling wavelength division multiplexing and all 
optical networks. With the ever increasing penetration of optical fibre even into the 
local loop, increased transmission speeds, and the need for reduced footprints and lower 
power consumption, the need for highly multifunctional integrated optical devices is 
rapidly increasing. 

A number of interesting nonlinear materials have been successfully fabricated 
into single mode waveguides and nanowires such as Silicon on Insulator (SOI) [13, 15-
17, 401J, and chalcogenide [56, 402, 403J. For instance, SOI waveguides have been 
intensively studied as optical interconnect technology. Because of it high index contrast, 
single mode wires at 1.3-1.5|am need to have dimensions of ~300nmx300nm. The 
critical bending radius can be as low as 5| jm. The nonlinear coefficient for this type of 
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wire is of order of 300W 'm 300000 times larger than standard silica fiber. However, 

the devices still suffer f rom significant propagation loss. The typical reported 

propagation loss for SOI technology is 1.5dB/cm [16]. Loss is perhaps the most taxing 

limitation on multifunctional compact integration. If the loss can be compensated by 

incorporating an amplifier system such as Er doped waveguide amplifiers (EDWAs), 

signal can continue to propagate and optical processing can occur over a very long 

distance on the chip. 

E D W A s have excellent potential to provide high gain from a very short device 

which is advantageous for short pulse amplification, low cost amplifiers, as gain 

sections for integrated on chip mode locked or C W lasers, and the provision of on chip 

gain to compensate loss in complex integrated optics devices. They are, therefore, key 

components in integrated optics. EDWAs have previously been realized by differing 

techniques in various materials [244], most successfully until now in AI2O3 [404] or 

mult icomponent phosphate glass [405]. Devices are now commercially available, on 

chip gains as high as 5.3 dB/cm [2511 have been attained along a 3.1cm long waveguide 

with ~5nm F W H M gain bandwidth. In one case, 4.1dB in a 0.3cm long (13.7dB/cm) 

very highly doped device was reported with a ~35nm FWHM bandwidth [406] though 

whether this can be scaled to technologically useful gains (>15dB) remains unclear as a 

longer device reported by the same authors exhibited lower gain per unit length. 

However there has seemingly been no progress in simultaneously achieving high gains 

and attaining wider bandwidth operation as is considered desirable for future 

transmission systems and has been demonstrated for fibre amplifiers [117]. The reasons 

are many and complex and are related mostly to the intrinsic glass host environment and 

effects involving the high Erbium concentrations required leading to clustering, 

concentration quenching, co-operative upconversion, excited state absorption, or other 

such effects. 

Berneschi et ai, 2007 [244] summarized some of the recent advances in 

E D W A s in various materials and technologies. The reproduced data with additional 

relevant references are shown in Table 7.1. The columns are organized in chronological 

order f rom left to right. Comparison between these various devices is not 

straightforward because each paper has given results under different definitions. For 

instance, some refer to gain as only signal enhancement (increase of transmitted signal 
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after turning on the pumping) or internal gain (signal enhancement minus absorpt ion at 
low input signal levels with no pumping) rather than to the true net gain. Some papers 
use the value of p u m p power actually injected into the waveguide while others use the 
power avai lable at the end of the input fibre. Despite these definit ion issues, some clear 
trends can be deduced f rom the reported results in the literature. It is noted that RF-
magnetron based sputtering techniques and ion exchange in particular seem to give the 
best results in terms of gain per unit length in compar ison with direct writing techniques. 
There are a number of explanat ions for this. Firstly, waveguides obtained using 
l i thographic methods usually have high index contrast leading to better conf inement for 
both signal and pump modes . Secondly, the high quali ty and homogenei ty of multi-
component glassy thin f i lms deposi ted f rom the bulk starting glass in typical sputtering 
methods reduces the possibility of rare earth ion-ion interactions and improves the 
l i fet ime. 
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Table 7.1: Summary of E D W A reported in literatures [244, 407, 408], 

Reference Nykolak Ghosh Yan [405] Van De Camy [412] Li [413] Wong Patel Delia Delia Valle Bradley 

[409] [410] Hoven 

[411] 

[414] [406] Valle[415] [251] [416] 

Year 1993 1996 1996 1996 1996 1997 2002 2004 2005 2006 2009 

C o r e compos i t ion Soda l ime Soda l ime Phosphate AI2O3 Borosi l icate Soda- l ime Phosphate Phospha te Phospha te Phospha te AI2O3 

E r / Y b 14600ppm 0.7x10^^20 5.3x10^° 2.7x10^° 3 e t% E r j O , 3.3 wt% 2 wt% Er 8 wt .% Er 2 % w t E r j O , 2.3 w t % Er 1.17x10^° 

concen t ra t ion cm'^Er cm"' Er cm"' Er 3%wtYb203 E r j O j 2 wt% Yb 12 wt% b 4 % w t YbzOj 3.6 w t % Y b 2 0 3 cm- ' 

T e c h n o l o g y Sput ter ing Sput ter ing Sputter ing Sputter ing Ion exch. Sputter ing Ion exch. Ion exch. Fem. wri t ing Ion exch. Sput te r ing 

Leng th (cm) 4.5 6 • 1 4 3.9 1.7 0.3 3.7 3.1 5.4 

Gain (dB) 15 net 4.5 net 4.1 net 2.3 int.! 9 net 7.2 net - 4.1 net 9 .2 internal 16.7 9.2 int. 

Gain / length 3.3 net 0 .75 net 4.1 net 0.6 2.3 net 4 .2 net 3.3 net 13.7 net 2.5 internal 5 .3 internal 1.7 

(dB/cm) internal internal 

P u m p ( m W ) 280 80 21 inside 9 inside 130 40 inc. 120 inc. 150 inside 450 inc. 4 6 0 inc. 95 inc. 

Thresho ld ( m W ) 50 8 20 4 40 - 51 - 200 160 ~1 

P u m p wavelength 980 975 /980 980 1480 978 980 980 980 975 975 977 

(nm) 

G e o m e t r y Ridge Ridge Ridge Ridge Di f fused Ridge Di f fused Di f fused Channel D i f fu sed Ridge 

Dimens ion ( | jm) 1.5 X 5 1.4x9 1.5x4 0 .6x2 6.5x5 1.5x8 6x6 4x4 - 5x5 -

Loss (dB/cm) - 0.1 0.9 0.34 - 0.4 0.8 0.5 0.4 0 .4 -
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7.2 Development of Er doped tellurite devices 

Tellurite glasses are well known as excellent rare earth hosts for optical amplification 

[88J. Tellurites offer a number of advantages as emission hosts for E D W A s over other 

materials because of their high refractive index (larger emission cross section and more 

compact devices), large emission bandwidth, low ion to ion cross relaxation, relative 

independence of the l .Sfim Er lifetime on concentration, and high Erbium solubility as 

has been demonstrated in tellurite glass and fibre amplifiers [74, 117, 191, 221 J. Whilst 

there has until now been no demonstration of tellurite based E D W A s with net fibre to 

fibre gain, it is clear that tellurite based devices have the potential to deliver higher 

ultimate gain per unit length and bandwidth than previous demonstrations in other 

materials [74J. The low phonon energy of around 600-800cm' ' in tellurite also enables 

the potential use of transitions not possible in other materials commonly used in 

EDWAs, (for example with Pr^^ gain at 1.3|J.m). 

7.2.1 Er doped tellurite fibre amplifier. 

The high gain Er doped tellurite fibre amplifier (EDTFA) was first demonstrated by 

N T T labs in 1997 [199J. An 85cm long Er doped tellurite fibre was pumped with 

130mW of 975nm and resulted in a small signal gain of 16dB. The slope efficiency was 

0 .29dB/mW. The same group also reported high performance EDTFAs with a length of 

only 50cm but gain of up to 40dB when pumped at 200mW with a 1480nm source. 

Upon further investigation, the authors found that the gain per unit length for Er doped 

tellurite fibre was five times larger than that for Er doped silica fibre with almost the 

same fibre parameters. With the help of a fibre-grating-type gain equalizer, it was 

possible to achieve a gain of more than 25dB and noise figure of less than 6dB over a 

wide wavelength range f rom 1533 to 1603nm, 70nm gain bandwidth [117, 224]. Higher 

gain (over 25dB) and lower noise (less 5dB) EDTFAs have been obtained with 

pumping at both 980nm [225] and 1480nm [226]. With the availability of high gain and 

broadband EDTFAs, demonstration of 1.5Tbits/s (75 x 20Gbits/s) dense wavelength 

division multiplexed (DWDM) transmission over 200km was achieved [228]. These 

achievements have proven that Er doped tellurite devices have potential to provide high 

gain and broad bandwidth for high transmission capacity applications. 
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7.2.2 Er doped tellurite waveguide amplifiers 

The potential performance of tellurite based waveguide amplifiers has been modelled 

by several authors such as Chryssou et ai, 2000 [227] who analysed the performance of 

E D W A s fabricated in tellurite, aluminium oxide and silica waveguides with high Er 

concentrations. The effects of uniform and pair-induced up-conversion on amplification 

were examined by Runge-Kutta and full-vectorial finite element analysis. The authors 

showed that the tellurite glass host materials had many advantages for the fabrication of 

high-gain integrated optical amplifiers. E D T W A s exhibited higher signal gain and 

broader bandwidth than EDSWAs. Coupled to its higher cross-section coefficients, then 

gain flattened amplifiers could easily be achieved. For an optimized length of 8cm, a 

tellurite waveguide of 2x2|im^ with dopant concentration of 1.7xlO^°ions/cm^ would 

produce 1530nm small signal gain of 15dB with 300mW pump at 980nm. In other 

similar studies [417, 4I8J the theoretical performances of various glasses including 

silicate, phosphate, tellurite and borate glasses in broadband systems were investigated. 

Tellurite was found to outperform phosphate, borate, and silicate glasses in term of peak 

gains, spectral bandwidth, and transmission capacity. 

Despite the development of high gain fibre amplifiers and the potential for high 

gain EDTWAs, there were no reports of active planar E D T W A s at the outset of the 

project due to a number of fabrication challenges such as obtaining low loss thin films, 

waveguides and etching technology. The only demonstration of an E D T W A prior to our 

published results was a device fabricated in 2008 by femtosecond laser irradiation [248J. 

The device produced very limited amounts of internal gain (1.2dB over 2.5cm) due 

mainly to the high propagation losses in the waveguide of 1.3dB/cm at the signal 

wavelength, this represenfing the state of the art in tellurite waveguides at the time of 

this work. This high loss is the main reason for the lack of progress on EDTWAs, and 

this constraint itself has only recently been released with the demonstradon of high 

quality waveguides reported earlier in this thesis [419]. There have been other attempts 

to fabricate E D T W A s using different techniques such as ion-exchange, direct writing 

using UV, femtosecond laser and ion irradiation, and these are now briefly summarised. 
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a) Ion-exchange 

As seen in Table 7.1 ion exchange technology can produce high gain EDWAs [251, 412J 

and waveguide lasers [252], and was therefore investigated in tellurite glasses. Ding et 

ill., 2001 [83J demonstrated Er doped Tungsten tellurite (15NaO-25W03-60Te02-

lEraOs) slab waveguides using Ag-Na ion-exchange. The ion-exchange was performed 

by immersion of the glass samples into a molten salt bath of 2AgN03-49NaN03-

49KN03(wt%) at temperature in rage from 290''C to 360°C. The index change achieved 

at 1550nm was 0.115. However, the author also reported serious surface corrosion after 

the long exchange process (34h). Nunzi Conti et ai, 2003 [253J used ion exchange to 

fabricate multimode and single mode slab waveguides in tellurite glasses. Tungsten 

tellurite (WO3, Na203 and Te02) and zinc tellurite glasses (ZnO, Na20 and Te02) were 

doped with Er concentration ranging from 0 to 2 mol%. The ion exchange process was 

performed close to the glass transition in a eutectic solution of AgN03, KNO3 and 

NaNOs at 280°C to 330^0. The index change for these samples was order of 0.13 and 

diffusion depths of 2|jm were measured. The diffusion constant for Ag"^<=>Na"^ was 

relatively low leading to exchange times of up to 6h. The authors reported light guiding 

in the planar structure but fell short of producing active devices. In a more recent ion-

exchange experiment by Sakida et ai, 2006 [255] on Er doped tungsten tellurite (WO3, 

Na203 and Te02) the propagation losses on a 3|jm thick slab waveguide was measured 

for the first time to be in range of 2.2 to 6.2 dB/cm. These losses are still too high for 

any waveguide applications. Furthermore, the index changes obtained was only order of 

0.13 leading to a large mode area in the fabricated waveguides. Ion exchange on Er 

doped tellurite has therefore not been proven to be a good route for waveguide 

fabrication. 

b) UV and femtosecond direct writing 

Tellurite glasses are known to have some photosensitive effect with UV or femtosecond 

light [78, 81, 245, 246]. Therefore, it is possible to fabricate an Er doped waveguide by 

direct writing with laser beams. Nandi and Jose, 2006 [392] reported waveguide writing 

in an Er doped alumino-phosphate tellurite glass using 45 fs-pulses at 806nm and IkHz 

repetition rate. The addition of phosphate seems to favour waveguide formation. The 

waveguide loss was estimated to be less than 2dB/cm. During 2010, tellurite based Er 
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doped active waveguides fabricated by femtosecond laser pulses have been made to 

produce limited amounts of gain [248, 420J. However, the propagation losses remain 

high (0.9dB/cm), core-cladding index differences are low, mode areas are large, and 

gain is limited to only l -2dB over the length of the device. 

c) Ion Implant 

Ion implant, particularly using Nitrogen, is another method of making waveguides in 

many materials, e.g. silica, lithium niobate [421-423]. N^ ions have been implanted into 

the surface of bulk Er doped glass samples to form guiding structures [249, 250, 424]. A 

24| jm gap created by two 75um thick silicon covers was used to gate the N"̂  ions. The 

N"̂  ions had energy of l .SMeV penetrate 1.5|jm into the W N T glass. The introduction 

of N"̂  into the sample induced negative density changes at the ion stopping range. Light 

guiding was possible due to the lowering the of index in the stopping layer buried - 1 . 5 

| jm below the surface. The optical properties such as propagation loss of these 

waveguides remain to be seen but there has been little effort to reduce the losses below 

1 or 2dB/cm[423]. 

d) Summary 

In short, despite notable successes in EDTFAs, E D T W A s with technologically useful 

gain have not been achieved until now despite intensive experimentation via several 

different routes. This chapter reports tellurite E D W A s that exhibit high internal gain 

and net fibre to fibre gain fabricated using reactive RF magnetron co-sputtered Er doped 

Te02 films. Ridge waveguides were fabricated f rom a layer of pure Te02 deposited on 

top of the Er doped fi lm using standard lithography and reactive ion etching (RIE) with 

a Hydrogen/Methane/Argon gas mix [419]. 

73 EDTWA fabrication with co-sputtering and ICP etching 

7.3,1 Thin film deposition 

Erbium doped Tellurium dioxide fi lms were deposited by co-sputtering 3" diameter Te 

and Er targets in an Oxygen/Argon gas mix as discussed in Chapter 6. The Te target 

was run at 148W, the chamber pressure was SmTorr, and the total flow of Ar and O2 

was kept at ISsccm. Varying the Oa/Ar mix allows tuning of the Oxygen content in the 
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films, higher O2 flow leading to higher Oxygen content in the deposited fi lms but also a 

slower deposition rate. Typical conditions were 6sccm O2, 9sccm Ar. The Erbium 

concentration was controlled via the Er gun power, and was measured post deposition 

by a laser ablation ICP mass spectrometer. Films with an Er/Te ratio of up to 3% were 

fabricated by this method. Typically, a 1% Er/Te ratio film was achieved with 72W of 

RE power on the Er gun. 

7,3.2 Etching of Er doped TeOa waveguide 

As mentioned in the previous chapter, one of the major challenges in the development 

of low loss tellurite waveguides has been etching technology. Plasma etching is more 

favoured than other etching techniques because it can provide high quality etched 

surfaces with high anisotropy, and accurate in situ etch rate monitoring [305J. Previous 

work on plasma etching of Tellurium oxide waveguide employed physical etching using 

an Argon plasma resulting in propagation losses of 6dB/cm [257]. As reported in 

Chapter 5 and in our recent paper [419], etching with a Hydrogen/Methane/Argon gas 

mix produced high quality stoichiometric Tellurium oxide waveguides with propagation 

losses less than O.ldB/cm. This fabrication route then seemed to be a natural candidate 

for EDTWAs. 

Figure 7.1 a) shows a typical profile of an etched Tellurium oxide waveguide. 

The obtained structures have smooth etched surfaces and vertical side walls. However, 

when the Er doped thin films were etched using the Hydrogen/Methane/Argon gas 

mixture, the surfaces became very rough with columnar and grassing effects as seen on 

Figure 7.1 b). This result was due to re-deposition of low volatility of Erbium and 

Erbium compounds such as Erbium tellurite. Erbium dihydride [425, 426]. Whilst 

ultimately these compounds can be made volatile by heating up the substrate to high 

temperature[425, 426], this required substantive modifications to the etch machine and 

could not easily be undertaken within the scope of this project. Thus an alternative 

method to fabricate a waveguide was sought which would not involve etching the Er 

doped material. 

A design with two layers, Er doped underneath and pure Tellurium oxide on top, 

provides a solution to overcome the need to etch the Er doped films directly. However, 

the etching depth has to be precise in order to avoid over etching into the Er doped layer. 
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Since the RIE system used in Chapter 4 to achieve low loss passive waveguides was not 

equipped with an etch rate monitor it could not be used to fabricate this Er doped 

structure. 

Figure 7.1: Etching of a ) T e 0 2 only waveguide and b)Er doped waveguide ( image 

size ~5|ax5^im) 

Table 7.2: ICP etching parameter setting 

Parameter Value 

Pressure (mTorr) 10 

CH4 flow (seem) 10 

H2 flow (seem) 30 

Ar flow (seem) 30 

FW power (W) 50 

ICP power (W) 0 

Etching rate (nm/min) - 5 0 

The inductively coupled plasma (ICP) system was instead used to etch the films 

to fabricate the waveguide. The detailed steps for the fabrication were reported in 

Section 4.3. The sample was loaded into the chamber which was pumped to the base 

pressure of 2xlO'''Torr. The temperature of the substrate holder was kept at 20°C. The 

parameter settings used to etch this sample are shown on Table 7.2. The in situ etching 

rate monitor using an interferometeric technique with a 677nm laser beam was used to 

measure etching rate. This enabled high accuracy monitoring of the etch rate and 

allowed the pure Te02 layer to be etched down to lOOnm above the Er doped layer. The 
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remaining photoresist was stripped using an Oxygen plasma and wet etching. The 

obtained strip loaded waveguides have high quality etching on both vertical and 

horizontal etched surfaces. 

7.3.3 Properties of Er doped waveguides 

A bilayer film was fabricated with a 1.0% Er/Te (-2.2x1 O^^ions/cm^) 1350nm 

Er layer and index at 1550nm of 2.075, and a pure Te02 layer 530nm thick. The 

lifetime of the film measured from the edge was 1.3ms, which suggested that residual 

water contamination remains. A waveguide was prepared as previously described to 

yield a ridge waveguide with 400nm etch depth (see Figure 7.2 a)). The bare patterned 

wafer was then coated with a cladding. The material used was an inorganic polymer 

glass (IPG™) from RPO Pty Ltd. Finally, the wafer was hand cleaved with a diamond 

scriber. The final chip length was 5cm with waveguide nominal widths of 1, 2, 3 and 

4um. The modal properties of the obtained waveguides were calculated and are 

tabulated in Table 7.3. The 1 and 2|jm waveguides are single moded with only TEO and 

TMO. However, the TMO is very weakly guided in the l|jm waveguides. The 2|am wide 

waveguide confines both TEO and TMO as well. The 3|jm and 4|am also support TEl 

and TMl modes. The coupling efficiencies from the 2.5|jm spot diameter tapered fibre 

lens are relatively good for all the waveguide widths, in the range of ~l-1.3dB each end. 

Including reflective effects, this leads to an expected insertion loss minimum of 3-3.5dB. 

The fundamental modes are well confined in 2-4|am waveguides with the mode areas of 

5.3-5.8|jm^ and 4.3-5.4pm^ for TE and TM, respectively (Table 7.3). 

Since the waveguide is a version of a strip-loaded structure the modes do not 

overlap with the Er doped area 100%. The overlap factor can be calculated by: 

I{x,y)n{x,y)dxdy 

(7.1) 
I{x,y)dxdy 

where I{x,y) is the intensity profile of the mode and n{x,y) is the normalized Er 

density. Despite the strip-loaded structure using here, the overlap factor is in order of 

84-96% for all modes as shown on Table 7.3. 
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Figure 7.2: a) Schematic, b) SEM image of cross-section of an Er active 

waveguide; c) and d) are TEO and TMO mode profiles of the I^im wide 

waveguides , respectively The spotty surface and angled interface are due to 

imperfect cleaving. 

Table 7.3: Dimension and fundamental mode properties of Er doped waveguide 

(coded 64_4). 

Mask nominal Waveguide Overlap with Overlap with Er Ejfective mode 

width (fim) width (fim) Gaussian (dB) layer area (jim') 

TE TM TE TM TE TM 

4 3.7 1.17 1.13 0.84 0.85 5.85 5.22 

3 2.7 1.04 0.94 0.86 0.87 5.28 4.58 

2 1.7 1.25 1.02 0.89 0.89 5.31 4.34 

1 0.8 2.06 1.65 0.95 0.96 6.43 7.60 

The white light loss spectrum for the 2nm nominal width waveguide measured 

with the 2.5 | im waist tapered fibre lens is shown in Figure 7.3. A total fibre to fibre 

insertion loss of 6.5dB at 1550nm, comprising 3.5dB of mode overlap and facet 

reflection leads to 3.0dB of background loss for 5cm (~0.6dB/cm). The background loss 
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is uniform the whole measured loss spectrum from llOOnm to 1650nm. This 
propagation loss is higher than the one reported early in pure Te02 waveguides using 
the same deposition and etching technique [419j. It can be explained by the background 
loss due to imperfect etching in ICP, high Erbium concentration and the effect of the 
interface between the active and passive layers. It can also be attributed to the fact that 
this calculation tend to overestimate the propagation loss. The loss spectrum also 
showed a 1290nm loss of ~0.02dB/cm indicating a 3|im OH loss of ~14cm"'. This 
corresponds to an OH concentration of 1.3xlO^'^cm"^. The measurement of lifetime also 
suggests that around 6% of Er have coupled to OH quenching centre, which has an 
estimated concentration of 1.3xlO^°cm ' (See Section 6.5.5, Table 6.2). Because of this 
Er-OH coupling the measured lifetime was 1.3ms. However, the intrinsic lifetime of Er 
in the Te02 films still should be 2.8ms as measured in Chapter 6. 

45 

900 1700 1100 1300 1500 
Wavelength (nm) 

Fig.7.3: Insertion loss spectrum of 1.5^m wide 1.0%Er/Te. The whole spectrum is 
combined from 2 measurements, first with white light from an Arc mercury lamb 
for range from 900nm 1400nm and the second with supercontinuum source for 
1400nmto IVOOnm range. 

The absorption spectrum also allows the peak absorption cross-section to be 
estimated. White light loss measurement gave a maximum absorption at 1530nm for the 
5cm long waveguide of 33dB (6.6dB/cm). The overlap factors for both TEO and TMO 
modes are 0.9. Therefore, the peak cross-section is calculated as 7.7x10"^%"^. The 
McCumber theory then allows the emission cross-section to be calculated as outlined in 
Section 6.5. Figure 7.4 shows the scaled measured absorption and emission cross-
section for Er doped Tellurium oxide films and waveguides. The McCumber theory and 
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measured emission cross-section agree very well except out in the 1600nm tail region. 

The agreement here is compromised as the actual waveguide losses here are uncertain 

due to the OH contamination and the effects of top cladding absorption in the IPG film. 

The emission cross-section extends to beyond 1630nm. The locations of the peak of the 

absorption and emission curves are almost identical at 1533nm and peak value of 

Also on Figure 7.4, a maximum pump efficiency curve is plotted. This 

curve represents maximum inversion possible versus pump wavelength in the ideal 

scenario when pumped in the vicinity of 1480nm. Due to pump stimulated emission, the 

population inversion is capped by the value [378]: 

(7.2) 

The pumping efficiency is decreasing as the pump wavelength increases. At 1480nm 

the efficiency is around 15%. At lower wavelength, the efficiency is higher but the 

absorption cross-section is reduced leading to lower overall pump absorption. The slope 

of the efficiency curve at 1480nm is relatively gentle at 3%/lOnm. The capped 

eff iciency is a major disadvantage with 1480nm pumping. Pumping at 980nm can 

eliminate this issue because there is no emission cross-section at 980nm compared to 

the absorption cross-section. However, this is an object of future experiments where 

improvements for 980nm pump coupling into the waveguide have to be made while still 

maintaining high quality l .Sfim operation. 

Absorption, emission cross-section and 
pumping efficiency 

Measured emission 
~ " McCummber emission 

IVleasured absorption 
Max pump efficiency 

1480 1540 1600 
Wavelengtfi (nm) 

Figure 7.4: Measured absorption, emission cross-section spectra for Er doped 

Tel lur ium Oxide thin film. The y axis is normalized to 7.7xlO'^ 'm"l 
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7.4 EDTWA characterisation 

7.4.1 Experimental measurement of gain curves 

The high reflectivity of the AR coatings on the tapered fibre lens and additional 980nm 

propagation losses in the waveguide made pumping at 980nm impractical so gain 

measurements were performed using the bi-directional pumping setup shown in Figure 

7.5. The 5cm long Er doped waveguide was pumped bi-directionally by two 1475nm 

pumps. Each pump could deliver 250mW of broad band (lOnm bandwidth) multiple 

longitudinal mode output measured at the fibre output after the isolator. The pump 

output spectra are highly dependent on the current and temperature as there was no fibre 

Bragg grating attached to the diode as shown in Figure 7.6. The observed increase in 

wavelength with drive current could lead to slight lowering of the pump efficiency, but 

this effect was not too drastic due to the low slope of the pump efficiency curve, as 

shown in Figure 7.4. Another issue with this high dependence of pump output against 

diode setting is in setting suitable simulation parameters. 

148()nm 
pump 

W D M 
1480nm 
155()nm 

Ridge 
waveguide 

WDM 
1480nm 

1480nm 
pump 

Erbium fibre 
Tunable laser 

signal 

WDM 
1480nm 
1550nm 

Optical 
Spectrum 
Analyser 

Power 
meter 

Figure 7.5: Gain measurement experimental setup, the inserted picture show the 

pumped wavegu ide which emits green due to nonlinear process such as ESA. 
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Figure 7.6: 1480nm pump output spectra dependence on a) current setting 
(temperature=25°C) and b) temperature setting (current at 1200mA) 

An external cavity tunable CW source was used as a seed signal. The power of 
the signal at the W D M input was tuned to different levels between -30 to lOdBm. At 
powers below OdBm, the tunable laser was used in conjunction with attenuators. Higher 
powers were achieved by the addition of an EDFA. The CW laser could be tuned from 
1520nm to 1630nm. The pumps and signal were combined and decoupled by broadband 
1420-1490nm/1520-1620nm WDMs. Pump and signal were coupled into and out of the 
waveguide by tapered fibre lenses made from SMF28 fibre. The lenses provided a 
Gaussian beam with waist diameter of 2.5[xm and working distance of 14nm. The 
internal gain was measured by the signal enhancement at the output minus the 
absorption. The signal enhancement was measured by the signal difference between 
pump on and pump off. The absorption was measured at low average power with white 
light or supercontinuum sources to avoid bleaching. 
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In the first series of measurements, the gain spectrum from 1520nm to 1640nm 

at max imum available pump power was measured by seeding with two different types 

of light. First, the C W laser was set at different wavelengths. The gain spectra are 

shown on Figure 7.7 a). Gain existed f rom below 1520nm (limited by the pump W D M ) 

to above 1630nm with a 3dB bandwidth of ~40nm. Peak internal gain of 14dB was 

obtained at 1530nm as shown on Figure 7.7 a) for a gain per unit length of 2.8dB/cm. 

Even factoring in the total coupling, tapered fibre lenses and propagation losses this still 

results in net fibre to fibre gain of 6dB. Most of the off chip losses can ultimately be 

eliminated by using existing techniques for low loss mode matching [427] and by 

integrating the W D M s . The gain spectrum accuracy was also checked by injecting low 

average power supercontinuum light in place of the tunable laser. As Figure 7.7a) 

shows the accuracy with the tunable laser is adequate. 
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Figure 7.7: a) Measured small signal internal gain, b) pump saturation response at 

1535nm 1555nm and 1600nm, c) signal gain saturation gain characteristics at 

1535nm with both pumps and d) dependence gain at 1535nm on pump temperature 

(pump wavelength tuning). 

The measured gain curves appear limited by inversion clamping at about 70% as 

gauged by the shape of the gain curve [117] due to the 1480nm pumping [428]. Along 

with the measured gain data in Figure 7.7 a) are plotted theoretical curves for the gain. 

These were obtained f rom the infinite pump approximation [406] at 100% and 70% 
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inversion, for the latter with the 1480nm pump effective cross-section calculated as 

f rom Becker et cil, 1997 [190J using the measured absorption and McCumber emission 

theory. This simple theoretical estimation gives good agreement with the experiment 

and predicts that the peak gain at 1533nm would be considerably improved to 33dB by 

using non-resonant 980nm pumping to achieve higher inversion. However, there is a 

penalty in the bandwidth as the 1530nm peak is much narrower (lOnm width at 3dB 

down). Higher Er doping and gain flattening devices could, however, be used to extend 

the gain bandwidth. 

In the second series of measurements, the gain saturation curve, ie. the gain at 

different pump powers, was measured. The pump power was tuned by setting the diode 

pump current to various values. The CW laser was tuned to 3 wavelengths 1535, 1555 

and 1600nm. The three curves are shown on Figure 7.7 b). Here, the pump power axis 

represents the estimated pump coupled into the ends of the waveguides. The amplifier 

gain appeared close to saturation at maximum available pump power. The thresholds 

where the gain curves cross zero are relatively low at 9mW for 1555nm and 20mW for 

1535nm compared to value of 60mw and lOOmW, respectively, of the previous best 

reported E D W A in tellurite glass [420J. The signal at 1555nm initially had higher gain 

than 1535nm but as the pump power increased further the gain at 1535nm started to 

overtake the 1555nm gain. This is consistent with the gain spectra on Figure 7.7 a). 

Gain at 1535nm is strongly dependent on the population inversion whilst this is not the 

case at 1550nm. 

The third series of experiments was to measure the signal gain saturation, ie. the 

gain at different input signal powers. Figure 7.7 c) shows a saturation input power of 

0 .4mW and an output power exceeding lOdBm. The signal gain gradually drops f rom 

13dB at low input signal to around 8dB at 5dBm of input signal. Therefore, potentially, 

high power output E D W A s in Te02 are possible. 

Finally, the diode pump temperature was tuned in order to see the effect of 

pump spectrum on the gain. It was found that the spectra of the pump did have some 

small effect on the gain as shown on Figure 7.7 d). The reduction in gain at 1535nm 

was around IdB when the temperature setting was tuned f rom -5°C to 25°C. This is 

because there is significant shift in operating wavelength of the Fabry-Perot pump 

diodes depending on the diode setting. When the temperature setting was changed from 



7.4 EDTWA characterisation 187 

-5"C to 25"C, the centre wavelength of the pump shifted around 13nm from around 

1467nm to 1480nm. This reduced the maximum pump efficiency around 5% as shown 

on Figure 7.4. Hence, the reduction of gain at higher temperature setting occurred. 

7.4.2 Modelling of Er doped Tellurium oxide waveguides 

The simple theoretical calculations of gain spectra in Figure 7.7 a) are crude 

approximations as no pumping dynamics are taken into account. Proper modelling of Er 

doped waveguides involves solving the modal properties of the excited waveguide and 

the partial differential equations describing the populations of the different levels 

discussed in Chapter 6. Also, the ASE has to be taken into account. A commercial 

package from Optiwave System Inc. was used to fully model the performance of the Er 

doped waveguide. The Er/Yb doped waveguide amplifier package was used as the main 

element of the simulation. Since there is no Yb in this device, its concentration was 

simply set to zero. The model is based on the solution of the propagation equations 

using, directly, the solutions of the involved electromagnetic fields and the exact Er 

transversal distribution. The modal and propagation equations are solved using the 

finite-element method and the Runge-Kutta algorithm, respectively. 

The 1480nm pumping schematic diagram is shown in Figure 7.8. In this case, 

the pump energy level belongs to the main level 2 (''I13/2). However, due to the presence 

of the nonradiative transitions inside the level "̂ 113/2, the pump level is called level 3. 

This is not to be confused with the level '̂ Iii/2 when the system is pumped at 980nm 

region. The non-radiative rate A4i embodies the non-radiative rate between the levels 

%/2->''lii/2 and '̂ Iii/2->'*Ii3/2 so that the level '̂ Iii/2 is not considered in the rate equations. 

Hence, the upconversion effect due to C3 from level ^̂ 113/2 is also ignored. This is 

acceptable due to the fact that there is no direct excitation to this level and there is very 

fast non-radiative decay from '̂ I, m to "̂ 113/2- The rate equations for 1480nm pumping are 

therefore: 
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dN, 
dt 

dN^ 

dN, 
dt 

dt ' = - + C,Nl - C„yV, N, 

(7.3) 

Â , -I- A'̂  + + = 
N,.4 are the concentrations of Er^"" in excited states 1-4 as in Figure 7.8. The total Er 
concentration is Nq. A i / s are the non-radioactive rate f rom level / to l eve l ; . A21 is the 
fluorescent rate. Ris and R31 are the pump rate and rate of stimulated emission of the 
pump. Upconversion is accounted for with coefficient C2 for upconversion from level 2 
to 4. The upconversion effect is related to the square of the populations. The excited 
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state absorption is included by R24- The cross-relaxation is represented by C14 and is 

proportional to the products of population Ni and N4. The rates /?,j's and VV '̂s are equal 

to I(7^j/hv where I is the intensity, are the cross-section, and hv is the photon 

energy. 

In addition to the transitions shown on Figure 7.8, in reality, there are also other 

radiative braches such as ''F7/2->'^Ii5/2, ''S3/2->'*Ii5/2, %2->^Ii5/2 [194, 386, 393, 429], 

These transitions are responsible for the visible emissions such as green light when the 

Er doped devices are pumped at high intensity. The effects of these terms are 

considered very small compared with the nonradiative decay included in the Equation 

7.3. They were therefore ignored in the rate equations. 

The small input signal was set at -30dBm. The absorption and emission cross-

sections inputs to the model were those from Figure 7.4. Two situations were 

considered: an ideal quasi-three level and a more practical scenario with upconversion, 

excited state absorption etc. 

Table 7.4 Parameters for gain simulations. Some parameters are based on Hu et ai, 

2001 [194], Lopez-Barbero et al, 2000 [430], 

Parameters Ideal Model 

Lifetime (ms) 2.6 2.6 

Propagation loss (dB/cni) 0.6 0.6 

Waveguide length (cm) 5.0 5.0 

A32(S-') 1x10" IxlO^" 

A43(S-') • 1x10' 1x10" 

A54(s"') Infinite Infinite 

CzCm^/s) 0 2.5x10"^^ 

C3(mVs) 0 1x10-̂ ^ 

C,4(mVs) 0 3.5x10"^^ 

a24-ESA cross-section (m^) 0 4x10'" 

Pair-induced (%) 0 0 
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Figure 7.9 a) Gain spectra at various pump power in an ideal 2 level Er doped 

system pumped at 1475nm-the pump power on the legend is in mW at each end b) 

the gain saturation simulation at 1535, 1555 and 1597nm. 

In the ideal case, the system has no nonlinear processes occurring such as up-

conversion, cross-relaxation, ESA and only pumping from level 1 to level 2, and the 

stimulated and spontaneous emission from level 2 to level 1. There are no loss 

mechanisms in this idealised case. All pump power into the system returns as amplified 

signal, stimulated pump "emission, or as ASE. The parameter settings for this case are 

tabulated in Table 7.4. The results of the gain spectra calculations at various pump 

powers and gain saturation at 1534nm, 1555nm and 1600nm are shown on Figure 7.9. 

A very low pump power of 0.000 Imw was run to obtain the absorption spectrum of the 

waveguide. It agrees very well with the measured input absorption. As the pump power 

increases, the signal obtains gain very quickly. It takes less than 3mW to obtain positive 

gain at 1535nm. The maximum gain is 20dB at 1535nm. The gain appears saturated at 

around 50mW pump at each end. 
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In the second scenario, parameters are introduced for non-linear loss process 

represented in the schematic diagram on Figure 7.8. There are loss mechanisms that 

now take place due to the cross-relaxation, up-conversion and excited state absorption. 

As those processes take effect, a portion of the energy from the pump is converted to 

phonons in the transitions f rom levels 5 to 2. The pair-induced and OH quenching 

centres have been ignored for the moment because they only have significant 

contribution to the loss mechanism at very high population inversion. In order to 

accurately explain the experimental results, all parameters on Figure 7.8 must be 

reasonably estimated. Unfortunately, there have been no detailed measurements of 

radiative and non-radiative transition rates in Er doped Tellurium oxide thin films. The 

radiative transition rates could be calculated using Judd-Ofelt theory. Nevertheless, it is 

not practical in the waveguide due to the difficulty in measuring the full absorption 

spectrum from the UV to the infrared. There have been limited reports of simulation 

parameters in Er doped bulk tellurite [194] and fibre [430]. Parameters such as A32, A43, 

C3 and Ci4 were selectively taken from literature [194, 430]. The two critical (and 

relatively unknown) parameters are the upconversion coefficient C2 and pump excited 

state absorption cross section 024. Therefore, fitting to the measured gain spectra and 

gain saturation curves was performed by adjusting those two parameters. The ESA 

cross-section O24 strongly affects the maximum saturated gain while the upconversion 

C2 is critical in determining how fast the gain approaches that maximum value, ie. the 

slope and curvature of the gain saturation curves. The simulation results are shown on 

Figure 7.10 a) and b). Here the all gains are internal gain. The gain saturation curves 

agree extremely well for most parts of the data. There is a somewhat larger discrepancy 

between the simulation and experimental data on the gain spectrum, reaching a 

max imum difference of around 3dB at 1530nm. This could simply due to the error in 

emission cross-section calculation as it was estimated from McCumber theory. 

The effects of up-conversion, cross-relaxation and ESA are significant. In the 

ideal case, the pump threshold for the gain to be positive was only l - 3 m W compared to 

2 0 m W when these effects were included. The signal gain was saturated at 50mW for 

the ideal case. Further pumping did not provide any additional gain. The full model case 

and the experiment were not saturated despite being pumped at more than 200mW. The 
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peak 1530nm gain also experiences a reduction f rom 20dB to 16dB, once the non-linear 
ef fec ts are added. 

Simulation 

• Gain with laser 

— Gain with SC 

a) 
1560 1580 1600 1620 1640 

Wavelength (nm) 

- - -

1535nm Simulation 
1555nm Simulation 
1600nm Simulation 

• 1535nm Experiment 
—• - 1555nm Experiment 
- A - 1600nm Experiment 

150 200 250 
Pump power (mW) 

b) 
Figure 7.10: a) Gain spectra simulation with experiment data, b) gain saturation at 
1535, 1555 and 1600nm. 

7.4.3 Discussion 
The gain results achieved in these waveguides are far better than any other E D T W A s 
reported in the literature. The only other reported gain in a tellurite waveguide was in a 
femtosecond laser written device in mult icomponent glass with internal gains at best 
reaching ~ l d B / c m [248, 420]. The best of these results were achieved in complex 
mul t icomponent tellurite glass waveguide made f rom only 50% T e 0 2 (Na^PsOg, ZnO, 
ZnF2 compris ing the remainder) doped with lw t% Er203, lw t% CeOi and 2wt% Yb203 
with a refractive index of 1.66. The measured lifetime in the glass was 9.7ms, reflecting 
the large phosphate component in the glass. The index difference between core and 
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cladding in this device was only 2.5x10"^ and the device had a mode field area of 

~70|jm^. This device thus utilised a highly optimised glass host and the best pumping 

geometry available and yet was still unable to realise gains that would be regarded as 

technologically useful. By contrast, the Er doped Te02 waveguide amplifiers obtained 

in this work, despite a range of known limitations that can be addressed, are in direct 

competition with the best results in other glasses reported in the literature as listed on 

Table 7.1. Furthermore, the full 3dB gain bandwidth obtained here is order of 40nm. 

There is also considerable room for improvement to increase the performance of Er 

doped T c O t waveguide amplifiers by a range of modifications discussed below. 

Perhaps the first and most direct improvement would be a move to 980nm 

pumping. As noted previously this can provide much higher gain due to higher 

maximum inversion. The first requirement for 980nm pumping scheme is the 

improvement in the coupling of the pump light into the waveguide. This can simply be 

achieved by AR coating the tapered fibre lens to have low reflection at 980nm. This can 

be performed by the commercial supplier. Alternatively, an integration of pump WDMs 

into the chip can be designed such that the pump is injected into a separate port. 

However, it is known that in Te02 that there might be potential issues with 

980nm pumping. Because of the low phonon energy in tellurite glass, the non-radiative 

decay from pump level " În/s to metastable level "̂ Iis/s is relatively slower than in silica. 

This leads population build up in the pump level and enhances the ESA of the 980nm 

pump [194, 386]. High ESA means the pump energy is partly lost to phonons when the 

excited ions decay down to the lower states. There have been a number of suggestions 

on means to alleviate the aforementioned issues with 980nm pumping including doping 

with Eu and/or Ce to reduce the upper level populations [200, 202, 203, 431-436]. 

There is visible green emission in the inserted picture on Figure 7.5. This clearly 

indicates that there is a substantial amount of radiation from level 5 to 1. The excitation 

of level 5 is due to the second-order upconversion. The ions are first excited to the ''I11/2 

level through first order upconversion and excited state absorption. Then the second 

order upconversion causes some ions to excite into the ^F7/2 and "̂ 83/2 that emit in green. 

There are a number of schemes that can be used to reduce the upconversion process. 

The transitions ^Fo-'F4 of Eu and ¥7/2 to ^F5/2 of Ce are resonant with the \ m - \ y 2 

transition of Er. Therefore, the energy transfer from Er/Ce to Eu can help reduce the 
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population of the ''I11/2 level in Er. This is particularly important for 980nm pumped 

systems as the "'in/a population is much higher than when pumped at 1480nm. Ce has 

been found to a better candidate for co-doping with Er in tellurite glass fibre [203J. In 

another report, the lifetime of the "̂ 111/2 level reduced from 70|js to 40 | is without 

effecting the " Îis/a in one tellurite glass (Te02-W03-Na20)[434] . A Ce/Er co-doped 

tellurite EDFA was also shown to provide much higher gain than both Er- only doped 

and Er/Eu doped ones. This is because Ce/Er co-doped tellurite glass maintains higher 

metastable lifetimes while reducing upconversion and ESA effects. Shen et ciL, 2003 

[200J reported gain increases from 16dB to 31dB in a 12cm long Er/Ce doped tellurite 

fibre amplifier. 

Ytterbium can also be added to the mix as a sensitizer to increase the pump 

absorption at 980nm if required. The transition f rom ^F5/2 to ^F7/2 in Yb is in resonance 

with \ \i2 to "̂ 115/2, therefore the excited Yb ion transfers energy to Er ions during an 

efficient cross-relaxation process. Because the absorption at 980nm of Er doped 

waveguides is lower than at 1480nm, then typically high levels of Er doping are 

required to achieve sufficient absorption of a 980nm pump. In materials such as silicate 

or phosphate glasses the maximum Er concentrations allowed are much lower than in 

tellurite leading to week pump absorption at 980nm for short length devices such as 

waveguide amplifiers. Therefore, most other Er doped materials pumped at 980nm 

reported in the literature required additional pump absorption due to lower Er 

concentrations than this work. 

Higher gains can certainly be achieved by using higher Er concentrations. As 

shown in Chapter 6, Er concentrations of 3% Er/Te have been demonstrated in this 

work by reactive sputtering with no deleterious effects on waveguide performance. Peak 

gain per unit length scales directly with Er concentration in the ideal case so significant 

enhancements are feasible based on the work presented here. 

Furthermore, there is still clearly an issue with the water contamination. Even 

though some samples have only 5-6% of Er coupled to OH quenching centres, the 

lifetime quenching is still very significant as seen on Table 6.2. Therefore, steps to 

reduce water contamination such as better target preparation and sputtering chamber 

preparation clearly need to be taken. 
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Additional simulation of the waveguide pumped at 980nm and parameters as 

shown on third column of Table 7.4 was performed. The set up is the same as the 

1480nm pump but where the absorption spectra of 980nm was taken f rom Ref. [194], 

The background loss of the pump was assumed to be same at the signal at 1550nm at 

0.6dB/cm. The internal gain spectra at different total pump powers and the gain 

characteristics of signals at different wavelengths (1535nm, 1555nm and 1600nm) 

against different total pump powers are shown on Figure 7.11. The maximum gain can 

be as high as 27dB over 5cm length. Even with only slight improvements to the current 

design, an amplifier with gain per unit length of 5.4dB/cm is possible. 
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100 200 300 400 
Total pump power at facets of waveguide 
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Figure 7.11: a) Gain spectra simulation with 980nm pump, b) gain saturation at 1535, 

1555 and 1600nm pumped at 980nm. 
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Although considerable scope for improvement exists, a waveguide with 13dB 

gain itself has applications to a number of interesting active devices, for instance 

integrated on chip CW, Q-switched, or mode locked lasers. There have been a number 

of reports on the realisation of waveguide lasers [252, 437-441 J. The CW laser can be 

configured with a linear cavity with fibre Bragg gratings [252, 438, 441], or a ring 

cavity with couplers [439]. Mode locked operation of an Er doped waveguide laser has 

been achieved [440, 441] though not yet in a fully planar integrated form. The authors 

reported passive mode locking of an Er-Yb doped phosphate glass femtosecond written 

waveguide amplifier using carbon nanotubes as saturable absorber. The waveguide is 

incorporated into a fibre ring laser cavity configuration. The FWHM band width and 

pulse duration obtained was 1.6nm and 1.6ps, respectively. The time bandwidth product 

of 0.329 is transform-limited. Carbon nanotube saturable absorbers have limitations due 

to the inherent insertion losses and multiphoton induced oxidation, which degrades the 

long term stability of the absorber [442]. An alternative saturable absorber is graphene 

which has been demonstrated as an excellent mode-locking material [443-449]. Pulse 

width of below ~400fs has been achieved. Only a very thin layer of graphene (only few 

atomic layers) is required to make the laser mode locked. Therefore, it might be 

possible that graphene layer attached to the end of the waveguide or the side walls of 

the waveguide is enough to achieve mode locking. Alternatively given that Te02 is 

quite nonlinear itself, it may be possible to integrate a nonlinear switch as the mode 

locking element. 

7.5 Conclusion 

Er doped Te02 waveguides with high internal gain have been successfully fabricated for 

the first time. The waveguide was fabricated from films made by reactive RF co-

sputtering of Er and Te targets into an 02/Ar filled chamber. The strip loaded 

waveguides were etched by CH4/H2/Ar plasma to overcome the difficulties in etching 

Er doped material directly. The Er doped Te02 waveguide amplifiers were pumped at 

1480nm to obtain internal and net gains over 1520nm to beyond 1600nm. The peak gain 

of 14dB over 5cm length and 3dB bandwidth of 40nm have been achieved when 

bidirectionally pumped with a total of 250mW at 1475nm. The simulation of the 

performance of the amplifier shows very good agreement with the experimental data 
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and the potential for much higher gain can be achieved by pumping at 980nm for higher 

p u m p eff ic iency. 
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Chapter 8: 
Conclusions and recommendations 

8.1 Conclusions 
This work focused on the fundamentals of fabrication and characterisation of planar 
waveguides using Tellurium oxide. There have been a number of important 
achievements that advance the field. The thin fi lms were fabricated using reactive RF 
magnetron sputtering. Low loss stoichiometric films were obtained at a loss level that 
no one else has achieved before by any technique in the tellurite materials platform. The 
fabrication of waveguides using CH4/H2/Ar plasma mixture is the first successful 
demonstration of plasma etching in tellurite glasses and has been proven to be very 
versatile. The etching recipes are applicable not only to tellurite but also to 
chalcogenide. Losses of below O.ldB/cm have been achieved in Te02 waveguides, 
again for the first time. The linear and nonlinear properties of Tellurium oxide have 
been confirmed. More importantly, the Erbium doped films have been fabricated into 
high gain E D W A s for the first time clearing a way for all in one material integrated 
photonics. 

This work has extensively investigated the fabricafion method for high quality 
Tellurium oxide thin film. Reactive RF sputtering technique was used with a pure 
Tellurium target. The Tellurium oxide films were formed in an Argon and Oxygen 
plasma chamber. With the DOE method, the optimum condition for film growth was 
obtained with O.ldB/cm or lower propagation losses for stoichiometric compositions. It 
was found that the films are robust to annealing even at up to 300°C. Reactive RF 
sputtering is a very appropriate technique for Tellurium oxide film fabrication. 

Plasma etching of Tellurium oxide thin films that involved RIE and ICP 
machines was studied in detail. A high quality RIE etching process using Hydrogen, 
Methane and Argon has been demonstrated. The quality of etching in the two systems is 
slightly different. The RIE machine gives better propagation loss . Very low 
propagation loss (below O.ldB/cm) has been achieved in rib Tellurium oxide 
waveguides. The outcome of this study is a recipe for etching high opfical quality 
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tellurite waveguides. The etch recipe has also been demonstrated to be highly suitable 

for chalcogenide glass thin films. 

The nonlinearity of low loss Tellurium oxide has been measured and utilised in 

nonlinear processes of SPM and FWM. The nonlinear coefficient of the sputtered TeOa 

was characterised by an SPM experiment and the nonlinear coefficient was measured 

to be 65xlO"^"m^W"', around 25 times that of silica. Significant signal conversion was 

achieved with large bandwidth in the F W M experiment pumped at 1550nm in a slightly 

normal dispersion waveguides. 

Erbium doped tellurium oxide thin films have been fabricated and characterised 

extensively. Reactive co-sputtering deposition allowed good Erbium concentration 

control to obtain films with 0.1% Er/Te to more than 3% Er/Te. Low loss waveguides 

were obtained even at 3% concentration indicating no clustering problems. A highly 

sensitive fiberised set up was used to measure lifetime of the 1.5|jm emission in thin 

films and waveguides. The l .Spm photoluminescence properties of the fi lms were 

excellent with effective bandwidth of more that 60nm and intrinsic lifetime of order of 

3ms. The OH contamination plays a critical role in the lifetime or the 1.5 | jm transition. 

For the first time, an Er doped Tellurium oxide waveguide amplifier with high 

internal gain has been successfully obtained. The 1480nm pumped amplifier achieved 

internal gain f rom below 1520nm to beyond 1600nm. The peak gain of 2.8dB/cm and 

40nm gain bandwidth have been accomplished. 

8.2 Recommendations for future work 

All of the f i lms and waveguides fabricated in this project were based on pure Tellurium 

oxide, Mult icomponent tellurite glasses can have tailored optical properties such as 

higher nonlinearity, higher refractive indices, better chemical, thermal and mechanical 

stability. For instance, Tungsten tellurite glass (W03-Te02) has been proven to exhibit 

some better characteristics than pure Te02 [253, 255, 450, 451]. Multicomponent thin 

fi lms can be achieved via two routes: one with co-sputtering different elemental targets 

and one with sputtering multicomponent glass. The first method gives the flexibility in 

tuning the composit ion on demand however, achieving the stoichiometry (ie. correct 

amount of oxygen) can be more difficult than sputtering only a Tellurium target. 

Furthermore, there is limited number of targets that can be used in each system due to 
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equipment limitations. In addition, there are materials such as Sodium that are not 

possible to have single solid target. The second method can overcome some of the 

shortcoming of co-sputtering just mentioned. However, the control of film composition 

can be restrictive as the composition transfer from target to film is not tunable. However 

it is clear that there could be substantial benefits in exploring more complex glass 

chemistries. 

The etching process could be improved to take the full advantage of the ICP 

plasma etching system. As discussed detail in Chapter 4, etching using the ICP has met 

some roughness issues which required special treatment of the photoresist to remove 

"bat ear" growth. The origin of this effect needs to be tracked down and better etching 

conditions be identified to eliminate it but still obtain high quality waveguides. 

Due to the high nonlinear coefficient of Tellurium oxide waveguides, 

supercontinuum generation might be possible with a very short length of waveguide. In 

order to achieve that, the zero dispersion wavelength of the waveguide needs to be 

around the pump wavelength. Theoretically, dispersion engineering is required to 

achieve this. However, there are usually errors in fabrication that produce waveguides 

with dimensions differing from the intended values. Tapered waveguides can be used to 

have some zero dispersion length on the waveguide. Since there have been reports of 

supercontinuum in short (few centimetres) tapered tellurite fibres [139, 180, 182, 187], 

the equivalent version of the waveguide should be possible. An advantage of the 

waveguide version is that the modal area can be much smaller than in fibres therefore, it 

is easier to achieve supercontinuum with even shorter device length and lower peak 

power of the pump. 

The properties of the active waveguides can be significantly improved in a 

number of directions. First, the lifetime of the films can be increased by reducing 

quenching due to OH contamination. With the reduction in OH concentration, higher 

Erbium concentration can be incorporated into the films leading to higher gain per unit 

length of the device. This can be achieved with better handling of the start targets and 

fabrication process. The increase in lifetime will increase the quantum efficiency of 

amplifier. This will lead to the lower threshold pump power as well as lower the pump 

power required to saturate the amplifier. 
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Furthermore, changing the p u m p wavelength f rom 1480nm to 980nm can 

significantly increase the max imum amplif ier gain. The pumping scheme at 980nm can 

potentially lead to much higher population inversion level, close to 100%. However , 

this change requires a number of improvements not only in the pump coupling 

eff ic iency but also in the upconversion and excited state absorption of the 980nm pump. 

In the cunen t pumping configuration, the pump power and signal are combined via 

W D M made f rom S M F 2 8 fibres and tapered fibre lenses. The fibre lenses are AR 

coated at 1550nm but not at 980nm. Therefore, the pump delivery is not efficient 

enough. A simple step to improve the current set up is with AR coating to cover both 

wavelengths. Still, as the connecting fibres and waveguides become mult imode at 

980nm, the coupling between them is not very efficient. A design with integrated pump 

couplers at both ends of the waveguides can solve this problem. 

As discussed in Chapter 6 and 7 for 980nm pump, the upconversion and ESA 

should be improved in tellurites by co-doping Erbium with Europium and/or Cerium. 

For the sputtering deposit ion, co-sputtering can be used in a multi-target configuration 

or with single target with a suitable mixture of correct elements. 

In conclusion, tellurium oxide has been shown to have great potential as an all 

in-one platform for integrated optics with a range of excellent properties obtained in 

planar waveguides . 
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