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Abstract 

In recent years, optimization on manifolds has drawn more attention since it can reduce tiie 

dimension of optimization problems compared against solving the problems in their ambient 

Euclidean space. Many traditional optimization methods such as the steepest decent method, 

conjugate gradient method and Newton method have been extended to Riemannian manifolds 

or smooth manifolds. In Euclidean space, there exist a special class of convex functions, self-

concordant funct ions introduced by Nesterov and Nemirovskii . They are used in interior point 

methods, where they play an important role in solving certain constrained optimization problems. 

Thus, to define self-concordant functions on manifolds will provide the guidance for developing 

corresponding interior point methods. The aims of this thesis are to 

• fully explore properties of the self-concordant function in Euclidean space and develop 

gradient-based algorithms for optimization of such function; 

• define the self-concordant function on Riemannian manifolds, explore its properties and 

devise corresponding optimization algorithms; 

• generalize a quasi-Newton method on smooth manifolds without the Riemannian structure. 

Firstly, in Euclidean space, we present a damped gradient method and a damped conjugate gradi-

ent method for minimizing self-concordant functions. These two methods are ordinary gradient-

based methods but with step-size selection rules chosen to guarantee convergence. As a result, 

we build up an interior point method based on our proposed damped conjugate gradient method. 

This method is shown to have lower computational complexity than the Newton-based interior 

point method. 

Secondly, we define the concept of self-concordant functions on Riemannian manifolds and 

develop the corresponding damped Newton and conjugate gradient methods to minimize such 

funct ions on Riemannian manifolds. These methods are proved to guarantee the convergence. 



Thirdly, we propose a numerical quasi-Newton method for the optimization on smooth mani-

folds. This method only requires the local parametrization of smooth manifolds without the need 

of the Riemannian structure. This method is also shown to have super-linear convergence. 

Numerical results show the effectiveness of our proposed algorithms. 
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Chapter 1 

Introduction 

1.1 Overview 

Optimization plays an important role in both research and applications. The essence of op-

timization problems is to search the minimum or maximum of cost functions. Methods to solve 

optimization problems have been widely studied. For example, given a cost function / defined 

on the whole M", one can use conventional methods such as the steepest descent method, con-

jugate gradient method or Newton method to minimize this function. However, in engineering, 

many cost functions are subject to constraints. For example, see [53, 72]. Minimizing functions 

subject to inequality constraints have resulted in new optimization methods. If a constraint is 

linear or nonlinear convex, the interior point method is commonly used. Assuming that we have 

an optimization problem defined on a linear or nonlinear convex constraint, the idea of the in-

terior point method is to transform the constrained optimization problem into a parameterized 

unconstrained one using a barrier penalty function, commonly constructed by a self-concordant 

function defined by Nesterov and Nemirovskii [58]. The barrier function remains relatively flat 

in the interior of the constraint while tending to infinity when approaching the boundary. A new 

cost function including the original cost function and the barrier function is constructed. Then 

we can use plain methods to minimize the new cost function until we find the optimal value of 

the original problem. 

In recent years, optimization on smooth manifolds has drawn more attention since it can re-

duce the dimension of optimization problems compared to solving the original problem in their 

ambient Euclidean space. Its applications appear in medicine [3], signal processing [53], ma-

chine learning [60], computer vision [50, 32], and robotics [35, 33], Optimization approaches 

1 



1.2. Literature Review 

on smooth manifolds can be categorized into Riemannian approaches and non-Riemannian ap-

proaches. 

1. Methods of solving minimization problems on Riemannian manifolds have been exten-

sively researched. For more details, see [70, 67, 18, 19, 71]. In fact, traditional optimiza-

tion methods such as the steepest gradient method, conjugate gradient method and Newton 

method in Euclidean space can be applied to optimization on Riemannian manifolds with 

slight changes. A typical intrinsic approach for minimization is based on the computation 

of geodesies and covariant differentials, which may be resource expensive. However, there 

are many meaningful cases where the computation can be very simple. An example is the 

hyperboloid space, where the geodesic and parallel transformation can be computed via 

hyperbolic functions and vector calculations. Another simple but non-trivial case is the 

sphere, where the geodesic and parallel transformation can be computed via trigonometri-

cal functions and vector calculation. As a consequence, it is natural to ask: can we define 

self-concordant functions on Riemannian manifolds and what is the related interior point 

method? Clearly solving such a question will have practical importance and theoretical 

completeness. 

2. As mentioned above, the computational cost of computing geodesies is often relatively 

high. For this and other reasons, Manton [53] developed a more general framework for 

optimization on manifolds. This framework does not require a Riemannian structure to be 

defined on the manifold and its greater generality allows more efficient algorithms to be 

developed. 

In the rest of this chapter, we first review the developments in the interior point methods, 

self-concordant functions and the optimization on smooth manifolds. Then the motivation and 

research aims are given. Finally, the outline of this thesis is presented. 

1.2 Literature Review 

1.2.1 Interior Point Method and Self-concordant Functions 

The basic idea of interior-point methods is as follows. If f { x ) is a convex cost function we 

wish to minimize on a convex set Q of M", and if g{x) is a barrier function meaning that g{x) 
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approaches infinity on the boundary of Q, then we solve the sequence of optimization problems 

Xk = a rgmin — / ( x ) + g{x) where /i^ ^ 0 and > 0. As converges to zero, Xk will 

converge to the minimal point of the original cost function f{x) constrained to Q, under the 

assumption that f{x) and g{x) are convex. 

The history of the interior point method can be traced back to Khachiyan's work [45] which 

first introduced the polynomial-time interior point method in 1979. However, the start of the 

interior-point revolution was Karmarkar's claim in 1984 of a polynomial-time linear program-

ming method [43], Then the equivalence between Karmarkar's method and the classical loga-

rithmic barrier method was shown in 1986 [26]. 

The milestone work of Nesterov and Nemirovskii [58] presented a new special class of bar-

rier methods and developed polynomial-time complexity results for new convex optimization 

problems. Their proposed self-concordant functions are critically important in powerful interior 

point polynomial algorithms for convex programming in Euclidean space. The significance of 

these functions lies in two aspects. Firstly, they provide many of logarithmic barrier functions 

which are important in interior point methods for solving convex optimization problems. Sec-

ondly, the proposed damped Newton method for optimizing self-concordant functions avoids the 

knowledge of some parameters (e.g., Lipschitz constants, etc.). This is useful for constrained 

optimization problems. It is also worth noting that using self-concordant barrier functions guar-

antees the original problem to be solved in a polynomial time for a pre-defined precision. 

1.2.2 Optimization On Smooth Manifolds 

As stated before, traditional optimization techniques in Euclidean space can have their coun-

terparts on smooth manifolds, which have been studied. In this section, we first review the 

classical Riemannian approaches and then the relatively recent non-Riemannian approaches. 

Riemannian Approach 

1. Steepest descent method on manifolds 

The steepest descent method is the simplest method for the optimization on Riemannian 

manifolds and it has good convergence properties but slow linear convergence rate. This 

method was first introduced to manifolds by Luenberger [48, 49] and Gabay [25]. In the 

early nineties, this method was carried out to problems in systems and control theory by 

Brockett [13], Helmke and Moore [34], Smith [66] and Mahony [51]. 



1.2. Literature Review 

2. Newton method on manifolds 

Compared against tiie steepest descent method, the Newton method has a faster (quadratic) 

local convergence rate. In 1982, Gabay extended the Newton method to a Riemannian 

sub-manifold of M" by updating iterations along a geodesic. Other independent work has 

been developed to extend the Newton method on Riemannian manifolds by Smith [67] and 

Mahony [51, 52] restricting to the compact Lie group, and by Udriste [70] restricting to 

convex optimization problems on Riemannian manifolds. Edelman, Arias and Smith [19] 

also introduced a Newton method for the optimization on orthogonality constraints - the 

Stiefel and Grassmann manifolds. There is also a recent paper by Dedieu, Priouret and 

Malajovich [18] which studied the Newton method to find zero of a vector field on general 

Riemannian manifolds. 

3. Quasi-Newton method on manifolds 

Even though the Newton's method has faster quadratic convergence rate, it requires solving 

a linear system per iteration which consists of the second order local information of the cost 

function. Therefore, it increases the computational cost. In order to avoid this problem, 

the quasi-Newton method in Euclidean space was presented by Davidon [17] in late 1950s. 

This method uses only the first order information of the cost function to approximate the 

Hessian inverse and has a super-linear local convergence rate. Since then, various quasi-

Newton methods have been introduced. However, among them, the most popular methods 

are the Davidon-Fletcher-Powell (DFP) [22] method and the Broyden [15, 16] Fletcher 

[21] Goldfarb [28] Shanno [65] (BEGS) method. 

In the early eighties, Gabay [65] firstly generalized the BEGS method to a Riemannian 

manifold. However, he did not give the complete proof of the convergence of his method. 

Recently, Brace and Manton [12] developed an improved BEGS method on the Grassmann 

manifold and achieved a lower computational complexity compared to Gabay 's method. 

4. Conjugate gradient method on manifolds 

While considering the large scale optimization problems with sparse Hessian matrices, 

the quasi-Newton methods encounters difficulties. Due to avoiding computing the inverse 

of the Hessian, the conjugate gradient method can be used for solving such problems. 

This method was originally developed by Hestenes and Stiefel [38] in the 1950s to solve 

large scale systems of linear equations. Then in the mid 1960s, Fletcher and Reeves [24] 
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popularized this method to solve unconstrained optimization problems. In 1994, Smith 

[67] extended this method to Riemannian manifolds and later Edelman, Arias and Smith 

[19] applied his method specifically on the Stiefel and Grassmann manifolds. 

Non-Riemannian Approach 

The traditional methods for optimizing a cost function on a manifold all start by endowing 

the manifold with a metric structure, thus making it into a Riemannian manifold. The reason for 

doing so is that it allows Euclidean algorithms, such as steepest descent and Newton methods, to 

be generalised reasonably straightforwardly; the gradient is replaced by the Riemannian gradient, 

for example. However, as pointed out in [54], the introduction of a metric structure is extraneous 

to the underlying optimisation problem and thus, in general, is detrimental. (A possible exception 

is when the cost function is somehow related to the Riemannian geometry, such as if it is defined 

in terms of the distance function on the Riemannian manifold.) 

For an arbitrary smooth manifold, the only structure we know is that around any point, the 

manifold looks like R". This is explained as follows. Let M be a smooth n-dimensional mani-

fold. For every point p G M, there exists a smooth map 

V'p : M" ^ M, ?/;p(()) = p (1.1) 

which is a local diffeomorphism around 0 G M". Such a tpp is called a local parametrization. 

hi [53], Manton gave a general framework for developing numerical algorithms for minimis-

ing a cost function defined on a manifold. The framework entailed choosing a particular local 

parametrization about each point on the manifold. In the same paper, this framework was ap-

plied to the Stiefel and Grassmann manifolds, and as an example, the local parametrizations were 

chosen, in a certain sense, to be projections from the tangent space to the manifold itself. Based 

on this parametrization, the corresponding steepest descent and Newton methods were shown to 

reduce the computational complexity compared with the traditional Riemannian methods. 



1.3. Motivation and Research Aims 

1.3 Motivation and Research Aims 

1.3.1 Motivation 

Since f rom the optimization point of view self-concordant functions enjoy good tractabil-

ity, it is tempting to extend its definition to manifolds and develop corresponding optimization 

algorithms. In [57], Nesterov only provided a Newton-based algorithm for optimization of a self-

concordant function in Euclidean space. Although this algorithm has quadratic convergence, the 

requirement of solving a linear system per iteration creates significant computational complexity 

per iteration. To avoid this problem, some gradient-based methods such as gradient and conju-

gate gradient methods can be taken first before switching to Newton-based methods. Due to the 

importance of gradient-based method, we are motivated to develop a damped gradient method 

and a damped conjugate gradient method for optimization of self-concordant functions. Further-

more, it is expected that these two methods can be applied to the optimization of self-concordant 

functions on Riemannian manifolds. Consequently, they can provide guidance to develop interior 

point methods on Riemannian manifolds. 

In addition, although the steepest and Newton methods have been developed as the non-

Riemannian approach, to our best knowledge, we are not aware of any published papers intro-

ducing the non-Riemannian based quasi-Newton methods on smooth manifolds. Since the quasi-

Newton method has prominent advantages, we are also motivated to develop a quasi-Newton 

method on smooth manifolds. 

1.3.2 Research Aims 

The aims of this thesis are to 

• fully explore properties of the self-concordant function in Euclidean space and develop 

gradient-based algorithms for optimization of such function; 

• define the self-concordant function on Riemannian manifolds, explore its properties and 

devise corresponding optimization algorithms; 

• generalize a quasi-Newton method on smooth manifolds without the Riemannian stucture. 



1.4. Outline of This Thesis 

1.4 Outline of This Thesis 

To achieve our research aims, besides this introduction chapter, this thesis consists of three 

parts. 

1.4.1 Self-concordant Functions in Euclidean Space 

Part I includes three chapters and mainly focuses on the properties of self-concordant func-

tions in Euclidean space and algorithms for the optimization of such functions. 

In Chapter 2, we review the definition of self-concordant functions in Euclidean space, in-

troduced by Nesterov and Nemirovskii in [58] and their properties. We also recall the damped 

Newton algorithm from [58] for the optimization of self-concordant functions and its conver-

gence properties. 

In Chapter 3, we propose a damped gradient method and a damped conjugate gradient method 

for optimization of self-concordant functions. A damped Newton method introduced by Nes-

terov is an ordinary Newton method but with a step-size selection rule chosen to guarantee con-

vergence. Based on the gradient and conjugate gradient methods, our methods provide novel 

step-size selection rules which are proved to ensure that algorithms converge to the global mini-

mum. The advantage of our methods over the damped Newton method is that the former have a 

lower computational complexity. Then, we build up an interior point method based on our pro-

posed damped conjugate gradient method. Finally, our algorithms are applied to second order 

cone programming and quadratically constrained quadratic optimization problems. 

1.4.2 Self-concordant Functions On Riemannian Manifolds 

Part II includes three chapters and mainly focuses on the properties of self-concordant func-

tions on Riemannian manifolds and algorithms for the optimization of such functions. 

In chapter 4, the self-concordant functions are defined on Riemannian manifolds. Then gen-

eralizations of the properties of self-concordant functions on Riemannian manifolds are derived. 

Based on properties, a damped Newton algorithm is proposed for optimization of self-concordant 

functions, which guarantees that the solution falls in any given small neighborhood of the opti-

mal solution, with its existence and uniqueness also proved in this chapter, in a finite number of 

steps. It also ensures quadratic convergence within a neighborhood of the minimal point. 



1.4. Outline of This Thesis 

In Chapter 5, we present a damped conjugate gradient method for optimization of self-

concordant functions defined on smooth Riemannian manifolds. A damped conjugate gradient 

method is an ordinary conjugate gradient method with an explicit step-size selection rule. It is 

proved that this method guarantees to converge to the global minimum super-linearly. Com-

pared against the damped Newton method, the damped conjugate gradient method has a lower 

computational complexity. 

In Chapter 6, we introduce three examples in which the cost functions are self-concordant 

on different Riemannian manifolds. We also applied our damped Newton method and conjugate 

gradient method into minimizing these three cost functions. Simulation results show the nice 

performance of our algorithms. 

1.4.3 The Quasi-Newton Methods 

Part III includes one chapter and mainly focuses developing a new quasi-Newton method on 

smooth manifolds. 

In Chapter 7, we propose a new quasi-Newton method on smooth manifolds based on the 

local parametrization. This method is proved to converge to the minimum of the cost function. To 

demonstrate its efficiency, we applied this quasi-Newton method into a cost function defined on 

the Grassmann manifold. The simulation result shows our method has super-linear convergence. 



Parti 

Self-concordant Functions in Euclidean 

Space 



Chapter 2 

Introduction to Self-Concordant Functions 
in Euclidean Space 

2.1 Introduction 

In this chapter, we review the self-concordant function in Euclidean space, which is proposed 

by Nesterov and Nemirovskii in [58], A damped Newton method was also presented in [58] for 

optimization of such function. In this chapter, we briefly introduce the damped Newton method 

and its convergence properties. For more details, refer to [58] and [57]. 

2.2 Definition and Properties 

In this section, we recall some concepts and properties related to self-concordant functions 

defined in Euclidean space. 

Throughout this chapter, / will denote a real-valued function from a convex subset Q of R". 

We consider constrained optimization problems of the following form 

imn f{x) / : Q C M" -> M. (2.1) 

In general, it is hard to solve (2.1), even numerically. However, if / has certain nice proper-

ties, there exist powerful techniques to solve (2.1). In [57], Nesterov considered the case when / 

is self-concordant, defined as follows. 

10 



§ 2.2. Definition and Properties 11 

Definition 1. Let f : Q —> R he a C^-smooth closed convex function defined on an open domain 

Q C K". Then f is self-concordant if there exists a constant Mf > Q such that the inequality 

\D'f{x)[u,u,u]\ < Mf{D'f{x)[u,u]}'/' (2.2) 

holds for any x E Q and direction u 6 R " . 

Recall that / being C^-smooth means / is three-times continuously differentiable. A convex 

function / : Q R is called closed if its epigraph, defined as ep i ( / ) = {{x,t) ^ Q x > 

f{x)}, is closed. The reason why / is required to be closed in Definition 1 is to ensure that / 

behaves nicely on the boundary of its domain; see (2.8). Also, the second and third directional 

derivatives and D^ are defined as follows. Given x E Q and u G R", 

{ f i x + tu)}, (2.3) 
t=o 

D^f{x)[u,u,u] = 
dt^ 

{ f { x + tu)}. (2.4) 
(=0 

We consider the special case of the optimization problem in (2.1) where / satisfies the fol-

lowing assumption. 

Assumption 1. The function f in (2.1) is self-concordant, has a minimum in Q and for all x E Q, 

f"{x) is nonsingular By scaling f if necessary, it is assumed without loss of generality that f 

satisfies (2.2) with Mj = 2. 

The need for assuming / has a minimum in Assumption 1 can be seen from the example 

g{x) = — Inx defined on (0, +oo) where g is self-concordant but g has no minimum. If / has a 

minimum, then it is unique because / is strictly convex by Assumption 1. Note that by Theorem 

4.1.3 in [57], f"{x) is nonsingular for aW x E Q if the domain Q contains no straight line. 

Functions satisfying Assumption 1 have interesting properties which facilitate our further 

analysis. For details, see [57]. For a given x E Q, we introduce a local norm on R" 

| |u | | , = , u G i ? " (2.5) 

and the Dikin ellipsoid of unit length 

\V'(x)^{yER^ \\y-x\\,<l}. (2.6) 
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Then the following properties hold. 

1. For any point x E d{Q) and any sequence 

{xk} C Q : x k ^ x (2.7) 

we have 

f i x , ) ^ +00 (2.8) 

where d{Q) denotes the boundary of Q. In other words, / is a barrier function going to 

infinity on the boundary of Q. 

2. For any x E Q, we have 

C Q. (2.9) 

3. Let x e Q. Then for any y e \V^{x) we have 

(1 -\\y- x\urf"{x) ^ f i y ) X (2.10) 

where A < B means the matrix B - A is positive semidefinite. In other words, a self-

concordant function looks approximately quadratic in a small enough region around any 

point in Q. 

4. Let x G Q and r ^ \\y - < L Then we can estimate the matrix 

1 

M = J f"{x + Tiy-x))dT (2.11) 
0 

by 

(1 - ^ + ^ M ^ r ^ / " ! ^ ) - (2.12) 
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5. For any x,y e Q we have 

f{y) > f i x ) + ( V / ( x ) , y-x)+ u;{\\y - (2.13) 

where u;{t) = t - h i ( l + t). Note that if y x, then Lj{\\y - x\\^) is positive and (2.13) 

gives a useful lower bound on f{y). 

6. Let X eQ and ||y - < 1. Then 

f{y) < f i x ) + ( V / ( x ) , y - x) - (2.14) 

where LJ^{t) = —t - ln( l — t). Similar to above, if y ^ x, then u;H.(||/y - x\\x) is also 

positive and (2.14) gives a useful upper bound on / ( y ) . 

Lemma L Let f : Q R he a C^-smooth closed convex function defined on an open domain 

Q C M". Then f is self-concordant if and only if there exists a constant Mf > 0 such that for all 

x E Q and any directions Ui, «2, U3 G H", we have 

3 

2 = 1 

Lemma 1 gives an alternative definition of a self-concordant function. 

2.3 Damped Newton Algorithm 

In this section, we review the damped Newton algorithm [57] for optimization of self-concordant 

functions. This algorithm is a Newton-based method but with an explicit step-size rule. 

To illustrate the algorithm, the Newton decrement A(x) is introduced, defined in terms of the 

gradient and the Hessian as follows 

A(x) = ( [ / " ( x ) ] - i V / ( x ) , V / ( x ) ) i (2.15) 

The Newton decrement X{x) plays an important role in the optimization of self-concordant func-

tions based on the Newton method. 

Nesterov constructed a damped Newton method as follows to minimize / in (2.1) when / 

satisfies Assumption 1. 



2.3. Damped Newton Algorithm 14 

Algorithm 1. (Damped Newton Algorithm) [57] 

step 0: Select an initial point XQ e Q and set k-0; 

step k: Set 

Xk+i = Xfc - —\-—[f"{x,)Y'Vf{xk). 
1 + \ [ X k ) 

Increment k and repeat until convergence. 

It is worth noting that Algorithm 1 guarantees in every step that Xk+\ lies in the Dikin ellipsoid 

around Xk- In other words, the sequence {x^} given by Algorithm 1 lies in the domain Q. 

The following proposition shows that the damped Newton method decreases the value of f{x) 

significantly. 

Proposition 2.3.1. [57] Let {x^} he a sequence generated by Algorithm 1, where the cost func-

tion f : Q ^ H in 2.1 satisfies Assumption I. Then, \fk, we have 

f { x k ^ , ) < f [ x k ) - u { \ { x k ) ) (2.16) 

where u{t) = + 

The following proposition illustrates that the local convergence of Algorithm 1 is quadratic. 

Proposition 2.3.2. ]57] Let {x^} he a sequence generated by Algorithm 1, where the cost func-

tion f : Q ^ R in (2.1) satisfies Assumption 1. Then \/k 

K x k + i ) < 2 \ \ x k ) . (2.17) 



Chapter 3 

Damped Gradient and Conjugate Gradient 
Methods 

3.1 Introduction 

Background In [57], Nesterov developed a damped Newton method to compute the mini-

mum of a self-concordant function. The key feature of this method is that it provides an explicit 

step-size choice based on the Newton method and the value of the function strictly decreases 

in each iteration of this method. In addition, this method guarantees that the iteration sequence 

remains in the domain of the cost function. It was proved that this method always converges 

to the minimum of the self-concordant function. On the other hand, since the damped New-

ton method is Newton-based, it possesses certain inherent disadvantages of the Newton method. 

One of them is the expensive computational cost involved in solving a linear system per iteration 

which consists of the Hessian matrix of the cost function. Therefore, we are motivated to build 

up gradient-based methods with explicit step-size rules for the optimization of self-concordant 

functions. 

Concerning finding an appropriate step-size, several rules have been developed for gradient-

based methods. For instance, the gradient-based step-size can be determined via various line 

search methods for constrained optimization problems. However, the resulting disadvantage of 

these methods is that they may increase the cost of additional iterations for a suitable step-size. 

In [68], Sun and Zhang presented an explicit formula for step-size selection to find the minimum 

of an unconstrained function based on the conjugate gradient direction. This method is shown 

to ensure convergence to the local minimum. However, it does not generalize immediately to 
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the constrained case since it can not guarantee that the iterations remain inside the constrained 

domain. 

Our work In this chapter, we present a damped gradient method and a damped conjugate 

gradient method to minimize self-concordant functions on Euclidean space. Our methods are 

shown to converge to the optimal solution of a self-concordant function if it exists. One of the 

advantages of our methods is that they only consist of computing the gradient and Hessian matrix 

of the cost function without solving a linear system in the Newton method. In every step, the 

complexity of these two methods is 0{n^) instead of O(n^) in the damped Newton method, 

where n is the dimension of the variable. 

Chapter outline The rest of this chapter is organized as follows. We review the traditional 

gradient and conjugate gradient methods in Section 3.2. In Section 3.3, the damped gradient and 

conjugate gradient methods are derived and it is shown that these two algorithms converge to the 

minimum of the cost function provided the cost function is self-concordant. In the last section, 

two examples are included to illustrate the convergence properties of these algorithms. 

Notation: The symbol denotes the set of n dimensional real symmetric matrices. An inner 

product on 5 " is: 

- t r a c e ( X y ) . (3.1) 

i 
It induces the Frobenius norm \\X\\p^ = {X, X)},. The notation 0 ^ X means that X is positive 

semidefinite. For any X, y G 5" , "K ^ X means that X-Y is positive semidefinite. Throughout, 

the Euclidean inner product on M" is used, namely (x, y) = x^ y. It induces the Euclidean norm 

||x|| = {x,x)h The symbol d{Q) denotes the boundary of the set Q. Throughout, / will denote 

a real-valued function defined on a convex subset Q of M". We consider constrained optimization 

problems of the form 

m i n / ( x ) , / : Q c R " - . R . (3.2) 
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3.2 Review of The Gradient and Conjugate Gradient Meth-
ods 

In this section, we review descent methods such as the gradient method and the con juga te 
gradient method for solving the unconstrained optimizat ion problem 

m m f{x), / : M" ^ R . (3.3) 

Motivation for introducing our novel damped methods in Section 4 for opt imizat ion of self-
concordant funct ions is also given. 

Descent a lgori thms for solving (3.3), such as the gradient and conjuga te gradient methods , 
are of the fol lowing form. Initially, a point xq G M" is chosen at random. Then the sequence {xk} 
is generated according to the rule Xk+i = x^ + hkHk where H^ is called the descent direction 
and hk the step-size. There are several step-size rules commonly used: 

1. The sequence {/(i j ^ o chosen in advance [57]. Two examples are a constant step-size 
hk = h > 0, or hk = h> 0. 

2. Line search [57|: hk = a r g n i i n / ( x f c -h l iH^) . 
h>0 

3. Backtracking [72]: Start with unit step-size h^ = 1, then reduce it by the multiplicative 
f a c t o r u n t i l the stopping c o n d i t i o n < f{xk ) + a h k { f ' { x k ) , H k ) holds. The 
parameter a is typically chosen between 0.01 and 0.3, and (3 between 0.1 and 0.8. 

Al though these step-sizes can work well in practice, they each have their l imitations. The 
first rule cannot always guarantee that the descent algori thm converges to the solution of (3.3). 
Indeed, the values f{xk) need not even form a decreasing sequence. In general the second rule 
is only acceptable in theory because the line search is often too hard to compute in practice. The 
choice of a and /3 in the third rule is somewhat arbitrary. 

Different algori thms use different rules for determining the descent direction Hk, as now 
reviewed. 

The gradient method chooses Hk to be -f'{xk). Since it requires only first order informat ion, 
the gradient method is relatively cheap to implement . Often, a few steps of the gradient method 
are taken before switching to a higher order method. 
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Xk+1 X >• 

Hk+1 

Xk 

Figure 3.1: Conjugate gradient in Euclidean space 

The conjugate gradient method is a popular method because it is easy to implement, has low 

storage requirements, and provides superlinear convergence in the limit. The primary idea of the 

conjugate gradient method is to use the conjugacy to find the search direction. 

Algorithm 2. (Conjugate gradient algorithm) 

step 0: Select an initial point xo, compute Ho = -/'(xq), and set k = 0. 

step k: If f'{xk) = 0 then terminate. Otherwise, compute hk with the exact line search 

method. 

SetXk+i = Xfe + hkHk. 
Set 

Hk+i = + 

(3.4) 

(3.5) 
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Ifk + 1 mod n = 0, set Hf^+i = —f'{xk+i). Increment k and repeat until convergence. 

Figure 3.1 illustrates the conjugate gradient direction in Euclidean space. Whereas Hk+\ 

in the gradient method depends only on f'{xk+\), in the conjugate gradient method, H^+i relies 

also on the past history of Hk via a weighting factor 7^+1. In (3.4), 7^+1 is given by the conjugate 

descent method in [23]; other choices are possible. 

Consider applying a gradient or conjugate gradient method to the constrained optimization 

problem (3.2). None of the three step-size rules presented earlier are directly suitable; the first 

and third rules cannot ensure Xk remains in Q, while the second rule is difficult to implement 

in practice. This motivates the introduction of novel step-size rules which guarantee the conver-

gence of the algorithm to the minimum of the cost function. 

3.3 The Damped Method 

In this section, we derive explicit step-size rules for use in gradient and conjugate gradient 

methods for solving (3.2) when / is self-concordant. These step-size rules guarantee convergence 

to the global minimum. 

3.3.1 The Damped Gradient Method 

Let / in (3.2) satisfy Assumption 1. Suppose we have a point x^ in Q at time k. Given an 

appropriate step-size the gradient method sets x^+i = Xf, — hkf'{xk)- We propose choosing h^ 

to maximize the bound in (2.14). Later, in Theorem 3.3.1, it is proved such a strategy guarantees 

convergence to the minimum of / . 

From (2.14), provided x^+i G and h^ > 0, we have 

f{xk) - > h,\\nx,)f + h,\\f'{x,)\U, 

+ l n ( l - / i , | | / ' ( x , ) |U J . (3.6) 

The right hand side is of the form where ?/)(/;) = ah+ln{l—(3h) with a = + 

\\f'{xk)\\x^ and (3 = \\f'{xk)\\xk- Since h is a descent step, it is required to be positive. Moreover, 

if we are not at the minimum of / , then /? will be strictly positive. Therefore, V is defined on 

the interval [ 0 , 1 / P ) . Note that if hk G [0,1//?), then Xk+i G W{xf,) as required for (3.6) to be a 

valid bound. 
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Differentiating tp{h) yields 

= " - T ^ h ' 

showing that V'l/') is concave on its domain [0,1//?). It achieves its maximum at 

(3.9) 
aP 

f i x ) Let X{x) = -jr^j—- Substituting a and /? into (3.9), we obtain the rule 

where A, = A(x.) = 

This motivates us to define the following damped gradient method. 

Algorithm 3. (Damped Gradient Algorithm) 

step 0.- Select an initial point Xq e Q and set k = 0. 

step k.- If f'{xk) = 0 then terminate. Otherwise, set 

. Wf'ix.W Afc = 

Afc 

Xk+i = Xk-hkf{xk). 

Increment k and repeat until convergence. 

The convergence of Algorithm 3 is proved in Theorem 3.3.1 with the help of Lemma 2. 

Lemma 2. Let {xk} be a sequence generated by Algorithm 3, where the cost function f : Q ^ R 
in (3.2) satisfies Assumption I in Chapter 1. Then: 

I. VA:, Xk e Q. 
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2. I f f ' i x , ) ^ 0, then f{xk+,) < f{x,) - u;{Xk) < / ( x , ) , where u(i) = t - ln( l + 1 ) . 

3. Let X* e Q he the solution of (3.2). If x G Q satisfies x ^ x*, then \{x) > 0. Moreover, 

lim \{x) = 0. 
x^x' 

Proof: 

1. From the earlier derivation, it was already proved that 

(3.11) 

Therefore, from (2.9) and the fact that Xq G Q, it follows that x^ G Q. 

2. Substituting hk into (3.6), we obtain 

/(xfc+i) < / ( x , ) - a ; ( A f c ) (3.12) 

where u{t) = t - h i ( l + t). Since /'(xfc) ^ 0 implies A^ > 0 and, from (2.13), w{t) > 0 

for t > 0, the result follows. 

3. Recall that Assumption 1 implies x* is unique. Therefore f'{x) = 0 only and only if 

x = X*. Suppose X E Q but x x*. Since f"{x) is positive definite by Assumption 1 and 

f'{x) ^ 0 we have A(x) > 0. 

Let K = {x ||x — x*|| < p] where p > 0 is sufficiently small such that K C Q. Let 

i^mm(/"(x)) denote the minimum eigenvalue of the Hessian matrix f"{x). Then (9 = 

min Vmin{ f"{x) ) exists since K is compact and i^mm(/"(x)) is continuous. Since f"{x) is 
xeK 
positive definite on Q by Assumption 1, 0 > 0. Moreover, for any x G K and any direction 

u G M", we have 

u^f"{x)u = \\u\\l>e\\uf. (3.13) 

Therefore, for x G K, we obtain 

A(x) = 

< (3.14) 
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Therefore, at x*, we get 

0 < lim X(x) < lim ^||/'(a;)||. (3.15) 

Since f i x ) is continuous and f'{x*) = 0, lim X{x) = 0. 

• 

T h e o r e m 3.3.1. Consider the constrained optimization problem in (3.2). If the cost function 

f : Q H in (3.2) satisfies Assumption 1 in Chapter 1, then Algorithm 3 converges to the 

unique minimum of f . 

Proof: Let K = {y\f{y) < f{xo)} where xq denotes the initial point. Let x* be the solution 

of (3.2). Then for any y G K in view of (2.13), we have 

f { y ) > f { x * ) + u;{\\y-x*\\,.). (3.16) 

It follows from (3.16) that 

^{\\y - < f{y) - fix*) < / (xo ) - fix*); (3.17) 

Note that is strictly increasing in t. Therefore, \\y - x*\\^, < i where i is the unique 

positive root of the following equation 

^{t) = fixo) - fix*). (3.18) 

Thus, K is closed bounded and hence compact. 

From Lemma 2, we have 

f { x k + i ) < f i x k ) ~ i o i X k ) . (3.19) 

Summing up the inequalities (3.19) for A; = 0 . . . N, we obtain 

N 

J ^ ^ ( h ) < / (xo ) - / ( x ^ + i ) < f i x o ) - f i x * ) , 
k=0 

(3.20) 
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where x* is the solution of (3.2). As a consequence of (3.20), we have 

a;(Afc) ^ 0 as A; ^ oo (3.21) 

and therefore 

At ^ 0 as k oo. (3.22) 

Since f{xk) decreases as k increases, x/t e K for all k. Assume that Xk x° as k ^ oo 

where x° is not the solution of (3.2). Then it follows from Lemma 2 that Â ,. ^ A (x ° ) > 0, which 

is contradictory to (3.22). Therefore, the theorem follows. • 

3.3.2 The Damped Conjugate Gradient Method 

Let / in (3.2) satisfy Assumption 1 in Chapter 1 . We construct a damped conjugate gradient 

method to solve (3.2). 

Suppose we have a point x^ at time k. Given an appropriate step-size h^ and conjugate 

gradient direction Hk defined in (3.5), the conjugate gradient method sets Xk+i = Xk + hkHk-

Similar to the derivation of the damped gradient method, we propose choosing hk to maximize 

the bound in (2.14). In Theorem 3.3.2, it is proved that such a strategy guarantees convergence 

to the minimum of the cost function. 

From (2.14), provided Xk+i G W { x k ) , we have 

fix,) - /(x,+0 > -h,{f'ix,),H,) + 

+ hi ( l -||/i ,//,|UJ. (3.23) 

Initially we assume { f ' { x k ) , H , ) < 0. Later, in Lemma 3, it is proved that this assumption is 

correct. Hence, hk is required to be positive. 

The right hand side of (3.23) is of the form -(pihk) where VCO = ah + h i ( l - /?/;,) with 

a = - ( / ' ( x f c ) , Hk) + \\Hkh, and /3 = 

As before, i ) { h ) is defined on the interval [0,1//?), and if h , G [0,1//3), then x^+i G W{xk) 

as required for (3.23) to be a valid bound. Recall that ip{h) achieves its maximum at = 
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Let Afc = and A(x) = Substituting a and (3 into h, we obtain the rule 

Therefore, the proposed damped conjugate gradient algorithm for (3.2) is as follows. 

Algorithm 4. (Damped Conjugate Gradient Algorithm) 

step 0: Select an initial point Xq, compute Hq = —f'{xo), and set k — 0. 

step k: If f'[xk) = 0, then terminate. Otherwise, set 

^k = fTTT-n , (J. 
\\nk\\xk 

Xk+i = Xk + h^Hk, (3.27) 

- { f i x , ) , H,y 
Hk+i = -f'{xk+i) + ik+iH,,. (3.29) 

Increment k and repeat until convergence. 

The convergence of Algorithm 4 is proved in Theorem 3.3.2 with the help of Lemma 3 ,4 and 

5. 

Lemma 3. Let the cost function f : Q ^ R in (3.2) satisfy Assumption 1 in Chapter 1. Assume 

x^eQ is such that / ' (xq) ^ 0. Then Algorithm 4 generates an infinite sequence [xk) (that is, 

there are no divisions by zeros). Moreover, Vk, {f'{xk), Hk) < 0 provided f'{xk) ^ 0. 

Proof: This proof is by induction. When k = 0, H^ = - / ' ( x q ) . Then we obtain 

( / ' (xo) , i /o ) = - | | / ' ( x o ) | p < 0 (3.30) 

where the inequality follows from the fact that xq is not the solution of (3.2). 
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A s s u m e that {f'{xk), Hk) < 0 for s o m e k. It fo l lows that Xk+i is well def ined. 

A, {f'{x,),H,) 

Moreove r we have 

= { f i x , ) , / / , ) + ( f i x , ) , / / , ) 
(/ [Xk), tik) 

= Pk{f\xk),Hk). (3 .32) 

where oi=\ + wneiepfc (/ '(x,),// ,) 

Fur thermore , 

1 

/ ' (Xfc+i) - / ' ( x , ) = J f"{Xk + r ( ,T ,+ i - - Xk)dT 

0 

= h M H k (3.33) 

1 

where M^ = J f"{xk + T{xk+i - Xk))dT and M^ is posi t ive def ini te because f"{x) is posi t ive 

0 
definite. 

In view of (2.12), we have 

M k ^ { l + \ k ) f " { x , ) . (3 .34) 

Subs t i tu t ing (3.33) into the second part of we obtain 

- / ' ( x , ) , / / , ) huHlhhHk 

HlhhHu 

(3 .35) 

1 + Afc 

1 
- - 1 (3.36) 
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where (3.31) was substituted for hk to obtain the second equality. 

Because Ah is positive definite and (/ '(x/,) , H,,) < 0 by assumption, it follows from (3.35) 

that 

Therefore, we obtain 

0 < pfc < 1. (3.38) 

For the conjugate gradient method, since 7/c+i = j ' ^ ^ have 

- ( / ' ( x , ) , / / , ) " 

2 II.// M,2Pk{f'{Xk),Hk) 

== - ( l + P f e ) | | / ' ( x f c + i ) | p < 0 . (3.39) 

Consequently, this lemma follows. • 

Lemma 4. Let {x^} be a sequence generated by Algorithm 4 where the cost function f : Q R 

in (3.2) satisfies Assumption 1 in Chapter I. Then: 

1. Vfc, XK G Q. 

2. If f'{xk) ^ 0, then A^ > 0. 

3- I f f ' i x k ) ^ 0, then /(xfc+j) < f{xk) - uj{Xk) < /(x^), where u>{t) = t - ln( l + t). 

Proof: 

1. From the earlier derivation, it was already proved that 

Xk+i e W{xk). (3.40) 

Therefore, from (2.9) and the fact that xq G Q, it follows that Xfc G Q. 
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2. Since / ' ( x ^ ) ^ 0, it fol lows f rom L e m m a 3 that { / ' (xk) , H^) < 0. Then it implies that 

Afc > 0 by the definition of Afc. 

3. Substituting hk into (3.23), we obtain that 

f { x M ) < f { x k ) - u ; i X , ) < f { x , ) (3.41) 

where uj{t) = t - h i ( l +t) > Q since A .̂ > 0 by the above proof. 

• 

Lemma 5. Let {xk} and {Hk} he sequences generated by Algorithm 4 where the cost function 

f : Q R in (3.2) satisfies Assumption 1 in Section 2. If f'{xk) 0, then for all k 

Proof: Note that f rom (3.39) and the inequality (3.38), we have 

= ( 1 > (3.43) 

In view of (3.29), (3.28), (3.32) and (3.43), we obtain 

Wf'ixkW 

It fol lows via dividing both sides of (3.44) by \\f'{xk+i)\\^ that 

< + (3.44) 

wf'ixkw^ \\f'{xk+,w 

• 
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Theorem 3.3.2. Consider the constrained optimization problem in (3.2). If the cost function 

f : Q B in (3.2) satisfies Assumption I in Section 2, then Algorithm 4 converges to the unique 

minimum of f . 

Proof: Let R : = {y\f{y) < f{xo)} where Xq denotes the initial point. Let be the solution 

of (3.2). Then for any y e K in view of (2.13), we have 

f{y)>f{x*)+^{\\y~x*\U.). (3.46) 

It follows from (3.46) that 

- x l l . . ) < f{y) - fix*) < fixo) - fix*y, (3.47) 

Note that uj{t) is strictly increasing in t. Therefore, ||y — x*\\x* < f where f is the unique 

positive root of the following equation 

u;(t) = f{xo)-fix*). (3.48) 

Thus, K is closed bounded and hence compact. 

Let I^maxifix)) denote the maximum eigenvalue of the Hessian matrix f i x ) . Then 9 = 

max i^rnaxi f i x ) ) exists since K is compact and i^maxifix)) is continuous. Because f i x ) is 

positive definite on Q by Assumption 9 > 0. Moreover, for any x G K and any direction 

u G M", we have 

u'fix)u=\\u\\l<9\\uf. (3.49) 

Hence by the definition of A ,̂ we obtain 

^ " N w l W^kWxk 
\{fix,),H,)\ > 

By (3.38) and (3.39), (3.50) becomes 

(3.50) 
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From Lemma 4, we have 

f { x k + i ) < f { x k ) - u ; { \ , ) . (3.52) 

Summing up the inequalities (3.52) for A; = 0 . . . TV, we obtain 

N 

Y . a;(Afc) < / ( x o ) - / ( x ^ + I ) < /(XQ) - f { x * ) , (3.53) 
k=0 

where x* is the solution of (3.2). A s a consequence of (3.53), we have 

oo 

< + 0 0 . (3.54) 

k=0 

Assume liiii inffc^oo 0. Then there exists a > 0 such that \\f'{xk)\\ > a for 

infinitely often indexes k. Therefore, it fo l lows from Lemma 5 

Summing up the above inequalities for i — 0 , . . . , k, we get 

+ (3.56) 
\\f'{x,W - Wf'ixoW « 

Let a = ^ and b = = Then it fo l lows from (3.56) 

- ka + f 

Combining (3.51) and (3.57), we obtain 

Afc > J — (3.58) 
V fca + b 

where c = 
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Let {/3fc} be a sequence such that f]k = Then it is easy to show 

oo 
= (3.59) 

Consider the sequence {uj{f3k)]- Since a, 6, c are constant, we have 

hm - J - = hm -r = (3.60 
k^oo (31 t^o t^ 2 

It follows from (3.59) and (3.60) 

oo 

= (3.61) 
k=\ 

Since is increasing with respect to t, by (3.58) and (3.61) we obtain 

oo 

^ a ; ( A f c ) = +oo (3.62) 
k=i 

which is contradictory to (3.54). Therefore, we have 

lim inf | | / '(x,.) | | = 0. (3.63) 
fc—>oo 

Hence, the theorem follows. • 

3.4 Interior Point Method 

Given c G M" and € R, z = 1 , . . . , m, we consider the following convex programming 
problem 

niin c^x, 

s.t. f,{x) < z = 1, m, (3.64) 

where all functions / „ z = 1 , . . . , m are convex. We also assume that this problem satisfies the 

Slater condition: There exists x e R" such that < 0 for alH = 1 , . . . , m. 

To apply the interior point method to this problem, we are required to construct the self-
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concordant barrier for the domain. Let us assume that there exist standard self-concordant bar-

riers Fi{x) for the inequahty constraints fi{x) < a^. Then the resulting barrier function for this 

problem is as follows 

m 

F{x) = J 2 F , { X ) . (3.65) 
i=l 

Recall the framework of the interior point method in Chapter 1. Given a sequence {/.it} such 

that /i( > 0 and linif^oo = we minimize the new cost function / ( x ; //() 

fixuH) = - J x + F{x) (3.66) 
l-k 

in sequence and use the solution of current minimization problem as the initial guess for the next 

optimization. As goes to zero in the limit, we obtain the minimum of the original problem. 

In fact, as stated in [10], it is not necessary to obtain the exact minimum of the cost function 

/(x;/ i£) for every given /tf. A common way used in practice is to perform one step or several 

steps of Newton method and then go to the next /i. For more details, see [10]. 

Recall that the Newton method requires expensive computational cost involved in computing 

the inverse of the Hessian matrix of the cost function. Therefore, the gradient-based methods 

are preferred for large scale problems due to avoid computing the inverse of the Hessian matrix. 

Since c^x is linear and F{x) is standard self-concordant, f{x\ i^tt) is still standard self-concordant 

for all î if > 0 by Corollary 4.1.1 in [57]. Consequently, instead of the Newton method, the 

damped conjugate gradient method can be used to minimize / ( x ; î if ) as follows. 

Algorithm 5. (Damped Conjugate Gradient Algorithm) 

stepO: Select an initial point Xq satisfying the constraints in (3.64), compute Hq = — f {xq\i^tt), 

and set k = 0. 

step k: If f'{xfc] f-h) = 0, then terminate. Otherwise, set 
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, = + (3.69) 

Hk+i = - f { x k + i - a H ) + - fk+iHk, (3.71) 

where = ^ H j r ' { x k U H ) H k . 

Increment k and repeat until convergence. 

In practice, fo r the interior point method , we may need jus t a f ew d a m p e d c o n j u g a t e gradient 

i terat ions to reach the required accuracy. By the proof of T h e o r e m 3.3.2, the s equence {X^} 

generated by Algor i thm 5 satisfies A^ ^ 0 if x x* w h e r e x* is the m i n i m u m of f { x ] ^ t ) -

There fore , we can set the s topping cr i ter ium based on the value of Xk- Tha t is if A^ is small 

enough , we go then to next /i. 

A s a result, we give the proposed barrier interior point a lgor i thm based on the truncated 

d a m p e d con juga te gradient method as fo l lows . 

Algorithm 6. (Barrier Interior Point Algorithm) 

Cycle 0.- Set /io = 1 and the cycle counter t = 0. Select an initial point Xq satisfying the 

inequality constraints in (3.64). 

Cycle t.-

step 0." Compute the gradient /'(xq; Pt) and Aq = set Hq = -/'(xq; Pt) and 

k = 0. 

step k.- If f'{xk] Pt) = 0, then terminate. Otherwise, set 

Afc = -

hu = 

W k U 

Xk+\ = Xfc + hkHk, 

where \\Hk\U, = { f " { x k ] Pt)Hk, H^) and /"(x^; pt) is the Hessian o f f { x k ] Pt). 

Set 

Ik+l — 

Hk+i = - f ' i x k i p t ) + j k + i H k . 
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Increment k and repeat until A^ < ei where Ci > 0 is a predefined tolerance. 

Set xo = Xfc and pt+i = Q^k where 9 is a constant satisfying 0 < 6* < 1. Then increment t 

and repeat until < 62 where €2 > 0 is also a predefined tolerance. 

R e m a r k 1. The damped conjugate gradient of the inner iteration in Algorithm 6 is stopped when 

ei is small enough. In practice, the choice ofei = 5 x 10"^ is sufficient; that is proved by the 

numerical simulations in the next chapter 

3.5 Numerical Examples 

In this section, we apply our algorithms to self-concordant functions to show convergence of 

the damped gradient and conjugate gradient methods. 

3.5.1 Example One 

Consider the fol lowing quadratically constrained quadratic optimization problem (QCQOP ) 

m i n (lo{X) — AQ + A^X + -X^ AQX, (3.72) 
X € R " 2 

subject to : (li[x) — ai + ajx + -x^AiX < Pi,i = I,... ,m, (3.73) 

where Ai,i = i),... ,m are positive semidefinite (n x n)-matrices, x,(Xj G M" and Oj G M 

and the superscript T denotes the transpose. 

By Equation (4.3.4) in [57], the Q C Q O P problem could be rewritten in the same form as 

(3.64): 

min r, (3.74) 
x6R",TeR 

subject to : (lo{x) < r, (3.75) 

(U{x)<l3,,t = l,...,in. (3.76) 

We use the logarithmic barrier technique to transform the constrained problem into an un-

constrained one. The additional logarithmic barrier term for this problem is 
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F{x, r ) = - l n ( r - qo{x)) - ln (A - q^{x)). 
1=1 

Combining r and the barrier term, we get the new optimization problem 

min f(x,T;f.i) = -T + F{x,T). 
a;eK",r6M /i 

(3.77) 

(3.78) 

It is shown in [57] that f{x, r ; /i) in (3.78) satisfies Assumption 1 in Chapter I for all ^ > 0. 

For a given /x > 0, it is easy to compute the gradient f'{x,T;ti) and the Hessian matrix 

f"{x,T\ii) as follows 

9oM , s^^rn q'jix) 
r-go(x) a-

1 
H T-qo{x) 

1 
(3.79) 

loix) I q'o(x)q'^(x) Y^m f q'/{x) q[(x)q'^(x) n ^ 
T-go(x) (r-qoW)2 + = > {r-qo{ 

(r-go(x))2 

9O(X))2 
1 

(3.80) 

where g-(x) = AiX + Oj and gj"(x) = ^^ for z = 0 , . . . , rn. 

Given a sequence { / x j such that i^it > 0 for all t and limj^oo m = 0, we minimize f{x; Ht) 

in sequence. As ^it goes to zero in the limit, we obtain the minimum of the original problem. In 

this chapter, we follow the strategy in [72] to choose the sequence 

The proposed damped gradient algorithm for QCQOP is as follows. 

Algorithm 7. (Damped Gradient Algorithm for QCQOP) 

Cycle 0.- Set I^IQ = 1 and the cycle counter t = 0. Select an initial point XQ satisfying the 

inequality constraints in (3.73). 

Cycle t.-

step 0.- Compute the gradient f'{xo; pt) by (3.79), and set k = 0. 
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step k; If f'{xk,T- i^it) = 0, then terminate. Otherwise, set 

Xk = 

hk = 
h 

Xk+l = Xk - hkf'{Xk,T-,l^lt), 

where | |/ '(x/t, r ; = {f"{xk,T; ^it)f'{xk,T; Ht), f'{xk,T-, i^h)) and f"{xk,T-, ^h) is 

computed by (3.80). 

Increment k and repeat until A^ < 0.05. 

Set Xq = Xk and pt+\ — S^k where 9 is a constant satisfying i) < 9 < 1. Then increment t 

and repeat until < 62 where 62 > 0 is a predefined tolerance. 

The proposed damped conjugate gradient method for QCQOP is as follows. 

Algorithm 8. (Damped Conjugate Gradient Algorithm for QCQOP) 

Cycle 0.- Set po = 1 and the cycle counter t — 0. Select an initial point Xq satisfying the 

inequality constraints in (3.73). 

Cycle t.-

step 0.- Compute the gradient / ' (xq, r;//.,) by (3.79), set Hq = —f'{xo,T;pt), ^md set 

k = 0. 

step k; If f'{xk, t; pt) = 0, then terminate. Otherwise, set 

= — 

h, = 

\\Hk\\xk 

(1 + A . ) | | / / . | U ' 
Xfc+i = Xk + likHk, 

where \\Hk\\x, = { f i x ^ , r ; i.it)Hk, Hk) and f"{xk, r ; pt) is computed by (3.80). 

Set 

\\f'ixk+ur;pt)r 
7/c+i = -{f'{Xk,T-,Pt),Hk)' 

Hk+\ = -f'{xk+uT]pt) 

Increment k and repeat until \k < 0.05. 
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Set xo = Xk and Ht+i = 9nt where 6 is a constant satisfying 0 < 6 < 1. Then increment t 

and repeat until pt < where £2 > 0 is a predefined tolerance. 

We performed these two algorithms for two cases: a good initial guess and a poor initial 

guess. In addition, the performance of these two algorithms is compared against the traditional 

line search method and damped Newton method [57], In particular, we take m = 3, n = 400. 

Figure 3.2 illustrates the results of implementing the inner loop using the traditional line 

search and damped Newton methods with p = 1 and a good initial guess. 

Figure 3.3 illustrates the results of implementing the inner loop using the damped gradient, 

conjugate gradient and Newton methods with /t = 1 and a good initial guess. 

Figure 3.4 illustrates the results of implementing the inner loop using the damped gradient, 

conjugate gradient and Newton methods with /t = 1 and a bad initial guess. 

Figure 3.5 illustrates the results of implementing the outer loop with p f rom 1 to 0. 

Table 3.1 shows the simulation time and accuracy using the traditional line search and damped 

Newton methods with // = 1 and a good initial guess. 

Table 3.2 shows the simulation time and accuracy using the damped gradient, conjugate 

gradient and Newton methods with p ^ l and a good initial guess. 

Table 3.3 shows the simulation time and accuracy using the damped gradient, conjugate 

gradient and Newton methods with p = I and a bad initial guess. 

These times were obtained using a 3.06 GHZ Pentium 4 machine, with 1Gb of memory, 

running Windows XP Professional. 

algorithm time(second) accuracy 
line search gradient method 695.8440 0.01 

line search conjugate gradient method 86.9370 0.001 
backtracking gradient method 11.1560 0.001 

damped Newton method 1.4370 0.001 

Table 3.1: Simulation time and accuracy with good initial guess 

Simulation results show the convergence property of damped gradient and conjugate gradient 

methods. It is easy to see from the above simulatin result that the damped gradient method has 

linear convergence rate and the damped conjugate gradient method super-linear convergence 

rate. Furthermore, because these two methods provide explicit step-size choice rules, they cost 

less time than traditional line search and backtracking methods. In addition, due to avoiding 



§ 3.5. Numerical Examples 37 
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Figure 3.2: Error vs. iteration number with good initial guess for Q C Q O P from the backtracking 
gradient method, damped Newton method, line search gradient method and line search conjugate 
gradient method 
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Figure 3.3: Error vs. iteration number with good initial guess for Q C Q O P f rom the backtrack-
ing gradient method, damped Newton method, damped gradient method and damped conjugate 
gradient method 
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Figure 3.4: Error vs. iteration number with bad initial guess for Q C Q O P from the backtrack-
ing gradient method, damped Newton method, damped gradient method and damped conjugate 
gradient method 

î O 0-0 (J () 0 0 0 

10 15 
Interation number of outer loop 

20 25 

Figure 3.5: The value of the original cost function with î i approaching 0 for O C Q O P 



§ 3.5. Numerical Examples 39 

algorithm time(second) accuracy 
damped gradient method 10.2820 0.001 

damped conjugate gradient method 0.8590 0.001 
damped Newton method 1.4370 0.001 

backtracking gradient method 11.1560 0.01 

Table 3.2: Simulation time and accuracy with good initial guess 

algorithm time(second) accuracy 
damped gradient method 3.1560 0.001 

damped conjugate gradient method 3.5470 0.001 
damped Newton method 60.1560 0.001 

backtracking gradient method 5.8750 0.01 

Table 3.3: Simulation time and accuracy with bad initial guess 

the computation the inverse of the Hessian matrix, the damped conjugate gradient method costs 

less t ime than the damped Newton method. If we have a bad initial guess, the damped gradient 

method performs better than other methods. 

3.5.2 Example Two 

Consider the following second-order cone programming (SOCP) 

niin qix) = c x, 
X € I R " 

sub jec t to : \\AiX + < c^ x + di,i — 1 , . . . , A ,̂ 

(3.81) 

(3.82) 

where x 6 M" is the optimization variable and the problem parameters are c, q G M", Ai G 

M'"^", k G and (i, G M. 

As before, we use the logarithmic barrier technique to transform the constrained problem into 

an unconstrained one. The additional logarithmic barrier term [72] for this problem is 

N 

F{x) = + - + (3.83) 
2=1 
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Combining q{x) and the barrier term, we get the new optimization problem 

mmf{x • ^ l ) = -q ix ) + F{x). (3.84) 

It is shown in [72] that f { x ; i^i) in (3.84) satisfies Assumption 1 in Chapter 1 for all // > 0. 

For a given /u > 0, the gradient / ' (x ; , u) and the Hessian matrix f " { x ] are as follows 

N 
^ , - 4 ( ( c f x + di)c, - A f i A x + k M c J x + - A j { A , x + hi)f 

2(cic[ - A j A j ) 

As before, we minimize f { x ; f i t ) in sequence for a given sequence {/if} which satisfies > 0 

and limt^oo = 0- As î it goes to zero in the limit, we obtain the minimum of the original problem. 

The proposed damped gradient algorithm for SOCP is as follows. 

Algorithm 9. (Damped Gradient Algorithm for SOCP) 

C y c l e 0.- Set Ho ^ I and the cycle counter t = 0. Select an initial point Xq satisfying the 

inequality constraints in (3.82). 

Cycle t; 

s tep 0.- Compute the gradient f ' { x o ] Pt) by (3.85), and set k = 0. 

stepk.- I f f ' { x k \ p t ) = 0, then terminate. Otherwise, set 

. \ \ f ' i x k , P t ) r 
Afc = 

\ 
h, = 

\k 

Xk+i = X k - h k f ' { x k - , p t ) , 

Xk 

where \\f{xk\Pt)\\x^ = { f " { x k ] P t ) f \ x k ] P t ) J ' { x k \ P t ) ) a n d f " { x k ; p t ) is computed by 

(3.86). 

Increment k and repeat until X^ < 0 . 05 . 

Set Xq = Xk and pt+i = dpt where 9 is a constant satisfying 0 < 0 < I . Then increment t 

and repeat until p < 62 where es > 0 is a predefined tolerance. 
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The proposed damped conjugate gradient method for SOCP is as follows. 

Algorithm 10. (Damped Conjugate Gradient Algorithm for SOCP) 

Cycle 0; Set hq = 1 and the cycle counter t = 0. Select an initial point xq satisfying the 

inequality constraints in (3.82). 

Cycle t; 

step 0; Compute the gradient /'(xq; Pt) by (3.85), set Hq = -/'(xq; /it), set k = 0. 

step k; If f'{xk\ pt) = 0, then terminate. Otherwise, set 

Afc = -

h, = Xk 
{I + 

Xk+i = Xk + hkHk, 

where \\Hk\\x^, = {f"{xk]fit)Hk,Hk) and f"{xk\Pt) is computed by (3.86).. 

Set 

lk+1 = 

Hk+1 = -f'ixkUh) +jk+iHk. 

Increment k and repeat until Xk < 0.05. 

Set Xq — Xk and pt+\ — Gpt where 9 is a constant satisfying 0 < 9 < 1. Then increment t 

and repeat until p < e2 where t2 > 0 is a predefined tolerance. 

We carried out the damped gradient and conjugate gradient methods on a SOCP problem. In 

addition, the performance of these two methods is compared with the damped Newton method. 

In particular, we take m, = 600, n = 600, N = 3. 

Figure 3.6 illustrates the results of implementing the inner loop using the damped gradient, 

conjugate gradient and Newton methods with p = 1. 

Figure 3.7 illustrates the result of implementing the outer loop with p from 1 to 0. 

Table 3.4 shows the simulation time and accuracy using the damped gradient, conjugate 

gradient and Newton methods with p = 1. 

Simulation results show convergence of our algorithms. In comparison with the damped 

Newton method, the damped conjugate method cost less time and has super-linear convergence 

rate. 
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Figure 3.6: Error vs. iteration number for SOCP from the damped Newton method, damped 

gradient method and damped conjugate gradient method 
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Figure 3.7: The value of the original cost function with // approaching 0 for SOCP 
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algorithm time(second) accuracy 
damped gradient method 5.8750 10-® 

damped conjugate gradient method 0.5470 
damped Newton method 1.1520 10"® 

Table 3.4: Simulation time and accuracy 

3.6 Conclusion 

In this chapter, we present a damped gradient method and a damped conjugate gradient 

method for the numerical optimization of self-concordant functions. These two methods have 

been shown to make the cost function strictly decrease in each step and also have the sequence 

inside the domain of the cost function. Simulation results indicate that these two methods per-

form very well and converge to the minimums of self-concordant functions. 



Part II 
Self-Concordant Functions On 

Riemannian Manifolds 

44 



Chapter 4 

Self-concordant Functions on Riemannian 
Manifolds 

4.1 Introduction 

Background Recall from Chapter 1 that self-concordant functions play an important role 

in developing interior point algorithms for solving certain convex constrained optimization prob-

lems including linear programming. It is therefore natural to attempt to extend the definition of 

self-concordance to functions on Riemannian manifolds, and then exploit this definition to derive 

novel optimization algorithms on Riemannian manifolds. In fact, the self-concordant concept has 

been extended to Riemannian manifolds in [71], In that work, the author considered the convex 

programming problem 

mill / o b ) 

s.t. MP)<0, 1 = 1,..., in- peM (4.1) 

where M is a complete n-dimensional Riemannian manifold and developed a logarithmic barrier 

interior point method for solving it. Recall that in the Euclidean space, one approach for solving 

(4.1) is the barrier interior point method which uses the barrier function to enforce the constraint; 

this barrier function is chosen to be self-concordant. In order to extend this idea to Rieman-

nian manifolds, it is necessary to extend the concept of self-concordant functions to Riemannian 

manifolds. To this end, the concept of a self-concordant function was defined on Riemannian 

manifolds and some of its properties were studied in [71]. Moreover, a Newton method with a 

45 
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step-size choice rule was proposed to keep the iterates inside the constraint and guarantee the 

convergence. 

We note that self-concordance appears to have not been defined precisely in [71], For in-

stance, the domain of a self-concordant function must be convex, but there are different types of 

convexity on a manifold, which was not considered in [71]. Furthermore, it was stated on p.352 

that a self-concordant function goes to oo on the boundary of its domain. However this does not 

appear to be true in general; perhaps the requirement that a self-concordant function is closed 

was accidentally omitted from the definition? There also appears to be a mistake on p.351; the 

reference lemma B. 2 in [37] is not true on a general manifold and hence its argument cannot be 

used. In addition, the properties of self-concordant functions were not extensively studied. 

Our work In this chapter, we give a precise definition of a self-concordant function on a 

Riemannian manifold and derive properties of self-concordant functions which will be used to 

develop optimization algorithms; first a damped Newton method in this chapter, then a damped 

conjugate gradient method in Chapter 5. Convergence proofs of the damped Newton method are 

also given. 

Chapter outline This chapter is organized as follows: Concepts of Riemannian manifolds 

are listed in Section 4.2. Section 4.3 defines self-concordant functions on manifolds. This def-

inition is chosen to preserve as many nice properties of its original version in Euclidean space 

as possible. To facilitate the derivation and analysis of the proposed damped Newton method in 

Section 4.5, the Newton decrement is defined and analyzed in Section 4.4. It is shown that the 

damped Newton method has similar convergence properties to the algorithm for self-concordant 

functions in Euclidean space proposed in [57]. 

4.2 Concepts of Riemannian Manifolds 

In this section, some fundamental concepts from differential geometry are introduced. How-

ever, we do not intend to present self-contained and complete exposure, and most of the proofs 

are omitted. See [30] for more details. 

Let an n-dimensional smooth manifold be denoted as M which is an embedded manifold 

in M^. The differential structure of M is a set of local charts covering M. Each local chart 

is a pair of a neighborhood and a smooth mapping from this neighborhood to an open set in 

Euclidean space. The tangent space of M at a point p can be denoted as TpM. It is the set of 

linear mappings from all smooth functions passing through the point p to real numbers, satisfying 
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Figure 4.1: The tangent and normal spaces 

the derivative condition. For n-dimensional manifolds, the tangent space at every point is an n-

dimensional vector space with origin at this point of tangency. The normal space is the orthogonal 

complement of the tangent space in the ambient space. Figure 4.1 shows the tangent space and 

normal space at a point on a manifold. 

A smooth manifold M is called Riemannian manifold if it is endowed with a metric structure. 

In Euclidean space, a vector can be moved parallel to itself by just moving the base of the arrow. 

For the manifold if a tangent vector is moved to another point on the manifold parallel to itself in 

its ambient space, it is generally not a tangent vector to the new point. For example, see Figure 

4.2. However, we can transport tangent vectors along paths on the manifold by infinitesimally 

removing the component of the transported vector in the normal space. Figure 4.3 describes 

the following idea. Assume that we want to move a tangent vector A along the curve j{t) on 

the manifold. Then in every infinitesimal step, we first move A parallel to itself in the ambient 

Euclidean space and then remove the normal component. 

Let M denote a smooth n-dimensional geodesically complete Riemannian manifold. Recall 

that C'^ smooth means derivatives of the order k exist and are continuous. For convenience, by 

smooth, we mean C°°, that is, derivatives of all orders exist. Let TpM denote the tangent space 

at the point p G M. Since M is a Riemannian manifold, it comes with an inner product (•, •)p on 

TpM for each p G A/. This induces the norm || • ||p given by \\X\\p = {X, X)l for X G TpM. 

There is a natural way (precisely, the Levi-Civita connection) of defining acceleration on a 

Riemannian manifold which is consistent with the metric structure. A curve with zero accel-

eration at every point is called a geodesic. Since M is geodesically complete, given a point 
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X 

t 

Figure 4.2: Move a tangent vector parallel to itself to another point on the manifold 

Figure 4.3: Parallel transport (infinitesimal space) 
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p e M and a tangent vector X G TpM, there exists a unique geodesic : K ^ M such that 

7 ^ ( 0 ) = p and 7 ^ ( 0 ) = X . We therefore define an exponential map Exp^ : TpM M by 

E x p p ( X ) = 7 ;c ( l ) for all X G TpM. Note that ExpptX is the geodesic emanating f rom p in 

the direction X . Another consequence of M being geodesically complete is that any two points 

on M can be joined by a geodesic of shortest length. The distance d{p, q) between two points 

p, g G M is defined to be the length of this minimizing geodesic. Since the length of the curve 

7 : [0,1] ^ M, 7 ( t ) = ExpptX, is | |X| |p, it follows that if ry = E x p p X then d{p,q) < | |X| |p, 

where the inequality is possible if there exists a shorter geodesic connecting p and q. 

If 7 : [0,1] ^ M is a smooth curve f rom p = 7(0) to q = 7 ( 1 ) , there is an associated linear 

isomorphism Tpq : T p M T ^ M called parallel transport. One of its properties is that lengths of 

vectors and angles between vectors are preserved, i.e. MX, Y G T^M, {rp^X, TpqY)^ = {X, Y)p. 

For a point p G M and a tangent vector X G TpM, we use Tpg^p (tx) to denote the parallel 

transport f rom the point p to the point Exp^^X along the geodesic emanating f rom p in the 

direction X . 

Let N be an open subset of M. Consider the function / : A^ ^ R. Given p e N and 

X G TpN, the first, second and third covariant derivatives of / are defined as follows: 

- Jt 

V i m = 

cP 

{ / (ExppLY)} , (4.2) 
f = 0 

t=0 

dt^ 

{fiExpptX)}, (4.3) 

{ f i E x p p t X ) } . (4.4) 
t=o 

The gradient of / at p G N, denoted by g r a d p / , is defined as the unique tangent vector in 

TpN such that V x f { p ) = (g rad^ / , X ) for all A' G TpN. 

The Hessian of / at p G N \s the unique symmetric bilinear form Hessp / defined by the 

property 

HesSpf{X,X) = V\f{p), XeTpN. (4.5) 

Note that (4.5) fully defines Hessp / since 

Hesspfjx + Y,X + Y ) - Hesspfjx, X) - ResSpfjY, Y) 
H e s s p / ( A , Y) == (4.6) 
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for X , y G TpN. 

4.3 Self-Concordant Functions 

Referring to Definition 1 in chapter 1, extending the definition of self-concordance to Rie-

mannian manifolds requires carefully defining the convex set. Intuitively, the convex set on Rie-

mannian manifolds can be determined by the geodesies connecting two points. However, there 

could be more than one geodesic connecting two points on Riemannian manifolds. For instance, 

for any two different points on the sphere, there exist two geodesies joining them. Therefore, 

there is no single best definition of convexity of selected subset [70]. The definition of convex-

ity used extensively in [70] is concerned with all geodesies of the whole Riemannian manifolds 

connecting two points. On the other hand, this definition limits the definition of convex functions 

since in most cases, the cost functions defined on Riemannian manifolds are locally convex. To 

be more general, our definition goes as follows. We say a subset N of M is convex if for any 

p,q e N, out of all the geodesies connecting p and q, there is precisely one which is contained 

in N. Note that this is a weaker condition than that used extensively in [70]. Then, a funcfion 

/ : N C M M. \s said to be convex if A'̂  is a convex set and for any geodesic 7 : [0,1] ^ N, 

the function / o 7 : [0,1] ^ M satisfies the usual definition of convexity, namely 

f i l i t ) ) < (1 - 0/(7(0)) -f i / ( 7 ( l ) ) , t e [0,1]. (4.7) 

If / : A'̂  ^ M is C°°-smooth and N is convex, then / is convex if and only if V ^ / ( p ) > 0 for 

all p G iV and A' G TpN. 

The epigraph e p i ( / ) of / is defined by 

e p i { f ) = { { p , t ) e N x R \ f { p ) < t } . (4.8) 

A function / is said to be closed convex if its epigraph e p i ( / ) is both convex and a closed subset 

of M X R. The convexity of e p i ( / ) is explained as follows. Let {p, t), {q, s) G e p i ( / ) and 

ExppOXp be the geodesic connecting p and q where q = ExppATp, Xp G TpN and 9 G [0,1]. 

Then e p i ( / ) is said to be convex if for all 9 G [0,1], 

1. Exj)p9Xp is the unique geodesic connecting p and q such that Exp^^Xp G N-, 

2. {Exp^9Xp,t + e { s - t ) ) e e p i { f ) . 
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It is also easy to see from the above definition that ep i ( / ) being convex impHes / being convex 

over N . 

Consequently, our definition of self-concordance given below, differs from the Euclidean 

definition in 1 in chapter 1. 

Definition 2. Let M be a smooth n-dimensional geodesically complete Riemamiian manifold. 

Let f : N C M -i-Rhea C^-smooth closed function. Then f is self-concordant if 

]. N is an open convex subset of M; 

2. f is convex on N; 

3. there exists a constant Mf > 0 such that the inequality 

\ m f { p ) ) \ < M f i ' ^ % f { p ) f ' (4.9) 

holds for all pE N and X G TpN. 

The reason why / is required to be closed in Definition 2 is to ensure that / behaves nicely 

on the boundary of TV; this is shown in the following proposition. 

Proposition 4.3.1. Let f : N ^ R be self-concordant. Let d{N) denote the boundary of N. 

Then for any p G d{N) and any sequence of points pk G N converging to p we have f{pk) —> oo. 

Proof: The proof is a straightforward generalization of the proof of Theorem 4.1.4 in [57], 

For A; = 2, 3 , . . . , define X f , G Tp^N to be such that p^ Expp^Xfc and pk G N. Since / is 

convex, in view of (4.7), we have 

/(Expp^tXfc) < { l - t ) f { p , ) + t f i p k ) (4.10) 

where 0 < t < 1. 

It follows from (4.10) that if 0 < i < 1 then 

f{pi) + —: <f{Pk). (4.11) 
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As t 0, from (4.11) we have 

/ ( p i ) + lim L = + V x J ( p i ) 

< fiPk). (4.12) 

Therefore the sequence {f{pk)} is bounded below by 

f{Pk)> f{pi) +{gr^d^ J , X,) (4.13) 

where we recall that Xk G Tp^N is such that pk •= Exp^jX^. 

Assume to the contrary that the sequence {f{pk), k > 1} is bounded from above. Then it 

has a limit point / . By considering a subsequence if necessary, we can regard it as a unique limit 

point of the sequence. Let z^ = {pk, f{Pk))- Then we have 

zk = { p k j { p k ) ) - * z = i p j ) . (4.14) 

By definition, Zk G ep i ( / ) . However, we have z ^ ep i ( / ) since p ^ N. That is a contradic-

tion since / is closed. • 

Proposition 4.3.2. Let ft : N C M R be self-concordant with constants Mf^, i = 1,2 and 

let a,p > 0. Then the function f{x) = a/i(x) + Pf2{x) is self-concordant with the constant 

Mj = max I ^ M ; , , (4.15) 

Proof: This proof is similar to the proof of Theorem 4.1.1 in [57]. Since fi, i = 1, 2 are 

closed convex on N, f is closed convex on N, which can be easily proved in view of the proof 

of Theorem 3.1.5 in [57], Moreover, for any fixed p e N and X e TpN, we have 

< z = 1, 2. (4.16) 

Now, consider two cases. 

Case One: + pV^f^ip) = 0. 
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Since f i and /2 are both self-concordant, we have 

V 5 , / i ( p ) > 0 , (4.17) 
V ^ / 2 ( p ) > 0 . (4.18) 

Therefore f rom the assumption, we obtain 

V ^ / i ( p ) = 0, (4.19) 
= 0. (4.20) 

By the definition of self-concordance, it follows from (4.19) and (4.20) that 

(4.21) 
V5c/2(p) = 0. (4.22) 

Hence, it follows that 

| V ^ / ( P ) | < Mj[V\f{p)Y (4.23) 

where M j = m a x | A// , , ^ M f , | -
Case Two: a V ^ M p ) + /3V^/2 (p ) ^ 0. 
Denote tOi — V ^ fi{p)- Since a;, > 0, z = 1, 2 by the assumption, we have 

( V ^ / ( p ) ) t - [ a V j , M p ) + p V l M p ) ] l 

[aui + I3U}'2\ 2 

Note that the last inequality is not changing when we replace (l<Ji,u;2) by {tuji^tu^) with 
t > 0. Consequently, we can assume that auji + Plo2 = 1. Let ^ = aui. Then the right hand 
side of (4.24) becomes 

Alt, 3 Mf, , , 3 <4.25, 
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Now, consider (4.25) as a function in ^ G [0,1 . 

This function is convex in ^ [57]. As a result, its maximum is either ^ = 0 or ^ = 1. 

This completes the proof. • 

If a function / is self-concordant with the constant Mf, then the function Mj^f is self-

concordant with the constant 1 as can be directly checked by a simple computation. As such, we 

assume M j = 2 for the rest of this chapter. Such functions are called standard self-concordant. 

Consider a function defined on N: 

f : N CM ^R. (4.26) 

For the simplicity of the analysis in this chapter, we assume that / in (4.26) additionally 

satisfies 

Assumption 2. 

v^/(p)>0, \fpeN,XeT,N. 

Then, the second order covariant differentials can be used to define a Dikin-type ellipsoid 

\V{p; r) C TpN - for any pG N, and r > 0, 

Wip; r) := {X, G T,N \ [VljiP)]'^' < r}- (4.27) 

Mapping all the elements in W{p; r) by the exponential map Exp^ yields a subset Q{p-, r) of M 

where 

Qip; r) = {qeM\q = Exp^X^, G Wip; r )} . (4.28) 

A self-concordant function also has the following interesting property: 

Proposition 4.3.3. Vp G TV, 1) C TV. 

This property gives a safe bound for the line search along geodesies for optimization prob-

lems so that the search will always be in the admissible domain. We need the following lemma 

to prove it. 

Lemma 6. Let f : N ^ R in (4.26) be a standard self-concordant function satisfying Assump-

tion 2. For a point p E N and a non-zero tangent vector X e TpN, recall the definitions of 
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ExpptX and rpExpp(i^) in Section 4.2. Let U = {t E IR|Expp<X G A^}. Define a function 

0 : f/ M as follows 

- (4.29) 

Then, the following results hold: 

1- I l< 1; 

2. //(/)(0) > 0, then. (-(/.(O), 0(0)) C U. 

Proof: 

1. It can be calculated that 

The claim 1 follows directly from the definition of self-concordant function. 

2. In view of Proposition 4.3.1, we have f ( E x p p t X ) goes to oo as Exp^^X approaches the 

boundary of N. It implies that the function V^ ^ ^ ^ v - / (Exp_fX) cannot be bounded. 
p E x p p ( f X ) P 

Therefore, we have 

^ oo as Expp tX ^ d{N). (4.30) 

Since the function / satisfies Assumption 2, by (4.30), we obtain 

U = {t\4>{t)>0}. (4.31) 

By the claim 1, we have 

cf>{t) > - \t\. (4.32) 
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Combining (4.31) and (4.32), it follows that 

(4.33) 

In the following, two groups of properties will be given to reveal the relationship between 

two different points on a geodesic. They are delicate characteristics of self-concordant functions. 

In fact, they are the foundation for the polynomial complexity of self-concordant functions. 

Proposition 4.3.4. For any p e N and Xp G TpN, such that for t e [0,1] the geodesic Exp^tX^ 

is contained in N. Let q = Exp^Xp. // / : A'^ M in (4.26) is a self-concordant function, the 

following results hold: 

"^r^xJiq) - ^ x j { p ) > 

[ V L / ( P ) ] 
1/2 

V L / ( P ) 

f{q) > f{p) + + [VlJip)] 
1/2 

(4.34) 

(4.35) 

(4.36) 

where Tpg is the parallel transport from p to q along the geodesic ExpptXp. 

Proof Let (f){t) be the same function defined in Lemma 6, where one can see that 0(1) < 0(0) + 

1. This is equivalent to (4.34) taking into account that 0(0) = and 0(1) = 

Furthermore, 

- V x j i p ) 

'J 0 
f^ 1 

= I (4.37) 

which leads to (4.35) using the inequality (4.34). 
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For the inequality (4.36), notice that: 

fig) - f i p ) - V V / ( p ) 

= ( V , •pExppiXp-^p xJiExp^tXp) - VxJ{p))dt 

V?^ / ( p ) 

/o t{ i + 

Let r = [ V ^ The last integral becomes 

(It. 

.(it = r - l n ( l + r ) , 
/o 1 + ^r 

which leads to the inequality (4.36) by replacing r with its original form. 

Proposition 4.3.5. For any p e N and Xp G W{p-, 1), let q = Exp^Xp. I f f : N 

is a self-concordant function, then there holds: 

(1 - [ V i < V ' j i Q ) < 
V L / ( P ) 

- VxJip) < 
V L / ( P ) 

1/2 _ 
Kq) < f i p ) + ^ x j i p ) - -1"(1 -

where Tpq is the parallel transport from p to q along the geodesic Ex\)ptXp. 

Proof Let ipit) be a function defined in the following form: 

m = ^jiExpptXp). 

where t G [0,1]. 

Since Xp G W{p-, 1), we have ExpptXp G N for all t G [0,1 . 

• 
in (4.26) 

(4.38) 

(4.39) 

(4.40) 

(4.41) 
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Taking the first order derivative of ip, we obtain 

(f 
Wit)\ = 

dt^ 
f {Exp ptXp] 

= 2(V?, f{Exp(tX,)))h{t) 

f{Exp(tX,))) 

p̂Expp(tXp) 

Here the last part is obtained by applying 0(1) > 0(0) - 1 from Lemma 6. 

Integrating both sides of the inequality (4.42) from 0 to 1, we have 

V'(i) 

which is equivalent to the inequality (4.38). 

Combining the inequality (4.38) and the formula (4.37), one obtains 

' ^ rp .x J i q ) - V V / (p ) 
- I tHi-

^IxJiP) dt 

^^Ijip) 

(4.42) 

(4.43) 

which proves the inequality (4.39). 

Combining this result and using the same technique as that used in the proof of the last 
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property, there holds : 

f{Q) - f{p) - ^ x j i p ) 

/ ( p ) 

i: - ["^hjip)]'/') 
1/2 _ _ rv2 . f f r ^ ]^ ' ^ ) 

P-' 

As such, the inequah ty (4.40) is obta ined by a s imple t ransformat ion of this inequali ty. • 

Proposition 4.3.6. Let f : N R in (4.26) be a self-conconkmt function. For any p e N, and 

Xp e TpN, i f r = < 1, there holds: 

vi- fip) 
< - f ^ . (4.44) 

Proof: In view of the right inequali ty of (4.38), we have 

J 0 

' (1 - \ I ^ I x J { p W 

= r^^M^dt 
Jo 

l - r 
(4.45) 
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Similarly, in view of the left inequality of (4.38), we have 

< I ' (4.46) 

• 

4.4 Newton Decrement 

Consider the following auxiliary quadratic cost defined on T p M 

:= f{p) + V x f i p ) + (4.47) 

Definition 3. Let f : N ^ M. in (4.26) he a self-concordant function. The Newton decrement 

^N{f,p) is defined as the minimal sohition to the auxiliary cost function given by (4.47). More 

specifically, 

: = a r g min (4.48) 

Similar to the case in Euclidean space, the Newton decrement can be characterized in many 

ways. The following theorem summaries its properties. 

Theorem 4.4.1. Let f : N ^ E in (4.26) be a self-concordant function, p, a given point in 

N C M, and X^, its Newton decrement defined at p. The following results hold: 

Y{esSp{XN,X) = - V x f { p ) , V X G T . A / , (4.49) 

= max{Vx/b)|X e TpA/, V \ f { p ) < 1}. (4.50) 

Proof Since p is a given point on the manifold M, the claimed results can be converted into 

their local representation in Euclidean space. More specifically, consider the following quadratic 

function: 

q[x) := Ax + b^x + c, 

where A e R"" x R'', A^ = A,b e R^'^c e R. (4.51) 
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Let X* denote the optimal point. Then, the gradient of q at x* must be a zero vector, i.e., 

y^{Ax* + b) = 0. \/yeR'\ 

This is the local representation of (4.49). 

On the other hand, 

\y^b\ = h/yl^* 1 = 1 yT^l/2^1/2^* I 

where the equality holds if and only if y = x*. As such, 

G < 1} = max{ / e 7?"} 

= ^J{x*y Ax*. 

This is the local representation of (4.50). Therefore, the proof is complete. • 

4.5 A Damped Newton Algorithm for Self-Concordant Func-

tions 

Consider now the minimization problem of self-concordant functions on a smooth manifold. 

First, let us establish the existence of the minimal point: 

Theorem 4.5.1. Let f : N ^ H in (4.26) be a self-concordant function. Let Xf{p) he defined as 

follows: 

Xf{p):= max i ^ ^ ^ M J , forpeN. (4.52) 

Then we have 

L Xfip) = 

2. if \ f { p ) < 1 for some p G N, then there exists a unique point p*^ G N such that 

f{p}) = mm{f{p)\pGN}. 
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Proof. 1. In view of (4.50), if we fix p, since V x f{p) is linear and S / \ f [ p ) bilinear on X for 

any X G T^N, we have 

V x / b ) I = m a x liicty^ , « for p ^ N 

(4.53) 

2. Letpo be a point such that A/(po) < 1- For any q e N such that f{q) < f{po), f rom (4.36) 

we have 

f{<i) > f { p o ) - \ f { p o ) [ y i f { P o ) 
1/2 

Hence, 

Since 

> 1 - A. 

t^+oo t 

there exists a constant c > 0, such that 

Urn 

< c. (4.54) 

Hence these Xp^q contained in the compact set defined by inequahty (4.54). Consider the 

map from the any tangent vector X to its geodesic E x p ( X ) . This map is continuous by 

the definition of geodesic. This indicates the image of compact set defined by inequahty 

(4.54) is also compact. Therefore, a minimal point exists. 

On the other hand, let p* denote a minimal point. Then, 

(4.55) 

The uniqueness is proved. 
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• 
Consider optimization problems of the form 

mill f : N C M ^ R . (4.56) 
xeN 

In general, it is hard to solve (4.56) since the domain of / is an open subset of a Riemannian 

manifold. However, if / has nice properties, there exist powerful techniques to solve (4.56). In 

this section, we concentrate on the special case of the optimization problem (4.56) when / in 

(4.56) satisfies the following assumption. 

Assumption 3. The function f in (4.56) is self-concordant, has a minimum and V\f{p) > 

0, Vp & N,X E TpN. By scaling f if necessary, it is assumed without loss of generality that f 

satisfies (4.9) with Mj = 2. 

Assumption 3 guarantees that / has a unique minimum on N. Let K = {p G N\f{p) < 

f{Po), Po S N} and be compact. Then Assumption 3 implies that there exist a, 9 > 0 such that 

e\\X\\l < Vlfip) < a\\X\\l Vp e K,X e T,N. (4.57) 

Consider the following damped Newton method for solving (4.56) when / in (4.56) satisfies 

Assumption 3. 

Algor i thm 11. (Damped Newton Algor i thm) 

step 0: Randomly generate an initial point po E N and compute gvadp^f. Set k = 0. 

step k: If gi-Adp^f = 0, then terminate. Otherwise, compute the Newton decrement X^k by 

(4.49). Then compute 

= V5.„ . / (p iO, (4.58) 

" = T ^ ' 
Pfc+1 = (4.60) 

where is the exponential map of the Newton decrement atp^-i-

The following theorem establishes the convergence properties of the proposed damped New-

ton algorithm. 
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Theorem 4,5.2. Let the minimal point of f{p) be denoted as p*, and p is any admissible point in 

1. The following inequality holds: 

where Xpp. € TpN satisfying p* = ExppXpp*. 

2. I f X f i p ) < 1, then 

0 < f{p) - f{p*) < - X f { p ) - ln( l - Xfip)). (4.62) 

3. For the proposed Damped Newton Method algorithm, there holds: 

f i p l < fiPk) < f{Pk-i) - ^{Xk-i), (4.63) 

where Lo{t) = t - ln( l + t). 

Proof 1. Let be denoted as r[p). In view of (4.35) and (4.39) we have: 

ripY r'^iv) 
> - f{p) > T ^ r ^ > 0. (4.64) l - r ( p ) - - l+r{p 

On the other hand, there holds 

I V x ^ ^ J i p ) \< X f i p H p ) , 

by the definition of A/(p). Therefore, 

A;(P) > 
1 + r{p) 

where r can be solved as follows: 

A/(P) r{p) < 
i - M p Y 

which is (4.61). 
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2. Based on (4.36) and the inequali ty (4.61) obtained above, one has: 

f i p l - f { p ) > + r{p) - l n ( l + rip)) 

> r{p) - l n ( l + r{p)) - Xf{p)r{p). (4.65) 

Let an auxiliary funct ion g{x, y) be defined as: 

g{x, y) = X - l n ( l + x) - xy + y - l n ( l - y), 

Vx > ( ) , ! > ? ; > 0. 

It can be easily checked that 

g{x,0) = X - l n ( l + x) > 0, 

and 
.9(0,y) = y - l n ( l - y ) > 0 . 

If there is a point {xo,yo) such that g{xo, yo) < 0, this funct ion must have a minimal 

interior point. The gradient will be zero at such a point. However, it can be calculated that 

1 1 1 n 

I - - 0 + 1 + ^ = 0. 

The solution to this system of equat ions satisfies 

(1 - y o ) ( l + a ; o ) = 1. 

As such, at the minimal point there holds: 

g{xQ, yo) = xo - Xot/o + yo = - Vo) + yo>0, 

which is a contradict ion. Therefore , the min imum, if it exists, is achieved at the boundary. 

Hence, 

g{x,y)>0, V x > o , i > y > ( ) . 
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A p p l y i n g this inequal i ty to (4 .65) , w e ob ta in the r ight s ide of the i nequa l i t y (4 .62) . 

3. It is c lea r that pk+i G Q{Pk, 1) s ince 

A p p l y i n g (4 .40) , the re ho ld s 

1 ^ ,./ X 1 r / M l / 2 

by the def in i t ion of Xf{pk) and the resul t s in T h e o r e m 4 .4 .1 . T h e r e f o r e , the inequality 

(4 .63) is p roved . 

• 

Not ice that the t w o f u n c t i o n s 

A - l n ( l + A ) , V A G ( ( ) , + O O ) , 

and 

- A - l n ( l - A ) , V A g ( 0 , 1 ) , 

are pos i t ive and mono ton i ca l l y increas ing . T h e resul t s p roved in T h e o r e m 4 . 5 . 2 have already 

given a set of e r ror b o u n d s fo r the func t ion f { p ) and e s t ima t ion of the va r iab le po in t p based on 

X f { p ) . M o r e specif ical ly , the inequal i ty (4 .63) imp l i e s the f o l l o w i n g resul ts : 

Corollary 4.5.1. For the Damped Newton algorithm, the Xfipk) is bounded as follows: 

\ f { p k ) - l n ( l + Xf{p,)) < f { p , ) - f{p*). (4.66) 

Furthermore, for a given precision e > 0, the number of iterations, denoted as N, required such 
f{po)-f(pn 

e - l n ( l + e ) " 
that Xj{pn) < e is less than or equal to iM-^(P') 

Theorem 4.5.3. Consider the optimization problem in (4.56). If the cost function f : N in 

(4.56) satisfies Assumption 3, then Algorithm 11 converges to the unique minimum o f f . 
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Proof: If Algorithm 11 terminates after a finite number of iterations, then there exists a finite 

number k such that 

g r a d p j = 0. (4.67) 

Hence, Algorithm 11 converges to the unique minimum of / . 

Otherwise, let K = {p e N\f{p) < f{po)} where po denotes the initial point. Let p* be the 

solution of (4.56). Then for any p G K in view of (4.36), we have 

f { p ) > f { p * ) + ^ i [ ' ^ x , , J { p ) ] ' ) (4.68) 

where Xpp. G TpN such that p* = Exp(Xpp.) with the distance d{p,p*) between p and p* 

defined as 

d { p y ) < \ \ X p p 4 p . (4.69) 

It follows from (4.68) that 

< f i p ) - fiP*) < / (Po) - f{p*). (4.70) 

Note that uj{t) is strictly increasing in t. Therefore, 

i ' ^ X . ' f i p ) ] ' < t (4.71) 

where i is the unique positive root of the following equation 

^{t) = / (Po) - fip*)- (4.72) 

In view of (4.57), we have 

[ V x , , J i p ) t ^ > V e \ \ X p p . \ \ p . (4.73) 

Joining (4.69), (4.71) and (4.73), we obtain 

d{p,p*) < (4.74) 
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Thus, K is closed bounded and hence compact. 

In view of (4.63), we have 

(4.75) 

Summing up the inequalities (4.75) for A: = 0 . . . TV, we obtain 

N 

Y ^ u j i X , ) < f i p o ) - /b/v+i) < / b o ) - f { p * ) , (4.76) 

k=0 

where p* is the solution of (4.56). As a consequence of (4.76), we have 

w(Afc) ^ 0 as A: oo, (4.77) 

and therefore A/; ^ 0 as /c —> oo. 

By (4.57) and (4.58), it follows from (4.77) that 

X^k 0 as k oo. (4.78) 

Therefore, the theorem follows. • 

4.6 Conclusion 

This chapter reports our effort to generalize the definition and known results for self-concordant 

functions in Euclidean space to manifolds. It lays a comparative solid foundation to facilitate the 

construction of barrier functions for interior-point algorithms on manifolds. 

For the proposed self-concordant function defined on a general class of smooth manifolds, a 

number of desirable properties are obtained. These include the feasibility of a Dikin-type ellip-

soid and several inequalities that characterizes the similarity between self-concordant functions 

and quadratic functions along the geodesies of the manifold in various inequalities. Under the 

convexity condition on manifold defined by second order covariant differential, it is also shown 

that the optimal solution is global. 

A Newton decrement is defined for this specific class of functions. This concept is analyzed 

in regards to the relationship between first order covariant derivatives along Newton direction and 
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along general direction, and to the maximal ratio of the norm of first order covariant derivative 

and that of second order derivative. The later facilitate the definition of the index \f{p). With 

those theoretical preparation, the existence of global optimal solution is shown when X f { p ) < 1 

holds for a point p. 

A damped Newton algorithm is proposed to guarantee the convergence to the minimum of a 

self-concordant function. 



Chapter 5 

Damped Conjugate Gradient Methods on 
Riemannian Manifolds 

5.1 Introduction 

Background For the optimization of self-concordant functions in Euclidean space, Nes-

terov and Nemirovskii [58] developed a damped Newton method. Then, to reduce the compu-

tational cost, we present a damped gradient method and a conjugate gradient method. On the 

other hand, the notion of a self-concordant function has deep roots in geometry. In Chapter 

4, self-concordance has been defined on Riemannian manifolds and the corresponding damped 

Newton method is proposed. As a result, they can provide guidance for the construction of ef-

ficient interior-point methods on smooth manifolds. However, the Newton-based method, on 

Riemannian manifolds as well as in Euclidean space, has a main drawback as a numerical opti-

mization method. It is that in order to obtain the Newton descent direction, a linear system has to 

be solved at each iteration, which increases the computational cost. Alternatively, the conjugate 

gradient method can converge to the solution super-linearly without solving a linear system. In 

[67], Smith generalized the conjugate gradient method on Riemannian manifolds, which uses the 

exact geodesic (like a line in Euclidean space) search method to find the step-size. However, the 

geodesic search is only accepted in theory since it is often hard to compute in practice. There-

fore, due to nice properties of self-concordant functions, we are motivated to develop a damped 

conjugate gradient method with a novel step-size rule for the optimization of such functions on 

Riemannian manifolds. 

Our work Our method provides an explicit step-size rule based on the conjugate gradient 

70 
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method. It is proved to converge to the optimal solution of a self-concordant function. The main 

advantage of our method is that it only uses the first and second covariant derivatives of the cost 

function without the need of computing a linear system. In each step, the complexity of our 

method is O(n^) instead of O(n^) for the damped Newton method, where n is the dimension of 

the Riemannian manifold. 

Chapter outline The rest of this chapter is organized as follows. We will review the conju-

gate gradient method developed in [25] for optimization of cost functions on Riemannian mani-

folds in Section 4.3. Then in Section 5.3, the damped conjugate gradient method is proposed for 

optimization of the self-concordant function on Riemannian manifolds and it is proved that this 

method converges to the minimum of the self-concordant function. At last, we finish this chapter 

with a conclusion in 5.4. 

5.2 Conjugate Gradient Method On Riemannian manifolds 

Let M denote a smooth n-dimensional geodesic complete Riemannian manifold with Rie-

mannian inner product (•, •)p on the tangent space to p € M . We consider optimization problems 

of the form 

m i n / : M ^ R . (5.1) 
xGA/ 

In this section, we review the traditional conjugate gradient method on Riemannian manifolds 

proposed by Smith [67] to solve (5.1). One of the conjugate gradient algorithms to solve (5.1) 

goes as follows. 

Algorithm 12. (Conjugate Gradient Algorithm) 

step 0: Select an initial point po E N, compute HQ = GQ = —gradp„/, and set k = 0. 

step k: //grad/p^. = 0, then terminate. Othenvise, compute 

h = m m f { E x v J . H k ) , (5.2) 

such that G N. 
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Figure 5.1: Conjugate gradient direction on Riemannian Manifolds 

Then set 

Pk+i = Expp^ifc^fc, (5-3) 
Gfc+i = - g r a d p ^ ^ J , (5.4) 

Hk+i == Gk+i+lk+iTp^pk^^^Hk, (5.6) 

where Tp^p^^j is the parallel transport with respect to the geodesic from p^ to Pk+\- ^^ + 1 
mod n — I = Q, set i^fc+i = Gk+\- Increment k and repeat until convergence. 

Figure 5.1 sketches the conjugate gradient algorithm on a curved space. We select the conju-
gate descent method to determine other choice is possible: 

The above algorithm uses the geodesic search to find the optimal step-size. However, in 
general, the geodesic search is only accepted in theory because it is often too hard to compute 
in practice. Since self-concordant functions on Riemannian manifolds has nice properties, we 
are motivated to introduce a novel step-size rule based on the conjugate gradient method for 
optimization of such functions. 
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5.3 Damped Conjugate Gradient Method 

Let M denote a smooth n-dimensional geodesic complete Riemannian manifold with Rie-

mannian structure g. Throughout this chapter, / denotes a real-valued function defined on an 

open convex subset N o f M . Recall that, a subset N o f M is convex if for any p,q E N, the 

geodesic connecting p and g is a subset of N. Consider optimization problems of the form 

m m , f : N c M ^ R . (5.8) 
xeN 

In general, it is hard to solve (5.8) since the domain of / is an open subset of a Riemannian 

manifold. However , if / has nice properties, there exist powerful techniques to solve (5.8). In 

Chapter 4, the case when / is self-concordant on Riemannian manifolds is considered. In this 

section, we focus on the special case of the optimization problem 5.8 when / in 5.8 satisfies the 

Assumption 3. 

In this section, a damped conjugate gradient method for optimization of (5.8) is presented 

when / satisfies Assumption 3. 

Suppose we are at a point ph at time k. Given an appropriate step-size tk and conjugate 

gradient direction H^ defined in (5.6), the conjugate gradient method sets;;A.+i = 

From (4.40), provided p/^+i G W^{pk', 1), we have 

/ ( R - ) - fiPk+i) > - y t . H j i P k ) + [VlnJiPk)]'^' 

+ l n ( l - [ V 2 (5.9) 

W e propose choosing tk to maximize the right side hand in (5.9). Later in Theorem 5.3.1, 

it is proved that such a strategy guarantees convergence to the minimum of the cost function. 

Initially, we assume that < 0. Later, in Lemma 7, it is proved that this assumption is 

correct. Hence, t^ is required to be positive. 

The right side of (5.9) is o f the form ^ ( i f c ) where = at + l n ( l - (3t) with a = 

+ ^yjiJiPk) and p = y J V j j J i P k ) - Note that (3 wil l be strictly positive if we 

are not at the minimum of /. Therefore, ijj is defined on the interval [0,1//3). If t̂ . G [0,1//?), 

Pk+i G W^{pk) as required for (5.9) to be a valid bound. 
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Differentiating ip{t) yields 

(5.10) m = 

n t ) ^ (5.11) 

showing that ip{t) is concave on its domain [0 ,1 /P) . It achieves its maximum at 

t = (5.12) 
ap 

Let Afc = Substituting a and into t, we obtain 

h = (5.13) 

Therefore, the proposed damped conjugate gradient algorithm for (5.8) is as follows. 

Algorithm 13. (Damped Conjugate Gradient Algorithm) 

step 0: Select an initial point PQ G N, compute HQ = Go = —gradp^j/, and set k = 0. 

step k: //"gradp^/ = 0, then terminate. Otherwise, compute 

A, = , (5.14) 
^IJiPk) 

tk = ' (5.15) 

Pk+i = Expp^t,.//,, (5.16) 

= - g r a d p ^ , , / , (5.17) 

7fc+i - 77;—Tr~\ ' (5.18) 

Hk+\ = Gfc+i+ (5.19) 

where Tp^p^^^ is the parallel translation with respect to the geodesic from pk to Pk+i- If k + I 
mod 

^ — 1 — 0, set i/fc-i-i = Gj^^i. Increment k and repeat until convergence 

The convergence of Algorithm 13 is demonstrated in Theorem 5.3.1 with the help of Lemma 
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7, 8 and 9. 

Lemma 7. Lf'/ the cost function f : N R in (5.8) satisfy Assumption 3. Assume po is such 

that gradpg/ 0. Then either I) Algorithm 13 terminates after a finite number iterations if 

gradp^/ = 0 at a certain k, or 2) Algorithm 13 generates an infinite sequence {pk] of points 

(That is, there are no divisions by zeros) if zero gradient never encountered in the iteration and 

moreover, Wk, Vnjipk) = (grad^ J , Hk)p, < 0. 

Proof: 

1. If Algorithm 13 terminates, it means that there exists a finite number k such that 

g r a d p j = 0 (5.20) 

2. If Algorithm 13 generates an infinite sequence {pk} of points, it impHes that for all k 

g r a d p J ^ O . (5.21) 

The further proof is by induction. Since we reset the conjugate direction to the negative 

gradient every n steps, without loss of generality, we only consider the first n steps. When 

k = 0,Ho = -gradp^/. Then we get 

V//o/(Po) = ( g r a d p j , - g r a d p j ) p „ = -\\gvadpj\\l < 0. (5.22) 

Assume that Vn^fiPk) = (grad/p^,, < 0 for some k < n - 1. It implies thatpfc+i is 

well defined. Then we obtain 

(5.23) 
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Moreover, we have 

"^rj^^Pk+if^kfiPk+l) 

^HjiPk) y 

= P k y n J i P k ) (5.24) 

where Xp^p^ ĵ is the parallel transport with respect to the geodesic from p^ to pk+i and 

Pk- VnJiPk) -•k 

Furthermore, 

(5.25) 

KuJiPk) 
< -

tkVlJiVk) 

- - " ^ n J i P k ) (5.26) 

where the inequality is obtained from (4.44) and the last equality by substituting tk-

Since VnJ'iPk) < 0 by assumption and - "^nJiPk) > 0 by (5.25), 

we have 

0 > - "^HjjPk) ^ -WnJiPk) 

W j f e ) - VhJ-(r-) 

(5.27) 

As such, we obtain 

0 < Pfc < 1. (5.28) 
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For the conjugate gradient algorithm, since 7 - 1 = = . we 
^ H^J \PkJ 

have 

= (gi-adp,^,/, -gradp^^^/ + 

- + -VnJiPk) 

= < 0 . (5.29) 

Similarly, we can prove for all k, 

^ n J i P k ) = (grad, J , < 0. (5.30) 

As a result, we complete the proof of Lemma 7. 

• 
L e m m a 8. Let {pk} he an infinite sequence of points generated by Algorithm 13 where the cost 

function f \ N H satisfies Assumption 3. Then: 

1. VA; pk G TV. 

2. If gradp^^ J ^ 0, then A, > 0. 

3. //gradp^,^ J + 0, then f{pk+i) < /{pk) + < fiPk) where uj{t) = t - h i ( l + t). 

Proof: 

1. From the earlier derivation, it was already proved that 

P k + i € W { p k ) (5.31) 

Therefore, from Proposition 4.3.3 and the fact thatpo G N, it follows thatp^ e N. 
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2. Since gradp^^J ^ 0, it follows from Lemma 7 that V n J i P k ) < 0. Then, it implies that 

Afc > 0 by the definition of Xk-

3. Substituting tk into (5.9), we obtain 

f { P k + i ) < f { P k ) - i o { X , ) (5.32) 

where uj{t) = t - hi( l +t)>0 since A^ > 0 by 2. 

• 

L e m m a 9. Let {pk} and {Hk} be infinite sequences generated by Algorithm 13 where the cost 

fimction f : N ^ R satisfies Assumption 3. If grad/p^ ^ 0, then for all k 

Proof: First we consider the iterations when A; + 1 mod n 0. Note that from (5.24) and 

the inequality (5.28), we have 

> (534) 

Moreover, in view of (5.17), (5.19), (5.24) and (5.29), we have 

Pk+i 
|2 = II - gradp^+i/ + 

= llgrad f f ^ 1 , 2 

< + (5-35) 



§ 5.3. Damped Conjugate Gradient Method 79 

Dividing both sides of (5.35) by we obtain 

Now, we consider the iterations when A: + 1 mod n = 0. In these iterations, we reset the 

conjugate direction to the negative gradient. Therefore, we have 

llgrad 
< + 3 

As a consequence, this lemma follows. • 

Theorem 5.3.1. Consider the optimization problem in (5.8). If the cost function f : N ^ M. in 

(5.8) satisfies Assumption 3, then Algorithm 13 converges to the unique minimum of f . 

Proof: If Algorithm 13 terminates after a finite number of iterations, then there exists a finite 

number k such that 

g r a d p j = 0. (5.38) 

Hence, Algorithm 13 converges to the unique minimum of / . 

Otherwise, let K = {p e N\f{p) < f{po)} where po denotes the initial point. Let p* be the 

solution of (5.8). Then for any p G K in view of (4.36), we have 

fip) >/{?*)+ioiNX^Jip)]') (5.39) 

where Xpp. G TpN such that p* = Exp(Xpp.) with the distance d{p,p*) between p and p* 

defined as 

d{p,p*) = \\Xpp4p. (5.40) 

It follows from (5.39) that 

^ i i ^ l J i p ) ] ' ) < f{p) - f{p*) < f{Po) - f{p*). (5.41) 
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Note that u{t) is strictly increasing in t. Therefore , 

(5.42) 

where i is the unique positive root of the fol lowing equat ion 

u j { t ) = f { p o ) - f { p ) - (5.43) 

In view of (4.57), we have 

(5.44) 

Joining (5.40), (5.42) and (5.44), we obtain 

d { p , p * ) < ^ . (5.45) 

Thus, K is closed bounded and hence compact . 
By (4.57), (5.14) and (5.29), we obtain 

M = 

f l > 
2 

I , 
v ^ I I ^ . I I p , > (5.46) 

From L e m m a 8, we have 

f { P k + i ) < f { P k ) - u j { \ , ) . (5.47) 

Summing up the inequalities (5.47) for A; = 0 . . . A ,̂ we obtain 

N 

Y ^ ^ i h ) < f { p o ) - f { p N + l ) < / ( P o ) - f { p * ) 
k=0 

(5.48) 
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where p* is the solution of (5.8). As a consequence of (5.48), we have 

oo 
< + 0 0 . (5.49) 

k=0 

Assume l imin f / . ^oo 0- Then there exists d > 0 such that | |gradp^/| |p^, > d 

for all k. Therefore , it fo l lows f rom L e m m a 9 

< „ ; + ^ — T T — ( 5 - 5 0 ) 

Adding up the above inequalit ies for i = 0 , . . . , k, we get 

I^^-IIL + (5.51) 

Let a = I and 6 = ^ ^ f l f c = ^^hen it fo l lows f rom (5.51) 

-ka+b-

Combin ing (5.46) and (5.52), we obtain 

Afc > (5.53) 
y/ka + b 

where c = Va 

Let {Pk} be a sequence such that (3k = 7 ^ = 5 • Then it is easy to show 

00 

^ / 3 | = +(X). (5.54) 
fc=i 

Consider the sequence Since a, 6, c are constant , we have 

u i d k ) t - H i + t) 1 
h m ^ ^ = h m = (5.55 

k-^oo jdt t ^o t^ 2 
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It follows from (5.54) and (5.55) 

oo 

Y^u{(3k) = ( 5 . 5 6 ) 
k=\ 

Since io{t) is increasing with respect to t, by (5.53) and (5.56) we obtain 

oo 

= +cx) (5.57) 
k=l 

which is contradictory to (5.49). Therefore, we have 

Hence, the theorem follows. 

lim inf l l g r a d p J I U = 0. (5.58) 

• 

5.4 Conclusion 

In this chapter, we propose a damped conjugate gradient method for optimization of self-

concordant functions on Riemannian manifolds. Such method is an ordinary conjugate gradient 

method but with a novel step-size selection rule which is proved to ensure that this algorithm 

converges to the global minimum. The advantage of the damped conjugate gradient method 

over the damped Newton method is that the former has a lower computational complexity. Both 

methods are applied to examples in the next section and shown to converge to the minimum of a 

self-concordant function. 



Chapter 6 

Application of Damped Methods on 
Riemannian Manifolds 

In this chapter, we apply the damped Newton method in Chapter 4 and the damped conjugate 

gradient method in Chapter 5 to three examples. 

In the first example, the cost function is defined on the hyperbola model and proved to be 

self-concordant. 

In the second example, the cost function is defined on the part of the sphere and proved to be 

self-concordant. Hence, it can be thought of as a barrier function on the given domain. 

In the third example, given some points p i , . . . , Pk on the Hyperboloid model / „ , the prob-

lem is to find the point on /„ which minimizes the mean squared intrinsic distance to every point 

of p i , . . . , Pk. This minimum is also known as the "Karcher mean", first introduced in [42] 

as the centre of mass on a Riemannian manifold. The methods to find the "Karcher mean" on 

Riemannian manifolds have been well studied. For instance, see [55, 2]. However, the problems 

in [55, 2] are defined on Riemannian manifolds with positive curvatures. Even though these 

methods can still be used to find the "Karcher mean" on Riemannian manifolds with negative 

curvatures, until now, we are not aware of the particular method based on the properties of nega-

tive curvatures. In [42], it is shown that the "Karcher mean" function defined on the Riemannian 

manifolds with negative curvatures is convex. By this result, since the Hyperboloid model has 

constant negative curvature, we proved that the "Karcher mean" function defined on this model is 

self-concordant. Simulation results show our method converges to the "Karcher mean" of given 

points on the Hyperboloid model super-linearly. 
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6.1 Example One 

Consider the following optimization problem: 

minimize f { x ) := Xi + X2 

subject to: x i , X2 > 0, x = (x i , 2:2) e H 

where H is a hyperbola satisfying X1X2 = 1. Let T^H be the tangent space of H at x, i. e., 

T^H = {ah\h = {-Xi,X2f,a E M}. For any a; = G H, h^ = Q ( - a ; i , Xz)'-^ G T^H 

and ha = fi{-xi, X2Y' G T^H where a , G M, the Riemannian metric is defined as 

= (6.1) 

Then, the geodesic on the hyperbola can be calculated as: 

ExpjX = Ax (6.2) 

Where A= 

as follows; 

e - " ' 0 

\ 0 
and X = ah G T^H. Hence, covariant differentials can be calculated 

^ x f { x ) = ( - X i + X2)a' 

V \ f { x ) = (xi+x2)a^ 

V \ f { x ) = (-xi+X2)a^ 

It can be seen that V ^ / ( x ) is positive definite. Then 

{ V \ f { x ) f {X2-X,f 

{ V \ f { x ) f {Xx+X2f 
< 1 (6.3) 

As such, / ( x ) is a self-concordant function. 

Now we can apply the proposed damped Newton algorithm. 

Algorithm 14. (Damped Newton Algorithm) 

step 0: rcmdomly generate a feasible initial point x°. 
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Step k X f(x) A(x) 
0 (6.0000,0.1667) 6.1667 2 
1 (0.2525,3.9601) 4.2126 2.3490 
2 (2.9852,0.3350) 3.3202 1.8064 
3 (0.4208,2.3762) 2.7971 1.4545 
4 (1.9173,0.5216) 2.4389 1.1692 
5 (0.6487,1.5417) 2.1903 0.8938 
6 (1.2471,0.8018) 2.0490 0.6034 
7 (0.9379,1.0662) 2.0041 0.3111 
8 (1.0057,0.9943) 2.0000 0.0906 
9 (1.0000,1.0000) 2.0000 0.0081 
10 (1.0000,1.0000) 2.0000 0.0001 
11 (1.0000,1.0000) 2.0000 0.0000 

Table 6.1: The simulation result for Example 1 

step k: calculate the k-tli step according to: 

1 
X = Exp^fc-ii 

1 + 
Xn) = A^'-'x'" 

where 
/ 1 „fc-i 

e i+Hxk-i)'^ 

\ 0 gi + >>(i*-—1) 

The simultaion result is shown in Table 2. 

6.2 Example Two 

Consider the following simple optimization problem: 

min f{x) := — ln(xix2) 

subject to: Xi, X2 > 0 , x = (xi , X2) e 
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where S^ is unit circle. We define a Riemannian metric as the induced metric from the ambient 

EucHdean space. Let x e S^ and h G T^S^ have unit length. Then the geodesic on the unit circle 

is Expjh = xcos{t) + hsm{t). Hence, the following covariant differentials can be calculated: 

/m ho 

V ^ W = 1 + 1 + 2 

Xj X] X2 X2 

It is obvious that V | / ( x ) is positive definite. 

L e t x e S^ and / i G T^^S^ and ||/i|| = 1. Notice that h = ( - X 2 , X i ) or h = ( x 2 , - X i ) . Therefore, 

( V I / M f ( § + 3 + 2 ) 3 -Xj X2 

As such, f(x) is self-concordant function. Now the damped Newton algorithm proposed in this 

paper becomes: 

Algorithm 15. (Damped Newton Algorithm) 

step 0: randomly generate a feasible initial point Xq. 

step k: calculate the k—th step according to: 

where 

and 

Y ^ f xix^(xf - x^) -X^X2 + xjxl ^ 
^ "" ^X^ + x2x4 + x t ( l + x j ) ' xi + x^x^ + X\{\+ xl) ' 

= , /o J I 

The following figure is a simulation result with the initial point (0.4359, 0.9000)-^'. It demon-

strates the quadratic convergence of the proposed algorithm. Now consider the following opti-
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Figure 6.1: The result of damped Newton method for the self-concordant function defined on the 
circle 

mization problem: 

min f{x) :— 

subjec t to : 

-Inxi — • • • — lnx„, 

X — (xi, X2, • • • , Xn) G 5" 

0 < X i , . . . < 1, 
(6.5) 

where is the unit sphere with x'^x = 1. Here, we define a Riemannian metric as the 

induced metric f rom the ambient Euclidean space, i.e. {y, z) = y^'z where y, z G Let 

X G and h = {hiji^,. • . , /i„) G have unit length (if not, we can normalize it). 

Then, the geodesic on the sphere is Exp3.</i = xcos{t) + hsm{t), and the parallel transport 

along the geodesic rh — h cos{t) — x s in(i) . Therefore, the following covariant differentials can 

be calculated: 

V „ / ( x ) 

K f i ^ ) 

V f j ( x ) 

fh 
xi X2 

K 
Xr. 

hi 

hi h 
= - 2 ( 4 + xv Xi 

+ M 
OCr\ 

h . 
X2 xe Xt] 

The following procedure is to prove that the function / is self-concordant defined on S 'n-l 
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3 4 5 6 
I terat ion n u m b e r 

Figure 6.2: The result of damped Newton method for the self-concordant function defined on 
high-dimension sphere 

It is obvious that for any h e the second covariant differentials are always 

positive. 

Letyi = = = (yi, ya, • • •, l / n f , ^ = {[yl + l),{yl + \),... +l)Y. 
Then, we have 

iylfi^)? 

4 ( y f + , . . . , + y l + yi + Vn) 

= 4 

< 

{jj\ + --- + yl + nf 
{y,[yl + l) + ... + y^[yl + l)f 

( (y?- f l ) + . . . + (y2 + i ) )3 

4(y? + --- + yl) 

< 4 (6.6) 

Therefore, the function / is a self-concordant function defined on with A / j = 2. 

We apply damped Newton and damped conjugate gradient algorithms to this problem. In 

particular, n = 10. Figure 6.3 illustrates the result of the damped Newton method on function / . 

This result also demonstrates the quadratic convergence of the damped Newton algorithm. 

Figure 6.3 illustrates the result of the damped conjugate gradient method on function / . This 

result also shows the superlinear convergence of the damped conjugate gradient method. 
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g -6 

Gradient Method 
— * — Damped Conjugate Gradient Ivtettiod 

2 4 6 
Iteration number 

Figure 6.3: The result of damped conjugate gradient method for the self-concordant function 
defined on high-dimension sphere 

6.3 Example Three 

In this subsection, we consider the problem of computing the center of mass of a set of given 

points defined on the hyperboloid model. Before defining this problem, we first introduce the 

geometric properties of the hyperboloid model. hT consider the following quadratic form 

X. n + 1- (6.7) 
1=1 

Let A — d iag( —1, — 1 , . . . , —1,1). Then Q can be represented in terms of A by 

Q(x) = x^ Ax. ( 6 . 8 ) 

Given this quadratic form, the upper fold In of the hyperboloid is determined by the formula 

(6.9) 

The set / „ can be regarded as a differentiable hypersurface in since it is an open subset 

of the pre-image of a regular value of a differentiable function. In particular, it inherits f rom 



6.3. Example Three % 

a differentiable structure of dimension n. For any x G /„ , the tangent space T^^In is 

T J n = { X eW^^lx'^AX = 0}. (6.10) 

For any x G In, we define a Riemannian metric on the tangent space of x by 

{ X , Y ) , = X ^ { - A ) Y , X , Y e T J n . (6.11) 

Given a point x e In and a non-zero tangent vector X G T^In, the geodesic emanating from 

X in the direction X is given by [6] 

E x p ^ t X = xcosh{et) + l x s m h { e t ) (6.12) 
a 

where 9 - . J X T { - A ) X . 

The intrinsic distance between x E In and y E In on this hyperboloid model is given by [73] 

d{x,y) = a rccosh(x^Ay) . (6.13) 

Recall that arccosh(t) = ln(f + y/t'^ - 1) for t > 1. Since d{x, y) > 0, we can expect that 

x'^ Ay > 1 holds for all x, y G /„ . Since we require this result elsewhere, we prove it from first 

principles. 

Proposition 6.3.1. For any two points x,y e In, there holds 

x ' ^ A y > l . (6.14) 

Proof: Since x,y E In, we have 

- x l - x l x l + x l ^ , = 1, (6.15) 

- y ' - y l y l + y l + 1 = i - (6 .16) 

L e t p ^ x j + x l + --- + x l m d q ^ y j + yl + . . . + y l . Since x„+i > 0 and > 0, it 
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follows from (6.15) and (6.16) that 

â n̂+i = x / T T p , (6.17) 

yn+i = + q. (6.18) 

Then, we obtain 

X^ Ay = - X i y i - X2?/2 - • • • XnJJn + Xn+lVn+l 

= \ / ( l + p ) ( l +q) - Xirji - X2y2 - • • • 

> + P + Q + PQ - VM 

> 

Vn 

1 + + pq - y/jJii 

- 1 + V w 

= 1. (6.19) 

• 
Consider the following optimization problem 

1 " 1 " 
arg inin / ( p ) = - V (["^{p,Pi) = - V arccosh^p'^Ap,) (6.20) 

pei„ Z 2 1=1 t=i 

where Pi e In, i = 1 , . . . , m . The solution of (6.20) is called the Karcher mean [42] of the given 

points Pi , Pm-

By computation, we obtain the first, second and third covariant derivatives of the cost function 

at p e /„ in the direction H G Tpin by 

V / / / ( p ) = g V a r c c o s h ( p ^ ' / l p , ) , (6.21) 

{X'^Ap.f m 

K f i p ) = 
1=1 

^ i f i p ) = ^ ' E 

{p-^AP^y -

X^Ap, {X^Ap.r 

(6.22) 

{'ip^Ap,{p^Apl - 1)5 - a rccosh(p^^p i ) (2p^^P^ + 1)) (6.23) 
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where 9 = yjH'^\-A)H and X = H/O. 
By Theorem 2.1 in Page 111 in [71], since /„ is simply connected, complete with negative 

sectional curvature, the function f { p ) in (6.20) is strictly convex. Hence, this implies that for all 

p e /„ and // G Tpin 

V l f { p ) > 0. (6.24) 

For any p G /„, the gradient grad^/ of / is given by 

g Y ^ d J ^ { k ' ' A p ) p - k (6.25) 

where k = V ' " i . 
To prove that / in (6.20) is self-concordant, we need several auxiliary inequalities. 

Proposition 6.3.2. For any x > 1, the following inequality holds. 

1. 

arccosh(2;) < Vx'^ — 1 < xarccosh(3;) (6.26) 

where the equalities hold only at x = 1. 

2. 

3xVx^ - 1 < arccosh(x)(2x2 + 1) (6.27) 

where the equality holds only at x — I. 

3. 

(SxVx^ - 1 - arccosh(a;)(2x2 + l ) )^ < _ l ) (xarccosh(x) )2 (6.28) 

where the equality holds only at x = I. 

Proof: 
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Let g{x) = y/x"^ - 1 - arccosh(a;) where x > 1. Then it can be calculated that 

a; - 1 
= 

Therefore, when x > 1, we obtain 

g'ix) > 0. (6.30) 

Thus, g{x) is monotonically increasing with respect to x when x > 1. Since g is continuous 

on X and (/(I) = 0, we have 

g{x) > g{l) = {). (6.31) 

Hence, it follows from (6.31) that 

arccosh(x) < Vx"^ - 1 (6.32) 

where the equality holds only at x = 1. 

Similarly, we can prove that 

- 1 < xarccosh(x) (6.33) 

where the equality holds only at x = 1. 

2. Let g{x) = Sx^/x"^ - 1 — arccosh(x)(2x^ + 1) where x > L Then it can be calculated 

3x2 2x2 + 1 
g'{x) = 3\/x2 — 1 H— — 4xarccosh(x) 

Vx'^ — 1 vx2 - 1 

= 4(\/x2 - 1 - xarccosh(x)). (6.34) 

In view of (6.26), we obtain 

f/(x) < 0 (6.35) 
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where x > 1. 

Thus, g{x) is monotonically decreasing with respect to x when x > 1. Since g is continu-

ous on X and g{l) = 0, we have 

g{x)<g{l)^i). (6.36) 

Hence, it follows from (6.41) that 

3xVx^ - 1 < arccosh(a;)(22;2 + 1) (6.37) 

where the equality holds only at x = 1. 

3. Let 5(x) = — 1 — arccosh(x)(2x^ +1))^ - 4(x^ - l)(xarccosh(x))^ where x > 1. 

Then it can be calculated 

9 '(x) = 8(3x\/x2 - 1 - arccosh(x)(2x2 + l))Vx^ - 1 

+ arccosh(x)(2xarccosh(x) - Ax'̂ y/x^ - 1). (6.38) 

By (6.26), when x > 1, we obtain 

2xarccosh(x) < 4xVx2 - 1. (6.39) 

In view of (6.27) and (6.39), since arccosh(x) > 0 when x > 1, we have 

g'ix) < 0. (6.40) 

where x > 1. 

Thus, g{x) is monotonically decreasing with respect to x when x > 1. Since g is continu-

ous on X and ^(1) = 0, we have 

9{x)<g{l)^Q. (6.41) 
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Hence, it follows from (6.41) that 

{3xVx^ - 1 - arccosh(x)(2x2 + 1))^ < 4(a;2 - l)(xarccosh(2;))2 (6.42) 

where the equality holds only at a; = 1. 

• 
Without loss of generality, now we consider the following optimization problem 

min fo{p) = = ^arccosh(p^Apo) 

s.t. pG In (6.43) 

where po G /„ is given. Similarly, we obtain the first, second and third covariant derivatives of 

/o as follows. 

V// /o(p) = (6.44) 

{X^Apo)' 
{p-^AP^Y - 1 

_ (X^AnnV - 111 
(6.45) 

{{p^APoy - 1 ) 2 
X^Apo [X^Apof ' 

{3p''Apoi{p''Apof - 1)^ - arccosh( />l j ;o)(2(p^^po) ' + 1)), 

(6.46) 

where 6 - ^HT{-A)H and X = H/9. 

Lemma 10. Given any p G In, and H G Tp/„, the following result holds: 

[X'^Apof < {p^Apof - 1 (6.47) 

where 9 = y/H'^{-A)H, X = H/9 and X ^ 0 if H = 0. 

Proof: For simplicity, let B = p'^Apo. \f H = 0, since p'^'Apo > 1 by Proposition 6.3.1, we 
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have 

_ 1 > 0 = {X'^Apof. (6.48) 

Otherwise, consider two cases here. 

Case one: p = po. Then we have i? = 1 and X'^Apo = 0. Consequently, we obtain 

B ^ - ! > { } = {X^Apof . (6.49) 

Case two: p ^ po. Then we have 5 > 1 and X^' Apo ^ 0. Let 7(t) denote the geodesic 

emanating from p in the direction H. Then we have 7(t) = ExpptH = pcosh{9t) + Xsmh{9t) 

where 9 = yjH'^\-A)H and vY = H/9. Consider the function /o in (6.43). In view of Equation 

(1.2.2) of Theorem 1.2 in [42], we have 

V l h i p ) > lli^ll^. (6.50) 

Substituting (6.45) into (6.50), we obtain 

B^ccoMB) ^ , 

( 5 2 - 1 ) 1 - 1) -

It follows from (6.51) that 

< _ 1 (6.52) 

This completes the proof of the lemma. • 

With the help of Proposition 6.3.2 and Lemma 10, we can show that /o in (6.43) is self-

concordant. 

Lemma 11. The function fo in (6.43) is a self-concordant function defined on the n-dimensional 

hyperholoid model with the constant Mjg = ^J^. 

Proof: Given a point p = po and a tangent vector H G Tp/„, we have 

= m l , (6.53) 

= 0. (6.54) 
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Then, it holds 

\ f 
(6.55) 

Otherwise, given a point p e In, p Po and a nonzero tangent vector H G Tp/„, let 

D = p^ Apo and w = X'^Apo. Then we have 

w 
2 

3By/B^ - 1 - (252 + 1; )a rccosh(5) 
2 

(B2_l)§ (B2-1)§ 3By/B^ - 1 - (252 + 1; )a rccosh(5) 

v'B2-l-Barccosh(B) 5, Barccosh(B) 
3 

w ,312 - 1 - (28^ + l )a rccosh(^) ]^[ (B2 - l ) w -

^/B^ - - 1 - i?arccosh(5))u;2 + {B^ - l )5a rccosh(5 ) ]= 

[ i B ^ / B ^ - 1 - {2B^ + l)arccosh(i?)]^ 

\ / i?2 _ l ( 5 a r c c o s h ( i ? ) - VB^ - 1)3 

-Barccosli(jB) 
Barccosh(B)-%/B^ 

(6.56) 

Let i = w"^. Then we have the range of t by Lemma 10 

()<t< B^ - I. 

For simplicity, l e t a = i?^ _ ^ ^ g a r c S f - ^ ^ ^ ^ - ^ ' " ^ ^ ^ ( ^ . 2 6 ) , we have 

b> a> 0. (6.58) 

(6.57) 

Now we consider the following auxiliary function 

tia-t)' 
TT{t) = 

{b - ty 
(6.59) 

where t satisfies (6.57). 



6.3. Example Three 98 

By computation, we obtain the first and second order derivatives of tt 

ib-t) 
(Q - t){2a - 3b){b - t ) - ((2a - 3b)t + ah){b - 4a + U) 

vr( t ) = • (6.61) 

Setting 7r'(i) = 0, it is easy to compute critical points t* of tt 

t* = a, 
ab 

t* = 
3b-2a 

It is easy to see that these two critical points satisfy (6.57). Then substituting t* into (6.61), we 

obtain 

= ^ (6.62, 

//, ab ^ -3a{b - a) 

By (6.58), we obtain 

7r"(a) > 0, (6.64) 

< 0. (6.65, 

Since n(t) is continuous on t, it follows from (6.65) that tt achieves its maximum at t = 

By computation, we can get such maximum 

, ab . A a^ 

Combining (6.56) and (6.66), we obtain 

{"^'hMpW - 27 (B2 - l ) (5arccosh(f i ) )2 
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In view of (6.28), it follows from (6.67) that 

( V y ^ . 1 6 wmw -
As a consequence, we conclude that /o is self-concordant with Mr^ = D /o Y 27" 

Lemma 12. The function f in (6.20) is a self-concordant function defined on the n-dimensional 

= V if • hyperholoid model with the constant Mr = 

Proof: In view of Proposition 4.3.2 and Lemma 11, it is easy to conclude that / in (6.20) is 

self-concordant with the constant M j = • 

Since the function / in (6.20) is self-concordant, we are able to apply our damped Newton 

and conjugate gradient algorithms to find the minimum of / on /„ . In particular, we take n — 19. 

First, we consider building up the damped Newton algorithm for (6.20). 

In view of (4.49), given a point p G In, the Newton direction Xn of / at p is the unique 

tangent vector determined by 

HesSp/(A"iv, H) = ( - g r a d j J , H)p for all tangent vectors H e Tpl^. (6.69) 

By (4.6) and (6.22), we obtain 

arccosh(p^/lpj)7;^ Api 
H e s S p / ( . Y ; v , / / ) = ^ 

1=1 

'T, A\u ai-ccosh{p'^ Api)p^ Api 
{{p^Apiy-1)2 

Then, combining (6.69) and (6.70), we get 

(6.70) 

E 
t=i 

1 . r c c o M p - A p , ) p - A p . \ ^ X I Ap^pjApp - p ^ p j A X " 
N 

/ 

+ 
^ eiVccosh{p'^ Api)p^ Api \ 

XN = - g m d J (6.71) 

Thus, the solution of the linear system (6.71) is the Newton direction of f 'dtp which can be 

used for the damped Newton method. To solve this linear system, we adopt the linear conjugate 

gradient method modified directly from Golub and Van Loan [29] as follows. 
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Algorithm 16. (Linear Conjugate Gradient Algorithm) 

step 0: Given a point p G /„, compute i?o = - g r a d ^ / , and set PQ = i?o k = 0. 

step k: I f k = n, then terminate. I f k = 1, set 

Pi = no. (6.72) 

Otherwise, compute 

Q^ - E 

Pk-l 

Pk 

otk 

Xk 

Rk 

i=\ 
Pk Ap.pJApp - p,pjAPk 

L \ {pT^Ap.Y - 1 {{p-^Ap.Y - l ) i 

"̂ V y/WAp^Y-l 
_ {Rk-\, Rk-i)p 

{Rk-2, Rk-2)p' 
= Rk-i+f3k-iPk-u 
_ {Rk-l, Rk-l)p 

{Pk,Qk)p ' 
= Xk^i + akPk, 

^ Rk-1 - OkQk-

Pk, (6.73) 

(6.74) 

(6.75) 

(6.76) 

(6.77) 

(6.78) 

Increment k and repeat until k — n. 

After n steps, Algori thm 16 generates a finite sequence {X^, . . . , and the Newton 

direction of f at p is given by 

XN = Xn. (6.79) 

Now, we are able to construct the damped Newton method for solving (6.20). 

Algorithm 17. step 0: Randomly generate an initial point po e 4 and compute gr&dpj. Set 
fc - 0. 

step k: If gradp J = 0, then terminate. Otherwise, compute using Algorithm 16. Then, 
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compute 

^^ = ^ x ^ ^ J i P k ) , (6.80) 

t . = (6.81) 

Pfc+i = Pk cosh + = Sinh , 

(6.82) 

where f{pk) is from (6.22). 
Increment k and repeat until convergence. 

On the other hand, the damped conjugate gradient method for solving (6.20) is given as 

follows. 

Algorithm 18. (Conjugate Gradient Algorithm) 

step 0: Select an initial point po G /„, compute Hq ^ Gq = —(gradp^/) by (6.86), and set 

k = 0. 

step k: If gradp^f = 0, then terminate. Otherwise, compute 

A. = (6.83) 
n j i P k ) 

tk = (6.84) 

\ 

Pk+l = PkCOsh 

/ 
sinh 

V 

+ 

(6.85) 

G , + i = - g r a d , ^ ^ ^ / , (6.86) 

( G f c + i , Ga;+I)P .A 

7fc+l = rr \ ' (6-87) 
(Gfc, hkjpi^ 

Hk+i = Gk+i + (6.88) 

where is the parallel transport with respect to the geodesic from pk to Pk^i. If k + I 

mod n — 1 = 0, set Hk+\ — Gk+i- Increment k and repeat until convergence. 
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6 8 10 12 
Iteration number 

Figure 6.4: The result of the the damped Newton method for the self-concordant function defined 
on the Hyperboloid model 

Figure 6.5 illustrates the result of the damped Newton method and conjugate gradient method 

on function / in (6.20). Table 6.2 shows the simulation time and accuracy using the damped 

conjugate gradient and Newton methods. From Figure 6.5, it can be see that the damped Newton 

method converges to the minimum quadratically, but the damped conjugate gradient method gets 

to the minimum super-linearly. Although the damped conjugate gradient method requires more 

steps, due to avoid computing the linear system, it costs less t ime than the damped Newton 

method, seen from Table 6.2. 

algorithm time(second) accuracy 
damped conjugate gradient method 0.062 10-5 

damped Newton method 0.313 10-5 

Table 6.2: Simulation time and accuracy 
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10 15 
Iteration number 

Figure 6.5: The result of the damped conjugate gradient method for the self-concordant function 

defined on the Hyperboloid model 
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Chapter 7 

A Quasi-Newton Method On Smooth 
Manifolds 

7.1 Introduction 

Background The quasi-Newton method is preferred by engineers since it has lower com-

putational cost than the Newton method and super-linear convergence rate. As we mentioned in 

Chapter 1, Gabay has generalized the quasi-Newton method to Riemannian manifolds. However, 

in recent years, the non-Riemannian methods on smooth manifolds have drawn more attentions 

due to their prominent advantages. To our best knowledge, we are not aware of any publications 

generalizing quasi-Newton methods on the non-Riemannian cases. Hence, we are motivated to 

develop a non-Riemannian quasi-Newton method for the optimization on smooth manifolds. 

Our work In this chapter, we present a numerical non-Riemannian quasi-Newton method 

on smooth manifolds. This method is proved to converge to the local minimum of the cost func-

tion. The super-linear convergence rate was demonstrated by simulation results on the Grass-

mann manifold. 

Chapter outline The rest of this chapter is organized as follows. We first give the prelim-

inaries associated with smooth manifolds in Section 7.2. Then a non-Riemannian quasi-Newton 

method is presented for the optimization on smooth manifolds and it is proved to converge to the 

minimum of the cost function in Section 7.3. In Section 7.4 simulation results show our method 

has the super-linear convergence rate. This is followed by the conclusions in Section 7.5. 

105 



§ 7.2. Preliminaries 

7.2 Preliminaries 

In this section, we briefly introduce notations and concepts of local parameterization for 

smooth manifolds. For more details, see [46]. Let M be a smooth n-d imens iona l manifold. 

Then for every point p G M there exists a smooth map 

V̂p : Hp C M" t/p C M, Vp(0) = P (7.1) 

where Up is an open neighborhood of p and Up an open subset of M" around 0. Such a map 

is called a local parameterization around p. We use the triple {ipp, Up, flp) to denote the local 

parameterization around p. Let f : M ^ M be a real-valued smooth function defined on a 

smooth manifold M. Given a point p G M and a local parameterization {ipp, Up, Qp) around p, 

then the composition of / and ipp is called the local cost function and denoted by / o tfjp. For 

simplification, let Qp : Qp —» M denote such local cost function satisfying 

gp{x) = / ( ^ p ( x ) ) . (7.2) 

7.3 Quasi-Newton Method On Smooth Manifolds 

In this section, we develop a quasi-Newton method for the optimization of smooth functions 

defined on smooth manifolds. 

Before we give our method, we review the BFGS method [64] for the optimization in Eu-

clidean space. Consider the following optimization problem 

m i n / : M " R : X ^ / ( x ) . (7.3) 
xeR" ^ ' 

Let f'{x) denote the first derivative of / at x. Then the BFGS algorithm for solving (7.3) 

goes as follows. 

Algorithm 19. (BFGS Algorithm in Euclidean Space) 

step 0: Select an initial point XQ and set BQ = /„ where In denotes the n-dimensional 

identity matrix and k = 0. Compute HQ = 

step k: I f f ' { x k ) = 0, then terminate. Otherwise, compute the step-size A^+i as follows. 

Afc+i = 2 - ' (7.4) 
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where I is the smallest positive integer such that 

f i h + i H , ) < f { x , ) + c ,Xk+iHl^ f ' {x , ) , (7.5) 

> (7.6) 

where 0 < Ci < C2 < 1 . 

Set 

Xk+i = Xk + \ k + \ H k , (7.7) 

Si, = Xfc+i - Xfc, (7.8) 

Vk = (7.9) 

ykVl ^ B.SkjBkSk)^ 

{yk,Sk) {BkSk,Sk) 

= (7.11) 

Bk^, = b . + ^ ^ + ' ^ T T ' , (7.10) 

Increment k and repeat until convergence. 

In Algorithm 19, Equation (7.5) and (7.6) form the Wolfe conditions [61] used to determine 

the appropriate step-size in the line search. Equation (7.10) provides an approximation to the 

Hessian of / over successive iterations using only its first order information. Moreover, Algo-

rithm 19 turns out to have super-linear convergence in [64]. 

Now, we consider to generalize the BFGS method for the optimization on smooth manifolds. 

Let M be a smooth r ; -d imens iona l manifold. For p G RI, let the triple (•^p, Up, Qp) be the local 

parameterization around p. Consider the following optimization problem 

m m f : M ^ R : p ^ f { p ) . (7.12) 
p€M 

For any p G M and the local parameterization [ipp, Up, Qp) around p, let gp{x) denote the 

local cost function of / . Moreover, let (]'p{x) and g p { x ) denote the first and second derivatives 

of gp[x) with respect to x respectively. Then a quasi-Newton method is developed for solving 

(7.12) as follows. 

Algorithm 20. (Quasi-Newton Algorithm) 

step 0: Select an initial point po £ RI set Bq = / „ where In denotes n—dimensional 

identity matrix and k = 1. Compute Hq = -B^^g' {()). 
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step k: If g'p^iO) = 0, then terminate. Otherwise, compute the step-size \k+i as follows. 

A f c + i = 2 - ' (7.13) 

where I is the smallest positive integer such that \k+\Hk G ^ Vk 

< + (7.14) 
> (7.15) 

where 0 < Ci < C2 < 1. 
Set 

Xk+i = Xk+iHk, (7.16) 
Sk = Xk+u (7.17) 
Vk = (7.18) 

R p , VkVl , BkSkjBkSkf ok+i = + - z +—TB (7.19) iVk, Sk) {BkSk, Sk) 
Pk+i = (7.20) 
f / ,+1 = (7.21) 

Increment k and repeat until convergence. 

In Algorithm 21, Equation (7.14) and (7.15) form the Wolfe conditions [61] used to deter-
mine the appropriate step-size in the line search. They facilitate the proof of the convergence of 
Algorithm 21. 

Now, we consider proving the convergence of Algorithm 21. Before we do that, we need the 
following two assumptions. 

Assumption 4. Consider the smooth function f in (7.12). There exist 

1. at least one minimum of f ; 

2. a point po e M which defines a sub-level set K = {p G M\f{p) < f{po)}; 

3. local parameterization ippfor all p £ K, defined in (7.1}; 
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such that for all p E K, x E Qp and any u E M", 

A u f < u ' g l { ^ ) u < ( 5 \ \ u f (7.22) 

where /?, a > 0 are constants. 

Assumption 5. The local parameterizaion tpp^ used in Algorithm 21 does not involve the step 
number k. 

Assumption 4 implies that for each p E K, we can find a local parameterization such that 

the local cost function determined by it is convex on its local Euclidean space. For example, 

consider the convex function defined on Riemannian manifolds in [70]. Viewing the geodesies 

as one kind of local parameterization, then according to the definition of convex functions on 

Riemannian manifolds, we can find a neighborhood around the local minimum such that the 

local cost functions are convex. 

Assumption 5 rules out the case that the vanishing of the gradient of the local cost function 

is an artifact due to the "shrinking" of the local parameterization of ip^^. 

Equation (7.19) gives the formula which approximates the Hessian of the local cost function. 

It is worth noting that Equation (7.19) has the same expression as the BFGS update formula 

(7.10). Since the local cost function satisfies (7.22), according to Theorem 1.6.7 in [64], we 

conclude that if Bk is symmetric positive-definite, then Bk+\, given by (7.19), is also symmetric 

positive-definite. Furthermore, since the initial matrix BQ is identity, it is easy to see the matrix 

in {Bk} generated by Algorithm (21) is always symmetric positive-definite. As a result, at each 

step. Algorithm (21) yields a descent step. In addition, in view of Equation (28f) and (29) in 

[64], the trace and determinant of B^+i are given by 

t r ( a « ) = + ^ - (7.23) 

det(i?fc+i) = (7.24) 
{BkSk, Sk) 

To show the global convergence of Algorithm 21, we follow the frameworks in [8]. Initially, 

motivated by (7.23) and (7.24), we obtain the following lemmas, which lead to the convergence 

result. 

Lemma 13. Let the cost function f : M ^ R in (7.12) satisfy Assumption 4. Then given 
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Po e A', applying Algorithm 21 to minimize f , we have 

Wvkl' < f] (7.25) 
{Vk, Sk) 

where Sk and yk are defined by (7.66) and (7.18) respectively. 

Proof: Consider the local cost function gp^ defined on Since x^+i E Qp^, then we have 

[ g';^{tsk)dtsk = g'p^ixk+i) - g'p^iO) 
Jo 

= Vk- (7.26) 

Let Bk+i /o^ g'l^{tSk)dt. Then it follows from (7.26) that 

Bk+iSk = Vk- (7.27) 

In addition, for any v ^ 0 E M", we have 

Jo 

< [ PM^dt 
Jo 

= p\\v\? (7.28) 

where the inequality comes from (7.22). 

Then it follows from (7.28) that 

Since Bk+i is symmetric and positive definite, let v = Bl^^. Combining (7.27) and (7.29), 

we obtain 

2 

< p . (7.30) 
{yk,Sk) 

• 
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Lemma 14. Let the cost function f : M ^ R in (7.12) satisfy Assumption 4. Then given 

Po e K, applying Algorithm 21 to minimize f , there exists a constant ^ > 0 such that 

n i B k + , ) < A k . (7.31) 

Proof: By (7.23), it is easy to see that 

t r ( 5 , + 0 < t r ( B , ) + ( 7 . 3 2 ) 
{yu Si) 

Summing up the inequalities (7.32) for z = 0 , 1 , . . . , k, we have 

< tr{Bo) + pk 

< Ak (7.33) 

where A = tr(Bo) + /?. 

This completes the proof of the lemma. • 

Lemma 15. Let the cost function f : M ^ R in (7.12) satisfy Assumption 4. Then given 

Po G A", applying Algorithm 21 to minimize / , there exists a constant L > 0 such that 

to 

Proof: Multiplying (7.24) from i = 1 , . . . , A:, we have 

det( i? ,+i) = de t (5o) n r i ^ v 

It follow from (7.23) and (7.30) that 

'\B^S^\\ WViW^ 
t r (S ,+ i ) - t r ( i?0 + 

{B^Si,Si) iVi^Si) 
< f3. (7.36) 
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Then, by (7.36), we have 

/3 + tr{B,)-ir{D,+i) > {BiSi, Si) 

Summing up (7.37) f rom z = 0 , 1 , . . . , / . : , we obtain 

< k(3 + tiiBo). 

(7.37) 

(7.38) 

Let L = /? + t r (5o ) . Then it follows from (7.38) that 

k 1 ^ ^ ^ 

A: + 1 ^ s,) " 
(7.39) 

Recall that given k positive numbers Z i , . . . Zk, then the arithmetic mean is greater than the 
geometric mean. That is 

K \ k k 

i=l ^ i=l 

Therefore, by (7.39), we obtain 

^fc+i > 1 ^ TT 

Multiplying (7.35) and (7.41), we have 

In view of (7.65), (7.66) and (7.21), we get 

(7.40) 

(7.41: 

(7.42) 

(7.43) 
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Substituting (7.43) into (7.42), we obtain 

(7.44) 

Thus, it follow from (7.44) that 

As a result, this lemma follows. • 

The following theorem show that Algorithm 21 converges to the minimum of / in (7.12) 

when it satisfies Assumption (4). 

Theorem 7.3.1. Let the cost function / : A/ —> R in (7.12) satisfy Assumption 4. Then given 

Po e K, applying Algorithm 21 to minimize f , it holds 

l™inf | |5 ; ,X0) | | = 0. (7.46) 

Proof: By the definition, 

= {a'pS^k+i) -

= (7.47) 

In view of (7.15), it follows from (7.47) that 

{iJk.Sk) > (7.48) 

By (7.14), we have 

- < ci( ,4(()) , (7.49) 
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Substituting (7.48) and (7.49)into (7.34), we obtain 

' CrWg'^^iOmi - C ) 
det(5fc+i) > (3 

L { 9 p , { ^ k + i ) - Q p M ) 

where 9 = C l ( l - C 2 ) 

Using the original cost function / , by (7.50) and (7.40), we have 

n l o i i 4 ( o ) f . p u u 

i=0 

where S = /(po)-/(p-) P* minimum. 

Applying (7.40) again, by (7.51) we have 

2=0 

(7.50) 

( / (Po) - I I 
k 

> 114(0)11' (7-51) 

< N { k + l f (7.52) 

where the second inequality comes f rom Lemma (14) and N = {^Y. 
Assume that (7.46) does not hold. That is there exists an e > 0 such that for all k 

l k k ( 0 ) f > 6 > 0 . (7.53) 
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As a result of (7.53), in view of (7.52), we obtain 

+ < iV(fc + l ) " (7.54) 

which is impossible when k ^ oo due to an exponential growing faster than a polynomial. 

Consequently, this theorem follows. • 

7.4 Numerical Example 

In this section, we apply our quasi-Newton algorithm to find the dominant eigenspace of a 

real symmetric matrix. 

Let A e M"""" be a symmetric matrix, i.e. /I = Let Ai > A2 > • • • > Ap > • • • > A„ 

be the eigenvalues of A. Our aim is to find the subspace of R" spanned by the eigenvectors 

corresponding to the p largest eigenvalues A i , . . . , A^. This subspace is called the dominant 

eigenspace of A. To solve this problem, the natural way is to consider minimizing a cost function 

defined on the Grassmann manifold. 

Recall that the Grassmann manifold Gr{n,p) is defined as the set of all p-dimensional sub-

spaces of M". Let St{7i,p) denote the Stiefel manifold defined as all matrices X G M"^^ sat-

isfying X'^X = Ip where Ip is the p-dimensional identity matrix. Let X 6 St{7i,p) and [XJ 

denote the subspace spanned by the columns of X. Then we have [X\ E Gr{n,p). The Grass-

mann manifold Gr{n,p) can be thought of as a quotient manifold of the Stiefel manifold. This 

is explained as follows. Given two points X, Y e St{n,p), we say X and Y are equivalent, 

denoted by X = y if there exists a unitary matrix Q such that Y = XQ. It is easy to see that 

X = Y and only if [X\ = [ y j . Thus, there exists a one-to-one correspondence between 

points on the Grassmann manifold Gr{n,p) and equivalence classes of St{n,p). Given a point 

X e St{n,p), the tangent space T i x \ G r { n , p ) at [XJ G Gr{n,p) is given by 

Tix\Gr{n,p) = {Z : Z = X^B, B G (7.55) 

whereXx G means the orthogonal complement of A'and satisfies [X X ^ Y [ X 

In where /„ is the n—dimensional identity matrix. 

In [53], Manton proposed a general framework for optimizing cost functions defined on man-

ifolds. As an example of how to apply the framework, the same paper considered local param-
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eterizations on the Grassmann manifold based on projections. Let X G R"^^ be a matrix with 

the rank p. Then the projection operator tt : M"^^ ^ Gr{n,p) onto the Grassmann manifold 

Gr{n,p) is defined by 

n{X) = arg min - Q H f 
Q€St{n,p) 

(7.56) 

Then, given X E St{n,p) and X±_ - the orthogonal complement of X , in view of (7.55) and 

(7.56), the local parameterization ip^x] '• ^ Gr{n,p) around [XJ G Gr{n,p) is given 

by 

i , ^x \ [B) = -n{X + X : , B ) . (7.57) 

Consider the following optimization problem: 

min / : G r ( n , p ) ^ R, [XJ h-. AX) (7.58) 

where X G St{n,p) and A = A^. The solution of (7.58) is the dominant eigenspace of A. 

In view of (7.57), the local cost function gyx\ • R around [XJ G Gr{n,p) is 

determined by 

gixi (5 ) = / o V'Lxj (B) = f{Tr{X + X^B)). (7.59) 

By Proposition 22 in [53], an easy computation shows that 

5 | ; , j ( 0 ) = - X l ^ X , (7.60) 

g[x^{B) = -XlA{X + X^B). (7.61) 

Let vec(X) denote the vector by stacking the columns of the matrix vY into a vector . Then, 

the proposed quasi-Newton method for (7.58) goes as follows. 

Algorithm 21. (Quasi-Newton Algorithm) 

step 0: Select an initial point Xq G St{n,p) and set Go = 7(„_p)p where I^n-p)p denotes 

(n - p)p-dimensional identity matrix and k ^ Compute Hq = - G q (0)) and set 

Ho - uvec(Ho) where uvec forms an n x p matrix in the reverse manner to the vec operator 
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step k: If (0) = (), then terminate. Othei-wise, compute the step-size A^+i as follows. 

Afc+i = 2"' (7.62) 

where I is the smallest positive integer such that 

< (7.63) 

tHHlg[xJ>^k+iH, ) ) > c M H l g [ x , i m , (7.64) 

where 0 < Ci < C2 < 1. 

Set 

= Xk+iHk, (7.65) 

Sk = vec(Bk+i), (7.66) 

y, = vec(g|x,j(Bu+i))-vec(g|x,j(0)), (7.67) 

r - r I yky'k , GkSkjGkSkV 
<-U-+i - (^k + 7 r H Tp; (7.68) 

Sk) {G^Sk, Sk) 

= n{Bk+i), (7.69) 

Hk+i = (7.70) 

7/fc+i = uvec(Hk+i), (7.71) 

where n in (7.69) is defined in (7.56). 

Increment k and repeat until convergence. 

Figure 7.1 describes the result of applying our quasi-Newton method to solve (7.58). In 

particular, we take n = 10, p = 6. This result demonstrates that the proposed quasi-Newton 

method has super-linear convergence rate. 

7.5 Conclusions 

In this chapter, we have presented a novel non-Riemannian quasi-Newton algorithm for the 

optimization on smooth manifolds. This algorithm is developed based on the local parameter-

ization and proved to converge to the local minimum of the cost function. Furthermore, this 

algorithm is applied to minimize a cost function on the Grassmann manifold and the simulation 
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Figure 7.1: The result of Quasi-Newton Method compared against the Newton method and steep-
est decent method 

results show the super-linear convergence of our method. 
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