
Automorphism Groups of Metacyclic 
p-Groups 

Idham Arif Alias 

July 2008 

A thesis submitted for the degree of Doctor of Philosophy 
of the AustraHan National University 





For my mother Fatimah Mohamed and my late father Alias Khalid. Also for 

Abang Mi, Kak Ami, Abang Pi, Hisyam, Irma and Afzan 





Declaration 

The work in this thesis is my own except where otherwise stated. 

IdhatH Arif Ahas 





Acknowledgements 

No words can describe how much I want to thank my supervisors Dr Ehza-
beth Ormerod and Dr John Cossey, for all their valuable guidance, support and 
kindness throughout my study here. My understanding and appreciation of the 
subject are entirely due to their influence; I will always remember and value the 
relationship with them. 

I would also like to thank my advisor Dr Bob Bryce for his general advice, 
and Professor Mike Newman for his general help. 

Thanks to all fellow mathematics students for their friendship and tolerance 
especially Kevin, Liu, Andrew, Bob, Sumaira and Khoo. 

My special thanks to everyone in Mathematical Sciences Institute (MSI) for 
helping me and providing a friendly environment especially Nick, Matthew, Kelly, 
Michael and Katie. Not to forget Don, thank you for everything. Also Geoff who 
has been a great help and to everybody in the Australian National University 
(ANU) who gives me assistance and guidance. 

I would like to acknowledge Malaysian Government and Universiti Putra 
Malaysia for all the financial support, and my referees, Prof Kamel, Dr Hab-
shah and Dr Mat Rofa who supported my application to ANU. 

My studies here have been made enjoyable with the company of all my 
Malaysian and non-Malaysian friends here, especially Normi, Mosfi, Ifah, Kak 
Ana, Abang Zabri and family, Siti, Khairil, Nadim, Su, Agus and Mona. 

To my brothers and sisters, thank you for all the assistance and support. Also 
many thanks to all my relatives especially Ayah Teh Da, Mak Teh and family. 

I like to dedicate this work to my late father Alias who passed away in the 
midst of my study here. I miss you a lot father and thank you for all your 
guidance, teaching and love. May you be in peace. 

Finally to my mother Fatimah, thank you for your prayer, love and everything 
you do for me. Without you, I would be lost and you are always my inspiration. 

vn 





Abstract 

A metacyclic group G is a group which possess a cychc normal subgroup N such 
that G/N is also a cyclic group. In this thesis, the automorphism group Aut{P) 
of finite nonsplit metacyclic p-groups P where p is an odd prime, is investigated. 
Menegazzo has shown in this case that Aut[P) is a p-group. The investigation is 
divided into four cases but only two cases are considered by this thesis. 

In these cases it is shown that Aut{P) can be written as a product of sub-
groups. Elements of Aut{P) can also be written in normal form in terms of 
generators of Aut{P). In addition, the centre, the upper central series and hence 
the class of Aut{P) are determined. 
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Notation 

In the following 

• p is a fixed odd prime number; 

• P is the finite nonsplit metacylic p-group with the presentation (2.1) 

(page 8); 

• X and y are generators of P (page 8); 

• a, b, d and h are generators of the automorphism group of P (page 29) 

In the following list of notation, we provide notation specifically used in this thesis 
with the page they first appear. Other notation is standard and based on the 
notation in Robinson [18]. 

Notation 

0(G) 

exp{G) 

C ( G ) 

Aut{P) 

a 

A{u,v) 

U 

p'̂  II 

ord{g) 

Q 

the Frattini subgroup of G (page 1) 

the exponent of the group G (page 2) 

the centre of G (page 2) 

the automorphism group of P (page 3) 

1 + p" (page 9) 

1 + a " + a^u + + (page lO) 

1 +pg-n (page 11) 

p'̂  I c but p'̂ +i t c (page 12) 

the order of an element 5 in G (page 31) 

Aut{P)/{h) (page 34) 

xm 



XIV NOTATION 

9 g{h) (page 34) 

[xi,x2,... ,x„] [[xi,x2,...x„_i],x„] (page 39) 

[a,ib] [a, (page 39) 
i times 

Ck{G) the k^'' centre of G (page 67) 



Chapter 1 

Introduction 

This thesis will be concerned with the structure of the automorphism group of 
a finite metacyclic p-group for odd primes p. We begin with some history and 
introductory notes about metacyclic groups, the automorphism group of a meta-
cyclic group and summary of main results in this thesis. All groups in this thesis 
are finite. 

1.1 Metacyclic groups 

A metacyclic group G is a group which has a cyclic normal subgroup N such 
that G/N is also a cyclic group. Some examples of metacyclic groups are cyclic 
groups, direct products of two cyclic groups, dihedral groups and all finite groups 
whose Sylow subgroups are cyclic. Subgroups and quotients of metacyclic groups 
are also metacyclic. 

Huppert [13] in 1953 studied a finite p-group G which is the permutable 
product of two finite cyclic groups. In the paper he gave some results regarding 
the structure of G, its Frattini subgroup 4>{G), its centre and the quotient group 
G/HG). 

In 1958 Blackburn [4] proved that if p is a prime, a p-group G is metacyclic 
if and only if G/(p{G')G3 is metacyclic, where G3 is the third term of the lower 
central series of G. In addition, a p-group G is also metacyclic if it has at most 
p + I subgroups of index p^. 

If G is a p-group for odd prime p, Blackburn [4] also showed that G is meta-
cyclic if and only if |G : is less than or equal to p^. In addition, G is also 
metacyclic if G can be expressed as a product of two cyclic groups. 

It is nice to know when two metacyclic groups are isomorphic. Let G\ and G2 

1 



2 CHAPTER 1. INTRODUCTION 

be two metacyclic groups with cyclic normal subgroups Ni and N2 respectively. 
If = |Ar2| and |Gi/A^i| = |G2/A 2̂|, necessary and sufficient conditions for Gi 
and G2 to be isomorphic, were given by Basmaji [2] in 1969. 

To classify metacyclic groups, we need to have presentations of the groups. 
Presentations of metacyclic p-groups where p is any prime were given by King [14 
in 1973. However in the classification of metacyclic 2-groups in [14], Silberberg 
[20] pointed out an error in the King's result. In 1988, Newman and Xu [16] gave 
a presentation for describing nonisomorphic metacyclic p-groups, with the aid of 
an algorithm developed by them. 

In later years, more properties of metacyclic p-groups were discovered. Ormerod 
[17] in 1990 for example, identified the Wielandt subgroup of a metacyclic p-group. 
In her paper, Ormerod gave a certain form of presentation of a metacyclic p-group 
for both odd prime p and when p is equal to 2, using mainly the work of Newman 
and Xu [16]. The relationship between the Wielandt length of the group and its 
nilpotency class, was then found. 

In 1994, Sim [21] gave a presentation of every metacyclic group of odd order. 
His presentation was formed by choosing convenient generators of some specific 
cyclic subgroups of the metacyclic group. Hempel [12] took it even further in 
2000 when he classified metacyclic groups. Building on the work of Sim [21], his 
work included the classification of metacyclic 2-groups. 

1.2 Automorphisms of metacyclic groups 

The automorphism group of a p-group was also a subject of interest, especially 
regarding its order. If G is a group of order p'" with a Frattini subgroup (f){G) 
of index p", Hall [11] in 1933 proved that the order of automorphism group of G 
divides np^""''^'" where n is the order of GL{r,p). 

It had been an interesting question whether the order of a p-group divides the 
order of its automorphism group. For an odd prime p-group G of class two that 
has no abelian direct factor, Adney and Yen [1] in 1965 gave some conditions for 
the solution of the question. Let A be the automorphism group of G, Ac its group 
of central automorphisms, C(G) its centre and G' its commutator subgroup. They 
proved that |G| divides \A\ if one of the following holds: (1) ( (G ) is cyclic, (2) 
exp C(G) = exp G', (3) exp C(G) > exp G/G' , (4) Ac is abelian. Furthermore, 
Faudree [10] in 1968 showed that the order of a nonabelian nilpotent p-group of 
class two divides the order of its automorphism group. 
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One of the earliest works on the automorphism group of a metacyclic p-group 
was done by Davitt. In his work in 1970, Davitt [9] showed that for a noncychc 
metacychc p-group of order strictly greater than p^ (where p is an odd prime), 
the order of its automorphism group is divisible by the order of the group. 

It is known that the automorphism group of a p-group is not necessarily a 
p-group. In 1990, Curran [6] investigated some p-groups whose automorphism 
group is again a p-group. He showed the existence of some 2-groups of order 
2", which have the same order as their respective automorphism groups, where 
n > 3. 

A metacyclic p-group is called split if it has a cyclic normal subgroup with 
a cyclic complement, and nonsplit otherwise. For examples, dihedral 2-groups 
are split metacyclic p-groups and the quaternion group is nonsplit. In 1993, 
Menegazzo [15] established the presentation and the order of automorphisms of 
p-groups with cyclic commutator subgroup, for odd primes p. In the paper he also 
included his establishment of the order of the automorphism groups of nonsplit 
and nonabelian split metacyclic p-groups. 

In 2001, Schulte [19] proved that the automorphism of metacyclic p-groups 
with cyclic maximal subgroups for odd prime p, is a semidirect product of its 
unique Sylow p-subgroup and a cyclic group of order p - 1. More recently in 2006, 
Bidwell and Curran [3] gave some results about the structure of the automorphism 
group of a split metacyclic p-group for odd prime p, citing some materials from 
Davitt's work [9] in the process. Curran [8] then extended the study to split 
metacyclic 2-groups in 2007. 

In contrast to the split case, it turns out that in the nonsplit case the au-
tomorphism groups are p-groups. This year Curran [7] found generators of the 
automorphism group of nonsplit metacyclic p-groups where p is an odd prime, 
and wrote the automorphism group as a product of subgroups. 

In this thesis, we study the automorphism group Aut{P) of a finite nonsplit 
metacyclic p-group P, where p is an odd prime only. Our investigation will be 
based on a presentation by King [14]. There are a number of presentations avail-
able (among them [17] and [21]), but we will use a variation of the presentation 
given by King [14], as discussed in the first section of the next chapter. 

The presentation involves several parameters where naturally we expect the 
structure of the automorphism group will depend on the relationship between 
these parameters. We have found it convenient to divide our investigation into 
four distinct cases, based upon the work of King [14]. However, our study of the 
automorphism group has been completed for the first two cases only. It turns out 
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that the calculations involved in each case are mostly the same but in some parts 
of the thesis are different enough to require them to be done separately. We find 
that the structure of Aut{P) in the first two cases is the same. 

For the last two cases we expect the structure of Aut{P) will be more complex. 
The calculations involved are probably similar, but seem to be substantially more 
complicated than the first two cases. 

In his paper [7], Curran expressed Aut{P) (in our notation) as a product of 
subgroups. He found generators of Aut{P) and wrote the automorphism group 
as a product of a 3-generator subgroup and a cyclic subgroup. Although there 
are some similarities, we used a different approach to obtain our results. Using 
the algebra program MAGMA [5] to produce some examples so that we could 
formulate conjectures, we found generators of Aut{P) and wrote Aut{P) as a 
product of subgroups similar to Curran's. While the generators are similar, the 
main difference is that one of our generators is a central element of Aut{P). 

The calculations in this thesis also give more informations about the structure 
of Aut{P) than [7]. The fact that one of our generators is a central element of 
Aut{P) is crucial to our work in this thesis. Much of what we want to do involves 
calculations in Aut{P) modulo the subgroup generated by our central generator. 
Another important feature of our result is that each element of Aut{P) can be 
written in normal form in terms of our generators. With these, we are able to 
determine the centre, the upper central series and hence, the class of Aut{P). 
We choose to construct upper central series instead of lower central series, as 
constructing the lower central series turns out to be much more difficult. We find 
that the formula for the class depends on parameters in the presentation we use. 

To end this section, we note that we have used the algebra program MAGMA 
[5] extensively in conjunction with our calculations and investigation of the auto-
morphism group and its properties. Besides using MAGMA [5] to find generators 
for Aut{P), we also looked at examples to conjecture about the normal form of 
commutators of these generators and the class of the automorphism group. 

1.3 Summary of main results 

If P is a metacyclic p-group where p is an odd prime number, then P has 
presentation of the form 

P = = ly' = = 



1.3. SUMMARY OF MAIN RESULTS 

where the parameters m, t, q and n satisfy some conditions. Our results are based 

only on an odd prime p. 

The order of automorphism group Aut{P) of P is p^n+^+t rpĵ .̂  ^^^ proved 

by Menegazzo [15] (Theorem 3.0.2 in this thesis), but can also be proved by our 

method. 

The four cases in the case of non-split metacyclic p-groups occur when: 

1) 2 <n< q <m<t where m < 2n, 

2 ) l < n < g < m < i where 2n < m < q + n, 

3) 3 < n< q < t < m <2n and 

4)2<n<q<t<m where 2n< m < q + n. 

However, this thesis concentrates on cases 1 and 2. From now on, all the 

results mentioned are only for cases 1 and 2. 

Let X and y be generators of P satisfying the relation above. From the third 

relation in the presentation of P we observe that any element of P can be written 

uniquely in the form x^y'" where 0 < u < p"^ and 0 < v < pK Therefore we 

represent any automorphism of F in the form of a matrix notation, that is (p 

i T 
~ . In Theorem 3.0.5 we find restrictions on i,j, r and s which make (p an 

J ^J 
automorphism of P. 

We define automorphisms a,b,d and h oi P as 

a ~ 

h 

1 1 'l+pm-l 0 
, d ~ 

'l+pm-l 0 
, d ~ 

0 1 0 1 

1 0 

1 + 

1 + p^-" 

0 
0 

1 + p" 

and 

We show that these automorphisms are generators of Aut{P) where h is cen-

tral. In fact each element of Aut{P) can be written in normal form in terms of 

these generators as shown by the following theorem. 

Theo rem 5.0.2. If a, b, d and h are the automorphisms of P defined earlier then 

a) any element of {b, a, h) can be written in normal form as b^a'^h^ for 0 < 

13 0 <T] < p" and 0 < e < where 

i) {b) n {a,h) 1 and 

ii) {b,a,h) = {b){a){h). 

b) any element of Aut{P) can be written in normal form as d'^b^a^h^ for 0 < 

7 < p" , 0 <P 0 <ri < p" and 0 <9 < where 



6 CHAPTER 1. INTRODUCTION 

i) {d}n{b,a,h} = (dP") and 
ii) Aut{P) = {d){b,a,h). 

Many of our calculations are made easier by the following theorem. 

Theorem 6.0.2 If h is as defined earlier then C{Aut{P)) = (h). 

For example we find the upper central series of Aut{P) by calculating the 
upper central series of Aut{P)/{h) (Lemma 7.0.1). From the upper central series 
we determine the class. The result depends on the parameters in the presentation 
of P and is given by the following theorem. 

Theorem 7.0.2 Let Aut{P) be as defined earlier. 

a)Ifm — q>q — n then the class of Aut{P) is + 1-
h) If m - q < q - n then the class of Aut{P) is + 1-



Chapter 2 

Preliminaries 

This chapter presents basic definitions and results that will be needed throughout 
this thesis. We start by discussing presentations of a metacyclic p-group P in 
section 1. Section 2 provides us with some properties of the powers and product 
of generators of P. Section 3 presents some other necessary results, especially 
important are results regarding expansions involving binomial coefficients. 

The reader is referred to the list of notation on pages xiii—xiv. Other notation 
will be defined as it is introduced. 

2.1 Presentations of metacyclic p-groups 

Let G be a metacyclic group that contains a cyclic normal subgroup N such that 
G/N is cyclic. Hempel in his paper [12] called N a kernel of G. The following 
lemma which is part of Lemma 2.1 in [12], gives a presentation of G. It is written 
as it appeared in [12 . 

L e m m a 2 .1 .1 A group G is metacyclic with a kernel of order m and of index k 
if and only if it has a presentation of the form 

where k, i, m and n are positive integers such that m\{n'^ - 1) and 7n\i{n - 1). 

If P is a metacyclic p-group with p an odd prime, the presentation of P can 

be written as 
P = {x, yjxP" = 1, yP" = x^,yxy-^ = x"") 
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with m, n > 0, 0 < r, k < p"^, r^" = 1 {mod p^) and k{r - 1 ) ^ 0 {mod p"") 
[14], To be more specific, if P is a metacyclic p-group where P is noncyclic and 
p is an odd prime, then P has a unique presentation of the form 

P = = 1,/" = = x'^"-') 

where s measures 'how split P can be' while c measures 'how commutative P can 
be' [14]. Furthermore, the presentation of a metacylic p-group where p is an odd 
prime is said to be uniquely reduced up to isomorphism if and only if s = 0 and 
s < c < min{n + 1, m} (which is the split case), or s > 0 and max{l, m-n+l} 
< s < min{c,m- c + 1} (which is the nonsplit case). Distinct uniquely reduced 
presentations will give nonisomorphic metacyclic p-groups [14]. 

To suit our work , the presentation above has been rewritten as 

P = = 1 , / - x^\yxy-' = (2.1) 

Therefore for the nonsplit case we have 

max{l,m — t + l}<m — q< min{m — n,n + 1}. 

This can be broken as the following: 
( a ) m - i + l < l < m - g < m - n < n + l 
( b ) m - i + l < l < m - g < n + l < m - n 
(c) l<m — t+l<m — q<m — n<n+l 
(d) l<m — t+l<m — q<n+l<m — n. 

We take case (a) for example where the inequality shows that: 
i ) m — i + l < l which implies m < t. 
ii) 1 < m — q which implies q < m. 
iii) m — q < m — n which implies n < q. 
\v) m — n <n + \ which implies m < 2n. 

We also can see that m - q < n + I which implies m < q + n, which is true in 
(b), (c) and (d) as well. Thus (a) can be rewritten as 2<n<q<m<t where 
m < 2n. With a similar method we get the other three cases below. 
Therefore we conclude that the four cases in the case of a nonsplit metacyclic 
p-group for an odd prime p are as follows: 

{l)2<n<q<m<t where m < 2n, 
(2) l<n<q<m<t where 2n < m < q + n, 
{3) 3 <n < q < t < m <2n and 
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{ A ) 2 < n < q < t < m where 2n < m < q + n. 

However in this thesis, we will concentrate on cases 1 and 2 . 
From the third relation in the presentation (2.1) we observe that any element 

of P can be written uniquely in the form In the split case we have x^" = 1 
and yP' = 1 so that 0 < u < p'" and 0 < v <pK In the nonsplit case we also have 
xP"" = 1 but y"' = xP' where q < m, which implies yP'*""" ^ 1. Similar to split 
case however, we assume throughout this thesis that Q < u and 0 < f < 
in the nonsplit case. 

Throughout this thesis, p will be a fixed odd prime, P will always 
denote a finite nonabelian nonsplit metacylic p-group with the presen-
tation (2.1) and x, y will always mean generators of P satisfying the 
given relations . In addition, n, q, m and t will have the meaning given in the 
presentation. 

2.2 Product of generators in P 

The calculations in this thesis involve a lot of multiplications between generators 
of P. A few results here are similar to those from Schulte [19]. His results only 
considered metacyclic p-groups with cyclic maximal subgroups and we modify 
them to suit our more general situations. We begin with the following lemma. 

Lemma 2.2.1 (5152)'''' = 9i 92 9it92 € P and k > m — n > \ . 
k k k 

Proof. With p an odd prime, F is a regular group [13] so that (9192)^ — 9i 92 
zP^ for any g i , g2 E P and z G P ' . 

Now, since P' is generated by 

we have z = (x^")® for some integer 0 < s < p™"" . Hence for any integer 
k > m — n > 1, 

zP' = = x'P"^' = 1 

SO that (51^2)'' = • • 
From the third relation in (2.1) we have yx = We now put a = 1 + p " 

so that yx = x^y. a will have this meaning throughout this thesis. The next 
lemma will show a similar relation between powers of x and powers of y. 

L e m m a 2 . 2 . 2 Let x , y be the generators of P and u , v be integers w i t h v > 0. 

T h e n y'^x" = x^^^y". 
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Proof. Suppose u > 0. Then 

= y^'x^^iy-ny" = {y'x'^y-nf • 

We will prove by induction that = for all integers v > 0. 

For V = 1, = ( x " ) " which is true from the third relation in (2.1). 

Now assume y^x^y'" = x""" for v > 1. Thus 

^ ^ = ( y x y - ' r ' = ( X T ' " " = 

Hence = x""" for any positive integer v. • 

Before we proceed we need the following definition. 

Definit ion 2.2.1 Let u > 0 and v > 1. We define A{u,v) by 

A{u, u) = 1 + a " + a^" + . . . + 

The following result regarding A{u, v) is obvious. 

Lemma 2.2.3 Let u > 0 and v > 1. Then A{u,v){a'' - 1) = a""" - 1. 

The next lemma is a further result involving A{u,v). 

Lemma 2.2.4 Let u > 0 and v > I. 

A{u, v) s V + 2-'^uv{v - l)p" {mod p^"). 

Proof. 

We observe that (1 + p" ) " = 1 + up" {mod p^"). Thus modulo p^" we have 

A(u,i;) = l + ( l + wp") + ( l + 2up") + . . . + ( l + ( t ; - i ) u p " ) 

= (1 + 1 + ... + 1) + up"(l + 2 + ... + (v - 1)) 
V times 

= v + 2~^uv{v - l )p". • 

We will need to be able to write a power of (x"?/") as a product of a power of x 

and a power of y. 

Lemma 2.2.5 If x and y are the generators of P, u is any integer, v > 0 and 

w > 1 then = 



2.3. MISCELLANEOUS RESULTS 11 

Proof. For u > 0, the proof is as in [19] and is included for completeness. 

{x^yT = . . . ( y ^ x " ) ^ 
u ; - l times 

For u = 0 the result is clear. 
For u < 0, the same proof with u replaced by —f for a positive integer / holds. 

2.3 Miscellaneous results 
In this section we present miscellaneous preliminary results which will be needed 
in the following chapters. We begin with the following lemma which comes from 
Proposition 4.10(ii) in [14] . 

Lemma 2.3.1 If x and y are generators of P then the centre ({P) of P is 

Throughout this thesis, we will often encounter the term '1 We represent 
it as U and it will always have this meaning. Here is a result regarding U which 
will be needed many times later. 

Lemma 2.3.2 - 1 = — { m o d p'^) for any positive integer k. 

Proof. Let k be any positive integer. Calculating modulo p'', 

(y-l = 1 _ + p2<,-2n _ ^Sg-Sn ^ 
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It follows that 

f / - l _ 1 = _pQ-n ^ p2q-2n _ ^Sg-Sn ^ 

= - p""" + - + . . .) 

= - [ / - I p " - " . • 

In later chapters, our calculations involve a lot of expansion of terms where the 
expansion involves binomial coefficients. The following lemma and its corollaries 
are very useful in simplifying these expansions. Before proceeding, we remind the 
reader that p*" || c means p*̂  | c but | c for an integer c. 

Lemma 2.3.3 Let p̂  || w where e> 0, and u> I. 

If 2 < k < w then the power of p dividing (^)p'^" is at least p'"""^". 

Proof. We divide our proof into two cases. 
Case (i) : 2 < k < p ' 

Here it is clear that the power of p dividing k is the same as that dividing 
w - k . So the power o f p dividing (A; - 1)! is the same as that dividing { w - l ) { w -
2). . . .{w - k + 1). Now write k = ip" for a positive integer £ where (£,p) = 1. 
Also since /c < p% we have u < e. Hence the power of p dividing 

ku _ + ^^ _ w {w - \){w - 2)...{w - k + I) 
k)^ k{k-l)\ ^ k {k-l)\ ^ 

is Now, 

e — v + ku^e — v + ip^u 

= e + 2u+ {ip" - 2)u - u. 

li V = Q, then k = i where = 1. For any prime p > 3, £ > 2 so that 
{ip" -2)u-u = { i - 2)u > 0. 

If > 0, since li > 1 and ip" >2 + v where p > 3, then 

{Ip" -2)u-iy>ip'' - 2 - y > 0 . 

Hence divides for 2 < A: < p^ 

Case (ii) : k > p^ 
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In this case it is enough to see that 

ku > f u >{e + 2)u>e + 2u 

where p' > e + 2 for p > 3. Hence p'+^u ^Iso divides (fc)p''" for A; > p^ • 

Corollary 2.3.4 If || w for w >2, u>l and {c,p) = 1, then 

(1 ± cp")"' = 1 ± cu;p" + 

for an integer k. 

Proof. We do the proof for (1 + cp")^ and the proof for (1 — cp")*" is very similar. 

(1 + cp")" = 1 + cwp^ + ( c V " ) + . . . + (c^"-"). 

From Lemma 2.3.3, divides (fc)p''" for 2 < A; < u; and thus we obtain the 
result. • 

We mention the next corollary as a special case of the previous one. 

Corollary 2.3.5 p"+'= || {aP' - 1) for all integers k> 0. 

Corollary 2.3.6 If p^ || w for w >2, u>l and {c,p) = 1, then 

(1 ± cp")-'" = 1 T cwp" + {mod pO 

for an integer k' and any positive integer L 

Proof. We do the proof for (1 + and the proof for (1 - cp^)'^ is very 
similar. 

Let i be any positive integer. We know that (1 + cp")""' == ((1 
and we will show that there exists an integer k' such that 

(1 + cp")""' = 1 - cu;p" + (^^od p^). 

By using Corollary 2.3.4 for an integer k we have 

(1 + c p " r ( l - cw;p" + 

= (1 + cwp^ + - cwp^ + 

= 1 - + + + _ cu;p") + 

1 - c ^ w y + _ + + cwp^ + 



14 CHAPTER 2. PRELIMINARIES 

Now we show that we can find k' such that 

1 - cWp^^ + - cwp^) + + cwp") + = 1 (mod p') 

or equivalently 

+ ciop") + = _ _ {mod p^). 

Put 2 

k' = (c^— - k{l - cwp^)){l + + {mod p') 
P' 

where ^ is clearly an integer, then calculate modulo p ,̂ 

+ cwp'') + 

= (c^— - ^(1 - cwp^)){\ + cwp^ + + cwp^) + 

= (c^— - - cwp^)){l + cwp^ + + cwp^ + 
P' 

= (c^— - k{l - cwp^)){l + cwp^ + + cwp'' + 
P' 

= (c'— - k{l - cwp''))p' 
,2 

,£+2u 

P' 
11? 
p' 

Now, 

{c^—— k{l — cwp^))p^ = c^w^ — kp^{l — cwp^) and hence 

The following lemma is particularly useful in Chapter 5. 

Lemma 2.3.7 If x is a positive integer, p"^ || x and u>l then A(l, (1 + p^Y) -
1 = XP" + ^P'^'^^ for an integer e where v > u. 

Proof. Let = 1 + p" for u>l. From Lemma 2.2.3, A(l, V^){a - 1) = - 1. 
Now, 
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Thus 

and hence 

= • • • 
\ ^ / \ / 

Using Corollary 2.3.4, ^^ - 1 = (1 + p")^ - 1 = xp" + for an integer c. 

Now we will show that divides for 2 < /c < 

We divide our proof into two cases. 

Case (i) : 2 < k < 

Here it is clear that the power of p dividing k is the same as that dividing 

V '̂' - 1 - k. So the power of p dividing (A: - 2)! is the same as that dividing 

(V x̂ _ 2)(l/x _ 3). . . + 

Now at most one of A; or (/c - 1) is divisible by p. Assume maximum power of 

p dividing k{k - 1) is p*". So /c = ^p"" + e for e = 0 or e = 1 where ^ is a positive 

integer such that {i,p) = 1. 

Hence the power of p dividing where 

k)^ ~ k{k-l){k-2)\ ^ 

_ V/X(V-X - 1) (KX _ 2)...{VX - k + 1). 
~ k{k-l) ^ {k-2)\ 

is If u; = 0, there is nothing further to prove. 

Suppose w > 0. 

We will show that (A; - l )n - u; > n. 

{k-l)n-w-= iip"" + e)n-w 

> ip'"n - w 

> {w + l)n - w 

> n + wn — w 

> n 

where iov p > 3, p"" > w + I. Hence divisible by 

Case (ii) : < k < 
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Here it is enough to show that 

{k - l)n > - l)n 

> - n 

>n{q + u + 2)-n 

>q + u + 2n-n 

>q + {u + n). 

Hence divides for <k<V^. 
Therefore we conclude that for integers c, c' and e, 

= (xp" + cp^""'") + 

where u > u. • 
The following lemma will be needed especially in Chapter 5. The proof is 

straightforward and is omitted. 

Lemma 2.3.8 Let G, K, L he groups. 
If G = KL where L = {£) and K D L = { f ) , then each element of G can be 

written uniquely in the form kt for kEK,0<v<u. 
In particular if K f] L = I then each element of G can be written uniquely in 

the form k£ for k E K and £ G L. 



Chapter 3 

Conditions to be an 
automorphism 

Before proceeding, we remind the reader that we are only considering the struc-
ture of the automorphism groups of nonspUt metacychc p-groups in cases 1 and 
2. From the presentation (2.1) of P which is 

P = = - x''\yxy-' = 

we observe that q is always less than m so that is no longer equal to 1, 
instead the order of y is p^+'^-i. The calculations involved in this chapter will 
take care of the fact that, if we have two single prime powers of y on both sides 
of an equivalence relation modulo some normal subgroup for example, these two 
powers in general are not necessarily congruent modulo unlike in the split 
case. 

In this chapter we look at restrictions on i, j,r and s which give conditions for 

a matrix 

lemma. 

I r 
j s 

to represent an automorphism of P. We begin with the following 

I r 
j s 

If X, y are Lemma 3.0.1 Let tp be an automorphism of P where 

generators of P and m, n are parameters as in the presentation (2.1) of P then 

^r+ia'-Taiyj _ )yja 

17 

X' 
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In particular, if m < 2n then 

^r+ia'-rai yi _ _ 

Proof. 

We apply ip to both sides of the third relation in presentation (2.1) which is 

yxy = x^ . 

= (by Lemma 2.2.2) 

= (by Lemma 2.2.2) 

whereas 

ipix^^^') = {xW (xY) 

= Lemma 2.2.5) 

= (by Lemma 2.2.2) 

In particular if m < 2n so that m — n < n, 

= {xyf {xY) 

= (by Lemma 2.2.1) 

= (by Lemma 2.2.2) 
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Hence the lemma is obtained since ip{yxy~^) = • 
The order of the automorphism group of nonspUt metacychc p-groups for odd 

primes p, is p^n+g+t ^̂ ^ notation) as proved by Menegazzo in his result (A.2) 
[15]. We write his result as a theorem, exactly as it appeared in [15] where G is 
a nonsplit metacyclic p-group where p is an odd prime. 

Theorem 3.0.2 

G = {a, blF"" = 1 , = = 

where I < s < h < m and m - s < h < £. 
\Aut{G)\ 

We will show that in both cases 1 and 2, is an automorphism of P if and only if 
Z T 

i.j, r and 5 satisfy certain restrictions where (p ~ . With these restrictions, 
[ j sj 

the number of distinct automorphisms ip is equal to p2n+g+t̂  ĵjĝ ^ jg ĵ̂ g order of 
Aut{P). 

Before proceeding to the next proposition, we need the following two lemmas. 

Lemma 3.0.3 If ^ e Aut{P) where (p 
I r 
j s 

, then is — r j ^ 0 (mod p). 

Proof. 

Since P is a 2-generator grou 

phism on P/(j){P) with matrix 

3, P/(f){P) ZpX Zp and (p defines an automor-
i r 

J s 
, where i,j,r and s are taken modulo p. 

This matrix is thus in GL(2,p) and so, is - rj is not congruent to zero modulo 
p. • 

Lemma 3.0.4 Recall a = 1 + p" and let s > 1 be an integer. 
Then a'-a = { s - l)p" + 2-^5(5 - l)p2" {mod p^"). 

Proof. 

From Lemma 2.2.3, a" - 1 = A( l , s ) (a - 1). From Lemma 2.2.4, 

A(l , s) = s + 2-^5(5 - l)p" {mod p2"). 

Thus 
- 1 = sp" + 2-^5(5 - l)p2" {mod p '") . 
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Hence 

a'-a = {s- l)p" + 2-h{s - 1 ) / " {mod p^"). • 

We now come to the main result in this chapter. 

Theorem 3.0.5 Let (/? 
I r 
j s 

. Then ip e Aut{P) if and only if 

i)i = I {mod p""-"), 
a) r e Zpm, 
Hi) j = Q (mod 
iv) s = l + cpi-"^ {mod p " - " ) where j = cp^'" /or 0 < c < p". 

Proof. We will do the proof by each case and show that these restrictions are the 
same for both cases 1 and 2. As before, we write (p{x) = x^y^ and (/?(y) = x^y^ 
where z, r are taken modulo p™ and j, s are taken modulo pK In the proof we 
note that when necessary, we will write q as 1 + p". Otherwise we will leave it 
as a . 

Let ifi e Aut{P). 
Case 1 : 
The first case has the inequalities of the parameters as2<n<q<m<t 

where m <2n. 
By Lemma 3.0.1 since m < 2n, 

Hence 

which implies jp" = 0 {mod p^), so that j = 0 {mod It follows that i ^ 0 
{mod p) and s ^ 0 {mod p) since from Lemma 3.0.3, is ~ rj ^ 0 {mod p). 

Now from Corollary 2.3.5, 

a"" = 1 {mod p2") = 1 {mod p"") 

and also since 
a"'"" = 1 {mod p') = 1 {mod p'"), 

we have 
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or 

Now since j = 0 {mod we write j = for an integer c where 0 < c < p". 

Thus = It follows that = This implies 

- a) = cp'' {mod p"). 

By referring to Lemma 3.0.4, a® - a = (s - l)p" {mod p'") since in case 1 m < 2n 

and hence, i{s - = cp'' {mod p™) so that, 

s = 1 + r^cp^-" (mod p'"-"). (3.1) 

Now, using the second relation in (2.1) we have = ^{x^"). Thus {x^y^Y^ = 

{x^y^Y • Since t >m~ n and q > m - n, hy using Lemma 2.2.1 we have 

{xr\yr' = {xYivY-

It follows that since t > m, {x^'Y' = 1 and thus 

{yr' = { x Y { y ' f 

= i^riy^r'"^ 

^ {xr^x^T''". 

But {y'Y' = {x')P'' and hence sp" = ip" + cp^^-" {mod p™). Therefore 

s-cp"-"" {modp""'"). (3.2) 

We now calculate i modu lo p'""''. Putting s from (3.1) into (3.2) we have 

modu lo p*"-"! 

i = l + r^cp^"" + ^p"""" - cp^"" (for an integer z) 

= 1 + r ^cp^-" - cp'-" 

= W - {W - l ) i 

= W -Wi + i 
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where W = I + i-'^cp"-". Thus 

Wi = W {mod p""-") 

or 
Wii -1)^0 {mod p™-') 

which impUes i = 1 {mod p""-") since W = 1 {mod p) and so W is invertible 

m o d u l o p'""*'. 

We now calculate 5 m o d u l o p""-". Since i = 1 {mod p^'"), we have = 
1 {mod p"'-''). Replacing this into (3.1) and calculating m o d u l o p"""", 

s = 1 + (1 + (for an integer z') 

= 1 + cp^-" + cz'p'"-" 

- 1 + cp"-". 

In addition, we have no further restriction about r and so r can be any element 
in Zpm. 

Case 2 : 

The second case has the inequalities of the parameters asl<n<q<m<t 
where 2n < m < q + n. 

By Lemma 3.0.1 where m > 2n in this case, we have 

^T+ia^-ra^yj ^ yjil+p") ^ 

Hence 

which implies jp" = 0 {mod p'), so that j = 0 {mod As in case I, i ^ 0 
{mod p) and s ^ 0 {mod p) since from Lemma 3.0.3, is - rj ^ 0 {mod p). 

Now let j — cp^'^ for any integer c where 0 < c < p". Hence by Corollary 
2.3.5 

a^ = 1 {mod p^) = 1 {mod p'"), 

which also implies = 1 {mod p™) and A(j,p") = p" {mod p") . Thus we have 
^la' _ j-^ayjp'̂  g ĵ̂ j obtain as in case 1, 

i{a'-a) = cp''{modp""). (3.3) 
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Now using Lemma 3.0.4, we can rewrite - a as 

- a = (s - l )p" + V 

for an integer k, and putting this into (3.3) we have 

z((s - + / l y " ) = cp" {mod p""). 

Hence 

so that 

i(s - 1 + fcp") = cp"-" {mod p""-") 

5 = 1 + i-^cp"-" - (mod p ' " -" ) . (3.4) 

Now by using the second relation in (2.1), we repeat the same steps as in case 1 
to also have 

i^s-cp"-" {modp""-"). (3.5) 

We now calculate i modulo p'""'". Putting 5 from (3.4) into (3.5), for an integer 
£ we have modulo p ' " " ' ' , 

i = l + r'cp'-" - kp" + ^p'"-" - cp"-" 

= 1 + i'^cp"^'" - (since m<q + n and m-n> m- q) 

= ly - {W - l)z 

= W -Wi + i 

where W = 1 + Thus as in case 1,^ = 1 {mod p^'''). 
We now calculate s modulo p*"-". In case 2 due to m > 2n, the proof for 

this part is more complicated and for that, we divide the proof into two subcases. 

a) q - n < n 

Here, q < 2n and so m < q + n < 3n. Hence from Lemma 3.0.4, 

a'-a = {s- l )p" + 2-h{s - l)p2" {mod p™). 

But from (3.4), s - 1 = 0 {mod p""") since n > q-n and so {s- l)p2" is divisible 
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by = = 0 {mod p"). Thus a^ - a = (s - {mod p""). Using this 
in (3.3), 

i((s - l)p") = cp' {modp"") 

so that 
z ( s - 1) = cp"-" {modp""-") 

which imphes 

5 = 1 + {mod p'"-"). 

Write = 1 + for an integer e, we have modulo p*""" 

s = 1 + (1 + ep'"-'')(cp''-") 

= l + cp«-". 

b) q - n > n 

From (3.4), s = 1 + /p" where / is prime to p and v > n. Now we calculate 
a^ - a modulo p'l. Since i = 1 {mod p'""') we have i = 1 {mod p) and since 
a = 1 + p" we have a = 1 {mod p). Therefore i and a are invertible modulo p'. 
Hence by (3.3), 

0 = (a® - a) 

= ( a - i - 1) 

= {af^'' - 1) 

= (1 + a""̂  + a^P" + . . . + - 1) (by lemma 2.2.3). 

But 
(1 + + + . . . + atZ-Df") = / {mod p) 

and thus 
(1 + aP" + a^P" + . . . + a^f-')^") ^ 0 {mod p). 

Hence a"" - 1 = 0 {mod p"). Since by Corollary 2.3.5 the highest power of 
p dividing a^" - 1 is we must have is divisible by p" so that p"" is 
divisible by Thus 

5 - 1 = /p*̂  

= 0 {mod p"-"). 
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Now we calculate — a modu lo p*". Here we first have to write 

A 

V V3/ 
We show that = 0 {mod p^) for 2 < n < s. We note that we cannot use 

Lemma 2.3.3 here because s ^ 0 {mod p), although the method used has some 

similarities. 

We divide the problem into two cases: 

Case (i) : 2 < u < p''-" 

Let u = cp"" ior K < q-n and (c,p) = L It is clear that the power of p dividing 

s-l-u\s exactly the same as the power of p dividing u. Thus if is the power of 

p dividing (u-2)! , then s (s- l ) ( s-2) . . . . (s-u+1) is divisible by where 

from before we have s - 1 = 0 {mod p'-"). Then s(5 - l)(s - 2) (5 - u + l)p"" 

is divisible by 

Now, at most u or u - 1 is not divisible by p. Suppose the highest power of p 

dividing either of them is p"'. Since u\ = u{u - I){u - 2)\, the highest power of p 

dividing u\ is Thus 

u) u\ 

is divisible by pi-"+v+un-v-w ^ q̂-n+un-w^ If = Q then (^)p"" is divisible by 

pq-n+un ^j^ich is divisible by p'", since q - n + un > q + n{u - I) > q + n> m 

so that Q p " " = 0 {mod p""). 

Now suppose ty > 0. 

Let u = k'p^ + e for a positive integer k' where {k',p) = 1 and e = 0 or 1, 

depending on which of u and u-l coprime to p. We will show that un-w > 2n. 

To see this, we observe that un - w > n{u - w) and so it will be enough to 

show that 

u-w = k'p"" -w + e>2. 
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For If; = 1, we have 

u - l = k'p-l + € 

= k'p+{e-l) 

> p - l 

> 2. 

For u; > 1, we observe that k'p^ - w + e is a monotone increasing function of w 

and thus the result follows. 

So since we now have un — w > 2n, 

q - n + un —w>q-n + 2n 

> q + n 

> m 

so that, = 0 {mod p^) in this case. 

Case (ii) : p' '"" < u < s 

In this case, the term (^)p"" = 0 {mod p™) since p"" > p""'"* > p'" as the 

following shows. 

For p > 3: 

np"-" >n{q-n + 2) 

> n{q — n) + 2n 

> q — n + 2n 

>q + n 

> m. 

Hence we conclude, (®)p"" = 0 {mod p'") for 2 < u < s. Therefore 

a' - a = { s - l)p" {mod p'") 

and the rest of the proof is similar to case (a) above to obtain 

s = l + cp"-"" {mod p"'-") 

also. 

In addition, we have no further restriction about r and so r can be any element 
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in Zpm. 
Therefore ^p E A where A is the set of mappings of F that satisfy these 

restrictions, and so Aut{P) C A. 
Now it is clear that the number of choices for i is the number of choices 

for j is p" and the number of choices for r is p'" since r £ Zpm. 
In addition for each j — where 0 < c < p", the number of choices for s 

is = pt-m+n p^Qĵ  ggg number of choices for the pair 
(s, j) is = p<-'"+2n 
Therefore the number of distinct mappings in A or the order of A is 

which is also the order of Aut{P) by Theorem 3.0.2. Hence we get the result. • 
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Chapter 4 

The commutators 

In this chapter we introduce particular automorphisms of P that we will show 

in the next chapter to be generators of Aut{P) in cases 1 and 2. Our results on 

the structure of Aut{P) in later chapters depend heavily on calculations involv-

ing these generators and it is convenient to collect calculations of their powers, 

inverses and commutators between them together in this chapter. 

4.1 Particular automorphisms 

We now introduce the automorphisms a, b, d and h oi P where they have the 

following meaning: 

a ~ 
1 1 "i+pm-? 0" 1 0' 

and h ~ 
1 1 

, b 
"i+pm-? 0" 

pt-n u 
and h ~ 

0 1 
? 

0 1 pt-n u 

1 + p'"-" 0 

0 1 + p"^-" 

where U = 1 H-p"-". 

Furthermore we calculate the powers we need of these automorphisms in the 

following lemma. 

L e m m a 4 . 1 . 1 Let a, b, d and h be the automorphisms of P defined earlier. Then 

for any integers rj, (3, 7 and 6, 

a'' 

h' 

"1 ri 0' 

0 1 0 1 f 
0 

0 (l+p'"-")^ 

0 
and 

29 



30 CHAPTER 4. THE COMMUTATORS 

In particular, d •-1 1 0 

for any positive integer k. 

since {/-I - 1 = -[/-ip-?-" {mod 

Proof. The calculations for a'', and /i® are straightforward and are omitted. 

Now, d{x) = xyP'"" and d{y) = y^. We prove the result for for any positive 
integer 7 > 1 by induction. 

For 7 = 1, the result follows from the definition of d. 
Now suppose — x y ^ ' ' " f o r any positive integer 7 > 1. Then 

d'>+'{x) = d(cr(a;)) 

t - n y 
= xyP ( r ) 

Now suppose d'^{y) = y^^ for any positive integer 7 > 1. Thus 

and hence the result is proved inductively. 
Now let 

1 0 

and 

We show that d'̂ d* 

d* 

1 0 
0 1 

1 0 
pt-i{U-'>-l) U-^ 

and hence d* = d 

d-'d^ix) = d^ixyP' ) 
= (xy^" 

-Hu^-D^f^yU^^p'-HU-'-i) 

= X. 
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On the other hand, = = - y. Therefore d* = • 
We now find the order of each automorphism. 

Lemma 4.1.2 Let a, b, d and h be the automorphisms of P defined earlier. Then 
ord{a) = p"", ord{b) = p", ord{d) = p^+rn+n-iq ^^^ ^ ^t+n-q 

Proof. First we remind the reader that x""* = 1 and y^' = x^". 
Clearly ord{a) = p'" and ord{b) = p". 
Now we find ord{d). By using Corollary 2.3.4 where £ and f are integers, 

and 

f+m-q—l £lpt+m—n—l 

Hence from Lemma 4.1.1, 

1 0 
_ t + m + n - 2 < 7 - 1 ) UP 

1 0 
pt-q(^pt+m-q _)_ j + + £pt+m-n 

"l + + ipm+t-n 0 + p'" + 

0 1 

1 0 
0 1 

and 

„ l + m + n - 2 g - l 1 0 

1 0 
pt-q^pt+m-q-l pt+m-n-1-j j pt+m-q-1 £lpt+m-n-l 

I + pTn+t-q-l £lpm+t-n-l Q pm-l ^ £ipm+q-n-\ 

0 1 

0 1 

1 o ' 

0 1 
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and thus ord{d) = 

Now we find ord{h). From Lemma 4.1.1, 

f+n-q 
( I+P ' " - " )^ ' 

0 

1 

0 1 

since from Corollary 2.3.4 for an integer k, 

0 
( l + p ' " - " ) " 

f+n-q 

(1 + p" ' - " ) " = 1 + + 

= 1 {mod 

On the other hand from Lemma 4.1.1, 

0 ( l + p ' " - " ) ^ 
0 ( l + p ' " - " ) " ' 

1 + 0 
0 l+pt+m-q-l 

I p'"-!^ 

0 1 

1 o ' 
0 1 

,'+"-9-1 

since from Corollary 2.3.4 for an integer k', 

( l + p ' " - " ) 

Thus ord{h) = •. 

We now show that h commutes with the other three automorphisms and so 
{h) is a normal subgroup of Aut{P). 

Lemma 4.1.3 If a, b, d and h are the automorphisms of P defined earlier then 
h commutes with a, b and d. 

Proof. In the following proof we note that from Lemma 2.3.1, x^'" " and y^" 
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and thus are central elements of P where in cases 1 and 2,t>m. Now, 

ha{x) = h{x) - x^+P'""" 

and 

On the other hand, 

and 

ha{y) = h{xy) = x^+p y 

= [xyr^^-

= Mixyf'" " 

= (by Lemma 2.2.1) 

j , m - n n m - n 

= xx'^ yy'^ 

From that we conclude that [a, h] = 1. Now, 

hb{x) = hix'+P"'"') = = ^(i+P-")(i+P"'-') 

and 

bh{x) - = = 

On the other hand, 

hb{y) = h{y) = yi+P'"-" 

and 

Thus [6,/i] = 1. Now, 

hd{x) = /^(xy'''-") = = 

and 

dh{x) = dix'^"""") = (xyP'-")'^'"'"" ^ 
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On the other hand, 

and 

Hence [d,h] = l. • 

Lemma 4.1.2 gives the order of each automorphism. However much of what 

we want to do involves calculations in Aut(P)/(h) = Q, which is generated by 

a(h) = a, b(h) = b and d(h) = d. We now find the order of each a, b and d. 

Lemma 4.1.4 Let a,b and d be as defined above. Then ord{a) = p'', ord{b) = p" 
and ord{d) = p". 

Proof. Before we proceed, we remind the reader that x''"' = 1 and y^ 
First we have 

1 p" 
0 1 

and 
(l+pm-ny 

0 
0 

(1 + p— 

Now by using Corollary 2.3.4 for an integer k, 

(1 + p'"-")^'""^" = 1 + p' + 

= 1 + p' {mod 

since t + m — n>t + m — q>m. Thus 

= x'^"' = X 

and 

On the other hand, a^'ix) = x and a^'iy) = x^'y. Thus a^' = € (h). 

We now show that 0 {h). We have 
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On the other hand for an integer k', 

Hence oF"'^ 0 (h) and thus we conclude that ord{a) — p'. 

It is clear that ord{b) = p''. 

Now we find ord{d) and before we proceed we remind the reader that U 

1 + From Lemma 4.1.1, 

dF" 
1 0 

From Corollary 2.3.4 for an integer i, 

f/P" = (1 + = 1 + + £pn+2{9-n) ^ J + + _ 

Thus 

and 

= y 
e{y) 

which shows G {h). Now, 

1 

pt-i(UP - 1) UP 

Also from Corollary 2.3.4 for an integer f , 

j jP"- ' (1 + ^ 1 + + = 1 + p-?-! + 
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Thus ^ (h) as the following shows: 

(F {x) = xy 

A number of examples obtained by doing calculation using the algebra program 
MAGMA [5], enable us to conjecture that all commutators involving these auto-
morphisms, can be written as the product a'' /i® for 0 < 7 < p", 0 < /? < 
0 <r] < pi and 0 < ^ < We will show that this is the case and that in 
fact gives us a normal form for the elements of Aut{P). Thus we find the matrix 
associated with this product, which is shown in the following lemma. 

Lemma 4.1.5 Let a, b, d and h be the automorphisms of P defined earlier. Then 
d^ bf^ a" h^ for 0 < J < p"", 0 < 13 < p", 0 < V < P" and 0 < e < can be 
represented as 

where 

H = {1+ + p^'-ifp'-^iU'' - 1) + U^). 

Proof. We refer to Lemma 4.LI for the representations of a'', d'' and h^ as 
matrices. We find it easier to calculate h^ d'̂  b^ d^ and since /i is a central element 
of Aut{P) from Lemma 4.L3, d? a" /î  = /i® rfT a". Also from lemma 4.L4, 
we have shown that d^" G {h) and a^" G {h). 

In the following proof we note that y^'"" is a central element of P from Lemma 
2.3.1 as i > m. Also - 1) is clearly a multiple of p^"". Now, 

Thus 
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Hence 

h^cPh^aPix) = 

In addition, 

Thus 

Hence 

= (i+P"*"") /̂ti+P"*"') (i+P"*"") y 

y^a^y) = b^ix^'y) 

(Pl/a^'iy) = cPix^^'+P'^-'^'y) 

h'iTh^aPiy) = 

4.2 The necessary commutators 

In our effort to find the centre ({Aut{P)) of Aut{P) later in Chapter 6, we need 
to use information regarding commutators between automorphisms a, 6, d and 
h oi P defined earher. In this section we show that those commutators can be 
written as the product df b^ a'' h^ tor 0 < < p", 0 < p < p", 0 < r] < p" and 
0<e < 

We first calculate commutators between a and b but before that we need the 
following lemma. 

Lemma 4.2.1 Let a and b be the elements of Aut{P) defined earlier. Then 
[b,a] = a^P"'" forc = (1 {mod p™) and hence {a,b) is metabelian. 
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Proof. As defined earlier, 

0, ~ 
1 1 

and b ~ 
' l + p m - i 0 

0 1 0 1 

We have 

Thus 

It follows that 

ba{x) = b{x) = 

In addition, 

Thus 

ba{y) = bixy) = x^+P'^^'y. 

a-'ba{y) = a-^x'^^'"''y) = x'+^'^-'x-'y = 

It follows that 

b-'a-'ba{y) - b-^x^^^'y) = (x'^+p'"^')")' y. 

Hence 

so that 

[b,a] 

[b,a 

1 

for c = (1 + p'" {mod p"') and thus (a, b) is metabelian. • 

We remind the reader that the following identity holds in any metabelian 
group G. For any positive integer k and v,w EG, 

i<i<k 

Lemma 4.2.2 Let a and b be the elements of Aut{P) defined earlier. Then for 

c = ( 1 + p™ ' ' ) ^ {mod p"^) and v an integer such that 0 < v < p'', 



4.2. THE NECESSARY COMMUTATORS 39 

i) = a—P"*"', 

i i ) [a,?)"] = 

Proof. Before proceeding we remind the reader that [b,ia] means [b,a,a, ...,a 

i times 

i) [a^6] - [b,a'']-\ Now, 

l<t<w 

= [b,aY 

for c = (1 + ' {mod p™) and therefore 

[a\b] = a 
-vcp^-1 (4.1) 

ii) We first show by induction that [a, ib] = a^ "Y for any positive integer 

e > i . For e = 1, 

Now assume [a,£b] = for any positive integer i > I. Thus 

a, (£+1)6] = [a,eb,b] 

^ ^(-Di-lYicprn-oficp^-^) (by (4.1)) 

and hence the result is proved inductively. Now, 

[a,61= n 
l<i<v 

= [a, 6] [a, 26] (2) [a, 36] (3) . . . [a,v6]0 

We now calculate commutators between b and d which are more complicated. 
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Lemma 4.2.3 Let b and d be the elements of Aut{P) defined earlier. Then 

/or 0 < // < an(i 0 < X < P"-

1 0 

Proof. From Lemma 4.L1, 

If 
0 1 

and { I f ) -1 

Also, 

1 0 
p t - i ( U x _ i ) f/x and (d^) ^ ~ 

0 1 

1 0 
pi-9( [/-X_l ) U-X 

In the following proof we note that y''' " is a central element of P from Lemma 
2.3.1 as t > m. Note also that is a central element of P since p '"" 
divides - 1). Now, 

Ifd^'ix) = b^{xyP 

and thus 

(d'^y^b^d'^ix) 

= X^ 

It follows that 
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Now, 

Thus 
id^r'b'^dHy) = {d^r'iyn - (y^"")""' - y. 

It follows that 

The following theorem shows that can be written as the product d'̂ b^h .̂ 

Theorem 4.2.4 Let b, d and h be the elements of Aut{P) defined earlier and 
U = l+p"-". Then 

/or 0 < 7 < p", 0 < < p^ 0 < 6' < 0 < // < andO<x<p" where 

i) ^ is the solution modulo p™ to the congruence 

W - 1 = ( [ / -^ - 1)((1 +P'"- ' ' ) ' ' - 1), 

ii) 6 is the solution modulo to the congruence 

= 1 and 

Hi) P is the solution modulo p'" to the congruence 

Proof. As a special case of Lemma 4.1.5, 

Let 7, 9 and P be the solutions to the respective congruences as in the hypothesis. 
From Lemma 4.2.3, 

1 0 

i ) ( ( i + p — 1 ) 1 
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From our hypothesis (iii), 

(1 + + p'"-")^ = 1 {mod f ) 

so that the entries of the top left corner of both our matrix notations above are 

equal. Now from (i), 

W - 1 = ([/-^ - 1)((1 + f^'^T - 1) (mod p'"). 

Hence modulo 

_ i ) ( ( l - 1) = - 1) 

by using (iii). Thus the entries of the bottom left corner of both our matrix 

notations above are equal. Now from (ii), 

Thus the entries of the bottom right corner of both our matrix notations above 

are equal. • 

Calculating commutators between a and d are the most complicated. We 

repeat the same process as before. 

L e m m a 4 . 2 . 5 Let a and d be the elements of Aut{P) defined earlier. Then 

[a'', d'^] can be represented as 

1 + iip'-'iiU^ - 1)(1 - fip'-'^iU-^ - 1)) T 
_ i)(f/-x _ 1) 1 + _ i ) A ( i , t/x) 

/or 0 < /U < p ' and 0 < x < P"; where 

T = /x(A(l, t/'̂ ) - 1) - i^^p'-^iU-^ - 1)A(1, f/'̂ ). 

Proof. From Lemma 4 . L I , 

1 0 
_ 1) JJX and (d'^)-^ 

1 0 
pt-q(f/-x _ 1) u - x 



4.2. THE NECESSARY COMMUTATORS 43 

Also, 
1 fi 
0 1 

and (a^) - 1 1 -fx 
0 1 

In the following calculations we use extensively the fact that XP""" and 
are central elements of P , which is from Lemma 2.3.1. Since t > m in cases 1 
and 2, x^'"" and y^'"" are central elements of P. Note also that and 

Dt-fl(t/X_l) 

and thus 

are central elements of P since p '"" divides - 1). Hence, 

= (by Lemma 2.2.1) 

= (dX)-i W-'it/^-DyP'-'Ct/"-!)) 

It follows that 

^ (by using Lemma 2.2.1) 

Now, 
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by using Lemma 2.2.5. Thus 

{d^r'a^dHy) 

It follows that 

^ (by usiug Lemma 2.2.1) 

The steps in the following theorem are similar to the previous one. 

Theorem 4.2 .6 Let a, b, d and h be the elements of Aut{P) defined earlier and 
= Then 

for 0 < < p", 0 < p < p^, 0 < T] < p", 0 < e < 0 < fi < p" and 

0 < X < P" where 

i) 7 is the solution modulo p" to the congruence 

{ W - 1)(1 + np' - ' iu^ - 1)(1 - - 1))) = - - 1), 

a) 6 is the solution modulo to the congruence 

V i i l + p"^-")^ + Tp'-") = 1 + + - 1)A(1, C/ )̂) 

where 
T - /x(A(l, U^) - 1) - - 1)A(1, m), 
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in) P is the solution modulo -p^ to the congruence 

(1 + p^'-^'fil + p™-")' = 1 + fxp'-iiU^ - 1)(1 - np'-oiU-^' - 1)) and 

iv) T] is the solution modulo p"^ to the congruence 

r/(l + - 1)(1 - fip'-^U-'^ - 1))) = T. 

Proof. From Lemma 4.1.5, a^ h^ can be represented as 

where 
/ / = ( ! + p'"-")®(77(1 + p ^ - ' t f p ' - ^ W - 1) + W). 

Let 7, P and rj be the solutions to the respective congruences as in the hypoth-
esis. 

From Lemma 4.2.5, can be represented as 

^p2t-2<,^jjx _ i)([/-x _ 1) 1 + - 1)A(1, m ) 

where 
T = U"") - 1) - / i V ' ^ l t ^ " " - 1)A(1, U'')-

From our hypothesis (iii), 

(1 + + p'"-")^ = 1 + - 1)(1 - - 1)) {mod p"') 

so that the entries of the top left corner of both our matrix notations above are 
equal. 

Now as in (i), let 7 be the solution modulo p'" to the congruence 

{W - i )( i + - i)(i - -1))) = - -1). 

Thus modulo 
_ 1)(1 + - 1)(1 - fxp'-'^iu-^ - 1))) 

= p ' - w n t ^ ' ' - - !)• 
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Hence 

= ^'-^(f/T _ 1)(1 + - 1)(1 - Hp ' -^U-^ - 1))) 

= - (by using (iii)) 

so that the entries of the bottom left corner of both our matrix notations above 
are equal. 

Now as in (iv), let rj be the solution m o d u l o p*" to the congruence 

7?(1 + ^ip ' -^im - 1)(1 - fip'- ' iV-'^ - 1))) = T. 

Thus by using (iii) and calculating m o d u l o p*", 

T ] { 1 { I = T 

so that the entries of the top right corner of both our matrix notations above are 
equal. 

Now as in (ii), let 9 be the solution m o d u l o pt+'n-q to the congruence 

t/7((l + pm-n^e ^ j^pt-,^ = 1 ^ ^ ^(^^-x _ IJX^y 

Thus 

f /7(l + pm-n^8 ^ jj-^j^pt-g _ rj^^t-g = ^ ^ _ 1)A(1^ [/X). 

Hence calculating m o d u l o we have 

Tp ' -^ iW - 1) + W [ l + = 1 + np'-'^iU-' ' - 1)A(1, m ) . 

But from above, 

T = 7?(1 + p'"-")^ {mod p""). 

It follows that 

7?(1 + + - 1) + U ^ l + p"'-")^ 

= I + -

and thus the entries of the bottom right corner of both our matrix notations 
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above are equal. • 
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Chapter 5 

Product of subgroups 

of Aut{P) which we can choose as one of the genera-

Curran [7] wrote Aut{P) as a product of subgroups where he used similar gen-
erators of Aut{P) as ours. However in this thesis, we have a central element 

'l^pm-n 0 

0 1 + P ' " 
tors o"f Aut{P). 
This choice of generator has simplified our study of the structure of Aut{P) and 
allows us to write Aut{P) as an ascending sequence of subgroups, each a product 
of a cyclic group with the previous. It follows that we are able to write each 
element of Aut{P) in normal form, as we will show in this chapter. From that, 
we find the upper central series and hence the class of Aut{P), as shown in 
Chapter 7. 
Before we proceed we remind the reader that these automorphisms have the fol-
lowing meaning. 

a ~ 

We start by first studying the subgroup (a, h). 

Lemma 5.0.1 If a and h are the automorphisms of P defined earlier then {a,h) 
= {a){h), and each element of {a,h) can be written in normal form as a'^h^ for 
0<7]<p'^ andO<e < 

Proof. 
Since (a, h) is abelian where [h, a] = 1 by Lemma 4.L3, (a, h) = {a){h). From 

Lemma 4.1.4, 

'l l' 'l+pm-g o' 
, d ~ 

1 o' 
and h ~ 

"l + p'"-" 0 
0 1 ) ^ 0 1 pt-n u 0 1 -f- p'"-" 

49 
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and the result follows from Lemma 2.3.8. • 
We now prove one of our major results in this thesis. We show that Aut{P) 

can be written as the product {d){b,a, h). This also implies that a, b, d and h are 
generators of Aut{P). Furthermore, we also show that each element of Aut{P) 
can be written in normal form in terms of these generators. 

Theorem 5.0.2 If a, b, d and h are the automorphisms of P defined earlier then 
a) any element of {b,a,h) can be written in normal form as b^a^h^ for 0 < 

P <p'',0<r] <pi andO<e < where 
i) (6) n (a, h) = 1 and 
n) {b,a,h) ^ {b){a){h). 

b) any element of Aut[P) can be written in normal form as d'^ b^ a'' h^ for 
0 < 7 < p", 0 < /3 < p ' , 0 < 77 < p^ and 0 < 6* < where 

i) {d)n{b,a,h) = {dP") and 
a) Aut{P) = {d){b,a,h). 

Proof. We remind the reader that x^"" — 1 and y^' = 
a) 
i) First we find the intersection {b) fl (a, h). From Lemma 4.1.1 for 0 < /? < p ' , 

b^ 
•(l+pm-9)^ 0 

0 1 

and for 0 < 77 < p ' and 0 < 9 < p'"*"" a straight forward calculation shows 

0 (1+p™-")® 

But 
7 7 ( 1 ( m o d p") 

since 0 < 77 < p' . Hence if a'̂ h^ 1 then 

^ (y)-

On the other hand, 

It follows that 6^(y) ^ a^h^y) and thus b^ / Therefore (6) n (a, h) = 1. 
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ii) Since a is normalised by b from Lemma 4.2.1 and h is central from Lemma 
4.1.3 we have, 

{b,a,h) = {b){a,h) = {b){a){h) 

as {a,h) — {a){h) by Lemma 5.0.1. Therefore by Lemma 2.3.8 we can write any 
element of {b, a, h) uniquely as a product of an element of (b) and an element of 
(a, h) as described. 

b) 

i) By Lemma 4.1.4, dP" 6 (h) which means d^" € {b,a,h). Now we show that 
' ^ (6, a, h). As a special case of Lemma 4.1.5 we have 

^aPh' 

and from Lemma 4.1.1, 

(1 + + p'"-")® 7?(i + + p'"-")^' 
0 ( l + p ' " - " ) ® 

1 0 

pt-i{UP" - 1) UP" 

Also from Corollary 2.3.4 for an integer k, 

UP"-' = (1 + = 1 + p ' - l + ^ 1 ̂  + 

Thus 

dF {x)^xyP 

= xyP'-'+'P"'-"" 

which shows dP"'' ^ {b,a,h), since b^a'ih^ix) e { x ) . Therefore {d) n {b,a,h) = 

{dP"). 

ii) 

jd) I I {b,a,h) 

{d)n{b,a,h) 

^ pt+2n+q 

-I Aut{P) I . 
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That is (d}(b,a, h) is a subset of Aut{P) with the same order of Aut{P), which 

impUes {d){b,a,h) = Aut{P). 
By Lemma 2.3.8 we can write any element of Aut{P) as described. • 

It would be nice to be able to give the normal form for a product in terms 
of the powers involved in the normal form of each element. This turns out to 
be very complicated, as the powers in the product are difficult to determine. 
However as mentioned before, much of what we want to do involves calculations 
in Aut{P)/{h) = Q, which is generated by a, b and d. Here we need the normal 
form of commutators of these generators and we now calculate these forms. 

Before we proceed, we need the following lemma. We remind the reader that 

U = 1 

Lemma 5.0.3 Let // and x be positive integers. If p" || // and p"^ || x then 

([/-^ - !)((! + - l ) = -XW"""" + ^P'^ (rnod p'") 

for an integer ^ where LO is strictly greater than the power of p dividing 

Proof. Using Corollaries 2.3.4 and 2.3.6 for integers k and k', and calculating 
modulo p"", 

= -XMP"'-" + 

for an integer i where LO is strictly greater than the power of p dividing -XMP'"""-
• 

We now calculate 7 and p. 

Lemma 5.0.4 Let a, b, d and h be the generators of Aut{P) and a, b and d be 
the generators of Q defined earlier. If as in 

Theorem 12.4 = bf^ h^ for 
0 < 7 < p", 0 < /? < p^ 0 < 6' < 0 < n < p" and 0 < X < P"", where 
p" II jjL and p'' II Xt ihen 

7 = and P = 

that is 
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for ki and /c2 6 Z, where {kik2,p) — 1. Similarly 

for k[ and € Z, where {k[k2,p) = 1. 

Proof. Let = iP h^ as in Theorem 4.2.4. 

Assume 7 

and /3 are all nonzero and suppose jf^ || 7 and p̂ ^ || 

By Theorem 4.2.4(i), 
t/^ - 1 = (t/-'^ - 1)((1 + p'"-^)^ - 1) {mod p"'). 

Now on the LHS for an integer w, using Corollary 2.3.4 and calculating modulo p*", 

= 7P''-" + 

On the RHS by Lemma 5.0.3, 

(U-^ - 1)((1 + p""-")" - 1) = -X/^P'"-" + {mod p'") 

for an integer i where uj is strictly greater than the power of p dividing — x/ip'"""-

Thus comparing the term that has the lowest nonzero exponent of p on the LHS 

and RHS we have 

q — n + = m — n + i' + <; {mod m) or 

ti =m — q +u + <; {mod m). (5.1) 

Now by Theorem 4.2.4(iii), 

(1 + + p" ' - " ) ' = 1 {mod p^). 

But by Theorem 4.2.4(ii) we also have 

Ui{\+ p'"-")® = 1 {mod = 1 {mod p™). 

Thus calculating modulo p"" we have 

{l+pm-lf = 
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This implies by using Corollary 2.3.4, 

1 + + = 1 + ^pQ-n + 

for integers 2 and w'. Thus comparing the term that has the lowest nonzero 
exponent of p on the LHS and RHS we have modulo m, 

e2 + rn-q = €i + q- n 

= {m-q + u + <;) + q-n (from (5.1)) 

= m — n + + ? 

and so 
e2 = q —n + i' + <; {mod m). 

With similar calculations, 

for fc'i and k'^ G Z, where {k[k'2,p) = 1. Finally we note that if any of 7 or /? is 
zero, the proof will be similar but easier. • 

We now calculate commutators involving a and d. Before that we need the 
following three lemmas. 

Lemma 5.0.5 If x is a positive integer and p'' || x ihen 

(t/^ - - 1) = - x V ' ' - ^ " + {mod p"") 

for an integer I where u is strictly greater than the power ofp dividing 

Proof. For integers k and k' and calculating modulo p*", by using Corollaries 
2.3.4 and 2.3.6, 

for an integer i where u is strictly greater than the power of p dividing — 
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Lemma 5.0.6 If x is a positive integer and p"- || x ihen 

1 + - 1)(1 - np^-'^iU-'^ - 1)) = 1 + ^ixp'-" + ip"^ {mod p"") 

for an integer C where uj is strictly greater than the power of p dividing iJ,xp^~"-

Proof. For integers k and k' and calculating modulo p*", by using Corollaries 
2.3.4 and 2.3.6, 

1 + - i ) ( i - np'-^u-'^ - 1)) 

= 1 + i ip'-^XP"'" + - + fcV+^t"-"))) 

= 1 + (mxp'"" + - + 
= 1 + MXP'"" + P̂*̂  

.t-n for an integer £ where oj is strictly greater than the power of p dividing ^XP 

Lemma 5.0.7 If x is a positive integer and p'' || x ihen 

/i(A(l, - 1) - n^p'-'^iU-'' - 1)A(1, t/'̂ ) = //XP'-" + {mod p'") 

for an integer i where lo is strictly greater than the power of p dividing /xxp'^". 

Proof. For integers e and k and calculating modulo p"*, by using Corollary 2.3.6 
and Lemma 2.3.7 with v > q - n, 

m(A(1, U^) - 1) - ^lY-^iu-^ - 1)A(1, u^) 

= + ep'^n - + + XP''"" + ep^^") 

= /xxp'-" + l^ep'^" + (/^'XP'-" - + XP'-" + ep'^n 

= //XP'"" + P̂"̂  

for an integer £ where UJ is strictly greater than the power of p dividing 

We now find 7, /? and T]. 

Lemma 5.0.8 Let a, b, d and h be the generators of Aut{P) and a, b, d be the 
generators of Q defined earlier. If as in Theorem 4.2.6 [ai',d^] = d'' b^ a" /i^ for 
0 < 7 < p " , 0 < /? < p', 0 < r/ < p^ 0 < 0 < 0 < / i < p " and 0 < X < P", 
where p" || p. and p̂  || x then 

^ = = and rj = 
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that is 

for ki, k2 and k^ E Z where {kik2k3,p) = 1. Similarly 

for k[, k'2, k'^ eZ where {k'^k'^k'^^p) = 1. 

Proof. Let = b^ a" h^ as in Theorem 4.2.6. 
Assume 7 , /? and 77 are all nonzero and suppose || 7 , || and p̂ ^ || 77. 

By Theorem 4.2.6(i), 

= {mod p'") 

where f / = 1 Now, looking at the LHS and calculating m o d u l o p*", by 
using Corollary 2.3.4 and Lemma 5.0.6 for integers e and where a; is strictly 
greater than the power of p dividing p-XP'̂  ŷ 

{ W - 1)(1 + p p ' - ^ W ' - 1)(1 - pp' - ' iU- '^ - 1))) 

= + + /xxp'"" + 

for an integer £' where u' is strictly greater than the power of p dividing . 
On the other hand on the RHS and calculating m o d u l o p*", by using Lemma 

5.0.5 and for an integer i" where u" is strictly greater than the power of p dividing 

-xV"-'", 

for an integer I'" where w'" is strictly greater than the power of p dividing 
-/xX^p'"'"^"^". So we have m o d u l o p*", 

+ + ep^' = + ^ ' V " - (5.2) 

Thus comparing the term that has the lowest nonzero exponent of p on the LHS 
and RHS of (5.2) we have 

g - n + ci = t + q~2n + v + 2q {mod m) or 
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ei = t — n + i> + 2<; {mod m). (5.3) 

Now by Theorem 4.2.6(ii) modu lo 

where 

T = - 1) - - 1)A(1, U'')-

This is equivalent to 

(1 + p"*-")^ + Tp'-' = U - ^ l + p'-^T + - 1)A(1, U""))) or 

(1 + p'"-")® = + + - 1)A(1, m))) - Tp'-". (5.4) 

By Corollary 2.3.4, the LHS of (5.4) can be written as 

1 + ^p'"-" + 

for an integer 2 where ip is strictly greater than the power of p dividing 

We are now focusing on the RHS of (5.4). Before we proceed, from lemma 5.0.7 

we have 

T = ^iXP""" + kp'''' {mod p'") 

for an integer k where ip' is strictly greater than the power of p dividing Mxp''"". 

Also we calculate the following by using Corollary 2.3.6 and Lemma 2.3.7 where 

c and c' are integers and v > q — n. 

fip'-^U-^ - 1)A(1, U^) = + + XP'"" + c ' f+n 

= (-^XP'"" + + XP'"" + c'p'^n 

= -Mxp ' " "+ 

(5.5) 

for an integer z' where k is strictly greater than the power of p dividing -mxp' 

Now we observe that by using (5.3) modu lo m, 

ei+2{q-n) = t-n + i^ + 2<; + 2{q-n) 
(5.6) 

= t + 2q-3n + iy + 2q. 
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Replacing this into (5.2) we have m o d u l o p"", 

for an integer / where ( is strictly greater than the power of p dividing -/^x^p'"'"®"^" 

where u' is strictly greater than the power of p dividing ep'+29-3n+i/+2<; jsjq^ 

by using Corollary 2.3.6 for an integer k' and using (5.6) and (5.7), we have 

m o d u l o p*" , 

U"> = 1- -ip"-"" + 

^ 1 + Mx 'p '^ ' - ' " - fp' + 
( 5 . 0 ) 

= 1 + / i x ' p ' ^ ' " ' " - fp^ + 

= 1 + / x x ' p ' ^ ^ - ' " - / y 

for an integer / ' where is strictly greater than the power of p dividing //x^p'^'"^"-

Therefore using (5.5) and (5.8) and for an integer e', the RHS of (5.4) can be writ-

ten in m o d u l o as 

(1 + / x x V ^ ' " ' " - / y + e'p™)(l + Tp'"^ + iip'-^iU-^ - 1)A(1, C/^)) - Tp'-" 

= (1 + / x x V ^ " " ^ " - / y )(1 + Tp'-" + - 1)A(1, - Tp'-" + e'p"" 

= (1 + MX'P'^ ' " ' " - / y )(1 + T p ' - " - / i xp ' " " + zY) - Tp'-" + e'p'" 

^ (1 + T p ' - . _ ^^pi-n + ) + + / V " ) + ( - / y + / V " ) 

- Tp^-" + e'p"" 

= 1 - MXP'"" + ^ ' y + e'p™ 

for an integer / " where is strictly greater than the power of p dividing /xx^P^"*"^"^", 

for an integer / " ' where is strictly greater than the power of p dividing —fp^' 

and for an integer z" where k ' is strictly greater than the power of p dividing 

— T h u s comparing the terms on the LHS and RHS of (5.4) we have 

+ zp"^ = -MXP' " " + ^ V + e y {mod (5.9) 

Now by Theorem 4.2.6(iii), 

(1 + = 1 + - 1)(1 - fip'-'iU-'' - 1)) {mod p'"). 
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Looking at the LHS, calculating m o d u l o p '" and using Corollary 2.3.4 for an 
integer e" as well as using (5.9), we have 

= (1 + PP"'-" + + + zp^) 

= (1 + Pp""-" + - /xxp'^" + ^ V + e'p") 

= (1 + Pp""-" + - MXP'"" + z V ) 

= 1 + pp^ - " + - ^^pt-n + 

for an integer w where r ' is strictly greater than the power of p dividing — 
On the other hand on the RHS, calculating m o d u l o p*" and by Lemma 5.0.6 

1 + - 1)(1 - ^p'-^iU-"" - 1)) 

= 1 + /xxp'"" + -w'p" 

for an integer w' where a is strictly greater than power of p dividing 
Thus comparing the terms on the LHS and RHS we have 

pp"^-" + - MXP'"" + ^P'"' = MXP'"" + w'p" {mod p'"). 

Calculating m o d u l o p"*, this is equivalent to 

pp""-" + = + w V ' 

for an integer w" where a' is strictly greater than the power of p dividing 
It follows that by comparing the term that has the lowest nonzero exponent of p 

on the LHS and RHS we have 

m -q + e2 = t - n + i' + q {mod m) 

or 

e2 = t-m + q-n + v + 'i {mod m). 

Now by Theorem 4.2.6(iv) m o d u l o p*", 

rj{l + iip'-^m - 1)(1 - - 1))) = T. 

Now looking at the RHS and calculating modu lo p"", by Lemma 5.0.7 as seen 
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earlier, 

T = AiXP'"" + kp"̂ ' {mod p"") 

for an integer k where ip' is strictly greater than the power of p dividing lu.XP'^'"-

Thus comparing the term that has the lowest nonzero exponent of p on the LHS 

and RHS we have 

e3 = q — n + i' + <^ {mod m). 

With similar calculations, 

for k[, where = 1. 

Finally we note that if any of 7, /? or t] is zero, the proof will be similar but 

easier. • 



Chapter 6 

The centre 

In this chapter we will show that the centre ({Aut{P)) of Aut{P) is cyclic and 
generated by h. We have seen that /i is a central element of Aut{P) and so 
C{Aut{P))/{h) < C{Q) where Q = Aut{P)/{h). In the next chapter we will 
calculate the upper central series of Aut{P) and so we need to find C(Q)- It turns 
out to be more efficient to calculate C(Q) first and then use this to show that 
C,{Aut{P)) = {h). As one might expect, C(Q) will depend on the relation between 
the invariants defining P. 

In the following lemma we show that in cases 1 and 2, C(<3) depends on 
whether m — q>q — nor otherwise. 

Lemma 6.0.1 Let a, b and d be as defined earlier. IfQ = {a, b, d) then the centre 
Q{Q) of Q IS {aF\bP') for i ^ max{2q-m,n}. 

Proof. 
First we remind the reader that from Lemma 4.1.4, the order of a is p^, the 

order of b is p ' and the order of J is p". 
Now let X be any element of Q so that x = d'^¥aP for 0 < 7 < p", 0 < /? < 

and 0 < r? < p' . 
Assume 7 , /? and 77 are all nonzero and suppose p' ' || 7 , p'^ || /? and p'^ || 
Now, X is an element of C(<5) if and only if [x,a] = [x,6] = [x,d] = 1. 
Let X e C{Q)- We will look at each commutator, and first we calculate [x, 6]: 

[x,b] = [d-^Wa^'b] 

= [d-'b^,bf[a\b]. 

Since [x,b] = 1 (and [aJ',b] is a power of a from Lemma 4.2.2), by conjugating 
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with a ^ we have 

1 = Kbf' 

= {d\bf[a\b]. 

Then conjugating by b"^ we get 

\ = [d\b][a'',bf'. 

Now, is just a power of a from Lemma 4.2.2, while from Lemma 5.0.4 
where p'^ || 7 , 

for integers f i and /2 such that ( / i /2 ,p) = 1- Since the product 

1 = 

is in normal form, it follows that the power p for b must satisfy q — n + ei > q 
or ei > n. This tells us that = 1 and so x = ¥dP. Now recalculate the 
commutators: 

= [b^bf{a\b] 

Thus using Lemma 4.2.2, 

1 = = 

where c = (1 + ^ {mod p™). Therefore since p̂ ^ \\ T], e^ + m-Q > q so that 
£3 > 2q' — m. Now, 

x,a] = [¥a\a] 

= [b'',af[a\a] 

= [¥,a]. 
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Hence using Lemma 4.2.2, 

where c = (1 + p'"-^)"^ {mod p""). Now from Corollary 2.3.4 for an integer k, 

(1 - cp""-")^ - 1 - c^p""-" + 

It follows that 

is divisible by p^. Since p̂ ^ || ^^ ^g ĵ ave €2 + m - q > q so that €2 > 2q - m. 
Now, 

[x,d] = 

= [¥,df[a^d] 

= ((f IP"*''""'' ((f -e3p''-"+=3 ^ 

by using Lemmas 5.0.4 and 5.0.8 where vi,V2,ei,e2 and 63 are integers such that 
{viV2eie2e3,p) — I. We now look at the power p for d in this product: 

Since €2 and 63 are both at least 2q - m, we have 

m - q + €2 >m-q + 2q-m = q>n 

and 

t - n + e3>t-n + 2q-m>q>n. 

Thus the powers on d disappear. Hence 

Now, conjugating by a"'' we get 

1 = 

Now using Lemma 4.2.2 for c = (1 + p " {mod p""), 
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for an integer e where v is strictly greater than the power of p dividing 

Thus 

which is in normal form. It follows that the power p for a must satisfy q-n+es > q 

or 63 > n. Therefore 

t-m + q - n + e3>t —m + q - n + n = t —m + q>q 

so that 

Hence 

SO that the power p for b must satisfy q - n + €2 > q or €2 > n. 
Therefore we conclude that for x to be in C(<5)) we have 63 and €2 are at least 

^ for £ = max{2gf - m, n}. 
Hence the centre ({Q) of Q is {aF\lf^) for i = max{2g - m , n } . 
Finally we note that if either 7 , or ry is zero, the proof will be similar but 

easier. • 
We now look at the main result of this chapter. 

Theorem 6.0.2 If h is as defined earlier then C{Aut{P)) = {h). 

Proof. Since a, b, d and h are generators of Aut{P) by Theorem 5.0.2, and h 
commutes with a, b and d by Lemma 4.1.3, we have (h) C (:;{Aut{P)). 
On the other hand, let x' G C{^ut{P)). Write x' in normal form as 

x' = crt^a"/!® 

for 0 < 7 < p", 0 < < 0 < 7? < p ' and 0 < 6* < We then have 

X = x'h-'' = d'^y^a'^ € C{Aut{P)) 

and we will show that x E {h). 
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Assume (3 and 77 are nonzero and suppose || (3 and p'̂  || 
Now we consider x modulo {h) = x so that 

X = 

From Lemma 6.0.1 we have 

for e = max{2q - m , n } , so that if x € ({Q) then Jt = 1, that is 7 is divisible 
byp". 

But X e (;{Aut{P)) implies x 6 ({Q) and so, dT G {h). 
Now since x € C{Aut{P)), we have [x, a] = [x, 6] = [x, d] = 1. We now look at 

the commutators. 

[x,a] = [d?b'^a\a] 

= 

= 1. 

Using Lemma 4.2.2 where c ^ 0 {mod p), and Corollary 2.3.4 for an integer k, 

_ ^l-il-cp'^-if [b^,a] = a 

- CL • 

Since the order of a is p"" by Lemma 4.1.2, + m - q > m which imphes 62 > q 
and thus G {h). Now, 

= [b^a\b] 

- [a\b] 

- 1. 

But from Lemma 4.2.2 where c ^ 0 {mod p). 

-nm'^-l 

(i 
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for an integer d such tha t (c',p) = 1, so that 63 + m - 9 > m and thus €3 > q. 

Hence oP G {h) since aP' G {h). 

Therefore 
X = (PlPaPh!> e {h). 

Finally we note that if either /3 or r? is zero, the proof will be similar but easier. 



Chapter 7 

The class 

The class of Aut{P) is found by constructing its upper central series. We find 

that this is much easier than constructing its lower central series because in 

this problem, it is easier to calculate higher centres than to calculate higher 

commutators. 

Since we have shown that (^{Aut{P)) = (/i), to construct the upper central 

series of Aut{P) it will be enough to construct the upper central series oi Q = 

Aut{P)/{h). Lemma 6.0.1 gives the centre (^{Q) of Q which depends on whether 

m — q>q — nor otherwise, and the remaining terms of the upper central series 

also depend on this dichotomy. 

Lemma 7.0.1 gives the upper central series of Q and then Theorem 7.0.2 gives 

the class of Aut{P). 

Lemma 7.0.1 Let a, b and d be as defined earlier and k be a positive integer. 

a) If m-q>q-n then 

f,r kn-{k- l)q > 0, Ck{Q) = (a/-'-'", 

and 

ii) for kn-{k- l)q < 0, Ck{Q) - {a,b,d). 

b) If m-q<q-n then 

i ; /o r (A ; - l ) 9 - (A ; - l )m+n > 0, CfelQ) = K ) 

and 

ii) /o r ( f c - l ) g - (A ; - l )m+n < 0 < [k+l)q-km, - j ) 

and 
ill) for{k + l)q-km<0, (kiQ) = {a,b,d). 
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Proof. 

Let X be any nontrivial element of Q so that x = for 0 < 7 < p", 
0 < < and 0 < r? < 

Assume 7, (3 and rj are all nonzero and suppose p^^ || 7) P'^ W P and p^^ || r;. 

We will prove the result by induction. To begin, we know that 

X G Ck+i{Q) if and only if [x,a] = [x,b] = [x,d] = 1 {mod Ck(Q))-

We will calculate modulo Ck(Q) throughout the proof. 

Case (a) : m — q > q — n 

By Lemma 6.0.1, the result is true for A: = 1. 

i) Now suppose for /c > 1 and kn - (k - l)g > 0, 

^ 

Cfc(<5) = (a^ y ). 

Let X € (k+i{Q)- We will calculate each commutator. We have 

[x,b] = = ,bf [a'',b 

and then since [x,6] = 1 (and [a'^,b] is a power of a from Lemma 4.2.2) we also 
have 

1 = [x,bf~' = [a", 6] = [d^rbfla^b 

Conjugating by we get 

(7.1) 

1 = [d' (7.2) 

Now from Lemma 5.0.4 where p^'- || 7, 

for integers / i and /2 such that (/ i /2 ,p) = 1- Also from Lemma 4.2.2 for c = 
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(1 +pm-q)- i (^modp^^), 

for an integer i where u is strictly greater than the power of p dividing 
Since the product 

is in normal form, it now follows that the power p for h must satisfy 

q — n + €i >kn — {k — 1)^ 

or 
ei>{k+ l)n — kq. 

We observe that this implies 

m — q + '>m — q + {k + l)n — kq — kn — kq + {m + n — q) 

> kn- {k - l)q 

since m + n>2q. Thus = 1. Also by looking at the power p for a, 

63 + m - q > kn - {k - l)q 

and therefore 
> kn — kq + {2q - m). 

Now, 

1 = [x,a] = [d'Fa^a] = [d^¥,af = {[d\af[¥,a]f. (7.3) 

However [J^, a] = 1 as the following shows: From Lemma 5.0.8 where p"^ || 7, 

for integers ei, 62 and 63 such that (616263,p) = 1. Since ei>{k + l)n - kq, each 
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oi t - n + 2ei, t - m + q - n + ei and q-n + ei is at least kn- {k - l)q. Hence 

[x,a]^{[¥,a]f a] 

since [ ¥ , a ] is a power of a from Lemma 4.2.2. By using Lemma 4.2.2 again, 

where c = (1 {mod f^). Now by using Corollary 2.3.4, for an integer 

k' and where || (3, 

It follows that 

and hence 

1 - (1 - cp'"-")^ = cPP""-" -

62 + m — q > kn - {k - l)q 

e2 > kn - kq + {2q — m). 

Now, 

1 = [x, J] = d] = df [a\ d] = df [a\ 3\. (7.4) 

Using Lemma 5.0.4 where || p and for integers f[ and f^ such that ( / J p ) = 1, 

smce 
m - q + 62 > m — q + kn - kq + {2q - m) = kn - {k — l)q 

so that df^p"""^'' = I. Thus 

1 = [x,d] = [¥,df[a\d] = {V^^'-^^-'fia^d, 

Now using Lemma 4.2.2, 
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for an integer e where v is greater than or equal to the power of p dividing 

where c = (1 {mod p'"). But 

m - n + e2>m — n +kn — kq + {2q - m) = kn - {k - l)q + {q - n) 
> kn — {k — 

so that a'̂ P" = 1. Hence 

Now from Lemma 5.0.8 where p^^ || 77, 

for integers ui, v^ and v^ such that {v\V2Vi,p) = 1. Since 63 > kn — kq + {2q — m), 
by looking at the power p for d we have 

t - n + es > t — n + kn — kq + {2q - m) — kn - {k - l)q + {t - m + q - n) 
>kn-{k- \)q. 

Thus = 1. It follows that 

1 = [x,d] = "+'3 

which is in normal form. Hence by looking at the power p for a we have 

q - n + €3 > kn - {k - l)q 

or 
> {k + — kq 

which also implies that ^ ^ g^ ^^ 
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and so by looking at the power p for 6, 

q - n + €2 > kn - {k — l)q 

or 
e2>{k + l)n - kq. 

Therefore 

for {k + l)n - kq> 0. 

Now if fc > 1 and {k + l)n - kq < 0 then it is clear that 

Ck+i{Q) = {a,b,d) = Q. 

ii) Suppose for A; > 1 and for kn - [k - < 0, C,k{Q) = {a,b,d). It is then 
clear that 

Case (b) : m — q < q — n. 

By Lemma 6.0.1, it is true for A; = 1. In this subcase we note that the power 
p for d become zero and negative before the power p for a and b. 

i) Suppose for A; > 1 and {k - l)q - {k — l)m + n > 0, 

Let X e Ck+i{Q)- Now by calculating [x,b] with steps similar as in (a) we have 
(7.2) which is, 

where 

for integers / i and /2 such that ( / i / 2 ,p ) == 1 and 

for an integer i where u is strictly greater than the power of p dividing —ricp"^"'', 



73 

where c = (1 + p""-")'^ {mod p^). Therefore 

is in normal form and so we have the power of p for d must satisfy 

m — q + t\>{k — — {k — l )m + n 

or 

t\>kq — km + n. 

We observe that by looking at the power p for 6 we have 

q — n + Ci > q — n + kq — km + n = {k + l)q — km 

so that = 1 Also by looking at the power p for a we have, 

€3 + m — q > {k + l)q — km 

and therefore 

63 > {k + 2)q - {k + l)m. 

Now by calculating [x,a] with steps similar as in (a), we have (7.3) which is 

l = [x,a] = {[d^,df[¥,a]f. 

However [d\a] = 1 as the following shows: From Lemma 5.0.8 where || 7, 

for integers ei, 62 and 63 such that (616263,p) = 1. Since ei > kq - km + n, by 
looking at the power p for d we have 

t - n + 2ei >t-n + ei 

> t — n + kq — km + n = kq — km + t 

> kq - km + {m + n - q) = {k - l)q - {k - l)m + n. 

Also by looking at the power p for a we have, 

q - n + €i > q — n + kq - km + n = {k + l)q - km 
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and clearly by looking at the power p for b we have 

t-m + q- n + ei > {k + l)q - km. 

It follows that 

since \b^,a] is a power of a from Lemma 4.2.2. By using Lemma 4.2.2 again, 

where c = {1 + {mod p^). Now by using Corollary 2.3.4 for an integer 
k' and where || (3, 

1 _ (1 _ cp'"-')^ = -

It follows that 
62 + m - q > {k + l)q - km 

and hence 
62 > {k + 2)q- {k + l)m. 

Now we show that commutativity with d imposes no further restrictions. By 
calculating [x, d] with steps similar as in (a) we have (7.4) which is, 

1 = [x,d] = [¥,df[a\d]. 

However \b^,d] = 1 as the following shows: From Lemma 5.0.4 where || /?, 

for integers / i and /2 such that (/i /2 ,p) = 1- Since 62 > {k + 2)q - {k + l)m, by 
looking at the power p for d we have 

m — q + 62 > m — q + {k + 2)q - {k + l)m = kq - km + q 
> kq - km + {m + n - q) = {k - l)q - {k - l)m + n 
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since 2q — m > n. Also by looking at the power p for b, 

q - n + €2 > q - n + {k + 2)q - {k + l)m = kq - km + q + {2q - m - n) 

> kq — km + q = {k + l)q — km. 

Hence 

1 = [x,d] = [aP,d]. 

From Lemma 5.0.8 where p ' ' || r/, 

for integers Vi, V2 and v^ such that {viV2V3,p) = 1. Since £3 > {k + 2)q-{k + l)m, 
by looking at the power p for a we have 

q - n + e^ > q - n + {k + 2)q - {k + l)m = {k + l)q - km + {2q - m - n) 

> {k+ l)q - km 

since 2q — m - n > 0. Similarly by looking at the power p for 6 we have, 

t - m + q - n + €3 > {k + l)q - km. 

Now by looking at the power p for J, 

t - n + e3>t-n + {k + 2)q-{k+ l)m = kq - km + [t - n + 2q - m) 

> kq -km +{t - n + n) ^ kq -km + t 

> kq-km + {m + n-q) = {k-l)q-{k- l)m + n. 

Therefore we have 

as required. We conclude that 
/^N , „(fc + 2)5-(fc+l)m - (fc + 2)9-(fc+l)m j kq-km+n. a+i(<5) = K ^^ 

and the result is proved inductively. 

Now \ik>l&ndkq-km + n<Q<{k + 2)q-{k + l)m then it is clear that 

Q k ^ m = J) f Q. 
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Now if A; > 1 and {k + 2)q — (k + l)m < 0 then it is clear tliat 

Ck+iiQ) = {a,b,d) = Q. 

ii) Suppose for A; > 1 and for {k - l)q - {k - l)m + n < 0 < {k + l)q - km, 

We again do our calculation modulo Ck(Q)- Now by calculating [x, b], with steps 

similar as in (a), we have (7.1) which is 

1 = [d'',bf [aP ,b . 

But J = 1 so that 

l = [a\b]. 

Using Lemma 4.2.2 where c = (1 + {mod p™), we have 

so that 
m — q + e^ > {k + l)q — km and hence 

63 > {k + 2)q - {k + l)m. 

Now, calculating [x,d], with steps similar as in (a), we have (7.3) which is 

But J = 1 so that 

1 - [ b ' , a ] f 

^ ^l-Cl-cp"-')" 

(Jl 

by using Lemma 4.2.2 and Corollary 2.3.4 where c = (1 {mod p " ) , k' 
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an integer and || j3. Thus 

€2 + rn — q > {k + l)q — km 

and hence 

62 > {k + 2)q- {k + l)m. 

We conclude that 

Now if A; > 1 and {k + 2)q - {k + l)m < 0 then it is clear that 

Cfc+i(Q) = {a,b,d) = Q. 

iii) Suppose for fc > 1 and for {k + l)q -km <0, Ck{Q) = {a,b, d). It is clear 

that 

(:k+i{Q)=^{a,b,d) = Q. 

Finally we note that if any of 7 , or ry is zero, the proof will be similar but easier. 
• 

We now are able to calculate the class of Aut{P). 

T h e o r e m 7 .0 .2 Let Aut{P) be as defined earlier. 

a) If m - q > q - n then the class of Aut{P) is + 1. 
b) If m - q < q - n then the class of Aut[P) is ["^1 + 1. 

Proof. 

Since C,{Aut{P)) = {h), the class of Aut{P) is one more than the class of Q 

and hence it is enough to calculate the class of Q where Q = {a,b,d) such that 

aP" = ^^ = Jp" = 1. Let A; be a positive integer. 

Case (a) : m - q > q - n 

Since kn — {k - 1)^ is a monotone decreasing function of k, it follows from 

Lemma 7.0.1 that Ck{Q) = Q for the smallest k such that 

k n - { k - l ) q < 0 < { k - l)n - {k - 2)q. 
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So we have 

q — n q — n 

or A; = 1 " ^ ] which is the class of Q. Therefore the class of Aut{P) is + 1. 

Case (b) : m — q < q — n. 

Since {k - l)q - {k - l )m + n < {k + l)q - km, we have CkiQ) Q for 

{k+l)q-kTn > 0 by Lemma 7.0.1(i) and (ii), and Cfc(Q) = Q when {k+l)q-km < 

0 by Lemma 7.0.1(iii). 

Since {k + l)q — km is a monotone decreasing function oi k, it follows that 

CkiQ) = Q for the smallest k such that 

{k + l)q - km < 0 < kq - {k - l)m. 

So we have 
9 < k < ^ + l 

m - q m - q 

or k= l:;^] which is the class of Q. Therefore the class of Aut{P) is f ; ; ^ ] + L 



Chapter 8 

Further research 

We remind the reader that the four cases in the case of finite nonspht metacycUc 
p-groups where p is an odd prime occur when: 

1) 2 <n < q <m <t where m < 2n, 
2)l<n<q<m<t where 2n<m <q + n, 
3)3<n<q<t<m<2n and 
4)2<n<q<t<m where 2n < m < q + n. 
In this thesis, we find results for only cases 1 and 2. The extension of the 

method to cases 3 and 4 is found to be more complicated. One of the com-
plications is that and y^'"" are no longer central elements of P because 
t < m in cases 3 and 4. The calculations become even more complicated in case 
4 especially, since m > 2n. 

I r 
In checking the requirements for a matrix 

phism of P we conjecture that in cases 3 and 4, 

to represent an automor-

Conjecture 8.0.1 Let ip 
I r 
j s 

. Then ^ € Aut{P) if and only if 

i) r e 'Lprn, 
= 1 + r p ' - ' {modf^-"), 

Hi) j = 0 (mod p^-";, 
iv) s = l + cp"-"" {mod p " - " ) where j = cp*"" /or 0 < c < p". 

Furthermore, the set of generators of Aut{P) that we have for cases 1 and 2 are 
no longer the same for cases 3 and 4. In particular the mapping a represented by 

the matrix 
1 1 

0 1 
is no longer an automorphism of P in cases 3 and 4. 
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Finding a new set of generators has proved difficult, but we conjecture that 
the following automorphisms of P which can be represented by the following 
matrices form a set of generators in these cases: 

l l+p^-" l ' "l + p " - " 0 and 
1 0 

0 1 0 1 0 1 + p'"-" pt-n l+pQ-n 

These generators are closely related to Curran's generators when t < m {in our 
notation). If they are correct, we expect to be able to find the centre, the upper 
central series and the class of Aut[P) by similar methods to those used in this 
thesis. 

Once these are done, there are still many questions remaining for the nonsplit 
case. Perhaps, the most important are to find a presentation of Aut{P) and to 
find its derived length. We expect the method and results obtained can lead to 
solutions to these problems. 

In addition, we have not considered the split case in this thesis. If G is a 
finite nonabelian split metacyclic p-group where p is an odd prime, then the 
automorphism group Aut{G) of G is no longer a p-group. Bidwell and Curran [3 
found generators and a presentation of Aut[G). Using similar methods to those 
used in this thesis, we expect to find the class of the Sylow p-subgroup of Aut{G). 



Bibliography 

1] J. E. Adney and T. Yen. 'Automorphisms of a p-group'. Illinois J. Math., 
9:137-143, 1965. 

[2] B. G. Basmaji. 'On the isomorphisms of two metacycUc groups'. Proc. Amer. 
Math. Soc., 22(1):175-182, 1969. 

3] J. N. S. Bidwell and M. J. Curran. 'The automorphism group of a split 
metacyclic p-group'. Arch. Math. (Basel), 87(6):488-497, 2006. 

[4] N. Blacltburn. 'On prime-power groups with two generators'. Proc. Cam-
bridge. Philos. Soc., 54:327-337, 1958. 

[5] W. Bosma and J. J. Cannon. Handbook of Magma functions . Mathematics 
Department, University of Sydney, 1993. 

[6] M. J. Curran. 'A Note on p-groups that are automorphism groups'. Pro-
ceedings of the Second International Group Theory Conference (Bressanone, 
1989). Rend. Circ. Mat. Palermo (2) SuppL, 23:57-61, 1990. 

[7] M. J. Curran. 'The automorphism group of a nonsplit metacyclic p-group'. 
Arch. Math. (Basel), 90(6):483-489, 2008. 

8] M. J. Curran. 'The automorphism group of a split metacyclic 2-group'. Arch. 
Math. (Basel), 89(l):10-23, 2007. 

9] R. M. Davitt. 'The automorphism group of a finite metacycUc p-group'. Proc. 
Amer. Math. Soc., 25(4):876-879, 1970. 

10] R. Faudree. 'A note on the automorphism group of a p-group'. Proc. Amer. 
Math. Soc., 19(6): 1379-1382, 1968. 

11] P. Hall. 'A contribution to the theory of groups of prime-power order'. Proc. 
London Math. Soc., 36:29-95, 1933. 

81 



82 BIBLIOGRAPHY 

[12] C. E. Hempel. 'Metacyclic groups'. Comm. Algebra, 28(8):3865-3897, 2000. 

[13] B. Huppert. 'Uber das Produkt von paarweise vertauschbaren zyklischen 
Gruppen'. Math. Z., 58:243-264, 1953. 

14] B. W. King. 'Presentations of metacyclic groups'. Bull. Austral. Math. Soc., 

8:103-131, 1973. 

15] F. Menegazzo. 'Automorphisms of p-groups with cyclic commutator sub-
group'. Rend. Sem. Mat. Univ. Padova, 90:81-101, 1993. 

16] M. F. Newman and Xu Mingyao. 'Metacyclic groups of prime-power order'. 
Adv. in Math. (Beijing), 17:106-107, 1988. 

[17] E. A. Ormerod. 'The Wielandt subgroup of metacyclic p-groups'. Bull. Aus-

tral. Math. Soc., 42:499-510, 1990. 

[18] D. J. S. Robinson. A Course in the Theory of Groups . Springer-Verlag, New 
York, 1982. 

[19] M. Schulte. 'Automorphisms of metacyclic p-groups with cyclic maximal 
subgroups'. Rose-Hulman Undergraduate Research Journal, 2(2), 2001. 

[20] G. Silberberg. 'Finite equilibrated 2-generated 2-groups'. Acta Math. Hun-
gar., 110(l-2):23-35, 2006. 

[21] Hyo-Seob Sim. 'Metacyclic groups of odd order'. Proc. London Math. Soc. 
(3), 69(1):47-71, 1994. 


