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Abstract 

For a bivariate Levy process the generalised Ornstein-Uhlenbeck (GOU) 

process V = {Vt)t>o, is defined by 

e ^'-(ir;, 

where VQ is a random variable independent of It is closely related to the 

stochastic integral process Z — {Zt)t>o defined by 

fe-^^-dru. 
Jo 

We examine the infinite horizon niin probability for V, and the associated be-

haviour of Z. In particular, we define conditions under which V has zero proba-

bility of ruin, and conditions under which ruin is certain. These conditions are 

stated in terms of the canonical characteristics of the bivariate Levy i)rocess and 

reveal the effect of the dependence relationship between and r/. We also present 

an in-depth examination of the structure of the upper and lower bound of V. 

vn 
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Notation and terminology 

Abbreviations and acronyms 

a.s. almost surely in probability 

iid independent and identically distributed 

iff if and only if 

cadlag right continuous and left limit exists 

OU Ornstein-Uhlenbeck process 

GOU generalised Ornstein-Uhlenbeck process 

Gov covariance 

SDE stochastic differential equation 

sup supremum 

inf infimum 

max maximum 

mill minimum 

lim limit 

Notation 

F(A) probability of event A 

E{X) expected value of random variable X 

Px distribution of X 

xi 



xii NOTATION AND TERMINOLOGY 

e (X ) stochastic exponential process of a semi-martingale X 

X, Y] quadratic variation process of semi-martingales X and Y 

X, YY path-by-path continuous part of [X, Y 

rix Levy measure of a Levy process X 

Nx^t random jump measure of a Levy process X 

a Ab minimum of a and b 

ay b maximum of a and b 

Y'^ process Y stopped at T, so Y^ := Yt^^r 

f~{x) negative part of /, so f~{x) := —{f{x)) V 0 

f+{x) positive part of /, so f+{x) f{x) V 0 

f i t - ) left limit of / at t, so f{t-) := lim,j|o f{t - h) 

f{t+) right limit of / at t, so f{t+) limhio f{t + h) 

A/(^) jump of / at t, so Af{t) f{t) - f{t-) 

equality in distribution 

-^D convergence in distribution 

-^p convergence in probability 

N set of positive integers 

M set of real numbers 

Q set of rational numbers 

M'' (i-dimensional Euclidean space 

{x, y) inner product in Euclidean space, so (x, y) ;= Xiy, 

\x\ norm in Euclidean space, so |x| 

A closure of set A in Euclidean space 

1a indicator function of the A 



Xlll 

A \ r { x : x G A , x ^ r } 

/ ( x ) = 0((/)(x)) real valued function / is big order (j), so there exists constants 
c and xo such that|/(x)| < c(j){x) for some constant c, for all 
X > Xo 

f{x) = o{(j){x)) f is little order (p, so lim ĵ-̂ oo ^ = 0 

f{x) ~ 0(x) / is asymptotically equivalent to (p, so lim^̂ ôo ^ = 1 

Hi * convolution of finite measures /ii and 

7]) a bivariate Levy process 

y the GOU Vt := (Vo + £ 

Z the stochastic integral process Jge'^^-dr/s 

tp{z) infinite horizon ruin probability of V 

General 
For a real function / , increasing means f{s) < f{t) for s < t and decreasing 

means f{s) > f{t) for s < t. When we wish to exclude equality we say strictly 
increasing and strictly decreasing. 

For a real number x, positive means x > 0 and negative means x < 0. 
The integral J^ is interpreted as Ĵ ^ ŷ  and the integral J^^ as . 
The integral of a M'̂ -valued function or the expectation of a random variable 

in M*̂  is the vector in M'' with componentwise integrals or expectations. 
A distribution is spread out if it has a convolution power with an absolutely 

continuous component. 



Chapter 1 

The generahsed 

Ornstein-Uhlenbeck process 

1.1 Introduction 

This thesis is mainly concerned with the infinite horizon ruin probabihty of the 

generahsed Ornstein-Uhlenbeck process. We now define our objects of inter-

est. Let be a bivariate Levy process with ^o = Vo — Oi adapted to 

a filtered complete probabihty space = {^t)o<t<oc, P) satisfying the 

"usual hypotheses" (see Protter [60] p.3), where ^ and 7/ are not identically zero. 

Assume the cr-algebra and the filtration F are generated by that is, 

^ a r/)( : 0 < i < oo) and ^t •= o v)s • 0 < s < t ) . The generahsed 

Ornstein-Uhlenbeck (GOU) process V = {Vt)t>o, where VQ is a random variable 

independent of is defined by 

(vo + (L I ) 

It is closely related to the stochastic integral process Z = {Zt)t>o defined by 

Z t : = [ e-«-d77,. (L2) 
Jo 

For a Lebesgue set A, let T̂ Â denote the hitting time of A for V when Vo = z. 

Thus, := inf{^ > 0 : K G A|Vo = z}, where := cx) whenever 14 ^ A for 

all t > 0 and VQ = z. Define the infinite horizon ruin probability for the GOU by 

:= P (mfVt < 0|\/o ^ z) ^ P (inf Z, <-z) = P < oo) . (L3) 



2 CHAPTER 1. THE GOV 

Stochastic integrals and stochastic differential equations are interpreted ac-

cording to Protter [60] and all required stochastic integral results are referenced. 

General probability, measure theory and stochastic process results, as found in 

Chung [13], Billingsley [5], and Kallenberg [34], are used consistently, often with-

out reference when basic. More specialised theory required throughout the bulk 

of the thesis is placed in the present chapter. The main Levy process texts we 

have used are Sato [62], Bertoin [3] and Cont and Tankov [14 . 

Chapter 1 contains an overview of Levy process theory and a comprehensive 

introduction to the GOU, including an extensive literature review. All known ruin 

probability results for the GOU are described in detail, and analysed. Chapter 2 

contains new results on conditions for zero ruin for the GOU. Chapter 3 contains 

new results on conditions for certain ruin for the GOU, and an analysis of the 

structure of the upper and lower bounds. A large amount of material is placed 

in the Appendix. Appendix A contains an alternative, less sophisticated method 

for proving conditions for zero ruin for a special case of the GOU. Api)endix B 

and C contain proofs of certain statements made in Chapters 2 and 3. Appendix 

D states simplified versions of the inajor results, which hold when E, and J] are 

independent. Appendix E discusses some of the conditions and assumptions made 

in existing papers, and relates them to the results in Chapters 2 and 3. Api)endix 

F states and proves some asymptotic results on the behaviour of the GOU. 

1.2 Levy processes 

Note that this is not a full account, but only a list of basic properties which will 

be needed in this thesis. 

Definition 1.1 (d-dimensional Levy process). An M''-valued stochastic process 

X := {Xt)t>o) on a probabihty space ( J l , ^ , P) is called a Levy process on R'^ if 

it possesses the following five properties: 

1. It has independent increments: for every n > 1 and 0 < io < < • • • < in, 

the random variables Xt, - Xt, , . . . ,Xt^ - are independent; 

2. It has stationary increments: the distribution of Xt+n - Xt does not depen-

dent on t; 

3. It is stochastically continuous: Ve > 0, lim,j_,o P i\Xt+h - Xt\ > e) = 0. 

4. It starts at the origin: XQ = 0 a.s. 
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5. It has cadlag (right-continuous and left hmit) sample paths: Vu e fi Xt(oj) 

is right continuous with left limits as a function of t. 

A Levy process is a time-homogenous strong Markov process. It is a conse-

quence of property 3 that the probability of a jump AXt := Xt — Xt- occurring 

at a fixed time t is zero, that is, given t>Q,P{uj\ AXt(w) 0) = 0. Thus jumps 

occur at random times. It is a consequence of property 5 that a.s. each sample 

path Xt{oj) has, at most, countably many jumps, whilst given c > 0, Xt{Lj) has 

finitely many jumps of size > c on a compact time interval. If X and 

Y are independent Levy processes on R'^ defined on the same probability space 

(Q, P) then X -I- y is a Levy process on the same space and the probability 

of X and Y jumping together is 0, that is, 

P (a; : > 0 such that ^ 0, AYt{oj) 0) = 0. 

The mean of Xt is a well-defined vector E{Xt) G M'' iff E{\Xt\) < 00. For all 

t > 0, E{Xt) = tE{Xi). If X has bounded jumps, that is, supj>o \AXt\ < c for 

some real constant c, then £'(|Xi|") < 00 for all integers n and so X has finite 

moments of all orders. 

A Levy process A' is a kind of continuous time analogue of a random walk. 

Given any time interval A > 0 we can define the discrete time process 

= E - : ! for y, = 1)A - XiA. Since the Y, are iid (independent and 

identically distributed) random variables, is a random walk. A probability 

distribution F on R'̂  is called infinitely divisible if for any integer n there exists 

iid random variables y i , . . . , y„ such that yi . .. y„ has distribution F. 

Proposit ion 1.2 (infinite divisibihty and Levy processes). If X is a Levy process 

on W'' then for every t > 0 the distribution of Xt is infinitely divisible. If F is an 

infinitely divisible distribution on then there exists, uniquely in distribution, a 

Levy process X such that Xi F. 

The three fundamental examples of Levy processes are the Poisson process, 

the compound Poisson process and Brownian motion. 

Definition 1.3 (Poisson process). Let (rj)jgN be a sequence of iid exponential 

random variables with parameter A and let r „ = Tj with To = 0 a.s. With 

lt>Tn denoting the indicator function, the process M := {Mt)t > 0 defined by 

Mt := lt>T„ 
n > l 

is called a Poisson process with intensity A := E{M\). 
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Definition 1.4 (Compound Poisson process). Let M be a Poisson process with 
intensity A and let {Yi)i(in be an iid sequence of random vectors in R'' with 
common distribution F, independent of M. The process X := {Xt)t>o defined 
by Xt ••= is called the compound Poisson process with intensity A and 
jump size distribution F. 

The Poisson process is a Levy process on M with piecewise constant paths 
increasing by jumps of size L For any t > 0, Mt has a Poisson distribution 
with parameter Xt. The compound Poisson process is a Levy process on R'' with 
piecewise constant paths. 

Definition 1.5 (Brownian motion). A stochastic process B := {Bt)t>o on R*̂  is 
called d-dimensional Brownian motion if it has independent increments, continu-
ous paths Bt{cu) for all oj E fl and for any 0 < s < t, Bt — Bg is a Gaussian random 
variable with mean zero and covariance matrix {t — s)A for a deterministic matrix 

When we set Bo — 0 a.s, Brownian motion is a Levy process. We now examine 
the jumps of a Levy process X . Since paths of a Levy process are cMlag the only 
type of discontinuities possible are jump discontinuities of form AXt = Xt — Xt--
Let A be a Borel set in R'' and define 

0<s<(,AX,/0 

which counts the number of jumps of the sample path Xt{uj) occurring in time 
(0, t] with size in A. When 0 0 A , where A is the closure of A, {N^)t>o is a Poisson 
process. It can be written in the form N^^ = lf>T^ where T^ = \nf{t > 0 : 
AXt G A} and TĴ  = inf{t > : AX^ e A} for integers n. For any Borel set A 
define n (A) E (iVf) , the intensity of the Poisson process. Note that ri(A) is 
the expected number of jumps which occur up to time 1, with size in A. If 0 € A 
then n(A) and NI^{UJ) may be infinite, since X can have an infinite number of 
small jumps in any time interval. 

Proposition 1.6. The set function n ( A ) is a measure on R'^ and a a-finite 
measure on R'' \ {0} . For each fixed {t,uj) the set function A. IS a 

measure on and a a-finite measure on R'' \ {0} . 

Definition 1.7 (Random measure, Levy measure). Let .Y be a Levy process on 
R'̂ . The set of measures iVt(w) on R'̂  defined by Nl>{uj) := ^ ( A X s ) is 

called the random measure of X. The measure 11 on R ' ' defined by n ( A ) 
E {Nf^) is called the Levy measure of X. 
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When necessary we will denote the random and Levy measures of X by N x 
and n ^ respectively. If n ( ( - l , 1)'̂ ) = oo then X is called an infimte activity 

Levy process and if n ( ( - l , 1)'') < oo then X is finite activity. A compound 
Poisson process with intensity A is a finite activity Levy process with n(R ' ' ) = A. 
Conversely, for a Borel set A in M*̂  define J^ to be the sum of all jumps of X 

with size in A up to time t, namely 

Jt ••= 
0<s<« 

If 0 0 A, or if n ( A ) < oo, then J^ is finite a.s. and is a compound Poisson 
process with intensity n(A) . It can be written as = f^zNt(-,dz) = 

for some iid sequence (yj)iGN with connnon distribution V, where V G A and is 
independent of N^. For disjoint Borel sets Aj and A2 with finite Levy measure, 
the processes J^^ and J^^ are independent. 

Proposition 1 .8 (Levy-Ito decomposition). Let X be a Levy process on K'' with 

random measure N and Levy measure fl. Then there exists a vector 7 G M'' and 

a Brownian motion D on with covariance matrix S such that 

Xt = -ft + Bt + X^+Xf (1.4) 

where 
Xl{u)= [ z{Nt{u;,dz)-tn{dz)), (1.5) 

J{\z\<l} 

x^(uj)= [ zNt{u,dz) ^ (1.6) 

and 

I ^^zN,{;dz)]. (1.7) 

The four processes in (I.4) are mutually independent Levy processes, X^ is a 

mean-zero martingale, and fl satisfies 

/ k p n ( d z ) < 00 and / n (d2) < 00. 

The triplet (7, E, 11) is called the characteristic triplet of X and uniquely 
determines the distribution of the process. We call E the Gaussian covariance 

matrix and 7 the adjustment coefficient. Sample paths of X are continuous a.s. 
iff n = 0. Note that the process X^ has jumps with size less than 1, whilst X"^ 
has jumps of size greater than or equal to 1. The choice of 1 as the cut-off value 
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is arbitrary, however the vahie of 7 depends on this choice. Also note that E{Xi) 
may not exist as a finite or well-defined vector in R'̂ , so 7 cannot be split into 
two separate expectations in the equation (1.7). If X is a univariate Levy process 
we denote the variance of the Brownian component by a^ rather than the matrix 
S. 

Proposition 1.9 (Levy-Khinchin representation). Let X be a Levy process on 

R"̂  with characteristic triplet (7, E, K). Then for z eM'^ 

where 

= Ez) + [ - 1 - i{z, x)l{|,|<,}) n(d2:) + z(7, z) 
^ Jw 

Proposition 1.10. Let X be a Levy process on R'' arid let A C be Borel. If 
a real function f on satisfies f^ \ f{z)\U{dz) < 00 then 

E(^Jj{z)N,{;<iz)^^tJj{z)n(dz). 

The total variation of an R^'-valued function over the interval [a,h] is defined 

by 

n 

j = l 

where the supremum is taken over all finite partitions a — IQ < t\ < • • • < tn = b. 
A Levy process X is said to be of finite variation if, with probability 1, its sample 
paths Xt{uj) are of finite variation on [0, t] for every i > 0. 
Proposition 1.11 (Finite variation Levy process). A Levy process X is of finite 
variation iff its characteristic triplet satisfies E = 0 and 

I |2|n(d2) < 00. (1.^ 
J\z\<l 

Corollary 1.12. If X is a finite variation Levy process on then 

Xt = dt+ [ zNt{-,dz) = dt+ V A.Y, 

where 

d = ^ - I zU{dz) = E ( x , - [ zN,{;dz)] (1.9) 
\ Jr'' J 

is called the drift vector. 
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By definition, a finite activity Levy i)rocess has a Levy measure satisfying 
(L8) and hence has a finite variation jump process, however the converse does 
not hold in general. 

In this thesis we deal mainly with bivariate and univariate Levy processes. 
We make some comments specific to these situations. Throughout this thesis 
we let be a bivariate Levy process and denote its characteristic triplet 
by ((7^,7^), n^,,,). The characteristic triplets of ^ and rj as one-dimensional 
Levy processes are denoted by (7^,cr|,n^) and (7^,0-^,0^) respectively, where 

= x R ) AND n^(r) = x r ) (LIO) 

for r a Borel subset of M with 0 ^ f , 

7^ = 7 ? + / ( L l l ) ./{|x|<l}n{x2+y2>l} 

lr, = % + I y % , ( d ( x , y ) ) , (1.12) 
. / { | y | < l } n { x 2 + y 2 > l } 

and and CT^ are the upper left and lower right entries respectively, in the matrix 
Analogous to (1.4), we can decompose ^ into the sum of four independent 

Levy processes 

= + + (1.13) 

where 

et = [ x{N^,{.,dx) - m^idx)) , = / 
•'\x\<] "'|x|>l 

and 

= xN^A; 
\ J\x\>l 

\ 
dx) 

and similarly for r/. Note that the processes ^̂  and ^̂  are not the same as the 
first coefficient of the processes r/)' and from the bivariate Levy-Ito de-
composition, as stated in Proposition 1.8. 

The quadratic variation of two one-dimensional semimartingales X and Y on 
the same probability space is denoted by [ X , y ] = {[X,Y]t)t>o- Definitions and 
properties are found in Protter [60]. The path-by-path continuous part of [A', V] 
is denoted by [X, Y^ and if [X, X]" = 0 then X is called quadratic pure pimp. If 
^ is a Levy process on M with Brownian motion component D^ then t̂ - B̂ t̂ is 
quadratic pure jump. The function {X,Y) [--Y, "K] is bilinear and symmetric, 
if X and Y are independent Levy processes on M then [X, y ] is identically zero. 
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whilst if {B, C) is 2-dimensional Brownian motion then [B, C]t = C o v ( 5 t , Ct) =: 

aB,c where Gov denotes the covariance. By Theorem 28 of Protter [60], if r;) 

is a bivariate Levy process then 

0<s<t 

Definition 1.13 (Subordinator). A 1-dimensional Levy process X is said to be 

a subordinator if Xt{uj) is an increasing function of t, a.s. 

Proposition 1.14. Let X be a Levy process on M. The following conditions are 

equivalent: 

1. X IS a subordinator. 

2- Xt > 0 a.s. for some t > 0. 

3. X i > 0 a.s. for every t > 0. 

4. The characteristic triplet satisfies a^ = 0, = 0, Ĵ Q x n ( d x ) < 
00, andd > 0. That is, there is no Brownian component, no negative jumps, 

the positive jumps are of finite variation and the drift is non-negative. 

In this 1-dimensional case, that the condition /^Qj jxn (dx ) < 00 is actually 
implied by the remaining conditions in part 4 of the above proposition. The 
condition = 0 implies, by eciuation (1.9), that d e [—cxo, cx)) and 
d = —00 iff JjQ jj x n ( d x ) = 00. 

A 1-dimensional Levy process X will drift to 00, drift to —00 or oscillate, 

namely; 
lim Xt = 00; (1.14) 
t—>co 
lim = - 0 0 ; (1.15) 
t—>00 

—00 = h m i n f X f < lim sup = 00. (1-16) 
t—oo t^oo 

Necessary and sufficient conditions for these cases are given in [18]. Whenever the 
expected value of is well-defined, and hence contained in [ - 0 0 , CXD], cases ( 1 . 1 4 ) 

(1.15) and (1.16) equate respectively to E(X^) > 0, E{Xi) < 0 and E{Xi) = 0. 
For the case in which the expected value of X i does not exist as a well-defined 
member of the extended reals, we need more notation. For x > 0, denote the 
tails functions of the Levy measure by 

n j ( x ) : = n x ( ( x , ( X ) ) ) , n ^ ( x ) : = n ; , ( ( - o o , - x ) ) , n x ( x ) : = n i ( x ) + n ~ ( x ) . 
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Define, for x > 1, 

A+{x ) - .= T l U l ) + J ^ U ^ M ^ ^ A - A x ) : = T l x { l ) + J^ n x { u ) d u (1.17) 

where it suffices to assume n;^(l ) > 1 and n;^(l ) > 1. Define the integrals 
R —J- F^ X 

In [18] it is shown that if E{XI) does not exist then (1.14) occurs iff J^ < oo, 
(1.15) occurs iff J^ < oo and (1.16) occurs iff J^ = J^ = oo. 

1.3 Generalising the Ornstein-Uhlenbeck pro-
cess 

As its name suggests, the GOU is a generahsation of the well known Ornstein-
Uhlenbeck process, (which we will denote by OU). The OU can be defined as the 
solution X := (X()(>o to the stochastic differential equation (SDE) 

A'̂  = XO + a [ + aBt (1.18) 
Jo 

where A and A are real constants, B is Brownian motion on M with variance 
equal to 1, and VYQ, the initial value of X, is a random variable independent of 
B. Alternatively, the OU can be defined as the stochastic integral 

Xi = + . (1.19) 

This stochastic integral process is well-defined and can easily be shown to be the 
uniqiLe strong solution (see Protter p.253) to ecjuation (1.18). 

The GOU is obtained from the OU by replacing the process {at, aBt) with 
a general two dimensional Levy process. However, the resulting process differs 
depending on which form of the OU is chosen as a starting point. 

The counterpart of equation (1.18) for the GOU is 

Vt = Vo + U t + f v s - D R S , (1.20) 
Jo 

where (/?, U) is a bivariate Levy process independent of the random variable VQ. 
Alternatively, the counterpart of equation (1.21) for the GOU is 

V't := (Vo + (1.21) 
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where r/) is a bivariate Levy process independent of the random variable VQ. 

This is the more common definition of the GOU, and the definition we shall use 
throughout this work. Note that the two approaches are not equivalent. Namely, 
if we set {R,U) = equation (1.21) does not solve equation (1.20). To 
describe the link between the two equations, we first recall the definition of the 
stochastic exponential. 

For a semimartingale 7 with 70 = 0, the stochastic exponential of 7, denoted 
6(7), is the unique strong solution of the SDE 

yt = i + r n _ d 7 « . (1-22) 
•Jo 

The stochastic exponential of 7 is a well-defined semimartingale and is given by 

e(7) = e x p | 7 e - ^ [ 7 , 7 ] t } H + + 

where the infinite product converges. 

The following proposition is due to Alex Lindner, and obtained by private 
comniTuiication with Ross Mailer. 
Proposition 1.15. If {R, U) is a bivariate Levy process with riH((—00, —1]) = 0 
then the SDE (1.20) has the unique strong solution (1.21) where is the 
bivariate Levy process given by 

6 := lne ( i ? ) i , (1.24) 

Vt - U t - (1 - AUs - tCov (5^,1, Buj). (1.25) 
0<s<t 

On the other hand, Vj) is a general bivariate Levy process then the stochas-
tic integral process (1.21) is the unique strong solution of the SDE (1.20) where 
{R, U) is the bivariate Levy process given by 

Rt ••= 6 + U t + J ] - Ae. - 1) , (1.26) 
0 < s < t 

Ut Vt + Yl - 1) + (1.27) 
0 < s < f 

Equation (1.26) is equivalent to (1.24). Further, !!/?((—00,—1]) = 0. 



1.3. GENERALISING THE ORNSTEIN-UHLENDECK PROCESS 11 

1.3.1 Literature on the GOU 

There are only a few papers which consider the GOU, as defined in (1.20) or (1.21), 
in its full generality. The process appears implicitly in the work of de Haan and 
Karandikar [15] as a continuous generalisation of a stochastic recurrence equation. 
Basic properties are given by Carmona et al. [12]. A general survey of the GOU 
and its applications is given by Mailer et al. [47]. The stationarity of the GOU 
is examined by Lindner and Mailer [44], and we further explain these results in 
Section 1.4. Aspects of these stationarity results are generalised by Endo and 
Matsui [21], to the case in which rj is an d-dimensional Levy process. 

The study of the GOU is closely related to the study of integrals of form 
Z, defined in equation (1.2). The first obvious link is that Z is contained in 
the definition of V, and the one-sided hitting probability for Z determines the 
ruin probability for V, as shown in equation (1.3). Secondly, the stationarity 
of V is related to the convergence of an integral of the form Z. The exact link 
is presented in Proposition 1.19. There have been relatively few papers dealing 
with Z in its full generality. Erickson and Mailer [22], present necessary and 
sufficient conditions for the almost sure convergence of Zt to a random variable 
Zoo as t ^ oc. Bertoin et al. [4], present necessary and sufficient conditions 
for continuity of the law of Z^o given it exists. Both these results are explained 
further in Section 1.4. In [52], Nyrhinen presents asymptotic equivalences for the 
one-sided hitting probability for Z. These results are explained further in Section 
1.6. Kondo et al. [40] generalise the results in [22] to the case in which r/ is an 
d-dimensional Levy process, and examine properties of the limit distribution Zoo. 

There are a large number of papers dealing with V when TJ) is subject to 
restrictions.We first mention those papers which deal with the ruin probability 
of V, in which either ^ or r/ remains a reasonably general Levy process. Harrison 
[31] presents results on the ruin probability of V when ^ is a linear deterministic 
function and r/ is a Levy process with finite variance. Paulsen [54] generalises 
Harrison's resTilts, and presents new ruin probability results for V in the case 
that ^ and r; are independent, finite activity Levy process. Results on the ruin 
probability of V for the case in which ^ and r/ are independent general Levy pro-
cesses are presented in Kalashnikov and Norberg [32] and Paulsen [56, 57]. Chin 
and Yin [68] generalise some of Paulsen's results on the ruin probability of V, 
to the case in which ^ is a Levy process and r/ is an independent jump-diffusion 
process. Cai [10] and Yuen et al [70, 71] present ruin probability results for V 
when ^ is a Levy process and i] is an indej^endent compound Poisson process. 
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The above ruin probability results which have assumptions general enough to 
be relevant to our present work will be discussed further in Section 1.6. Note 
that when we restrict further to the case in which both ^ and r; are assumed to 
be specific types of Levy processes, there are numerous papers in the insurance 
mathematics area which deal with the ruin probability of V, however we do not 
discuss these. Survey papers exist which describe this ruin probability literature. 
The situation as of 1998 is described in Paulsen [55] and the situation as of 2008 
is described in Paulsen [58 . 

We mention papers with restrictions on which deal with V and focus 
on mathematical topics other than ruin probability. When ^ is deterministic 
linear and rj is Brownian motion plus drift, Wolfe [67] presents results on the 
stationarity of V. There are several papers which examine first passage times and 
martingales for V in the case that is a linear deterministic function and r] is a 
Levy process with no positive jumps, notably Hadjiev [30], Novikov [50], Patie 
[53] and Borovkov and Novikov [6]. When E, is linear deterministic and rj is an 
d-dimensional Levy process, Masuda [48] examines various stability properties of 
K 

There is a significant amount of literature on the i)rocess Z when j]) is 
subject to restrictions, with attention mainly focused on the case in which Z, 
converges to Zoo as t ^ oo- Notable is Yor [69] and Carmona et al. [11]. Gjessing 
and Paulsen [23] study the distribution of Zoo when ^ and rj are independent 
finite activity Levy processes, and obtain exact distributions for some special 
cases. Hove and Paulsen [59] use iMarkov chain Monte Carlo simulation to find 
the distribution of Zoo in some special cases. The work of Kliippelberg and 
Kostadinova [37] and Brokate et al. [7] provides results on the tail distribution 
of Zoo in the case that ^ and r; are independent and r/ is a compound Poisson 
process plus drift. In the case that is a Poisson process, Lindner and Sato 
45] investigate continuity properties and the infinite divisibility of Zoo-

The GOU has significant economic applications. The stochastic integral pro-
cess Z can be interpreted as the discounted value of a continuous discounted 
perpetuity, and V can be interpreted as the forward value of a continuous per-
petuity. The GOU has also found application in more specialised financial time 
series, with a particular form of V used as a constituent of the COGARCH pro-
cess, introduced by Kliippelberg et al. [38] and studied further in Kliippelberg et 
al. [39] and Lindner [43]. In addition, Kostadinova [42] defines the properties of 
an insurance risk process which is closely associated with a particular form of V 
and develops an optimal investment strategy. We further discuss these economic 
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interpretations in Section 1.7. 

1.4 Stability of the GOU 
We describe known results relating to the stability properties of the GOU. These 
results are stated without proof and will be referred to throughout the work. We 
state some of these results with different notation from the originals in order to fit 
with our requirements. We assume a bivariate Levy process rf) with associated 
processes V and Z as defined in (1.1) and (1.2) respectively. 

It was proved in [12], p.44, that F is a time-homogenous Markov process. 
When we replace a fixed time t with a stopping time T < oo a.s., the same proof 
establishes the strong Markov property of V. Specifically, the Levy process 

- (er+u - er, r/T+u - r?r), u > 0, (1.28) 

is independent of the stopping time cr-algebra 

.^r := {A e J^ : A n { T < / } G ^t > 0} , 

and is equal in distribution to r;). Furthermore, the equation (1.1) and a simple 
change of variables argument proves that for all r > 0, 

Vr+r^e^" (VT + 

These two observations establish the following result. 

Proposition 1.16. V is a time-homogenous strong Markov process. 

In [22], necessary and sufficient conditions are stated for a.s. convergence of 
Zt to a finite random variable Z^o as t approaches oo, whilst in [44], necessary and 
sufficient conditions are stated for stationarity of V. To describe these conditions, 
we need some notation. 

For a bivariate Levy process (X, V), recall the definitions (1.17) and define 
the integral 

and the Levy process by 

0<s<t 

where COY{BXI, BYJ denotes the covariance of the Brownian components of X 
and Y. We now state [22], Theorem 2. 
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Theorem 1.17. Zj converges a.s. to a finite random variable Zoo as t ^ oc if 
and only = oo a.s. and I^^r, < oo. //Iimf_^oo6 = oo c-S- but I^^r, = oo 
then \Zt\ —^p oo. If ^t does not tend to +oo as t co, then \Zt\ -^p oo or there 
exists a constant c G M \ {(3} such that 

P ( Z t = c ( e - « ' - l ) V f > 0 ) = 1. (1.29) 

Consequently, Zt converges in distribution to a finite random, variable as t ^ oo 
if and only if it converges a.s. to a finite random variable. 

Note that if (1.29) holds and liint_oo6 = oo a.s. then Zt converges a.s. to 
the constant random variable Z^o = - c . We now state Theorem 2.2 of [4], which 
proves that this is the only case in which Zt converges to a non-contimions random 
variable. 

Theorem 1.18. Suppose Yimt^oo^t = oo a.s. as t ^ oo. The following are 
equivalent: 

1. Zt converges a.s. to a finite random variable Z^ as t oo, where Zoo has 
an atom. 

2. There exists c G M \ {0} such that Zt converges a.s. to —c as t oo. 

3. There exists c G M \ {0} such that (1.29) holds. 

4. There exists c G M \ {0} such that = e [rj/c). 

Note that Z is of form (1.29) iff V is of form 

P(Vt^e^'(Vo-c) + cVt>0) = 1. (1.30) 

We now state [44], Theorem 2.1, which makes use of Theorem 1.17 above. 

Theorem 1.19. Suppose V is strictly stationary. Then one of the following two 
conditions is satisfied. 

1. e^'-dKf'^ converges a.s. as t 00 to a finite random variable, or equw-
alently, hnij^oo^ = -00 and I-^^^k^.t, < 00. 

2. V IS of form (1.30) for some constant c G M \ {0} . 

Conversely, if (i) or (li) holds then there is a finite random variable 14x5, unique 
in distribution, such that the process V, starting with VQ =D Voo, is strictly sta-
tionary. Furthermore, if (i) holds, then Voo satisfies VOO=D /O°° 
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Note that, regardless of the asymptotic behaviour of if (1.30) holds then V 
is strictly stationary iff VQ = c. 

In [22] the authors use exactly the same definition of Z as we have used 
above. However, in [44], the sign of the process ( is reversed in their definition of 
V, that is, they define Vt (^z + J j This version of V is stationary 

depending on the behaviour of Ĵ^ and this process fits the form of 
Z used in [22]. It seems likely that the authors in [44] chose their definition of 
the GOU in order to use Theorem 2 of [22] directly, without any sign change. 
However, it suits our purposes to have the GOU in the form Vt = + Zt) 
and study the behaviour of V in terms of Z. This is because we are examining 
ruin probability of the GOU rather than stationarity. With our definition of the 
GOU we can, without any sign change, use Theorem 2 of [22] to study Z. In 
addition, when our version of the GOU is considered as an economic model, as 
will be explained later in the chapter, the rate of return is t̂ and the forwarding 
term e^'. This fits with convention, for example [32], [56] and [42], Note that the 
version in [44] implies that the rate of return and forwarding term are —(t and 
e"'^' respectively. 

1.5 Discretizing the GOU 
We describe two stochastic difl:erence equations, and show how V can be expressed 
as a solution of either one. We also give the associated discrete stochastic series 
for Z. Throughout this section, and the rest of the work, we take equation (1.1) 
as our definition of the GOU. 

For n > 0 define the stochastic difference equation 

Yn = AnYr^.r + Bn (1.31) 

where ( / ! „ , / ? „ ) is an iid sequence independent of a random variable YQ. Using 
induction, the solution is the stochastic series 

n n n 

Yn = yollA, + J2 n (1-32) 
j = l 2=1 j = i+l 

where we use the convention that Hj^i = 1- Using equation (1.1) we can write, 
for an integer n > 0, 

14 = (e^-^ (1 /0+ /" / g-^-dr/ , . (1.33) 
\ \ Jo J J 
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Thus, if we define the random variables 

DVS 
1)+ 

(1.34) 

and let VQ = Yo then K is a solution of equation (1.31). By equation (1.1), 
Zn = — Vo, and so equation (1.32) implies that 

i=\ j = \ 

(1.35) 

It is proved in Appendix C that {An, 5 „ ) „> i is an iid sequence under these defi-
nitions. Note that even when ^ and rj are independent, the random variables An 
and Bn may be dependent. 

Alternatively, for n > 0 define the stochastic difference equation 

YN — C'„y„_i + CNDN (1.36) 

where (Cj, DI) is an iid sequence independent of YQ. The solution is the stochastic 
series 

YN^YO :i .37) 
J=I I=I J=I 

Using equation (1.33) it is clear that is a solution of equation (1.36) if we let 
Vo = YQ and define 

( C „ , DN) : = 

V 
a ^ n - i n - l g 5 n - l / 

J ( n -
E ^'-DRJS 

( n - l ) + 
;i.38) 

With these definitions, it is clear that 

n 2 - 1 

t=i j=i 
(1.39) 

It is proved in Appendix C that (C„, Dn)n>i is an iid sequence under these defi-
nitions. Again, when and tj are independent, the random variables C„ and Z)„ 
may be dependent. 

When discretizing V in this work, we will use the first approach, namely via 
the difference equation (1.31) and the series (1.32). When discretizing Z we will 
use the second approach, namely via the series (1.39). We do this in order to 
directly access particular results from papers on these objects. There has been 
significant attention paid to the two series (1.32) and (1.39) and they are linked 
via the fixed point of the same random equation, as we briefiy explain. 
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Let {M,Q) be a two dimensional random variable on ( H , ^ , P) and let 0 be 
a random affine map from M to R defined by 

(l){t,u) := M{uj)t + Q{u}). (1.40) 

A (distribntional) fixed point of cj) is an a.s. finite distribution R on M, inde-
pendent of (M, Q), such that R =d MR + Q. We can find R using an iteration 
method. We can suppose the existence of an iid sequence of random vectors, 
{Mn,Qn)n>i, with common distribution {M,Q). Let [4)n)n>\ be the associated 
iid sequence of random affine maps, so MJ- + Qn- For integers n > 1, 
define the outer iteration sequence by 

On{t) := </)„ o O . . . O = cl)ni4>nM- - - M t ) - - - )), 

and the inner iteration sequence by 

Init) 

By induction, the solutions are 
n n n 

0n{t)=i n + E n (1-41) 
j=i i=i j=i+i 

and 
n n i - 1 

I n i t ) = ^ n ^ ^ ^ + E n (1-42) 
i=l i=l 

In these solutions, we can replace the initial value t with a random variable 
L independent of {Mn,Qn)n>i, in which case 0 „ ( L ) and / „ ( L ) are identically 
distributed. Note that On{L) is the sequence defined in (1.32), for {MmQn) = 
(An, Bn) and L = Yq. Also, / „ (0) is the sequence defined in (1.39), for (M„, Q^) = 

The relationship between these sequences and the fixed point of the 
random equation (1.40) is the following: If converges in distribution to 
an a.s. finite distribution R, as n ^ cx), then /? is a fixed point for (1.40). If 
P(M = 0) = 0, then if In{L) converges in distribution to an a.s. finite distribution 
R, then /? is a fixed point for (1.40), and 0 „ ( L ) converges in distribution to R 
as well. This result is due to Vervaat [66], and Goldie and Mailer [25]. For 
more general random equations, the convergence of inner and outer iterations 
sequences to a fixed point is given by Letac's principle, as expressed in Theorem 
2.1 of Goldie [24]. 

Finally, it is worth noting that the above discretization schemes are valid 
when the integer time increments are replaced with iid random times (Tj)igi^ 
where T^ — Ti^i are positive iid random variables for all i G N. 
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1.5.1 Literature on related stochastic difference equations 

There is a large amount of literature on the above difference equations and series. 

We first mention some papers which focus on mathematical properties other than 

ruin probability. Note this is a list of papers which have been useful and of interest 

during this work, rather than a definitive list. 

Various convergence, stability and recurrence properties of equation (1.31) are 

presented by Kesten [35], Vervaat [66], de Haan et al. [16], Babillot et al. [2 

and Buraczewski [8]. Limit behaviour and rates of convergence for both equation 

(1.31) and (1.36) are given by Rachev and Samorodnitsky [61]. Convergence prop-

erties and continuity of the limit for the series (1.39) are examined by Grincevicius 

in [28], [27] and [29] and Dufresne [19]. Goldie [24] and Grey [26] present results 

on the tail of fixed points of various random equations, including ecjuation (1.40). 

A general review of perpetuities and random ecjuations is given by Embrechts 

and Goldie [20]. Goldie and Mailer [25] explain the link between the series (1.32) 

and (1.39) and the random equation (1.40), and describe necessary and sufficient 

conditions for convergence of (1.39). 

The literature on ruin probabihty for equations (1.31) and (1.36) is described 

in the survey paper by Paulsen [58]. The notable papers are Nyrhinen [52] and 

Konstantinides and Mikosch [41]. Nyrhinen [51], Gai [9], Tang and Tsitsiashvili 

64, 65] and Tang [63] examine various aspects of the ruin probability of ecjuation 

(1.31) with the extra assumption that (A„) and (B„) are independent secjuences. 

These papers are not particularly useful to us however, since the GOU cannot be 

embedded into such a discrete model. 

1.6 Relevant ruin probability results 

We describe the existing results on the ruin probability of the GOU. We only 

mention results which allow both ^ and r/ to be general Levy processes, either 

dependent or independent. 

Paulsen 1998 [56] This paper provides results on the infinite horizon ruin 

probability of the GOU. Paulsen uses the alternative form of the GOU, described 

in equation (1.20), and assumes independence between the Levy processes. He 

also has an inflation process within the model, however this makes no mathemat-

ical difference and we can ignore it. His model can be described as follows: let R 
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and U be independent Levy processes and define 

Vt = z + Ut + [ Vs-dRs, (1.43) 
Jo 

where Vq = z >0, along with the condition that n / j ( ( - o o , —1]) = 0. As noted in 
Proposition 1.15, this condition allows the SDE to be solved. Using the indepen-
dence of R. and U, the solution simplifies to 

Paulsen's main result, Theorem 3.1, provides conditions under which the infinite 
horizon ruin probability is one. We write out the complete theorem, however 
to fit with our upcoming work we use the more common definition of the GOU, 
equation (1.21). Thus, we assume independent Levy processes ^ and 77 and let V, 
Z and ip{z) be defined respectively using equations (1.1), (1-2) and (1.3). We let 
Tj := inf{t > 0 : Vi < 0} denote the time of ruin. All conditions on R and U are 
transferred into equivalent conditions on ^ and r/, using the fact that = In e{R) 
and Tj = U. 

T h e o r e m 1.20. Let ^ and rj be independent Levy processes. Assume that rj is 
not a subordinator and |x|n (̂d.-r) < 00, so ^ has finite mean. 

(a) If < 0 and for some S > 0, 

/

oo ^00 

x^n^(da:) < cx) and (e^ - l) ' 'n5(dx) < 00, 
then for all z > i) there exists a > 0 such that < 00. In particular 
tp{z) — 1 and all moments ofT^ are finite. 

(b) If i is not identically zero and = 0 and for some 5 > 0 

/

oo 

(lnx)2+' 'n,(dx) < 00, y |a;|2+''n5(dx) < 00 
and 

i: e^ - lyU^idx) < 00, 

then ip{z) = 1 for all z > 0. 

(c) If > 0 and either 
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/ | l n ( l + 3;)|n^(dx) < oo and / < oo, 
J-oo J-OO 

or 

(n) 

f |x|n^(dx) <00 and f < 00 
i | x l > l J-oo \x\>\ 

hold, then the following are true. 

As t 00, Zt converges a.s. to a finite continuous random variable Z^o = 
with distribution function H. For all z > 0 the ruin function 

satisfies 

Finally il>{z) < 1 unless r]t — ^j^t, ^t = lit o-f^d 7,, < 

Paulsen also gives a theorem stating conditions nnder which Z ^ is a.s. finite 
and the characteristic function of Zoo satisfies a particular integro-differential 
equation. As Paulsen notes, this result is of limited practical value in finding the 
distribution of Zoo, and we do not discuss it. Our interest lies in Theorem 1.20. 

The first question that arises is whether the moment conditions in (a) and (c) 
can be replaced with the precise iff conditions for stationarity of V, and conver-
gence of Z, respectively. Also desirable would be the removal of the finite mean 
condition for The main question however, is how dependence changes the re-
sult. It would be desirable to have precise iS conditions on the Levy measure of 

77) under which ruin is zero, or ruin is one. This is done in Chapters 2 and 3 
respectively. 

In proving the above result, Paulsen, either implicitly or explictly, accepts 
certain results as true without giving a proof. Some of these assumptions are 
false, and we discuss them in Appendix E. These problems are minor however, 
and make little difference to the statement of the theorem. Alternative proofs are 
available. The only adjustment that needs to be made to the theorem statement 
is in the final sentence of part (c), in which it must be assumed that -7/ is 
not a subordinator. The main assumption of interest is the following: If ^ and 
rj are independent and rj is not a subordinator then P{Zt < 0) > 0 for all 
t > 0, or equivalently, 7/̂ (0) > 0. This statement is true in both the independent 
and dependent case. In the independent case the result seems intuitively clear, 
however the proof is not obvious. The proof of the statement in the dependent 
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case is given in Chapter 2 and requires a change of measure argument and some 

analytic lemmas. It will be of use throughout this work. 

Nyrhinen 2001 [52] This is the only paper which contains ruin probability 

results for the GOU in which r/) is allowed to be a 2-dimensional, infinite activ-

ity Levy process. Firstly, this paper proves asymptotic results for the one-sided 

hitting probabilities, in finite and infinite time, of a discrete stochastic process 

Xn. Secondly, the paper discretizes the stochastic integral process Z and relates 

the discrete asymptotic results to the continuous setting, thus establishing equiv-

alent hitting probabilities for Z. As equation (1.3) shows, the one-sided hitting 

probabihties for Z establish the ruin probability for V. We describe Nyrhinen's 

results in detail, and then make some comments. 

Let (A/, Q, L) and (A/„, Qn, Ln)n>i be iid random vectors on {Q, P) where 

P{M > 0) = 1. Define the process {X„|n = 1, 2, • • • } by 

n i—I n 

t=l j=l j=l 

For real m > 0 define the hitting time of (m, oo) by Tm •= inf{n : Xn > m} 

where T„j := oo if < rn for all n € N. Define the function c{t) := h\E{AP), 

and let & {t e R : c{t) < cx)}. Define 

w sup {teM: c{t) < 0} e [0, oo; 

and 

to := sup {teR: c{t) < oo, E < oo, E {{ML+Y) < oo} G [0, oo]. 

and 

y •.= sup e M : P ( sup > y ) > 0 I e (-oo, oo . 
I \n€N / J 

Nyrhinen provides asymptotic resuh,s for under the following hypothesis, 

which we call hypothesis H\ Suppose that Q < w < Iq < oo and y ^ oo. 

In Lemma 1, Nyrhinen shows that whenever hypothesis H holds, then P{M > 

1) > 0, the function c 

is strictly convex and continuously differentiable on the 

interior of ^ and the derivative at the point w is positive, so c'{w) > 0. To 

describe the asymj^totic result, we need some more definitions, which are well-

defined under hypothesis H by Lemma 1. Define // l/c'(w) € (0, oo) and 

.To := hm (l/c'(i)) G [0, oo) 
t-^to-
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Let c* be the Fenchel-Legendre transform of c, namely, define c*{v) = sup{tv -

c{t) : t E R} for V e R. We can now define the function R : {xq, oo) RU { ± 0 0 } 

by 

j^U) — / for X e {xo,lJ-), 

1 ti) for a: > fi. 
This function has been analysed in traditional ruin theory. In particular, in 
this situation it is known that R is finite and contiimous on (xq, 00) and strictly 
decreasing on (xq,^.) We now state Nyrhinen's main asymptotic result, which is 
his Theorem 2. 

Theorem 1.21. If hypothesis H holds then 

lim ( l n m ) - M n P ( r „ <x\nm) = -R{x) (1.46) m—>00 
for every x > Xq and 

Vim {lnm)-HnP{Tm < 00) =-w. (1.47) 
m—>00 

In the comments below Theorem 2, Nyrhinen states a second asymptotic result 
using a result by Goldie. Theorem 6.3 of Goldie [24] is a second-order asymptotic 
result for the tail of a random variable R when is a fixed point for the random 
equation 

R=d Q + Mmsix{L,R) (1.48) 

and when a further set of conditions hold. Nyrhinen observes that under hypoth-
esis H, sup„gf^ Xn is a fixed point for (1.48), and all but one of the conditions of 
Goldie Theorem 6.3 are satisfied for the random variable R = sup„gi^X„. By as-
suming this extra condition, Nyrhinen is able to give the following result, which 
we state as a proposition. Recall that a distribution is spread out if it has a 
convolution power with an absolutely continuous component. 

Proposition 1.22. If hypothesis H holds and the distribution of In M is spread 

out, then 

< 00) = C+ + o{m-^) (1.49) 

when m tends to infinity, where C+ and 7 are positive real constants. 

Although not mentioned explicitly by Nyrhinen, C+ is given by the formula 
defined in Theorem 6.2 and (2.18) of Goldie, namely 

C+ = —E 
wa 

/ / / / X X + \ 
Q + M max L, sup X^ 

V r i6N / 

/ / \+\ 

\ 
M sup Xn 

neN / 
(1.50) 
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where a := E In |M|). The exact equation implied by Goldie Theorem 6.3 
IS 

m'"P{Tm <oo) = C + - fit) + 

where 0 < /3 < min{ l , i o - and f{t) is a contour integral in the complex 
plane with domain depending on (3, However, 0 < 7 < /?/2 can be chosen small 
enough such that the contour integral is zero and (1.49) holds. The fact that C+ 

is strictly positive under the conditions of Proposition 1.22 is not a result of the 
Goldie theorem but instead follows from Theorem 1.21. Specifically, it follows 
from the fact that C+ > 0 iff equation (1.47) holds, which is easy to show using 
basic logarithm calculations. 

The next result by Nyrhinen is Theorem 3, in which iff conditions are given 
for the condition y ^ 00. Namely, if hypothesis H holds, then y = cx) iff there 
exists n > 1 such that 

P 

/ n - 1 

Q + M L + [ [ M j - 1 

\j=i 

/ n i - l \ \ 

> 0 , l l M , > l 
j=i / 

> 0. E 
\i=ij=i / 

(1.51) 
Nyrhinen comments that the verification of this condition is generally difficult. 
In Example 1, he notes that if 0 < w; < io < 00, and further 

P{Q + ML > 0) > 0 and F ( M > 1, Q > 0) > 0, (1.52) 

then (1.51) holds, and so y = 00. However, he comments that this sufficient 
condition is not sharp. In Example 2 he gives a simple example of (M, Q, L) 

which satisfies 0 < w < to < 00, fails (1.52) but still satisfies y = cxo. This 
concludes the discrete section of the paper. We now describe the continuous 
result. We use our own notation rather than Nyrhinen's, so r/) is a bivariate 
Levy process and Zt := as usual. Define 

M „ 

Qn 

^ g-(Cn-Cn-l) 

= 

(n-l)+ 

Lr, : = — p^n sup 
Vn-l<f<n J{ 

. [ e ^'-drjs- [ e 
<nj(n-l)+ J(n 

(1.53) 

(1.54) 

(1.55) 
-1)+ J{n-1)+ 

Nyrhinen implicitly assumes that {Mn,Qn, Ln) is an iid sequence. This claim 
follows by an easy extension of our proof in Appendix C. Note that with these 
allocations Z can be written as a discrete stochastic series of the form (1.39), 
namely Z„ = 11^=1 MjQ^ 

Nyrhinen proves the following result. 
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Proposition 1.23. With Z and {Mn,Qn,Ln) defined as above, 

and 

sup Zt = Xn, 
n-l<t<n 

sup Zt = max Xm 
0<t<n m=l,-,n 

for 

n i-l n 

i=i j=i j=i 

Actually, Nyrhinen proves equality in distribution, using an induction argu-
ment. However, with direct calculation it is easily seen that the exact equality 
holds. 

For real m > 0 define the hitting time of (m, oo) for Z by T^ := inf{t > 0 : 
Zt > m } where T^ := oo if Zj < m for all t > 0. Then the above proposition 
implies that for all n G M, 

< n) = P(r , „ < n) 

and 
< oo) = P ( T „ < cx)). 

Thus, for a Levy processes r?), the asymptotic result in Theorem 1.21 holds 
for T^ when hypothesis H is satisfied for the associated values of {Mn,Qn,Ln)-
If further, the distribution of In M is spread out then the asymptotic result in 
Theorem 1.21 holds for T^. This is the content of Nyrhinen's Theorem 4 and 
Corollary 5. Immediately following Corollary 5, an example is given. The example 
is very simple, using independent Levy processes ^t at + Bt and r]t := pt + Yt 
where a and /? are positive reals, B is Brownian motion and y is a compound 
Poisson process. Nyrhinen states conditions under which 0 < w < to < oo, is 
absolutely continuous and the conditions (1.52) hold, thus implying that y = oo. 
Note that when M^ is defined as above, the condition 0 < if; < oo implies that ^ 
is non-deterministic. 

We make some comments on this paper, beginning with the discrete results. 
It is not immediately clear whether the sequence X defined in (1.45) converges 
under hypothesis H. Note that if we choose Ln — L then is the inner iteration 
sequence In{L) defined in (1.42) for the random equation (j){t) = Mt -I- Q. Goldie 
and Mailer [25] prove that / „ ( ! / ) converges a.s. to a finite random variable iff 
n"=i Mj ^ 0 a.s. as n oo and IM,Q < oo, where IM,Q is an integral involving 
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the marginal distributions of M and Q. Since the distribution of L has no effect 

on the convergence of /„(L), it is clear that the above conditions are precisely 

those under which X „ converges a.s. for iid (M„ ,Q„ ,L „ ) . We show these con-

ditions are satisfied under under hypothesis H, and thus the sequences X and 

11^=1 M jQ i converge a.s. to the same finite random variable. 

Suppose 0 < w < to < oo. In the proof of Lemma 1, Nyrhinen shows that the 

condition w > Q implies that the function c{t) is strictly convex and continuously 

differentiable on the interior of Since c(0) = 0 and c{w) = 0 there must 

exist t e {0,w) such that ln£ ; (M^) < 0. By Jensen's inequality, E{\nM) < 0, 

which is well-defined by the assumption P{M = 0) = 0. Hence, the random walk 

Sn ••= E J = i ( - l n M j ) ^ oo a.s. as n ^ oo. Since 5„ = - In0^=1 it follows 

that n " = i M j 0 a.s. as n ^ oo, as required. Further, since £'(ln M ) e [-oo, 0), 

Corollary 4.1 of Goldie and Mailer [25] implies that if E{ln'^ jQI) < oo then the 

integral condition IM,Q < OO is satisfied. Since 0 < TO there exists 0 < S such 

that < OO. Hence £(hi|(5|) < oo which implies that E( ln+ [(Qj) < oo as 

required. 

The discrete results of Nyrhinen are both interesting and useful. However, in 

their stated form, the corresponding results for the continuous case are not espe-

cially useful. This is because the conditions in hypothesis H are ([uite inaccessible 

when is a reasonably complicated Levy process and {Mn,Qn, Ln) are de-

fined according to eciuations (L53), (1.54) and (1.55). Correspondingly, the only 

contirmous example Nyrhinen gives is extremely simple, involving independent 

finite activity Levy processes. The most serious offender is the condition y — oo 

where 

xj — sup <j ?/ € K : P ( sup Zt > y 
.t>o 

\ 

> 0 

We discuss this condition further in Appendix E. Verifying the condition 0 < 

If; < to < oo is also problematic, because it requires knowledge of E\Zi\ and 

£'(supo<t<i \Zt\). To make this result accessible, these conditions must be stated 

in terms of the characteristic triplet of (^,r/) or the marginal distributions of ^ 

and r/. This is done in Appendix F. 

Pau l sen 2002 [57] The first main result in this paper. Theorem 3.2 (a), 

is a modification of part of Nyrhinen's work in [52], specifically, the continuous 

version of Nyrhinen's adaptation of Goldie [24] Theorem 6.3, which we state above 

as Proposition 1.22. Paulsen assumes ^ and r/ are independent Levy processes and 

and states an asymptotic result for P(inf(>o Zt < —rn) as m —> oo. Note that this 

is the reciprocal approach to Nyrhinen, who gives asymptotics for P(supj>o Zt > 
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m) asm —> Qo (without assuming independence). Paulsen's approach makes more 

sense from a GOU ruin probabihty perspective since ip{m) = P(inf£>o Zt < —m), 

as shown in equation (1.3). Paulsen defines Mn and Qn as in ecjuations (1.53) and 

(1.54) respectively, and defines L„ as the reciprocal version of equation (1.55), 

namely 
/ R c \ 

L „ : = e « M inf / - / e-^^'dru . (1.56) 
J{n-l)+ / 

Paulsen states a set of conditions on the distributions of ^ and ij, which include the 

conditions of Theorem 1.20 part (c) above. He proves that these conditions imply 

that the reciprocal conditions of Proposition 1.22 hold for his chosen values of 

(M„, Qn, Ln). In particular, inft>o Zt satisfies the reciprocal versions of hypothesis 

H and the random equation (1.48). Thus the reciprocal version of the asymptotic 

result (1.49) holds, namely 

m"'F(inf Zi < -m) = C_ + o(m-^) (1.57) 

when m tends to infinity, where C_ and 7 are positive real constants. The value 

C_ is given by the formula defined in (2.19) of Goldie, namely 

C_ = — E ( ( (Q + MnVm(L,mfZt)] ) - ( f M i n f Z t ) (1.58) 
wa \\\ \ t>o J J J \\ t>o / J J 

where a := E (IMl"^ In |A/|) and L is defined by (1.56). 

Note that Paulsen actually gives a different form for the associated constant 

rather than simply quoting the above. Since he assumes the conditions of Theo-

rem 1.20 part (c) hold, the ruin probability formula (1.44) must hold, namely 

N Hi-m) 
<l,(m) = ^ (L59) 

where we define /i(m) := E {H{-VtJ | < 00) € [0,1] and h := lim^_,oo H^n). 

Note that h may not exist. Using (1.57), 

lim m"'P( infZt < - m ) = C_, 
m—>00 f>0 

and combining with (1.59) we have 

lim m'"P(Zoo < - m ) = hC^. 
m^oo 

where h must exist. However, it is now a consequence of Goldie [24] Theorem 4.1 

that 

< -m) = ±E {{{MZ^ + Q)")- - ((MZ^o)")'^) , 

and thus an alternative value for C^ is obtained. We state the precise result. 



1.6. RELEVANT RUIN PROBABILITY RESULTS 27 

T h e o r e m 1.24. Suppose the conditions of Theorem 1.20 part (c) hold. Further, 

assume there exists w > 0 and e > 0 such that In = 0, In < 

oo and < oo. Also, assume that the distribution of ^t is spread out 

when T is uniformly distributed on [0,1] and independent of Then 

r r rP ( i n f Zt < - m ) = + 

as m oo. The positive real constant C is given by 

C_ = - ^ E ( ( (MZoo + Q ) - ) " - {[MZ^rY) (1.60) 

where (M , Q) := f^ e'^'-dr/g), and a and h are defined above. 

This result is not quite correct. If we assume the above conditions on w and e, 

and ciuote the result directly from Nyrhinen, the conclusion should be that there 

exists some 7 > 0 such that m"'P(inft>o Zt < -m) = C- + as m 00. 

Using Goldie Theorem 6.3 implies the same. In Appendix F we present a more 

precise version of the above theorem which also holds for general and has 

simpler conditions. 

The above theorem shows that under the relevant conditions, •0(m) behaves 

essentially like m"^, where the value w depends principally on Note that the 

condition = 0 for some w > 0, requires that ^ be non-deterministic, 

which is in line with Nyrhinen's conditions. Also note that Paulsen requires that 

^T be spread out, whereas Nyrhinen requires that be spread out. Using the 

random time gives more generality. For example, if ^t is a compound Poisson pro-

cess with arithmetic j ump size distribution, then has an absolutely continuous 

distribution whilst has no absolutely continuous com])onent. 

The next result by Paulsen is Theorem 3.2 (b) which provides asymptotics for 

?/'(m) when the negative jumps of 77 are heavy-tailed and dominate It shows 

that •i/;(m) behaves essentially like where the value of depends principally 

on Tj. 

T h e o r e m 1.25. Suppose the conditions of Theorem 1.20 part (c) hold. Further, 

assume there exists K] > 0 and e > 0 such that —00, —x]) ~ x~'^^G{x) where 

G is slowly varying, and In ) < 0. Then 

i ' i m ) ~ , / , — ; — as m ^ 00. 

The proof is ciuite simple. Using equation (1.59), it sufhces to prove that 

H{-m) i rn-^'Gim) 
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as m ^ oo. This is achieved by expressing Z^ as the fixed point of the random 
equation (1.40), and then using discrete rate results from Grey [26]. In Remark 
3.2 part (b), Paulsen comments that under the conditions of Theorem 1.25, h = 
lim^^oo h{m) has not been proven to exist. He conjectures that h exists and 
equals 1, in which case 7p{m) ~ as m oo. 

Immediately following this theorem is an examination of ip{m) when the nega-
tive jumps of ^ are large enough in absolute value that the conditions of Theorem 
1.24 or 1.25 do not hold. Several specific cases are examined and upper and lower 
bounds for ip{m) are established. Note that in all these cases Zt still converges to 
a finite random variable Zoo as t oo. In each case, Paulsen's method is to define 
new Levy processes ^ and fj which satisfy the conditions of Theorem 1.24 or 1.25, 
and for which 'ip{m) > tpim), or 2lj{m) < •0(m), where is the ruin probability 
function for the GOU associated with ^ and fj. Application of the relevant the-
orem on ip{m) thus produces upper and lower bounds for ip. The paper finishes 
with an examination of a special case in which ^ is compound Poisson plus drift, 
and 7] is Brownian motion plus drift. 

We make some comments. In this paper Paulsen has certainly made Nyrhi-
nen's continuous result more accessible, with conditions stated on the character-
istic triplet of ^ and r]. However his conditions include those of Theorem 1.20, 
so the comments we made earlier on that situation apply to the current paper 
also. Namely, it would be desirable to remove the finite mean assumption for 
^ and replace his moment conditions, which are sufficient for convergence of Zt, 
with the precise iff conditions. Of course, the main question is how the result 
changes when dependence between ^ and 77 is permitted. Note that with ^ and 77 

independent and rj not a subordinator, the condition of Nyrhinen's which is most 
difficult to verify, y = —00, is assumed by Paulsen to be true. This assumption is 
false even in the independent case, as discussed in Appendix E. The assumption 
holds only if extra conditions are imposed, in line with Proposition D.4. The 
theorem statement must be adjusted accordingly. 

Kalashnikov and Norberg 2002 [32] This paper provides various asymp-
totic results and bounds for the infinite horizon ruin probability of the GOU when 
the underlying Levy processes are independent. The results are achieved by dis-
cretizing V and Z into the discrete sequences described in Section 1.5. The bulk 
of the paper consists of asymptotic results for the infinite horizon ruin probability 
of these discrete processes. We explain the discrete results first, and then discuss 
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the continuous implications. Let 

j = l i = l j=i+l 

(1.61) 

where 5 „ ) is an iid sequence of random vectors, independent of the random 
variable >0, with common distribution (A,B)- Define 

= P inf < 0 
neN 

Ko = m 
/ 

Throughout the paper, a set of conditions is assumed, which we call hypothesis 
G: Suppose that > 0 a.s., P{A < 1) > 0 and P{B < mA) > 0 for all 
-cx) < m < 00. The first major result of the paper, Theorem 1, shows that under 
these conditions ip*{m) is greater than a certain power function. We need to 
define some terms. Let a < 1 and /? > 0 be constants such that 

q P{A<a,B < p) > 0. 

The fact that P{A < I) > 0 ensures that such a and (5 exist. Let 

q* •=P[B<-
2/5 

1 - a 
•A 

which is strictly positive under hypothesis G. 

Theorem 1.26. If hypothesis G holds then -ip*{m) > ^ for all m > c where 
a,b,c are strictly positive constants defined by 

In 9 
b= , c = 

In a ' 1 — a 

The next major result. Theorem 2, deals with 

\ 
inf Yn < s* 
neN 

Vo = m . 

Theorem 1.27. Suppose hypothesis G holds, A has a non-lattice distribution and 
there exists w > 0 such that E{A''") = 1. If 

1. If E ^ < 00 then, for any S > 0, there exist constants s* > Q and 

{) < k < 1 such that 

'iP{m,s*) < k 
VI 
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2. IfEiA-""-^") < oo for some 5o > 0 then for any S > 0 there exist constants 

s* > 0 and 0 <k <l such that 

fc - <r{m,s*). \rnj 

The paper then examines the sequence 

i=l j=l 

where M„ and Q^ Bn/An- Asymptotics for the tail of the supremum, 
and infimum, are found using Theorem 6.2 of Goldie [24], which is a first-order 
asymptotic result for the tail of a random variable R when R is & fixed point for 
the random equation 

R =0 Q + M nmx{L, R) (1.63) 

and when a further set of conditions hold. It is clear from Goldie's work that 
when L = 0, and certain moment conditions hold, the random variable sup„gpj Dn 
is a fixed point of (1.63). We now present Norberg's Theorem 3, which is a slight 
restatement of Goldie's Theorem 6.2 for the case in which L = 0. Conditions are 
stated in terms of A and B to fit with the previous theorems. 

Theorem 1.28. Suppose hypothesis G holds, the distribution of A is spread 
out and there exists w > 0 such that = 1, i? ln'''(yl)) < oo and 
E ( I f I"") < oo. Then there exist constants C^ > 0 and C+ > 0 such that 

P 
\ 

sup Dn > m 
Vn£N / m" 

oo. 

/ \ C_ 
P inf Dn < —m ) ~ , 2 —> oo. 

Note that the formula for C+ is stated above in (1.50). The final theorem in 
the paper, Theorem 4, provides a power function lower bound for ip*{m, s*). 

Theorem 1.29. Under the conditions of Theorem 1.28, for any sufficiently large 
s* > 0, there exists a constant C{s*) > 0 such that xp*{m,s*) > 

This ends the explanation of the discrete results. We now let ^ and rj be inde-
pendent Levy processes and recall our usual definitions for V, Z and -0, namely 
equations (1.1), (1.2) and (1.3), respectively. The processes V and Z are dis-
cretized, via stopping times, into the sequences (1.61) and (1.62) respectively. 
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Accordingly, let 0 = Tq < Ti < r2 < • • • be an increasing sequence of stopping 
times such that the increments T̂  - T i _ i are iid with distribution T. As explained 
in Section 1.5, if we let 

( RTN \ 
's 

V ) 

then for all n G N, Vn = Ki, and = for the corresponding (A/„, Qn). With 
this choice of vectors, we have 

= P inf K < 0 
, neN 

\ \ 
Fo = m = F inf Z„ < - m 

/ y 

The continuous analogue of hypothesis G is as follows: Suppose that ^ is not a 
subordinator and, for the stopping time T > 0 defined above, P{ZT < U) > 0 for 
all u e M. It is also noted that this hypothesis can be replaced by the slightly 
stronger assumption < 0, Zj- < 0) > 0. The continuous analogues of the 
various moment conditions are obvious. 

The continuous version of Theorem 1.26 is obtained using the obvious fact 
that > •ip*{m). The authors note that this inequality may be strict, for 
example, if ^ has a Brownian motion component, or if r] has an infinite activity 
Levy measure. They comment that in such cases, the partition nv can be 
used, where > 0. If is defined to be the ruin probability associated with 

Tŷ n then = hm„_o • 
The continuous version of Theorem 1.27 (stated as Corollary 2) is obtained 

using the following statement; Under hypothesis G, whenever 0 < s* < m 

s*) < < s*). (1.64) 

It is claimed that these inequalities follow from the Markov property, the fact 
that tp{m) > 'tp*{m), and Theorem 1.26. This is easily seen for the inequality on 
the left, however the proof is not obvious for the inequahty ipim) < ip*{m, s*). 

As noted by the authors, the equality tpim) = 'ip*{m) does not hold in general. 
However, it is claimed that under the conditions of Theorem 1.28, the equality 
holds, and accordingly, Theorem 1.28 can be converted to a statement on ipim), 
in particular, there exists C_ > 0 such that 

C_ 
th(m) ~ , z —» oo. 

Note that it would be an interesting task to examine the precise conditions under 
which the statements -ipim) < il)*(m,s*) and '^{m) = i}*{m) are true, especially 
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for general The final result in the paper uses Theorem 1.29 and the in-
equalities (1.64) to give conditions under which C_ is strictly positive, in the 
continuous situation. 

In section 3.4 of the paper, two examples are given of ^ and tj which satisfy 
hypothesis G. In the first example, both ^ and 77 are Brownian motion plus drift, 
where the Brownian motions are independent. The partition is taken clS Tji — TIV 
where f > 0 is fixed. In the second, ^ is Brownian motion plus drift and rj is 
compound Poisson plus drift, where rj is not a subordinator. The partition is 
taken as the jump times of the compound Poisson process. No proof is given that 
these examples satisfy hypothesis G, however, in these simple cases it is obvious. 
Thus, the lower bound specified in Theorem 1.26 holds for each case. The authors 
comment that examining the accuracy of the lower bound is difficult, and one 
must resort to numerical studies. Later in the paper, it is also claimed that both 
these examples satisfy the extra conditions of the later theorems iff ^ has positive 
drift d̂  > 0, in which case e = A final example is given in which ^ and 
7] are independent compound Poisson processes plus drift, where ^ and rj are not 
subordinators. It is commented that all conditions mentioned in the theorems 
are automatically satisfied, except the existence of -u; > 0 such that = 1, 
and iff conditions are given on ^ such that this holds. 

We make some comments on this paper, beginning with the convergence impli-
cations, in the continuous case, of the conditions in Theorem 1.28. In particular, 
there exists ti) > 0 such that = 1, which implies that E{^t) > 0, and 
hence lim^^ooCt = oo- Hence, by Theorem 1.19, Vt cannot converge a.s. to a 
finite random variable Foo as t —> 00, unless the degenerate case (1.29) holds. 
Since ^ and r/ are independent, this cannot occur. Note that Z( converges a.s. to 
finite Zoo as T —> 0 0 , iff the associated sequence Z)„ converges as N — C X D . For the 
values (M„,Qn) defined as above. Theorem 4.1 of Goldie [24], implies that Z)„ 
converges under the conditions of Theorem 1.28. 

As in Nyrhinen [52], the conditions in this paper are quite inaccessible when 
ri) is a reasonably complicated Levy process. Correspondingly, the examples 

are limited to the independent, finite variation cases. In hypothesis G it must be 
assumed that P{Zt < u) > 0 for all u e M, which we discuss in Appendix E. 
This is a stronger version of Nyrhinen's condition that y = - 0 0 where 

?7 = inf e M : P (inf < y ) > o } . 

The replacement hypothesis mentioned earlier involves the joint distribution of 
and Zt, which is equally problematic. Further, Theorems 1.28 and 1.29 require 
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the condition E{\ZT\^) < oo. To make the results in this paper more accessible, 

all the conditions must be stated in terms of the characteristic triplet of r;) or 

the marginal distributions of ^ and r;. 

L i ndne r a n d Ma i l e r 2005 [44] This paper is not about ruin probability, and 

has already been discussed in Section 1.4. However we mention a result which 

relates closely to the topics discussed above. In Proposition 4.1, the authors 

give conditions on the marginal measures of ( and rj under which moments exist 

for the stationary distribution of the GOU. We have modified this result into a 

statement on the existence of moments for supZf, and presented it as Lemma 

3.24. This lemma can be used to make some of the conditions in [52] and 

more accessible, which we have noted above is desirable. 

1.7 Economic applications 

The first, and most basic, economic application of the GOU is as a continuous 

perpetuity. However, the interpretation of the underlying bivariate Levy process 

is slightly different depending on whether equation (1.20) or (1.21) is taken as 

the definition of V. In a sense, equation (1.20) arises more naturally. We can 

consider R to be an accumulated investment returns process, and U to be an 

accumulated income process in a non-economic (no interest) environment. For 

example, U could be the the income stream, consisting of premiums minus pay 

outs, of an insurance company. If we suppose the insurance company continually 

invests all of its income stream r/ into a risky asset with accumulated returns R, 

and continually reinvests any profits, then the total surplus Vt of the company 

at time t will be the sum of the initial surplus VQ at time zero, plus the income 

stream r]t, plus the accumulated gains/losses at time t from the investing process. 

Since all of the current surplus is invested in the risky asset, the gains/loss from 

investment is described by the process Vs-dR^, and hence the total surplus at 

time t is exactly the SDE (1.20). Note that the value at time t of one dollar, 

invested at time zero in a risky asset with accumulated returns R, is given by the 

SDE St ^ fg Ss^dRs and the solution is the stochastic exponential St = e(i?t). 

For example, the traditional Black-Scholes model uses Ri ^t + aBt where /i 

and (T are real numbers and B is standard Brownian motion. In this case the 

stochastic exponential simplifies to e{R.)t -

When the stochastic integral process (1.20) is interpreted economically, the 

exponential Levy process e '̂ is considered to be the value at time t of one dollar 
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invested into a risky asset at time zero. Further, r/ is considered to be an accumu-

lated income process in a non-economic environment. Thus, with {R, U) as above, 

e?' = e(i?)( and r]t = Ut- With ^ and ?/ so defined, the process Zt := f^e'^'-drjs 

is the discounted vahie of the perpetuity T) at time t under the price process e^'. 

The equation Vt = + Zt) is the forward value of an initial fortune 2 and the 

continuous perpetuity r/, under price process ê K It is assumed that r; is contin-

ually invested in a risky asset following the price process e^', and all profits are 

continually reinvested. When considered as a model of an insurance company, V 

is often called the integrated risk process, and Z is called the discounted net loss 

process. 

It is interesting that under this economic interpretation, the equation (1.20) 

has e '̂ as the forwarding term, and e"^'- as the discounting term. The use of the 

t— in the discounting term is necessary in order for the integrand in the stochastic 

integral process Z to be predictable. However, it now seems consistent for e^'-

to be used as a forwarding term. As it is, using simple deterministic functions 

it is easy to see the inconsistencies which arise. Suppose r]t = 0 on [0,1) and 

rji — I, and suppose e '̂ = 1 on [0,1) and e^' = 2. Then Zi — f̂ ^ = 1 and 

Vi = e^^Zi = 2. It seems logical that the a surplus at time 1 which is discounted 

to zero, and then forwarded back to time 1, should be the original value. This 

would be achieved using either e '̂ or e^'" as both the forwarding and discounting 

term. However, this inconsistency in the deterministic situation does not occur 

when r/) are Levy processes. The probability of ^ jumping at a fixed time t 

is zero, so the process (1-20) is a.s. equal (a modification) of the version which 

uses e '̂- as the forwarding term. As an economic model, it is favourable to use 

(1.20) since it uniquely solves (up to indistinguishability) the SDE described in 

Proposition 1.15. 

In [42] and [37], the GOU (1.20) is used to model the total surplus of an 

insurance company in a more specialised way. As above, this model uses an 

exponential Levy process e '̂ to model the price of a risky asset, and uses r] as 

the income stream of the insurance company in a non-economic world. However, 

^ and 7] are assumed to be independent, and 77 is assumed to be a compound 

Poisson process plus drift. Rather than investing all the current surplus in the 

risky asset, the company is allowed to invest part of its money in a riskless bond 

with the price process where 6 > 0 is the riskless interest rate. The proportion 

of the surplus invested in the risky asset is denoted by 0 G [0,1], and is assumed 

to remain constant over a predetermined time. Thus, as the Levy process ^ 

fluctuates, the portfolio must be rebalanced to maintain a fixed 9. The combined 
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investment process can be written as ê " for a Levy process and, for each 6, 
the total surplus is given by the GOU 

/ /-t \ 

V Jo 

Another economic application of the GOU involves the COGARCH model, 

introduced in [38], which can be used to model the price of a risky asset. If L is 

a one-dimensional Levy process then the COGARCH is defined to be the process 

S {St)t>Q given by ^ 

S t = I O s - d L s 
Jo 

where a^ is a special case of the GOU (1.21), in which r/ is hnear deterministic 

drift and ^ is defined in terms of L . The process a can be interpreted as the 

volatility process and is defined by 

where /? > 0 and ^ is a Levy jump process defined by 

0<s< t 

for parameters a < 0 and b > 0. There is only one source of randomness un-

derlying both the price process S and the volatility process a , and that is the 

Levy process L . 
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Chapter 2 

No ruin for the Generahsed 
Ornstein-Uhlenbeck process 

2.1 Introduction 

In this chapter we examine when the GOU has zero probability of ruin. We also 
present some basic foundational results on the behaviour of Z and V. As men-
tioned in Chapter 1, there are only a few papers dealing with ruin probability, or 
with passage-time problems, for the GOU. Patie [53], and Novikov [50], give first 
passage-time distributions in the special case that t̂ = ^t for A £ R, and t] has 
no positive jumps. With regard to ruin probability, Nyrhinen [52] and Kalash-
nikov and Norberg [32] discretize the GOU into a stochastic recurrence eciuation. 
Under a variety of conditions, they produce some asymptotic equivalences for the 
infinite horizon ruin probability. The main results on GOU ruin probability come 
from Paulsen [56]. In the special case that ^ and t] are independent. Paulsen gives 
conditions for certain ruin for the GOU and a formula for the ruin probability un-
der conditions which ensure that the integral process Zt converges almost surely 
as t —> oo. Since these papers were written, the theory relating to the GOU, and 
to the process Z, has advanced. We have described these results in Section 1.4. 

Our main results of the chapter are presented in Section 2.2. The first result, 
Theorem 2.1, presents exact necessary and sufficient conditions under which the 
infinite horizon ruin probability for the GOU is zero. These conditions do not 
relate to the convergence of Z or stationarity of V or to any moment conditions. 
Instead they are are expressed at a more basic level, directly on the Levy mea-
sure of This theorem shows that when and ry are dependent, the ruin 
probability function for the GOU behaves very differently to the case, described 

37 
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by Paulsen, in which ^ and r/ are independent. The second result, Theorem 2.3, 

shows that P{Zt < 0) > 0 for alH > 0 as long as r] is not a subordinator. This 

result is an important building block in the proof of Theorem 2.1, as well as being 

of interest in its own right. Finally in Section 2.2, Theorem 2.4 extends a ruin 

probability formula in Paulsen [56], presenting a slightly different version which 

deals with the general dependent case, and applies whenever Z( converges almost 

surely to a random variable Z^o as i ^ oo. 

Section 2.3 contains technical results of interest, which characterise what we 

call the lower bound function of the GOU, and are used to prove the main ruin 

probability theorem. Section 2.4 contains proofs of the results stated in Sections 

2.2 and 2.3. 

When we specialise to the situation that r/) is a compound Poisson process 

with deterministic drift. Theorem 2.1 can be proved using a different method. 

This method is less sophisticated and cannot be extended to the general case. 

Rather than utilising Theorem 2.3 and the theorems in section 2.3, it relies on a 

"brute force" approach. We present this theorem, and proof, in Appendix A 

2.2 Ruin Probability Results 

Our results are given in terms of regions of support of the Levy measure We 
define some notation, beginning with the following cjuadrants of the plane. Let 
Ai : = { (x ,y) e : X > 0, y > 0} , and similarly, let A2, A3 and A^ be the quad-
rants in which {x > 0,y < 0}, {x < 0,y < 0} and { x < 0, y > 0} respectively. 
For each i = 1, 2 ,3 ,4 and € R define 

A^ {{x,y) eAr.y- - 1) < 0} . (2.1) 

These sets are defined such that if (A^j, A//() G A^ and Vj_ = "u, then AVf < 0, 
as we see from the equation 

AI4 = Vt-Vt-
rt- , , rt-

= + J^ e d% + e"^'- Ar/j) - e^'- + ^ (^Vs 

= (e^' - ) + / + ^Vt 

= (2.2) 

(Ar/, - - l ) ) . (2.3) 
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If ii < 0 then A^ = A2 and yl" = 0. As u decreases to - o o , the sets expand, 
whilst A^ shrink. Define 

^ I sup {u<0: na^^,) > 0 } ^ _ f inf {^i < 0 : > 0 } 
\ - 0 0 = 0 ' \ 0 i f% , (y l3 ) = 0 

If > 0 then A]̂  = A3 and A^ = 0. As u increases to 00, the sets A2 shrink, 
whilst A^ expand. Define 

^ f sup {n > 0 : na^^,) > 0 } ^ ^ f nif {u > 0 : > 0} 
' • \ 0 if = 0, ' ' • \ 00 if = 0 

For each i = 1,2,3,4, note that = 0, since in the definitions of A^ we 
are requiring that y — — 1) be strictly less than zero. 

Theorem 2.1 (Exact conditions for no ruin for the GOU). The ruin probability 
function satisfies ip{i)) — 0 if and only if r/ is a subordinator. If r; is not a 
subordinator then there exists c > 0 such that the ruin probability function satisfies 
ip{c) = 0 if and only if the Levy measure satisfies = 0, 62 < and: 

• when (7| 0 the Gaussian covariance matrix is of form 

for some u 6 [02,04] satisfying 

g{u) % + uj^ - - / {ux + y)) > 0; (2.4) 
•/{x2+y2<i} 

• when (t| = 0 the Gaussian covariance matrix is of form = 0 and there 
exists u G [6*2,04] satisfijing g{;u) > 0. 

If (Tj 0 and the conditions of the theorem hold, then 'tp{z) = 0 for all z > a := 
whilst ip{z) > 0 for all z < c. 

If CT^ = 0 and the conditions of the theorem hold, then xl){z) = 0 for all 
z > c:= inf {u G [02, 04] : g{u) > ()}} , whilst ip{z) > 0 for all z < c. 

We now discuss some examples and special cases which illustrate and amplify 
the results in Theorem 2.1. 

1 -u 
-u li^ - I 
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Remark 2.2. 1. Suppose that (^,7?) is continuous. By the Levy-Ito decom-
position in Proposition 1.8 we can write {^t,Vt) = + {B^ t̂, Br,,t)-
Theorem 2.1 states that ipiz) = 0 for all z > u and tpiz) > 0 for all 2 < u, if 
and only if there exists n > 0 such that fi,, = -uB^, and (7c-|o-|)w+777 > 0. 
For example we could have 

{^,,ru):={Bt + ct,-B, + {l/2~c)t), ( 2 . 5 ) 

where c G M and ct| == 1. Then Theorem 2.1 implies that tpiz) = 0 for all 
-z > = 1 whilst tp{z) > 0 for all 2; < 1. In this simple case we can 
check the result directly and we present these calculations in Appendix B. 

2. Suppose that (4, r/) is a finite variation Levy process. Then = 0 and 
i|z|<i < CO. We can define the drift vector as 

: = { % % ) - [ z T l ^ d z ) (2.6) 
•J\z\<l 

and write 

In this situation, Theorem 2.1 simplifies to the following statement: •0(0) = 
0 iff J] is a subordinator. If 77 is not a subordinator then ijj{c) = 0 for some 
c > 0 iff = 0, 6*2 < 6'4, and at least one of the following is true: 

• d^ = 0, and > 0; or 

• d ^ > 0 and - J < or 

• > 0, and d̂  < 0, such that > 92-

If the second property holds, then ip{z) = 0 for all z > c := max{02, 
and iIj{z) > 0 for all 2 < c. If the other properties hold, then •ijj{z) = 0 for 
a l l 2 > c : = 02 a n d ijj{z) > 0 f o r a l l z < c. 

These results are easily obtained by using (2.6) to transform condition (2.4) 
into the equation g{u) = d.,^ + ud^ > 0. For a simple example, let Nt be a 
Poisson process with parameter A, let c > 0 and let 

{^t.Vt)--={-ct + N^,2ct -Nt) . (2.7) 

Then we are in the third case above, and ip{z) = 0 for all 2 > 02 = 
and iIj{z) > 0 for all 2 < In this simple case, we can verify the results 
by direct but tedious calculations which we omit here. 
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3. Suppose that ^ and t] are independent. This irnphes that ^ and rj jump 

separately, which means that all jumps occur at the axes of the sets Ai. 

Further, there is zero covariance between the Brownian components of ^ 

and r/, namely = 0. With a little work, Theorem 2.1 simplifies to the 

following statement: "0(0) = 0 iff 77 is a subordinator. If r/ is not a sub-

ordinator then ip{z) = 0 for 2 > 0 iff ^ and rj are each of finite variation 

and have no negative jumps, and g{z) = fi^ + zd^ > 0. Note that for this 

situation to occur, it must be that < 0 (since r/ is not a subordinator), 

which implies that d^ > 0. Hence £'(^1) > 0. 

4. Paulsen [56] states conditions for certain ruin when ^ and r/ are indepen-

dent. In the cases £'(^1) < 0 and = 0, and under certain moment 

conditions, he shows that ij}{z) — 1 for all z > 0. Theorem 2.1 shows that 

the situation changes when dependence is allowed. The continuous process 

defined in (2.5), and the jump process defined in (2.7), illustrate this dif-

ference. Each process trivially satisfies Paulsen's moment conditions and 

can satisfy £'(^1) < 0, or = 0, depending on the choices of c and A, 

however it is not the case that tjj{z) = 1 for all 2; > 0. Note that Paulsen 

does not conunent on the possibility of zero ruin in the independent case. 

The above statement (3) completely explains this situation. 

5. We make some comments on subordinators and explain why Theorem 2.1 

has to have a separate statement for the simj^le case in which r; is a subor-

dinator. As noted in Proposition 1.14, r/ is a subordinator if and only if the 

following three conditions hold: 

• a"̂  — 0, so r/ has no Brownian component; 

• n^((—00, 0)) = 0, so r/ has no negative jumps; 

• drj > 0, where 

fir, : = 7 r , - / yUr^idy) = E (rji ^ I yiV^,i(-,dy) . 
•Ao.i) \ -Ao.oo) 

Note, by definition, d^ G [-00,00), and d,, = -00 iff J^^ ̂ ^yUr,{dy) = 

00. 

Suppose that rj is a subordinator. Since cr̂  == 0 the covariance matrix is of 

form Tî r̂) — 

V 

0 0 
a^. Using (1.12), and the fact that q has no negative 
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jumps, we obtain 

J{x^+y^<l} iKx{|y|<l} 

= dr,. 

Thus, the fact that d^j > 0, imphes that (2.4) is satisfied for u = 0. Also, 

since 77 has no negative jumps, 82 — 0, and hence the condition 62 < 64 is 

satisfied. However there is one condition that is not satisfied. Even though 

rj has no negative jumps, we cannot say = 0, since it may be the 

case that Yl̂ r̂, ((—oo,0) x {0}) > 0. Namely, ^ may make a negative jump 

at the same time that rj has no jump. 

6. If = 0, and 62 < O4, then the function g{u) from (2.4) exists for 

any u € [6*2,̂ 4], and g{u) G [—00,00). Under such conditions, the domain 

of integration for the integral component of g can be decreased using the 

fact that 

% , ( { y - « ( e - - - l ) < 0 } ) = ( ) . (2.8) 

Further, if g{u) is finite for some u e [6*2, 6*4], then 

I {y- uie-^ - 1)) %, (d(x , y)) < 00. (2.9) 

On first viewing, (2.9) may seem counterintuitive, as it places a constraint 

on the size of the positive jumps of V. However, if (2.9) does not hold, and all 

the other conditions, excluding (2.4), are satisfied, then the Levy properties 

of ?]) imply that Vt can drift negatively when 14- = u. These statements, 

and the equations (2.8) and (2.9), are discussed further in Remark 2.10 

following Theorem 2.9. 

Theorem 2.3. The Levy process rj is not a subordinator if and only if P{Zt < 

0) > 0 for any fixed time T > 0. 

One direction of this result is trivial and has been noted above, namely, if rj 

is a subordinator then P{Zt < 0) = 0 for any T > 0. The other direction seems 

quite intuitive and in fact is implicitly assumed by Paulsen [56] in the case when 

^ and Tj are independent. However even in the independent case the proof is 

non-trivial. We prove it in the general case using a change of measure argument 

and some analytic lemmas. As well as being of independent interest, this result 

is essential in proving Theorem 2.1. 
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The final theorem in this section provides a formula for the ruin probability 
in the case that Z converges. Recall that T^ denotes the first time V drops below 
zero when Vo = or equivalently, the first time Z drops below - 2 . 

Theorem 2.4. Suppose Zt converges a.s. to a finite random variable Z^o as 
t —> 00, and let G{z) := P{Zoo < z). Then 

G{-z) 
i^iz)^ < 0 0 ) ' 

Remark 2.5. 1. To clarify the meaning of this formula, note that 

G{-VTj{u;):=P{i^en : ZM <-VTA^)) , 

which is defined whenever T2{uj) < 00. 

2. In the case that ^ and r/ are independent, Paulsen [56] shows, under a 
number of side conditions which ensure that Zt converges a.s. to a finite 
random variable Zoo with distribution function H{z) := P{Zoo < z) as 
t ^ 00, that 

H{-z) 
<00 ) " 

This formula is a modification of a result given by Harrison [31] for the 
special case in which ^ is deterministic drift and 7/ is a Levy process with 
finite variance. Theorem 2.4 extends the formula to the general dependent 
case. Our proof is similar to those of Paulsen and Harrison, however we 
write it out in full because some details are different. 

3. As noted in Theorem 1.17, Zt converges a.s. to a finite random variable 
Zoo as t —+ cxD if and only if linij^oo 6 = +00 a.s. and < co. As noted 
in Theorem 1.19, Lindner and Mailer [44] prove that if V is not a constant 
process, then V is strictly stationary if and only if Jj e^'^^dA'f'' converges 
a.s. to a finite random variable as T ̂  CXD. In neither of these cases do the 
conditions of Theorem 2.1 simplify. Each of the processes defined in (2.5) 
and (2.7) can belong to either of these cases, or neither, depending on the 
choice of constant c and parameter A. 

4. As noted in Theorem 1.18, Zt converges a.s. to a finite random variable 
Zoo as t ^ 00, then Zoo has an atom iff Z^ is a constant value —c iff 
Zt = — 1) a.s. iff Vt = — c) + c a.s. In this case it is trivial that 
ip{z) = 0 for all z > c. Theorem 2.1 produces the same result, however this 
will not become immediately clear until Remark 2.8 (2) following Theorem 
2.7. 
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2.3 Technical Results of Interest 
This section contains technical results needed in the proofs of Theorems 2.1 and 
2.3, which also have some independent interest. The proofs of these results are 
given in Section 4. Recall that the stochastic, or Doleans-Dade, exponential 
of a semimartingale Xt is denoted by e{X)t. The first proposition introduces a 
process W which will play an important role throughout the rest of the paper. 
This proposition is adapted from Proposition 8.22 of [14] and is presented without 
proof. 

Proposition 2.6. Given a bivariate Levy process Vj) there exists a Levy process 
W such that = €{W)t and {^,r],W) is a trivariate Levy process. If ^ has 
characteristic triplet (7^,0-^, 11^) then 

= + Y. + - 1) (2-10) 
0<s<< 

and the characteristic triplet of W is given by (t^ = (7| and 

nM.(A) = n^ ( {x : e"^ - 1 e A} ) (2.11) 

and 

Iw = - 7 ? + + [ ( x l ( _ i , i ) ( z ) + ( e - ^ - l ) l (_ ,„2 ,oo ) (a ; ) ) n ^ l d x ) , ( 2 .12 ) 
^ J r 

where the integral converges. 

We define the lower bound function 5 for V in (1.1) as 

^(2) = inf G E : P (̂ inf K < u\Va = 

The following theorem exactly characterizes the lower bound function. 

Theorem 2.7. The lower bound function satisfies the following properties: 

1. For all 2 G R, S{z) < z. 

2. Ifzi < Z2 then S{zi) < S{z2). 

3. For all 2 G M, S{z) = z if and only ifrj-zW is a subordinator. 

4- For all 2 G R, S{z) = S{S{z)), and 

S{z) = sup { u : u < 2,77 - uW is a subordinator} . 

z > 0 
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R e m a r k 2 . 8 . 1. If rj is a subordinator then (5(0) = 0, so V cannot drop below 

zero when Vq = z > 0. 

2. As noted in Theorem 1.18, if Zt converges a.s. to a finite random variable 

Zoo as t ^ oo, then Z^c = —« iff = e{r]/a). If this holds then S{a) — a 

by point 3 above, since r]/a = W. Thus ijj{z) = 0 for all z > a, as mentioned 

in Remark 2.5 (3). 

T h e o r e m 2 . 9 . Let u G M \ { 0 } and let r/, W) be the trivariate Levy process 

from Proposition 2.6. The Levy process r/ — tiW is a subordinator if and only if 

the following three conditions are satisfied: the Gaussian covariance matrix is of 

the form 

at least one of the following ts true: 

—u 

1 -u 
2 U 

Cfc 

Yl^^^iAs) = 0 and 02 < 04 and u G [02.0a]\ 

= 0 and Oi < 63 and u G [0i.03]; 

(2.13) 

= n^,„(/l2) = 0 and u G [^i.ft,]; 

and in addition, u satisfies (2.4)-

R e m a r k 2 .10 . In Remark 2.2 (5) we stated three necessary and sufficient condi-

tions for a Levy process to be a subordinator. These three conditions correspond 

respectively with the three conditions in Theorem 2.9, as we shall see in the proof. 

In particular, if one of the dot point conditions holds, and u G [6i,0j] for its re-

spective then n^_„vv((-oo, ()]) = 0, which we will show to be equivalent to 

(2.8), and the function g from (2.4) satishes g{u) = dri-uw € [—00, 00). Further, if 

g{u) is finite for some u G \0i, 0j] then ^̂  2ll^_„vv(d2;) < 00, which we will show 

to be equivalent to (2.9). Note that if 7/ - uW has no Brownian component, no 

negative jumps, but J^^ j j 2ll^_„n/(d2:) = 00, then, somewhat suprisingly, r/ - uW 

is fluctuating and hence not a subordinator, regardless of the value of the shift 

constant %-uw- This behaviour occurs since — —00, and is explained in 

Sato [62], pi38. 
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2.4 Proofs 

We begin by proving Theorem 2.3. For this proof, some lemmas are required. In 
these we assume that X = ij) has bounded jumps so that X has finite absolute 
moments of all orders. Then, to prove Theorem 2.3 we reduce to this case. 

L e m m a 2.11. Suppose X = has bounded jumps and E{r]i) = 0. If we let 
T > 0 be a fixed time then Z^ is a mean-zero martingale with respect to F. 

Proof. Since rj is a Levy process the assumption E{rix) = 0 implies that r; is 
a cadlag martingale. Since ^ is cadlag , e"^ is a locally bounded process and 
hence Z is a local martingale for IF by Protter [60], p . l7L If we show that 
E (sup^<j l^ri) < oo for every f > 0 then Protter [60], p.38 implies that Z^ is a 
martingale. This is equivalent to showing E (supj<j. \ Zt\) < oo. Since Z is a local 
martingale and Zq — 0, the Burkholder-Davis-Gundy ineciualities in Lipster and 
Shiryaev [46], p.70 and p.75, ensure the existence of 6 > 0 such that 

/ j-t \ / 
E sup < bE 

\0<t<T Jo J \ L./0 

l / 2 \ 

T 

/ 
= bE 

< bE 

= bE 

T 

d[7;, ri 
\ 
/ / rT 

l / 2\ 

sup e 77], 
\.Jo 0<t<T 

l / 2 \ 

/ 

sup e 
\0<t<T 

v^v] 
\ 1/2 

T 

< 6 ( E ( sup 
V \0<t<T 

\ \ 1/2 

/ / 

where the second inequality follows from the fact that [r/,//]^ is increasing and 
the final inequality follows by the Cauchy-Schwarz inequality. (The notation 
denotes the quadratic variation process.) Now, by Protter [60], p.70, 

\o<s<T 

= alT + T 
/ 

which is finite since r/ has bounded jumps. Thus it suffices to prove that 

\ 
E I sup e 

\0<t<T 
< 00. 

/ 
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Setting Yt := / a non-negative martingale, it follows by Doob's max-
imal inequality, as expressed in Shiryaev [1], p.765, that 

/ \ Eie-^^A 
E sup ^ < 4 — 

Vo<t<T / ~ {E{e-^r)f 

which is finite since ^ has bounded jumps and hence has finite exponential mo-
ments of all orders (Sato [62], p.161). It is shown in Sato [62], p.165, that 

= . Letting c € (0,oo) , the above inequality 
implies that 

suj) e < m a x { l , c ^ } £ ' sup — — 
\0<t<T / \o<t<T c J < oo. 

• 
We now present two lemmas dealing with absolute continuity of measures. 

These lennnas will be used to construct a new process W such that W'^ is a 
mean-zero martingale which is mutually absolutely contiiuious with Z^. Then 
P{Zt < 0) > 0 if and only if P{Wt < 0) > 0, and the latter statement will follow 
immediately from the fact that W^ is a mean-zero martingale. 

Lemma 2.12. Let X := r/) and Y :— (r, v) be bivariate Levy processes adapted 
to and let Zt := dr/, and Wt := f^e-^'-d/^,. If the induced 

probability measures of X^ and Y^ are mutually absolutely continuous, then the 
induced probability measures of Z^ and W'^ are mutually absolutely continuous. 

Proof Let D([(), T] R^) denote the set of ckllag functions from [0, T] to M^ and 
^2[0,T1 denote the a-algebra generated in this set by the Borel cylinder sets (see 
Kallenberg [33]). Then the induced probability measures of and Y^ can be 
written as Pxt and Pyr on the measure space (D([0, T] R^), _ q 

{C',C") be the co-ordinate mapping of {D{[0,T] ^ ^^ j^g^jf 

Z' on the probability space (D([ ( ) , r ] ^ R^), l̂ y _ f^e-^'-dCJ. 

Define W on (D([0, T] ^ R^), p^.,) by W^ := f^ e-'^'s-dCJ. Note that 
Z' and W are different processes since they are being evaluated under different 
measures. Now Z = X o Z' and W ^Y o W. Hence € A) = Pxt(Z' G A) 
and P(W^ e A) = PyT(lV' € A). Since Pxt and Pyr are mutually absolutely 
continuous, Protter [60], p.60 imi)lies that Z' and W are PxT-hidistinguishable, 
and PYT-inchstinguishable. So Pxt{Z' e A) = Pxt{W' G A). Since Pxt and Pyr 

are mutually absolutely continuous Pxt{W' € A) = 0 iff PyT{W' g A) = 0 which 
proves P{Z^ G A) = 0 iff G A) = 0, as required. • 
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L e m m a 2.13 . If X := rj) has bounded jumps, E{r]i) > 0, 77 is not a subordina-
tor, and rj is not pure deterministic drift, then there exists a bivariate Levy process 
Y :— {T,V) with bounded jumps, adapted to P), such that X'^^ and Y'^ 
are mutually absolutely continuous for all T > 0, and E{vi) — 0. 

Proof As mentioned in Remark 2.2 (5), the Levy process ?/ is a subordinator if 
and only if the following three conditions hold: cr̂  = 0, n ^ ( ( - o o , 0 ) ) = 0, and 
d,, > 0 where dr, : = 7,, - f^g jj yn^(dy). Thus it suffices to prove the lemma in the 
following three cases. 

Case 1: Suppose cr,, 0. Given dependent Brownian motions B^ and B^j 
there exists a Brownian motion B' independent of B^, and constants ai and 02 
such that {B^,Brj) = [a^B' + 02/?,, , B^). Using the Levy-Ito decomposition, X 
can be written as the sum of two independent processes as follows; 

= i^u Vt) = iCt + B^^t, 4 + (e; + arB[, r/J) + {a^B^^t, 

where is a pure jump Levy process with drift, independent of (J5g, Bj^). Let 
c : = E{rii) and define the Levy process Y by 

Yt := iCt + a,B[, + {a^iB.^t - ct), B^^^t - ct). 

It is a simple consequence of Girsanov's theorem for Brownian motion, e.g. Kle-
baner [36], p.241, that the induced measures of the processes B̂ ^ t and Bĵ  t — ct 
on {D{[0,T] are mutually absolutely continuous. It is trivial to 
show that this implies that the induced probability measures of {a2Br^ t, Brf^tY 
and (02(5^,4 — ct),Brj^t — c t Y are mutually absolutely continuous. Using inde-
pendence, this implies that the induced probability measures of X'^ and are 
mutually absolutely continuous. Note that if we write y as y = (r, u) then 
I't^ lit - ct so E{ui) = 0 as required. 

Case 2: Suppose = 0 and n^( ( -oo ,0 ) ) > 0. We can assume that X has 
jumps contained in A, a square in R^, i.e for all t > 0 

(A^^, Ar/t) e A : = {(x, y) e : - a < X < a, - a < y < a}. 

For any 0 < b < a define the set P C A by 

r {(x, y) e M^ : - a < X < a, -a < y < -b}. 

A Levy measure is a-finite and n^ ( ( - o o , 0 ) ) > 0 so there must exist a 6 > 0 
small enough such that U x { r ) > 0. By Protter [60], p.27, we can write X = 
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X + X where Xt := (|t, f/J is a Levy process with jumps contained in A \ P and 
^t •= i^t,Vt) is a compound Poisson process independent of X, with jumps in P 
and parameter A := HxlP) < oo. So we can write Xt = Ci where A'' is a 
Poisson process with parameter A and (Cj)j>i := (C- ,Cf) j>i is an independent 
identically distributed sequence of two dimensional random vectors, independent 
of N, with Ci e P. Let M be a Poisson process independent of N, Ci and X, with 
parameter r\ for some r > 1. Define the Levy process Y by Yt := Xt+J2i=i 
show the induced probability measures of X'^ and Y'^ on {D{[0,T] 
are mutually absolutely continuous. Since X is independent of both compound 
Poisson processes, this is equivalent to showing the induced probability measures 
of X^j^j Ci and X^fi'j Ci are mutually absolutely continuous. Let A E and 

note that 

P 
/ / Nt \ \ oo / / Nt \ \ 

'y-A G A G A NT = n P {NT = n 
\ \i=l / 0<t<T / / n=0 \\z=l / 0<t<T 

(2.14) 
Since A'' is a Poisson process, P{Nt = n) > 0 for all n G N. Thus the left hand 

0<t<T G /I TVr = n = 0 for all side of (2.14) is zero if and only if P 

n G N. 
For any Poisson processes, regardless of the parameter, Kallenberg [33], p. 179, 

shows that once we condition on the event that n jumps have occurred in time 
(0,T], then the jump times are uniformly distributed over (0,T]. This implies 
that 

/ / Nt \ \ / ( \ \ 
P G A NT = n = P ' y c . G A MT = n 

\ \ i = i / 0<t<T / \ \j=l / 0<t<T / 

Thus P ( ( Q) G / l^ = 0 if and only if P f f E f - i C^) G yl^ = 
\\ /o<t<T / yv /o<f<T y 

0, which proves that the two measures are mutually absolutely continuous, as 
recjuired. 

Recall that Yt = : {n^yt) = + Et='i Ci where X (e, f/) and Q := 
( q , C n G P. Thus ut = fit + which implies that tE{u,) = tE(f/i) + 
r\tE{C'^) where E{f],) > E{ru) > 0. Choosing r = E{ri,)/\XE{Cl')\ gives E{iy,) = 
0 as required. 

Case 3: Suppose CT^ = 0, n ^ ( ( - o o , 0 ) ) = 0, and dŷ  < 0, where we allow the 
possibility that d^ ^ - o o . If n^((0, oo)) = 0 then r/j = d^t is deterministic, and 
this possibility has been excluded. So n^((0,cx))) > 0, and we can assume X has 
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jumps contained in A where we define the set A := G R^ : - a < x < 

a, 0 < y < a} . For any 0 < 6 < a define the set C A by pC') { (x , y) € M^ : 

-a<x<a,b<y<a}.We can write X = X̂ ^̂  + X̂ ^̂  where X̂ ^̂  (eV''', 

is a Levy process with jumps contained in A \ r W and XW := { it^Vt^'^) is a 

compound Poisson process independent of with jumps in F̂ ^̂  and parameter 

AW := Hxir^")) < oo. 

If d,, e ( - oo ,0 ) then we can write £ (r/j"')) = d^t + /̂̂ Q Ĵ a;n^(dx). Since 

lim6io /(0 6) xYlr^idx) = 0, there exists b > 0 such that E {fjt^''^) < 0. If dr, = - o o 

then xn^(dx) = oo. Note that E(r/i) = E (r?/'')) + E (r?/")) G (0,oo) since 

jumps are bounded, whilst 

hm E (^t'-^A = hm / xHJdx ) = oo. 
HO V / bio 

Hence there again exists b > 0 such that E < 0. From now on we assume 

b > 0 is small enough such that E {fjt^''^) < 0. Since a Levy measure is a-finite and 

n^((0, oo)) > 0 we can also assume Ilxir' ' '^) > 0. Thus we drop the from our 

labeling. We can write Xt = Y^fh Ci where A'' is a Poisson process with parameter 

A and (Cj)j>i := (C-, C'")j>i is an independent identically distributed sequence 

of two dimensional random vectors, independent of N, with C, G F. Let M be a 

Poisson process independent of N, Ci and X , with parameter rX for some r > 0. 

Define the Levy process Y by Yt := Xt + Ci. Then the induced probability 

measures of X ^ and Y^ are mutually absolutely continuous by the same proof 

as used in Case 2. If Y =: (r, u) then lyt = m + C^' with Cf G [6, a]. Since 

EiVi) < 0 for our choice of 0 < 6 < a, choosing r = \E{fji)\/XE{Cl') gives the 

result. • 

Proof of Theorem 2.3. Take a general rj), let a > 0 and define 

A := { (x , y) G M^ : - a < X < a, -a<y <a}. 

We can write X = X + X where Xt := {it, fjt) is a Levy process with jumps 

contained in A and Xt := {it^Vt) is a compound Poisson process, independent of 

X , with jumps in M^ \ A, and parameter A := \ A) < oo. Note that 

0<s< f 

and by Poisson properties, P {X t = 0) > 0 for any i > 0. 
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Suppose that P (^J^ E-^^-dru < o ) > 0. Then P{ZT < 0) > 0, because 

p ( [ > p ( [ < 0 
V./o / \Jo 

Xr = 0 P Xt = 0 

= P e'^'-dfjs <0 XT = 0] P 

= P ( / < 0 P{XT = 0] 

[ X t = O) 

\.Jo 
> 0. 

Further, note that r/ is not a subordinator iff we can choose a > 0 such that f\ is not 
a subordinator. If CT^ > 0 or d,, < 0 then any a > 0 suffices. If oo,0)) > 0 
tfien we can choose a > 0 large enough such that 11,,((-a, 0)) > 0. The converse 
is obvious. Thus the theorem is proved if we can prove it for the case in which 
the jumps are bounded. From now on assume that the jmnps of X — are 
contained in the set A defined above. Note that this implies that E{rii) is finite. 

If 7/ is pure deterministic drift, then rjt = dĵ t where d^ < 0, since rj is not a 
subordinator. In this case the theorem is trivial, since Z is strictly decreasing. 
Thus, assume that r/ is not deterministic drift. We first prove the theorem in the 
case that —c := £'(7/1) < ()• Note that 

P ( Z t < 0) = p ( I + cs) - [ < 0 
\./o Jo 

> 

> 

P 

0. 

e + cs) < 0 
/ 

The final inequality follows by Lemma 2.11, which implies that fj^ e ^"'dlrjs + cs) 
is a martingale, so E ^ + cs)^ = 0. Note that fj^ + cs) is 
not identically zero due to our assumption that jj is not deternnnistic drift. 

Now we assume that c := £ (̂7/1) > 0. Lemma 2.13 ensures there exists Y := 
{T,I') with bounded jumps, adapted to {^L, P), such that and Y'^ are 
mutually absolutely contimious for all T > 0, and £'(i/i) = 0. If we let Wt 
f^ e"'^"-di^s then Lenmia 2.11 ensures that W'^ is a mean-zero martingale. We 
prove that WT is not identically zero 

Firstly, note that if is deterministic drift then the condition = 0 
implies that u is identically zero. This cannot occur, since ly is mutually absolutely 
continuous with 7/, and we have assumed that 7/ is not identically zero. Now, since 
i/ is not deterministic drift, the quadratic variation [î , i/] is an increasing process. 
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Hence 

e du. 
T 

> 0. 

If WT is identically zero then Wt must be identically zero for all t < T, since W'^ 

is a martingale. Thus [W, W]T = 0, which gives a contradiction. 

Since W is not identically zero, and E(WT) = 0, we conclude P(WT < 0) > 0. 

However, Lemma 2.12 ensures that the induced probability measures of and 

W'^ are mutually absolutely continuous. Hence P{Z t < 0) > 0. • 

Theorem 2.1 follows from Theorems 2.7 and 2.9. So we now prove these 

theorems. 

Proof of Theorem. 2.7. Property 1 is inunediate from the definition while Prop-

erty 2 follows from the fact that Vt is increasing in z for all t > 0. Let W be the 

process such = Then for any m € M, 

Vt = 
/ 
z-h I e 

\ Jo 
/ 

dih 

z + [ e-^^-d{ris - uWs) + u [ e'^'-dW^ 
Jo Jo 

= + J^ - uWs) + - 1) 

= u + u + J d{ris - uWg) 

Now if ?7 — zW is a subordinator then J^ d{ris — zWg) > 0 so 5{z) = z. By 

Theorem 2.3 if r; - zW is not a subordinator then for some t and some e > 0, 

> 0 

and so, with Vq = z + e and u — z, 

P 

P 

> 0, 

inf Vt < zVo = z + € 
\t>o 

Jnf + (̂ e + £ - zW^)^ | < 

which implies that ^(z) < S{z + e) < z and establishes Property 3. 

Property 3 implies Property 4 if r]-S(z)W is a subordinator. So suppose that 

T] - S(z}W is not a subordinator. Then from the argument above we know that 
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for some e > 0, + e) < S{z). Let = inf{t > 0 : Fj < « } . By definition 
of 5 we have that P{Ts(u)+e < oo) > 0. By the strong Markov property of Vt, if 
u < z, 

> 

> 
> 

P 

P 

inf Vt < S(u) Vo = z 
\t>o 

= P 

P 

0. 

jnf < S{u) \/o = 

inf < S{u)\Ts{u)+e < oo,Vo ^ z^ P {Ts(u)+t < oo) 

inf K < S{u)\Vo = S{u) + e ] p < (X)) 
yt>0 y 

This contradiction proves Property 4. • 

Proof of Theorem 2.9. The Levy process := r; — uW is a snbordinator if and 
only if the following three conditions hold: = 0, 05(1.) ((—oo,0)) = 0, and 
ds,u) > 0 where E (sj"^ - • 

Note that = 0 is equivalent to — uBw = 0, which is equivalent to 
Br, = - u B ^ by (2.10),which establishes (2.13). 

We show that has no negative jumps for u ^ Q \i and only at least 
one of the dot point conditions of the theorem hold. Using (2.10) we see that 

= Ar/( - u - 1.) . If > 0 then AS^'"' < 0 requires (A^ , At̂ J) be 
contained within or A^. Every (A^(,Ar/() e produces a < 0. 
Recall that the value 62 is the supremum of all the values of « > 0 at which there 
can be a negative jump with (A^t, Aryj) G A2. Note that at u ^ 62 such 
a jump is not possible. The obvious symmetric statement holds for 6 .̂ Hence, if 
u > 0 then has no negative jumps if and only if ,,(^3) = 0, < and 
u G [02, 04 . 

If n < 0 then < 0 reciuires (A^j, Ar/j) be contained within A'̂ , A2, or 
A^. Every (A^j, Ar/t) G A2 produces a < 0. Recall that the value is 
the supremum of all the values of < 0 at which there can be a negative jump 

with (A^, Ar?) G Ai, and at u = 0i such a jump is not possible. The 
obvious symmetric statement holds for 03. Hence, if li < 0 then can have no 
negative jumps if and only if = 0, < 63 and u G [Oi^O^]. Finally, if 
n«,r,(^3) = n5,^(/l2) = 0 then 03 = 02 = 0 and so both of the above are satisfied 
when II G \0i,0i\. 
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Now suppose that at least one of the dot point conditions holds. We let 

u G [0i,9j] for suitable i,j, and prove that g{u) = dgM. First, note that for any 

Borel set A 

J A J{x+y€A} 

{y - ux)Nw,r,,i (•,d(x,y)) 
{y-uzeA} 

Now 

dgiu) 

'(0,oo) 

= 77, - ujw 

7r, - ujw + e( dy) -u x7Viv,i(-,dx) 
\J\y\>l J\x\>l 

- / zNrj^uwA-,dz) 
J(0,oo) J 

e( [ yN,,,{;dy)-u [ (e"^ - l) TV .̂il-, dx) 
\J\y\>l J(-oo,-ln2) 

{y-«(e-^-l)>0} 

= 7̂ 7 

- (y - Ii(e - 1)) l{y-„(e--i)>o})%r, , i(- ,d(x,y)) 

1 2 
7r, + -

- E 

= 7r, + -

- E 

\./{y-u(e-^-l)>0}n{(-l,l)x(-l,l)} 
1 

The first equality follows because the expected value of each of the Brownian 
motion components of r/ and W is zero, as is the expected value of the com-
pensated small jump processes of rj and W. The second equality follows us-
ing (2.11) and the method above for converting integrals. The third equality 
follows using (2.12). The fourth equality follows since u is contained in suit-
able [0i,6j\ which implies that has no negative jumps, and correspondingly 
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{{y - - 1) < 0 } ) = 0. The final equality follows by (1.11) and (1.12). 

Thus we are done if we can exchange integration and expectation in the above 

expression. Now if f{x,y) is a non-negative measurable function and A is a Borel 

set in R^ then the monotone convergence theorem implies that 

/ r \ 
E 

/ JA \ja 

For general f{x,y), if /+(a ; , y)nj ,^(d(x, y)) or / " ( x , y)n^,^(d(a;, y)) is finite, 

then the following is a well-defined member of the extended real numbers; 

= f / + ( x , y ) n ^ , , ( d ( x , y ) ) - I r { x , y ) U U d { x , y ) ) 
J A .J A 

= [ f{x,y)Uad{x,y)). 
J A 

However, using the fact that 0 < — 1 + x < x'^ whenever |a;| < 1, we have 

{ux + 
{x2+y2<l} 

/ -{ux+ y)l{ux+y<o}^^,vid{x,y)) 

J{x2+y2<l} 

f 

./{x2+y2<l} 

< |u| / m i n { l , x 2 } n ^ ( d x ) , 
Jr 

which is finite since I l j is a Levy measure. Note that the first inequality follows 

from the fact that the choice of u satisfies — ~ 1) < 0 } ) = 0 whilst 

n 5 . ^ ( { y - ^ / ( e - - - l ) > 0 } ) > 0 . • 

Proof of Theorem 2.1. By Theorem 2.7, ^{Q) = 0 iff 5(0) = 0 iff r/ is a subordina-

tor. Suppose rj is not a subordinator and let c > 0. Clearly V'(c) = 0 if and only 

if (5(c) > 0. By Theorem 2.7, this is equivalent to the condition that there exists 

G < u < c such that (5(«) = u. Combining this fact with Theorem 2.9 proves 

Theorem 2.1. • 



56 CHAPTER 2. NO RUIN 

Proof of Theorem 2.4- Define * 

Jt+ 

Note that since we are integrating over {t, oo) there are no predictabihty 

problems moving e '̂ under the integral sign, as there would have been if we 

were integrating over [t,oo). Thus Ut = f^^ from which it follows, 

from Levy properties, that Ut is independent of ^ t and that Ut^ conditioned on 

T̂  < oo is independent of ^ t ^ . 

Since ?;) is a Levy process we know that for any u > 0 and t > 0 

(lu-,%) := - 6 , Vt+u - Vt) =D (2.15) 

Thus 

Js€{t,oo) Jue{0,oc) 

Jue{0,oo) Jue{0,oo) 

= D / (by (2.15)) = (since At/q = 0). 
Jue(o.oo) 

In particular, for any Borel set A, 

P {Ut^ e A\T, < oo) = P(Zoo e /I). (2.16) 

Next note that if a; G {T^ < oo} then by definition of U, 

2 +Zoo = z +Zr^+e'^^^Ur^ 

This implies that 

P ( r , < oo, 2 + Zoo < 0) = P{T, < oo, Kr. + Ut, < 0). (2.17) 

Finally note that (Zoo < -z) C (T < oo) since the convergence from Zt to Z^o is 
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a.s convergence. Thus 

P (2 + Zoo < 0) = P{T, < oo,z + Z^ <0) 

= P (T, < 00, F t . + t/r. < 0) (by (2.17)) 

= E (P(r, < c^, Vt, + UT, < 0|^tJ) 

= F P (VV, + UT, < (w)P(da;). 

But if Tz{u!) < 00 then 

P {Vt, + Ut, < (c^) 

= P {UT^ < -VTSLO)\T, < 

= P{Z^<-VTM) (by (2.16)). 

The second last equahty follows since Ut^ conditioned on T^ < 00 is independent 

of ^ T j - Thus we obtain the required formula from 

G{-z) = [ G{-VrJ{u;)P{du;) 

= E ( G ( - F t J 1 T . < O O ) 

= E(G(-\/tJ1t.<oo|P. < (X) )P ( r , <CX)) 

+ E {G{-Vt^)It.<oo\T, = 00) P ( T , = CX)) 

• 
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Chapter 3 

Certain ruin for the GeneraUsed 
Ornstein-Uhlenbeck process 

3.1 Introduction 
In Section 3.2, we state results on certain ruin for the GOU. Theorem 3.1 of 
Paulsen [56] gives conditions for certain ruin for the GOU in the special case in 
which ^ and r/ are independent. In Theorem 2.1 we showed that this theorem does 
not hold for the general case. Theorems 3.1 and 3.3 of Section 3.2 give the required 
generalization, stated in terms of the characteristic triplet of Section 3.3 
begins with results, in particular Proposition 3.6 and Theorem 3.9, which describe 
the structure of the upper and lower bounds and the sets of values on which the 
GOU is almost surely increasing, or decreasing. Section 3.3 then outlines the ruin 
probability implications of these structural results, in particular with Theorems 
3.13 and 3.14, which state conditions for certain ruin in terms of upper and lower 
bound structure. Section 3.3 concludes with technical propositions used to prove 
the major theorems. Section 3.4 contains proofs of the results in Section 3.2 and 
3.3, and concludes with a number of examples which illustrate and extend certain 
results. To avoid trivialities, assmne throughout this chapter that neither ^ nor 
r/ are identically zero. 

3.2 Conditions for Certain Ruin 
In Chapter 2, Theorem 2.1, exact conditions were given on the characteristic 
triplet of r/) for the existence of -u > 0 such that ip{u) = 0, and a precise value 
was given for the value inf{-(x > 0 : 'ijj{u) = 0 } , where we use the convention that 

59 
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inf{0 n [0, oo)} = cxD. It is a consequence of Theorem 3.1 below, that when the 
relevant assumptions are satisfied, there exists z >0 such that ^^{z) < 1 iff there 
exists u > 0 such that = 0. Thus, even though they are not stated explictly, 
Theorem 3.1 implies exact conditions on the characteristic triplet of r/) for 
certain ruin. 

Statements (1) and (2) of Theorem 3.1 are generahzations to the dependent 
case of Paulsen's Theorem 3.1, parts (a) and (b), respectively. Statement (1) of 
Theorem 3.1 also removes Paulsen's assumption of finite mean for and replaces 
his moment conditions with the precise necessary and sufficient conditions for 
stationarity of V. For statement (2) of Theorem 3.1, a finite mean assumption 
and moment conditions remain necessary. 

Theorem 3.1. Let m := mf{u > 0 : ip{u) = 0}. 

1. Suppose limt^oo6 = ^oo a.s. and < oo. Then 0 < < I iff 
0 < 2 < m < oo. 

2. Suppose = E < oo for some <5 > 0 and there exist p,q > 1 
with l/p+ 1/q = 1 such that E {e-P^') < oo and ^dr^il") < oo. If, for 
all c 6 R, the degenerate case (1.30) does not hold, then 0 < ip{z) < I iff 
0 < z < m < QC. If there exists c G R such that equation (1.30) holds, then 
'ijj{z) < 1 iffilj{z) = 0, which occurs iffO<c<z. 

Remark 3.2. 1. In proving [56] Theorem 3.1 (b), Paulsen discretizes the 
GOU at integer time points and then uses a recurrence result from [2 . 
His argument uses the inequality P{Vi < 0|Vo = z) > 0 for all z >0. When 

= 0, this inequality is valid in the independent case if either ^ or r] 
has a Brownian component, or can have negative jumps. However, even in 
the independent case, this inequality can fail to hold when Vt decreases due 
to a deterministic drift. For example, let N and M be independent Poisson 
processes with parameter 1 and define t̂ -t + Nt and r/j := -t + Mf 
Note that E{^i) = 0 and Paulsen's conditions are satisfied trivially. Let 
T, mf{t >0:Vt< OIK) = z}. Then % > {z + l)e-' - 1 := VI on t<T, 
and P{VI < 0|Ko' = z) = 0 whenever z > e^ ~ 1. In proving statement 
(2) of Theorem 3.1 we get around this difficulty by discretizing the GOU 
at random times Tj and then showing that the stated conditions result in 
P{Vt, < 0|Fo = 2) > 0 for all z > 0 in the general case. 

2. Assume that ^ and r] are independent and rj is not a subordinator. In this 
case, whenever ^ drifts to - o o a.s. or ^ oscillates between oo and - o o 
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a.s., it is a consequence of Theorem 2.1 that ip{u) > 0 for all u > 0, and 
hence m = oo. Thus, by statement (1) of Theorem 3.1, if linit^oo^ = 
a.s. and I^^j^i.v < oo, then 'ip{z) = 1 for all z > Q. This result is a slight 
strengthening of Paulsen's Theorem 3.1 (a). Further, statement (2) simpli-
fies exactly to Paulsen's Theorem 3.1 (b). Since ^ and rj are independent 
the conditions in statement (2) simplify to = 0, < oo 

E < oo and E{7]i) < oo. Since m — oo, ijj{z) = 1 for all z > 0 when-
ever these conditions hold. The simplification of conditions occurs because 
Holder's inequality is not needed in the proof, and a simpler argument us-
ing independence suffices. When transferred onto the Levy measure, these 
conditions are equivalent to those in Paulsen's Theorem 3.1 (b). 

We now present Theorem 3.3, which is the generalization to the dependent 
case of Paulsen's Theorem 3.1, part (c). In addition, Paulsen's assumption of 
finite mean for ^ is removed, and his moment conditions are replaced with the 
precise necessary and sufficient conditions for a.s. convergence of Zt to a finite 
random variable Z ^ , as t —> oo. A formula for the ruin probability in this situation 
was given in Chapter 2, Theorem 2.4, however no conditions for certain ruin were 
found. Theorem 3.3 gives exact conditions on the characteristic triplet of r;) 
for certain ruin. To state these conditions, we need to define the following terms. 

Let yli := {{x,y) G M^ : x > 0, y > 0} , and similarly, let A2, /I3 and /I4 be 
the quadrants in which { x > 0,y < 0} , { x < 0, y < 0} and { x < 0, y > 0} 
respectively. For each i = 1, 2, 3,4 and u G M let 

B^ := { ( x , y ) e A r . y - - 1) > O} 

and define 

^ { inf { « < ( ) : n^B^) > 0} ^ f sup {u < 0 : > 0} 
\ o if = 0, \ - 0 0 if \ = 0, 

f inf {U>0 -. naB^) > 0} ^ r sup {u > 0 : U^B^) > 0} 
' • \ (X) if \ >13) = 0, ' • \ 0 if \ ^3) = 0. 

Theo r em 3.3. Suppose limj^oo 6 = 00 a.s. and I^^r, < 00. Then ip{()) ^ I if and 

only iff —rj is a suhordinator, or there exists z > 0 such that 'ip{z) = 1. The latter 

occurs if and only if = 0, < 6*2, and there exists u G [^4, 0'^] such that 

1 -u 

—u u^ 
o l (3.1) 
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and 

g{u) % + ui^ - lua? - {ux + y)) < 0. (3.2) 

If there exists z>0 such that ^{z) = 1 and, for all c G R, the equation (1.30) 

does not hold, then the following hold: 

1. I f a l = 0 then Tpiz) = 1 for all z < m sup {u G : g{u) < 0} , and 
0 < ip{z) < 1 for all z > m; 

g. I f a l ^ 0 then = 1 for all z < m := and 0 < ip{z) < 1 for all 

z > m. 

If there exists z>0 such that ip^z) = 1 and there exists c G M such that (1.30) 
holds, then 0 < c = = = ^ for all z < c, and ij{z) = 0 for all z > c. 

R e m a r k 3.4. 1. When = 0, < and u G [O'^^O'^] the function 
g{u) is a well-defined member of the extended reals. The existence and 
finiteness of g is fully analysed in point (1) of Remark 3.19. 

2. Assume ^ and r; are independent. Then all jumps occur at the axes of 
the sets Ai, and = 0. With a little work, Theorem 3.3 simplifies to 
the following statement: Suppose l imj^oo6 = 00 a.s. and J^,,, < 00. Then 
ip{0) = 1 iff -7/ is a subordinator, or tp{z) = 1 for some z > 0. The 
latter occurs iff ^ and rj are each of finite variation and have no positive 
jumps, and g{z) < 0. Note that when ry) is finite variation, g simplifies 
to g{u) = + ud^, as explained in equation (3.4). Since ^ drifts to 00 

a.s., it must be that d^ > 0. Thus, g{z) < 0 for some 2; > 0 iff < 0. In 
particular, - r j is a subordinator. 

3. In Paulsen [56], Theorem 3.1 (c), it is stated that when ^ and 77 are inde-
pendent, > 0, and a set of moment conditions hold, then -ipiz) — 1 
iff f̂ = at, rjt — f3t and (3 < —az for real constants a and (3. This state-
ment contradicts the independence version of Theorem 3.3 stated above, 
and is false. A simple counterexample is (^,r/)t := {t,—t — Nt) where N 
is a Poisson process. Paulsen's moment conditions are satisfied trivially. 
However, Theorem 3.3 imphes that ip{z) = 1 for all z < 1, and this is con-
firmed by elementary calculations. If we denote the jump times of Nt by 
0 = To < Ti < Ta < • • • then 

/ Nt \ 

V i = i 
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Thus, if z = 1, then VT, = < 0 a.s. and so V ( l ) = 1-

The following proposition fully explains the ruin probability function for the 
degenerate situation (1.30). It will be used to prove that Theorems 3.1 and 3.3 
correctly allow for this case. 

Proposition 3.5. Suppose that there exists c e R such that Vt ~ e^'(z — c) + c. 
If c > 0 then il){z) — 0 for all z > c, and the following statements hold for all 
0 < 2 < c : 

1. If ^ drifts to —CO a.s. then 0 < < 1; 

2. If ^ oscillates between oo and —oo a.s. then il>{z) = 1; 

3. If ^ drifts to oo a.s. then ip{z) = 1. 

/ / c < 0 then the following statements hold for all z > {) : 

(4) If ^ drifts to —oo a.s. then ip{z) = 1; 

(5) If ^ oscillates between oo and —oo a.s. then = 1; 

(6) If i drifts to oo a.s. then 0 < tp{z) < 1. 

3.3 Upper and lower bounds and the ruin func-
tion 

Define the lower bound function 6 for V by 

S{z) := inf € M : P fiiif V, < u Vo ^ z] > 0 

and the upper bound function T by 

\<>o 

T(2) := sup {ueR: P sup Vt > u Vo ^ z 
\ t>o 

> 0 
/ 

where we use the convention that inf{0nIR} = oo and sup{0nIR} = —oo. When 
VQ — z, the probability that the sam])le i)aths Vt will ever rise above T(2;), or below 
(5(z), is zero. In particular, the ruin probability function satisfies i{j{z) = 0 iff 
^'(z) > 0. Define the sets L and U by 

L-.^{ueR: 6{u) = u} and [ / : = { « G M : T(u) = u}. 
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It will be a consequence of Proposition 3.17 that L and U must each be of the 

form 

0, {a}, [a, 6], [a, oo), or ( - 0 0 , 6] (3.3) 

for some a, 6 e M. The fact that L and U are both connected sets is of great 

importance. 

This section contains a detailed analysis of S,T,U and L and their relationship 

with the ruin function. In particular, we are interested in which combinations of 

L and U can exist. For each combination we are also interested in the possible 

asymptotic behaviour of namely, whether ^ drifts to 00 a.s., ^ drifts to - 0 0 

a.s. or ^ oscillates between 00 and - 0 0 a.s. We are interested in the asymp-

totic behaviour of ^ because of its link with the conditions for convergence of Zt 

and stationarity of V, as discussed in Section 1.4. As well as being of indepen-

dent interest, the results contained in this section are essential for the proofs of 

Theorems 3.1 and 3.3. 

We begin with some comments on S, and L. The analogues for T and U are 

obvious through symmetry. Firstly, note that 6{z) < z for all z G M, whilst the 

fact that Vt is increasing in 2: for a l H > 0 implies that 6{zi) < 6{z2) whenever 

zi < Z2- The following proposition explains the behaviour of the lower bound 

function outside the set L, and states that L is precisely the set of starting parts 

Vo = z for which almost all sample paths Vt are increasing for some time period. 

Recall that := mf{t > 0 : Vj G A}, and define := R \ L. 

Propos i t i on 3.6. The following statements hold for L and S, and the symmetric 

statements hold for U and T: 

1. If z > sup L then 5{z) = sup L; 

2. If z < inf L then 6{z) = - 0 0 ; 

3. For z E L, P {Vt is increasing on 0 < t < VQ ^ Z) = I; 

4. For z E L"", P {Vt is increasing ou 0 < t < VQ ^ Z) < 1. 

Recall that in Section 3.1 we assumed that neither ^ nor 77 are identically zero 

in order to avoid trivialities. The following proposition explains the nature of 

these trivialities. 

Propos i t i on 3.7. 1. L = R iff ^^ ^ {) a.s. for all t > 0 and Vj is a suhordina-

tor. 
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2. [/ = R zjff = 0 a.s. for allt>0 and —r/ is a subordinator. 

3. L = U = R iff = Tit = ^ a.s. for all t > 0. 

For tlie rest of this chapter we again assume that neither ^ nor r] are identically 
zero. The following proposition explains the degenerate situation described in 
equation (1.30). Note that the deterministic case := {a, (3)1 for non-zero 
constants a and (3 satisfies the conditions of this proposition for c = —fija. 
Recall that a Borel set A C R is an absorbing set for V, if for all 0 < s < i, 
P{Vt e A|\/s = x) = 1 for all x G A. That is, whenever a sample path Vt hits A, 
it never leaves. The stochastic exponential will be denoted by e. 

Propos i t i on 3.8. The following are equivalent for c ^ 0.-

1. LnU 

2. LnU = { c } ; 

3. Vt = -c) + c andZt = c (e"^' - l) ; 

4. {c} is an absorbing set; 

5. satisfies (3.1) for u = c, fl^ ,, = 0 or is supported on the curve {{x,y) : 
y — c{e~^ — 1) = 0}, and g{c) = 0; 

6. = ein/c)t. 

If the above conditions hold and E ,̂̂  0 then L — U — { c } and there exist 
Levy processes for this .situation such that ^ drifts to 00 a.s., ^ drifts to 
—00 a.s. or ^ oscillates a.s. If the above conditions hold and = 0 then: 

(a) U = (—oo,c] and L = [c, 00) iff ^ is a subordinator; 

(b) L = (-(X),c] and U = [c, 00) iff is a subordinator; 

(c) L = U = { c } iff neither ^ or —^ is a subordinator. There exist Levy pro-
cesses for this situation such that drifts to 00 a.s., ^ drifts to —00 
a.s. or ^ oscillates a.s. 

Now we present a theorem which describes all possible combinations of L and 
U and the associated asymptotic behaviour of for the case in which LHU = 

T h e o r e m 3.9. Suppose that LDU = 0. //E^,,, 0 then only the following cases 
can exist: 
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2. L = { a } for some a G M and U = 0; 

3. U = {a} for some a e R and L ^ ill. 

If E ,̂̂  = 0 then only the following cases can exist: 

(a) If L = H) then U is of the form 0, { a } , [a,b], [a,oo), or ( - 0 0 , 6 ] for some 

a,6 e M; 

(b) then L is of the form 0, { a } , [a, 6], [a, 00), or ( - 0 0 , 6 ] for some 

a,h G K ; 

(c) If L ^ 0 and [ 7 ^ 0 then there exist a < b such that L = ( - 0 0 , a] and 

U — 00), or U = (—00, a] and L = [6, cx)). 

If U — {-00, a] or L ^ [6, 00) (or both with a < b) then ^ is a suhordinator. If 
L = (—CO, a] or U = [6, co) (or both) then is a subordmator. For all of the 
other combinations of L and U above, there exist Levy processes r;) such that 
^ drifts to 00 a.s., ^ drifts to —00 a.s. or ^ oscillates a.s. 

An absorbent set A C IR is a maximal absorbing set if it is not properly 
contained in any other absorbing set. Note that if A is a maximal absorbing set, 
then R \ A contains no absorbing sets otherwise we could take the union of A 
with the absorbing set, and this would be an absorbing set properly containing A. 
The following corollary is immediate. For each statement (l)-(4), the claim that 
the sets A are maximal absorbing follows from Proposition 3.6. The remaining 
statements follow immediately from Theorem 3.9. 

Corollary 3.10. There exist Levy processes (^,77) with L n [ / = 0 such that the 
associated GOU has the following maximal absorbing sets A : 

1. A = U U L, where U — (—00, a] and L = [6,00); 

2. A = U, where U = ( - 0 0 , a] and L = 0 ; 

3. A^ L, where L = 00) and U = 0; 

4. A ^ {a,b) where L = ( - 0 0 , a] and U = [6,00). 

has LnU = 0 and does riot have U and L satisfying one of (l)-(4), then 
no absorbing sets exist. 
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We examine two striking cases of L and U structure, and state exact condi-

tions on the characteristic triplet of for such behaviour. Note tha t similar 

conditions can be found for each of the other L and U s tructures s tated in The-

orem 3.9, however, the s ta tements are longer and unwieldy. 

P r o p o s i t i o n 3 .11 . Suppose LnU = 0. Then U = (—cx),a] and L = [5, oo) for 

—oo < a < b < oo i f f is of finite variation and the following hold: 

• There is no Brownian component (E^,^ = 0); 

• The drift of ^ is non-negative {d^ > 0); 

• The Levy measure satisfies = = 0, 9[ > —oo, and 02 < oo. 

If these conditions hold then ^ is a subordinator and, for any Vq = ^ K) 
limt_oo |Vt| = cx) a.s. 

Similarly L = ( — 0 0 , 0 ] and U — [ 6 , C X D ) for — 0 0 < a < b < 00 i f f is of 
finite variation and the following hold: 

• There is no Brownian component = 0); 

• The drift of ^ is non-positive [d^ < 0); 

• The Levy measure satisfies = = 0, < c« and 63 > —00. 

If these conditions hold then is a subordinator, and V is strictly stationary 

and converges in distribution as t ^ 00 to a random variable Voo supported on 

ia,b). 

We now present a theorem describing the relationship between the sets L and 

U, and the upper and lower bounds of the limit random variable Z^o of Zt as 

t ^ 00. 

T h e o r e m 3 .12 . Let a, 6 S M and suppose Zt Z^o a.s. as t ^ oo, where Z^o 
is a finite random variable. I f , for all c G M, the degenerate case (1.30) does not 
hold, then a < sup [/ i f f Z00 < —a o-s., whilst b > mi L i f f Z^o > —b a.s. Further, 
- s u p f / = inf{w G M : Zoo < u a.s.} and - inf L = sup{u 6 R : Zoo > u a.s.}. 
Alternatively, if there exists c G R such that equation (L30) holds, then Zoo — —c 
a.s. and inf L = sup U = c. 

The next theorem presents results on certain ruin which occur when L and U 
are of a particular structure. 



68 CHAPTER 3. CERTAIN RUIN 

Theorem 3.13. Suppose that LClU = 0. Then the following statements hold: 

1. / / sup [/ > 0 and L n [0, sup U] = 0, then = 1 for all z < sup t/; 

2. / / supL > 0 and Un[0, sup L] = 0, thenO< ^{z) < I for allQ < z < mil. 
If sup L > 0 and U n [0, sup L] 0, then ip{z) < 1 for all z > sup U. 

Note that in statement (2) above, when supL > 0 and LnU ^ 0 , Theorem 
3.9 ensures that supU < inf L, and statement (1) above ensures that tp{z) = 1 
for all 2 < sup U. Also, by definition of L, •\p{z) = 0 whenever z > inf L. 

We now present a major theorem which utilises Theorems 3.9, 3.12 and 3.13, 
and is the major tool in proving Theorems 3.1 and 3.3. For the non-degenerate 
case, and for r/) which satisfies various asymptotic and stability criteria, this 
theorem presents iff conditions for certain ruin, stated in terms of L and U struc-
ture. In particular, it completely describes the L and U structures for which 
certain ruin occurs. 

Theorem 3.14. Suppose L n f/ = 0. 

1. Suppose hmj^oo6 = ~oo a.s. and I-^^xi-v < co. There exists z > 0 such 
that i p { z ) < 1 iff L 00) ^ 0. If this occurs then 0 < ip{z) < 1 for all 
0 < 2 < inf L, il>{z) = 0 for all z > inf L, and one of the following must 
hold: 

(a) L = [a, 6] and U — where —00 < a < b < 00, and b > 0; 

(b) L = (—00, a] and U = [5, 00) where 0 < a < b < 00. 

2. Suppose = 0, E < 00 for some S > 0 and there exist p,q > 1 
with l/p+l/q=l such that E {e-P^') < 00 and E {Irn]") < 00. There exists 
z >0 such that il;{z) < 1 iff L n[0, 00) ^ 0. If this occurs then L = [a, b] 
and U = <Il, where - 0 0 < a < b < 00 and 6 > 0, m which case 0 < il){z) < 1 
for alio < z < a and il){z) — 0 for all z> a\ 

3. Suppose limt^oo6 = 00 a.s. and Ĵ ,̂  < 00. There exists z > 0 such that 
ip{z) = 1 iff U n[0, 00) ^ 0. If this occurs then one of the following must 
hold: 

(c) U = [a,b] and L = ij}, where - 0 0 < a < b < 00 and 6 > 0, n̂ which 
case i p { z ) = 1 for all z < b and 0 < ^|J{z) < 1 for all z > b; 
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(d) U = (—00, a] and L = [b,oo) where 0 < a < b < 00, in which case 

ip{z) = 1 for all z < a, 0 < ip{z) < 1 for all a < z < b and ip{z) = 0 
for all z > b. 

Remark 3.15. The characteristic triplet conditions which ecjuate to the iff result 
in statement (3) above, are given in Theorem 3.3, and are obtained using the 
forthcoming Proposition 3.20. Further, exact characteristic triplet conditions 
for the structure U = (—00, a] and L = [6, 00) in case (d) above, are given in 
Proposition 3.11. 

3.3.1 Technical results on the upper and lower bounds 

We present a series of important technical propositions on S, L, T and U. As 
well as being of independent interest, they are essential in proving the previously 
stated theorems. The first proposition is obtained by combining and restating 
parts of Proposition 2.6, Theorem 2.7 and Theorem 2.9, and no proof is given. 
When put into this form the proposition completely describes the relationship 
between the Levy measure of 77) and the lower bound function <5. We recall 
some notation from Section 2.2. Let Aj := {{x,y) G M^ : x > 0, y > 0} , and 
similarly, let A2, A3 and A4 be the rjuadrants in which {x > 0,y < 0} , {x < 
0, y < 0} and {x < 0, y > 0} respectively. For each i = 1, 2, 3,4 and tt 6 M define 
Â l { (x , y ) e A r . y - - 1) < 0} . For < 0 define 

Ox : = 
sup {u < 0 : > 0 } ^ _ f inf {u < 0 : > 0} 

\ - C X ) i f \ ^ 4 ) = 0, ' ' " [ O i{n^,r,{A3\A,) = o, 

and for M > 0 define 

^ f sup {u > 0 : > 0 } ^ ^ f inf {u > 0 : > 0} 
\ 0 if = 0, I 00 = 

Throughout, let W be the Levy process such that = t{W)t. 

Proposition 3.16 (lower bound). The following statements are equivalent: 

1. The lower bound d{z) > —00 for some z G R ; 

2. There exists u eM. such that 6{u) = u; 

3. There exists u G M such that the Levy process rj — uW is a subordinator. 
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Statements (2) and (3) hold for a particular value u ^ 0 iff the following three 

conditions are satisfied: (i) the Gaussian covariance matrix satisfies equation 

(3.1); (n) one of the following is true: 

(a) = 0, ^ 0, 02 < Oa and u G [02,^4]; 

(b) = 0, ^ 0, < 03 and u G [^i.^a]; 

(c) = = Q and u^ [01,04]; 

and, (ill), in addition, u satisfies g{u) > 0 for the function g from equation (3.2). 

From the definition of L it is an immediate corollary, firstly, that L = 0 ifî  
none of conditions {l)-(3) of Proposition 3.16 hold, and secondly, that 77 is a 
subordinator iff 0 G L. The next proposition adds further information concerning 
L. Most importantly, it shows that the set L is always connected, and gives 
concrete values for the endpoints. 

Propos i t ion 3 .17 . // cr| 0 and any of conditions (l)-(3) of Proposition 3.16 
hold, then L = //a| = 0 and any of (l)-(3) hold, then cr̂  = 0 and one 
of the following holds: 

• Tj is a subordinator and condition (ii) of Proposition 3.16 does not hold for 
any u ^ 0, in which case L = {0 } ; 

• Condition (11) is satisfied for some u^ 0, in which case there exists —00 < 
a < b < 00 such that L — [a, b]. 

In the latter case, if condition (a) of Proposition 3.16 holds then Q < a = 
max{02,mi} and b = min{04,m2} for mi := inf{tt G M : g{u) > 0} and 
m2 sup{u G M : g{u) > 0} . If (b) holds then a = m a x { 0 i , m i } and b = 
min{03,7722} < 0. If (c) holds then a — ma.x{9i,mi} and 6 = min{04,7712}. 

Define L* to be the set of starting values on which the GOU has no negative 
jumps, namely 

r := {7/ G M : Vt > 0 P (AI4 < 0|14_ = tx) = 0} . 

It is an immediate consequence of Proposition 3.6 that L C L*. The next proposi-
tion describes L*. In particular, it shows that the set L* is always connected, and 
gives concrete values for the endpoints. It also shows that whenever Vt- > sup L* 
and a negative jump AVt occurs, then the jump cannot be so negative as to cause 
Vt < supL*. Thus, L* acts as a barrier for negative jumps of V. 
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P r o p o s i t i o n 3 .18. 1. IfL*^^ then, for any t > 0, Vt- > supL* implies 

Vt > supL* a.s.; 

2. L* = {u eR : r] - uW has no negative jumps}; 

3. L* ^ 0 iff condition (n) of Proposition 3.16 is satisfied for some u 0, or 

rj has no negative jumps; 

4. L* = { 0 } iff ri has no negative jumps and condition (ii) does not hold for 

any w 0; 

5. If condition (11) of Proposition 3.16 holds for some if ^ 0 then L* = [62, 6*4], 
or [01,^4], corresponding to conditions (a), (b) or (c) of Proposition 

3.16. 

Remark 3 .19. 1. If is an infinite variation Levy process then, as noted 
in Proposition 1.11, K̂ ,̂ y)) = 00. Thus, it may be the 
case that for a particular ti G M the integral + 
and hence the function g{u) in (3.2), may not exist as a well-defined member 
of the extended real numbers. However, it is a consequence of the proof of 
Theorem 2.9, that if u € L* then g{u) is a well defined member of the 
extended reals, and g{u) e [ -cxd,oo). Under such conditions, it is also 
shown that 

n^,, {{y - u{e-' - 1) < 0 } ) = 0 

and so the domain of integration for the integral component of g can be 
decreased to {x^ + < 1} n {y - - 1) > 0}. 

2. Note that 5 is a linear function on R iff the Levy measure of is of 
finite variation, namely 

/ < 00. 

In this case the drift vector (d^, rf,;) is finite, and we can write 

9{u) = 7r, - / yn,,(dy) + u (75 I a:n5(dx) 
•A-1,1) V -^(-1,1) 

/ 1 \ 
= dr, + u l^d^ - j , (3.4) 

where the first eciuality follows by converting (7^,%) to (7^,7,,) using eciua-
tion (1.11) and the syunnetric version for r/, and the second equality follows 
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by converting (75,7,,) to {d^,drj) using equation (1.9). It will be a conse-
quence of the proof of Proposition 3.17, that if a,b e L and a^ b then g is 
a hnear function on R. 

3. In Proposition 1.14 we stated exact conditions for a Levy process to be a 
subordinator. When n ^ 0 the Levy measure conditions in Proposition 3.16 
are exactly the requirements for r? - uW to be a subordinator. Equation 
(3.1) is equivalent to the condition = 0. The requirement that one 
of the conditions (a), (b) and (c) holds is equivalent to the requirement 
that there exists u ^ 0 such that n^_„iy((-cx), 0)) = 0. Note that this 
implies that L* \ { 0 } is precisely the set of all u ^ 0 such r? - uW has 
no negative jumps. Finally, \i u e L* then g{u) = and hence 
condition (3.2) is equivalent to the requirement that rj - uW has positive 
drift. The fact that rj — uW is of finite variation actually follows from the 
two conditions n^_uw((—00,0)) = 0 and dri-uw > 0. To see this, note that 
when 00,0)) = 0, the equation (1.9) simplifies to 

drj-uW — lr]-uW — / 
. 7 ( 0 , 1 ) 

dx) 

and hence dr,-uw is a well-defined member of the extended reals regardless 
of whether rj — uW is finite variation. In particular, dr,-uw € [—00, 00), and 
drj-uw = —00 iff Ĵ Q xn^_„vv(dx) = 00 which occurs iff r/ — uW is infinite 
variation. 

Although the situation is symmetric, we explicitly state the parallel version 
for U and T, to Proposition 3.16. No proof is given. We state the parallel result 
explicitly because some of the statements are not obvious, and we need to use 
them for Theorem 3.3. Also, we will need to combine them with the statements 
for L and 8 in order to prove Theorem 3.9, 3.13 and 3.14. If we define 

{ / * : = { « G M : Vt > 0 P ( A ^ > 0|\4_ = « ) = 0} , 

then the symmetric versions of Proposition 3.17, Proposition 3.18 and Remark 
3.19 also hold. We will need to use these results, however the parallels are obvious 
in this case, so we do not state them explicitly. 

Proposition 3.20 (upper bound). The following are equivalent: 

1. The upper bound T(/r) < 00 for some z G R ; 
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2. There exists u G M such that T (u) = u; 

3. There exists u G M such that the Levy process —{r] — uW) is a subordinator. 

Statements (2) and (3) hold for a particular value u ^ 0 iff the following three 
conditions are satisfied: (i) the Gaussian covariance matrix satisfies equation 
(3.1); (a) one of the following is true: 

(a) = 0, ^ 0, e'^ < e'^ and u e 

(b) = 0, ^ 0 , < e\ and u e 

(c) n^,r,{Ai) = - 0 and u G 

and, (ill), in addition, u satisfies g{u) < 0 for the function g from equation (3.2). 

Remark 3.21. Symmetric statements to those for L and L* in Remark 3.19, 
hold for U and U*. The following remarks relate to the combination of L and U, 
and L* and U*. 

1. Parallel to 1 and 2 of Remark 3.19, whenever u G U*, g{u) from (3.2) is a 
well-defined member of the extended reals, g{u) G (—00,00], and —g{u) = 
d^(ri-uW)- Since = —d^-uw, we know that if u G U*LiL* then g{u) 
is a well-defined member of the extended reals and g{u) = drj-uw-

2. li a E L, b E U and a ^ b then g is linear and j]) is finite variation. This 
statement is proved easily using similar arguments to those in the proof of 
Proposition 3.17. 

We state a proposition, describing the possible combinations of L* and U*, 
which will be essential for proving Theorem 3.9. 

Proposition 3.22. The following statements hold for L*, and the symmetric 
statements hold for U* : 

1. IfL* = R then U* = % or U* ^ R; 

2. If L* = [a, b] for some -00 < a < b < 00, then U* ^ % or U* = L* = {a} = 

3. If L* = [6,00) for some b G R, then U* ^ ^ or U* ^ ( - 0 0 , a] for some 
—00 < a < 6 < 00; 
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4. If L* = ( -cx) ,a] for some a e R, then U* = ^ or U* = [6,00) for some 

—00 < a < b < 00. 

We end this section with two usefnl lemmas. The first follows by considering 
the definitions of (9i and for i = 1,2,3,4, and no proof is given. It will be 
used several times as a calculation tool. The second gives conditions on the 
Levy measure of C and r] which ensure that the random variable supo<j<i \Zt \ has 
finite mean. It will be needed to prove statement (2) of Theorem 3.1. 

Lemma 3.23. 1. ^ 0 then 9[ < < 0; 

5. If ^ 0 then 0<e'^< 62] 

3. ^ 0 then 03 < < 0; 

4. If U^^niAi) ̂  0 then Q < 64 < 0'^. 
Further: 

(a) = ^ iff 9] = -00 and e[ - 0; 

(b) = 0 iff 62 = 0 and = 00; 

(c) = 0 iff 93^0 and = - 0 0 ; 

(d) = 0 iff 94 = OG and 9'^ - 0. 

Lemma 3.24. Suppose there exist r > 0 andp,q > 1 with l/p+ l/q — 1 such 
that E < 00 and E < 00. Then 

< 00. (3.5) 

Remark 3.25. Note that if ^ and rj are independent then the conditions of the 
above lemma simplify to the requirement of r > 0 such that E < 00 
and < 00. 

3.4 Proofs and Examples 
The proofs of the results are presented in mathematically chronological order 
rather than the order in which the statements of the results are presented. For 
all the proofs, except the proof of Proposition 3.7, we assume that neither ^ nor 
rj are identically zero. 

/ ft max{ l , r }\ 

E sup / e-^^-dri. 
yo<t<i Jo / 



3.4. P R O O F S A N D E X A M P L E S 7 5 

Proposition 3 . 1 8 . We begin by proving statements (2) and (3). The proof of 

statements (4) and (5) follows trivially from the proof of statements (2) and (3). 

We finish by proving statement (1). 

(2) It is a conseqnence of the statement of Proposition 2.6 that 

A(r/, - uWt) = Ar/̂  - u (e"^^' - l) . 

Thus, equation (2.3) implies that whenever Vt̂  = u, a jump (A^t^^Vt) causes a 

negative jump AVf iff A(r/f — uWt) is negative. Hence L* is precisely the set of 

all u such that rjt - uWt has no negative jumps. 

(3) By (2) above, L* 0 iff 7/ — uW has no negative jumps for some ti G K. 

If u = 0, this occurs iff r/ has no negative jumps. If ti 0, it is noted in point (3) 

of Remark 3.19, that this occurs iff u ^ 0 satisfies condition (ii) of Proposition 

3.16. 

(1) Suppose L* i- 0. If 0 G L* then the statement is trivial. If 0 0 L* then 

condition (ii) of Proposition 3.16 must hold for some u ^ 0. We can assume that 

condition (a) of Proposition 3.16 holds. If condition (b) or (c) of Proposition 

3.16 holds then the proof is similar. Since (a) holds, property (5) implies that 

L* = [62, 9i]. Recall that equation (2.2) states 

Al/t = + 

and suppose Vt- > 64. It follows immediately from the definitions of 64 and A^, 

and from eciuation (2.2), that there exists (x, y) G A^'' such that (e^-l)(94+e^y > 

0 and (e^ - l)Vt- + e^y < 0. Thus, 

= + ( e ^ - l ) { V t ^ - 84) + ( e " - 1 ) 0 4 + e^y 

> V t . + {e^ - l ) { V t . - 64) 

> 04, 

as required. 

• 

Proposition 3 . 1 7 . Assimre that a'^ ^ 0 and statements (l)-(3) of Proposition 3.16 

hold for some u ^ 0. Then equation (3.1) must hold for u, which implies that 

u = — a n d hence is the unique non-zero number satisfying statements (l)-(3) 

of Proposition 3.16. Since satisfies condition (2), L = by definition. 
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Now assume that cr| 0 and statements ( l ) - (3) of Proposition 3.16 hold for 
u = 0. By statement (2), 0 G L. By statement (3), is a subordinator, and hence 

= â r̂i = 0. Thus, by the above, no non-zero number can satisfy statements 
( l H 3 ) , a n d s o L = {0 } = { - ^ ^ } . 

Now assume that cr| = 0. If statements ( l ) - (3) of Proposition 3.16 hold for 
n = 0 then r/ is a subordinator by statement (3) and hence = 0. Alternatively, 
If statements ( l ) - (3) of Proposition 3.16 hold for some u ^ O then equation (3.1) 
must hold for u, which implies that cr̂  = and so a^ = 0. 

Now assume that cr̂  = 0 and condition (ii) of Proposition 3.16 does not hold 
for any u 0. This immediately implies that L n (M \ { 0 } ) = 0. If, further, 77 is 
a subordinator, then 0 G L, and hence L — {0 } . 

Now assume that = 0 and condition (ii) of Proposition 3.16 holds for some 
u ^ 0. This occurs precisely when one of conditions (a), (b) or (c) of Proposition 
3.16 holds, and equation (3.2) holds. It follows immediately that inf L = a 
and supL = b for the values of a and b given in the proposition statement. It 
remains to prove that the set L is connected. Since L* is connected, this occurs 
iff {u G M : g{u) > 0} is connected, which follows from the analysis below. 

As noted in point (1) of Remark 3.19, whenever u G L* we know g{u) G 

[—CO, 00). There are three possibilities for behaviour of g on L*. Firstly, it may 
be that g{u) = —00 for all u e L*. Secondly there may exist v e L* such that 
g{v) is finite and g{u) = —00 for all u ^ L* with u ^ v. We show that the only 
other possibihty is that g is linear on R. Suppose there exists Ui,U2 G L* with 
ui ^ U2, such that g{ui) and g{u2) are both finite. Then 

5(ui) - g{u2) = f f ? [ y))^ {u^ - U2) 
\ ^ .7{x2+jy2<l} J 

is finite, which implies that y)) exists, and is finite. Since 
g{ui) is finite, this imphes that y)) exists and is finite. Thus, 
5 is a hnear function on M. • 

Proposition 3.6. It is a consequence of Proposition 3.16 that S{S{z)) = S{z) and 

S{z) = sup{n < 2 : S{u) = u}. (3.6) 

Now the first statement of Proposition 3.6 follows immediately from (3.6). To 
prove the second statement, assume 2 < inf L. Suppose - 0 0 < m := 5{z). Since 
S{z) < z, we have -cx) < m < z < inf L. However, equation (3.6) imphes that 
m e L, which gives a contradiction. Hence ^(2) = - 0 0 . The third and fourth 
statements follow immediately from the definitions of S and L. • 
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Proposition 3.7. Assume L = R. This implies, using Proposition 3.16 and point 

(2) of Remark 3.19, tliat E^^^ = 0 and g is linear. Further, it must be the case 

that = = 0 and L* = [61,04] = ( - 0 0 , 0 0 ) . Now 9i = - 0 0 iff 

00) X [0,oo)) whilst 04 = - 0 0 iff n^,^((-oo,0) x [0,oo)) = 0. Hence ^ 

can have no jumps and r; can only have positive jumps. By Proposition 3.16, 

g{u) > 0 on M. Since g{u) = + ud^, this implies that d^ = 0 and d,, > 0, thus 

proving one direction of the first claim. The converse is trivial since the GOU 

simplifies to Vf = z + 7]t. The proof of the second claim is similar. The third claim 

follows immediately from the first two. • 

Proposition 3.22. We prove statements (1), (2) and (3). The proof of statement 

(4) is symmetrical to the proof of statement (3). 

(1) Assume that L* = R. Then condition (c) of Proposition 3.16 must hold, 

and so == = 0, and L* = [6*1,6*4]. Since Ox = - 0 0 and 64 = 00, 

it must be that \ A4) == 0 and \ Ax) = 0, respectively. Thus, if 

n Aa) = 0 then = 0, in which case condition (c) of Proposition 

3.20 holds, and U* = M. Alternatively, if n A4) 0 then r/ has positive 

jumps and so 0 ^ U*, and condition (ii) of Proposition 3.20 cannot hold. Hence 

U* - 0. 

(2) Assume that L* = [a, b] for some - 0 0 < a < b < 00. There are four ways 

in which this is possible, namely, when conditions (a), (b) or (c) of Proposition 

3.16 hold, or when L* = {0}. For each of these four cases we show that {/* = 0 

or U* = L* = {a} = {b}. 

Suppose first that condition (a) of Proposition 3.16 holds, and U* 0. The 

case in which condition (b) holds and U* ^ 0, is symmetric. Propositions 3.16 

and 3.18 imply that = 0, 0, 02 < and L* = [02,04]. Since 

94 < 00, it must be that \ /l i ) ^ 0. Since = 0, this implies 

that -T] is not a subordinator, and so 0 ^ U*. Thus, since we have assumed 

that U* 0, it must be that condition (a) of Proposition 3.20 holds, and so 

^ 0, 04 < O2, and U* = [04,0^. However, statements (2) and (4) of 

Lemma 3.23 state that < 02 and 6I4 < Hence 0'.^ ^ 0^ = O404. 

Now suppose that condition (c) of Proposition 3.16 holds. Then = 

= 0, and L* = [6*1,6*4]. Since 04 < 00 and Ox > - 0 0 it must be that 

\ ^1) 0 and \ A4) 0, respectively. Hence condition (ii) 

of Proposition 3.20 cannot hold, and so U* \ {0} = 0. Further, -r/ is not a 

subordinator, and so U* — 0. 

Now suppose that L* == {0}, and U* 0. By statement (4) of Proposition 3.18, 



78 CHAPTER 3. CERTAIN RUIN 

L* = {0} iff 7] has no negative jumps and at the same time H A4) ^ 0 

and n Ai) 0. Hence, condition (ii) of Proposition 3.20 fails to hold, 

which implies U* \ {0} = 0. Thus, since we have assumed U* ^ 0, it must be that 

U* = L* = {0}. 

(3) Assume that L* = [b, 00) for some 6 G M and U* = We show that 

U* = (-00, a] for some -00 < a < 6 < 00. By the symmetric version of statement 

(2) of Proposition 3.22, it is immediate that U* ^ {0}. 

Since L* = [b,oo), condition (a) or (c) of Proposition 3.16 must hold, with 

64 = 00. Thus, = 0, which implies that = —00. Also, since 64 = 00, it 

must be that = 0. Since U* ^ 0, it must be that Yl^^rjiAiOAi) = 0, 

and so = 0. This implies that one of conditions (b) or (c) of Proposition 

3.20 must hold, and so U* = (-00, or U* = (-00,^2] respectively. Now, if 

condition (a) of Proposition 3.16 holds, then L* = [62, 00). Note that Lemma 3.23 

states that 6[ < 0 < 02 < O2, and hence the result is proved for either form of U*. 

Alternatively, if condition (c) of Proposition 3.16 holds, then L* = [0i,oo) 

where 9i > -00, which implies that \ ^4) ^ 0. Hence, condition (b) of 

Proposition 3.20 must hold and U* = (—oo,0j]. Lemma 3.23 states that 9[ < 

and so we are done. • 

Proposition 3.8. We prove the equivalence of statements (l)-(6). 

( 1 ) 0 ( 2 ) Assume L D U ^ ^ and let 2:i,2;2 G L f] U. We show zi ^ Z2 ^ 0. By 

Proposition 3.16, 2: G L iff 7/ — zW is increasing and by Proposition 3.20, 

2 € C/ iff r; — zW is decreasing. Thus, r] — ZiW — r} — Z2W = 0, which 

implies ZiW — Z2W. Since ^ is not zero, W is not zero, and thus Zi — Z2. 

Further, if zi = Z2 = 0, then r/ must be both increasing and decreasing, 

which requires that rj be identically zero. Since we have rejected this case, 

it must be that zi = Z2 ^ 0. 

(2)^(3) Suppose LnU = {c}. Then Vt = c for a lH > 0 whenever Fq = c, which 

imphes e '̂ ( c+ Zt) = c, which implies Vt = - c) + c, as required. 

Conversely, suppose Vt = e^'(z-c) + c. Clearly, c e LnU and so Ln [ / 0, 

which implies L Pi f/ = {c} by the above. 

(2)0(4) By the definitions of S and T, it is clear that c is an absorbing point iff 

6{c) = T(c) = c, and the definitions of L and U imply that this occurs iff 

ce Lnu. 

(2)=»(5) Assume L D U = {c} where c ^ 0. Propositions 3.16 and Proposition 

3.20 immediately imply that equation (3.1) is satisfied for u = c, and 
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imply respectively that g(c) > 0 and g(c) < 0, thus giving g(c) = 0. 

Finally, since (2) (3), the equation Zt J^e'^'-drjs = c (e'^'- l) 

holds, which imphes that Ar/t = ^ l ) ~ - l ) and so 

Arjt = c - 1) . 

(5)=>(2) Assume that the conditions of statement (5) hold for c ^ 0. We prove c G L. 

Since (3.1) is satisfied for u = c, and g(c) = 0 holds, we know that conditions 

(i) and (iii) of Proposition 3.16 are respectively satisfied for u = c. Thus it 

suffices to prove condition (ii) of Proposition 3.16 is satisfied for u = c, or 

equivalently, show c E L*. If = 0 then this is trivial since L* = M. Now 

suppose that is supported on the curve {{x,y} : y — — 1) = 0} 

for c G M. If c > 0, + 0 and + 0, then B ^ ^ Q ^ ^ c and so 

L* = {c}. If c > 0, = 0 and 0, then = 0 and 04 = c, 

and so L* = [0, c]. If c > 0, n^.^/Zlz) ^ 0 and = 0, then = c and 

^4 = oo, and so L* — [c, oo). In each of these three cases, c G L*. The proof 

for c < 0 is similar and we omit. 

A symmetric argument proves that c & U. Hence, c E LnU which, by the 

equivalence of statements (1) and (2), implies that LCiU = {c}, as required. 

(2)<:»(6) LnU = {c} iff r; - cVK = 0 where e'^' = e{W)t which occurs iff e"^' = 

Now assume that the above statements (l)-(6) hold. If S^,^ ^ 0 and both L 

and V are non-empty, then Propositions 3.16 and 3.20 immediately imply that 

L = U = [c] where c = For examples of Levy processes (^,77) satisfying 

statements ( l ) - ( 6 ) and such that ^ drifts to 00 a.s., ^ drifts to - 0 0 a.s. or ^ 

oscillates a.s., see Example 3.27. 

If = 0 then the statements (a), (b) and (c) follow immediately by exam-

ining the equation for V in statement (3) above. For examples of Levy processes 

(̂ ,7-/) satisfying statement (c) and such that ^ drifts to 00 a.s., ^ drifts to —00 

a.s. or ^ oscillates a.s., see Example 3.28. • 

Theorem 3.9. Assiune that Lr\U = 0. Suppose, firstly, that E^,^ 0. We must 

show that r/) exists such that (1), (2) or (3) occurs, and for each of these cases, 

we must show that ^ can satisfy each of the three asymptotic behaviours. For 

case (1), this is obvious. Choosing (C,^) such that E^,^ does not satisfy equation 

(3.1) implies that (^,r/) fails both propositions, and so L = [/ = 0, regardless 

of the choice of (75,%) and Clearly, we can make suitable choices for these 
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objects to obtain the desired asymptotic behaviour of For case (2), our existence 

claims are proven by Example 3.26, and case (3) is symmetric. It follows from 

Proposition 3.17, and the symmetric version for U, that whenever L and U are 

non-zero, they are each equal to Hence, no cases, other than (1), (2) 

and (3) of Theorem 3.9, can exist. 

Now suppose that S^,^ = 0. We must show that (C, 77) exists such that (a), (b) 

or (c) occurs, and for each of these cases, we must show that ^ can satisfy the 

specified asymptotic behaviours. Examples 3.29 and 3.30 present r/) such that 

L = 0, whilst U may be of form 0, {0} or [a, b] for -00 < a < b < 00, and for 

each of these combinations, it is shown that ^ can satisfy the three asymptotic 

behaviours. In Example 3.31, L = 0, is of form [6,00) for 6 € R, and ^ 

drifts to -00 a.s. In Example 3.33, L = 0, is of form (-00, a] for a € M, 

and ^ drifts to 00 a.s. These four examples prove the existence claims for (a), 

and the case (b) is symmetric. In Example 3.32, L — (-co, a], U — [6,00) for 

—00 < a < b < 00 and ^ drifts to —00 a.s. In Example 3.34, U = (—00,a], 

L = [6,00) for -00 < a < b < 00, and ^ drifts to 00 a.s. These two examples 

prove the existence claims for (c). 

We now assume that E^,^ = 0, L 0, [/ 0 and L n [/ = 0. We prove that no 

cases, other than those listed in (c), can exist. As noted in point (2) of Remark 

3.21, it follows from our assumptions that is finite variation and g is linear. 

Suppose that L = [a, 6] for some —00 < a < b < 00. We show that this 

causes a contradiction with our assumptions. If L* = [c, d] for some —00 < 

c < a < b < d < o o , then point (2) of Proposition 3.22 states that = 0 or 

U* = L* = {c} = [d]. Thus, [/ = 0 or t/ = L = {a} = {b}, both of which 

contradict our assumptions. Hence, it must be the case that L* — [c, 00) for some 

—00 < c < a, or L* — (—00, d] for some b < d < 00. 

Thus, we suppose that L = [a, b] and L* — [c, 00) for some -co < c < a < 

b < 00. The case in which L* = (-00, d] for some 6 < d < 00 is symmetric. 

We know g{u) = d,, + ud^. If > 0 then it must be that 6 = 00, which we 

have rejected. Hence d^ < 0, and we must have b = > a. Thus, since U i is 

non-empty, LCiU = 0, and g{u) <0 onU, it must be that U C [b, 00). However, 

point (3) of Proposition 3.22 implies that U* n [b, 00) = 0. Hence U is empty, 

and we have a contradiction. This completes the proof that L ^ [a, 6] for some 

—CO < a < b < 00. 

We now assume that L = [6, 00) for 6 G R. We first prove that ^ s a sub-

ordinator, which is another of the statements of Proposition 3.17 and point (2) 

of Remark 3.19, imply respectively, that has no Brownian component, and 
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is of finite variation. Thus, we can write g(u) — d^i + ud^. Proposition 

3.16 implies that g{u} > 0 on [b,oo) and hence d^ > 0. Finally, it must be that 

L* — [c, oo) for some -oo < c < 6. It is a consequence of the proofs of state-

ments (1) and (3) of Proposition 3.22, that ^ has no negative jumps. Thus ^ is a 

subordinator. 

Now, we assume that L = [b, oo) for 6 e K and f/ = 0. We prove that 

U = (-oo,a] for some -co < a < b < oo. Note that L* = [c, oo) for some 

—oo < c < 6, so statement (3) of Proposition 3.22 implies that U* = (—oo, d] for 

some -oo < d < c. Since g{u) ^ dr, + ud^ and (î  > 0, f/ = (-oo,a] for some 

—oo < a < d. Since we have assumed L CiU = if), a < b as required. 

If we assume that U = (—oo, a] for a 6 M, it can be shown, using a method of 

proof similar to the one above, that is a subordinator, and L = 0 or L = [6, oo) 

for some — o o < a < 6 < o o . We omit the details. 

Now, if we assume L = (-oo, a] for o G M, then synmietric proofs to the ones 

above, show that is a subordinator, and [/ = 0 or f/ = [6, oo) for —oo < a < 

b < oo. Similarly, if we assiime U = [6, oo) for 6 G M, then symmetric proofs show 

that is a subordinator, and L = 0 or L = (—oo, a] for —oo < a < b < oo. • 

Proposition 3.11. Assume L n {/ = 0. In the above proof of Theorem 3.9, it was 

shown that if L = [6, oo) for 6 G R then is of finite variation, = 0, 

d̂  > 0, = 0, = 0, and O2 < 00. It is clear from Propositions 

3.16 and 3.17 that the converse also holds. A similar proof shows that U = 

( -00 , a] for a G M iff is of finite variation, E ,̂̂  = 0, d̂  > 0, = 0, 

\ A2) = 0, and 9[ > -00 . Combining these two sets of iff conditions 

immediately gives iff conditions for the case in which U = ( -00 , a] and L = [6, 00) 

with - 0 0 < a < b < 00. Since V is increasing on L and decreasing on f/, and V 

is a strong Markov process, it is clear that in this situation linit^oo = 00 a.s. 

for any Vq = -z ^ M. 

It follows by symmetric methods that L = (—00, a] and U = [6, 00) for - 0 0 < 

a < b < 00 iff the stated conditions in Proposition 3.11 hold. The only extra 

proof needed is to show that in this situation, V is strictly stationary. In [44] it 

is shown that ^ 

•Jo 
By Theorem 2 in [22] it is shown that if limj_oo6 = -00 and the integral condi-

tion I^^jii.-n = 00 holds, then | f^ e^^-d/i'l'''! -^p 00 as t 00. 

As noted, if L = ( -00 , a] and U = [6,00) with - 0 0 < a < b < 00 then 

is a subordinator and so linif^oo 6 = ~oo a.s. Now if = 00 then by the 
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above, and since linit^oo e '̂ = —cx) a.s, it must be that \Vt\ -^o oo. However 
this is impossible since V is increasing on L and decreasing on U. Thus, we must 
have I-^^Ki'i < oo- Hence, by Theorem 2.1 in [44], V is strictly stationary and 
converges in distribution to := V^o- Since V is increasing on L and 
decreasing on U, and ^ is a strong Markov process, it is clear that Voo has support 
{a,b). • 

Lemma 3.24- For ease of notation let k := max{ l , r } . Assume there exists r > 0 
and p,q > I with l / p + l/q = 1 such that E {e'^'P^') < oo and E < 

oo.We prove the proposition firstly for the case in which E{rii) = 0. Since rj is 
a Levy process this assumption implies that tj is a cMlag martingale. Since ^ is 
cadlag , is a locally bounded process and hence Z is a local martingale for F 
by Protter [60], p. 171. Since Z is a local martingale and Zq = 0, the Burkholder-
Davis-Gundy inequalities in Lipster and Shiryaev [46], p.70 and p.75, ensure that 
for our choices of p, q and k there exists b > 0 such that 

/ ft k\ / 
E sup < bE 

yo<t<i Jo \ 
dr/s, I e 

0 

- bE 

< bE 

= bE 

\ 
/ / 

\ 

^'-drjs 

k/2\ 

k/2\ 

1 / 

/ sup e r/] 
Jo o<t<i 

/ 

\ 

/ / 
sup e 

0 < « 1 

-Kt k/2 

< b E sup e 
\ 0 < f < l 

-Pk^t 
1/p 

E 
i/<? 

where the second ineciuality follows from the fact that [r/, r;]̂  is increasing and the 
final inequality follows for our choices of p and q by Holder's inequality. (The 
notation [•, •] denotes the quadratic variation process.) Since k > I, q > 1 the 
Burkholder-Davis-Gundy inequalities state that there exists c G R such that 

7/, '-E 
c 

sup jr/,!"^ 
0 < t < l / 

< oo 

where the second inequality holds by a formulation of Doob's inequality as ex-
pressed in Sato [62], p. 167 and the final inequality follows from our moment 
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assumption. 
Thus it suffices to prove E (supo<t<i < oo. Setting YT = E'^'/ 

a non-negative martingale, it follows by Doob's maximal inequality, as expressed 
in Shiryaev [1], p.765, that 

E 
Q-PKIT 

Ŝ IP T 
o<t<i 

< pk y 

p k - l j (^(e-^Of" 

which is finite by our moment assumption. By Sato [62], p. 165, we know that 
{Eie-^')) '" ' = . Letting c := G (0,oo) it is clear that 

E sup e 
\0<t<l 

-PKT < max{ 1 , C } E ( sup 
g-pfcCf \ 

Vo<f<i c' / 

which is finite by the above inequality. Hence the proposition is proved for the 
case in which E{R]I) = 0. Now we drop this restriction, noting that E {\RII\) < oo 
by our moment assumptions. Thus, we have 

/ rt k\ / ft 
E sup / E'^'-DFU = E sup / e'^'-diris- SE'QI + SERJI) 

^0<t<l Jo yo<f<i Jo / 

< E sup 
V o<f<i Jo 

e ^"-(iiris - sEiji] + 

\Erji\ sup 
o<^<l 

ft \ k\ 

Jo / 

Since the integrator is a Levy process with zero mean, we know 

E sup 
yO<«<l 

[ e ^"-diris-sEt]]) 
•Jo 

k\ 
< oo. 

Also note that 
/ ft k\ / ft k\ 

E sup < E sup / sup e ^"ds 
\0<t<l Jo ^0<t<l Jo 0<i;<l / 

= E 

= E 

sui) e sup 
\^0<f;<l 0<t<l 

\ 
sup 

\0<u<l J 

ds 

k\ 

which is finite since we showed above that E (supo<«i e < oo for p > 1. 
Now the final result holds by Minkowski's inequality. • 
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Theorem 3.12. Assume Zt Z^o a.s. as i ^ oo, where Z^ is a finite random 

variable. Suppose that for all c e M, equation (1.30) does not hold. This implies 

that Zoo is continuous. As noted in Proposition 1.17, a necessary condition for the 

convergence of Zt, is linij^oo^ = oo a.s., which implies that e '̂ ^ oo a.s. Since 

Zoo is finite a.s., and e '̂ ^ oo a.s., it is clear from the definition Vt := + Zj), 

that 

P{\imVt^oo\Vo^z)=^P{Z^>-z) . (3.7) 

t^oo 

Now let a < supU. By definition of U, P(limt_oo Vi = oo|Fo = a) = 0 which 

implies, by equation (3.7), that Zoo < —« a.s., as required. 

Conversely, let a > supU. We prove P(Zoo > —a) > 0. Since we have assumed 

that |Zoo| < cxo a.s., we can choose x > a such that P[Z^ > —x) > 0. Note that 

T(a) = oo and so there exists a fixed time T > 0 such that P{VT > X\VO = a) > 0. 

Hence, using (3.7), the law of conditional probability and the Markov property, 

P(Zoo > -a) = P( hm Vt = cx)|K) = a) 
t—>00 

> P(hmVt = oolVT>x)P(VT>xlVo = a) 
t^oo 

= P( lim Vt = oojVo > X)P(VT > xjVo = a) 

> P( lim Vt = oo|I/o = x)P{yT >x\Vo^ a) 
t—*oo 

which is greater than zero by (3.7) and the choice of x and T. Thus we have 

proved 

a < s u p U iff Zoo < - a a.s. (3.8) 

Now we prove - sup [/ = rn where m := mf{u e R : Z^ < u a.s.}. By equation 

(3.8), Zoo < -supU and thus -supf / > m. By assumption. Zoo has no atoms 

and so Zoo < m a.s. Thus, equation (3.8) impHes that - m < supL''. The proofs 

of the statements for L are symmetric. 

Now we deal with the degenerate case. Assume that there exists c G M such 

that equation (1.30) holds, and assume that Zj Zoo a.s. as t ^ oo. By 

equation (1.30) it is immediate that Zoo = -c a.s. Further, since ^ drifts to oo 

a.s. as t ^ oo. Proposition 3.8 implies that L ^ U = {c}, or U = (—oo,c] and 

L = [c, oo). In both of these cases, inf L = sup U = c. • 

Theorem 3.13. (1) Assume L n {/ = 0, sup f/ > 0 and L n [0, sup U] = 0, and let 

0 < n < supf/. We want to prove that i}{u) = 1. Note that there exists z >u 
such that z eU, and so T{z) = z. Since ^{u) > ^{z), it suffices to prove that 

= 1. 
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Since L n [0, sup f / ] == 0, we know S{z) < 0, which imphes that P^(inft>o Vt < 
0) > 0. Thus, there exists a fixed time T G M such that Fz{mfo^t<Tyt < 0) := 
m > 0. Let n G N and let A be the distribution of V^j- conditional on both VQ = z 

and info<f<„T Vt > 0. Since T ( z ) = z we know A < z a.s. Now 

( P, inf 14 < 0 
\nT<t<(nJr\)T 

inf K > 0 
0<t<nT / 

= PA inf VT < 0 
\0<t<T 

> p j inf Vt < ~ \0<t<T 
= rn, 

where the first equality follows from the Markov property and the inequality 
follows from the fact that A < z and V is increasing in z. Define 

P " P^ I inf < 0 
\0<t<nT 

for all n G N. By the law of total probability 
/ 

pn+l ^ pn ^ p inf Vt < 0 
\nT<t<{n+\)T 

inf Vt > 0 (1 - P " ) 
Q<t<nT 

and so > P " + (1 - P'')rn where P^ ^ m e (0,1). This implies that P " > 
1 - (1 — m ) " which imphes that lim„_oo P " = 1, and hence P^ (info<f V < 0) = 1 
by the continuity property of measures. 

(2) Assume L n { / = 0, sup L > 0, and U n [0, sup L] = 0. We let z > 0 and 
prove that IIJ{Z) < 1. If z > inf L then ip{z) = 0 by definition. Thus, it suffices to 
assume 0 < z < inf L. 

Suppose that il}{z) = 1. By assumption, T ( z ) > inf L and so, by definition, 
P ( C ) > 0 where C {supt>o V( > inf L } . By definition of L, Ynxit-^^Vt > inf L 
a.s. for all w G C. Let Tj inf{t > 0 : V < 0} and T„ := inf{t > r „ _ i : 
Vt < for integers n > L By assumption, ip{z) = 1 and so Ti is finite 
a.s. Further, the strong Markov property of V imphes that { r „ } is a sequence of 
stopping times increasing towards infinity as n —̂  oo, and each Ti is a.s. finite. 
In particular, each TI is a.s. finite on C. However Vt„ < 0 a.s. which contradicts 
the fact that linit^oo Vt > inf L a.s. on C. Hence ip{z) < 1. The proof of the case 
in which U fi [0, sup L] 0 is almost identical, and we omit. 

• 
Theorem 3.14- Assume L Ci U = 0, hmt_coCt = —00 a.s. and < 00. 

Suppose that L n [O,cxo) ^ 0. Since ^ drifts to —00 a.s.. Propositions 3.8 and 
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3.9 imply that one of conditions (a) or (b) must hold. Further, it follows from 
statement (2) of Proposition 3.13 and the definition of L, that 0 < ip{z) < 1 for 
all 0 < 2 < inf L, and 7p{z) = 0 for all 2 > inf L. 

Now suppose that L n [0, oo) = 0. We let 2 > 0 and prove that ijj{z) = 1. 
Let A'̂  be a Poisson process with parameter A, let Di be an iid sequence of 1-
dimensional exponential random variables and let C, = 1 for all i. Suppose that 
N, Di and (^,77) are mutually independent and define the compound Poisson 
process {Xt,Yt) := A ) - Now define a new Levy process {^t^Vt) 

+ {Xt,Yt), and denote the associated GOU by V . For denote the 
upper and lower bound functions, the sets of upper and lower bounds, and the 
ruin probability function by T^, U^, and respectively. 

Define T, := inf{t > 0 : V( < OlVo = z}. Since supL < 0, we know 6{z) < 0 
and hence T^ is finite a.s. Note that Vq = Vq = 2. Also, whenever Vt- > 0, every 
jump A{X,Y)t causes a non-negative jump AVj. Hence Vt < V^ a.s. on t < T^. 

This implies that V'(z) > ip^iz). Thus it suffices to show that •0 (̂2) = 1. To do 
this, we first need to prove that V^ is strictly stationary. 

We show that A > 0 can be chosen small enough such that limf^oo Ct — —00. 

Since lim^^oo^s = —00, either G [—(X),0) or does not exist. If 
£"(^1) 6 [—(X),0) then = + A and so we can choose A small enough 
such that jE'(^i) < 0, which imphes that limt^ooC° = —00. If E{^i) does not exist 
then we know does not exist. We show that limt^oo C — holds for any 
A > 0. Note that ^̂  = + iV and , as noted in Section 1.2, J+ < 00 since £'(^1) 
does not exist and limt^oo^t = —00. Also note that TÎ o = 11̂  and so A'^^ — yl^. 
Since ^ and N are independent we have Ĥ o = 11^ + 11̂ 1̂ . Further ny^(x) = 0 for 
all X > 1. Hence J^ = J^ and so is finite. As noted in Section 1.2, this implies 
that hmf^ooC = —00. 

We now show that { C j V " ) satisfies Ine,r,'> < 00. Since (^,7?) and {X,Y) 

are independent, it is clear from the definitions in Section 1.4 that Kf '^" = 
+ K f ' ^ and = And, as above, = 

Hence 

By the choice of {X, y ) it is clear that i ^ f h a s a finite expected value which 
implies that < 00. Hence < 00. Thus is strictly 
stationary. 

For a Lebesgue set A define T^ := inf{t > 0 : V;̂  G A}. Note that = - 0 0 

and hence Proposition 3.20 implies that T'^iu) = 00 for all u e R, or equivalently, 
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U'' = 0. Also, = 0, and so Proposition 3.16 implies that L^ fl ( - o o , 0 ) = 0, 
whilst the fact that L n (0, cx)) = 0 clearly implies that L' n (0, oo) = 0. 

These facts imply that, for all a and u in M, P < o^lKf = it) > 0 

and P ( t , : ,ool < ooIVq̂  = -u) > 0. Since D is an exponential random variable, it is 
clear that Vj® has a continuous density with respect to Lebesgue measure. Hence 
P (T^ < cxd) > 0 for any set A with positive Lebesgue measure. This result, 
and the fact that V^ is strictly stationary, allows us to mimic the argument of 
Theorem 3.1 (a) in Paulsen [56]. Let S be an independent standard exponential 
variable and define the resolvent kernel 

roo 
/ P,{V; e A)e-'dt = e A). 

Jo 

Proposition 2.1 of [49] implies that V^ is (/)-irreducible for the measure (j) — A A'. 
Using the language of [49] p.495 and 496, it is clear that K has a continuous 
nontrivial component for all 2 and hence is a T-process. Since V^ is strictly 
stationary it is clear that V^ is non-evanescent, as defined in [49] p.494. Thus 
Theorem 3.2 of [49] p.494 implies that V^ is Harris recurrent, as defined in [49] 
p490, which clearly implies that == 1 as recjuired. 

(2) Assume that L <1 U = 0, E{E,i) = 0, there exists 5 > 0 such that 
E (KiP"^^) < 00 and there exist p,q > 1 with 1/p+l/q = 1 such that E {e'"^') < 

00 and £'(|77i|'') < 00. 

Suppose that L n [0, cxd) ^ 0. Since ^ oscillates a.s., Proposition 3.9 implies 
that L = [a,b] and U = % where —00 < a < b < 00 and b > 0. Hence, it follows 
from statement (2) of Proposition 3.13 and the definition of L, that 0 < t p { z ) < 1 
for all 0 < 2: < a and i l ) { z ) = 0 for all z > a . 

Now suppose that L fl [0, 00) = 0. We let 2; > 0 and prove that x l ) { z ) = 1. We 
know that P (inft>o K < OIVq = z ) > 0. However, it is possible that for some 2 > 
0, P{Vi < 0\Vo = 2) = 0. For example, this would happen if r/) has no Brownian 
component and sup L* > 0. Let 0 = T q < Ti < T2 < . . . be random times such 
that Ti — Tj^i are iid with exponential distribution and parameter A. Since Ti has 
infinite support it is clear that suj^L < 0 implies F(Vri < 0|Vo = 2) > 0 for all 
2 > 0. Equation (1.1) implies that a.s. 

/ / fTn-l \ \ fTn 

V \ Jo J J JTn-l + 

Thus, if we define An := Bn ê "̂ f j " , e'^^'dris and the stochastic 
difference equation y„ := A n Y n - i + i?„ with Vq •= Vq = z then = V t „ a.s. for 
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all n e N. Note that the term ê "̂ in i?„ cannot be brought under the integral sign 
because it is not predictable. Since a Levy process has independent increments 
it is clear that {An,Bn) is an independent sequence. Now, 

rT2 

{A2,B,) = 

— D 

fl2 

Jti + 

^ g?T2 -5TI J ^ ) d 

g?T2 -€t, ̂  f g - ) _ 
JTi + 

fT2 \ 

Vt,. 

\ 

e^^i, e 

where the second equality holds because ê î is predictable with respect to the 
integral, the fourth equality holds because a Levy process has identically dis-
tributed increments and the fifth equality is obtained using a change of variables. 
The argument for general n is identical, and thus [An, Bn) is an iid sequence. 

Now Proposition 1.1 and Corollary 4.2 of [2] state that if P{A]_z + Bi = z) < I 

for all z e M, £'(lnyli) = 0, yli ^ 1 and there exists 5 > 0 such that 

E({\lnAi\ + \n+\B,\Y^^) <oo ( 3 . 9 ) 

then the discrete stochastic process W has an invariant unbounded Radon mea-
sure yu unique up to a constant factor such that the sample paths Wn, with 
Wq = z, visit every open set of positive ^-measure infinitely often with probabil-
ity 1, for every z € M. The first of these conditions follows from our assumption 
that L n U = 0, using Proposition 3.8. The second and third conditions fol-
low respectively from our assumptions that £"(^1) = 0, and is not identically 
zero. We will show later that our moment conditions on ^ and rj ensure equation 
(3.9) holds. Note that the Babillot result implies that ip{z) = 1 if we can show 

oo,0)) > 0. However by the definition of an invariant measure. 

( ( - 0 0 , 0 ) ) = I P{AiZ + B , < 0 ) ^ i { d z ) 
Jzm 

P{Vt, < 0|Vo = z)ii{dz). 
zSR 

Thus if fj, ([0, 00)) > 0 then ( ( - 0 0 , ())) > 0 since P {Vt, < OIFq = 2) > 0 for all 
z > 0. And if /^([0,oo)) = 0 then ^ i ( ( - o o , 0 ) ) > 0 since //(M) > 0. Thus we are 
done if we can prove equation (3.9). 
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To do this, it suffices to assume T] = 1 and {Ai, Bi) := /J 
since we can choose the parameter A of the increments to be arbitrarify smaii. 
Note that if x, y > 0 and a > 0 then there exists Ci > 0 such that 

(x + yf < ci (x" + y"^). 

Hence, to prove (3.9), it suffices to prove that E < oo and 

2+<5\ 

(3.10) 

V 
hi+ 

1 \ 
< oo. 

/ 
(3.11) 

Note that the former inequality is assumed as a condition. If x, y > 0 then 
ln"'"(xy) < In"'"(x) + ln"'"(y), and hence, using (3.10), equation (3.11) holds if 

E In^ i: -is- dVs 
\ 

< OO. (3.12) 

Note that whenever 0 < 5 < 1 and x > 0, tlien there exists C2 > 0 such that 
(In"̂  x)^"'"'' < C2X .̂ Without loss of generality, we can assume that 0 < 5 < 1, and 

hence (3.12) holds if E 
/ <5\ 

\ / 
< oo. However, with our assumptions 

on p and q, this follows from Lemma 3.24. 
(3) Assume that limt^oo^f = oo a.s. and < oo. Suppose that - o o < 

suj)U < z. Assume, for the sake of contradiction, that •tp{z) = 1. Theorem 3.12 
implies that P{C) > 0 where C := {Zoo > —z}. Since limj^ooCt = oo, we know 
that limj^oo Vt = oo a.s. on C. Now, the same strong Markov property argument 
used in the proof of statement (2) of Theorem 3.13, gives a contradiction. Hence 
^{z) < 1. 

Now suppose {/(^[O, oo) ^ 0. Since ^ drifts to oo a.s.. Theorem 3.9 implies that 
either U = [a, b] and L = 0 where - o o < z < b < oo and 6 > 0, or {/ = (—oo, a 
and L = [b, oo) for some 0 < a < 6 < oo. In both of these cases, statement (1) of 
Theorem 3.13 implies that iplz) = 1 for all 2 < supU. Using the definition of L, 
and the above result, it is clear that 0 < < 1 for all sup U < z < inf L and 
tp{z) = 0 for all z > sup L. • 

Proposition 3.5. Assume that Vt = e^'{z — c) + c. By definition of L, if c > 0 then 
^ {z ) = 0 for all 2 > c. 

Let 0 < 2 < c. If ^ drifts to - o o a.s. then limt^oo Vt = c a.s. Thus, the strong 
Markov property of V implies that il;{z) < 1, using a proof similar to that used 
for statement (2) of Theorem 3.13. If ^ oscillates a.s. then - o o = liminft^oo K < 
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l imsupt^^K = c, and so tpiz) = 1. If ^ drifts to oo a.s. then linit^oo = - o o 

a.s. which imphes ip(z) = 1. 
Let c < 0 < 2. If ^ drifts to - o o a.s. then hnit^oo K = c a.s. and so ip(z) = 1. 

If ^ oscillates a.s. then c = lim inft_oo K < limsupj^^ VJ = oo, and so tpiz) = 1. 
If ^ drifts to oo a.s. then linit^oo = oo a.s. which implies ip(z) < 1, using a 
strong Markov property argument. • 

Theorem 3.1. Suppose that for all c G M the degenerate case (1.30) does not hold. 
Then, by Proposition 3.8, L n f/ = 0. It follows immediately from Theorem 3.14 
that 0 < ipiz) < l i f T 0 < 2 ; < m < o o whenever the assumptions for statement 
(1), or statement (2), of Theorem 3.1 are satisfied. Now suppose that there 
exists c e R such that equation (1.30) holds. Then it follows immediately from 
Proposition 3.5 that 0 < IIJ{Z) < 1 iff 0 < z < m < oo whenever the assumptions 
for statement (1), or statement (2), of Theorem 3.1 are satisfied. In both these 
situations, m = c. • 

Theorem 3.3. Assume that limt_oo6 = co a.s. and < oo. Assume that for all 
c 6 M the degenerate equation (1.30) does not hold, or equivalently, L(MJ = 0. 

Theorem 3.3 claims that V(0) = 1 iff -r/ is a subordinator, or there exists 
z > 0 such that -^{z) = 1. This claim follows easily by combining two known 
results: iplz) = 1 iff sup f/ > 0 and 2; < sup [/, which is implied by statement 
(3) of Theorem 3.13; secondly, 0 e [/ iff -r/ is a subordinator, which is stated in 
Proposition 3.20. 

Theorem 3.3 also states conditions on the characteristic triplet of r/) and 
claims these are equivalent to the fact that there exists z > 0 such that IJJ{Z) = 1. 
However, using statement (3) of Theorem 3.13, we know there exists z > 0 such 
that tp{z) = 1 iff snpU > 0. And Proposition 3.20 gives iff conditions on the 
characteristic triplet of 77) for the case sup t/ > 0 to occur. These conditions 
are precisely the conditions stated in Theorem 3.3. 

Finally, statements (1) and (2) of Theorem 3.3 contain values for sup{2 > 0 : 
i>{z) = 1}. However, these are an immediate consequence of the unstated parallel 
version of Proposition 3.17 which gives exact values for the endpoints of U. 

Now, assume that there exists c G M such that the degenerate equation (1.30) 
holds, and L = U = {c} . Since ^ drifts to 00 a.s.. Proposition 3.8 imphes that 
supU = c. Thus, Proposition 3.5 imphes that il;{z) = 1 iff supU > 0 and 2 < 
sup U. Theorem 3.3 is proved for the degenerate case by combining this statement 
with Proposition 3.20 and the parallel version of Proposition 3.17, in an identical 
manner to the above. The only difference is that the set {z > 0 : tp{z) = 1} does 
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not contain its supremum in the degenerate case, since siipjz > 0 : 'ip(z) = 1} = 
U = L, and is an absorbing point. • 

3.4.1 Examples 

Propositions 3.8, 3.9 and 3.11 make claims that Levy processes exist which 
satisfy particular combinations of L and U, and particular asymptotic behaviour 
for In this subsection we present examples which prove these claims. We 
use the simplest Levy processes possible. Thus, the Levy measures will always 
be finite activity, namely < oo. Hence, we can always write in 
the form = + {B^ t̂, + Ei l ' i where is a two-
dimensional Brownian motion with covariance matrix E^,,, A'' is a Poisson process 
with parameter A and {yi j j^i is an iid sequence of two dimensional random 
variables with common distribution Y. 

Examples with Brownian component The first example is of a Levy pro-
cess for which L = {a } , U = The second example is of a Levy process 
for which L = U — {a } . For both examples we show how variables can be chosen 
so that E, drifts to oo a.s., ^ drifts to —oo a.s. or ^ oscillates a.s. 

Example 3.26. Let {^,7])t := {d^,2)t + {Bt, Bt) + ^̂  where 5 is a one-
dimensional Brownian motion with variance 1, and P{Y = (10,10)) = 1/2 and 
P[Y = (—10,10)) = 1/2. The covariance matrix equation (3.1) is satisfied for 
u = —1. Condition (ii) of Proposition 3.16 is satisfied for u = —1, whilst condition 
(ii) of Proposition 3.20 is not satisfied. By equation (3.4), ^ ( - 1 ) = 3/2 - and 
so choosing d^ < 3 /2 implies that L = { — 1} and [7 = 0. However, £"(^1) = d^, so 
if 0 < (î  < 3 /2 then ^ drifts to 00 a.s., if d(_ < 0 then ^ drifts to —00 a.s., and if 
d^ = 0 then ^ oscillates a.s. 

Example 3.27. Let {^,r])t := {d^, dr,)t + { B t , - B t ) . Equation (3.1) is satisfied for 
u = I, whilst condition (ii) of Proposition 3.16 and condition (ii) of Proposition 
3.20 are satisfied trivially. Equation (3.4) implies g{l) = dn + d^ — 1/2. Thus, 
choosing d^ = l / 2 - ( i , , implies that L = U = {1 } . Note ^(^i) = d^, so if (î  < 1/2 
then ^ drifts to 00 a.s., if > 1 / 2 then ^ drifts to —00 a.s., and if d,, = 1/2 then 
^ oscillates a.s. 

Examples with no Brownian component We now present seven examples 
of Levy processes 7/) with no Brownian component. In Example 3.28, L ~ U = 
{ a } and we indicate how the parameters can be changed in order to obtain each 
of the three asymptotic behaviours for In Examples 3.29 and 3.30, L = 0, 
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whilst U may be of form 0, {a} or [a, b] for -co < a < b < oo. We indicate how 

parameters can be changed in order to obtain these different sets, and for each 

set, to obtain the three possible asymptotic behaviours for In Example 3.31, 

L = 0 whilst U is of form [b, oo) for 6 e R. In Example 3.32, L = (-oo, a] and 

U = [b, oo) for -oo < a < 6 < oo. For both these examples we show that ^ drifts 

to -oo a.s. In Example 3.33, L = 0 whilst U is of form (-oo,a] for a G R. In 

Example 3.34, U = (-oo,a] and L = [6, oo) for -oo < a < 6 < oo. For both 

these examples we show that ^ drifts to oo a.s. 

Examp le 3.28. Let (C, r/)t {d^, d^)t + where P {Y = (3, 2e-^ - 2)) = 

1/2 and P ( y = (-3,26^ - 2)) = 1/2. Then = = = = 2 and L* = 

U* = {2}. Note that g{u) = d,, + ud^, so choosing d^ = -2d^ implies that 

g{2) = 0 and hence L = U = {2}. Since = d^, choosing d^ > 0, d^ < 0, and 

d^ = 0, implies that ^ drifts to oo a.s., ^ drifts to -oo a.s. and E, oscillates a.s., 

respectively. 

Examp le 3.29. Let •= + '̂t where P{Y = (4,-2)) = 1/3 

and P{Y = (-2 ,-3) ) = 1/3 and P{Y = (-2,1)) = 1/3. Then L = 0 since 

ffl' ft' _ r 1 -21 
— Le2_i , 

[0.2, 2], Now U = [u ^ U* g{u) < 0} and g simplifies to g{u) = + ud^. Note 

that = d^. 

Choosing = 0 and dj, > 0 implies that U — ̂  and ^ oscillates a.s. Choosing 

d^ > 0 and dr^ > —9'^d^ implies that f/ = 0 and ^ drifts to oo a.s. Choosing d^ < 0 

and dr) > implies that U — % and ^ drifts to —00 a.s. 

Choosing = 0 and < 0 implies that U = U* ^ [0.2, 2] and ^ oscillates 

a.s. Choosing > 0 and dr, < -9'2d^ implies that U = U* = [0.2, 2] and ^ drifts 

to 00 a.s. Choosing dj < 0 and d^ < —9'^d^ implies that U = U* = [0.2, 2] and ^ 

drifts to —00 a.s. 

Choosing d^ > 0 and d^ = -9'^d^ implies that U = [9^] ^ {0.2} and ^ drifts 

to 00 a.s. Choosing d^ < 0 and d,, = — i m p l i e s that U = {^2} — {2} and ^ 

drifts to —00 a.s. 

Note that for Example 3.33, no adjustment of d^ and d,, can result in [/ = {a} 

with ^ oscillating a.s. We now present a different example with this behaviour. 

Examp l e 3.30. Let (e,r/)t := (0,-2)t + where P{Y = (2,e-2 - 1)) = 

1/3 and P{Y = (-1, e - 1)) = 1/3 and P{Y = (-1, -2)) = 1/3. Then L ^ 

02 = = 04 = = 1, and [/* = {1}. Since g simplifies to g{u) = -2 for all 

li G R we obtain U = {1}. Since E{Ei) = 0, ^ oscillates a.s. 
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Example 3.31. Let (e,r/)t := ( 0 , + E^l'i where P ( y = ( - 1 , 2 ) ) = 1/3 
and P(Y = ( - 2 , - 3 ) ) = 1/3 and P(Y = ( 0 , - 5 ) ) = 1/3. Then L* = 0 whilst 
U* = = [ ^ , o o ) = [1.2, oo). Since g(u) = - 2 for all u 6 M we obtain 
L = 0 and {/ = U* Since = -1 .5 , drifts to - o o a.s. 

Example 3.32. Let := + where P{Y = ( - 1 , 2 ) ) = 1/2 
and P{Y = ( - 2 , - 3 ) ) = 1/2. Then L* = [^1,03] = ( - 0 0 , = ( - 0 0 , -0 .5] and 
U* = [9'^, 02] = = [1.2,00). Note that g simplifies to g{u) ^ d^, + ud(_ 
and hence choosing and d,, = 0 gives L = L* and U = U*. Since = 
— 1.5 + d̂ , ^ drifts to —00 a.s. 

Example 3.33. Let := where P{Y = (1,2)) = 1/3 and F ( y = 
(1,8)) = 1/3 and P{Y = ( 0 , - 5 ) ) = 1/3. Then L* = 0 whilst U* = [0^,6'; = 
( - 0 0 , ^ ^ ] ^ ( - 0 0 , - 1 2 . 6 ] . Note that g{tL) = 0 for all u e R so L = L* and 
U Since = 1, ^ drifts to 00 a.s. 

Example 3.34. Let (e,r;)t := where P{Y - (1,2)) = 1/2 and P{Y = 
(1,8)) = 1/2. Then L* = [0i,04 = [ -3 .2 ,00) and u* = [eie\] = 
( - 0 0 , ^^frj] = ( - 0 0 , - 1 2 . 6 ] . Note that g{u) = 0 for all w G R so L = L* and 
U = U*. Since £ ( 6 ) = 1, ^ drifts to 00 a.s. 



ICsUiW 



Appendix A 

Direct method for no ruin when 
(̂ ,77) is Compound Poisson with 
drift 

We recall equation (2.2), and note another useful formulation for the jump of the 

GOU. 

A1/t = - ( A . l ) 

= + (A.2) 

We make an important note. By the definition of the sets A " in (2.1) and 
the values 9i, we know the following; if Vf_ > 64 then it is possible for a negative 
jump AVt to occur, resulting from Ar/t) G . However, such a jump 
cannot result in Vt < 04. To see this, let Vt- > 64 and observe that we can choose 
{x, y) e A4'- such that (e^ - 1)^4 + e^y > 0 and (e^ - 1)14- + < 0. Thus, 

14 = V i - + (e^ - 1 )K_ + e^y 

= + (e^ - l ) ( y , _ - 04) + (e" - 1)^4 + 

> 04-

Now we let r/) be a two dimensional compound Poisson process with de-
terministic drift component (d^t, dr^t) where d^ ^ 0. Thus, we can write 

Nt 

i=l 

95 
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for some iid sequence of two dimensional random vectors (Cj, A ) with common 
distribution {C,D). We calculate a formula for the associated GOU. The jumps 
(A^t, Arjt) occur at the jump times 0 < < i?2 < • • • of Thus if i < 

/ ^ \ 

\ d^/ 
a^i 7 

d/ 

and hence 

d j d^ 

We thus obtain the following recursive formula for Vt when Ri < t < Ri + 1', 

+ (A.3) 
V / «« 

By expanding this formula we obtain a general formula for Vt when Ri < t < ; 

K = f{t) + AVRJC'^^^'-^') + AVn.e'^i^'-'^'^ + • • • + AVn^e'^i^'-(A.4) 

where 

In the case that d^ ^ 0 a simpler set of calculations gives us the formula 

Vt = z + d^t + AVR, + . . . + AVR .̂ (A.6) 

The following theorem is an analogue of Theorem 2.1 for the compound Poisson 
case with drift. It will be proved using the comments above. It has been noted 
in point 2 of Remark 2.2 that this theorem follows from Theorem 2.1 in the finite 
variation case. 

T h e o r e m A . l . Let (C,^) be a two dimensional compound Poisson process with 
drift where r/ is not a subordinator, and suppose the associated GOU satisfies 
Vq = z > 0. Then ip{z) = 0 for large enough z if and only if = 0, 

02 < 04, and at least one of the following is true: 

(a) d^ = 0, and dr, > 0; 

(b) d^>0 and < 04; 

(a) dn > 0, and d^ < 0, such that - f - > 02. 
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If (h) holds, then = 0 for all z > m a x { 0 2 , a n d ip{z) > 0 for all 

z < raax{02, If (a) or (c) holds, then ipiz) = 0 for all z > 02 and ipiz) > 0 

for all z < 02. 

Before proving this theorem, we define some terms and prove a lemma which 

will be needed for the proof. For a real number c > 0 define the processes 

Yt := + + ... + for R, < t < (A.7) 

[/; := f(t) - cV, (A.8) 

and 

[/;' := 2 + dr,t - cNf (A.9) 

where / is from (A.5) and U' is defined for d^ 0. Note the similarity between 

the definitions U' and U" and the equations for V in (A.4) and (A.6) respectively. 

For a real a > 0 define 

inf{^ > 0 : U[ < ()}, (A.10) 

and 

R'l := inf{i > 0 : U[' < 0 } (A. 11) 

L e m m a A.2 . For any t > 0 and c > 0, P{R', < <) > 0 and < t) > 0. 

Proof Note first that P{R'; < t) > P{U[' < 0) = P (Nt > {z + d^t)/c) > 0. We 

now show that for all t > 0 and x > 0 there exists n > 0 such that P{Yt > x\Nt = 

n) = 1. If > 0 then > 1 for a lH > 0 and all i. Hence 

P{Yt > x\Nt = n) > P{n > x) = 1 

whenever n > x. If d^ < 0 then > > 0 a lH > 0 and all i. Hence 

P{Yt > x\Nt = n)>P > x) ^ I 

whenever n > Using this fact, there exists n > 0 such that the following 

is true; 

f fit)^ 
P{Rz <t)> P{Ut < 0) = P ' 

\ 

> p[yi> 

c 

fit) 

c 
Nt = n P{Nt = n) 

/ 

= P{Nt = n) > 0. 

• 
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Proof of Theorem A.l. Suppose = 0 and 02 < 04- If G [02, ^4] then 
it is an immediate consequence of the definition of 02 and 04 that there can be 
no negative jump AVt . If Vt- G (^4,00) there can be a negative jump AVt but 
it can only be caused by (A^t, Arjt) £ and, as we have noted above, such 
a jump cannot be sufficiently negative to result in Vt < 04. Thus when Vt- > 02 
we have shown VJ > 02- We now show that assuming (a), (b) or (c) implies zero 
probability of ruin when 2 is above the stated thresholds. The fact that there is 
positive probability of ruin when 2: is below the stated thresholds, will be proved 
later. 

We deal with (a) first. If = 0 then equation (A.6) shows that Vt has a 
deterministic linear drift between its jumps, given by 2; + dj^t. If = 0 then Vt is 
constant between its jumps, and if d,, > 0 then Vt is strictly increasing. In both 
of these cases, starting the process with z > 02 means that Vt can never drop 
below 02 as a result of drift or jumps, and hence • (̂z) = 0. 

Note that if 0 the recursive equation (A.3) shows that Vt drifts expo-
nentially between jumps, that is, for t G The direction of this drift 
depends on two factors; the sign of Vr^ + and the sign of d^. 

Now we deal with (b). Suppose d^ > 0 such that < 04. Since d^ > 0, 

if Vr^ + ^ > 0 then Vt will drift upwards towards 00 on t e [Ri,Ri+i), whilst 

if + ^ = 0 then V remains constant on t G [Ri, Ri+i). If > 04 then a 

negative jump AVr^ < 0 may occur, however, since < 04 the jump cannot 

result in Vr̂  < — and so the subsequent drift on t G [Ri, Ri+i) is non-negative. 

Hence, if we start the process with 2; > m a x { 6 ' 2 , - ^ } then Vt can never drop 

below max{6'2, and so ip{z) = 0. 

Now we deal with (c). Suppose > 0 and d^ < 0 such that > 02. If 
d ^ < ^ ^ ^hen Vt will drift upwards on t E [Ri, R^+l) approaching the asymptote 

If Vr, > then Vt will drift downwards on t G [Ri,R.i+i) approaching 
If Vr, < then Vt will remain constant on t G [Rt, Ri+i). Thus if we start 

with z > 02 then Vt can never move below 02 during a drift interval. And from 
our jump analysis, we know that the only possible negative jumps will occur when 
Vt- > 04 and such jumps cannot result in Vt < 6*4. Thus if 2 > 6*2 then il){z) = 0. 
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To prove the sufficiency part of the theorem, it suffices to show that if 77 is not 
a subordinator then tp{z) > 0 for all z > 0 if any one of the following conditions 
holds: 

1. ^ 0; 

2. 04 < 92] 

3. d̂  < 0 and dr, < 0; 

4. d̂  > 0, and > 

5. d,, > 0, < 0 and < 

We first show that it is possible to reduce the problem. Suppose that F is a closed 
square in R^ \ {0} such that > 0. We can write r/) as the sum of drift 
terms and two independent compound Poisson processes 

i^uvt) - {(kt.,d,t) + + 

where r]') has jumps in T and if) has jumps in The jumps for these 
processes occur at the the jump times of independent Poisson processes which we 
denote by M' and M" respectively. Define 

V; (z + f + r/^ 
V Jo 

and define the stopping times T^ mf{t > 0 : < 0} and S^ mf{t > 0 : 
y / < 0}. Suppose we have proven that P{Sz < t) > 0 for a particular t > 0. Then 

P{T, <t) > P{T, < t, Mt - 0) 

= P{S, < t, Mt = 0) 

= < t)P{Mt - 0) 

> 0 

which ensures that ip{z) := P{Tz < 00) > 0. 

Proof of point 1 We prove that if when 77 is not a subordinator then 
> 0 implies that ip{z) > 0 for all z and for all values of d̂  and d,,. 

This will be split into two cases. For case 1, we assume that 

n5,,((-(X),0] X (-cx),0)) > 0 , 
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which means t] can have negative jumps. For case 2, we assume that 

% ^ ( ( - o o , 0 ] X (-c^ ,0 ) ) = 0, 

and n^,^ ((-oo,0] x {0}) > 0, which means that r/ cannot have negative jumps 

and ^ can have negative jumps without 7] jumping at the same time. Note that 

this imphes that 64 = 0. Since 7] is not a subordinator we must have < 0. Thus, 

if < 0 then the result will follow from point 3 and if (î  > 0 then the result will 

follow from point 4. So we can leave this case and return to case 1. 

Suppose the conditions of case 1 hold. Since is a measure there must 

exist a closed square T C ( - 0 0 , 0] x {-00,0) of arbitrary side length, such that 

> 0. By the above comments it suffices to assume that \ F) = 0 

and prove < t) > 0 for all t > 0. Thus we can suppose that all the jumps 

(A^, At/) are in F and occur at the jump times 0 < i?i < i?2 < • • • < C)0 of a 

Poisson process N. 

For a fixed (A^t, Ar/j) G F, the corresponding jump AV^ becomes less nega-

tive, approaching e^ '̂ATy^, as Vt- decreases to zero, and becomes more negative, 

approaching —00, as Vt- increases to 00. We see this by using equation (A. l ) . In 

particular AVt < e^^'Ar/t on t<T^. 

Define (x', y') to be the point in the top right corner of F, that is, x' := sup{x < 

0 : {x,^J) e F} and y' := sup{y < 0 : {x,y) G F}. Then e^^'A7]t < e'^y - c < 0 

for all (ACt, At) G F. 

Note that for this choice of c an examination of equations (A.4) and (A.8) 

shows that whenever d^ ^ 0 we have Vt < Ut on t < T^. Thus T^ < R'^ and, by 

Lemma A.2 we know that P{R'^ < t) > 0 for all t > 0. Hence P{T^ < t) > 0 as 

required. Next, note that equations (A.6) and (A.9) show that whenever d^ = 0 

we have Vt < U't on t < T^. Thus Lemma A.2 again gives the result. This 

completes the proof of case 1. 

The following two lemmas will be used to prove the remaining points. 

L e m m a A .3 . If z < 62 then P{T, < t) >0 for all G M. 

Proof. Using the definition of 6*2, and the assumption that z < 62, we know that 

there exists e > 0 such that there exists a closed square F G A^'^^ \ A^^ with 

> 0. It suffices to assume \ T) = 0. 

Thus, every (A^t, Arit) G F causes a negative jump AVt < 0 whenever 0 < 

Vt- < z + €. By (A. l ) , for a fixed (A^(,Ar/t) G F, jumps get more negative 
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approaching e^^'Arjt, as 14- decreases to zero, and less negative, approaching 
+ e + Ar]t) - {z + e), as Vt- increases to z + e. 

Define {x',y') to be the point in the top right corner of F, that is, x' := 
sup{x < 0 : {x,y) e T} and y' := sup{y < 0 : {x,y) G T}. Equation (A.2) 
implies that for any fixed value 0 < Vt- < 2 + e, we will be in one of two cases. 
Firstly, the least negative AVt will occur at the point {x', y') and this point will 
not cause ruin. Secondly, every jump G F will be negative enough to 
cause immediate ruin. This will occur if Ar] < -Vt- for every (A^, Atj) G F . In 
this case the most negative jump will occur at the top left corner of F, though 
this fact is not necessary for our proof. 

These points show that for all (A^t, Aijt) e T and any 0 < < 2 + e we 
have AVt < + e + ?/) - [z + e) =• -c < 0. 

Suppose d^ ^ 0. Note that if f{t) is an increasing function we can choose 
i' > 0 such that f(t') = z + t. Hence, with the above choice of c > 0, we have 
that Vt < U't from (A.8) whenever t < min{t',Tj}, and Lemma A.2 implies that 
P{R'z < i') > 0- Hence P{Tz < t') > 0 and since e, and hence t', can be chosen 
arbitrarily small, P{Tz < t) > 0 for all t > 0. If f{t) is a decreasing function, 
then Vt < U't for all t < T ,̂ and Lemma A.2 give the result. 

Suppose d^ = 0. If dri > 0 we choose a, t' > 0 such that z + drjt' = z + e. 
For our above choice of c > 0, Vt < U't from (A.9) whenever t < m.m{t',T,]. 
Alternatively, if < 0 then Vt < U't whenever t < T^. Thus Lenmia A.2 gives 
the result. D 

Lemma A.4. If z > and S, := inf{i > 0 : Vt < 04 + e} then P{S, <t)>0 
for all d^, G R and any e > 0. 

Proof Using the definition of 6*4, and the assumption that z > ^4, we know that 
there exists e > 0 such that there exists a closed square F G \ A^^ with 

> 0. We assume that \ F) = 0. 
Thus, every (A^t, Ar/() G F causes a negative jump AVt < 0 whenever O4 + 

e < Vt- < 00. By (A.l), for a fixed {Ae,t,ATjt) G F, jumps get less negative 
approaching + e + Arjt) - (6*4 + e), as Vt- decreases to zero, and more 
negative, approaching —00 as Vt- increases to 00. 

Define (x',y') to be the point in the top right corner of F, that is, x' := 
sup{3; < 0 : (x,y) G F} and y' := sup{y < 0 : G F}. Equation (A.2) implies 
that for any fixed value 64 +e < Vt- < 00, we attain the least negative AVt when 
(A^t, A77t) is the point {x',y'). 
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These points show that for all (A^t, ^Vt) e T and any 6*4 + e < Vt_ < 00, we 

have 

AVt < + e + y') - {04 + e) =: -c < 0. 

Now the method of proof is almost identical to the proof of point 1, case 1. Define 

S; mf{t > 0 : f/; < + e} and S'^ := inf{t > 0 : U^' < 04 + e} and note 

that Lemma A. 10 implies that P{S', < t ) > 0 and P{S'^ < t) > 0. For the above 

choice of 0 0, if d^ 0 then Vt < U[ on t < and hence S, < S'^. Similarly, 

if (î  = 0 then Vt < U[' on t < S,, and hence S, < S'^. This proves the result. • 

Proof of point 2 Suppose 64 < O2 and let 2 > B .̂ Define := inf{^ > 0 : 

K < 92) and T, := inf{^ > 0 : Fj < 0}. We show P{T, < t) > Q for all t > 0. 

Since S^ < T^, we have 

F ( T , < t ) = P{T, < t \ S , < t ) P { S , < t). 

Since 84 < 62 < z, Lemma A.4 implies P{Sz < t ) > 0 . Thus, it suffices to prove 

P{T, < < t) P'{T, < t ) > 0 . 

However, 

P ' { T , < t ) = r P'{T,<t\Vs^^x)P'{Vs^Gdx) 

J 04 + 

= P ' { T , < t - S , ) P ' { V s ^ e d x ) 

JeA+ 

This holds because y is a time-homogenous strong Markov process with respect 

to the probability measure P, and hence is also a time-homogenous strong Markov 

process with respect to the conditional probability measure P'. Note that Lemma 

A.3 tells us that P{Tx < r) > 0 for all r > 0 and x < 02, which implies that 

P{T^ <t-S,\S, < t ) > 0 for all x €< (04, 02)- Hence P'{T, < t) > 0 as required. 

Proof of point 3 Suppose d^ < 0 and < 0, and let 2: > 0. Then the 

function 

\ H ) 

d 

f{t') < 0. So (A.4) tells us 

will decrease towards the asymptote — ̂  < 0. Thus there exists t' > 0 such that 

^ { z ) > P{Vr < 0 ) > P{V, < 0 , Nt, = 0 ) = PU{t') < Q)P{Nt, = 0 ) 

> 0. 
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The same argument works in the case d^ = 0 and d,, < 0, since the function z + dr, 

decreases to — cx). 

Proof of point 4 We have already proved the case when 64 < 62 so in the 
proof of points 4 and 5 we assume 62 < 64. 

Suppose that d^ > 0, and - J > 64. Define M{t > 0 : V; < and 
T, := inf{^ > 0 : K < 0}. We show that > 0 for all z > 0 . 

Firstly, we use eciuation (A.4) to show P{Tz < 00) > 0 when z < Note 
that the function 

\ dp d 

decreases towards -cx) so there exists t' > 0 such that f{t') < 0. Thus, 

P{T, < t') > P{Vt. < 0) > P{Vv < 0, Nt. = 0) = PU{t') < 0)F(7Vt' = 0) 

= P{Nt' = 0) 

> 0. 

If z > 04 then Lennna A.4 implies that P{S^ < t) > 0 for all t > 0. 
As in the proof of i)oint 2, we combine these two results, and use the fact that 

y is a time homogenous strong Markov process. Let z > 64. Since S^ < T^ we 
have 

P{T, <00)^ P{T, < 00 I < oo)P{S, < 00). 

Thus, it suffices to j^rove 

P{T, < 00 \ S, < 00) P\T, < CX)) > 0. 

However, 

P'{T, < 00) = [ P'{T, < 00 I = x)P'{Vs^ e dx) 
J04+ 

^ [ P'in < oo)P'{Vs^ E dx) 
Je4+ 

> 0. 

Proof of point 5 Suppose that 62 < O4, > 0, < 0 and <62. 
We let S, := inf{^ > 0 : Vt < 62] and T^ := inf{t > 0 : K < 0} and prove 

that ip{z) > 0. U z > -'Y then the function 

d, 
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will decrease towards the asymptote — Since < 6*2 we can show that 

P{Sz < oo) > 0 using the familiar argument of conditioning on Nt = 0. And for 

2 < 02, Lemma A.3 implies P{T^ < i) > 0 for any t > 0. We combine the two as 

above, using the strong Markov property, to conclude that •0(2) > 0. 

It remains to note that there is positive probability of ruin when all conditions 

of the theorem are satisfied, but z is below the stated thresholds. Thus, we 

assume that = 0 and 02 < Now if (a) or (c) holds and z < 02 then 

xIj{z) > 0, as shown in Lemma A.3. If (b) holds, we need to show that ip{z) > 0 

if z < niax{6'2, However, in the proof of point 4 it was shown that if > 0 

and z < — then xp{z) > 0, and so we are done. • 



Appendix B 

Direct calculation of examples 

We present calculations for Examples (2.5) and (2.7), which serve to verify the 

ruin probability results obtained by Theorem 2.1. 

Example (2.5) calculations: Let {Bt + ct, -Bt + (1/2 - c)t), where 

c G M and cr| = 1. Then 

Zt = - f + (1/2 - c) f e-^^^'+^'^ds. 
Jo Jo 

By Ito's formula we know that 

g-(B.+c5) = 1 + r + cs) + 1/2 r 

Jo Jo 

= I- f + [ 
Jo Jo 

Combining these two formulas we obtain 

Zt = - 1. 

Thus, for all ^ > 0 we have Zt > -I almost surely, which implies that tp{z) = 0 

whenever z > 1. Since B is Brownian motion, for any c G M we have that 

inf {ueR: p( mf(~Bt - ct) < u] > o l = -cx), 
I V'^o / J 

and thus P{\nft>oZt < ?x) > 0 for all u > —1, which implies that ip{z) > 0 

whenever z < 1. 
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Example (2.7) calculations: Let iV be a Poisson process with parameter A, 
let c > 0 and let {^t,Vt) •= {-ct + Nt, 2ct - Nt). Then 

Zt = 2c Te^^^-^^^-ds -
Jo Jo 

By Ito's formula for semimartingales [60] p.79, 

^ct-N, = 1 + 
Jo 

+ H - - - N,)) . 
0<s<t 

We rearrange this formula and combine with the previous formula to obtain 

^^ ^ eCt-Nt 
Jo 

- ~ - Aics - Ns)) . 
0<s<t 

Let the jump times of iV be 0 = To < Ti < Ta < . . . and note that 

Nt 

0<s<t 

Next note that 

rt 

i=l 

rt Nt 
/ = V 

Jo j^l J^Nt 

( Nt \ 

ct-N( _ _ ^cTN.-Nt 

V i = i / 
/ Nt \ 

- 1 + ) 
V / 
/ Nt \ 

-i gCt-Nt 
V i=i / 

1 

C 

1 

C 

_ 1 
c 

We substitute these two formulas into the formula for Z( to obtain 

Nt Nt 

i=l 

Nt 
i=l 

i=\ 
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Thus, for a lH > 0 we have Zt > -2 almost surely, which implies that IIJ{Z) = 0 

whenever z > 2. Note that limt-.oo Zlj^'i = 0 a.s. whilst 

i n f l u e R : P mf{ct - Nt) < u 
\t>o 

> 0 ^ = -cx). 

Thus, P(inft>o Zt < u) > 0 for all u > -2, which means ip{z) > 0 whenever 

2 < 2. 
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Appendix C 

Proof that sequences are iid 

We prove that the sequence of random vectors (C„, -D„)„>i defined as 

\ J(n-1)+ / 
(C, 

in equation (1.38), is iid. This sequence is used to discretize V into the sohition 

of the stochastic difference equation (1.37). 

The Levy process (^,ry) has independent increments, that is, {̂ t — — 

r]s) is independent of — ̂ r,Vv - Vr) whenever 0 < r < v < s < t . Note 

that we can bring the term e^"-' through the integral sign and write = 

/("-!)+ Thus (C„, £>„) is independent of {Cm, Dm) for any n ^ m. 

We now prove that (C2, D2) =d (C*!, ̂ 1), and the argument for general n is 

identical. The Levy process r/) has stationary increments, that is, {^t — Vt — 

rjg) {^t-s,Vt-s) whenever 0 < s < t. Also note that for any t > Q, ̂ t = ^t- a.s. 

and r/t = a.s. It follows from these two facts and the independent increments 

property of (^,r/) that, whenever 1 < s < 2, 

- '/i) = ( 6 - r / i ) + (6 

i f ( 6 - 6,Cs- - ^ u V s - v i ) * i f ( 6 - 0,0) 

= D * i f ( 6 - e.-i, 0, 0) 

=D + ( 6 -6-1,0,0) 

= (C.l) 
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Now 

/ r2 

V ^1+ 

= e 

1+ 
2 

1+ 
diVs - Vi) 

/ r^ \ 

\ Jo+ J 

where the third (distributional) equality follows using the distributional equality 

(C.l), the fourth equality is obtained using a change of variables and the final 

equality follows from the fact that A{^o,rio) = 0. Thus we have proved that 

{Cn, Dn) is an iid sequence. 

The fact that (C„, -D„)„>i is an iid sequence immediately implies that the 

sequence defined by (C„, C„Z?„)„>i is also an iid sequence. However, 

(C„,C„Z?„) = (e^n-in-.^^in T g-^-dr/,) = iAn,Bn), 
\ j{n-l)+ / 

when {An, Bn) is defined as in equation (1.34). This sequence is used to discretize 

V into the solution of the stochastic difference equation (1.32). 



Appendix D 

Examination of independent case 

We write out summaries of the major results for the case in which ^ and ?/ are 
independent. No proofs are given, but a lemma is stated and proved. Using this 
lemma, the independent results follow easily from the general versions. Proposi-
tions D.2 and D.3 are derived from the results in Section 3.3.1. Proposition D.4 
is derived from Theorem 2.1 and Proposition D.5 is derived from Theorems 3.1 
and 3.3. The terms <5, T , L and U are defined as in Chapter 3. As usual, we 
assume that neither ^ nor r/ are identically zero. 

L e m m a D . l . Suppose ^ and rj are independent. If there exists u ^ Q such that 
u E L, or u E U, then ^ and rj are of finite variation. 

Proof. Assume and r] are independent. Suppose that u E L with u ^ 0. We 
prove that ^ and rj are finite variation. Since ^ and r; are independent, it must be 
that a^ ri = 0, which implies, by Proposition 3.16, that S^ ,, = 0. By Proposition 
1.11 it suffices to show 

I |(a;,?/)|n^.,(d(a;,y)) <(X). (D.l) 

Suppose that u > 0. The case in which n < 0 is symmetric. By Proposition 3.16, 
the ecjuation g{u) > 0 nmst hold. Further, case (a) or (c) of Proposition 3.16 
must occur, and thus ^ and rj both have no negative jumps. Th\is the function g 
can be written 

9{u) = % + ui^ - u ! xn5(dx) - [ yllr^idy). 
•Jo .Jo 

Since g{u) > 0, the integrals must both be finite, which implies that (D. l ) holds. 

• 
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Proposition D.2 . Suppose ^ and rj are independent and rj is not a suhordinator. 

Then there exists a finite lower bound, 6{z) > -oo , for some z G M, iffr] is finite 

variation with < 0 and no negative jumps, and one of the following holds: 

1. ^ is a suhordinator with d^ > 0, in which case L = [—d^/d^, cx)] C (0, oo); 

2. IS a suhordinator with d^ < 0, in which case L = (—oo, —ti^/c?^] C 
(-(x,,0) 

Proposition D.3. Suppose ^ and rj are independent and —rj is not a suhordina-

tor. Then there exists a finite upper hound, T (2 ) < oo, for some z G R, iff rj is 

finite variation with positive drift and no positive jumps, and one of the following 

holds: 

1. —^ is a suhordinator with d^ < 0, in which case U = [—ti^/c?^, oo] C (0, oo); 

2. ^ is a suhordinator with d^ > 0, in which case U = (—oo, — C 
(-cx),0). 

Proposition D.4. Suppose ^ and rj are independent. Then '0(0) = 0 iff rj is a 

suhordinator. If rj is not a suhordinator then ip{z) — 0 for some z > Q iff ^ is 

a suhordinator with d^ > 0 and r; is of finite variation with d^^ < 0. If this case 

occurs then ip{z) = 0 for all z > 

Proposition D.5. Suppose ^ and rj are independent and rj is not a suhordinator. 

1. / / l imt^oo6 = - o o a.s. and I-^^Ki^n < co then iIj{z) = 1 for all z > 0; 

g. IfE{^i) = 0, E < oo and E{r]i) < oo then 7p{z) = 1 for all z > 0; 

3. Suppose liirif^oo^ = co a.s. and < oo. Then ip{z) = 1 for some z > 0 

iff a suhordinator and ^ is of finite variation with positive drift and 

no positive jumps. In such a case, if>{z) = 1 for all z < — 



Appendix E 

Comments 

Paulsen's assumptions in [56] As noted in Section 1.6, certain fanlty as-
sumptions are made in Paulsen [56]. If ^ and r/ are independent and 77 is not a 
subordinator then Paulsen assumes: 

1. If = 0 and ^ is not identically zero then for all t > 0, P{Vt < OjVb = 
z) > 0 for all 2 > 0; 

2. If < 0 and A is a Lebesgue measurable set in (—oo,0) then P{Vt E 
A for some 0 < i < 00) > 0 for all Vq = z > O] 

3. If Zt converges a.s. to a finite continuous random variable Z^o as i —> 00, 

then for all z > 0, P{Z^ > -z) > 0. 

Statements 1,2 and 3 are used by Paulsen in his proof of Theorem 1.20 part (b), 
(a) and (c) respectively. However, even in the independent case they are not 
true. For statement 2, a counterexample is presented in point 1 of Remark 3.2. 
Paulsen's proof can be salvaged by using the replacement inequality 

PiVr < 0|Fo = z) > 0 y z > 0 (E. l ) 

where T is an exponential random variable independent of ^ and r/. Since T has 
infinite support, for any z > 0, P{Vt < 0|\/o = z) > 0 iff ii){z) : = P{m{t>oVt < 
OjVo = z) > 0. Thus Proposition D.4 ensures that (E . l ) holds under the stated 
conditions. 

For statement 2 to hold in the independent case, it must be that L = 0. 
However, by Proposition D.2, there exist independent ^ and 77 such that r] is not 
a subordinator, < 0 and L = ( - 0 0 , -dr,/d^]. Simple examples confirm this. 

If 6 : = -t and rit := -t then VJ = e'^iz + 1) - 1. Whenever z < - 1 the function 
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Vt increases towards the asymptote - 1 . For a simple non-deterministic example, 
let t̂ := -t and rit -t + Nt where N \s a Poisson process with jump times 
0 < To < Ti < • • • . Then 

Nt 

= _ 1 + (z + + e ' ^ Y ^ e ^ ' . 

i=i 

Thus, whenever z < - 1 all paths of Vt are increasing. 
Statement 3 is also false in the independent case. If the conditions of statement 

3 hold and - r / is a subordinator then, by Proposition 3.20, 0 e U, which implies, 
by Theorem 3.12, that Z^ < 0 a.s. For example, let (t, -t - Nt) where 
N is as above. Then 

Nt 

i=l 

and so Zoo < —1 a-S- Using Proposition D.3, it is clear that statement 3 holds 
when we add the extra condition that - r ; is not a subordinator. 

Paulsen's assumption in [57] In the proof of Theorem 3.2, Paulsen states 
that when ^ and r] are independent and r/ is not a subordinator, then inf j z G M : P (inf Z^ < z ) > o } = - o o . 

By (1.3), this is equivalent to assuming ip{z) > 0 for all 2; > 0. Proposition D.4 
indicates that Paulsen's statement is wrong. An example is := {t + Nt, —t) 
where N is as above. This example trivially satisfies all the conditions in Paulsen's 
Theorem 3.2. However, using the calculations from Appendix B it is clear that 

Nt 

Zi = - 1 + (e - 1) ^ e -^ ' - ' + 
i = l 

and hence inff>o Zf > — 1 a.s. 
Nyrhinen's condition in [52] As noted in Section 1.6, the continuous ver-

sions of Nyrhinen's asymptotic results require that the condition 

> o l = 00 sup < z : P sup Z t > z 
I \ t > o 

holds, where dependence between ^ and ij is allowed. Clearly, this is equivalent to 
the condition Un(-(X), 0] = 0. Using Proposition 3.20 we can define iff conditions 
on the Levy measure of t]) such that this situation occurs. The conditions will 
be the symmetric versions of the conditions in Theorem 2.1. 

Kalashnikov and Norberg's conditions in [32 
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As noted in Section 1.6, the continuous versions of the asymptotic results 
in this paper require hypothesis G to be satisfied for a particular stopping time 
T > 0. Namely, C is not a subordinator and P{ZT < U) > 0 for all u E R. The 
authors note that when and r/ are independent, this hypothesis can be replaced 
by the slightly stronger condition, < 0, < 0) > 0. 

Staying in the independent situation, if we choose an unbounded random time 
T > 0, with support [0,cx3), then hypothesis G can be replaced with the simpler 
condition that ^ and t] are both not subordinators. To see this, note that when ^ 
and 7/ are independent and neither are subordinators, then P(inft>o Zt < —z) > 0 
for all 2 > 0, by Proposition D.4. And by the choice of T > 0, whenever z > 0, 
P{MIT>oZt < -z) iff P{ZT < -z) > 0. 

This result doesn't hold in general for unbounded T > 0. For an example of 
independent ^ and r/, neither of which are subordinators, such that P{Zi < 0) > 0, 
see point 1 of Remark 3.2. 

It is important to note that when ^ and are dependent, hypothesis G can-
not be replaced with the alternative statement. Specifically, when ^ and 77 are 
dependent, assuming that ^ and r; are not subordinators certainly does not imply 
P{Zr < u) > C, whether or not T is unbounded. For general and T > 0 
with support [(),oo), P{ZT < U) > 0 for all u E R iff P{Mt>oZt < -z) > 0 
for all z > 0, which is satisfied iff the conditions in Theorem 2.1 do not hold. 
To determine whether all the continuous asymptotic results in this paper hold in 
the general case we must examine under what conditions P(inft>o Zt < -z) = 
PiMnenZn < -z). 
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Appendix F 

Asymptotic Results 

In this section we describe an asymptotic result by Grinceviciiis [28] on the ab-
solute maximum of a discrete stochastic sequence. We state, and prove, a con-
tinuous version of this result. We also present modified versions of some of the 
asymptotic results described in Section 1.6. Throughout this section we let (C,^) 
be a Levy process, and V, Z and ijj{z) be defined as in ecjuations (1.1), (1-2) and 
(1.3) respectively. Let 

T, := inf{t > 0 : Vj < OlVb = z} = mf{t > 0 : Zt < -z}. 

Let (M„, Qn) be an iid sequence of random vectors with common distribution 
(M,Q) , where M > 0 a.s. Define D^ := I l j l i ^ Q i - Define the random 
walk Sn ••= In (nj=i = EJ=i where So = 0. Grincevicius [28] provides 
results for the case in which £'(ln M) = 0, so the random walk 5„ is oscillating. 
By Theorem 2.1 of Goldie and Mailer [25], the condition £;(lnM) = 0, together 
with the non-degenerate condition P{Q + Mc — c) < I for all c e M, implies that 
\Dn\ -^p oo as n ^ oo. The following theorem, which is a consequence of Theo-
rems 1 and 2 of [28], shows that In is asymptotically the same as maxo<„<„ Sy 
as n ^ oo. This is a useful result, since the maximum of an oscillating random 
walk is a well-known and well-studied process. 

Theorem F . l . S^ippose M > 0 a.s., E( lnM) = 0, f;(|lnA/|2) < oo, P{Q + 
Mc = c) < 1 for all c ER and one of the following conditions holds: 

1. £(|lnM|2+^i) <oo and E (̂ (ln+ < oo for some 0 < e^ < 1 and 
£2 > 0; 

2. InM has a continuous symmetric distribution and E < oo 
for some e > 0. 
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Then 
In Z)„ maxo<„<„5„ 

lirn — j = — = o lim n->oo yjn Ti->oo y'n 

Further, 

lim F 
n—»oo 

where F is a continuous proper distribution. 

We do not state an explicit expression for F since it requires a lot of notation. 

We simply note that F is the convolution of the distributions of the stochastic 

series (6) and (8) in [28], which converge with probability 1. 

We now prove a continuous version of this theorem. Note that we have mod-

ified the theorem in order to state conditions on the marginal distributions of ^ 

and 7] rather than on the distribution of Z. 

Theorem F.2. Suppose = 0, the degenerate equation (1.29) does not hold, 

there existp, q > I with l/p+l/q = 1 such that E < oo and E (|r/i|'') < oo, 

and one of the following holds: 

1. 

2. E < oo and has a continuous symmetric distribution. 

Then 
\n\Zt\ 

hm — ^ =D hm ^ — (F . l ) 
t-oo y/i t-oo y t̂ 

Further, 

lim F (F.2) 
t—*oo 

where F is a continuous proper distribution. 

Proof. Suppose that the assumptions of Theorem F.2 hold. For a Levy process 

T]) define 

( M „ , g „ ) := / (F.3) 
\ J{n-1)+ J 

as in (1.38). It is immediately clear that the assumptions in the first sentence of 

Theorem F.l hold for {M,Q) := . Using our assumptions on p and q, 

Lemma 3.24 implies that 

E sup < oo, 
\0<s<l J 

and hence E\Zi\ < oo. Thus, there exists 0 < c < 1 such that i^dZil^) < oo. 

Note that whenever 0 < 5 < 1 and x > 0, then there exists c > 0 such that 
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< cx^. Hence E (̂in"*" < oo. It is now clear that statement 
2 of Theorem F.l holds whenever statement 2 of Theorem F.2 holds. Further, 
statement 1 of Theorem F.l holds, for Ci = 1 and ê  = e, whenever statement 1 
of Theorem F.2 holds. 

With our choices of (M„,Qn) , it is clear that Z„ = £)„ for all n G N. Thus, 
Theorem F.l imphes that 

hm — = D hm 
n->oo,neN y/n n^oo,n€N .^n 

and 
lim F. 

n—>oo,n€N 
We need to "fill in the gaps," and extend these equations into statements for real 
t > 0. 

Define a seciuence of partitions A "̂̂  for rn G N by = N and 

a m ^ / O — — •••1 

For each m G N define an iid sequence of random vectors ( Q n ' " ' ) by V / ri€N 

\ / 
We prove, for each m G N, that the conditions of Theorem F.l are satisfied for 

By the above comments, it suffices to show that the conditions of Theorem F.2 
hold, with replaced by Since ^ is a Levy process, = 0 

iff E = 0) and has a continuous symmetric distribution iff ^ ^ has 
a continuous symmetric distribution. The remaining moment conditions follow 
immediately from Sato [62], p. 159, which states that whenever g is a submulti-
plicative, locally bounded, measurable function, then finiteness of the (/-moment 
is not a time-dependent distributional property in the class of Levy processes. 

Thus, for all m G N, Theorem F.l implies that 

In IZ n I - min,,pro ... _2_, 

and 
lim = n F^"), (F.5) 

n-̂ oo,n6N ' 2'" I u , \ j 
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where is a continuous proper distribution. Since C A^™') whenever 

m < m\ it is immediate that F^™) = F for all m e N. For each real t > 0, define 

t]^""^ := max{x € A„|x < t}. 

Thus, for each m 6 N, 

lim |Z[t](m)| = lim J Z ^ I 

and 

= lim e^^^^fo,^, 
t^oo n—•oo,n6N 

However, by the cadlag property of Levy processes, for each t > 0, 

hm |Zm(m)| = Zt- a.s. 
m^oo.msN 

and 

m^oo.msN 

Using these Umits, equations F.l and F.2 follow from equations F.4 and F.5 

respectively. • 

In Section 1.6 we presented some asymptotic results on sup,>Q Z^ which are 

stated in Nyrhinen [52]. We commented that the conditions are stated in terms of 

the distribution of Z, rather than the marginal measures of ^ and r], which makes 

the results quite inaccessible. We now present a modified version of these results 

in which moment conditions are given on ^ and r;. In addition, the asymptotic 

results are given for inft>o Zt rather than sup̂ ^Q Zt, which fits better with our work 

on ruin probability for the GOU. In this context, Nyrhinen's condition y — oo 

becomes the condition ip{z) > 0 for all 2; > 0. Note that Theorem 2.1 states iff 

conditions on the Levy measure of 77) such that this condition holds. 

We first need to define some notation. Let c{a) := InF , a G R. By 

Proposition 2.3 of [17], and our assumption that ^ is not identically zero, the 

function c{a) is strictly convex and continuously differentiable 

on the interior of 

its domain of finiteness. Let c* be the Fenchel-Legendre transform of c, namely 

c*{v) := sup{«^; - c{a) : a G R } , w G R. Let 
( M , Q , L ) := f inf Z^ - Z , ] ] . (F.6) 

\0<s<l y 

and define the constant 

TO := sup { « G R : C(Q) < (X, E (IQI") < 00, F ( ( M L - ) " ) < 00} G [0, 00]. 

(F.7) 
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By the strict convexity of c, if E ) = 1 for some it; > 0 then c'{w) > 0 and we 
define the constant xq := hmt^tg- {l/c'{w)) G [0, cxj). Recall that a distribution is 
spread out if it has a convolution power with an absolutely continuous component. 

T h e o r e m F.3 . Suppose ip{z) > 0 for all z > 0, there exists w > 0 such that 
E [e"^^^) = 1 and there exist e > 0 and p,q > 1 with 1/p + l/q = 1 such that 
^ ^ ^ ^^^^ ^ ^ |max{ function 

/ for X e {xo, 

IS finite and continuous on (xo, 00) and strictly decreasing on and we 
have 

lim ^ (P 2^00 hi z 

for every x > xq. In addition, 

lim ^ = -w. (F.9) 
2^00 Inz 

I f , further, the distribution of is spread out, then there exist constants C_ > 0 

and 7 > 0 such that 

= + 0 {z-^) asz^oo. (F.IO) 

Proof Suppose the conditions in the first sentence of the theorem hold. Define 
an iid sequence {Mn,Qn, Ln)n>\ by choosing Mn and as in equation (F.3), 
and letting 

L„ := e^" ( inf [ e'^'-diis - I e ^^"dr/ 

Define the secjuence 

n i-l 

For our choices of (M„, L„), we have already noted, for all n G N, that 

n i-l 

i=l J=1 
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Thus, 

X„ — Zn <nT 

= Zn-i + inf dVs 

which imphes that 

= inf Zt, 
n-l<t<n 

inf Zt = min X„ 
0<t<n m=l,-,n 

In [52], Nyrhinen presents asymptotic results for max,„=i,... which we pre-
sented as Theorem 1.21. The obvious reciprocal version of this theorem ensures 
that equations (F.8) and (F.9) hold, if we can prove the relevant conditions are 
satisfied for 

/ 

inf Zs — Z\ \0<s<l ( M , Q , L ) 

Namely, we must show that 

inf e M : F (inf Zj < > o} = - 0 0 , 

and 
0 < sup{a e R : c(a) < 0} < to < 00 

where to is defined in (F.7). 
The first of these conditions is equivalent to the requirement that ip{z) > 0 for 

all 2 > 0, which we have assumed as a theorem condition. By Proposition 2.3 of 
[17] the function c{a) is convex on its domain of finiteness, and the convexity is 
strict unless the distribution of ^ is degenerate. Thus, it is clear that our assumed 
moment conditions imply that w — sup{Q; G M : c{a) < 0} and w + e < to, and 
hence the second condition holds. To see that w + e < to, simply use the fact that 

inf Zs — Zi 
0<s<l 

< 2 sup \Zs 
0<s<l 

and then apply Lemma 3.24. 
If we suppose, further, that is spread out then the symmetric version of 

equation (F.IO) follows immediately from Nyrhinen's comments in [52], which 
we have expressed as Proposition 1.22. Alternatively, it is simple to directly 
prove that the conditions of Theorem 6.3 in Goldie [24] hold, and then adjust the 
subsequent formula to obtain the reciprocal version of (F.IO), as explained after 
Proposition 1.22. • 
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R e m a r k F.4. 1. The conditions of Theorem F.3 imply that Zi converges a.s. 

to a finite random variable Zoo, as t oo. This follows from the comments 

made relating to Nyrhinen [52] in Section 1.6. Specifically, with Mn and 

QN defined as above, we showed that conditions in hypothesis H imply that 

the seqnence 11^=1 M jQ i , and hence the sequence Z„, converges a.s. 

to a finite random variable as n —> oo. 

2. The final result of the theorem, equation (F.IO) is also stated by Paulsen in 

[57], for independent ^ and rj. We presented this result as Theorem 1.24. Our 

version of the result works in the general case, and also requires simpler and 

fewer conditions. In particular, we don't have to assume extra conditions 

that ensure the convergence of Zj. As shown above, the existing moment 

conditions already ensure convergence. 

3. Wi th (M, Q, L) as above, the value C_ in equation (F.IO), is given by the 

formula defined in (2.19) of Goldie, namely 

= ' ' ' ' 

— E(( (Q + Mmm(L,mfZt]] ) - ((M'mfZt) 
wa\\\ \ t>o J / J \\ t>o / 

(F . l l ) 

where a := E In \M\). When ^ and r/ are independent, it was pointed 

out by Paulsen [57], and explained in Section 1.6, that this constant can be 

written in a slightly different form. Using Theorem 2.4, the same approach 

works in the dependent case. Namely, let G{z) := P{Zoo < z) and h{z) := 

E{G{-VT,)\T, < oo) G [0,1] and h := LIM.^ooHz)- Then 

= {{{MZ^ + Q)-Y - {{MZ^RY). 
wall 

4. As in Paulsen [57], the requirement that is spread out, can be replaced 

with the more lenient requirement that T̂ is spread out, where T is uni-

formly distributed on [0,1] and independent of To see that this replace-

ment holds, note that we can define (A/„ ,Q„,L„) in terms of increments 

with distribution T and repeat the proof. Since T is uniformly distributed 

on [0,1] and independent of the moment conditions on (^r, VT) are equiv-

alent to the original moment conditions on 
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