
Recursive Algorithms for
Generation of Planar Graphs

Mohammadreza Jooyandeh

A thesis submitted for the degree of
PhD of Computer Science at

The Australian National University

Supervised by Prof. Brendan D. McKay

August 2014

Except where otherwise indicated, this thesis is my own original work.

Mohammadreza Jooyandeh
7 August 2014

to Fateme

Acknowledgments

This thesis would certainly not have been possible without the help and support
of many people. Firstly, I want to express my special appreciation and thanks to
my supervisor Brendan McKay. There are too many reasons for this which I am
incapable of expressing them all. You guided me through my research while letting
me be myself and grow. You had been there always for me and whenever I needed
some wisdom, I knew I could count on you. Also, I want to thank you for the belief
you had in me which was the reason I could trust my path towards my passion and
follow it. Your advice on both research as well as on my career have been priceless.
I am very thankful for all opportunities I gained because of you recommending me.

I would like to thank the members of my jury for reading my thesis and for their
suggestions to further improve. I am thankful to Prof. Weifa Liang and Dr. Pascal
Schweitzer for serving as my panel members. Weifa, I appreciate the opportunity
you gave me to be the tutor of your course from which I learnt so much.

Also, I am more than grateful to my beloved wife Fateme, who has supported
me in ups and downs. She encouraged me whenever I felt too weak, wanted to give
up and stop challenging difficulties. She has offered me a listening ear whenever I
needed and 1 can never thank her enough. A special thanks also goes to my family
and my in-laws for their tremendous support and motivation they gave to me during
this journey. Your prayer for me was what sustained me this far. Also, I want to thank
Miriam who has been like a mother to me and helped me a lot specially in my early
times in Australia while I needed the most. I am also thankful to my special friend
Ehsan who has helped me a lot in the difficulties and been so much more than a
good friend. Ehsan, being your friend has been exhilarating.

During my PhD I had the honour of collaborating with Prof. Gunnar Brinkmann.
My sincere thanks goes to him as I have learnt so much from him. Fie had been a
great support and helped me a lot while he was extremely busy in my visit period. I
also want to thank Annelies, Gunnar, Hossein, Jan and Maryam for the great time I
had in Ghent.

I would like to thank Mrs. Chelsea Holton and Mrs. Julie Arnold who were great
with my administration tasks. Without you, I would have been in so much trouble.

Last but not the least, I want to thank my friends and all the people who have
been beside me during this marathon in Australia. I would like to thank Alireza K.,
Alireza M., Anita, Amir, Ashkan, Beäta, Behrooz, Behzad, Ben, Brendan, Cathrine,
Duncan, Ehsan A., Ehsan N., Fahimeh, Hamid, Ivan, Jeanette, Josh, Keane, Michelle,
Miriam, Mohammad D., MohammadAli, Monique, Morteza, Muhammad L, Pascal,
Qiufen, Quentin, Rohan, Sahba, Shahriar, Tom, Vicki, Zahra M., Zahra Z., Zan and
Zichuan; and my team mates in ANU Phoenix, CECS United and CompSci Chumps.

vii

Abstract

In this thesis we introduce recursive algorithms for generation of two families of
plane graphs. These algorithms start with small graphs and iteratively convert them
to larger graphs. The families studied in this thesis are /c-angulations (plane graphs
whose faces are of size k) and plane graphs with a given face size sequence.

We also design a very fast method for canonical embedding and isomorphism re­
jection of plane graphs. Most graph generators like plantri generate graphs up to iso­
morphism of the embedding, however our method does the isomorphism checking
up to the underlying graph while taking advantage of the planarity and embeddings
to speed up the computation.

The next subject discussed in this thesis is a type of graph called hypohamiltonian
in which after removing each vertex from the graph, there is a Hamiltonian cycle
through all remaining vertices while the original graph does not have any such cy­
cle. One of the problems in the literature since 1976 is to find the smallest planar
hypohamiltonian graphs. The previous record by Weiner and Araya was a planar
graph with 42 vertices. We improve this record by finding 25 planar hypohamilto­
nian graphs on 40 vertices while discovering many larger ones on 42 and 43 vertices.

The final subject in the thesis is a family of molecules called fullerenes which are
entirely composed of carbon atoms. The structure of fullerenes are 3-connected plane
graphs with exactly 12 faces of size 5 and the rest of size 6. A famous conjecture
regarding fullerenes, called face-spiral conjecture claims that the drawing of their
graph can be unwound in a spiral manner starting from one face and circulating
around that face until all faces are traversed. This conjecture is known to be incorrect
and the smallest counterexample is made of 380 carbon atoms. We have extended
this conjecture to families of 3-connected plane graphs with fe, and /s faces of size
3, 4, and 5 while the remaining faces have size 6 and found counterexample for all
possible values of (/3 , / 4 ,/s). We also found the smallest counterexamples for 11 of
these families out of 19 possible cases.

ix

Contents

Acknowledgments vii

Abstract ix

List of Figures xiv

List of Tables xv

List of Algorithms xvii

Freface 1

1 Introduction 3
1.1 Definitions.. 3
1.2 Graph Embedding and Plane G ra p h s .. 4
1.3 Recursive Generation of Combinatorial Objects 8
1.4 Isomorph-Free Generation.. 9

1.4.1 Canonical Construction P a t h ...10
1.5 Hamiltonian and Hypohamiltonian G raphs... 13
1.6 Thesis O u tline ..18

2 Recursive Generation of fc-Angulations 21
2.1 Introduction...21
2.2 Generation of fc-angulations...22
2.3 Implementation...29

2.3.1 Adapting the Generator to C C P ...29
2.3.2 Optimization of Canonical Code C om parison 31
2.3.3 Optimizing by Looking A h e ad ..33

2.4 C onclusions.. 34

3 Recursive Generation of Plane Graphs based upon their Face Sequences 35
3.1 Introduction...35
3.2 Generation of Plane Graphs based on their Face Sequences 36
3.3 Implementation...39

3.3.1 Adapting the Generator to C C P ...40
3.3.2 Optimization of Canonical Code C om parison 41
3.3.3 Optimizing by Looking A h ead ..42

3.4 C onclusions...42

xi

xii Contents

4 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs 43
4.1 B ackground.. 43
4.2 Introduction.. 43
4.3 2-Blocks of 2-Connected Graphs ..46
4.4 Representation of Plane G raphs...49

4.4.1 Reduction O perations..53
4.4.2 Formal Definition of Representation... 56

4.5 Canonicity C h eck ..60
4.5.1 Canonicty of P-Type Plane G raphs..61
4.5.2 Canonicty of M-Type Plane G ra p h s ... 62
4.5.3 Canonicty of B-Type Plane G raphs..65
4.5.4 Canonicty of T-Type and C-Type Plane G ra p h s6 8

4.6 C onclusions.. 69

5 Recursive Generation of 4-Face Deflatable Hypohamiltonian Graphs 73
5.1 B ackground.. 73
5.2 Introduction.. 73
5.3 Grinbergian g rap h s ...75
5.4 Generation of 4-face deflatable hypohamiltonian g ra p h s 77
5.5 R esu lts ...81
5.6 C onclusions.. 84
5.A List of All 4-Face Deflatable Hypohamiltonian Graphs on 40 Vertices . . 85
5. B Vertex-Omitting cycles of # 40,1, H43, H44, H45, H46, H47 and H4 9 8 6

6 Face-spiral Codes in 3-Connected Cubic Plane Graphs with no Large Face 93
6.1 B ackground.. 93
6.2 Introduction.. 93
6.3 Spirals and classes of cubic polyhedra... 94
6.4 C onclusions.. 98
6 . A A 3D embedding of the minimal counterexample from the class (2,3,0) 101

Conclusion 103

Index 116

List of Figures

1.1 Rotation System ... 6
1.2 Sample (A:,/)-angulations.. 8
1.3 Sample Hamiltonian and traceable graphs ..13
1.4 All hypohamiltonian graphs up to 17 vertices ..14
1.5 Records for planar hypohamiltonian g r a p h s ...15
1.6 Thomassen's operation to expand plane hypohamitonian graphs [117] . 16
1.7 Thomassen's operation to create hypotraceable graphs [114]................. 18

2.1 Operations to convert a (k — 2)-face to a k-face and vice v e r s a 23
2.2 Cases where vertices are distinct and they do not share a neighbour . . 25
2.3 Cases where at least two vertices are the s a m e ... 26
2.4 Number of intermediate graphs in generation of (9,8)-angulations with

two different canonical codes...33

3.1 Ratio between number of simple triangulations and quadrangulations. . 37
3.2 Operations to add/remove 4-faces to/from {3,4}-angulations..................38

4.1 Two isomorphic graphs which are not plane-isom orphic.......................... 43
4.2 Number of simple 2-connected planar, plane and generic graphs........... 44
4.3 Example for attached components, semi-2-blocks and 2-blocks48
4.4 Path Reduction O peration ..53
4.5 Multiedges Reduction O peration .. 54
4.6 Block Reduction O p e ra tio n ...56
4.7 Edges of 2-blocks are consecutive.. 57
4.8 Number of simple connected generic, plane and planar graphs [23,

108,113]... 72

5.1 Planar hypohamiltonian graphs of order 105, 57, 48, and 4 274
5.2 Operations T V 4 and V I 2 ..77
5.3 Showing that F V ^ G) has a simple dual ..81
5.4 A planar hypohamiltonian graph on 40 vertices (H404)............................. 82
5.5 Planar hypohamiltonian graphs of order 43, 44, 45, 46, 47 and 49 83
5.6 List of 4-face deflatable hypohamiltonian graphs on 40 v ertices 85
5.7 All vertex-omitting cycles of H43 up to automorphism 86
5.8 Vertex-omitting cycles of H4o,i ..87
5.9 All vertex-omitting cycles of H 4 4 .. 88
5.10 All vertex-omitting cycles of H45 up to automorphism 89

xiii

xiv LIST OF FIGURES

5.11 All vertex-omitting cycles of up to automorphism90
5.12 All vertex-omitting cycles of H4 7 ...91
5.13 All vertex-omitting cycles of H49 up to automorphism92

6.1 The fullerenes with up to 400 vertices having no face-spirals...............94
6.2 An example of failed s p i r a l ... 94
6.3 Minimal counterexamples for classes with no face-spirals 96
6.4 Operations used for converting graphs between face-signature classes . 97
6.5 Parent of the counterexample for the class (1 ,1 /7)................................98
6.6 Minimal counterexample for sequence (2,3,0) with 2170 vertices 99
6.7 The landscape of spiral counterexamples. In the triangular coordi­

nate system, the vertices of the master triangle represent 'pure' types
(4,0,0), (0,6,0) and (0,0,12), and in general the values /?3, and
P5 are proportional to the lengths of perpendiculars to the triangle
sides. Each black dot represents a counterexample with the number of
vertices indicated; minimal counterexamples are labelled in bold face;
those numbers marked with an underline are not claimed to be minimal. 100

6.8 A 3D embedding of the minimal counterexample from the class (2,3,0) 101

List of Tables

2.1 Number of connected (k, /)-angulations...27
2.2 Number of connected (k,/)-angulations with S > 1......................................28
2.3 Number of 2-connected (T,/)-angulations..29

4.1 Number of 2-connected generic, plane and planar graphs; and the time
for generation of plane graphs using plantri and filtering isomorphic
copies using canemb..70

4.2 Number of 2-connected bipartite generic [107], plane [109] and planar
graphs; and the time for generation of bipartite plane graphs using
plantri and filtering isomorphic copies using canemb............................... 71

5.1 Facts about 4 0) ... 78
5.2 Facts about 7^(42) and UA7(4 2) ... 79
5.3 Facts about %|(43) and H |(4 3) ... 80

6.1 Minimal counterexamples for classes with no face-spirals found by
exhaustive generation. In each case, there is a unique counterexample
with the given vertex number within the class...95

6.2 Counterexamples for classes with no face-spirals generated by mod­
ification. The parents marked with # are unique minimal counterex­
amples within their own family. The parent marked with * is the
unique second smallest counterexample within the fullerene family
[124, 17]. The parent marked with t is a non-minimal counterexample
for (1,3,3) which is shown in Figure 6.5.. 97

LIST OF TABLES

List of Algorithms

1.1 Canonical Construction Path [83]...12
4.1 Computes Representation of Plane G ra p h s ..58
4.2 Canonical Testing for P-Type Graphs ..63
4.3 Canonical Testing for M-Type G ra p h s ..66
4.4 Canonical Testing for ß-Type Graphs ..67
4.5 Canonical Testing for C-Type Graphs ..68
4.6 Canonical Testing for T-Type Graphs ..69
4.7 Canonical Testing for 2-Connected Plane G raphs...70

xvii

xviii LIST OF ALGORITHMS

Preface

In this thesis we introduce recursive algorithms for generation of structures which
can be used in mathematics and chemistry. Each structure is presented as a math­
ematical model called a graph which incorporates relations between pairs of objects.
Each graph contains a set of vertices and a set of edges. The vertices can represent
some objects and edges connect related objects to each other. For example a graph
can model a map in which edges represent roads and vertices are end-points of the
roads. Another example could be molecules in which atoms are vertices and edges
are their bindings. In this chapter we mainly deal with a family of graphs called pla­
nar graphs which can be drawn on the plane with vertices drawn as points and edges
as arcs joining their end-points such that the edges can only cross each other at their
end-points. Each drawing divides the plane into regions which are called faces.

The recursive algorithms which we present in this thesis are methods that repet­
itively follow a procedure. These algorithms start with small structures (graphs)
and iteratively convert them to larger ones to construct desired structures for some
specific problems.

The second subject tackled in this thesis is towards one of the traditional problems
in mathematics and computer science i.e., isomorphism. The isomorphism problem
discuss whether two structure are "equivalent" under a some particular definition
for equivalence.

The third subject discussed in this thesis is a type of graph called hypohamiltonian
in which after removing each vertex from the graph, there is a cycle going through
all remaining vertices using edges without passing vertices more than once, but the
original graph does not have this property. This graph class has been studied since
1963 [103] and is interesting both in mathematics and in computer science.

The final subject in the thesis is towards extending the boundary in the litera­
ture of a family of molecules called fullerenes which are entirely composed of carbon
atoms. The structure of fullerenes are planar graphs and each drawings of them has
exactly 12 faces made of five edge while the other faces have six edges. The construc­
tion of these structures has started in 1985 [72]. Also there is a famous conjecture
regarding fullerenes, called face-spiral conjecture which claims that the drawing can
be unwound in a spiral manner [81] starting from one face and circulating around
that face until all faces are traversed. This conjecture is known to be incorrect [80]
and the smallest counterexample has is made of 380 carbon atoms [17]. We have ex­
tended this conjecture to some other families of graphs and found counterexamples
for all of them.

l

2 Preface

Chapter i

Introduction

l . i Definitions

A graph G is an incidence structure triple (V, E, I) where the elements of V and E are
called vertices and edges of the graph. Also, 1 Q V x £ is a relation which defines the
incidence of vertices and edges with the condition that every edge is incident to one
or two vertices, called its end-point(s). The sets of vertices, edges and the incidence
relation of G are denoted by V{G), E(G) and /(G). The order of G, written as o(G), is
the number of vertices of G i.e., o(G) = | V(G)|. In some cases for sake of convenience
we may define a graph as a pair (V, £) in which £ cz {{u, v} : u, v e V}. In these cases
a vertex v and an edge e are incident if v e e. For simplicity, by abuse of language we
may say v e G and e e G instead of v e V(G) and e e E(G).

A loop is an edge which has only one end-point and a graph with no loops is
called a loopless graph. Two vertices of a graph are called adjacent or neighbours, if they
have an edge incident to both of them. A graph is called simple if its loopless and
for every pair of adjacent vertices, there is exactly one edge incident to both of them;
otherwise it is called a multigraph.

The set of neighbours of a vertex v is denoted by Nq{v) or N(v). The degree or
valency of a vertex v in G, denoted by dc{v) or d(v) is the number of edges incident
to v. A vertex with degree t is called a f-valent vertex. The maximum and mini­
mum degree of a graph G are denoted by A(G) and d(G) or for simplicity A and
6, respectively. A graph whose vertices have the same degree k is called a k-regular
graph, or regular graph if we do not wish to identify k. The family of 3-regular graphs
sometimes are referred to as cubic graphs.

A walk in a graph G is an alternating sequence of vertices and edges, begining
and ending with a vertex, v\e\V2^2 • • • vn such that for all 1 ^ i < n, Vj and t>,+i are
the end-points of ez-, if it is not a loop; otherwise V\ = Vj+\ is the end-point of The
length of a walk is the number of edges (with multiplicity) of that walk. Note that the
length of a walk could be zero. A walk is closed if its first and last vertices are the
same and open otherwise. A walk is called a path if its vertices are distinct and a cycle,
if its vertices are all distinct except the first and last vertices which are the same. A
path and a cycle with k edges are called a k-path or a k-cycle, respectively.

The complete graph Kj- is the graph (T, £) whose vertices are adjacent pairwise. For
simplicity Kn 2l...,n} is written as K„. The path graph P„ is the graph whose vertices

3

4 Introduction

are 1,2, • • • , n with two vertices v and w are adjacent if \v — w\ = 1. The cyc/e graph
C„ has the same vertex set as the path graph on n vertices but two vertices v and zv
are adjacent, if \v — w\ = \ mod n.

A subgraph H of a graph G, written as H c G is a graph with V(H) cz V(G),
E(H) Q E(G) and 1(H) = 1(G) n (V(H) x E(H)) such that V(H) includes end-points
of edges in E(H). Moreover, H is called an induced subgraph of G, if H is a subgraph
of G and for every e e E(G) with end-points u and v (u = v if it is a loop), e e E(H)
if u, v 6 V(H). The induced subgraph of G with vertices V c: V(G) or E' c; E(G) is
written as G[V'] or G[E'], respectively.

Let Gi = (Vi,Ei, Ji) and G2 = (Vi,E2,h) be two graphs. The union, denoted by
Gi u G2 is the graph (V\ u V2, Ei u £2, h u I2). The disjoint union, written as G\ kj G2 is
the graph (Vi x {1} u V2 x {2}, Ea x {1} u E 2 x {2},/) in which I = \J*=1{((v,i),(e,i)) :
(v,e) e /,}. If G is a graph, G' <z G and V a V(G) and E' cz E(G), then G\G' and
G\V' are the induced subgraph G[V(G)\V(G')] and G[V(G)\V'], respectively, but for
E cz E(G), G\E' is the graph (V(G), E(G)\E', I(G)\V(G) x E') i.e., the graph obtained
from G by removing edges of £'. When V = {u} or E' = {e}, we might simply write
G\{f} and G\{e} as G\v and G\e, respectively.

A graph G is said to be connected, if there is a path between every pair of vertices
in G, otherwise it is disconnected. A graph G is k-connected, if | V(G)| > k and for every
S c V(G) with |S| < k, G\S is connected. A subset C of vertices of a graph G whose
removal makes G disconnected is called a cut-set. The connectivity of a G, denoted
by k(G) is defined as the size of one of its minimal cut-sets, if G is not a complete
graph. The connectivity of K„ is defined to be n — 1 for convenience. Graphs with
connectivity at least two and three are called biconnected and triconnected, respectively.
The maximal connected subgraphs of G are called its components.

An abstract isomorphism between two graphs G\ = (V\, E\, I-[) and G2 = (V2, £2, h)
is a bijection n : V\ u E\ —> V2 u £2 such that:

• 7T(Vi) = V2.

• 7T(Ei) = E2.

• Mv e V\Me e E\ : (v,e) e 7i <=> (n(v), n(e)) e /2.

1.2 Graph Embedding and Plane Graphs

In this section the notion of embedding used in this thesis is explained. The defini­
tion used for embedding is based on [74] and is known as the rotation system which
is based upon putting an ordering on the edges incident with each vertex but before
starting the combinatorial definition we introduce a topological definition for draw­
ing. Then, after the combinatorial definition of rotation system, we show that these
two definitions are equivalent.

Definition 1.1. A map M for a graph G is a drawing into an orientable surface X such that:

• Vertices of G are represented as distinct points in X.

§1.2 Graph Embedding and Plane Graphs 5

• Edges are represented as simple curves in the surface whose end-points are their incident
vertices with the condition that edges can intersect only at their end-points.

With such a drawing we can consider G as a subset of X. So X \G is a disjoint union of
maximal connected components, these components are called faces of G in that map.

Let G = (V ,E ,I), and let De be a relation, called the dart relation, which maps
each edge e e E to two directed edges e1 and e2 called darts of e with the same end­
points as e, but in opposite directions. These two darts are said to be the inverses of
each other and the inverse of a dart x is denoted by inv(x). The end-points of a dart
x are called its head and tail, denoted by head(x) and tail(x), note that:

inv(inv(x)) = x,
head(x) = tail(inv(x)),
tail(x) = head(inv(x)).

Every dart is said to be incident to its tail and the set of all darts incident to a vertex
are called the darts of that vertex. We use the term üb to indicate a dart from vertex
u to v. The set of all darts of G is denoted by De(G).

Definition 1.2. Let G = (V, E, I) be a graph and De be a dart relation for G. A rotation
for a vertex v, written as rot(u), is a permutation made of only one cycle on all the darts
directed out ofv. A rotation system or an embedding of G is a pair of permutations (a, a)
on De(G). The permutation a is made of cycles of length two that map each dart of G to
its inverse. The permutation cr is obtained from the product of rotations of all vertices i.e.,
V = YlveV

Let (a, a) be a rotation system of a graph G. The next dart and previous dart of a
dart e are defined as next(e) = a(e) and prev(e) = a~ l (e), respectively. Furthermore,
nexts(e) and prevs(e) are the first dart in the sequence next(e),next^2̂ (e),next(3)(e),...
and prev(e),prev(2)(e),prev(3)(e),... whose head is in the set S, respectively.

Example 1.3. Consider the graph presented in Figure 1.1(a) and its directed version
(Figure 1.1(b)). The rotation system of this graph can be presented as:
cr = [a1 a2blc1 dlel)(b2)(c2f 2)(d2)(e2f 1) and a. = FLeE^1*2)*

Definition 1.4. Let (a, a) be a rotation system for a graph G and (p = a~V_1. Then the
cycles of (p are called faces of G for this rotation system and the edges of each cycle are called
the edges of that face.

Maps and rotation systems are equivalent i.e., each map can be converted to a ro­
tation system and vice versa. Building rotation systems from maps is quite straight­
forward. We explain this approach with an example. Consider the graph G which
is drawn in Figure 1.1(a), to build a rotation system for this map, first we define the
relation De which maps every edge e to darts e1 and e2. Then we can reconstruct
the embedding as follows. The permutation a can be defined as a = IX-eE^^2)

6 Introduction

a2

Figure 1.1: Rotation System

which maps each dart to its inverse. To define the permutation a we use the fact that
cr = rii;eV(G) r°t(^) (by Definition 1.2) and define rot(i>) for each vertex. The rotation
of a vertex v can be defined as a cycle containing every dart going out of v in clock­
wise order. So for the graph of Figure 1.1(b), a = (a1 a2bl cl dl el)(b2)(c2 f 2)(d2)(e2 f l)
which gives us a rotation system based on the map and the dart mapping relation.

Inversely, we can convert an embedding to a drawing on a surface. Let G be a
graph and (a,o') be a rotation system for it. Also assume (p = a - V -1 which is made
of cycles of faces. Now we can form a disk for each rotation face whose boundary
is the edges of that face in the order of its cycle. Then, we can glue all disks based
on the inverse relation of darts. Assume e1 and e2 are two darts which are inverses
of each other. Then we attach the disks of faces that include el and e2 along the part
of the boundary which corresponds to these darts. This gives us a surface which the
graph is mapped to. Finally, we choose the orientation of the surface such that the
darts in the rotations of vertices are in clockwise ordering.

Theorem 1.5 ([74, chap. 1.3]). Let (a,<r) be a rotation system for a graph G which is
constructed from a map and let (p = a~V_1. Then each cycle of (p (faces of the rotation
system) is the cycle of darts of a face of the corresponding map in clockwise order.

Theorem 1.5 allows us to use the term face both for rotation system faces and
map faces. Also we may refer a face as a k-face or say its size is k if the length of its
corresponding cycle in the rotation system is k.

In simple graphs a pair of adjacent vertices can uniquely determine the edge
between them. We may use this property for the convenience of argument in some
part of this thesis and define faces as cycles of vertices.

A careful look to the previous Theorem shows that if e is a dart such that the face
on its right hand side is / , then cp(e) is the next dart in the clockwise traversal of /
after edge e. The reason is that the next clockwise dart on the face after the edge e is
prev(inv(e)).

§1.2 Graph Embedding and Plane Graphs 7

Example 1.6. In the rotation system of Example 1.3 there are three faces namely:

(p = {al){a2elf 1c2blb2){c1f 2e2d1d2)

It should be noted that for the outer face, the order of the edges might give the im­
pression that they are in counter-clockwise order but actually this is not true because
the embedding is on the sphere so we should view the outer face from the other
side of the sphere. Also one can easily check that in the face (c1 f 2e2d1d2) each dart
e is mapped by (p to prev(inv(e)) for example prev(inv(c1)) = prev(c2) = / 2 and
prev(inv(/2)) = prev(/!) = e2.

A graph is called planar, if it has an embedding on the plane. A plane graph G
is a tuple (V, E, I, DE,oc,cr) in which (V, E, I), called the underlying graph, is a planar
graph, De is a dart set and (a, a) is a rotation system for that graph. For the sake
of convenience we may refer to a plane graph as just the underlying graph, a triple
(V, E, I), if we do not intend to use the actual embedding.

Theorem 1.7 (Euler Formula). Eel G = (V ,E, l , De, cc, ct) and F be the set of faces of G.
Then |Vr| — |E| -h |F| = 2 if and only if G is a plane graph.

Definition 1.8. The mirror image of a rotation system (a, a) of a graph G is the rotation
system (a,cr~l) and is denoted by Mir(G).

An order-preserving isomorphism between plane graphs G\ = (V\, E\, Zj, De^Kv CTi)
and G2 = {V2, E2, h , De2, 0C2, c2) is a bijection n : V\ u E\ u D e , (G i) —► V2 u £2 u

DE2(G2) such that:

1. 7T|uE, is an abstract isomorphism between Gi and G2.

2. Me e Ei Me' e Dê c) : n(e') e De2(/t(c)).

3. Me e Dê G i) Mv e Vf : e e rot(u) => n(e) e rot(7r(p)).

4. Me e DEx{Gi) : 7r(«i(e)) = oc2{n(e)).

5. Me e DEl(Gi) : 7r((7i(<?)) = (r2(n(e)).

Similarly, an order-reversing isomorphism between them is a bijection n with the same
properties except the last one and instead as its name suggests it reverses the orders:
Me e Dej : 7i(cri(e)) = crfl (n(e)). Finally, a plane iso?norphism between two plane
graphs is a bijection that is an order-preserving or/and order-reversing isomorphism.

Theorem 1.9 (Whitney's Theorem [122]). For two 3-connected plane graphs, abstract
isomorphism and plane isomorphism are equivalent.

Let G be a plane graph with rotation system (olg, o’g) and (pG = Also
assume Fc is the set of faces of G (cycles of (pc)- Now, the dual of G, denoted by G*
is the plane graph defined as follows. The vertex set of G* is Fc, the set of darts of
G* has a bijection 1 to De which maps a dart e e De to e± such that if e e f e Fc and

8 Introduction

inv(e) = e' e f' e Fc, then in G*, e± e rot(/) and e'± e rot(/'). The rotation system of
G* is defined as (ctG*,VG*) in which oiG*(e±) = aG(e)± and crG*(e±) = (p(e)±.

A simple closed curve is the image of circle under an injective continuous IR2 —►
R2 map. The Jordan curve theorem, shorten as JCT, indicates that if C is a simple
closed curve, R2\C is made of exactly two connected components, the interior and
the exterior of the curve which are bounded by C [65]. We may refer to a closed
curve made of edges of a k-cycle which is a not the boundary of a face as a separating
k-cycle.

If G is a connected plane graph with / = X!/=i // faces such that /,• of them
are of size kj, then G is called a {(k\,fi) , . . . , (kt/ ft)}-angulation. If the counts of the
faces are not important it may be refered as a {k\,.. . ,kt} -angulation. In the case
that all the faces have the same size it is written as a (k, f)-angulation or simply
a k-angulation. A {k \ , . . . ,k t}-angulation is trivial if it is a cycle graph Q , i.e. a
(A:,2)-angulation. The set of all simple (3,/)-angulations (triangulations) and (4,/)-
angulations (quadrangulations) are written as Tf and Qf, respectively. Figure 1.2
presents a (3,10)-angulation, a (4,6)-angulation and a (5,12)-angulation.

(b) k = 4 and / = 6(a) k = 3 and / = 10 (c) k = 5 and / = 12

Figure 1.2: Sample (fc,/)-angulations

1.3 Recursive Generation of Combinatorial Objects

Assume T is a family of graphs and U is a superset of T , X c U and £ a set
of functions from U to 2W-:r. Then {1,£,U) is said to recursively generate T , if for
every graph G e T there is a finite sequence Go,. . . , Gn = G (n could be 0) such
that Go e X and for all i < n, G,+1 e X(G,) for some X e £. The members of £
are called expansions. Moreover, for each expansion X the function Rx maps every
graph G to all graphs G' that can be expanded to G (the set can be empty) using X;
mathematically speaking Rx{G) = {Gr e U : G e X(G')}. These functions are called
reductions. Members of 1 and U — X are called irreducible graphs and reducible graphs,
respectively. Also for a graph G eld, all G' e Rx(G) for some X e £ are called parents
of G.

§i-4 Isomorph-Free Generation 9

In most studies like [21, 24, 22, 18, 23, 51, 52] the sets U and T in the definition
above are the same, which means the generator starts with some irreducible graphs
from the desired family and expands them to larger ones, while remaining inside
the family. Having U — T has the advantage that it usually needs fewer interme­
diate graphs which helps the performance of generators. The new definition might
be slower, but allows more options for finding generators. We employ this new
definition to make recursive generators for fc-angulations (Chapter 2), {k\, ••• ,k t}~
angulations (Chapter 3) and a family of planar graphs called 4-face deflatable hypo-
hamiltonian graphs (Chapter 5).

1.4 Isomorph-Free Generation

A generation is called isomorph-free if no pair of objects generated by the generator
are isomorphic. The act of removing isomorphic copies in the process of generation
is called isomorph rejection. There are some different isomorph rejection methods used
in the literature which we discuss later in this section.

Let S be a set of combinatorial objects with a designated isomorphism. We can
define a group T whose action on an object s e S gives us all isomorphic copies of S.
We call a function / whose domain is S an invariant, if / (s) = I(s^) for every g e Y.
More specifically, an invariant c which maps members of S to vectors of elements in
a totally ordered set with the criteria that c(si) = c(s2) <=> e T : = C2 is called
a canonical code. In this thesis, we use the lexicographic ordering for comparing
canonical codes.

The way that invariants and canonical codes are defined allows us to use them
for isomorphic checking of combinatorial objects. Let I and c be an invariant and
a canonical code for a set S. Then Si,S2 e S are isomorphic if and only if c(si) =
c(s2). Also if 7(si) 7 ̂ I(s2), then Si and S2 are not isomorphic. So in practice for
isomorphism testing, we can define some easily computable invariants and whenever
we wish to check whether s\ and S2 are isomorphic, check those invariants first and
use canonical codes only when all invariants had the same values for both of them.
A canonical labelling is an invariant which maps each graph to a specific labeling of
it i.e., maps graphs to their isomorphic classes. A graph is called canonical if the
canonical labelling maps it to itself.

The most trivial approach for isomorph rejection is to keep all generated objects
in a memory, preferably RAM, and then compare them pairwise and output only one
copy from each isomorphism class. This approach is of course only useful in limited
cases when the set of generating objects is not too big i.e., isomorphic testing and
keeping them all in memory is plausible for example it is used in [47] for generation
of small sets of irreducible objects. We also use this approach in some parts of
Chapter 5. Most graph generators that we deal with generate every labelling of each
graph. Therefore, if we only output the canonical ones, then the output will contain
one copy from each isomorphism class.

The second method called orderly generation is a recursive generation with an extra

10 Introduction

criteria on the definition of canonical code which is inherited to a sub-object which
is considered as its canonical parent. This method was introduced independently by
Faradzev [37, 36] and Read [98]. Some of many examples of using this method are
[12] for generation of cubic graphs, [86] for generation of regular graphs and [95] for
generation of extended binary trees i.e., rooted binary trees in which every vertex
has either two or no children.

The next method called canonical construction path will be discussed in more
details in Section 1.4.1.

1.4.1 Canonical Construction Path

In 1998 McKay introduced a new method called canonical construction path (CCP),
which does not involve explicit isomorphism testing [83]. We will use this method
in Chapters 2 and 3 to recursively generate some families of /c-angulations and
{ki,- • • ,/:f}-angulations.

We explain this approach parallel to an actual example of generating simple
graphs and use labels "General" and "Graphs" to indicate the context.

General: We have a set of objects C, called labelled objects with a group Y acting
on C whose orbits are called unlabelled objects, U. Each labelled object X has a order
o(X) e N which is constant for objects in an orbit of Cr. This allows us to define the
order of unlabelled objects to be the common order of its comprising labelled objects.

Graphs: The set of labelled graphs C is the set of all simple graphs, T = n f j eN(S, x
Sy) such that for a graph G = (V, E, I), action of g e T on G is defined by the factor
S|y| x S|£| of g which permutes the labels of V, E and I in correspondence to them
which means each orbit of CY is made of all isomorphic labellings of a G e C. The
order of G is also defined as o(G) = |V|.

General: We define the sets of lower objects and upper objects for each X e C
denoted by L(X) and Ü(X) such that for Xi ^ X2 e C, the sets [X]}, L(Xi), U(X 1),
{X2}, L(X2) and U(X2) should be pairwise disjoint. Then we define the sets of all
lower and upper objects as C = [JXe£ ^(X) and C = [JXe£ The order of lower
and upper objects of X are defined to be the same as order of X.

Graphs: We create a graph that has one more vertex by adding a new vertex to a
smaller graph and joining to its neighbours. Lower objects include the information
to reduce the graph back to its parent so for G ^ Ki we can define L(G) = {(G,w) :
w e V(G)} that means to remove w from G and as K] does not have any parents, we
define L(Ki) = 0 . Conversely, the upper objects demonstrate, how one graph can be
extended to its children. In our case, we can define it as U(G) = {(G, W) : W <= V(G)}
which means to add a vertex and connect it to all vertices in W.

General: We need a group Y acting on C u C u C in addition to a relation R Q
C x C satisfying Axioms C1-C7 to relate lower and upper objects to each other which
is used for defining parents of objects. The functions / and f used in the list of
axioms are defined as

§i-4 Isomorph-Free Generation ii

/(Y) = { X : (Y ,x) e R } (1 .1)

/'(X) = {? : (r ,x) £R} (1.2)

Cl. r fixes each of £, £ and £ setwise.

C2. VX e £ Vg e T : L{X8) = L{X)8 a U(X8) = U(X)8.

C3. VY e £ VX e £ : f{Y) # 0 a /'(X) # 0 .

C4. VY e £ Vg e T VXi e /(Y) VX2 e /(Y*) 3h e r : X{ = X2.

C5. VX G £ Vg G r VYl G /'(X) VY2 g /'(X*) 3h G r : Yf = Y2.

C6. VX G £ Vg G r : o(X*) = o(X).

C7. VY G £ VX G /(Y) : o(X) < o(Y).

Graphs: We can easily extend the action of g e T on (G, zv) g £ and (G, W) g £ as
(GX,u>8) and (G8, W8), respectively which guarantees axiom Cl. To define R we use
the construction path from lower to upper objects: / : (G, zv) >—> {(G\w, Nc(zv))g : g e
T}. With this definition one can easily verify that C2-C7 hold too.

General: Two labelled objects Xi and X2 are isomorphic, if there is g e T such that
X1̂ = X2. Also the automorphism group of a labelled object X, written as Aut(X), is the
stabiliser of X in Y i.e., Aut(X) = {g e Y : X8 = X). Unlabelled objects which do not
have any lower objects are called irreducible objects and the other labelled objects are
reducible. By Axiom C2, being reducible or not is invariant under T. Therfore, we can
extend the definition to unlabelled objects as well and partition U into U\ and Ur, to
be the set of irreducible unlabelled and labelled objects, respectively.

Graphs: By the choice of T to be ri/jeN ^/ x Sy), and the way that we defined
action of g e T on graphs, this definition of isomorphism is the same as abstract
isomorphism. By our definition of lower objects, only L(K\) is the empty set so it is
the only irreducible object.

General: The final step is to define a function m : C —*• 2^ such that Axioms MI­
MS holds. This function allows us to define a unique construction path (Lemma 1.10)
for each object in Ur.

Ml. If L(X) = 0 , then m(X) = 0 .

M2. If L(X) # 0 , then m(X) is an orbit of the L(X)Au^x \

M3. VX g £ Vg g T : m{X8) = m{X)8.

We refer to m(X) as the canonical reduction of X. The Axiom M3 guarantees that two
isomorphic labelled objects have equivalent canonical reduction. Therefore, we can
define the canonical reduction of an unlabelled object S as

12 Introduction

Lemma 1.10 ([83, Lemma 1]). There is a unique function p : Ur —*■ U such that

VS e Ur VX e S MX e m(X) 3Y e p(S) : /(X) c U(Y)

Graphs: A very simple but not efficient way to define m(G) for G ^ Kj is to
concatenate the rows of adjacency matrix of G and find the lexicographically minimal
such vector amongst all different labellings of G. Now let G# be the labelling with
the minimal code and w be the vertex with label "1" in G#, then we can define

» (G) - f 0 '
[{(G, u) : 3f e Aut(G) : v1 = w}, otherwise

General: Lemma 1.10 shows that each unlabelled object can be mapped to a
unique parent based on the function in. Also, by Axiom C7, o(Y) < o(X) which
means by finitely many iteration each VS e Ur can be constructed from an unlabelled
irreducible object. We refer to p(S) as the canonical parent of S and the set of canon­
ical ancestors of S is {S/ p(S),p(p(S)),- ■ ■ ,p(- • ■ p(S)) e U\\. Inversely, we can define
child and descendents of an unlabelled object. The fact that each unlabelled object
has a unique canonical parent gives us a directed forest whose roots are irreducible
objects. Using a preorder traversal of this tree McKay designed Algorithm 1.1 (the
algorithm presented here is slightly different) to generate all. We use this algorithm
in Chapters 2 and 3.

Algorithm 1.1 Canonical Construction Path [83]
1: function Sc an(G: Labelled object, max_order: int)
2: if o(G) = maxjorder and G e T then
3: Output G
4: return
5: end if
6:
7: for each orbit A of the action of Aut(G) on li(G) do
8: select a G e A and a G ' e f'{G)
9: let G e L(G')

10: if o(G') ^ maxjorder and G e m(G') then
11: Sc a n (G', maxjorder) > G is accepted
12: end if
13: end for
14: end function

Theorem 1.11 ([83, Theorem 1]). Tor each S e U and X e S having o(X) ^ n, Scan
function outputs exactly one labelled object belonging to each unlabelled object of order n that
is a descendent of S.

§i-5 Hamiltonian and Hypohamiltonian Graphs 13

Corollary 1.12. Calling Scan on one labelled object of every unlabelled irreducible object
generates one labelled object of every unlabelled object in T i.e., the set T is generated ex­
haustively with no isomorphic copies.

Proof By Theorem 1.11, Scan produce each descendent of any irreducible object
once. Adding the fact that each object has a unique set of ancestors which start with
exactly once irreducible object, the proof is obtained. □

1.5 Hamiltonian and Hypohamiltonian Graphs

A graph G is called Hamiltonian if there is a cycle C in G which passes through every
vertex exactly once, and the cycle C is called a Hamiltonian cycle of G (Figure 1.3(a)).
Similarly, G is called traceable if there is a path in G that passes through every vertex
exactly once, and such a path is called a Hamiltonian path (Figure 1.3(b)). Determining
if a graph is Hamiltonian or traceable is NP-complete [44].

Figure 1.3: Sample Hamiltonian and traceable graphs

A graph G is called hypohamiltonian/hypotraceable, if it is not Hamiltonian/trace­
able, but the deletion of any single vertex v e P(G) gives a Hamiltonian/traceable
graph. Hypohamiltonian graphs first appeared in the literature with a question by
Sousselier [103] and its solution by Gaudin, Herz and Rossi [45] that the Petersen
graph is the smallest hypohamiltonian graph.

In 1967, Herz, Duby and Vigue [54] using an exhaustive computer search showed
that there is no hypohamiltonian graph on 11 or 12 vertices. Later Collier and Schme-
ichel [27] proved the same result for graphs on 14 vertices. Aldred, McKay and
Wormald [1] classified all hypohamiltonian graphs with fewer than 18 vertices: there
is one such graph for each of the orders 10, 13, and 15, four of order 16, and none of
order 17 (Figure 1.4). Moreover, hypohamiltonian graphs exist for all orders greater
than or equal to 18.

14 Introduction

(d) H16<1 (Lindgren graph) (e) H16/2 (f) H16/3 (Sousselier (g) H16j4
graph)

Figure 1.4: All hypohamiltonian graphs up to 17 vertices

Until 1976, it was unknown if planar hypohamiltonian graphs exist. Thomassen
[115] in 1976 showed there are infinitely many of them. The smallest amongst them
has order 105. In 1979, Hatzel found a planar hypohamiltonian graph on 57 vertices
[53]. This result was improved to order 48 (C. Zamfirescu and T. Zamfirescu [126] in
2007), and 42 (Wiener and Araya [123] in 2011). These four graphs are depicted in
Figures 1.5(a), 1.5(b), 1.5(c) and 1.5(d), respectively. In Chapter 5 we break this record
by finding 25 graphs on 40 vertices one of which is presented in Figure 1.5(e) and the
complete set of them can be found in Figure 5.6.

Grinberg in 1968 [48] proved the following necessary condition for a plane graph
to be Hamiltonian which is a very useful criterion for showing a graph is not Hamil­
tonian.

Theorem 1.13 (Grinberg's Theorem [121, Theorem 7.3.5]). Given a loopless plane graph
with a Hamiltonian cycle C and f (f[) i-faces inside (outside) of C, we have

2 (‘‘ - 2) (/ i - / /) = 0 .

Proof. This theorem can be proved by induction on the number of edges. A Hamil­
tonian graph of order n has at least n edges (the cycle graph). So for the base case of
induction we use cycle graphs. A cycle graph, Cn has two faces of size n which
are on different sides of its Hamiltonian cycle. In this case]A(z — 2)(/, — //) =
(n — 2)(1 — 1) = 0. For the induction hypothesis we assume that for every planar

§ i-5 Hamiltonian and Hypohamiltonian Graphs 15

(a) |V| = 105 [115] (b) |V| = 57 [53] (c) |V| = 48 [126] (d) |V| = 42 [123]

(e) |V| = 4 0 [64]

Figure 1.5: Records for planar hypohamiltonian graphs

Hamiltonian graph G of order n with n ^)E(G)| < m, ^ ;(i — 2)(f G — f - G) = 0.
Now let G' = (V, E) with \ V\ = n and \E\ = m > n be a planar Hamiltonian graph

and C be a Hamiltonian cycle of G'. As m > n, C has a chord e. Thus, G = G'\e is
Hamiltonian as C is one of its Hamiltonian cycles. Assume F\ and F2 are the faces
on opposite sides of e (in G') and F3 be the result of merging these two faces after
removal of e (in G). Also considering f \ = \Fi\, f 2 = IF2I and f s = |F31, we have
f \ + f i = h + 2.

Without loss of generality we can assume F3 is on the side of C which is counted
towards /^ . So as e is a chord of C, Fi and F2 fall on the side that is counted in

and too. By the induction hypothesis — 2) (f G — f [c) = 0. Now for G'
we have V,(i - 2) { f ? - f f) = D,(i - 2) (f j3 - f ' G) + (/, - 2) + (/2 - 2) - - 2) =
0 + (/i —2) + (/2 —2) —(/3 - 2) = / 1 + / 2 —/ 3 —2 = 0. □

Although Grinberg's condition has a very simple proof it is very useful for show­
ing a planar graph is not Hamiltonian. For example all four previous records for
planar hypohamiltonian graphs (Figures 1.5(a), 1.5(b), 1.5(c) and 1.5(d)) have the
property that in each of them every face except one (called the exception face) has
size equal to 2 in modulo 3. So if they were Hamiltonian ^T(z — 2)(/,■ - /•) = 0, but
taking this equation modulo 3, all terms of the sum but the one for the exception face
vanish because their multipliers are equal to zero modulo 3. Thus, having t equal
to the size of the exception face (t ^ 2 mod 3), we have (t — 2)(1 — 0) = 0 mod 3

i6 Introduction

which is a contradiction and shows that they are not Hamiltonian.
Several studies have shown that there infinitely many hypohamiltonian graphs:

Lindgren 1967 in [77]; Bondy in 1972 [10]; Chvatäl in 1973 [26]; Thomassen in 1974
[114],[115] and [117]; Doyen and Van Diest in 1975 [30]; Collier and Schmeichel 1978
[27]; etc. We explain two operations defined by Thomassen [117, 114] in more detail
here as we use them later in Chapter 5.

Definition 1.14 ([117]). Let G be a plane graph with a 4-cycle x,y,z, t, then Thn(G; x,y,z, t)
is the graph obtained by removing the edges xy and zt then adding a 4-cycle x',y',z!, t' and
edges xx', yy', zz! and tt' (Figure 1.6). The set of all plane graphs obtained from G using
Thn is denoted by ThH(G).

(a) (b)

Figure 1.6: Thomassen's operation to expand plane hypohamitonian graphs [117]

Lemma 1.15. lfG is a planar graph with a 4-cycle x,y,z, t, then Thn (G;x,y, z, t) is a planar
graph too.

Proof. Let G' = TT\u(G)X,y,z,t), we have | VG>\ - |EG'I + |FG'| = (|VG| +4) - (|EG| + 6) +
(I Fq I + 2) = I Vg I — I Eg I + I Fg I which shows that the embedding of G' is planar too. □

Lemma 1.16 ([123, Lemma 4.3]). If G is a planar non-Hamiltonian graph with a 4-cycle
x,y ,z,t, then G' = T\\y[(G-,xf y ,z,t) is a planar non-Hamiltonian graph too.

Proof. Planarity of G' comes from Lemma 1.15. Now assume to the contrary that
Thn(G; x, y, z, t) is Hamiltonian and CG/ is one of its Hamiltonian cycles. We construct
a Hamiltonian cycle CG for G based on CG/ as follows. To cover x', y', z! and t', we
have one of these cases for CG/:

1. Cg' contains x ,x ',y ',y and t,t',z',z: In this case CG is obtained from CG/ by
replacing x ,x ',y ',y and f,f',z ',z with x,y and t,z, respectively.

2. Cg1 contains x, x', t', z!, y', y\ In this case CG can be constructed from CG' by
replacing x ,x ', t',z!,y',y with x,y.

3. Cc contains t, t'f x',y',z',z\ In this case CG is formed from CG' by replacing
t, t', x ' , y', z', z with t, z.

Clearly CG is a Hamiltonian cycle for G which is a contradiction. Thus G' could not
have been Hamiltonian. □

§i.5 Hamiltoiuan and Hypohamiltonian Graphs 1 7

Theorem 1.17 ([123, Lemma 4.4]). If G is a planar hypohamiltonian graph with a \-cycle
x , y, z, t and all vertices of {x,y, z, t} are 3-valent, then G' = Thn(G; x ,y , z, t) is hypohamil­
tonian too.

Proof. We show that for every v e V(G'), G '\v has a Hamiltonian cycle using two
cases:

• v e {x ',y ',z ',t'} : Without loss of generality assume v = x '. As G is hypohamil­
tonian G \t has a Hamiltonian cycle CG and dG\t(x) = 2 so CG contains the edge
xy. Now replacing xy in CG with x, t, t', z', y ', y we can find a Hamiltonian cycle
for G'\v.

• v e V(G): Let CG be Hamiltonian cycle of G\v. After removal of v in G', in
the remained graph, we have at least one of the 3-valent vertices of { x ,y ,z ,t j
without loss of generality we can assume x is such a vertex. Now the fact that
dG(x) = 3 enforces that at least one of edges xy and/or xt is in CG. Depending
on membership of xy or xt in CG, we can replace that edge with x ,x ', t ' ,z ' ,y ' ,y
or x, x', y 'r z!, t', t to make a Hamiltonian cycle for G'\v.

Also by Lemma 1.16, G' is planar and non-Hamiltonian. □

Definition 1.18 ([114]). Assume for i = 1,2,3,4, G; is a graph which has a 3-valent vertex
Xi . Also let y \ ,y \ ,y \ be neighbours of X j and H j = G,-\Xj. Then Th.i(G\, X\,y\,y\,y\, ■ ■ ■ ,
G4, x4, y \, y \, 1/4) is the graph obtained from identifying pairs (y \,y \) and (y \,y \) into Zi and
Z2, respectively and adding edges y \y \, y \y \, y \y \ and y \y \. The set of all graphs obtained
from G\, Gi, G3 and G4 using T hj is denoted by Thx(Gi, G2, G3, G4) (Figure 1.7).

Theorem 1.19 (Extension of [114, Lemma 3.1]). If G\, Gz, G3 and G4 are hypohamil­
tonian each of which has at least a 3-valent vertex, then every G' e Thx(Gi, G2, G3, G4) is
hypotraceable. Moreover, if all G,s are plane graph, G' is a plane graph too.

Proof. We omit the proof of the first part which is exactly the same as [114, Lemma 3.1]
So for the second part assume the G,s are all plane graphs.

IVg' I - I E g'I + IFg'I

E (K - | - l) - 2
1=1

S (| E g, - 3 |) + 4 +
.1 = 1

S (I Fg, | - 3) + 4
. 1=1

Z [Ng.I - |EC,.| + |fg,| - 2] + 2
1=1

2

Which shows G' is a plane graph. □

i8 Introduction

ThT(Gi, xi, y \, y\, y\, • • • , G4, x4/ y\, y\, y \)

\

Figure 1.7: Thomassen's operation to create hypotraceable graphs [114]

1.6 Thesis Outline

In Section 1.1 of this chapter we introduced the generic terminology which is used in
the thesis including what graphs are and some properties of them like the classic def­
inition of isomorphism for graphs. Then, in Section 1.2 we introduced planar graphs

§1.6 Thesis Outline *9

which can be drawn on the plane and we referred to their drawings as plane graphs
and later mentioned three different isomorphisms for plane graphs. In Section 1.3
we described recursive generation in mathematical form and then in Section 1.4 dis­
cussed how isomorphic copies can be discarded in the generation process and par­
ticularly Section 1.4.1 included canonical construction path which is the method used
mainly in this thesis for the purpose of eliminating isomorphic copies.

In Chapter 2, we introduce our first generator for the class of ^-angulations which
are a family of plane graphs in which every face is surrounded by exactly k edges.
This family has been targeted for small values of k by many researchers namely for
k = 3 [11, 21, 20, 76, 88, 89, 90, 7, 5, 25, 6, 22], k = 4 [8, 91, 18, 87, 20] and k = 5
[52]. But for k > 5 no generator exists in the literature. We fill this gap by presenting
a recursive generator for all k > 4. Section 2.2 contains the theoretical aspects of
the generator, later in Section 2.3 we discuss how this generator is implemented,
adapted to the canonical construction path method (Section 2.3.1) and optimized
(Sections 2.3.2 and 2.3.3).

Chapter 2 discusses how we can generate every graph whose faces have k edges,
we extend this family in Chapter 3 to the graphs whose faces edge count belong to a
custom set {/ci,/c2, • • • , kt}. The software plantri is the only algorithm in the literature
which is able to generate plane graphs with given maximum and minimum face size
[20], but it does not allow gaps in the face sizes. Our approach, on the contrary, does
support every given set of face sizes. Section 3.2 discusses the theoretical proofs to
show the correctness of the generator. Then in Section 3.3 we discuss how this gen­
erator can be implemented, followed by adapting to the canonical construction path
method (Section 3.3.1) and optimization of the generator (Sections 3.3.2 and 3.3.3).

Finding the smallest planar hypohamiltonian graph has been a challenge in the
literature since 1976 [115] after it was conjectured that there is no such graph in 1973
[26]. The smallest one found in 1976 has 105 vertices, this result has been improved
since to 57 [53], 48 [126] and to 42 [123] in 2011. We improve upon these records by
showing that there are 25 planar hypohamiltonian graphs on 40 vertices. One of the
families of planar graphs which have been targeted in the literature for finding small­
est planar hypohamiltonian graphs is the family of Grinbergian graphs (Section 5.3)
which includes all previous found records. We prove that no smaller hypohamilto­
nian graph exists in this family by showing that the smallest hypohamiltonian graphs
in this family have 42 vertices and there are exactly 7 such graphs. We also introduce
another family of graphs called 4-face debatable graphs (Section 5.4) which includes all
Grinbergian graphs and show that the 25 graphs on 40 vertices which we have found
have the minimum order in this family as well.

Fullerenes are a family of molecules which is entirely composed of carbon atoms
in which each carbon atom is bound to three others. Therefore, fullerenes can be
modelled as cubic graphs and in particular their graphs are all 3-connected and
planar as well as having the property that all faces are of size 6 except for exactly
twelve 5-faces. The generation of these structures has started in 1985 [72] and there is
a famous conjecture regarding fullerenes, called the face-spiral conjecture which claims
that the drawing of fullerenes can be unwound in a spiral manner [81] starting from

20 Introduction

one face and circulating around that face until all faces are traversed. This conjecture
has been used for one of the generators which later was proven that do not generate
exhaustively after finding a fullerene on 380 vertices with no face-spirals. Recently,
it is proven that 380 is the minimum size of a counterexample [17, 47]. In Chapter 6,
we extend the scope of this conjecture from 3-connected cubic (5,6}-angulation to
all 3-connected cubic connected planar graphs whose face size are at most 6. These
graphs can be partitioned to 19 different families based on the multiplicity of faces
whose size is at most 5. We have found that the conjecture does not hold for these
families by finding counterexamples. We showed that the counterexamples for 11 of
these families are minimal by an exhaustive search.

Chapter 2

Recursive Generation of
E-Angulations

2.1 Introduction

A simple plane graph with the maximal number of faces is a triangulation (otherwise
we can add a chord to increase the face count). Thus, in a plane graph \F\ ^ 2|E|/3.
If a simple E-regular graph is planar by Euler's formula, 2 = |V| — |£| + |F| ^ ||E | —
|E| + ||E | = |E |(| - 3). Therefore, simple plane E-regular graphs only exist for E =
3,4,5. Several studies considered generating different families of simple plane 3-
regular graphs both theoretically and implementation-wise [34,104, 4, 24, 21, 23, 20].
Simple plane 4-regular graphs are also considered in different studies [79, 75, 87,18].
The next family, i.e., 5-regular is targeted in [29, 51, 52].

Simple E-angulations are the plane graphs in which every face size is E. Every
simple E-angulation is the dual of a plane E-regular graph (that may not be sim­
ple). Although we have the limit of E < 6 for the existence of simple plane E-regular
graphs, there is no such limit for simple E-angulations. Generation of E-angulations
is studied for triangulations (E = 3) [11, 21, 20, 76, 88, 89, 90, 7, 5, 25, 6, 22], quadran-
gulations (E = 4) [8, 91, 18, 87, 20] and pentangulations (E = 5) [52]. But for E > 5
there is no result in the literature. In this chapter, we introduce a generic recursive
generator for the following families of E-angulations with E ^ 5.

• 2-connected simple

• 1-connected simple

• 1-connected with S > 1

Tables 2.1, 2.2 and 2.3 show the number of E-angulations for 5 ^ E ^ 10 up to
some orders that we have managed to generate and the list of actual graphs can be
downloaded at [61].

Instead of the traditional definition of graphs as pair of vertices and edges, we
have defined a graph G as an incidence structure G = (V, E, I) in which V and £ are
vertices and edges of G and I Q V x E is its incidence relation. This definition allows

22 Recursive Generation of k-Angulations

us to discuss edges independent of vertices and changing the labels of vertices does
not change their incident edges.

2.2 Generation of /c-angulations

In order to generate the set of /c-angulations, recursive generation can be used. We
define the set T as the set of (/c,/)-angulations. Also, we introduce three pairs of
operations which we will use to define the expansions and reductions. For the sake of
clarity we define the operations on the directed version of the actual graphs obtained
from their rotation system. The first operation is e\ (Figure 2.1(a)) which attaches
a new 1-valent vertex to an existing vertex of the graph. As a result the size of
the face containing the new vertex is increased by 2. The second operation is e-i
(Figure 2.1(b)) which expands a (k — 2)-face into a k-face by splitting a vertex into two.
The third operation is ê> (Figure 2.1(c)) which takes a (k — 2)-face (F in the figure)
whose vertices are all adjacent to a single vertex x. Then it converts the (k — 2)-face
into a k-face by adding an extra vertex and rearranging its neighbourhood (H\ and
H2 could be faces or separating cycles). Mathematically, the rearrangement is made
of modification of rot of x, y, 2 , t and adding vertex u. For example assuming rot(z) =
(^2, • • • ,gir' ' ' rZ 1 = inv(gi), • • • ,Zf = zzft) in the left hand side of Figure 2.1(c), after
expansion we have rot(z) = (/13, • • • , e \ , Z\ , - • • ,zf). These three operations have the
following preconditions:

• Qj(G; x, y,z):

- y and z are consecutive neighbours of x.
- y and z could be the same vertices if dc{x) = 1.

• Ce2(G-,x,y,z,t)\

- x, z and t are distinct.
- x is adjacent to y.
- z and t are consecutive neighbours of y.

• Ce3(G;x,y,t,z,w):

- w, z and t are consecutive vertices of a face F.
- Every vertex of F is adjacent to x.
- y is adjacent to x, z and w.

Now we can define the expansions £1, £2 and £3 as:

Ei(G) = {e\(G; x, {y,z}) : x,y,z e V{G) a Cei(G;x,y,z)} (2.1)
£2(G) = {c2(G ; x , y ,{z,t}) : x,y,z , t e V(G) a Ce2(G-,x,y,zf t)} (2.2)
£3(G) = (c3(G ; x , y, w,z,t) : x ,y ,w ,z , te V{G) a Ce3(G;x,y, w , z, t)} (2.3)

§2.2 Generation of k-angulations 2 3

r2{x, {y,u})
(b)

r-i (x, y,u,z)
(c)

Figure 2.1: Operations to convert a (k — 2)-face to a k-face and vice versa

Defining graphs based on incidence structure allows us to say that each of these
operations only affects one face and leaves the rest unchanged. For example consid­
ering £3, we need to add a vertex and one edge (two directed edges). If we add the
two new directed edges inside the face F (Figure 2.1(c) on the right) as the directed
edges f \ = wy and /2 = yu, then the rest of the faces remain unchanged. So we can
guarantee that the only affected face is F. The same idea is applicable to e\ and ê as
well.

Each application of Ei, £2 and £3 to a graph increases the size of one face by 2
and does not change the face count. Therefore, if the corresponding reductions are
applied enough times on a /c-angulation all faces eventually can be reduced to either

24 Recursive Generation of k-Angulations

3-faces or 4-faces depending on the parity of k.

Lemma 2.1. Assume G is a simple plane graph with a vertex v of degree one in a k-face F.
Then G' = r\ (G; u, x) is a simple plane graph with the same faces as G except for F which is
converted to a (k — 2)-face. As the result of the reduction, G' has at most the same number of
1-valent vertices as G.

Proof The only face that is affected by the operation is F which will lose two directed
edges after the operation. Thus its size will reduced to k — 2. The simplicity of G'
is trivial as removal of a vertex does not add either loops or multiple edges. Also
G' is planar because the number of vertices and edges are reduced by one while
the number of faces is unchanged so |V(G')| — |E(G')| + |F(G')| = |V(G)| — |E(G)| +
|E(G)|.

Also dG>(x) = dG(x) — 1 and Mw e V (G \x) d'G(w) = dc(w). So after removal of u,
the number of 1-valent vertices does not increase. □

Lemma 2.2. Assume G is a non-trivial simple plane graph and F is a t-face (t > 4)
with vertices V\,V2 , •• • ,Vt in clockwise order. Then if the following conditions hold, G' =
r2 (G;x, {w ,u }) is a simple plane graph with the same faces as G except for F which is con­
verted to a (t — 2)-face. Also the number of 1-valent vertices of G and G' are the same.

1. dG(x) > 2.

2. x is the only common neighbour of w and u.

3. w and u are not adjacent.

Proof. Consider the graph G' = r2 {G; x, {w,u}). We first show that G' does not have
any multiple edges. Assume to the contrary that there are two edges between v and
p. At least one of v and p should be in y because the operation does not add an edge
to any other vertex. Without loss of generality we can assume p = y. After applying
the operation we have N G>(y) = N G(w) u NG(u). So to have a multiple edge with an
endpoint on y there should be a vertex which is both in N G(w) and NG(u). But by
the assumption of the lemma NG(w) u NG{u) = {*} and as we merge darts rib and
xu, there is no multiple edge in G'. Also G' does not have any loops because the only
possibility is having a loop on y. But by the assumption, w and u are not adjacent in
G so G' is simple.

The operation maintains the planarity, since the only affected face after the op­
eration is F which is converted to a (t — 2)-face. So the number of faces remain
unchanged, but the numbers of vertices and edges are reduced by 1. So |V(G')| —
IE(G')I + |F(G')I = |V(G)| — |E(G)| -I- |F(G)| which means it is still planar. Moreover,
the number of 1-valent vertices of G' is the same as G because dG/(x) = dG(x) — 1 ^ 2,
dGf y) > dG(w) and Vu e l/(G'\{x,i/}) d'G(v) = dG{v). □

Lemma 2.3. Assume G is a non-trivial plane graph and F is a t-face (t > 4) with vertices
v \ , v i , - .. , v t in clockwise order. If there is a vertex x that is adjacent to all the vertices of
V(F), then G' = r3 (G;x ,w,y ,u , z) is a simple plane graph with the same faces as G, except

§2.2 Generation of k-angulations 2 5

for F which is converted to a (t — 2)-face. Also the number ofl-valent vertices of G' and G
are the same.

Proof It is clear that no loops are created. To show that G' does not have any multiple
edges, let a be a vertex inside the cycle H\ (if there is any). After the operation the
cyclic ordering of the neighbours of a would be the same except for the fact that any
occurrence of x, 2 and u (if existed) will be replaced by 2, w and y; respectively. The
new edge between a and w does not make multiple edges because they were not
previously adjacent (by the Jordan curve theorem). Also if there are multiple edges
in G' between any of the pairs (a,y) or (a, z) there should be the same situation for
(a,z) or (a,x) in the original graph which is contradiction. The same proof applies
for vertices inside the cycle Hz- Apart from these vertices the fact that no multiple
edges could be created for vertices x, y, w and 2 is trivial and the rest of the graph is
the same as G. So the graph remains simple.

The operation 03 maintains the planarity, since the number of faces remain un­
changed, but the numbers of vertices and edges are reduced by 1. Finally, the only
modified vertices are x, y, 2 and w, but all of them have degree at least 3 in G'. So
the number of 1-valent vertices remains the same. □

Lemma 2.4. Assume G is a non-trivial plane graph with no \-valent vertex and F is a t-face
(t > 4) with t distinct vertices, such that there is no vertex of G which is adjacent to all
vertices ofV(F). Then there are vertices x, w and u in F such that G' = r2 {G;x, {w ,u}) is a
plane graph with the same faces as G except for F which is converted to a (t — 2)-face.

Proof. Let D = {v e V(F) : \N(v) n V(F)\ > 2}. Assume the vertices of F in clockwise
order are v\,vz, • ■ • ,v t (indices are chosen from Zj).

If D is not empty then there is a vertex of F which is adjacent to at least three
vertices of F. Without loss of generality assume V\ is that vertex. As G is simple,
v\ has a neighbour in V(F) apart from vz and vt/ say Vj (Figure 2.2(a)). Now by
the Jordan curve theorem, vz and v are neither adjacent nor have any common
neighbour apart from V\ . So by Lemma 2.2, r z { G ; v i , { v z , v t }) is applicable.

Figure 2.2: Cases where vertices are distinct and they do not share a neighbour

2 6 Recursive Generation of k-Angulations

If D is empty consider the set N = {vz e V{F) : N (vz) n N (vz+2) 7 ̂ {uz+i}} . If
N = 0 , any two vertices uz and vz+ 2 of F are not neighbours and do not have any
common neighbour apart from vz+\. In this case as G is not trivial there should
be a vertex vz of degree more than two and by Lemma 2.2, r2 (G ;vZ/ {vz+ i,v z- i }) is
applicable.

So the remaining case is when D = 0 and N ^ 0 . Assume vz e N and x ^ vz+\
is a member of N (vz) n N (vz+2) (Figure 2.2(b)). By the assumption of the lemma
x cannot be adjacent to all vertices in V(F). So A = {v e V(F) : x e N (v)} and
B = V (F)\A are both non-empty. Thus there is a vertex va e A such that va+\ e B. In
this case, by Jordan curve theorem, va+2 and va do not have any common neighbour
and are not adjacent either. So by Lemma 2.2, r2 (G; va+\, {va,v a+2 }) is applicable. □

Lemma 2.5. Assume G is a non-trivial plane graph with no 1-valent vertices and F is a t-face
(t > 4) with |V(F)| < t. Then there are x ,w ,u e V(G) such that G' = ^ { Gj x , {w,u}) is a
simple plane graph with the same faces as G except for F which is converted to a (t — 2)-face.

Proof Assume vertices of F in clockwise order are V\,V2, - . . ,Vt (indices are chosen
from Z t). By the assumption of the lemma there are indices i and j such that u, = Vj,

d(vj) > 2 and i ^ j. Then by the Jordan curve theorem Vj+ \ and U;_i do not have any
common neighbour apart from u, and they cannot be adjacent (see Figure 2.3 noting
that possibly u,-+1 = V j-\ or Vj_\ — Vj+1). So by Lemma 2.2, r2(G;u,-, {u!_1,uI+1},u,_i)
is applicable. □

Figure 2.3: Cases where at least two vertices are the same

Corollary 2.6. Let G be a non-trivial plane graph with no 1-valent vertex and F be a t-face
(t > 4) of G, then F can be reduced by r2 or there is a vertex x adjacent to all vertices of F.

Proof Assume V\,V2, • • • ,Vt are the vertices of F in clockwise order and there is no
vertex adjacent to all of its vertices. If there are two distinct indices i and j such that
Vj = Vj , by Lemma 2.5, we can apply r2 on F to convert it to a face of size t — 2;
otherwise by Lemma 2.4, r2 is applicable. □

Theorem 2.7. Any non-trivial plane graph G having a t-face F with t > 4 is reducible by at
least one of e\, C2 and e$ to a simple plane graph with the same faces as G except for F which
is converted to a (t — 2)-face.

§2 .2 Generation of k-angulations 2-7

Proof. If F has a 1-valent vertex, by Lemma 2.1, e\ can be applied; otherwise if there
is there is no vertex adjacent all vertices of F, by Corollary 2.6 it can be reduced by 62-
In the remaining case by Lemma 2.3, we can use 63, which completes the proof. □

Theorem 2.8. Any non-trivial plane graph G with no l-valent vertex but a t-face F with
t > 4 is reducible by 62 or 63 to a plane graph with the same faces as G except for F which is
converted to a (t - 2)-face.

Proof Similar to the proof of Theorem 2.7. □

Now assuming to be the set of all [k\, • • • , k t}-angulations having / faces in
which all k\ are at in the interval [3,k] and have the same parity as k, we have the
following results:

Theorem 2.9. The triple (l f , £ , U p) recursively generates the set of all (k, f)-angulation
in which (i f ,£) is either (Qf u {Q}, {£1, £2}) or (Tf u {Q}, {£1, £2, £3 }) depending on
the parity ofk. Moreover, each graph is generated with f x [^ J expansions.

Proof. Each application of Theorem 2.7 on a t-face (t > 4), converts that face to
a (t — 2)-face while keeping other faces unchanged. So applying r\, r2 and /o r r$
to the original graph [^ J times, on each face converts all F-faces to triangles or
quadrangles. So (i f , {Ei, £2, E f\,U kv -) generate all (/c,/)-angulations but for even
values of k we want to show that {£1, £2 } is enough. To show this property we prove
that for even values of k, every graph in Uk,f is bipartite and then we use that to show
63 is not used in the generation process.

Face Count
k

5 6 7 8 9 10

2 3 4 16 28 114 233

3 - 18 - 875 - 50449

4 46 222 10892 70633 2874966 21826951

5 - 3732 - 7884253 -

6 4305 88252 41983898

7 - 2361465 - -

8 830420 69105036

9 - - -

10 211549760

Table 2.1: Number of connected (£,/)-angulations

2 8 Recursive Generation of k-Angulations

k fLet k be an even number, to prove that every graph in Up is bipartite we use
induction on the summation of face sizes of the graphs. The base case is well-known
result that simple quadrangulations are bipartite. For the induction hypothesis, we
assume that every graph in Uk̂ with face size summation up to t is bipartite. Then
let G e Up with face size summation equal to t + 2 which has a face Fq that is
reducible by r3 . Assume G' = r3 (G ;x,y,u ,z) which reduces Fq to a Fg>. N ow by
definition of Ce3, every vertex of F& is adjacent to x that means G' has a 3-cycle and
so is not bipartite which is a contradiction. Therefore, G cannot be reduced by r3

which means (I?, {E\, generates all (/:,/)-angulations with even k. □

Corollary 2.10. All 2k-angulations are bipartite.

Corollary 2.11. All {2k\,2k2, ■ ■ ■ , 2k t)-angulations are bipartite.

Theorem 2.12. The triple (1? ,£,U p^) recursively generates the set of all (k, f)-angulation
with no l-valent vertex in which (l f, £) is either (Qy\{P3 } u {Q}, { £ 2 }) or (7/ u {Q}, {£2, £3 })
based on the parity of k. Moreover, each graph is generated with f x [^ J expansions.

Proof. Similar to the proof of Theorem 2.9. □

Face Count
k

5 6 7 8 9 10

2 1 1 1 1 1 1

3 - 1 - 1 - 1

4 3 5 6 8 10 12

5 - 12 - 31 - 68

6 30 89 203 454 864 1630

7 - 600 - 6608 - 41485

8 855 6139 32402 130840 544579 1577516

9 - 66481 - 3118563 -

10 47698 792680 3256885626

11 - 9813724 - -

12 3324907

13 - - -

14 269714526

Table 2.2: Number of connected (£,/)-angulations with Ö > 1.

§2.3 Implementation 29

Theorem 2.13. The set of all 2-connected (k, f)-angulations is generated recursively from the
triple 0 , £ , Upf) in which { l f ,£) is either (Q/\{P3} u {Q}, {E2}) or (7/ u {Q } , {E2/ E3})
depending on the parity ofk. Moreover, eflc/7 grap/2 is generated with f x [EGlj expansions.

Proof Immediate result of Theorem 2.12. □

Face Count
k

5 6 7 8 9 10

2 1 1 1 1 1 1

3 - 1 - 1 - 1

4 3 5 6 8 10 12

5 - 12 - 34 - 75

6 30 89 221 491 977 1832

7 - 600 - 7327 - 48308

8 855 6139 37033 146631

9 - 66481 - -

10 47698 792680

11 - 9813724 - -

12 3324907

13 - - -

14 269714526

Table 2.3: Number of 2-connected (/c,/)-angulations

2.3 Implementation

Theorems 2.9, 2.12 and 2.13 in conjunction with the canonical construction path
method [83] can be used to generate all non-isomorphic E-angulations. To employ
CCP, we need to define some terms which will be introduced in Section 2.3.1.

2.3.1 Adapting the Generator to CCP

Let the symmetric group of degree n be S„. We take the group T = Si x S2 x S3 x • • •,
where the action on a graph G is such that the factor S„ permutes the vertices on
graphs of order n.

30 Recursive Generation of k-Angulations

k fLet G be the set of all labeled plane graphs in UfJ and G e G, we define the set
of lower objects of G, denoted by L(G), as the union of disjoint sets L\(G), L2 {G) and
L3(G) defined as follows:

Li(G) — {{G, t,x) : r\{G’, t,x) e Qj (2.4)
Li{G) = {(G,x,{w,u}) : r2(G;x, {w,u}) e Qj (2.5)
L3(G) = {(G,x,w,y,u,t) : rz{G)x,w,y,u,t) e Qj (2.6)

Similarly, we define the set of upper objects of G, written as 11(G), to be the union of
disjoint sets U\(G), U2(G) and U3(G) defined as follows:

Ui(G) = {(G,x,{y,zj) : e1(G;x, {y,z}) e Gj (2.7)
U2(G) = {(G,x,y,{z,t}) : e2(G;x,y, {z, t}) e G) (2.8)
ü3(G) = {(G,x,y,z,t,w) : e2){G‘,x,y,z ,t, w) e G) (2.9)

Using these sets we define the set of all lower and upper objects denoted by
Ö = G\ u Gi u G3 and Q = G\ u £2 u ö3, respectively in which (/, = (JGeg U (G) and
Gi = U ggc? Ui(G). Also, we define the set of parents of an upper object G, denoted
by p(G), as follows. If G = (G,x, {y,z}) e G\, then p(G) is the set of all lower objects
(G',x',t') e G\ such that e \ (G',x',t') = G% for some g e T. For G e Gi<-> G3, p(G) is
defined in a similar fashion.

We also need to extend the action of T to the lower and upper objects. For each
lower or upper object, the action of g e T is defined as the tuple obtained by the action
of g on elements of that object. If an element of the tuple is a set, we act g on the
elements of the set. For example (G, x, {y, u})s = (GZ,xg, {y, u}g) = (G^,xg,{yg,ug}).

The orders of lower and upper objects are defined as the order of their graph
(first element). We call a function I whose domain is the set of lower objects an
invariant, if 1(1) = 1(1%) for every More specifically, an invariant c which maps
lower objects to vectors with elements in a totally ordered set with the criteria that
c(h) = c(l2) e T : = l2 is called a canonical code for the lower objects. Using
the lexicographic ordering for comparing canonical codes, we define a function m for
labeled plane graphs as m(G) = {/ e L(G) : V/' e L(G) : c(l) ^ c(l')j, i.e. m(G) is the
set of all lower objects in L(G) with the minimum canonical code, members of m(G)
are called canonical reductions of G.

Now we can employ CCP using these definitions and by Corollary 1.12 we can
generate all families that were discussed in Section 2.2 without isomorphic copies.
There are generic ways to optimize the running time of the generation which are in
Lines 7 and 11 of the algorithm. Firstly, we can reduce the time required for the
computation of m and then we can remove upper objects which are not going to be
accepted (passing the condition of Line 11 of Algorithm 1.1). These two approaches
are discussed in Sections 2.3.2 and 2.3.3.

§2.3 Implementation 31

2.3.2 Optimization of Canonical Code Comparison

The first issue for the implementation is how to define the canonical code for the
lower objects. For this purpose we use a deterministic BFS code defined in [23] (See
Definition 4.9 for the details) which we denote by Bcode(G;e). This code has the
property that Bcode(G;e) = Bcode(G/;c/) if and only if there is an order-preserving
isomorphism between G and G' which maps the dart e of G to the dart e' of G'. Note
that any function having this property can be used for the rest of discussion.

To employ the BFS code for plane isomorphism we have to consider the mirror
image of graphs as well. So we define

BC (G;e,d) =
Bcode(G;e), d — 1

Bcode(Mir(G);e), d = — 1

In the first attempt we use the BFS code to define a function C\ for canonical
coding. Firstly, for a l e G we define W(/) as follows:

• If / = (G, u, x) e Q\\ Let e = we define:

W(l) = min{BC(G; e, 1),BC(G; e, —1)}.

• If / = (G,x, {w, u}) e @2 ’ Assume e\ = xib and ei = x i i . Then taking d = 1 if
cr(e\) = e2, and d = — 1 otherwise, we define:

W(/) = mm{BC{G;el fd),BC{G;e2,-d)}.

• If / = {G,x,w,y,u,z) g C,2>: Assume e\ = yu and e2 = üi. Then taking d = 1 if
(p(e 1) = e2 and d = — 1 otherwise, we define:

W(/) = BC{G;eh d).

Finally, we define the canonical code C \ such that for / g L,(G), Ci (/) = [z, W (/)]. In
practice comparing lower objects using C \ could be very slow as the complexity of
computing the code is O(n). To reduce this time we define some easily computable
invariants / i , / 2, • • • ,/f and use them in combination with w to define codes of the
form [/1 (/)/ f i (l) r ■ ■ • W(/)]. Then based on the lexicographic definition of code
comparison in Chapter 1, we can check the invariants first and only compute w, only
if all invariants gave the same values.

Assuming F(l) to be the face affected by the application of the reduction pre­
served in /, we define the following invariants. We did not specify many invariants
for £3 because it is used negligibly often in comparison to the other operations in

32 Recursive Generation of k-Angulations

practice,

W)

m

Ia(l)

W)

d(x), l = (G, u,x) e Q\

d(x), l = (G,x,{w,u}) e Q2

0, otherwise

min{d(y),d(z)}, l = (G,u,x) e Q\ a {xy,x%} = (cr(Tw),(7_1(xw)}

min{d(w),d(u)}, l = {G,x,{w,u}) e Q2

0, otherwise

of darts of F(l) whose inverse is in k-faces, / £ Q3

0, otherwise

1 , l E Q\

2, l eg2

3, l e g 3

If{l) = size of F(l)

Finally, we define c(l), the canonical code of a lower objects /, as

Amongst the invariant defined above, If plays the most important role for k > 6.
Let G be a graph in the process of the generation that has exactly one face F of size
in the interval [5,k — 1]. Then by Theorem 2.7, F can be reduced by either e\, C2 or
C3. In such case If makes sure that F is the selected face, so we can filter reductions
made from other faces and the canonical reduction is one of the reductions of F. This
rule guarantees that all intermediate graphs have at most one intermediate face i.e.
a face which is neither a F-face nor a triangle/quadrangle depending to the parity
of k. Thus, we can fix t in each step and only look for the reductions on f-faces.
Then, the intermediate graphs can only be {(3,/i), (t, 1), (A:, /I2)}-angulations and this
can reduce the number of intermediate graphs.

For example, Figure 2.4 shows how much lf(l) filters better than —If (l) for (9,8)-
angulations. In this case the total number of intermediate graphs for C\, (395204638)
is less than half of ca (807769744). Note that ca makes sure that we expand all faces
from triangles to 5-faces, then expanding all to 7-faces and finally to 9-faces. Also
not having If(l) at all is trivially worst than —//(/) because removing it means that
in each step every f-face with t < k can be expanded and this increases the number
of intermediate graphs.

§2.3 Implementation 33

ca(l) = [-If(l)>Ii(l)/ W(l)]
Cb(l) = [//(/U (/),W (/)]

7 8 9 1011 1213141516171819 20 2122 23 24 25 26 27 28 29 30
Number of Vertices

Figure 2.4: Number of intermediate graphs in generation of (9,8)-angulations with
two different canonical codes.

2.3.3 Optimizing by Looking Ahead

Considering Algorithm 1.1, let G be an upper object, G e /'(G) and G e L(G') i.e. G'
is a descendant of G. Now let H e m(G'). By definition of our canonical code, c(H)
has the minimum code amongst all lower objects of G' . So if c{H) is smaller than
c(G'), G will be rejected (See Line 11). In some cases, it is not very difficult to realize
that a child is going to be rejected without applying the expansion. Thus another
type of optimization which can be used is to avoid making children if they are not
made from the inverse of their canonical reduction. This optimization can be done
by removing unnecessary upper objects from A.

The first part of the canonical code c is the invariant if. Let Fq be the face of
G which is expanded by G, ¥& be the corresponding face in G' and Fh be the face
reduced by H. Now if \Fq/\ > \Fh \, then c(G') > c(H) and G will be rejected. So
G can be accepted only if there is no other face Fh such that \Fq\ — 2 > \Fh \ > 4;
otherwise Fh is reducible with a lower code. So we can remove the upper objects
from U(G) for which such Fh exists.

The second part of c is about prioritizing operations. Note that any usage of
e\ adds a vertex of degree one and other operations do not modify degrees of 1-
valent vertices, so as soon as applying e\ on a face, in every decedent (not necessarily

34 Recursive Generation of k-Angulations

immediate) of G, that face can be reduced by r\. Also applying e-i on a face guarantees
that no vertex can be adjacent to all vertices of the affected face. These properties also
allows to remove some ineffective upper objects.

Finally, we can use third part of c to see if choosing a specific expansion does not
have a canonical reduction in its parents. Assume an upper object G e U(G) expands
a face F using e. Also assume in the resulting graph, there is another face which is
reducible using inverse of e and has more k-face neighbours than F. This means that
G cannot be accepted so we can remove it from U(G). These three look-ahead rules
helps us to considerably improve the running time of the generation.

2.4 Conclusions

In this chapter we discussed how /c-angulations can be generated recursively from
triangulations or quadrangulations. Then we optimised the generator using a careful
definition of canonical code for the graphs used in the generation tree in addition to
looking ahead and discovering the children which are not going to be accepted and
pruning the generation tree.

We defined the recursive generation such that intermediate graphs are not re­
quired to belong to the target family (in this chapter /c-angulations). This approach
allowed us to start from triangulations or quadrangulations, but as we discussed
in Section 1.3, this extra flexibility impacts the performance. So to improve this
result one could think of another approach which starts with a set of irreducible k-
angulations and define the expansions such the intermediate graphs be /c-angulations
too. Such a generator is quite likely to be more efficient as potentially it could have
very few intermediate graphs in comparison.

A natural extension of this study is to generate to not only /c-angulations which
have only faces of size k, but also {/ci,/c2 , ••• ,/cf}-angulations which include plane
graphs with all face sizes in the set |/ci,/c2 , • • • ,/q}. This extension will be discussed
in detail in Chapter 3. We also hope the recursive generation discussed in this chapter
will inspire induction proofs for some properties of /c-angulations.

Chapter 3

Recursive Generation of Plane
Graphs based upon their Face
Sequences

3.1 Introduction

The face sequence of a plane graph is the non-increasing sequence of its face sizes. In
Section 2.2 we showed how to generate E-angulations recursively, but with the oper­
ations we designed we can go even further to recursively generate all plane graphs
whose face sequence contains only odd numbers or only even numbers. So we can
have the following theorems with the same proof as Theorems 2.9, 2.12 and 2.13.

Theorem 3.1. The set of all simple {(/ci,/i), • • • ,(k„ ,/„)}-angulations with all kjS having
the same parity can recursively be generated from the triple (X f E , U ^) in which f =
H = i f i and is either (Qf v { Q } ,{ £ i ,E2}) or (T f u {Ck},{E1,E 2,E 3}) depending
on the parity o fk\.

Theorem 3.2. The set of all simple {(E i,/i), • • • , {kn, /„)} -angulations with no 1-valent ver­
tex and all kjS having the same parity can recursively be generated from the triple (i f E, Ukp-)
in which f = H = i f i and & > £) is either (Qf \ {V3) u {Ck}, {E2}) or (Tf v { Q } ,{ £ 2/ E3})
based on the parity ofk\ .

Theorem 3.3. The set of all 2-connected simple {(E i,/i), • • • , (kn, f„)}-angulations with all
kjS having the same parity can recursively be generated from the triple (i f E,U \V) in which
f = H = i fi and (Zf ' £) is either (0 / \ { p3} u {Cjt}, {£2}) or (Tf u {Cjt}, {£2, £3 }) based on
the parity of k\.

In this chapter we show how these results can be extended to generate these
classes of simple {ki, ■ ■ ■ ,/:„}-angulation without any limit on the parities of kjS.

• 2-connected simple

• 1-connected simple

• 1-connected with 5 > 1

35

36 Recursive Generation of Plane Graphs based upon their Face Sequences

The generator that we introduced in Section 2.2 starts from triangulations or
quadrangulations as the irreducible objects and expands the faces to the desired
sizes and that is why we were able to easily extend them to Theorems 3.1, 3.1 and 3.3
because each operation just increased the size of one face by two without affecting
other faces. But in order to generalize these to plane graphs with given face sequence
with no parity restriction we need some extra operations which will be discussed in
Section 3.2.

3.2 Generation of Plane Graphs based on their Face Sequences

In order to extend Theorems 3.1, 3.1 and 3.3 to all simple {k\,- ■ ■ , kn}-angulations
without the parity limit our idea is to have a pre-generator to make {3,4}-angulations
and then use the same idea as Section 2.2 to extend 3-faces and 4-faces to build
odd and even sized faces, respectively. To generate {3,4}-angulations we start by
triangulations which can be generated very fast using plantri [20]. Then, we try to
add as many 4-faces as we need.

The first approach to generate {(3,/ß), (4, fa)}-angulations is to generate all (3,/3 +
2 • /jj-angulations and then remove some edges to make 4-faces. Removal of each
edge would merge two adjacent 3-faces into a 4-face. This approach could be useful
when there are few even sized faces in the desired family. But if we have many
even sized faces in comparison, this process becomes very time consuming because
each {3,4}-angulation can be generated from many different ways and the number
of intermediate graphs becomes too large.

To have an estimate of the ratio between the number of irreducible graphs (tringu-
lations) and the final ones ({3,4}-angulations with many 4-faces in comparison), we
used the ratio between number of triangulations and quadrangulations which can be
found in Chart 3.1. For example, for 21 vertices we have 28,615,703,421,545 triangu­
lations and just 57,974,895,671 quadrangulations.

So instead of removing edges to make 4-faces, we preferred to add new faces of
size 4 to graphs from the previous steps using the operations presented in Figure 3.2.
Let T be the set of all {(Aq,/i), • ■ • ,{k,uf n)}-angulations. We use the operations e\,
C2 and £3 with their inverse r\, r2 and 7*3 defined in Section 2.2 and Figure 2.1 plus
two new pairs of operations to achieve this goal. The first operation e$ takes a path
of length two and inflate it to add a 4-face (Figure 3.2(a)) and es rearranges three
separating cycles/faces H\, H2 and H3 as in Figure 3.2(b) to add a 4-face. The op­
erations C4 and es have these preconditions: These operations have the following
preconditions:

• Ce4(G;iv,y,z):

- w and z are neighbours of y.

- dc(w) > 1 and dc{z) > 1.

• Ce5(G}X,u,y,w):

§3-2 Generation of Plane Graphs based on their Face Sequences 37

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of Vertices

Figure 3.1: Ratio between number of simple triangulations and quadrangulations.

- x, y and w are pairwise adjacent.
- u is adjacent to x, y and w.

Now we can define the expansions £4 and £5 as:

£4 (G) = {e4 (G; {w,z},y) :w ,y ,zeV (G) a Cei{G'rw,y,z)} (3.1)
£4 (G) = {es{G',x,u,{y,w}) : x,y,w ,u e V{G) a Ce5 (G;x, u,y,w)} (3.2)

As graphs are defined as incidence structures and the faces as the orbit of darts,
each of the operations defined above only create/delete a 4-face and does not affect
the rest of faces.

Lemma 3.4. Assume G is a non-trivial simple {(3,/3), (4, fa)}-angulation with a 4-face
F = {wyzt) in which y and z are neither adjacent nor have a common neighbour. Also let
dG{iv),dc{z) ^ 3, then G' = r4 ({w7,z}, {y, f}) is a simple {(3, f 3), (4, f 4 —1)}-angulation
and all faces of G' and G are the same except F being removed in G'.

Proof The only face that is affected by the operation is £ which will be removed.
The simplicity of G' is trivial because y and t are not adjacent and do not have
any common neighbours. Also G' is planar because the number of vertices, edges
and faces are reduced by 1, 2 and 1, respectively so |V(G')| — |E(G')| -t- ^(G ')| =
|V(G)|-|E(G)| + |F(G)|. □

38 Recursive Generation of Plane Graphs based upon their Face Sequences

Figure 3.2: Operations to add/remove 4-faces to/from {3,4}-angulations

Lemma 3.5. Assume G is a simple {(3, fa), {A, f^)}-angulation with a 4-face F = (yztw)
whose vertices all adjacent to a vertex x. Then G' = rs(x, {y, w}, {z, t}) is a simple {(3, f f) ,
(4 , / 4 — \)}-angulation and all faces of G' and G are the same except F being removed in G'.

Proof The only face that is affected by the operation is F which will be removed.
Assume to the contrary that G' is not simple. Trivially G' does not have a loop so
there should be multiple edges between two vertices say v and s in G' (Figure 3.2(b)).

• If r e {s,v}, then in G, x should have been adjacent to a vertex inside H2

because the new neighbours of x are all in FI2 , but this is impossible to the JCT.

• If y e {s, v} (the same for w), then there are multiple edges between s and v in
G too, because N c f y) ^ Nc(y).

• If z e {s, v} (the same for t), then by JCT 2 has multiple edges towoards a vertex
z' e {s, v) in H\ or H2 which means there are multiple edges between u and z!
in G as well.

Moreover, G' is planar because the number of vertices, edges and faces are reduced by
1, 2 and 1, respectively so |V(G')| - |E(G')| + |F(G')| = | V(G)| - |E(G)| + |F(G)|. □

Theorem 3.6. Assume G is a non-trivial simple {(3,^3), (4, f 4)}-angulation with a 4-face
then there is a face F which can be removed by either r4 or r$ to convert it to a simple
{(3,/3), (4 , / 4 — \)}-angulation while keeping the rest of faces unchanged.

§3 .3 Implementation 39

Proof. Let F = (yztw) be a 4-face. If there is a vertex x adjacent to all vertices of F
then by Lemma 3.5 the result is obtained. So assume there is no such vertex. By JCT
at most one of edges yt or zw can be in E(G) and if one of them say yt does exist,
by Lemma 3.4, G' = r^({y, t}, {z,w}) is a desired graph. Similarly, if there is a vertex
outside of F adjacent to yt or zw, r\ is applicable.

In the final case there is no edge and no common neighbours for pairs (y, t) and
(z,w). In this case we only need to show at least vertices of one these pairs have
degree more than 2 to be able to use Lemma 3.4. Assume to the contrary that this is
not true. As G is not trivial at least one of the vertices of F has more than 2 vertices
say w so by the assumption dc(z) = 2 and at least one of y and t are 2 -valent as well.
Without loss of generality we assume dc(y) = 2. This means apart from F, vertices
w, y and 2 belong to another face say F'. But this violate either the fact that G is
non-trivial, simplicity of G or |F'| > 4 which means G is not a {3,4}-angulation. □

Theorem 3.7. The set of all shnple {(A.i,/i), • • • , (kn, /„)}■-angulations is recursively be gen­
erated from the triple (Tf u Qf u {Q}, {Ei, £2, E3, E4, E^],Uk̂) in which f = fi-

Proof We can prove this by induction on Y!i=\ K x Assume G is a {(ki,fi), • • • ,
(kn, f n)}-angulation. If G is trivial then G = Q . Otherwise if G has a face F whose
size is more than 4, then it could be reduced using either Ej, £ 2 or £ 3 by Theorem 2.7
to a simple {{k[,f[)f • • • , (A:',,/')}-angulation with ^ k'{ x / ' = x f) — 2. The next
case is when G is {(3 , / 3), • • • , (4 , / 4)}-angulation with / 3 , / 4 > 0 which by Theorem 3.6
can be reduced to a simple {(3,/ 3), * - * , (4 ,/i — l)}-angulation. Finally, for the rest of
graphs (basis of induction) G must have only 3-faces or only 4-faces so G e T f o
Qf. □

Theorem 3.8. The set of all simple {(Fi,/i), • • • , {kn, /„)}-angulations with no 1-valent is
recursively be generated from the triple (Tf u Qf\P?, u {Q}, (£2, £3, £4 , E$},Uk'f) in which
/ -S L / i-
Proof Similar to the proof Theorem 3.7. □

Theorem 3.9. The set of all simple 2-connected {(Fi,/i), • • • ,(kn, f n)}-angulations is re­
cursively be generated from the triple (Tf u Qf\P3 u {Q}, {£2, £3, £4, Es},Uk,f) in which
f - U - i f i -

Proof Immediate result of Theorem 3.8. □

3.3 Implementation

Theorems 3.7, 3.8 and 3.9 in conjunction with the canonical construction path method
[83] can be used to generate all non-isomorphic /c-angulations. To employ CCP we
need to define some terms which will be introduced in Section 3.3.1.

40 Recursive Generation of Plane Graphs based upon their Face Sequences

3.3.1 Adapting the Generator to CCP

Let the symmetric group of degree n be Sn. We take the group Y = Si x S2 x S3 x • • •,
where the action on a graph G is such that the factor S„ permutes the vertices on
graphs of order n.

Let Q be the set of all labeled plane graphs in Uk,f and G e Q, we define the set
of lower objects of G, denoted by L(G), as the union of disjoint sets Li(G), 7.2 (G) and
1.3(G), defined in Equations 2.4, 2.5 and 2.6, with 1.4 (G) and L$(G) defined as follows:

L4 (G) - {(G,{w,z), {y,t}) : r4 (G; {w,z}, {y,t}) e Q) (3.3)
L5(G) = {(G,x, {y,w},{z,t}) : r5(G;x,{y,w},{z,t}) e Qj (3.4)

Similarly, we define the set of upper objects of G, written as 17(G), to be the union
of disjoint sets L/i(G), U2(G) and 113(G), defined in Equations 2.7, 2.8 and 2.9, with
l/4 (G) and L7s(G) defined as follows:

U4(G) = {(G,{w,z),y) : e4(G; [w,z),y) e Q} (3.5)
U5(G) = {(G,x,u, {y,w}) : e5 (G;x,u,{y,w}) e Q) (3.6)

Using these sets we define the set of all lower and upper objects denoted by
Q = 1 1 1 Si and ö = u l i §i' respectively in which = |JGeg L,(G) and Qx =
(JGeg Ui(G). Also, we extend the set of parents of an upper object G, denoted by
p(G), which was defined in Section 2.3.1 in the to G e Q4 u £5 and the action of Y
to the lower and upper objects in Q4 u Q5 in the similar fashion to the way used in
Section 2.3.1.

The orders of lower and upper objects are defined as the order of their graph
(first element). We call a function 7 whose domain is the set of lower objects an
invariant, if 1(1) = I(Is) for every g e T. More specifically, an invariant c which maps
lower objects to vectors with elements in a totally ordered set with the criteria that
c(h) = c(lf) o e T : if = h is called a canonical code for the lower objects. Using
the lexicographic ordering for comparing canonical codes, we define a function m for
labeled plane graphs as m(G) = {/ e L(G) : Ml' e L(G) : c(l) ^ c(Z')}, i.e. m(G) is the
set of all lower objects in L(G) with the minimum canonical code, members of m(G)
are called canonical reductions of G.

Now we can employ CCP using these definitions and by [83, Theorem 1] we can
generate all families that were discussed in Section 2.2 without isomorphic copies.
There are generic ways to optimize the running time of the generation which are in
Lines 7 and 11 of the algorithm. Firstly, we can reduce the time required for the
computation of m and then we can remove upper objects which are not going to be
accepted (passing the condition of Line 11 of Algorithm 1.1). These two approaches
are discussed in Sections 2.3.2 and 2.3.3.

§3.3 Implementation 41

3.3.2 Optimization of Canonical Code Comparison

The first issue for the implementation is how to define the canonical code for the
lower objects.

In the first attempt we define a function C\ for canonical coding. Firstly, for a l e G
we extend the function W(/) defined in Section 2.3.2 to lower objects in £4 and £5 as
follows:

• If / = (G, {w,z}, {y,t}) e Ga- Assume e\ = \fi, e\ = yib, e\ = tw, e\ = Tz. Then
taking d = 1 if a ^e^))) = x{e\), and d = — 1 otherwise, we define:

W(Z) = min{BC(G;e[, d), BC(G; -d), BC(G; e[, d), BC(G;ê , —d)}.

• If / = (G, x, {y, w}, {z, t}) e G5: Assume e\ = zt, ei = Tz and e$ = tw. Then
taking d = 1 if <£(£3) = e2 and d — — 1 otherwise, we define:

W(/) = min{BC(G;e1,d),BC(G;e2/-d)}.

Then, we define the canonical code C\ such that for / e L,(G), Ci(/) = [/, W(/)]- In
practice comparing lower objects using c\ could be very slow as the complexity of
computing the code is O(n). To reduce this time we define some easily computable
invariants /i,/2 , • •• ,ft and use them in combination with w to define codes of the
form [_/i (/)/ fiG)/ ■ ■ • W(/)]. Then based on the lexicographic definition of code
comparison in Chapter 1, we can check the invariants first and only compute w, only
if all invariants gave the same values.

Assuming F(l) to be the face affected by the application of the reduction pre­
served in /, we define the following invariants. Noted that as £3, £5 are used negligi­
bly often in comparison to the other operations in practice, we did not define many
invariants for it.

h(l) =

d{x)r l = (G,u,x) e Q\

d(x), l = (G, x, {w,u}) e G2

min{d{w),d{z)}, l = (G,{w,z}, {y,t}) e QA

0, otherwise

I number of darts of £(/) whose inverse belong to £-faces, / ^ G3 u Gs

[0, otherwise

If(l) = size of £(/)

42 Recursive Generation of Plane Graphs based upon their Face Sequences

m =

W) =

mm{d(y)/ d(z)}/ l = (G,u,x) £ Q\ a {xfj,xZ} = {cr(ru),a~l (xu)}

min{d(w),d(u)}, l = (G,x, {w,u}) e Q2

mm{d{y),d(t)}, l = (G,{w,z},{y,t}) e

0, otherwise

1, I £ Q\

2, I £02
3, / 6 C/3

4, I £ Qa

5, I £ § 5

Finally, we define c(/), the canonical code of a lower objects /, as

c(/) = [// (/),/,(/),/«(/) j s(/), m, w(z)].

3.3.3 Optimizing by Looking Ahead

The canonical code defined in this chapter is an extension of the canonical code de­
fined in Section 2.3.2 and because of that the same lookahead rules as in Section 2.3.3
can be employed to optimize the generation and we do not address them again here
as the discussion would be the same.

3.4 Conclusions
In this chapter we discussed how simple plane graphs with specified face sizes can be
generated recursively from triangulations or quadrangulations. Then we optimised
the generator using a careful definition of canonical code for the graphs used in the
generation tree in addition to looking ahead and discovering the children which are
not going to be accepted and pruned the generation tree.

We also hope the recursive generation discussed in this chapter will inspire induc­
tion proofs for some properties of simple plane graphs with given face sequences.

Chapter 4

Isomorphism Rejection and
Canonical Testing of 2-Connected
Plane Graphs

4.1 Background

This chapter is a joint study with G. Brinkmann and B. D. McKay.

4.2 Introduction

If a planar graph is 3-connected, by Whitney's theorem it has a unique embedding
[122] otherwise it can have several different embeddings on the plane. For example
Figure 4.1 presents two non-isomorphic embedding of the same graph. It is very easy
to verify this claim as Figure 4.1(a) contains a face with two 1-valent vertices but Fig­
ure 4.1(b) does not. Programs like plantri [20] which generate many families of plane
graphs (embeddings), output the graphs isomorph-free up to plane isomorphism i.e.,
different embeddings of planar graphs. But if we want to have the graphs isomorph-
free up to abstract isomorphism, we may get isomorphic copies in the output in the
case that they are not 3-connected.

(a) (b)

Figure 4.1: Two isomorphic graphs which are not plane-isomorphic

43

44 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

To generate such a family of graphs without abstract isomorphic copies, two ap­
proaches can be used: generating all such plane graphs and then remove isomorphic
copies or generate all such graphs and then eliminate the ones which are not planar.
For example to obtain the list of 2-connected planar graphs we can either run abstract
isomorphism test on the output of 2-connected plane graphs or filter non-planar ones
from the set of 2-connected graphs. If we can find a fast approach for abstract isomor­
phism rejection for plane graphs, the first approach could be much more efficient as
families of planar graphs are usually exponentially smaller than the corresponding
non-planar family. For example Figure 4.2 shows the number of simple 2-connected
plane [23, 20, 111], planar [99, 43, 110] and generic graphs [100, 112].

Simple 2-connected graphs
Simple 2-connected plane graphs
Simple 2-connected planar graphs

•c 1 0 11

Number of Vertices

Figure 4.2: Number of simple 2-connected planar, plane and generic graphs.

We can extend the notion of canonical labelling to embeddings of plane graphs
and define a canonical embedding as an invariant mapping every planar graph G to an
specific embedding of it and we may refer to that as the canonical embedding of G.

In the scope of graph generation, there are four questions regarding abstract
isomorphism testing and canonicality of plane graphs:

Ql. Whether two planar (or plane) graphs are isomorphic or not?

Q2. How we can define a canonical code for planar (or plane) graphs?

Q3. Whether a plane graph is embedded canonically or not?

Q4. What is the canonical embedding of a planar graph?

§4-2 Introduction 45

The first question has been targeted by several researchers and there are differ­
ent sequential [55, 56, 57, 120, 35] and parallel [46, 60] algorithms for this purpose.
For 3-connected planar graphs there is an algorithm by Weinberg [120] which is
0(n2) order-preserving isomorphism check which can be easily extended to plane-
isomorphism and because 3-connected plane graphs have unique order-preserving
embedding on the plane these two types of isomorphism become equivalent. In
1974 Hopcroft and Wong showed that this problem is linear time [57] although they
noted that the linear time is theoretical and not for practical purposes. Later Kuk-
luk, Holder and Cook [73] in 2004 designed a practical isomorphism test algorithm
in 0(n2). They compared their implementation with other isomorphism tests and
showed that for planar graphs with not many edges, their method is quite fast.

Answering Q2 can solve Q1 as well: note that two graphs are isomorphic if and
only if their canonical codes are same. In particular, Kukluk, Holder and Cook used
this idea for isomorphism testing. They exploit a combination of SPQR-trees [9]
and Weinberg's method to design an 0{n2) canonical code computation with the
following steps:

1. Make the SPQR-trees for both graphs.

2. Compute a code for both trees which only depends on the tree and 3-connected
components.

3. If the codes for both graphs are the same, they are isomorphic; otherwise they
are not.

Therefore, after the second stage their algorithm produces a canonical code which
the original planar graph can be reconstructed from. For generic graphs there are
many canonical labelling algorithms in the literature which are very fast like nauty
and traces [82, 85, 94, 84], bliss [67, 66] and saucy [28]. But planarity or embedding
information are very strong properties which can be utilized to speed up the process.

To our knowledge, for Q3 and Q4 there are no answers in the literature. If a
generator outputs every embedding of a given family of graphs to remove abstract-
isomorphic copies we can remove every output whose embedding is not canonical.
The fact that every embedding appears in the output guarantees that we have at least
one copy in the filtered result and by definition of canonical labelling, exactly one of
the outputs has it which means exactly one output from each abstract-isomorphism
class will be in the filtered result.

In this chapter we design a canonical embedding for 2-connected plane graphs up
to abstract-isomorphism which can answer Q3. Note that for a 3-connected graph ev­
ery canonical labelling up to plane-isomorphism is a canonical labelling for abstract-
isomorphism as well. To specify the canonical embedding, firstly, we define a bi­
section Rep mapping every embedding to a string, called the representation of that
embedding, such that the original embedding can easily be reconstructed from that
string. Then we define an embedding to be canonical if it has the lexicographically
smallest representation amongst the set of representations of every embedding of

46 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

that graph. The representation of the canonical embedded graph is called the canoni­
cal representation of the class abstract-isomorphic embeddings which is an trivially an
invariant.

The way that we define the representations allows us to solve Questions Ql, Q2
and Q4 for plane graphs too but not directly planar graphs. We use embedding infor­
mation to speed up the process, so if the input does not include the embedding, first
the input graphs should be embedded in some way (not necessarily in the canonical
way) and then our approach can find the canonical embedding (Q4) and canonical
code (Q2) which can be used for isomorphism testing (Ql) as well.

A practically important feature of our algorithm is that it gives us instant infor­
mation while the computation is being done. As we mentioned earlier an embedding
is canonical if it has the smallest value of representation. We define representations
recursively from some partial representations which can be computed locally based
on some subgraphs of the original graph (Definition 4.22). Then we define the term
canonical in the way that an embedding is canonical, if all partial representations are
canonical too (Theorems 4.34, 4.38 and 4.39). So as soon as finding a non-canonical
partial representation, one can realise that the whole embedding is not canonical.

The way that we define partial subgraphs is based on connectivity, as Whit­
ney proved, 3-connected plane graphs have unique embedding on the plane up to
plane isomorphism [122]. So with any definition of "canonical embedding", each
3-connected subgraph, is canonically embedded. We define a term 2-block in Sec­
tion 4.3 which allows us to find 3-connected components of graphs, then we check
whether all of them are canonically embedded and if so, we use three operations
defined in Section 4.4.1 to replace each of those components with an edge. Then
we define the original graph to be embedded canonically if and only if the obtained
graph using reduction is canonically embedded too.

For the sake of convenience in the rest of this chapter we define the canonical
embedding up to order-preserving isomorphism, instead of plane isomorphism. This
can be resolved easily as we can define a plane graph G to be canonical embedding
up to plane isomorphism if either G or Mir(G) is canonically embedded up to order­
preserving isomorphism.

In this chapter we put labels on the edges and use them to build representa­
tion of plane graphs. For this purpose we define a plane labelled graph as a tuple
(V,E, CDErOCfCT̂) in which (V ,E, I,DE,cc,a) is a plane graph and E : De —* N is a
function which maps each dart to its label. In this section we refer to plane labelled
graphs simply as plane graphs unless it is strictly mentioned otherwise.

4.3 2-Blocks of 2-Connected Graphs

A 3-connected planar graph has a unique embedding but 2-connected graphs could
have different embeddings. But still any 3-connected subgraph of a 2-connected
graph has a unique embedding. So this might raise an idea to partition the graph
into 3-connected parts and then work on their relation to come up with a canonical

§4.3 2-Blocks of 2-Connected Graphs 47

embedding. The motivation of this section is this idea and for a 2-connected plane
graph a tree called 2-block tree is defined which contains the structure of the 3-
connected components.

The same idea for dividing the graph into 3-connected components is studied in
[73] in which the graphs are considered as planar graphs not plane graphs and they
defined an isomorph check for planar graphs. But it cannot be used for isomorph
rejection of plane graphs because the canonical code defined is not based on the
embeddings so one can not realise if a specific embedding is canonical or not. In this
work a representation will be defined for each embedding which makes it possible
to check if an embedding has the canonical representation or not.

Definition 4.1. Assume T is a 2-cut of a 2-connected graph G and C is one of the components
of G\T. Nozv hy removing all edges with both endpoints in T from the induced subgraph of
T u V(C) a graph is obtained which is called an attached component ofT in G.

Definition 4.2. Assume T is a 2-cut of a 2-connected graph G and A is one of its attached
components, the graph Ba,t which is made by adding an edge between vertices o fT to A is
called a semi-2-block of G. Furthermore, Ba j is called a 2-block of G, if it is 3-connected.
The edge which is added to A is called the virtual edge of Ba,t-

Example 4.3. Consider the graph G presented in Figure 4.3(a) and the cut set T =
{1,10}. The attached components of T are A\ and A 2 shown in Figures 4.3(b)
and 4.3(d). Furthermore, the semi-2-blocks Bavt and Ba2,t are shown in Figures 4.3(c)
and 4.3(e), respectively. As Baut is 3-connected it is a 2-block but Ba2j is not because
{1,7} is a 2-cut.

Lemma 4.4. Assume G is a 2-connected graph and B = Ba,t is one of its semi-2-blocks and
assume x,y e B. Then for any path P in G from x to y, by replacing any subpath outside of
B with an edge whose endpoints are both in T another path P' is obtained which connects x
toy in B and V(P') c V{P).

Proof Assume P is a path in G between x and y. If V(P) <= V(B) then the result is
trivial. So assume there is a vertex 2 in P\B, then the subpath from x to z should pass
through a vertex 11 e T; because T is a cut set. Also the subpath from 2 to y should
also pass through the other vertex of T say tj_. Now replacing the part t\ —*• z —> t2

in P with the edge t\t2 a new path is obtained in B with no additional vertices. It
should be noted that after this modification there is no vertex in the resulting path
outside of B otherwise P goes through t\ or ^ more than once. □

Lemma 4.5. Every semi-2-block of a 2-connected graph is a 2-connected graph.

Proof. Assume G is a 2-connected graph and B = Ba,t is one of its semi-2-blocks and
assume x,y £ V(B). As G is 2-connected there are two vertex-disjoint paths in G
connecting x to y say P] and P2. Now by Lemma 4.4 there are paths P[and P2 from
x to y in B such that V(P{) G V{P\) and V^Pf) Q V{Pi)- So the vertices of P[and P'2
remain disjoint. Thus there are two internally vertex-disjoint paths from x to y in B
which means B is 2-connected. □

48 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

Figure 4.3: Example for attached components, semi-2-blocks and 2-blocks

Lemma 4.6. Assume 7Z is the binary relation such that (Gi, G2) e 7Z when G2 is a semi-2-
block of G\. Then 7Z is transitive.

Proof Assume G is a 2-connected graph, B\ = Bac,tx is one of its semi-2-blocks and
B2 = Bac,,t2 a semi-2-block of B]. In order to prove the lemma it should be shown
that T2 is a 2-cut of G and A2 is one of its attached components. Let x e C' and
y e V(G)\V(B2). Let P be an arbitrary path from y to x. Now we consider two cases:

Case y e V(B\): By Lemma 4.4 there should be a path P' with V(P') <= V(P) such
that E(P') c E(B\). By the assumption, T2 is a 2-cut of B\ and y $ V{B2). So P'
should pass through a vertex of T2 so V(P) n T2 ^ 0 .

Case y <£ V(B\): As T\ is a 2-cut of G and x e V(B2) c: V(B\), P should go through a
vertex in T\ say 11. Now the subpath of P from t\ to x goes through a vertex of
T2 similar to the previous case so V(P) n T2 A 0 .

Considering these two cases it can be concluded that any path from a vertex in
V(G)\V(B2) to a vertex of C passes through T2 and |T2 I = 2 . So T2 is a 2-cut of
G which means B2 is a semi-2-block of G. It should be noted that there is a path
between any two vertices in the induced subgraph of G induced by C'; otherwise Aq>
could not be an attached component of B2 . □

§4-4 Representation of Plane Graphs 49

Definition 4.7. Let G be a 2-connected graph. A tree zuith root G defined as follows is called
a 2-block tree of G: If a node N is 3-connected or K3, it is a leaf; otherwise it is not a leaf
and the set of its children is

M = {Ba t '■ A is an attached component ofT in N }

for a 2-cut T of N. It should be noted that 2-block tree of a graph is not necessarily unique
because at each node different choices for 2-cuts might be available.

Theorem 4.8. Let G be a 2-connected graph and T be a 2-block tree of G. Then the leaves of
T which have at least 4 vertices are precisely the 2-blocks of G.

Proof. Assume C is the set of leaves of T which have at least 4 vertices and B is the
set of 2-blocks of G. Then the theorem is equivalent to proving C = B.

First of all, if the tree has just one node then G = B and the result is trivial. So
assume B is a leaf of T having more than three vertices and also has a parent. By the
definition of the tree it should be a semi-2-block of its parent node. Now by induction
on the height of the tree and Lemma 4.6 one could check that B is a semi-2-block of
G. Moreover, by the definition of leaves, B is 3-connected because it has more than
3 vertices. So B is a 2-block of G and the arbitrary choice of B allows us to conclude
C ^ B .

For proving B Q C let B = Ba,t he an arbitrary 2-block of G and N be a node
such that V(B) Q V(N) but for all children N' of N, V{B) <£ V(N'). If N = B then it
is 3-connected and so is a leaf. This means B e C. So assume V(B) £ V(N). Let x
and y be the two vertices of T, z e V(N)\V(ß), N' = N\(V(B)\T). As N is connected,
z £ V(B) and T separates V(B)\T from V (N)\V (B) there should be two paths in N'
from z to x and y. So by removing the possible cycles from the walk y —* z —* x a
path P in N' from y to x is obtained.

Now assume a and b are two arbitrary distinct vertices in B. As B is 3-connected
there are three vertex-disjoint paths from a to b in B. If none of them uses the virtual
edge e between x and y (which is not necessarily in N) then the same paths exists
between them in N; otherwise e used in exactly one of the paths say P\. Then by
replacing e in P\ with the path P obtained above three vertex-disjoint paths between
a and b are found. Thus there is no way to split a and b with a 2-cut which means
all vertices of B should be in one of the children of N. But by the assumption for any
children N' of node N, V{B) $ V(N'). This means that N does not have any children
and is a leaf. So N is 3-connected which also means B = N because it does not have
any 2-cut that B could be made from one of its attached components so B e C. So in
all situations B e C which proves B cz C and as a result C = B. □

4.4 Representation of Plane Graphs

In this section we define the representation of 2-connected plane graphs denoted by
Rep in a way that the embedding can be reconstructed from it. This definition is
recursive and in each step, using three operations, we replace some subgraphs of a

5 0 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

given graph with two labelled edge encoding the corresponding subgraphs, until the
graph become either a cycle or 3-connected.

Then we define a string which represents the exact embedding of the labelled
3-connected or cycle graph. The string captures two deterministic traversal of the
graph based on both clockwise and counter-clockwise choice of vertices neighbours.

To make this idea more efficient in terms of the length of the representation string,
instead of labelling edges with the strings, a table is defined which assigns a number
to each string. So each edge is labelled with a number. In this way every code is kept
just once even if the part of the graph corresponding to that part occurs many times
in the process. But as a down-side, to reconstruct the graph both the resulting graph
and the table are required.

The first concept to define for achieving representations is Bcode(G;c) for a dart
e of a plane graph G (Definition 4.9). The code is obtained from a deterministic
traversal of the graph which is used for encoding some parts of the graph during
the computation of representations. The default label for all edges are set to 0 in the
beginning. Also the vertices are supposed to have a value called their colour which
is an invariant. By default we use degree as the colour function unless it is specified
differently.

Definition 4.9. Let G = (V, E, I, De, ft, er, L) be a connected labelled plane graph with n
vertices in which each vertex has a colour. For a dart of G say e, the bfs code of e denoted by
Bcode(c) or Bcode(G;e) is defined as follozvs. First a breath-first search is run on G starting
from the head of e and assign an index to each vertex from 1 to n, consecutively as they are
discovered during the search. To make the bfs search deterministic, for each vertex the edges
are traversed in clockzvise order starting from the first edge ofthat vertex which is the inverse
of the edge that the vertex is discovered from except the first vertex whose starting edge is e.
After this indexing, the Bcode(c) is defined as a vector

(r j , / i (l)) , . . . , (rj(1)/7rf(i)(l)) ,0, • • • ,cn, {r^ l f i n)) , • • • , (r3(n),Zd(„)(n)) ,o] (4.1)

in which cl, Ifii) and r' are the colour, the label of the j-th edge and the index of j-th neighbour
of the vertex indexed i.

Definition 4.10. Considering min as the lexicographically minimum, the bfs code of a
plane graph is defined as

Bcode(G) = min Bcode(G;e) (4.2)
eeD£(G)

This definition of Bcode is only dependent on the rotation system, labels and
colours hence it is an invariant under order-preserving isomorphism.

The operations which we will define reduce |V| + \E\ as discussed above. Each
operation replaces a subgraph G' of a graph which can be separated from the rest of
the graph by a pair of vertices say (u, v) with two darts. Theses new darts are inverse
to each other and join u and v. Also the darts üb and vu will be labelled to encode
G' and also show which direction üb and/or vu has produced the smallest code for

§4-4 Representation of Plane Graphs 51

G'. Note that if the codes computed from u and v are the same the labels of the darts
will be the same too.

To encode subgraphs as labels we have two special cases that we have to consider;
otherwise two isomorphic graphs could be reduced to non-isomorphic ones. Let
cu < cw be the codes defined for vertcies u and v of G', respectively. Now if in
Mir(G') the codes for u and v are c'u and c'v such that du = cv and c'v = cU/ which
means u and v are equivalent under taking mirror from G' then we mark both wb
and vu with a an * symbol and refer to those edges as starred edges. The second case
is when there is another embedding of G' apart from Mir(G') for which the code
obtained from u (or v) is smaller than the cu (or cv). In such a case we mark the dart
going out of u (or v) with a 1 symbol and call it a flagged edges.

A Bcode or a BcodeM is unacceptable if there is a flagged edge e for which index
computed in the code for head(c) is smaller than the index of tail(e).

Definition 4.11. A marked plane graph is a tuple (V, E, I, De, oc, a, L, S, F) such that
(V, E, I, De, oc, <j , L) is a labelled plane graph and S u F <= De- The sets S and F are the set
of starred and flagged darts of the graph with the property that

\/e e S : inv(e) e S.

Also we define the flagged edge closure of G, written as Fq or F as

Fc = {e e De : e e F v inv(e) e F}

Assume G is made from its parent Gp from an operation. When we take the
mirror from a graph G we can also think of applying the mirror of the operation on
the mirror of Gp. But there is a case which need to be considered. Let e be an starred
edge in G which is made by the operation and assume it is made from a subgraph
G' of Gp. Now when we take mirror from Gp it implies the mirror on G' too. As e is
an starred edge, the code obtained from head(e) was the same as the code for tail(e)
but in Mir(G'). So now that we have the mirror of Gp and G' instead of Gp and G',
after applying the operation we have to swap the labels of e and inv(c) which leads
us to the next definition for Mir* which we should use as the mirror instead of Mir
for marked graphs.

Definition 4.12. Let G be a labelled plane graph,. Then the Mir*(G) has the same rotation
system and labels as Mir(G) except for the starred edges whose labels are swapped with their
inverse.
Definition 4.13. In the same way as Bcode but using counter clockwise order for neighbours
the bfs mirror code of ebfs mirror code of edges is defined as Bcode(Mir*(G);e) which is
denoted by BcodeM(e) or BcodeM (G;e). Also

BcodeM(G) = min BcodeM(G;e) (4.3)
eeDsiG)

We can extend the definition of isomorphism of labelled multigraphs to marked
graphs with the next definition.

52 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

Definition 4.14. Two marked plane graphs G\ = (Vi, Ei,/i, De1 ,«1, £71,1,1, Si, Fi) and
G2 — {V2,E2rh,DE2' 0c2'cr2,L2,S2,Fi) are called marked-isomorphic, if there is a bijec-
tion 7T : Vi u Ei u De, (Gi) —> V2 u £2 u De2 (G2) such that

1. The mapping n is a plane isomorphism between Gi and G2.

2. Me e De, (G) : e e Si <=> n(e) e S2 .

3. Me e D ex{ G) : (label(e),label(inv(e))} = {label(7r(e)),label(inv(7r(e)))}.

4. Me e D e i (G) : e $ (Si u Ei) a n(e) $ (S2 u F2) => label(e) = label(7r(e)).

In the case that neither of the graphs has any starred or flagged edges, by the
last condition of the above definition the bijection should preserve the labels of darts
which makes the third condition redundant and also we get the natural extension of
plane isomorphism for plane labelled graphs.

The next definition is another code called Bcode*(G;e) which is very similar to
Bcode(G;e) with one difference. Whenever it reaches an edge of which neither itself
nor its inverse has been visited, it chooses the best between current embedding of the
edge or its mirror version (considers the mirror of the subgraph which is replaced
by this edge). If the mirror version is better, it replaces that edge and its inverse
with their mirror. Using this code one can determine if all edges with label more
than 1 represent the best embedded of their corresponding subgraphs which will be
discussed later on. It should be noted that for starred edges taking mirror is the same
as exchanges label of the edge with its inverse.

Definition 4.15. The Bcode*(G;e) is defined in the same way as Bcode(G;e) as:

c \ (r}, /?(!)) , ■ ■ • , (rj,, /?,(!)) ,0, ■ ■ ■ ,c\(if, /?(»)), ■ ■ ■ , ,o] (4.4)

in which considering efii) to be the j-th edge of the vertex indexed i as defined in Bcode(G; e),
lj(i) = label (ß/(0), l'fi) — label(inv(c;(/))), index(i;) is the index of vertex v amongst the
vertices in Equation 4.4 and l*(i) is defined as:

l?(i)

I j Ü) ,

min

max

£?;(/') i S u F

ef i j) e S u E a index (tail (ey(i))) > i

, l ' j (i) \ / ei (j) e S u E a index(tail(c;(/))) < i

Similarly using counter clockwise ordering for neighbours we can define Bcode^(G; e). Also
in the same way as Bcode*(G) and Bcodej^(G) we can define Bcode*(G) and Bcode^(G)
as follows.

Bcode*(G) = min Bcode*(G;e),
ecDE(G)

BcodeM(G) = min BcodeJVI(G;c)
eeDE(G)

(4.5)

(4.6)

§4-4 Representation of Plane Graphs 53

4 .4.1 Reduction Operations

The operations that we define in this section replace a subgraph G' of a graph G with
an edge (two darts). We choose the subgraphs in a way that they only share two
vertices with the rest of the graph. So replacing them with a single edge does not
disturb the structure of the graphs. The darts are labelled with vectors that encode
the corresponding subgraphs although these vectors will be replaced by numbers
in practice for optimization purposes. The codes are based on Bcode but could be
modified in some cases.

Definition 4.16. If G is a plane graph with no vertices of degree 2 and no consecutive
multiedges; then BfsRep(G) is defined as BfsRep(G) = Bcode(G).

The first operation called the path reduction (See Definition 4.17 and Figure 4.4)
is an operation which replaces a path made of 2-valent vertices with a single edge.

o@----- @ ----- (S3)------------------@)------(Q----- (S)<]

(a) A path P in a plane graph

e\ C2 cm- 2 en-\

inv(ci) inv(e2) inv(e„_2) inv(e„_i)
(b) Directed version of P

e

(c) Result of VIZ on P

Figure 4.4: Path Reduction Operation

Definition 4.17. Let the path P = v\e\V2e2 • • • Vn-iCn-iVn be an induced subgraph of a
plane labelled graph G and l be a number. Also assume b\ = Bcode(P;ei) and b2 =
Bcode(P;ei). Now the path reduction operation V1Z(P, L) is defined as follows:

1. Remove all edges and vertices of P except v\ and vnfrom G.

2. Add two labelled darts from v\ to vn and vice versa, respectively named e and e'. In
terms of embedding, e and e' occupy the previous position ofe\ and inv(e„_i) in rot(Pi)
and rot(p„), respectively. To label e and e' the following cases should be considered.

(a) If b\ = f?2/ label both e and e' with l.

(b) Ifb \ < f?2/ label e and e' with l and l + 1, respectively.

54 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

(c) I f h \ > bz, label e and e' with l + 1 and l, respectively.

The edges e and e' are starred i fb\ ^ bz and Bcode(P;ei) = BcodeM(P;inv(e„_i)). Also
assuming b* = Bcode*(P;ei) and b\ = Bcode*(P;^n-i); darts e and e' are flagged if
b* < b\ or b* is unacceptable; and b\ < bz or is unacceptable, respectively. Moreover, the
BfsRep(P) is defined as BfsRep(P) =

The second operation called the multiedges reduction (See Definition 4.18 and
Figure 4.5) replaces a sequence of consecutive edges between two vertices with a
single edge. It should be noted that the operation is applicable on a set of multiedges
between two vertices V\ and vz only if they are consecutive in rot(i>i) and rot(i>2);
otherwise it should be applied on each consecutive sequence of edges separately.

But before we define the multiedges reduction operation, we need three new
codes for a marked plane graph A4 with only two vertices which are defined as
follows. Let v be one of the vertices of A4 and e e rot(u). Now Mcode(A4,e) and
McodeM(A4,e) are the sequence of label of darts in rot(p) in G and Mir*(G) starting
from e. Also the code Mcode*(A4, v) is the increasing sequence of l*(e) for all e e
rot(u) in which:

l*(e)
label(e), e $ S u P

min{label(e),label(inv(e))}, otherwise

A Mcode(A4,e) or a McodeM(A4,c) is unacceptable if there is a flagged edge e' e
rot(head(e)) for which index computed in the code for head(e') is smaller than the
index of tail(e').

(a) Some multiedges M in a (b) Directed version of M (c) Result of M R on M
plane graph

Figure 4.5: Multiedges Reduction Operation

Definition 4.18. Let V\ and vz be two vertices of a 2-connected plane labelled graph G with
I V(G)| > 2, A4 be the induced subgraph of G induced by some contiguous multiedges between
v\ and vz in the rotation system and l is a number. Then assume edges of A4 are e \ , . . . , e n

§44 Representation of Plane Graphs 55

(n ^ 2) in the same order as the rotation system. So we have rot(i?i) = (e\ , . . . ,e n, x \ , . . . ,xfi)
and rot(i;2) = (inv(e„),. . . ,m v { e \) ,y \ , . . . ,y f) for some edges X; (0 ^ i < k) and y,- (0 ^
i t). Firstly, zve define b\ and bj as follows.

Now the multiedges reduction operation A47Z(M ,l) is defined asfollozvs:

1. Remove all edges of M from G.

2. Add two labelled darts from v\ to V2 and vice versa, respectively named e and e'.
In terms of embedding after adding these two darts rot(z>i) = {e,X\,...,X\t) and
rot(ü2) = {e ',y i, . . . ,yf)- To label e and e' the following cases should be considered.

(a) lfb \ = b2 , label both e and e' with l.

(b) Ifb\ < b2 , label e and e' zvith l and l + 1, respectively.

(c) If b\ > £>2/ label e and e' with l + 1 and l, respectively.

The edges e and e' are starred ifk ^ 0, b\ ^ &2 and Mcode(M;ei) = McodeM(M;inv(e„)).
Also assuming b* = Mcode‘(M;i>i) and b% = Mcode‘(Al;i>2); darts e and e' are flagged if
b* < b\ or b* is unacceptable; and frf < b2 or b\ is unacceptable, respectively. Moreover the
BfsRep(M) is also defined as BfsRep(M) = minlfri,^}-

The third operation called the block reduction (See Definition 4.19 and Figure 4.6)
replaces a 2-block with a single edge. To prove that this operation is well-defined
based on the rotation system, it should be shown that the edges of the 2-block ad­
jacent to V\ and V2 are consecutive (in Figure 4.6(b)); otherwise there are different
position in rot(i>i) and rot(1̂ 2) that the new edges e and e' (in Figure 4.6(c)) can oc­
cupy. This property will be result of Lemma 4.20.

Definition 4.19. Let B = Ba,t be a 2-block of a 2-connected plane labelled graph G and ev
is one of its virtual edges and V\,V2 its endpoints and let l be a number. Also assume we have
rot(üi) = (e \ , . . . , en, x i , . . . , xf) and rot (1*2) = (^ , . . . , ^ , 1/1, . . . , y t) such that tail(c,) e B
and tail(e') e B for all 1 ^ i ^ n and 1 ^ j ^ m. Moreover assume b\ — Bcode(B;ei) and
f»2 = Bcod e(B;e[). Now the 2-block reduction operation B7Z(B,l) is defined as follows:

1. Remove all edges and vertices of B except v\ and V2 -

2. Add two labelled darts from v\ to V2 and vice versa, respectively named e and e'.
In terms of embedding after adding these two darts rot(i;i) = (e, X\, . . . ,xfi) and
rot (1̂ 2) = W, y \ , ■ • •, yt). To label e and e' the following cases should be considered.

Mcode(M; ef),

min(,erot(i;1) Mcode(M;c), otherwise

k * 0

b2 =
Mcode(M;inv(e„)), t ^ O

minferot(z;2) Mcode(M;c), otherwise

56 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

(a) Attached component
of a 2-block in a
plane graph

Figure 4.6: Block Reduction Operation

(a) lfb\ = b2 , label both e and e' with l.

(b) lfb\ < b2 , label e and e' with l and l + 1, respectively.

(c) If b\ > b2 , label e and e' with l + 1 and l, respectively.

The edges e and e' are starred if b\ # £>2 and Bcode(B;ei) = BcodeM(B;0- Also
assuming b* = mm{Bcode*(B;e-1)/Bcode^vl(B;en)} and = min{Bcode*(B;inv(en)),
Bcodejvl(B;inv(ei))}; darts e and e' are flagged if b* < b\ or b* is unacceptable; and
b\ < b2 or b\ is unacceptable, respectively. Moreover the BfsRep(B) is also defined as
BfsRep(B) = minfbi,^}-

Lemma 4.20. Let B = B ^ j be a 2-block of a 2-connected plane graph G, e be one of its
virtual edges, en = nexty(g)(e) and ep = prevV(B̂ (inv(c)). Also assume v = head(e) and
rot(G;v) = (en,x 0, . . . ,x k,eP,y0f. . . ,y t). Then E(B;v)\e = {x0, . . . , x k}.

Proof. Let X = {xq, . . . , x^}, Y = {yo, ■ ■ ■ ,ytj and v' = tail(e). As the order of edges in
the rotation systems are not changed while making B, Y n E(B) = 0 and E(B; v)\e Q
X. Assume by contrary that E(B;v)\e =£ X. Thus there is an edge e' e X such that
e' $ E(B;v)\e. Now consider vn = tail(e”) and vp = tail(ep). As B is 3-connected
there are three internally disjoint paths between vtl and vp so at least there is a path
P between them in B which does not go through v and v'. But the fact that G is
2-connected allows x to have two internally disjoint path to v' and by JTC any path
from x to v' goes through a vertex in the cycle en —> P —*• inv(ep) (See Figure 4.7).
This means that x is reachable from a vertex of P after removing v and v'. But all
vertices of P are in B so x is in the same attached component as other vertices of B
and thus x e B which is a contradiction. □

§4-4 Representation of Plane Graphs 57

Figure 4.7: Edges of 2-blocks are consecutive

4.4.2 Formal Definition of Representation

Definition 4.21. The BfsRep(G) of a graph G is unacceptable if the minimum code(s)from
which it is computed is(are) unacceptable.

For example in Definition 4.17 BfsRep(P) = minjfri,^}- So if b\ < 1?2 and b\ is
unacceptable, BfsRep(P) is too. Note that if b\ = bi, then BfsRep(P) is unacceptable
only if both b\ and bi are unacceptable.

Definition 4.22. The representation of a plane graph G with labelled edges is denoted by
Rep(G) which is defined in Algorithm 4.7.

Theorem 4.23. The algorithm Rep is a well-defined mathematical function on the set of all
plane graphs.

Proof. If G is a cycle or a simple 3-connected graph the result is obtained as Bcode(G)
is a well-defined function because the rotation system is reconstructible from it. For
the rest of the cases the result can be proven by the induction on the number of edges
of Rep. We need to consider three cases:

If G has some 2-valent vertices, its maximal induced path subgraphs are unique
because it is not a cycle. Also by the maximality the paths share no edges and
vertices except their endpoints so the order of applying path reductions does
not change the output graph.

Else If G has some multiedges, its maximal induced multiedges subgraphs are unique.
Thus C = — |E(Si)|2 is well-defined too. Also by the maximality the multi­
edges does not share any edges so the order of applying multiedges reductions
does not change the output graph.

Else G is not 3-connected and has no 2-valent vertex. So the set of 2-blocks of G by
Theorem 4.8 is the set of leaves of any 2-block tree of it. Also no 2-blocks share
the same edge except possibly their virtual edges otherwise the 2-blocks would
have made from the same attached component and so were equal. Thus the or­
der of applying 2-block reductions does not change the output graph. Note that

58 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

Algorithm 4.1 C o m p u te s R ep resen ta tion o f P lan e G raphs

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

function Rep(G: Plane graph)
TZT = unknown t> Recurision type
S = unknown c> Subgraphs to be reduced
TZ = unknown c> Reduction operator

if G has at least a 2-valent vertex and is not a cycle then
S = list of all maximal induced path subgraphs
TZT «— Path and 7Z = PR c> Path reduction

else if G has some consecutive multiple edges then
S = list of all maximal induced multiedges subgraphs
7ZT = MultiEdge and 7Z = MR o Multiedges reduction

else if G is 2-connected then
S = list of all 2-blocks of G with only one virtual edge
7ZT = TiuoBlock and TZ = BR c> 2-block reduction

else
return [— Bcode(G)]

end if

Sort S based on the BfsRep of its items
for each D e S do

Index(D) = \{D' : BfsRep(D') < BfsRep(D) and D' e S}\
end for
A = [] t> Empty vector
for i = 1 —*■ do

if BfsRep(S[i\) is unaccepted then
A = A concatenate with [BfsRep(<S[i]),l]

else
A = A concatenate with [BfsRep(«S[z]),0]

end if
end for

a = g
k = maxeeD£(G) label(c) + 1
for i = 1 —*■ |«S| do

G' = 7Z(G';S[i],k + 2 x Index(<S[/])) > Apply reduction
end for

if TZT = Path then
return [-4 ,A,Rep(G')]

else if TZT = MultiEdge then
c = - H U |E(s,)|2
return [—3,C, A, Rep(G')]

else if TZT = TwoBlock then
return [—2, A, Rep(G')]

end if
end function

§4-4 Representation of Plane Graphs 59

we only use the 2-blocks with just one virtual edge, otherwise replacing them
with edges are not possible as the endpoint of new edges would be removed
because of some other 2-blocks.

Based on these discussions the reduced graph is well-defined which has less edges
and by the induction hypothesis its representation is well-defined. □

Definition 4.24. A 2-connected plane graph G can be categorised as one of types {P, M, B, C, T}
defined as:

C-Type : If G a cycle graph.

P-Type : If G is not a cycle but has at least a 2-valent vertex.

B-Type : If G is simple but is neither 3-connected nor has a 2-valent vertex.

M-Type : If G does not have any 2-valent vertex but has some multiple edges.

T-Type : If G is a 3-connected simple graph.

Lemma 4.25. Any 2-connected plane graph has exactly one of types {P, M,B,C,T}.

Proof. To show that any graph as at least one of these types, we prove the follow­
ing equivalent claim. If G is a 2-connected graph which is neither of the types
{P, M,B,C}, then G is a T-type graph. If G has none of those types, it does not
have a 2-valent vertex; otherwise it would be either P-type or C-type. Also G is sim­
ple otherwise it would be M-type. Moreover G is 3-connected otherwise it would be
a B-type graph. So G is simple and 3-connected which means it is a T-type graph.
The proof that G has at most one of the types is straightforward as the definition of
each type contradicts the others. So no graph could have two of these types. □

Theorem 4.26. Every plane graph can be reconstructed from its representation uniquely.

Proof. We use induction on the number of recursion used to build the representation
of a graph G. For the base case that no recursion is used in Algorithm 4.1 (G is
C-type or T-type), then the representation is [—l,Bcode(G)j based on Line 16 but the
rotation system and labels can be reconstructed from Bcode(G).

Now assume all graphs whose representation is computed by at most n ^ 0
recursion are reconstructible from their representation. Now let G be a plane graph
whose representation computation needs n + 1 recursion (G is of type P, B or M).

In all these three cases we can reconstruct G from its representation as follows.
The first element of the representation indicates which type G is: —4, —3 and —2
indicate P, M and B types, respectively (Lines 39,42 and 44). Also, by the induction
hypothesis we can reconstruct G', the graph used for the recursion, from its repre­
sentation. Then, we can use the part A of the representation to find BfsRep of those
sub-objects (paths, multiedges and 2-blocks). Finally, by replacing edges whose la­
bels belongs to the interval [k, k + 2 x (|5| — 1)] with their corresponding sub-objects,
the graph G will be obtained. □

6o Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

4.5 Canonicity Check

In this section we introduce our canonicity check algorithm based on representation
of graphs (Definition 4.22). First in Definition 4.27 the canonicity is defined then how
canonicity check works for C-Type and T-Type (Section 4.5.4), P-Type (Section 4.5.1),
M-Type (Section 4.5.2) and B-Type (Section 4.5.3).

Definition 4.27. A 2-connected plane graph is said to have the canonical embedding or to
be canonical if it has the least representation amongst the representations of all its embeddings.

Lemma 4.28. For a marked plane graph G, if there is a subgraph X in the set S of Algo­
rithm 4.1 whose BfsRep is unacceptable, then G is not canonical.

Proof. If BfsRep(X) is not canonical, by the definition, there is another embedding of
X or one of its subgraphs which has a smaller code. So replacing that subgraph with
its better embedding, decreases the code of that subgraph, BfsRep(X) and as a result
Rep(G). □

Lemma 4.29. For any edge e of a plane graph G

Bcode*(c) ^ Bcode(e)

Proof. Lets assume Bcode(e) and Bcode*(e) are defined as in Definitions 4.9 and 4.15.

Bcode(e) = [c1, (r} ,/j(l)) ,• • • , (^ ,,^ ,(1)) ,0, • • • ,cn,(rj,/i(n)), • • ■, (rS,, («)) ,0

B c o d e » = [c1, (r } ,/f(l)) ,• • • , (rj,,/d* (1)) ,0,- • • (rj,/,*(«)), • • • , ,o'

Now considering the first difference between these two sequences. The difference
happens where f(i) A /*(z) for some i and j as the rest of values are the same in both
sequences. This means that ej(i) e S u F and Zy(z') A l*(i) so /'(z) = Z*(z). Assume
to the contrary that Bcode*(G;e) > Bcode(G;e). So /'(z) = l*(i) > f(i) which means
i' = index(tail(cy(z))) < z which is the third case in the definition of l*(i). Now
considering the f for which ep(if = in v(cy(z)) we have i = index(tail(cy/(z7))) > i' and
so l*,(if = /',(/') which is the second case in the definition of l*(if. Thus l*,(if =
label(inv(c;v(/'))) = label(^(z)) = f(i). But we already knew that lj(i) < /'(z) = lj>(if
which means l*, (i f < Ip (i f and this contradicts the assumption that l*(i) A lj(i) has
been the first difference because i' < i. □

Lemma 4.30. For any plane graph G there is an embedding G* marked-isomorphic to G such
that Bcode(G*) = Bcode*(G).

Proof. Let e is one of the edges of G for which Bcode*(G;e) = Bcode*(G). Now by
exchanging labels of all ef i) for which /*(z) A l j (i) with their inverse G* is obtained.
Note that the exchanging only occurs if efi) S u F which ensures G* is marked-
isomorphic to G. □

§4.5 Canonicity Check 61

Lemma 4.31. Let Gi he a marked plane graph and G2 be a copy of it except for some starred
and/or flagged edges the labels are exchanged with their inverse. Then Bcode* (Gi; e) =
Bcode*(G2; e) for all edges e.

Proof For an arbitrary edge e assume Bcode*(Gi;e) be the sequence

[c \ (r U (l)) . - , (ri,, /,*(1)),0,.. /?(»)), • • •, M„,/ J ») ,o] .

Now considering Bcode*(G2;c) we have the same values for c(i) and r(i). So we
should check l*(i) to see if it gives the same value for both Gi and G2. If efli) $ S u F,
then l*(i) = lj(i) which is the same for both graphs. In the remaining case the result
is the same because {lj(i),/•(*)} = {/'(/), //(*)} so the minimum and maximum will be
unchanged. Thus Bcode*(Gi;e) = Bcode*(G2;e). □

Corollary 4.32. Let G\ be a marked graph and G2 be a copy of it except for some starred
and/or flagged edges the labels are exchanged with their inverse. Then Bcode*(Gi) =
Bcode* (G2).

Proof. By Lemma 4.31 for all edges Bcode*(Gi;c) = Bcode*(G2;e) which means:

Bcode*(Gi) = min Bcode*(Gi; e) = min Bcode*(G2;e) = Bcode*(G2). □
eeDi(G\) eeDE(G2)

Based on the categorisation of Definition 4.24 the canonicity check can be sub­
divided into checking for each category similar to the following pseudocode. The
procedures used in this pseudocode are defined in Sections 4.5.1 to 4.5.4.

4.5.1 Canonicty of P-Type Plane Graphs

In this section it is discussed how a P-type plane graph can be checked if it is canon­
ical or not.

Theorem 4.33. If G is a canonical P-type graph, then for any maximal induced subpath
P = v§e\V\.. .envn of G, then BfsRep(P) = min{Bcode*(P;ei),Bcode*(P;inv(e„))}.

Proof. Assume to the contrary that G\ is canonical but there is a path P\ = . . . e„vn
such that BfsRep(Pi) ^ Bcode*(Pi;ei) and BfsRep(Pi) A Bcode* (Pi; inv(e„)). So
based on the definition of BfsRep and Bcode* the first difference point in the se­
quences BfsRep(Pi) and Bcode*(Pi;e\) is when we have an starred edge e such that
label(inv(c)) < label(e). Thus Bcode*(Pi;ci) < BfsRep(Pi) and similarly the first dif­
ference in BfsRep(Pi) and Bcode*(Pi;inv(e„)) is when an edge e' is reached such that
label(inv(P)) < label(P) which means Bcode*(Pi;inv(e„)) < BfsRep(Pi).

Let G2 be the copy of Gi except in e, inv(e), e' and inv(e') for which their label
are exchanged with their inverse. Then assume P2 is the path e \ , . . . ,e n in G2. As
e is an starred edge, G2 is isomorphic to Gi as changing these labels is the same
as taking mirror for the subgraph replaced by e and inv(e). Also as in G we had

62 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

label(inv(e)) < label(e) and label(inv(c')) < label(P), Bcode(P2;ei) < Bcode(Pi,ei)
and Bcode(P2;inv(e„)) < Bcode(Pi,inv(e„)) which means BfsRep(P2) < BfsRep(Pi).

Now based on Definition 4.22, the Rep(Gi) = [—4, A\, Rep(G\)] and Rep(G2) =
[—4, Ai, Rep(G'2)] for some A\, Aj, G[and G'2. Let <Si and S2 be the value of *5 in
Definition 4.22 for Gi and G2 respectively. Based on the way G2 is defined from
Gi it can be obtained that <Si\c>2 = (BfsRep(Pi)} and <S2\£ i = (BfsRep(P2)}. But
BfsRep(P2) < BfsRep(Pi) that means A2 < A\ because A\ and A2 are made from
«Si and S2- So as a result Rep(G2) < Rep(G\) which is a contradiction with the
assumption that Gi is canonical. □

Theorem 4.34. Let G be a P-type plane labelled graph. Then G is canonical if and only if:

• For every maximal induced subpath P = v$e\V\... envn of G,
BfsRep(P) e {Bcode*(P;ei),Bcode*(P;inv(e„))}.

• None of the maximal induced subpath P of G have unacceptable BfsRep.

• The graph G' obtained after applying reductions in Definition 4.22 is canonical.

Proof. (=>) If G is canonical by Theorem 4.33 and Lemma 4.28 it satisfies the first and
second conditions. To prove the third condition assume to the contrary that G' is
not canonical then there is another embedding of G' say G' which is canonical. So
Rep(G'c) < Rep(G'). Now applying the inverse of reductions on the G'c a graph Gc is
obtained which is isomorphic to G and so has the same set of maximal paths. Thus
Rep(G) = [—4, A, Rep(G')] and Rep(Gc) = [-4, A, Rep(G[.)] for the same value of A
because of condition two. But by canonicity of Gc, Rep(G'c) < Rep(G') which means
Rep{Gc) < Rep(G) and this contradicts the assumption that G is canonical

(<=) Let G be a plane graph satisfying the criteria and Ga be an arbitrary em­
bedding of G. As G and Ga are isomorphic they have the same maximal subpaths
and so Rep(G) = [—4, A, Rep(G')] and Rep(Ga) = [—4, A, Rep(G'a)] for the same val­
ues A because none of the maximal subpaths is unacceptable. Also G' is isomor­
phic to G'. So canonicity of G' guarantees that Rep(G') ^ Rep(G'a) and as a result
Rep(G) ^ Rep(Ga). Therefore, G has the least representation amongst all embedding
which means G is canonical. □

Theorem 4.34 gives a simple way to recognise if a P-type graph is canonical or
not. It is enough to apply the path reductions and then check if the obtained graph
is canonical or not. Algorithm 4.2 shows how this idea can be implemented.

4.5.2 Canonicty of M-Type Plane Graphs

In this section it is discussed how a M-type plane graph can be checked if it is
canonical or not. Two necessary conditions for a M-type plane graph to be canonical
is proven. Then adding another criterion, a necessary and sufficient condition for
canonicity of M-type plane graphs is defined.

§4.5 Canonicity Check 63

Algorithm 4.2 Canonical Testing for P-Type Graphs
1: function IsCanonPath(G: Plane graph)
2: V = list of all maximal induced path subgraphs
3: for each P e V do
4: r(P) = BfsRep(P)
5: if r(P) {Bcode*(P;ei),Bcode*(P;inv(e„))} then
6: return f a ls e
7: end if
8: if r(P) is unaccaptable then
9: return f a ls e

10: end if
11: end for
12:

13: for each P e V do
14: Index(P) = \{P' e V : r(P') < r(P)}|
15: end for
16:
17: k = maxeeD£(G) label(e) 4-1
18: for i = 1 —*■ \P\ do
19: G' = V'JZ(G';V[i],k + 2 x Index('P[z])) t> Apply path reduction
20: end for
21:

22: return IsCanon(G')
23: end function

Theorem 4.35. Let G be a M-type graph containing some multiedges from vertices v\ and vi
which are e1, . . . , en in the same order as rot(z;i). Then G is not canonical; unless e \ , . . . , en
are contiguous.

Proof. Let G be one such graph. We prove e \ , . . . ,e n should be consecutive; otherwise
G is not canonical. Assume e \,. .. ,en are not contiguous and rot(i?i) and rot(u2) are

rot(üi) (Cj , • • • / / 2̂/ *2,0/ • • • / *2,12/ * * ' n /*m,0/ • • • / *tt,in)
rot(zz2) = (inv(e„), y„t0/. . . , yn>jn, . . . ,inv(e2), 1/2,0/ • • • / yi,j2 / inv(^i)/2/i,0/ • • • / yi,/i)

Now consider graph G' obtained from G by modification of rot(i>i) and rot(i>2) as

rot(lZj) (Cl / • • • ßn / *1,0/ • • • / *1,1] / • • • /*m,0/ • • • / *n,in)
rot(i?2) = (inv(e„) , . . . , in v fo), yn,0, . . . , yn,jn, • ••, J/i,0/ • • • /1/1,/,)

this way e i , . . . become consecutive and G' is still planar and also isomorphic to
G. Now if G has no contiguous multiple edges between no two vertices, then based
on the definition Rep(G) is of form [—2 ,...] or [—1,...] but as G' has some consec­
utive multiedges Rep(G') is of form [—3, C ',...] which means G is not canonical. So
assume G has at least some consecutive multiedges which means Rep(G) is of form

6 4 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

[—3,C ,...]. But still Rep(G) > Rep(G') because C > C'. □

Theorem 4.36. Let G be a M-type graph containing some contiguous multiedges from ver­
tices V\ and V2 ■ Then ifG is canonical, BfsRep(M) = min{Mcode*(M;i;i),Mcode*(M;i;2)}

Proof Assume for the contrary that Ls < L,s but L ^ Ls for some G satisfying the
theorem criteria. Now for all 1 ^ i ^ n exchanging ez with ej and correspondingly
e'n_j with e'n_j in rot(i>i) and rot(i>2), a new embedding G' of G is obtained.

Now considering their representation, they are the same except subsequence A in
Definition 4.22. Moreover it is not hard to see that A for G' is less than G because the
set S is the same for both except in the changed part for which BfsRep computed for
the modified part is reduced. So Rep(G') < Rep(G) which means G is not canonical.

The same discussion can be applied for the case when Ls = L's to prove that if
neither L = Ls nor L' = L's hold, then the graph is not canonical. □

Theorem 4.37. Let G be a canonical M-type containing some contiguous multiedges from
vertices v\ and V2 . Also assume M is a subgraph of G induced by maximal set of edges
e \,. . . ,en from v\ to V2 . Then BfsRep(M) e {Bcode*(M;ci),Bcode*(M;inv(c„))}.

Proof Let Gi be a canonical Mi-type graph and M a subgraph of Gi satisfying the
criteria except BfsRep(Mi) A Bcode*(Mi;ei) and BfsRep(Mi) A Bcode*(Mi;inv(e„)).
So based on the definition of BfsRep and Bcode* the first difference point in the
sequences BfsRep(Pi) and Bcode*(Pi;ei) is when we have an starred edge e such that
label(inv(e)) < label(e). Thus Bcode*(Mi;ei) < BfsRep(Mi) and similarly the first
difference in BfsRep(Mi) and Bcode*(Mi;inv(e„)) is when an edge e' is reached such
that label(inv(e')) < label(e') which means Bcode*(Mi;inv(e„)) < BfsRep(Mi).

Let G2 be the copy of Gi except in e, inv(e), e1 and inv(e') for which their la­
bel are exchanged with their inverse. Then assume M2 is the subgraph of G in­
duced by edges e \ , . . . ,e n. As e is an starred edge, G2 is isomorphic to Gi as chang­
ing these labels is the same as taking mirror for the subgraph replaced by e and
inv(c). Also as in G we had label(inv(c)) < label(e) and label(inv(e')) < label(c'),
Bcode(M2;ci) < Bcode(Mi,ei) and Bcode(M2;inv(c„)) < Bcode(Mi,inv(e„)) which
means BfsRep (M2) < BfsRep (Mi).

Now based on the Definition 4.22, the Rep(Gi) = [—3, C, A\, Rep(G[)] and Rep(G2)
= [—4, C, A 2 , Rep(G'2)] for some C, A\, A2 , G\ and G'2. Now based on Definition 4.22,
Si\S2 = {BfsRep (Mi)} and S2\Si = {BfsRep (M2)}. But BfsRep(M2) < BfsRep (Mi)
that means A2 < A\ and as result Rep(G2) < Rep(G\) which contradicts the assump­
tion that Gi is canonical. □

Theorem 4.38. Let G be a canonical M-type graph. Then G is canonical if and only if:

• All multiedges satisfy the criteria of Theorems 4.35, 4.36 and 4.37.

• None of the maximal multiedges M of G have unacceptable BfsRep.

• The graph G' obtained after applying reductions in Definition 4.22 is canonical.

§4.5 Canonicity Check 65

Proof. (=>) If G is canonical then it satisfy the criteria of Theorems 4.35, 4.36 and 4.37;
and Lemma 4.28. To prove the third condition assume to the contrary that G' is not
canonical then there is another embedding of G' say G' which is canonical. Now
applying the inverse of reductions on the G' a graph Gc is obtained which has the
same set of multiple edges and so is isomorphic to G, but Rep(Gc) < Rep(G) be­
cause Rep(G) = [—3,C, A, Rep(G')] and Rep(Gc) = [—3,C, A, Rep(G'c)] for the same
values C, S and A; but Rep(G'c) < Rep(G') because G' is canonical and G' is not. So
Rep(Gc) < Rep(G) which contradicts the assumption that G is canonical

(<=) Assume G satisfies the criteria and assume Gc is the embedding of G which
is canonical. By the fact that Gc is canonical it satisfies the criteria of Theorems 4.35,
4.36 and 4.37. Also considering that G is isomorphic to Gc, the set »5 defined in
Definition 4.22 would be the same for G and Gc. So Rep(G) = [-3, C, A, Rep(G')]
and Rep(Gc) = [—3, C, A, Rep(G'c)] for the same values C and A because none of
the subgraphs is unacceptable; but G' is canonical by the assumption so Rep(G') ^
Rep(G'c). Thus Rep(G) ^ Rep(Gc) which means G is canonical. □

Theorem 4.38 gives a simple way to recognise if a M-type graph is canonical or
not. One could check every maximal induced multiedges to see if the edges are
consecutive and in the correct order. If at least one of them violates the criteria the
graph can be rejected instantly. If none of the subgraphs cause rejectio, the reduced
graph after applying all multiedges reductions can be used to check whether the
original graph was canonical or not. Algorithm 4.3 shows how we can determine if
a M-type graph is canonical or not.

4.5.3 Canonicty of B-Type Plane Graphs

In this section we discuss how a B-type plane graph can be checked if it is canonical
or not.

Theorem 4.39. A B-type plane graph G is canonical if and only if

• All 2-blocks of G are canonical.

• None of the 2-blocks B of G have unacceptable BfsRep.

• The graph G' obtained after applying reductions in Definition 4.22 is canonical.

Proof (=>) If G is canonical by Lemma 4.28 it satisfies the second condition. Assume
to the contrary that G is canonical and B is one its 2-blocks which is not canonical.
Now consider the graph Gc obtained from G by replacing B with its canonical em­
bedding Bc. Therefore, [—2, A, Rep(G')] = Rep(G) > Rep(Gc) = [—2, AC/ Rep(G'c)].
The reason behind is that A and A' are sorted elements of two sets say S and Sc such
that S\SC = {BfsRep(B)} and SC\S = {BfsRep(Bc)}. But Rep(B) > Rep(Bc) which
means A > Ac and as a result Rep(G) > Rep(Gc). This contradicts the assumption
that G is canonical.

To prove the third criteria, assume to the contrary that G' is not canonical then
there is another embedding of G' say G' which is canonical. Now applying the

66 Isomorphisjn Rejection and Canonical Testing of 2-Connected Plane Graphs

Algorithm 4.3 Canonical Testing for M-Type Graphs
1 function Is C a n o n M u l t i E d g e (G : Plane graph)
2 A4 = list of all maximal induced multiedges subgraphs
3 for each M e A4 do
4 if edges of M are not consecutive in G then
5 return f a l s e o Check Theorem 4.35
6 end if
7

8 v = one of the vertices of M and v ' = the other vertex of M
9 b* = min{Mcode*(M; y),Mcode*(M; v ')}

10 if b* is unaccaptable then
11 return f a l s e
12 end if
13 if G = M then
14 b\ = min^ro^y) Mcode(M;e)
15 bi = mint,erot(i;/) Mcode(M;c)
16 else
17 e = the v v ' dart in M whose previous edge is not in M
18 e' = the v 'v dart in M whose previous edge is not in M
19 b\ = Mcode(M;e)
20 b i = Mcode(M;e')
21 end if
22 r (M) = min b i ,b 2

23 if r(B) is unaccaptable then
24 return f a l s e
25 end if
26 if b * * r(M) then
27 return f a l s e
28 end if
29 end for
30

31 for each M e A4 do
32 Index(M) = |{M' e M : r(M ') < r(M)}|
33 end for
34 k = maxeeDE(G) label(e) + 1
35 for i = 1 —*• \A4 \ do
36 G = A4K(G ;M \i],k + 2 x Index(A<[i])) t> Apply path reduction
37 end for
38

39 return I s C a n o n (G ') o Check Theorem 4.38
40 end function

inverse of reductions on the G'c a graph Gc is obtained which has the same set of
multiple edges and so is isomorphic to G, but Rep(Gc) < Rep(G) because Rep(G) =
[—2, A, Rep(G')] and Rep(Gc) = [—2, A, Rep(G'c)\ for the same value of A because of

§4-5 Canonicity Check 67

Algorithm 4.4 Canonical Testing for B-Type Graphs
1: function IsCa n o n2Block(G: Plane graph)
2: B = list of all 2-blocks
3: for each B e B do
4: Let {v , v '} be the 2-cut that B is attached to
5: es = the vv ' dart in B whose previous edge is not in B
6: ee = the vv' dart in B whose next edge is not in B
7: e's = the v 'v dart in B whose previous edge is not in B
8: e'e = the v 'v dart in B whose next edge is not in B
9:

10: b* = min{Bcode’f(B;cs)/BcodeJvl(B;ee)/ Bcode*(B;c')/ BcodeJvl(B;4)}
11: if is unaccaptable then
12: return fa lse
13: end if
14:
15: b\ = Bcode(B;es) and = Bcode(B;e')
16: r(B) = min{b\,b2 }
17: if r(B) is unaccaptable then
18: return fa lse
19: end if
20: if b* ^ r(B) then
21: return fa lse
22: end if
23: end for
24:
25: for each B e B do
26: Index(B) = |{B' e B : r(B') < r(B)}|
27: end for
28:
29: k = maxfeDE(G) label(e) + 1
30: for i = 1 —► \B\ do
31: G' = BTZ(G'; B[i\,k + 2 x Index(#[z])) o Apply 2-block reduction
32: end for
33:
34: return IsC a n o n (G')
35: end function

the second condition; but Rep(G'c) < Rep(G') because G'c is canonical and G' is not.
So Rep(Gc) < Rep(G) which contradicts the assumption that G is canonical.

(<=) Assume G satisfies the criteria and let Gc be the canonical embedding of
G, so by the previous discussions, all 2-blocks of Gc are canonical and the graph
G'c obtained from Gc after reduction is canonical too. Also the set of 3-connected
subgraphs is independent of the embedding so the set of 2-blocks of G and Gc
are the same graphs and as all are canonical, they have the same embedding. So

68 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

Rep(G) = [—2, A, Rep(G')] and Rep(Gc) = [—2, A, Rep(G'c)] for the same value of A
because none of the 2-blocks is unacceptable; but G' is canonical by the assumption
so Rep(G') ^ Rep(G'c). Thus Rep(G) Rep(Gc) which means G is canonical. □

4.5.4 Canonicty of T-Type and C-Type Plane Graphs

In this section we discuss how a T-type or a C-type plane graph can be checked if it
is canonical or not.

An cycle graph with no flagged and starred edge has only one embedding on the
sphere. But if C has some starred edges, then swapping the label of any of them with
its inverse edge produces isomorphic graphs.

Theorem 4.40. Any cycle graph C is canonical if and only if for Bcode(C) = Bcode*(C)
and Bcode(C) is acceptable.

Proof (=>) Assume C is a canonical cycle graph, by Lemma 4.30 there is an embed­
ding C* such that Bcode(C*) = Bcode*(C) and by Lemma 4.29 we have Bcode(C) ^
Bcode*(C) which means Bcode(C) ^ Bcode(C*). So C is not canonical unless Bcode(C)
Bcode(C*) = Bcode*(C). Note that by Lemma 4.28 if Bcode(C) is not acceptable then
it is not canonical.

(<=) Let C be a cycle graph for which Bcode(C) = Bcode*(C) and Cc be the canon­
ical embedding of C. As a cycle graph has a unique embedding except the flagged
and starred edges that can swap their labels by their inverse, by Corollary 4.32
Bcode*(Cc) = Bcode*(C). But Bcode*(Cc) ^ Bcode(Cc) by Lemma 4.29 which means
BcodefC) ^ Bcode(Cc) and so C is canonical. □

Algorithm 4.5 Canonical Testing for C-Type Graphs
1: function IsCa n o nCycle(G: Plane graph)
2: b* = Bcode*(G)
3: if b* is unaccaptable then
4: return fa lse
5: end if
6: b = Bcode(G)
7: if b is unaccaptable then
8: return false
9: end if

10: if b = b* then
11: return true
12: else
13: return false
14: end if
15: end function

Theorem 4.41. A simple 3-connected marked graph G is canonical, if and only z/Bcode(G) =
Bcode*(G) ^ Bcode^(G) and Bcode(G) is acceptable.

§4-6 Conclusions 69

Proof. (=>) Assume G is a canonical 3-connected simple graph, by Lemma 4.30 there
is an embedding G* such that Bcode(G*) = Bcode*(G) and by Lemma 4.29 we have
Bcode(G) ^ Bcode*(G) which means Bcode(G) ^ Bcode(G*). So G is not canonical
unless

Bcode(G) = Bcode(G*) = Bcode*(G). (4.7)

Also let Gm = Mir*(G) and G^ be the embedding of Gm such that Bcode(G](1) =
Bcode^GM)- As G is canonical, Bcode(G) ^ Bcode(G^) = Bcode*(GM) = BcodeJVI(G).
Combining this result with Equation 4.7 and Lemma 4.28, the desired result is ob­
tained.

(4=) Let G be a 3-connected marked graph for which Bcode(G) = Bcode*(G) ^
BcodeJVI(G) and Gc be the canonical embedding of G. A 3-connected graph has at
most two embedding (mirror of each other) except for the flagged and starred edges
that can swap their labels by their inverse. By Corollary 4.32, Bcode*(Cc) = Bcode*(C)
because Bcode(G) is acceptable and Bcode*(G) ^ BcodeJvl(G). But Bcode*(Gc) ^
Bcode(Gc) by Lemma 4.29. Therefore, Bcode(G) ^ Bcode(Gc) and G is canonical. □

Algorithm 4.6 Canonical Testing for T-Type Graphs
1: function IsCanonTriConnected(G: Plane graph)
2: b* = min{Bcode*(G),BcodeJvl(G)}
3: if b* is unaccaptable then
4: return fa lse
5: end if
6-. b = Bcode(G)
7: if b* is unaccaptable then
8: return fa l s e
9: end if

10: if b = b* then
11: return true
12: else
13: return fa l se
14: end if
15: end function

Finally, using Lemma 4.25 which shows there are exactly five types of 2-connected
plane graphs we can design the Algorithm 4.7 to check canonicity of a 2-connected
plane graph.

4.6 Conclusions

In this chapter we discussed how a 2-connected planar graph can be embedded
canonically and how we can do an isomorphism rejection using the canonical embed­
ding that we defined. Software canemb [63] contains the implementation of a filter for
non-canonically embedded 2-connected graphs based on the theories of this chapter.

7 0 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

Algorithm 4.7 Canonical Testing for 2-Connected Plane Graphs
1: function IsCanon(G: Plane graph)
2: if G is P-Type then
3: return IsCanonPath(G)
4: else if G is M-Type then
5: return IsCanonMultiEdge(G)
6: else if G is B-Type then
7: return IsCanon2Block(G)
8: else if G is C-Type then
9: return IsCanonCycle(G)

10: else if G is T-Type then
11: return IsCanonTriConnected(G)
12: end if
13: end function

The fifth and sixth columns of Table 4.1 contain the number of 2-connected planar
graphs computed using canemb and their running time which confirm the previous
known results [23, 20, 111] too.

In addition, we have checked the 2-connected planar bipartite graphs too and the
numbers of graphs and computation times can be found in Table 4.2. The number of
planar bipartite graphs up to n = 14 has been known [109]. Using canemb we have
extended this results to n = 16.

\V\ 2-Connected 2-Connected
Plane

Generation
Time

2-Connected
Planar

Filtering
Time

2 1 1 <ls 1 <ls

3 1 1 <ls 1 <ls

4 3 3 <ls 3 <ls

5 10 10 <ls 9 <ls

6 56 61 <ls 44 <ls

7 468 564 <ls 294 <ls

8 7123 7593 <ls 2893 <ls

9 194066 123874 <ls 36496 2s

10 9743542 2262877 2s 545808 34s

11 900969091 44190279 30s 9029737 16m

12 153620333545 904777809 14m 159563559 355m

Table 4.1: Number of 2-connected generic, plane and planar graphs; and the time for
generation of plane graphs using plantri and filtering isomorphic copies using canemb

§4-6 Conclusions 71

Bipartite

\V\ 2-Connected 2-Connected Generation 2-Connected Filtering
Plane Time Planar Time

4 1 1 <ls 1 <ls

5 1 1 <ls 1 <ls

6 5 4 <ls 4 <ls

7 8 6 <ls 6 <ls

8 42 28 <ls 30 <ls

9 146 77 <ls 92 <ls

10 956 386 <ls 521 <ls

11 6643 1787 <ls 2781 <ls

12 65921 10354 <ls 18161 <ls

13 818448 62040 <ls 121835 2s

14 13442572 404093 <ls 869379 16s

15 287665498 2725484 6s 6361801 2.5m

16 8099980771 19078248 42s 47802651 24m

Table 4.2: Number of 2-connected bipartite generic [107], plane [109] and planar
graphs; and the time for generation of bipartite plane graphs using plantri and filter­

ing isomorphic copies using canemb

We mainly focused on how we can determine if a plane graph has the canonical
embedding or not. But one can find the canonical embedding from any given embed­
ding with the same recursive approach. It is enough in each step to replace subgraphs
with edges whose label are based on the Bcode* and Bcodej^ instead of Bcode for P-
type, B-type, C-type and T-type; and Mcode* instead of Mcode for M-type marked
plane graphs. Also for testing if two plane graphs are abstract-isomorphic or not,
one can compute their canonical representation (the representation of their canonical
embedding) and check if they are equal or not.

A possible future direction is to extend this approach to all connected plane
graphs. This extension could be done using block graphs. The block graph of G is
the graph obtained from G by replacing every maximal 2-connected component with
a vertex, and two vertices in the resulting graph are adjacent if there is an edge be­
tween two vertices of their corresponding 2-connected components. One can check
the canonicity of each 2-connected component using our approach and then extend
the result to its block graph. This could be specially for graphs with order more than
10. Figure 4.8 shows that after n > 10 the ratio of generic graphs to plane graphs
increases dramatically.

7 2 Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

Simple connected graphs
Simple connected plane graphs
Simple connected planar graphs

3 10

10 11 12 13 14
Number of Vertices

Figure 4.8: Number of simple connected generic, plane and planar graphs [23, 108,
113].

Recursive Generation of 4-Face
Deflatable Hypohamiltonian
Graphs

Chapter 5

5.1 Background

This chapter contains the material published in "Planar Hypohamiltonian Graphs
on 40 Vertices" which is a joint study with B. D. McKay, P. R. J. Östergärd, V. H.
Pettersson and C. T. Zamfirescu [64].

5.2 Introduction

Chvätal [26] asked in 1973 whether there exist planar hypohamiltonian graphs, and
there was a conjecture that such graphs might not exist [49]. However, an infinite
family of planar hypohamiltonian graphs was later found by Thomassen [115], the
smallest among them having order 105. This result was the starting point for work
on finding the smallest possible order of such graphs, which has led to the discovery
of planar hypohamiltonian graphs of order 57 (Hatzel [53] in 1979), 48 (C. Zamfirescu
and T. Zamfirescu [126] in 2007), and 42 (Wiener and Araya [123] in 2011). These four
graphs are depicted in Figure 5.1.

Grinberg [48] proved a necessary condition for a plane graph to be Hamiltonian.
All graphs in Figure 5.1 have the property that one face has size 1 modulo 3, while
all other faces have size 2 modulo 3. Graphs with this property are natural candi­
dates for being hypohamiltonian, because they do not satisfy Grinberg's condition.
However, we will prove that this approach cannot lead to hypohamiltonian graphs of
order smaller than 42. Consequently we seek alternative methods for finding planar
hypohamiltonian graphs. In particular, we construct a certain subset of graphs with
girth 4 and a fixed number of 4-faces in an exhaustive way. This collection of graphs
turns out to contain 25 planar hypohamiltonian graphs of order 40.

In addition to finding record-breaking graphs of order 40, we shall prove that
planar hypohamiltonian graphs exist for all orders greater than or equal to 42 (it is

73

74 Recursive Generation of 4-Face Deflatable Hypohamiltonian Graphs

proved in [123] that they exist for all orders greater than or equal to 76). Similar
results are obtained for hypotraceable graphs. We show that there is a planar hypo-
traceable graph of order 154 and of all orders greater than or equal to 156; the old
records were 162 and 180, respectively [123].

(a) Thomassen's Graph (|V| = 105)

(c) Zamfirescu and Zamfirescu's Graph (|V| = 48)

(b) Hatzel's Graph (| V| = 57)

(d) Wiener and Araya's Graph (WA42)

Figure 5.1: Planar hypohamiltonian graphs of order 105, 57, 48, and 42

T. Zamfirescu defined C[and P'k to be the smallest order for which there is a pla­
nar /c-connected graph such that every set of i vertices is disjoint from some longest
cycle and path, respectively [127]. Some of the best bounds known so far were
C\ ^ 42, C| ^ 3701, P3 ^ 164 and P | ^ 14694, which were found based on a planar
hypohamiltonian graph on 42 vertices [123]. We improve upon these bounds using
our graphs to C] ^ 40, C3 ^ 2625, P] ^ 156 and P | ^ 10350.

The chapter is organized as follows. In Section 5.3 we define Grinbergian graphs
and prove theorems regarding their hypohamiltonicity. In Section 5.4 we describe
generation of certain planar graphs with girth 4 and a fixed number of 4-faces, and
show a summary of hypohamiltonian graphs found among them. In Section 5.5 we
present various corollaries based on the new hypohamiltonian graphs. The paper is
concluded in Section 5.6.

§5.3 Grinbergian graphs 75

5.3 Grinbergian graphs

Consider a plane hypohamiltonian graph G = (V,E), and let k(G), £(G), and A(G)
denote the vertex-connectivity, minimum degree, and edge-connectivity of G, respec­
tively. We will use tacitly the following fact.

Theorem 5.1. k(G) = A(G) = <5(G) = 3.

Proof. Since the deletion of any vertex in V gives a Hamiltonian graph, we have
k(G) ^ 3. Tutte [118] proved that every 4-connected planar graph is Hamiltonian,
so k(G) ^ 3. Thomassen [116] showed that V must contain a vertex of degree 3, so
3(G) ^ 3. The result now follows from Whitney's Theorem [121, Theorem 4.1.9]. □

The set of vertices adjacent to a vertex v is denoted by N(v). Let n = \V\, m = |E|,
and / be the number of faces of the plane graph G. They satisfy Euler's formula
n - m f — 2. A k-face is a face of G bounded by k edges. We define

Ij := {i ^ 3 : i = j mod 3},

and let V j be the family of k-faces with k e I j .
We call a graph Grinbergian if it is 3-connected, planar and of one of the following

two types.

Type 1 Every face but one belongs to Vj-

Type 2 Every face has even order, and the graph has odd order.

The motivation behind such a definition is that Grinbergian graphs can easily be
proven to be non-Hamiltonian using Grinberg's Theorem. Namely, their face sizes
are such that the sum in Grinberg's Theorem cannot possibly be zero. Thus, they are
good candidates for hypohamiltonian graphs.

Our definition of Grinbergian graphs contains two types. One could ask, if there
are other types of graphs that can be guaranteed to be non-Hamiltonian with Grin­
berg's Theorem based on only their sequence of face sizes. The following theorem
shows that our definition is complete in this sense.

Theorem 5.2. Consider a 3-connected simple planar graph with n vertices (n ^ 42) and
Fj i-faces for each i. Then there are non-negative integers f , f ' (f + f- = Ff satisfying the
equation J^fi - 2)(/,• — ft) = 0 if and only if the graph is not Grinbergian.

Proof. Since the graph is simple and 3-connected, every face must have at least 3
edges. Applying [121, Theorem 6.1.23] to the dual of the graph gives fj = 2e ^
6 / — 12, where / is the number of faces. Thus, the average face size is at most
6 — (12//). In addition, the size of a face has to be smaller than or equal to the
number of vertices in the graph.

Given a sequence of face sizes F„ the problem of finding coefficients / , / ' that
satisfy the equation can be reduced to a simple knapsack problem. Namely, note
that 2 f(i - 2)(ft - / ') = 2,-(i - 2)(F, - 2/') = J]t{i - 2)F; - 2(i - 2)//, so solving

76 Recursive Generation of 4-Face Deflatable Hypohamiltonian Graphs

the equation corresponds to solving an instance of the knapsack problem where we
have Fi objects of weight 2(i — 2), and we must find a subset whose total weight is
Yifi — 2)Fj . The result can be then verified with an exhaustive computer search over
all sequences of face sizes that fulfill the above restrictions. □

It should be noted that the result in Theorem 5.2 most likely holds for all n, but
for our purposes it suffices to prove it for n ^ 42.

By Grinberg's Theorem, Grinbergian graphs are non-Hamiltonian. Notice the
difference between our definition and that of Zaks [125], who defines non-Grinbergian
graphs to be graphs with every face in Vi- We call the faces of a Grinbergian graph
not belonging to Vi exceptional.

Theorem 5.3. Every Grinbergian hypohamiltonian graph is of Type 1, its exceptional face
belongs to V\, and its order is a multiple of 3.

Proof Let G be a Grinbergian hypohamiltonian graph. There are two possible cases,
one for each type of Grinbergian graphs.

Type 1: Let the /-face F be the exceptional face of G (so j <£ h), and let v be a
vertex of F. Vertex v belongs to F and to several, say h, faces in Vj- The face of G — v
containing v in its interior has length 3h + / — 2 (mod 3), while all other faces have
length 2 (mod 3). Since G is hypohamiltonian, G — v must be Hamiltonian. Thus,
G — v cannot be a Grinbergian graph, so 3h + j — 2 e I2, whence j e I\.

Type 2: As G contains only cycles of even length, it is bipartite. A bipartite graph
can only be Hamiltonian if both of the parts have equally many vertices. Thus, it is
not possible that G — v is Hamiltonian for every vertex v, so G cannot be hypohamil­
tonian and we have a contradiction.

Hence, G is of Type 1, and its exceptional face is in V\. Counting the edges we
get 2m = 2(f — 1) + 1 (mod 3), which together with Euler's formula gives

2n = 2m - 2 / + 4 = 2 / - 1 - 2 / + 4 = 0 (mod 3),

so n is a multiple of 3. □

Lemma 5.4. In a Grinbergian hypohamiltonian graph G of Type 1, all vertices of the excep­
tional face have degree at least 4.

Proof Denote the exceptional face by Q. Now assume that there is a vertex v e V(Q)
with degree 3, and consider the vertex w e N(v)\V(Q). (Note that N(v)\V(Q) 0 ,
because G is 3-connected.) Let k be the degree of w. Now consider the graph G'
obtained by deleting w from G. Denote the number of vertices in the faces of G that
contain w by Nj (1 ^ i ^ k); we have N,- = 2 (mod 3). The number of vertices in the
face of G' containing w in its interior is now m = XI/M — 2) = 0 (mod 3). Assume
that G' is Hamiltonian. The graph G' contains only faces in V2 except for one face
in V\ and one in Vq. The face in V\ and the face in Vo are on different sides of any
Hamiltonian cycle in G', since the cycle must pass through v. The sum in Grinberg's
Theorem, modulo 3, is then (m — 2) -I-1 = 2 (mod 3) or — (m — 2) — 1 = 1 (mod 3),
so G' is non-Hamiltonian and we have a contradiction. □

§54 Generation of 4-face deflatable hypohamiltonian graphs 77

In Section 5.4, we will use these properties to show that the smallest Grinbergian
hypohamiltonian graph has 42 vertices.

5.4 Generation of 4-face deflatable hypohamiltonian graphs

We define the operation 4-face deflat er denoted by T V 4 which squeezes a 4-face of a
plane graph into a path of length 2 (see Figure 5.2). The inverse of this operation is
called 2-path inflater which expands a path of length 2 into a 4-face and is denoted by
VX 2 . In Figure 5.2 each half line connected to a vertex means that there is an edge in­
cident to the vertex at that position and a small triangle allows zero or more incident
edges at that position. For example has degree at least 3 and 4 in Figures 5.2(a)
and 5.2(b), respectively. The set of all graphs obtained by applying P I 2 and T V 4 on
a graph G is denoted by VX 2 (G) and TV flG), respectively.

Figure 5.2: Operations T V 4 and V I 2

Let Vs (/) be the set of all simple connected plane graphs with / faces and min­
imum degree at least 5, which can be generated using the program plantri [22]. Let
us denote the dual of a plane graph G by G*. We define the family of 4-face deflat­
able graphs (not necessarily simple) with / 4-faces and n vertices, denoted by M^(n),
recursively as:

(G* : Ge Vs (n) } , f = 0;

M}{n) = < (5.1)

ÖGeMj^in-l) ^ 2(G), / > 0.

It should be noted that applying VX 2 to a graph increases the number of both vertices
and 4-faces by one. Then, we can filter for possible hypohamiltonian graphs and
we define based on it as:

Xt4f{n) = {G e Ai^(n) : G is hypohamiltonian}. (5.2)

The function 'Hflfln) can be defined for n ^ 20 because the minimum face count
for a simple planar 5-regular graph is 20 (icosahedron). Also it is straightforward to

78 Recursive Generation of 4-Face Deflatable Hypohamiltonian Graphs

check that f ^ n — 20 because FL*{n) is defined based on F t i f ln — 1) for / > 0.
To test hamiltonicity of graphs, we use depth-first search with the following prun­

ing rule: If there is a vertex that does not belong to the current partial cycle, and has
fewer than two neighbours that either do not belong to the current partial cycle or
are an endpoint of the partial cycle, the search can be pruned. This approach can be
implemented efficiently with careful bookkeeping of the number of neighbours that
do not belong to the current partial cycle for each vertex. It turns out to be reasonably
fast for small planar graphs.

Finally, we define the set of 4-face deflatable hypohamiltonian graphs denoted by
714(h) as:

n- 20
H \n) = U Hj(n). (5.3)

/= 0

Using this definition for 414(h), we are able to find many hypohamiltonian graphs
which were not discovered so far. The graphs found on 105 vertices by Thomassen
[115], 57 by Hatzel [53], 48 by C. Zamfirescu and T. Zamfirescu [126], and 42 by
Wiener and Araya [123] are all 4-face deflatable and belong to 41q(105), Fi\(57),
Fi\{48) and Fi\{42), respectively.

We have generated 714(h) exhaustively for 20 ^ n ^ 39 and all possible / but
no hypohamiltonian graph was found, which means that for all n < 40 we have
414(n) = 0 . For n > 39 we were not able to finish the computation for all / due to
the amount of required time. For n = 40,41,42,43 we finished the computation up
to / = 12,12,11,10, respectively. The only values of n and / for which FiAfln) was
non-empty were 414(40), Fi\{42), 414(42), 41.4(43) and 415(43). More details about
these families are provided in Tables 5.1, 5.2 and 5.3. Based on the computations we
can obtain the Theorems 5.5, 5.6, 5.7 and 5.8. The complete list of graphs generated
is available to download at [62].

4-Face Count Face Sequence Degree Sequence Count

5

3 0 x 3 , 10 x 4 4

3 1 x 3 , 8 x 4 , 1 x 5 10

5 x 4,22 x 5 32 x 3,6 x 4,2 x 5 9

33 x 3,4 x 4,3 x 5 2

All 25

Table 5.1: Facts about Fi\{40)

Theorem 5.5. There is no planar 4-face deflatable hypohamiltonian graph of order less than
40.

Theorem 5.6. There are at least 25 planar 4-face deflatable hypohamiltonian graphs on 40
vertices.

§54 Generation of 4-face debatable hypohamiitonian graphs 79

4-Face Count Face Sequence Degree Sequence Count

1 1 x 4,26 x 5
34 x 3,8 x 4

35 x 3,6 x 4,1 x 5

5

2

3 0 x 3 , 1 2 x 4 4

31 x 3,10 x 4,1 x 5 28

32 x 3,8 x 4,2 x 5 57

33 x 3,6 x 4,3 x 5 49

7 7 x 4,22 x 5 33 x 3,7 x 4,1 x 5, x 6 11

34 x 3,4 x 4,4 x 5 10

34 x 3,5 x 4,2 x 5,1 x 6 5

34 x 3,6 x 4,2 x 6 6

35 x 3,4 x 4,1 x 5,2 x 6 2

All All All 179

Table 5.2: Facts about TL\{42) and H j{42)

Theorem 5.7. There are at least 179 planar 4-face debatable hypohamiitonian graphs on 42
vertices.

Theorem 5.8. There are at least 497 planar 4-face debatable hypohamiitonian graphs on 43
vertices.

Lemma 5.9. Let G be a hypohamiitonian planar graph whose faces are at least 5-faces except
one which is a 4-face. Then any G' in (G) has a simple dual.

Proof. As G is a simple 3-connected graph, the dual G* of G is simple, too. Let
G' e T V \ (G) and assume to the contrary that G'* is not simple.

If G'* has some multiedges, then the fact that G* is simple shows that either
the two faces incident with V\Vg or with V3 V5 in Figure 5.3(b) (we assume the first
by symmetry) have a common edge VgVg in addition to V 1 V5 . Let V \ V ^ and V \ V i

be the edges adjacent to v\Vg in the cyclic order of v\. Note that vg 4 V 7 because
d(G'; V i) ^ 3 by Lemma 5.4. If v \ and Vg were the same vertex, then V\ would be a cut
vertex in G considering the closed walk V\Vg ■ • • V g { = V \) . But this is impossible as G
is 3-connected, so V\ 4 vg. Now we can see that {v\,vg} is a 2-cut for G considering
the closed walk v\Vg • • • vg • • • V7V\.

Also, if G'* has a loop, with the same discussion, we can assume that the two faces
incident with V 1 V5 are the same but then V\ would be a cut vertex for G. Therefore,
both having multiedges or having loops violate the fact that G is 3-connected. So the
assumption that G'* is not simple is incorrect, which completes the proof. □

8o Recursive Generation of 4-Face Deßatable Hypohamiltonian Graphs

4-Face Count Face Sequence Degree Sequence Count

36 x 3,6 x 4,1 x 6 1
4 4 x 4,23 x 5,1 x 7

37 x 3,4 x 4,1 x 5,1 x 6 1

34 x 3,9 x 4 8

35 x 3,7 x 4,1 x 5 20

5 x 4,22 x 5,1 x 8 36 x 3,5 x 4,2 x 5 19

37 x 3,3 x 4,3 x 5 1

37 x 3,4 x 4,1 x 5,1 x 6 1

32 x 3,11 x 4 52

33 x 3,9 x 4,1 x 5 148

5 34 x 3,7 x 4,2 x 5 175

34 x 3,8 x 4,1 x 6 2

35 x 3,5 x 4,3 x 5 56
5 x 4,24 x 5

35 x 3,6 x 4,1 x 5,1 x 6 6

36 x 3,3 x 4,4 x 5 1

36 x 3,4 x 4,2 x 5,1 x 6 4

37 x 3,2 x 4,3 x 5,1 x 6 1

37 x 3,3 x 4,1 x 5,2 x 6 1

All All All 497

Table 5.3: Facts about ^ 4 (4 3) and H|(43)

Theorem 5.10. Any Type 1 Grinbergian hypohamiltonian graph is 4-face deflatable. More
precisely, any Type 1 Grinbergian hypohamiltonian graph of order n is in TL^n) u FL\(n).

Proof Let G be a Type 1 Grinbergian hypohamiltonian graph with n vertices. By
Theorem 5.3 the exceptional face belongs to V\ so its size is 4 or it is larger. If the
exceptional face is a 4-face, then by Lemma 5.4 the 4-face has two non-adjacent 4-
valent vertices. So we can apply T V 4 to obtain a graph G' which has no face of
size less than 5. So 0(G'*) ^ 5 and G'* is a simple plane graph by Lemma 5.9. Thus
G'* e Vs and as a result of the definition of A4j, G'** = G' e A4<j(n — 1). Furthermore,
G e M \(n) because G e V TßG ') and as G is hypohamiltonian, G e TL\{ri).

But if the exceptional face is not a 4-face, then by the fact that it is 3-connected
and simple, G* is simple as well and as the minimum face size of G is 5, £(G*) ^ 5
which means G e A4q(n) and so G g H q(u). □

§5.5 Results 8 1

Figure 5.3: Showing that T V 4 (G) has a simple dual

Corollary 5.11. The smallest Type 1 Grinbergian hypohamiltonian graph has 42 vertices and
there are exactly 7 of them on 42 vertices.

Proof. By Theorem 5.10 any Type 1 Grinbergian graph belongs to Ti^n) u Ti\{n) but
according to the results presented in the paragraph preceding Theorem 5.5, we have
TL^fn) u TL\{n) = 0 for all n < 42. So there is no such graph of order less than
42. On the other hand, we have Hq(42) = 0 and \H\{42)\ = 7 which completes the
proof. □

5.5 Results

We present one of the planar hypohamiltonian graphs of order 40, discovered by us
in Figure 5.4, and the complete list of 25 in Figure 5.6.

Theorem 5.12. The graph shown in Figure 5.4 is hypohamiltonian.

Proof. We first show that the graph is non-Hamiltonian. Assume to the contrary that
the graph contains a Hamiltonian cycle, which must then satisfy Grinberg's Theorem.

8 2 Recursive Generation of 4-Face Deflatable Hypohamiltonian Graphs

Figure 5.4: A planar hypohamiltonian graph on 40 vertices (H40,i)

The graph in Figure 5.4 contains five 4-faces and 22 5-faces. Then

£ (i - 2)(/f - / ') = / ; - / 4 = ° (m°d 3),

where / 4 + f'A = 5. So /[= 1 and / 4 = 4, or = 4 and / 4 = 1. Let Q be the 4-face on
a different side from the four others.

Notice that an edge belongs to a Hamiltonian cycle if and only if the two faces it
belongs to are on different sides of the cycle. Since the outer face of the embedding
in Figure 5.4 has edges in common with all other 4-faces and its edges cannot all be
in a Hamiltonian cycle, that face cannot be Q.

If Q is any of the other 4-faces, then the only edge of the outer face in the em­
bedding in Figure 5.4 that belongs to a Hamiltonian cycle is the edge belonging to Q
and the outer face. The two vertices of the outer face that are not endpoints of that
edge have degrees 3 and 4, and we arrive at a contradiction as we know that two of
the edges incident to the vertex with degree 3 are not part of the Hamiltonian cycle.
Thus, the graph is non-Hamiltonian. Finally, for each vertex of the graph, Figure 5.8
shows a cycle omitting the vertex. □

We now employ operation Thn (See Definition 1.14 and Figure 1.6), defined
by Thomassen [117], for producing infinite sequences of hypohamiltonian graphs.
Wiener and Araya use this operation to show that planar hypohamiltonian graphs
exist for every order greater than or equal to 76. That result is improved further in
Theorem 5.14.

Lemma 5.13. The graphs H43, H44, H4 5 , H46 , H47 and H49 in Figure 5.5 are all hypohamil­
tonian.

Proof. Using a computer search, it can easily be checked that the graphs H43 and
H45 are not Hamiltonian. By Lemma 1.16 the rest of them are also non-Hamiltonian
because H44 e ThH(H40;i), H46 e ThH(WA42), H47 e ThH(H43) and H49 e ThH(H45).

Figures 5.7, 5.9, 5.10, 5.11, 5.12 and 5.13 shows the vertex-omitting Hamiltonian
cycles of them, respectively. □

§5.5 Results 83

(a) H43

(d) H46

(b) H44 (c) H45

(f) H49

Figure 5.5: Planar hypohamiltonian graphs of order 43, 44, 45, 46, 47 and 49

Theorem 5.14. T/rcre exist planar hypohamiltonian graphs of order n for every n 42.

Proof. Lemma 5.13 shows the graph H43, H44, H45, H46, H47 and H49 are hypohamil­
tonian. Also each of H44, H45, H47 and H49 have a 4-cycle whose vertices are 3-valent
so by repeated application of the operation Thn (Definition 1.14) and Theorem 1.17
there is a planar hypohamiltonian graphs on n ^ 44. Adding the fact that H43 and
WA42 are hypohamiltonian, the result is obtained. □

Whether there exists a planar hypohamiltonian graph on 41 vertices remains an
open question.

Wiener and Araya [123] further prove that there exist planar hypotraceable graphs
on 162 + 4k vertices for every k ^ 0, and on n vertices for every n ^ 180. To improve
on that result, we make use of the following theorem, which is a slight modification
of [114, Lemma 3.1].

Theorem 5.15. There exist planar hypotraceable graphs on 154 vertices, and on n vertices
for every n ^ 156.

Proof All the graphs obtained in the proof of Theorem 5.14 have a vertex with de­
gree 3. Consequently, Theorem 1.19 can be applied to those graphs to obtain pla-

84 Recursive Generation of 4-Face Deflatable Hypohamiltonian Graphs

nar hypotraceable graphs of order n for n = 40 + 40 + 40 + 40 — 6 = 154 and for
n ^ 40 + 40 + 40 + 42 — 6 = 156. □

The graphs considered in this work have girth 4. In fact, by the following theorem
we know that any planar hypohamiltonian graphs improving on the results of the
current work must have girth 3 or 4. Notice that a planar hypohamiltonian graph
can have girth at most 5, since a planar hypohamiltonian graph has a simple dual,
and the average degree of a simple plane graph is less than 6.

Let H be a cubic graph and G be a graph containing a cubic vertex w e V(G). We
say that we insert G into H, if we replace every vertex of H with G — w and connect
the endpoints of edges in H to the neighbours of w.

Corollary 5.16. We have

c j ^ 40, c f < 2625, Pj ^ 156 and P* ^ 10350.

Proof. The first of the four inequalities follows immediately from Theorem 5.12. In
the following, let G be the planar hypohamiltonian graph from Figure 5.4.

For the second inequality, insert G into Thomassen's graph H from [117, p. 38].
This means that each vertex of H is replaced by G minus some vertex of degree 3.
Since every pair of edges in H is missed by a longest cycle [101], in the resulting
graph G' any pair of vertices is missed by a longest cycle. This property is not lost if
all edges originally belonging to H are contracted.

In order to prove the third inequality, insert G into X4. We obtain a graph in
which every vertex is avoided by a path of maximal length.

For the last inequality, consider the graph H from the second paragraph of this
proof and insert H into X4, obtaining H'. Now insert G into H'. Finally, contract all
edges which originally belonged to H'. □

5.6 Conclusions
Despite the new planar hypohamiltonian graphs discovered in the current work,
there is still a wide gap between the order of the smallest known graphs and the
best lower bound known for the order of the smallest such graphs, which is 18 [1].
One explanation for this gap is the fact that no extensive computer search has been
carried out to increase the lower bound.

It is encouraging though that the order of the smallest known planar hypohamil­
tonian graph continues to decrease. It is very difficult to conjecture anything about
the smallest possible order, and possible extremality of the graphs discovered here.
It would be somewhat surprising though if no extremal graphs would have nontriv­
ial automorphisms (indeed, the graphs of order 40 discovered in the current work
have no nontrivial automorphisms). An exhaustive study of graphs with prescribed
automorphisms might lead to the discovery of new, smaller graphs.

The smallest known cubic planar hypohamiltonian graph has 70 vertices [2]. We
can hope that the current work inspires further progress in that problem too.

§5-A List of All 4-Face Debatable Hypohamiltonian Graphs on 40 Vertices 85

5.A List of All 4-Face Deflatable Hypohamiltonian Graphs on
40 Vertices

Figure 5.6: List of 4-face deflatable hypohamiltonian graphs on 40 vertices

86 Recursive Generation of 4-Face Deflatable Hi/pohamiltonian Graphs

5.B V e r te x -O m itt in g c y c le s o f H404, H43, H44, H45, H47 and

H 49

Mm m.m
i0w0 wm

Ä mif Ü]00mg j10Mis
Figure 5.7: All vertex-omitting cycles of H4 3 up to automorphism

§5-B Vertex-Omitting cycles of i , H43, H44, H45, H46/ H47 and H49 87

Figure 5.8: Vertex-omitting cycles of H4 0 J

88 Recursive Generation of 4-Face Deflatable Hypohamiltonian Graphs

Figure 5.9: All vertex-omitting cycles of H4 4

§5-B Vertex-Omitting cycles of H43, H44, H45, H4,5, H47 and H49 89

Figure 5.10: All vertex-omitting cycles of H45 up to automorphism

90 Recursive Generation of 4-Face Deflatable Hi/pohamiltonian Graphs

Figure 5.11: All vertex-omitting cycles of H4 5 up to automorphism

§5-B Vertex-Omitting cycles of H404, H43, H u, H45, H46, H47 And H49 91

Figure 5.12: All vertex-omitting cycles of H47

9 2 Recursive Generation of 4-Face Deflatable Hi/pohamiHonian Graphs

Figure 5.13: All vertex-omitting cycles of H4 9 up to automorphism

Chapter 6

Face-spiral Codes in 3-Connected
Cubic Plane Graphs with no Large
Face

6.1 Background

This chapter contains the material published in “Face-spiral codes in cubic polyhe­
dron graphs with face sizes no larger than 6“ which is a joint study with P. W. Fowler
and G. Brinkmann [38].

6.2 Introduction

A polyhedron is a 3-connected planar graph. By Whitney's theorem each polyhedron
has a unique embedding on the plane up to plane isomorphism [122]. So the poly-
herdons can be referred to as 3-connected plane graphs.

Cubic polyhedron structures built from carbon and other atoms are of current in­
terest in chemistry, physics and materials science for many reasons. They are exem­
plified by the fullerenes [72, 70, 40, 41], and also occur as skeletons of the polyhedron
hydrocarbons [33, 69, 32, 93] known collectively as 'spheroalkanes' [97]. They are
studied as models for electron-precise clusters involving other elements (e.g., clus­
ters with pairwise replacement of carbon atoms by BN) [105]. They occur as motifs
in supramolecular frameworks [106], act as finite models for many of the forms of
carbon that have emerged since the discovery of the fullerenes (cubic polyhedrons
which have only 5-faces and 6-faces) [58, 119, 102, 78, 71, 59, 92] and for chemically
plausible 'spheroarene' [96] generalisations of the fullerene class [39, 3, 42, 31, 68].

The face-spiral conjecture for fullerenes claims that the surface of every fullerene
can be unwound in a face-spiral of edge-sharing 5-faces (pentagons) and 6-faces
(hexagons) such that each face in the spiral after the second, has an edge in com­
mon with the previous face and another with the first face in the proceeding faces
which has an edge that has an open edge (the edge only belongs to one of the pre­
vious faces) with the condition that a face-spiral must contain each face exactly once
[81, 40, 41]. The stronger version of this conjecture replaces "fullerences" with “cubic

93

94 Face-spiral Codes in 3-Connected Cubic Plane Graphs with no Large Face

polhral"; and "5-faces" and "6-faces" with "faces". Both conjectures are known to be
false and the smallest known fullerenes with no face-spirals have 380 (Figure 6.1(a))
[80] and 384 vertices (Figure 6.1(b)) [124]. Recently, it is proven that these two are the
smallest fullerenes with no face-spirals and there is no counterexample upto 400 ver­
tices [17, 47]. An example of failed spiral for the smallest fullerene counterexample
is presented in Section 6.2.

(a) |V| = 380 (b) |V| = 384

Figure 6.1: The fullerenes with up to 400 vertices having no face-spirals

Figure 6.2: An example of failed spiral

Although it has been known for a while that not all fullerences have face-spirals,
this idea has been used to design the first generator (non-exhaustive) for fullerences
[40] which was improved later to an exhaustive generator in [14,15].

6.3 Spirals and classes of cubic polyhedra

If the maximum face size is restricted to six, and graphs without multiple edges
are considered (simple {3,4,5,6[-angulations), simple counting with Euler's theorem

§6-3 Spirals and classes of cubic polyhedra 95

for polyhedra gives 19 distinct face-signatures {fa, fa, fa), where fa, fa and fa are the
respective numbers of triangle, quadrangle and pentagonal faces.

In the following, we explore each face-signature class and attempt to provide a
minimal unspirallable example, or at least to place bounds on the size of the small­
est unspirallable polyhedron in the class. The initially plausible suggestion that
fullerenes may be the 'best' cubic polyhedra for the spiral conjecture proves to be
incorrect with respect to vertex numbers: while the smallest non-spiral fullerene has
380 vertices, the smallest non-spiral polyhedron in the class (2,3,0) has as many as
2170 vertices. If, instead, we consider the number of structures in the class that are
smaller than the minimal counterexample, fullerenes can, however, still be claimed
to be best suited for spiral coding.

Two methods are used here for finding counterexamples. The first method is
exhaustive generation of each family, at each vertex number, followed by a check
of the results for spirals. The counterexamples resulting from this approach are
presented in Table 6.1. We used the program CGF by Harmuth [19, 50] which can be
obtained as part of the package CaGe [16]. The non-spiral examples were all tested
independently by the two programs used elsewhere [17] to check fullerenes without
spirals and for the case of fullerenes only, the generation step itself was also checked
with an independent program.

Face Signature Order Figure

(4,0, 0} 36 Figure 6.3(a)

(3,1, 1} 304 Figure 6.3(e)

(3,0, 3) 80 Figure 6.3(b)

(2,3, 0} 2170 Figure 6.6

<2,2, 2) 96 Figure 6.3(c)

(2,1, 4) 98 Figure 6.3(f)

(2,0, 6) 96 Figure 6.3(d)

<1,4, 1> 304 Figure 6.3(g)

<0,6, 0) 306 Figure 6.3(h)

(0,5, 2) 304 Figure 6.3(i)

(0,0,12) 380 Figure 6.3(j)

Table 6.1: Minimal counterexamples for classes with no face-spirals found by exhaus­
tive generation. In each case, there is a unique counterexample with the given vertex

number within the class.

96 Face-spiral Codes in 3-Connected Cubic Plane Graphs with no Large Face

(g) (1,4,1), |V |= 304

(i) (0,5,2), IV| = 304

(h) (0,6,0), \V\ = 306

(j) (0,0,12), |V| = 380

Figure 6.3: Minimal counterexamples for classes with no face-spirals

§6-3 Spirals and classes of cubic polyhedra 97

In cases where, within reasonable time limits, no counterexamples could be found
by exhaustive generation, we modified existing counterexamples from other classes
using operations in Figure 6.4. Using these four operations we were able to construct

Figure 6.4: Operations used for converting graphs between face-signature classes

counterexamples for all remaining values of fa, fa and fa and the result is presented
in Table 6.2.

Counterexample Parent

Signature Order Signature Order Operation

(1,3, 3) 302
(1,4, 1) 304#

24

A2(1,2, 5) 300

<0,4, 4} 302
<0,5, 2) 304#

A

(0,3, 6) 300 A2

(0,1,10) 386
(0,0,12) 384*

D

(0,2, 8) 388 D2

(0,1, 9) 382 (0,0,12) 380# C

(1,1, 7) 326 <1,3, 3) 330* B

Table 6.2: Counterexamples for classes with no face-spirals generated by modifica­
tion. The parents marked with # are unique minimal counterexamples within their
own family. The parent marked with ★ is the unique second smallest counterexam­
ple within the fullerene family [124, 17]. The parent marked with | is a non-minimal

counterexample for (1,3,3) which is shown in Figure 6.5.

98 Face-spiral Codes in 3-Connected Cubic Plane Graphs with no Large Face

Figure 6.5: Parent of the counterexample for the class (1,1,7)

6.4 Conclusions
One obvious comment on the results presented here is that non-spiral cases are found
reasonably early for all but one of the 19 classes, with one set of classes having non­
spiral counterexamples of order 100 or less, and another having counterexamples in
the range 300 to 400. The outstanding exception is the class (2,3,0) which requires
about five times as many vertices as the smallest fullerene counterexample. This
example is an egregious exception (Figure 6.7). It is natural to wonder why it needs
so many vertices.

Although this is perhaps not the most precisely defined of questions, we can at
least note that all the other counterexamples have one of two rough shapes: either a
characteristic roughly tetrahedral cluster of defects, or a trigonal-sandwich structure.
The class (2,3,0) does not allow either of these groupings. For polyhedra in this
class, the total defect of 12 is made up of contributions 3, 3, 2, 2, 2. A triangular shape
would require distribution of these defects in 3 groups of defect 4 each (not possible).
Similarly, a tetrahedral shape would require 4 groups of defect 4 each (again not
possible) The eventual first counterexample in (2,3,0) includes four groups of defect
3, 2, 3 and 4, respectively, and spring embedding [16] suggests a starfish-like shape,
with four arms (Figure 6.8).

For cubic graphs that also allow faces of size larger than 6, counterexamples occur
early, and are abundant [13]. These results suggest the conjecture that every infinite
class of cubic polyhedra described by allowed and forbidden face sizes contains non­
spiral elements.

§6-4 Conclusions 99

Figure 6.6: Minimal counterexample for sequence (2,3,0) with 2170 vertices

100 Face-spiral Codes in 3-Connected Cubic Plane Graphs with no Large Face

Figure 6.7: The landscape of spiral counterexamples. In the triangular coordinate
system, the vertices of the master triangle represent 'pure' types (4,0,0), (0,6,0) and
(0,0,12), and in general the values p3, p$, and ps are proportional to the lengths
of perpendiculars to the triangle sides. Each black dot represents a counterexample
with the number of vertices indicated; minimal counterexamples are labelled in bold

face; those numbers marked with an underline are not claimed to be minimal.

§6.A A 3D embedding of the minimal counterexample from the class (2,3,0) 101

6.A A 3D em bedding of the m in im al counterexam ple from
the class (2,3,0)

Figure 6.8: A 3D embedding of the minimal counterexample from the class (2,3,0)

102 Face-spiral Codes in 3-Connected Cubic Plane Graphs with no Large Face

Conclusion

In this thesis we discussed recursive algorithms for generation of three families of
graphs, namely: /c-angulations, {ki,k2,- ■ ■ ,k t}-angulations and 4-face deflatable hy-
pohamiltonian graphs. The last generator allowed us to find the smallest known
planar hypohamiltonian graphs with 40 vertices while the previous smallest known
has 42 vertices. Then we designed a method for isomorphism checking and canonical
labelling of 2-connected plane graphs and finally we analysed the face-spiral conjec­
ture for fullerenes on a larger family of plane graphs and showed that it does not
hold.

In the second chapter we discussed how /c-angulations can be generated recur­
sively from triangulations or quadrangulations. Then we optimised the generator
using a careful definition of canonical code for the graphs used in the generation tree
in addition to looking ahead and discovering the children which are not going to be
accepted and pruning the generation tree.

We defined the recursive generation such that intermediate graphs are not re­
quired to belong to the target family (in this chapter /c-angulations). This approach
allowed us to start from triangulations or quadrangulations, but this extra flexibil­
ity impacts the performance. So to improve this result one could think of another
approach which starts with a set of irreducible /c-angulations and define the expan­
sions such the intermediate graphs be /c-angulations too. Such a generator is quite
likely to be more efficient as potentially it could have very few intermediate graphs
in comparison.

A natural extension of this study is to generate not only /c-angulations which have
only faces of size k, but also {/ci,Zc2 , • • • ,/Cf}-angulations which include plane graphs
with all face sizes in {Zci,/c2 , • • • , k t}. This extension is discussed in detail in the fourth
chapter where we showed how simple plane graphs with specified face sizes can be
generated recursively from triangulations or quadrangulations. Then we optimised
the generator using a careful definition of canonical code for the graphs used in the
generation tree in addition to looking ahead and discovering the children which are
not going to be accepted and pruning the generation tree.

In the sixth chapter we tackled the problem of finding the smallest hypohamil­
tonian graph and reduced the previous record from graphs with 42 vertices to 40
vertices. Despite the new planar hypohamiltonian graphs discovered, there is still a
wide gap between the order of the smallest known graphs and the best lower bound
known for the order of the smallest such graphs, which is 18 [1]. One explanation for
this gap is the fact that no extensive computer search has been carried out to increase
the lower bound.

It is encouraging though that the order of the smallest known planar hypohamil-

103

104 Conclusion

tonian graph continues to decrease. It is very difficult to conjecture anything about
the smallest possible order, and possible extremality of the graphs discovered here. It
would be somewhat surprising though if no extremal graphs would have nontrivial
automorphisms (indeed, the graphs of order 40 discovered in the current work have
no nontrivial automorphisms). An exhaustive study of graphs with prescribed auto­
morphisms might lead to the discovery of new, smaller graphs. The smallest known
cubic planar hypohamiltonian graph has 70 vertices [2]. We can hope that the current
work inspires further progress in that problem too.

In chapter seven we work on the face-spiral conjecture and consider not only
fullerenes which have only faces of size 5 and 6, but also plane graphs with 3-faces
and 4-faces and realized that the conjecture does not hold for any of these families.
One obvious comment on the results presented here is that non-spiral cases are found
reasonably early for all but one of the 19 classes, with one set of classes having non­
spiral counterexamples of order 100 or less, and another having counterexamples in
the range 300 to 400. The outstanding exception is the class (2,3,0) which requires
about five times as many vertices as the smallest fullerene counterexample. This
example is an egregious exception (Figure 6.7). It is natural to wonder why it needs
so many vertices.

For cubic graphs that also allow faces of size larger than 6, counterexamples occur
early, and are abundant [13]. These results suggest the conjecture that every infinite
class of cubic polyhedra described by allowed and forbidden face sizes contains non­
spiral elements.

We also hope the recursive generations discussed in this thesis will inspire other
induction proofs or other generator to help solving or finding counterexamples for
different problems in mathematics, computer science and chemistry.

Bibliography

1. A ldred, R. E. L.; M cKay, B. D.; and Wormald, N. C , Small hypohamiltonian
graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 23,
(1997), 143-152. (cited on pages 13, 84, and 103)

2. A raya, M. and Wiener, G., On cubic planar hypohamiltonian and hypotrace-
able graphs. The Electronic Journal of Combinatorics, 18(1), (2011), 85. (cited on
pages 84 and 104)

3. Ayuela, A.; Fowler, R W.; M itchell, D.; Schmidt, R.; Seifert, G.; and Zer-
betto, R, C62: Theoretical evidence for a nonclassical fullerene with a hep-
tagonal ring. The Journal of Physical Chemistry, 100(39), (1996), 15634-15636.
doi:10.1021/jp961306o. (cited on page 93)

4. Barnette, D., 1969. On steinitz's theorem concerning convex 3-poly topes and
on some properties of planar graphs. In The Many Facets of Graph Theory (Eds.
G. Chartrand a nd S. Kapoor), vol. 110 of Lecture Notes in Mathematics, 27-40.
Springer Berlin / Heidelberg. ISBN 978-3-540-04629-5. doi:10.1007/BFb0060102.
(cited on page 21)

5. Barnette, D., On generating planar graphs. Discrete Mathematics, 7(3-4), (1974),
199-208. doi:10.1016/0012-365X(74)90035-l. (cited on pages 19 and 21)

6. Batagelj, V., 1984. An inductive definition of the class of all triangulations with
no vertex of degree smaller than 5. In Graph theory: Proceedings of the Fourth
Yugoslav Seminar on Graph Theory, Novi Sad, April 15-16 1983, 15-25. (cited on
pages 19 and 21)

7. Batagelj, V., Inductive definition of two restricted classes of triangulations. Dis­
crete Mathematics, 52(2-3), (1984), 113-121. doi:10.1016/0012-365X(84)90074-8.
(cited on pages 19 and 21)

8. Batagelj, V., 1989. An improved inductive definition of two restricted classes
of triangulations of the plane. In Combinatorics and Graph Theory, vol. 25
of Banach Center publications, 11-18. PWN-Polish Scientific Publishers. ISBN
9788301093006. (cited on pages 19 and 21)

9. Battista, G. and Tam assia , R., On-line maintenance of triconnected com­
ponents with spqr-trees. Algorithmica, 15(4), (1996), 302-318. doi:10.1007/
BF01961541. (cited on page 45)

105

io6 BIBLIOGRAPHY

10. Bondy, J. A., Variations on the hamiltonian theme. Canadian Mathematical Bul­
letin, 15, (1972), 57-62. doi:10.4153/CMB-1972-012-3. (cited on page 16)

11. Bow en , R. and Fisk, S., Generation of triangulations of the sphere. Mathematics
of Computation, 21(98), (1967), 250-252. (cited on pages 19 and 21)

12. Brin k m a n n , G., Fast generation of cubic graphs. Journal of Graph Theory, 23(2),
(1996), 139-149. doi:10.1002/(SICI)1097-0118(199610)23:2< 139::AID-JGT5>3.0.
CO;2-U. (cited on page 10)

13. Brin k m a n n , G., Problems and scope of spiral algorithms and spiral codes for
polyhedral cages. Chemical Physics Letters, 272(3-4), (1997), 193-198. doi:10.1016/
S0009-2614(97)88009-8. (cited on pages 98 and 104)

14. Br in k m a n n , G. and D ress, A. W., A constructive enumeration of fullerenes.
Journal of Algorithms, 23(2), (1997), 345-358. doi:10.1006/jagm.1996.0806. (cited
on page 94)

15. Brin k m a n n , G. and D ress, A. W., Penthex puzzles: A reliable and efficient top-
down approach to fullerene-structure enumeration. Advances in Applied Math­
ematics, 21(3), (1998), 473 - 480. doi: 10.1006/aama. 1998.0608. (cited on page
94)

16. Brin k m a n n , G.; Fried rich s , O. D.; Lisken , S.; Peeters, A.; and Van C leemput,
N., Cage - a virtual environment for studying some special classes of plane
graphs - an update. MATCH Commun. Math. Comput. Chem., 63(3), (2010), 533-
552. (cited on pages 95 and 98)

17. Brin k m a n n , G.; G oedgebeur, J.; and M cKay, B. D., The smallest fullerene
without a spiral. Chemical Physics Letters, 522(0), (2012), 54-55. doi: 10.1016/j.
cplett.2011.11.056. (cited on pages xv, 1, 20, 94, 95, and 97)

18. Brin k m a n n , G.; G reenberg , S.; G reen h ill , C.; M cKay, B. D.; Th o m a s , R.;
and Wollan , P, Generation of simple quadrangulations of the sphere. Discrete
Mathematics, 305(1-3), (2005), 33-54. doi: 10.1016/j.disc.2005.10.005. (cited on
pages 9, 19, and 21)

19. Brin k m a n n , G.; H a rm u th , T.; and H eid em eier , O., The construction of cubic
and quartic planar maps with prescribed face degrees. Discrete Applied Mathe­
matics, 128(2-3), (2003), 541-554. doi:10.1016/S0166-218X(02)00549-8. (cited on
page 95)

20. Br in k m a n n , G. and M cKay, B. D., plantri software, h ttp ://c s .an u .ed u .au /
~ b d m /p lan tri/. Accessed: 2013-09-03. (cited on pages 19, 21, 36, 43, 44, and 70)

21. Brin k m a n n , G. and M cKay, B. D., Fast generation of some classes of planar
graphs. Electronic Notes in Discrete Mathematics, 3, (1999), 28-31. doi: 10.1016/
S1571-0653(05)80016-2. 6th Twente Workshop on Graphs and Combinatorial
Optimization, (cited on pages 9, 19, and 21)

http://cs.anu.edu.au/

BIBLIOGRAPHY 107

22. Brinkmann, G. and McKay, B. D., Construction of planar triangulations with
minimum degree 5. Discrete Mathernatics, 301(2-3), (2005), 147-163. doi:10.1016/
j.disc.2005.06.019. (cited on pages 9, 19, 21, and 77)

23. Brinkmann, G. and McKay, B. D., Fast generation of planar graphs. MATCH
Commun. Math. Comput. Chem., 58, (2007), 323-357. Expanded version available
at http://cs.anu.edu.au/~bdm/papers/plantri-full.pdf. (cited on pages xiii, 9, 21,
31, 44, 70, and 72)

24. Brinkmann, G.; M cKay, B. D.; and von N athusius, U., Backtrack search and
look-ahead for the construction of planar cubic graphs with restricted face sizes.
MATCH Commun. Math. Comput. Chem., 48, (2003), 163-177. (cited on pages 9
and 21)

25. Butler, J. W., A generation procedure for the simple 3-polytopes with cyclically
5-connected graphs. Canadian Journal of Mathematics, 26, (1974), 686-708. doi:
10.4153/CJM-1974-065-6. (cited on pages 19 and 21)

26. Chvätal, V., Flip-flops in hypohamiltonian graphs. Canadian Mathematical Bul­
letin, 16, (1973), 33-41. (cited on pages 16, 19, and 73)

27. Collier, J. B. and Schmeichel, E. E, Systematic searches for hypohamiltonian
graphs. Networks, 8(3), (1978), 193-200. doi: 10.1002/net.3230080303. (cited on
pages 13 and 16)

28. Darga, P. T.; Katebi, H.; Liffiton, M.; Markov, I. L.; and Sakallah, K., saucy
software. http://vlsicad.eecs.umich.edu/BK/SAUCY/. Accessed: 2013-09-06.
(cited on page 45)

29. Ding, G.; Kanno, J.; and Su, J., Generating 5-regular planar graphs. Journal of
Graph Theory, 61(3), (2009), 219-240. doi: 10.1002/jgt.20377. (cited on page 21)

30. Doyen, J. and Diest, V. V., New families of hypohamiltonian graphs. Discrete
Mathematics, 13(3), (1975), 225-236. doi:10.1016/0012-365X(75)90020-5. (cited
on page 16)

31. Dress, A. and Brinkmann, G., Phantasmagorical fulleroids. MATCH Commun.
Math. Comput. Chem, 33, (1996), 87-100. (cited on page 93)

32. Eaton, P. E.; Cassar, L.; and Halpern, J., Silver(i)- and palladium(ii)-catalyzed
isomerizations of cubane. synthesis and characterization of cuneane. Journal of
the American Chemical Society, 92(21), (1970), 6366-6368. doi:10.1021/ja00724a061.
(cited on page 93)

33. Eaton, P. E. and Cole, T. W., Cubane. Journal of the American Chemical Society,
86(15), (1964), 3157-3158. doi:10.1021/ja01069a041. (cited on page 93)

34. Eberhard, V., Zur Morphologie der Polyeder. B.G. Teubner, 1891. (in German),
(cited on page 21)

http://cs.anu.edu.au/~bdm/papers/plantri-full.pdf
http://vlsicad.eecs.umich.edu/BK/SAUCY/

io8 BIBLIOGRAPHY

35. Eppstein, D., Subgraph isomorphism in planar graphs and related problems.
Journal of Graph Algorithms and Applications, 3(3), (1999), 1-27. doi:10.7155/jgaa.
00014. (cited on page 45)

36. Faradzev, I. A., 1978. Constructive enumeration of combinatorial objects. In
Problemes combinatoires et theorie des graphes (Colloq. Internat. CNRS, Univ. Orsay,
Orsay, 1976), vol. 260 of Colloq. Internat. CNRS, 131äÄ§135. CNRS, Paris, (cited
on page 10)

37. Faradzhev, I. A., 1978. Generation of nonisomorphic graphs with a given de­
gree sequence. In Algorithmic Studies in Combinatorics Moscow, 11-19. Nauka,
Moscow, (in Russian), (cited on page 10)

38. Fowler, P.; Jooyandeh, M.; and Brinkmann, G., Face-spiral codes in cubic
polyhedral graphs with face sizes no larger than 6. Journal of Mathematical Chem­
istry, 50, (2012), 2272-2280. doi:10.1007/sl0910-012-0029-3. (cited on page 93)

39. Fowler, P. W.; Heine, T.; Manolopoulos, D. E.; Mitchell, D.; Orlandi, G.;
Schmidt, R.; Seifert, G.; and Zerbetto, F, Energetics of fullerenes with four-
membered rings. The Journal of Physical Chemistry, 100(17), (1996), 6984-6991.
doi:10.1021/jp9532226. (cited on page 93)

40. Fowler, P. W. and Manolopoulos, D. E., An atlas of fullerenes. Oxford Univer­
sity Press, Oxford, 1995. (cited on pages 93 and 94)

41. Fowler, P. W. and Manolopoulos, D. E., An atlas of fullerenes. Dover Publica­
tions Inc., New York, 2006. (cited on page 93)

42. Fowler, P. W.; Mitchell, D.; Seifert, G.; and Zerbetto, F, Energetics of
fullerenes with octagonal rings. Fullerene Science and Technology, 5(4), (1997),
747-768. doi:10.1080/15363839708012229. (cited on page 93)

43. Gagarin, A.; Labelle, G.; Leroux, P; and Walsh, T., Structure and enumera­
tion of two-connected graphs with prescribed three-connected components. Ad­
vances in Applied Mathematics, 43(1), (2009), 46-74. doi:10.1016/j.aam.2009.01.002.
(cited on page 44)

44. Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the
Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W.
H. Freeman & Co., San Francisco, California. ISBN 0716710455, 1979. (cited on
page 13)

45. Gaudin, T.; Herz, J. C.; and Rossi, P, Solution du probleme no. 29. Rev. Frang.
Rech. Operationnelle, 8, (1964), 214-218. (cited on page 13)

46. Gazit, H. and Reif, J ., 1990. A randomized parallel algorithm for planar graph
isomorphism. In Proceedings of the Second Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA '90 (Island of Crete, Greece, 1990), 210-219.
ACM, New York, NY, USA. doi: 10.1145/97444.97687. (cited on page 45)

BIBLIOGRAPHY 109

47. Goedgebeur, J., Generation Algorithms for Mathematical and Chemical Problems.
Ph.D. thesis, Department of Applied Mathematics and Computer Science, Ghent
University, 2013. http://users.ugent.be/~jgoedgeb/Thesis_Jan_Goedgebeur.pdf.
(cited on pages 9, 20, and 94)

48. Grinberg, E. J., Plane homogeneous graphs of degree three without hamilto-
nian circuits. Latvian Math. Yearbook, 4, (1968), 51-58. (in Russian). English
translation by Dainis Zeps, arXiv:0908.2563. (cited on pages 14 and 73)

49. Grünbaum, B., Vertices missed by longest paths or circuits. Journal of Combi­
natorial Theory, Series A, 17(1), (1974), 31-38. doi: 10.1016/0097-3165(74)90025-9.
(cited on page 73)

50. Harmuth, T., The construction of cubic maps on orientable surfaces. Ph.D. thesis,
Bielefeld University, 2000. (cited on page 95)

51. Hasheminezhad, M.; McKay, B. D.; and Reeves, T., 2009. Recursive gen­
eration of 5-regular planar graphs. In WALCOM: Algorithms and Computa­
tion (Eds. S. Das and R. Uehara), voi. 5431 of Lecture Notes in Computer
Science, 129-140. Springer Berlin Heidelberg. ISBN 978-3-642-00201-4. doi:
10.1007/978-3-642-00202-1_ 12. (cited on pages 9 and 21)

52. Hasheminezhad, M.; McKay, B. D.; and Reeves, T., Recursive generation of
simple planar 5-regular graphs and pentangulations. Journal of Graph Algortihms
and Applications, 15(3), (2011), 417-436. doi:10.7155/jgaa.00232. (cited on pages
9.19, and 21)

53. Hatzel, W., Ein planarer hypohamiltonscher graph mit 57 knoten. Math. Ann.,
243, (1979), 213-216. (in German). doi:10.1007/BF01424541. (cited on pages 14,
15.19, 73, and 78)

54. Herz, J. C.; Duby, J. J.; and Vigue, E, 1967. Recherche systematique des graphes
hypohamiltoniens. In Theory of Graphs: International Symposium (1966), 153-159.
(cited on page 13)

55. Hopcroft, J. and Tarjan, R., A V2 algorithm for determining isomorphism of
planar graphs. Information Processing Letters, 1(1), (1971), 32-34. doi: 10.1016/
0020-0190(71)90019-6. (cited on page 45)

56. Hopcroft, J. and Tarjan, R., A V log V algorithm for isomorphism of tricon-
nected planar graphs. Journal of Computer and System Sciences, 7(3), (1973), 323-
331. doi:10.1016/S0022-0000(73)80013-3. (cited on page 45)

57. Hopcroft, J. E. and Wong, J. K., 1974. Linear time algorithm for isomorphism
of planar graphs (preliminary report). In Proceedings of the Sixth Annual ACM
Symposium on Theory of Computing, STOC '74 (Seattle, Washington, USA, 1974),
172-184. ACM, New York, NY, USA. doi:10.1145/800119.803896. (cited on page
45)

http://users.ugent.be/~jgoedgeb/Thesis_Jan_Goedgebeur.pdf

110 BIBLIOGRAPHY

58. Iijim a , S., Helical microtubules of graphitic carbon. Nature, 354(6348), (1991),
56-58. (cited on page 93)

59. Iijim a , S.; Yudasaka, M.; Ya m ada , R.; Bandow , S.; Suenaga , K.; Kokai, E; and
Ta k a h a sh i, K., Nano-aggregates of single-walled graphitic carbon nano-horns.
Chemical Physics Letters, 309(3-4), (1999), 165-170. doi:10.1016/S0009-2614(99)
00642-9. (cited on page 93)

60. Ja 'Ja , J. a nd Kosaraju , S. R., 1986. Parallel algorithms for planar graph, iso­
morphism and related problems. Technical Report SRC-TR-86-86, University of
Maryland, College Park, Department of Electerical Engineering, (cited on page
45)

61. Jooyandeh , M., Angulations data, http://www.jooyandeh.com/k-angulations.
Accessed: 2013-07-20. (cited on page 21)

62. Jooyandeh , M., Planar hypohamiltonian graphs data. http://www.jooyandeh.
com/planar_ hypo. Accessed: 2013-07-20. (cited on page 78)

63. Jooyandeh , M.; M cKay, B. D.; and Brin k m a n n , G., canemb software, http:
/ / www.jooyandeh.com/canemb. Accessed: 2014-02-18. (cited on page 69)

64. Jooyandeh, M.; McKay, B. D.; Östergärd, P. R. J.; Pettersson, V. H.; and Zam-
firescu, C. T., Planar hypohamiltonian graphs on 40 vertices. arXiv, 1302.2698,
(2013), 1-17. http://arxiv.org/abs/1302.2698. (cited on pages 15 and 73)

65. Jordan , C., Corns d‘analyse de I'Ecole poly technique. Gauthier-Villars et fils, 1893.
(cited on page 8)

66. Junttila , T. and Kaski, R, bliss version 0.72. http://www.tcs.hut.fi/Software/
bliss/, (cited on page 45)

67. Ju n ttila , T. and Kaski, P, 2007. Engineering an efficient canonical labeling tool
for large and sparse graphs. In Proceedings of the Ninth Workshop on Algorithm
Engineering and Experiments and the Fourth Workshop on Analytic Algorithms and
Combinatorics, 135-149. (cited on page 45)

68. Kardos, R, Tetrahedral fulleroids. Journal of Mathematical Chemistry, 41(2),
(2007), 101-111. doi: 10.1007/sl0910-006-9057-1. (cited on page 93)

69. Katz, T. J. and Acton , N., Synthesis of prismane. Journal of the American Chem­
ical Society, 95(8), (1973), 2738-2739. doi:10.1021/ja00789a084. (cited on page
93)

70. Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; and Huffman, D. R., Solid
Cöo: a new form of carbon. Nature, 347(6291), (1990), 354-358. doi: 10.1038/
347354a0. (cited on page 93)

http://www.jooyandeh.com/k-angulations
http://www.jooyandeh
http://www.jooyandeh.com/canemb
http://arxiv.org/abs/1302.2698
http://www.tcs.hut.fi/Software/

BIBLIOGRAPHY in

71. Krishnan, A.; Dujardin, E.; Treacy, M.; Hugdahl, J.; Lynum, S.; and Ebbe-
sen, T., Graphitic cones and the nucleation of curved carbon surfaces. Nature,
388(6641), (1997), 451-454. doi: 10.1038/41284. (cited on page 93)

72. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; and Smalley, R. E., C6o:
buckminsterfullerene. Nature, 318(6042), (1985), 162-163. doi:10.1038/318162a0.
(cited on pages 1,19, and 93)

73. Kukluk, J. R; Holder, L. B.; and Cook, D. J., Algorithm and experiments in
testing planar graphs for isomorphism. Journal of Graph Algortihms and Applica­
tions, 8(3), (2004), 313-356. doi:10.7155/jgaa.00094. (cited on pages 45 and 47)

74. Lando, S. K. and Zvonkin, A. K., Graphs on Surfaces and Their Applications, vol.
141 of Encyclopaedia of Mathematical Scietices. Springer. ISBN 9783540002031,
2004. (cited on pages 4 and 6)

75. Lehel, J., Generating all 4-regular planar graphs from the graph of the octahe­
dron. Journal of Graph Theory, 5(4), (1981), 423-^426. doi:10.1002/jgt.3190050412.
(cited on page 21)

76. Li, Z. and N akano, S.-i., 2001. Efficient generation of plane triangulations
without repetitions. In Automata, Languages and Programming (Eds. F. Orejas;
P. Spirakis; and J. van Leeuwen), vol. 2076 of Lecture Notes in Computer Science,
433-443. Springer Berlin / Heidelberg. ISBN 978-3-540-42287-7. doi: 10.1007/
3-540-48224-5_36. (cited on pages 19 and 21)

77. Lindgren, W. E, An infinite class of hypohamiltonian graphs. The American
Mathematical Monthly, 74(9), (Nov 1967), 1087-1089. doi:10.2307/2313617. (cited
on page 16)

78. Liu, J.; Dai, H.; Hafner, J. H.; Colbert, D. T.; and Smalley, R. E., Fullerene
'crop circles'. Nature, 385, (1997), 780-781. doi:10.1038/385780b0. (cited on page
93)

79. Manca, P., Generating all planer graphs regular of degree four. Journal of Graph
Theory, 3(4), (1979), 357-364. doi:10.1002/jgt.3190030406. (cited on page 21)

80. Manolopoulos, D. E. and Fowler, P. W., A fullerene without a spiral. Chemical
Physics Letters, 204(1-2), (1993), 1-7. doi:10.1016/0009-2614(93)85597-H. (cited
on pages 1 and 94)

81. Manolopoulos, D. E.; May, J. C ; and Down, S. E., Theoretical studies of the
fullerenes: C34 to C70. Chemical Physics Letters, 181(2-3), (1991), 105-111. doi:
10.1016/0009-2614(91)90340-F. (cited on pages 1, 19, and 93)

82. McKay, B. D., Practical graph isomorphism. Congressus Numerantium, 30, (1981),
45-87. 10th Manitoba Conference on Numerical Mathematics and Computing
(Winnipeg, 1980). (cited on page 45)

112 BIBLIOGRAPHY

83. McKay, B. D., Isomorph-free exhaustive generation. Journal of Algorithms, 26(2),
(1998), 306-324. doi: 10.1006/jagm. 1997.0898. (cited on pages xvii, 10,12, 29, 39,
and 40)

84. McKay, B. D. and Piperno, A., nauty and traces software, http://pallini.di.
uniromal.it/. Accessed: 2013-09-06. (cited on page 45)

85. McKay, B. D. and Piperno, A., Practical graph isomorphism, II. Journal of
Symbolic Computation, 60, (2014), 94-112. doi:10.1016/j.jsc.2013.09.003. (cited on
page 45)

86. Meringer, M., 1996. Erzeugung regulärer Graphen. Master's thesis, Univer­
sität Bayreuth, (in German), ftp://ftp.mathe2.uni-bayreuth.de/meringer/pdf/
ErzRegGraphUniBT.pdf. (cited on page 10)

87. N akamoto, A., Generating quadrangulations of surfaces with minimum de­
gree at least 3. Journal of Graph Theory, 30(3), (1999), 223-234. doi: 10.1002/
(SICI) 1097-0118(199903)30:3<223::AID-JGT7>3.0.CO;2-M. (cited on pages 19
and 21)

88. N akano, S.-i ., 2001. Efficient generation of triconnected plane triangulations. In
Computing and Combinatorics (Ed. J. Wang), vol. 2108 of Lecture Notes in Computer
Science, 131-141. Springer Berlin / Heidelberg. ISBN 978-3-540-42494-9. doi:
10.1007/3-540-44679-6_ 15. (cited on pages 19 and 21)

89. N akano, S.-i ., Efficient generation of triconnected plane triangulations. Compu­
tational Geometry, 27(2), (2004), 109-122. doi:10.1016/j.comgeo.2003.06.001. (cited
on pages 19 and 21)

90. N akano, S.-i. and Uno, T., 2004. More efficient generation of plane triangu­
lations. In Graph Drawing (Ed. G. Liotta), vol. 2912 of Lecture Notes in Com­
puter Science, 273-282. Springer Berlin / Heidelberg. ISBN 978-3-540-20831-0.
doi: 10.1007/978-3-540-24595-7_25. (cited on pages 19 and 21)

91. N egami, S. and N akamoto, A., Diagonal transformations of graphs on closed
surfaces. Science Reports of the Yokohama National University. Section I, Mathematics,
Physics and Chemistry, 40, (1993), 71-97. (cited on pages 19 and 21)

92. N ovoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos,
S.; Grigorieva, I.; and Firsov, A., Electric field effect in atomically thin carbon
films. Science, 306(5696), (2004), 666-669. doi: 10.1126/science. 1102896. (cited on
page 93)

93. Paquette, L. A.; Ternansky, R. J.; Balogh, D. W.; and Kentgen, G., Total
synthesis of dodecahedrane. Journal of the American Chemical Society, 105(16),
(1983), 5446-5450. doi:10.1021/ja00354a043. (cited on page 93)

http://pallini.di
ftp://ftp.mathe2.uni-bayreuth.de/meringer/pdf/

BIBLIOGRAPHY 113

94. Piperno, A., Search space contraction in canonical labeling of graphs (prelim­
inary version). arXiv, , (2008). http://arxiv.org/abs/0804.4881. (cited on page
45)

95. Proskurowski, A., On the generation of binary trees. J. ACM, 27(1), (Jan 1980),
1- 2. doi:10.1145/322169.322170. (cited on page 10)

96. Rassat, A., Chirality and symmetry aspects of spheroarenes, including
fullerenes. Chirality, 13(8), (2001), 395-402. doi:10.1002/chir.l051. (cited on
page 93)

97. Rassat, A.; Scalmani, G.; Seroussi, D.; and Berthier, G., Structure and stabil­
ity of spheroalkanes (ch)io- Journal of Molecular Structure: {THEOCHEM}, 338(1-
3), (1995), 31-41. doi: 10.1016/0166-1280(94)04046-U. (cited on page 93)

98. Read, R. C., 1978. Every one a winner or how to avoid isomorphism search
when cataloguing combinatorial configurations. In Algorithmic Aspects of Com­
binatorics (Eds. P. H. B. Alspach and D. Miller), vol. 2 of Annals of Discrete
Mathematics, 107-120. Elsevier. doi:10.1016/S0167-5060(08)70325-X. (cited on
page 10)

99. Read, R. C.; Wilson, R. Wilson, R. J.; and Wilson, R.]., An atlas of graphs,
vol. 21. Clarendon Press Oxford, 1998. (cited on page 44)

100. Robinson, R. W. and Walsh, T. R., Inversion of cycle index sum relations for
2- and 3-connected graphs. Journal of Combinatorial Theory, Series B, 57(2), (1993),
289-308. doi: 10.1006/jctb. 1993.1022. (cited on page 44)

101. Schauerte, B. and Zamfirescu, C. T., Regular graphs in which every pair of
points is missed by some longest cycle. Annals of the University of Craiova -
Mathematics and Computer Science Series, 33, (2006), 154-173. (cited on page 84)

102. Smith, B. W.; Monthioux, M.; and Luzzi, D. E., Encapsulated ĉ o in carbon
nanotubes. Nature, 396(6709), (1998), 323-324. doi: 10.1038/24521. (cited on
page 93)

103. Sousselier, R., Probleme no. 29: Le cercle des irascibles. Rev. Prang. Rech. Opera-
tionnelle, 7, (1963), 405-406. (cited on pages 1 and 13)

104. Steinitz, E. and Rademacher, H., Vorelsungen über die Theorie der Polyeder.
Springer Berlin, 1934. (cited on page 21)

105. Stephan, O.; Bando, Y.; Loiseau, A.; Willaime, E; Shramchenko, N.; Tamiya,
T.; and Sato, T., Formation of small single-layer and nested bn cages under
electron irradiation of nanotubes and bulk material. Applied Physics A, 67(1),
(1998), 107-111. doi: 10.1007/s003390050745. (cited on page 93)

http://arxiv.org/abs/0804.4881

i i 4 BIBLIOGRAPHY

106. Stephenson, A. and Ward, M. D., An octanuclear coordination cage with a
'cuneane' core-a topological isomer of a cubic cage. Dalton Transaction, 40, (2011),
7824-7826. doi:10.1039/C0DT01767A. (cited on page 93)

107. The On -Line Encyclopedia of Integer Sequences, Number of 2-connected
(or biconnected) graphs on n nodes with chromatic number 2. http://oeis.org/
A126750. Accessed: 2014-02-23. (cited on pages xv and 71)

108. The On -Line Encyclopedia of Integer Sequences, Number of connected
graphs with n nodes. https://oeis.org/A001349. Accessed: 2014-02-18. (cited
on pages xiii and 72)

109. The On -Line Encyclopedia of Integer Sequences, Number of pairwise non­
isomorphic biconnected planar bipartite graphs on n vertices, http://oeis.org/
A122113. Accessed: 2014-02-23. (cited on pages xv, 70, and 71)

110. The On -Line Encyclopedia of Integer Sequences, Number of two-connected
(or biconnected) planar graphs with n nodes. http://oeis.org/A021103. Ac­
cessed: 2013-09-03. (cited on page 44)

111. The On -Line Encyclopedia of Integer Sequences, Number of two-connected
(or biconnected) simple plane graphs with n nodes. http://oeis.org/A228773.
Accessed: 2013-09-03. (cited on pages 44 and 70)

112. The On -Line Encyclopedia of Integer Sequences, Number of unlabeled non-
separable (or 2-connected) graphs (or blocks) with n nodes, https://oeis.org/
A002218. Accessed: 2013-09-03. (cited on page 44)

113. The On -Line Encyclopedia of Integer Sequences, Number of unlabeled pla­
nar simple graphs with n nodes. https://oeis.org/A005470. Accessed: 2013-02-
18. (cited on pages xiii and 72)

114. Thomassen, C., Hypohamiltonian and hypotraceable graphs. Discrete Mathe­
matics, 9(1), (1974), 91-96. doi:10.1016/0012-365X(74)90074-0. (cited on pages
xiii, 16, 17, 18, and 83)

115. Thomassen, C., Planar and infinite hypohamiltonian and hypotraceable graphs.
Discrete Mathematics, 14(4), (1976), 377-389. doi:10.1016/0012-365X(76)90071-6.
(cited on pages 14, 15, 16, 19, 73, and 78)

116. Thomassen, C., 1978. Hypohamiltonian graphs and digraphs. In Theory and
Applications of Graphs (Eds. Y. Alavi and D. Lick), vol. 642 of Lecture Notes in
Mathematics, 557-571. Springer Berlin / Heidelberg. ISBN 978-3-540-08666-6.
doi: 10.1007/BFb0070410. (cited on page 75)

117. Thomassen, C , Planar cubic hypohamiltonian and hypotraceable graphs.
Journal of Combinatorial Theory, Series B, 30(1), (1981), 36-44. doi: 10.1016/
0095-8956(81)90089-7. (cited on pages xiii, 16, 82, and 84)

http://oeis.org/
https://oeis.org/A001349
http://oeis.org/
http://oeis.org/A021103
http://oeis.org/A228773
https://oeis.org/
https://oeis.org/A005470

BIBLIOGRAPHY 1 1 5

118. Tutte, W. T., A theorem on planar graphs. Transaction of the American Mathemat­
ical Society, 82(1), (1956), 99-116. (cited on page 75)

119. U garte, D., Curling and closure of graphitic networks under electron-beam
irradiation. Nature, 359(6397), (1992), 707-709. doi:10.1038/359707a0. (cited on
page 93)

120. Weinberg, L., A simple and efficient algorithm for determining isomorphism of
planar triply connected graphs. Circuit Theory, IEEE Transactions on, 13(2), (jun
1966), 142-148. doi: 10.1109/TCT. 1966.1082573. (cited on page 45)

121. West, D. B., Introduction to Graph Theory. Prentice Hall, second edn. ISBN
9780130144003, 2001. (cited on pages 14 and 75)

122. Whitney, H., A set of topological invariants for graphs. American Journal of
Mathematics, 55(1), (1933), 231-235. (cited on pages 7, 43, 46, and 93)

123. Wiener, G. a nd A raya, M., On planar hypohamiltonian graphs. Journal Graph
Theory, 67(1), (2011), 55-68. doi:10.1002/jgt.20513. (cited on pages 14,15,16,17,
19, 73, 74, 78, and 83)

124. Yoshida , M. and Fowler, P. W., Dihedral fullerenes of threefold symmetry with
and without face spirals. Journal of the Chemical Society, Faraday Transactions, 93,
(1997), 3289-3294. doi:10.1039/A702351K. (cited on pages xv, 94, and 97)

125. Zaks, J., Non-hamiltonian non-grinbergian graphs. Discrete Mathematics, 17(3),
(1977), 317-321. doi:10.1016/0012-365X(77)90165-0. (cited on page 76)

126. Zamfirescu, C. T. and Zamfirescu, T. I., A planar hypohamiltonian graph with
48 vertices. Journal of Graph Theory, 55(4), (2007), 338-342. doi:10.1002/jgt.20241.
(cited on pages 14, 15,19, 73, and 78)

127. Zamfirescu, T., A two-connected planar graph without concurrent longest
paths. Journal of Combinatorial Theory, Series B, 13(2), (1972), 116-121. doi:
10.1016/0095-8956(72)90048-2. (cited on page 74)

Index

(k ,/)-an g u la tio n , 8 V K (P , L) , 53
D e, 5 Q /,8
E(G), 3 T / ,8
G \E ', 4 M ir(G), 7
G \G ', 4 M ir*(G), 51
G\V", 4 next(e), 5
1(G), 3 nextg(e), 5
N c (v), 3 prev(e), 5
V (G),3 p rev s (e), 5
Aut, 11 tail(x), 5
A (G),3 {(/C1/ / 1) , . . (kt, f t) } - angulation , 8
ThH, 16, 17 {k i , . . . , k t}-angulation , 8
ThT, 17 d G(v), 3
Bcode*(G), 52 k-angulation, 8
Bcode*(G;c), 52 k-connected, 4
B code^(G), 52 k-cycle, 3
BcodeJk/1(G;e), 52 k-fa c e ,6
Bcode(G), 50 k-path, 3
Bcode(e), 50 k-regular g raph , 3
Bcodejvi(^), 51 IsC anon, 69
BfsRep(B), 56 IsCanon2Block, 67
BfsRep(G), 52 IsCanonCycle, 68
BfsRep(M), 55 IsC anonM ultiEdge, 66
BfsRep(P), 53 IsC anonPath , 63

5 IsC anonTriC onnected, 69
£(G), 3 Rep, 58
head(x), 5 2-block, 47
inv(x), 5 2-block reduction operation , 55
k(G),4
M code(A4,e), 54

2-block tree, 48

M codeM (M ,e), 54 abstract isom orphism , 4
Mcode*(A4, v), 54 adjacent, 3
C „ ,4 attached com ponent, 46
K r, 3
K„, 3

au tom orph ism group , 11

P M, 3 bfs code of a p lane g raph , 50
BTl (B, l) , 55 bfs code of darts, 50
M K (M , l) , 55 bfs m irro r code of edges, 51

116

Index 117

biconnected, 4
block graph, 71

canonical ancestors, 12
canonical code, 9
canonical construction path, 10
canonical embedding, 43, 59
canonical graph, 9
canonical labelling, 9
canonical parent, 12
canonical reduction, 11
canonical representation, 45
CCP, 10
child, 12
closed walk, 3
colour, 50
complete graph, 3
component, 4
connected, 4
connectivity, 4
cubic graphs, 3
cut-set, 4
cycle, 3
cycle graph, 4

dart, 5
dart relation, 5
degree, 3
descendents, 12
disconnected, 4
disjoint union of graphs, 4

embedding, 5
end-point, 3
expansions, 8

face, 6
face of map, 5
face of rotation system, 5
face sequence, 35
face-signatures, 94
face-spiral, 93
face-spiral conjecture, 93
flagged edge, 50
fullerene, 93

graph, 3
Grinbergian graph, 75

Hamiltonian cycle, 13
Hamiltonian graph, 13
Hamiltonian path, 13
hypohamiltonian, 13
hypotraceable, 13

incidence, 3
induced subgraph, 4
invariant, 9
inverse dart, 5
irreducible graphs, 8
irreducible objects, 11
isomorph rejection, 9
isomorph-free, 9
isomorphism, 11

JCT, 8
Jordan curve theorem, 8

labelled objects, 10
length of a walk, 3
loop, 3
loopless graph, 3
lower objects, 10

map, 4
marked isomorphism, 51
marked plane graph, 50
mirror image, 7
multiedges reduction operation, 55
multigraph, 3

neighbours, 3
next dart, 5

open walk, 3
order, 3
order of labelled objects, 10
order of lower and upper objects, 10
order of unlabelled objects, 10
order-preserving isomorphism, 7
order-reversing isomorphism, 7
orderly generation, 9

i i 8 Index

parents, 8
path, 3
path graph, 3
path reduction operation, 53
planar graph, 7
plane graph, 7
plane isomorphism, 7
plane labelled graph, 46
polyhedral, 93
previous dart, 5

recursive generation, 8
reducible, 11
reductions, 8
regular graph, 3
Rep(G), 57
rotation, 5
rotation system, 5

Scan, 12
semi-2-block, 47
separating k-cycle, 8
simple closed curve, 8
simple graph, 3
starred edge, 50
subgraph, 4

traceable graph, 13
triconnected, 4
trivial /:-angulation, 8

unacceptable Bcode, 50
unacceptable BcodeM/ 50
unacceptable BfsRep, 57
unacceptable Mcode, 54
unacceptable McodeM, 54
underlying graph of a plane graph, 7
union of graphs, 4
unlabelled objects, 10
upper objects, 10

valency, 3
virtual edge, 47

walk, 3

