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Introduction

Literature Review: The molecular biology of seasonal flowering responses in
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Chapter 1

Seasonal flowering responses.

Plants coordinate flowering with optimal seasonal conditions to maximize reproductive
success. In tropical regions many plants flower during the cooler seasons of the year to avoid
the extreme heat of summer. Conversely, in temperate regions many plants flower during
spring to avoid damage to floral organs by freezing winter temperatures. One mechanism by
which plants synchronise flowering with optimal seasonal conditions is by sensing changes in
daylength, or photoperiod. Many plants growing in the tropics flower as daylength decreases,
whereas many plants from temperate regions flower in response to increasing daylength.
Another important seasonal cue that regulates flowering time is temperature. In temperate
regions warmer conditions can accelerate flowering in spring. Furthermore, many plants from
temperate regions flower only after they experience an extended period of cold, or
vernalization. This minimises the risk of frost damage to cold-sensitive reproductive organs.
Often plants respond to a combination of daylength, vernalization and temperature to ensure
optimal timing of flowering.

Studies of the model plant Arabidopsis (4rabidopsis thaliana) have provided insights
into the molecular pathways controlling these seasonal flowering responses. Efforts are now
being made to extend this understanding to other plants, including cereal crop species such as
rice (Oryza sativa), wheat (Triticum aestivum) and barley (Hordeum vulgare). This chapter
compares and contrasts the molecular pathways controlling seasonal flowering responses in

Arabidopsis with those of cereals and related grasses.

Seasonal control of flowering in Arabidopsis.
In Arabidopsis three main seasonal flowering responses have been studied: the daylength

response, the vernalization response and the thermo-sensitive flowering response.

The daylength flowering response pathway of Arabidopsis.

Flowering of Arabidopsis is accelerated by long-days. The key to the long-day flowering
response is the activation of FLOWERING LOCUS T (FT) (Figure 1A) (reviewed in Imaizumi
and Kay, 2006; Jaeger et al., 2006; Zeevaart, 2006; Turck et al., 2008). FT encodes a “mobile
florigen’ (Kobayashi et al., 1999; Kardailsky et al., 1999; Corbesier et al., 2007). The FT
gene is expressed in the leaves in long-days and the FT protein travels to the apex, where it
interacts with another protein FD to activate the expression of genes that promote floral

development, such as the MADS box gene APETALLAI (AP1) (Abe et al., 2005; Wigge et al.,
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Chapter 2

Transcriptome analysis of the vernalization response in

barley (Hordeum vulgare) seedlings.

Based on the manuscript accepted for publication in PLoS ONE, February 2011.
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Figure 1. Overview of sampling methods for microarray analysis.

A) Barley seeds (cv. Sonja) were germinated and grown in darkness at either 20°C
over 5 days (control) or 4°C over 49 days (prolonged cold). Seedlings were then
either shifted from the control treatment to 4°C for 24 hours (short term cold) or
shifted from the prolonged cold treatment to 20°C for 24 hours (post cold). In all
treatments the shoot apex remained at an ecarly stage of vegetative development, but
plants grown from seedlings that experienced prolonged cold flower rapidly when
shifted to normal growth temperatures, unlike control seedlings germinated at 20°C
(Sasani et al., 2009). B) To identify contigs that show a sustained response to
prolonged cold, barley seeds were germinated in the dark at 4°C for 49 days and then
transferred to growth in glasshouse conditions until they reached the three leaf stage
(10 days after the end of cold treatment). Non-vernalized control plants were grown
simultancously under the same conditions and were sampled at the equivalent

developmental leaf stage (14 days). Shading indicates cold treatments.
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Short term cold

Figure 2. Venn diagram showing the number of differentially expressed contigs
across the different treatments.

A summary of the contigs that showed a two fold or greater change in transcript levels
across the different treatments when compared to the control treatment, p<0.0l.
Shaded area indicates contigs that were significantly changed in the samples treated
with prolonged cold and one day after prolonged cold treatment when compared to the

control.
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Figure 3. Principle component analysis of microarray data.

Principal component analysis was applied on differentially expressed contigs as
described in methods. Closed triangles (A ) indicate samples from the no cold control
treatment. Open triangles (A) represent the 1 day after prolonged cold treatment.
Closed squares (m) represent the short term cold treatment. Open squares (O) represent

the prolonged cold treatment. Replicate symbols represent biological replicates.

* This analysis was undertaken by Dr. Sally A Walford
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Figure 4. K-means cluster analysis of differentially expressed contigs.

The mean for each cluster is shown as black dots and lines and the gray lines
represent the expression pattern of individual contigs. The three replicates for each

treatment data are shown.
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Table S9). The expression pattern of these contigs is distinct to other contigs that are
also cold regulated. For example, contigs corresponding to DHNS5 (contigl717 s at
and HVSMEa0006122r2 s at) are also regulated by cold but show no change in
expression in the leaves of vernalized plants (Fig. 5J). A full list of the contigs that

changed under both experimental conditions is provided in Table SO.
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Figure S. Examples of temperature responsive contigs.

The expression pattern from microarray experiments of individual contigs in response
to short term cold, prolonged cold and one day after prolonged cold (a), as well as in

the leaves of plants after vernalization (b).
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Table S5. Contigs with altered expression after one day after prolonged cold relative
to short cold treatment.

Table S6. Contigs with altered expression in the prolonged cold treatment relative to
one day after prolonged cold treatment.

Table S7. Numbers and descriptions of contigs clustered together according to
expression behaviour.

Table S8. Contigs with altered expression in the leaves of barley plants after
vernalization.

Table S9. Contigs represented in primary cluster analysis with altered expression in
the leaves of barley plants after vernalization.

Table S10. A core set of low-temperature responsive contigs in barley.

Table S11. Contigs omitted from top the ten main clusters.
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ODDSOC2 is a MADS box floral repressor that is down-

regulated by vernalization in temperate cereals

Plant Physiology 153: 1062-1073 (2010)















Table 1. Non-redundant BLASTp results for HvOS2

Identity from BLAST
Protein Description Accession Organism E-value
BLASTp Score
TaAGL33 ABF57950 T. aestivum 93% (147/158) 297 2¢”
TaAGL41 ABF57941 T. aestivum 84% (126/149) 255 1e
TaAGL42 ABF57942 T. aestivum 73% (114/155) 225 1e™
OsMADSS1 "
NP 001045235 O. sativa 74% (111/149) 224 2e”
(Os01g69850)
Hypothetical protein .
XP 002456860 S. bicolor 70% (110/157) 219 6e™"
(SH03g044170)
Hypothetical protein -
NP 001140218 Z.mays 69% (108/155) 197 2c

(LOC100272251)
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Figure 3. Analysis of histone modifications at HvOS2 during vernalization

A, Relative abundance of H3K27me3 at the transcription start site for //vOS2 in non-
vernalized plants (NV, black bars) and vernalized plants (V, white bars) (cv. Sonja).
B, Relative abundance of H3K4me3 at the transcription start site for //vOS2 in non-

vernalized plants (NV, black bars) and vernalized plants (V, white bars) (cv. Sonja).

*This analysis was undertaken by Dr. Sandra Oliver.
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Table 2. Top 5 up-regulated and down-regulated genes in HvOS2 constitutive over-expression line

Probe Set Best match Fold Change ' P-Value
Up-regulated

Contig5058 x_at RNase S-like (T. aestivum) 37.6 53¢
Contig5059 s at RNase S-like (T. aestivum) 36.8 3.9¢”
Contig5185_at rshl, RNase S-like (H. vulgare) 16.2 M
Contig12031 at HvODDSOC?2 (H. vulgare) 15.4 7.8¢7""
Contigl 568 x_at THIONO - Plant thionin family protein (O. sativa) 8.2 5150
Down-regulated

Contig3810 at Galactinol synthase (T. aestivum) -2.9 1.6e™”
HVSMEmO0003G16r2_at cytochrome P450 (O. sativa) 3.4 | 5.7¢"
HVSMEb0O010F06r2_at No description -3.6 3.1e™
Contig18182 at FLOWERING PROMOTING FACTORI -like (A. thaliana) 3.7 3.8¢"
HU14G14r s at FLOWERING PROMOTING FACTORI -like (A. thaliana) -6.0 5.2¢"
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Figure 6. Influence of vernalization on the expression of FPF[-like genes in short or
long days.

Expression of HvFPFI-likel (HU14G14r) (A) and HvFPFI1-like2 (Contigl8182) (B)
in the fully expanded 2nd leaf (harvested at the 3rd leaf stage), non-vernalized (white)
versus vernalized plants (black), grown in long days (LD) or short days (SD).
Expression was assayed by qRT-PCR and is shown relative to ACTIN. Error bars
show SE. Asterisks indicate P values of ANOVA test: * P < 0.05 (min. of 3 biological

repeats).
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(NM_118013), ShAG-like (XM _002454940), WAG-2 (AB465688), OsMADS3
(L37528.1), HvAG-1 (AF486648), AiSOCI (NM _130128), OsMADS50
(AY332476.1), BdSOCI-like (Bradilg77020), TaAGL20 (DQ512338).
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Supplemental Figure S3. Quantitative RT-PCR analysis of gene expression in
HvOS2 over-expression lines. Expression levels of candidate genes were assayed by
gRT-PCR, in transgenic barley seedlings over expressing HvOS2 (black) and
compared to wildtype null (WT) siblings (white) at the 2" leaf stage. Error bars show
SE. Asterisks indicate P values of ANOVA: *** P < 0.001. (min. of 3 biological
repeats). A, HvOS2 (Contigl12031). B, HvFPF1-likel (HU14G14r) C, HvFPFI-like2
(Contigl8182) D, Hvrshl (Contig5185). E, Hvrsh2 (Contig5058/9).
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Supplemental Figure S4. Phenotypes and expression levels of HvOS2 in RNAI
transgenic plants. A, Expression of HvOS2 in RNAI transgenic plants. Data is shown
for two transgenic barley two independent lines transformed with gene-specific RNA
interference (RNAi) constructs (black) versus wild-type null siblings (white).
Expression was assayed by qRT-PCR and is shown relative to ACTIN. Error bars
show SE. Asterisks indicate P values of ANOVA test: *, P , < 0.05 (min. of 3
biological repeats). B, The average number of days until heading and C, final leaf

number for transgenic plants (black) and wild-type siblings (white) Error bars show
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SE. Heading date and final leaf number was calculated from 15 individual plants per

genotype.
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Supplemental Figure S5. Quantitative RT-PCR analysis of HvOS2 gene expression

during development in leaf and crown tissue. Relative expression levels of HvVRNI

and HvOS2 (white bars) in leaves and crown tissue from barley plants (cv. Sonja).

The fully expanded leaf and crown tissue was taken from non-vernalized plants (black

bars) and plants vernalized for 49 days (white bars) at the 1%, 2", 3™, 4™ and 5" leaf

stage. Expression was assayed in non-vernalized (black bars) and plants vernalized for

49 days (white bars), and is shown relative to ACTIN. Error bars show SE from a

minimum of 4 biological repeats. Asterisks indicate P values of ANOVA: *, P, <0.05;

2P =001 %> P <(.001.
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Supplemental Figure S6. Quantitative RT-PCR analysis of 7mOS2 gene expression

in the AVRNI mutant grown in long days. Relative expression levels of 7mOS2-like

(TmAGL33) in the TmVRNI deletion mutant (AVRNI) (white bars, n = 4) versus the

wild type parent strain (black bars, » = 5). Expression was assayed in leaves from

plants grown in long days, and shown relative to ACTIN. Error bars show SE.

Asterisks indicate P values of ANOVA: *** P <0.001, ND, not detected.
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Supplemental Figure S7. Selected data from low temperature stress microarray
experiment (cv. Dicktoo). Mean expression levels for A, HvVRNI B, HvOS2 C,
Hvrsh2 and D, Hvrshl. Error bars show standard error of 3 biological repeats. Data
was sourced from the Plant Expression Database (www.plexdb.org) Experiment

Accession No. BBSI1.

104






Chapter 3

OxHvOS2-20

No Treatment

GA Treatment

Supplemental Figure S9. Images of transgenic plants over-expressing //vOS2 and
wild-type siblings with or without GA treatment. A single application (10uL) of GA;

(2.5ug/uL) in ethanol was applied to leaves.
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before anthesis. 11) 5 DAP caryopsis. 12) 10 DAP caryopsis. 13) 16 DAP caryopsis.
14) 22 DAP embryo. 15) 22 DAP endosperm. Error bars show standard error of 3
biological repeats. Data was sourced from the Plant Expression Database

(www.plexdb.org) Experiment Accession No. BB3.
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Characterisation of barley (Hordeum vulgare)

SOCI-like genes.
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Figure 1. Grass homologues of SOC1/AGL20

A, Phylogenetic analysis divides grass SOCI-like genes into two groups, Group A:
OsMADS50, BASOC 1-likel, HvSOCI-likel and Group B: OsMADSS56, BASOC-like2
HvSOCI-like2. B, Diagrammatic representation of the syntentic region in rice and
Brachypodium distachyon that contains the SOCI-likel gene (OsMADSS50 and
BdSOC-likel) and the corresponding barley unigene numbers and map locations.
Arrows indicate direction of transcription. White boxes indicate sequences annotated

as transposable or repeat elements.
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4A 3B 7A

_._O—‘—

HvVRN1
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HvSOC1-like1

HvSOC1-like2

—

AP1

SOC1
1B 9A 8A 9B
5A

Figure 4. Comparison of interaction motifs in Arabidopsis APl and SOC1 protein
sequences with barley VRN1 and SOC 1-like protein sequences.

The interaction motifs 8A and 9B found in the Arabidopsis SOC1 protein sequence
but not AP, are also present in VRNI1 but not in the sequences of barley SOC1-like
proteins. Square boxes indicate motifs found in SOC1 but not AP1. Diamond box
indicates motif found in AP1 and not SOCI. Ovals indicate motifs found in both
SOC1 and API1 protein sequences. (Motif definitions can be found in Supplemental

Table 1 and van Dijk et al., 2010).
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Zadoks JC, Chang TT, Konzak CF (1974) Decimal Code for Growth Stages of
Cereals. Weed Research 14: 415-421
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Supplemental Data
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Supplemental Figure 2. Expression of HvSOC-like2 during development.

Relative expression levels of HvSOC!-like2 in leaves and crown tissue from barley
plants (cv. Sonja). The fully expanded leaf (A) and crown tissue (B) was taken from
non-vernalized plants (black bars) and plants vernalized for 49 days (white bars) at the
2" 3 4™ 5™ and 6™ leaf stage (i.c. 1% leaf taken at the 2™ leaf stage, 2" leaf taken
at 3" leaf stage etc.). Expression is shown relative to ACTIN. Error bars show SE.
Asterisks indicate P values of Student t-test: *, P, <0.05; ** P, <0.01 (min. of 3

biological repeats).
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Supplemental Figure 3. Gene expression analysis of transgenic plants constitutively
over-expressing HvSOC-likel.

Expression was assayed by by qRT-PCR in whole seedlings of transgenic plants (OX)
(black bars) and wild type sibling nulls (WT) (white bars) at the 3™ leaf stage and is
shown relative to ACTIN. Error bars show SE. (min. of 3 biological repeats). A,
HvVRNI B, HvFTI C, HVOS2 D, HvKO1 E, HvKOAI F, Hv20ox2.
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Supplemental Figure 4. Comparisons of interaction motifs contained in Arabidopsis AP1, SOCI and barley VRN1 and SOCI-like protein

sequences.

Grey boxes indicate IMSS motifs. Also see Supplemental Table S1 for full description of selected motifs.
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Supplemental Table 2. qRT-PCR primers

Gene name Accession number Forward Reverse

HvSOC|-likel - CTGATGCCGAGGGCTTGTC GCAACTGCGTCTCCTTGAGC
HvSOC-like2 - GAGCAGGAGACGGTACCAAG TCCGGCTGGTTAGCTATTTG
HvFT3 AB476614 TGGTTGTGGCTCATGTTATGC GTCACTGCCACCGAAATCAA
ent-kaurene AYS551437 AGGTGGAATGGAGAACGAGCGG GAGAGACGCTGTTCAGTTTACCC
synthase-like

HvKOI* AY551434 GCAGGTTTGGTTCGGTAATG TAACCAAGGACAGGCGAACT
HvKOAI* AF326277 AAAATCCTAGACCGCGTCG ACTCATCCGCGACAACAAC
Hv20ox2* Unpublished sequence | GCCTTCACCCAGTGGTTCT AGCCAGCGTCCAAAAATG

* Primers donated by Dr. Peter Chandler
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General discussion and conclusions

“We owe most of our great inventions and most of the achievements of genius to
idleness...either enforced or voluntary. The human mind prefers to be spoon-fed with
the thoughts of others, but deprived of such nourishment it will, reluctantly, begin to

think for itself and such thinking, remember, is original thinking and may have

valuable results.”

Dame Agatha Christie
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