Ruin probabilities for the generalised
Ornstein-Uhlenbeck process and the

structure of the upper and lower bounds

Damien John Bankovsky

February 2009

A thesis submitted for the degree of Doctor of Philosophy

of the Australian National University







Declaration

The work in this thesis is my own except where otherwise stated. Chapter 2 is

based on a paper written jointly with Allan Sly.

/ ) )
/ / / /

Damien Bankovsky



] ";F;»a_pg@;& e%tw*ﬁﬂmaw ki
L R




Acknowledgements

I thank my primary supervisor Professor Ross Maller, for his guidance, support
and understanding throughout my candidacy. I thank my secondary supervisor
Professor Chris Heyde, who passed away in March 2008. Chris was very kind to
me and is very much missed by all his students. I thank Allan Sly for his generosity
with advice and assistance. I thank the academic and administrative staff of the
ANU Mathematical Sciences Institute, as well as the graduate students. Everyone
I have dealt with has been friendly, helpful and supportive and I have considerably

enjoyed my time here. Finally, I thank my much-loved family and friends.






Abstract

For a bivariate Lévy process (£,7), the generalised Ornstein-Uhlenbeck (GOU)
process V = (V})i>0, is defined by

't
‘/t, = (?& <VZ) aF / (’_Es_d"].s) )
J 0

where V; is a random variable independent of (&, 7). It is closely related to the

stochastic integral process Z = (Z;)i>o defined by

g
Zy ::/ e S-dn,.
0

We examine the infinite horizon ruin probability for V| and the associated be-
haviour of Z. In particular, we define conditions under which V' has zero proba-
bility of ruin, and conditions under which ruin is certain. These conditions are
stated in terms of the canonical characteristics of the bivariate Lévy process and
reveal the effect of the dependence relationship between & and 7. We also present

an in-depth examination of the structure of the upper and lower bound of V.
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Notation and terminology

Abbreviations and acronyms

a.s. almost surely in probability

iid independent and identically distributed
iff if and only if

cadlag right continuous and left limit exists
OouU Ornstein-Uhlenbeck process

GOU generalised Ornstein-Uhlenbeck process
Cov covariance

SDE stochastic differential equation

sup supremum

inf infimum

max maximuin

min minimum

lim limit

Notation

P(A) probability of event A

E(X) expected value of random variable X
Px distribution of X

X1



xii NOTATION AND TERMINOLOGY

e(X) stochastic exponential process of a semi-martingale X
P& quadratic variation process of semi-martingales X and Y
e path-by-path continuous part of [X,Y]

IMx Lévy measure of a Lévy process X

Nx . random jump measure of a Lévy process X

alNb minimum of a and b

aVb maximum of a and b

& process Y stopped at T, so Y, := Yiar

iz negative part of f, so f~(z) := —(f(z)) VO

s positive part of f, 80 71 (z) = flz) V0

f(t—) left limit of f at ¢, so f(t—) := limyyo f(t — h)

ft+) right limit of f at ¢, so f(t+) := limpo f(t + h)

Af(t) inmpiof fat t,'s0 Af(t):= flil) — fi—)

=75 equality in distribution

—p convergence in distribution

—p convergence in probability

N set of positive integers

R set of real numbers

Q set of rational numbers

R4 d—dimensional Euclidean space

(.9 inner product in Euclidean space, so (z,y) := >" | &y
|| norm in Euclidean space, so |z| := (3°1 a:f)l/2

A closure of set A in Euclidean space

1L indicator function of the A



xiii
A\T {gipeAeal)

f(z) = O(¢(x)) real valued function f is big order ¢, so there exists constants

¢ and z¢ such that|f(z)| < cp(z) for some constant ¢, for all

T > 0y
f(z) =ol¢(z)) f is little order ¢, so lim; . ﬁ% —0
f(z) ~ ¢(x) f is asymptotically equivalent to ¢, so lim; .« % =1
i * o convolution of finite measures g1 and jio
€, n) a bivariate Lévy process
Vv the GOUW, == <VO + fot e‘ﬁs*dns)
Z the stochastic integral process Z; := fUt e~%—dn,
Y(2) infinite horizon ruin probability of V
General

For a real function f, increasing means f(s) < f(t) for s < t and decreasing
means f(s) > f(t) for s < t. When we wish to exclude equality we say strictly
increasing and strictly decreasing.

For a real number z, positive means z > 0 and negative means x < 0.

The integral j; is interpreted as f[a,b] and the integral [{f+ as f(a,b] :

The integral of a R%-valued function or the expectation of a random variable
in R? is the vector in R with componentwise integrals or expectations.

A distribution is spread out if it has a convolution power with an absolutely

continuous component.



Chapter 1

The generalised

Ornstein-Uhlenbeck process

1.1 Introduction

This thesis is mainly concerned with the infinite horizon ruin probability of the
generalised Ornstein-Uhlenbeck process. We now define our objects of inter-
est. Let (&,m)i>0 be a bivariate Lévy process with § = 19 = 0, adapted to
a filtered complete probability space (Q,.#,F = (% )o<i<co, P) satisfying the
“usual hypotheses” (see Protter [60] p.3), where £ and 7 are not identically zero.
Assume the o-algebra .# and the filtration F are generated by (&,7), that is,
el (com) 20 e oo iand B — g (£ ). 0 = si= ] Thelveneralized
Ornstein-Uhlenbeck (GOU) process V' = (V;)i>0, where 1} is a random variable

independent of (£,7), is defined by

"t
W o= St (Vo +/ (>‘5"(1'I]S> X (1~1)
0

It is closely related to the stochastic integral process Z = (Z;)¢>0 defined by

t
e — / e 4-dn,. (e2)

Jo
For a Lebesgue set A, let T}, » denote the hitting time of A for V' when Vj = z.
Thus, T, 5 := inf{t > 0: V; € A|Vp = z}, where T}, 5 := oo whenever V; € A for
all t > 0 and Vi = z. Define the infinite horizon ruin probability for the GOU by

il — (%1;(1)\/, <0|Vp = z) = /2 <%1>1£ U< -:) = /P (T:,(,DC‘(,) = oo) 3

1



9 CHAPTER 1. THE GOU

Stochastic integrals and stochastic differential equations are interpreted ac-
cording to Protter [60] and all required stochastic integral results are referenced.
General probability, measure theory and stochastic process results, as found in
Chung [13], Billingsley [5], and Kallenberg [34], are used consistently, often with-
out reference when basic. More specialised theory required throughout the bulk
of the thesis is placed in the present chapter. The main Lévy process texts we
have used are Sato [62], Bertoin [3] and Cont and Tankov [14].

Chapter 1 contains an overview of Lévy process theory and a comprehensive
introduction to the GOU, including an extensive literature review. All known ruin
probability results for the GOU are described in detail, and analysed. Chapter 2
contains new results on conditions for zero ruin for the GOU. Chapter 3 contains
new results on conditions for certain ruin for the GOU, and an analysis of the
structure of the upper and lower bounds. A large amount of material is placed
in the Appendix. Appendix A contains an alternative, less sophisticated method
for proving conditions for zero ruin for a special case of the GOU. Appendix B
and C contain proofs of certain statements made in Chapters 2 and 3. Appendix
D states simplified versions of the major results, which hold when £ and 7 are
independent. Appendix E discusses some of the conditions and assumptions made
in existing papers, and relates them to the results in Chapters 2 and 3. Appendix

F states and proves some asymptotic results on the behaviour of the GOU.

1.2 Lévy processes

Note that this is not a full account, but only a list of basic properties which will
be needed in this thesis.

Definition 1.1 (d-dimensional Lévy process). An R%valued stochastic process
X := (X¢)t>0) on a probability space (Q,.%, P) is called a Lévy process on R? if
it possesses the following five properties:

1. Tt has independent increments: for every n > 1and 0 <tg <t; < ... < &y,

the random variables X;,, X:, — Xy,,...,X;, — Xi,_, are independent;

2. It has stationary increments: the distribution of X,,, — X, does not depen-

dent on ¢;
3. It is stochastically continuous: Ve > 0, limy_,o P (| Xs1n — X¢| > €) = 0.

4. It starts at the origin: Xy = 0 a.s.
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5. It has cadlag (right-continuous and left limit) sample paths: Vw € Q X;(w)

is right continuous with left limits as a function of ¢.

A Lévy process is a time-homogenous strong Markov process. It is a conse-
quence of property 3 that the probability of a jump AX, := X; — X,_ occurring
at a fixed time ¢t is zero, that is, given t > 0, P (w : AX;(w) # 0) = 0. Thus jumps
occur at random times. It is a consequence of property 5 that a.s. each sample
path X;(w) has, at most, countably many jumps, whilst given ¢ > 0, X;(w) has
finitely many jumps of size |AX;(w)| > ¢ on a compact time interval. If X and
Y are independent Lévy processes on R? defined on the same probability space
(2, .7, P) then X +Y is a Lévy process on the same space and the probability
of X and Y jumping together is 0, that is,

Pw" 3t 0such that-AX (w) 70, AV (w) £0)=0.

The mean of X, is a well-defined vector E(X;) € R? iff E(]X;|) < oco. For all
t >0, E(X;) = tE(X;). If X has bounded jumps, that is, sup,.|AX:| < c for
some real constant ¢, then E(]X;|") < oo for all integers n and so X has finite
moments of all orders.

A Lévy process X is a kind of continuous time analogue of a random walk.
Given any time interval A > 0 we can define the discrete time process S, =
LT Z;:ll Y; for Y; = X(i1)a — Xia. Since the Y; are iid (independent and
identically distributed) random variables, S, is a random walk. A probability
distribution F on R? is called infinitely divisible if for any integer n there exists

iid random variables Y, ...,Y,, such that Y; + ... + Y, has distribution F.

Proposition 1.2 (infinite divisibility and Lévy processes). If X is a Lévy process
on R? then for every t > 0 the distribution of X, is infinitely divisible. If F is an
infinitely divisible distribution on R® then there exists, uniquely in distribution, a

Lévy process X such that X, =p F.

The three fundamental examples of Lévy processes are the Poisson process,

the compound Poisson process and Brownian motion.
Definition 1.3 (Poisson process). Let (7;)ien be a sequence of iid exponential
random variables with parameter X and let T,, = )" | 7; with Ty = 0 a.s. With
l¢>7, denoting the indicator function, the process M := (M,); > 0 defined by
M= lpr,
n>1

is called a Poisson process with intensity A := FE(M,).
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Definition 1.4 (Compound Poisson process). Let M be a Poisson process with
intensity A and let (Y;);eny be an iid sequence of random vectors in R? with
common distribution F, independent of M. The process X = (X;);>¢ defined
by X; := Z?:[‘I Y; is called the compound Poisson process with intensity A and
jump size distribution F.

The Poisson process is a Lévy process on R with piecewise constant paths
increasing by jumps of size 1. For any ¢ > 0, M, has a Poisson distribution
with parameter \t. The compound Poisson process is a Lévy process on R? with

piecewise constant paths.

Definition 1.5 (Brownian motion). A stochastic process B := (B;);>0 on R4 is
called d-dimensional Brownian motion if it has independent increments, continu-
ous paths Bi(w) for allw €  and for any 0 < s < t, B,— By is a Gaussian random

variable with mean zero and covariance matrix (t—s)A for a deterministic matrix

A.

When we set By = 0 a.s, Brownian motion is a Lévy process. We now examine
the jumps of a Lévy process X. Since paths of a Lévy process are cadlag the only
type of discontinuities possible are jump discontinuities of form AX; = X; — X,_.
Let A be a Borel set in R? and define

Mt(alis—naie Yok = LalAKE),
0<s<t,AX;#0

which counts the number of jumps of the sample path X,(w) occurring in time
(0, ] with size in A. When 0 ¢ A, where A is the closure of A, (N})¢>0 is a Poisson
process. It can be written in the form N} = 37  1;57m where TA = inf{t > 0 :
AX; € A} and T} = inf{t > Ty"' : AX,; € A} for integers n. For any Borel set A
define IT(A) := E (N{'), the intensity of the Poisson process. Note that IT(A) is
the expected number of jumps which occur up to time 1, with size in A. If 0 € A
then II(A) and N (w) may be infinite, since X can have an infinite number of

small jumps in any time interval.

Proposition 1.6. The set function II(A) is a measure on R? and a o-finite
measure on R?\ {0}. For each fized (t,w) the set function A — NMw) is a
measure on R? and a o-finite measure on R%\ {0}.

Definition 1.7 (Random measure, Lévy measure). Let X be a Lévy process on
R?. The set of measures Ny(w) on R? defined by N} (w) := Y e Lplleas S
called the random measure of X. The measure IT on R? defined by II(A) :=
E (NIA) is called the Lévy measure of X.
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When necessary we will denote the random and Lévy measures of X by Nx
and Iy respectively. If II((—1,1)%) = oo then X is called an infinite activity
Lévy process and if TI((—1,1)¢) < oo then X is finite activity. A compound
Poisson process with intensity A is a finite activity Lévy process with PIRP=R
Conversely, for a Borel set A in R? define J} to be the sum of all jumps of X

with size in A up to time ¢, namely

Ty R

0<s<t

If 0 ¢ A, or if II(A) < oo, then J* is finite a.s. and is a compound Poisson
process with intensity II(A). It can be written as J* = [, 2Ny(-,dz) = ZZV:‘AI Y;
for some iid sequence (Y;);en with common distribution Y, where Y € A and is
independent of N*. For disjoint Borel sets A; and A, with finite Lévy measure,

the processes J* and JA2 are independent.

Proposition 1.8 (Lévy-Ito decomposition). Let X be a Lévy process on R with
random measure N and Lévy measure I1. Then there exists a vector v € R? and

a Brownian motion B on R® with covariance matriz ¥ such that

X, =~t+ B+ X} + X} (1.4)
where
X oy — / 2 (Ny(w,dz) — tll(dz)), (1:5)
{lzl<1}
X / Z2Ne(widz) — J,{lzlzl} (1.6)
{lz1>1}
and

fy=}3<x1 —/|Z|21:N1(-,dz)>. (1.7)

The four processes in (1.4) are mutually independent Lévy processes, X} is a

mean-zero martingale, and 11 satisfies

/ |2|*T1(d2) < oo and / lili(dz)i<! bo:
J{lz|<1} {lz=1}

The triplet (v, %,1II) is called the characteristic triplet of X and uniquely
determines the distribution of the process. We call ¥ the Gaussian covariance
matriz and v the adjustment coefficient. Sample paths of X are continuous a.s.
iff IT = 0. Note that the process X' has jumps with size less than 1, whilst X2

has jumps of size greater than or equal to 1. The choice of 1 as the cut-off value
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is arbitrary, however the value of  depends on this choice. Also note that E(X 1)
may not exist as a finite or well-defined vector in R%, so v cannot be split into
two separate expectations in the equation (1.7). If X is a univariate Lévy process

we denote the variance of the Brownian component by o? rather than the matrix
)28

Proposition 1.9 (Lévy-Khinchin representation). Let X be a Lévy process on
RY with characteristic triplet (v, X, 11). Then for z € R¢

E (ei(z,Xg)) — (@)

P(z) = —=(2,22) +/ (e™ — 1 — iz, 2)1{jz<1y) TI(dx) + i{7, 2)
Rd

Proposition 1.10. Let X be a Lévy process on R? and let A C R? be Borel. If
a real function f on R? satisfies [, |f(2)|1I(dz) < oo then

E(//\f(z)NA-,d:)) =t/Af(z)H(dz).

The total variation of an R%-valued function over the interval [a, b] is defined

by
Vi(la,b]) = supZ ) ),

where the supremum is taken over all finite partitionsa =tg <t; <--- <t, =b.
A Lévy process X is said to be of finite variation if, with probability 1, its sample

paths X,(w) are of finite variation on [0, ¢] for every t > 0.

Proposition 1.11 (Finite variation Lévy process). A Lévy process X is of finite

variation iff its characteristic triplet satisfies ¥ = 0 and
/ |2|TI(d2) < oo. (1.8)
l21<1
Corollary 1.12. If X is a finite variation Lévy process on R then

X, —di /Rd zZNy(-,dz) = dt + Z AX;

0<s<t

d=~v— ./|zi<1 Zlllde ) — B <X1 — /Rd 3N1(-,dz)) (1.9)

18 called the drift vector.

where
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By definition, a finite activity Lévy process has a Lévy measure satisfying
(1.8) and hence has a finite variation jump process, however the converse does
not hold in general.

In this thesis we deal mainly with bivariate and univariate Lévy processes.
We make some comments specific to these situations. Throughout this thesis
we let (£,m) be a bivariate Lévy process and denote its characteristic triplet
by ((3¢,¥n)s Xy e n) - The characteristic triplets of £ and 7 as one-dimensional
Lévy processes are denoted by (7, ag, IT¢) and (7, 0,2], I1,)) respectively, where

II¢(T) = I (T’ x R) and II,(T") = (R x T') (1.10)

for T' a Borel subset of R with 0 & T,

%=%+/ ol ) (L11)
{lz|<1}n{z2+y2>1}

%=%+/ ol o(d(z, ), (1.12)
{ly|<1}n{z?2+y2>1}

and ag and 0727 are the upper left and lower right entries respectively, in the matrix
Ye . Analogous to (1.4), we can decompose £ into the sum of four independent
Lévy processes

€ =yt + Beo + € + €2, (1°13)

where

ftl :/ll II(Ngyt(',diL‘)—tng(dl')) ) 55‘_‘/ INEvt('vd:E)a

|z|>1

’)’5 = E <f] S / IIIN&J(',d.’L’)) 3
Jl|z|>1

and similarly for 7. Note that the processes &' and £? are not the same as the

and

first coefficient of the processes (£,7)! and (€,7)? from the bivariate Lévy-1to de-
composition, as stated in Proposition 1.8.

The quadratic variation of two one-dimensional semimartingales X and Y on
the same probability space is denoted by [X,Y] = ([X,Y];);>0. Definitions and
properties are found in Protter [60]. The path-by-path continuous part of [X, Y]
is denoted by [X,Y]¢ and if [X, X]® = 0 then X is called quadratic pure jump. If
€ is a Lévy process on R with Brownian motion component Be then & — By, is
quadratic pure jump. The function (X,Y) — [X,Y] is bilinear and symmetric,

if X and Y are independent Lévy processes on R then [X|Y] is ideiltica‘lly Z€ro,
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whilst if (B, C) is 2-dimensional Brownian motion then [B, Cl; = Cov(B;, Cy) =:
op.c where Cov denotes the covariance. By Theorem 28 of Protter [60], if (£,7)

is a bivariate Lévy process then

[f,n]t = Uﬁ,n I Z AfsA7ls~

0<s<t

Definition 1.13 (Subordinator). A 1-dimensional Lévy process X is said to be

a subordinator if X;(w) is an increasing function of ¢, a.s.

Proposition 1.14. Let X be a Lévy process on R. The following conditions are

equivalent:
1. X 1is a subordinator.
906 = 0 ws, jur sone s = 0
g.ox, > 0ass. jor everyt > 0

4. The characteristic triplet satisfies 0> = 0, f(—oo,(]] M(dz) =0, [, 2l(dz) <
0o, and d > 0. That is, there is no Brownian component, no negative jumps,

the positive jumps are of finite variation and the drift is non-negative.

In this 1-dimensional case, that the condition f(().l) zll(dz) < oo is actually
implied by the remaining conditions in part 4 of the above proposition. The
condition f(—oo,O] [I(dz) = 0 implies, by equation (1.9), that d € [—o0,00) and
d=—ooiff [, zll(dz) = co.

A 1-dimensional Lévy process X will drift to oo, drift to —oo or oscillate,

namely;
him X, =o0; (1.14)
=00
lim X; = —oo; (1.15)
=200
— 00 — litm inf X; < limsup X; = oo. (1.16)
=00 t—o00

Necessary and sufficient conditions for these cases are given in [18]. Whenever the
expected value of X is well-defined, and hence contained in [—o0, 00], cases (1.14)
(1.15) and (1.16) equate respectively to E(X;) > 0, E(X;) < 0 and E(X;) = 0.
For the case in which the expected value of X, does not exist as a well-defined
member of the extended reals, we need more notation. For z > 0, denote the

tails functions of the Lévy measure by

Tk (2) = Ix((,00)), Tx(z) = Mx((~o00,~2)), Tx(s):=Mk(z)+Tx().
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Define, for z > 1,

A% (z) ::ﬁ}(1)+/lﬁ;(u)du, Az (z) :=ﬁ;(l)+/jﬁ;(u)du A

1

where it suffices to assume ﬁ;(l) > 1 and I (1) > 1. Define the integrals

J+=/Oo *__|TT}(dz)| and J*:/oo " | (dz).
X i A;((I')i X( )l X ] A}(.’L‘)| X( )l

In [18] it is shown that if F(X;) does not exist then (1.14) occurs iff Jy < oo,
(1.15) occurs iff J§ < oo and (1.16) occurs iff Jy = J§ = oco.

1.3 Generalising the Ornstein-Uhlenbeck pro-

cess

As its name suggests, the GOU is a generalisation of the well known Ornstein-
Uhlenbeck process, (which we will denote by OU). The OU can be defined as the
solution X := (X})¢>0 to the stochastic differential equation (SDE)

t
XK= Xo-i-(Y/ X,_ds+ oB; (1.18)
Jo

where a and o are real constants, B is Brownian motion on R with variance
equal to 1, and Xy, the initial value of X, is a random variable independent of

B. Alternatively, the OU can be defined as the stochastic integral

T
X, = e (Xo +/ ae"“sst> . (1.19)
0

This stochastic integral process is well-defined and can easily be shown to be the
unique strong solution (see Protter p.253) to equation (1.18).

The GOU is obtained from the OU by replacing the process («at,oB;) with
a general two dimensional Lévy process. However, the resulting process differs
depending on which form of the OU is chosen as a starting point.

The counterpart of equation (1.18) for the GOU is

t
s e o / V, dR,, (1.20)
J0O

where (R, U) is a bivariate Lévy process independent of the random variable Vj.
Alternatively, the counterpart of equation (1.21) for the GOU is

't
V; i= e (Vo +/ 6*55‘d775> (ilat)

0
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where (£,7) is a bivariate Lévy process independent of the random variable Vj.
This is the more common definition of the GOU, and the definition we shall use
throughout this work. Note that the two approaches are not equivalent. Namely,
if we set (R,U) = (&,7), equation (1.21) does not solve equation (1.20). To
describe the link between the two equations, we first recall the definition of the
stochastic exponential.

For a semimartingale v with 7o = 0, the stochastic exponential of ~, denoted

€(7), is the unique strong solution of the SDE

b
Yt:1+/ Y,_dvs,. (1:22)
J0

The stochastic exponential of v is a well-defined semimartingale and is given by

I @+ Av.)exp {—A% + %(A%)Q} (1.23)

0<s<t

e(7) = exp {% = %[%V]t}

where the infinite product converges.
The following proposition is due to Alex Lindner, and obtained by private

communication with Ross Maller.

Proposition 1.15. If (R, U) is a biwariate Lévy process with I ((—oo, —1]) = 0
then the SDE (1.20) has the unique strong solution (1.21) where (£,1n) is the
biwariate Lévy process given by

Epim el R, (1.24)

n = U — Z (1 —e?%) AU, — tCov (B¢, Bu,) - (1.25)
0<s<t
On the other hand, if (£,1) is a general bivariate Lévy process then the stochas-
tic integral process (1.21) is the unique strong solution of the SDE (1.20) where
(R,U) is the bivariate Lévy process given by

R, =&+ 0£t+ > (et = AL = 1), (1.26)
0<s<t
= aF Z Afs A’r]s =15 fCOV(Bg 15 B ) (127)
0<s<t

Equation (1.26) is equivalent to (1.24). Further, Ilg((—o0, —1]) =
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1.3.1 Literature on the GOU

There are only a few papers which consider the GOU, as defined in (1.20) or (1.21),
in its full generality. The process appears implicitly in the work of de Haan and
Karandikar [15] as a continuous generalisation of a stochastic recurrence equation.
Basic properties are given by Carmona et al. [12]. A general survey of the GOU
and its applications is given by Maller et al. [47]. The stationarity of the GOU
is examined by Lindner and Maller [44], and we further explain these results in
Section 1.4. Aspects of these stationarity results are generalised by Endo and

Matsui [21], to the case in which 7 is an d-dimensional Lévy process.

The study of the GOU is closely related to the study of integrals of form
Z, defined in equation (1.2). The first obvious link is that Z is contained in
the definition of V, and the one-sided hitting probability for Z determines the
ruin probability for V. as shown in equation (1.3). Secondly, the stationarity
of V is related to the convergence of an integral of the form Z. The exact link
is presented in Proposition 1.19. There have been relatively few papers dealing
with Z in its full generality. Erickson and Maller [22], present necessary and
sufficient conditions for the almost sure convergence of Z; to a random variable
Zo as t — oo. Bertoin et al. [4], present necessary and sufficient conditions
for continuity of the law of Z,, given it exists. Both these results are explained
further in Section 1.4. In [52], Nyrhinen presents asymptotic equivalences for the
one-sided hitting probability for Z. These results are explained further in Section
1.6. Kondo et al. [40] generalise the results in [22] to the case in which 7 is an

d-dimensional Lévy process, and examine properties of the limit distribution Z..

There are a large number of papers dealing with V' when (£, n) is subject to
restrictions.We first mention those papers which deal with the ruin probability
of V', in which either £ or 7 remains a reasonably general Lévy process. Harrison
[31] presents results on the ruin probability of V' when ¢ is a linear deterministic
function and 7 is a Lévy process with finite variance. Paulsen [54] generalises
Harrison’s results, and presents new ruin probability results for V' in the case
that £ and 7 are independent, finite activity Lévy process. Results on the ruin
probability of V for the case in which £ and 7 are independent general Lévy pro-
cesses are presented in Kalashnikov and Norberg [32] and Paulsen [56, 57]. Chiu
and Yin [68] generalise some of Paulsen’s results on the ruin probability of V,
to the case in which & is a Lévy process and 7 is an independent jump-diffusion
process. Cai [10] and Yuen et al [70, 71] present ruin probability results for V

when £ is a Lévy process and 7 is an independent compound Poisson process.
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The above ruin probability results which have assumptions general enough to
be relevant to our present work will be discussed further in Section 1.6. Note
that when we restrict further to the case in which both & and 7 are assumed to
be specific types of Lévy processes, there are numerous papers in the insurance
mathematics area which deal with the ruin probability of V, however we do not
discuss these. Survey papers exist which describe this ruin probability literature.
The situation as of 1998 is described in Paulsen [55] and the situation as of 2008
is described in Paulsen [58].

We mention papers with restrictions on (&, n), which deal with V' and focus
on mathematical topics other than ruin probability. When £ is deterministic
linear and 7 is Brownian motion plus drift, Wolfe [67] presents results on the
stationarity of V. There are several papers which examine first passage times and
martingales for V' in the case that £ is a linear deterministic function and 7 is a
Lévy process with no positive jumps, notably Hadjiev [30], Novikov [50], Patie
[53] and Borovkov and Novikov [6]. When & is linear deterministic and 7 is an
d-dimensional Lévy process, Masuda [48] examines various stability properties of
V.

There is a significant amount of literature on the process Z when (£,n) is
subject to restrictions, with attention mainly focused on the case in which Z,
converges to Z, as t — oo. Notable is Yor [69] and Carmona et al. [11]. Gjessing
and Paulsen [23] study the distribution of Z,, when ¢ and 7 are independent
finite activity Lévy processes, and obtain exact distributions for some special
cases. Hove and Paulsen [59] use Markov chain Monte Carlo simulation to find
the distribution of Z, in some special cases. The work of Kliippelberg and
Kostadinova [37] and Brokate et al. 7] provides results on the tail distribution
of Zy, in the case that & and 5 are independent and 71 is a compound Poisson
process plus drift. In the case that (£,7) is a Poisson process, Lindner and Sato
[45] investigate continuity properties and the infinite divisibility of Z...

The GOU has significant economic applications. The stochastic integral pro-
cess Z can be interpreted as the discounted value of a continuous discounted
perpetuity, and V' can be interpreted as the forward value of a continuous per-
petuity. The GOU has also found application in more specialised financial time
series, with a particular form of V' used as a constituent of the COGARCH pro-
cess, introduced by Kliippelberg et al. [38] and studied further in Kliippelberg et
al. [39] and Lindner [43]. In addition, Kostadinova [42] defines the properties of
an insurance risk process which is closely associated with a particular form of V/

and develops an optimal investment strategy. We further discuss these economic
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interpretations in Section 1.7.

1.4 Stability of the GOU

We describe known results relating to the stability properties of the GOU. These
results are stated without proof and will be referred to throughout the work. We
state some of these results with different notation from the originals in order to fit
with our requirements. We assume a bivariate Lévy process (£, n) with associated
processes V and Z as defined in (1.1) and (1.2) respectively.

It was proved in [12], p.44, that V is a time-homogenous Markov process.
When we replace a fixed time ¢t with a stopping time T < oo a.s., the same proof
establishes the strong Markov property of V. Specifically, the Lévy process

(EuvT]u) i (£T+u o €T7 ety = nT)a u Z 0* (128)
is independent of the stopping time o-algebra
Fri={A € FuAN{TI=ut} e F, Yt >0}

and is equal in distribution to (&, ). Furthermore, the equation (1.1) and a simple

change of variables argument proves that for all » > 0,

Vryr = €& (VT +/ C*E“d?_]u> g
0

These two observations establish the following result.
Proposition 1.16. V is a time-homogenous strong Markov process.

In [22], necessary and sufficient conditions are stated for a.s. convergence of
Zy to a finite random variable Z, as t approaches co, whilst in [44], necessary and
sufficient conditions are stated for stationarity of V. To describe these conditions,
we need some notation.

For a bivariate Lévy process (X,Y), recall the definitions (1.17) and define

the integral
In(y) =
Ixy 1:/ T ey i GL]
(e,00) A} (hl(’y))

and the Lévy process KXY by
Sl ok Z (eAXs — 1) AY; + tCov(Bx,, By,),
0<s<t

where Cov(Bx,, By,) denotes the covariance of the Brownian components of X
and Y. We now state [22], Theorem 2.
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Theorem 1.17. Z, converges a.s. to a finite random variable Zy, as t — oo if
and only if lim; oo & = 00 a.s. and I, < 00. Iflimy,0 & = 00 @.5. but I, = o0
then |Z,| —p co. If & does not tend to +0o as t — oo, then |Z,| —p oo or there

exists a constant ¢ € R\ {0} such that
Pifz) ='eler™ “ LN 01 (1.29)

Consequently, Z, converges in distribution to a finite random variable as t — o0

if and only if it converges a.s. to a finite random variable.

Note that if (1.29) holds and lim; . & = oo a.s. then Z; converges a.s. to
the constant random variable Z., = —c. We now state Theorem 2.2 of [4], which
proves that this is the only case in which Z; converges to a non-continuous random

variable.

Theorem 1.18. Suppose lim;_ & = 00 a.s. ast — o0o. The following are

equivalent:

1. Z; converges a.s. to a finite random variable Zo, ast — oo, where Zy, has

an atom.
2. There exists c € R\ {0} such that Z; converges a.s. to —c ast — oo.
3. There exists c € R\ {0} such that (1.29) holds.
4. There ezists c € R\ {0} such that e=¢ =€ (n/c).
Note that Z is of form (1.29) iff V' is of form
PV, —e*(Vo—cl+cvi a1 (1.30)
We now state [44], Theorem 2.1, which makes use of Theorem 1.17 above.

Theorem 1.19. Suppose V' is strictly stationary. Then one of the following two

conditions 1s satisfied.

t : 3 2
1. [ e5=dKS" converges a.s. ast — oo to a finite random variable, or equiv-
alently, lim; o, & = —00 and I_¢ gen < 00.

2.V is of form (1.30) for some constant ¢ € R\ {0}.

Conversely, if (i) or (1) holds then there is a finite random variable Vao, unique
in distribution, such that the process V, starting with Vi =p Vi, is strictly sta-
tionary. Furthermore, if (i) holds, then Vi, satisfies Voo =p [5° e5-dK§™.
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Note that, regardless of the asymptotic behaviour of &, if (1.30) holds then V
is strictly stationary iff V) = c.

In [22] the authors use exactly the same definition of Z as we have used
above. However, in [44], the sign of the process £ is reversed in their definition of
V, that is, they define V; := e¢ (2 + fot eES‘dns). This version of V' is stationary

depending on the behaviour of fot e S-dK;5" and this process fits the form of
Z used in [22]. It seems likely that the authors in [44] chose their definition of
the GOU in order to use Theorem 2 of [22] directly, without any sign change.
However, it suits our purposes to have the GOU in the form V; = €%(z + Z;)
and study the behaviour of V' in terms of Z. This is because we are examining
ruin probability of the GOU rather than stationarity. With our definition of the
GOU we can, without any sign change, use Theorem 2 of [22] to study Z. In
addition, when our version of the GOU is considered as an economic model, as
will be explained later in the chapter, the rate of return is & and the forwarding
term €. This fits with convention, for example [32], [56] and [42]. Note that the
version in [44] implies that the rate of return and forwarding term are —&; and

e~ respectively.

1.5 Discretizing the GOU

We describe two stochastic difference equations, and show how V' can be expressed
as a solution of either one. We also give the associated discrete stochastic series
for Z. Throughout this section, and the rest of the work, we take equation (1.1)
as our definition of the GOU.

For n > 0 define the stochastic difference equation
}/71. = AnY’n—I =l Bn (131)

where (A,, B,) is an iid sequence independent of a random variable Yj. Using

induction, the solution is the stochastic series
n n n
j=1 i=1 j=i+1

: 0 7 y )
where we use the convention that Hj:] a; = 1. Using equation (1.1) we can write,

for an integer n > 0,

rn—1 n
V, = ebn6n-1 <eg”“ (VO +/ egs‘dns>> 4 gbn / e S-dn,. ol 33)
0 J(n—1)+
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Thus, if we define the random variables
s = (ef"_f"“l,eé"/ e’fs'dns> (1.34)
(n—1)+

and let Vo = Y, then V, is a solution of equation (1.31). By equation (1.1),
Z, = eV, — V, and so equation (1.32) implies that

7= Zn:li[Aj‘lBi. (1.35)
i=1 j=1

It is proved in Appendix C that (A,, By)n>1 is an iid sequence under these defi-
nitions. Note that even when & and 7 are independent, the random variables A,
and B, may be dependent.

Alternatively, for n > 0 define the stochastic difference equation
Y. =0 e (1.36)

where (C;, D;) is an iid sequence independent of Yy. The solution is the stochastic

j=1

i=1 j=i

series

Using equation (1.33) it is clear that V}, is a solution of equation (1.36) if we let
Vo = Y, and define

(O 1 e (e"c"_{"“,eg"‘1 /n e"ﬁs‘dns) . (1.38)
(n—1)+
With these definitions, it is clear that
n i—1
Z— >y i (1.39)
i=1 j=1

It is proved in Appendix C that (C,, Dy),>; is an iid sequence under these defi-
nitions. Again, when £ and 7 are independent, the random variables C,, and D,
may be dependent.

When discretizing V' in this work, we will use the first approach, namely via
the difference equation (1.31) and the series (1.32). When discretizing Z we will
use the second approach, namely via the series (1.39). We do this in order to
directly access particular results from papers on these objects. There has been
significant attention paid to the two series (1.32) and (1.39) and they are linked

via the fixed point of the same random equation, as we briefly explain.
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Let (M, Q) be a two dimensional random variable on (€2,.%, P) and let ¢ be
a random affine map from R to R defined by

o(t,w) := M(w)t + Q(w). (1.40)

A (distributional) fixed point of ¢ is an a.s. finite distribution R on R, inde-
pendent of (M, @), such that R =p MR + Q. We can find R using an iteration
method. We can suppose the existence of an iid sequence of random vectors,
(M, Qn)n>1, with common distribution (M, Q). Let (¢,),>1 be the associated
iid sequence of random affine maps, so ¢,(t) := M,t + @,. For integers n > 1,

define the outer iteration sequence by

On(t) = no¢p10---0 (:bl(f) — d)n(¢nvl(' i ¢1(t) h e ))7

and the wner iteration sequence by

[n(t) = ¢l © ¢2 L2 il d)n(t)‘

By induction, the solutions are

—fHM +Z H M;Q; (1.41)

o= ="1Fl

and
n 1—1

—tHM +> [ MQ.. (1.42)

i=1 j=1
In these solutions, we can replace the initial value ¢ with a random variable
L independent of (M, Qn)n>1, in which case O,(L) and I,(L) are identically
distributed. Note that O, (L) is the sequence defined in (1.32), for (M,,Q,) =
(An, Bn) and L = Y;. Also, I,(0) is the sequence defined in (1.39), for (M, Q,) =
(C-1, D,,). The relationship between these sequences and the fixed point of the
random equation (1.40) is the following: If O, (L) converges in distribution to
an a.s. finite distribution R, as n — oo, then R is a fixed point for (1.40). If
P(M = 0) = 0, then if I,,(L) converges in distribution to an a.s. finite distribution
R, then R is a fixed point for (1.40), and O,(L) converges in distribution to R
as well. This result is due to Vervaat [66], and Goldie and Maller [25]. For
more general random equations, the convergence of inner and outer iterations
sequences to a fixed point is given by Letac’s principle, as expressed in Theorem
2.1 of Goldie [24].

Finally, it is worth noting that the above discretization schemes are valid
when the integer time increments are replaced with iid random times (T});eny

where T; — T;_, are positive iid random variables for all i € N.
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1.5.1 Literature on related stochastic difference equations

There is a large amount of literature on the above difference equations and series.
We first mention some papers which focus on mathematical properties other than
ruin probability. Note this is a list of papers which have been useful and of interest

during this work, rather than a definitive list.

Various convergence, stability and recurrence properties of equation (1.31) are
presented by Kesten [35], Vervaat [66], de Haan et al. [16], Babillot et al. [2]
and Buraczewski [8]. Limit behaviour and rates of convergence for both equation
(1.31) and (1.36) are given by Rachev and Samorodnitsky [61]. Convergence prop-
erties and continuity of the limit for the series (1.39) are examined by Grincevicius
in [28], [27] and [29] and Dufresne [19]. Goldie [24] and Grey [26] present results
on the tail of fixed points of various random equations, including equation (1.40).
A general review of perpetuities and random equations is given by Embrechts
and Goldie [20]. Goldie and Maller [25] explain the link between the series (1.32)
and (1.39) and the random equation (1.40), and describe necessary and sufficient

conditions for convergence of (1.39).

The literature on ruin probability for equations (1.31) and (1.36) is described
in the survey paper by Paulsen [58]. The notable papers are Nyrhinen [52] and
Konstantinides and Mikosch [41]. Nyrhinen [51], Cai [9], Tang and Tsitsiashvili
[64, 65] and Tang [63] examine various aspects of the ruin probability of equation
(1.31) with the extra assumption that (A,) and (B,) are independent sequences.
These papers are not particularly useful to us however, since the GOU cannot be

embedded into such a discrete model.

1.6 Relevant ruin probability results

We describe the existing results on the ruin probability of the GOU. We only
mention results which allow both £ and 7 to be general Lévy processes, either

dependent or independent.

Paulsen 1998 [56] This paper provides results on the infinite horizon ruin
probability of the GOU. Paulsen uses the alternative form of the GOU, described
in equation (1.20), and assumes independence between the Lévy processes. He
also has an inflation process within the model, however this makes no mathemat-

ical difference and we can ignore it. His model can be described as follows: let R
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and U be independent Lévy processes and define
t
Vi 24U+ / it (1.43)
Jo

where Vp = 2z > 0, along with the condition that IIg((—o0, —1]) = 0. As noted in
Proposition 1.15, this condition allows the SDE to be solved. Using the indepen-

dence of R and U, the solution simplifies to

vi= ey (vo+ | te<R>:dUs) .

Paulsen’s main result, Theorem 3.1, provides conditions under which the infinite
horizon ruin probability is one. We write out the complete theorem, however
to fit with our upcoming work we use the more common definition of the GOU,
equation (1.21). Thus, we assume independent Lévy processes & and 1 and let V,
Z and 1)(z) be defined respectively using equations (1.1), (1.2) and (1.3). We let
T, :=inf{t > 0: V; < 0} denote the time of ruin. All conditions on R and U are

transferred into equivalent conditions on & and 7, using the fact that £ = Ine(R)
and =0,

Theorem 1.20. Let & and n be independent Lévy processes. Assume that 7 is

not a subordinator and f|$|>1 |z|Il¢(dz) < oo, so € has finite mean.

(a) If E(&) < 0 and for some § > 0,

/ 211, (dz) < oo and / (e — 1)°TI¢(dz) < oo,
1 J1

then for all z > 0 there exists a > 0 such that E(e®'*) < co. In particular
Y(z) =1 and all moments of T, are finite.

(b) If € is not identically zero and E(&;) = 0 and for some § > 0

00 =1
/ ARSI ) < 60! / |z|P*eIT(dz) < o0
1 J —o0

and

/ (e" — 1)°T¢(dz) < oo,
1
tienal 21— 1 arall = > ().

(c) If E(&) > 0 and either



20 CHAPTER 1. THE GOU

=

/oo |In(1 + z)|I,(dz) < oo and / 'l (dz) < oo,

0o =3
or

(1)

—il

/ |z|l,(dz) < oo and / e Il (dz) < oo
Jaf =

=(2,9)

hold, then the following are true.

Ast — 00, Z, converges a.s. to a finite continuous random variable Z,, =
fooo e~ S~dn, with distribution function H. For all z > 0 the ruin function

satisfies
H(-z)
E(H(=Vg,) | T, < 00)’

Finally ¥(z) < 1 unless ny = Yyt, & = Yet and v, < Ye2.

P(z) = (1.44)

Paulsen also gives a theorem stating conditions under which Z, is a.s. finite
and the characteristic function of Z., satisfies a particular integro-differential
equation. As Paulsen notes, this result is of limited practical value in finding the
distribution of Z., and we do not discuss it. Our interest lies in Theorem 1.20.

The first question that arises is whether the moment conditions in (a) and (c)
can be replaced with the precise iff conditions for stationarity of V, and conver-
gence of Z, respectively. Also desirable would be the removal of the finite mean
condition for £. The main question however, is how dependence changes the re-
sult. It would be desirable to have precise iff conditions on the Lévy measure of
(¢,m) under which ruin is zero, or ruin is one. This is done in Chapters 2 and 3
respectively.

In proving the above result, Paulsen, either implicitly or explictly, accepts
certain results as true without giving a proof. Some of these assumptions are
false, and we discuss them in Appendix E. These problems are minor however,
and make little difference to the statement of the theorem. Alternative proofs are
available. The only adjustment that needs to be made to the theorem statement
is in the final sentence of part (c), in which it must be assumed that —7 is
not a subordinator. The main assumption of interest is the following: If £ and
n are independent and 7 is not a subordinator then P(Z, < 0) > 0 for all
t > 0, or equivalently, 1(0) > 0. This statement is true in both the independent
and dependent case. In the independent case the result seems intuitively clear,

however the proof is not obvious. The proof of the statement in the dependent
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case is given in Chapter 2 and requires a change of measure argument and some
analytic lemmas. It will be of use throughout this work.

Nyrhinen 2001 [52] This is the only paper which contains ruin probability
results for the GOU in which (&, n) is allowed to be a 2-dimensional, infinite activ-
ity Lévy process. Firstly, this paper proves asymptotic results for the one-sided
hitting probabilities, in finite and infinite time, of a discrete stochastic process
X,,. Secondly, the paper discretizes the stochastic integral process Z and relates
the discrete asymptotic results to the continuous setting, thus establishing equiv-
alent hitting probabilities for Z. As equation (1.3) shows, the one-sided hitting
probabilities for Z establish the ruin probability for V. We describe Nyrhinen’s
results in detail, and then make some comments.

Let (M, Q, L) and (M, @Qn, Ly )n>1 be iid random vectors on (£2,.%, P) where
P(M > 0) = 1. Define the process {X,|n =1,2,---} by

n 1—1

o8 Tl QZ+HML (1.45)

v=il g=il

Eorrealym > 0 define, the hitting time of (m, 00) by Tyii= inf{n : X,,.> m}
where T, := oo if X, < m for all n € N. Define the function ¢(t) := In E (M?),
and let 2 := {t € R: ¢(t) < oo}. Define

w :=sup{t € R: ¢(t) < 0} € [0, o]
and
to:=sup{t € R: ¢(t) < o0, E (|Qf') < 00, E((ML")") < o0} € [0, 0.

and
g — sup {’y eER:P (supX" > y) > O} € (—00,00).

neN

Nyrhinen provides asymptotic results for X, under the following hypothesis,
which we call hypothesis H: Suppose that 0 < w < ty < 0o and § = oo.

In Lemma 1, Nyrhinen shows that whenever hypothesis H holds, then P(M >
1) > 0, the function ¢ is strictly convex and continuously differentiable on the
interior of Z and the derivative at the point w is positive, so ¢'(w) > 0. To
describe the asymptotic result, we need some more definitions, which are well-
defined under hypothesis H by Lemma 1. Define p:= 1/c¢/(w) € (0, 00) and

To:= lim (1/c(¢)) € [0, 0)

t—to—
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Let ¢* be the Fenchel-Legendre transform of ¢, namely, define ¢*(v) = sup{tv —
c(t) : t € R} for v € R. We can now define the function R : (zp, 00) — RU{+to0}
by

Py e { zet(1/z) Hor z € (Tayll)s
w tot . =l
This function has been analysed in traditional ruin theory. In particular, in
this situation it is known that R is finite and continuous on (zg, 00) and strictly
decreasing on (xg, pr.) We now state Nyrhinen’s main asymptotic result, which is

his Theorem 2.
Theorem 1.21. If hypothesis H holds then
lim (Inm)" In P(T,, < slnm) = —R(z) (1.46)

m—00

for every x > xy and

lim (lnm) ™ In P(T;, < 00) = —w. (1.47)

m—0o
In the comments below Theorem 2, Nyrhinen states a second asymptotic result
using a result by Goldie. Theorem 6.3 of Goldie [24] is a second-order asymptotic
result for the tail of a random variable R when R is a fixed point for the random

equation
R =p Q+ Mmax(L, R) (1.48)

and when a further set of conditions hold. Nyrhinen observes that under hypoth-
esis H, sup,cy X, is a fixed point for (1.48), and all but one of the conditions of
Goldie Theorem 6.3 are satisfied for the random variable R = sup,,cyy X,,. By as-
suming this extra condition, Nyrhinen is able to give the following result, which
we state as a proposition. Recall that a distribution is spread out if it has a

convolution power with an absolutely continuous component.

Proposition 1.22. If hypothesis H holds and the distribution of In M is spread
out, then

m P < cof=—10y=kiplinY (1.49)
when m tends to infinity, where C'y and v are positive real constants.

Although not mentioned explicitly by Nyrhinen, C, is given by the formula
defined in Theorem 6.2 and (2.18) of Goldie, namely

1 4 w + w
C,=—F <(<Q + M max (L, sup X,I>> ) - ((M sup Xn) > >
wor neN neN

(1.50)
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where o := E (|M|*1In|M|). The exact equation implied by Goldie Theorem 6.3
1s
il P~ eo) = ) = @)+ O(m /%)

where 0 < 8 < min{l,t, — w} and f(t) is a contour integral in the complex
plane with domain depending on /3, However, 0 < v < 3/2 can be chosen small
enough such that the contour integral is zero and (1.49) holds. The fact that C'y
is strictly positive under the conditions of Proposition 1.22 is not a result of the
Goldie theorem but instead follows from Theorem 1.21. Specifically, it follows
from the fact that C, > 0 iff equation (1.47) holds, which is easy to show using
basic logarithm calculations.

The next result by Nyrhinen is Theorem 3, in which iff conditions are given
for the condition 4 = oo. Namely, if hypothesis H holds, then y = oo iff there

exists n > 1 such that

n = n i—1 n
P Q+ML+(HMJ»—1> <ZHM]-Q1->>0, [[M;>1] >o0.

j=1 i=1 j=1 j=1

(1.51)
Nyrhinen comments that the verification of this condition is generally difficult.
In Example 1, he notes that if 0 < w < ty < oo, and further

PIOML > 0) >0 and” P(M > 1,0 >0) >0, (1.52)

then (1.51) holds, and so § = oo. However, he comments that this sufficient
condition is not sharp. In Example 2 he gives a simple example of (M,Q, L)
which satisfies 0 < w < ty < oo, fails (1.52) but still satisfies § = oo. This
concludes the discrete section of the paper. We now describe the continuous
result. We use our own notation rather than Nyrhinen’s, so (§,7) is a bivariate

Lévy process and Z; := fot e %-dn,, as usual. Define

M,: = e 1) (1.53)
= ef"‘l/ e - dn, (1.54)
(n—1)+

15 g0
I — " < sup / e S-dn, — / e‘gs‘dns> ; (155
n—1<t<n J(n—1)+ J(n—-1)+

Nyrhinen implicitly assumes that (M, Q,, L,) is an iid sequence. This claim
follows by an easy extension of our proof in Appendix C. Note that with these
allocations Z can be written as a discrete stochastic series of the form (1.39),
namely Z, = i, TTi0) MiQs

Nyrhinen proves the following result.
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Proposition 1.23. With (£,7), Z and (M, Qn, Ly,) defined as above,

sUpt =X
n—1<t<n
and
SUPRZ. S — max X
0<t<n =1
for
n i—1
M;Q; + HML
=18 =1

Actually, Nyrhinen proves equality in distribution, using an induction argu-
ment. However, with direct calculation it is easily seen that the exact equality
holds.

For real m > 0 define the hitting time of (m,o0o) for Z by T% = inf{t > 0 :
Z, > m} where TS, := o0 if Z; < mforallt = 0. Then the above proposition

m

implies that for all n € R,

Pl =n)— Pl =n

m

and
P < oo)= Pl < o5

Thus, for a Lévy processes (£,7), the asymptotic result in Theorem 1.21 holds
for T¢ when hypothesis H is satisfied for the associated valies of (M,, Q. L, ):
If further, the distribution of In M is spread out then the asymptotic result in
Theorem 1.21 holds for T¢. This is the content of Nyrhinen’s Theorem 4 and
Corollary 5. Immediately following Corollary 5, an example is given. The example
is very simple, using independent Lévy processes & := at + B; and 7, := t +Y;
where v and 3 are positive reals, B is Brownian motion and Y is a compound
Poisson process. Nyrhinen states conditions under which 0 < w <ty < 00, & is
absolutely continuous and the conditions (1.52) hold, thus implying that i = oo
Note that when M,, is defined as above, the condition 0 < w < oo implies that £
is non-deterministic.

We make some comments on this paper, beginning with the discrete results.
It is not immediately clear whether the sequence X defined in (1.45) converges
under hypothesis H. Note that if we choose L,, = L then X, is the inner iteration
sequence I, (L) defined in (1.42) for the random equation ¢(t) = Mt + Q. Goldie
and Maller [25] prove that I,(L) converges a.s. to a finite random variable iff

H;lil M; — 0 a.s. as n — oo and I < 00, where I q is an integral involving



1.6. RELEVANT RUIN PROBABILITY RESULTS 25

the marginal distributions of M and . Since the distribution of L has no effect
on the convergence of I,(L), it is clear that the above conditions are precisely
those under which X,, converges a.s. for iid (M,, @y, L,). We show these con-
ditions are satisfied under under hypothesis H, and thus the sequences X and
> H;;ll M;Q; converge a.s. to the same finite random variable.

Suppose 0 < w < ty < oo. In the proof of Lemma 1, Nyrhinen shows that the
condition w > 0 implies that the function ¢(¢) is strictly convex and continuously
differentiable on the interior of 2. Since ¢(0) = 0 and c¢(w) = 0 there must
exist t € (0,w) such that In E(M"') < 0. By Jensen’s inequality, E(In M) < 0,
which is well-defined by the assumption P(M = 0) = 0. Hence, the random walk
Sn =Y 51 (—~InM;) — oo as. as n — oo. Since S, = —In [T}, M; it follows
that [Tj_, M; — 0 a.s. asn — o0, as required. Further, since E(ln M) € [—0,0),
Corollary 4.1 of Goldie and Maller [25] implies that if F(In" |Q]) < oo then the
integral condition ;o < oo is satisfied. Since 0 < o there exists 0 < s such
that E(|Q]*) < oo. Hence E(In|Q]|) < oo which implies that E(In* |Q]) < oo as
required.

The discrete results of Nyrhinen are both interesting and useful. However, in
their stated form, the corresponding results for the continuous case are not espe-
cially useful. This is because the conditions in hypothesis H are quite inaccessible
when (£,7n) is a reasonably complicated Lévy process and (M, Q,, L,) are de-
fined according to equations (1.53), (1.54) and (1.55). Correspondingly, the only
continuous example Nyrhinen gives is extremely simple, involving independent
finite activity Lévy processes. The most serious offender is the condition § = oo

where

gzsup{yeR:P<su})Zt>y> >0}.

t>0

We discuss this condition further in Appendix E. Verifying the condition 0 <
w < ty < oo is also problematic, because it requires knowledge of F|Z;| and
E(supg.i<; |Zi|). To make this result accessible, these conditions must be stated
in terms of the characteristic triplet of (£,n) or the marginal distributions of £
and 7. This is done in Appendix F.

Paulsen 2002 [57] The first main result in this paper, Theorem 3.2 (a),
is a modification of part of Nyrhinen’s work in [52], specifically, the continuous
version of Nyrhinen’s adaptation of Goldie [24] Theorem 6.3, which we state above
as Proposition 1.22. Paulsen assumes & and 7 are independent Lévy processes and
and states an asymptotic result for P(inf;~¢ Z; < —m) as m — oo. Note that this

is the reciprocal approach to Nyrhinen, who gives asymptotics for P(sup,., Z; >
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m) as m — oo (without assuming independence). Paulsen’s approach makes more
sense from a GOU ruin probability perspective since (m) = P(infiso Z; < —m),
as shown in equation (1.3). Paulsen defines M, and @), as in equations (1.53) and

(1.54) respectively, and defines L, as the reciprocal version of equation (1.55),

namely
t n
i — etn ( inf / e_Es_dT]S —/ €~55~d7]5) ) (156)
nal<tsniyly = i (n—1)+

Paulsen states a set of conditions on the distributions of £ and 7, which include the
conditions of Theorem 1.20 part (c) above. He proves that these conditions imply
that the reciprocal conditions of Proposition 1.22 hold for his chosen values of
(M, Qn, Ly). In particular, inf,-( Z; satisfies the reciprocal versions of hypothesis
H and the random equation (1.48). Thus the reciprocal version of the asymptotic
result (1.49) holds, namely

m“’P(%ng Zy < —m)=C_+o(m™") (1:67)

[>

when m tends to infinity, where C'_ and ~ are positive real constants. The value

C_ is given by the formula defined in (2.19) of Goldie, namely

6 iE (((Q + M min (L,gg Zt))”)w e <(M inf Zt>_)w) (1.58)

where o := E (|M|”In|M|) and L is defined by (1.56).

Note that Paulsen actually gives a different form for the associated constant
rather than simply quoting the above. Since he assumes the conditions of Theo-
rem 1.20 part (c) hold, the ruin probability formula (1.44) must hold, namely
H(—m)

h(m)
where we define h(m) := E (H(-Vr,) | T,n < 00) € [0,1] and h := lim,,_.o h(m).
Note that A may not exist. Using (1.57),

Y(m) = (1.59)

lim m"Plint 7, = =m) =,
>0

m—0o0

and combining with (1.59) we have

lim mYP( 7= —m)—=hE"

m—00

where h must exist. However, it is now a consequence of Goldie [24] Theorem 4.1
that
: 1 g &
1 P2 < —m) = —E ([(MZ — g
Jim m ( m) = ((( + Q) ) ((]\/[Zoo) ) ),

and thus an alternative value for C_ is obtained. We state the precise result.
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Theorem 1.24. Suppose the conditions of Theorem 1.20 part (c) hold. Further,
assume there exists w > 0 and € > 0 such that In E(e~%4) = 0, In E(e~ w98 <
oo and E(|n|Ut) < oo. Also, assume that the distribution of & is spread out
when T is uniformly distributed on [0, 1] and independent of £&. Then
m“’P(%n(f) Z; < —m) = C_ 4+ o(m™©)
>

as m — 0o. The positive real constant C' is given by

1

wah

where (M, Q) := (e, fOl e~ $=dn,), and a and h are defined above.

E((MZo+Q)7)" = (MZx)")") (1.60)

This result is not quite correct. If we assume the above conditions on w and e,
and quote the result directly from Nyrhinen, the conclusion should be that there
exists some v > 0 such that m¥ P(inf;0 Z; < —m) = C_ + o(m™7) as m — oo.
Using Goldie Theorem 6.3 implies the same. In Appendix F we present a more
precise version of the above theorem which also holds for general (§,7) and has
simpler conditions.

The above theorem shows that under the relevant conditions, 1(m) behaves
essentially like m~", where the value w depends principally on . Note that the
condition In E(e="¢) = 0 for some w > 0, requires that £ be non-deterministic,
which is in line with Nyrhinen’s conditions. Also note that Paulsen requires that
&r be spread out, whereas Nyrhinen requires that & be spread out. Using the
random time gives more generality. For example, if & is a compound Poisson pro-
cess with arithmetic jump size distribution, then £ has an absolutely continuous
distribution whilst & has no absolutely continuous component.

The next result by Paulsen is Theorem 3.2 (b) which provides asymptotics for
1(m) when the negative jumps of 7 are heavy-tailed and dominate §. It shows
that ¥ (m) behaves essentially like m™"! where the value of #, depends principally

on 1.

Theorem 1.25. Suppose the conditions of Theorem 1.20 part (c¢) hold. Further,
assume there exists kK1 > 0 and € > 0 such that I1,((—o0, —z]) ~ 27" G(x) where
G is slowly varying, and In E(e~("1798) < 0. Then

1 1
h(m) —In E(e—":4)

P(m) ~

m- " G(m) asm — oo.

The proof is quite simple. Using equation (1.59), it suffices to prove that

1 =10 -
H(—m) ~ mm 'G(m)
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as m — oo. This is achieved by expressing Z, as the fixed point of the random
equation (1.40), and then using discrete rate results from Grey [26]. In Remark
3.2 part (b), Paulsen comments that under the conditions of Theorem 1.25, h =
lim,,, .o h(m) has not been proven to exist. He conjectures that h exists and

. )m_’“G(m) as m — ©o.

equals 1, in which case ¥(m) ~ )

Immediately following this theorem is an examination of ¢)(m) when the nega-
tive jumps of £ are large enough in absolute value that the conditions of Theorem
1.24 or 1.25 do not hold. Several specific cases are examined and upper and lower
bounds for ¢)(m) are established. Note that in all these cases Z, still converges to
a finite random variable Z, as t — oo. In each case, Paulsen’s method is to define
new Lévy processes £ and 7 which satisfy the conditions of Theorem 1.24 or 1.25,
and for which 1(m) > 1 (m), or ¥»(m) < 1(m), where 1 is the ruin probability
function for the GOU associated with &€ and 7. Application of the relevant the-
orem on ¢(m) thus produces upper and lower bounds for . The paper finishes
with an examination of a special case in which £ is compound Poisson plus drift,

and 7 is Brownian motion plus drift.

We make some comments. In this paper Paulsen has certainly made Nyrhi-
nen’s continuous result more accessible, with conditions stated on the character-
istic triplet of & and 7. However his conditions include those of Theorem 1.20,
so the comments we made earlier on that situation apply to the current paper
also. Namely, it would be desirable to remove the finite mean assumption for
¢ and replace his moment conditions, which are sufficient for convergence of Z;,
with the precise iff conditions. Of course, the main question is how the result
changes when dependence between £ and 7 is permitted. Note that with £ and 7
independent and 7 not a subordinator, the condition of Nyrhinen’s which is most
difficult to verify, ¥ = —o0, is assumed by Paulsen to be true. This assumption is
false even in the independent case, as discussed in Appendix E. The assumption
holds only if extra conditions are imposed, in line with Proposition D.4. The

theorem statement must be adjusted accordingly.

Kalashnikov and Norberg 2002 [32] This paper provides various asymp-
totic results and bounds for the infinite horizon ruin probability of the GOU when
the underlying Lévy processes are independent. The results are achieved by dis-
cretizing V' and Z into the discrete sequences described in Section 1.5. The bulk
of the paper consists of asymptotic results for the infinite horizon ruin probability

of these discrete processes. We explain the discrete results first, and then discuss
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the continuous implications. Let
n n n
e ] 4B, (1.61)
j=1 i=1 j=i+1

where (A,, B,) is an iid sequence of random vectors, independent of the random

variable Yy, with common distribution (A,B). Define

Yo = m> :

Throughout the paper, a set of conditions is assumed, which we call hypothesis
G Suppose thatiAs >0 als o P (4 &< Ljo90 landiP(B 1< A ) 110kifor all

—00 < m < 00. The first major result of the paper, Theorem 1, shows that under

Gy =" (inf Y0

neN

these conditions 1*(m) is greater than a certain power function. We need to

define some terms. Let o < 1 and 8 > 0 be constants such that
g— A= a b~ >0

The fact that P(A < 1) > 0 ensures that such o and /3 exist. Let

243
q*:zP(BS— f A),

11—«

which is strictly positive under hypothesis G.

Theorem 1.26. If hypothesis G holds then ¢¥*(m) > % for all m > ¢ where

171b

a,b,c are strictly positive constants defined by

L a= (](1*(?[)~
Y,

= m) :

Theorem 1.27. Suppose hypothesis G holds, A has a non-lattice distribution and
there exists w >0 such that E(A™)=1. If

The next major result, Theorem 2, deals with

neN

s e — (inf Y <5

= w <
S [ 28 ((BT) > < oo then, for any d > 0, there exist constants s* > 0 and

0 < k <1 such that :
*\ w—0
Y(m,s*) < k (2—>
m
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2. If E(A7v=%) < oo for some &y > 0 then for any 6 > 0 there exist constants
s*>0and 0 < k <1 such that

The paper then examines the sequence

il

b= UE G (1.62)
i=1 j=1
where M, := A;! and Q, := B,/A,. Asymptotics for the tail of the supremum,
and infimum, are found using Theorem 6.2 of Goldie [24], which is a first-order
asymptotic result for the tail of a random variable R when R is a fixed point for
the random equation
R =p Q + M max(L, R) (1.63)

and when a further set of conditions hold. It is clear from Goldie’s work that
when L = 0, and certain moment conditions hold, the random variable sup,, .y D5,
is a fixed point of (1.63). We now present Norberg’s Theorem 3, which is a slight
restatement of Goldie’s Theorem 6.2 for the case in which L = 0. Conditions are

stated in terms of A and B to fit with the previous theorems.

Theorem 1.28. Suppose hypothesis G holds, the distribution of A 1is spread
out and there ezists w > 0 such that E(A™") = 1, E(A™In*(A)) < oo and
B (‘§|w) < o0. Then there ezist constants C_ > 0 and Cy > 0 such that

C
2 <SupDn = m) ~ +, Z — 00,

neN mv

J2 <inf D < —m) ~ & Z — 0.

neN mv’

Note that the formula for C is stated above in (1.50). The final theorem in

the paper, Theorem 4, provides a power function lower bound for ¢*(m, s*).

Theorem 1.29. Under the conditions of Theorem 1.28, for any sufficiently large
5* > 0, there exists a constant C(s*) > U such' thait/tim st)=IC st las )

This ends the explanation of the discrete results. We now let € and 7 be inde-
pendent Lévy processes and recall our usual definitions for V, Z and 1, namely
equations (1.1), (1.2) and (1.3), respectively. The processes V and Z are dis-

cretized, via stopping times, into the sequences (1.61) and (1.62) respectively.
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Accordingly, let 0 = T, < T} < Ty < --- be an increasing sequence of stopping
times such that the increments T; — T;_; are iid with distribution 7. As explained

in Section 1.5, if we let

Tn
(A, Brjv= (eﬁTn—Ean , €5 / =€~ dn,
Tin—1)+

then for allm € N, Y,, = V,,, and D,, = Z, for the corresponding (M, @,). With
this choice of vectors, we have

¥*(m) = P (mf I o}vo e m) 0 <ing G —m> .
ne

neN

The continuous analogue of hypothesis G is as follows: Suppose that & is not a
subordinator and, for the stopping time T > 0 defined above, P(Zy < u) > 0 for
all u € R. It is also noted that this hypothesis can be replaced by the slightly
stronger assumption P(&r < 0, Zy < 0) > 0. The continuous analogues of the
various moment conditions are obvious.

The continuous version of Theorem 1.26 is obtained using the obvious fact
that ¢(m) > 1*(m). The authors note that this inequality may be strict, for
example, if € has a Brownian motion component, or if  has an infinite activity
Lévy measure. They comment that in such cases, the partition 7, ,, := nv can be
used, where v > 0. If ¥}(m) is defined to be the ruin probability associated with
T, then W) = lim, a0~ (m).

The continuous version of Theorem 1.27 (stated as Corollary 2) is obtained
using the following statement: Under hypothesis G, whenever 0 < s* <m

(;)bw*(m s*) < pp(m) < ¢ (m, 7). (1.64)
It is claimed that these inequalities follow from the Markov property, the fact
that t(m) > 9*(m), and Theorem 1.26. This is easily seen for the inequality on
the left, however the proof is not obvious for the inequality ¢(m) < ¥*(m, s*).
As noted by the authors, the equality 1)(m) = ¥*(m) does not hold in general.
However, it is claimed that under the conditions of Theorem 1.28, the equality
holds, and accordingly, Theorem 1.28 can be converted to a statement on t(m),

in particular, there exists C_ > 0 such that

v

7 = (0T

p(m) ~

Haf
Note that it would be an interesting task to examine the precise conditions under

which the statements 1(m) < ¥*(m,s*) and (m) = ¢*(m) are true, especially
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for general (£,7). The final result in the paper uses Theorem 1.29 and the in-
equalities (1.64) to give conditions under which C_ is strictly positive, in the
continuous situation.

In section 3.4 of the paper, two examples are given of £ and 7 which satisfy
hypothesis G. In the first example, both ¢ and n are Brownian motion plus drift,
where the Brownian motions are independent. The partition is taken as T, = nv
where v > 0 is fixed. In the second, £ is Brownian motion plus drift and 7 is
compound Poisson plus drift, where 7 is not a subordinator. The partition is
taken as the jump times of the compound Poisson process. No proof is given that
these examples satisfy hypothesis G, however, in these simple cases it is obvious.
Thus, the lower bound specified in Theorem 1.26 holds for each case. The authors
comment that examining the accuracy of the lower bound is difficult, and one
must resort to numerical studies. Later in the paper, it is also claimed that both
these examples satisfy the extra conditions of the later theorems iff £ has positive
drift d¢ > 0, in which case € = 2d; /Ug A final example is given in which £ and
n are independent compound Poisson processes plus drift, where £ and 1 are not
subordinators. It is commented that all conditions mentioned in the theorems
are automatically satisfied, except the existence of w > 0 such that E(§") = 1,
and iff conditions are given on £ such that this holds.

We make some comments on this paper, beginning with the convergence impli-
cations, in the continuous case, of the conditions in Theorem 1.28. In particular,
there exists w > 0 such that E(&;") = 1, which implies that E({r) > 0, and
hence lim; .o, & = oco. Hence, by Theorem 1.19, V; cannot converge a.s. to a
finite random variable V, as ¢ — o0, unless the degenerate case (1.29) holds.
Since £ and 7 are independent, this cannot occur. Note that Z, converges a.s. to
finite Z, as t — oo, iff the associated sequence D,, converges as n — oo. For the
values (M,, Q) defined as above, Theorem 4.1 of Goldie [24], implies that D,
converges under the conditions of Theorem 1.28.

As in Nyrhinen [52], the conditions in this paper are quite inaccessible when
(§,m) is a reasonably complicated Lévy process. Correspondingly, the examples
are limited to the independent, finite variation cases. In hypothesis G it must be
assumed that P(Zp < u) > 0 for all u € R, which we discuss in Appendix E.
This is a stronger version of Nyrhinen’s condition that § = —oo where

smloen: g7
y=infsyeR: P 1r>1£Zt<y >0}.

The replacement hypothesis mentioned earlier involves the joint distribution of &7

and Zp, which is equally problematic. Further, Theorems 1.28 and 1.29 require
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the condition F(|Z7|") < co. To make the results in this paper more accessible,
all the conditions must be stated in terms of the characteristic triplet of (§,7) or
the marginal distributions of £ and 7).

Lindner and Maller 2005 [44] This paper is not about ruin probability, and
has already been discussed in Section 1.4. However we mention a result which
relates closely to the topics discussed above. In Proposition 4.1, the authors
give conditions on the marginal measures of £ and 7 under which moments exist
for the stationary distribution of the GOU. We have modified this result into a
statement on the existence of moments for sup Z;, and presented it as Lemma
3.24. This lemma can be used to make some of the conditions in [52] and [32]

more accessible, which we have noted above is desirable.

1.7 Economic applications

The first, and most basic, economic application of the GOU is as a continuous
perpetuity. However, the interpretation of the underlying bivariate Lévy process
is slightly different depending on whether equation (1.20) or (1.21) is taken as
the definition of V. In a sense, equation (1.20) arises more naturally. We can
consider R to be an accumulated investment returns process, and U to be an
accumulated income process in a non-economic (no interest) environment. For
example, U could be the the income stream, consisting of premiums minus pay
outs, of an insurance company. If we suppose the insurance company continually
invests all of its income stream 7 into a risky asset with accumulated returns R,
and continually reinvests any profits, then the total surplus V; of the company
at time ¢ will be the sum of the initial surplus V4 at time zero, plus the income
stream 7, plus the accumulated gains/losses at time ¢ from the investing process.
Since all of the current surplus is invested in the risky asset, the gains/loss from
investment is described by the process [Ul Vs_dR,, and hence the total surplus at
time t is exactly the SDE (1.20). Note that the value at time ¢ of one dollar,
invested at time zero in a risky asset with accumulated returns R, is given by the
SDE S; = fOt S, dR, and the solution is the stochastic exponential S; = €(R;).
For example, the traditional Black-Scholes model uses R; := ut + o B; where p
and o are real numbers and B is standard Brownian motion. In this case the
stochastic exponential simplifies to e(R); = elh=30%)t+o Bt

When the stochastic integral process (1.20) is interpreted economically, the

exponential Lévy process e€t is considered to be the value at time ¢ of one dollar
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invested into a risky asset at time zero. Further, 7 is considered to be an accumu-
lated income process in a non-economic environment. Thus, with (R, U) as above,
et = ¢(R); and n; = U;. With £ and 7 so defined, the process Z; := fot e % dn,
is the discounted value of the perpetuity 7 at time ¢ under the price process €.
The equation V; = et (z + Z;) is the forward value of an initial fortune 2 and the
continuous perpetuity 7, under price process e%t. It is assumed that 7 is contin-
ually invested in a risky asset following the price process €%, and all profits are
continually reinvested. When considered as a model of an insurance company, V'
is often called the integrated risk process, and Z is called the discounted net loss
process.

It is interesting that under this economic interpretation, the equation (1.20)
has et as the forwarding term, and e ¢~ as the discounting term. The use of the
t— in the discounting term is necessary in order for the integrand in the stochastic
integral process Z to be predictable. However, it now seems consistent for e~
to be used as a forwarding term. As it is, using simple deterministic functions
it is easy to see the inconsistencies which arise. Suppose 17, = 0 on [0,1) and
m = 1, and suppose €% = 1 on [0,1) and e = 2. Then Z; = fol e %~dn, = 1 and
Vi = €817, = 2. It seems logical that the a surplus at time 1 which is discounted
to zero, and then forwarded back to time 1, should be the original value. This
would be achieved using either e or €5~ as both the forwarding and discounting
term. However, this inconsistency in the deterministic situation does not occur
when (£, 7) are Lévy processes. The probability of £ jumping at a fixed time ¢
is zero, so the process (1.20) is a.s. equal (a modification) of the version which
uses €% as the forwarding term. As an economic model, it is favourable to use
(1.20) since it uniquely solves (up to indistinguishability) the SDE described in
Proposition 1.15.

In [42] and [37], the GOU (1.20) is used to model the total surplus of an
Insurance company in a more specialised way. As above, this model uses an
exponential Lévy process €% to model the price of a risky asset, and uses 7 as
the income stream of the insurance company in a non-economic world. However,
¢ and n are assumed to be independent, and 7 is assumed to be a compound
Poisson process plus drift. Rather than investing all the current surplus in the
risky asset, the company is allowed to invest part of its money in a riskless bond
with the price process ’, where § > 0 is the riskless interest rate. The proportion
of the surplus invested in the risky asset is denoted by 0 € [0,1], and is assumed
to remain constant over a predetermined time. Thus, as the Lévy process &

fluctuates, the portfolio must be rebalanced to maintain a fixed 6. The combined
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investment process can be written as e% for a Lévy process & and, for each 0,
the total surplus is given by the GOU

t
‘/0,t == e£9,t (‘/b +/ e_EB,S—d/,’s) )
0

Another economic application of the GOU involves the COGARCH model,
introduced in [38], which can be used to model the price of a risky asset. If L is

a one-dimensional Lévy process then the COGARCH is defined to be the process

S := (St)t>0 given by
t
St = / Us—dLs
0

where o2 is a special case of the GOU (1.21), in which 7 is linear deterministic
drift and £ is defined in terms of L. The process o can be interpreted as the

volatility process and is defined by

t
8 = (03 +/O e‘fs‘d(ﬁs)>

where > 0 and £ is a Lévy jump process defined by

&i=at+ Y In(1+bAL,)?)

for parameters a < 0 and b > 0. There is only one source of randomness un-
derlying both the price process S and the volatility process o, and that is the
Lévy process L.
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Chapter 2

No ruin for the Generalised

Ornstein-Uhlenbeck process

20 =S ntroduetion

In this chapter we examine when the GOU has zero probability of ruin. We also
present some basic foundational results on the behaviour of Z and V. As men-
tioned in Chapter 1, there are only a few papers dealing with ruin probability, or
with passage-time problems, for the GOU. Patie [53], and Novikov [50], give first
passage-time distributions in the special case that & = At for A € R, and 7 has
no positive jumps. With regard to ruin probability, Nyrhinen [52] and Kalash-
nikov and Norberg [32] discretize the GOU into a stochastic recurrence equation.
Under a variety of conditions, they produce some asymptotic equivalences for the
infinite horizon ruin probability. The main results on GOU ruin probability come
from Paulsen [56]. In the special case that £ and 7 are independent, Paulsen gives
conditions for certain ruin for the GOU and a formula for the ruin probability un-
der conditions which ensure that the integral process Z; converges almost surely
as t — 00. Since these papers were written, the theory relating to the GOU, and
to the process Z, has advanced. We have described these results in Section 1.4.
Our main results of the chapter are presented in Section 2.2. The first result,
Theorem 2.1, presents exact necessary and sufficient conditions under which the
infinite horizon ruin probability for the GOU is zero. These conditions do not
relate to the convergence of Z or stationarity of V' or to any moment conditions.
Instead they are are expressed at a more basic level, directly on the Lévy mea-
sure of (£,n). This theorem shows that when £ and n are dependent, the ruin
probability function for the GOU behaves very differently to the case, described
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by Paulsen, in which ¢ and 7 are independent. The second result, Theorem 2.3,
shows that P(Z; < 0) > 0 for all t > 0 as long as 7 is not a subordinator. This
result is an important building block in the proof of Theorem 2.1, as well as being
of interest in its own right. Finally in Section 2.2, Theorem 2.4 extends a ruin
probability formula in Paulsen [56], presenting a slightly different version which
deals with the general dependent case, and applies whenever Z; converges almost
surely to a random variable Z, as ¢ — oo.

Section 2.3 contains technical results of interest, which characterise what we
call the lower bound function of the GOU, and are used to prove the main ruin
probability theorem. Section 2.4 contains proofs of the results stated in Sections
2.7 miael 2.3k

When we specialise to the situation that (£, 7) is a compound Poisson process
with deterministic drift, Theorem 2.1 can be proved using a different method.
This method is less sophisticated and cannot be extended to the general case.
Rather than utilising Theorem 2.3 and the theorems in section 2.3, it relies on a

“brute force” approach. We present this theorem, and proof, in Appendix A

2.2 Ruin Probability Results

Our results are given in terms of regions of support of the Lévy measure Il ,,. We
define some notation, beginning with the following quadrants of the plane. Let
Ay :={(z,y) e R? : x > 0,y > 0}, and similarly, let A;, A3 and A4 be the quad-
rants in which {z > 0,y < 0}, {z < 0,y < 0} and {z < 0,y > 0} respectively.
For each ¢ = 1,2,3,4 and u € R define

At i={(z,y) € A1y —ule™ = 1) <l (2.1

These sets are defined such that if (A&, An,) € A and V,_ = u, then AV, < 0,
as we see from the equation

AT == A

L t—
— X <z + / e 4 -dn, + e_gf‘Ant> — bt (z & / e_ES*dm)
0 0

t—
= (eét 150 eft—)<z _+_/ e*fs—dns) o egteﬁﬁt_A,rh
0
e s (2.2)
i R e (2.3)
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If u < 0 then AY = A, and AY = (. As u decreases to —oo, the sets A} expand,
whilst Af shrink. Define

=) if H&J)(Al) = (0] 0 if H&U(A;) —i()

s {sup{uso:ng,n<Aa‘>>0} o { inf {u < 0: Tle(A9) > 0}
1= 1% d8 =

If u > 0 then A} = A; and A} = 0. As u increases to oo, the sets A} shrink,
whilst A} expand. Define

iy L TR AL ) = 0 i int {u =0 e, (A7) >0}
? el A ROy 200, ’ 0o if Hep(Ag) =0

For each ¢ = 1,2, 3, 4, note that HE,,,(A?’) = 0, since in the definitions of A} we

are requiring that y — u(e™* — 1) be strictly less than zero.

Theorem 2.1 (Exact conditions for no ruin for the GOU). The ruin probability
function satisfies (0) = 0 if and only if n is a subordinator. If n is not a
subordinator then there exists ¢ > 0 such that the ruin probability function satisfies
YP(c) =0 if and only if the Lévy measure satisfies ¢, (As) = 0, 02 < 64, and:

e when (fg # 0 the Gaussian covariance matrix is of form

1 —u :
D — e
U g afon P 3

for some u € [0y, 04] satisfying

1

g(u) = Ay + ufe — 52«72 - /{ s 1}(u:r F oyl (d(z,y)) = 0; (24)
T24y2<

e when U? = 0 the Gaussian covariance matriz is of form X¢, = 0 and there

exists u € [02, 04 satisfying g(u) > 0.

If 052 # 0 and the conditions of the theorem hold, then 1)(z) = 0 for all 2 > ¢ :=
— 20 whilst ¢(z) > 0 for all z < c.

E]f a'g = 0 and the conditions of the theorem hold, then (z) = 0 for all
z > c:= inf{u € [6s,04] : glw) = 0}}, whilst ¥(2) > 0 for all z < c.

We now discuss some examples and special cases which illustrate and amplify
the results in Theorem 2.1.
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Remark 2.2. 1. Suppose that (£, 7) is continuous. By the Lévy-1t6 decom-
position in Proposition 1.8 we can write (&,7:) = (7Vet, Ynt) + (Bet, Bnt)-
Theorem 2.1 states that (2) = 0 for all z > u and 9(z) > 0 for all 2 < u, if
and only if there exists u > 0 such that B, = —uB¢, and (75—%052)?1—#% = (0

For example we could have
(gt,”lh) = (Bt +Ct,—Bt‘+‘ (]./Z—C)f)7 (25)

where ¢ € R and O’g = 1. Then Theorem 2.1 implies that ¥(z) = 0 for all

z > =% = 1 whilst 9(z) > 0 for all 2 < 1. In this simple case we can

check the result directly and we present these calculations in Appendix B.

2. Suppose that (£,7) is a finite variation Lévy process. Then ¢, = 0 and
le<l |2|T1¢ ,(dz) < co. We can define the drift vector as

e dn) =0 ) /|7|<1 2l¢ (d2) (2.6)

and write

(& me) = (dg, dy)t + /R2 zNe (-, dz).

In this situation, Theorem 2.1 simplifies to the following statement: (0) =
0 iff n is a subordinator. If 5 is not a subordinator then (c) = 0 for some
c> 0 iff Il ;,(A3) = 0, 6, < 04, and at least one of the following is true:

e de =0, and d, > 0; or
e d¢ >0 and —%;l = @2 @i
e d, >0, and d¢ < 0, such that —%z > 0.
If the second property holds, then 1(2) = 0 for all z > ¢ := max{#6,, —%’El

and 9 (z) > 0 for all z < c. If the other properties hold, then v(z) = 0 for
alliz > e :=0sand @(z) >0 forall 2i<ic

These results are easily obtained by using (2.6) to transform condition (2.4)
into the equation g(u) = d,, + ud¢ > 0. For a simple example, let N, be a
Poisson process with parameter A, let ¢ > 0 and let

(&, me) == (—ct + Ny, 2ct — V). | (2.7)

Then we are in the third case above, and ¥(z) = 0 for all z > 6, = =
and ¢(z) > 0 for all z < <. In this simple case, we can verify the results
by direct but tedious calculations which we omit here.
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3. Suppose that € and 7 are independent. This implies that £ and 7 jump
separately, which means that all jumps occur at the axes of the sets A;.
Further, there is zero covariance between the Brownian components of £
and 7, namely o¢, = 0. With a little work, Theorem 2.1 simplifies to the
following statement: (0) = 0 iff 5 is a subordinator. If 7 is not a sub-
ordinator then 9(z) = 0 for z > 0 iff £ and n are each of finite variation
and have no negative jumps, and g(z) = d,, + zd¢ > 0. Note that for this
situation to occur, it must be that d,, < 0 (since 7 is not a subordinator),
which implies that d¢ > 0. Hence E(&;) > 0.

4. Paulsen [56] states conditions for certain ruin when £ and 7 are indepen-
dent. In the cases E(§;) < 0 and E(&) = 0, and under certain moment
conditions, he shows that 1(z) = 1 for all z > 0. Theorem 2.1 shows that
the situation changes when dependence is allowed. The continuous process
defined in (2.5), and the jump process defined in (2.7), illustrate this dif-
ference. Each process trivially satisfies Paulsen’s moment conditions and
can satisfy F (&) < 0, or E(&) = 0, depending on the choices of ¢ and A,
however it is not the case that ¥(z) = 1 for all z > 0. Note that Paulsen
does not comment on the possibility of zero ruin in the independent case.

The above statement (3) completely explains this situation.

5. We make some comments on subordinators and explain why Theorem 2.1
has to have a separate statement for the simple case in which 7 is a subor-
dinator. As noted in Proposition 1.14, 7 is a subordinator if and only if the
following three conditions hold:

. 03] = (), so 1 has no Brownian component;
e II,((—00,0)) = 0, so n has no negative jumps;

e d, > 0, where

dr] = 71] i / UHn(dU) =F <7]I g / ',UN7,_1(‘~,(1',1/)) Q
J(0,1) J(0,00)

Note, by definition, d, € [—oc0, ), and d,, = —oo iff f yylly(dy) =
00.

Suppose that 7 is a subordinator. Since 02 = () the covariance matrix is of

G :
form ¢, = [ i 02. Using (1.12), and the fact that 5 has no negative
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jumps, we obtain

vn— / Sl (o vn— / Gl
{z2+y2<1} Rx{|y|<1}
o

Thus, the fact that d, > 0, implies that (2.4) is satisfied for u = 0. Also,
since 77 has no negative jumps, 6, = 0, and hence the condition #, < 6, is
satisfied. However there is one condition that is not satisfied. Even though
n has no negative jumps, we cannot say Il ,(As) = 0, since it may be the
case that Il¢, ((—o00,0) x {0}) > 0. Namely, £ may make a negative jump

at the same time that n has no jump.

6. If Il ,(A3) = 0, and 0y < 6y, then the function g(u) from (2.4) exists for
any u € [0y, 604, and g(u) € [—00,00). Under such conditions, the domain
of integration for the integral component of g can be decreased using the
fact that

e, ({y — u(e™ — 1) <0}) = 0. (2.8)

Further, if g(u) is finite for some u € [65, 6,], then
/ (o el i) e ) oo il (0.0}
s ulew =1 e(051)]

On first viewing, (2.9) may seem counterintuitive, as it places a constraint
on the size of the positive jumps of V. However, if (2.9) does not hold, and all
the other conditions, excluding (2.4), are satisfied, then the Lévy properties
of (§,n) imply that V; can drift negatively when V;_ = u. These statements,
and the equations (2.8) and (2.9), are discussed further in Remark 2.10
following Theorem 2.9.

Theorem 2.3. The Lévy process 1 is not a subordinator if and only if P(Zr <
0) > 0 for any fized time T > 0.

One direction of this result is trivial and has been noted above, namely, if 7
1s a subordinator then P(Zr < 0) = 0 for any 7' > 0. The other direction seems
quite intuitive and in fact is implicitly assumed by Paulsen [56] in the case when
¢ and n are independent. However even in the independent case the proof is
non-trivial. We prove it in the general case using a change of measure argument
and some analytic lemmas. As well as being of independent interest, this result

1s essential in proving Theorem 2.1.
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The final theorem in this section provides a formula for the ruin probability
in the case that Z converges. Recall that T’ denotes the first time V' drops below

zero when V, = 2, or equivalently, the first time Z drops below —z.
Theorem 2.4. Suppose Z; converges a.s. to a finite random variable Z, as

t — oo vand let Glel— P(Z. < z). Then

e G(-2)
i e T RPN

Remark 2.5. 1. To clarify the meaning of this formula, note that

G("‘VTZ)(W) = P(l/ =9 ZOO(V) < —VTZ(w)),

which is defined whenever T,(w) < oco.

2. In the case that & and 7 are independent, Paulsen [56] shows, under a

number of side conditions which ensure that Z; converges a.s. to a finite

random variable Z, with distribution function H(2) := P(Z, < 2) as
t — oo, that
H(==z
9(z) = e o
E (H(—V1,)|T, < o)

This formula is a modification of a result given by Harrison [31] for the
special case in which & is deterministic drift and 7 is a Lévy process with
finite variance. Theorem 2.4 extends the formula to the general dependent
case. Our proof is similar to those of Paulsen and Harrison, however we

write it out in full because some details are different.

3. As noted in Theorem 1.17, Z; converges a.s. to a finite random variable
4 a5 &t~ a0 if and only if lim, . & = 400 a.s. and I, < co. As noted
in Theorem 1.19, Lindner and Maller [44] prove that if V' is not a constant
process, then V is strictly stationary if and only if fot eS-dK5" converges
a.s. to a finite random variable as t — oco. In neither of these cases do the
conditions of Theorem 2.1 simplify. Each of the processes defined in (2.5)
and (2.7) can belong to either of these cases, or neither, depending on the

choice of constant ¢ and parameter \.

4. As noted in Theorem 1.18, Z; converges a.s. to a finite random variable
Zs as t — oo, then Z,, has an atom iff Z,, is a constant value —c iff
Zy=c(e® —1) as. iff V; = (2 — ¢) + c a.s. In this case it is trivial that
Y(z) = 0 for all z > ¢. Theorem 2.1 produces the same result, however this
will not become immediately clear until Remark 2.8 (2) following Theorem
24F.



44 CHAPTER 2. NO RUIN

2.3 Technical Results of Interest

This section contains technical results needed in the proofs of Theorems 2.1 and
2.3, which also have some independent interest. The proofs of these results are
given in Section 4. Recall that the stochastic, or Doléans-Dade, exponential
of a semimartingale X; is denoted by ¢(X);. The first proposition introduces a
process W which will play an important role throughout the rest of the paper.
This proposition is adapted from Proposition 8.22 of [14] and is presented without
proof.

Proposition 2.6. Given a bivariate Lévy process (€,n) there exists a Lévy process
W such that e=% = ¢(W); and (£,m,W) is a trivariate Lévy process. If € has
characteristic triplet (e, o¢,Il¢) then

o2t
W, = —& + % ol Z (e,°% + AL, — 1) (2.10)

0<s<t

and the characteristic triplet of W is given by oy, = o¢ and

and
1 =
Tw = —”/g + 5052 aF /R (Il(_lyl)(l‘) + (6_1 i 1)1(‘1,,2‘00)(17)) Hf(d,L), (212)

where the integral converges.

We define the lower bound function ¢ for V in (1.1) as

5(z)=inf{u€R:P<%1§th §u|V0=z> >0}.
The following theorem exactly characterizes the lower bound function.
Theorem 2.7. The lower bound function satisfies the following properties:
i Horiallze R 6] o
2. If 2 < z then 6(21) < 6(20).

3. For all z € R, 6(2) = z if and only if n — z2W is a subordinator.

4. Forall z € R, 6(2) = §(6(2)), and

0(z) =sup{u:u<z,n—uW isa subordinator} .



2.3. ' TECHNICAL RESULTS OF INTEREST 45

Remark 2.8. 1. If 5 is a subordinator then §(0) = 0, so V' cannot drop below

zero when Vo = z > 0.

2. As noted in Theorem 1.18, if Z; converges a.s. to a finite random variable
Voo B8t — 00, then 2., — —a it € © = e(n/a). If this holds then d(a) = a
by point 3 above, since n/a = W. Thus 1(2) = 0 for all z > a, as mentioned
in Remark 2.5 (3).

Theorem 2.9. Let u € R\ {0} and let (§,n,W) be the trivariate Lévy process
from Proposition 2.6. The Lévy process 1 — uW is a subordinator if and only if

the following three conditions are satisfied: the Gaussian covariance matriz is of

the form
1 —u ,
Efs’l i [ 2 (7?, (213)
—u u

at least one of the following is true:
o Il¢,(A3) =0 and 0, < 04 and u € [0, 04);
o Il ,(A2) =0 and 6, < 63 and u € [0, 63);
o Il (A3) = ey (A2) = 0 and u € [0y, 04);
and in addition, u satisfies (2.4).

Remark 2.10. In Remark 2.2 (5) we stated three necessary and sufficient condi-
tions for a Lévy process to be a subordinator. These three conditions correspond
respectively with the three conditions in Theorem 2.9, as we shall see in the proof.
In particular, if one of the dot point conditions holds, and u € [6;,0;] for its re-
spective ¢, j, then II,_,w((—00,0]) = 0, which we will show to be equivalent to
(2.8), and the function g from (2.4) satisfies g(u) = dy_uw € [—00, 00). Further, if
g(u) is finite for some u € [6;,6,] then ‘/;0‘1) 211, _yw(d2z) < oo, which we will show
to be equivalent to (2.9). Note that if 7 — uW has no Brownian component, no
negative jumps, but f(O,l) 2I1,_yw(dz) = oo, then, somewhat suprisingly, n — ulW/
is fluctuating and hence not a subordinator, regardless of the value of the shift
constant v, ,w. This behaviour occurs since d,_,w = —o0, and is explained in
Sato [62], p138.
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2.4  Proels

We begin by proving Theorem 2.3. For this proof, some lemmas are required. In
these we assume that X = (£, n) has bounded jumps so that X has finite absolute

moments of all orders. Then, to prove Theorem 2.3 we reduce to this case.

Lemma 2.11. Suppose X = (£,n) has bounded jumps and E(n;) = 0. If we let

T > 0 be a fized time then Z* is a mean-zero martingale with respect to F.

Proof. Since 7 is a Lévy process the assumption E(7;) = 0 implies that 7 is
a cadlag martingale. Since € is cadlag , e=¢ is a locally bounded process and
hence Z is a local martingale for F by Protter [60], p.171. If we show that
E (sup,<, |ZT]) < oo for every ¢ > 0 then Protter [60], p.38 implies that Z” is a
martingale. This is equivalent to showing E (sup,<y |Z;|) < co. Since Z is a local
martingale and Z, = 0, the Burkholder-Davis-Gundy inequalities in Lipster and
Shiryaev [46], p.70 and p.75, ensure the existence of b > 0 such that

; - . 1/2
E<sup /e‘f‘““dns) = bE({/ ff_Estm/ 6—557(1773} )
0<t<T |.Jo 0 - -

o 1/2
= bE </ e‘%“d[n,n]s>
0
L1 1/2
= bE((/ sup 6_2£‘<1[77777]s> )
0 O==
— B ( sup e~ % [, n]lT/2>
0<t<T
1/2
< b<E<sup e‘g&)> (E([ﬂvn]T))l/Q’
0<t<T

where the second inequality follows from the fact that [y, 5], is increasing and
the final inequality follows by the Cauchy-Schwarz inequality. (The notation [-, -]
denotes the quadratic variation process.) Now, by Protter [60], p.70,

E([n,nlr) =0T+ E ( Z (An)2> =0T + T/a:2Hn(d:1:),

0<s<T

which is finite since 7 has bounded jumps. Thus it suffices to prove that

E < sup e‘2€‘> o o
0<t<T
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Setting Y; := e ¢ /E(e~%), a non-negative martingale, it follows by Doob’s max-

imal inequality, as expressed in Shiryaev [1], p.765, that

=26 E (e %
E<Sup _f’_> o el

osi<r (E(e %))’ (B(e=tr))™”

which is finite since £ has bounded jumps and hence has finite exponential mo-
ments of all orders (Sato [62], p.161). It is shown in Sato [62], p.165, that
(E(e“s‘))2 = (E(e _5’)) - Letting e /= (E(e‘fl))2 € (0,00), the above inequality
implies that

_25,
i €
E < sup (3_2€’> < max{1,c"}E < BUplS ) =R

0<t<T o<t<T C

|

We now present two lemmas dealing with absolute continuity of measures.
These lemmas will be used to construct a new process W such that W7 is a
mean-zero martingale which is mutually absolutely continuous with Z7. Then
P(Zy < 0) > 0if and only if P(Wp < 0) > 0, and the latter statement will follow

immediately from the fact that W7 is a mean-zero martingale.

Lemma 2.12. Let X := (§,n) and Y := (7, v) be bivariate Lévy processes adapted
ol SL 4 I P and let Z, = ]0 ~S-dp, and W; = fo = Ta—dy,. If the induced
probability measures of XT and YT are mutually absolutely continuous, then the

induced probability measures of Z* and W' are mutually absolutely continuous.

Proof. Let D([0,T] — R?) denote the set of cadlag functions from [0, 7] to R? and
%011 denote the o-algebra generated in this set by the Borel cylinder sets (see
Kallenberg [33]). Then the induced probability measures of X7 and Y7 can be
written as Pxr and Pyr on the measure space (D([0,T] — R?), %°7]) . Let C :=
(C',C") be the co-ordinate mapping of (D([0,T] — R?), Z%°7)) to itself. Define
Z' on the probability space (D([0,T] — R?), %011, Pyr) by Z, s Ot e dC
Define W’ on (D([0,T] — R?), 8207, pyr) by Wi : fo s-dC”. Note that
Z" and W' are different processes since they are being evaluated under different
measures. Now Z =X oZ' and W =Y o W’. Hence P(ZT € A) = Pyr(Z' € A)
and P(WT € A) = Pyr(W' € A). Since Pyxr and Pyr are mutually absolutely
continuous, Protter [60], p.60 implies that Z’ and W' are Py r-indistinguishable,
and Pyr-indistinguishable. So Pxr(Z’ € A) = Pxr(W' € A). Since Pxr and Pyr
are mutually absolutely continuous Pyr (W' € A) = 0 iff Pyr(W’ € A) = 0 which
proves P(ZT € A) =0 iff P(WT € A) = 0, as required. O
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Lemma 2.13. If X := (§,n) has bounded jumps, E(n) > 0, n is not a subordina-
tor, andn is not pure deterministic drift, then there exists a bwariate Lévy process
Y := (7,v) with bounded jumps, adapted to (0,7 ,F, P), such that XT and Y
are mutually absolutely continuous for all T > 0, and E(1,) = 0.

Proof. As mentioned in Remark 2.2 (5), the Lévy process 7 is a subordinator if
and only if the following three conditions hold: ¢; = 0, II,((—00,0)) = 0, and
d = 0 where dp =9, — f(O,l) yI1,(dy). Thus it suffices to prove the lemma in the
following three cases.

Case 1: Suppose g, # 0. Given dependent Brownian motions B¢ and B,
there exists a Brownian motion B’ independent of B,, and constants a; and as
such that (Bg, B,y) = (a1 B’ + a2B, , B,). Using the Lévy-Ité decomposition, X

can be written as the sum of two independent processes as follows;

X =&, m) = (& = Beos i+ Byy) =p (€ + aaBg i)+ (a2 Bas, By)s

where (§',7') is a pure jump Lévy process with drift, independent of (B, B,). Let
c:= E(m) and define the Lévy process Y by

Y, = (& + a1B;, ) + (az(Bye — ct), Byy — ct).

It is a simple consequence of Girsanov’s theorem for Brownian motion, e.g. Kle-
baner [36], p.241, that the induced measures of the processes B,; and B, , — ct
on (D([0,T] — R),%[O*T]) are mutually absolutely continuous. It is trivial to
show that this implies that the induced probability measures of (as2B, 4, By)"
and (as(By; — ct), B, — ct)” are mutually absolutely continuous. Using inde-
pendence, this implies that the induced probability measures of X7 and Y7 are
mutually absolutely continuous. Note that if we write Y as Y = (7,v) then
vy =1 — ct so E(v1) = 0 as required.

Case 2: Suppose 0, = 0 and II,((—00,0)) > 0. We can assume that X has
jumps contained in A, a square in R?, i.e for all ¢t > 0

(A&, An) €A :={(z,9) eR*: -a<z < a,—a<y<a).
For any 0 < b < a define the set ' C A by
[Mi={(riy) € RO gty i i 2

A Lévy measure is o-finite and II,((—o0,0)) > 0 so there must exist a b > 0

small enough such that IIx(T') > 0. By Protter [60], p.27, we can write X =
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X + X where X, := (&, ) is a Lévy process with jumps contained in A \ I and
X, = (ét, 7)) is a compound Poisson process independent of X, with jumps in '
and parameter \ := IIx(I') < co. So we can write X, = vaz‘l C; where N is a
Poisson process with parameter A and (C;);>1 := (C},C);>; is an independent
identically distributed sequence of two dimensional random vectors, independent
of N, with C; € . Let M be a Poisson process independent of N, C; and X, with
parameter r A for some r > 1. Define the Lévy process Y by Y; := % ¢ +Z?£1 C;. We
show the induced probability measures of X7 and Y7 on (D( [0,T] — R), ,@{O'T])
are mutually absolutely continuous. Since X is independent of both compound
Poisson processes, this is equivalent to showing the induced probability measures
of vaz‘l C; and Zfi‘l C; are mutually absolutely continuous. Let A € 7] and
note that

N 00 Ny
P((ch> €A>:ZP<<ZCZ) EAiNT:n>P(NT:n)
i=1 0<t<T n=0 1=1 0<t<T

(2.14)
Since N is a Poisson process, P(N; = n) > 0 for all n € N. Thus the left hand
side of (2.14) is zero if and only if P <(vaztl C’i) € AINT = n) =0 for all
el

For any Poisson processes, regardless of the parameter, Kallenberg [33], p.179,

0<t<T

shows that once we condition on the event that n jumps have occurred in time
(0,7, then the jump times are uniformly distributed over (0,7]. This implies
that

Nt A']L
P((ZQ) EA‘NTzn,) =P<<Za—) EA’MT=n>.
=1 0<t<T =1 0<t<T

Thus, P <<vaz'l C,») & A) = {145 and only if P ((Z:\:I’l Cl) € A) =
0<t<T 0<t<T

0, which proves that the two measures are mutually absolutely continuous, as

required.

Recallithat 1 =" (73 04) = K4 Z?:I'I C; where X = (é mhwand €. =
(Ci,CY) € T. Thus v, = 7 + Y.t C" which implies that tE(v;) = tE(f) +
TAtE(C;') where E(7;) > E(n;) > 0. Choosing r = E(7,)/|\E(C!)| gives E(v,) =
0 as required.

Case 3: Suppose g, = 0, II,,((—00,0)) = 0, and d,, < 0, where we allow the
possibility that d, = —oo. If I1,((0, 00)) = 0 then 7, = d,t is deterministic, and
this possibility has been excluded. So IT,,((0, 00)) > 0, and we can assume X has
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jumps contained in A where we define the set A := {(z,y) € R? : —a < z <
a,0 <y < a}. For any 0 < b < a define the set %@ AvbpBY {(.’E y) € R2
—a<z<a,b<y<a}. Wecan write X = X® 4 X® where X® (ft(b T]t )
is a Lévy process with jumps contained in A \ r'® and X® .= (ét ,nt ) is a
compound Poisson process independent of X® with jumps in ['® and parameter
A= (B2 < o0

If d, € (—00,0) then we can write E (77 b) b tfoz:) zll (dz). Since
hmbwf zI1,(dz) = 0, there exists b > 0 such that E (m ) <0.Ifd, = —00

then f01) ,(dz) = co. Note that E(m) = E (771 )+ E( )) € (0, 00) since

jumps are bounded, whilst

B rIL.(dz) =
hmE(m ) 111?01 (b‘a)LH,,( )

Hence there again exists b > 0 such that £ (ﬁt(b)) < 0. From now on we assume
b > 0 is small enough such that £ (ﬁt(b)) < 0. Since a Lévy measure is o-finite and
I, ((0, 00)) > 0 we can also assume IIx(I'”) > 0. Thus we drop the ® from our
labeling. We can write X, = ZZ , Ci where N is a Poisson process with parameter
A and (C)is1 = (C],C!)i>1 is an independent identically distributed sequence
of two dimensional random vectors, independent of N, with C; € I'. Let M be a
Poisson process independent of N, C; and X, with parameter r\ for some r > 0.
Define the Lévy process Y by Y, := R EM‘ C;. Then the induced probability
measures of X7 and Y7 are mutually absolutely continuous by the same proof
as used in Case 2. If Y =: (7,v) then v; = 7; + EM‘ C! with C! € [b,a]. Since
E(m) < 0 for our choice of 0 < b < a, choosing r = |E(71)|/AE(C}’) gives the
result. O

Proof of Theorem 2.3. Take a general (£,7), let a > 0 and define
A={(z,9)eR?: ~a<z<a—-a<y<al

We can write X = X + X where X, := (&.,7) is a Lévy process with jumps
contained in A and X, := (&, ;) is a compound Poisson process, independent of
X, with jumps in R?\ A, and parameter \ := I1x(R?\ A) < co. Note that

Xii= ) AX,lgaa(AX,)

0<s<t

and by Poisson properties, P(Xt =0) O for anyid =0
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Suppose that P (fOT e~6-dij, < O) > 0. Then P(Z7 < 0) > 0, because

i 71 ) i
P(/ e‘és—dns<0> > P(/ e—fs—dns<0‘XT:o)P(XT:o)
0
0 - : A A
it P(/ e—ﬁsdﬁs<o’XT:o>P(XT=0)
0
Wi - .
= P(/ e—fs—df,s<o>P<XT=o)
0
= (0

Further, note that 7 is not a subordinator iff we can choose a > 0 such that 7 is not
a subordinator. If 03 > 0 or d,, < 0 then any a > 0 suffices. If II,((—00,0)) > 0
then we can choose a > 0 large enough such that I, ((—a,0)) > 0. The converse
is obvious. Thus the theorem is proved if we can prove it for the case in which
the jumps are bounded. From now on assume that the jumps of X = (&, ) are
contained in the set A defined above. Note that this implies that F(n,) is finite.

If n is pure deterministic drift, then 7, = d,t where d, < 0, since 7 is not a
subordinator. In this case the theorem is trivial, since Z is strictly decreasing.
Thus, assume that 7 is not deterministic drift. We first prove the theorem in the
case that —c := E(n;) < 0. Note that

T T
P70 =50 </ e %-d(ns + cs) — / e “-dfes) < 0)
JO /0

T
PP (/ e %-d(n, + cs) < ())
0

()

The final inequality follows by Lemma 2.11, which implies that fOT e %=d(ns +cs)
is a martingale, so £ (f(;re'fs—(l(ns - (:s)) = 0. Note that fOT e S=d(ns + cs) is
not identically zero due to our assumption that 7 is not deterministic drift.

Now we assume that ¢ := F(n;) > 0. Lemma 2.13 ensures there exists Y :=
(7,v) with bounded jumps, adapted to (Q2,.#,F, P), such that X7 and Y7 are
mutually absolutely continuous for all 7' > 0, and E(v,) = 0. If we let W, :=
fot e ™~dvg then Lemma 2.11 ensures that W7 is a mean-zero martingale. We
prove that Wrp is not identically zero

Firstly, note that if v is deterministic drift then the condition E(r,) = 0
implies that v is identically zero. This cannot occur, since v is mutually absolutely
continuous with 7, and we have assumed that 7 is not identically zero. Now, since

v is not deterministic drift, the quadratic variation [, V] is an increasing process.
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. e iz,
[/ e‘“‘dz/s./ e’“‘dz/s] :/ e Tedly, ),
0 Jo T 0

If Wy is identically zero then W, must be identically zero for all ¢ <T', since W &

Hence

is a martingale. Thus [W, W] = 0, which gives a contradiction.

Since W is not identically zero, and E(Wp) = 0, we conclude P(Wr < 0) > 0.
However, Lemma 2.12 ensures that the induced probability measures of 7% amd
W7 are mutually absolutely continuous. Hence P(Zr < 0) > 0. O

Theorem 2.1 follows from Theorems 2.7 and 2.9. So we now prove these

theorems.

Proof of Theorem 2.7. Property 1 is immediate from the definition while Prop-
erty 2 follows from the fact that V; is increasing in z for all t > 0. Let W be the
process such e~ = ¢(W);. Then for any u € R,

t
V, = eft <: +/ e‘gsdns>
0
t t
= ¢bt (: + / e S -d(n, — uW,) + u/ e‘gs‘dWS>
Jo 0
t
= bt <z + / e - d(n, — uW,) + u(e™® — 1))
Jo
-t
=y + e <: —u—+ / e 5= d(ns — uW3)> 3
Jo

Now if n — zWW is a subordinator then fot e %-d(ns — 2W,) > 0 so 6(z) = 2. By

Theorem 2.3 if n — 2 is not a subordinator then for some ¢ and some € > 0,

t
p (/ et d(ns — 2W,) < —e> >0
0

and so, with V= z + € and u = z,

ik (inf\/t < 3‘\/0 = :+6>
>0

ot
- ofagfers (e [ am-m)} <)

S0

which implies that §(2) < (2 + €) < z and establishes Property 3.
Property 3 implies Property 4 if n—(2)W is a subordinator. So suppose that

n — 0(z)W is not a subordinator. Then from the argument above we know that
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for some € > 0, §(6(2) + €) < 6(z). Let T, = inf{t > 0: V; < u}. By definition
of § we have that P(Ts(4e < 00) > 0. By the strong Markov property of V;, if
u <z,

P(lan,<5 |V0—2>
>0
> = (mf Viin o = 6(u)’Vo = z)
= 2 <1nf VH‘Fo(u)ﬂ (u)’Tg(uHe <icoVhi= Z> 2 (T(s(u)_f_( =< OO)
= /2 (met < olu |V0 = 0(u) + ) 2 (T(g(u)ﬂ < oo)
B 0.
This contradiction proves Property 4. O

Proof of Theorem 2.9. The Lévy process S :=n —uW is a subordinator if and
o = 0, Ilgw ((—00,0)) = 0, and
dgw) > 0 where dgw) = F <51 - f(o,oo) zNS(un(.,dz))

Note that 05(“) 0 is equivalent to B, — uBw = 0, which is equivalent to
B, = —uB¢ by (2.10),which establishes (2.13).

We show that S has no negative jumps for u # 0 if and only at least

only if the following three conditions hold: &2

one of the dot point conditions of the theorem hold. Using (2.10) we see that
Alg, (u) = An, —u(e®* —1.). If u > 0 then ASt(") < 0 requires (A&, An;) be
contained within AY, Az, or A}. Every (A&, An;) € Az produces a AS,@ < (0L
Recall that the value 6, is the supremum of all the values of u > 0 at which there
can be a negative jump ASt(“) with (A&, An) € Ay. Note that at u = 65 such
a jump is not possible. The obvious symmetric statement holds for 8,. Hence, if
u > 0 then S™ has no negative jumps if and only if e, (As) = 0, 6 < 04 and
u € [0, 0y4].

If u < 0 then ASfu) < 0 requires (A&, An;) be contained within A}, As, or
A%. Every (A&, An;) € Ay produces a AS,@ < 0. Recall that the value 6, is
the supremum of all the values of u < 0 at which there can be a negative jump
AS}“) with (A€, An) € Ay, and at v = 6, such a jump is not possible. The
obvious symmetric statement holds for 5. Hence, if u < 0 then S™ can have no
negative jumps if and only if II¢,(As) = 0, 6; < 63 and u € [y, 63]. Finally, if
e ,(A3) = II¢ y(A2) = 0 then 63 = 0, = 0 and so both of the above are satisfied
when u € [0, 64].
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Now suppose that at least one of the dot point conditions holds. We let
u € [0;, 0] for suitable 4, j, and prove that g(u) = dgw. First, note that for any
Borel set A

/ZNU—UVVJ("dZ) = / (x+y)N—uW,7],1 (ad(Ivy))
A {z+yeA}

Now

= [ - w)g (e
{y—uzxeA}

y / (y — u(e™ — 1)) Nega (- d(z,9))
{y—u(e-=—1)€A}

ds(u)

Yo U+ E(/ YN (s dy)— u/ xNw, (-, dx)
ly|>1

|z|>1
o / Z nkuVV,l('adZ)>
(0,00)

Yo — W+ E</ YNy (-, dy) — u/ (e™® — 1) Ng,1 (-, dz)
ly|=1

(—00,—In2)

-/ (1= (e = 1) Nega () )
J{y—u(e~*—1)>0}
1 —x
Fatt Ul 5ua§ + E(/ <y1|y,21 =l s vl en® =l
4 RZ

= lumeld = 1) 1{y—u(e-r—1)>0})Nﬁ,n,l(w d(z, y)))

Ly
T ar WA = §uoE

B ( / e y)Ng.,,,1<-,c1<x,y>>)
{y—u(e==-1)>0}n{(-1,1)x(-1,1)}

ereen
Vo AE W = §u05

il </ (uz +y) Newa (- d@’!/))) |
J{y—u(e=*—1)>0}n{z2+y2<1}

The first equality follows because the expected value of each of the Brownian

motion components of n and W is zero, as is the expected value of the com-
pensated small jump processes of n and W. The second equality follows us-
ing (2.11) and the method above for converting integrals. The third equality

follows using (2.12). The fourth equality follows since u is contained in suit-

able [6;,6;] which implies that S has no negative jumps, and correspondingly
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Nena ({y — u(e™ — 1) < 0}) = 0. The final equality follows by (1.11) and (1.12).
Thus we are done if we can exchange integration and expectation in the above
expression. Now if f(z,y) is a non-negative measurable function and A is a Borel

set in R? then the monotone convergence theorem implies that

(/fxnynl( d(z,y) ) /fwyﬂgn(d(my))

For general f(z,y), if [, f*(z,y)¢,(d(z,y)) or [, f~(z,y)e,(d(z, y)) is finite,
then the following is a well-defined member of the extended real numbers;

B ([ )Nt ata.0)
= [ F@ale @) - [ 1@l de)
i //\f(x,y)ng,q(d(m»y))~

However, using the fact that 0 < e — 1 + z < z? whenever |z| < 1, we have
[ ey Heldzy)
{z2+y%<1}
7 / —(ur + Y) Lz +y<oyllen(d(2, y))
{z2+y2<1}

- / (y Ol S e y)) 1{uz+y§0}H£»n(d($a Y))
{z?2+y%<1}

= [ —ue - 14 Dl lea(d(z )
{z2+y2<1}

< / |U|I21{uz+ySO}H€,n(d(xv.7/))
{z2+y?<1}

=

|u /R min {1, 2° } l¢(dz),

which is finite since II¢ is a Lévy measure. Note that the first inequality follows
from the fact that the choice of u satisfies Il¢ ,({y — u(e™* — 1) < 0}) = 0 whilst
e ,({y —u(e™® — 1) > 0}) > 0. O

Proof of Theorem 2.1. By Theorem 2.7, ¢(0) = 0 iff §(0) = 0 iff 5 is a subordina-
tor. Suppose 7 is not a subordinator and let ¢ > 0. Clearly 1 (c) = 0 if and only
if 6(¢) > 0. By Theorem 2.7, this is equivalent to the condition that there exists
0 < u < c such that 6(u) = u. Combining this fact with Theorem 2.9 proves
Theorem 2.1. 0
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Proof of Theorem 2.4. Define

00
Hi—te (2 = eé‘/ e *:=dn,.
t+

Note that since we are integrating over (f,00) there are no predictability
problems moving €% under the integral sign, as there would have been if we
were integrating over [t,o0). Thus U; = ftcf e~ (&-=&)dy,, from which it follows,
from Lévy properties, that U, is independent of .%; and that Uy, conditioned on
T, < oo is independent of Zr,.

Since (£,7n) is a Lévy process we know that for any u > 0 and t > 0

(éu—vﬁu) = (g(t—{—u ‘Et g Uit = r)t) —=/0) (gu 777u) (215)
Thus
U, = / 6*(55——5:)d7’ AL / —(f(:+u>——§t d7]t+u
S€E(t,00)

a3 / e~ Eru)-—E)q 77t+u A% Th / Eu_dﬁu
u€(0,00)

— D/ el ==dnse by (2. 16=% ") “(since Ay = 0);
u€(0,00)

In particular, for any Borel set A,
P (Uy, € AlF, < 00) = P(Z.. € A). (2.16)
Next note that if w € {T, < oo} then by definition of U,

2+ Zoo = z2+ 2y, +€‘€TZUTZ
= e (b7 (3 4+ Zp) + Ur)
= et (VTZ + UTZ)-

This implies that
B(Tp<iooje- i Zy <) =R siloeh Vel Sl (2.17)

Finally note that (Zs, < —z) C (T < 00) since the convergence from Z; to Z, is
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a.s convergence. Thus

Py = BT =002+ 7Z,<0)
= P(T,<oo,Vr, +Ur, <0) (by (2.17))
= E(P(T, < o0, Vg, + U, < 0|%1,))

= / P (Vr, + Ur, < 0|%r,) (w)P(dw).
T.<00

But if T, (w) < oo then

P(Vr, +Ur, < 0|%r1,) (w) = P (Vi(w)+Ur, <0|Zr,) (w)
= Pl < Vo (w)|T, < o0)
= PlZe < —Valw)) [(by(2.16})}.

The second last equality follows since Up, conditioned on 7T, < oo is independent

of Zr,. Thus we obtain the required formula from

6-2) - [ (Vi) ()P
AT R R
= E(G(—V1,)l1,<oo|T: < 00) P(T, < 00)
+ K (G(—VT:)ITZQO i oo) P(T\=ic0)
— BlO(-V )|T, < co) P(T, < 'co):
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Chapter 3

Certain ruin for the Generalised

Ornstein-Uhlenbeck process

3.1 Introduction

In Section 3.2, we state results on certain ruin for the GOU. Theorem 3.1 of
Paulsen [56] gives conditions for certain ruin for the GOU in the special case in
which € and 7 are independent. In Theorem 2.1 we showed that this theorem does
not hold for the general case. Theorems 3.1 and 3.3 of Section 3.2 give the required
generalization, stated in terms of the characteristic triplet of (§,7). Section 3.3
begins with results, in particular Proposition 3.6 and Theorem 3.9, which describe
the structure of the upper and lower bounds and the sets of values on which the
GOU is almost surely increasing, or decreasing. Section 3.3 then outlines the ruin
probability implications of these structural results, in particular with Theorems
3.13 and 3.14, which state conditions for certain ruin in terms of upper and lower
bound structure. Section 3.3 concludes with technical propositions used to prove
the major theorems. Section 3.4 contains proofs of the results in Section 3.2 and
3.3, and concludes with a number of examples which illustrate and extend certain
results. To avoid trivialities, assume throughout this chapter that neither £ nor

n are identically zero.

3.2 Conditions for Certain Ruin

In Chapter 2, Theorem 2.1, exact conditions were given on the characteristic
triplet of (¢, n) for the existence of u > 0 such that ¥ (u) = 0, and a precise value

was given for the value inf{u > 0 : ¢)(u) = 0}, where we use the convention that

09
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inf{@ N [0,00)} = oco. It is a consequence of Theorem 3.1 below, that when the
relevant assumptions are satisfied, there exists z > 0 such that 1(z) < 1 iff there
exists u > 0 such that ¢(u) = 0. Thus, even though they are not stated explictly,
Theorem 3.1 implies exact conditions on the characteristic triplet of (§,n) for
certain ruin.

Statements (1) and (2) of Theorem 3.1 are generalizations to the dependent
case of Paulsen’s Theorem 3.1, parts (a) and (b), respectively. Statement (1) of
Theorem 3.1 also removes Paulsen’s assumption of finite mean for £, and replaces
his moment conditions with the precise necessary and sufficient conditions for
stationarity of V. For statement (2) of Theorem 3.1, a finite mean assumption

and moment conditions remain necessary.
Theorem 3.1. Let = inf{u > 0: ¢(u) = 0}

1. Suppose limy . & — —o00 @5 and I ¢ geq < co. Thenl) < ahz) = 1 dff
0= 72 < o < c9

2. Suppose E(€;) =0, E (|&]**°) < oo for some § > 0 and there ezist p,q > 1
with 1/p + 1/q = 1 such that E (e77%) < oo and E (|m|9) < oo. If, for
all c € R, the degenerate case (1.30) does not hold, then 0 < 9(z) < 1 iff
0 <z < m < oo. If there exists c € R such that equation (1.30) holds, then
¥(z) < 1 Y4f ¥(z) = 0, which occurs iff 0 < c < z.

Remark 3.2. 1. In proving [56] Theorem 3.1 (b), Paulsen discretizes the
GOU at integer time points and then uses a recurrence result from [2].
His argument uses the inequality P(V; < 0|Vy = z) > 0 for all 2 > 0. When
E(&) = 0, this inequality is valid in the independent case if either & or 7
has a Brownian component, or can have negative jumps. However, even in
the independent case, this inequality can fail to hold when V; decreases due
to a deterministic drift. For example, let N and M be independent Poisson
processes with parameter 1 and define & := —t + N, and 7, := —t + M,.
Note that E(&) = 0 and Paulsen’s conditions are satisfied trivially. Let
T,=mf{t>0:V,<0Vop=2} Then V; > (z + 1)et— 1 := Vicond =4
and P(V{ < 0[Vj = z) = 0 whenever z > ¢! — 1. In proving statement
(2) of Theorem 3.1 we get around this difficulty by discretizing the GOU
at random times 7; and then showing that the stated conditions result in
P(Vy, <0|Vo = 2) >0 for all 2> 0 in the general case.

o

Assume that ¢ and 7 are independent and 7 is not a subordinator. In this

case, whenever £ drifts to —oo a.s. or £ oscillates between oo and —oo
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a.s., it is a consequence of Theorem 2.1 that ¢ (u) > 0 for all u > 0, and
hence m = oo. Thus, by statement (1) of Theorem 3.1, if lim; o, & = —o00
a.s. and I_g gen < 00, then 9(z) =1 for all 2 > 0. This result is a slight
strengthening of Paulsen’s Theorem 3.1 (a). Further, statement (2) simpli-
fies exactly to Paulsen’s Theorem 3.1 (b). Since £ and 7 are independent
the conditions in statement (2) simplify to E(£,) = 0, E (|&]*"°) < oo
E (e7%') < 0o and E(m;) < co. Since m = 00, 9(z) = 1 for all 2 > 0 when-
ever these conditions hold. The simplification of conditions occurs because
Holder’s inequality is not needed in the proof, and a simpler argument us-
ing independence suffices. When transferred onto the Lévy measure, these

conditions are equivalent to those in Paulsen’s Theorem 3.1 (b).

We now present Theorem 3.3, which is the generalization to the dependent
case of Paulsen’s Theorem 3.1, part (¢). In addition, Paulsen’s assumption of
finite mean for £ is removed, and his moment conditions are replaced with the
precise necessary and sufficient conditions for a.s. convergence of Z; to a finite
random variable Z,, as t — oo. A formula for the ruin probability in this situation
was given in Chapter 2, Theorem 2.4, however no conditions for certain ruin were
found. Theorem 3.3 gives exact conditions on the characteristic triplet of (£, )
for certain ruin. To state these conditions, we need to define the following terms.

Let 4; = {(z,y) e R2:z >0,y > 0}, and similarly, let Ay, A3 and A4 be
fihe lquadrants an swhich o> 40,90 < O i o < 0,50= 0} and {z = 0,y > 6}
respectively. For each 2 =1,2,3,4 and u € R let

Bt = {(z,y) € Ai:y—u(e®—1) > 0}
and define

aiils bt e 00 W (B = 0} g . ] sup fus 0 He (B > 0]
o R R T e SRR e R e

S inf =10 11 ,(BY) > 0} g . | sup o= 0B =)
e A A =0 h T e Pl e o

Theorem 3.3. Suppose lim; . & = 00 a.s. and I¢, < oo. Then (0) = 1 if and
only iff —n is a subordinator, or there exists z > 0 such that y(z) = 1. The latter
occurs if and only if Il (A1) = 0, 0, < 05, and there exists u € [0}, 05] such that

L=
E b, = 2’ > 3
i [ —u  u? ] i (3.1)
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and

1

glu) i= 3y + e — guo? - /{ D) <0 (62)
z24y

If there exists z > 0 such that 1(z) = 1 and, for all c € R, the equation (1.30)
does not hold, then the following hold:

1. If 6 = 0 then ¢(2) = 1 for all z < m := sup {u € [0),0)) : g(u) <0}, and
D=z <1k for alliz = T

2. If 6} # 0 then ¢(2) =1 for all z < m := —fﬁg—”, and 0 < ¥(z) < 1 for all

Zein.

If there exists z > 0 such that 1(z) = 1 and there exists c € R such that (1.30)
holds, then 0 < ¢ = 6, = 65, ¥(2) =1 for all z < ¢, and Y(z) =0 for all z = c.

Remark 3.4. 1. When I, (A;) = 0, 6} < 6, and u € [6},05] the function
g(u) is a well-defined member of the extended reals. The existence and

finiteness of g is fully analysed in point (1) of Remark 3.19.

2. Assume £ and 7 are independent. Then all jumps occur at the axes of
the sets A;, and o¢, = 0. With a little work, Theorem 3.3 simplifies to
the following statement: Suppose lim; .o & = 00 a.s. and I, < co. Then
¥(0) = 1 iff —n is a subordinator, or #(z) = 1 for some 2z > 0. The
latter occurs iff € and 7 are each of finite variation and have no positive
jumps, and g(z) < 0. Note that when (&, 7) is finite variation, g simplifies
to g(u) = d, + ude, as explained in equation (3.4). Since & drifts to oo
a.s., it must be that d¢ > 0. Thus, g(z) < 0 for some z > 0 iff d, < 0. In
particular, —7 is a subordinator.

3. In Paulsen [56], Theorem 3.1 (c), it is stated that when £ and 7 are inde-
pendent, E(&) > 0, and a set of moment conditions hold, then 9(z) = 1
iff & = at, 7y = Ot and B < —az for real constants o and 3. This state-
ment contradicts the independence version of Theorem 3.3 stated above,
and is false. A simple counterexample is (§,7); := (t,—t — ;) where N
is a Poisson process. Paulsen’s moment conditions are satisfied trivially.
However, Theorem 3.3 implies that 9(z) = 1 for all z < 1, and this is con-
firmed by elementary calculations. If we denote the jump times of NV; by
=15 de<d -t cNihen

Ny
= e (z—l—Ze‘Ti).
=
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Thus, if z = 1, then Vp, = —eT>* < 0 a.s. and so ¥(1) = 1.

The following proposition fully explains the ruin probability function for the
degenerate situation (1.30). It will be used to prove that Theorems 3.1 and 3.3

correctly allow for this case.

Proposition 3.5. Suppose that there exists ¢ € R such that V; = ¢*(z — ¢) + c.
If ¢ > 0 then ¢(z) = 0 for all z > ¢, and the following statements hold for all
i< c:

1. TE dnifis to —oc a.s. then 00 < lz) < 1;
2. If € oscillates between oo and —oo a.s. then ¥(z) = 1;
3. Ay & driftsiio 0o a.s. then alz) = 1.

If ¢ < 0 then the following statements hold for all z > 0 :
(4) If & drifts to —oo a.s. then ¥(z) = 1,
(5) If € oscillates between co and —oo a.s. then ¥(z) = 1,

(6 I £ sdrifisuto.oc, asathen 0i<b( 2) < L.

3.3 Upper and lower bounds and the ruin func-
tion

Define the lower bound function 6 for V' by

olz) .~ inf {u eR:P <%1>1(f)V, <ulVp= z) > ()}

and the upper bound function T by

Tzl =60 {u eR:P <sup\4 = 'u,‘VU — z) = ()} :
t>0
where we use the convention that inf{() "R} = oo and sup{@ "R} = —co. When
Vo = z, the probability that the sample paths V; will ever rise above T(z), or below
d(2), is zero. In particular, the ruin probability function 1 satisfies ¥)(z) = 0 iff
0(z) > 0. Define the sets L and U by

Lie=ue Red(u)—u} and U :={uecR: T(u) = u}.
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It will be a consequence of Proposition 3.17 that L and U must each be of the

form

0,{a},[a,b],[a,00), or (—o0,b] (3.3)

for some a,b € R. The fact that L and U are both connected sets is of great
importance.

This section contains a detailed analysis of 4, T, U and L and their relationship
with the ruin function. In particular, we are interested in which combinations of
L and U can exist. For each combination we are also interested in the possible
asymptotic behaviour of &, namely, whether £ drifts to oo a.s., £ drifts to —oo
a.s. or & oscillates between oo and —oo a.s. We are interested in the asymp-
totic behaviour of € because of its link with the conditions for convergence of Z,
and stationarity of V, as discussed in Section 1.4. As well as being of indepen-
dent interest, the results contained in this section are essential for the proofs of
Theorems 3.1 and 3.3.

We begin with some comments on ¢, and L. The analogues for T and U are
obvious through symmetry. Firstly, note that 6(z) < z for all z € R, whilst the
fact that V; is increasing in z for all ¢ > 0 implies that §(2;) < d(22) whenever
21 < zo. The following proposition explains the behaviour of the lower bound
function outside the set L, and states that L is precisely the set of starting parts
Vo = z for which almost all sample paths V; are increasing for some time period.
Recall that T, 5 := inf{t > 0: V;, € A}, and define L¢:= R\ L.

Proposition 3.6. The following statements hold for L and §, and the symmetric
statements hold for U and Y :

1. If z = sup L then 0(z) = supL;

2. If z < inf Li then®(z) = —oc;

I Borz e L PV, is imcreasine on 0/ <TG SRRl IRERE
4. Hor zve L 'PAV: s mereasing o= =6 WA 2

Recall that in Section 3.1 we assumed that neither £ nor 7 are identically zero
in order to avoid trivialities. The following proposition explains the nature of
these trivialities.

Proposition 3.7. 1. L=R iff §, =0 a.s. for allt > 0 and n is a subordina-
tor.
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I =R gff o= 0tasl foraalbt = 0 and —n-1s a subordinator.
J. L =1 = ifc = — 0 as. fortal]l t 30

For the rest of this chapter we again assume that neither £ nor 7 are identically
zero. The following proposition explains the degenerate situation described in
equation (1.30). Note that the deterministic case (§,n); := (a, )t for non-zero
constants o and (3 satisfies the conditions of this proposition for ¢ = —f/a.
Recall that a Borel set A C R is an absorbing set for V, if for all 0 < s < ¢,
P(V, € AlV; = z) =1 for all x € A. That is, whenever a sample path V; hits A,
it never leaves. The stochastic exponential will be denoted by e.

Proposition 3.8. The following are equivalent for ¢ # 0:
R0
o il —alel s
8. Vi=e(z—c)+cand Z, =c(e® —1);
4. {c} is an absorbing set;

5. Xep satisfies (3.1) for u=c, g, = 0 or is supported on the curve {(z,y) :
y —cle™® —1) =0}, and g(c) = 0;

Gies —clmich.

If the above conditions hold and ¢, # 0 then L = U = {c} and there exist
Lévy processes (€,m) for this situation such that € drifts to oo a.s., € drifts to
—o00 a.s. or § oscillates a.s. If the above conditions hold and ¥¢, = 0 then:

(a) U = (—o0,c] and L = [c,00) iff £ is a subordinator;
(b) L =(—00,c| and U = [c,00) iff —€ 1is a subordinator;

(c) L =U = {c} iff neither £ or —€ is a subordinator. There exist Lévy pro-
cesses (&,m) for this situation such that & drifts to oo a.s., € drifts to —oo

a.s. or & oscillates a.s.

Now we present a theorem which describes all possible combinations of L and

U and the associated asymptotic behaviour of £, for the case in which LNU = (.

Theorem 3.9. Suppose that LNU = 0. If $¢,, # 0 then only the following cases
can exist:
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L=

2. L ={a} for somea € R and U = 0;

3. U = {a} for some a € R and L = 0.

If 3¢, = 0 then only the following cases can exist:

(a) If L = 0 then U is of the form 0, {a}, [a,b], [a,00), or (—00,b] for some
a,b € R;

(b) If U = 0 then L is of the form §, {a}, [a,b], [a,00), or (—00,b] for some
a,b € R;

(c) If L # 0 and U # O then there ezist a < b such that L = (—o00,a] and
U =[b, 00}, on U= (=00, a] and L =[b,ce).

If U = (—o0,a] or L = [b,00) (or both with a < b) then & is a subordinator. If
L = (—o0,a] or U = [b,00) (or both) then —€ is a subordinator. For all of the
other combinations of L and U above, there exist Lévy processes (€,1) such that

£ dmfis lo,00 a:s., & drifts to —oo a.s. or £ oscillatestals:

An absorbent set A € R is a mazimal absorbing set if it is not properly
contained in any other absorbing set. Note that if A is a maximal absorbing set,
then R\ A contains no absorbing sets otherwise we could take the union of A
with the absorbing set, and this would be an absorbing set properly containing A.
The following corollary is immediate. For each statement (1)-(4), the claim that
the sets A are maximal absorbing follows from Proposition 3.6. The remaining
statements follow immediately from Theorem 3.9.

Corollary 3.10. There exist Lévy processes (€,1) with LNU = () such that the
associated GOU has the following mazimal absorbing sets A :

1. A=UU L, where U = (—00,a] and L = [b,00);
2N = U uwhere'lU'= [~ cola] andB =4

3. N =8 where I — [b ool and Uh— 1

4. A = (a,b) where L = (—00,a] and U = [b, o).

If (§,m) has LNU = 0 and does not have U and L satisfying one of (1)-(4), then
no absorbing sets exist.
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We examine two striking cases of L and U structure, and state exact condi-
tions on the characteristic triplet of (£,7) for such behaviour. Note that similar
conditions can be found for each of the other L and U structures stated in The-

orem 3.9, however, the statements are longer and unwieldy.

Proposition 3.11. Suppose LNU = (. Then U = (—o00,a] and L = [b,00) for
—o0 < a < b< oo iff (€ n) is of finite variation and the following hold:

o There is no Brownian component (3¢, = 0);
o The drift of £ is non-negative (d¢ > 0);
o The Lévy measure satisfies Il¢ ,(As) = Il ,(As) =0, 8] > —o00, and 0, < co.

If these conditions hold then & is a subordinator and, for any Vo = 2z € R,
Il o il = 00,08
Similarly L = (—o00,a] and U = [b,00) for —oo < a < b < oo iff (§,7) is of

finite variation and the following hold:
e There is no Brownian component (3¢, = 0);
e The drift of £ is non-positive (de < 0);
e The Lévy measure satisfies ¢ (A1) = Il¢ ,(A2) = 0, 8, < 0o and 65 > —oo.

If these conditions hold then —& is a subordinator, and V' is strictly stationary

and converges in distribution as t — oo to a random variable Vo, supported on

(a,b).

We now present a theorem describing the relationship between the sets L and
U, and the upper and lower bounds of the limit random variable Z, of Z; as

t — oo.

Theorem 3.12. Let a,b € R and suppose Z; — Z,, a.s. ast — oo, where Zy,
is a finite random variable. If, for all ¢ € R, the degenerate case (1.30) does not
hold, then a < sup U iff Z, < —a a.s., whilst b > inf L iff Z, > —b a.s. Further,
—supU =influ e R: Z, <uas} and —infL =supfu e R: Z, > u as.}.
Alternatively, if there ezists ¢ € R such that equation (1.30) holds, then Z,, = —c
a.5. apd ntll = supll = c.

The next theorem presents results on certain ruin which occur when L and U

are of a particular structure.
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Theorem 3.13. Suppose that LNU = (). Then the following statements hold:

1. IfsupU >0 and LN [0,sup U] = 0, then ¢(z) =1 for all z < sup U;

2. IfsupL >0 and UN[0,sup L] =0, then 0 < ¢(2) <1 for all0 < z < inf L.

IfsupL >0 and U N [0,sup L] # 0, then ¥(z) <1 for all z > supU.

Note that in statement (2) above, when sup L > 0 and LN U # (), Theorem

3.9 ensures that supU < inf L, and statement (1) above ensures that t(z) = 1
for all z < sup U. Also, by definition of L, ¥(z) = 0 whenever z > inf L.

We now present a major theorem which utilises Theorems 3.9, 3.12 and 3.13,

and is the major tool in proving Theorems 3.1 and 3.3. For the non-degenerate

case, and for (£,7n) which satisfies various asymptotic and stability criteria, this

theorem presents iff conditions for certain ruin, stated in terms of L and U struc-

ture. In particular, it completely describes the L and U structures for which

certain ruin occurs.

Theorem 3.14. Suppose LNU = .

1. Suppose limy . & — —00 @.5. and I geqn = 00. There exists = = () such

that ¥(z) < 1 ¢f LN [0,00) # 0. If this occurs then 0 < ¥(2) < T for all
0 <z<infL, ¥(z) =0 for all z > inf L, and one of the following must
hold:

(a) L =la,b] and U = (), where —co < a < b < oo, and b > 0;

(b) L= (—00,a] and U = [b,00) where 0 < a < b < oo.

. Suppose E(£,) =0, E (|§1|2+5) < 00 for some 6 > 0 and there exist p,q > 1

with 1/p+1/q =1 such that E (e 7') < oo and E (|m|?) < co. There eists
z 2 0 such that () < 1 iff LN[0,00) # . If this occurs then L = [a, b]
and U = (), where —0o < a < b < 00 and b > 0, in which case 0 < 9)(z) < 1
forall 0 < z-< avandai(z) = 05or alliz =ia;

. Suppose lim; .o & = 00 a.s. and I¢, < oo. There exists z > 0 such that

Y(z) = 1 iff UN[0,00) # 0. If this occurs then one of the following must
hold:

(c) U = [a,b] and L = 0, where —co < a < b < 0o and b > 0, in which
case P(z) =1 for all z < b and 0 < (2) < 1 for all z > b;
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(d) U = (—o0,a] and L = [b,00) where 0 < a < b < oo, in which case
Y =lorall =00 < 'U(z) < 1'forall a'< 2 <'band P(z) =0
forallz > b

Remark 3.15. The characteristic triplet conditions which equate to the iff result
in statement (3) above, are given in Theorem 3.3, and are obtained using the
forthcoming Proposition 3.20. Further, exact characteristic triplet conditions
for the structure U = (—o0,a] and L = [b,00) in case (d) above, are given in
Proposition 3.11.

3.3.1 Technical results on the upper and lower bounds

We present a series of important technical propositions on 6, L, T and U. As
well as being of independent interest, they are essential in proving the previously
stated theorems. The first proposition is obtained by combining and restating
parts of Proposition 2.6, Theorem 2.7 and Theorem 2.9, and no proof is given.
When put into this form the proposition completely describes the relationship
between the Lévy measure of (£,7) and the lower bound function §. We recall
some notation from Section 2.2. Let A, := {(z,y) € R?*:z >0,y > 0}, and
similarly, let A;, Az and A4 be the quadrants in which {z > 0,y < 0}, {z <
0,y < 0} and {z < 0,y > 0} respectively. For each i = 1,2, 3,4 and u € R define
At :={(z,y) € A;: y—u(e® — 1) < 0}. For u < 0 define
. { sup {u < 0: Il ,(AY) > 0} G { inf {u < 0: I, ,(A%) > 0}
—polt "I A Au)=0; ' 0i il Tl i Age\ Ag) =10,

and for u > 0 define

o . Jsw{u>0:Te, (A >0 [ inf{u>0: g, (A7) > 0}
0 if Mep(A2\ A1) =0, bl oo il e Ag YoAy) — 0.

Throughout, let W be the Lévy process such that e % = e(W),.
Proposition 3.16 (lower bound). The following statements are equivalent:
1. The lower bound 6(z) > —oo for some z € R;
2. There exists u € R such that §(u) = u;

3. There exists u € R such that the Lévy process n — uW is a subordinator.
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Statements (2) and (3) hold for a particular value u # 0 iff the following three
conditions are satisfied: (i) the Gaussian covariance matriz satisfies equation
(3.1); (ii) one of the following is true:

(a) U ,(As) =0, Iy (A2) #0, 0 < 04 and u € (62, 64];
(b) ¢ y(As) =0, Tg,(As) # 0, 61 < 03 and u € [61,05];
(c) Uepn(As) =g ,(A2) =0 and u € (61, 64];
and, (iii), in addition, u satisfies g(u) > 0 for the function g from equation (3.2).

From the definition of L it is an immediate corollary, firstly, that L = 0 iff
none of conditions (1)-(3) of Proposition 3.16 hold, and secondly, that 7 is a
subordinator iff 0 € L. The next proposition adds further information concerning
L. Most importantly, it shows that the set L is always connected, and gives

concrete values for the endpoints.

Proposition' 3. 17. '1f ag # 0 and any of conditions (1)-(3) of Proposition 3.16

hold, then L = {—%2}. If 0f = 0 and any of (1)-(3) hold, then o} = 0 and one
£

of the following holds:

e 1 is a subordinator and condition (ii) of Proposition 3.16 does not hold for
any u # 0, in which case L = {0};

o Condition (1) is satisfied for some u # 0, in which case there exists —oo <
a = b < oo .such thet I = la,b]:

In the latter case, if condition (a) of Proposition 3.16 holds then 0 < a =
max{fy,m;} and b = min{fy,my} for my = inf{u € R : g(u) > 0} and
mg = sup{u € R : g(u) > 0}. If (b) holds then a = max{f;,m;} and b =
min{fs, mo} < 0. If (c) holds then a = max{6;,m,} and b = min{fy, mo}.

Define L* to be the set of starting values on which the GOU has no negative

jumps, namely
BE=—{ueR ¥i>0P(AV. <0}, —u) =0

It is an immediate consequence of Proposition 3.6 that L C L*. The next proposi-
tion describes L*. In particular, it shows that the set L* is always connected, and
gives concrete values for the endpoints. It also shows that whenever V,_ > sup L*
and a negative jump AV, occurs, then the jump cannot be so negative as to cause
Vi <sup L*. Thus, L* acts as a barrier for negative jumps of V.
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Proposition 3.18. NIRE R N hen, foriang't > 0, V;"> 'sup L* ‘implies
Vi sup las:;

2. L* = {u € R : n — uV has no negative jumps};

3. L* # O iff condition (it) of Proposition 3.16 is satisfied for some u # 0, or

n has no negative jumps;

4. L* = {0} ff n has no negative jumps and condition (ii) does not hold for
any u # 0;

5. 1If condition (ii) of Proposition 3.16 holds for some u # 0 then L* = [0y, 0,],
[01, 03] or [64,04], corresponding to conditions (a), (b) or (c) of Proposition
9210

Remark 3.19. 1. If (¢, 7n) is an infinite variation Lévy process then, as noted
in Proposition 1.11, f{r2+y2<l} (&, v)| I, (d(z,y)) = oo. Thus, it may be the
case that for a particular u € R the integral f{zz+y2<l}(u$+y)H,;,,(d(m, 9l
and hence the function g(u) in (3.2), may not exist as a well-defined member
of the extended real numbers. However, it is a consequence of the proof of
Theorem 2.9, that if u € L* then g(u) is a well defined member of the
extended reals, and g(u) € [—o00,00). Under such conditions, it is also

shown that
il ({y —u(e*=1) < O}) = (0)

and so the domain of integration for the integral component of g can be
decreased to {2 +y? < 1} N{y —u(e ® —1) > 0}.

2. Note that g is a linear function on R iff the Lévy measure of (§,7) is of

finite variation, namely
[ i) < o
{z2+y2<1}

In this case the drift vector (de, d,) is finite, and we can write

1
gln)e = % — / yIl, (dy) + (75 - 502 — / aerd:z:))
(-1,1) (=)
It
d,, e ((lf o 50’;) . (34)

where the first equality follows by converting (¢,¥,) to (¢, ¥,) using equa-

tion (1.11) and the symmetric version for 7, and the second equality follows



2

CHAPTER 3. CERTAIN RUIN

by converting (ve,vy) to (de, d,) using equation (1.9). It will be a conse-
quence of the proof of Proposition 3.17, that if a,b € L and a # b then g is

a linear function on R.

. In Proposition 1.14 we stated exact conditions for a Lévy process to be a

subordinator. When u # 0 the Lévy measure conditions in Proposition 3.16
are exactly the requirements for  — uW to be a subordinator. Equation
(3.1) is equivalent to the condition o,_,w = 0. The requirement that one
of the conditions (a), (b) and (c¢) holds is equivalent to the requirement
that there exists u # 0 such that IT,_,w((—00,0)) = 0. Note that this
implies that L*\ {0} is precisely the set of all u # 0 such n — ul¥ has
no negative jumps. Finally, if u € L* then g(u) = d,—.w, and hence
condition (3.2) is equivalent to the requirement that 7 — uWW has positive
drift. The fact that  — uW is of finite variation actually follows from the
two conditions IT,_,w((—00,0)) = 0 and d,,—,w > 0. To see this, note that

when I, _,w((—00,0)) = 0, the equation (1.9) simplifies to
dnkuu/ = V=i — / .'EH,,_UW'(d.’I?)
(0,1)

and hence d,,_,w is a well-defined member of the extended reals regardless
of whether n— uW is finite variation. In particular, d,_,w € [—00, 00), and
dyaw = —00 itk f(0,1) zIl,_w(dz) = oo which occurs iff n — uW is infinite

variation.

Although the situation is symmetric, we explicitly state the parallel version

for U and Y, to Proposition 3.16. No proof is given. We state the parallel result

explicitly because some of the statements are not obvious, and we need to use

them for Theorem 3.3. Also, we will need to combine them with the statements

for L and ¢ in order to prove Theorem 3.9, 3.13 and 3.14. If we define

Ut =Juc R Nt >0 P(AV, =00 —ac G

then the symmetric versions of Proposition 3.17, Proposition 3.18 and Remark

3.19 also hold. We will need to use these results, however the parallels are obvious

in this case, so we do not state them explicitly.

Proposition 3.20 (upper bound). The following are equivalent:

1. The upper bound Y(z) < co for some z € R;
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2. There exists u € R such that T(u) = u;
3. There exists u € R such that the Lévy process —(n—uW) is a subordinator.

Statements (2) and (3) hold for a particular value u # 0 iff the following three
conditions are satisfied: (i) the Gaussian covariance matriz satisfies equation
(3.1); (ii) one of the following is true:

(a) Tlgn(Ar) = 0, Tlg,(As) # 0, 8 < 8 andu € [8;,03);
(b) Mep(As) =0, He (A1) #£0, 05 < 6] and u € [03,6];
(¢) Mg y(Ar) = gy (Ag) = 0 and u € [0, 65);
and, (iii), in addition, u satisfies g(u) < 0 for the function g from equation (3.2).

Remark 3.21. Symmetric statements to those for L and L* in Remark 3.19,
hold for U and U*. The following remarks relate to the combination of L and U,
and L* and U*.

1. Parallel to 1 and 2 of Remark 3.19, whenever u € U*, g(u) from (3.2) is a
well-defined member of the extended reals, g(u) € (—o0, 00|, and —g(u) =
d—(g—uw)- Since d_(m_uw) = —dp—uw, we know that if u € U* U L* then g(u)
is a well-defined member of the extended reals and g(u) = d,_,w.

2. fae L,be U and a # b then g is linear and (£, ) is finite variation. This
statement is proved easily using similar arguments to those in the proof of
Proposition 3.17.

We state a proposition, describing the possible combinations of L* and U*,
which will be essential for proving Theorem 3.9.

Proposition 3.22. The following statements hold for L*, and the symmetric
statements hold for U* :

1. 1L =B then IF* =0 or'U* =R:

o e [l rconie mo0 e g < b= oo, then U? =0 orll* = L' = {a} =

{b};

8. If L* = [b,00) for some b € R, then U* = @ or U* = (—o0,a] for some
—o0<a<b< oo
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4. If L* = (—00,a] for some a € R, then U* = 0 or U* = [b,00) for some
—o<a<b< .

We end this section with two useful lemmas. The first follows by considering
the definitions of §; and @} for i = 1,2,3,4, and no proof is given. It will be
used several times as a calculation tool. The second gives conditions on the
Lévy measure of & and 7 which ensure that the random variable supy<,<; |Z:| has

finite mean. It will be needed to prove statement (2) of Theorem 3.1.
Lemma 3.23. 1. TRIL (A ) =~ 0 then 0 =8 = {0

2. If g n(Ag) # 0 then 0 < 605 < 0o;

3. If Ugy(As) # 0 then 05 < 03 < 0;

4. If Mg (Ag) # 0 then 0 < 04 < 9,
Further:

(a) ¢ (A1) =0 iff 6 = —oc0 and 8] = 0;
(b) ¢ ,(Az2) =0 iff 62 = 0 and 6 = oo;
(c) Hep(As) =0 iff 63 = 0 and 63 = —oo;
(d) 1len(As) = 0 iff 04= oo and 0, = 0.

Lemma 3.24. Suppose there exist v > 0 and p,q > 1 with 1/p+ 1/q = 1 such
that E (e~ ™™{LrI#a) < oo and E (|m|™>17) < co. Then

t max{1,r}
E | sup /6_55‘(1773 <00, (33
o<t<1|Jo

Remark 3.25. Note that if £ and 7 are independent then the conditions of the
above lemma simplify to the requirement of r > 0 such that E (e~ m>{1r}€1) < o0
and E (]nll“‘ax{l*r}) = 60,

3.4 Proofs and Examples

The proofs of the results are presented in mathematically chronological order
rather than the order in which the statements of the results are presented. For
all the proofs, except the proof of Proposition 3.7, we assume that neither & nor

7 are identically zero.
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Proposition 3.18. We begin by proving statements (2) and (3). The proof of
statements (4) and (5) follows trivially from the proof of statements (2) and (3).
We finish by proving statement (1).

(2) It is a consequence of the statement of Proposition 2.6 that
A — ulWy) = Any — u (eﬁAE‘ - 1) !

Thus, equation (2.3) implies that whenever V;_ = u, a jump (A&, An,) causes a
negative jump AV, iff A(n, — ulW,) is negative. Hence L* is precisely the set of
all u such that 7, — uWW; has no negative jumps.

(3) By (2) above, L* # 0 iff n — ulW has no negative jumps for some u € R.
If w = 0, this occurs iff 1 has no negative jumps. If u # 0, it is noted in point (3)
of Remark 3.19, that this occurs iff u # 0 satisfies condition (ii) of Proposition
3.6,

(1) Suppose L* # 0. If 0 € L* then the statement is trivial. If 0 ¢ L* then
condition (ii) of Proposition 3.16 must hold for some u # 0. We can assume that
condition (a) of Proposition 3.16 holds. If condition (b) or (c) of Proposition
3.16 holds then the proof is similar. Since (a) holds, property (5) implies that
L* = [0y, 04]. Recall that equation (2.2) states

AV, = (e°% — 11V, '+ e“%An;,

and suppose V;_ > 6. It follows immediately from the definitions of 6, and Af,
and from equation (2.2), that there exists (z,y) € A} such that (e*—1)04+€%y >
0 and (e* — 1)V, + ey < 0. Thus,

Vi = Vio+ (&8 = D)V + ey
e 0 e e ey
‘/t,_ = (().'r = 1)(‘/;_ =7 91)

0s,

By

V

as required.
=

Proposition 3.17. Assume that ¢ # 0 and statements (1)-(3) of Proposition 3.16

hold for some u # 0. Then equation (3.1) must hold for u, which implies that

U= —2537'1, and hence is the unique non-zero number satisfying statements (1)-(3)
¢

of Proposition 3.16. Since —Z5 satisfies condition (2), L = {—25} by definition.
€ é
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Now assume that ¢ # 0 and statements (1)-(3) of Proposition 3.16 hold for
u = 0. By statement (2), 0 € L. By statement (3), n is a subordinator, and hence
072, = 0¢, = 0. Thus, by the above, no non-zero number can satisfy statements
(1)-(3), and so, L= {0} ={ =}

Now assume that o¢ = 0. Iéf statements (1)-(3) of Proposition 3.16 hold for
u = 0 then 7 is a subordinator by statement (3) and hence 0,2} = 0. Alternatively,
If statements (1)-(3) of Proposition 3.16 hold for some u # 0 then equation (3.1)
must hold for u, which implies that o2 = u*0¢, and so o7 = 0.

Now assume that a? = 0 and condition (ii) of Proposition 3.16 does not hold
for any u # 0. This immediately implies that L N (R \ {0}) = 0. If, further, 7 is
a subordinator, then 0 € L, and hence L = {0}.

Now assume that o = 0 and condition (ii) of Proposition 3.16 holds for some
u # 0. This occurs precisely when one of conditions (a), (b) or (c) of Proposition
3.16 holds, and equation (3.2) holds. It follows immediately that inf L = a
and sup L = b for the values of a and b given in the proposition statement. It
remains to prove that the set L is connected. Since L* is connected, this occurs
iff {u € R: g(u) > 0} is connected, which follows from the analysis below.

As noted in point (1) of Remark 3.19, whenever u € L* we know g(u) €
[—00,00). There are three possibilities for behaviour of g on L*. Firstly, it may
be that g(u) = —oo for all u € L*. Secondly there may exist v € L* such that
g(v) is finite and g(u) = —oo for all u € L* with u # v. We show that the only
other possibility is that ¢ is linear on R. Suppose there exists u;, uy, € L* with
uy # ug, such that g(u;) and g(us) are both finite. Then

ofm) =gt = (e~ got = [ aleyfate.) ) (=)

is finite, which implies that f{$2+y2<1} zlle,(d(z,y)) exists, and is finite. Since
g(uy) is finite, this implies that f{x2+y2<1} ylle ,(d(z,y)) exists and is finite. Thus,
g is a linear function on R. &

Proposition 3.6. It is a consequence of Proposition 3.16 that 6(5(z)) = §(z) and
0(2) = supfu.< z: 0fu)=wu}. (3.6)

Now the first statement of Proposition 3.6 follows immediately from (3.6). To
prove the second statement, assume z < inf L. Suppose —co < m := d(2). Since
0(z) < 2z, we have —oo < m < z < inf L. However, equation (3.6) implies that
m € L, which gives a contradiction. Hence 6(z) = —oo. The third and fourth
statements follow immediately from the definitions of § and L. 4
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Proposition 3.7. Assume L = R. This implies, using Proposition 3.16 and point
(2) of Remark 3.19, that 3¢, = 0 and g is linear. Further, it must be the case
that I ,(As) = H¢y(As) = 0 and L* = [6,604] = (—o0, 00). Now 6; = —oo iff
I, ((0, 00) % [0, 00)) whilst 8, = —oo iff Il , ((—00,0) % [0,00)) = 0. Hence &
can have no jumps and 7 can only have positive jumps. By Proposition 3.16,
g(u) > 0 on R. Since g(u) = d,, + udy, this implies that d¢ = 0 and d,, > 0, thus
proving one direction of the first claim. The converse is trivial since the GOU
simplifies to V; = z+n,. The proof of the second claim is similar. The third claim

follows immediately from the first two. O

Proposition 3.22. We prove statements (1), (2) and (3). The proof of statement
(4) is symmetrical to the proof of statement (3).

(1) Assume that L* = R. Then condition (c) of Proposition 3.16 must hold,
and so Il¢,(As) = g ,(A3) = 0, and L* = [y, 64). Since §; = —oo and 04 = oo,
it must be that II¢ ,(A; \ As) = 0 and I (A4 \ A1) = 0, respectively. Thus, if
¢, (A; N Ay) = 0 then II¢ ,(R?) = 0, in which case condition (c) of Proposition
3.20 holds, and U* = R. Alternatively, if II¢,(A; N A4) # 0 then 1 has positive
jumps and so 0 ¢ U*, and condition (ii) of Proposition 3.20 cannot hold. Hence
We=— 0

(2) Assume that L* = [a, b] for some —oco < a < b < co. There are four ways
in which this is possible, namely, when conditions (a), (b) or (c¢) of Proposition
3.16 hold, or when L* = {0}. For each of these four cases we show that U* = 0)
Rt =7t = g} — b}

Suppose first that condition (a) of Proposition 3.16 holds, and U* # ). The
case in which condition (b) holds and U* # 0, is symmetric. Propositions 3.16
and 3.18 imply that II¢,(A3) = 0, ¢, (A2) # 0, 02 < 0, and L* = [0, 04]. Since
64 < oo, it must be that II¢, (A4 \ A1) # 0. Since II¢,(A3) = 0, this implies
that —n is not a subordinator, and so 0 ¢ U*. Thus, since we have assumed
that U* # 0, it must be that condition (a) of Proposition 3.20 holds, and so
e (A4;) = 0, 8 < 6}, and U* = [0},6,]. However, statements (2) and (4) of
Lemma, 3.23 state that 6, < 6, and 6, < 6. Hence 0, = 6, = 0, = 0.

Now suppose that condition (c¢) of Proposition 3.16 holds. Then Il¢,(A2) =
¢ ,(A3) = 0, and L* = [#;,64]. Since 4 < oo and 6, > —oo it must be that
e, (As \ A1) # 0 and IIg,(A; \ As) # 0, respectively. Hence condition (ii)
of Proposition 3.20 cannot hold, and so U* \ {0} = (. Further, —n is not a
subordinator, and so U* = ().

Now suppose that L* = {0}, and U* # (). By statement (4) of Proposition 3.18,
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L* = {0} iff n has no negative jumps and at the same time Il¢, (A3 N A4) # 0
and I, (A N A;) # 0. Hence, condition (ii) of Proposition 3.20 fails to hold,
which implies U*\ {0} = 0. Thus, since we have assumed U* # 0, it must be that
Bt =5t =i {0}

(3) Assume that L* = [b,00) for some b € R and U* = (). We show that
U* = (—00, a] for some —0co < a < b < oo. By the symmetric version of statement
(2) of Proposition 3.22, it is immediate that U* # {0}.

Since L* = [b, 00), condition (a) or (c) of Proposition 3.16 must hold, with
64 = co. Thus, Il¢,(A3) = 0, which implies that ;3 = —oo. Also, since 84 = 00, it
must be that ¢, (As \ A;) = 0. Since U* # 0, it must be that II¢ (A1 N Ag) = 0,
and so Il¢,(A4) = 0. This implies that one of conditions (b) or (c) of Proposition
3.20 must hold, and so U* = (—o00, 6] or U* = (—00, 6] respectively. Now, if
condition (a) of Proposition 3.16 holds, then L* = [f,, 00). Note that Lemma 3.23
states that 6] < 0 < 6}, < 6,, and hence the result is proved for either form of U*.

Alternatively, if condition (c¢) of Proposition 3.16 holds, then L* = [6;, 00)
where 6; > —oo, which implies that II¢ ,(A; \ A4) # 0. Hence, condition (b) of
Proposition 3.20 must hold and U* = (—o0, 6}]. Lemma 3.23 states that 6] < 6,
and so we are done. O

Proposition 3.8. We prove the equivalence of statements (1)-(6).

(1)<(2) Assume LNU # @ and let 2,20 € LN U. We show 2, = 2z, # 0. By
Proposition 3.16, z € L iff n — zW is increasing and by Proposition 3.20,
z € U iff n — 2W is decreasing. Thus, n — ;W = n — W = 0, which
implies W = z,W. Since £ is not zero, W is not zero, and thus z; = z,.
Further, if z; = 2o = 0, then 7 must be both increasing and decreasing,
which requires that n be identically zero. Since we have rejected this case,
it must be that 2; = 25 # 0.

(2)(3) Suppose LN U = {c}. Then V; = ¢ for all ¢ > 0 whenever V; = ¢, which
implies €% (¢ + Z;) = ¢, which implies V;, = e (z — ¢) + ¢, as required.
Conversely, suppose V; = €% (z—c¢)+c. Clearly, ¢ € LNU and so LNU # 0,
which implies LN U = {c} by the above.

(2)=(4) By the definitions of 6 and 7T, it is clear that c is an absorbing point iff
d(c) = Y(c) = ¢, and the definitions of L and U imply that this occurs iff
ce L

(2)=(5) Assume LN U = {c} where ¢ # 0. Propositions 3.16 and Proposition
3.20 immediately imply that equation (3.1) is satisfied for v = ¢, and
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imply respectively that g(c) > 0 and g(c) < 0, thus giving g(c) = 0.
Finally, ‘since (2)"= (3), the equation Z; := fot e . el )
holds, which implies that e™%-An, = c(e™% —1) — ¢ (e™%- — 1) and so
AgfSigferosriagy .

(5)=(2) Assume that the conditions of statement (5) hold for ¢ # 0. We prove ¢ € L.
Since (3.1) is satisfied for u = ¢, and g(c) = 0 holds, we know that conditions
(i) and (iii) of Proposition 3.16 are respectively satisfied for u = ¢. Thus it
suffices to prove condition (ii) of Proposition 3.16 is satisfied for u = ¢, or
equivalently, show ¢ € L*. If Il¢ ,, = 0 then this is trivial since L* = R. Now
suppose that Il , is supported on the curve {(z,y) : y — c(e”® — 1) = 0}
for c € R. If ¢ > 0, Il ,(A2) # 0 and Il ,(A4) # 0, then 6, = 6, = ¢ and so
L* = {c}. If c > 0, II¢,(A2) = 0 and Il ,(A4) # O, then 6, = 0 and 04 = ¢,
and so L* = [0, ¢]. If ¢ > 0, Il ,(A2) # 0 and Il ,,(A4) = 0, then 6, = ¢ and
64 = 00, and so L* = [¢, 00). In each of these three cases, ¢ € L*. The proof

for ¢ < 0 is similar and we omit.

A symmetric argument proves that ¢ € U. Hence, ¢ € L N U which, by the

equivalence of statements (1) and (2), implies that LNU = {c}, as required.

(2)=(6) LNU = {c} iff n — cW = 0 where e % = ¢(W), which occurs iff e 5 =
e(n/c):.

Now assume that the above statements (1)-(6) hold. If 3¢, # 0 and both L
and U are non-empty, then Propositions 3.16 and 3.20 immediately imply that
I— U= el ipiliete c — —%’L For examples of Lévy processes (€,n) satisfying
statements (1)-(6) and such that & drifts to oo a.s., £ drifts to —oo a.s. or &
oscillates a.s., see Example 3.27.

If 3¢, = 0 then the statements (a), (b) and (c) follow immediately by exam-
ining the equation for V' in statement (3) above. For examples of Lévy processes
(&,n) satisfying statement (c) and such that £ drifts to oo a.s., £ drifts to —oo

a.s. or & oscillates a.s., see Example 3.28. O

Theorem 3.9. Assume that L N U = . Suppose, firstly, that X, # 0. We must
show that (&, n) exists such that (1), (2) or (3) occurs, and for each of these cases,
we must show that £ can satisfy each of the three asymptotic behaviours. For
case (1), this is obvious. Choosing (£, 7) such that ¢, does not satisfy equation
(3.1) implies that (&, n) fails both propositions, and so L = U = §, regardless

of the choice of (¥¢,%,) and II¢,,. Clearly, we can make suitable choices for these
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objects to obtain the desired asymptotic behaviour of £. For case (2), our existence
claims are proven by Example 3.26, and case (3) is symmetric. It follows from
Proposition 3.17, and the symmetric version for U, that whenever L and U are
non-zero, they are each equal to {—o¢,/0Z}. Hence, no cases, other than (1), (2)
and (3) of Theorem 3.9, can exist.

Now suppose that 3¢, = 0. We must show that (§,7) exists such that (a), (b)
or (c) occurs, and for each of these cases, we must show that & can satisty the
specified asymptotic behaviours. Examples 3.29 and 3.30 present (§,7) such that
L = 0, whilst U may be of form @, {a} or [a,b] for —oco < a < b < o0, and for
each of these combinations, it is shown that & can satisfy the three asymptotic
behaviours. In Example 3.31, L = @, U is of form [b,00) for b € R, and £
drifts to —oco a.s. In Example 3.33, L = 0, U is of form (—o0,a] for a € R,
and ¢ drifts to oo a.s. These four examples prove the existence claims for (a),
and the case (b) is symmetric. In Example 3.32, L = (—o0,a], U = [b,00) for
—00 < a < b < 0o and £ drifts to —oo a.s. In Example 3.34, U = (—o0, a],
L = [b,o0) for —0o0 < a < b < oo, and £ drifts to oo a.s."These two ‘examples
prove the existence claims for (c).

We now assume that ¥¢, =0, L# 0, U # 0 and LNU = . We prove that no
cases, other than those listed in (c¢), can exist. As noted in point (2) of Remark
3.21, it follows from our assumptions that (£, n) is finite variation and ¢ is linear.

Suppose that L = [a,b] for some —0o0 < a < b < oco. We show that this
causes a contradiction with our assumptions. If L* = [c,d] for some —oco <
e=a<b=<d<"o0, then point (2} of Propesitien 3.22 states that U/" — 1 or
e ="L = "{c} = 1d}. "Thus Il — Wer il ="l =lq! =25 hoih ok avinch
contradict our assumptions. Hence, it must be the case that L* = [¢, c0) for some
—0 < c<a,or L*=(—00,d| for some b < d < oo.

Thus, we suppose that L = [a,b] and L* = [¢,00) for some —co < ¢ < a <
b < oo. The case in which L* = (—o0,d] for some b < d < oo is symmetric.
We know g(u) = d,, + ude. If d¢ > 0 then it must be that b = oo, which we
have rejected. Hence d¢ < 0, and we must have b = —%;l > a. Thus, since U is
non-empty, LN U = (), and g(u) < 0 on U, it must be that U C [b, 00). However,
point (3) of Proposition 3.22 implies that U* N [b,00) = (). Hence U is empty,
and we have a contradiction. This completes the proof that L # [a, b] for some
— 60 = 1 = =< o

We now assume that L = [b,00) for b € R. We first prove that £ is a sub-
ordinator, which is another of the statements of Proposition 3.17 and point (2)

of Remark 3.19, imply respectively, that (£,7) has no Brownian component, and
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(€,m) is of finite variation. Thus, we can write g(u) = d, + ude. Proposition
3.16 implies that g(u) > 0 on [b,00) and hence d¢ > 0. Finally, it must be that
L* ='[e,0) for some —oco < ¢ < b. It is a consequence of the proofs of state-
ments (1) and (3) of Proposition 3.22, that £ has no negative jumps. Thus ¢ is a
subordinator.

Now, we assume that L = [b,00) for b € R and U = (. We prove that
Il = (—o0,4a] for some —oo <ia < b < oo. Note that L* = [e,00) for some
—00 < ¢ < b, so statement (3) of Proposition 3.22 implies that U* = (—o0, d] for
some —oo < d < c. Since g(u) = d, + ude and d¢ > 0, U = (—00, a] for some
—00 < a < d. Since we have assumed LNU = (), a < b as required.

If we assume that U = (—o0, al for a € R, it can be shown, using a method of
proof similar to the one above, that £ is a subordinator, and L = ) or L = [b, 00)
for some —0o < a < b < co. We omit the details.

Now, if we assume L = (—o0, a] for a € R, then symmetric proofs to the ones
above, show that —¢ is a subordinator, and U = @) or U = [b, 00) for —00 < a <
b < co. Similarly, if we assume U = [b, 00) for b € R, then symmetric proofs show
that —£ is a subordinator, and L=@ or L = (—o0,a] for —co <a <b<oo. O

Proposition 3.11. Assume L NU = §). In the above proof of Theorem 3.9, it was
shown that if L = [b,00) for b € R then (§,n) is of finite variation, ¢, = 0,
de > 0, ¢ n(A3) = 0, I, (A4 \ Ay) = 0, and 6, < oco. It is clear from Propositions
3.16 and 3.17 that the converse also holds. A similar proof shows that U =
(—00,a] for a € R iff (£, 7) is of finite variation, X, = 0, d¢ > 0, Il¢,(A4) = 0,
I, (A3 \ A3) = 0, and 6] > —oo. Combining these two sets of iff conditions
immediately gives iff conditions for the case in which U = (—o0, a] and L = [b, 00)
with —0o < a < b < 00. Since V is increasing on L and decreasing on U, and V
is a strong Markov process, it is clear that in this situation lim, .. |V;| = oo a.s.
for any Vo = z € R.

It follows by symmetric methods that L = (—o0,a] and U = [b, 00) for —oo <
a < b < oo iff the stated conditions in Proposition 3.11 hold. The only extra
proof needed is to show that in this situation, V' is strictly stationary. In [44] it
is shown that .

Vi =p ez + / efs-d K5,

Jo
By Theorem 2 in [22] it is shown that if lim; ., § = —oo and the integral condi-
tion I_¢ gem = 00 holds, then lfot efs-dK&"| —p 00 as t — oo.

As noted, if L = (—o0,a] and U = [b, 00) with —00 < @ < b < co then —§

is a subordinator and so lim;_,, & = —o0o a.s. Now if I_¢ yen = 0o then by the
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above, and since lim;_,,, €% = —oo a.s, it must be that |V;| —p oco. However
this is impossible since V' is increasing on L and decreasing on U. Thus, we must
have I_¢ yemn < 0o. Hence, by Theorem 2.1 in [44], V is strictly stationary and
converges in distribution to fooo eb-dKS" := V. Since V is increasing on L and
decreasing on U, and V' is a strong Markov process, it is clear that V has support
(a,b). O

Lemma 3.24. For ease of notation let k := max{1,r}. Assume there exists r > 0
and p,q > 1 with 1/p + 1/g = 1 such that E (e **%) < oo and E (|m|*) <
00.We prove the proposition firstly for the case in which E(7;) = 0. Since 7 is
a Lévy process this assumption implies that 7 is a cadlag martingale. Since £ is
cadlag , e~¢ is a locally bounded process and hence Z is a local martingale for IF
by Protter [60], p.171. Since Z is a local martingale and Z, = 0, the Burkholder-
Davis-Gundy inequalities in Lipster and Shiryaev [46], p.70 and p.75, ensure that
for our choices of p, ¢ and k there exists b > 0 such that

ot k . . k/2
E | sup /6_55‘(1775 = {/ efs‘dns,/ (3_55‘(17]SJ
0<t<1|Jo 0 Jo 1
1 k/2
— </ (3*25“‘(1[7],7]]3>
0
Sl k/2
= E </ sup e %d|[n, T]]S) >
Jo o0<t<1

= bE ( sup e [77’7l]lf/2>

0<t<1

1/p 1/q
<" (E ( sup e‘p’”f‘>) <E ([7},7}]‘{k/2))
0<t<1

where the second inequality follows from the fact that [n, 5], is increasing and the

final inequality follows for our choices of p and ¢ by Hélder’s inequality. (The
notation [-, -] denotes the quadratic variation process.) Since k > 1, ¢ > 1 the
Burkholder-Davis-Gundy inequalities state that there exists ¢ € R such that

qk/- 1 y
E(nnt™) < 22 (s )
: <t<1

8
=

< .Y

IN

where the second inequality holds by a formulation of Doob’s inequality as ex-

pressed in Sato [62], p.167 and the final inequality follows from our moment
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assumption.

Thus it suffices to prove E (supgc,<; € P¥t) < co. Setting ¥; = e~%/E(e™%),
a non-negative martingale, it follows by Doob’s maximal inequality, as expressed
in Shiryaev [1], p.765, that

—pk&t k pk E (e—Pké&
Gy ke ( p ) (e )k
o<t<1 (E(e%t))P pk—1 (E(e=6))P
which is finite by our moment assumption. By Sato [62], p.165, we know that
(E(e“ff))plc — (E(e‘ﬁl))pm. Letting ¢ := (E(e‘g‘))pk € (0,00) it is clear that

i e*pkgt
E | sup: e7? E‘) < max{l,c}FE < sup )

0<t<1 Btil &

which is finite by the above inequality. Hence the proposition is proved for the

case in which E(n;) = 0. Now we drop this restriction, noting that E (|n;|) < oo

)

by our moment assumptions. Thus, we have

t /
E(sup / e~ % dn, > E E<sup
o<t<1|Jo 0<t<1
E(( sup
0<t<1

|Emi| sup

0<t<1

t
/ e %-d(n, — sEm + sEn)
0

IN

ot
/ e S=d(n, — sEm)| +
0

t k
/ e %-ds ) ’
J 0

Since the integrator is a Lévy process with zero mean, we know

k
E | sup < 09
0<t<1

t J
/e‘gs‘ds / sup e *ds
0 0 0<v<l
rt
/ds
0

d
/ e %-d(ns — sEm)
0

k
=N
0<t<1

= 5 ( sup e % sup

Also note that

E | sup
0<t<1

)
|

0<v<1 0<t<1
= sup e o
0<v<1

which is finite since we showed above that E (supgc,<; e P*) < oo for p > 1.
Now the final result holds by Minkowski’s inequality. O
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Theorem 8.12. Assume Z; — Z,, a.s. as t — 00, where Z, is a finite random
variable. Suppose that for all ¢ € R, equation (1.30) does not hold. This implies
that Z., is continuous. As noted in Proposition 1.17, a necessary condition for the
convergence of Z;, is limy_,o, & = 00 a.s., which implies that e — oo a.s. Since
Z. is finite a.s., and e¥* — oo a.s., it is clear from the definition V; := e%(z + Z;),
that

P(}lrth —|Wii=2 = Pla =2 (3.7)

Now let a < supU. By definition of U, P(lim;_ V; = oo|Vp = a) = 0 which
implies, by equation (3.7), that Z,, < —a a.s., as required.

Conversely, let a > sup U. We prove P(Z,, > —a) > 0. Since we have assumed
that |Z,| < oo a.s., we can choose z > a such that P(Z,, > —z) > 0. Note that
Y(a) = oo and so there exists a fixed time T > 0 such that P(Vy > z|Vy = a) > 0.

Hence, using (3.7), the law of conditional probability and the Markov property,

P(Zeo > —a) = P(lim V, = oo|Vy = a)
> P(lim V; = co|Vp > 2) P(Vr 2 z|Vy = a)
= P(lim V; = oo|Vy > z)P(Vr 2 z|Vo = a)
> P(lim V; = oo|Vp = z)P(Vr = z(Vo = a)

which is greater than zero by (3.7) and the choice of x and 7. Thus we have
proved
a.Ssup Uil | Zi<i—a ais. (3.8)

Now we prove —supU = m where m := inf{u € R : Z,, < u a.s.}. By equation
(3.8), Zx < —supU and thus —supU > m. By assumption, Z., has no atoms
and so Zy, < m a.s. Thus, equation (3.8) implies that —m < sup U. The proofs
of the statements for L are symmetric.

Now we deal with the degenerate case. Assume that there exists ¢ € R such
that equation (1.30) holds, and assume that Z, — Z. a.s. as t — oo. By
equation (1.30) it is immediate that Zo, = —c a.s. Further, since £ drifts to oo
a.s. as t — oo, Proposition 3.8 implies that L = U = {c}, or U = (~o00, ¢] and

L = [¢,00). In both of these cases, inf L = supU = . O

Theorem 3.13. (1) Assume LNU =@, supU > 0 and L N [0, sup U]l =0, and let
0 < u < supU. We want to prove that ¢)(u) = 1. Note that there exists z > u
such that z € U, and so T(z) = 2. Since 9(u) > ¢(2), it suffices to prove that
gife)= L
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Since L N [0,sup U] = 0, we know (=) < 0, which implies that P,(inf;.oV; <
0) > 0. Thus, there exists a fixed time T' € R such that P,(infoc;<r Vi < 0) :=
m > 0. Let n € N and let A be the distribution of V,,; conditional on both V) = z
and infoci<p,r Vi > 0. Since Y(z) = z we know A < z a.s. Now

Pz< inf W20 (0w WZO) — P (0irtl<fTVt<O>
<t<

nT<t<(n+1)T 0<t<nT
2 ( it A =< O>
0<t<T

= m’

Vv

where the first equality follows from the Markov property and the inequality
follows from the fact that A < z and V; is increasing in z. Define

= PZ( inf Vt<0)

0<t<nT

for all n € N. By the law of total probability

Pl =P 4 P, ( inii b
nT<t<(n+1)T

inf V; > 0) (1- P

0<t<nT

and so P"t! > P™ 4 (1 — P")m where P! = m € (0,1). This implies that P* >
1 — (1 —m)™ which implies that lim,_, P" = 1, and hence P, (info<, V; <0) =1
by the continuity property of measures.

(2) Assume LNU = 0, supL > 0, and U N [0,sup L] = 0. We let z > 0 and
prove that ¥(2) < 1. If z > inf L then 1(z) = 0 by definition. Thus, it suffices to
Assinme O =

Suppose that (z) = 1. By assumption, YT(z) > inf L and so, by definition,
P(C) > 0 where C := {sup,5, V; > inf L}. By definition of L, lim; .o V; > inf L
acowimiall ne @ ek il = inflt =0 V. < 0L and T, o= ginflt o T 0
V; < Vp,_,} for integers n > 1. By assumption, 9(2) = 1 and so T; is finite
a.s. Further, the strong Markov property of V implies that {7} is a sequence of
stopping times increasing towards infinity as n — oo, and each T; is a.s. finite.
In particular, each T; is a.s. finite on C. However V, < 0 a.s. which contradicts
the fact that lim; ., V; > inf L a.s. on C. Hence 9(z) < 1. The proof of the case
in which U N [0,sup L] # 0 is almost identical, and we omit.

]

Theoremes LS drsmme (LY U = (), limy' 6 '="—00 a.8. and T gen < 00.

Suppose that L N [0,00) # 0. Since £ drifts to —oo a.s., Propositions 3.8 and
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3.9 imply that one of conditions (a) or (b) must hold. Further, it follows from
statement (2) of Proposition 3.13 and the definition of L, that 0 < ¢(z) < 1 for
all 0 < z <ind Land () =0 or jallz inf L.

Now suppose that L N [0,00) = @. We let z > 0 and prove that ¥(z) = 1.
Let N be a Poisson process with parameter A, let D; be an iid sequence of 1-
dimensional exponential random variables and let C; = 1 for all 7. Suppose that
N, D; and (£,n) are mutually independent and define the compound Poisson
process (X;,Y;) := SN (C;, D;). Now define a new Lévy process (£7,77) :=
(&, m:) + (X;,Y;), and denote the associated GOU by V°. For V°, denote the
upper and lower bound functions, the sets of upper and lower bounds, and the
ruin probability function by Y°, §°, U°, L°® and ° respectively.

Define T, := inf{t > 0 : V; < 0|V, = z}. Since sup L < 0, we know 6(z) < 0
and hence T, is finite a.s. Note that Vo = V¥ = z. Also, whenever V;_ > 0, every
jump A(X,Y); causes a non-negative jump AV;. Hence V; < V? as. ont < T;.
This implies that 1(z) > 1°(z). Thus it suffices to show that °(z) = 1. To do
this, we first need to prove that V' is strictly stationary:.

We show that A > 0 can be chosen small enough such that lim; . £ = —o0.
Since lim; o, & = —oo, either E(&;) € [—00,0) or E(&) does not exist. If
E(&) € [-00,0) then E(£) = E(&) + A and so we can choose A small enough
such that E(£5) < 0, which implies that lim; .., £ = —oo. If E(&;) does not exist
then we know E(£;) does not exist. We show that lim;_,, £ = —oo holds for any
A > 0. Note that € = & + N and , as noted in Section 1.2, JEL < oo since E(&)
does not exist and lim;_,» & = —00. Also note that Il,. = IT; and so Ago = Ag.
Since £ and N are independent we have ﬁzo = ﬁ: 4 ﬁ;\r,. Further ﬁ;(x) — (Ui
all z > 1. Hence J& = J¢ and so is finite. As noted in Section 1.2, this implies
that it Ser——ec.

We now show that (£°,7°) satisfies I_go geone < 00. Since (§,7) and (X,Y)
are independent, it is clear from the definitions in Section 1.4 that Kfo’"o =
Ky KLX’Y and T geo qo (y) = Hgen(y) + Mgxv(y). And, as above, Af€o = A*_Lé.
Hence

In(y) o=
I_ ’ Ry = ]_ : (23] + / _ H (G d e
EGT (J4¢ s <Ai-€(ln(y))> [ KX Y( y)|

By the choice of (X,Y) it is clear that K;°" has a finite expected value which
implies that f(mo) y|Txxv(dy)| < co. Hence I_¢ geome < 00. Thus V° is strictly
stationary.

For a Lebesgue set A define T} := inf{t > 0: V;* € A}. Note that 8% = —c0

and hence Proposition 3.20 implies that T°(u) = oo for all u € R, or equivalently,
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U° = . Also, § = 0, and so Proposition 3.16 implies that L° N (—o0,0) = 0,
whilst the fact that L N (0, 00) = @ clearly implies that L' N (0, 00) = 0.
These facts imply that, for all @ and v in R, P (T(‘ioo)a] ol — u) >0

and P (T[‘;yoo] = colVh — u) > (. Since D is an exponential random variable, it is
clear that V;° has a continuous density with respect to Lebesgue measure. Hence
P (TR < 00) > 0 for any set A with positive Lebesgue measure. This result,
and the fact that V° is strictly stationary, allows us to mimic the argument of
Theorem 3.1 (a) in Paulsen [56]. Let S be an independent standard exponential

variable and define the resolvent kernel
W2 N — / P,(V? e A d = P,(V3 € A).
0

Proposition 2.1 of [49] implies that V¢ is ¢-irreducible for the measure ¢ = AK.
Using the language of [49] p.495 and 496, it is clear that K has a continuous
nontrivial component for all z and hence is a T-process. Since V° is strictly
stationary it is clear that V° is non-evanescent, as defined in [49] p.494. Thus
Theorem 3.2 of [49] p.494 implies that V° is Harris recurrent, as defined in [49]
p490, which clearly implies that ¢°(z) = 1 as required.

(2) Assume that LNU = 0, E(&) = 0, there exists 6 > 0 such that
E (|&]?*°) < oo and there exist p, ¢ > 1 with 1/p+1/q = 1 such that E (e7P81) <
oo and E (|m|?) < oo.

Suppose that L N [0,00) # 0. Since £ oscillates a.s., Proposition 3.9 implies
that L = [a,b] and U = @) where —0o < a < b < 0o and b > 0. Hence, it follows
from statement (2) of Proposition 3.13 and the definition of L, that 0 < 1(z) <1
for all 0 < z < @ and ¥(z) = 0 for all z > a.

Now suppose that L N [0,00) = (). We let z > 0 and prove that ¢(z) = 1. We
know that P (inf;~o V; < 0|Vp = 2) > 0. However, it is possible that for some z >
0, P(Vi < 0|V = z) = 0. For example, this would happen if (¢, ) has no Brownian
component-and sup L* > 0. Let 0 = Ty < T} < T3 < ... be random times such
that T; — T;_, are iid with exponential distribution and parameter A. Since T; has
infinite support it is clear that sup L < 0 implies P (Vp, < 0|V = 2) > 0 for all

z > 0. Equation (1.1) implies that a.s.

"Tn—l '1;1
Vr, = el o tn (6&"1 <Z + / (%‘55‘(17}_;)) + €5 / (1_5“‘(171&
J0O I —rar

Thus, if we define A, := = Ta-1 B, := ¢ ff"iﬁ e~%-dn, and the stochastic

difference equation Y, := A,Y,,_; + B, with Yy := Vo = z then Y, = V. a.s. for
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all n € N. Note that the term e7» in B,, cannot be brought under the integral sign
because it is not predictable. Since a Lévy process has independent increments

it is clear that (A,, B,) is an independent sequence. Now,

T>
(A27 Bg) il <€ET2—€T1 ) o812 =8 eETl / e—Es—dns>

Ty +

T
- <€€T2_5T1,€£T2_€T1/ e_(gs"ETl)dﬁs>
5

e
— <e§Tz = ; e =8 / €_<£s_ 5 )d(ns = i ))

IhaE

1Ly
= D<€€T1’€ET1/ eﬁé(s_'r”_dnsfﬁ)
I
Ta
= (eETn’eETI/ €£S_d7}5> = 4 Bl
Jo

where the second equality holds because €71 is predictable with respect to the
integral, the fourth equality holds because a Lévy process has identically dis-
tributed increments and the fifth equality is obtained using a change of variables.
The argument for general n is identical, and thus (A,, B,) is an iid sequence.

Now Proposition 1.1 and Corollary 4.2 of [2] state that if P(A1z+B; = z) < 1
for all z € R, E(lIn A;) =0, A; # 1 and there exists § > 0 such that

E ((1 InA,| +In* [Bll)“) <o (3.9)

then the discrete stochastic process W has an invariant unbounded Radon mea-
sure p unique up to a constant factor such that the sample paths W, with
Wy = z, visit every open set of positive p-measure infinitely often with probabil-
ity 1, for every z € R. The first of these conditions follows from our assumption
that L N U = (), using Proposition 3.8. The second and third conditions fol-
low respectively from our assumptions that E(&) = 0, and & is not identically
zero. We will show later that our moment conditions on £ and 7 ensure equation
(3.9) holds. Note that the Babillot result implies that 1(2) = 1 if we can show

i ((—00,0)) > 0. However by the definition of an invariant measure,

o) = / Pz + By < 0)u(dz)

IV

/ BWa; < OV = z)p(d2).
JzeR

Thus if 4 ([0, 00)) > 0 then p ((—o00,0)) > 0 since P (Vg < 0|Vy = 2) > 0 for all

z > 0. And if g ([0,00)) = 0 then p((—00,0)) > 0 since u(R) > 0. Thus we are
done if we can prove equation (3.9).
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To do this, it suffices to assume T} = 1 and (A, By) := <e§1, el fol e‘gs—dns)
since we can choose the parameter A of the increments to be arbitrarily small.
Note that if z,y > 0 and o > 0 then there exists ¢; > 0 such that

(@5 y) e (o7 Hy)s (3.10)

Hence, to prove (3.9), it suffices to prove that E (|£[**°) < co and

1 240
E (<1n+ ’651/ e‘Es‘dnsD ) 00, (3.11)
0

Note that the former inequality is assumed as a condition. If z,y > 0 then
In*(zy) < In*(z) +In'(y), and hence, using (3.10), equation (3.11) holds if

1 246
E ((w{/ e*srdnsD ) Ll (3.12)
0

Note that whenever 0 < 6 < 1 and z > 0, then there exists ¢; > 0 such that

(In* z)2% < cp2?. Without loss of generality, we can assume that 0 < < 1, and

hence (3.12) holds if £ <‘ fol e~ &~ dn,

5
) < o0. However, with our assumptions

on p and ¢, this follows from Lemma 3.24.

(3} Assume that lim, ., & = oo a.s. and I, < oo. Suppose that.—oco =
supU < z. Assume, for the sake of contradiction, that ¥(z) = 1. Theorem 3.12
implies that P(C) > 0 where C := {Zy > —z}. Since lim;_,o, & = 00, we know
that lim;_,o, V; = oo a.s. on C. Now, the same strong Markov property argument
used in the proof of statement (2) of Theorem 3.13, gives a contradiction. Hence
W) < 1.

Now suppose UN[0, 00) # 0. Since & drifts to oo a.s., Theorem 3.9 implies that
either U = [a,b] and L = ) where —co < 2 < b< oo and b >0, or U = (—00, a
and L = [b,00) for some 0 < a < b < co. In both of these cases, statement (1) of
Theorem 3.13 implies that ¢(z) = 1 for all z < sup U. Using the definition of L,
and the above result, it is clear that 0 < ¢(z) < 1 for all supU < z < inf L and
abil 2} =) for all 2 > sup O

Proposition 3.5. Assume that V; = €% (z — ¢) + ¢. By definition of L, if ¢ > 0 then
(2} ="0iforialldzit el

Let 0 <'z'<'c"If £ drifts to —oo a's. then lim; . V; = ¢ a.s. Thus, the strong
Markov property of V' implies that ¢(z) < 1, using a proof similar to that used
for statement (2) of Theorem 3.13. If £ oscillates a.s. then —oo = liminf, .o V; <
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limsup, ., V; = ¢, and so 9(z) = 1. If £ drifts to co a.s. then lim; ., V3 = —00
a.s. which implies 9(z) = 1.

Let ¢ < 0 < z. If £ drifts to —oo a.s. then lim;_,o, V; = c a.s. and so 9(z) = 1.
If £ oscillates a.s. then ¢ = liminf; ., V; < limsup,_,., V; = 00, and so 9(z) = 1.
If £ drifts to oo a.s. then lim; .o V; = 0o a.s. which implies 9(z) < 1, using a

strong Markov property argument. O

Theorem 3.1. Suppose that for all ¢ € R the degenerate case (1.30) does not hold.
Then, by Proposition 3.8, LN U = . It follows immediately from Theorem 3.14
that 0 < ¥(z) < 1 iff 0 < 2 < m < oo whenever the assumptions for statement
(1), or statement (2), of Theorem 3.1 are satisfied. Now suppose that there
exists ¢ € R such that equation (1.30) holds. Then it follows immediately from
Proposition 3.5 that 0 < ¥(2) < 1 iff 0 < z < m < oo whenever the assumptions
for statement (1), or statement (2), of Theorem 3.1 are satisfied. In both these

situations, m = c. O

Theorem 3.3. Assume that lim; . & = 0o a.s. and I¢, < oo. Assume that for all
¢ € R the degenerate equation (1.30) does not hold, or equivalently, LN U = 0.

Theorem 3.3 claims that ¢(0) = 1 iff —7 is a subordinator, or there exists
z > 0 such that ¢(z) = 1. This claim follows easily by combining two known
results: (z) = 1 iff supU > 0 and z < sup U, which is implied by statement
(3) of Theorem 3.13; secondly, 0 € U iff —7 is a subordinator, which is stated in
Proposition 3.20.

Theorem 3.3 also states conditions on the characteristic triplet of (£,7) and
claims these are equivalent to the fact that there exists z > 0 such that ¢ (z) = 1.
However, using statement (3) of Theorem 3.13, we know there exists z > 0 such
that ¢(z) = 1 iff supU > 0. And Proposition 3.20 gives iff conditions on the
characteristic triplet of (£,n) for the case supU > 0 to occur. These conditions
are precisely the conditions stated in Theorem 3.3.

Finally, statements (1) and (2) of Theorem 3.3 contain values for sup{z > 0 :
Y(z) = 1}. However, these are an immediate consequence of the unstated parallel
version of Proposition 3.17 which gives exact values for the endpoints of U.

Now, assume that there exists ¢ € R such that the degenerate equation (1.30)
holds, and L = U = {c}. Since £ drifts to oo a.s., Proposition 3.8 implies that
supU = c. Thus, Proposition 3.5 implies that i(z) = 1 iff supU > 0 and 2z <
sup U. Theorem 3.3 is proved for the degenerate case by combining this statement
with Proposition 3.20 and the parallel version of Proposition 3.17, in an identical

manner to the above. The only difference is that the set {z > 0: ¢ (z) = 1} does
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not contain its supremum in the degenerate case, since sup{z > 0: ¢(z) = 1} =

U = L, and is an absorbing point. [

3.4.1 Examples

Propositions 3.8, 3.9 and 3.11 make claims that Lévy processes (£, 7) exist which
satisfy particular combinations of L and U, and particular asymptotic behaviour
for £. In this subsection we present examples which prove these claims. We
use the simplest Lévy processes possible. Thus, the Lévy measures will always
be finite activity, namely II¢,(R?) < oco. Hence, we can always write (£,7) in
the form (&,n); = (de,dy)t + (Bee, Bys) + va:tl Y; where (B¢, By:) is a two-
dimensional Brownian motion with covariance matrix ¢ ,, N is a Poisson process
with parameter A and {Y;}°, is an iid sequence of two dimensional random
variables with common distribution Y.

Examples with Brownian component The first example is of a Lévy pro-
cess (§,n) for which L = {a}, U = (). The second example is of a Lévy process
for which L = U = {a}. For both examples we show how variables can be chosen

so that £ drifts to oo a.s., £ drifts to —oo a.s. or & oscillates a.s.

Example 3.26. Let (§,7): 1= (d¢,2)t + (B, By) + Z;N:tl Y, where B is a one-
dimensional Brownian motion with variance 1, and P(Y = (10,10)) = 1/2 and
P(Y = (-10,10)) = 1/2. The covariance matrix equation (3.1) is satisfied for
u = —1. Condition (ii) of Proposition 3.16 is satisfied for u = —1, whilst condition
(ii) of Proposition 3.20 is not satisfied. By equation (3.4), g(—1) = 3/2 —d¢, and
so choosing d¢ < 3/2 implies that L = {—1} and U = 0. However, E(&) = dg, so
0= d:.'<'3/2'then ¢ drifts'to'oco a.s., if d¢ < 0 then ¢ drifts to —o0 a.s., and if
d¢ = 0 then £ oscillates a.s.

Example 3.27. Let (§,n); := (de, dy)t + (B, —B:). Equation (3.1) is satisfied for
u = 1, whilst condition (ii) of Proposition 3.16 and condition (ii) of Proposition
3.20 are satisfied trivially. Equation (3.4) implies g(1) = d, + d¢ — 1/2. Thus,
choosing d¢ = 1/2—d,, implies that L = U = {1}. Note E(&;) = d¢, soif d;, < 1/2
ihen ¢ driftsto'oo'as yif'd, >"1/2 then ¢ drifts'to —oo a.s., and if d, ='1/2 then

& oscillates a.s.

Examples with no Brownian component We now present seven examples
of Lévy processes (£, 7) with no Brownian component. In Example 3.28, L = U =
{a} and we indicate how the parameters can be changed in order to obtain each

of the three asymptotic behaviours for £&. In Examples 3.29 and 3.30, L = 0,
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whilst U may be of form @, {a} or [a,b] for —oco < a < b < co. We indicate how
parameters can be changed in order to obtain these different sets, and for each
set, to obtain the three possible asymptotic behaviours for . In Example 3.31,
L = () whilst U is of form [b, 00) for b € R. In Example 3.32, L = (—o0,a] and

= [b,00) for —00 < a < b < co. For both these examples we show that £ drifts
to —oo a.s. In Example 3.33, L = ) whilst U is of form (—o0,a] for a € R. In
Example 3.34, U = (—o0,a] and L = [b,00) for —o0 < a < b < oo. For both

these examples we show that £ drifts to oo a.s.

Example 3.28. Let (£,7n); := (d¢, d,)t + Efvz‘l ¥ where (Y. —[(3,2e ¢ = 20—
1/2 and P(Y = (—3,2¢3—2)) = 1/2. Then 6 = 0, = 6, = 0, = 2 and L* =
U* = {2}. Note that g(u) = d, + ude, so choosing d, = —2d; implies that
g(2) = 0 and hence L = U = {2}. Since E(& ) = de, choosing d¢ > 0, d¢ < 0, and
de = 0, implies that & drifts to oo a.s., § drifts to —oo a.s. and & oscillates a.s.,

respectively.

Example 3.29. Let (§,n); := (d¢, dy)t + ZN‘ Y; where P(¥ = (4,~2)) = 1/3
AndRP (¥ (=230 =11 /3 and P I=1(--2 1)) *="-1/3) Then "= since
I, (As) and I¢,(As) are both non-zero, whilst U* = [0},0}] = [, =] =
[0.2,2]. Now U = {u € U* : g(u) < 0} and g simplifies to g(u) = d,, + ude. Note
that E(& ) =de.

Choosing d¢ = 0 and d,, > 0 implies that U = () and £ oscillates a.s. Choosing
de > 0 and d,, > —0}d, implies that U = ) and £ drifts to oo a.s. Choosing d¢ < 0
and d,, > —04d, implies that U = () and £ drifts to —oo a.s.

Choosing d¢ = 0 and d,, < 0 implies that U = U* = [0.2,2] and & oscillates
a.s. Choosing d¢ > 0 and d,, < —04d, implies that U = U* = [0.2,2] and & drifts
to oo a.s. Choosing d¢ < 0 and d,, < —6d, implies that U = U* = [0.2,2] and £
drifts to —oo a.s.

Choosing d¢ > 0 and d, = —6d, implies that U = {6} = {0.2} and & drifts
to oo a.s. Choosing d; < 0 and d,, = —63d; implies that U = {6,} = {2} and ¢
drifts to —o0 a.s.

Note that for Example 3.33, no adjustment of d¢ and d,, can result in U = {a}

with £ oscillating a.s. We now present a different example with this behaviour.

Example 3.30. Let (¢,7m), := (0,—2)t + SN V; where P(Y = (2,e~2 — 10—
1/8 and; P{Y = (x1e 1)) =1 /3 and B3 =t 1420 = (3 SThenil =0
Oy = 0y = 04 = 0) = 1, and U* = {1}. Since g simplifies to g(u) = —2 for all
u € R we obtain U = {1}. Since E(&;) = 0, £ oscillates a.s.
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Example 3.31. Let (£,5); = (0, —2)t + Y= ¥, where P(¥ = (—1,2)) = 1/3
sudE e — o g Sand PV —'(0,—5)) = 1/3. Then L* =0 whilst
el 0] — [e swo0)i=111.2, oo) Since g(u) = —2 for all u € R we obtain
L —Wand IF — [T Biace B(6) — —1.5, tMdrifts to —oo d.s.

Example 3.32. Let (€,7); := (d¢, dy)t + 00 Y, whele B ==L — 1 2
and P(Y (=2,—3)) = 1/2. Then L* = [#1,03] = (—00, %] = (—o0, —0.5] and

= [0),05] = [-%:,00) = [1.2,00). Note that g simpliﬁes to g(u) = d, + ude
and hence choosing d¢ < 0 and d,, = 0 gives L = L* and U = U*. Since E(§,) =

S 1T5-Fe ¢ drifts 10— 00 8.5,

Example 3.33. Let (§,7): := Zf\il e here P = 52)) = 1/ 8end P —
(e e Onnd 20— 0 5)) = 11 /8- Then I* = whilst £* = [00.0/] —
(—00, =] = (—o00,—12.6]. Note that g(u) = O for all w € R so L = L* and
Ui=1" Since'E(f) = 1, & drifts to 00 a.s.

Example 3.34. Let (¢,7); := ZN’ V. where P(Y = (1.2)) ="1/2 and P(Y =
(1,8)) = 1/2. Then L* = [0;,64] = [=%=,00) = [-3.2,00) and U* = [63,6;] =
(=00, =£—] = (—00,—12.6]. Note that g(u) = 0 for all u € R so L = L* and
U — U Since B(&) =1, € drifts to oo a.s.
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Appendix A

Direct method for no ruin when

(&,7n) is Compound Poisson with
drift

We recall equation (2.2), and note another useful formulation for the jump of the

GOU.

AV, = (e*% —1)V;_ + & An, (A1)
— Slpatei(la L A A (A.2)

We make an important note. By the definition of the sets A in (2.1) and
the values 6;, we know the following; if V;_ > 6, then it is possible for a negative
jump AV, to occur, resulting from (A&, An) € AX"'. However, such a jump
cannot result in V; < 6. To see this, let V,_ > 6, and observe that we can choose
(z,y) € A‘Y’“ such that (e® — 1)0; + ey > 0 and (e* — 1)V + e”y < 0. Thus,

Ve Joiat el = 1)V, 4 ey

VateRc: S e g ael oWy ety
Vie + (e = 1)(V;_ — 64)

0

Nl

V

Now we let n) be a two dimensional compound Poisson process with de-
)

terministic drift component (d¢t, d,t) where d¢ # 0. Thus, we can write

Ny
(€)= (de dn)t + > _(Ci, D)
=l

95
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for some iid sequence of two dimensional random vectors (C;, D;) with common
distribution (C, D). We calculate a formula for the associated GOU. The jumps
(Ag;, An;) occur at the jump times 0 < Ry < Ry < ... of N;. Thus if ¢ < Ry,

t
o (z+/ e‘disd(dns))
0

and hence
d 1
VR1 = Z+——n el —(—TI—{-AVRI.
de de
We thus obtain the following recursive formula for V; when R; <t < R; + 1;
d
Vi — <VRi + ﬁ) grelt iRl el (A.3)
dg dg
By expanding this formula we obtain a general formula for V; when R; <1t < Ry
V= G Al AT e R R e (A.4)
where - -
= D) edet — T, .
f@) (z+d€>e g (A.5)

In the case that d¢ = 0 a simpler set of calculations gives us the formula
VtZZ-I-dnt-f-AVRI—F...-FAVRI. (A6)

The following theorem is an analogue of Theorem 2.1 for the compound Poisson
case with drift. It will be proved using the comments above. It has been noted
in point 2 of Remark 2.2 that this theorem follows from Theorem 2.1 in the finite

variation case.

Theorem A.1. Let (§,7n) be a two dimensional compound Poisson process with
drift where n is not a subordinator, and suppose the associated GOU satisfies
Vo = z 2 0. Then ¥(z) = 0 for large enough z if and only if Il¢,(A3) = 0,
0y < 04, and at least one of the following is true:

(a)'d:'=0,"and d, =0;

(b) d¢ > 0 and —(j—g < 0y;

(c) dy >0, and de < 0, such that —%’E’— > 0.



o

IF (b)) viivolds, “ther ap(2) = O for all 2= max{%,—%?} and ¥(z) > 0 for all
z < max{6s, —%’;} If (a) or (c) holds, then ¥(z) = 0 for all z > 6 and (z) >0
Jortall’s <'0,.

Before proving this theorem, we define some terms and prove a lemma which

will be needed for the proof. For a real number ¢ > 0 define the processes

il P cRee R B ee Bete P R, S <R (A.7)
Ui := f(t) — c¥y (A.8)

and
Uy = z+d,t — cN;. (A.9)

where f is from (A.5) and U’ is defined for d¢ # 0. Note the similarity between
the definitions U’ and U” and the equations for V in (A.4) and (A.6) respectively.
For a real a > 0 define

o A U i gl U (A.10)

and
R =intl 0000 =0k (A.11)

Yemma A.2. For anyti> 0landie >0, P(R)<it)= 0land P(R) < t) > 0.

Erogy ! Note first that PIH =1} > P(UY i< @) = P, > {2 Fd.t)/c) > 0 We
now show that for all £ > 0 and x > 0 there exists n > 0 such that P(Y; > z|N, =
=T i 0'then e%(t=F:) > 1 for all t > 0 and all i. Hence

B N =)= Pln> zj=1
whenever n > z. If d¢ < 0 then e%(!=f) > e%! > 0 all ¢ > 0 and all i. Hence
B —n - Pline o] — 1

whenever n > ze~%!. Using this fact, there exists n > 0 such that the following

1s true;

iR i =P, < 0) — P<Yc>@>

SR (Yt = @th = n) PLN: = n)
= N m 0
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Proof of Theorem A.1. Suppose Il¢,(A3) = 0 and 0, < 0. If V,_ € [0,,64] then
it is an immediate consequence of the definition of ¢, and 64 that there can be
no negative jump AV; . If V;_ € (0,4, 00) there can be a negative jump AV; but
it can only be caused by (A&, An,) € AZ/“ and, as we have noted above, such
a jump cannot be sufficiently negative to result in V; < 6,. Thus when V;_ > 6,
we have shown V; > #,. We now show that assuming (a), (b) or (c) implies zero
probability of ruin when z is above the stated thresholds. The fact that there is
positive probability of ruin when z is below the stated thresholds, will be proved

later.

We deal with (a) first. If d¢ = 0 then equation (A.6) shows that V; has a
deterministic linear drift between its jumps, given by z +d,t. If d,, = 0 then V; is
constant between its jumps, and if d,, > 0 then V; is strictly increasing. In both
of these cases, starting the process with z > 6, means that V; can never drop

below 6, as a result of drift or jumps, and hence 1 (z) = 0.

Note that if d¢ # 0 the recursive equation (A.3) shows that V; drifts expo-
nentially between jumps, that is, for ¢ € [R;, R;y1). The direction of this drift

depends on two factors; the sign of Vg, + %’é, and the sign of d.

Now we deal with (b). Suppose d¢ > 0 such that —Z—Z = @4 Sinee de> 0,

it t Z—;’ > 0 then V; will drift upwards towards oo on t € [R;, R;y1), whilst

dn

if Vg, + i 0 then V; remains constant on t € [R;, Ri11). If Vg, > 6, then a
negative jump AVg, < 0 may occur, however, since —Z—? < 6, the jump cannot
result in Vg, < —fl—:, and so the subsequent drift on ¢ € [R;, R;;;) is non-negative.
Hence, if we start the process with z > max{6,, —Z—;’L} then V; can never drop

below max{6s, Z—E’} and so ¢(z) = 0.

Now we deal with (c). Suppose d, > 0 and d¢ < 0 such that —% > ¢, If
i Zr_; then V; will drift upwards on ¢t € [R;, R;1,) approaching the asymptote
_% If V.. > —Z—Z then V; will drift downwards on t € [R;, R;y1) approaching
—Z—;’. If Ve —j—z then V; will remain constant on t € [R;, R;;1). Thus if we start

with z > 6, then V; can never move below 6, during a drift interval. And from
our jump analysis, we know that the only possible negative jumps will occur when

Vi > 04 and such jumps cannot result in V; < 6. Thus if z > 6, then 1(z) = 0.
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To prove the sufficiency part of the theorem, it suffices to show that if » is not
a subordinator then 1 (z) > 0 for all z > 0 if any one of the following conditions
holds:

1. I pn(As) # 0;

D0 <105

3. de = Uand d, < 0;

4. d¢ > 0, and ——j—;’ 0

5. dy >0, dg < 0 and —5 < 6.

We first show that it is possible to reduce the problem. Suppose that I' is a closed
square in R?\ {0} such that II¢,(T") > 0. We can write (§,7) as the sum of drift

terms and two independent compound Poisson processes

(étv TIt) = (dftv dl]t) = (623 7]2) e ( ;Ia 7/2/)

where (¢/,7) has jumps in T and (¢, 7") has jumps in R*\T. The jumps for these
processes occur at the the jump times of independent Poisson processes which we
denote by M’ and M" respectively. Define

ot
= edet+é: (2 } / t"(df”g:‘*)d(dns + 7];))
0

and define the stopping times T, := inf{t > 0: V; < 0} and S, := inf{t > 0 :
V; < 0}. Suppose we have proven that P(S, <t) > 0 for a particular ¢ > 0. Then

Pl )

\Y
=
e

= P(S, <t)P(M, =0)

which ensures that ¥(z) := P(T, < o0) > 0.

Proof of point 1 We prove that if when 7 is not a subordinator then
Il ,(A3) > 0 implies that ¢(z) > 0 for all z and for all values of d¢ and d,.

This will be split into two cases. For case 1, we assume that

¢, ((—00,0] X (—00,0)) > 0,
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which means 7 can have negative jumps. For case 2, we assume that
Iy ((—00,0] x (=00,0)) =0,

and II¢, ((—00,0] x {0}) > 0, which means that 7 cannot have negative jumps
and £ can have negative jumps without 7 jumping at the same time. Note that
this implies that 84 = 0. Since 7 is not a subordinator we must have d,, < 0. Thus,
if d¢ < 0 then the result will follow from point 3 and if d¢ > 0 then the result will
follow from point 4. So we can leave this case and return to case 1.

Suppose the conditions of case 1 hold. Since Il¢, is a measure there must
exist a closed square I' C (—o0,0] x (—00,0) of arbitrary side length, such that
M, (T) > 0. By the above comments it suffices to assume that IT¢,(R*\ T) = 0
and prove P(T, < t) > 0 for all ¢ > 0. Thus we can suppose that all the jumps
(AE, An) areqin Fand joceur af; the jamp times 01<- Ry = Ry (= (i<t ooiefia
Poisson process N.

For a fixed (A&, An,) € T, the corresponding jump AV, becomes less nega-
tive, approaching e®%An;,, as V,_ decreases to zero, and becomes more negative,
approaching —oo, as V;_ increases to oo. We see this by using equation (A.1). In
particular AV, < e®%An, on t < T,.

Define (z',4') to be the point in the top right corner of I, that is, 2’ := sup{z <
0:(z,y) €'} and y' :=sup{y < 0: (z,y) € T'}. Then e?*Ap, < ey =: —c < 0
for all (A&, A;) €T.

Note that for this choice of ¢ an examination of equations (A.4) and (A.8)
shows that whenever d¢ # 0 we have V; < U/ on t < T,. Thus T, < R, and, by
Lemma A.2 we know that P(R, <t) > 0 for all t > 0. Hence P(T, <t) >0 as
required. Next, note that equations (A.6) and (A.9) show that whenever d¢ = 0
we have V; < U} on t < T,. Thus Lemma A.2 again gives the result. This
completes the proof of case 1.

The following two lemmas will be used to prove the remaining points.

Lemma A.3. If 2 < 0, then P(T, <t) > 0 for all d¢,d, € R.

Proof. Using the definition of #, and the assumption that z < 6,, we know that
there exists € > 0 such that there exists a closed square I' € A3t \ A§2 with
IT¢ ,(T") > 0. It suffices to assume II¢,(R*\ T') = 0.

Thus, every (A&, An,) € T' causes a negative jump AV; < 0 whenever 0 <
Vio < z+ ¢ By (A1), for a fixed (A&, An,) € T, jumps get more negative
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approaching e®§tAn,, as V;_ decreases to zero, and less negative, approaching
€28t (z + e+ Any) — (2 +¢€), as V;_ increases to z +e.

Define (z',3') to be the point in the top right corner of I, that is, 2’ :=
supfe < 0 () e Theand ' = supfy < 10 (z,g) € I'}. | Equation (A.2)
implies that for any fixed value 0 < V;_ < z + ¢, we will be in one of two cases.
Firstly, the least negative AV; will occur at the point (z',%') and this point will
not cause ruin. Secondly, every jump (A&, An,) € I' will be negative enough to
cause immediate ruin. This will occur if Ay < —V,_ for every (A&, An) € I'. In
this case the most negative jump will occur at the top left corner of I, though
this fact is not necessary for our proof.

These points show that for all (A&,An) € I' and any 0 < V;_ < 2z + € we
have AV, < e (z+e+y) — (z+¢€) = —c<0.

Suppose d¢ # 0. Note that if f(t) is an increasing function we can choose
t' > 0 such that f(¢') = z + e. Hence, with the above choice of ¢ > 0, we have
that V; < U] from (A.8) whenever ¢ < min{t’, 7.}, and Lemma A.2 implies that
P(R, < t) > 0. Hence P(T, < t') > 0 and since ¢, and hence t', can be chosen
arbitrarily small, P(T, < t) > 0 for all ¢ > 0. If f(t) is a decreasing function,
then V; < U/ for all t < T, and Lemma A.2 give the result.

Suppose d¢ = 0. If d;, > 0 we choose a t' > 0 such that z + d,t' = z + e.
For our above choice of ¢ > 0, V; < U/ from (A.9) whenever ¢t < min{t',T,}.
Alternatively, if d;, < 0 then V; < U/ whenever t < T,. Thus Lemma A.2 gives
the result. O

Lemyma A4 Jfz 0. and 5. = mtt >0 - V. <8y +ejithen P[5, <t} >0
for all d¢,dy, € R and any € > 0.

Proof. Using the definition of 64, and the assumption that z > 64, we know that
there exists ¢ > 0 such that there exists a closed square I' € A"\ A} with
M, (I') > 0. We assume that II¢,(R*\ T') = 0.

Thus, every (A&, An,) € T causes a negative jump AV; < 0 whenever 6, +
e < Vi_ < oco. By (A1), for a fixed (A&, An) € T', jumps get less negative
approaching e®¢ (0, + ¢ + An;) — (64 + €), as V,_ decreases to zero, and more
negative, approaching —oo as V;_ increases to oo.

Define (z',3') to be the point in the top right corner of I', that is, 2’ :=
sup{z < 0: (z,y) € T} and ¢/ := sup{y < 0: (z,y) € I'}. Equation (A.2) implies
that for any fixed value 6, +¢ < V,_ < 0o, we attain the least negative AV; when
(A, An,) is the point (2/,y').
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These points show that for all (A&, An) € I' and any 64 +€ < V;_ < o0, we

have
AV, < e®(Os+e+y)—(01+¢) = —c<0.

Now the method of proof is almost identical to the proof of point 1, case 1. Define
S, :=inf{t > 0: Ul < 6;+¢€} and S, := inf{t > 0 : U} < 64 + €} and note
that Lemma A.10 implies that P(S, < t) > 0 and P(S? < t) > 0. For the above
choice of ¢ > 0, if d¢ # 0 then V, < U; on t < S, and hence S, <150 Sumilarly
if d¢ =0then V; < U/ ont < S, and hence S, < 8. This proves the result. [

Proof of point 2 Suppose 0; < 6y and let z > 6,. Define S, := it
V; < 05} and T, := inf{t > 0: V; < 0}. We show P(T; <t) > 0 for all £ > 0.
Since S, < T,, we have
PIT = u) =P~ i sl B Sty
Since 0, < 5 < z, Lemma A.4 implies P(S, < t) > 0. Thus, it suffices to prove
P < i|S, <D= P <H)>0

However,

%

P (= / PUT, =iV, =2} PV & du)
04+
o,

— / PUT, <t — SHP (Vs icidn)
0

Aeis

This holds because V is a time-homogenous strong Markov process with respect
to the probability measure P, and hence is also a time-homogenous strong Markov
process with respect to the conditional probability measure P’. Note that Lemma
A.3 tells us that P(T, < r) > 0 for all r > 0 and = < 05, which implies that
P, <t—5.|8. <t)>0dorall e< (0,,0,). Henee PAI = 4] = 0 aswequired

Proof of point 3 Suppose d. < 0. andid, = 0, and let = =0 Then the
d d

t):=|z+ 2 ) elet — 1

i) < dE) 9 i

will decrease towards the asymptote —3—’; < 0. Thus there exists ¢ > 0 such that
f(#') < 0. So (A.4) tells us

Pl2) > PVo< 0) = PlVe <0, I e— 1) o — SRR 0 Rl 0)
= P(Nt' i 0)

>0 (0

function
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The same argument works in the case d¢ = 0 and d,, < 0, since the function z+d,

decreases to —oo.

Proof of point 4 We have already proved the case when 64 < 6, so in the
proof of points 4 and 5 we assume 0y < 0.

Suppose that d¢ > 0, and —Z—z S0 Defie 5 —inf e >0 —%} and
T, := inf{t > 0: V; < 0}. We show that 9(2) > 0 for all z > 0.

Firstly, we use equation (A.4) to show P(T, < co) > 0 when z < —5—5’1. Note

that the function : y
i) = A ) dﬁt 555l
f) ( 5 d¢> : de

decreases towards —oo so there exists ¢ > 0 such that f(¢') < 0. Thus,

P(T, < ¢') > P(Vy < 0) 2 P(Vy <O,Ny =0) = P(f(t) < 0)P(Ny =0)
— P(Ny =0)

=)

If z > 9, then Lemma A 4 implies that P(S, <t) > 0 for all > 0.

As in the proof of point 2, we combine these two results, and use the fact that
V is a time homogenous strong Markov process. Let z > 4. Since S, < T, we
have

Pl = sc) — P = 00,9, < 00)P(3; < ool

Thus, it suffices to prove
Pl oo =0 — PIT. ~ ool

However,

i

Pl oo — / i Pl = vo | Vo =z P'(Ve cdr)
04+

_ G

d
:/'5Pm<mww@am
J 04+
L4 )

Proof of point 5 Suppose that 6 < 04, d,, > 0, d¢ < 0 and —Z—z < 0.

Bt e sndilie . 1< 0b) and T, .= int{t > 0 : V, < 0} and prove
that 20(2) >i0.df z = —%’El then the function

f(f) = <‘7 + ﬁ) edﬁt — d_’]

@ d{ d 13
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will decrease towards the asymptote —%’:. Since —%{’L < By we can show that
P(S. < o0) > 0 using the familiar argument of conditioning on N; = 0. And for
2 < 05, Lemma A.3 implies P(T, < t) > 0 for any ¢t > 0. We combine the two as
above, using the strong Markov property, to conclude that 1 (z) > 0.

It remains to note that there is positive probability of ruin when all conditions
of the theorem are satisfied, but z is below the stated thresholds. Thus, we
assume that ¢, (A3) = 0 and 65 < 6. Now if (a) or (c) holds and z < 6, then
¥(z) > 0, as shown in Lemma A.3. If (b) holds, we need to show that 3(z) > 0
if z < max{0s, —z—z} However, in the proof of point 4 it was shown that if de¢ > 0

and z < _%Z then 1 (z) > 0, and so we are done. O



Appendix B

Direct calculation of examples

We present calculations for Examples (2.5) and (2.7), which serve to verify the

ruin probability results obtained by Theorem 2.1.

Example (2.5) calculations: Let (&,n:) := (B; + ct, —B: + (1/2 — c)t) , where
¢ € R and of = 1. Then

ot of
= —/ G\ Bl B A 12 (:)/ e Pateslge,
Jo Jo

By Ito’s formula we know that

t

ot
G—(l%%-r:s) AT 1_+_/ —(Bs +(s)d(B +(S +1/2/ B+(S)(1€
0 0

ot J
— = / e \BdSldp o (1/2 —c) / e (Bstes)dg,
0 Jo

Combining these two formulas we obtain

Z’ et ()——(B{+(?f) Bt 1

Thus, for all ¢ > 0 we have Z;, > —1 almost surely, which implies that 1(z) = 0

whenever z > 1. Since B is Brownian motion, for any ¢ € R we have that

inf{u eR:P (%1\1(f)(-B,, —ct) < u) > ()} = —60;

and thus P(inf;>0Z; < u) > 0 for all w > —1, which implies that ¥(z) > 0
whenever z < 1.

105
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Example (2.7) calculations: Let N be a Poisson process with parameter A,
let ¢ > 0 and let (&, ;) := (—ct + N¢, 2ct — Ny). Then

t t
Zt:2c/ e<cs—Ns>-ds—/ el oladiV;
<0 0

By Ito’s formula for semimartingales [60] p.79,

t
e = 1+/ leeol = dlies — )

e Z e R C e g L IO Nae

0<s<t

We rearrange this formula and combine with the previous formula to obtain

t
7= et -1+c/ eles=Ns)-gs
0

=3 (N el et A ).

0<s<t

Let the jump times of N be 0 =Ty < T} < T < ... and note that

N

Z (ecs—Ns Sl G(CS_NS)_ g E(CS_NS)_A(CS A3y JVS)) il Zec’[’l—i.

0<s<t i=1

Next note that

t Nt t
/e(“"NS)‘ds = Z/ i 11d5+/ e s
0 = Ja Ty,
Ny
(Z (ech~(i—1) ) ecT,_lA(i~1)) i ect—N, 20 eCTNtN!>
=il

Ne
= —1]i /CTz—(i—l) el sy ct— Ny
e s
Ny
=l (‘1 B, S & ec‘“”’-) _
p=ll

We substitute these two formulas into the formula for Z; to obtain

QU=

o |~

Ny Ny

Z{ = 2€Ct_N' L9y (6 3 1) § ech—z ) E ec?}—i
o= i=1
Ny

= ol oy (e —2) Z e lut
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Thus, for all £ > 0 we have Z; > —2 almost surely, which implies that ¢ (z) = 0

whenever z > 2. Note that lim;_.« Zf\i‘l eli—t = ( a.s. whilst

inf {u R F <%1;(f)(ct - N) < u> > ()} = —00.

Thus, P(inf;>0Z; < w) > 0 for all v > —2, which means 9(z) > 0 whenever
B 7
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Appendix C

Proof that sequences are iid

We prove that the sequence of random vectors (Cy, Dy, ),>1 defined as

n
(C,” D”) = <()€n_£n-—l’ ()En—l / e_gs—dns)
(n—1)+

in equation (1.38), is iid. This sequence is used to discretize V' into the solution

of the stochastic difference equation (1.37).

The Lévy process (£,n) has independent increments, that is, (& — &,m —
Ws)pnis mdependent of (£, — &7 — 1) whenever 0. < ¢ < w <5 < . Note
that we can bring the term e*-! through the integral sign and write D, =

f(’2—1)+ e~ €s-—&-1)dp,. Thus (C,, D,,) is independent of (C,, D,,) for any n # m.

We now prove that (Cy, Do) =p (C4, Dy), and the argument for general n is
identical. The Lévy process (£, 7n) has stationary increments, that is, (& — &, m —
ns) =p (&—s, M—s) whenever 0 < s < t. Also note that for any ¢t > 0, §& = & a.s.
and 7, = n;_ a.s. It follows from these two facts and the independent increments

property of (§,n) that, whenever 1 < s < 2,

s e G ) = (666 — 6 — ) 6 — &, 0,0)
=p. GG 6 Gl ) & DG - £,,0,0)
=D -Z(Esflﬂé(s—l)—v ol AlE 6,00
semiilEat, Geysilean b (G 6o 130, 0)
= 6 B 1) (Cl)

109
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Now
2
BRI Py JOA
1
it <€€2 &1 e~ (€s——61) d(7]s e 771))
1

2
- (651,/ e SGs—1)- dns 1)
1

= 651 ; 6_55‘ d77 >
0+

ClaDl )

+ w+

-t

—~

where the third (distributional) equality follows using the distributional equality
(C.1), the fourth equality is obtained using a change of variables and the final
equality follows from the fact that A(&,7m0) = 0. Thus we have proved that
(Cn, Dy,) is an iid sequence.

The fact that (C,, Dp)n>1 is an iid sequence immediately implies that the

sequence defined by (C,, C, D, ),>1 is also an iid sequence. However,
n
(Cn’ CT'LDTL) = <e£n_6n—l’ efn/ e“é‘SvdnS) = (AT'M Bn)’
(n—1)+

when (A, B,,) is defined as in equation (1.34). This sequence is used to discretize
V into the solution of the stochastic difference equation (1.32).



Appendix D

Examination of independent case

We write out summaries of the major results for the case in which £ and n are
independent. No proofs are given, but a lemma is stated and proved. Using this
lemma, the independent results follow easily from the general versions. Proposi-
tions D.2 and D.3 are derived from the results in Section 3.3.1. Proposition D.4
is derived from Theorem 2.1 and Proposition D.5 is derived from Theorems 3.1
and 3.3. The terms 6, ¥, L and U are defined as in Chapter 3. As usual, we

assume that neither £ nor 7 are identically zero.

Lemma D.1. Suppose & and n are independent. If there exists u # 0 such that

u € L, oru € U, then & and n are of finite variation.

Proof. Assume £ and n are independent. Suppose that v € L with u # 0. We
prove that & and 7 are finite variation. Since £ and 7 are independent, it must be
that o¢, = 0, which implies, by Proposition 3.16, that ¢, = 0. By Proposition
1.11 it suffices to show

/l(, ¢ |(z, ) IHe (d(z, y)) < oo. (D.1)

Suppose that u > 0. The case in which u < 0 is symmetric. By Proposition 3.16,
the equation g(u) > 0 must hold. Further, case (a) or (c) of Proposition 3.16
must occur, and thus £ and 7 both have no negative jumps. Thus the function g
can be written

1 1
g(u) = 4 + uge — u/ pllc(de) — / ylIl, (dy).
Jo

J0

Since g(u) > 0, the integrals must both be finite, which implies that (D.1) holds.
(]

1t
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Proposition D.2. Suppose & and n are independent and 1 is not a subordinator.
Then there exists a finite lower bound, 0(z) > —oo, for some z € R, iff n is finite

variation with d,, < 0 and no negative jumps, and one of the following holds:
1. € is a subordinator with d¢ > 0, in which case L = [—d,/dg, 0o] C (0, 00);

2. =€ is a subordinator with d¢ < 0, in which case L = (—o0, —d,/de] C
(—0070)

Proposition D.3. Suppose & and n are independent and —n is not a subordina-
tor. Then there ezists a finite upper bound, Y(z) < oo, for some z € R, iff n is
finite variation with positive drift and no positwe jumps, and one of the following
holds:

1. —§ is a subordinator with de¢ < 0, in which case U = [—d,/d¢, 0] C (0, 00);

2. € is a subordinator with d¢ > 0, in which case U = (—o0, —d,/d¢] C
(—00,0).

Proposition D.4. Suppose & and n are independent. Then 1(0) = 0 iff n is a
subordinator. If 1 is not a subordinator then )(z) = 0 for some z > 0 iff £ is
a subordinator with de > 0 and n 1s of finite variation with d, < 0. If this case
occurs thenm (2) =0 for all z > —d, | d;.

Proposition D.5. Suppose & and n are independent and n is not a subordinator.
1. Iflimy .o § = —00 a.5. and I_¢ gen < 00 then 1(2z) =1 for all z > 0;
2. IfE(&) =0, E (') < 00 and E(m) < oo then 1(2) = 1 for all z > 0;

3. Suppose lim;_, & = o0 a.s. and I, < oco. Then ¥(z) = 1 for some z > 0
iff —n is a subordinator and § is of finite variation with positive drift and
no positive jumps. In such a case, Y(z) =1 for all 2 < —d,/d;.



Appendix E

Comments

Paulsen’s assumptions in [56] As noted in Section 1.6, certain faulty as-
sumptions are made in Paulsen [56]. If £ and n are independent and 7 is not a

subordinator then Paulsen assumes:

1. If E(&) = 0 and £ is not identically zero then for all ¢t > 0, P(V; < 0|V, =
2} Gifor all 'z > 0;

2. If E(&) < 0 and A is a Lebesgue measurable set in (—oo,0) then P(V; €
A for some 0 < t < oo} >0 for all Vi, = 2 = 0;

3. If Z; converges a.s. to a finite continuous random variable Z., as t — oo,
then for all z > 0, P(Z,, > —z) > 0.

Statements 1,2 and 3 are used by Paulsen in his proof of Theorem 1.20 part (b),
(a) and (c) respectively. However, even in the independent case they are not
true. For statement 2, a counterexample is presented in point 1 of Remark 3.2.

Paulsen’s proof can be salvaged by using the replacement inequality
PV <0V ='2) >N 2 >0 (E.1)

where T is an exponential random variable independent of £ and 7. Since T has
infinite support, for any z > 0, P(Vr < 0|Vp = z) > 0 iff ¢(2) := P(inf;5o Vi <
0|Vo = z) > 0. Thus Proposition D.4 ensures that (E.1) holds under the stated
conditions.

For statement 2 to hold in the independent case, it must be that L = (.
However, by Proposition D.2, there exist independent € and 7 such that 7 is not
a subordinator, E(§;) < 0 and L = (—o0, —d,,/d¢]. Simple examples confirm this.
If§ :=—tand n := —t then V; = e*(2 + 1) — 1. Whenever z < —1 the function

10
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V, increases towards the asymptote —1. For a simple non-deterministic example,
let & := —t and 7, := —t + N; where N is a Poisson process with jump times
Wiy TP wg e Then
N
Vie 14 (z+lje’tey et
i=1
Thus, whenever 2z < —1 all paths of V; are increasing.
Statement 3 is also false in the independent case. If the conditions of statement
3 hold and —7 is a subordinator then, by Proposition 3.20, 0 € U, which implies,
by Theorem 3.12, that Z., < 0 a.s. For example, let (§,7); := (¢, =t — N;) where

N is as above. Then -
Zt = €~t = ]. =— Ze_Tl
i=1

and so Z., < —1 a.s. Using Proposition D.3, it is clear that statement 3 holds
when we add the extra condition that —» is not a subordinator.
Paulsen’s assumption in [57] In the proof of Theorem 3.2, Paulsen states

that when £ and 7 are independent and 7 is not a subordinator, then
inf{zER:P(iant<z> >O} — 0.
>0

By (1.3), this is equivalent to assuming ¢(z) > 0 for all z > 0. Proposition D.4
indicates that Paulsen’s statement is wrong. An example is (§,n); := (¢t + Ny, —t)
where N is as above. This example trivially satisfies all the conditions in Paulsen’s
Theorem 3.2. However, using the calculations from Appendix B it is clear that

Ny

Zi=-14+(e—1) Z e BN AL

i=1

and hence inf;~¢ Z; > —1 a.s.
Nyrhinen’s condition in [52] As noted in Section 1.6, the continuous ver-

sions of Nyrhinen’s asymptotic results require that the condition

sup{z AE <supZt > z) > 0} = 00
>0

holds, where dependence between £ and 7 is allowed. Clearly, this is equivalent to
the condition U N(—o0, 0] = (). Using Proposition 3.20 we can define iff conditions
on the Lévy measure of (£, 7n) such that this situation occurs. The conditions will
be the symmetric versions of the conditions in Theorem 2.1.

Kalashnikov and Norberg’s conditions in [32]
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As noted in Section 1.6, the continuous versions of the asymptotic results
in this paper require hypothesis G to be satisfied for a particular stopping time
T > 0. Namely, £ is not a subordinator and P(Zr < u) > 0 for all u € R. The
authors note that when & and 7 are independent, this hypothesis can be replaced
by the slightly stronger condition, P({r < 0, Zp < 0) > 0.

Staying in the independent situation, if we choose an unbounded random time
T > 0, with support [0, 00), then hypothesis G can be replaced with the simpler
condition that ¢ and 7 are both not subordinators. To see this, note that when §
and 7 are independent and neither are subordinators, then P(infi.o Z; < —z) >0
for all z > 0, by Proposition D.4. And by the choice of T' > 0, whenever z > 0,
P(inf;~¢ Z; < —2) iff P(Z7r < —2) > 0.

This result doesn’t hold in general for unbounded 7' > 0. For an example of
independent € and 7, neither of which are subordinators, such that P(Z; < 0) > 0,
see point 1 of Remark 3.2.

It is important to note that when £ and 7 are dependent, hypothesis G can-
not be replaced with the alternative statement. Specifically, when § and n are
dependent, assuming that £ and 7 are not subordinators certainly does not imply
P(Zp < u) > 0, whether or not T is unbounded. For general (§,n) and T' > 0
with support [0,00), P(Zr < u) > 0 for all v € R iff P(infi50Z; < —2) > 0
for all 2 > 0, which is satisfied iff the conditions in Theorem 2.1 do not hold.
To determine whether all the continuous asymptotic results in this paper hold in
the general case we must examine under what conditions Plint g Zii<i =) —
Pliiein 2, < = 2)
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Appendix F

Asymptotic Results

In this section we describe an asymptotic result by Grincevicius [28] on the ab-
solute maximum of a discrete stochastic sequence. We state, and prove, a con-
tinuous version of this result. We also present modified versions of some of the
asymptotic results described in Section 1.6. Throughout this section we let (&, 7)
be a Lévy process, and V, Z and v(z) be defined as in equations (1.1), (1.2) and

(1.3) respectively. Let
o= miit =0 V=0 — s —anfli >0 "2, < — 7]

Let (M, @Q,) be an iid sequence of random vectors with common distribution
(M, ), where M > .0 as. Define Dy := ) 7 H;;ll M;Q);. Define the random
walk S, := In (H;lzl ]Wj) = >, In Mj, where Sy = 0. Grincevicius [28] provides
results for the case in which F(In M) = 0, so the random walk .S, is oscillating.
By Theorem 2.1 of Goldie and Maller [25], the condition E(In M) = 0, together
with the non-degenerate condition P(Q) + Mc = ¢) < 1 for all ¢ € R, implies that
|D,,| —p oo as n — oo. The following theorem, which is a consequence of Theo-
rems 1 and 2 of [28], shows that In |D,| is asymptotically the same as maxo<y<pn Sy
as n — oo. This is a useful result, since the maximum of an oscillating random

walk is a well-known and well-studied process.

Theorem F.1. Suppose M > 0 a.s., E(InM) = 0, E(|In M|?) < o0, P(Q +
Mc=c) <1 for all c € R and one of the following conditions holds:

L. Ef|lnM|e) < b land E ((ln+ |Q|)%+(2> <ieo i for some U< e = Liand
€9 > 0;

2. In M has a continuous symmetric distribution and F <(ln+ \CJ\)HE) — Vo
for some € > 0.

8187
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Then
lim In | Dy, | lim i S
=D
n—o00 \/T_L n—00 ﬁ
Further,

lim B |er i m e =

n—oo

where F is a continuous proper distribution.

We do not state an explicit expression for F' since it requires a lot of notation.
We simply note that F' is the convolution of the distributions of the stochastic
series (6) and (8) in [28], which converge with probability 1.

We now prove a continuous version of this theorem. Note that we have mod-
ified the theorem in order to state conditions on the marginal distributions of £

and 7 rather than on the distribution of Z.

Theorem F.2. Suppose E(&) = 0, the degenerate equation (1.29) does not hold,
there exist p,q > 1 with 1/p+1/q = 1 such that E (e 7%') < oo and E (|m|?) < oo,
and one of the following holds:

=BG = oo,

2. E (&) < oo and & has a continuous symmetric distribution.

Then I |Z| i
L n |4y oo g G
lim =p lim ——— F.1
Further,
lim VA (F.2)

where F' is a continuous proper distribution.

Proof. Suppose that the assumptions of Theorem F.2 hold. For a Lévy process
(&,m) define

L <e-<fn-5n—l>,e€n-l i e—ﬁs-dns) (F.3)
Y1)+

n—1

as in (1.38). It is immediately clear that the assumptions in the first sentence of
Theorem F.1 hold for (M, Q) := (6_5‘, Zl) . Using our assumptions on p and g,
Lemma 3.24 implies that

E < sup ]ZS|) < 00,

0<s<1
and hence E|Z;| < 0o. Thus, there exists 0.« e < 1 such that E(|Z5)i< co.
Note that whenever 0 < 6 < 1 and z > 0, then there exists ¢ > 0 such that
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(In* 2)?+® < cz®. Hence E <(anr |Z1|)2+€> < oo. It is now clear that statement
2 of Theorem F.1 holds whenever statement 2 of Theorem F.2 holds. Further,
statement 1 of Theorem F.1 holds, for ¢; = 1 and €5 = ¢, whenever statement 1
of Theorem F.2 holds.

With our choices of (M,,Q,), it is clear that Z, = D,, for all n € N. Thus,
Theorem F.1 implies that

; In|Z i — min
lim | n‘ — i ve{0,1,-- ,n} év

n—oo,neN \/7; n—oo,neN \/ﬁ

and

lim |Zn|€min1’€{0»1,“- n} &v — 7
n—00,nE

We need to “fill in the gaps,” and extend these equations into statements for real
Ll
Define a sequence of partitions A\™ for m € N by A\(¥) = N and

1L
/\(m): {0’ __’_’...}‘
2m 2m

For each m € N define an iid sequence of random vectors <]V[,(Lm) , Qslm)) by
neN

(Mr(lm)’ Q£Z7l)) i <€_ (Ef%‘[ _f%;nl) : eﬁ%r—wl 2 eégydns) 2

n—1
v om F

We prove, for each m € N, that the conditions of Theorem F.1 are satisfied for

2m

(M™, Qim)) .= (e‘%lw,zL> ,

By the above comments, it suffices to show that the conditions of Theorem F.2

hold, with (&;,7,) replaced by (52%,7]2%). Since £ is a Lévy process, E(&) = 0

it /g, (&;ﬁ) = 0, and & has a continuous symmetric distribution iff g%m has
a continuous symmetric distribution. The remaining moment conditions follow
immediately from Sato [62], p.159, which states that whenever g is a submulti-
plicative, locally bounded, measurable function, then finiteness of the g-moment
is not a time-dependent distributional property in the class of Lévy processes.
Thus, for all m € N, Theorem F.1 implies that
In|Zn

im —2— =5 lim
n—oo,neN L

T
o n—oo,neN A /2T

att mlnve{O,;%;--,L} fv

a (F.4)

and

5 min ek v
e e =, Y, (F.5)
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where F™ is a continuous proper distribution. Since A™ C A™) whenever
m < m/, it is immediate that F™ = F for all m € N. For each real ¢t > 0, define
[t]™ := max{z € An|z < t}.

Thus, for each m € N,

s | [t](m I s | Tt |
and
hm einfs§¢fs — hIn elnnlve{o,zjlﬂ,--.v%}gv.
t—o00 n“"OO,TlEN

However, by the cadlag property of Lévy processes, for each ¢ > 0,

lim |Zym|=Z;- as.
m—o00,meN
and
lim e gk & pinfeci & g g

m—o0,meN
Using these limits, equations F.1 and F.2 follow from equations F.4 and F.5

respectively. )

In Section 1.6 we presented some asymptotic results on sup,., Z; which are
stated in Nyrhinen [52]. We commented that the conditions are stated in terms of
the distribution of Z, rather than the marginal measures of £ and 7, which makes
the results quite inaccessible. We now present a modified version of these results
in which moment conditions are given on £ and 7. In addition, the asymptotic
results are given for inf,- Z; rather than sup,., Z;, which fits better with our work
on ruin probability for the GOU. In this context, Nyrhinen’s condition § = oo
becomes the condition 1 (z) > 0 for all z > 0. Note that Theorem 2.1 states iff
conditions on the Lévy measure of (£,7) such that this condition holds.

We first need to define some notation. Let ¢(a) := In F (e“‘fl) ;e R By
Proposition 2.3 of [17], and our assumption that £ is not identically zero, the
function c(a) is strictly convex and continuously differentiable on the interior of
its domain of finiteness. Let ¢* be the Fenchel-Legendre transform of ¢, namely
c*(v) ;== sup{av — ¢(a) : « € R}, v € R. Let

(M,Q.L):= (e—ﬁl,zl,e& ( it 7, — Zl>>. (F.6)

0<s<1
and define the constant

to:=sup{a € R:c(a) < oo, E(|Q|*) < oo, E ((ML‘)Q) < o0} € [0,00].
(B7)
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By the strict convexity of ¢, if E (e~*¢') = 1 for some w > 0 then ¢/(w) > 0 and we
define the constant z := lim;_¢,— (1/¢'(w)) € [0, 00). Recall that a distribution is

spread out if it has a convolution power with an absolutely continuous component.

Theorem F.3. Suppose ¥(z) > 0 for all 2 > 0, there exists w > 0 such that
E (e““’gl) = 1 and there exist ¢ > 0 and p,q > 1 with 1/p+ 1/q = 1 such that
E (e-mexllwtdpa) < o0 and E (|m|™=1%+9) < co. Then the function

R(z) := { zot (il sefor aie (J;O,ﬁ)’

, 1
w o EIFL

is finite and continuous on (¢, 00) and strictly decreasing on (o, =), and we

! (w)
have
In Pk = zlnz
lim — s ol el = —R(z) (F.8)
Z—00 Inz
for every x > xy. In addition,
lim e = —w. (F.9)

z—oo In 2z

If, further, the distribution of & is spread out, then there exist constants C_ > 0
and v > 0 such that

2P(2) =C_+0(z ") asz— co. (F.10)

Proof. Suppose the conditions in the first sentence of the theorem hold. Define

an iid sequence (M,, @y, Ly)n>1 by choosing M, and @, as in equation (E3)

t n
L, = e ( inf / e S-dn, — / 6“55‘d713> ;
D lst=nd (n—1)+ J(n—1)+

Define the sequence

and letting

n i—1 n

K= > T M50+ [ Ln:

= =l

For our choices of (M,, Q,, L,), we have already noted, for all n € N, that

n i—1

Zn = Z H M;Q;.

i=1 j=1
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Thus,

b gty T S i
t
= Z oy anf / e~—dn,
(

n—1<t<n n—1)+

= lnf Zta

n—1<t<n

which implies that

il Hn = manhn - A0
0<t<n m=1;:"\n

In [52], Nyrhinen presents asymptotic results for max,,_i ... , X, which we pre-
sented as Theorem 1.21. The obvious reciprocal version of this theorem ensures

that equations (F.8) and (F.9) hold, if we can prove the relevant conditions are

/ ol =1 &1 : ik
(M0, Eli= (e T <0§2£1Z5 Z1>>.

Namely, we must show that

satisfied for

inf{zeR:P(itr;th<z) >O}:—oo,

and
0<sup{a €R:c(a) <0} <ty <o

where tg is defined in (F.7).

The first of these conditions is equivalent to the requirement that ¢ (z) > 0 for
all z > 0, which we have assumed as a theorem condition. By Proposition 2.3 of
[17] the function ¢(«) is convex on its domain of finiteness, and the convexity is
strict unless the distribution of £ is degenerate. Thus, it is clear that our assumed
moment conditions imply that w = sup{a € R : ¢(a) < 0} and w + ¢ < ¢4, and

hence the second condition holds. To see that w+e€ < ¢, simply use the fact that

( inf Z, — Zl> = 2.supi|Z.|
0<s<1

0<s<1

and then apply Lemma 3.24.

If we suppose, further, that & is spread out then the symmetric version of
equation (F.10) follows immediately from Nyrhinen’s comments in [52], which
we have expressed as Proposition 1.22. Alternatively, it is simple to directly
prove that the conditions of Theorem 6.3 in Goldie [24] hold, and then adjust the
subsequent formula to obtain the reciprocal version of (F.10), as explained after

Proposition 1.22. 0
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Remark F.4. 1. The conditions of Theorem F.3 imply that Z; converges a.s.
to a finite random variable Z.,, as t — oo. This follows from the comments
made relating to Nyrhinen [52] in Section 1.6. Specifically, with M, and
Q,, defined as above, we showed that conditions in hypothesis H imply that
the sequence Y i, H;;ll M;Q;, and hence the sequence Z,, converges a.s.

to a finite random variable as n — oo.

2. The final result of the theorem, equation (F.10) is also stated by Paulsen in
[57], for independent & and 1. We presented this result as Theorem 1.24. Our
version of the result works in the general case, and also requires simpler and
fewer conditions. In particular, we don’t have to assume extra conditions
that ensure the convergence of Z;. As shown above, the existing moment

conditions already ensure convergence.

3. With (M, Q, L) as above, the value C_ in equation (F.10), is given by the
formula defined in (2.19) of Goldie, namely

w w
c_ = iE <<(Q + Mmin (L, inf Zt))_> — ((M inf Z,,)_> ) ,

(F.11)
where a := E (|]M|¥In|M]). When £ and 7 are independent, it was pointed
out by Paulsen [57], and explained in Section 1.6, that this constant can be
written in a slightly different form. Using Theorem 2.4, the same approach
works in the dependent case. Namely, let G(z) := P(Z» < z) and h(z) :=

E(G(=V1)|T, < 00) € [0,1] and h := lim, . h(2). Then

ey (G )
wah

4. As in Paulsen [57], the requirement that & is spread out, can be replaced
with the more lenient requirement that &p is spread out, where 7' is uni-
formly distributed on [0, 1] and independent of . To see that this replace-
ment holds, note that we can define (M,,Qn, L,) in terms of increments
with distribution 7" and repeat the proof. Since T is uniformly distributed
on [0, 1] and independent of &, the moment conditions on (&1, mr) are equiv-

alent to the original moment conditions on (&1, 7).
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