
Automatic detection of fluorescein tear breakup

sequence

A thesis submitted for the degree 

of Doctor of Philosophy of 

the Australian National University

Tamir Yedidya

THE AUSTRALIAN NATIONAL UNIVERSITY

18 September 2010



tARY
rt>.



'I his thesis is submitted to the Department ot Information Engineering, Research 

School of Information Sciences and Engineering, The Australian National University, 

in fulfilment of the requirements for the degree of Doctor of Philosophy.

This thesis contains no material which has been accepted for the award of any 

other degree or diploma in any university. To the best of the author's knowledge 

and belief, it contains no material previously published or written by another person, 

except where due reference is made in the text.

Prof. Yogcsan Kanagasingam Lions Eye Institute and University of Western Australia

Supervisory Panel:

Prof. Richard Hartley The Australian National University and NICTA

Dr. Nick Barnes The Australian National University and NICTA



iv

This thesis is based on materials from the following papers and abstracts:

Tamir Yedidya, Richard Hartley, Jean-Pierre Guillon and Yogesan Kanagasingam, 

"Automatic dry eye detection," MICCAI07, 2007, pp. 792 - 799 (related to chapter 5) 

Tamir Yedidya, Richard Hartley and Jean-Pierre Guillon, "Automatic detection of 

pre-ocular tear film break-up sequence in dry eyes," DICTA08, 2008, pp. 442 - 448

(related to chapter 5)

Tamir Yedidya, Peter Carr, Richard Hartley and Jean-Pierre Guillon, "Enforcing 

monotonic temporal evolution in dry eye images," MICCAI09, 2009, pp. 976-984

(related to chapter 6)

Tamir Yedidya, Richard Hartley, Jean-Pierre Guillon. Automatic Fluorescein Break 

Up Time Detection in Dry Eyes. Abstract. Oral Talk in the Australasian Ophthalmic 

& Visual Sciences Meeting (2008) (related to chapter 5 and parts of chapter 7)

Tamir Yedidya, Richard Hartley, Jean-Pierre Guillon and Yogesan Kanagasingam, 

"Detection of the Tear Meniscus Shape Using Asyemmtric Graph-Cuts," ISBI, 2010, 

pp. 944-947 (related to chapter 8)

Tamir Yedidya and Richard Hartley, "Tracking of blood vessels in retinal images 

using kalman filter," D1CTA08, 2008, pp. 52 - 58 (related to Appendix A.)



Acknowledgements

I would like to sincerely thank Prof. Richard Hartley for supervising me during 

my PhD in the Australian National University and NICTA. I always found his ideas 

and comments very insightful and without his help I would not have been writing 

this paragraph now. I also appreciate the research related freedom he gave me during 

my studies and the opportunity to visit other international labs. I would like to thank 

Prof. Yogesan Kanagasingam (yogi), who supervised, hosted and directed me during 

my four visits to the Lions Eye Institute in Perth. I would like to thank Dr. Jean-Pierre 

Guillon who constantly provided me with brilliant ideas regarding researching the 

tear film and helped me shape my thesis. Jean-Pierre has also let me do part of the 

clinical tests in his clinic, and I am thankful for that. I would like to thank Dr. Nick 

Barnes for his supervision and his will to always offer help in research and in solving 

urgent research issues.

I would like to thank my friends from RSISE and NICTA: Peter Carr, who was 

always happy to offer his help, Chris McCarthy whom I successfully shared a cubic 

for two years, Babak Rasolzadeh who always cheered me up (and also hosted me in 

Stockholm lab visit), Gary Overett (for accurate weather reports), Nathan Brewer (for 

candies), Tim Raupach (for the parties), Luping Zhou, Ramtin Shams, Sarah Hick- 

mott, Jae-Hak Kim (who also hosted me in London lab visit), Christian Lingenfelser, 

Fangfang Lu, Dr. Hongdong Li, Dr. Jochen Trumpf, Manfred Doudar and the Big Guy. 

I would also like to thank the rest of the academic staff and students in RSISE, NICTA 

and the Lions Eye Institute.

Finally, I would like to thank my family and friends at home. Even though they 

were complaining that I am on the wrong side of earth, they always supported me in 

my decision to go to Australia to complete a PhD degree.



Abstract

Dry Eye Syndrome is a common disease in the western world, with effects from un-

comfortable itchiness to permanent damage to the ocular surface. Almost 5 million 

Americans over 50 years old suffer from dry eye. A conservative estimate shows that 

approximately 17 million Americans have contact lens related dry eye - one of the 

main factors to contact lens discontinuation. In addition, the incidence of the disease 

is on the rise. Nevertheless, there is still no gold standard test that can reliably de-

tect dry eye. One of the most commonly used tests by clinicians to detect dry eye is 

the Fluorescein Break Up Time (FBUT). However, results vary a lot between clinicians. 

Other tests such as observing the tear meniscus height are also performed regularly by 

the clinicians but not necessarily in conjunction with the FBUT test. Therefore there is 

a real need for a reliable, robust and operator-dependent method to evaluate dry eye. 

To our knowledge, no previous research has been conducted on automatic evaluation 

of dry eye in fluorescein images.

In this thesis, we present new algorithms to automatically detect various dryness 

signs and make a number of original contributions. The first problem we address is 

how to detect the dry areas in fluorescein videos of the anterior of the eye, which are 

captured using a portable camera. We present a new multi-step algorithm which first 

locates the iris in each image in the video, then aligns the images according to the 

location of the iris and finally analyzes the aligned video to find the regions of dry-

ness. We produce a novel segmentation result called dryness image, which depicts 

the various degrees of tear film thinning over the corneal surface. Then, we demon-

strate through experiments that there is a large variation in the estimated Break Up 

Time (BUT) between clinicians and no ground-truth can be defined. To overcome that, 

we define a new value based on the clinical definitions of the BUT. These definitions 

are converted to image processing properties and an estimate of the BUT is computed 

using temporal analysis of the aligned video. We demonstrate that our new value is
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in the accepted range of the BUT values provided by the clinicians.

We present an extension to the dryness algorithm, which is based on transforming 

the video to a volume by considering each video frame as a slice in a 3D volume. On 

a volume, a temporal monotonic constraint can be applied between pixels in consecu-

tive slices. The constraint enforces the clinical definition of tear film thinning over time 

- the amount of fluid cannot increase while not blinking. The constraint is applied di-

rectly into the cost function and the whole volume is segmented simultaneously using 

graph-cuts. As a consequence, the approach is more robust and less sensitive to align-

ment errors. Finally, we generalize the idea and explain how monotonic constraints 

can be applied to other imaging modalities.

In the last part of the thesis, we develop a new algorithm to evaluate the tear 

meniscus height and shape using graph-cuts. We formulate the segmentation prob-

lem using asymmetric cost functions and demonstrate its power and usefulness for 

the task. The asymmetry induces which directional moves are permitted in the min-

imization process and thus produces a result that adheres to the known shape prop-

erties of the tear meniscus. The iterative algorithm provides simultaneously the best 

segmentation result and shape prior of the meniscus.



Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 The challenge of diagnosing dry e y e ......................................................  2

1.2 Problem defin ition .................................................................................. 3

1.3 Contributions.......................................................................................... 4

1.4 Overview..................................................................................................  5

2 Medical Background 7

2.1 The tear f ilm ............................................................................................  7

2.1.1 Tear volum e.................................................................................. 9

2.1.2 Tear film struc tu re .......................................................................... 11

2.2 Dry Eye Syndrom e..................................................................................... 14

2.2.1 Production and distribution of the tea rs .......................................... 15

2.2.2 Morbidity of dry e y e s .....................................................................17

2.2.3 Risk fac to rs ..................................................................................... 18

2.2.4 Treatm ent........................................................................................19

2.3 Assessing the tear stability..........................................................................20

2.3.1 Break-Up of normal tear f i lm ..........................................................20

2.3.2 Current clinical techniques to study the tear film .............................21

2.3.3 The Eye-Scan dev ice ....................................................................... 26

2.3.4 Our clinical routine..........................................................................27

2.3.5 Observing the tear m en iscus..........................................................29

ix



X Contents

3 Previous Work 33

3.1 Iris Detection................................................................................................34

3.1.1 Daugman's method ....................................................................... 34

3.1.2 Additional approaches to circle detection........................................39

3.1.3 Active Contours .............................................................................41

3.2 Image alignment m ethods.......................................................................... 45

3.2.1 Lucas-Kanade alignment ............................................................... 46

3.2.2 Extension of the Lucas-Kanade algorithm....................................... 48

3.2.3 Feature-based alignment..................................................................50

3.3 Non-automatic methods to assess the tear film quality.............................. 52

4 Markov Random Fields and Graph-Cuts 57

4.1 The labeling problem.................................................................................. 57

4.2 Markov Random Fields .............................................................................58

4.3 Gibbs distribution .....................................................................................59

4.4 Pseudo-Boolean functions.......................................................................... 61

4.5 The graph-cut algorithm .............................................................................63

4.6 Graph-cuts extensions................................................................................65

5 Automatic Dry Eye Detection 67

5.1 Demonstrating the difficulty....................................................................... 68

5.2 The algorithm in brief ................................................................................71

5.3 Detection of the iris and eyelids..................................................................71

5.3.1 Difference from other iris detection approaches ............................78

5.4 Computing image Homography ............................................................... 79

5.4.1 Our alignment procedure............................................................... 81

5.5 Segmentation of the dry a reas .....................................................................85

5.5.1 Producing the dryness im a g e s .......................................................87

5.5.2 DEBUT computation....................................................................... 89

5.5.3 Analyzing individual b re a k s ..........................................................93

5.5.4 Black line detection.......................................................................... 97

5.6 Conclusions and discussion......................................................................100



Contents xi

6 Enforcing monotonic temporal evolution 103

6.1 Formulation of the problem ......................................................................104

6.2 The alpha-expansion algorithm ................................................................ 105

6.3 Previous w o rk ........................................................................................... 108

6.4 Our approach ........................................................................................... I l l

6.4.1 3D graph construction................................................................... I l l

6.4.2 Monotonic constraint......................................................................113

6.4.3 Summary of approach................................................................... 115

6.5 Application to detect d ryness...................................................................116

6.5.1 Advantages of the 3D approach ...................................................117

6.5.2 Applying the technique................................................................ 117

6.6 R esults...................................................................................................... 120

6.7 Conclusion and further research ............................................................. 125

7 Experimental Results 127

7.1 Defining the experiment........................................................................... 127

7.1.1 Comparing the clinicians BUT to the DEBUT................................130
7.1.2 Evaluating inter-observer variance................................................134

7.1.3 Evaluating intra-observer variance................................................136

7.2 Comparing the DEBUT and location of break to a single clinician . . . .  138

7.3 Repeatability experiments........................................................................ 140

7.4 Conclusions.............................................................................................. 142

8 Detection of the Tear Meniscus Shape 145

8.1 Introduction.............................................................................................. 146

8.1.1 Previous w ork................................................................................ 146

8.2 Estimating the shape p rio r........................................................................ 149

8.3 Using graph-cuts......................................................................................150

8.3.1 Incorporating a directional constraint.......................................... 152

8.3.2 Computing the pairwise term ........................................................153

8.3.3 Defining the unary te rm ................................................................ 157

8.3.4 Regional m odel..............................................................................158



xii Contents

8.3.5 Distance constra in t.............................................................................. 160

8.4 Minimizing the fu n c tio n ..................................................................................163

8.4.1 A lgo rithm ..............................................................................................164

8.4.2 Improving the computation t im e .......................................................166

8.5 R e s u lts ............................................................................................................... 167

8.6 Summary and further re s e a rc h ......................................................................170

9 Conclusions and discussions 177

A Tracking of Blood Vessels in Retinal Images 181

A.l Fundus im ag ing ................................................................................................ 181

A. 1.1 The r e t i n a .............................................................................................182

A. 1.2 Blood v e s s e ls ....................................................................................... 183

A.2 Previous w o rk ................................................................................................... 185

A.3 Proposed m e th o d ............................................................................................. 186

A.3.1 Detection of seed p o in ts ..................................................................... 186

A.3.2 The Kalman Filter .............................................................................. 190

A.3.3 Vessel t r a c k in g .................................................................................... 193

A.4 R e s u lts ............................................................................................................... 198

A.5 Summary and conclusion .............................................................................. 200

Bibliography 203

Index 215



Chapter 1

Introduction

Applying computer-vision techniques to medical images is not a new concept. Re-

search involving MRI images of the brain has been going on for years now. Analyzing 

CT images of different body parts such as the kidney is also widespread. Even fun-

dus images have received their share, mainly to detect lesions on the retina. Yet, there 

have been very little computer-vision research related to corneal images (images of the 

front of the eye) and the associated diseases, such as the Dry Eye Syndrome. There 

is no doubt that the gift of vision is invaluable. It is true that fundus images can (or 

at least theoretically) be used to detect lesions on the retina that might develop into 

severe diseases, such as diabetic retinopathy, which can cause blindness. It is also true 

that dry eyes will not cause blindness.

Are you one of 4.91 million Americans over 50 years old? Do you have repeated 

pain and irritative symptoms in your eyes? Do you have disturbed vision or blurry, 

foggy vision that only clears with a blink? Do you have problems doing common 

activities, such as reading, driving or using a computer? Is it inconvenient to instill 

lubricant eye drops so often that it even affects your social and workplace interac-

tions? Or maybe you cannot tolerate your contact lens any longer that you had to 

discontinue wearing them? These questions can appear on a questionnaire to diag-

nose dry eye. In our modern society, the quality of life is highly valued, and most 

of these questions relate to one or other aspects of quality of life. In some cases, the 

burden of dry eyes can be quite severe, limiting us in our everyday activities or even 

causing an eye infection.

Five million sufferers comprises a high percentage from the elderly population in 

America. It has also been found that the incidence of dry eye has increased by 57.4%

1
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from 1991 to 1998. Therefore, the prevalence of dry eye is on the rise. Dry eye is 

a common yet frequently under-recognized clinical condition which keeps challeng-

ing researchers to understand its cause. This long list of dryness symptoms, the high 

number of sufferers, the chronic nature of the disease and the lack of reliable diagnos-

tic tests to detect dry eye are among the reasons that the 200-pages International Dry 

Eye Workshop (DEWS) report were published in 2007 [100]. This report redefines dry 

eye syndrome, explains its causes, symptoms and treatments and discusses methods 

to diagnose dryness and other related clinical material. The report is mainly aimed at 

medical researchers and clinicians and strongly conveys the need for further research 

in the field.

1.1 The challenge of diagnosing dry eye

A clinician regularly performs a diagnosis test to diagnose dry eye and it is a relatively 

simple task. According to [68], the most commonly used method is the Fluorescein 

Break Up Time (FBUT). The idea is very simple: a small amount of fluorescein is 

instilled in the eye. The eye is viewed using a slit-lamp (where the slit is covered) 

with a blue light and a yellow filter. The light excites the fluorescein and dark spots 

will start appearing on the cornea if the eyes are kept open and dryness exists. The 

clinician uses a stopwatch and the time taken for dark spots to appear on the cornea 

after a blink is called Break Up Time (BUT). This is the value returned from the test 

and a cutoff point (in seconds) is defined to diagnose dry eye.

Nevertheless, this test suffers from a number of limitations making it subjective 

and operator-dependent. In addition, a single cut-off point is probably a harsh mea-

surement to analyze dryness and more symptoms (some are provided by the FBUT 

test but not used) should be considered. This point of view is also clearly expressed in 

the DEWS report. The committee mentions that no single diagnostic test can be per-

formed to reliably distinguish individuals with or without dry eye. Also there is little 

correlation between patients' symptoms and the results of selected clinical tests. This 

is explained by the lack of reported repeatability when using the same test at different 

times.
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The committee concludes that no "gold standard" exists for the diagnosis of dry 

eye. New diagnostic tests should be developed to better facilitate clinical research and 

the understanding of the factors affecting dry eye. Therefore, there are challenging 

tasks to define more robust measurements to estimate dryness which are repeatable, 

not subjective and not operator-dependent. Such measurements could be part of a 

system which is capable of simultaneously producing results based on a few diagnos-

tic criteria.

However, to our knowledge, no research has been conducted to built a system 

that will automatically detect dry eye. Such automatic system that is based on the 

FBUT test should be able to find the BUT (or a clinically related value) in a repeatable 

way. It should also provide a finer analysis of the tear film break-up pattern, such as 

shape, location and size [10] and one or more diagnostic results that can point towards 

the origin of the dryness. Hence, if we develop such a system, it can be installed in 

the clinician's clinic to ease the detection of the disease. It will also be a useful tool 

to collect mass data to be recorded and used later to understand better the cause of 

dryness. Finally, it solves some of the important issues described in the DEWS report, 

such as repeatability, no need to define a single threshold and serves as the first step 

towards an accepted diagnostic criteria of dry eye for epidemiological studies.

1.2 Problem definition

In this thesis, we investigate how to automate the diagnosis of dry eye. We capture 

image sequences (videos) using a hand-held portable camera. Therefore, we tackle 

the dryness problem using a similar input to what the clinician sees when performing 

the FBUT test, but maximize the information that is retrieved. Below we list specific 

issues this thesis addresses for the automatic analysis of dryness:

Detection of the iris and eyelids in the video: The dry areas can appear only 

over the iris, therefore the exact location of the iris has to be found. Our detection 

task differs from traditional iris fitting algorithms, since our eye images are recorded 

after instilling fluorescein. We show how the eyelids are detected using a polynomial 

fitting method and the iris is found accurately using circle detection.
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Aligning the iris in the image sequence: In order to make our solution more 

accessible, we have used a portable video camera which can be carried outside the 

clinic (of course, the regular slit lamp can be used as well). As a result, the location 

of the iris throughout the video can not only change due to the patient's change of 

gaze but also due to camera movements. Given the estimated location of the iris 

in each image, we use Lucas-Kanade alignment method and Levenberg-Marquardt 

optimization algorithm to align the iris over the video. Thus, fixating the location and 

size of the iris. This step is crucial for any further dryness analysis.

Evaluating dry areas and the BUT: In general, the clinician only measures the BUT 

when performing the FBUT test. Therefore, we investigate the repeatability of the BUT 

value among clinicians and the reasons for the differences. We define a procedure 

to robustly compute a similar clinical measurement to the BUT, which is based on 

temporal image properties. Taking advantage of the alignment result, a wide range of 

dryness related symptoms is evaluated and reported.

Segmentation of the tear meniscus: As mentioned before, the FBUT test is not al-

ways enough on its own to detect dry eye. Using static images from the video and the 

detected location of the eyelids, we estimate the height and shape of the tear menis-

cus. We use a graph-cut optimization algorithm which takes advantage of the known 

shape properties of the tear meniscus.

1.3 Contributions

The thesis contributes the following:

• We show how to compute the Break Up Time in fluorescein images in an auto-

matic way without any input from the clinician. We define a new clinical value 

called Digital Electronic Break Up Time (DEBUT), which is robust and invariant 

to eye movements, illumination changes and operator. We tested the DEBUT 

value on over 100 videos.

• We detect and analyze in an automatic way a variety of symptoms related to 

dryness, such as: individual break areas and their location, progress, shape and
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size; the black line that appears near the eyelids and is related to lid originated 

dryness; global iris information regarding the progress of the break. To our 

knowledge, these symptoms have not been analyzed in an automatic way be-

fore. Thus there is a very limited record of these symptoms and they are not 

available for further research.

• We carried out a set of experimental tests to find intra-observer and inter-observer 

differences when estimating the Break Up Time (BUT). Our experiments show 

meaningful inter-observer variance (between clinicians), thus stressing the lack 

of repeatability of the BUT value when computed by clinicians. This finding ex-

plains why a more robust method and value are desirable and corroborates the 

need in introducing the new DEBUT value.

• We present a graph-cut based method which transforms a (dry-eye) video of 2D 

images to a 3D structure and enforces a monotonic spatio-temporal constraint 

for a better segmentation. The method increases the reliability of the detection 

of dryness related symptoms. In addition, it offers a general approach on how 

to add monotonic (temporal) constraints to volumes, even if by nature they are 
only 2D and suggests a solution based on graph-cuts.

• We present a new method to segment and analyze the tear meniscus height, 

shape and irregularity. We show how asymmetric cost functions are used in a 

graph-cut based algorithm to enforce directional constraints. These constraints 

exploit prior knowledge about the desired shape of the object and enforce the 

segmentation result to be of that shape.

1.4 Overview

In chapter 2, we provide a general overview of medical background related to the tear 

film such as: how tears are produced, what is the dry eye syndrome and various clin-

ical tests to assess the tear stability. We also focus on the Fluorescein Break Up Time 

test, which is the test we have used throughout the thesis to assess dryness. Chapter 

3 is an overview of related literature to our dryness detection algorithm. We discuss
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other automatic methods for iris detection, alignment methods and non-automatic 

methods for BUT detection. More related work appears in the introduction section of 

specific chapters. Chapter 4 gives an overview to graph-cuts and Markov Random 

Fields, which are used in the thesis in both chapters 6 and 8.

The main work of this thesis is presented in chapters 5 to 8. In chapter 5, our 

main algorithm to analyze dryness is given. The chapter is divided into three main 

sections: detection of the iris and eyelids in all video images, aligning the images in 

the video and analyzing the video for dryness symptoms. We also present the new 

concept of Digital Electronic Break Up Time and show how it is computed. Chapter 6 

is an extension of chapter 5, and it shows how graph-cuts and monotonic constraints 

can aide towards improved detection of the dry regions and the DEBUT value. It also 

includes a general algorithm demonstrating how to enforce monotonic constraints in 

graph-cut based solutions. Chapter 7 describes the experiments we have carried out. 

We show the correctness of our algorithm and the DEBUT value when compared to 

the clinician's BUT. In addition, through the experiments we demonstrate a major 

problem in the existing FBUT test: large inter-observer variance among clinicians. In 

chapter 8, we reveal our graph-cut algorithm to assess the tear meniscus, and we 

show how an asymmetric cost function can be used to enforce directional and shape 

constraints. In chapter 9, conclusions and discussions are presented.

In addition, we include in Appendix A our method to detect blood vessels in reti-

nal images. Due to the difference in image modality from the rest of the work (corneal 

images), we add this material as an appendix. In this chapter, we describe our tracking 

algorithm that uses the Kalman filter to segment the blood vessels.



Chapter 2

Medical Background

This chapter provides medical background related to the tear film and dry eyes. Blink-

ing, which spreads the tear film over the cornea, is a simple action we perform thou-

sands of times every day. However, the blinking process is actually not that simple. 

See Fig. 2.1 about our blinking habits. Unfortunately, this whole process can be eas-

ily interrupted and may cause discomfort related to dry eyes. Interestingly enough, 

dry eyes are very prevalent in the western world, however, there is no single objec-

tive technique to evaluate dryness. We will discuss these issues in this chapter. The 

chapter is organized as follows:

• Tear film structure - the different layers.

• Dry eyes - definitions, production of tears, symptoms and treatment.

• Techniques to evaluate dryness, the fluorescein break up time test, our clinical 

method and meniscus evaluation

2.1 The tear film

The tear film is a highly specialized and carefully structured moist film which covers 

the conjunctiva and the cornea. Abnormalities of the film can rapidly result in a se-

rious dysfunction of the eyelids, the conjunctiva and the cornea. The presence of a 

healthy tear film is important as it provides a smooth regular optic surface covering 

the corneal epithelium (a layer of cells). It also adheres to the conjunctival surfaces 

and keeps them moist and lubricated. As tears flow across the ocular surface, they

7
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H E A L T H

On the Blink What goes on in the blink of an eye’ Most 
obvious, the lid spreads tears across the ball surface, warding off 
dryness and scratches We blink less when reading or staring at a 
computer or TV-that's why eyes dry and burn-m ore when tired and 
at times o1 transition, like turning a page. But blinking isn't just a 
reflex Calm slows blinking: anxiety can cause eyeblink storms Think 
of a nervous politician or a bad liar, who usually blinks fastest after 
a fib Psychopaths, with altered brain function, are less likely to blink 
vigorously when startled than an average Joe Also, blinks dull brain 
activity related to visual awareness, perhaps to keep us from notic-
ing the microseconds ot dark Blink mysteries include why babies do 
it less than adults-m aybe because ot all the new stimuli to take in - 
and why so much variation exists in animals Case in point A parrot 
blinks 26 times a minute, an ostrich, just onco —Jennifer S Holland

fts*
*■

Slating at TV

7.5

Blink rate varies wildly depending on mood, activity concentration level, age. and species

I'fC US •tttffc.C.A *ALE N3 STAFf

Figure 2.1: Courtesy of National Geographic Magazine. Blinking. Everyone is blinking, but how 
often ?
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Figure 2.2: The tear film highlighted. Two images taken 0.5s and 1.5s after the blink respectively. The 
tear film is the colored wavy stripes that can be seen in the bottom of the image. O f course, it covers the 
whole of the cornea, but cannot be seen clearly.

flush debris and foreign matter. Finally, the tear film is the first line of defense against 

ocular surface infection. In Fig. 2.2 the tears (tear film) can be observed at the bottom 

part of the iris. Usually it is not an easy task to see them that clearly as it depends on 

many factors related to the structure of the tear film.

The design of contact lens placed before the cornea is also highly related to under-

standing the tear film structure. Contact lens is used to correct refractive error and is 

bathed in the tear fluid. Dry eye problems are responsible for a high proportion of 

contact lens failures. Therefore, it is important to understand their effect on the tear 

film.

2.1.1 Tear volum e

The total volume found within the palpebral aperture (eyelids) has been estimated to 

be between 7p/ to 10^/ and up to 90% of the tear volume is found in the superior and 

inferior marginal tear strip, also known as tear meniscus and tear reservoir , see Fig. 

2.3(b). The remaining volume is spread over the ocular surface to form the very thin 

pre-ocular tear film (POTF). When blinking is permitted, it appears that for a normal 

palpebral, any amount above 10p/ will be flushed out, however, it varies with the size 

of the palpebral. In Fig. 2.3(a) a schematic model of the tear meniscus is depicted, 

showing the contact points between the meniscus and the cornea and the tear film. 

The almost triangular shape formed between the meniscus and the lid and the cornea
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(a) (c)

Figure 2.3: Explaining the tear meniscus, (a) Schematic diagram of the tear film boimdaries with the 
tear meniscus and the cornea. Courtesy ofF.J. Holly, 1978 [47] (b) Basic eye terms depicted when using 
fluorescein, as this is the modality we will use in this work, (c) A  thin black line is visible next to the 
upper eyelids

is where the fluid is. Fig. 2.3(b) explains the basic terms using an image taken after 

instilling fluorescein. As we will mainly use fluorescein imaging in our thesis, we will 

use mostly this kind of imaging modality for explaining the eye-related background.

The average total thickness of the POTF, indicates a volume of approximately 1 gl 

for the POTF, which corresponds to only a very limited amount of the total tear vol-

ume. As most of the fluid is found in the tear meniscus, using fluorescein staining 

(see section 2.3.2) reveals a black line extending along the corneal surface just within 

the lid margins. These black lines separate the POTF from the tear menisci and repre-

sent an area of thinning of the tear film [86]. That junction zone of minimal thickness 

corresponds to the area where the tear film is at its greatest instability. As a result, 

the surface tension forces make the formation of a continuous film nearly impossible. 

The black line is visible in Fig. 2.3(c) near the upper eyelids appearing darker than the 

colored iris. The detection of the black line is clinically important as it can be related 

to reservoir related dryness. Another reason the black line is created can be attributed 

to improper blinking. In that case the tear film is not spread evenly over the iris.

The formation of the tear meniscus depends on the balance between the negative 

pressure induced by its concave surface and the hydrostatic pressure due to the height 

of the fluid. In a fluorescein image, such as Fig. 2.3(b), the meniscus height is visible 

throughout the cornea and the conjunctiva. The meniscus height becomes shallower 

towards the left hand side. As in the ocular environment, the amount of fluid is lim-
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GLANDS 

OF KRAUSE

(a)

MEIBOMIAN GLAND ORIFICES

LACRIMAL GLAND 
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ited and an imbalance is created because the tear film cannot replenish the fluid fast 

enough. The aspiration of fluid (removal of fluid) is the result of an unsaturated or 

thirsty meniscus and leads to localized thinning of the film. Observing the black line 

and the curvature of the meniscus gives information as to the degree to which it is 

unsaturated. The smaller the radius of the curvature, the more thirsty the meniscus 

is. When the meniscus gets larger and less curved, it becomes less thirsty as a large 

volume of fluid is available.

2.1.2 Tear film structure

The present thinking on the structure of the tear film is well established after Holly 

and Lemp [49] and stems from the basic description of a tri-laminar structure.

I will now describe briefly each of the layers in the tear film as depicted in Fig. 2.5. 

The interested reader can find a more elaborated description in [68].

Corneal epithelium

The superficial part of the cornea is the stratified (layered) epithelium which consists 

of zones of nucleated (having a nucleus) cells. The different cell layers represent dif-
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ferent stages of cell development. As the cells are pushed towards the surface, they 

are continuously replaced by new cells. In severe cases of dry eyes, these cells are 

damaged, which results in damage to the ocular surface.

M ucous layer

The thickness of the mucous layer remains under debate. The periacinal source of mu-

cous are the goblet cells of the conjunctiva. The POTF is dependent upon a constant 

supply of mucous, which is used to maintain the corneal and conjunctival surfaces in 

the proper state of hydration. Mucous is secreted by goblet cells, which are distributed 

over the conjunctival surface.

The ocular mucous performs several functions. Among the most important is the 

lubrication, allowing the eyelid margins and palpebral conjunctiva to slide smoothly 

over one another. Another important function is protection of the epithelial surface. 

Mucus threads are responsible for covering foreign bodies to protect the cornea and 

the conjunctiva from abrasion. The surface of the mucus is the first solid layer en-

countered by invading material such as bacteria. Therefore, the rapid self-repair of 

the mucus is essential in protecting the eye against drying effects and bacteria.
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Aqueous layer

The aqueous phase of the tear film accounts for over 90% of its thickness and is made 

up of 98% water. The phase originates from the main lacrimal gland (see Fig. 2.4(a)) 

and the accessory lacrimal glands of the conjunctiva. The lacrimal gland is situated 

just above the outer corner of the eye behind the upper eyelid.

Lipid layer

The superficial lipid layer is a relatively thin, oily layer and is derived from three 

sources, all of which are in the eyelids. The majority of the lipid is produced by the 

meibomian glands which are embedded in the upper and lower eyelids. Blinking fills 

and releases meibomian gland fluid from the ducts and spreads it over the aqueous 

layer. The layer is important in retarding evaporation of the underlying aqueous layer. 

A four-fold increase in tear evaporation is observed when the human lipid layer is 

absent. It also prevents contamination of the tear film by skin lipids, which differ in 

composition from tear film lipids and can destabilize the lipid film.

Assessing the lipid layer has an important role when fitting contact lens. The prin-

cipal alteration to the tear film structure upon insertion of contact lens is to the lipid 

layer. Inserting a contact lens within the aqueous layer creates a considerably thinner 

layer of fluid on which the lipid can lie. This results in a thin lipid layer or the absence 

of a lipid layer over rigid contact lens.

Similarly, the stability of the tear film is affected. For a stable film to be formed, 

the contact lens has to be entirely compatible with the tear fluid. Unfortunately, the 

hydrophobic nature of contact lens material, particularly rigid lens, often excludes the 

formation of such a film. Consequently, tear film stability is reduced in the presence 

of contact lens. Thick lipid layers are associated with increased tear film stability. A 

POTF lipid layer which is thick and stable is more likely to form a continuous lipid 

layer over the surface of a contact lens than a thinner one.
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2.2 Dry Eye Syndrome

Dry Eye Syndrome (DES) [100] is a common disorder of the tear film, affecting a sig-

nificant percentage of the population. It is caused by qualitative and quantitative 

abnormalities in the tear film layer. Tears are produced by the lacrimal gland (see Fig. 

2.4(a)) and distributed over the ocular surface by blinking. Some of the tears evapo-

rate and the rest are drained. Abnormalities in this process such as: decreased tear 

production, excessive tear evaporation, abnormality in the production of mucus, de-

creased blinking and not closing properly the eyelids, are the cause of dry eyes. In 

1995, the NEI/Industry workshop broadly defined dry eye as

a disorder of the tear due to tear deficiency to the interpalpebral ocular 

surface associated with symptoms of ocular discomfort. [73]

The requirement of symptoms is important as it is not included in the definitions 

established in all nations. In 2007, in the special International Dry Eye workshop 

(DEWS) [18], a subcommittee tried to refine this definition. The main challenges are 

that there is no single diagnostic test that can reliably distinguish between dry eye 

patient and a non dry eye patient (see more about dry eye tests in Sec. 2.3). There 

are numerous tests that are in use by clinicians to diagnose dry eye, but there is no 

consensus what combination of them should be used. Furthermore, there is lack of 

correlation between the symptoms and the results from the tests. As dry eye is a 

symptomatic disease, the symptom questionnaires are amongst the most repeatable. 

Therefore, it had to be addressed in the new definition. Finally, the new gold standard 

definition is:

Dry eye is a multifactorial disease of the tears and ocular surface that re-

sults in symptoms of discomfort, visual disturbance, and tear film insta-

bility, with potential damage to the ocular surface. It is accompanied by 

increased osmolarity of the tear film and inflammation of the ocular sur-

face.

The inflammation is caused by the lack of fluid, which triggers a reaction from our 

body to cope with the problem. The reaction can be the pumping of more blood into
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the region, making the area look red. It is often accompanied by staining symptoms, 

which signify damage to the epithelial cells.

Based on data from the largest studies of dry eye to date, it has been estimated that 

about 3.23 million women and 1.68 million men over 50 years old in America have 

dry eyes. Tens of millions more have less severe symptoms. In Australia, in the "Blue 

Mountains" survey, out of the 1075 participants at least 50 years old, 16.6 percent had 

dry eye symptoms [23]. An overall summary suggests that the prevalence of dry eyes 

lies somewhere in the range of 5-30% in the population of 50 years and older. The 

variance might be related to the exact definition of dry eye used in each of the studies. 

Dry eyes are more prevalent in older age females. As a result, the incidence of dry 

eyes is expected to rise in the following years, since it is estimated that the number of 

elderly people will increase by 100% in the US in the period between 2000 and 2050.

2.2.1 Production and distribution of the tears

As dry eye is caused by abnormalities in the tear film layer, it is of interest to first 

understand how the tears are produced, secret and evaporate. I will briefly talk about 

the production of tears by the lacrimal gland (basic tearing), distribution by blinking, 

and evaporation from the ocular surface. Further material can be found at [68,110].

Production of tears [110]

It has been suggested that the lacrimal gland steadily produces tears at a certain level 

without any stimulation [57]. This concept is called basic tearing and is related to tear-

ing caused by blinking and tear evaporation. It is assumed that the tears come from 

the accessory lacrimal gland, whereas reflex tearing comes from the main lacrimal 

gland. The ocular surface is thus always covered by a tear film layer.

Reflex tearing results from irritation of the eye by foreign particles or from the 

presence of irritant substances. Reflex tears attempt to wash out irritants that may 

have come into contact with the eye. The tears are produced by strong physical or 

emotional stimulation to the lacrimal gland. Even if basic tearing is decreased, reflex 

tears can provide the ocular surface epithelium with substances necessary for proper
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epithelial healing.

Tear distribution by blinking

Tears secreted into the upper fornix are moved towards the lacrimal puncta and form 

(by gravity) the lower tear meniscus. The tears are spread over the ocular surface 

and are drained through the lacrimal puncta by blinking. The blinking proceeds from 

temporal to nasal pushing the tears towards the punctum. The temporal side and the 

nasal side will be at opposite sides in left and right eye images. For example, in Fig. 

2.3(c), the temporal side is on the right (where the eyelids merge) and the nasal side 

is on the left. Blinking abnormalities can cause improper tear distribution and hence 

lead to ocular surface problems.

The lids also play a role in the even distribution of the tears over the ocular surface. 

First of all, the eyelids pull the lipid layer with it as the eye opens. The oily layer 

then drags the aqueous layer upwards from the meniscus, as a result of differences in 

surface tension between the layers. Thus, the lipids help spreading the fluid over the 

corneal region and creating the tear film.

Human blinking averages 15-20 blinks per minute under relaxed conditions. While 

blinking is primarily a response from the ocular surface, other factors can play a role 

as well, such as environmental factors, reading or the use of computers. Blinking can 

also be incomplete, where the upper eyelid does not finish its movement downwards, 

in which case some portion of the cornea is always dry. In dry eyes, the blink rate is 

likely to be increased, in order to compensate for the decreased tear production and 

maximize the tear supply to the ocular surface. It has also been shown that contact 

lens wearers blink less and exhibit a higher proportion of incomplete blinks than non-

wearers. This reduces the stability of the tear film and thus stresses the importance of 

performing blink exercises.

Tear evaporation

A small amount of tear fluid is lost passively by evaporation. About 10% of the total 

tear volume evaporates while the rest are drained through the punctum. In patients
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with a small lipid layer, evaporation becomes more important. Instilling any drop 

onto the ocular surface disrupts the structure of the tear film and causes an increased 

rate of evaporation. Similarly, all contact lenses disrupt the superficial lipid layer and 

cause an increase in tear evaporation.

2.2.2 Morbidity of dry eyes

The symptoms of dry eye consist of:

• Dryness and grittiness feeling in the eye.

• Redness of the eyes

• Headaches and blurred vision

• Increased uncomfortableness when wearing contact lens for long periods.

• In severe cases, damage to the ocular surface.

The impact of dry eyes on the quality of life is quite high, as it can degrade the per-

formance of common vision-related daily activities, such as driving. The cost of treat-

ment, such as instilling eye drops, and the lack of a cure for dry eye add to the impact 

of this problem. A recent survey investigated to what extent dry eye patients are af-

fected in their daily life. Patients with DES were significantly more likely to report 

problems with reading, using a computer, watching television and driving at night. 

Overall, DES patients were three times more likely to have difficulties than those with-

out DES.

Dry eye patients can be divided into two categories: those with Sjogren's Syn-

drome (SS) and those without it. The ocular abnormalities are much severe in SS 

patients. Both groups lack tears, but the difference is in the ability of non-SS patients 

to produce reflex tears. SS syndrome is related to abnormalities in the immune system 

and is a severe form of dry eye. SS patients have a much increased feeling of fatigue 

and can also suffer from depression.

Except for symptoms of inconvenience, dry eye can lead to impact on the visual 

acuity. Visual complaints are highly prevalent among dry eye patients. It is usually
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described as blurry vision that clears with a blink. A disrupted tear film in the cen-

tral cornea can result in transient vision changes [111]. These changes can lead to a 

decrease in workplace productivity.

Finally, a contact lens (CL) placed before the cornea, to correct refractive error, is 

bathed in the tear fluid. Dry eye problems are responsible for a high proportion of 

contact lens failures, such as intolerance, reduced wearing time and discontinuation 

of contact lens wear. Therefore, it is important to understand the effect contact lens 

have on the tear film so that the most suitable materials will be chosen.

2.2.3 Risk factors

The risk factors for dry eyes are very diverse and include:

• female gender

• age

• diet

• climate

• contact lens wear

• the use of computers.

Vitamin A deficiency is a well-recognized risk factor for dry eye [102], as well as diet 

low in omega 3 [88]. Risk factors related to alcohol and smoking and caffeine have 

conflicting results. Indoor environment is also often associated with dryness symp-

toms such as burning and stinging. Ocular dryness due to increased tear evapora-

tion may be caused by low humidity, air-conditioned rooms and increased blink rate. 

Computer use is also highly related to dry eyes, as the prolonged concentration on the 

screen is associated with decreased blink rate and is related to the "computer vision 

syndrome" [11]. Dry eyes appear to contribute a major component of symptoms to 

the syndrome.

A significant number of CL-wearing patients experience dryness, with 50-75% of 

wearers report symptoms of ocular irritation. This is equivalent to a more than 17
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million Americans with CL-related dry eye [6]. The lenses tend to absorb the tears 

and proteins from the tear film. As a result, the rubbing of the lenses against the 

conjunctiva creates dry spots on the lens surface. Such symptoms are often reported 

as the cause of the discontinuation of wearing CL.

2.2.4 Treatment

In most cases alleviating the symptoms of DES can be achieved by using artificial 

tears, lubricants and gels, which provide more moisture to the surface of the eye. 

Most of the over the counter products are preservative-free and can be used as often 

as needed. It is difficult to prove that any ingredient in an ocular lubricant acts as an 

active agent. This is either because it is not possible to detect the effects in clinical 

trials or because the currently available agents do not have any discernable clinical 

activity beyond a lubrication effect.

The foremost objectives in caring for patients with dry eye disease are to improve 

the patients' ocular comfort and quality of life, and return the ocular surface and tear 

film to the normal homeostatic state. Although symptoms can rarely be eliminated, 

they can often be improved, leading to an improvement in the quality of life. It is more 

difficult to demonstrate that topical lubricants improve the ocular surface and the tear 

film abnormalities associated with dry eye. Until agents are developed that can restore 

the ocular surface and tear film to their normal homeostatic state, the symptoms and 

signs of dry eye disease will continue.

In more severe cases, minor surgical procedures may help. A procedure known 

as Punctual occlusion can help by decreasing the drainage of tears. Puncta (see Fig. 

2.4(a)) is the opening near the corner of the eyelids where the beginning of normal 

tear drainage occurs. The procedure places small plugs inside these openings and 

keeps the tears from flowing down the drainage. These plugs work in the same way 

as stoppers put in a sink to keep the water from flowing down the drain. As a result 

the eyes stay moist even if there are a few tears.

Interestingly, contact lens may also help to protect and hydrate the corneal surface 

in severe dry eye cases. Several different contact lens materials have been evaluated.
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Improved visual acuity and healing of corneal cells defects have been reported. How-

ever, there is a risk of corneal infection associated by the use of contact lens.

In addition, tear-stimulation methods, anti-inflammatory therapy and biological 

tear substitutes can be used for the therapy of dryness (see details in [93]). Some of 

these methods have only been approved in the last two decades, making the shift 

from the usage of lubricants to strategies that stimulate natural production of tears 

and maintain healthy ocular surface.

2.3 Assessing the tear stability

2.3.1 Break-Up of normal tear film

The pre-ocular tear film in humans does not remain stable for long periods of time 

[48]. When blinking is prevented, the tear film ruptures within 15 to 40 seconds expos-

ing dry spots of uncovered epithelium over the cornea [75]. The tear film decreases in 

thickness by around 10 percent through evaporation between two consecutive blinks. 

In dry eyes, the tear film usually ruptures before the blink, thus exposing the cells. 

Sometimes, the tear film may not rupture, but the blink rate is increased to compen-

sate for the inconvenience associated with the dryness. The time between the rupture 

of the tear film and the subsequent blink is also of importance: the longer the time 

is, the less comfortable the patient feels and more damage is done to the cornea. The 

tear film is formed and dragged into place once the eyelids open after a blink. The 

eyelids pull the lipid layer with it and then the lipid drags the aqueous layer upwards 

from the meniscus. Once formed, the property of keeping the integrity of the tear film 

is called tear film stability. The lipid seldom stays stable for long periods of time, as 

some of the lipids will migrate to the epithelium surface and contaminate the mucin 

layer. This creates a high tension between the layers and makes areas of the mucus 

layer hydrophobic. The tear film in these areas becomes unstable and thus leads to 

the formation of non-wettable areas of increasing size. This process is called Break Up 

of the tear film and is depicted in Fig. 2.6.
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Figure 2.6: Proposed mechanism of dry spot formation. Courtesy of Holly, 1973 [46]

2.3.2 Current clinical techniques to study the tear film

A large number of clinical, experimental and research techniques have been devel-

oped to study the tear film. In this chapter I review very briefly some of the more 

prominent techniques and focus on the Fluorescein Break Up Time (FBUT), which is 

the method we have used to assess the tear film in our research. A full summary of 

the techniques appears in the DEWS report [18] and in [68].

No "Gold Standard" exists for the diagnosis of dry eye. Therefore, when a test 

is being evaluated for efficiency, the test population might have been classified using 

those same tests. Similarly, assessing the performance of new test can be compromised 

based on the selection criteria of dry eye.

Most of the tests are defined using cut-off points, which differentiates between a 

dry-eye patient and a non dry-eye patient. For example, a threshold can be the num-

ber of seconds passed or the total scoring in a questionnaire. This clearly makes the 

decision very rough. Correlating it to image processing techniques is equal to the as-

sumption that we have a single threshold (for each test) for an image that separates 

the object from the background. As it is usually does not perform well in image pro-
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cessing applications, it does not work well for dry eyes. Therefore, there is a need for 

a more sensitive method. For example, a method to distinguish between the different 

degrees of thinning of the tear film will be useful.

Patient history

The presence of symptoms needs to be ascertained before any examination. Symp-

toms might vary in type and severity according to the state of the tear film. The use 

of a questionnaire is beneficial as it allows the grading of symptoms and is repeat- 

able for comparison purposes. The most common questionnaire is the McMonnies 

questionnaire. In this questionnaire, a value is assigned to each question and the total 

score obtained is an indication of the severity of the symptoms. These questionnaires 

should be used in combination with objective clinical measures of dry eye status.

Tear Flow - the Schirmer test

The tear flow rate was first measured and referred to as tear flow in 1903 by Schirmer. 

A strip of filter paper is placed in the lower conjunctival sac and is used to collect the 

tear secretion. The test is performed without anesthesia with the patient's eyes closed. 

The diagnostic cut-off used was less than 5mm of secreted fluid in 5 minutes for dry 

eyes. However, the test has a few different versions with different cut-off times (for 

example, [8]). There is a wide intra-subject, day-to-day variation in the test measure-

ment, which does not make it too reliable. Regardless of all of its disadvantages, this 

test is still widely used by ophthalmologists.

Break Up Time measurement

As explained before, the pre-ocular tear film (POTF) in humans does not remain stable 

for long periods between blinks. Observation of the POTF before a subsequent blink 

is the most commonly used test of tear film stability. Reduced tear film break-up 

time is one of the main signs of an abnormal tear film. The tear film break-up time 

test was proposed by Norn in 1969 [91]. A moistened fluorescein strip is applied to 

the conjunctiva, and after a couple of blinks to spread the fluorescein evenly, the tear
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Figure 2.7: The development of dry spots, (a) Image just after the blink (b) Image 3s after the blink (c) 
Image 8s after the blink, (d) Image just before the next blink, 11.2s after the blink

film is viewed with the help of a yellow filter in front of the illumination of the slit- 

lamp biomicroscope (as a result, the eye images are tinted in a green color, as can be 

seen in the images throughout the thesis). When a dark area appears in the uniform 

coloration, it represents the rupture of the tear film and the time elapsed since the last 

blink is recorded as the Break-Up Time (BUT). This test is known as the Fluorescein 

Break-Up Time (FBUT).

The reason that these spots are becoming darker is due to the lack of fluid. Just 

after the blink, the aqueous layer is intact, therefore containing fluid. The mixing 
between the fluid and the fluorescein and the usage of a yellow filter makes the iris's 

area look green. As time passes and the eyes stay open, the fluid in the aqueous layer 

starts to evaporate. In these areas the fluorescein has less fluid to mix with and dry 

spots form. A break is basically the complete lack of fluorescence at this point. The 

deeper the break, the greater the chances of ocular surface damage. If the eyes are 

kept open, the area of the break will increase in size and breaks may appear in new 

areas over the cornea. If the film ruptures repeatedly in the same spot a superficial 

epithelial abnormality must be suspected [74]. If the break up occurs over the center 

of the cornea, a decrease in visual acuity will be induced [111]. We also distinguish 

between a full thickness break, which is called a break-up in the relevant literature, 

and a thinning of the tear film, which is an area in the cornea that starts to rupture, 

but has not yet fully ruptured, thus it is not a full thickness break.

Fig. 2.7 shows how the dry spots form after the blink. The first image is the image 

just after the blink, the second image is 3 seconds later and one can see how dry spots
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form in the left side and near the upper meniscus. However, these areas are probably 

showing only thinning of the tear film and not a full break. The third image is 8 

seconds after the blink, and the dry spots form all over the cornea. Most of the dry 

spots are definitely full thickness breaks. The last image is just before the next blink, 

and the dry spots are becoming darker, a symptom of a full thickness break in these 

areas.

Many factors affect the measurement of the BUT. Those reducing the BUT include 

the forced blinking before the measurement and holding the lids forcibly open during 

measurement. Those increasing the BUT include the decrease in the fluorescein con-

centration. Various concentrations and volumes of fluorescein has been suggested for 

the test. In addition, the invasiveness nature of the exam adds to its subjectiveness, 

creating too many uncontrolled variables. The established cut-off for dry eye has been 

suggested in 1973 and is 10 seconds [75]. Recently, it has been suggested to use a cut-

off of 5 seconds [1] when small amounts of fluorescein are instilled. However, at 

present, there is a lack of data to support this threshold. The DES subcommittee sug-

gests that refinement of this kind of data would comprise a welcome addition to the 

literature. We show later in the thesis that by using our new image based definitions 

for the BUT, we are actually rephrasing the problem and making the measurement 

much more robust.

Korb in [68] also points towards some of the limitations of the FBUT test. The 

usual rationale to explain the FBUT test's lack of reproducibility is in its inherent limi-

tation as an invasive technique, thereby altering the tear film stability. The main factor 

is the volume of fluorescein used. Controlling the amount and concentration of flu-

orescein instilled is not easy, leading to additional variability and compromising the 

reproducibility of the results. The volume of the tear film of the eye is only 7/i/, while 

the volume delivered by the strip is over 17gl. Therefore, adding over twice the to-

tal tear volume to the eye for the evaluation of FBUT destabilizes the tear film and 

compromises the measurement. An improved FBUT test would require utilizing the 

smallest possible controlled volume of fluorescein, minimizing the primary variables: 

disruption of the tear film and control of volume.
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FBUT modification - the DET test

In a report provided by Marquardt et al. [85], it was found that a volume of Ifil of 2% 

fluorescein solution instilled into the tear film provides a more accurate and repeatable 

method of measuring the BUT. Recognizing the need for a new strip that will deliver 

this exact amount, Korb et al. [69] have developed a new strip called the DET Test. 

The new strip always delivers the same amount of fluorescein and accomplishes that 

without sensation and disruption of the tear film. The adequate amount of fluorescein 

is achieved immediately after instillation and it lasts for 1.5 — 5 minutes, depending 

on the patient.

Korb summarizes in [68] that the FBUT, although not ideal, is the best clinical test 

currently available for identifying tear film instability. Using the DET test produces 

much more reliable and repeatable results as the amount of fluorescein instilled is as 

small as possible and fixed. The FBUT test (with or without DET) is the first choice of 

diagnostic test used by clinicians as almost every clinic has a biomicroscope.

Non-Invasive break-up time (NIBUT)

NIBUT measurement utilizes a grid or other pattern directed onto the pre-corneal tear 

film for the observation of distortion of the grid in the image. The time since the blink 

until the change of the grid is called the NIBUT. This method eliminates the need to 

instill fluorescein and the possibility of reflex tearing. The Tearscope Plus [38] is such 

an instrument, that is used by inserting a grid into a tube. Therefore, different grids 

can be used to detect different symptoms. From a medical imaging point of view, 

such a device is advantageous, as the grids can be altered to best fit the needs of the 

software engineer. Fig. 2.8 shows the images produced from the Tearscope. In parts 

(a) and (b), we have used a circular grid with intersecting lines. In part (c), the grid 

consists of concentric circles, and other grids can be designed easily. The deformation 

of the grid is related to the appearance of dryness symptoms and the instability of the 

tear film.

The NIBUT test might seem as the ideal test from a theoretical point of view to 

measure tear instability. However, it was reported to be in use by only 5% of the
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Figure 2.8: The Tearscope for N1BUT. (a) Perfect grid shows that there are no abnormalities in the tear 
film, (b) The deformed areas in the grid are areas of tear film  instability, (c) Using a different grid and 
depicting a major disturbance to the tear film

clinicians, as the instruments are not always available. The NIBUT values are two to 

four times higher than FBUT values, and the reason for that has not been completely 

explained. The NIBUT test has a role in tear film diagnosis, but yet cannot replace the 

FBUT.

2.3.3 The Eye-Scan device

The Eye-Scan enable users to capture digital images, both still and video, for screen-

ing of diseases and disorders on the cornea and the retina. The device is small (see 

Fig. 2.9(a)) and data can be uploaded via the Internet and transmitted for expert di-

agnosis. Patients can receive high quality health care regardless of their geographical 

location. The main part is the camera handle, which contains a digital CCD camera, a 

camera lens and controls for the illumination. The necessary optical parts as well as 

the illumination systems are included in the modules, which are clipped on the cam-

era handle (see Fig. 2.9(b)). The removal and clipping of the modules on the handle 

can be performed in a matter of seconds. The following modules can be clipped on 

the Eye-Scan:

• Non Mydriatic Fundus Module (NMFM) - It is used for examination of the 

deeper structures and the fundus of the eye. No medical dilation of the pupil 

should be necessary.

• The mydriatic fundus module - It is used in the same way as the nonmydriatic
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fundus module, but a dilation of the pupil with medicaments is necessary.

• Slit lamp module - It enables stereoscopic magnified views of the frontal struc-

tures of the eye, and with a dilated pupil, views of the deeper parts are possible. 

It is used for the diagnosis of cataracts, retinal detachment or macular degener-

ation.

• Fluorescein module - It is used to detect corneal abrasion, corneal ulcers and dry 

eye. Topical fluorescein eye drops are applied in the eye, which is then exposed 

to blue light. The fluorescein is excited by the light and by using a yellow filter, 

dark spots appear over the cornea (break of the tear film). This module should 

be used when performing the FBUT test and produces very similar images to 

those produced by the equipment the clinician uses in the clinic (slit-lamp with 

the slit covered).

• Fluorescein module with grid - It is possible to project a grid on the cornea in 

order to determine the topography of the cornea and the tear film. It can be 

used with or without the instillation of fluorescein. This device produces similar 

images to the NIBUT device, the Tearscope.

• Red Reflex module - This module uses infrared light to illuminate the cornea, 

and can be used for the detection of cataract by looking at the reflected shadows. 

It is also possible to use clear white light instead.

2.3.4 Our clinical routine

In order to be consistent in our experimental tests, we devised a clinical routine that 

was followed throughout all our experiments. This routine is based on the improved 

version of the FBUT test using DET strip and the Eye-Scan device. As mentioned 

before, this is the most commonly used test to evaluate the tear film. All fluorescein 

images shown in this thesis and the analysis are based on videos captured using this 

technique.

1. Instill a small amount of fluorescein in the right eye. The amount should be 

as little and constant as possible. We have used the DET strips when possible,
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(a) (b)

Figure 2.9: The Eye-Scan device. The device is small and can be used hand-held or mounted in the 
clinic. By connecting the device to a laptop, the images are saved immediately on the computer and 
ready to be analyzed by the software, (a) View of the back of the device, where the illumination and the 
focus can be controlled, (b) Demonstrating the relatively small size of the device. The module used here 
is the tear film module (the blue piece attached to the front of the device). Using different modules just 
requires the removal of this piece and the attachment of the new module.

which have a fixed amount of fluorescein. Otherwise, we used the regular fluo-

rescein strip and cut it so it produces a minimal amount of fluorescein.

2. Instruct the patient to keep his eyes open as long as possible. However, no 

longer than 30 seconds is required, as any longer has no clinical significance.

3. Use the Eye-Scan fluorescein tear film module to record the video from the blink 

until the next blink. By using the Eye-Scan the amount of light emitted and the 

angle of view can be controlled, making these parameters fixed when used by 

different clinicians (However, as the camera is hand-held and the specific light 

conditions cannot be controlled, these parameters still vary).

4. Ask the patient to have a couple of full blinks and repeat the pervious step once 

more.

5. Repeat steps 1-4 for the left eye.

The whole process takes only 2 to 3 minutes for both eyes and results in a total of 4 

sequences. As such, it can be done easily by the clinician for every patient.
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(a) (b)

Figure 2.10: Viewing the lower meniscus using the Tearscope. (a) A thin regular meniscus, as the 
central black line is continuous, (b) An irregular meniscus. The central black line is deformed and 
consists of a few parts.

We call all the frames between blink to blink A Sequence. Therefore, our input 

is 1-2 sequences for each eye that can be used to analyze dry eye. We also use static 

images for the analysis of the meniscus. The image within two seconds after the blink 

is taken, as the meniscus shape tends to stabilize at that time, and provides the most 

information.

2.3.5 Observing the tear meniscus

As explained in section 2.1.1, up to 90% of the tear volume is found in the superior 

and inferior tear menisci. Therefore, the observation of the lid meniscus height and 

its irregularity has been proposed as a guide to the diagnosis of dry eye. Holly and 

Lemp [49] suggested that a scanty appearance or an area of discontinuity are signs of 

an aqueous tear deficiency. Lamberts et al [72] found that the tear meniscus height in 

normal eyes varied between 0.1 — 0.3mm in 92% of their observations and there is no 

correlation between the height and the Schirmer test. Mainstone et al found [84] that 

a shallow or irregular meniscus is highly significant because it often results from the 

many risk factors associated with dry eyes. They concluded that the tear meniscus 

assessment can be a useful alternative to existing tests for dry eyes.

Analysis of the tear meniscus is an area of recent interest as different imaging 

modalities are invented and used. The most common methods are probably bio-
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microscope based techniques. The Tearscope Plus [38] illuminates the tear meniscus 

along its whole length and permits the non-invasive observation of morphological 

changes during the blink sequence. In the central area, the tear meniscus presents a 

black central band bordered by bright bands on the lid side and tear film side (see 

Fig. 2.10(a)). Any irregularity of the meniscus shape can be seen by a distortion of 

the central black band (see Fig. 2.10(b)). Any irregularity in the tear meniscus height 

can also be observed along its length [113]. With practice, the clinician can grade the 

tear meniscus. However, it is not an easy task as the height can vary along the menis-

cus. When the clinician measures the meniscus height, it is usually performed over 

the corneal area only. A different non-invasive method that measures the meniscus 

curvature and correlates it with tear volume is meniscometry [124].

The tear meniscus can also be analyzed after the instillation of fluorescein, which 

will highlight the meniscus. When using the DET test, there should be a minimal 

increase in the volume of the meniscus. Fig. 2.11(a) shows an image of a regular tear 

meniscus. Both the lower and the upper menisci have a fairly constant height, which 

is considered to be regular. Also, there is no irregularity in the shape. In Fig. 2.11(b), 

there is a major change in height between the left side and the center and the right 

side. This is a symptom of an irregular meniscus, and can be related to dry eyes. 

When we evaluate the tear meniscus later in the thesis, we use this kind of fluorescent 

image and include this measurement in addition to the tear film analysis.

It has also been suggested that the presence of lip like folds of the inferior con-

junctiva is a sign of tear film related ocular surface problem called Conjunctivochala- 

sis (CCH) [89]. CCH is usually associated with older people and is sometimes over-

looked as it is regarded as a normal aging variation. The folds associated with CCH 

are called Lid-parallel folds or conjunctival folds [30] and are a sign of loose bulbar 

conjunctiva. Folds can sometimes be mixed with dry eye and is the predominant di-

agnosis when dry eye cannot be managed by conventional treatment. The folds are 

graded for severity with four grades: grade 0 - no permanent folds; grade 1- individ-

ual small folds appear in the primary position lower than the tear meniscus; grade

2 - multiple folds appear up to the height of normal tear film meniscus; and grade

3 - multiple folds appear higher than normal tear film meniscus height. It has been
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(a) (b)

Figure 2.11: Viewing the meniscus after the instillaticni of fluorescein. One can see how both the
lower and upper menisci are highlighted due to the fluorescein, (a) Regular meniscus, (b) Irregular 
lower meniscus with co7ijunctival folds grade 3. These folds will be hardly visible when using other 
techniques

demonstrated that patients with folds have a higher risk for dry eyes, sometimes up 

to 190 times if grade 3 folds exist. Fig. 2.11(b) shows a lower meniscus with grade 3 

folds in the central area. These folds cannot be detected when using a bio-microscope 

and usually require the instillation of fluorescein in order to be evaluated correctly.

It seems that the folds disturb the morphology of the meniscus and its relationship 

with the lid edge. In presence of folds, the reservoir morphology is abnormal, thus 

limiting the uptake of tears during the blink and reducing the resurfacing of the POTF 

over the conjunctival surface. Such alterations increase the signs and symptoms of dry 

eye. Moderate and severe folds can cause pain and ulcer subconjunctival hemorrhage.

Another emerging technique for viewing the tear meniscus is using Optical Coher-

ence Tomography (OCT). OCT, in contrast to fluorescein imaging, is a non-invasive 

and non-contact technique which provides a cross-sectional image of the retina at a 

specific location. Such a cross-section is called an A-Scan. A single A-Scan shows the 

different layers of the retina at that location. A set of A-Scans is called a B-Scan. For 

example, a circular scan around the optic disc produces a set of A-Scans showing the 

different layers of the retina in a region around the optic disc. Scans around the optic 

disc can aid towards the detection of glaucoma by examining the thickness of the reti-

nal layers at different spatial locations. Scans of the macular region can aid towards 

the detection of AMD (Macular Degeneration).
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Obviously OCT images are very different from those produced using a bio-microscope. 

However, there are attempts to use it to view the tear meniscus [9,92,98]. To that end, 

a vertical scan is taken over the lower or upper eyelids region (or both) and the cornea. 

Such a scan shows the tear film, cornea and eyelids. When using high magnification, 

the tear meniscus is also visible, depending on the specific location of the scan. There-

fore, a collection of B-Scans in the tear meniscus region can be used to compute the 

tear meniscus height. Another interesting observation that can be estimated from B- 

Scans is the depth of tear meniscus. The depth varies at each B-Scan and can be used 

to estimate the curvature of the meniscus. In addition, the area of the tear meniscus 

can be computed. However, this information is computed for that specific location 

only, since the images are sagittal cross-sections through the eye -  quite different from 

our frontal images. In order to estimate the full shape of the meniscus, many B-Scans 

have to be taken at different locations. Then using an interpolation technique, the full 

shape can be recovered.

Currently, OCT imagery is mainly used for viewing the fundus as the device is not 

available to most clinicians. In addition, it is much more expensive than a slit lamp 

and conjunctival folds cannot be detected. The above reasons make the routine use of 
OCT by clinicians for detecting DES uncommon, favoring a slit-lamp based solution. 

Nevertheless, the OCT device has the advantage of being a non-invasive technique 

and that the volume of tear meniscus is not altered due to the fluorescein.



Chapter 3

Previous Work

Existing research is mainly oriented towards medical ways of improving the reliability 

of the tests used for detecting the tear film quality [31, 45J. It includes non-invasive 

tests using devices such as Optical Coherence Tomography (OCT) and other dedicated 

devices [35, 38, 54, 116] and also proving the relationship between the area of break 

and dry eye [7, 10]. Some of these devices and methods have not been proved to be 

clinically useful by testing on large number of patients and others are not available 

to clinicians. For example, the OCT device is far less prevalent than a slit-lamp and 

also more expensive. Furthermore, most of these methods do not directly relate to 

our research as the imaging modality is very different and they have no automatic 

components. On the other hand, the FBUT test has been used clinically for a long 

period now and can be carried out in almost every clinic.

There are some existing approaches to locate the iris as part of other applications, 

mainly for iris recognition. Usually, assuming its shape is a perfect circle, the methods 

mostly use circle fitting algorithms to first locate the pupil and then the iris. Recent 

methods drop the assumption of circularity of the iris and also handle eyelashes and 

shadows.

The chapter is organized as follows: first, iris detection methods are discussed and 

I will demonstrate the difficulties of applying some of the traditional methods on our 

eye images. Then alignment algorithms are discussed, as the alignment is a crucial 

step in our dryness algorithm. Finally, I will briefly discuss non-automatic methods 

for the detection of dryness. These methods are based on dedicated hardware or on 

the clinician manually segmenting areas of interest. As non-automatic methods and 

clinical hardware are not the focus of the thesis, only a short discussion is provided.

33
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3.1 Iris Detection

Quite a few techniques appear in recent literature for iris and pupil detection. Most 

of these techniques are for iris recognition, which is used for personal identification. 

Probably the most known method has been published by Daugman [29] in 1992. Since 

then, he has revised the algorithm in further publications. Daugman initially em-

ployed a circle fitting method for both the iris and the pupil, which was based on 

computing the first derivative along a circular arc. His method is discussed in more 

detail in the next section. Another early iris segmentation algorithm was suggested by 

Wildes [120] in 1997. His algorithm also uses edge detection methods and fits a circle 

to the iris and the pupil. The fitting of the circles is performed by using the Hough 

transform and in addition the upper and lower eyelids are detected. Circle fitting ap-

proaches and the Hough transform became a popular trend in further publications 

such as [32, 78,107].

Other methods also detect the eyelids and eyelashes to provide a better boundary 

estimation for the iris and to remove reflection noise [43, 51, 67]. The removal of 

reflection is important for the recognition step. The eyelids are usually modelled by a 

parabola and reflections are detected using thresholds and histogram information.

Trucco and Razeto [108] detect the iris to perform automated iris tracking within 

medical applications. They model the iris as an active ellipse which is minimized by 

using simulated annealing. However, looking at their examples, the images include 

large portions of the face, where the iris area occupies less than half of the image's 

size.

3.1.1 Daugman's method

Daugman focused on iris recognition and finds the pupil-iris and iris-sclera borders as 

a first step [29]. Given an input image I(x, y), the iris is first detected by using similar 

ideas to a circular edge detector. The iris is defined as a circle and the aim is to find the 

best parameters (x, y, r) which maximize the difference in intensities between pixels 

on the contour of the iris. This process is done at different scales by convolving the 

image with a smoothing Gaussian Ga starting from a coarse level to a fine level. Given
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the intensity image I(x, y) and a circular arc ds of radius r, the continuous problem is 

defined as finding the maximum energy of the following cost function:

m a x ^ G ^ r )* 1  (3.1)

The partial derivative computes differences in intensities between pixels and is 

similar to computing gradient information along the arc ds. The function Ga(r) is a 

smoothing Gaussian which is convolved with the image. Therefore, for a given center 

coordinates (x,y) and a radius r, the sum of differences in intensities is computed 

along the contour. The aim to find the center coordinates and radius that maximize 

this sum. The search for a given center coordinates starts with a radius r which is 

gradually increased. The whole process is performed at successively finer scales of 

analysis starting from the coarsest level - high smoothing to the finest level - least 

smoothing.

The pupil is then found in a similar way, using only a confined search area. In the 

original paper [29], the circular arc ds do not span a whole circle, but is limited to two 

opposing 90 degree arcs centered on the horizontal meridian (so only part of the circle 

is taken). The reason is that the eyelids usually cover parts of the iris both in the upper 

and lower parts, thus a full circle is not actually visible. These arcs are depicted in Fig. 

3.2). However, this limitation is not mentioned in some newer publications, such as 

[27].

In order to speed up the computation, the discrete implementation of (3.1) is used. 

In addition, the order of the smoothing operator (the Gaussian Ga(r)) and the dif-

ferentiation (the ^  operator) is changed and they are concatenated to create a new 

operator. The discrete convolution is computed last between this resulting operator 

and the sums of pixels along the contours of the arcs. Thus, the cost function that is 

actually being maximized is the discrete form of:

max( w ) l£ c ° ( r )  * f { w )  O '2)

The discrete forms of the image integral and convolution are used for the computa-
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tion. The partial derivative is implemented as a discrete form of a first derivative. It 

uses Ar, which is defined as a small increment in the radius r. Therefore it is just a 

difference between two elements defined by the interval Ar:

=  G° ){n] =  ~  G°«n ~ <3 3 >

Finally, the maximization process is further sped up by using a multi-grid approach 

(solving a coarse problem and then refining by using finer grids). This approach uses 

large increments of Ar in the coarse scale and the increments are decreased in succes-

sively finer scales. A similar idea is also used for refining the coordinates of the pixels 

that are used for the computation of (3.2). As a result, in finer scales, the search is 

performed in increasingly smaller areas. This search is performed by using gradient 

ascent (as we are maximizing a function).

Daugman's method has been reliably used on eye images for a long time. It also 

produces good results on our images for the detection of the iris. However, it is not 

fully usable to detect the iris in our fluorescein images due to three main reasons: (1) 

The pupil is not visible in our eye images (2) fluorescein images tend to have more 

noise than Daugman's eye images and the borders between the iris and the conjunc-

tiva are fuzzy (3) the method has been patented. I will now demonstrate the second 

issue. In the eye images we use, quite often the eyelids have the strongest edges in the 

image because of the strong response to the bright fluid found in them. Moreover, the 

fluorescein spreading makes the borders of the iris fuzzy and noise on the conjunctiva 

is more evident because of the high magnification. These ideas are illustrated in Fig. 

3.1.

The first row in Fig. 3.1 shows that even in the most coarse level (or high smooth-

ing), the eyelids are those with the strongest gradients and the biggest differences in 

intensities occur between the eyelids and the conjunctiva or between the eyelids and 

the iris. Therefore, Daugman's method might detect those circles that do not define 

the borders of the iris. The second row shows only the higher magnitude pixels of the 

image (using a reasonable threshold). These pixels are of interest as they produce the 

highest gradient difference over the iris contour. Here, the whole 360 degrees of the
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Figure 3.1: Edge information of an eye image in different scales. Images at column (a) are scaled down 
8 times, at column (b) 4 times and column (c) 2 times. First row: Magnitude image using 4 different 
grey level intensities. The brightest pixels correspond to the highest magnitude. Pixels with a low 
magnitude appear as black. The brightest pixels are mainly parts of the eyelids even at the smallest 
scale. Second row: Edge image after a threshold. The red circle corresponds to a good fitting of the 
iris and the yellow circle shows a solution that has a higher cost (using Daugman's method) than the 
optimal fitting for the iris. (Note that in the right hand side the two circles merge). A t the largest scale 
the circle does not fit to any pixels on the left hand side and since only small changes in Ar are allowed 
at finer scales, the correct fittm g cannot be found.

iris circle are used for the computation of (3.1). A possible correct fitting of the iris 

with a high cost when using (3.1) is shown in red. In yellow, a fitting with a higher 

cost than the fitting in red is shown. The chosen threshold depicts why such fitting has 

a higher cost. Almost all the pixels of the iris in the left hand side have weaker edge 

information than the eyelids or the noise. Therefore, the eyelids make the strongest 

contribution to (3.1). We note that using only a 90 degree opposing arcs would provide 

an accurate fitting for this example.

In Fig. 3.2, we have used only 90 degree opposing arcs for the computation of 

(3.1). The upper eyelids are not fully open and therefore even the partial arcs contain 

portions of the high magnitude eyelids. In the first row of the figure the eye image 

is depicted in three different scales and the correct fitting is plotted on top. The V



38 Previous Work

Figure 3.2: First row: An image of the iris taken from a video shown at three different scales: (a) image 
scaled to 1/4 of the size (b) image scaled to half the size (c) the original image. The V  corresponds to the 
center of a correct fitting to the iris. Second row: A threshold image of the corresponding image from 
the first row showing only higher magnitude pixels. The red circles are the correct fitting to the iris arid 
the yellow circles show a solution that has a higher cost than the fitting in red (using (3.1)).

is the center coordinates of the iris and it can be observed that it is fairly close to the 

upper eyelids. In the second row of the figure, a threshold image is depicted (in a 

similar way to Fig. 3.1, only the higher magnitude pixels are shown). The 90 degree 

arcs corresponding to the circles from the first row are plotted in red (the location 

of the arcs is computed using the center coordinates). The yellow arcs correspond 

to a fitting with a higher cost when using (3.1) than the optimal fitting in red. The 

difference in cost of (3.1) between fittings is less noticeable in the highly smoothed 

image, but becomes significant in favor of the smaller (yellow) circle in the large scale. 

As there are only a few high magnitude pixels on the left side of the iris, the cost 

function will try to use as many as possible pixels from the eyelids to increase the sum 

of differences.

Daugman's method does not face these problems in his images, since a good esti-

mate of the pupil can be found. However, in our images, the pupil is not visible due 

to the instillation of fluorescein. Assuming the pupil and the iris are roughly concen-
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trie, it is possible to limit the search area for the center of the iris. Therefore, it can 

immediately eliminate most of the erroneous estimations.

3.1.2 Additional approaches to circle detection

Ma et al. [83] also focus on iris recognition and they detect the iris in the first step. 

Their implementation starts by finding the center of the darker pupil simply by look-

ing for the darkest row and column in the image. Then the estimation is improved by 

searching a localized region around the estimated location of the pupil. An adaptive 

threshold based on the gray level histogram of this region is selected. Then the center 

of the binary region is obtained by using the center of all pixels below the threshold. 

The pupil's exact coordinates and radius are found by using the Canny edge detector 

and the Hough transform. This process is repeated for the iris detection as well. The 

center coordinates of the iris can be different from those of the pupil (not concentric), 

but they are estimated using the pupil's center coordinates.

This application is based on detecting the pupil, which provides a good estimation 

for the center coordinates of the iris. The Hough transform is performed only over a 
small search region by approximating the iris region and is fairly fast. The Hough 

transform offers a potentially good solution, but we struggled to get it working on 

our images due to its difficulty in detecting the iris when only partial edges are visible 

and its tendency to be overly affected by noise. Moreover, as the search is performed 

with varying radii, it is not easy to know which fitting is the best.

Fast Radial Symmetry [81] is a technique to detect circular objects in an image. 

The method finds strong gradients in opposite directions and picks the gradients ac-

cording to a strictness parameter. The range of radii to be searched has to be supplied 

to the method. According to the examples in the paper, the method seems to produce 

the best results when detecting circles of a small radius, such as eyes in a full facial 

image.

When applied to our eye images, the method worked quite well in some cases, 

especially when the eyelids cover a small portion of the iris or when it is fully visible. 

The method's output provides the center of the circle, but not the radius. Since a
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(a) (b) (c)

Figure 3.3: Images produced by applying the Fast Radial Symmetry to the images from Fig. 3.2 using 
three different scales: (a) 1/4 of the original image (b) half of the origmal image (c) original image. The 
red 'x' corresponds to the correct location of the center of the iris and the yellow V  corresponds to the 
best estimation found by the Fast Radial algorithm.

large range of radii is given to the algorithm as an input, the correct radius can be 

anywhere within this range. As in our eye images (in the finest scale), the radius 

ranges approximately from 96 to 144 pixels, an additional search has to be applied to 

actually find the correct radius.

However, when we applied the fast radial symmetry algorithm to the image from 

Fig. 3.2, the result was less good, as depicted in Fig. 3.3. In the figure, we show the 

inverse image provided by the algorithm at three different scales. The darkest regions 

should correspond to maximum symmetry as the gradient is calculated from dark to 

light. The red V  marks the correct center of the iris and the yellow 'x' corresponds 

to the minimum value found by the algorithm (when limiting the search to only the 

center of the image). The algorithm performed the best at the coarsest scale, but the 

error in estimating the center is quite evident at the finest scale (see Fig. 3.3(c)), being 

shifted by 20 pixels in the vertical axis from the real center. This is probably due 

to similar difficulties Daugman's method faces. In addition, in the finest scale, the 

algorithm is not so fast any longer unless we limit the number of different radii given 

to the algorithm.

To sum up, we have found that it is better to first detect the upper and lower eye-

lids, which have a strong gradient information and remove them. Then the chances of 

a correct detection of the iris are higher. Additionally, due to the possibly weak gra-

dient information of the iris, its detection should not be based solely on magnitude of
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the pixels.

3.1.3 Active Contours

Other approaches to detect the iris use active contours and usually do not assume a 

circular shape for the iris and pupil [2,4, 28]. Daugman in a recent work [28] extends 

his previous work by removing the assumption of circularity. He notes that that the 

iris and the pupil are not concentric and the pupil boundary is non-circular and the 

iris boundary is usually non-circular as well. In addition, the iris is often occluded by 

eyelids and sometimes by reflections. Therefore, it is necessary to fit a flexible contour 

that can tolerate interruptions.

Daugman presents curvature maps for the inner (pupil) and outer (iris) iris bound-

aries. The curvature map should be flat and straight if the boundaries were circles, as 

the curvature of a circle equals to the inverse of its radius everywhere. However, in 

his examples, the inner and outer boundaries are definitely not flat. The curvature 

map of the iris tends to be flatter than the curvature map of the pupil. In other words, 

the iris is closer in shape to a perfect circle than the pupil.

His solution is based on active contours and using Fourier series expansions. A 

discrete Fourier series approximation is fitted to the data that is based on samples 

of the radial gradient data (he assumes that an initial detection of the boundaries is 

provided). A set of N  regularly spaced angular samples is used to compute each coef-

ficient. A set of M discrete Fourier coefficients are taken to provide an approximation 

to the inner and outer boundaries. This creates a new sequence of N  pixel's locations, 

but this time they do not necessarily represent a circle. The value of M  defines the 

tradeoff between how precise the fitting is versus keeping the model simple. He used 

M =  17 and M =  5 to estimate the pupil and the iris boundary respectively, since the 

gradient information of the iris is much weaker.

He et al. [42] present a fast algorithm for iris detection that, according to their 

findings, is faster and superior to Daugman's [29] and Wildes' [120] algorithms. They
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demonstrate that the latter algorithm can be stuck in local maximum when locating 

the iris.

The iris is first detected using a learning process where the best features are chosen 

by using the AdaBoost algorithm. The learnt iris detector searches over windows with 

different scale and position and validates whether the computed features match those 

defined by the AdaBoost as representing an iris. This provides a rough position for 

the center of the iris and also rejects non-iris images (however, in our application all 

images should contain the iris).

The second step of the algorithm is the interesting one. Given an approximation 

of the center of the iris and its radius, edge points are detected. The detection is per-

formed in polar coordinates, as a circle in polar coordinates is a line. The image is 

transformed to polar coordinates centered by the center of the iris and a vertical edge 

detector is used. One edge point is reserved along each column and each point is as-

sociated with its distance from the approximated center of the iris. It is not mentioned 

why specific edge points are chosen while others are rejected.

The authors developed a method of pulling and pushing based on Hooke's law. 

They define an iterative process by using springs: given a set of edge points, each 

of them is connected to the center of the iris using springs. At the ideal situation 

(equilibrium) there are no forces applied on the springs. Therefore, the sum of forces 

on springs that are located at opposite radial locations is 0. Then a force is exerted on 

the center of the iris to move it to a new location and as a result it deforms the springs. 

This force is applied on each spring according to its distance from the center of the 

iris (which has been estimated before). At this stage, the sum of forces on springs on 

opposite radial locations of the circle will not necessarily equal to 0. The total sum of 

these forces (vectors) defines the displacement towards the new center. The algorithm 

then iterates with a new set of edge points until convergence. Although this process is 

defined using springs, it is closely related to active contours and also resembles ideas 

from the fast radial algorithm (however, the gradient's magnitude is not used here).

The authors extended their algorithm in a very recent publication [44]. This time 

they remove the requirement that the pupil and the iris are circles. The pushing forces 

can result in an ellipse shaped iris or pupil, therefore increasing the tolerance to pupil
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distortion.

The paper also provides a method to detect the eyelids. The authors define this 

problem as "An  even harder problem" than the iris fitting, even though they only 

segment the eyelids in the iris region. The flowchart of their algorithm consists of 

the following steps: 1) Detecting and removing eyelashes by using a horizontal edge 

detector; 2) Using a vertical edge detector to detect the eyelids, as the eyelids usually 

have the strongest gradients in that direction. The authors mention that only one point 

is reserved in each column for the eyelids, but do not describe how they choose which 

point. This step creates a raw eyelid image; 3) The raw eyelid image is fitted to the 

best predefined eyelid model; 4) The detected eyelid points are interpolated according 

to the model to create a smooth curve by fitting a parabola.

The interesting part of the algorithm is in step 3, where the eyelids are fitted to a 

predefined model. The authors assume three possible models that describe the shape 

of the eyelids. Each model depicts the shape of the eyelids according to their height 

at each column. For example, flat eyelids will have small height changes throughout 

the columns, while curved eyelids have large changes in height when moving from 

the leftmost to the rightmost columns. The similarity is measured by subtracting the 

raw eyelid image from each model. The subtraction result that is closest to a flat 

line defines the most suitable model. This model is then used to define the parabolic 

curve fitting. An assumption the authors make in the model creation is that the pupil 

is centered within the eyelids' region. Hence, if the person's gaze is not straight, no 

model will necessarily match the raw eyelid image.

Finally, the authors present a method for eyelash and shadow detection. The 

shadow detection is somewhat similar to our black-line detection problem (described 

in chapter 5.5.4). The authors divide the iris to two regions: upper region (near eye-

lids) and the rest. Then they build intensity histograms for the two regions, and check 

if one is darker than the other. If so, an adaptive threshold is estimated from these his-

tograms to detect the darker eyelids. When examining the images we have in hand, 

we have found out that this method does not work well for us. First, the region near 

the upper eyelids can be darker than the other region even if there are no eyelashes 

due to uneven fluorescein spreading and the angle of the camera. Second, our images
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are not necessarily illuminated evenly, so one side of the iris can be brighter than the 

other. The histograms of the two regions are expected to be similar in this case. How-

ever, a shadow 2-3 pixels in height, that spans the length of the eyelid might have 

similar intensity to pixels in the darker side of the iris and hence will not be removed. 

We note that such a shadow has similar characteristics to the black line.

Ritter developed in her thesis a method for registering corneal images that are 

taken using a slit-lamp. These images are captured in a similar way to ours, but the 

difference is that we instill fluorescein before taking the images. Since fluorescein in 

not instilled in Ritter's images, the pupil is visible.

The first step of the registration is to find the inner and outer iris borders, or in 

other words, the pupil and the iris respectively. Once the center of the iris has been 

found, it is used as a reference point for translating the images to match a reference 

image. Pixels on the borders of the iris and inside the iris are used as seeds for the 

final registration of two corneal images using a 7 parameter transformation. In the 

first step, pixels on the outer border of the iris in one image are aligned to the other by 

using 4 parameters: translation, rotation and scaling. In the second step, pixels inside 

the iris are matched by using a 7 parameter transformation: the center coordinates 

and the radius of the inner iris border and the 4 parameters from the first step of the 

alignment.

The pupil is modelled as a circle, and a rough estimation can be easily found by 

looking at the largest dark mass in the image, while limiting the area of search to the 

center of the image. Then both the pupil and the iris are detected using a discrete 

circular active contour (DCAC). The idea behind the contour model is to compose a 

closed connected polygon of n vertices. Then internal and external forces are applied 

to the polygon and push it towards a perfect circular polygon. At each iteration, in-

ternal forces increase the polygon's average radius by 6. This radius is computed as 

the average distance of each vertex to the center of mass of the polygon. External 

forces (or image forces) push the polygon towards the center by a force proportional 

to the difference in intensities between neighboring pixels near the polygon's vertex.
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Assuming v\ is a vertex of the current polygon, ß  is a weighting factor, and F/m/, 

are the internal and external forces respectively, the contour movement of a vertex i at 

time f + 1 is given by the following formula:

Vi ( t  + 1) = Vi ( t )  + ß F i n t j  + (1 — ß ) F j m ri. (3.4)

Estimating the next polygon coordinates is an iterative process computed as a 

function of the iteration number t. The process stops once equilibrium has been 

reached, defined as having only a very small change of radius over a few iterations.

While the pupil is modelled as a perfect circle, the iris is modelled by using two 

concentric arcs on either side of the circle. This represents the portion of the border 

of the iris which is not covered by eyelids. Therefore, the contours used for the detec-

tion of the iris are two 60 degree opposing arcs (one sixth of a circle) centered on the 

horizontal meridian. This is a similar idea to the one Daugman used with 90 degree 

opposing arcs. Two discrete circular active contours are then used to represent this 

model and are moved alternately until either stability has been attained or an error 

condition has occurred.

The main difficulties of this model are to find the correct increase 6 and to locate 

the iris when its borders are fuzzy. As fluorescein is not instilled in these image, the 

pupil can be easily detected and helps in finding the center of the concentric circles. 

In addition, the edges of the iris tend to be strong enough to compute a solution based 

on active contours.

3.2 Image alignment methods

Alignment of the iris over a series of images in a video plays an important role in our 

dryness detection method. As explained in section 2.3.4, our clinical routine records a 

video using a hand-held camera. In addition, it is not always possible for the patient 

to keep his gaze steady, resulting in the movement of the iris. As we describe and 

demonstrate in chapter 5, the alignment is crucial in order to detect the progress of 

the dryness over time and to find the BUT (Break Up Time).
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Our alignment method is closely related to the method proposed by Lucas-Kanade 

for optical flow [82, 5]. This method performs a straightforward (brute-force) align-

ment and thus do not use image features. In the next sections, I will describe this 

method and provide a brief description of other alignment techniques.

3.2.1 Lucas-Kanade alignment

The Lucas-Kanade (LK) alignment algorithm is a Gauss-Newton minimization method. 

This algorithm was later called the Additive LK algorithm. The most common use of 

the LK algorithm is for the computation of optical-flow. Given two images, the LK 

algorithm minimizes the following sum of squares:

£ [I(W (x ,i/;p ))  -  T(x,y)]2. (3.5)

In this equation T(x,y)  is the original image and I(x, y) is the image we would like 

to align. W(x, y; p) is defined as the homography (or warp) with parameters p. The 

warp assigns a new pixel location to each pixel (x, y) in I. The minimization is per-

formed with respect to p and the sum is computed over all image pixels. For example, 

if we only consider translation and scaling, W can be defined as:

W (x,y;p) =  [(x + p1)p3/(y + p2)p4 l  (3.6)

In this example p =  [p\, p2, P3, Pi}7, where [p\, pi] is the translation vector and [p3, p$] 

is the scaling vector. Therefore, there are 4 parameters that have to be minimized.

Minimizing the expression in (3.5) requires a non-linear minimizer, as the pixel val-

ues I(x, y) are not linearly related to their spatial location. The LK algorithm assumes 

that we a have an initial estimate for p and then iteratively minimizes for increments 

of Ap. Therefore, at each iteration the following expression is minimized with respect 

to Ap:

L  [J(w (*' y; P + Ap)) -  T(x, y)]2. (3.7)
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At the end of each iteration the parameters of the warp are updated:

p <- p + Ap. (3.8)

We notice that I is a function of two parameters: I =  f ( x ,  y). The warp W maps the 

pixels from coordinates (x, y) to new coordinates (xf, y') according to the parameters 

p. Therefore W is a function of W(x', y') =  g(x, y; p). In order to solve (3.7), the 

term I(W(x,  y; p +  Ap)) is expanded using the Taylor expansion with respect to Ap 

about the pixel location (x, y). To compute the first order Taylor expansion, the first 

derivative of /(W(x, y; p +  Ap)) has to be computed with respect to p. Denoting z =  

(x,y), the coordinates of the warp as W(z;p) =  (W*(z; p), Wy(z; p))T and using the 

chain rule we receive:

As p is a vector, the terms Wx(z; p) and Wv(z; p) can be further expanded by the chain 

rule. The first-order Taylor expansion of (3.7) with respect to Ap about z is given by:

and therefore is dependent on the current estimate of the parameters. Minimizing 

(3.10) by taking the partial derivative with respect to Ap gives:

Op Ox 3p Oy Op
0/ _  0 / 0Wx(z;p) + 0 / 0Wy(z;p)

(3.9)

ol/V o
£ [ / ( W (z ;p ) )  +  V / - ^ - A p - T ( z ) ]  . (3.10)

The term ^  is the Jacobian of the warp, which is computed at each iteration at (z; p)

Ap =  H -1 £  [ V / ^ f [ T ( z )  -  i(W (z;p))], (3.11)

where the matrix H is defined as:

(3.12)

The matrix H can be seen as an approximation to the Hessian of the warp. It is de-

pendent on p in both the Jacobian and the gradient of / which is evaluated at W(z; p).
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The main difficulty in this solution is that at each iteration of the LK algorithm, the 

inverse of the matrix H has to be computed until convergence. As a result, the LK 

algorithm can be slow for big images.

The resulting approach is called a direct approach, as it just computes the differ-

ence in intensities between the images in the region of interest. Such a method is 

mostly suitable for videos where the change between images is small or when it is 

hard to find distinctive features in the image.

3.2.2 Extension of the Lucas-Kanade algorithm

As mentioned in Section 3.2.1, the LK algorithm computes the Hessian matrix H at 

each iteration. This is the weakest link of the algorithm which consumes most of 

the computation time. When aligning a set of 100 images in a video, the process can 

become relatively slow. Faster methods to compute the alignment have been proposed 

in [5].

These methods offer a different way to minimize the sum of squares of the differ-

ence in intensities of (3.5). In this section I will describe briefly the Inverse Compo-

sitional Algorithm for image alignment. The main idea in this algorithm is that the 

Hessian matrix is not computed at each iteration but is constant through the iterative 

process.

The Compositional algorithm is very similar to the one described in section 3.2.1. 

The difference is that the algorithm minimizes:

£ [J(W (W (* ,y ;A p );p ) -  T(x,V)}2, (3.13)

with respect to Ap and at each iteration updates the estimate of the warp as:

W(x,y;p)  <- W(x,y;  p) o W (x,y;Ap). (3.14)

The difference from the additive approach is that the new parameters of the warp 

are computed as a composition instead of adding Ap to p. The computational cost 

of the compositional algorithm is similar to the additive algorithm. Even though the
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Jacobian is only computed once at (x, y; 0), the Hessian has to be computed at each it-

eration. This is because it is still dependent on the parameters p, as the gradient of the 

image I is evaluated at W(x, y; p). We will now show how the Inverse Compositional 

algorithm overcomes that.

The Inverse Compositional algorithm minimizes the following function:

£ [T (W (x ,y ;A p )) -  I(W(x,  y; p))]2, (3.15)

with respect to Ap and at each iteration the warp parameters are updated as:

W (x,y;p) W(x,y; p) o W (x,y;A p)_1. (3.16)

The idea behind (3.15) and (3.16) is that the transformation p is applied to I as before, 

but the increment is applied to T. For example, let us assume that the warp is just 

translation: p =  [x\,y\]T, and the increment is Ap =  [Ax, Ay]7. Therefore, in the 

additive case we would transform the image I by: [x\ +  Ax, y\ +  Ay]7 and these will 

be the new warp parameters p in the next iteration. Here the image / is translated by 

p while Ap needs to actually translate T towards I by: Ap =  [—Ax, — Ay]T. Therefore, 

the update of the warp in the compositional approach is done using the inverse of the 

parameters increment. It can be thought as reversing the roles of the images I and T. 

If we represent the warp parameters in homogenous coordinates we receive:

W(x,y; Ap) =

( 1 0 Ax  ̂

0 1 Ay

V 0 0 1 /
W(x,y; Ap) 1 =

( 1 0 -A x   ̂

0 1 -A y

V °  0 1

(3.17)

So we see that the inverse compositional update role of (3.16) works the same as in 

the additive case.

Similar to the additive approach, we perform a first order Taylor expansion on 

(3.15) with respect to Ap about (x, y):

I  [T(W(x,y; 0)) +  V T— Ap -  I(W(x,  y; p ))]2, (3.18)
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and assume that W{x,y, 0) is the identity warp. The important observation here is 

that the Jacobian ^  is evaluated at (x, y; 0) as this is where the Taylor expansion was 

performed. Therefore, the Jacobian is a constant that can be computed once. This is 

similar to the Compositional algorithm. The solution to the least squares problem is:

Ap = H -1 £  [VT— ]T[Z(W(x,y;p)) -  T(x,y)], (3.19)

(compare to (3.11)), and the Hessian matrix is the same one as in (3.12) with the roles 

of I and T changed:

H =  E [ v r f n v r ^ ] .  (3.20,

As noted before, the Jacobian is fixed and computed at (x, y; 0). In addition the gradi-

ent VT is evaluated at W(x, y; 0). Therefore the Hessian H is not dependent on p and 

can be pre-computed and inverted once. At each iteration, only the following term is 

computed:

E  [V T ^ -]r [l(W(x,_V; p)) -  T(x,y)\ (3.21)

and the warp parameters are updated according to (3.16).

In [5], the equivalence between the inverse compositional algorithm and the for-

ward compositional algorithm is proved. In addition, the algorithm works best under 

the assumption that the change to the parameters Ap is small. This algorithm can be 

used to speed up our alignment procedure in a very similar way by changing the roles 

of the image and the template.

3.2.3 Feature-based alignment

A different approach to alignment is a feature-based method based on extracting vi-

sual features in each of the images and matching them. Such methods find local fea-

tures that are preferably invariant to translation, scaling and rotation and are distinc-

tive. Therefore, distinctive features are detected in two images. In some applications, 

we have prior information about our images, so the feature detection can be improved 

(for example, in images of a rugby field, we might be interested in lines indicating the 

distance from the goal-line). The coordinates of the matched features are used to com-
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pute the homography. Matching can be challenging as well, since we will usually not 

match all features, but only the strongest ones. However, we would not like to use 

outliers for matching, but choose only the best features. A simple approach will use 

RANSAC to iteratively pick up a number of matches and compute some measure of 

merit.

In the general case of two images without prior knowledge, a commonly used 

set of features is Harris corners [40]. A corner is defined as the location of a pixel 

which has a strong edge response in more than one direction. A corner is detected 

by centering a small window over a pixel and then shifting the window slightly both 

horizontally and vertically. The sum of differences of intensities of the pixels in the 

original window and the shifted window should be high in any direction the window 

is shifted. An edge does not satisfy this requirement as there is no change along the 

edge direction. A simple alignment algorithm will detect the strongest Harris corners 

in both images and match these coordinates. The matching is performed by looking at 

each Harris corner and matching its coordinates with a corner with similar dominant 

direction of the gradient in a nearby spatial location.

Another very common set of features is SIFT [80]. The approach produces a fea-

ture vector which is invariant to scale and rotation. First, keypoints are detected using 

a scale-space approach. At each scale, a set of images is produced by using the Dif-

ference of Gaussian (DOG) operator with varying cr. The transition between scales is 

done by convolving the original image with 2a and resampling the image. For each 

image in every scale, keypoints that are local minima or maxima are taken. They are 

detected by comparing each pixel in the DOG image to its immediate neighbors in 

the same scale and the two consecutive scales (26 neighbors). However, a lot of the 

detected pixels are edges, so a similar computation used to detect Harris corners is em-

ployed. Only pixels that have a small ratio between the eigenvalues of their Hessian 

matrix are kept. A high ratio usually means that the pixel has a dominant direction, 

thus probably an edge.

The feature vector is built by examining a region centered at the keypoint. The 

algorithm looks at a window of size 16 x 16, and divides it to 16 sub-windows of 

size 4 x 4 .  For each sub-window, an histogram of 8 bins is built, where each bin is
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related to the orientation of the gradients. A pixel is associated with a bin according 

to its gradient's orientation. The contribution of each pixel to the bin is a function of 

its gradient's magnitude, the distance of the pixel from the window's center and the 

current scale. The feature vector is built of the orientation histogram entries and is of 

size: 8 x 16 =  128. This vector is invariant to scale and rotation and it has been found 

that smaller feature vectors do not perform so well.

The SIFT features are computed on both images and a feature matching technique 

is employed to find the best homography. The closeness of two feature vectors can 

be defined by their Euclidean-distance. Approaches for matching include k-nearest 

neighbor techniques, k-d trees, RANSAC and more. When having multiple images, 

such as in a video, the features can be tracked over multiple frames to find the ho-

mography between all images in the video. Such approach is suitable even when the 

video has large changes between image frames.

3.3 Non-automatic methods to assess the tear film quality

In this section, I will discuss very briefly other methods to evaluate the tear film qual-

ity in images of the anterior of the eye. While there is an extensive work to build 

dedicated hardware to analyze the tear film or to manually collect clinical data, very 

few methods are automatic that do not require manual workload by a clinician.

In an interesting work by Bitton and Lovasik [10] that is clinically related to ours, 

the authors try to correlate the patterns of the rupture of the tear film to the symp-

toms of dry eyes. They note that the BUT is a single measurement that does not offer 

any qualitative or quantitative information about the form of the break. Therefore, 

analyzing the tear film as it changes over time as opposed to the single snapshot that 

reflects the BUT, can provide further information regarding the changes of the tear 

film between blinks. They perform the FBUT test and record the video. This video is 

digitized and analyzed by using an image editing software.

A clinician analyzes the video for the frame where the rupture of the tear film is 

fully developed and records this image. Then the following attributes are measured: 

the BUT, the location of the break using the CCLRU standards, the shape of the break,
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(a) (b) (c)

Figure 3.4: The shapes of rupture as defined by Bitton and Lovasik. (a) Streaks (b) Dots (c) Pools

the evolution rate of the break and the interval between the FBUT and the next blink. 

The possible shapes for the rupture pattern are: streaks, dots and pools. The authors 

assume that there is only one major break that has to be analyzed in every sequence. 

An example for the different rupture patterns is shown in Fig. 3.4.

In their analysis, the authors try to find a correlation between: the pattern of the 

break and the region it appears; the BUT and the break pattern; the time between the 

break and next blink (TBUT-to-Blink) and the break pattern; the total blink interval 

and the break pattern; and analyze the progress of the area of the break. Their results 
demonstrate that streak-line patterns are significantly different from dot-like patterns 

in terms of the BUT, TBUT-to-Blink and the time it takes the rupture to evolve.

The authors could not come to a conclusion regarding the repeatability of the break 

patterns, since they used a small sample of patients. More experiments are needed to 

improve the understanding of the tear film.

The main reason for bringing up this paper is to demonstrate the potential in fur-

ther analyzing the rupture patterns when using the FBUT test. The manual collection 

of such data and analyzing it by a clinician is a very time-consuming task. Proving 

repeatability requires recording hundreds of videos of patients with dryness symp-

toms, which are acquired over a period of time. In chapter 5, we show how all these 

symptoms are analyzed in an automatic way without the intervention of a clinician.

Begley and el. [7] analyze the size of the break in relation to the BUT and the total 

blink to blink interval. They performed the FBUT test on control and dry eye subjects 

and repeated the measurement three times. The BUT is detected manually by a clin-
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ician. The area of the break is highlighted, assuming that the break areas are darker 

than the relative fluorescence at that location. Finally, the size of the highlighted area 

is detected automatically by a software.

Their results show a strong correlation between the size of the break to the blink 

to blink interval and the BUT. Bigger break areas correspond to shorter blink to blink 

interval and BUT. In terms of the size of the break, control subjects tended to have 

discreet areas of break evolving slowly. Dry eye subjects showed rapid disruption 

of the tear film, with dry areas growing rapidly in size. These areas are on average 

bigger than those of the control subjects.

The method can be used in clinical trials to add quantitative data regarding the 

break size in addition to the BUT that is already measured by clinicians. However, 

the detection of the region of the break area and size is not done automatically. In 

the paper, it is assumed that the fluorescein distributes uniformly over the corneal 

area. An attempt to automate the detection of the dry areas in the image using this 

assumption will usually not work. In our experiments, we have found that different 

light conditions and uneven spreading of the fluorescein happen from time to time. 

Using a prior image of the relative fluorescence over the iris and looking at a difference 

image between the last image before the blink and the prior tends to fail. However, if 

we can create a reliable method to measure the amount of fluorescein throughout the 

video, it can be very useful in cases of uneven distribution or when it keeps spreading 

throughout the video. However, this is not an easy task.

Goto and Tseng [35] use kinetic analysis to investigate how the pre-corneal lipid 

film spreads and distributes. They record a video focusing on a certain area of the 

cornea using a dedicated device based on a biomicroscope (without instilling fluores-

cein). The video shows the speed and direction of spreading of the tear film between 

blinks. The first video frame where there is no noticeable movement of the film is de-

fined as the first stable image. This image is used to analyze the thickness of the lipid 

layer.

They discovered that the lipid film spreads vertically upward from the lower lid 

after the blink. The average spreading time for dry eye subjects was 6 times longer on 

average. Because of the slower spread, the resulting lipid film was found to be thicker
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on the inferior part than the superior part of the cornea for dry eye subjects. For non 

dry-eye subjects, the lipid layer thickness did not vary much between the inferior and 

superior parts. The results were computed using 17 dry-eye patients so a much bigger 

sample is needed before a conclusion can be made. Furthermore, the manual task of 

scanning every video frame for changes is a very tiring one.

To conclude, we showed a few recent non-automatic methods to evaluate the qual-

ity of the tear film. The methods use imaging of the anterior of the eye, but vary in 

the symptoms that are evaluated. The main difficulties are the manual labor required 

by the clinician, the added subjectiveness of any manual result and the need for a big 

sample to prove the clinical usability of a new device.
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Markov Random Fields and 

Graph-Cuts

Chapter 4

This chapter provides a short introduction to the graph-cut algorithm and its usage for 

binary segmentation of an image. The binary graph-cut algorithm finds the optimal 

partition of a graph to object and background (for a given cost function). We use this 

algorithm later in the thesis in chapters 6 and 8.

4.1 The labeling problem

We define the labelling problem in terms of random variables and labels. We denote 

the set of variables as:

X = {X1, . . . X n}(4.1)

and the set of labels as:

c = (4.2)

Each variable from X  can be assigned any label from £. Let x = {x\ , . . . ,  xn},Xi £ C 

be a set of of variables. We denote by the assignment of a label to random variable 

i. We are looking for a valid labelling that assigns a label from C to each random 

variable in X.

In binary segmentation applications, we would like to segment the image into 

object and background. In that case, each pixel in the image is a random variable in

57
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X  and the label set is:

C = {1,0}, or C = {object, background}. (4.3)

Each valid labelling assigns one of the two labels to all pixels, therefore segmenting 

the image into two individual objects. Computing the probability of such labelling 

is not easy, as images hold contextual constraints. Therefore, the variables are not 

mutually independent.

4.2 Markov Random Fields

The variables in X  are related to each other via a neighborhood structure A/". For 

each variable X, G X, a neighborhood M\ is defined as a subset of X. For example, 

in a 2D lattice (image), we can use a 4-connected or a 8-connected neighborhood. 

Then variable X, will have 4 or 8 neighbors respectively as shown in Fig. 4.1(a). The 

definition of a neighborhood states that a variable cannot be a neighbor of iteself, and 

that the relationship is mutual (if Xj G A/) then X\ G A/}). F is said to be a Markov 
Random Field (MRF) on X  with respect to a neighborhood system M  if the probability 

of every labelling is bigger than 0 and the conditional probability distribution of each 

random variable Xj is only dependent on its neighboring variables A/}. [14, 96].

For example, given an image I of size N x N, the location of each pixel is defined 

using two indices {x,y), such that its intensity is given by I(x,y). This can be con-

verted easily to an MRF:

1. A random variable is assigned for each pixel. The pixels can be enumerated 

in the order of scanning the image using two indices. Then the set of random 

variables is:

X — {Xi,i, X1/2, • • • XirN, X2/i, • • •, X2/n , . . . ,  XN/N_i, XN/N}.

2. The neighborhood N  of pixel (x, y) can be defined as a 4-connected structure: 

Nj = {(x — l,i/), {x + l,y), (x, y — 1), (x, y + 1)}. Alternatively, it can be seen 

as Nj = {left, right, up, down). In a 8-connected neighborhood, each pixel will



§4.3 Gibbs distribution 59

Figure 4.1: (a) Neighborhoods on a lattice. The 4-connected one is plotted using the black lines. The 8- 
connected one includes both the black and turquoise lines, (b) An example ofMRF over a lattice using 
a 4-connected neighborhood. The X j j ' s  correspond to the random variables (or pixels). For example, 
pixels Xj j and X;+1y are mutual neighbors.

have 8 immediate neighbors. A conditional probability is assigned to each vari-

able Xi, such that: P(X; = x,|X;- = xj; j ^  i) = P(Xj = x,\X j  = X f ,  j G N,).

Therefore, the random object X  is said to be an MRF on the lattice (x, y) with neigh-
borhood system J\f. Figure 4.1(b) depicts an MRF over a lattice using a 4-connected 

neighborhood. Each random variable X,-, has 4 neighbors.

4.3 Gibbs distribution

A clique c over a graph G = (V, E) is defined as a subset of the vertices V, such that 

all pixels in this subset are connected to each other by an edge. Thus, for all vertices 

and Vj in a clique c, there is an edge (Vj,Vj) G E. Note that a path between v\ to Vj is not 

enough for the vertices to be in c, but a direct edge is required. Using the definitions 

from last section, the notion can be extended to a lattice (image). When using a 4- 

connected neighborhood (see Fig. 4.2), the cliques are : (1) the pixel itself (unary 

cliques): C\ = {X/} (2) two neighboring pixels (pairwise cliques): Ci = {X,-,Xy}. 

Similarly, in a 8-connected neighborhood the maximum clique size is also 2, as the 

neighborhood structure can be seen as 8 individual pairs. We define the set C to be all
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Figure 4.2: Cliques on a lattice. The figure is similar to Fig. 4.1(a) with a larger lattice. The cliques 
of size two that include pixel (x, y) are plotted in yellow when using a 4-connected neighborhood. 
However, one can see that even when considering the 8-connected neighborhood, the maximum clique 
size is still two. Similarly, all cliques that include pixel {x + \, y), plotted in red, are also of size two.

the cliques in a graph.

A set of random variables X  is said to be a Gibbs distribution [34] with respect to 

a neighborhood J\f if the joint distribution takes the following form:

P(X =  x) =  t n « P ( - E c ( x ) ) .  (4.4)
^  c e C

In this equation x is a labelling assigned to the random variables in X ; The term Z 

is a normalizing constant; Ec is some energy function that depends on the values of 

the random variables of X, G c. In other words, for a given clique c G C the energy 

function Ec is only dependant on the random variables that belong to that clique. The 

whole equation states that the probability of a labelling x is defined as the product of 

energy functions EC/ where c G C is any clique defined in X. However, each energy 

function Ec is only dependent on the variables in the clique c and not over all possible 

combinations between variables (which would be a very large number even for small 

sets X).

The Hammerseley-Clifford theorem [34, 76] relates an MRF to the Gibbs Distribu-

tion: X  is an MRF with respect to fif if and only if the set of random variables X  is 

a Gibbs Distribution with respect to M. This is a very powerful theorem when used 

on lattices. In previous section, we showed how to define an MRF on a lattice with 

a maximum clique size of 2. Using the Hammerseley-Clifford theorem, we infer that 

any labelling x is computed as a product of energy functions, each depends on a max-
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imum of 2 random variables (two pixels). Therefore, the MRF presented in 4.1(b) is 

also a Gibbs Distribution with unary and pairwise cliques. The labelling problem is 

now defined as finding an assignment x which maximizes the probability (4.4). Taking 

the log of (4.4) returns:

logP(X  =  x) =  const — Ec(x).
ceC

Hence,

cirgmaxxP(X = x) =  argminx J2 Ec(x).
ceC

Thus, the best labelling can be found by minimizing the energy function:

(4.5)

(4.6)

I  Ec(x). (4.7)
C(zC

In the special case of cliques of size up to two, for example, when using a 4- 

connected neighborhood, (4.7) can be simplified. We denote E, as a cost function 

that depends only on one variable i, and E,; as a cost function that depends on two 

variables i and j, the labelling problem can be written as finding the minimum of:

E(x) =  £  Ej(xt) + Y. E i j (Xi ,Xj).  (4.8) 
iex (i,j)€Af

4.4 Pseudo-Boolean functions

Most of the material in this chapter can be found in [13], using slightly different nota-

tions. A pseudo-boolean function is a mapping from Bn, where B = {0,1} to the real 

numbers:

f : B n -+U.  (4.9)

The function /  has n variables, where each one can have a label of 0 or 1. Therefore, 

a real number is assigned to every combination of the n variables. The most simple 

way to represent a pseudo-boolean function is by listing all options in a table with the 

corresponding costs as in Table 4.1. The function /  is defined as the sum of all terms.
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*1 *2 value term
0 0 3 *1*2
0 1 -2 *1*2
1 0 4 *1*2
1 1 -5 *1*2

Table 4.1: A function of two variables and the corresponding posiform terms

For example, in Table 4.1, the function /  is:

/(* )  =  3*1*2 — 2 *1*2 +  4*1*2 — 5*i *2. (4.10)

Therefore, for a given assignment all terms but one will equal zero. For example, there 

are 4 ways to assign values to two variables X \  and *2, as listed in Table 4.1. However, 

for every given assignment, 3 out of the 4 terms in /  will equal to zero. It is dear that 

the minimum of the function is achieved when *1 =  1 and *2  =  1 as the function's 

value is —5.

We define a posiform as:

/(* )  +  (4.11)
i i,j

where My and Uj are literals (such as *y and *,), flo is a constant and all coefficients 

( f l y  and f l y y )  are positive. If all assignments to all variables of the given function /  are 

positively > 0 and flyy > 0), then the sum of the terms is a posiform. However, 

the function of (4.10) is not a posiform, since two assignments are negative. It can be 

adjusted to a posiform by changing literals to their complements to receive a posiform:

- 5  +  5*2 +  3*i *2 +  3*i *2 +  4*i *2 (4.12)

This term is a posiform, since all coefficients are positive except for the constant. Al-

ways all negative terms can be changed to positive in a similar way.

It can be shown that a quadratic cost function given by (4.8) can always be con-

verted to a posiform as in (4.11). Therefore, we can find the optimal labelling of (4.8) 

by finding the minimum of the equivalent posiform.
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(a) (b)

Figure 4.3: (a) A  graph of two variables. The cut here is marked by the red lines and its cost is -2. 
This function is submodular since all weights between pixels are non-negative (the negative weight 
corresponds to the const ao). (b) The graph after pushing a flow of 1 (and removing the edge from 0 
to 1). Edges with a zero weight are removed. The maximum flow is 1 (as no more flow can be pushed 
between 0 and 1), and the minimum of the function is achieved when x\ =  1 and *2 =  1, as seen by 
the partition of the graph

4.5 The graph-cut algorithm

First we show how to build a graph G from a given pseudo-boolean function /(x ) =  

f ( x \ , . . .  ,x n). We create a vertex for each variable and add two more vertices called 

terminals and denote them by 0 and 1. Therefore, in total we have n +  2 vertices. In 

addition there are certain edges with weights. A partition or a cut is defined as a 

division of the graph to two sets Vo and Vi. The vertex 0 always belongs to Vo and 

the vertex 1 to Vi. For a given labelling x, each variable can have a value of 1 or 0. 

According to their value, we associate the corresponding vertices to exactly one of the 

two partition sets. We define the cost of such partition as the sum of the weights of all 

edges going from Vo to Vi.

A function /(x )  is said to be simple graph representable if there is a graph, such 

that every assignment x of the function /(x ) equals the cost of the partition (cut). For 

example, assume the function in Table 4.1 and a specific labelling: X \  = 0 and *2 =  1.
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Therefore x\ belongs to the set Vo and xz to the set Vi. The aim is to show that it is 

possible to assign edge weights, such that when removing all edges connecting Vo 

and Vi, their sum equals / ( 0 ,1) = —2. Fig. 4.3(a), shows such a labelling. There are 

4 edges from 0 to 1 and by removing them we create a cut. The sum of these edges 

is —2 as required. We observe that the other 3 values associated with the labellings 

in Table 4.1 also equal to their corresponding cuts in 4.3(a). Thus, it is a simple graph 

representation of the function. Therefore, the cut with the minimum cost equals the 

minimum of the function. This is achieved when assigning X\ = 1 and Xz — 1 and the 

cut equals 1 + ( — 6) = —5. Further details on how to build the graph and to fill the 

weights of the edges can be found in [13]. It can be shown that it is possible to build 

such graph for every posiform in the format of (4.11).

The algorithm which separates the graph into two sets is called the min-cut algo-

rithm and is also known as the graph-cut algorithm. It has been demonstrated that the 

solution to the graph-cut algorithm equals the max-flow on the same graph. Max-flow 

can be computed efficiently using the Ford-Fulkerson algorithm [26].

A flow on a graph can be thought as pushing water through the edges of the graph, 
where each edge has a capacity iv,, which equals its weight. Every amount of water 

that is pushed in has to also get out. A negative flow from vertex u to v means that the 

actual direction of the flow is from i; to u. A permissible flow also requires that the 

amount pushed from vertex u to v is not higher than the edge capacity Wjj. Therefore, 

in order to have a permissible flow on a graph, the sum of weights between any two 

vertices must not be negative: zvuv T wvu > 0. Fig. 4.3(b) demonstrates the resulting 

graph after pushing a flow of 1 in the graph of fig. 4.3(a).

The requirement of having a permissible flow can also be written in terms of the 

costs used in (4.8). A quadratic function of the form of (4.8) is submodular, also called 

regular, if it satisfies the following condition:

E,7(0,1) + Ei7(1,0) -  El7(0,0) -  Ei7(1,1) > 0. (4.13)

This representation of submodularity also appears in [65], but is derived in a different 

way than the one shown here, based on re-parametrization of the graph. The require-
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ment in (4.13) states that the cost of assigning different labels to neighboring pixels 

should be higher or equal to the cost of assigning the same label.

The immediate consequence is that in order to solve the graph-cut problem, the 

graph representation of the function needs to have a permissible flow. In other words, 

the sum of weights between all vertices in the graph cannot be negative. Therefore, 

given an input image, a neighborhood with a maximum clique size of 2 (such as 4- 

connected neighborhood) and a binary label set such as in (4.3), the cost function can 

be converted to its simple graph representation form. A solution using the graph-cut 

algorithm can be found if and only if the function is submodular. We note that some 

non-submodular functions can also be minimized using different techniques such as 

the roof-dual algorithm presented in [13].

4.6 Graph-cuts extensions

The graph-cut algorithm has been used extensively in recent literature. This is mainly 

since the global optimum of many cost functions can be found in polynomial time. 

Some of the usages of graph-cuts include: segmentation [61,70,97], including medical 

images and 3D volumes [3, 15, 16, 36, 56, 119], stereo reconstruction [64, 123] and 

image restoration [114].

An extension to the original algorithm to segment a number of objects is given in 

[17]. The paper presents two algorithms named alpha-beta swap and alpha-expansion. 

The output of these algorithms is a segmentation of the image into a number of dif-

ferent labels (objects). Therefore, instead of running the binary graph-cut algorithm 

a few times on the image to segment multiple objects, these algorithms use the rela-

tionship between objects to produce simultaneously a multi-object segmentation. The 

alpha-expansion is a relatively fast algorithm, but is not guaranteed to produce the 

global optimum. However, in practice, the results have been shown to be very close 

to the optimum. I will further discuss the alpha-expansion algorithm in section 6.2.

Kohli and Torr present a way to reuse the graph-cut solution when a similar graph- 

cut problem has to be solved afterwards. They call their method dynamic graph-cuts 

[62]. In some labelling problems, we would like to change some of the parameters
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of the energy function to achieve a lower cost. Thus, the unary and pairwise terms 

can change for some nodes, but many nodes still retain their original cost. Instead 

of solving the problem again with the new parameters, the graph and the max-flow 

solution from the previous iteration can be reused to accelerate the computation.

Their solution first runs the max-flow algorithm on the original graph. Then in 

subsequent iterations, the solution uses the max flow obtained in the previous iter-

ation and further flow is pushed through the graph to obtain a new solution. Such 

operations can change the maximum permitted flow, but do not change the min-cut. 

Therefore, the labelling does not change as well and a more efficient solution can be 

achieved by reusing the previous flow.



Chapter 5

Automatic Dry Eye Detection

The Fluorescein Break Up Time Test (FBUT) (see chapter 2.3.2) is the test of tear film 

stability most commonly used by clinicians as it is minimally invasive [18]. A few 

improvements have been presented over the years including a method to control the 

amount of fluorescein instilled [69]. It has already been pointed out in [90] and [10] 

that using this test alone is not enough. Still in most cases, this is the only measure 

used by clinicians to diagnose dry eyes and to decide what treatment to give, even 

though the test has a few objective limitations:

1. High subjectiveness - The decision when the break happens is highly subjective 

and is dependent on the clinician.

2. No option to review - The clinician usually have only one opportunity to mea-

sure the FBUT .

3. Reproducibility - The FBUT test is not reproducible in terms of the amount of 

fluorescein instilled and illumination.

4. Inconsistency - Significant inter-observer and intra-observer differences in the 

measured FBUT between the qualified clinicians. This is different than the re-

producibility limitation, since the inter-observer variance is defined on the same 

videos using several clinicians (see subsection 7.1.1).

5. Record - No record of the examination is kept.

The main contribution of this chapter is the development of new methods and 

ideas to automatically measure a range of symptoms related to dry eyes. We have de-

fined a new value called Digital Electronic Break Up Time (DEBUT), which is clinically

67
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(a) (b) (c) (d)

Figure 5.1: Demonstrating the movement of the iris in a sequence even when the camera is mounted. 
In each of the images, the iris is drawn at the same location as it is in the first image.

equivalent to the BUT, but is defined in different ways based on temporal image prop-

erties. This value is not operator-dependent, reproducible and robust to illumination 

changes. It also enables one to carry out multi-center studies.

Our method creates a dryness image which depicts the different degrees of tear 

film thinning over the corneal area. Each connected area in the dryness image is ana-

lyzed to include its size, shape, location and progress. Dry areas near the upper and 

lower menisci are detected separately as they are clinically related to dryness origi-

nating from the tear reservoir. Bitton and Lovasik [10] investigate some of these cues 

over a sample of patients (see chapter 3.3). They show the importance of analyzing 

the rupture patterns of the tear film in conjunction with the BUT, but do not offer any 

automatic measures to do so. We provide this information as part of the analysis, but 

more importantly, it enables us to correlate the rupture patterns over a wide range of 

patients with the symptoms in an automatic way.

5.1 Demonstrating the difficulty

Before discussing our approach, I would like to demonstrate a few of the challenges 

any method that tries to detect the dry areas and the BUT faces. The main difficulty is 

also related to the most important feature of the camera: it is small and hand-held (see 

Section 2.3.3). It is very difficult to hold the camera still, such that the iris is located 

at the same location throughout the video. Furthermore, even in experiments where 

the camera was mounted on a stand, there was a significant movement of the iris, as 

the patient's gaze cannot always stay still for long periods. Fig. 5.1 shows 4 images
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(a) (b) (c) (d)

Figure 5.2: Demonstrating the challenge in segmenting the dry areas when the images are unevenly 
illuminated, (a) Image after the blink, (b) Image before the next blink. The arrows point to regions of 
dryness. (c) The image in (b) using a threshold of 50. (d) The image in (b) using a threshold of 47.

taken from a video sequence where the camera was mounted. The frame numbers 

are 0, 110, 262 and 400 - the last frame before the blink (25 frames per second). In 

the first image, the iris is detected and highlighted. In the rest of the frames, the iris 

is drawn at the same location as in the first frame. It is evident that the iris keeps 

moving throughout the video. When the camera is hand-held, the movement of the 

iris can sometimes span half of the image (depending on the image resolution and 

the iris magnification). Therefore, any algorithm that detects the dry areas and their 

progress needs to be able to track the iris over time.

The second challenge is related to the way the images are illuminated. If the pa-

tient looks straight into the camera, the camera is held still, the room has no external 

light sources and the fluorescein spreads evenly, the iris should be illuminated evenly. 

However, this is rarely the case. Quite often the camera is angled in relation to the iris, 

resulting in uneven illumination. The immediate consequence is that dark areas do 

not always relate to dryness, and even if they do, it does not necessarily show the de-

gree of dryness. Fig. 5.2 demonstrates such a video: part (a) is the image immediately 

after the blink. One can see that the inferior (lower) region is darker than the superior 

(upper) region. Part (b) depicts the image before the next blink. The arrows point 

to regions of break. The images have been converted to gray-scale using intensities 

from 1 to 255. Parts (c) & (d) of the figure show the last image after using a threshold 

of 50 and 47 respectively and the iris is highlighted. In part (c), big chunks of non-

break areas are included in the inferior part (possibly there is some degree of thinning 

there). In part (d), most of the dry areas are segmented, but some small break areas
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(a) (b) (c) (d)

Figure 5.3: Demonstrating the difficulty in detecting the exact timing of the BUT. (a) First image after 
a blink. Images after aligning the iris at times: (b) 1.5 seconds (c) 3 seconds (d) 7 seconds. The images 
at these times correspond to different values of BUT given by clinicians.

in the superior region are already not included. Small regions are also incorrectly 

segmented in the inferior part. This example demonstrates that sometimes even the 

optimal threshold cannot segment these areas. Furthermore, only a slight increase of 

the threshold (from 47 to 50) results in a wrong segmentation.

Finally, I will demonstrate one (among many) challenges in detecting the accurate 

time of the break. Clinically, the BUT is defined as the time when dark spots appear. 

Fig. 5.3 shows 4 images taken from a video where the iris has been aligned (so the 

iris appears at the same location and size) at times: 0, 1.5 seconds, 3 seconds and 7 

seconds. The length of the sequence is in total 14 seconds. Looking at the images it is 

clear that some areas are becoming darker and there is a break. For example, the pixel 

marked with an V  has the following intensity in the four images: 66, 52, 42 and 35. 

Clearly this pixel shows steady decrease in intensity and increase in the degree of the 

break. However, is the BUT occurring at the time of the second image, third image or 

the fourth one? To add to the confusion, these images are related to actual break up 

times (BUT) given by three different clinicians! The difficulty in this sequence can be 

described as how one can objectively estimate blackness. In addition, the following 

question arises: is the BUT defined as the time when an area starts to get darker or as 

the time it does not become any darker?.
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5.2 The algorithm in brief

The dry areas always appear as darker areas on the iris in the fluorescein image when 

compared to the same spot in previous images. As demonstrated in the previous 

section, the method needs to handle the movement of the iris and find an objective 

value for the BUT . Given the recorded video, the algorithm is based on three main 

steps:

• Accurate detection of the iris and eyelids in the first frame of the video. Then 

the iris is detected in the rest of the images using the location of the iris in the 

previous image and a fast minimization method.

• Alignment of the images - The aim is to create a video where the iris is at the 

same location and size throughout the video. Using the estimated location of 

the iris in each image and the grey level values, the iris is aligned to the iris in 

the previous images. In the output video, dry spots should appear at the same 

location throughout the video.

• Segmentation and analysis of the break area and computation of the break up 

time. Images from the beginning and end of the aligned video are analyzed 

to create dryness images of the dry areas and regions near the tear reservoirs. 

Then, the whole video is scanned to find the accurate timing of the BUT and to 

analyze the progress of individual break areas.

5.3 Detection of the iris and eyelids

The images of interest in the video are those between two consecutive blinks. All 

captured videos are of resolution 352 x 288. We call such a set of images a sequence. 

To that end, we first find all the blinks and incomplete blinks and treat each sequence 

individually. A sequence start is defined as the frame where the upper lid upward 

motion stops. A sequence end is defined as the frame where the upper lid downward 

motion starts. Blinks are usually easy to detect, as a few consecutive images will 

have big differences in intensity. An incomplete blink happens when the upper lid's
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(a) (b) (c) (d)

Figure 5.4: (a) Threshold image of the first frame in the sequence (a) using Canny, (b) using Sobel. 
(c) Magnitude image of (a). Notice that the strongest gradients belong to the eyelids and noise and 
not necessarily to the iris, (d) Last frame in the sequence using Canny. The noise is quite noticeable 
especially at the last frame. Also notice the double edges for the eyelids.

downward motion stops before covering the whole iris area. They are usually harder 

to detect as they last only for a few frames. After an incomplete blink, it is still of 

interest to measure the time passed until a full blink happens, even though dryness in 

some areas is less relevant.

Given an image I(x, y) after a blink, we create an edge map E(x, y) of the image 

using the Canny edge detector. The value of each pixel is the magnitude of the gra-

dient. We found that Canny produces the best results, mainly due to the smoothing 

which connects the edges and the removal of noisy disconnected areas as seen in Figs. 

5.4(a&d). The parameters for the Canny have been learnt from using a set of videos, 

but are adjusted at runtime. See the comment at the end of this section. The superior-

ity of the Canny over the Sobel edge detector is shown in Fig. 5.4(b). The Sobel image 

includes much more noise and less smoothing.

We create 3 threshold images of the iris, the lower eyelids and the upper eyelids 

using 3 different thresholds:

kr\s(x,y) = (E(x,y) > T\)

4>w(*/y) =  (£(*,y) > t 2) (5.1)

kip{x,y) = (E(x,y) > T3)

We use T\ < T2 < T3 as the edges of the eyelids are usually stronger than the border 

of the iris, which is fuzzy due to the fluorescein spreading. The eyelids tend to have
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strong bright edges due to the fluid found in them. Usually, the upper eyelids will 

have stronger edges than the lower eyelids. This is clearly visible in the magnitude 

image in Fig. 5.4(c). The brightest pixels are the strongest gradients and they mostly 

belong to the eyelids and not to the iris. Thus, performing a direct fitting to the iris is 

impractical due to the high ratio between the inliers (the iris pixels) and the outliers 

(everything else), see Fig. 5.4(a).

To overcome the aforementioned problems, we first fit a polynomial of degree 2 

to the eyelids. In most cases, it is an adequate fitting, as we are mainly interested in 

the iris area. The eyelids can curve more in the conjunctival area where a polynomial 

of degree 2 is not enough. To that end, we use RANSAC [41] with three parameters 

(a,b,c) to fit a polynomial ax2 +  bx + c to /up and I\ow. As we expect the upper eyelids 

to be concave and the lower to be convex and the curvature to be small we require 

that a > 0 and b < 0 for upper eyelids and a < 0 and b > 0 for lower eyelids and also 

0.001 < |fl| < 0.01. At each iteration, three points are sampled and a vector R{i) of 

residuals is returned, where i is a pixel in the threshold edge image. If a pixel i falls 

on the estimated curve, we assign R(i) =  1 otherwise R(i) — 0. The confidence value 

returned by the RANSAC is therefore the sum of the values in the vector R.

However, as depicted in Fig. 5.4(d), a few curves for the eyelids can exist. We 

would like to make a fitting to the closest curve to the iris in order to avoid including 

the high intensity pixels of the eyelids. To that end, for a given estimation of the 

eyelids, the objective function searches whether a similarly shaped curve (or only a 

partial curve) exists above or below it. For example, for the upper eyelids, we penalize 

the objective function if a curve is detected below it. We credit the objective function if 

a curve is detected above it. Therefore, the lowest closest curve to the eyelids should 

score higher. Similar arguments hold for Iiow as well.

The pixels above and below the upper and lower eyelids respectively in 7iris are 

removed. The resulting image is shown in Fig. 5.5(a). It can be seen that the iris is 

more prominent in the image, although a fair amount of noise still exists.

In order to fit a circle to the remaining pixels, we use RANSAC with three param-

eters (x, y, r) and sample three points at each iteration. Similar ideas to the eyelids 

fitting are used, imposing restrictions over the points distribution and limiting the ra-
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(a) (b) (c)

Figure 5.5: Results for fitting the iris and eyelids, (a) The image of Fig. 5.4(a) after removing the pixels 
above upper eyelids and below the lower eyelids (b) Pixels chosen by LM for the iris fitting (in white). 
The black pixels near the lower eyelids have been chosen, but then removed, since they are detected as 
part of the eyelids, (c) The fitted curves to the eyelids and the iris. The eyelids curves fit correctly in the 
area of great importance - near the iris

dius to the expected range of the iris's radii. In our videos, the expected range of radii 

for the iris is between 96 to 144 pixels for over 95% of the patients.

After the iris has been detected, we use the Levenberg-Marquardt(LM) [41] al-

gorithm by iteratively minimizing a non-linear function for fitting a circle. Before ex-

plaining how the LM minimization works, we note that it serves us for two distinctive 

tasks:

• On the first image, we use it to fine-tune the initial estimation of the iris.

• In the rest of the video, it serves as a form of iris tracking. For each image 

in the sequence, we would like to efficiently find the iris. Its location in the 

previous image serves as the initial guess for the LM algorithm. Since, we do 

not expect drastic movements of the iris between consecutive image frames, the 

LM algorithm converges quickly. The time-consuming RANSAC is used only 

for the first image, while for the rest of the sequence, only the much faster LM is 

being used.

The LM minimization works as follows: The initial estimation (*o, yo/ h)) is the one 

found for the iris in the previous image (or in the RANSAC step for the first image). 

We define the maximum error e to be a few pixels, usually around eight, and then 

bound our search area only to pixels that lie in the annulus formed by the circles of
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Figure 5.6: Explaining the LM minimization: The image in the figure is from the sequence used in 
Fig. 5.4(a) and (d). The red circles show the bounded area that is searched for pixels in (5.2). The 
angles oc\ and ocj are the angles of intersection between the eyelids and the iris. They limit the search 
area to the arcs between the intersection points. The strongest pixels found using (5.2) in this region 
(ROI2 ), are used in the LM minimization step: (1) for the first frame to refine the current parameters 
of the iris. (2) to track the iris throughout the video. Therefore, the same ideas are used for the first 
frame and for the rest of the frames throughout the sequence.

radii ro — e and ro + e and the center (xq, yo), as depicted in Fig. 5.6. However, since 

the iris is usually only partly visible because of the eyelids, we can further limit our 

search area. The angles oc\ and a.2 between the estimated iris and the upper and lower 

eyelids are computed. This creates a region bounded by two arcs for each side of 

the iris. We define the following cost function to estimate the strength of each pixel 

(xk/ yk) £ ROh in this region:

*/>(**/ yk) = M(xk/yk) + L{xk/yk) + \D{xk/yk)\ (5.2)

The term M(xk, yk) is the magnitude of the pixel in the edge map. Using the magni-

tude only is not enough, as quite often noise on the conjunctiva has higher magnitude 

than the iris's pixels. To that end, we also compute L(xk/yk), which is the length of the 

8-connected segment the pixel belongs to. Our main assumption is that the iris con-

sists of long connected segments at each half circle, while noise usually have shorter 

connected regions. The eyelids can also have long connected regions, but they are
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usually not included in the search area because they were removed earlier. Finally, 

the term \D(xk, yjt)| is the absolute value of the Euclidean distance of the pixel from 

the iris. The value of D(xk/ yk) is negative when the pixel is inside the iris and positive 

when it is outside the iris and is defined as:

D(xk, y k) = y j (x0 -  xk)2 +  {y0 -  yk)2 -  r (5.3)

Assuming that the iris has not moved significantly, the term will avoid digressing far 

from the current estimation. This is usually more important when searching for the 

iris throughout the sequence as large movements of the iris do not occur often. Bad 

fluorescein spreading or long connected edges parallel to the iris as seen in Fig. 5.5(a) 

in the right side, can be thought as part of the iris. In these cases, the term will penalize 

such fittings.

All the edge pixels are sorted according to the cost function xJj ( x , y )  and the strongest 

150 are taken for the LM minimization. The choice of this parameter is based on the 

fact that the diameter of the iris in most of the population ranges between 9mm and 

13mm. In our scaled image, it is correlated to a diameter of 96 pixels to 144 pixels. 

The visible area of the iris in our videos (not covered by the eyelids) is on average 

85% of the iris area, so the number of pixels on the its perimeter range between 256 to 

384. Therefore, on average we take every second pixel and denote this set of pixels as 

ROI2.

The parameter to be minimized by the LM algorithm is the vector (xo, yo, ro) (the 

iris coordinates and radius). At each iteration, the LM algorithm computes the sum 

of squares of the distance of each pixel in ROI2 to the current estimate of the iris. In 

order to limit the penalty of outliers, we use the Huber distance [41], so the penalty 

above a threshold e becomes linear with respect to e. The penalty function is defined 

as follows:
X 2 — £ <  X  <  £

fd(x) = < £2 +  2e(x — e)

£2 +  2e(—x — e)

X  >  £

X  <  —  £

(5.4)

At x  = £, the function equals £2 and is continuous. The first derivative is also con-
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tinuous at x =  e as f ' (x~)  — 2x — 2e and / '( x + ) =  0 +  2x +  0 =  2e. Similarly, the 

function is continuous and differential at — e. As the LM algorithm computes the sum 

of squares of the distances, the square root of (5.4) is used:

Dh(x) = yjfd(x) =

x —e < x < e

y/(2x — e)e x > e

- y / ( —2x — e)e x < — e

(5.5)

We notice that the function D/,(x) is continuous and differential for all x. Finally, for 

each pixel (xk, yk) G ROJ2, we would like to assign a penalty according to its distance 

D(xk, yk) using (5.5). Thus, the LM algorithm minimizes the following function:

min £  [Dh(D(xk, y k))]2. (5.6)
( * o ,y o ,r o )  ( x k, y k) € R O I 2

Using the Huber distance makes the penalty linear above the threshold e, avoiding 

quadratic penalties to faraway outliers. The result after running the LM algorithm 

showing the chosen pixels is depicted in Fig. 5.5(b). The cost function of (5.2) keeps 

track of the iris even when a major movement happens and will converge to the cor-

rect location of the iris after a few video frames. We note that in such cases, the de-

tection of the iris is incorrect for a few frames. However, our main goal is not iris 

detection, but analyzing the break pattern. Furthermore, we show in this chapter and 

the following one, that our segmentation technique handles correctly such cases by 

ignoring video frames that do not fit into the clinical definition of dryness.

Fig. 5.5(c) shows the final fitting results for the iris and the eyelids. If the detection 

of the iris fails, the thresholds used in (5.1) for the detection of the iris and the eyelids 

are adaptively updated. Failure in the fitting is declared when: (a) There are not 

enough pixels in the edge image used for fitting the eyelids. This can happen if the 

thresholds are too high; (b) The spreading of the pixels found by the LM algorithm 

over each half circle of the iris is not even; (c) The centers of the two opposing arcs of 

the iris are not closely opposite to each other.
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5.3.1 Difference from other iris detection approaches

In chapter 3, several iris detection methods have been described. Although none of 

them has been used on fluorescein images, they still share some similarities with our 

method, such as circle detection and fitting a parabola to the eyelids.

One noticeable difference between other approaches and our algorithm is that we 

first detect the eyelids and only as a second step detect the iris. The reasoning behind 

is that the eyelids usually have the stronger edges in the image due to the fluorescein 

instillation, which makes the borders of the iris weak. Our approach is based on 

several unique key points:

1. Detecting the eyelids limits the search region for the iris in the first phase. We do 

not assume any prior information regarding the pupil or the iris being centered.

2. The intersection points between the eyelids and the estimated iris bound the 

search area in the LM optimization phase. Thus, we make no assumption re-

garding what percentage of the iris is not covered by the eyelids.

3. It is only important to detect correctly the eyelids in the iris area. Therefore, if 

the eyelids curve strongly in the left or right sides, it will usually have no effect 

on the region that borders the iris.

4. The LM algorithm is the only part of the algorithm that is used to detect the iris 

in the rest of the video (after the first image). Since the iris has to be detected 

on average in 100 video frames, the LM algorithm can be thought as a fast iris 

tracking algorithm. This idea is quite different from approaches that use the 

same method to detect the iris in consecutive images.

Finally, we show some of our segmentation results in Fig. 5.7. Six images were 

chosen from a data-set of 79 videos to depict the various cases. Each image in the 

figure is the first image of the relevant sequence (after the blink). Parts (a)-(c) of the 

figure show images where the iris and the eyelids are correctly detected. In part (d) 

the iris is not centered but is detected correctly. Part (e) shows a challenging image 

where the eyelids are irregular (folds grade 3), but the iris is segmented correctly. We



§5.4 Computing image Homography 79

have managed to detect the iris in all but one image. This image is depicted in part 

(f), where only a small portion of the iris is visible in the right hand side. We note 

again that the iris fitting is only the first step of the dryness algorithm and correct 

segmentation results can be achieved even if the fitting is slightly wrong. In addition, 

the exact fitting of the eyelids is only important in the iris region (unlike in chapter 8 

where we segment the tear meniscus).

5.4 Computing image Homography

After locating the iris in each of the images, it is possible to align the images over the 

iris area. The need for such alignment is demonstrated in Figures 5.1 & 5.10. In the 

previous section, we described how the iris is detected in each of the image frames 

and parameterized as a circle. Therefore, it is possible to perform a straightforward 

alignment from circle to circle. Such alignment has only three parameters: translation 

(tx, ty) and scaling (s). This is to due the fact that the circle has to be scaled equally in 

the x and y axes and is invariant to rotation (we will handle the rotation of the images 

later). The translation is due to movements of either the iris or the camera. The scaling 

occurs due to the clinician moving the camera forward or backward. Even when using 

a headrest, small movements of the chin result in change of scale. We align each image 

in the sequence to the first image. For example, assume the circle in the first image 

is parameterized as (xo,yo/ro) and in the current frame as (x\,y\,Y\).  The scaling is 

defined as s =  Yi / yq and the translation vector as [x\ — Xq, y\ — y$\.

The resulting aligned video is usually not aligned properly on the horizontal axis 

and when playing the video (of aligned images), it seems like it suffers from minor 

shaking. To that end, a second alignment is implemented.

The need for a second alignment is due to two main reasons. Firstly, there is still 

rotational ambiguity that needs to be resolved. The portable camera is free to move 

in the 3D space, so rotation is expected. Aligning the iris's circles (as in the first step) 

cannot resolve this ambiguity. Secondly, parts of the iris are not visible because of the 

eyelids. Thus, it is possible for a few different circles to fit to the iris.

The idea is to take the first aligned video as an input and then align by using
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Figure 5.7: Results of segmenting the iris. The figure shows 6 segmentation results of the iris. The iris 
is covered in varymg degrees by the eyelids. In part (c), a major part of the iris is covered and a larger 
portion of the iris is visible in the right side compared to the left side. In part (d), the iris is not centered 
and has weak edges. In part (e), the eyelids are irregular and most of the iris is visible. Part (f) shows an 
image where the iris is incorrectly detected. The reason is the lack of edge information in the right hand 
side. It can be seen that the eyelids and regions on the conjunctiva have stronger edges than those of the 
iris. The detected iris follows edges inside the iris. Notice the difference in illumination between the 
figures, the patterns the fluorescein spreading creates over the iris (which result in spurious edges) and 
the evident noise created by the texture on the conjunctiva (especially in parts (d)and (e)).
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the grey levels of the iris area to find the best homography between images in the 

sequence. We would like to find the best homography Hx between two images which 

minimizes some criterion as detailed next. The result of applying this homography 

should be a sequence where the iris is located at the same location with the same 

radius throughout the whole sequence.

5.4.1 Our alignment procedure

We will now present our alignment algorithm which is based on the Lucas-Kanade 

algorithm (see section 3.2.1). Given the vector of images, every few consecutive im-

ages are treated as a block. The first image in the block is aligned to an image in the 

previous block and the other images are aligned to the first image in the block. The ra-

tionale behind alignment in blocks is to avoid accumulating error. If the images were 

aligned to the first frame in the sequence, large translation and scaling factors might 

accumulate, breaking the assumption of a small change from the previous image. The 

alignment in blocks produced better results than aligning to the previous image, as it 

is possible to recover from temporary errors. The alignment procedure is as follows:

1. Initialize the homography matrix Ho to be the identity matrix. Since we are 

interested in translation, scaling and rotation, the matrix has five unknowns. 

Define the initial region of interest (ROI) as the area that includes the iris and 

the eyelids. The eyelids differ in grey level from the iris and help the alignment 

process.

2. The homography Ho is used as our initial guess. A pyramid of scaled images for 

both images is built as seen in Fig. 5.8. The most coarse scale can be an image 

as small as 32 x 32 and the finest scale is the original image. For each scale, the 

best homography is found starting from the most coarse scale. Moving towards 

finer scales is done by rescaling the transformation parameters and the ROI.

The usage of a scale-space approach has the benefit that we already have a rough 

estimate of the homography from the previous stage. In the most coarse scale, 

this estimate is usually quite accurate, so the algorithm converges quickly. When 

moving towards the finest scales, the change in parameters is small, so again the
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computation is fairly simple and converges quickly. Furthermore, in the coarse 

levels, the noise has less effect as the images are highly smoothed. Finding the 

homography parameters for the finer scales converges quickly since the initial 

estimation H from the previous scale should be almost correct.

3. Compute the homography between images j and k by minimizing:

C(H) =  £  ( / P - / £ ) 2 (5.7)
xeROi

where x is a pixel in image j, H i is the transformed location of pixel x in image 

k, and 1^ and are the intensities of these pixels in the corresponding images.

One can see that (5.7) is exactly the same expression being minimized by the LK 

algorithm in (3.5).

4. Use the identity matrix if the homography computes a large scaling factor. This 

should only happen in the unlikely case when there is a drastic change between 

the images. By using the identity matrix, we basically assume that no change in 

the radius of the iris or coordinates has happened between the images and thus 

that the computed homography is incorrect. We explain below when this might 

happen.

5. The process is repeated for every image in the sequence.

In step 3, the best homography C(H) is computed. This can be done by the LK al-

gorithm. However, our minimization method uses instead the Levenberg-Marquardt 

(LM) non-linear optimization method. The LM algorithm is an iterative optimization 

method that alternates between Gauss-Newton and gradient descent methods. At 

each iteration of the LM algorithm the input vector is the set of parameters to be min-

imized (5 parameters) and the output vector (residuals vector) is some measurement 

of the accuracy of the current parameters. In our case, the output vector is of length of 

the number of pixels in the ROI and each entry equals to (L^ — J^]), which is just the 

difference in intensities between corresponding pixels in images j  and k. The LM al-

gorithm computes the sum of squares of the values in the residuals vector (5.7), which
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Image J Image K
Minimize 0(H) 
using LM

1
Minimize 0(H) 
iisma LM

l
Minimize 0(H) 
using LM

Figure 5.8: Explaining the coarse to fine alignment using the LM algorithm. The images correspond 
to frame numbers 100 and 104 in the sequence used in Fig. 5.1. In this figure, 4 scales are used, where 
the most coarse image is 1/8 of the size of the original image. A t each scale, LM is used to find the best 
homography H. Then the images and the homography are rescaled and the rescaled homography is used 
as the initial guess at the finer scale. The homography H found at the finest scale is used to align these 
two images and the process continues for the next frames.

results in a value that defines the quality of the current homography. According to 

this value, the algorithm estimates an updated parameters vector (by modifying the 

damping term) to be minimized in the next iteration. The algorithm converges when 

the change in the parameters vector or the magnitude of the gradient of the term in 

(5.7) is below a threshold.

The term in (5.7) minimizes the difference in intensities between two images over 

the region of interest. Translation of the iris over the image and gradual scaling will 

not result in big differences between consecutive frames. However, when a movement
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of the upper eyelids happens, such as further opening upwards or making an incom-

plete blink, a large area becomes immediately brighter or darker. The homography 

can incorrectly compute large or small scaling factors, where in practice no change in 

scale has happened. This is a known problem with the LK algorithm which struggles 

to converge to the correct answer when the change between two images is large. In 

such cases, the identity homography is used instead in step 4. If the opposite move-

ment happens quickly then (5.7) will compute a correct homography again. In such 

cases, as in the sequence chosen for Fig. 5.10, where an incomplete blink is shown 

in Fig. 5.10(b)), temporarily using the identity matrix is correct and the alignment 

process will converge quickly to the correct iris parameters. If the eyelids move is a 

lasting one, such as moving upwards the upper eyelids without closing them until the 

next blink, the alignment error will be resolved once the alignment algorithm starts a 

new alignment block. The image from the new block is aligned to an image from a 

previous block (after the move has happened), basically ignoring the move and pro-

ducing a correct alignment. Thus, the erroneous alignment is only for a few frames 

between two consecutive blocks.

To sum up, given two images, we first align the images using the location of the iris 

at each image. The mere purpose of this step is to perform a quick and easy alignment 

process, even if not perfect. This step provides initial guidance to the next alignment 

step and helps speeding up the minimization process. Then, we perform a second 

alignment based on a scale-space version of the LK algorithm and minimizing the cost 

function at each step with the LM algorithm. The alignment starts from the coarsest 

scale towards the finest scale at both images. Upon converging, the homography 

parameters and the region of interest are rescaled. The transformation is applied on 

the image to be aligned in the finer scale. Then we run the LM algorithm again at 

successively finer scales until reaching the finest scale. The output parameters of the 

finest scale define the best homography. The process repeats for the next two images 

of the sequence.

The importance of the alignment step should not be underestimated, but it is diffi-

cult to show the results of an alignment unless it is shown in a video. Fig. 5.9 demon-

strates the effect of the alignment on the sequence of Fig. 5.1. The iris was automati-
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(a) (b) (c) (d)

Figure 5.9: Result of the aligned video of Fig. 5.1. In each of the images, the iris is drawn at the same 
location as it is in the first image. Compare the result here with the one in Fig. 5.1 to see the effect of 
the alignment.

cally detected in the first image in the sequence, see Fig. 5.9(a). Then, we took three 

additional images from the sequence (figs (b)-(d)), and manually plotted a red circle 

at the same location as it was plotted in the first image. We can see that the alignment 

process worked correctly since the red circle surrounds correctly the iris in each of the 

images (with a very small misalignment in the upper right hand side). Compare these 

results with those of Fig. 5.1 to see the importance of the alignment.

Fig. 5.10 shows the averaged images over a sequence which has a break. The 

image in part (a) is the first image in the sequence and in part (b) the last one. The 

non-aligned image in part (c) is completely blurred and cannot provide information 

regarding the dry areas. It is expected since the camera is hand held and the patient's 

gaze can move. The averaged image of part (d) has much less blur in the iris area as a 

result of a successful alignment.

5.5 Segmentation of the dry areas

After the video has been aligned, it is possible to detect the dryness symptoms. The 

general idea is to scan the vector of aligned images and gather local information re-

garding the change of intensity of each pixel in the iris and global information to relate 

each pixel to the iris properties. An outline of the segmentation algorithm is given be-

low and elaborated in the next subsections. It can be roughly divided into two main 

parts: 1) creation of the dryness image I(x, y), which is the base for further analysis, 

at lines 6-9. 2) temporal analysis of the video at lines 10-18: a new measurement called
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Figure 5.10: Since the camera is hand held and the iris can move, it is necessary to align the video: 
(a) image after a blink (b) image before the next blink. The sequence is chosen to show the effect of an 
incomplete blink, as a series of 3 brief incomplete blinks happened before the full blink. The averaged 
image of 96 frames from the (c) non-aligned video (d) aligned video. The non-aligned result is blurred, 
and the iris spans over a large area. It also shows that the dry areas cannot be detected without aligning 
the images or by just taking the difference between images (a) and (b). The aligned result still shows 
some of the dry areas that formed on the lozver part, and the upper eyelids are intact even though an 
incomplete blink has occurred.

DEBUT, which is correlated to the clinician's BUT, is defined and computed (see sec-

tion 5.5.2) and each break area is analyzed for its temporal progress. The algorithm is 

given as follows:

Algorithm Find Dry Areas

Input: A vector of n aligned images between two consecutive blinks.

Output: Dryness images of corneal break and black line. Digital Electronic Break up Time 

(DEBUT).

1. Initialize DEBUT: V(x>y)T(x, y) =  n 4-1 (No break for all pixels).

2. Given the first image I\, define RO/3 as the set of all the pixels of the iris.

3. Divide the set RO/3 into 3 subsets: upper eyelids, lower eyelids and comeal area.

4. Calculate the average intensity for each of the three areas. (* To be used later for the 

creation of the dryness images and the computation of the black line. *)

5. Repeat lines No. 2-4 for the last image In.

6. for each pixel (x , y) G RO/3

7. Calculate the terms used to estimate the pixel's degree of thinning: F(x,  y)  and 

B( x, y)  (* See below *).

8. Calculate the final dryness value I(x,  y)  (* See below *).

9. Find black line in the first and last image.

10. for each pixel (x, y)  G RO/3

11. for each image t <— 1 to n
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12. Compute the pixels' current dryness intensity h(x,y) based on the t first 
images.

13. if rt(x, y) is higher than the break threshold Bj and T(x, y) > t
14. then T(x, y) <— t (* Update the DEBUT for the pixel *)
15. if a pixel with a break T(x, y) < t further decreases in intensity
16. then T(x, y) <— t
17. Analyze dryness image for individual break areas and their progress.

18. Find DEBUT and cause (corneal dryness, upper or lower eyelids) and statistics.

5.5.1 Producing the dryness images

The dryness image is an image which shows the degree of dryness for each pixel in 

the iris area. An intensity value l{x,y)  is calculated for each pixel, which is related 

to the degree of thinning . The higher the value of I(x, y), the drier it has become. A 

pixel with an intensity above Bj  is a pixel with a full thickness break (a break). The 

value for Bj  has been chosen to be close to the maximum intensity of a pixel for clarity 

of presentation. Therefore, in the dryness images, see example in Fig. 5.11(e), break 

areas appear as very bright regions. Areas which depict some thinning of the tear film 

are grey and areas with no thinning are black.

Once the value for Bj  has been fixed, the rest of the computations are adjusted 

according to it. Therefore, on one hand, the value of Bj  has a significant importance 

as it determines which pixels have a break. On the other hand, the actual value is 

not that important as it was set early on, and all computations, such in (5.8) and (5.9), 

were adjusted to its value. For example, the constant To in (5.9) has been set using 

learning videos. However, the learning process is dependant on the pre-defined value 

of Bj,  as in order to perform the learning correctly, it needs to know when a break has 

happened.

In line 4, the average iris intensity in the first image, Aj\  is computed. The brightest 

1/8 pixels are omitted from the calculation, as errors in the alignment, the bright two 

circles in the iris area (see Fig. 5.10 for an example) and the inclusion of parts from the 

eyelids (very bright pixels) can bias the result. The choice of this value (1/8) is based 

on approximating the ratio between the wanted and unwanted pixels in images taken
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immediately after a blink. The dryness image is computed as follows:

I(x,y) = F(x,y) + B{x,y) (5.8)

1. The term F(x, y) is the mean difference in intensity between the first rid images 

and the last rid images multiplied by a normalization factor:

F{x,y) =  T̂p/ Aj^  [ £  Ik(x,y) -  £  h(x,y)] (5.9)
^ k= 1 k= n—«d +  1

This term is the more important one out of the two in (5.8). The reasoning for 

using differences in intensities is straightforward, as dry areas have to appear 

darker in images towards the end of the sequence compared to images in the 

beginning of the sequence. We use a value of rid = 4, so F(x, y) is not based on 

a single image and thus less sensitive to a temporary misalignment of the pixel.

As the average intensity for the iris can be as high as 150 or as low as 60, F(x, y) 

is computed relative to the iris average intensity by dividing by An.  A low 

value of An results in a fast increase of I(x,y), for every small decrease in the 

pixel's intensity. A high value of An  results in a slower increase of I(x,y) for 

changes in the pixel's intensity. Therefore, images which are initially darker are 

more sensitive to small changes in intensity throughout the video.

The second constant To normalizes the degree of thinning relative to the con-

stant Bj. Its value has been set through learning by comparing to manual seg-

mentations of dry areas and the BUT values provided by an optometrist. Its 

value is set to a value higher than the brightest iris average: (To/An) > 1.

2. The bonus map B(x,y) relates the pixel initial intensity to the iris initial aver-

age intensity. It is used to compensate for pixels whose initial value is lower 

or higher than the average value. In order to explain this idea, let us simplify 

matters and assume three pixels on the iris with the following decrease in in-

tensity: pi : 120 —* 90, p2 : 100 —» 70 and p3 : 140 —> 110. All three pixels 

have the same absolute change in intensity, therefore F(x,y) is the same for all 

three pixels. However, a decrease in intensity from 100 to 70 is perceived by the
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clinician as more meaningful than a decrease from 140 to 110. This might be 

attributed to the fact that in low contrast images, break areas seem dark enough 

even when there is only a small decrease in intensity. Assuming A n  =  120, 

pixel pi has a bonus of 0, pixel p2 a bonus of 20 and pixel p3 a bonus of —20. In 

badly illuminated images, this term can be quite meaningful, but generally less 

than F(x,y).

We note that setting the parameters of (5.8) in a way that will match the clinician 

at all times is almost impossible. This is due to the disparity between the BUT values 

given by different clinicians and sometimes even by the same clinician at different 

times (see Section 7.1.1). To that end, we introduce the DEBUT value in the next sec-

tion.

5.5.2 DEBUT computation

As described in the introduction and also shown in chapter 7, the BUT value varies 

between clinicians. Therefore, we have found it appropriate to define a new value 

that is correlated to the BUT measured by the clinicians, but is defined in terms of 

image processing and the temporal progress of the break. This value is called the Dig-

ital Electronic Break Up Time (DEBUT), and is closely related to the way the dryness 

image is built. This value is computed such that it does not depend on the clinician 

and is robust to changes in illumination and movements of the iris. It is defined and 

explained as follows, and also in Fig. 5.11:

1. A pixel (x, y) in the image is considered as a full thickness break at time t when 

its intensity in the dryness image at time t (If(x,y))  is over the pre-computed 

threshold, Bj. The intensity value is calculated in line 12 in the same way as for 

the final dryness image in (5.8), however, using only images up to the current 

frame t. For example, Ft(x, y), computes the difference using the first nj images 

and the images between t — +  1 to t.

If the pixel's computed dryness intensity is above the threshold Bj,  we up-

date the DEBUT image T (see line 1) and assign the current time to this pixel 

(T(x,y) = t) at line 14. This records the first time the pixel is above the break
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Area of break and 
thinning as a % of 
quadrant

Total thinning area: 28.7%

(e)

Figure 5.11: DEBUT explained. The figure shows how the dryness image is built and the DEBUT  
is computed. The sequence is the same one that was used in Fig. 5.10 and consists of 224 frames (9 
secojids). The computed DEBUT is 135 image frames, 5.4s. The analysis of the individual break regions 
is given in Table 5.1. (a) Dryness image after 75 frames. There are no pixels o f fu l l  thickness break yet. 
(b) The dryness image after 105 frames. The arrows point to areas o ff id l thickness break. However, 
(5.10) s till does not hold, (c) The dryness image after 135 frames. The thick arrow points to the area r< 
that complies with (5.10). (d) The dryness image after 205frames: (5.10) holds now fo r a few individual 
areas. Other areas have progressed as well to form  in total 4 individual break areas, (e) The fina l dryness 
image. The lines point to the center o f each individual break area.



§5.5 Segmentation o f the dry areas 91

threshold (thus having a break). Clinically, once an area is discovered as a break, 

it should stay as a break until the following blink. Therefore, T(x, y) should not 

be updated more than once in perfect conditions. We discuss this issue later.

The arrows in Fig. 5.11(b) point to pixels of full thickness break at time t — 

105. The first frame to have one or more pixels above Bj  is the 75th frame (Fig. 

5.11(a)).

2. When the pixel's computed dryness intensity is over the threshold Bj,  it is not 

expected to have further significant decrease in intensity. This is since areas 

devoid of fluorescein cannot have further breaks (or they are not expected to 

become any darker). If a pixel (x, y ) shows significant decrease in intensity at 

time t > T(x, y), it is adjusted to have a later BUT. If a pixel eventually does not 

appear in the final dryness image, we assign T(x,y)  <— n +  1.

3. An individual area rj- is defined as the set of all pixels of the j-th 8-connected 

neighboring region at time t in the dryness image It(x, y), such that all pixels in 

the region are assigned as full thickness break. Finding the connected areas can 

be done easily by analyzing the DEBUT image T and searching for connected 

regions that all pixels (x, y) in the region have a value of T(x, y) < =  t. In Fig. 

5.11(c), three major individual areas are detected.

4. The break up time is defined as the minimum time t passed since the blink such 

there exists an individual area rf- of size larger than the threshold A d e b u t  (ex-

plained below). In another words, we are looking for a connected region of a 

certain size at time t, that all pixels in the region have a full thickness break (a 

break). The DEBUT is defined as follows:

DEBUT =  min {ary [( £  ST(x, y)) >  4 d £BUt ] }• (5.10)
(^y)er'

The indicator function 5j  is defined as:

1 T(x,y)  < t 

0 otherwise
(5.11)
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The term L ( * , y ) € r '  <5r(*/ y) sums the number of pixels in a connected region that 

have a break at time t. Therefore, the minimum t is related to the first time 

since the blink, that a region has enough break pixels. Fig. 5.11(c) depicts the 

dryness image, when this requirement holds for the first time. The current frame 

number, which is 135 in that case, is assigned as the DEBUT value. In Fig. 5.11(d) 

the break areas have progressed to have a total of 3 individual areas.

Sjris is defined as the total number of visible pixels in the iris (not hidden by the eye-

lids) at the first image of the sequence. After the alignment, the size of the iris should 

be the same at all frames. It is possible that parts of the iris will be occluded only at 

some frames, but it will not change S j r js  significantly. Finally, we set the portion of iris 

pixels Ts to 0.0025. Then the minimum size for a break A d e b u t  ranges from:

90 <  A d e b u t  = S/nsTs < 140 (5.12)

This value is chosen to make sure that the DEBUT is computed correctly even when 

there are some misaligned pixels. It can be correlated to the actual area in the iris: as 

mentioned in section 5.3, the diameter of the iris in over 95% of the population is be-

tween 9mm and 13mm and the visible area of the iris in our videos is on average 85% 

of the iris area. Therefore, the minimum area that is required for a break ranges be-

tween 0.0162mm2 to 0.0338mm2. This value makes sense, as smaller areas can hardly 

be detected by the clinician. However, as we found out through experimental tests 

(see chapter 7), it is sometimes necessary to detect even tiny breaks. A small value 

of A d e b u t  will make the algorithm very sensitive to noise and in some cases, it will 

incorrectly detect an early DEBUT. In chapter 6, an improved algorithm for comput-

ing the dryness image is presented, which is less sensitive to outliers. See also the 

discussion in section 6.6 about reducing the A d e b u t  value.

In the dryness images of Fig. 5.11(e) and the third row of Fig. 5.12, the break areas 

are highlighted on top of the dryness image. We divide the corneal area into 5 areas 

(see Fig. 5.11(e)) in a similar way to the CCLRU standards (Contact Lens Research 

Unit) in [105]. The area of thinning and break in each quadrant (Fig. 5.11(e)) is cal-

culated and reported back to the clinician to be used in a follow-up inspection. The
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Location Shape Size Progress
Inferior
Nasal
Nasal

Vertical
Vertical

Pool

Medium
Small
Small

Medium
Slow
Slow

Table 5.1: Analysis of the break regions of Fig. 5.11(e) from top to bottom according to the region’s 
center (The arrows in Fig. 5.11(e) point to each region’s center).

fourth row in Fig. 5.12 shows graphs of the progress of the dry area as a percentage of 

the iris area. The blue graph depicts the area of the thinning and the pink graph de-

picts the area of the break as function of the time passed since the blink. The thinning 

graph provides general information about the thinning of the tear film. The graph in 

Fig. 5.12(a) shows a steady fast progress throughout time. The break graph lies on 

the x-axis until approximately 6.3s, which means that there are no pixels of full thick-

ness break until that time. In other words, (5.8) is less than Bj for all pixels. Once 

the graph is lifted above 0 percent, it quickly satisfies (5.10) as the area of break grows 

steadily as seen in the dryness image. The graph and the DEBUT value are highly cor-

related. However, the break area depicted in the graph at the time of the DEBUT can 

be higher than (5.12), since breaks can progress simultaneously in different regions. 

These graphs provide global information about the whole iris area in regard to the 

thinning of the tear film and are useful visual tools for the clinician.

5.5.3 Analyzing individual breaks

After the dryness image is created, it is of interest to analyze the dry areas to add 

qualitative information regarding the break. The analysis is divided into two main 

key factors:

1. Analyzing each individual connected region, rj for its size, location, shape and 

orientation.

2. Analyzing the progress of the size of the break - for each individual region, how 

fast the break area increases after the break has happened.

Analyzing each individual area is performed over the final dryness image. For ex-

ample, the analysis of the dryness image in Fig. 5.11(e) is given in Table 5.1. Each
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Progress of break area

—- area of thinning(%) 
■ area of break(%)

time (s)

Progress of the break area

time (s)

(a) (b)

Figure 5.12: Dryness detection results. Images from top to bottom: the image immediately after a blink; 
The image before the next blink (from the aligned video); the dryness image (cropped). The colored areas 
show individual regions of full thickness break. The other areas show the different degrees of thinning 
(the brighter, the drier it has become).; Graph of the evolution of the dryness: the graphs in pink and 
blue show the area (as a percentage of the iris's area) of break and tear film thinning respectively. The 
graphs are presented as a function of the time passed since the blink (x-axis). The decrease in the area 
of thinning (after approx. 7s in the left graph and 2s in the right graph) happens due to pixels that are 
misaligned temporarily and bias the sum of (5.8). The computed DEBUT for the left column is: 6.8s, 
while the range of BUT values given by four clinicians is 2.6s-6.9s.
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Location Shape Size Progress
Center Horizontal Small Slow
Nasal Vertical Medium Medium

Temporal
Superior
Inferior

Slanted
Circular

Pool

Big Medium-Stabilize
Fast

Fast-Stabilize

Table 5.2: The list of possible outcomes ivhen analyzing the dryness image in terms of individual break 
regions and progress of each region. Stabilize means that the progress of the break is Medium or Fast 
but then the progress slows down towards the end of the sequence.

8-connected area is examined for its shape from the following list: horizontal line, 

vertical line, slanted line, circular and pool, which is used to describe any other shape 

[10]. Detecting the shape is done by first applying a morphological close on the image 

with a disc of radius 2 pixels. This should connect areas that otherwise might not be 

connected, usually due to intensity miscalculation of single pixels. Then we fit an el-

lipse to the region and use the ratio between the major and minor axes to determine 

the shape. We use the orientation of the major axis to decide the orientation. Since it 

is possible to have many individual areas, we take only those that comply with (5.12) 
in terms of the minimum break size. However, circular breaks are usually smaller and 

very local as they tend not to develop throughout the sequence. Thus, if the break 

area is detected as a circular, it will be taken even if it is smaller than the minimum 

size in (5.12). To simplify matters for the clinician, each individual area is plotted in a 

different color and a synopsis is provided using terms such as "big" or "horizontal". 

Table 5.2 summarizes the possible outputs for the clinician and the table at Fig. 5.13 

shows the report for the dryness image of Fig. 5.12(a).

Analyzing the progress of each individual break requires scanning the dryness 

images at times t > DEBUTj, where DEBUTj is the break up time of area j. The 

idea is to compute the area of the break at these times, and to evaluate the change in 

size in terms of speed of progress. The starting point is the analyzed area in the 

final dryness image. Then, scanning backwards in time, we take the dryness image 

every few frames and find the size of the corresponding region. It is possible for a 

region to split into a few separate regions during the scan, so the joint area's size is 

used. For each individual region r,-, a vector V j t = (ay;to, . . . ,  c i j - D E B U T ^  • • • / aj,n) of the
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—♦ - Area 1 - m -  Area 2 Area 3 Area 4 Area 5
Area 6 Area 7 —  Area 8

3 -I

0 2 4 6
Time passed since DEBUT (s)

No. Location Shape Size Progress
1 Superior Horizontal Medium Fast
2 Temporal Vertical Medium M edium
3 Temporal Pool Small Slow
4 Temporal Pool Small Slow
5 Nasal Vertical Small Slow
6 Nasal Pool Small Slow
7 Inferior Pool Medium Fast
8 Inferior Pool Small Slow

Figure 5.13: Graph of the progress of regions of full thickness break and their corresponding analysis. 
The graph is for the sequence shown in Fig. 5.12(a). There are in total 8 areas of break as depicted 
in the dryness image in the third row of Fig. 5.12(a) and they are numbered from top to bottom. The 
colors of the graphs hi the figure correspond to break regions with the same color in the dryness image. 
Three major break areas develop into large areas and the rest start at a later time and stay small. It is of 
interest that area 7 starts to form only 3 seconds after area 2 but has faster progress. Also notice that 
area 1 has a horizontal shape and is formed in the superior region. This could be related to a reservoir 
related break as described in section 5.5.4.

region's size is built, where n is the number of frames in the video, c i j . t is the size of 

the region at time t and to is the first time the region has more than zero break pixels 

(notice that to < D EBU Tf i .  Using linear regression, a least-squares fitting fj(t) =  

cio +  ci\ (t — to) +  «2(t — to)2 is found to Vjt, where t is the time passed since the blink. 

The change in the region's size at time t is computed by applying the first derivative: 

fj (t). The change is divided by the minimum number of pixels for a full thickness
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(a) (b) (c) (d)

Figure 5.14: Results of detecting reservoir related dryness: (a) The image immediately after a blink. 
The three areas described in the algorithm in Line 3 are numbered. The curves show the regions searched 
for the black line as explained in section 5.5.4. The curves for the upper eyelids from top to bottom define 
the: eyelids curve, search region for the black line in I\ (first image after the blmk), search region for 
the black line in In (image before the next blink), the area used to compute the region's average mu\. 
(b) The image before the next blink, (c) The black line after the blink, (d) The black line before the next 
blink. The brighter the area the stronger is the thinning of the tear film. In this video, only areas in 
the immediate proximity to the eyelids become dry and the break is a result of thinning near the upper 
eyelids only (no corneal break). The increase of the area of the dryness near the upper eyelids (see the 
difference between part (c) to (d)) is ofclmical importance.

break using (5.12):

fj(t ) / A d e b u t - (5.13)

This ratio is an indicator of the speed of the progress at time t and is used to define the 

progress as Slow, Medium or Fast (see Table 5.2). A stabilizing region is defined as a 

region that: (1) the slope is monotonically decreasing towards the end of the sequence, 

such that exists k > 2 satisfying f -(n — k) < /• (n — k + 1 ) < .. .  <  /• (n). (2) the change 

is lower than the minimum break size: /-(n — k') < A d e b u t  for all k' =  0 . . .  k. If the 

change is bigger than A d e b u t , then the region is considered as growing, since the 

increase in the region's size is still significant. These definitions can be adjusted to 

different standards of measuring the progress. Fig. 5.13 shows the progress of each 

individual break as function of the total iris area. It is noticeable how some regions 

grow much faster than others.

5.5.4 Black line detection

The clinical importance of detecting the black line has been discussed in section 2.1.1. 

If the black line exists, it will always appear very close to the eyelids and should be 

noticeably darker than the immediate surroundings. Its detection combined with the
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dryness images can provide valuable information to the clinician regarding the cause 

of the dryness (reservoir related, for example) and what treatment is needed. The 

reasoning behind performing a separate detection for the black line is:

• It clinically requires a different treatment.

• Accurate detection of the black line is difficult due to the its thin size and the 

proximity to the eyelids. Every misalignment near the eyelids results in an im-

mediate miscalculation of the pixel's dryness using (5.8). Since the eyelids are 

usually brighter than the iris, the term F(x,y) can produce a value of extreme 

dryness, even if no dryness exists (as the difference between the bright pixels to 

the dark ones can be high).

• The black line cannot always be discovered by looking at temporal changes of 

dryness because it might not be visible at all times. For example, the black line 

can be visible at the beginning of the sequence, but not towards the end of it if 

the patient closes a bit the upper eyelids.

The ground for the detection of the black line is prepared in lines 3-5, where the 

averages for the regions near the eyelids are calculated for I\ and In (the first and last 

image of the sequence). They are denoted by mu\ and mu, for the upper and lower 

eyelids respectively (for the first image). These regions are depicted in Fig. 5.14(a), 

numbered by I and III and are bounded by the eyelids curve and the furthest curve 

from the eyelids. These regions contain a significant part of the iris, such that the 

difference in intensities of the black line from the iris is noticeable (if it exists). In most 

cases, we expect to have quite a thin break line (if at all) after the blink and possibly a 

bigger area before the next blink. To that end, the search area for the black line after 

the blink is bounded by the eyelids and the next curve after the eyelids. The search 

area before the next blink is doubled and is bounded by the the eyelids and the second 

curve from the eyelids. To conclude, the goal of these regions is to be able to detect 

a darker region relative to its immediate surroundings and not necessarily relative to 

the whole iris.
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A pixel I\ (x, y) near the upper eyelids is segmented if there is noticeable difference 

in intensity compared to the region's average intensity:

I  n a

h m ui > — L  (5.14)
Ud k=l

Therefore, the average pixel intensity in the first nj images (see also definition of 

F(x,y) in section 5.5.1) has to be lower than the region's average (mui). The value 

of Ai, is computed using the histogram of intensities in this region. Since the averages 

mui and mn are computed for a small region, the value of A\, is usually close to 1 (but 

less than 1). Accurate detection of the eyelids (see Sec. 5.3) over the iris area is crucial 

in order not to include the bright pixels of the eyelids. The equation handles changes 

in intensity between images and between the upper and lower eyelids. It is also sen-

sitive enough to discover thin break lines (see Fig. 5.14). Similar ideas are used for the 

lower eyelids and for both eyelids in ln.

If a pixel is detected as part of the black line, we associate a dryness value to 

that pixel. This value is based on the same concepts discussed for computing the 

dryness image. Even if we have detected a region as part of the black line, its clinical 

importance depends on the dryness value of its pixels. Therefore, we assume that 

a pixel in the black line is break related (and thus clinically important) if its value is 

higher than Bj. Again, this idea is very similar to the one we have used for computing 

the DEBUT. The minimum size of a region to be considered a reservoir related break 

is the same as in (5.12), however it is not required to be contiguous. The removal of 

the continuity requirement is due to its small size and the likelihood of small holes in 

the segmentation due to its proximity to the eyelids.

We produce two dryness images for I\ and corresponding to the black lines at 

times t — 1 and t = n respectively. The brighter the pixel, the dryer it has become. 

By alternating between the images, the clinician can see the changes in the area of 

the black line and direction of development. For example, by alternating between 

images (c) and (d) of Fig. 5.14, the clinician can see that the black line in the lower 

reservoir existed after the blink and also before the next blink, while the upper black 

line increased in size.
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(a) (b) (c) (d)

Figure 5.15: Another result of detecting reservoir related dryness: (a) The image immediately after a 
blink, (b) The image before the next blink (from the aligned video), (c) The black line after the blink, (d) 
The black line before the next blink. The brighter the area the dryer it became. The visible increase of the 
area of the dryness near the upper eyelids is of clinical importance. There is no evident thinning near 
the lower eyelids.

Finally, we distinguish between corneal break and reservoir related break (black 

line). Corneal break is defined as a sequence that has a DEBUT value (DEBUT < n). 

Reservoir related break in the lower or upper reservoirs is defined when a black line 

exists with a break. If a black line is detected, we report a break near the upper or 

lower tear reservoirs (or both), which probably caused the imminent blink. If the 

black line exists in conjunction with a corneal break (DEBUT < n), it is reported as a 

secondary cause. In the sequence of Fig. 5.14, black lines with a break exist for both 

the upper and lower eyelids and are reported as the main causes. The sequence of Fig. 

5.15 has a thin black line near the upper eyelids after the blink and a thicker black line 

with a break near the upper eyelids before the next blink.

5.6 Conclusions and discussion

In this chapter we have presented our main algorithm for dryness detection and seg-

mentation. We provide a quantitative evaluation of the degree of the thinning and 

break of the tear film. This includes the area, location, shape and progress of the 

break. Reservoir related breaks (black lines) are detected separately and are reported 

back to the clinician and can be linked to different dryness origins. Our graphical 

analysis provides useful information to the clinician regarding the origin of the dry-

ness and can be recorded for a follow-up. It therefore surpasses the current clinical 

analysis, which is mainly based on the subjectively measured BUT.
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We have defined the DEBUT as a new way to automatically measure the BUT. 

This new measure is computed quickly and is reported back as part of our analysis. 

Experiments to evaluate the robustness of this value are discussed in chapter 7. We 

have explicitly named this value differently than the BUT as we do not aim to match 

the clinician's value at all times. The main drives behind its definition are: (1) to use 

image processing techniques to be as close as possible to the BUT values provided 

by the clinician; (2) to compensate for the large inter-observer variance of the BUT 

measured by clinicians (demonstrated in chapter 7); (3) to define a value which is 

robust to uneven illumination, the degree of thinning of the tear film, the break size 

and the speed the break develops.

An extension of the algorithm to include spatial and temporal information is pre-

sented in the next chapter. This extension treats the whole video as one 3D volume 

and incorporates a monotonic constraint on the dryness evolution. This extension 

overcomes one of the major hardships of the algorithm: handling outliers in the dry-

ness segmentation process and the DEBUT evaluation. Alignment errors of even one 

pixel near the eyelids can affect the segmentation result. We show that the extended 

version handles outliers better.

Some issues still remain open towards a complete dry eye system. The detected 

DEBUT can be biased by uneven fluorescein spreading or patients that gradually open 

their eyes throughout the test. In the first case, a break can be detected too early, 

as the shifting of the fluorescein creates artificial dry areas. In the second case, the 

break might be detected late because the new revealed areas in the eyelids are not 

immediately searched. Both cases can be handled by designing dedicated checks: The 

eyelids movement could be detected by measuring the visible region of the iris after 

the alignment throughout the sequence. The fluorescein spreading can be tracked by 

looking for specific patterns that move upwards immediately after the blink. Another 

way is to better control the amount of fluorescein that is instilled is using DET strips.
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Enforcing monotonic temporal 

evolution

Chapter 6

In this chapter, we present an extension to the segmentation method described in 

the previous chapter. The idea is to use the relationship between pixels to provide a 

more robust segmentation which is less sensitive to noise and errors in the alignment 

process. The segmentation algorithm from the previous chapter segments each pixel 

individually, regardless of its location in the iris, its neighboring pixels or the intensity 

value of the pixel in consecutive image frames. Here we enforce spatial and temporal 

constraints between pixels to determine the degree of dryness of each pixel. We use 

a graph-cut approach to perform the segmentation and to determine the degree of 

dryness of each pixel. The graph-cut algorithm was described in chapter 4 and it was 

explained that the cost function to be minimized is defined on a neighborhood J\f. 

Therefore, it lets us incorporate constraints between neighboring pixels,{i, j)  e  A f as 

described later.

Figure 6.1: A sequence of images showing how dryness forms over the iris. The first image is immedi-
ately after a blink and then the subsequent images are at every 4 seconds. The black areas are related to 
dryness symptoms. The darker the area, the drier it becomes.

103
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We transform the aligned dry eye video (see Section 5.4) into a spatio-temporal 3D 

volume, so a relationship between successive images is defined. The 3D image volume 

is modelled as a 3-dimensional multi-label Markov Random Field (MRF) in which 

the label assigned to each pixel represents the degree of dryness. In addition, we 

introduce the idea of enforcing temporal monotonicity. This reflects the condition that 

dry spots on the iris can only become darker (dryer) in temporally successive images 

as seen in Fig. 6.1. To enforce the increasing-dryness condition, we define asymmetric 

edge weights in the temporal direction, specifying an infinite (or very large) cost to 

assigning decreasing labels to a pixel in consecutive frames. The associated energy 

minimization problem is solved using the alpha expansion algorithm [17].

The rest of the chapter is organized as follows: A brief description of the alpha- 

expansion algorithm; We describe our general approach on how to incorporate tem-

poral monotonic constraints; We demonstrate how monotonic constraints are used for 

dryness estimation to provide more reliable and robust results; Finally, results on eye 

images are given.

6.1 Formulation of the problem

We formulate our problem as a second-order MRF . In this approach, each variable 

i must be assigned a label x, from the set of labels C  = {0 ,1 ,2 , .. .,£}. The most 

probable labelling x* minimizes the associated energy function:

E(x) =  £  Ei(Xi) +  £  E i f r i g ) .  (6.1)
i e V  ( i , j ) e M

Here, V  is the set of pixels in the image and M  is the set of pairs of pixels defined over 

the standard 4-connected neighborhood. The set of labels C represents the estimated 

thickness of the tear film. A labelling of 0 represents no thinning of the tear film and 

the final label £ represents a complete absence of fluid, or a break-up of the tear film. 

Other labels depict the different degrees of thinning of the tear film.

The unary terms E, are application dependent and we employ a dryness measure 

similar to the one discussed in the previous chapter in section 5.5.1 and (5.8). The term
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should be related to the strength between the intensity of the pixel and the label Xj. 

The pairwise terms E,-y enforce an a priori model. In our application, we generally ex-

pect the labels of neighboring pixels to be the same (or at least quite similar). In other 

words, we do not expect to have a fast change from dry pixel to non-dry pixel. How-

ever, large changes are also possible at edges. For example, circular break areas can 

be small and local and have sharp edges (see short discussion in Section 5.5.3). There-

fore, we employ a function based on truncated linear distance (see Fig. 6.4(a)), which 

encourages local smoothness, while limiting the cost of large changes to a threshold 

T :

Eij(Xi,Xj) =  A min(|x; -  Xj\,T). (6.2)

In this function, x, and Xj are the labels assigned to pixels i and j  and the energy value 

is proportional to the difference between the labels, i.e. the difference between the 

degrees of break. The alpha-expansion algorithm [17] can minimize functions of the 

form (6.2). The solution is an image, where each pixel is assigned a label depicting 

its degree of dryness. Although an optimal solution is not guaranteed, in practice the 

method performs quite well.

6.2 The alpha-expansion algorithm

The alpha-expansion algorithm can be seen as an extension to the original graph-cut 

algorithm to detect multiple objects in an image. The graph-cut algorithm was pre-

sented in section 4.5 and finds the minimum of a function of the form of (6.1) when 

using only two labels. However, in this chapter we would like to segment multi-

ple labels, i.e the different degrees of thinning. Therefore, the label set is defined as: 

C = {/ i , . . . ,  where each label can be thought as a separate object. One of the 

main usages of this algorithm is for depth and motion estimation in stereo images. 

These applications either use the original alpha-expansion graph-cut algorithm or a 

variation of it, which consists of a different way to build the graph, such that is suits 

the specific application or the cost function [12, 63, 66, 77,114,123].

The alpha-expansion algorithm attempts to find the optimal labelling by itera-
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Figure 6.2: Schematic example of alpha-expansion using 4 pixels, (a) Before the expansion move, 
the pixel xa is already labelled as a  and the other three pixels have different labels. The edge zveights 
correspond to the unary and pairwise costs of the function, (b) After the expansion move, a cut is 
produced. The three grey pixels are now segmented as a  and x*. has retained its original label as it is 
not connected to <x.

tively trying expansion moves. At each iteration, the expansion move changes the 

label of a set of image pixels to oc and checks whether the cost is reduced. If it is re-

duced, the new labelling is used for the next iteration. The process is repeated for all 

labels oc G C. Once the loop finished iterating through all labels, the process stops if 

no decrease in cost has been achieved. If lower cost is found, the process continues 

iterating through the labels again.

The interesting step in the algorithm is the expansion move performed at each it-

eration to decide which pixels change their label to oc and is depicted schematically in 

Fig. 6.2. At each iteration, a new graph is built to separate the image pixels to two ob-

jects labelled as: oc and öc (or equally to object and background). Such a graph includes 

all image pixels and two terminals labelled as oc and öc and can be seen in Fig. 6.2(a). 

The edge weights a, and correspond to the unary and pairwise costs respectively. 

It can be proved that the exact assignment of the edge weights is the same as in the 

regular binary case. In the example, we assume that one pixel is already assigned as oc 

and the others have different labels. The cut of such graph can be computed using the 

min-cut algorithm and thus it defines a labelling. If a pixel in the cut is connected to
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oc, it changes its label to oc. Otherwise, it keeps its previous label. An example of a cut 

is depicted in Fig. 6.2(b). Two pixels changed their label to oc and the cost of the cut is: 

a'i +  a'- +  öjt +  aß. We note that after an expansion move, the set of pixels labelled as a 

can only grow, so the graph assigns an infinity cost to edges between pixels which are 

already labelled as oc and the terminal oc.

The alpha-expansion algorithm does not necessarily produce the optimal solution 

as not all labellings are examined. Depending on the specific form of El;-, one can 

solve the problem exactly using Ishikawa's graph construction [53]. Although an exact 

solution to our problem formulation is possible, the magnitude of the problem makes 

such an approach infeasible. Ishikawa's algorithm is mainly used to segment small 

images and not 3D volumes, as we would like to segment in the dry eye problem.

In order for the alpha expansion algorithm to be solvable, a similar inequality to 

the sub modularity requirement of (4.13) has to be satisfied. We remind the reader that 

the inequality between pixels i and j is: E,; (0,0) +  E,-y(l, 1) < Ei;(0 ,1) +  Ei;( 1,0). 

The terms on the left side state that there is no change of labels between the pixels. 

The terms on the right side state that there is a change of label between the pixels. 

Similarly, it can be applied to the alpha-expansion algorithm.

The idea is that at each iteration a binary problem is solved with the variables oc 

and öc (or similarly 1 and 0). We assume that the original labels of pixels i and j are 

x, and Xj respectively. A change of labels happens when a pixel is assigned oc (or 1) 

instead of its previous label. A pixel keeps its label when it is assigned öc (or 0). We 

do the following substitution to the original submodularity inequality: 1 =  oc and 

0 =  original label. Therefore, the term Eij(Xj,Xj) means that both pixels keep their 

original labels and E,-y(x,-, a) that i keeps its original label and j  changes to oc. Then the 

condition to be satisfied at a specific iteration is:

Eij(xi,Xj) +  Eij(oc,oc) < E f face )  +  Ei;(a ,x ; ),Vx,-,x;-. (6.3)

The left side states that either both pixels keep their labels or both are assigned the 

same label. The right side states that one pixel changes its label. This condition has to 

be satisfied at each iteration of the algorithm for any two pixels and any label oc.
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It is possible to rearrange the costs of (6.1) such that Ejj(x,x) = 0 for all pixels 

and all labels x by pushing flow through the graph (see section 4.5). Therefore, the 

condition to be satisfied becomes the triangle inequality:

E i j ( x i , X j )  < E i j ( x j ,  a) +  E i j ( a , X j ) ,  \fi,j G V,  \ / x j , X j , a  G C (6.4)

The inequality states that for two neighboring pixels, the cost of a change between the 

labels Xj  and Xj ,  should be lower than changing via a third label a.  We will show that 

the smoothness constraint of (6.2) or a linear function based on label difference can 

be solved using the algorithm. In general, any concave function can be solved using 

the algorithm. However, quadratic functions, such as (x; — x;)2 or the one used by 

Veksler in [114], cannot be solved since the triangle inequality does not hold.

A commonly used function that satisfies (6.4) is the Potts model [17]:

[ 0 if Xj = Xj
Eij(xi,Xj)=< (6.5)

I y otherwise,

where y  > 0 is some constant. Any difference between the labels of the pixels is 

penalized equally. Such a model is less suitable for dryness detection, as changes 

usually happen gradually and sharp change in labels should be penalized more.

As in practice, the expansion algorithm provides good approximation to the opti-

mum and performs relatively fast, it is preferable to Ishikawa's method when it can 

be used. Furthermore, it has been shown that the expansion algorithm is most suit-

able for applications that use a pairwise term based on the Potts model or a linear 

difference of labels.

6.3 Previous work

The original paper [17] on alpha-expansion stated that the pairwise cost functions 

has to be metric (in order to simplify the presentation), and hence symmetric. How-

ever, they also mention in a footnote that symmetry is not essential, but still there has 

been little work on asymmetric cost functions . In a very recent paper [21], a general
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method for constructing and solving asymmetric cost functions using graph-cuts is 

provided. The paper addresses the problem of stereo depth estimation and incorpo-

rates a monotonic constraint which is related to the spatial location of the pixel in the 

image. Objects that appear towards the top of the image are usually further away 

than objects that appear towards the bottom. They show how such monotonic con-

straints can be incorporated into the pairwise term of the energy function and that the 

alpha-expansion algorithm can solve any concave pairwise function.

3D medical image segmentation using graph-cuts have become quite popular. Re-

cently Bokyov et al. [15] described a global N-D graph-cut segmentation approach that 

can be used to segment the kidney from a 3D MRI. They are interested in identifying 

three regions of the kidney and conduct three independent binary segmentations se-

quentially. However, they do not employ a multi-label approach to segment all three 

regions simultaneously.

Another example for an application that uses 3D volume binary graph-cuts is for 

the segmentation of brain tumors [119]. The input images are 3D MRIs and the seg-

mentation is performed over the whole volume using the standard 6-neighborhood. 

The unary term is application dependent and is based on learning of features. The 

pairwise term is the same one both spatially and for voxels in different slices and is 

based on the voxel's intensity and distance from each other.

Grady and Jolly [36] study different graph topologies and weighting functions 

to segment a set of 62 3D CT images. Their experiments include the standard 6- 

connected, 26-connected neighborhoods and also a 10-connected, which is a combi-

nation of 8-connected in the XY-plane and 6-connected for the Z-plane. The pairwise 

cost functions (or weighting functions) include 3 different functions based on inten-

sity difference between two voxels: Gaussian, Reciprocal and Histogram based. In 

the latter function, the cost (weight) is proportional to the probability of the voxel's 

intensity being foreground and it is computed using seed points that were selected 

manually or automatically.

In their experiments, the manually segmented area of the 3D volumes was com-

pared with the graph-cut result. The results show that the histogram based method 

is superior to the other weighting functions. Then, if histogram based model cannot
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be established, the reciprocal weighting function should be used. In terms of the best 

topology, the 26-connected performed the best and surprisingly the 6-connected out-

performed the 10-connected. These results demonstrate the advantage of one weight-

ing function over the other. However, in our case, we segment multiple objects si-

multaneously. Our unary term is based on intensity values, but the pairwise term is 

a function of label difference. Using intensity values for the pairwise term as well 

(as in their experiments) puts more emphasis on the pixel's intensity. Employing a 

26-connected neighborhood can be beneficial, but it increases the complexity of the 

problem, especially in the multi-label case.

Asymmetric cost functions have not gained widespread use. In [121], the authors 

employed the alpha-expansion for spatial geometric constraints. The asymmetry in 

their algorithm is used to distinguish between the relative layout of objects using 

terms such as above/below/left/right. Their cost function, which is set through a 

learning process, is submodular in most cases (over 99% of the cases) and therefore 

concave. However, according to the authors, the alpha-expansion algorithm was not 

able to find a good solution and converged to a local minimum. To overcome this 

problem, they used an annealing algorithm, where the pairwise potential is weak-

ened. One possible reason that the alpha-expansion algorithm did not produce good 

results is the complication of their pairwise and unary functions.

In [79], Liu et al present a graph-cut based algorithm to segment an image to multi-

ple labels. Their label set is defined as: left,right,center,top and bottom. Relationships 

between these regions are defined and the corresponding constraints, such as that 

a pixel labelled left cannot be to the right of a pixel labelled right. In addition if a 

pixel is labelled as a center its neighbors can only be labelled according to their spa-

tial location. The pairwise function is based on Potts model and incorporates these 

constraints by assigning an infinity cost if they are violated. In addition, the function 

is asymmetric such that the cost of labelling neighboring pixels as 'right' and 'center' 

is not the same as assigning 'center' and 'right'. The suggested solution is a variation 

of the alpha-expansion. They define horizontal and vertical moves and at each iter-

ation, a pixel can change its label to a set of three labels. This is different from the 

alpha-expansion algorithm where a pixel can change its label only to oc.
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The authors state that the alpha-expansion algorithm will usually not find the 

global minimum with such constraints. However, we note that the constraints in the 

paper are two-dimensional. The monotonic constraint we will discuss later is defined 

only in one direction (temporally). Therefore, the alpha-expansion moves result in a 

lower energy cost throughout the iterations, as they do not depend on a number of 

labels being changed simultaneously in order to obtain a valid segmentation. This is 

not the case described in [79], where an assignment with a lower energy cost usually 

requires change more than one label.

In [59], the authors use an asymmetric cost to segment multiple surfaces in 3D CT 

images. Even though the surfaces are segmented simultaneously, they use a binary 

label set (and not a multi-label approach). To our knowledge, asymmetry has not 

been used before to enforce temporal constraints within volumetric images.

6.4 Our approach

6.4.1 3D graph construction

Graph-cuts minimization is not limited to 2D applications and can be extended easily 

to 3D applications. The main advantage of a 3D approach to segmenting individual 

2D slices is that the relationship between pixels at consecutive slices is considered. 

Moreover, it allows one to incorporate monotonic constraints (described in the next 

section) between slices, which would have been impossible otherwise.

Extending the 2D approach to 3D is based on redefining the neighborhood M  used 

in the pairwise term of (6.1). While in the case of MRI segmentation, it is fairly clear 

what the individual slices are, we offer an approach based on temporal progress. Even 

though the image modality is 2D in the case of the FBUT test, it can be perceived as 

a 3D approach to capture the global relationship between image frames. Denoting 

image t in a video of length n + 1 as It, each image is considered as a horizontal slice 

in the 3D graph (or MRF), creating a graph based on temporal changes. Therefore, 

slice number 0 in the graph is the image immediately after the blink and slice n is the 

last image in the sequence. Every other slice is related to the time passed since the 

blink.
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l{ is the t-th image 

after the blink

lQ is the image immediately 

after the blink
6-connectedness neighborhood

Figure 6.3: Explaining the 3D MRF. The x and y axis are the image planes; the t plane is the temporal 
plane. A  pixel It (x, y ) (or the voxel (x,y,t)) is the pixel (x,y) in the t-th image after the blink. The figure 
shows the 6-connected approach (by the red arrows), where a pixel is connected to its 4 immediate 
neighbors in the same plane and to two pixels corresponding to the same location at times t — 1 and 
t +  1. Each voxel in the MRF can be assigned any label from the set C.

The construction of the graph is based on 6-connected neighborhood M,  and an 

example of a 3D MRF showing the 6-connected neighborhood is depicted in Fig. 6.3. 

Each voxel in the MRF (x, y, t), t = {0 ,... n } is connected to its four immediate spatial 

neighbors in the same image (except for pixels in the image borders) and to the cor-

responding pixel (x, y) in the previous and next frames: (x, y, t — 1) and (x, y, t +  1) 

(except for the first and last frames). Another way to look at the neighborhood of a 

voxel is: Af  =  {left, right, up, down, next, previous}. Therefore the energy function is 

still built only from quadratic terms, as each voxel can be seen as being part of a max-

imum of 6 pairwise cliques. Each voxel is now also dependent on two voxels which 

are temporally different. This allows the addition of time based constraints. Denoting 

the set of pixels of frame t by Vt, the new set of pixels is defined over the whole image 

sequence: V  =  Po U . . .  U Pn. The hidden nodes of the MRF are the labels assigned to 

each voxel from the set C.
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6.4.2 Monotonie constraint

Multi-label problems usually have an inherent meaning to the ordering of the labels. 

In our case, the labels depict different degrees of break progressing through time. 

Hence we expect the labels to have a gradual temporal change. So we employ a dis-

tance metric for the pairwise cost in the temporal axis:

As long as the patient does not blink, the thickness of the tear film cannot increase 

between consecutive images. Formally, the label Xy of a particular pixel at time tj must 

be less or equal to the corresponding label x,- of the same pixel at time f; =  tj + 1. We 

enforce this monotonic dryness condition directly into the pairwise energy term:

(In this equation we assume without loss of generality that f, >  t j ) .  The generic func-

tion f i j  ( IX{ — Xj  I) in (6.7) refers to either (6.2) or (6.6) depending on whether i and j  are 

a spatial (f, =  t j )  or temporal (f, =  t j  + 1) pair.

The monotonic function (6.7) sets an infinite cost to any labelling x where a pair of 

labels (xj, Xj )  for a particular pixel at times t j  and f, =  t j  +  1 decreases — i.e., x, < xy. 

Although we associate an infinite cost for violating monotonicity, in general, a finite 

cost can be employed.

Fig. 6.4 shows two examples of pairwise functions which can be minimized using 

alpha-expansion. Part (a) is a cost function based on (6.2). The maximum penalty 

for assigning different labels is bounded by T. Part (b) is a cost function based on 

(6.6). If the change of labels is negative, the cost is infinity; Otherwise, the penalty 

is linear and not truncated. When x, =  xy the function is assigned 0. However, it is 

not mandatory. In our algorithm, we use the first function for spatially neighboring 

voxels as a large change between labels might happen at the edges of break areas. The 

second function is used for temporally neighboring pixels, where changes in labels

Eij(Xi,Xj) — y|Xj Xy j. (6.6)

if tj = tj +  1 and x,- < Xy 

otherwise
(6.7)
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f i j f a - X j ) f i j  ( x { X j  )

Figure 6.4: The spatial (a) and temporal (b) pairwise functions. The graphs are presented as a function  
of the difference between the labels x, and X j .  (a) Neighboring pixels w ithin the same frame are encour-
aged to have the same label unless the difference is quite big. In this case, there is no preference between 
a medium and large difference, (b) Temporally, labels must not decrease as time progresses. Moreover, 
the increase ( i f  any) should not be too large.

(dryness) are usually gradual through time.

The inclusion of a monotonic constraint makes the pairwise terms asymmetric: 

the cost of changing from label oc to  ß can be different from changing from ß to oc, or 

mathematically E j j ( a , ß ) 7̂  E jj(ß ,oc ). In order to solve the asymmetric construction 

using alpha-expansion, the triangle inequality of (6.4) has to be satisfied. First, we w ill 

show that it is satisfied when excluding the monotonic constraint. Thus, for the linear 

penalty of (6.6), the following has to be satisfied for every Xj ,  X j  and oc.

I Xj — X j \  <  I X j  — oc\ +  \<x — x  j\ . (6.8)

If Xj < a < Xj or Xj <  oc <  x „ the terms at each side of the inequality are the same. 

In all other cases, the inequality clearly holds as either \ x j  — oc\ or \oc — X j \  is greater 

than I Xj — X j \ .  When using the truncated linear penalty of (6.2), the following has to 

be satisfied:

min(|x; — X j\, T ) <  min(|x/ — a \, T ) +  m in(|a — X j|, T). (6.9)

If any of the terms in the right side equals to T, then it clearly holds. If the term on the
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left equals to T ( \ x j  —  X j \  > T) and neither of the terms on the right side equals to T, we 

know from (6.8) that the sum of the the right side is greater or equal to \ x j  —  X j \ .  But 

this has to be greater than T so the inequality holds. In all other cases, the truncated 

linear function behaves the same as the linear penalty function. Finally, we have to 

consider the monotonic constraint when f, =  t j  +  1 and X{ <  X f .

oo < E j j ( x j , a )  +  E j j ( < x , X j ) (6.10)

The inequality will not hold if both terms on the right side are finite. According to 

(6.7), this could happen only if a satisfies the following: Xj > a  > Xj. However, since 

Xj < Xj, there is no such a, so at least one of the terms on the right side equals to 

infinity.

6.4.3 Summary of approach

Before presenting the actual details of the implementation, we summarize the steps in 

our proposed segmentation approach:

1. Obtain a series of images of the same object. In the case of a dry eye video, 

images of the anterior of the eye are taken throughout time.

2. Align the images according to the object of interest (if needed). For dry eye 

images, we align the iris to be at the same location and size at all images.

3. Define the relationship (neighborhood) between individual images (slices) to 

create a 3D graph.

4. Define the number of labels needed for the segmentation. The number of labels 

defines how fine the segmentation is and in the case of dry eye, distinguishes 

between different degrees of thinning of the tear film. Although large number 

of labels may produce finer results, it requires longer computation time.

5. Define the cost function for the unary and pairwise terms. It is possible to have 

a different pairwise function spatially and between slices.
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6. Define the monotonic constraint and revise the pairwise term. For dry eyes, the 

constraint is defined temporally - the amount of fluid in the eye since the blink 

(and before the next blink) cannot increase.

7. Minimize graph and produce a labelling for each voxel.

6.5 Application to detect dryness

The 2D segmentation approach of chapter 5 first detects the iris in each of the video 

frames. Then, the images are aligned according to the iris to create a new video, such 

that the iris is located roughly at the same location at each image. Finally, the dry 

spots are segmented based on analyzing the aligned video. The cost function of (5.8) 

examines differences in intensities for each of the pixels of the iris between the first 

and last images in the video. A dryness image is created, where each pixel is assigned 

an intensity value which is proportional to its degree of dryness and is denoted by 

l{x,y). However, the degree of dryness is also computed at each individual slice, 

and we denote this pixel value by I(x,y,t). The DEBUT is detected by scanning the 
whole video and looking for the first frame when an area of a certain size is over the 

minimum intensity considered for a break (see (5.10) and (5.12)).

This approach produces good segmentation results and is very fast. Nevertheless, 

it has a few objective disadvantages:

1. Small errors in the alignment can bias the dryness result for a pixel. This is espe-

cially noticeable near the eyelids and the borders of the iris with the conjunctiva.

2. The spatial relationship between neighboring pixels in the 2D image is not con-

sidered. Therefore, there is no smoothing and the pixel's degree of break is un-

related to its immediate neighbors.

3. There is no use of knowledge regarding the temporal change.

We will now show how these issues can be resolved by employing our 3D mono-

tonic graph cut approach.
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6.5.1 Advantages of the 3D approach

Given the aligned video created by the 2D segmentation approach, it is possible to 

incorporate the ideas discussed so far to improve the segmentation results. Instead of 

looking at individual pixels and examining every single 2D image for the Break Up 

Time (BUT), we add the following assumptions:

1. Smoothness constraint - If a pixel becomes dry, it is likely that its neighbors also 

show a certain degree of dryness. Similarly, if a pixel has no dryness, it is likely 

that its neighbors are not dry as well.

2. Using temporal knowledge - The video is considered as a 3D volume where each 

2D frame is a slice in the 3D image. Therefore, the 3D volume is built of tem-

porally successive images (representing temporal progress of dryness) stacked 

on top of each other. Segmenting the 3D volume takes into consideration the 

relationship between the pixel's values at all times.

3. Monotonicity constraint - Temporally, pixels should only become darker, as the 

amount of fluid in the tear film decreases as time passes. If a pixel becomes 
brighter, it is probably caused by an error in the alignment process or because of 

shifting of the fluorescein after the blink and not related to the actual dryness.

6.5.2 Applying the technique

Referring back to section 6.4.3, we show now how the described approach can be 

easily adopted to the dryness problem. Given the aligned video created in the 2D 

approach, it is used to create a 3D graph based on temporal changes (see Sec. 6.4.1). 

The region of interest in each image is defined as only the pixels belonging to the iris. 

This region should not be image dependent as after the alignment, the iris is resized 

to the same size at the same location.

The number of labels needed for segmenting dryness depends on the importance 

of distinguishing between different degrees of thinning of the tear film. A reasonable 

choice is to use a set of 9 labels: C = {0,1,..., 8}. This number of labels generally 

produces suitably precise segmentations of the tear film.
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The unary term is defined using the dryness value I(x,y,t), which we showed 

how to compute in section 5.5.1. This value is computed for every pixel for every 

image t — {0,... n} in order to evaluate the DEBUT. When using a multi-label al-

gorithm, a value has to be assigned for each label E,(x;),x, G C. The value I can be 

associated with the expected label x* for each pixel. For example, the intensity range 

of 1 can be divided into | C \ equally spaced bins, where each bin is associated with a 

label. The unary term is then defined as a function h proportional to the difference 

from the expected label:

Ej(xi) = [h(xi-x-)}2. (6.11)

This value is supposed to be higher than the pre-defined threshold Bj when the 

pixel has a break and a value of 0 when there is no break. We employ a simple model 

based on a Gaussian distribution with a <r that is related to the uncertainty in It(x, y,t). 

We first define the bin size b and the center of each bin m, which is associated with 

label x,-:

b=(BT-0)/(|£ | -  2), m, =  (x, * b) -  ). (6.12)

The cost of assigning label x* to voxel i = (x, y, t) is defined as a function of the pixel's 

intensity in the dryness image and the label associated with the bin's center:

Ei{xi) = P(xi\It( i ))=Af(It(i);mi,a). (6.13)

The pairwise term (6.7) uses linear distance metrics in both the spatial (6.2) and 

temporal (6.6) directions with parameters A and y. This metrics penalizes linearly for 

changes in labels both temporally and spatially, where tj = tj, since both pixels belong 

to the same image. The value of these parameters depends on the number of labels 

in C. In the spatial case the function is truncated, since large label discontinuities 

can happen as some break-up areas are local in shape and they should not be over-

penalized. However, since the number of labels in C is not high and label assignment 

is expected to be smooth in most regions, A should be high.

In the temporal domain, large discontinuities are not expected, so the regular lin-

ear distance metric is appropriate. The value of y  is related to the rate of temporally
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changing labels and is also tuned according to the number of slices in the 3D MRF. If 

the number of slices is high, label changes occur slowly and y should be high. For a 

small number of labels in £, the rate of changing labels is expected to be low, thus y 

should be high. Finally, since the clinical definition of tear film thinning in the FBUT 

test states that the thickness of the tear film cannot increase with time, the monotonic 

restriction is directly encoded into (6.7).

Despite its simplicity, the pairwise term is quite appropriate in most cases. A dif-

ferent value for A might be needed depending on the ratio between the number of 

slices n and labels |£| and how fast a change from the minimum to the maximum la-

bel can happen. For example, if there is a small number of slices, it is possible to have 

a faster change between labels, so a lower value might be assigned to y.

This finalizes the steps required for the creation of the graph. The minimum cut 

is found by using the alpha-expansion algorithm. The labelling for each voxel is its 

degree of dryness at the time. The labelling of the pixels at time n should be similar to 

the value of the same pixel in the dryness image I computed by the 2D approach (see 

section 5.5.1).

The DEBUT is also computed in a similar way to (5.10) of the 2D approach. The 

slices in the volume are scanned from bottom (time t — 0) to top. We would like to 

find the first slice such there exists a break region. In every slice, we are looking for a 

connected region labelled as m — 1 (the label associated with a break). Each connected 

region's size is compared with the threshold of (5.12). If it is over the threshold, the 

time passed since the blink corresponding to this slice is assigned as the DEBUT. The 

monotonicity constraint guarantees that the number of pixels in a break region will 

not decrease in succeeding slices. Therefore, it is impossible for a pixel to not have a 

break or show further breaks after it reaches its final label of m — 1. This is not the 

case in the 2D approach, where theoretically a pixel can have a computed dryness 

intensity of It(i) > Bj at time t and then at later times: f* > ... > U > t have 

increasingly higher dryness intensities: hk{i) > ... > Jf2(z) > /{(/).
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(a) (b) (c)

Figure 6.5: The top slice shows the final segmentation result. The brighter the colors, the more severe 
the dryness. The temporal axis (or the t-axis) is presented from bottom to top of the image. Thus, the 
image at the top of the figures is the dryness image just before the next blink. The 3D view demonstrates 
how the dryness progresses at specific spatial locations. The monotonic constraint forces pixels to have 
non-decreasing intensity, (a) Dryness image of the sequence from Fig. 6.1 (rotated counterclockwise 
for clarity), (b) A  sequence where the dryness is mainly in the central and superior parts (rotated 
clockwise), (c) Temporal progress of the voxel highlighted by x in (b)

6.6 Results

In order to test our method, we used a database of 22 videos with varying length 

and degrees of thinning of the tear film. The iris was aligned in each of the videos as 

described in section 5.4. The aligned videos had up to 140 image frames. However, 

in order for the alpha-expansion algorithm to run in a reasonable time, we only used 

every 5th image, therefore limiting the number of images to 28. Such reduction in the 

number of images is reasonable for producing the dryness image as the changes are 

usually very gradual. In order to detect the exact frame of the DEBUT, another search 

can be done in a small number of frames.

We produce a 3D volume image showing the progress of the dryness through time 

and a separate 2D image of the top slice, which is similar to the output given by the 2D 

approach. Fig. 6.5(a) shows the result for the sequence in Fig. 6.1. The brightest pixels 

correspond to areas of maximum thinning. The top slice is the final segmentation 

result. The temporal axis (bottom to top of the volume) shows the progress of dryness 

through time. It can be seen how the monotonic constraint enforces the voxels to 

have only a non-decreasing intensity (see Fig. 6.5(c)) and that some of the voxels start
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showing dryness at a later stage but progress faster. Fig. 6.5(b) shows a similar cut 

for a different sequence where dryness mainly develops in the central and superior 

areas. The area of dryness in the superior part is quite thin in size, but the smoothness 

constraint ensures it is a connected area.

In order to show the contribution of the monotonic constraint, we examined the 

average number of labels changed between every two consecutive slices:

t—n—1

C = l / |P j | £  £  |*'+ l -* ' l -  (6-14)
xeVi o

We denote the label of pixel i at time t by x\. The sum of (6.14) is normalized by \Vt\ 

which is the number of the pixels in the iris. However, we do not normalize by the 

the video's length, since all videos in our experiment have a break at some time. The 

measurement we are interested in is just the number of label changes and not the time 

required to reach the break.

When using the monotonic constraint, the upper bound for C is defined by the 

max number of labels: C < £ (or 8 in our experiments). This is since the monotonic 
constraint forces each pixel to have only increasing labels and the maximum label 

number is 8. In the 2D approach we do not have such a constraint, so labels does 

not have only to increase. In order to be able to use (6.14) on the 2D approach, we 

converted the dryness values of all pixels at all times to a label between 0 and £. We 

expect to have a lower number of changes in the 3D approach when compared to the 

2D approach. A lower number should mean that the segmentation is more robust 

and pixels do not change their dryness value too often, which would have impact on 

the computation of the DEBUT. We note that a higher number of changes per pixel in 

one video compared to the other does not necessarily mean that the result is worse, 

but possibly that larger areas became gradually dry. However, when using (6.14) on 

the same video to compare between two approaches, a lower number of changes is 

meaningful, since the size of the dryness area is equal.

The result of applying (6.14) to both methods on all 22 videos are summarized 

in Table 6.1. We received an average of 2.72 and 1.55 for the 2D approach and 3D 

approach respectively. The last column of the table shows the percentage of iris pixels
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that had at least one label change. In a few videos, more than two thirds of the iris 

pixels had no label change, so the changes are focused on a small subset of iris pixels. 

Therefore, the difference in C between the approaches is more meaningful. In the 2D 

approach, individual pixels mainly near the eyelids or the iris's borders, had up to 

68(!) label changes, while a maximum of 8 is enforced when using the monotonic 3D 

approach.

Video number 20 had the highest ratio of label changes between the two approaches. 

The 2D approach struggled with the quick movement of the iris and the eyelids that 

happens after around 240 frames. It takes a few iterations for the alignment algorithm 

to detect the iris again. As a result, the dryness images contain big areas that become 

suddenly dry and then non-dry after the alignment is corrected. In the 3D approach, 

where a monotonic constraint is enforced, these areas do not become dry at all through 

this transition. This is depicted in Fig. 6.6, showing 6 consecutive dryness images pro-

duced by the new approach and the corresponding dryness images when using the 

2D approach. Even though the iris is temporarily not detected properly, the dryness 

images are robust. Due to the monotonic constraint, the areas at the left side of the 

iris are not segmented. Therefore, wet areas are not being marked as dry. If they were 

marked as such, later on, once the iris is tracked correctly again, they would have to 

decrease in label (back to wet areas), which is not permitted. This is not the situation 

in the 2D approach, where wet areas were marked as dry between times t = 240 and 

t = 280. Finally, we note that the final dryness image of the two approaches is quite 

similar. The new approach is a bit more conservative in segmenting pixels (as seen 

in the figure), but can be adjusted by changing the values used to compute the unary 

term, for example in (6.12).

Fig. 6.7(a) shows another segmentation result using our approach. Parts (b) & 

(c) are temporal cuts, where the y-axis in these images is progression through time. 

Notice how near the left end side the monotonic constraint creates a smooth transition 

between labels with no fluctuations while there is a lot of noise in the other approach.

Generally, our approach tends to minimize the number of incorrectly segmented 

pixels when compared to the 2D approach, enforced by the monotonicity. This is 

useful as the DEBUT is computed as a function of the time passed since the blink
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n = 200 n = 220 n = 240

Figure 6.6: Demonstrating the robustness of the new approach. Six dryness images are shown, each 
one 20 frames apart from the next one. As in the monotonic approach, we do not use all video frames, 
the displayed images are continuous slices in the resulting image volume (thus every 20 frames, a slice 
is added to the volume). Upper part: Dryness images when using the 2D approach. Lower part: 
Dryness images when using the 3D approach. We notice the increase in the segmented area in the 
left side between frames 240 and 280 in the original approach. Then these segmented regions mostly 
disappear at around frame number 300. This does not happen in the monotonic approach, as it is less 
sensitive to the temporary misalignment.
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Video No. C - 2D approach C - 3D approach max changes % of changed pixels
1 1.1286 0.5387 30.0000 0.2538
2 4.5329 2.6412 43.0000 0.6688
3 1.1676 0.4774 68.0000 0.2187
4 1.2132 0.7522 40.0000 0.4383
5 4.1809 2.8993 35.0000 0.7799
6 2.0526 1.1882 46.0000 0.5765
7 3.3598 1.3768 31.0000 0.7528
8 2.5279 1.4984 31.0000 0.4685
9 6.4223 5.3399 37.0000 0.9184
10 1.7694 0.4003 35.0000 0.3038
11 0.2649 0.1029 27.0000 0.0486
12 2.7301 1.7559 49.0000 0.6871
13 1.4124 0.5122 34.0000 0.2959
14 0.6711 0.1960 23.0000 0.1530
15 2.2193 0.9784 36.0000 0.2590
16 3.2871 1.5051 57.0000 0.6441
17 5.1117 3.0674 31.0000 0.8494
18 1.7002 0.4519 29.0000 0.3549
19 2.3577 1.3973 28.0000 0.4495
20 3.8590 0.5321 56.0000 0.6993
21 4.7781 3.9088 47.0000 0.7948
22 3.2122 2.6509 44.0000 0.8056

avg 2.7254 1.5532 38.9545 0.5191

Table 6.1: Summarizing the results of the 3D algorithm compared to the 2D algorithm. The 'max 
changes' column is the maximum changes of a label for a pixel in the 2D approach. The number of 
changes in the 3D approach is bounded by 8, and is always lower than the number of changes in the 
2D approach. The last column is the percentage of iris pixels that had at least one change of labels. 
Therefore, a small percentage means tlmt only a small area had any degree of thinning, while a large 
percentage means that the thinning is spread out. In videos with a high percentage of pixels having any 
degree of thinning, the difference are smaller. The bold numbers indicate the maximum and minimum  
in each category. The italic number indicate the video with the highest ratio of changes between the 2D 
and 3D approaches.
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Figure 6.7: Example of an x-t cat. (a) Segmentation result using the new approach. An x-t cut (not to 
scale) at the location of the line in (a) using the (b) 2D approach, (c) 3D approach. The y-axis in (b) & 
(c) shows temporal progress from bottom to top.

that the size of a certain break area is over a threshold A d e b u t  (see section 5.5.2). 

A low threshold will make the DEBUT detection more sensitive to small breaks that 

do not progress in size. However, it can result in incorrectly computing a very early 

DEBUT by the 2D approach, as even a small number of wrongly computed pixels 

may be enough to be above the threshold. In the new approach, such outliers are 

less likely to happen, as misaligned voxels cannot temporarily decrease in label and 

therefore should not have any increase in labels at all. The importance of defining the 

threshold as a small value is demonstrated in the experimental tests of chapter 7 and, 

in particular, in section 7.1.1.

6.7 Conclusion and further research

In this chapter, we demonstrated a general approach to create a 3D volume from a 

video of 2D images and incorporate a monotonic constraint in a graph-cut based solu-

tion. This creates an asymmetric graph-cuts problem, which we showed can be solved 

using the alpha-expansion algorithm. Then, we explained how the approach using the 

monotonic constraint is applied to dryness segmentation.

The inclusion of a temporally monotonic constraint improves the robustness of the 

results and reduces the sensitivity to outliers. We also discussed how the computa-

tion of the DEBUT can benefit from the monotonic constraint. As outliers will not be 

segmented unless they persist, the minimum DEBUT area can be decreased to better
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correspond to the needs of the clinicians. This is demonstrated in the experimental 

results chapter at section 7.1.1.

The approach presented in this paper can be extended to other medical applica-

tions. For instance, OCT imaging (see chapter 2.3.5) of the retina can provide a number 

of linear radial scans. An application will try to segment the fixed number of intra- 

retinal layers to detect an ocular disease around the macular region or the optic disk. 

Similar steps to those mentioned in section 6.4.3 can be applied to OCT images:

• The 3D volume is created from the six 2D scans taken by the device.

• The images are aligned according to the orientation of the radial scans.

• The neighborhood can be defined as the usual 6-connected.

• The number of labels is equal to the number of layers in the OCT image and is 

usually assigned to 5 labels.

• The monotonicity is enforced on the y-axis, since the retinal layers always ap-

pear on top of each other in the image. Therefore, when scanning the y-axis, the 

layers have to appear in the known order. In this case, the monotonicity is en-

forced spatially so the segmentation of layers follows that ordering. In addition, 

if we know that all layers have to appear at each column, the monotonicity can 

enforce that label changes should always differ by one. Such a constraint can 

easily be incorporated into a pairwise term based on difference of labels.

In fluoroscopic imaging involving perfusion of contrast agents, temporally mono-

tonic increase and subsequent decrease of intensity may be enforced using an exten-

sion of these methods. Finally, spatial relationships and geometric properties such as 

convexity may be modelled using MRFs with asymmetric edge labels.



Chapter 7

Experimental Results

Through our experiments, we aimed to achieve the following goals:

1. Show that our automatic analysis of the videos is in agreement with the manual 

analysis done by clinicians. We compare the DEBUT value with the manual 

BUT, the location of the break and whether there is a meniscus induced dryness.

2. Show that there is a large variation in the BUT value computed by the clinicians 

and the need for a robust, non-operator dependent value.

In total, we have captured around 200 videos of more than 50 patients. The patients 

were of different age groups and varied from having a very dry eye (dryness occurring 

quickly and in several locations) to no dryness at all (no break areas). The clinical 

routine we have used is based on the FBUT test and is described in section 2.3.4. The 

experiments demonstrate the performance of the proposed algorithm and explain the 

importance of defining the DEBUT. In all experiments, the values provided by the 

clinicians were considered to be the gold standard. Results presented in the form of 

x ±  y should be interpreted as x is the average value and y is the standard deviation, 

and all values are given in seconds.

7.1 Defining the experiment

One of the problems with measuring only the BUT by clinicians is the difference in 

the way each clinician defines the exact time of break. Some clinicians can interpret 

thinning as a break while others will wait longer to define it as the time of the break. It 

is also visually hard for the clinician to decide when an area looks black or very black,

127
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especially if the change is gradual. The clinician might focus on a specific region and 

miss breaks which have faster progress in a different region. For example, an area of 

thinning in the inferior part might start to form early on. However, another break area 

in the superior part can have quicker progress even if it starts forming later. In such 

situations, the clinician needs to keep scanning the iris area to estimate the correct 

BUT. This is not an easy task as the clinicians tend to focus on a specific part of the 

cornea (normally the center), making it hard to detect changes near the eyelids.

In order to further corroborate our claim, we have carried out the following ex-

periment to get an idea about the inter-observer (comparing results between clinicians) 

and intra-observer (comparing different estimations of the same clinician) variances. 

A set of 22 videos was chosen with each one of the videos having a full thickness 

break (a break). The BUTs in these videos were between 2 to 22 seconds. The videos 

were shuffled, so the BUTs were not ordered in any particular way. The clinicians 

were asked to view each video once with a stopwatch and write down the moment 

the break happens (or equally could press the stop button in the video controls on 

the computer). This request should imitate the way the clinicians measure the BUT 

in the clinic. This value is denoted as the BUT. Then they were allowed to go over 

the video as many times as required and write down the range of frames where they 

think the break has happened and the region of the break. These values can be differ-

ent from their initial value. The range of frames should be as small as possible and 

must include the time when they are sure the break has happened. The middle value 

of this range is considered to be the Corrected BUT. The aim of letting the clinician 

review his initial estimate has a two-fold purpose: (a) Learning the acceptable range 

of frames that are considered correct for the DEBUT, (b) In the clinic, the clinicians 

usually get only one chance when measuring the BUT. We would like to quantify the 

error of the corrected BUT compared to the original BUT, when the clinician has the 

option to review the video.

Four experienced clinicians, who regularly perform the FBUT test, were given the 

videos and we analyzed their results in Fig. 7.1. The graphs are sorted according to 

the root mean square (RMS) BUT, which is computed using the measurements of all 

four clinicians. We denote the BUT value of clinician c for video v by BUT^. The RMS
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Figure 7.1: Summary of experiment. The x-axis in all graphs is the video number. The videos were 
ordered according to the root mean square (RMS) BUT computed from  the measurements o f all 4 clin-
icians (a) Graph of the BUT value computed by each clinician and the algorithm DEBUT. The mere 
purpose of the graph is to provide indication about the large variance between the observations of the 
clinicians. This can be observed by noticing that no two lines fo llow  the same pattern. The arrows point 
to videos o f disagreement between our DEBUT and the clinicians. The reason is explained next to the 
arrows, (b) Inter-Observer results showing the difference in the Corrected BUT between the clinicians. 
Each column depicts the average, min and max value o f the absolute difference between any two c lin i-
cians. (c) Intra-Observer results showing the average, min and max value o f the absolute difference in 
the estimation of the BUT between the clinician's firs t and second measurement.
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value of video v is computed as follows:

RMSV
\

4
l / 4 £ [ B U 7 ? p .

c—1
(7.1)

7.1.1 Comparing the clinicians BUT to the DEBUT

The graph in Fig. 7.1(a) compares the algorithm DEBUT value to the clinicians BUT. 

It is noticeable how the four graphs of the clinicians do not follow a specific pattern 

of BUT's values. We have achieved a strong correlation with the first clinician and 

a slightly less good correlation with the other clinicians (it varied between the clini-

cians). However, on average it is not worse than the correlation between the clinicians 

as can be seen in part (b).

In a few videos, our DEBUT was on the upper range given by the clinicians. We 

speculate that it is a result of our requirement that there is no further major decrease 

in the intensity of the pixel (requirement 2 in subsection 5.5.2). In addition, two videos 

had only a very small area of break forming in the superior part. Our algorithm did 

not detect a full thickness break in these videos, since the requirement in (5.12) re-

garding the minimum break size did not hold. In these cases, a DEBUT value which 

equals to the sequence's length is assigned. An example of such video is shown in Fig. 

7.2. The figure contains 5 images from video number 17 that correspond to the BUTs 

given by the clinicians and the middle image is the last image of the sequence, which 

corresponds to the DEBUT. Next to each image, the BUT is written. All 4 clinicians 

treated the small break in the superior part as the cause of the break. However, the 

variation in their estimations was up to 12 seconds. Furthermore, the area of break is 

not even that dark (compare for example with Fig. 7.5), which is why our algorithm 

did not discover it as a break.

In one of the 22 videos, there was noticeable fluorescein spreading after the blink 

(thus after starting to record the video). This caused the brighter fluorescein to move 

upwards, making some areas darker just because of the movement and not due to 

dryness. As a result, these areas were eventually detected by our algorithm as break 

areas. However, the DEBUT value was still in the range of BUTs values given by the
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BUT = 12.8s B IT  = 14.9s

Figure 7.2: Images corresponding to the BUT given by the clinicians and the software (in the middle) 
to video number 17. The video has an RMS BUT of 10.5 seconds.

four clinicians. This is demonstrated in Fig. 7.3 by using the aligned video, so the iris 

is fixated. The circle highlights the area that became exposed when the fluorescein 

has completed its spreading at time 3.2 seconds. As a result at time of 8 seconds, this 

area was considered as a break region. We noted that in most cases, bad fluorescein 

spreading is not a problem, and can usually be avoided by asking the patient to blink 

a couple more times before recording the video.

An interesting observation is that the BUT value given by the clinicians in some 

cases was related to the time when dark areas just started forming and not necessarily 

when they were the darkest. Without judging whether this is the correct way to esti-

mate the BUT or not, it creates large discrepancies between the clinicians. This raises
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t = Os t = 3.2s t = 8.5s

Figure 7.3: A video with bad fluorescein spreading. The images are taken from the aligned video, so the 
iris is located at the same location. The first image is the image immediately after the blink. The second 
image is at the time the fluorescein stops spreading. The last image is the image that corresponds to the 
DEBUT. It can be observed how the fluorescein moves upwards between parts (a) and (b) and creates 
artificial dry areas.

a couple of questions: first, how the clinical definition of the BUT can be improved 

to create a more unified estimation? Second, how blackness is perceived, especially 

if the original image is already quite dark. In such cases, regions on the cornea can 

appear darker, even when only a small decrease in intensity has actually happened.

We also examined the region of the break (see CCLRU standards [105]) that was 

provided by the clinicians as the region where they first detected the break. In se-

quences that had only one major break area, the clinicians always agreed between 

themselves. There was a variation in the location of the break when a few breaks 

progressed simultaneously. In some cases it could be correlated to the difference in 

the estimated BUTs. Fig. 7.4 demonstrates an interesting case where the four clini-

cians pointed towards three different areas. However, the difference in the BUT value 

between the first and second clinicians is only 0.7 seconds (11.6s vs 10.9s), but their 

detected breaks were in different quadrants as highlighted by the circle.

Comparing the DEBUT when using the monotonic constraint

In chapter 6, we presented an extension to the dryness algorithm from chapter 5. The 

video was transformed into a 3D volume and we incorporated a monotonic temporal 

constraint on the pixels' intensity in the dryness image. We demonstrated that the
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BUT = 11.6s BUT = 10.9s BUT = 5.7s

BUT = 11.8s DEBUT = 10.8s Dryness Image

Figure 7.4: Demonstrating the areas that were given by the clinicians as the area where they first 
detected the break. Although some of the BUTs are quite close to each other (first and second images), 
the clinicians detected a break in a different region. The detected areas were the followmg: superior, 
temporal, inferior, superior and superior (by the software). The dryness image produced for this video 
is in the lower right image and the region that caused the break is colored in blue.

results were less sensitive to noise and resulted in a smaller number of label changes. 

In this section, we are interested in validating that the DEBUT value, when computed 

using the monotonic constraint, is still valid.

To that end, we used the same set of 22 videos, which all of them have a break. 

When using the monotonic algorithm, a pixel is considered as having a break if it is 

assigned the highest label in C. Following the discussion in section 6.6, we have also 

decreased the threshold A q e b u t  that defines the minimum size of a break from 0.0025 

to 0.0015. By doing so, we hope that small breaks that were not discovered using the 

regular method will be detected using the monotonic algorithm. However, we also 

ran the risk that breaks will be discovered earlier, thus a lower DEBUT value which 

might differ from the clinician's BUT.

We tested the monotonic algorithm using the 22 videos and recorded the DEBUT.
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We first compared the monotonic algorithm with the original one. The absolute dif-

ference in the DEBUT value between the two methods was 0.76 ±  0.88. Therefore, the 

differences can be seen as negligible and no major change in the DEBUT value exists. 

We note that the DEBUT value can be adjusted to closely match the DEBUT value of 

the original algorithm (if needed). For example, changing the way dryness intensi-

ties are associated with labels in (6.13) or adjusting the thresholds used to compute 

the dryness intensity It (x,y, t)  in (5.8). However, we explicitly did not change these 

thresholds, so the results are achieved with the same parameters and also due to the 

uncertainty what is the gold standard because of the large variation in the BUT values.

When we compared the results, we found that the main advantage of the mono-

tonic algorithm lies in the lower break size. The monotonic method was able to cor-

rectly detect small breaks in two videos which were not discovered using the original 

method. Images from one of these videos are depicted in Fig. 7.6, where one can see 

how small the break areas are. In both videos, the computed DEBUT was approxi-

mately 2 seconds earlier then the original method (where the DEBUT was the video 

length). Thus, the contribution is double fold: (1) The DEBUT has a better match with 

the BUT provided by the clinicians (2) A break was discovered which provides clini-

cally important information. The detection of these breaks is directly attributed to the 

lower minimum break size. If we used the lower break size with the original method, 

it would have detected these breaks as well. However, since the original algorithm is 

more sensitive to outliers, it incorrectly computed an early break in two other videos. 

Therefore, the monotonic algorithm manages to correctly compute the DEBUT and 

also detect smaller breaks.

7.1.2 Evaluating inter-observer variance

The inter-observer graph in Fig. 7.1(b) compares the absolute difference of the Cor-

rected BUT between clinicians. As the experiment had 4 clinicians, we computed the 

difference for the 6 possible ways of comparing between two clinicians: Q) = 6. Each 

column in the graph shows the average, minimum and maximum of this difference. 

For example, let us assume that for a certain video, the BUT values given by the clini-
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Figure 7.5: Images corresponding to the Corrected BUT given by the four clinicians to video number 
7. The middle image is the image after 10 seconds showing that breaks started forming in other regions 
as well, and possibly regions where the early break formed are still becoming darker. The video has a 
relatively short RMS BUT of 4.5s seconds, but the estimates vary from 0.7s-7.2s.

cians are: Is, 4s, 5s and 7s. Then the minimum difference is Is (5-4), the maximum dif-

ference is 6s (7-1) and the average difference is: 1/6 * (3 +  4 +  6 -I-1 + 2 +  3) =  19/6s. 

The graph shows that meaningful differences exist between the clinicians. We also 

compared the standard deviation of the BUT value among the clinicians for the 22 

videos. We found out that the standard deviation is higher than two seconds in 15 

videos and higher than 3 seconds in 6 videos.

Examining the maximum difference between the clinicians reveals that it can be
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over 10 seconds. The largest difference occurs on video 22 (see Fig.7.6). Even if we 

consider the small BUT provided by clinician 4 as an outlier, there is still a large dif-

ference in the BUT estimation between the first and the second clinician. However, 

the big differences in BUT are not necessarily for videos with a high BUT value. For 

example, video number 7 with RMS BUT of 4.5 seconds had an extreme difference of 

6.5 seconds between two clinicians and a standard deviation of 2.8 seconds. Even this 

small sample demonstrates how subjective the BUT value is. Fig. 7.5 shows images 

from video number 7, which correspond to the clinicians Corrected BUT. Interestingly 

all clinicians reported the break in region 2 (nasal), which is in the left hand side in 

these images (as it is a left eye). Looking at the 5 images, it is clear that the size and 

degree of blackness of the break is quite different in each image. This demonstrates 

again the difficulty of deciding what is the exact moment an area is becoming dark 

enough.

7.1.3 Evaluating intra-observer variance

The intra-observer graph in Fig. 7.1(c) compares the clinician first measurement 

(BUT) with his corrected one (Corrected BUT). For each video and clinician, the ab-

solute difference between the clinician's BUT and Corrected BUT was computed in 

seconds. Each column shows the average, min and max value of this difference for 

that video (among all clinicians). The results were quite surprising, generally show-

ing a high consistency between the two measurements of the same clinician. The first 

two clinicians have corrected their results in a value of less than Is for about half of the 

videos. This shows that they had a high confidence in their estimation in these videos. 

The location of the red dot in each column of the graph corresponds to the average 

correction among the four clinicians for that video. It can be seen that on average, the 

change is not big in most videos.

A very interesting result is that the max correction for a clinician was between 7 

to 11 seconds. For all clinicians, it was at the same video - number 22 (last column in 

the graphs). Correlating it to the results in parts (a) & (b), we find out that correcting 

the BUT value did not make the BUT for this video more unified among the clinicians.
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Figure 7.6: Demonstrating the extreme case of intra-observer correction. The images are from video 
number 22. The images on the left correspond to the clinician's BUT value and the images on the right 
correspond to the clinician's Corrected BUT. Two clinicians increased their BUT value drastically (see 
first row), while the third decreased it drastically (see second row). The fourth clinician did not change 
its BUT that much (see third row), but its BUT value is very different from the other clinicians.

This is demonstrated in Fig. 7.6, where two images are shown for each clinician: the 

clinician's BUT image and the Corrected BUT image. Clearly, the break is related 

to the small circular dots appearing in the temporal and nasal parts. However, the 

degree of blackness of these regions only changes very gradually over a long period 

of time. This finding shows that the clinicians face a real difficulty in assessing the 

BUT at specific videos such as this one.
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Another phenomenon is that in some videos a break was developing in the supe-

rior region, close to the eyelids, and the clinicians usually corrected down their BUT 

value in these videos. This is probably because it is easier to focus only on the central 

area at the first measurement. When given the opportunity to review, the iris can be 

observed more thoroughly for the superior part as well.

7.2 Comparing the DEBUT and location of break to a single 

clinician

We compare the BUT value and the reason of the break provided by a very experi-

enced clinician to our computed DEBUT. The aim is to show that the results are in 

agreement when compared to a single clinician. We asked the clinician to analyze 

a set of 21 new videos and write down the BUT, reason of the break and the area of 

the break. All videos were different from those that we used in the previous section. 

The possible reasons for the origin of the break were: no break, a corneal break and 

a break originated near the upper or lower reservoirs (black line). The chosen videos 

had a varying BUT, where about one third of the videos had no full thickness break 

. This depicts the everyday case, where not all patients have a corneal break. About 

one third of the patients had some dryness symptoms related to the black line. When 

the clinician or the algorithm reported no break, we considered the DEBUT to be the 

sequence length (for comparison reasons). The average length of the videos is 12 sec-

onds ranging from 6 to 20 seconds, and the average BUT reported by the clinician was 

10 seconds.

Fig. 7.7 shows a graph of the clinician's BUT and the algorithm detected DEBUT on 

all 21 videos. The videos were sorted according to the BUT for presentation purposes. 

The average difference between the measurements is 0.7s ±1.1  seconds and is well 

inside the acceptable range taking into account that clinicians measure the BUT in 

seconds. Figures 7.8(a) and (b) show the images corresponding to the BUT and the 

DEBUT for the first video respectively. This is the video with the largest difference 

between the clinician and the algorithm. As can be seen in the figure, the area of the 

break is very small, which is why it was not detected by our algorithm in that early
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Comparing the DEBUT and location of break
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Figure 7.7: Graph comparing the clinician BUT to the algorithm DEBUT in 21 sequences. Green 
circles indicate videos where both the clinician and our algorithm indicated a reservoir related break, 
while black circles indicate videos of disagreement. The black arrows point towards videos that our 
algorithm reported no corneal break, but the clinician did. One can see that in these cases, the error is 
small, showing that the break happened late in the sequence.

stage.

In 4 videos, the clinician indicated an upper reservoir related break and in 2 other 

videos indicated towards both the upper and lower reservoirs. Five cases were de-

tected correctly as depicted in the graph by green circles. The black circles show the 

two cases of disagreement: in the first, an upper reservoir break was not detected by 

the algorithm and in the second, our algorithm reported an upper reservoir break. 

In three cases, the clinician pointed out the reservoir related break as the only reason 

of the break and so did our algorithm (therefore, DEBUT equals to clinician BUT). 

Corneal breaks were not detected for 4 patients (and we assigned DEBUT = sequence 

length), depicted by the black dashed lines. However as seen in the graph, the dif-

ferences (DEBUT — BUT) are small (0.6 ± 0.3s). This difference means that the break 

occurred late in the sequence and was probably not detected due to the area not be-

coming dark enough or being too small. As at that stage, the patient blinked, we can-

not say if the error would have been increased or not. However, in the given videos,
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BUT = 3.8s DEBUT = 8s

Figure 7.8: Images depicting the largest difference between the clinician's BUT and the algorithm's 
DEBUT. The images correspond to video number 1 in the graph of Fig. 7.7. The reason for the difference 
is the small size of the break area. The white circles enclose the area where the break was detected by the 
clinician (left image) and by the algorithm at the time of the DEBUT.

we can conclude that the incorrect detection is less significant.

7.3 Repeatability experiments

We have carried out an experiment to try and prove the repeatability of our method 

in terms of DEBUT and area of the break. We chose 5 patients for this experiment who 

were willing to be examined in two separate days. We followed the clinical routine 

described in section 2.3.4 and captured 1 or 2 sequences for each eye. A few hours 

later, we repeated the same test and then twice again on a different day. For each 

patient, we captured up to 2 x 2 x 4  =  16 sequences and in total 64 sequences. We 

used 59 of them for our analysis and as for the remaining 5, the patients did not open 

their eyes enough or the blink-to-blink intervals were very short. We were interested 

in the BUT and the area of break for each patient at the 4 different times. Our goal 

is to demonstrate that the symptoms and their analysis are repeatable for the same 

patients. For example, we would like to show that the BUT happens approximately at 

the same time with a similar shape at different sequences of the same patient.

We analyze and present the results of the experiment in Table 7.1. The results
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reveal that 2 patients and in total 21 sequences had no dryness symptoms at all. The 

third patient had only 1 sequence out of 14 in which he had a full thickness break and 

a detected DEBUT of 5.4s. In the next sequence immediately following this one, he 

developed some reflex tearing that might have inhibited more breaks. This patient 

always had large blink to blink intervals of at least 12 seconds, except for the break 

sequence which had a break after 8 seconds.

The fourth patient had more varied results. Nine of the sequences had no break, 

although thinning of the tear film was evident. In 3 sequences, breaks existed and 

were mostly very small in area and appeared in different locations. The clinician noted 

that these breaks were not very significant. Two sequences had symptoms related to 

the upper and lower reservoirs, i.e. black line symptoms.

The fifth patient had dryness symptoms related to the upper and lower tear reser-

voirs in 2 sequences (thinning areas in the inferior and superior parts), and one case 

of a corneal break. In the other 7 sequences, the clinician did not indicate any breaks, 

but just thinning of the tear film. The reservoir related breaks occurred only twice, so 

it is impossible to derive any conclusions.

Since our chosen subjects mostly did not show dryness symptoms, more clinical 

experiments are required to draw conclusions regarding corneal breaks. In a con-

trolled clinical research, the patients should be chosen according to existing dry eye 

symptoms.

Some conclusions can still be drawn from the experiment. The first three patients 

did not show any breaks at any test (except for one measurement), so we notice the 

repeatability of that result. Reservoir related breaks were partially repeatable. When 

patients 4 and 5 had breaks, they were mostly horizontally shaped breaks in the in-

ferior and superior parts. Even though they were not associated with the reservoir 

by the clinician, they occur in similar regions and resemble the pattern of the black 

line. Finally, the blink to blink interval was quite repeatable as well, except for the 

first patient.
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Table 7.1: Summary of the repeatability test with 5 patients and 59 videos. 'None' is the number of 
sequences with no breaks at all, Reservoir Break is a break originated near the the tear reservoirs and 
Corneal Break is a break at any region on the cornea (excluding reservoir breaks). The Avg blink-to- 
blink is the average blink to blink interval in seconds. The table shows the analysis provided by the 
clinician. \Ne also analyzed the break patterns for patients no. 4 and 5: Patient no. 4: 1 Superior 
(Horizontal), 2 Inferior (Pool), Central (Pool), Nasal (Pool). Patient no. 5 had one corneal break in 
the inferior region. Large blink to blink intervals are usually related to non-dryness symptoms. It is 
also of interest to measure the break-to-blink interval, as this is the period where the patient feels most 
inconvenient. However, it was relevant only in 4 cases in this experiment.

No. None Corneal Break Reservoir Break Avg blink-to-blink (s)
1 12 0 0 11.5 ± 8 .7
2 9 0 0 27.6 ± 3 .9
3 13 1 0 22.1 ± 8 .8
4 9 3 2 17.0 ±10.7
5 7 1 2 10.3 ± 2 .3

7.4 Conclusions

In this chapter, we have compared some of the dryness symptoms that our algorithm 

detects to the clinicians' through a set of videos with and without a break. We com-

pared the DEBUT value of the algorithm to the clinicians' BUT value and the region 

of the break. We showed that the DEBUT value is in the acceptable range provided by 

the clinicians and also reservoir related breaks are detected. As presented in chapter 

5, our algorithm provides more data, such as the degree of thinning, the area of the 

break, the shape and the progress of the break and is not based only on a clear-cut 

definition of dryness such as the BUT value. However, it is hard to compare most of 

this information to manual results.

We believe that another big contribution of this chapter is the demonstration how 

subjective and hard it is to estimate the BUT. We showed that even when using only 

four qualified clinicians and 22 videos, large discrepancies exist between the mea-

surements of the clinicians. It seems that each clinician tends to estimate the FBUT 

according to his own experience. Therefore, it raises the question, what measurement 

should be considered as a ground-truth when we compare to our results.

We could also learn a lot from the Corrected BUT values provided by the clinicians
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after they were given the opportunity to review the video. Although in most videos 

the clinicians did not change their BUT significantly, in some cases the revised value 

was quite different from the original one. We speculate that this is related to the slow 

progress of the break or to the location of the break not in the central part of the cornea. 

Both assumptions are based on analyzing the BUT value and area that were given by 

the clinicians and observing the current clinical conventions.

The results obtained in the repeatability tests were inconclusive as most patients 

had no dryness symptoms. Further tests are needed using a sample of patients who 

have dryness symptoms. This can be sufficient to try to correlate the DEBUT to the 

region, shape and progress of the break. This is assuming that the breaks actually 

repeat themselves in sequences obtained at different times.

Some of the differences between the clinician BUT and the software DEBUT could 

be bridged by making the algorithm more sensitive to the minimum break size de-

fined in (5.12). As a result, break areas that stay small or increase slowly (as in Fig. 

7.8) will be detected earlier. We showed that the extended mono tonic algorithm han-

dled such break patterns better. The lower minimum break size did help to match 

the DEBUT value with the clinicians BUT value. In addition, the increased sensitivity 

to outliers did not produce wrong DEBUT values when compared with the original 

method.

Finally, all these results probably reinforce what is already known - the FBUT test is 

not reliable by itself as a measurement for dryness, but is still the most commonly used 

test by the clinicians. Our contribution is offering a new measurement, the DEBUT, 

which is robust and not operator-dependent. With a little bit of tuning, it can be very 

valuable to the clinician.
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Chapter 8

Detection of the Tear Meniscus 

Shape

In this chapter, we present an algorithm to evaluate the tear meniscus quality. Assess-

ing the tear meniscus in conjunction with the detection of dry regions and the DEBUT 

provides the clinician a detailed clinical diagnosis regarding the degree of dryness 

and the cause. See section 2.3.5 for more details.

Our algorithm segments the tear meniscus and analyzes its irregularity. We use the 

same videos that are recorded for the analysis of the break in chapter 5, but analyze a 

single image taken two seconds after the blink. This timing is chosen as the meniscus 

shape tends to stabilize two seconds after the blink, and provides the most accurate 

information.

As mentioned in chapter 2, the recent report of the International Dry Eye Work-

shop (DEWS) [18] mentioned the lack of a gold standard for diagnosis of dry eye and 

the usefulness of performing more than one diagnostic test. In this chapter, we an-

alyze the tear meniscus shape in our fluorescein images and provide its analysis in 

conjunction with the tear film break pattern of chapter 5.

The segmentation result of a regular meniscus will be a connected object with no 

gaps, (see Fig. 8.1(b)). However, this cannot be enforced easily when using graph-cuts 

(see section 4.5) due to the locality of the pairwise term. To overcome that, we use an 

energy function with asymmetric pairwise terms to enforce continuity. We incorpo-

rate a directional constraint which distinguishes between upwards and downwards 

moves away from the center of the segmented region. Only one change from object

145
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to background is permitted when moving up or down from the center. Thus, pair-

wise terms in the cost function are not only asymmetric but also different for points 

above and below the eyelid. The eyelid curve (known as a shape prior) is modelled 

using a spline. Our approach simultaneously optimizes the eyelid curve, which de-

fines the asymmetry, and segments the meniscus. Therefore, segmenting a long (thin) 

connected object is actually encouraged by the shape prior. The best shape prior and 

the segmentation are produced by iterative optimization over the parameters of the 

eyelid curve. Within each iteration, the energy function value is determined using 

graph-cuts.

8.1 Introduction

The tear menisci (or tear reservoirs) are situated along the upper and lower eyelids 

and are part of the exposed tear volume (see Fig. 8.1(a)). The height of the tear menis-

cus is an important measure of the volume of fluid in the tear film. A shallow or irreg-

ular meniscus is highly significant because it often results from the many risk factors 

associated with dry eyes [84]. Lid-parallel folds (or conjunctival folds or branching) 

[30], see at Fig. 8.1(c) that the lower meniscus has another line originating from it in 

the center of the image, are common with age and are also associated with dry eyes. 

These folds are hard to detect as they can be hidden by the meniscus. Such folds will 

deprive the tear film of the important fluid and in severe cases can come into contact 

with the cornea. The detection of these irregularities is especially important before 

fitting contact lenses. Assessing the quality of the meniscus is usually not carried out 

by the clinician as it is a hard task, especially over the conjunctiva. More information 

about the meniscus can be found in section 2.3.5.

8.1.1 Previous work

A new approach to tear meniscus segmentation uses Optical Coherence Tomography 

(OCT) (see chapter 2.3.5) to assess the tear meniscus height and curvature [109]. An 

OCT slice provides information regarding the area of the tear meniscus at that loca-

tion only, but the images are sagittal cross-sections through the eye -  quite different
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Figure 8.1: (a) An image taken from the video two seconds after the blink. Notice the uneven illu-
mination between the left and right sides of the lower meniscus. The upper meniscus suffers from bad 
illumination in both sides, (b) Segmentation result of the menisci. The lower meniscus is mostly contin-
uous with varying heights becoming thinner on the left hand side further from the iris, (c) An example 
of an irregular lower tear meniscus containing folds.

from our frontal images. In order to estimate the full shape of the meniscus, many 

slices have to be taken. OCT imagery is mainly used for viewing the fundus and con-

junctival folds cannot be detected. The routine use of OCT by clinicians to detect DES 

is uncommon, especially when compared to the prevalence of a slit-lamp diagnosis.

Using graph-cuts to segment medical images is common (see chapter 4.5). Recent 

research focused on joining shape information with energy based cost functions. Ku-

mar et al. [70] address the problem of incorporating a shape prior and note that energy 

functions based only on MRFs do not usually give rise to realistic shapes. In [61] the 

authors improve this work by using dynamic graph cuts. Their aim is to segment the 

human body from a given image using graph-cuts and also estimate its pose. They in-

troduce a stick-man model, which is a thinned image of the human pose defined by a 

set of parameters. The shape prior is defined as a distance transform to the stick-man 

and is incorporated as a unary term. As a result, segmentations that follow the pose 

of the stick-man are favored. The segmentation process iterates with different model 

parameters until reaching a minimum, which provides both a segmentation and the 

closest human pose (to the given image).

In [3] the authors segment the kidney using graph-cuts and introduce a shape prior 

by building a model of iso-contours around the kidney in training images. The shape 

constraint is incorporated as a function of the distance of the pixel from this model.
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In a similar way to [61], the constraint is defined as a unary term. Such solutions are 

useful to couple the distance of a pixel from the model with a MRF (see Section 8.3.3). 

However, they are insufficient to enforce a sense of direction in the segmentation pro-

cess.

Few segmentation applications combine a shape prior as part of the pairwise term. 

Boykov et al. [15] segment the liver from the muscle by using an asymmetric pairwise 

function. Their function is dependent on the pixels' intensities and encourages a cut 

from bright object to darker object. Nevertheless, it does not incorporate information 

about the desired shape of the object.

We note that early graph-cuts literature mainly used the Potts model or a simi-

lar cost which is not suitable for segmenting elongated thin objects (such as the tear 

meniscus). This shortcoming is solved by our use of a long thin shape prior. This 

ensures there is no truncation of long shapes. Thus, the method can be thought as 

an enhanced active shape model method [25]. However, our implementation adds 

another dimension to the problem: asymmetry and the use of a shape prior. Our cost 

enforces only one move from object to background and vice versa, so segmenting a 

long thin object is actually encouraged. Kohli et al [60] also segment thin long objects 

(such as the legs of a cow) using high order potentials and graph-cuts.

Graph-cut solutions using asymmetric cost functions have been discussed in chap-

ter 6. As we mentioned there, asymmetric costs have not seen widespread use. Some 

recent publications use directed edges to enforce directional constraints [15, 59, 79, 

121] or apply asymmetric penalties which depend on the potentials associated with 

the random variables [99].

In this chapter, we show how to combine a shape prior with a directional seg-

mentation into a graph-cuts based solution. We build an asymmetric pairwise cost 

function, which determines the direction of the segmentation according to the shape 

prior. We first describe how the model is estimated from the given image and then 

elaborate how the pairwise and unary terms are built. Finally, we present the seg-

mentation results and analyze them.
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8.2 Estimating the shape prior

This section shows how an initial estimation of the meniscus shape prior is found. We 

notice that the accurate detection of the eyelids provide a good initial estimation for 

the meniscus. Given an image l(x,y) of size X x Y (such as in Fig. 8.1(a)), we use a 

very similar technique to the one in chapter 5.3 to fit curves to the upper and lower 

eyelids. The limitation of the method from chapter 5.3 is that the fitted curves are 

usually very accurate over the iris area, but not always over the conjunctival area. In 

areas further from the iris, the eyelids can curve quite strongly, thus fitting a single 

quadratic polynomial is impossible.

The only difference in the fitting technique we employ in this chapter is that we 

fit more than one polynomial to the eyelids. We divide the eyelid curve to ns non-

overlapping (or with a small overlap) segments over the image horizontal domain 

[0, X — 1]. Then we use RANSAC to fit a quadratic function to each segment resulting 

in the following function:

ci\X2 + b\X + Ci i f O < x < X / n s

R(x) =  I : : (8.1)

[ anx2 +  bnx + c„ if ((ns -  1 )/ns)X < x < X -  1

Here, R is a one-dimensional function of x, where x is the location in the horizontal 

axis. In this chapter, we have used ns = 2, and find equations for both the lower and 

upper meniscus curves.

In order to produce a smoothed curve that can be modelled easily, we perform a 

cubic B-spline interpolation [94]. We define m + 1 uniformly spaced knots over the 

domain [0, X — 1], such that to = 0, tm = X — 1 and tj = iX/m for 1 < i < m — 1. The 

equivalent m + 1 data points of the eyelid curve at these knots are:

Here, we have used the location of the eyelids curve at m + 1 points as was computed 

in (8.1). We interpolate the B-spline curve M(t), such that M(^) = X(h-) for 0 <
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k < m. Since the degree d of the spline is 3, we follow the convention and define d 

additional knots at to and tn, so M(t)  can be computed at the first and last intervals. 

The problem can be formulated as to find the coefficients Cj to m +  d — 1 cubic B-spline 

basis functions (NJ*(x)), such that:

m+d- 1
M ( x ) =  £  (8.2)

M

The solution is found easily using matrix computation. This whole process is the 

standard B-spline interpolation. The meniscus curve is now parameterized and its 

parametrization is denoted by 9m. We note that the B-spline does not have to be ac-

curate at all knots (and usually will not be). A better estimation of the prior can be 

found in the iterative process described later.

8.3 Using graph-cuts

Our segmentation solution is based on graph-cuts. The problem formulation was pre-

sented in chapter 4 and we repeat it briefly here: Given an image I(x, y), we define 

the set V  to contain all pixels in the image. The aim is to assign a binary labelling to all 

pixels p G V  as either background or object. The vector x is defined as a possible la-

belling. The assignment of a pixel i G V  is notated by x„ where x, =  1 assigns the pixel 

as Object (belonging to the meniscus) and x, =  0 assigns the pixel as Background. The 

energy function is defined as (4.8):

E(x) =  £  Ej(x,) + £  (8.3)
i € X

and can be solved by using graph cuts. The graph is created using all pixels in V  as 

vertices and two additional vertices: 0 and 1. Initially, the vertices are connected to 

each other using the 4-connected neighborhood system J\f, and also all vertices are 

connected to 0 and 1. The costs on the edges are determined using the unary terms 

( E j ( x j ) )  and pairwise terms ( E j j ( x i ,  X j ) ) .  The unary and pairwise terms are also called 

unary and pairwise potential functions respectively. After running the graph-cut al-
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gorithm, each vertex is connected to either 0 or 1 but not to both, hence dividing the 

image to object and background and providing a segmentation. More details about 

the graph creation were described in chapter 4.

In chapter 4, we showed the correlation between MRFs and graphs. Given an 

image (lattice), it could be equally represented as a graph or as a MRF. We showed 

how to solve the labelling problem by using graph-cuts. The graph-cut algorithm 

minimizes the joint probability over observations (pixel values) and label sequences (a 

labelling). When using MRFs, it is not possible to represent joint probabilities between 

random variables that depend on the observations. Therefore, when using MRFs, the 

pairwise term in (8.3) cannot depend on the data, and thus information such as the 

intensities of pixels i and j cannot be used.

This limitation when using MRFs led to an alternative called Conditional Random 

Fields (CRFs) [71] . A conditional model defines the probability of possible labellings 

given an observation sequence. The conditional probability of a labelling can depend 

on any features of the observation sequence without assuming any prior knowledge 

regarding their distribution. For example, in (8.3) the probability of assigning labels 

x, and Xj to pixels i and j  can depend on information such as their intensities, their 

neighboring pixels intensities and their spatial location in the image (since we assume 

all observations are given in advance, i.e. the image).

In [71], the authors provide a formal definition to CRFs and show its properties. 

An MRF can be seen as a specific case of a CRF where the joint probability is not con-

ditioned on the data. The segmentation solution we present in this section uses the 

underlying observations to define the pairwise energies. Therefore, minimizing the 

term in (8.3) requires using CRFs (and not MRFs). However, the graph-cut algorithm 

does not require changes whether the cost functions depend on the underlying model 

or not. We will see in this section that our pairwise term depends on a set of parame-

ters defined by the shape prior (described in previous section). Therefore any change 

in parameters to the CRF induces a change in the potential functions and requires 

computing the cut again.
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8.3.1 Incorporating a directional constraint

The main observation regarding the tear meniscus is that in the normal case, such as 

in Fig. 8.1(a), the shape of the meniscus is a continuous smooth object with a vary-

ing height throughout the image, which does not contain gaps. When scanned in an 

upwards or downwards direction, only a single transition from object to background 

and from background to object is expected. In the abnormal case, such as in Fig. 8.4(a), 

there are spikes that originate from the meniscus or in some cases parallel lines to the 

meniscus. Assuming our initial estimation M(x)  for the meniscus curve is roughly 

correct, all segmented pixels should be connected to the curve in the normal case. In 

other words, breaking the continuity of the segmentation should be penalized by high 

energy terms.

The difficulty is incorporating continuity and shape priors into a MRF (or CRF) 

based solution, since it mainly provides local pixel information. When using a 4- 

connected or an 8-connected neighborhood systems (and hence only quadratic terms), 

the pairwise term only depends on two neighboring pixels. Therefore there is no 

obvious way to enforce shape constraints that depend on more than two pixels. For 

example, assume we have four vertically neighboring pixels p,q,r and s and we would 

like check if for a given assignment they represent a connected object with no gap. Let 

us assume a given assignment: p = l , r  = 0, r = 0, s =  1. Here we have a gap 

between two objects. Since each quadratic term depends on two pixels, we can detect 

a change between object and background from p to r and from r to s. However, we 

cannot easily conclude that there is a gap, since there is no term that depends on all 

four pixels.

In order to solve (8.3), the four possible assignments between two neighboring 

pixels have to be defined: E/y(/;, l j ) ,  /,-, l j  G {0,1}. We remind the reader that the cost 

Ej j ( 0,1) is the cost of assigning pixel i as background and pixel j  as object. Most 

graph-cut based solutions assume symmetry between the terms. However, in order 

to add a sense of direction to the CRF, we use an asymmetric approach, where:

Ei7( 0 ,1 ) ^ E i7(1,0) for (/,;) G N (8.4)
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(Note that E/;(0,1) = E;;(l, 0) always holds, as the cost of assigning i as background 

and j as object is the same as assigning j as object and i as background). By doing so, 

it is possible to distinguish between object to background transitions (or background 

to object) made in one direction and the opposite direction. For example, a transition 

from object to background in an upward direction can be encouraged by a low cost, 

while the transition from object to background in a downward direction can be for-

bidden. This cost will encourage segmenting in a downward direction (until some 

condition is met, which might change the cost), but not necessarily in an upward di-

rection. This is a similar situation to the one depicted in the right side of Fig. 8.2.

Given the initial estimation M(x) of the meniscus through its set of parameters 0m, 

we can now enforce the continuity constraint and control the penalty for breaking it. 

An asymmetric cost function is useful, when there is an existing prior, which provides 

knowledge regarding the direction of the required segmentation. It can also be seen 

as an additional way to incorporate shape prior in the CRF. Next, we describe the 

construction of the pairwise function.

8.3.2 Computing the pairwise term

The intuition behind the pairwise term is to use the estimated location of the meniscus 

to enforce continuity in the direction of segmentation. We will assume two neighbor-

ing pixels p = (pXfPy) and q = (qX/ qy). Given a pixel p, it has four neighboring pixels. 

Two of them lie on the same horizontal line as p (same py value) and the other two 

differ in 1 pixel vertically such that \py — qy\ = 1. Therefore, it is enough to consider 

only a horizontal and vertical case when assigning costs. We would like to estimate 

the following conditional probabilities for a pair of pixels:

Pr(xq|xp,0m), (8.5)

and convert them to energy costs. This is the probability of assigning a label to pixel 

q, knowing the label of a neighboring pixel p and the curve parameters.

We will now consider three different cases between two vertically neighboring pix-

els as depicted schematically from left to right in Fig. 8.2. Without loss of generality,



154 Detection of the Tear Meniscus Shape

Figure 8.2: A schematic image of the tear meniscus and three possible cases of pairwise costs. From left 
to right: pixel p is on the curve and pixel q is above; pixels p and q are below the curve; and pixels p and 
q are above the curve. We show that the associated costs are dependent on the location of the meniscus 
and the direction of segmentation.

we assume that the transition is always upwards from pixel p to q (as pointed by the 

arrows in the figure). If the transition is downwards then the costs of changing labels 

are reversed. For convenience, we will omit the subscript pq from the cost terms.

Case 1: Pixel p lies on the curve, therefore our assumption is xp =  1. The proba-

bility of a neighboring pixel q assigned as object depends on the average height of the 

meniscus. This probability can be learned from manually segmented images of the 

meniscus: Assuming we are on the meniscus, what is the probability that a neighbor-

ing pixel is also part of the meniscus?. This probability should be relatively high as the 

meniscus height is usually a few pixels. The probability of assigning q as background 

is just 1 — Pr(xcj =  1|Xp,6m). Therefore, the cost E(l, 1) should be low and the cost 

E(l, 0) should be high. We notice that this case is independent of 6m.

Case 2: Pixels p and q lie below the curve. Assigning the same label for both pixels 

preserves the continuity of the segmentation and should incur a low cost. Assigning 

Xp = 0 and =  1 does not necessarily creates a gap as q can be connected to the 

meniscus and therefore is expected to happen. Such a transition ends the downwards 

segmentation of the meniscus at pixel q at that row. This cost should be proportional to 

the average height of the meniscus. The interesting case is the transition E(l, 0) from 

object to background. This breaks the continuity, since py > qy > M(x),  and creates 

a gap, which results in the following chain of assignments in an upward direction 

1 —► 0. . .  —> 1. As we expect abnormalities of the meniscus to happen only above the 

meniscus, such a transition should not be permitted. Therefore, the cost of Epcj( 1,0)
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should be infinity.

Case 3: Pixels p and q lie above the curve. As in the previous case, assigning 

the same label should incur a low cost. The cost of EPq( 1,0) still does not create a 

gap, and is the same as E (0,1) from the previous case. A transition E(0,1) from 

object to background does break the continuity of the segmentation and creates a gap. 

However, assigning an infinity cost will not permit segmenting abnormalities above 

the meniscus. Therefore, the choice of cost should allow segmenting folds , but still 

stick to the boundaries of the meniscus. We notice that in both cases 2 and 3, the cost 

function is asymmetric: E(0,1) ^  E(1,0).

These three examples and the discussion in section 8.3.1 lead us to the actual choice 

of costs for E(1,0) and E(0,1). The main observation from these examples is that 

the difference |E(1,0) — E(0,1) | is what defines the asymmetry. A large difference 

permits a move in one direction but discourages a move in the opposite direction. In 

the second case, where pixel q is below the meniscus, we assign E(1,0) — E(0,1) =  

oo, disallowing a switch from 1 to 0 in an upward direction. Therefore enforcing no 

discontinuities below the meniscus.

In the third case, where pixels p and q are above the meniscus, the choice of costs 

is more difficult and depends on the above ratios:

ci = E(0,1)/E (0,0) and c2 =  E(1,0)/E(0,0). (8.6)

On one hand, if these ratios are close to (but above) 1.0, the segmentation result will 

not necessarily be smooth. For a regular meniscus, the segmentation result should be 

a smooth object with smooth transitions in the segmented height (if needed) as in Figs. 

8.9(b) and (d). Low ratios in (8.6) tend to segment a more spiky result. For example, if 

several vertical pixels on top of the meniscus (which are not part of it) are bright due 

to illumination error, they might be erroneously segmented.

On the other hand, high ratios (well above 1) in (8.6) might not segment abnormal-

ities (and spikes). If they are segmented, gaps are avoided as the penalties for creating 

them are high. Fig. 8.3 demonstrates these cases. Firstly, we examine the penalty for 

segmenting a thin spike as in the right side of the figure. The vertical penalty is built
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Figure 8.3: A schematic image of the tear meniscus with abnormalities. In the right side, a thin fold is 
depicted with the associated costs. In the middle of the figure, a lump is segmented, which can be either 
a small abnormality that is segmented as a blob or an incorrectly segmented region due to illumination 
error. The left hand side shows the cost associated with not segmenting anything.

of the sum: £*[£(0,1) + E(l, 0)], where k traverses the perimeter of the spike. To that 

we have to add the penalty of creating horizontal gaps: £*[£(0,1) + £(1,0)]. Sec-

ondly, we examine the penalty for segmenting a lump as in the middle of the figure. 

The main cost is built from the low cost E(l, 1) term. Pixels on the outer perimeter of 

the lump are penalized vertically by £(1,0) and horizontally by £*[£(0,1) + E(1,0)]. 
Thirdly, if no abnormalities are segmented as in the left side of the figure, the penalty 

is built from the low cost E(0,0) term and from E(l, 0) along the outside perimeter of 

the meniscus. In most cases, not segmenting anything outside of the meniscus borders 

will trigger the lowest cost if considering only the pairwise term.

Our choice of constants in (8.6) are C\ = C2 = 3, thus: E(0,1) = £(1,0) = 

3E(0,0) = 3E(1,1). This defines the tradeoff between preserving the continuity and 

allowing to create gaps. The penalty for creating a gap is still relatively high, but can 

be counterbalanced by the unary term (described next) in case these pixels have to be 

segmented. We note that if we had prior knowledge regarding the probability of the 

reservoir being regular or irregular, the choice of parameters could be adjusted.

The rest of the costs for the vertical case and the horizontal case were computed 

through a learning process. To that end, the upper and lower menisci in 25 images 

were segmented. We computed the average number of times each of the 4 pairwise 

terms happen in the horizontal and vertical cases. This was converted to conditional
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probabilities defined by (8.5) and used to assign the related costs. For example, the 

probability of Pr(xp = l\xq = 1) for two neighboring vertical pixels in the upper and 

lower meniscus are 0.85 and 0.79 respectively, which relates to an average meniscus 

height of 5.5 and 4.5 pixels respectively.

Finally, we show that the cost function can be minimized using graph cuts. The 

condition is that the submodularity inequality holds (see section 4.5) [65]:

EW(0,0) + EW(1,1) < EW(0,1) + EW(1,0). (8.7)

This is the condition that the energy of staying in the same state is not higher then 

the energy of changing states. As demonstrated, the costs for changing states are high 

and in particular Epq(0,1) > Epcj(0,0) and Epc?(l, 0) > Epcj(l,  1), so the submodularity 

condition holds.

8.3.3 Defining the unary term

The unary term should define a potential function that takes advantage of local im-

age information, such as the pixel's intensity. However, a cost function based only 

on intensities is not sufficient as it does not utilize the shape prior of the meniscus. 

Therefore, the unary term combines two independent potential functions:

1. Gaussian regional model: Appearance models for the background and the ob-

ject are built based on pixel intensities. The models are used to distinguish be-

tween the (usually) brighter pixels of the meniscus and the background. Addi-

tionally, they counterbalance the relatively high cost associated with segmenting 

folds in the pairwise term. Segmenting these pixels (the folds and abnormalities 

in general) should incur a low unary cost. We denote this term by £• (x,).

2. Distance constraint: It is based on the distance of the pixel from the menis-

cus. Uneven illumination and light coming from different sources make bright 

pixels artifacts and darker pixels part of the meniscus. These pixels cannot be 

segmented correctly using only the regional model (since it expects bright pix-

els to be part of the meniscus and dark pixels to be background). The distance
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(a) (b)

Figure 8.4: (a) Cropped image of the lower meniscus, (b) Object and background seed points. The 
furthest pixels from the initial splme can be ignored in the segmentation process.

constraint credits pixels falling near the meniscus regardless of their intensity. It 

is denoted by Ef (x,).

Therefore, the unary term is defined as the sum of two independent potential func-

tions as follows:

E,(x) = Ef(xf) + Ef(xj). (8.8)

8.3.4 Regional model

The regional model is estimated by first finding seed points that belong to the object 

(tear meniscus) and the background. These points are then used to build a probability 
distribution function for the object and background.

Seed points detection

Given the original image I(x, y) and 9m, the image is cropped, so the segmentation is 

focused on a small area (see Fig. 8.4(a)). From now on, we only consider the cropped 

image, which will be denoted as I(x,y) as well. For the object seeds, we choose all 

seeds that are on the interpolated spline (see section 8.2). In most cases, these seeds 

are brighter than the background. We note that in some regions, the tear meniscus 

height can be one pixel only. If the initial B-spline misses the meniscus by even one 

pixel, the dependency of the potential functions on the shape prior can result in an 

incorrect segmentation. Usually there is no simple way to know that unless there is a 

large decrease in intensity and in such a case, these pixels can be disregarded.

Detecting background seeds is easy. However, it is of interest to find those that are 

closest to the meniscus in the spatial domain. In section 5.3, we showed how the iris
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can be detected in our images as a circle. The iris can be used for background seeds, 

but since it is generally much darker than the meniscus, it is just marked and it is 

not used for estimating the background model. Pixels on the conjunctiva are usually 

closer in intensity to the meniscus and can be segmented as background if they are 

far enough from the estimated meniscus. This distance is computed by correlating to 

the clinically observed max height of the meniscus in most individuals [39] (and we 

add an error margin). In our images we define hi = 14 and hu — 18 as the maximum 

height in pixels of the lower and upper menisci respectively. For a pixel i G V  with 

coordinates (x, y), we define:

d„(i) = \y -  M(x)\(8.9)

which is the vertical distance of the pixel from the B-spline (M(x) was defined in (8.2)). 

A background pixel is taken when: hi < dy < 2hi. We note that some pixels might 

be part of the iris, but usually only a small portion. Finally, all other pixels such that 

dy > 2hi are ignored in the segmentation process. An example of the detected seeds is 

given in Fig. 8.4. The background and object seeds are not forced to be segmented as 
such, but are just used to build the model. We note that the seed points are only used 

to build the model for the unary term and are not needed for the initialization of the 

graph-cut algorithm.

Likelihood function

After detecting seed points that belong to the object and background, we use this in-

formation to create probability distribution models based on pixel intensity. For a 

given pixel i with intensity /, we simply would like to compute the following log like-

lihood function: Pr(/;|x/). This is the probability that pixel i belongs to the data model, 

given it is assigned the label x,-. In other words, it defines the penalty associated with 

assigning pixel i with label x,-. The use of log likelihood functions for regional terms 

has appeared before and is motivated by [16].

Learning from given examples, we found that in most cases, it is adequate to de-

fine the object and background models using a Gaussian distribution. We compute
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the mean and standard deviation of the background seeds: lo = ( m o ,  (To), and simi-

larly for the object seeds: I i  = (m\, oi). The following 1-D Gaussian functions for the 

background and the object are defined as a function of the pixel's intensity t:

For each pixel i G V (V is the set of pixels in the image) with intensity /, we compute 

the log likelihood of it belonging to object and background. This is the conditional 

probability of classifying pixel i into given intensity models of the object and back-

ground:

In (8.11), the higher the probability of the pixel fitting into the given model, the 

lower is the penalty given by E-. Fig. 8.5(a) shows the segmentation result of the 
meniscus from Fig. 8.4(a) when using only the regional model for the segmentation. 

Most of the meniscus pixels have been segmented, but also pixels outside the menis-

cus, which do not belong to the object.

8.3.5 Distance constraint

The distance constraint incorporates information regarding the shape and the spatial 

location of the meniscus. The idea is that given the meniscus shape prior and the 

average height of it in different spatial locations, we can estimate the probability of 

labelling pixels above and below it as object. For example, let us assume pixel p with 

coordinates p = (px, py). Then M(px) is the y coordinate of the shape prior at the 

same x coordinate as p. The value \py — M(px)\ determines the vertical distance of 

the pixel from the shape prior. The larger the difference, the higher should be the 

penalty of labelling p as object. The exact penalty should be a function of this distance 

and the average height of the meniscus at that spatial location.

Go(t',Lo) = Af(t; mo, oo), 

Gi(f;Ii) = J\f(t-,mi,(ii) ( 8.10)

Ef(xi =  0) =  — logPr(J;|I0), 

Ef(xi =  l)  =  - lo g P r ( / i| I 1) ( 8 . 11)
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Figure 8.5: Segmentation of the meniscus of Fig. 8.4(a) when using: (a) only the regional potential 
function of the unary term (b) both potential functions of the unary term. It is evident that the distance 
constraint cuts most of the pixels falling far from the curve. The pixels that are still segmented are 
mostly bright pixels falling on edges, (c) Final segmentation result using both unary and pairivise 
terms

(a)

(b)

Figure 8.6: Explaining the distance constraint, (a) Cropped image of the lower meniscus with the 
initial estimation of the B-Spline dotted in blue, (b) Edge information where only the pixels that are 
connected to the meniscus are shown. All these pixels will be assigned a zero distance in ELf(xj)
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The distance dy(i) of a pixel i from the curve is defined as in (8.9). However, pixels 

that belong to branches such as in figures 8.4(a) and 8.6(a) which originate from the 

meniscus curve should not be heavily penalized. These pixels can have a large vertical 

distance from the meniscus curve, but they are still part of the meniscus and should 

be labelled as object. These branches usually have salient features and are evident in 

the edge map of the image. We would like to include this information in the distance 

constraint function.

To that end, we find all 8-connected regions in the (cropped) image and denote the 

set of all pixels of the k-th region by B*-. If the connected region originates from the 

meniscus (for example a fold), it should be connected to it at some point. All pixels 

that belong to that region should not be penalized. For each connected region, the 

minimum distance to the shape prior is computed. In another words, we find the 

vertical distance from the pixel closest to the shape prior to the shape prior. If this 

distance is close to 0, we assume that the pixels of this region are part of an irregular 

meniscus and do not penalize them. We define a new distance function dby, such that:

Therefore, if the distance of the closest pixel in the region to the shape prior is less 

than 1, all pixels in that region (see Fig. 8.6(b)) are assigned a distance of 0. These 

pixels have a higher probability of being an abnormality and should be segmented, 

thus assigned db(i) = 0 (no penalty). Finally, we use the same likelihood function as 

in [61] for the CRF: Ef (x,) =  — log Pr(x,|0,„), where 9m are the set of parameters that 

define the shape prior. This probability is defined as:

The parameter dr defines the average height of the meniscus and its value can be learnt 

by using the average height of the meniscus (when excluding the abnormalities). Also 

this value can vary for different spatial locations of the meniscus. For example, we 

might have a small value of dr in the nasal and temporal regions, and a higher value in

0 if i € Bjt and min/eBl dy(i) < 1 

dy(i) otherwise

Pr(xi = l\em) = l - P r ( x i  = 0\dm) =
1

( 8.12)
1 +  exp (db(i) - d r)
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the central region. The improved segmentation when using both potential functions 

of the unary term is depicted in Fig. 8.5(b) and the final segmentation result when 

using both the unary and pairwise terms is in Fig. 8.5(c).

8.4 Minimizing the function

The CRF of (8.3) depends on the eyelid shape prior through its set of parameters 6m. 

Thus, the cost is dependent on both the labelling and the parameters Qm. The mini-

mization problem is defined as finding the least energy labelling with the best shape 

prior:

minE(x) = min E,-(x,-;0m) + E,-7(x,, x;-; 9m) (8.13)
x  x / ^ m

The least cost is not always obtained with the initial estimation of the shape prior. For 

example, in Fig. 8.6(a) the estimation of the meniscus is dotted in blue and misses 

the correct meniscus by a few pixels near the right side due to lack of edge informa-

tion. As the pairwise term penalizes for discontinuities, the meniscus region below 

the initial curve might not be segmented at all or the whole area between the esti-

mated curve and the meniscus will be segmented. Both segmentations are incorrect. 

Thus, a process that updates the curve parameters is needed.

The graph-cut algorithm is used to solve a binary problem and the optimum is 

guaranteed to be found. However, our cost function of (8.13) is a CRF potential func-

tion which is based on the shape prior in both the unary and pairwise terms. There-

fore, changing the shape prior can result in a different optimum, thus the least cost 

is not necessarily achieved with the initial shape prior. As we do not know the best 

shape prior initially, we use an iterative process to solve the problem. Since the un-

derlying data changes (0m), the value of the potential functions changes and hence the 

graph-cut algorithm produces a different segmentation result.

We note the iterative process is required since we minimize a CRF based energy 

function. Even though the underlying image does not change, the distance function 

(in the unary term) and the pairwise term have to be reevaluated when the shape prior 

changes. This is a significant distinction that has to be made clear when compared to
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the use of a MRF based energy function.

8.4.1 Algorithm

We are now ready to present a pseudo-code algorithm to segment the meniscus. The 

algorithm is an iterative one. In the heart of the algorithm lies the graph cut mini-

mization process as was described in previous sections. The output of the graph-cut 

algorithm is a binary segmentation. This segmentation is the optimal one for a given 

cost function and shape prior. However, as discussed before, the initial shape prior 

is not necessarily correct and so is the meniscus segmentation induced by it. By it-

eratively updating the location of the knots of the shape prior, we obtain new seg-

mentation results (using the graph-cut algorithm). Updating the knots is carried out 

using the Levenberg-Marquardt (LM) minimization algorithm (detailed below) and 

the min-cut is computed at each iteration of the LM algorithm. Finally, at times the 

initial shape prior significantly differs from the correct one (at certain spatial loca-

tions). To overcome that, we manually adjust the knots of the shape prior and repeat 

the minimization process using the LM algorithm. Therefore, the segmentation re-
sult does not utterly depend on the initial shape prior and a correct result is obtained 

through iteratively updating its parameters.

Algorithm Segment Meniscus

Input: Initial shape prior 9m

Output: Segmentation result and the best shape prior

1. Find the initial shape prior parameterized by 6m (* see section 8.2 *)

2. (bestCost,bestSegmentation) solveUsingGC{9m) (* Obtain initial segmenta-

tion *)

3. currentPrior <— initialShapePrior (* parameterized by 9m *)

4. bestPrior initialShapePrior (* parameterized by 9m *)

5. (* Iterate over the spline knots *)

6. for knotsNumber 1 to numberOf SplineKnots

7. (* Iteratively obtain segmentation results by updating the current prior 

using the LM algorithm and running the graph-cut algorithm using the
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new prior *)

8. (cost, prior, segmentation) SegmentUsingLM(cnrrentPrior)

9. if cost < bestCost (* A better segmentation was found *)

10. then update bestCost, bestPrior and bestSegmentation

11. currentPrior <— bestPrior (* Use best prior for the next iterations *)

12. update spline knot knotsNumber of currentPrior

13. return bestSegmentation and bestPrior

Our two step minimization algorithm is summarized by the algorithm Segment 

Meniscus. In line 2, an initial segmentation result is found using the initial shape prior. 

Then starts the iterative process, where the shape prior is updated at each iteration: 

In the outer loop (lines 6-12), spline knots are explicitly modified; In the inner loop, 

the iterative Levenberg-Marquardt (LM) algorithm [41] is called (line 8) and implicitly 

updates the shape prior at each iteration.

The LM algorithm (line 8) is used to iteratively refine the estimation of the menis-

cus curve and the associated min-cut cost. At each iteration, a call to the graph-cut 

algorithm is made (as in Line 2) with the current shape prior. The input vector to the 

LM algorithm is built of the knots of the current B-spline (see section 8.2) and the out-

put is the segmentation result and the min-cut cost. The B-spline knots are adjusted 

at each iteration of the LM algorithm to create a new shape prior (to be used by the 

graph-cut algorithm). The min-cut cost is used by the LM algorithm to estimate the 

next spline parameters until (the guaranteed) convergence.

In some cases, the LM algorithm only finds a local minimum and not the global 

one. This can happen if the initial estimation of the shape prior is incorrect. For 

example, in a badly illuminated image, the eyelids might have weak edges near the 

sides of the image and the error in estimating the shape prior can be relatively large. 

Thus, the LM algorithm will not necessarily find the correct solution.

These cases are handled by the outer loop, where individual spline knots are ex-

plicitly modified at line 12. The updated shape prior is used as the current shape prior 

for the next iteration of the inner loop. If the LM algorithm produces a cost which is 

lower than the best one (line 9), the segmentation result, the cost and the shape prior
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are saved (line 10). Further iterations will use this best shape prior (line 11). Finally, 

the least energy obtained defines the best labelling and hence the segmentation result 

and the best shape prior.

Our segmentation algorithm is close to the PoseCut algorithm [61] mentioned in 

the previous work section. In that paper, the authors use the graph-cut minimiza-

tion algorithm to simultaneously segment a human from an image and estimate its 

pose. Their cost function is a CRF-based energy function that depends on a set of 

parameters that define the shape prior (a stick-man model). The initial shape prior 

is an educated guess of the human pose (for example, its pose in the previous video 

frame). Throughout the iterative process, its parameters are updated. Updating the 

parameters of the human pose is done using the Powell minimization algorithm. Even 

though the methods share similar ideas (such as the distance constraint), we present 

a method that uses an asymmetric pairwise cost function, which produces a segmen-

tation result that follows a particular shape induced by the shape prior. In [61], the 

pairwise term is symmetric and the similarity measurement to the pose shape prior 

(the stick-man model) is carried out in the unary term.

Fig. 8.7(a) demonstrates the initial shape prior found after the B-spline initial-

ization (with a min-cut cost of 7.18179e+006). In the left side, it missed the meniscus 

curve (due to weak edges). After the first iteration of the LM algorithm the shape prior 

is updated (with a min-cut cost of 7.14519e+006) to the one in Fig. 8.7(b). In the third 

iteration of the LM algorithm, the min-cut cost is reduced slightly more (7.14117e+006) 

and the shape prior is updated again. However, the change in the spline knots is very 

small, so it is not drawn. The associated cost is not reduced in further iterations.

8.4.2 Improving the computation time

Our iterative minimization algorithm relies on a parameterized underlying model 0m/ 

where the best parameters are unknown. Finding the best segmentation and the best 

parameters requires changing the parameters of the model at each iteration. Thus the 

unary term or the pairwise term (or both) of the cost function change as well. This 

results in new weights (capacities) for the graph's edges and possibly in a different
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max-flow. Quite often, the new min-cut graph (lowest energy) is very similar to the 

previous graph, since not many costs are changed. For example, changing the location 

of one knot of the B-spline affects the distance constraint of only those pixels in the 

realm of this knot. The pairwise term only changes for those pairs of pixels that at 

least one of them exchanged sides of the spline. Therefore, the weights assigned to 

the edges of the graph from the previous iteration will be similar for a large portion 

of the nodes in the new graph.

Kohli and Torr in [62] present a new method called dynamic graph-cuts (see sec-

tion 4.6 for more details) to accelerate the computation time of a very similar problem. 

At each iteration of the LM algorithm in line 8, a call to the graph-cuts algorithm 

(same as max-flow) is made with different parameters for the shape prior. However, 

the change to the parameters is usually only small. Thus, dynamic graph-cuts is an ap-

propriate solution to speed up the computation time. Instead of creating a new graph 

at each iteration and computing the max-flow algorithm, the previous graph is reused. 

The number of edge weights that are changed is proportional to the number of pixels 

that their cost function changed. Then, the new flow is computed by only searching 

for augmenting paths that go through pixels with a cost change. The additional flow 

through these nodes is limited to the additional capacity in this nodes. Therefore, the 

number of augmenting paths is bounded by the sum of the total increase in capacity.

8.5 Results

A qualified clinician segmented the upper and lower menisci in 25 images, resulting in 

a total of 43 segmentations (in some the upper meniscus is covered by eyelashes). All 

images were taken from the recorded videos and are of resolution 352 x 288. Fig. 8.8 

shows segmentation results using simpler models: In the first row only a threshold 

is used and the results are useless even when choosing the best thresholds. In the 

second row, we used the same unary term and a Potts model [17] for the pairwise 

term (symmetric). Small areas below the meniscus were wrongly segmented and also 

the result is slightly less smooth. Fig. 8.9 shows original meniscus images (cropped) 

with their segmentation result. Figures 8.11 and 8.12 show the manual and automatic
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(b)

Figure 8.7: Demonstrating the iterative minimization process, (a) The initial shape prior found in 
section 8.2. The shape prior mostly follows the meniscus curve, except for the left side, (b) The improved 
shape prior after the first iteration of the LM.

segmentation results of regular and irregular menisci along with the best optimized 

prior.

We compared the number of matching pixels - true positives (TP), and the number 

of incorrectly segmented pixels - false positives (FP). The FP were computed as a per-

centage from the cropped image area (see first row of Fig. 8.9), and not from the whole 

image (which would have made the FP lower). The upper and lower menisci had on 

average 1690 and 1603 segmented pixels out of 25562 and 35066 pixels respectively. 

For the lower meniscus, the TP is 82.7% and the FP is 4.8% and similarly for the upper 

meniscus, TP is 88.0% and FP is 3.6%. These results provide an idea of the quality of 

the segmentation and are on the accepted range.

However, no data related to the meniscus structure is given so far. A grading of 

the quality of the meniscus was defined by a clinician as described in table 8.1. The 

clinician graded the meniscus at all images and provided a definition of thick and 

thin meniscus. Using the segmentation result, we employed an automatic grading 

technique: The average height of the meniscus is computed over the central, nasal 

and temporal areas (using the estimated location of the iris) and is used for assigning
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(a) (b)

Figure 8.8: Column (a) from top - segmentation result when using only a threshold: Manually 
segmented image for lower meniscus; Threshold image: TP -74%,FP=5%. ; Threshold image when 
using a slightly higher threshold. TP-61%,FP=1.5%. Our segmentation results is in Fig. 8.1(b) 
TP-85%,FP=1.5%. Column (b) from top - Manually segmented image for lower meniscus. ; 
Segmentation result when using our unary term and Potts model for the pairwise term - Small areas 
below the meniscus are segmented and also one of the lines is incomplete. ; Our segmentation result 
using both unary and pairwise terms.

a grading of 1 to 3 (these gradings are mainly dependant on change of height of the 

meniscus through its length).

Folds (grading 4) are detected by treating the segmentation result as a tree. A 

thinned image of the meniscus is created using medial axis representation. The con-

nected part that spans the image from left to right is considered as the tree root, the 

tree is delineated using the best shape prior (8.13). Any other objects are considered 

as branches. Each tree branch with a length over a threshold is related in length and 

location to an actual folding. Therefore, the height of the meniscus and number of 

branches define the automatic grading. For example, the image in Fig. 8.9(g) was 

graded 4, as it had one long branch (fold) and an average height of 5.2 & 6.8 pixels 

over the conjunctiva and the cornea respectively. Figures 8.11 and 8.12 show the tree 

skeleton that is created from the segmented image. The main curve of the meniscus is 

plotted in blue and any branches are in red.
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Grading Description Figure
1 Regular - Thick in corneal and conjunctival areas 8.9(a)
2 Regular - Thin in corneal and conjunctival areas 8.9(c)
3 Irregular - Thick corneal area; thin conjunctival area 8.1(a)
4 Irregular - Branching and/or folding exist 8-9(g)

Table 8.1: Defining the grading of the meniscus using 4 categories. Thick and Thin refer to the height 
of the meniscus. The last column of the table is a reference to a figure showing a meniscus having this 
grading (according to the clinician).

Grading Description Detection Description of Error
1 Regular 6/8 Grading '3' was detected twice
2 Regular 2/3 Grading '3' was detected
3 Irregular 2/5 Folds were detected twice
4 Irregular 9/9

Table 8.2: Comparing the automatic grading of the meniscus to the clinician's grading. The third 
column shows how many gradings were detected correctly. The last column describes what grade was 
detected instead.

We compared the automatic and manual gradings of the lower menisci (all but 1 

upper menisci were regular) and present the results in table 8.2. We notice that all 

irregularities containing folds (or branching) were discovered correctly by our algo-

rithm. Also most of the regular cases were detected correctly. Differentiating between 

the categories is a hard task even for the clinician and categorizing the meniscus as 

irregular (category 3) and not regular can be sometimes subjective. The grading can 

be better refined through clinical trials, such as allowing a multiple category grading 

or providing the degree of folding.

8.6 Summary and further research

We have presented a new automatic method to segment the tear meniscus in eye im-

ages and analyze its quality. This analysis is given to the clinician in conjunction with 

the analysis of dry areas. Together, they provide a more robust clinical evaluation of 

the dryness symptoms and origin to the clinician.

Our method is based on minimizing a quadratic cost function, where both the 

unary and pairwise terms use an underlying model to determine the cost. The main
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Figure 8.9: Results, (a) Healthy meniscus with a constant height, (c) Healthy meniscus with a
constant thin height, (e) Irregular thin meniscus with a few branches, (g) Irregular meniscus with an 
evident folding and a varying thick?iess.
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novelty is in the pairwise term, which introduces asymmetry in order to add a sense 

of direction to the segmentation process: movements in one direction are permitted 

but not always in the opposite direction. The minimum of the function is found using 

an iterative minimization algorithm, where the estimation of the meniscus curve (or 

shape prior) is being updated at each iteration, thus affecting the computation of the 

cost terms. Once converged, the output is the segmentation result with the best shape 

prior. Therefore, even if the initial meniscus curve is not estimated correctly, it will be 

adjusted during the iterative process.

After the segmentation process, the output image is analyzed to provide the clin-

ician with automatic feedback about the shape of the meniscus. If it is irregular, the 

folds are highlighted. This information is recorded and can be compared at a later 

time.

The main challenge of the method is to define the tradeoff between sticking to the 

boundaries of the meniscus and segmenting abnormalities, thus creating gaps in the 

segmented object. The solution we have presented in this chapter does segment these 

abnormalities by: (1) moderating the penalty of the pairwise term for creating gaps 

and (2) using the edge image to find structures that originate from the meniscus and 

not penalize them in the unary term.

One immediate extension to the method is to measure the tear meniscus height 

at different times and not only after two seconds. Even though the tear formation 

stabilizes after two seconds, it is of interest to see if any changes happen in the tear 

reservoir height and shape throughout time. If changes occur, they can be related 

to some irregularity in the tears or suggest a better timing to evaluate the meniscus. 

Clearly it can be done easily by our algorithm, requiring only to run the algorithm 

with different input images at different times and compare the results. A graph of the 

tear meniscus height can be created over time. The same task can be very tedious for 

a clinician especially on a large database.

Even though our solution performs well in most cases, it still suffers from a few 

drawbacks: (1) The model used in the regional term cannot always depict correctly the 

varying intensity of the meniscus due to illumination problems (see second row of Fig. 

8.10). (2) Bright artifacts towards the ends of the meniscus can produce segmented
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blobs that stick out from the meniscus boundaries (see first row of Fig. 8.10). (3) 

Images with reflex tearing produce segmentation results which are either too thick 

or too thin (see third row of Fig. 8.10). Reflex tearing can be best handled by not 

segmenting these images at all as they do not depict the real shape of the meniscus. 

Repeating the clinical routine to achieve an image without the tearing is preferable. 

To summarize, our method is not flawless but these case are not common and some 

of the illumination errors can be better controlled in the clinic.

Finally, the automatic grading has to be revised as we gather more clinical data. In 

our experiments, we have used the clinician's grading as the gold standard. Although 

we believe that a grading of 4 categories is enough, the differences between the cat-

egories are not clear-cut. One solution is to allow the clinician to combine gradings. 

For example, a meniscus can have a grading 1 (regular), but a grading 3 in the tem-

poral area (change of thickness). Clinical trials to evaluate intra and inter observer 

differences can provide a better idea on how the height measurement varies between 

clinicians and where our measurement stands. In addition, the repeatability of the 

gold-standard between clinicians could be estimated better.
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Figure 8.10: Images with poor illumination resulting in segmentation errors. First row: Parts of the 
badly illuminated big blob in the right hand side are segmented. It resulted in a segmentation which 
is thicker than needed. Second row: Both the lower and upper menisci are much darker in the center 
than in the sides. In addition, some areas on the conjunctiva are brighter than the meniscus. The 
segmentation result captures the general shape of the meniscus, but fails to segment its whole height in 
the center. Third row: Reflex tearing hinders the correct segmentation.
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Figure 8.11: Results using our algorithm demonstrating the four possible gradings of the meniscus. 
First column: original image. Second column: manually segmented meniscus. Third column: auto-
matic segmentation result. Fourth column: the tree skeleton that is built for the automatic grading (see 
description at the results section). The blue pixels are the main tear meniscus and the red pixels are 
branches. Branches over a certain length are considered to be folds and hence grading 4. First Row:
Regular meniscus grading 1. Second Row: Regular meniscus grading 2. Third Row: Irregular 
meniscus grading 3. Fourth Row: Irregular meniscus grading 4. Due to the asymmetric pairwise 
term, the best shape prior follows the lower part of the meniscus, while any abnormalities appear above 
it.
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Figure 8.12: Two more challenging images. First column: original image. Second column: manually 
segmented meniscus. Third column: automatic segmentation result. Fourth column: the tree skeleton 
that is built for the automatic grading (see descriptiozi at the results section). The blue pixels are the 
main tear meniscus and the red pixels are branches. Branches over a certain length are considered to 
be folds and hence grading 4. First Roiv: Irregular meniscus grading 3. Notice the big differences 
in intensity in the upper meniscus and the change of heights in the lower meniscus. Second Rozv: 
Highly irregular meniscus grading 4. Notice, that modelling the meniscus with a spline is not an easy 
task as the branching is quite prominent.



Chapter 9

Conclusions and discussions

The main focus of this thesis is to study the dry eye problem and present an algorithm 

to automate the detection of the disease. The aim is to build a comprehensive system 

that includes the analysis of a number of dryness symptoms (such as the BUT, the 

black line and tear meniscus evaluation).

We decide to approach the problem by using fluorescein imagery, which is used by 

clinicians to perform the Fluorescein Break Up Time (FBUT) test. This is probably the 

most commonly used test by clinicians and is very accessible as the required equip-

ment can be found in almost every clinic. In addition, we record our videos using a 

hand-held camera, thus increasing the accessibility of our solution.

We define and implement an automatic algorithm to detect dryness symptoms 

in fluorescein videos. Our method is based on three crucial steps: detection of the 

iris and the eyelids, alignment of the video and segmentation of regions of interest. 

We were able to segment the dry regions and provide a detailed clinical analysis of 

dryness symptoms such as: the various degrees of tear film thinning, the shape and 

size of the dry regions and the progress of the break regions. All these symptoms 

are reported to the clinician in a graphical way. At most times, this analysis provides 

much more information than the clinician is capable of observing when performing 

the FBUT test. To our knowledge, this is the first time such an automatic system has 

been built and the accompanied experiments have been performed. Our results show 

that dryness symptoms can be reliably detected in real-time and suggest the cause of 

the dryness.

We have carried out experimental tests to estimate the inter-observer and intra-

observer variance among clinicians. Four clinicians were given a set of videos and
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were instructed to estimate the Break Up Time (BUT). The results were surprising: 

low intra-observer variance but high (up to very high) inter-observer variance (the 

difference in BUT estimate between clinicians). These results corroborate the need 

for a more robust method to estimate the BUT as was suggested by the International 

Dry Eye Workshop (DEWS). To that end, we define a new value to measure the BUT. 

We suggest a value based on combining the clinical definition of a break and spa-

tial and temporal image properties. We call this value Digital Electronic Break Up 

Time (DEBUT), and explain how it is computed. The main advantage of the DEBUT 

over the BUT lies in its automatic estimation and thus couples two key benefits: non-

dependency on the operator and reproducibility. We also show that the DEBUT is in 

agreement with the BUT values computed by the clinicians.

The results of the tests suggest that the scope for further work is still open both in 

the clinical and medical-imaging fields. First, it is important to define clear guidelines 

for the clinicians to follow when analyzing the recorded videos. Second, it is unclear if 

all clinicians define the BUT in a same way: for example, does the break happen when 

an area is becoming dark or when it is not getting any darker? Third, data should be 

collected over time with the same dry eye patients to corroborate and improve the re-

peatability of the algorithm. Finally, the results from the tests should be implemented 

in the automatic algorithm to refine the computation of the DEBUT value.

A multi-label graph-cut algorithm based on alpha-expansion is presented in chap-

ter 6 to improve the detection of dryness. The extension is shown to produce more 

robust results, which are less sensitive to noise and movements of the iris and the 

camera. This is due to the introduction of the monotonic constraint which fits per-

fectly with the definition of tear film instability. The graph-cut solution enforces spa-

tial smoothness which agrees with the local pattern of dry regions. In addition, a more 

sensitive threshold is used for the computation of the DEBUT. Thus, break areas are 

detected even if they do not increase in size (over time) and a more accurate timing is 

provided for videos with breaks that have slow progress. This method gives the most 

accurate estimate of the DEBUT when compared with the clinicians.

A graph-cut algorithm for evaluating the tear meniscus height and shape is pre-

sented in chapter 8. We demonstrate how an asymmetric cost function and an itera-
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tive multi-step optimization method find simultaneously the best shape prior of the 

meniscus and the segmentation result. The segmentation result is analyzed for its 

shape and categorized into regular and irregular. We show that good segmentation 

results are achieved and irregularities such as folds are detected.

Future research related to the tear meniscus can be carried out. From a medical 

point of view, data should be collected to understand better the agreement between 

its height and dry eye. From an engineering point of view, machine learning algo-

rithms can introduce additional heuristics to the optimization method. For example, 

the learning process can determine the next shape prior throughout the iterative pro-

cess. Such heuristics can reduce the number of iterations and the computation time.

Evaluating the tear meniscus, segmenting the dry areas, detecting the black line 

and computing the DEBUT value are all computed by using the same input video. 

By combining the results of the algorithms, we create a comprehensive system that 

addresses different causes of the dry eye problem. For example, a patient will not al-

ways show symptoms of dryness in the FBUT test, but can have a shallow or irregular 

tear meniscus related to a thin tear film aqueous layer. Therefore, the origin of the 

dryness can be attributed to the deficit of fluid. Another example is a complaining 

patient with a regular tear meniscus, no break up time, but with symptoms related 

to the black line near the lower eyelids. The dryness might be attributed to improper 

blinking or to thinning along the lid margins. Such a system can be installed in the 

clinic and provide immediate results to the clinician, as performing the FBUT test and 

running our algorithm only require a couple of minutes.

An unsolved problem is the detection of staining, a more severe form of dryness. 

Staining can be detected using the existing fluorescein videos and improve the knowl-

edge provided by the system. This requires collecting data from staining patients, 

which are less prevalent compared to dry eye patients.



180 Conclusions and discussions



Appendix A

Tracking of Blood Vessels in Retinal 

Images

We present an automatic method to segment the blood vessels in retinal images. Our 

method is based on tracking the center of the vessels using the Kalman filter. We 

define a linear model to track the blood vessels, suitable for both the detection of 

wide and thin vessels in noisy images. The estimation of the next state is computed by 

using gradient information, histogram of the orientations and the expected structure 

of a vessel. Seed points are detected by a set of matched filters in different widths 

and orientations. Tracking is carried out for all detected seed points, however we 

retrace the segmentation for seeds with small confidence. Our algorithm also handles 

branching points by proceeding in the previous moving direction when no dominant 

gradient information is available. The method is tested on the public DRIVE database 

[103] and shows good results with a low false positive rate.

A.l Fundus imaging

In fundus images the interior surface of the eye is being photographed and includes 

the retina, optic disc and macula. A typical camera provides views of 30 to 50 degrees 

of the retinal area and produces color images. Usually the clinician takes several im-

ages of the different areas of the retina. The patient is asked to move his gaze to follow 

an external fixation light and as a result the eyeball moves and rotates, resulting in a 

greater field of view. Angiograms, black and white images, can be produced by inject-

ing a dye and waiting a few minutes for it to spread. The advantage of angiograms is
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Figure A.l: Cross-section of the eyeball, showing the relationship between the iris, cornea and the 
retina. The retina is the inside layer, which includes the optic nerve and the macula. Courtesy of 
AD AM  http://adam.about.com/encylopedia

that some lesions are much more easily detected (such as microaneurysms). The dis-

advantage is that it is an invasive method, and some patients might not react well to 
the instillation of the dye. More information about the eye structure and fundus pho-

tography can be found in [112]. It is also clear that fundus images are very different 

from images of the anterior of the eye discussed so far in this work.

A.1.1 The retina

Light enters through the pupil, is focused and inverted by the cornea and lens, and is 

projected onto the back of the eye. At the back of the eye lies the retina. The optics 

of the eye create an image of the visual world on the retina, which serves much the 

same function as the film in a camera. Stimulated by light that reaches the retina, the 

iris expands and contracts to enlarge or reduce the size of the pupil. The automatic 

exposure mechanism adjusts the amount of light that falls on the retina.

The neurons in the retina that are directly sensitive to light are the photoreceptor 

cells which are built of rods and cones. Light striking the retina triggers nerve im-

pulses, which are sent to the brain through the optic nerve, the single route by which
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information leaves the eye. The ganglion cells transmit the image to the brain. The 

cones respond to bright light and mediate color vision. The rods respond to dim light 

and responsible for black and white night vision.

In adult humans the entire retina is 72% of a sphere about 22mm in diameter. The 

fovea defines the center of the retina (see Fig. A.l), and is the region of highest visual 

acuity. The fovea is directed towards whatever object you are looking right now. The 

ratio in the fovea between ganglion cells to photo-receptors is 2 to 1, the highest in the 

eye. The blood vessels also bypass a wide margin around the fovea. The area in and 

around the fovea is called macula. Most cones lie on the fovea whereas peripheral 

vision is dominated by rods. When using fundus camera, the fovea can be easily 

discerned as a centrally located area of darker pigmentation.

The ganglion cell axons all leave the eyeball at one location, the optic disk. The op-

tic disc appears as an oval white area of 3mm2 and has no photo-receptors. As a result, 

it creates a hole in our vision, called the blind spot. Normally each eye compensates 

for the other, and the brain fills in the missing data, so we do not normally notice the 

blind spot. It is easy to make an experiment to see this blind spot by drawing two 

circles about 10cm apart on a piece of paper. Then we look at the left circle with the 

right eye and close the left eye. As we move our eyes closer to the paper, we notice 

that at one stage the right circle disappears. If we keep moving the paper closer the 

right circle will appear again. This is the blind spot.

A.1.2 Blood vessels

The retina is a multilayered membrane measuring from 0.10 to 0.23mm thick. It trans-

forms light energy into chemical impulses that travel to the brain through the optic 

nerve. The retina is nourished by two sets of blood vessels: the retinal blood vessels 

and the choroidal blood vessels. The retinal blood vessels are those that are well ev-

ident through the whole of the image (see Fig. A.2). The central retinal artery enters 

the globe through the optic disc. It branches into the outbound retinal arteries (thin-

ner, lighter blood vessels) and returning retinal veins (thicker, darker blood vessels). 

The choroid describes a network of spongy blood vessels that are separated from the



184 Tracking of Blood Vessels in Retinal Images

(a) (b)

Figure A.2: Fundus images, (a) Image of a healthy retina, (b) Image of an unhealthy retina. This 
patient has advanced symptoms of diabetic retinopathy.

retina by a layer of pigments cells.

The central retinal artery emerges from the center of the disc and immediately 

divides to deliver blood to the four quadrants of the retina. The superior and inferior 

temporal branches sweep around the fovea and roughly define the macula. The retinal 

veins form a similar pattern as they exit the eye at the optic disc. The optic disc can 

therefore always be found by tracing these vessels to their point of convergence.

Detection of blood vessels in retinal images offers a non-invasive method to diag-

nose various diseases in the retina. Segmenting the blood vessels can be used as the 

first step for subsequent image processing as they cover big areas of the retinal image 

and are the most stable structures appearing in fundus images. The leading cause 

of retina related blindness in the U.S. is due to Diabetic Retinopathy (DR) and age- 

related macular degeneration (AMD). It is believed that half of all blindness cases can 

be prevented by early detection. For example, the automatic detection of lesions such 

as microaneurysms, which are the first symptoms to appear in diabetic retinopathy 

can rely on vessel segmentation [52,115]. Also, changes in the width of the vessels are 

an indication of ocular diseases such as glaucoma and diabetic retinopathy. Another
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usage is for registering a number of retinal images from different perspectives and 

creating a 3D image of the retinal surface [104,125]. The registered image can be used 

to measure the depression in the optic disc for the detection of glaucoma.

A.2 Previous work

Methods for segmenting blood vessels can be roughly divided into those that trace the 

center of the vessels [20, 24, 33, 95], methods based on learning and classification of 

feature vectors [101,103,117] and segmenting the vessel boundaries by using some set 

of filters or thresholds [19,22,50,55,87,101]. Some of the proposed methods can span 

into more than one category. The tracking methods usually find a set of seed points 

and then use them to trace the retinal vasculature. The algorithm described in [24] is 

most closely related to our work, as both methods use the Kalman filter for tracking 

and matched Gaussian filters for detecting the blood vessels. In [24], the seed points 

are found in the circumference of the optic disc and the center of the vessel is tracked 

using an extended Kalman filter. The tracing is performed by using matched filters 

and detecting branching points. Tracing stops when the response from the Gaussian 

filter is low. However, our method differs in three important key points:

• We find seed points all over the image and do not rely on the hard task of tracing 

the vessel for the whole of its length.

• The next state in the tracking is based not only on the response from the match-

ing filters, but also on the distribution of the gradients in a window around the 

vessel. It is helpful when tracking vessels that the interior is brighter than the 

background (unlike regular vessels).

• The tracking method is tolerant to vessels with areas of low response to the fil-

ters (for example, thin vessels with varying contrast) by ending the tracing only 

after a few consecutive bad responses. However, segmentations which have lit-

tle resemblance to a vessel after a few steps are retraced.
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A.3 Proposed method

An overview of our proposed method is as follows:

1. Seed point detection - Find a set of seed points by convolving the image with 

a group of matched filters in different widths and orientations. Unlike many 

other algorithms, we find as many as possible correct seed points, and do not 

limit them to certain areas (such as only the optic disc area). The aim is to have 

at least one seed point at every vessel, therefore removing the need to follow all 

branches.

2. Tracking the seeds - Track the center of the blood vessel by using the Kalman 

filter [118] starting from the set of seed points found in the previous step:

(a) Estimate the next location using gradient information from both ends of 

the edges of the blood vessel.

(b) Refine the estimation by correlating a cross-section of the estimated vessel 

with the shape of a vessel.

(c) Estimate the vessel's width using the correlation results.

3. Stopping criterion - Stop the tracking if the likelihood of tracing a vessel is small 

for a number of consecutive steps or when we hit an already segmented vessel.

4. Retracing - Remove the segmented path originated from a seed point, if the 

tracking stopped in less than the minimum number of steps.

A.3.1 Detection of seed points

Matching filters have been used before [22] for the detection of blood vessels, and we 

use them as well, mainly for the detection of the seed points. A cross-section of a 

blood vessel will usually have the darkest value in the middle and gradually brighter 

values as approaching the edges (see Fig. A.3(a)). Outside the vessel we expect to have 

further increase in intensity. The cross-section can be thought as a function having a 

negative value inside the blood vessel and a positive value (or zero) outside the vessel.
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Figure A.3: (a) An enlarged section of a retinal image showing a blood vessel. The arrows point to a 
cross-section of the vessel, which is 4 or 5 pixels wide, (b) A  discrete Laplacian matching filter. The 
minimum occurs in the center and it has two zero-crossings, (c) The intensity of the cross-section of 
the blood vessel from (a), (d) Same as (c) after subtracting the average intensity value of the vessel. 
Most of the vessel's pixels have a negative value, (e) A 2D horizontal Laplacian filter, (f) Result of 
correlating the image (a) with the filter in (e). The brightest areas correspond to maximum correlation 
which happens in the center of the vessel.
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The aim of a matching filter is to find regions in the image that match the filter's 

shape. We therefore build the matching filters to have a similar shape to the blood 

vessel's cross-section. Fig. A.3(c) shows he pixel's intensity along a cross-section of 

the vessel from part (a). Fig. A.3(d) is obtained from Fig. A.3(c) after subtracting the 

average intensity of the cross-section from each pixel's intensity. It can be seen that 

the vessel has mostly negative values and the pixels outside the vessel has positive 

values.

The filter's kernel is approximated by using a second order derivative Gaussian 

filter, k(x; a) as described in [24], where the value of <r is half of the estimated vessel 

width. Such kernel has its lowest value in the middle and increasing values towards 

the ends of the kernel. The zero-crossing points of the kernel correspond to the ves-

sel's edges. The kernel is basically a Laplacian filter as can be seen in Fig. A.3(b). 

When convolving the kernel with the blood vessel, the response is the highest where 

the filter matches the vessel's length and orientation. This is due to the shape of the 

blood vessel and the kernel: both having negative values inside the vessel and posi-

tive values outside the vessel.

Because the vessels are considered to be piecewise linear segments, we create a 

2D kernel by using a number of cross-sections. We define a set of 2D kernels with 

different orientations and widths:

k j j ( x ,  y , 9 i ,  Oj) ,  0 < Oj < 180 2oy =  2,4,6,8, (A.l)

in order to cater for different vessels' widths and orientations. The width of a vessel 

can be as low as one pixel, and usually not wider than 9-10 pixels. We use 6 differ-

ent orientations for 9 spaced in 30 degrees from each other and 4 different widths, 

therefore we have in total 24 kernels.

The kernel's size is defined as 11 x 11 when 2cr, < 8 and 17 x 17 when 2<j , =  8, 

as we expect to have a longer continuous vessel structure at the same orientation for 

wide vessels and a larger <r requires a bigger kernel to represent it correctly. The ker-

nels' size is based on measuring the minimum and maximum widths of the blood 

vessels in the given dataset. The kernel is normalized so the sum of its elements is 0
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(a) (b)

Figure A.4: The detected seed points around the macular area (in white): (b) after using (A.3) (c) after 
further using gradient information. The macula is framed by the black square and the arrows point to 
incorrect seeds. Most of the erroneous seeds are removed, and the rest should not be developed at the 
tracking step. Some legitimate seeds have been removed as well, but they are still surrounded by seed 
points. The final segmentation of this image appears in the third column of Fig. A .9.

and variance is 1, therefore higher intensity pixels would not dominate the convolu-

tion response. We then convolve each of the 6 oriented filters with a given width with 

the image:

C(x,y;di) = k(x,y',di,(r) *f(x,y) ,  1 < * < 6 (A.2)

For example, if a horizontal blood vessel with a width w is convolved with a hor-

izontal 2D matching filter with u = w/2 (see Fig. A.3(e)), the maximum response 

should occur in the center of the blood vessel. This can be seen in Fig. A.3(f) where 

the brightest pixels correspond to maximum correlation and are mostly in the vessel's 

center.

Only the responses that are above a threshold in a certain direction and have 

weaker response in the orthogonal direction are taken:

C(x, y;9i) > Ts and C(x,y;0j) < Ts, \0t -6j \  = 90. (A.3)

The threshold Ts should not be too high, because then no seed points are found in 

thin, low contrast vessels. It is generally preferable to use a mild threshold and then 

remove the false seed points during the tracking (see section A.3.3).
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Each pixel found by a kernel k j j ( x ,  y; 6 U  <j j )  is expected to be in a center (or close 

to) of a blood vessel. To validate that, a cross-section in the direction normal to Q\ and 

of length 2aj is built. Therefore, the pixels at each end of the cross-section should cor-

respond to the edges of the blood vessel. The angles of the gradients at these locations 

are compared and expected to be roughly in opposite directions. Finally, a small per-

centage of the brightest seed points is removed to avoid taking seeds that are between 

bright lesions or on the optic disc.

The process is repeated for the 4 different vessel widths given by a. For each 

seed point we record the vessel's estimated width and orientation to be used for the 

tracking. It is possible for a seed point to have various widths or orientations, so only 

the one with the best response is taken.

Detecting seed points is usually quite fast and takes only about 10 percent of the 

running time. An example of the seed points that are found around the macular area 

(which does not contain vessels) after using (A.3) is shown in Fig. A.4(a). The remain-

ing seed points in this area after applying further validation (gradient information) 

are shown in Fig. A.4(b). Most of the seeds in the macular region are removed and 

the rest of the erroneous pixels are expected to be removed during the tracking step. 

In Fig. A.5(a), a magnified region around the main vessel is shown with seed points 

appearing as vectors. The vector's orientation and length are related to the vessels 

orientation and length. Longer arrows correspond to longer vessels.

A.3.2 The Kalman Filter

Starting from a detected seed point with an estimated vessel width and orientation, 

the aim is to predict the trajectory of the center of the vessel. By considering the vessel 

tracking as a time series, where each state is a location in the vessel, it can be modelled 

by a state-space approach, such as the Kalman filter [118, 58]. The Kalman filter has 

been widely used to solve computer-vision related time series problems, such as road 

tracking, where the center of the road has to be detected [126]. Our method uses the 

traditional Kalman filter as the basis for the tracking, but we add additional error 

models that fit better to the problem in hand.
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t>

Figure A.5: A zoomed area of the vasculature from Fig. A.9(a) middle row, showing the detected seed 
points (as vectors) and their orientation. The vector's length is related to the estimated vessel's zvidth.

At each step, the measurement is computed by examining the vessel structure (see 

Sec. A.3.3), and deciding the next location and vessel orientation by combining the 
prediction and the measurement. The evolution of the tracking process is defined by:

Xk =  fljt(xk-i) +  w k- i ,  (A.4)

where xk is the state vector at time k (location and orientation in the blood vessel), w k 

the system noise and ak is a function of the state. Given a measurement zk (next lo-

cation in the vessel), the relationship between the state and the measurement is given

by:

Zk =  M x k) + vk, (A.5)

where vk is the measurement noise. The system noise and the measurement noise are 

assumed to be independent with covariance matrices Qk and R The system noise 

and the measurement noise can change throughout time, but are fixed in our imple-

mentation.

For a given seed point with estimated vessel width 2cr and orientation 0, the cur-
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rent state xk and the transition matrix are given by:

1 0 A 0

xk = [x,y, sin(a),cos(n)]T, A =
0 1 0 A

0 0 1 0

0 0 0 1

so the prediction for the next state is xk = Axk_! (without the noise). The current 

tracking direction is given by oc, and A represents the step size at each iteration of the 

filter, and is initialized to A = u. Therefore the prediction for the next step is to move 

A pixels in the same direction as we moved before. The use of 4 elements in xk (and 

not 3), is to be able to use the linear version of the Kalman filter. The measurement 

vector zk which is the observation for the next vessel center, and H, the measurement 

model, are given by:

The matrix H relates the state xk to the measurement zk via (A.5). We use a simple 

model with Hxk just returning the location in the blood vessel given by the state xk.

The system noise covariance matrix Q, is dependent on the vessel width: thinner 

vessels are assumed to have more noise in the moving direction, because their ten-

dency to be more windy when compared to the wide vessels. The measurement noise 

covariance matrix R is set to 1 pixel in each direction. Both matrixes are fixed during 

the tracking and are given as follows:

zk = (x, y)T, H =
1 0  0 0

0 1 0  0

0.1 0 0 0

0 0.1 0 0
Q =

0 0 ew 0

0 0 0 ew

0.6 if 2a < 4pixels 

0.2 otherwise
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R =
1 0 

0 1

Ending condition

At each step the measurement returns an error value, which is 0 if the tracking still 

follows a vessel and 1 otherwise (how the error value is computed is explained in next 

section). The tracing stops only after 3 consecutive errors, therefore letting the tracing 

continue in locations of uncertainty such as low gradient information, branching or 

fast change in direction. This empirical value proved to be suitable for our application, 

because by continuing an additional two tracing steps, the problematic section can be 

passed.

Finally, we define a value of the minimum number of steps that have to be com-

pleted by the tracker, in order to keep the segmentation. The aim is to remove seg-

mentations from seed points which are not within a vessel at all and after a few moves 

no vessel texture is found. Such situation happens when the seed points are on the 

macula, on the optic disc or between two close vessels that can create a misleading 

shape of inner vessel. We define this value to equal to 9 steps, which is three times 

the number of accepted errors before terminating. We found out that this value will 

remove most of the erroneous vessels, but sometimes can also retrace short sections of 

valid vessels. When a decision to retrace the segmentation from a seed point is made, 

the whole segment is removed. This is equivalent to treating the seed point as a false 

one (or not detecting it at first place). Although the idea deviates from the standard 

Kalman filter definition, it suits our problem, since only after starting the tracking 

these seed points are detected as faulty.

A.3.3 Vessel tracking

In order to predict the next state z^, the Kalman filter calls a measurement function 

that estimates the next location, given the current location and orientation of tracking 

(xjt). The function performs a number of correctness checks and if any of them fails, 

an error status is returned to the tracker as described in the previous paragraph.
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Gradient computation

A window is centered about the current location in the blood vessel. The window 

is of size (2w +  1) x (2zv +  1), assuming the vessel's estimated width is w. In such 

a window, we except to have a small section of the blood vessel, which follows a 

certain direction. Thus, when examining one end of the vessel, we expect to have 

several gradients pointing towards the same orientation. Equally, we expect to have 

gradients pointing to the opposite direction at the other end.

The gradients Gx>Gy in the x and y directions respectively are computed in the 

window. We are interested in finding the orientation which has the strongest magni-

tude response and assume the vessel orientation is perpendicular to it. Therefore, the 

gradient's angle and magnitude are given by:

However, in order to simultaneously take advantage of the gradient information from 

both ends of the vessel, we compute the double gradient angle, 20, for each pixel. The 

reason is that gradients of opposite ends of the vessel should differ by 180 degrees, 

so doubling the angle will make them equal and reinforce each other. If 9\ = 02 + 

180, then 29\ =  202 +  360, thus 20i =  202, so the double angle is the same. Since 

the magnitude of the double angle equals the magnitude of the original angle, the 

gradient of the double angle (G2x and Gzy) is related to the original gradient using 

simple trigonometry:

(A.7)
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Figure A.6: (a) Histogram of the magnitudes of the double angle for the pixel marked with a star in 
part (b). In this histogram the double angle is divided by two, therefore retrieving the original angle 
from 0 to 180. The highest peak is the estimated vessel's orientation, (b) Example of tracking the vessels 
using two seed points marked by X. The left seed has an initial zvidth estimation of 7 pixels and the 
right one of 3 pixels. Only the center of the vessel has being segmented, so it is possible to see how the 
segmentations follow the center of the vessels and merge into one line and then separate again. Also the 
hollow vessel on the upper right hand side has been traced.

Histogram computation

In order to find the best orientation for the next state, we use a similar method to the 

Parzen's window method. Our random variable is the double angle ranging from 0 to 

360 degrees. The sample points are the double angles computed inside the window. 

For each angle we sum the corresponding pixel's magnitude as given by (A.6) (and 

not just the number of occurrences of the angle). Therefore, the histogram depicts the 

distribution of the double angle in the window, where each pixel contributes its mag-

nitude. The histogram is smoothed by convolving with a Gaussian filter with a small 

variance. As we are looking at a section of a vessel we expect the histogram to have 

only one peak with a probability distribution exceeding a threshold, as most vessels 

have stronger gradient information than the surroundings. Fig. A.6(a) demonstrates 

such histogram for a window, where there is one dominant peak around 22 degrees. 

Thus, the original gradient angle is about 11 degrees, so the tracking direction is per-

pendicular to this angle.
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Figure A.7: A blood vessel and its cross-section painted by the white lines. The black lines show the 
direction the pixels are averaged to create the vector A r as explained in Sec. A .3.3. The next state found 
by the tracker after the validation step is pointed out.

Validation by cross-section

The angle 9m of the strongest peak in the histogram is taken. This angle is perpendic-

ular to the vessel's orientation and is used to build a cross-section of the blood vessel 

at the current location x to validate and refine our estimation for the orientation. We 

use a similar idea to the one used to built the matching filters: A single cross-section 

is built as a vector of intensities of length 4A +  5 and orientation dm. The length of 

the cross-section is chosen so it will always span the whole width of the vessel (2A), 

even when the current state is located near the vessel's end. Utilizing the piecewise 

linearity of the vessel, and looking at a set of 2 A parallel cross-sections, a matrix of size 

2A x (4A +  5) is created. For each column the average pixel value A r(x) is calculated, 

as shown in Fig. A.7 by the direction of the black arrows.

The vector Ar should be roughly shaped as an upside-down Gaussian, as the low-

est intensities are excepted to be in the center. However, if the location of the next 

state is not estimated correctly using the histogram computation, the next state might 

be positioned towards one of the ends of the vessel. In that case, the Gaussian is not 

centered in the vector. As we are interested in the relative intensity difference between 

the pixels in the interior of the vessel and the pixels outside the vessel, we reverse the 

shape of the vector:

Ap(x) — max{Ar) — A r(x), 1 < x < 4A +  5 (A.8)
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This creates a Gaussian-shaped vector, where the highest values should correspond 

to the vessel's interior. In order to find the accurate center of the vessel, the vector 

Ap is convolved with a Gaussian with a a that is related to the estimated width of the 

vessel. If the maximum value of the convolution is above a threshold, then the new 

tracking orientation is taken as pointing towards the point of maximum correlation 

(shown in Fig. A.7 as the next location). Otherwise, the orientation stays the same as 

the previous one. An example of how the center of the vessel is traced from two seed 

points until the ending condition is fulfilled is shown in Fig. A.6(b). The tracing did 

manage to continue tracing through some of the branching points and mostly to stick 

to the center of the vessels. In the left side the tracing stopped in a branching point 

probably due to weak gradient information.

Estimating the vessel's width

The vector A p is scanned towards both ends, starting from the pixel with the highest 

correlation. This pixel should correspond to the center of the vessel. The aim is to 

define cut-off points at both sides of the vector which define the width of the vessel. 

A pixel is segmented only if:

A p(x) > min{max(Ap)T3, T4}. (A.9)

The term max(Ap)T3 defines the minimum intensity that should still be defined as 

part of the vessel (remember that the vector Ap is a Gaussian-shaped vector, where 

the highest intensities have the best probability of being a vessel). The term T4 defines 

a threshold on the intensity difference from the background. Once a pixel does not 

comply with (A.9) the search in that direction is stopped. The thresholds T3 and T4 

have strong influence on the result as they define the sensitivity to low contrast vessels 

and to pixels on the vessel's boundary. We found out that different thresholds give 

better results with different manual segmentations. We also incorporate our initial 

estimation of the vessel's width to control the number of pixels segmented.
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Figure A.8: ROC curve of our algorithm. Our results are drawn by the continuous line. Other 
methods are plotted with unconnected points.

A.4 Results

We tested our method on the public database of DRIVE [103], which includes 40 im-

ages: 20 training images and 20 test images. For the test images, 2 manual segmenta-

tions are given. Previously published results use the 20 testing images and compare 

their results to the first manual segmentation. We used the same images and manual 

segmentations and also the provided mask image for the retinal area to calculate the 

false positives (FP). Fig. A.8 shows the ROC curve for our algorithm. In order to in-

duce the graph the parameters TS/ T3 and T4 were set and changed in (A.3) and (A.9). 

Their values were tested by running experiments on all images and estimating the 

range which provides valid results. As the manual segmentations are subjective, and 

there is only a 78% agreement between the two given manual segmentations, it makes 

sense to have parameters that will be finalized according to the given database. The 

threshold in (A.3) determines the number of seed points that are detected and whether 

low contrast vessels have seed points in them. The thresholds in (A.9) set the sensi-

tivity when segmenting the vessel's width and mainly affect the number of boundary 

pixels that are segmented.
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In the ROC curve we only show the part where the false positives are lower than 10 

percent, as for high FP values the results become almost useless, since the segmented 

width of the vessels is very inaccurate and large areas which do not belong to vessels 

are segmented. This is especially true in the case of retinal images as the number 

of non-vessels pixels is much higher than the number of vessel pixels (up to 8:1). We 

managed to produce almost 80% of true positives (TP) with 4.5% of false negatives and 

85.9% with 8.1% using a different set of parameters. Results of four images with their 

manual segmentations are shown in Fig. A.9. Most of the main and some small vessels 

are segmented and there are almost no segmented lesions or other retinal structures. 

The rightmost image in the figure is probably one of the most challenging images in 

the dataset, as it contains lesions and hollow vessels, which are hard to segment, since 

they are not darker than the background as normal vessels are. The last row shows the 

TP, FP and False Negatives (FN) in different colors over a white background. Most of 

the FP (green) are around actual vessels, therefore the vessels have been segmented, 

but do not share the exact border with the manual segmentation. Only small regions 

of green (FP) are retinal structures which are not vessels. The main difficulty is in 

segmenting the very thin vessels (red pixels). Some of these vessels might have seed 

points in them, but they do not develop due to poor gradient information. Also not all 

of these vessels appear in the second manual segmentation. It takes between 20sec to 

40sec to segment an image, depending on the threshold used in (A.3) and the number 

of seed points found for the specific image.

We compare our results with recent publications that use the DRIVE database. 

All the results from the competing approaches were copied or estimated from the 

curves provided in the original publications, and are drawn as unconnected points 

in the ROC graph. Cai [19] computed the distance between the ROC curve to the 

ideal point (0,1) and compared their results to Jiang [55] and Staal [103]. Since their 

graph is plotted for FP < 0.5, it is not necessary that the best distance is found for 

small value of false positives. However, for the area where FP < 0.1 our results are 

superior to both the methods of Jiang and Cai, as can be seen in Fig. A.8. The results 

presented by Staal [103] are slightly superior to ours. However, their method is based 

on machine learning and requires a lengthy training time for accumulating data and
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hand segmenting the images by clinicians. Furthermore, retraining may be necessary 

if the imaging method or technology changes. This is not needed by our method. We 

also compared our results with the second manual segmentation and found out that 

with all sets of parameters the TP rate was 2-2.5% higher with almost the same rate of 

FP. This result agrees with the subjectiveness of the manual segmentation.

Finally, I would like to briefly address the formula that has being used widely to 

measure the success of the segmentation through the ROC curve. By comparing the 

number of pixels that are segmented in both the manual and automatic segmentation, 

the TP rate is being biased and tends to produce high rates even if the segmentation is 

lacking. Since large areas of the images are certainly not vessels and the wide vessels 

are easier to segment and count for high percentage of the vessel's pixels, a relatively 

high TP rate can be achieved by just segmenting these vessels resulting in a low FP 

rate. However, the main issue is evaluating these results in terms of the actual use-

fulness of the segmentation. For example, if an application does not segment the thin 

vessels at all, it can be advantageous. As these vessels count only for a small percent-

age from the total number of vessel's pixels, the TP rate is not reduced dramatically 

by not segmenting them, but the FP rate is guaranteed not to increase. Furthermore, 

segmenting these thin vessels and being wrong by only a single pixel is counted as 

erroneous segmentation, thus increasing the FP rate and not the TP rate.

A different method to compare the success of the segmentation can count the total 

length of the vessels that has been segmented in the manual and automatic images. 

Another option is to follow the ideas presented in [101] where only the center of the 

vessel is extracted. Both methods are not biased by the large number of pixels in wide 

vessels, while thin vessels have to be segmented to achieve high TP rate.

A.5 Summary and conclusion

In this chapter we have presented a method for segmenting the blood vessels in retinal 

images. The vessels are detected using a tracking algorithm, which is implemented 

using the Kalman filter. The tracking is carried out from multiple starting points. 

Each seed point is found by using matching filters and gradient information and the
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points are usually spread out over all the image. Some of the seeds might not be in-

side vessels, but are detected due to structures in the image that resemble a vessel. 

To that end, we introduce the idea of retracing seeds that their first few time-series 

states seem to be outside a vessel. Seed points that progress over the initial retracing 

cut-off point, contribute to the final segmentation. Tracking these seeds stops if we 

hit an already segmented vessel or when encountering a weak vessel's response for 

a few consecutive states. Not terminating immediately tracings that have a weak re-

sponse overcomes local weak gradient information, illumination changes and regions 

of branching. Finally, we show that our algorithm provides good segmentation re-

sults when compared to other methods that used the DRIVE database. We manage to 

segment thin vessels and to avoid segmenting other retinal structures.

Our method can be improved by introducing a better algorithm to estimate the 

correct width of the blood vessel. Our current method uses thresholds, that do not 

consider the smoothness of the segmentation or knowledge regarding transitions from 

wide to thin vessels. A graph-cut based algorithm for segmenting the vessel's width 

can use a unary term which is based on (A.8) and (A.9). The pairwise term can enforce 

smoothness, thus changes from a thick to a thin width will not happen immediately 

and the vessel will have a gradual change of width. In addition, provided we have 

some knowledge about the image, a monotonic constraint can be introduced, which 

will enforce non-increasing vessel's width. Thus, we assume that vessels usually have 

a constant width and the transition in branching areas is only to vessels with a smaller 

width.

Finally, the method should be tested on other databases. We believe that the pre-

sented algorithm will work well on other databases, however adjustments to some of 

the thresholds are needed.
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Figure A.9: Segmentation results. First row: original images. Second row: Segmentation results for 
80% TP and 4.5% FP. Our segmentation appears as black pixels on top of the original image. Third 
row: The manual segmentation provided by the first clinician (gold standard). Fourth row: TP are 
shown in blue, FN in red and FP in green. In columns (a) and (b) the images are of healthy retinas. 
In column (c) the image has hollow vessels, which are hard to segment, hi column (d) the image contains 
lesions, hollow vessels arid many thin vessels. In the last column, most of the green pixels appear next 
to the manually segmented vessels and only few are of other structures. The red pixels are mainly very 
thin vessels, which are hard to segment with a low FP rate. These vessels probably require a different 
segmentation approach, which is more sensitive.
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