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Abstract

In this thesis we introduce recursive algorithms for generation of two families of 
plane graphs. These algorithms start with small graphs and iteratively convert them 
to larger graphs. The families studied in this thesis are /c-angulations (plane graphs 
whose faces are of size k) and plane graphs with a given face size sequence.

We also design a very fast method for canonical embedding and isomorphism re
jection of plane graphs. Most graph generators like plantri generate graphs up to iso
morphism of the embedding, however our method does the isomorphism checking 
up to the underlying graph while taking advantage of the planarity and embeddings 
to speed up the computation.

The next subject discussed in this thesis is a type of graph called hypohamiltonian 
in which after removing each vertex from the graph, there is a Hamiltonian cycle 
through all remaining vertices while the original graph does not have any such cy
cle. One of the problems in the literature since 1976 is to find the smallest planar 
hypohamiltonian graphs. The previous record by Weiner and Araya was a planar 
graph with 42 vertices. We improve this record by finding 25 planar hypohamilto
nian graphs on 40 vertices while discovering many larger ones on 42 and 43 vertices.

The final subject in the thesis is a family of molecules called fullerenes which are 
entirely composed of carbon atoms. The structure of fullerenes are 3-connected plane 
graphs with exactly 12 faces of size 5 and the rest of size 6. A famous conjecture 
regarding fullerenes, called face-spiral conjecture claims that the drawing of their 
graph can be unwound in a spiral manner starting from one face and circulating 
around that face until all faces are traversed. This conjecture is known to be incorrect 
and the smallest counterexample is made of 380 carbon atoms. We have extended 
this conjecture to families of 3-connected plane graphs with fe, and /s faces of size 
3, 4, and 5 while the remaining faces have size 6 and found counterexample for all 
possible values of (/3 , / 4 ,/s). We also found the smallest counterexamples for 11 of 
these families out of 19 possible cases.
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Preface

In this thesis we introduce recursive algorithms for generation of structures which 
can be used in mathematics and chemistry. Each structure is presented as a math
ematical model called a graph which incorporates relations between pairs of objects. 
Each graph contains a set of vertices and a set of edges. The vertices can represent 
some objects and edges connect related objects to each other. For example a graph 
can model a map in which edges represent roads and vertices are end-points of the 
roads. Another example could be molecules in which atoms are vertices and edges 
are their bindings. In this chapter we mainly deal with a family of graphs called pla
nar graphs which can be drawn on the plane with vertices drawn as points and edges 
as arcs joining their end-points such that the edges can only cross each other at their 
end-points. Each drawing divides the plane into regions which are called faces.

The recursive algorithms which we present in this thesis are methods that repet
itively follow a procedure. These algorithms start with small structures (graphs) 
and iteratively convert them to larger ones to construct desired structures for some 
specific problems.

The second subject tackled in this thesis is towards one of the traditional problems 
in mathematics and computer science i.e., isomorphism. The isomorphism problem 
discuss whether two structure are "equivalent" under a some particular definition 
for equivalence.

The third subject discussed in this thesis is a type of graph called hypohamiltonian 
in which after removing each vertex from the graph, there is a cycle going through 
all remaining vertices using edges without passing vertices more than once, but the 
original graph does not have this property. This graph class has been studied since 
1963 [103] and is interesting both in mathematics and in computer science.

The final subject in the thesis is towards extending the boundary in the litera
ture of a family of molecules called fullerenes which are entirely composed of carbon 
atoms. The structure of fullerenes are planar graphs and each drawings of them has 
exactly 12 faces made of five edge while the other faces have six edges. The construc
tion of these structures has started in 1985 [72]. Also there is a famous conjecture 
regarding fullerenes, called face-spiral conjecture which claims that the drawing can 
be unwound in a spiral manner [81] starting from one face and circulating around 
that face until all faces are traversed. This conjecture is known to be incorrect [80] 
and the smallest counterexample has is made of 380 carbon atoms [17]. We have ex
tended this conjecture to some other families of graphs and found counterexamples 
for all of them.
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Chapter i

Introduction

l . i  Definitions

A graph G is an incidence structure triple (V, E, I) where the elements of V and E are 
called vertices and edges of the graph. Also, 1 Q V x £ is a relation which defines the 
incidence of vertices and edges with the condition that every edge is incident to one 
or two vertices, called its end-point(s). The sets of vertices, edges and the incidence 
relation of G are denoted by V{G), E(G) and /(G). The order of G, written as o(G), is 
the number of vertices of G i.e., o(G) = | V(G)|. In some cases for sake of convenience 
we may define a graph as a pair (V, £) in which £ cz {{u, v} : u, v e V}. In these cases 
a vertex v and an edge e are incident if v e e. For simplicity, by abuse of language we 
may say v e G and e e G instead of v e V(G) and e e E(G).

A loop is an edge which has only one end-point and a graph with no loops is 
called a loopless graph. Two vertices of a graph are called adjacent or neighbours, if they 
have an edge incident to both of them. A graph is called simple if its loopless and 
for every pair of adjacent vertices, there is exactly one edge incident to both of them; 
otherwise it is called a multigraph.

The set of neighbours of a vertex v is denoted by Nq{v) or N(v). The degree or 
valency of a vertex v in G, denoted by dc{v) or d(v) is the number of edges incident 
to v. A vertex with degree t is called a f-valent vertex. The maximum and mini
mum degree of a graph G are denoted by A(G) and d(G) or for simplicity A and 
6, respectively. A graph whose vertices have the same degree k is called a k-regular 
graph, or regular graph if we do not wish to identify k. The family of 3-regular graphs 
sometimes are referred to as cubic graphs.

A walk in a graph G is an alternating sequence of vertices and edges, begining 
and ending with a vertex, v\e\V2^2 • • • vn such that for all 1 ^ i < n, Vj and t>,+i are 
the end-points of ez-, if it is not a loop; otherwise V\ = Vj+\ is the end-point of The 
length of a walk is the number of edges (with multiplicity) of that walk. Note that the 
length of a walk could be zero. A walk is closed if its first and last vertices are the 
same and open otherwise. A walk is called a path if its vertices are distinct and a cycle, 
if its vertices are all distinct except the first and last vertices which are the same. A 
path and a cycle with k edges are called a k-path or a k-cycle, respectively.

The complete graph Kj- is the graph (T, £) whose vertices are adjacent pairwise. For 
simplicity Kn 2l...,n} is written as K„. The path graph P„ is the graph whose vertices

3



4 Introduction

are 1,2, • • • , n with two vertices v and w are adjacent if \v — w\ = 1. The cyc/e graph 
C„ has the same vertex set as the path graph on n vertices but two vertices v and zv 
are adjacent, if \v — w\ = \ mod n.

A subgraph H of a graph G, written as H c  G is a graph with V(H) cz V(G), 
E(H) Q E(G) and 1(H) = 1(G) n (V(H) x E(H)) such that V(H) includes end-points 
of edges in E(H). Moreover, H is called an induced subgraph of G, if H is a subgraph 
of G and for every e e E(G) with end-points u and v (u = v if it is a loop), e e E(H) 
if u, v 6 V(H). The induced subgraph of G with vertices V  c: V(G) or E' c; E(G) is 
written as G[V'] or G[E'], respectively.

Let Gi = (Vi,Ei, Ji) and G2 = (Vi,E2,h)  be two graphs. The union, denoted by 
Gi u G2 is the graph (V\ u V2, Ei u £2, h u  I2). The disjoint union, written as G\ kj G2 is 
the graph (Vi x {1} u V2 x {2}, Ea x {1} u E 2 x {2},/) in which I = \J*=1{((v,i),(e,i)) : 
(v,e) e /,}. If G is a graph, G' <z G and V  a V(G) and E' cz E(G), then G\G' and 
G\V' are the induced subgraph G[V(G)\V(G')] and G[V(G)\V'], respectively, but for 
E cz E(G), G\E' is the graph (V(G), E(G)\E', I(G)\V(G) x E') i.e., the graph obtained 
from G by removing edges of £'. When V  = {u} or E' = {e}, we might simply write 
G\{f} and G\{e} as G\v and G\e, respectively.

A graph G is said to be connected, if there is a path between every pair of vertices 
in G, otherwise it is disconnected. A graph G is k-connected, if | V(G)| > k and for every 
S c  V(G) with |S| < k, G\S is connected. A subset C of vertices of a graph G whose 
removal makes G disconnected is called a cut-set. The connectivity of a G, denoted 
by k(G) is defined as the size of one of its minimal cut-sets, if G is not a complete 
graph. The connectivity of K„ is defined to be n — 1 for convenience. Graphs with 
connectivity at least two and three are called biconnected and triconnected, respectively. 
The maximal connected subgraphs of G are called its components.

An abstract isomorphism between two graphs G\ = (V\, E\, I-[) and G2 = (V2, £2, h) 
is a bijection n : V\ u E\ —> V2 u £2 such that:

• 7T(Vi) = V2.

• 7T(Ei ) = E2.

• Mv e V\Me e E\ : (v,e) e 7i <=> (n(v), n(e)) e /2.

1.2 Graph Embedding and Plane Graphs

In this section the notion of embedding used in this thesis is explained. The defini
tion used for embedding is based on [74] and is known as the rotation system which 
is based upon putting an ordering on the edges incident with each vertex but before 
starting the combinatorial definition we introduce a topological definition for draw
ing. Then, after the combinatorial definition of rotation system, we show that these 
two definitions are equivalent.

Definition 1.1. A map M for a graph G is a drawing into an orientable surface X such that: 

• Vertices of G are represented as distinct points in X.
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• Edges are represented as simple curves in the surface whose end-points are their incident 
vertices with the condition that edges can intersect only at their end-points.

With such a drawing we can consider G as a subset of X. So X \G  is a disjoint union of 
maximal connected components, these components are called faces of G in that map.

Let G = (V ,E ,I ), and let De be a relation, called the dart relation, which maps 
each edge e e E to two directed edges e1 and e2 called darts of e with the same end
points as e, but in opposite directions. These two darts are said to be the inverses of 
each other and the inverse of a dart x is denoted by inv(x). The end-points of a dart 
x are called its head and tail, denoted by head(x) and tail(x), note that:

inv(inv(x)) = x, 
head(x) = tail(inv(x)), 
tail(x) = head(inv(x)).

Every dart is said to be incident to its tail and the set of all darts incident to a vertex 
are called the darts of that vertex. We use the term üb to indicate a dart from vertex 
u to v. The set of all darts of G is denoted by De(G).

Definition 1.2. Let G = (V, E, I) be a graph and De be a dart relation for G. A  rotation 
for a vertex v, written as rot(u), is a permutation made of only one cycle on all the darts 
directed out ofv. A rotation system or an embedding of G is a pair of permutations (a, a) 
on De(G). The permutation a is made of cycles of length two that map each dart of G to 
its inverse. The permutation cr is obtained from the product of rotations of all vertices i.e., 
V =  YlveV

Let (a, a) be a rotation system of a graph G. The next dart and previous dart of a 
dart e are defined as next(e) = a(e) and prev(e) = a~ l (e), respectively. Furthermore, 
nexts(e) and prevs(e) are the first dart in the sequence next(e),next^2̂ (e),next(3)(e),... 
and prev(e),prev(2)(e),prev(3)(e),...  whose head is in the set S, respectively.

Example 1.3. Consider the graph presented in Figure 1.1(a) and its directed version 
(Figure 1.1(b)). The rotation system of this graph can be presented as: 
cr = [a1 a2blc1 dlel )(b2)(c2f 2)(d2)(e2f 1) and a. = FLeE^1*2)*

Definition 1.4. Let (a, a) be a rotation system for a graph G and (p = a~V_1. Then the 
cycles of (p are called faces of G for this rotation system and the edges of each cycle are called 
the edges of that face.

Maps and rotation systems are equivalent i.e., each map can be converted to a ro
tation system and vice versa. Building rotation systems from maps is quite straight
forward. We explain this approach with an example. Consider the graph G which 
is drawn in Figure 1.1(a), to build a rotation system for this map, first we define the 
relation De which maps every edge e to darts e1 and e2. Then we can reconstruct 
the embedding as follows. The permutation a can be defined as a = IX-eE^^2)
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a2

Figure 1.1: Rotation System

which maps each dart to its inverse. To define the permutation a we use the fact that 
cr = rii;eV(G) r°t(^) (by Definition 1.2) and define rot(i>) for each vertex. The rotation 
of a vertex v can be defined as a cycle containing every dart going out of v in clock
wise order. So for the graph of Figure 1.1(b), a = (a1 a2bl cl dl el )(b2)(c2 f 2)(d2)(e2 f l ) 
which gives us a rotation system based on the map and the dart mapping relation.

Inversely, we can convert an embedding to a drawing on a surface. Let G be a 
graph and (a,o') be a rotation system for it. Also assume (p = a - V -1 which is made 
of cycles of faces. Now we can form a disk for each rotation face whose boundary 
is the edges of that face in the order of its cycle. Then, we can glue all disks based 
on the inverse relation of darts. Assume e1 and e2 are two darts which are inverses 
of each other. Then we attach the disks of faces that include el and e2 along the part 
of the boundary which corresponds to these darts. This gives us a surface which the 
graph is mapped to. Finally, we choose the orientation of the surface such that the 
darts in the rotations of vertices are in clockwise ordering.

Theorem 1.5 ([74, chap. 1.3]). Let (a,<r) be a rotation system for a graph G which is 
constructed from a map and let (p = a~V_1. Then each cycle of (p (faces of the rotation 
system) is the cycle of darts of a face of the corresponding map in clockwise order.

Theorem 1.5 allows us to use the term face both for rotation system faces and 
map faces. Also we may refer a face as a k-face or say its size is k if the length of its 
corresponding cycle in the rotation system is k.

In simple graphs a pair of adjacent vertices can uniquely determine the edge 
between them. We may use this property for the convenience of argument in some 
part of this thesis and define faces as cycles of vertices.

A careful look to the previous Theorem shows that if e is a dart such that the face 
on its right hand side is / ,  then cp(e) is the next dart in the clockwise traversal of /  
after edge e. The reason is that the next clockwise dart on the face after the edge e is 
prev(inv(e)).
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Example 1.6. In the rotation system of Example 1.3 there are three faces namely:

(p = {al ){a2elf 1c2blb2){c1f 2e2d1d2)

It should be noted that for the outer face, the order of the edges might give the im
pression that they are in counter-clockwise order but actually this is not true because 
the embedding is on the sphere so we should view the outer face from the other 
side of the sphere. Also one can easily check that in the face (c1 f 2e2d1d2) each dart 
e is mapped by (p to prev(inv(e)) for example prev(inv(c1)) = prev(c2) = / 2 and 
prev(inv(/2)) = prev(/!) = e2.

A graph is called planar, if it has an embedding on the plane. A plane graph G 
is a tuple (V, E, I, DE,oc,cr) in which (V, E, I), called the underlying graph, is a planar 
graph, De is a dart set and (a, a) is a rotation system for that graph. For the sake 
of convenience we may refer to a plane graph as just the underlying graph, a triple 
(V, E, I), if we do not intend to use the actual embedding.

Theorem 1.7 (Euler Formula). Eel G = (V ,E, l , De, cc, ct) and F be the set of faces of G. 
Then |Vr| — |E| -h |F| = 2 if and only if G is a plane graph.

Definition 1.8. The mirror image of a rotation system (a, a) of a graph G is the rotation 
system (a,cr~l ) and is denoted by Mir(G).

An order-preserving isomorphism between plane graphs G\ = (V\, E\, Zj, De^Kv CTi ) 
and G2 =  {V2, E2, h , De2, 0C2, c2) is a bijection n : V\ u  E\ u D e , ( G i ) —► V2 u  £2 u  

DE2(G2) such that:

1. 7T|uE, is an abstract isomorphism between Gi and G2.

2. Me e Ei Me' e Dê c) : n(e') e De2(/t(c)).

3. Me e Dê G i ) Mv e Vf : e e rot(u) => n(e) e rot(7r(p)).

4. Me e DEx{Gi ) : 7r(«i(e)) = oc2{n(e)).

5. Me e DEl(Gi) : 7r((7i(<?)) = (r2(n(e)).

Similarly, an order-reversing isomorphism between them is a bijection n with the same 
properties except the last one and instead as its name suggests it reverses the orders: 
Me e Dej : 7i(cri(e)) = crfl (n(e)). Finally, a plane iso?norphism between two plane 
graphs is a bijection that is an order-preserving or/and order-reversing isomorphism.

Theorem 1.9 (Whitney's Theorem [122]). For two 3-connected plane graphs, abstract 
isomorphism and plane isomorphism are equivalent.

Let G be a plane graph with rotation system (olg, o’g) and (pG = Also
assume Fc is the set of faces of G (cycles of (pc)- Now, the dual of G, denoted by G* 
is the plane graph defined as follows. The vertex set of G* is Fc, the set of darts of 
G* has a bijection 1  to De which maps a dart e e De to e± such that if e e f  e Fc and
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inv(e) = e' e f' e Fc, then in G*, e± e rot(/) and e'± e rot(/'). The rotation system of 
G* is defined as (ctG*,VG*) in which oiG*(e±) = aG(e)± and crG*(e±) = (p(e)±.

A simple closed curve is the image of circle under an injective continuous IR2 —► 
R2 map. The Jordan curve theorem, shorten as JCT, indicates that if C is a simple 
closed curve, R2\C is made of exactly two connected components, the interior and 
the exterior of the curve which are bounded by C [65]. We may refer to a closed 
curve made of edges of a k-cycle which is a not the boundary of a face as a separating 
k-cycle.

If G is a connected plane graph with /  = X!/=i // faces such that /,• of them 
are of size kj, then G is called a {(k\,fi) , . . . ,  (kt/ ft)}-angulation. If the counts of the 
faces are not important it may be refered as a {k\,.. .  ,kt} -angulation. In the case 
that all the faces have the same size it is written as a (k, f)-angulation or simply 
a k-angulation. A {k \ , . . . ,k t}-angulation is trivial if it is a cycle graph Q , i.e. a 
(A:,2)-angulation. The set of all simple (3,/)-angulations (triangulations) and (4,/)- 
angulations (quadrangulations) are written as Tf and Qf, respectively. Figure 1.2 
presents a (3,10)-angulation, a (4,6)-angulation and a (5,12)-angulation.

(b) k = 4 and /  = 6(a) k = 3 and /  = 10 (c) k = 5 and /  = 12

Figure 1.2: Sample (fc,/)-angulations

1.3 Recursive Generation of Combinatorial Objects

Assume T  is a family of graphs and U is a superset of T , X c  U and £ a set 
of functions from U to 2W-:r. Then {1,£,U) is said to recursively generate T , if for 
every graph G e T  there is a finite sequence Go,. . . ,  Gn = G (n could be 0) such 
that Go e X and for all i < n, G,+1 e X(G,) for some X e £. The members of £ 
are called expansions. Moreover, for each expansion X the function Rx maps every 
graph G to all graphs G' that can be expanded to G (the set can be empty) using X; 
mathematically speaking Rx{G) = {Gr e U : G e X(G')}. These functions are called 
reductions. Members of 1  and U — X are called irreducible graphs and reducible graphs, 
respectively. Also for a graph G eld, all G' e Rx(G) for some X e £ are called parents 
of G.
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In most studies like [21, 24, 22, 18, 23, 51, 52] the sets U and T  in the definition 
above are the same, which means the generator starts with some irreducible graphs 
from the desired family and expands them to larger ones, while remaining inside 
the family. Having U — T  has the advantage that it usually needs fewer interme
diate graphs which helps the performance of generators. The new definition might 
be slower, but allows more options for finding generators. We employ this new 
definition to make recursive generators for fc-angulations (Chapter 2), {k\, ••• ,k t}~ 
angulations (Chapter 3) and a family of planar graphs called 4-face deflatable hypo- 
hamiltonian graphs (Chapter 5).

1.4 Isomorph-Free Generation

A generation is called isomorph-free if no pair of objects generated by the generator 
are isomorphic. The act of removing isomorphic copies in the process of generation 
is called isomorph rejection. There are some different isomorph rejection methods used 
in the literature which we discuss later in this section.

Let S be a set of combinatorial objects with a designated isomorphism. We can 
define a group T whose action on an object s e S gives us all isomorphic copies of S. 
We call a function / whose domain is S an invariant, if / (s) = I(s^) for every g e Y. 
More specifically, an invariant c which maps members of S to vectors of elements in 
a totally ordered set with the criteria that c(si) = c(s2 ) <=> e T : = C2 is called
a canonical code. In this thesis, we use the lexicographic ordering for comparing 
canonical codes.

The way that invariants and canonical codes are defined allows us to use them 
for isomorphic checking of combinatorial objects. Let I and c be an invariant and 
a canonical code for a set S. Then Si,S2 e S are isomorphic if and only if c(si) = 
c(s2 ). Also if 7(si) 7  ̂ I(s2 ), then Si and S2 are not isomorphic. So in practice for 
isomorphism testing, we can define some easily computable invariants and whenever 
we wish to check whether s\ and S2 are isomorphic, check those invariants first and 
use canonical codes only when all invariants had the same values for both of them. 
A canonical labelling is an invariant which maps each graph to a specific labeling of 
it i.e., maps graphs to their isomorphic classes. A graph is called canonical if the 
canonical labelling maps it to itself.

The most trivial approach for isomorph rejection is to keep all generated objects 
in a memory, preferably RAM, and then compare them pairwise and output only one 
copy from each isomorphism class. This approach is of course only useful in limited 
cases when the set of generating objects is not too big i.e., isomorphic testing and 
keeping them all in memory is plausible for example it is used in [47] for generation 
of small sets of irreducible objects. We also use this approach in some parts of 
Chapter 5. Most graph generators that we deal with generate every labelling of each 
graph. Therefore, if we only output the canonical ones, then the output will contain 
one copy from each isomorphism class.

The second method called orderly generation is a recursive generation with an extra
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criteria on the definition of canonical code which is inherited to a sub-object which 
is considered as its canonical parent. This method was introduced independently by 
Faradzev [37, 36] and Read [98]. Some of many examples of using this method are 
[12] for generation of cubic graphs, [86] for generation of regular graphs and [95] for 
generation of extended binary trees i.e., rooted binary trees in which every vertex 
has either two or no children.

The next method called canonical construction path will be discussed in more 
details in Section 1.4.1.

1.4.1 Canonical Construction Path

In 1998 McKay introduced a new method called canonical construction path (CCP), 
which does not involve explicit isomorphism testing [83]. We will use this method 
in Chapters 2 and 3 to recursively generate some families of /c-angulations and 
{ki,- • • ,/:f}-angulations.

We explain this approach parallel to an actual example of generating simple 
graphs and use labels "General" and "Graphs" to indicate the context.

General: We have a set of objects C, called labelled objects with a group Y acting 
on C whose orbits are called unlabelled objects, U. Each labelled object X has a order 
o(X) e N  which is constant for objects in an orbit of Cr. This allows us to define the 
order of unlabelled objects to be the common order of its comprising labelled objects.

Graphs: The set of labelled graphs C is the set of all simple graphs, T = n f j eN(S, x 
Sy) such that for a graph G = (V, E, I), action of g e T on G is defined by the factor 
S|y| x S|£| of g which permutes the labels of V, E and I in correspondence to them 
which means each orbit of CY is made of all isomorphic labellings of a G e C. The 
order of G is also defined as o(G) = |V|.

General: We define the sets of lower objects and upper objects for each X e C 
denoted by L(X) and Ü(X) such that for Xi ^  X2 e C, the sets [X]}, L(Xi), U(X 1), 
{X2}, L(X2) and U(X2) should be pairwise disjoint. Then we define the sets of all 
lower and upper objects as C = [JXe£ ^(X) and C = [JXe£ The order of lower
and upper objects of X are defined to be the same as order of X.

Graphs: We create a graph that has one more vertex by adding a new vertex to a 
smaller graph and joining to its neighbours. Lower objects include the information 
to reduce the graph back to its parent so for G ^  Ki we can define L(G) = {(G,w) : 
w e V(G)} that means to remove w from G and as K] does not have any parents, we 
define L(Ki) = 0 .  Conversely, the upper objects demonstrate, how one graph can be 
extended to its children. In our case, we can define it as U(G) = {(G, W) : W <= V(G)} 
which means to add a vertex and connect it to all vertices in W.

General: We need a group Y acting on C u  C u  C in addition to a relation R Q 
C x C satisfying Axioms C1-C7 to relate lower and upper objects to each other which 
is used for defining parents of objects. The functions /  and f  used in the list of 
axioms are defined as
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/(Y) = { X : ( Y ,x ) e R } ( 1 .1)

/'(X) = {? : ( r ,x ) £R} ( 1.2)

Cl. r  fixes each of £, £  and £  setwise.

C2. VX e £ Vg e T : L{X8) = L{X)8 a U(X8) = U(X)8.

C3. VY e £ VX e £  : f{Y)  #  0  a /'(X ) #  0 .

C4. VY e £ Vg e T VXi e /(Y) VX2 e /(Y*) 3h e r  : X{ = X2.

C5. VX G £ Vg G r VYl G /'(X ) VY2 g /'(X*) 3h G r : Yf = Y2.

C6. VX G £ Vg G r : o(X*) = o(X).

C7. VY G £ VX G /(Y) : o(X) < o(Y).

Graphs: We can easily extend the action of g e T on (G, zv) g  £ and (G, W) g  £ as 
(GX,u>8) and (G8, W8), respectively which guarantees axiom Cl. To define R we use 
the construction path from lower to upper objects: /  : (G, zv) >—> {(G\w, Nc(zv))g : g e 
T}. With this definition one can easily verify that C2-C7 hold too.

General: Two labelled objects Xi and X2 are isomorphic, if there is g e T such that 
X1̂ = X2. Also the automorphism group of a labelled object X, written as Aut(X), is the
stabiliser of X in Y i.e., Aut(X) = {g e Y : X8 = X). Unlabelled objects which do not
have any lower objects are called irreducible objects and the other labelled objects are 
reducible. By Axiom C2, being reducible or not is invariant under T. Therfore, we can 
extend the definition to unlabelled objects as well and partition U into U\ and Ur, to 
be the set of irreducible unlabelled and labelled objects, respectively.

Graphs: By the choice of T to be ri/jeN ^/ x Sy), and the way that we defined 
action of g e T on graphs, this definition of isomorphism is the same as abstract 
isomorphism. By our definition of lower objects, only L(K\) is the empty set so it is 
the only irreducible object.

General: The final step is to define a function m : C —*• 2^ such that Axioms MI
MS holds. This function allows us to define a unique construction path (Lemma 1.10) 
for each object in Ur.

Ml. If L(X) = 0 ,  then m(X) = 0 .

M2. If L(X) # 0 ,  then m(X) is an orbit of the L(X)Au^x \

M3. VX g  £ Vg g T : m{X8) = m{X)8.

We refer to m(X) as the canonical reduction of X. The Axiom M3 guarantees that two 
isomorphic labelled objects have equivalent canonical reduction. Therefore, we can 
define the canonical reduction of an unlabelled object S as
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Lemma 1.10 ([83, Lemma 1]). There is a unique function p : Ur —*■ U such that

VS e Ur VX e S MX e m(X) 3Y e p(S) : /(X ) c  U(Y)

Graphs: A very simple but not efficient way to define m(G) for G ^  Kj is to 
concatenate the rows of adjacency matrix of G and find the lexicographically minimal 
such vector amongst all different labellings of G. Now let G# be the labelling with 
the minimal code and w be the vertex with label "1" in G#, then we can define

» ( G ) - f 0 '
[ {(G, u) : 3f e Aut(G) : v1 = w}, otherwise

General: Lemma 1.10 shows that each unlabelled object can be mapped to a 
unique parent based on the function in. Also, by Axiom C7, o(Y) < o(X) which 
means by finitely many iteration each VS e Ur can be constructed from an unlabelled 
irreducible object. We refer to p(S) as the canonical parent of S and the set of canon
ical ancestors of S is {S/ p(S),p(p(S)),- ■ ■ ,p(- • ■ p(S)) e U\\. Inversely, we can define 
child and descendents of an unlabelled object. The fact that each unlabelled object 
has a unique canonical parent gives us a directed forest whose roots are irreducible 
objects. Using a preorder traversal of this tree McKay designed Algorithm 1.1 (the 
algorithm presented here is slightly different) to generate all. We use this algorithm 
in Chapters 2 and 3.

Algorithm 1.1 Canonical Construction Path [83]
1: function Sc an(G: Labelled object, max_order: int)
2: if o(G) = maxjorder and G e T  then
3: Output G
4: return
5: end if
6:
7: for each orbit A of the action of Aut(G) on li(G) do
8: select a G e A and a G ' e  f'{G)
9: let G e L(G')

10: if o(G') ^ maxjorder and G e m(G') then
11: Sc a n (G', maxjorder) >  G is accepted
12: end if
13: end for
14: end function

Theorem 1.11 ([83, Theorem 1]). Tor each S e U and X e S having o(X) ^ n, Scan 
function outputs exactly one labelled object belonging to each unlabelled object of order n that 
is a descendent of S.
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Corollary 1.12. Calling Scan on one labelled object of every unlabelled irreducible object 
generates one labelled object of every unlabelled object in T  i.e., the set T  is generated ex
haustively with no isomorphic copies.

Proof By Theorem 1.11, Scan produce each descendent of any irreducible object 
once. Adding the fact that each object has a unique set of ancestors which start with 
exactly once irreducible object, the proof is obtained. □

1.5 Hamiltonian and Hypohamiltonian Graphs

A graph G is called Hamiltonian if there is a cycle C in G which passes through every 
vertex exactly once, and the cycle C is called a Hamiltonian cycle of G (Figure 1.3(a)). 
Similarly, G is called traceable if there is a path in G that passes through every vertex 
exactly once, and such a path is called a Hamiltonian path (Figure 1.3(b)). Determining 
if a graph is Hamiltonian or traceable is NP-complete [44].

Figure 1.3: Sample Hamiltonian and traceable graphs

A graph G is called hypohamiltonian/hypotraceable, if it is not Hamiltonian/trace
able, but the deletion of any single vertex v e P(G) gives a Hamiltonian/traceable 
graph. Hypohamiltonian graphs first appeared in the literature with a question by 
Sousselier [103] and its solution by Gaudin, Herz and Rossi [45] that the Petersen 
graph is the smallest hypohamiltonian graph.

In 1967, Herz, Duby and Vigue [54] using an exhaustive computer search showed 
that there is no hypohamiltonian graph on 11 or 12 vertices. Later Collier and Schme- 
ichel [27] proved the same result for graphs on 14 vertices. Aldred, McKay and 
Wormald [1] classified all hypohamiltonian graphs with fewer than 18 vertices: there 
is one such graph for each of the orders 10, 13, and 15, four of order 16, and none of 
order 17 (Figure 1.4). Moreover, hypohamiltonian graphs exist for all orders greater 
than or equal to 18.
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(d) H16<1 (Lindgren graph) (e) H16/2 (f) H16/3 (Sousselier (g) H16j4
graph)

Figure 1.4: All hypohamiltonian graphs up to 17 vertices

Until 1976, it was unknown if planar hypohamiltonian graphs exist. Thomassen 
[115] in 1976 showed there are infinitely many of them. The smallest amongst them 
has order 105. In 1979, Hatzel found a planar hypohamiltonian graph on 57 vertices 
[53]. This result was improved to order 48 (C. Zamfirescu and T. Zamfirescu [126] in 
2007), and 42 (Wiener and Araya [123] in 2011). These four graphs are depicted in 
Figures 1.5(a), 1.5(b), 1.5(c) and 1.5(d), respectively. In Chapter 5 we break this record 
by finding 25 graphs on 40 vertices one of which is presented in Figure 1.5(e) and the 
complete set of them can be found in Figure 5.6.

Grinberg in 1968 [48] proved the following necessary condition for a plane graph 
to be Hamiltonian which is a very useful criterion for showing a graph is not Hamil
tonian.

Theorem 1.13 (Grinberg's Theorem [121, Theorem 7.3.5]). Given a loopless plane graph 
with a Hamiltonian cycle C and f  (f[) i-faces inside (outside) of C, we have

2 ( ‘‘ - 2 ) ( / i - / / ) = 0 .

Proof. This theorem can be proved by induction on the number of edges. A Hamil
tonian graph of order n has at least n edges (the cycle graph). So for the base case of 
induction we use cycle graphs. A cycle graph, Cn has two faces of size n which 
are on different sides of its Hamiltonian cycle. In this case ]A(z — 2)(/, — //) = 
(n — 2)(1 — 1) = 0. For the induction hypothesis we assume that for every planar
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(a) |V| = 105 [115] (b) |V| = 57 [53] (c) |V| =  48 [126] (d) |V| =  42 [123]

(e) |V| = 4 0  [64]

Figure 1.5: Records for planar hypohamiltonian graphs

Hamiltonian graph G of order n with n ^  )E(G)| < m, ^ ;(i — 2)( f G — f - G) =  0.
Now let G' =  (V, E) with \ V\ =  n and \E\ = m >  n be a planar Hamiltonian graph 

and C be a Hamiltonian cycle of G'. As m >  n, C has a chord e. Thus, G = G'\e  is 
Hamiltonian as C is one of its Hamiltonian cycles. Assume F\ and F2 are the faces 
on opposite sides of e (in G') and F3 be the result of merging these two faces after 
removal of e (in G). Also considering f \  = \Fi\, f 2 = IF2I and f s  = |F31, we have
f \  + f i  = h  + 2.

Without loss of generality we can assume F3 is on the side of C which is counted 
towards /^ . So as e is a chord of C, Fi and F2 fall on the side that is counted in

and too. By the induction hypothesis — 2 ) ( f G — f [ c ) = 0. Now for G' 
we have V,(i -  2 ) { f ?  -  f f ) = D,(i -  2) (f j3 -  f ' G) + (/, -  2) + (/2 -  2) -  -  2) =
0 + (/i —2) + (/2 —2) —(/3 - 2) = / 1 + / 2 —/ 3 —2 = 0. □

Although Grinberg's condition has a very simple proof it is very useful for show
ing a planar graph is not Hamiltonian. For example all four previous records for 
planar hypohamiltonian graphs (Figures 1.5(a), 1.5(b), 1.5(c) and 1.5(d)) have the 
property that in each of them every face except one (called the exception face) has 
size equal to 2 in modulo 3. So if they were Hamiltonian ^T(z — 2)(/,■ -  /•) = 0, but 
taking this equation modulo 3, all terms of the sum but the one for the exception face 
vanish because their multipliers are equal to zero modulo 3. Thus, having t equal 
to the size of the exception face (t ^  2 mod 3), we have (t — 2)(1 — 0) = 0 mod 3
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which is a contradiction and shows that they are not Hamiltonian.
Several studies have shown that there infinitely many hypohamiltonian graphs: 

Lindgren 1967 in [77]; Bondy in 1972 [10]; Chvatäl in 1973 [26]; Thomassen in 1974 
[114],[115] and [117]; Doyen and Van Diest in 1975 [30]; Collier and Schmeichel 1978 
[27]; etc. We explain two operations defined by Thomassen [117, 114] in more detail 
here as we use them later in Chapter 5.

Definition 1.14 ([117]). Let G be a plane graph with a 4-cycle x,y,z, t, then Thn(G; x,y,z, t) 
is the graph obtained by removing the edges xy and zt then adding a 4-cycle x',y',z!, t' and 
edges xx', yy', zz! and tt' (Figure 1.6). The set of all plane graphs obtained from G using 
Thn is denoted by ThH(G).

(a) (b)

Figure 1.6: Thomassen's operation to expand plane hypohamitonian graphs [117]

Lemma 1.15. lfG is a planar graph with a 4-cycle x,y,z, t, then Thn (G;x,y, z, t) is a planar 
graph too.

Proof. Let G' = TT\u(G)X,y,z,t), we have | VG>\ -  |EG'I + |FG'| = (|VG| +4) -  (|EG| + 6) + 
(I Fq I + 2) = I Vg I — I Eg I + I Fg I which shows that the embedding of G' is planar too. □

Lemma 1.16 ([123, Lemma 4.3]). If G is a planar non-Hamiltonian graph with a 4-cycle 
x,y ,z,t, then G' = T\\y[(G-,xf y ,z,t) is a planar non-Hamiltonian graph too.

Proof. Planarity of G' comes from Lemma 1.15. Now assume to the contrary that 
Thn(G; x, y, z, t) is Hamiltonian and CG/ is one of its Hamiltonian cycles. We construct 
a Hamiltonian cycle CG for G based on CG/ as follows. To cover x', y', z! and t', we 
have one of these cases for CG/:

1. Cg' contains x ,x ',y ',y  and t,t',z',z: In this case CG is obtained from CG/ by 
replacing x ,x ',y ',y  and f,f',z ',z with x,y  and t,z, respectively.

2. Cg1 contains x, x', t', z!, y', y\ In this case CG can be constructed from CG' by 
replacing x ,x ', t',z!,y',y  with x,y.

3. Cc contains t, t'f x',y',z',z\ In this case CG is formed from CG' by replacing 
t, t', x ' , y', z', z with t, z.

Clearly CG is a Hamiltonian cycle for G which is a contradiction. Thus G' could not 
have been Hamiltonian. □
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Theorem 1.17 ([123, Lemma 4.4]). If G is a planar hypohamiltonian graph with a \-cycle 
x , y, z, t and all vertices of {x,y, z, t} are 3-valent, then G' = Thn(G; x ,y , z, t) is hypohamil
tonian too.

Proof. We show that for every v e V(G'), G '\v  has a Hamiltonian cycle using two 
cases:

• v e {x ',y ',z ',t'} :  Without loss of generality assume v = x '. As G is hypohamil
tonian G \t has a Hamiltonian cycle CG and dG\t(x) = 2 so CG contains the edge 
xy. Now replacing xy  in CG with x, t, t', z', y ', y  we can find a Hamiltonian cycle 
for G'\v.

• v e V(G): Let CG be Hamiltonian cycle of G\v. After removal of v in G', in 
the remained graph, we have at least one of the 3-valent vertices of { x ,y ,z ,t j  
without loss of generality we can assume x  is such a vertex. Now the fact that 
dG(x) = 3 enforces that at least one of edges xy  and/or xt is in CG. Depending 
on membership of xy  or xt in CG, we can replace that edge with x ,x ', t ' ,z ' ,y ' ,y  
or x, x', y 'r z!, t', t to make a Hamiltonian cycle for G'\v.

Also by Lemma 1.16, G' is planar and non-Hamiltonian. □

Definition 1.18 ([114]). Assume for i = 1,2,3,4, G; is a graph which has a 3-valent vertex 
Xi .  Also let y \ ,y \ ,y \  be neighbours of X j  and H j  = G,-\Xj. Then Th.i(G\, X\,y\,y\,y\, ■ ■ ■ , 
G4, x4, y \, y \, 1/4) is the graph obtained from identifying pairs (y \,y \)  and (y \,y \)  into Zi and 
Z2, respectively and adding edges y \y \, y \y \, y \y \  and y \y \. The set of all graphs obtained 
from G\, Gi, G3 and G4 using T hj is denoted by Thx(Gi, G2, G3, G4) (Figure 1.7).

Theorem 1.19 (Extension of [114, Lemma 3.1]). If G\, Gz, G3 and G4 are hypohamil
tonian each of which has at least a 3-valent vertex, then every G' e Thx(Gi, G2, G3, G4 ) is 
hypotraceable. Moreover, if all G,s are plane graph, G' is a plane graph too.

Proof. We omit the proof of the first part which is exactly the same as [114, Lemma 3.1] 
So for the second part assume the G,s are all plane graphs.

IVg' I - I E g'I + IFg'I

E ( K - | - l ) - 2
1=1

S ( | E g, - 3 | ) + 4 +
.1 =  1

S ( I Fg, | - 3 ) + 4
. 1=1

Z  [Ng.I -  |EC,.| + |fg,| -  2] + 2  
1=1

2

Which shows G' is a plane graph. □
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ThT(Gi, xi, y \, y\, y\, • • • , G4, x4/ y\, y\, y \)

\

Figure 1.7: Thomassen's operation to create hypotraceable graphs [114]

1.6 Thesis Outline

In Section 1.1 of this chapter we introduced the generic terminology which is used in 
the thesis including what graphs are and some properties of them like the classic def
inition of isomorphism for graphs. Then, in Section 1.2 we introduced planar graphs
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which can be drawn on the plane and we referred to their drawings as plane graphs 
and later mentioned three different isomorphisms for plane graphs. In Section 1.3 
we described recursive generation in mathematical form and then in Section 1.4 dis
cussed how isomorphic copies can be discarded in the generation process and par
ticularly Section 1.4.1 included canonical construction path which is the method used 
mainly in this thesis for the purpose of eliminating isomorphic copies.

In Chapter 2, we introduce our first generator for the class of ^-angulations which 
are a family of plane graphs in which every face is surrounded by exactly k edges. 
This family has been targeted for small values of k by many researchers namely for 
k = 3 [11, 21, 20, 76, 88, 89, 90, 7, 5, 25, 6, 22], k = 4 [8, 91, 18, 87, 20] and k = 5 
[52]. But for k > 5 no generator exists in the literature. We fill this gap by presenting 
a recursive generator for all k > 4. Section 2.2 contains the theoretical aspects of 
the generator, later in Section 2.3 we discuss how this generator is implemented, 
adapted to the canonical construction path method (Section 2.3.1) and optimized 
(Sections 2.3.2 and 2.3.3).

Chapter 2 discusses how we can generate every graph whose faces have k edges, 
we extend this family in Chapter 3 to the graphs whose faces edge count belong to a 
custom set {/ci,/c2, • • • , kt}. The software plantri is the only algorithm in the literature 
which is able to generate plane graphs with given maximum and minimum face size 
[20], but it does not allow gaps in the face sizes. Our approach, on the contrary, does 
support every given set of face sizes. Section 3.2 discusses the theoretical proofs to 
show the correctness of the generator. Then in Section 3.3 we discuss how this gen
erator can be implemented, followed by adapting to the canonical construction path 
method (Section 3.3.1) and optimization of the generator (Sections 3.3.2 and 3.3.3).

Finding the smallest planar hypohamiltonian graph has been a challenge in the 
literature since 1976 [115] after it was conjectured that there is no such graph in 1973 
[26]. The smallest one found in 1976 has 105 vertices, this result has been improved 
since to 57 [53], 48 [126] and to 42 [123] in 2011. We improve upon these records by 
showing that there are 25 planar hypohamiltonian graphs on 40 vertices. One of the 
families of planar graphs which have been targeted in the literature for finding small
est planar hypohamiltonian graphs is the family of Grinbergian graphs (Section 5.3) 
which includes all previous found records. We prove that no smaller hypohamilto
nian graph exists in this family by showing that the smallest hypohamiltonian graphs 
in this family have 42 vertices and there are exactly 7 such graphs. We also introduce 
another family of graphs called 4-face debatable graphs (Section 5.4) which includes all 
Grinbergian graphs and show that the 25 graphs on 40 vertices which we have found 
have the minimum order in this family as well.

Fullerenes are a family of molecules which is entirely composed of carbon atoms 
in which each carbon atom is bound to three others. Therefore, fullerenes can be 
modelled as cubic graphs and in particular their graphs are all 3-connected and 
planar as well as having the property that all faces are of size 6 except for exactly 
twelve 5-faces. The generation of these structures has started in 1985 [72] and there is 
a famous conjecture regarding fullerenes, called the face-spiral conjecture which claims 
that the drawing of fullerenes can be unwound in a spiral manner [81] starting from
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one face and circulating around that face until all faces are traversed. This conjecture 
has been used for one of the generators which later was proven that do not generate 
exhaustively after finding a fullerene on 380 vertices with no face-spirals. Recently, 
it is proven that 380 is the minimum size of a counterexample [17, 47]. In Chapter 6, 
we extend the scope of this conjecture from 3-connected cubic (5,6}-angulation to 
all 3-connected cubic connected planar graphs whose face size are at most 6. These 
graphs can be partitioned to 19 different families based on the multiplicity of faces 
whose size is at most 5. We have found that the conjecture does not hold for these 
families by finding counterexamples. We showed that the counterexamples for 11 of 
these families are minimal by an exhaustive search.



Chapter 2

Recursive Generation of 
E-Angulations

2.1 Introduction

A simple plane graph with the maximal number of faces is a triangulation (otherwise 
we can add a chord to increase the face count). Thus, in a plane graph \F\ ^  2|E|/3. 
If a simple E-regular graph is planar by Euler's formula, 2 = |V| — |£| + |F| ^  ||E | — 
|E| + ||E | = |E |( | -  3). Therefore, simple plane E-regular graphs only exist for E = 
3,4,5. Several studies considered generating different families of simple plane 3- 
regular graphs both theoretically and implementation-wise [34,104, 4, 24, 21, 23, 20]. 
Simple plane 4-regular graphs are also considered in different studies [79, 75, 87,18]. 
The next family, i.e., 5-regular is targeted in [29, 51, 52].

Simple E-angulations are the plane graphs in which every face size is E. Every 
simple E-angulation is the dual of a plane E-regular graph (that may not be sim
ple). Although we have the limit of E < 6 for the existence of simple plane E-regular 
graphs, there is no such limit for simple E-angulations. Generation of E-angulations 
is studied for triangulations (E = 3) [11, 21, 20, 76, 88, 89, 90, 7, 5, 25, 6, 22], quadran- 
gulations (E = 4) [8, 91, 18, 87, 20] and pentangulations (E = 5) [52]. But for E > 5 
there is no result in the literature. In this chapter, we introduce a generic recursive 
generator for the following families of E-angulations with E ^  5.

• 2-connected simple

• 1-connected simple

• 1-connected with S > 1

Tables 2.1, 2.2 and 2.3 show the number of E-angulations for 5 ^  E ^  10 up to 
some orders that we have managed to generate and the list of actual graphs can be 
downloaded at [61].

Instead of the traditional definition of graphs as pair of vertices and edges, we 
have defined a graph G as an incidence structure G = (V, E, I) in which V and £ are 
vertices and edges of G and I Q V x E is its incidence relation. This definition allows
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us to discuss edges independent of vertices and changing the labels of vertices does 
not change their incident edges.

2.2 Generation of /c-angulations

In order to generate the set of /c-angulations, recursive generation can be used. We 
define the set T  as the set of (/c,/)-angulations. Also, we introduce three pairs of 
operations which we will use to define the expansions and reductions. For the sake of 
clarity we define the operations on the directed version of the actual graphs obtained 
from their rotation system. The first operation is e\ (Figure 2.1(a)) which attaches 
a new 1-valent vertex to an existing vertex of the graph. As a result the size of 
the face containing the new vertex is increased by 2. The second operation is e-i 
(Figure 2.1(b)) which expands a (k — 2)-face into a k-face by splitting a vertex into two. 
The third operation is ê> (Figure 2.1(c)) which takes a (k — 2)-face (F in the figure) 
whose vertices are all adjacent to a single vertex x. Then it converts the (k — 2)-face 
into a k-face by adding an extra vertex and rearranging its neighbourhood (H\ and 
H2 could be faces or separating cycles). Mathematically, the rearrangement is made 
of modification of rot of x, y, 2 , t and adding vertex u. For example assuming rot(z) = 
(^2, • • • ,gir' ' '  rZ 1 = inv(gi), • • • ,Zf = zzft) in the left hand side of Figure 2.1(c), after 
expansion we have rot(z) = (/13, • • • , e \ , Z\ , -  • • ,zf). These three operations have the 
following preconditions:

• Qj(G; x, y,z):

-  y and z are consecutive neighbours of x.
-  y and z could be the same vertices if dc{x) = 1.

• Ce2(G-,x,y,z,t)\

-  x, z and t are distinct.
-  x is adjacent to y.
-  z and t are consecutive neighbours of y.

• Ce3(G;x,y,t,z,w):

-  w, z and t are consecutive vertices of a face F.
-  Every vertex of F is adjacent to x.
-  y is adjacent to x, z and w.

Now we can define the expansions £1, £2 and £3 as:

Ei(G) = {e\(G; x, {y,z}) : x,y,z  e V{G) a  Cei(G;x,y,z)} (2.1)
£2(G) = {c2(G ; x , y ,{z,t}) : x,y,z , t  e V(G) a  Ce2(G-,x,y,zf t)} (2.2)
£3(G) =  ( c3(G ; x , y, w,z,t) : x ,y ,w ,z , te  V{G) a  Ce3(G;x,y, w , z, t)} (2.3)
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r2{x, {y,u})
(b)

r-i (x, y,u,z) 
(c)

Figure 2.1: Operations to convert a (k — 2)-face to a k-face and vice versa

Defining graphs based on incidence structure allows us to say that each of these 
operations only affects one face and leaves the rest unchanged. For example consid
ering £3, we need to add a vertex and one edge (two directed edges). If we add the 
two new directed edges inside the face F (Figure 2.1(c) on the right) as the directed 
edges f \  = wy and /2 = yu, then the rest of the faces remain unchanged. So we can 
guarantee that the only affected face is F. The same idea is applicable to e\ and ê  as 
well.

Each application of Ei, £2 and £3 to a graph increases the size of one face by 2 
and does not change the face count. Therefore, if the corresponding reductions are 
applied enough times on a /c-angulation all faces eventually can be reduced to either
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3-faces or 4-faces depending on the parity of k.

Lemma 2.1. Assume G is a simple plane graph with a vertex v of degree one in a k-face F. 
Then G' = r\ (G; u, x) is a simple plane graph with the same faces as G except for F which is 
converted to a (k — 2)-face. As the result of the reduction, G' has at most the same number of 
1-valent vertices as G.

Proof The only face that is affected by the operation is F which will lose two directed 
edges after the operation. Thus its size will reduced to k — 2. The simplicity of G' 
is trivial as removal of a vertex does not add either loops or multiple edges. Also 
G' is planar because the number of vertices and edges are reduced by one while 
the number of faces is unchanged so |V(G')| — |E(G')| + |F(G')| = |V(G)| — |E(G)| + 
|E(G)|.

Also dG>(x) = dG(x) — 1 and Mw e V (G \x )  d'G(w) = dc(w). So after removal of u, 
the number of 1-valent vertices does not increase. □

Lemma 2.2. Assume G is a non-trivial simple plane graph and F is a t-face (t > 4) 
with vertices V\,V2 , •• • ,Vt in clockwise order. Then if the following conditions hold, G' = 
r2 (G;x, {w ,u }) is a simple plane graph with the same faces as G except for F which is con
verted to a (t — 2)-face. Also the number of 1-valent vertices of G and G' are the same.

1. dG( x ) >  2.

2. x is the only common neighbour of w and u.

3. w and u are not adjacent.

Proof. Consider the graph G' = r2 {G; x, {w,u}).  We first show that G' does not have 
any multiple edges. Assume to the contrary that there are two edges between v and 
p. At least one of v and p should be in y because the operation does not add an edge 
to any other vertex. Without loss of generality we can assume p = y. After applying 
the operation we have N G>(y) = N G(w) u NG(u). So to have a multiple edge with an 
endpoint on y there should be a vertex which is both in N G(w) and NG(u). But by 
the assumption of the lemma NG(w) u NG{u) = {*} and as we merge darts rib and 
xu,  there is no multiple edge in G'. Also G' does not have any loops because the only 
possibility is having a loop on y. But by the assumption, w and u are not adjacent in 
G so G' is simple.

The operation maintains the planarity, since the only affected face after the op
eration is F which is converted to a (t — 2)-face. So the number of faces remain 
unchanged, but the numbers of vertices and edges are reduced by 1. So |V(G')| —
IE(G')I + |F(G')I = |V(G)| — |E(G)| -I- |F(G)| which means it is still planar. Moreover, 
the number of 1-valent vertices of G' is the same as G because dG/(x) = dG(x) — 1 ^  2, 
dGf y )  > dG(w) and Vu e l/(G'\{x,i/}) d'G(v) = dG{v). □

Lemma 2.3. Assume G is a non-trivial plane graph and F is a t-face (t > 4) with vertices 
v \ , v i , - .. , v t in clockwise order. If there is a vertex x that is adjacent to all the vertices of 
V(F), then G' = r3 (G;x ,w,y ,u , z )  is a simple plane graph with the same faces as G, except
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for F which is converted to a (t — 2)-face. Also the number ofl-valent vertices of G' and G 
are the same.

Proof It is clear that no loops are created. To show that G' does not have any multiple 
edges, let a be a vertex inside the cycle H\ (if there is any). After the operation the 
cyclic ordering of the neighbours of a would be the same except for the fact that any 
occurrence of x, 2 and u (if existed) will be replaced by 2, w and y; respectively. The 
new edge between a and w does not make multiple edges because they were not 
previously adjacent (by the Jordan curve theorem). Also if there are multiple edges 
in G' between any of the pairs (a,y) or (a, z) there should be the same situation for 
(a,z) or (a,x) in the original graph which is contradiction. The same proof applies 
for vertices inside the cycle Hz- Apart from these vertices the fact that no multiple 
edges could be created for vertices x, y, w and 2 is trivial and the rest of the graph is 
the same as G. So the graph remains simple.

The operation 03 maintains the planarity, since the number of faces remain un
changed, but the numbers of vertices and edges are reduced by 1. Finally, the only 
modified vertices are x, y, 2 and w, but all of them have degree at least 3 in G'. So 
the number of 1-valent vertices remains the same. □

Lemma 2.4. Assume G is a non-trivial plane graph with no \-valent vertex and F is a t-face 
(t >  4) with t distinct vertices, such that there is no vertex of G which is adjacent to all 
vertices ofV(F). Then there are vertices x, w and u in F such that G' = r2 {G;x, {w ,u}) is a 
plane graph with the same faces as G except for F which is converted to a (t — 2)-face.

Proof. Let D = {v e  V(F) : \N(v) n V(F)\ > 2}. Assume the vertices of F in clockwise 
order are v\,vz, • ■ • ,v t (indices are chosen from Zj).

If D is not empty then there is a vertex of F which is adjacent to at least three 
vertices of F. Without loss of generality assume V\ is that vertex. As G is simple, 
v\ has a neighbour in V(F) apart from vz and vt/ say Vj (Figure 2.2(a)). Now by 
the Jordan curve theorem, vz and v are neither adjacent nor have any common 
neighbour apart from V\ .  So by Lemma 2.2, r z { G ; v i ,  { v z , v t } )  is applicable.

Figure 2.2: Cases where vertices are distinct and they do not share a neighbour
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If D is empty consider the set N = {vz e V{F) : N (vz) n N (vz+2) 7  ̂ {uz+i}} . If 
N = 0 ,  any two vertices uz and vz+ 2 of F are not neighbours and do not have any 
common neighbour apart from vz+\. In this case as G is not trivial there should 
be a vertex vz of degree more than two and by Lemma 2.2, r2 (G ;vZ/ {vz+ i,v z- i } )  is 
applicable.

So the remaining case is when D = 0  and N  ^  0 .  Assume vz e N  and x ^  vz+\ 
is a member of N (vz) n N (vz+2) (Figure 2.2(b)). By the assumption of the lemma 
x cannot be adjacent to all vertices in V(F). So A = {v e V(F) : x e N (v)} and 
B = V (F )\A  are both non-empty. Thus there is a vertex va e A such that va+\ e B. In 
this case, by Jordan curve theorem, va+2 and va do not have any common neighbour 
and are not adjacent either. So by Lemma 2.2, r2 (G; va+\, {va,v a+2 }) is applicable. □

Lemma 2.5. Assume G is a non-trivial plane graph with no 1-valent vertices and F is a t-face 
(t >  4) with |V(F)| < t. Then there are x ,w ,u  e V(G) such that G' =  ^ { Gj x ,  {w,u})  is a 
simple plane graph with the same faces as G except for F which is converted to a (t — 2)-face.

Proof Assume vertices of F in clockwise order are V\,V2, - . . ,Vt  (indices are chosen 
from Z t). By the assumption of the lemma there are indices i and j  such that u, = Vj,  

d(vj) >  2 and i ^  j. Then by the Jordan curve theorem Vj+ \ and U;_i do not have any 
common neighbour apart from u, and they cannot be adjacent (see Figure 2.3 noting 
that possibly u,-+1 = V j-\ or Vj_\ — Vj+1). So by Lemma 2.2, r2(G;u,-, {u!_1,uI+1},u,_i) 
is applicable. □

Figure 2.3: Cases where at least two vertices are the same

Corollary 2.6. Let G be a non-trivial plane graph with no 1-valent vertex and F be a t-face 
(t > 4) of G, then F can be reduced by r2 or there is a vertex x adjacent to all vertices of F.

Proof Assume V\,V2, • • • ,Vt are the vertices of F in clockwise order and there is no 
vertex adjacent to all of its vertices. If there are two distinct indices i and j  such that 
Vj =  Vj ,  by Lemma 2.5, we can apply r2 on F to convert it to a face of size t — 2; 
otherwise by Lemma 2.4, r2 is applicable. □

Theorem 2.7. Any non-trivial plane graph G having a t-face F with t > 4 is reducible by at 
least one of e\, C2 and e$ to a simple plane graph with the same faces as G except for F which 
is converted to a (t — 2)-face.
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Proof. If F has a 1-valent vertex, by Lemma 2.1, e\ can be applied; otherwise if there 
is there is no vertex adjacent all vertices of F, by Corollary 2.6 it can be reduced by 62- 
In the remaining case by Lemma 2.3, we can use 63, which completes the proof. □

Theorem 2.8. Any non-trivial plane graph G with no l-valent vertex but a t-face F with 
t > 4 is reducible by 62 or 63 to a plane graph with the same faces as G except for F which is 
converted to a (t -  2)-face.

Proof Similar to the proof of Theorem 2.7. □

Now assuming to be the set of all [k\, • • • , k t}-angulations having /  faces in 
which all k\ are at in the interval [3,k] and have the same parity as k, we have the 
following results:

Theorem 2.9. The triple ( l f , £ , U p )  recursively generates the set of all (k, f)-angulation 
in which ( i f  ,£ ) is either (Qf u  {Q}, {£1, £2}) or (Tf u  {Q}, {£1, £2, £3 }) depending on 
the parity ofk. Moreover, each graph is generated with f  x [ ^ J  expansions.

Proof. Each application of Theorem 2.7 on a t-face (t > 4), converts that face to 
a (t — 2)-face while keeping other faces unchanged. So applying r\, r2 and /o r r$ 
to the original graph [ ^ J  times, on each face converts all F-faces to triangles or 
quadrangles. So ( i f ,  {Ei, £2, E f\,U kv - ) generate all (/c,/)-angulations but for even 
values of k we want to show that {£1, £2 } is enough. To show this property we prove 
that for even values of k, every graph in Uk,f  is bipartite and then we use that to show 
63 is not used in the generation process.

Face Count
k

5 6 7 8 9 10

2 3 4 16 28 114 233

3 - 18 - 875 - 50449

4 46 222 10892 70633 2874966 21826951

5 - 3732 - 7884253 -

6 4305 88252 41983898

7 - 2361465 - -

8 830420 69105036

9 - - -

10 211549760

Table 2.1: Number of connected (£,/)-angulations
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k fLet k be an even number, to prove that every graph in Up is bipartite we use 
induction on the summation of face sizes of the graphs. The base case is well-known 
result that simple quadrangulations are bipartite. For the induction hypothesis, we 
assume that every graph in Uk̂  with face size summation up to t is bipartite. Then 
let G e Up with face size summation equal to t + 2 which has a face Fq that is 
reducible by r3 . Assume G' = r3 (G ;x,y,u ,z) which reduces Fq to a Fg>. N ow by 
definition of Ce3, every vertex of F& is adjacent to x that means G' has a 3-cycle and 
so is not bipartite which is a contradiction. Therefore, G cannot be reduced by r3 

which means (I?, {E\, generates all (/:,/)-angulations with even k. □

Corollary 2.10. All 2k-angulations are bipartite.

Corollary 2.11. All {2k\,2k2, ■ ■ ■ , 2k t )-angulations are bipartite.

Theorem 2.12. The triple (1? ,£,U p^) recursively generates the set of all (k, f)-angulation 
with no l-valent vertex in which ( l f, £) is either (Qy\{P3 } u {Q}, { £ 2 } )  or (7/ u  {Q}, {£2, £3 }) 
based on the parity of k. Moreover, each graph is generated with f  x [ ^ J  expansions.

Proof. Similar to the proof of Theorem 2.9. □

Face Count
k

5 6 7 8 9 10

2 1 1 1 1 1 1

3 - 1 - 1 - 1

4 3 5 6 8 10 12

5 - 12 - 31 - 68

6 30 89 203 454 864 1630

7 - 600 - 6608 - 41485

8 855 6139 32402 130840 544579 1577516

9 - 66481 - 3118563 -

10 47698 792680 3256885626

11 - 9813724 - -

12 3324907

13 - - -

14 269714526

Table 2.2: Number of connected (£,/)-angulations with Ö > 1.



§2.3 Implementation 29

Theorem 2.13. The set of all 2-connected (k, f)-angulations is generated recursively from the 
triple 0 , £ , Upf ) in which { l f  ,£ ) is either (Q/\{P3} u {Q}, {E2}) or (7/ u {Q } , {E2/ E3}) 
depending on the parity ofk. Moreover, eflc/7 grap/2 is generated with f  x [EGlj expansions.

Proof Immediate result of Theorem 2.12. □

Face Count
k

5 6 7 8 9 10

2 1 1 1 1 1 1

3 - 1 - 1 - 1

4 3 5 6 8 10 12

5 - 12 - 34 - 75

6 30 89 221 491 977 1832

7 - 600 - 7327 - 48308

8 855 6139 37033 146631

9 - 66481 - -

10 47698 792680

11 - 9813724 - -

12 3324907

13 - - -

14 269714526

Table 2.3: Number of 2-connected (/c,/)-angulations

2.3 Implementation

Theorems 2.9, 2.12 and 2.13 in conjunction with the canonical construction path 
method [83] can be used to generate all non-isomorphic E-angulations. To employ 
CCP, we need to define some terms which will be introduced in Section 2.3.1.

2.3.1 Adapting the Generator to CCP

Let the symmetric group of degree n be S„. We take the group T = Si x S2 x S3 x • • •, 
where the action on a graph G is such that the factor S„ permutes the vertices on 
graphs of order n.
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k fLet G be the set of all labeled plane graphs in UfJ and G e G, we define the set 
of lower objects of G, denoted by L(G), as the union of disjoint sets L\(G), L2 {G) and 
L3(G) defined as follows:

Li(G) — {{G, t,x) : r\{G’, t,x) e Qj (2.4)
Li{G) = {(G,x,{w,u}) : r2(G;x, {w,u}) e Qj (2.5)
L3(G) = {(G,x,w,y,u,t) : rz{G)x,w,y,u,t) e Qj (2.6)

Similarly, we define the set of upper objects of G, written as 11(G), to be the union of 
disjoint sets U\(G), U2(G) and U3(G) defined as follows:

Ui(G) = {(G,x,{y,zj) : e1(G;x, {y,z}) e Gj (2.7)
U2(G) = {(G,x,y,{z,t}) : e2(G;x,y, {z, t}) e G) (2.8)
ü3(G) = {(G,x,y,z,t,w)  : e2){G‘,x,y,z ,t,  w) e G) (2.9)

Using these sets we define the set of all lower and upper objects denoted by 
Ö = G\ u Gi  u G3 and Q = G\ u £2 u ö3, respectively in which (/, = (JGeg U ( G )  and 
Gi =  U ggc? Ui(G). Also, we define the set of parents of an upper object G, denoted 
by p(G), as follows. If G = (G,x, {y,z}) e G\, then p(G) is the set of all lower objects 
(G',x',t') e  G\ such that e \ (G',x',t') =  G% for some g  e T. For G e Gi<-> G3, p(G) is 
defined in a similar fashion.

We also need to extend the action of T to the lower and upper objects. For each 
lower or upper object, the action of g e T is defined as the tuple obtained by the action 
of g on elements of that object. If an element of the tuple is a set, we act g on the 
elements of the set. For example (G, x, {y, u})s = (GZ,xg, {y, u}g) = (G^,xg,{yg,ug}).

The orders of lower and upper objects are defined as the order of their graph 
(first element). We call a function I whose domain is the set of lower objects an 
invariant, if 1(1) = 1(1%) for every More specifically, an invariant c which maps
lower objects to vectors with elements in a totally ordered set with the criteria that 
c(h) = c(l2) e T : = l2 is called a canonical code for the lower objects. Using
the lexicographic ordering for comparing canonical codes, we define a function m for 
labeled plane graphs as m(G) = {/ e L(G) : V/' e L(G) : c(l) ^  c(l')j, i.e. m(G) is the 
set of all lower objects in L(G) with the minimum canonical code, members of m(G) 
are called canonical reductions of G.

Now we can employ CCP using these definitions and by Corollary 1.12 we can 
generate all families that were discussed in Section 2.2 without isomorphic copies. 
There are generic ways to optimize the running time of the generation which are in 
Lines 7 and 11 of the algorithm. Firstly, we can reduce the time required for the 
computation of m and then we can remove upper objects which are not going to be 
accepted (passing the condition of Line 11 of Algorithm 1.1). These two approaches 
are discussed in Sections 2.3.2 and 2.3.3.
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2.3.2 Optimization of Canonical Code Comparison

The first issue for the implementation is how to define the canonical code for the 
lower objects. For this purpose we use a deterministic BFS code defined in [23] (See 
Definition 4.9 for the details) which we denote by Bcode(G;e). This code has the 
property that Bcode(G;e) = Bcode(G/;c/) if and only if there is an order-preserving 
isomorphism between G and G' which maps the dart e of G to the dart e' of G'. Note 
that any function having this property can be used for the rest of discussion.

To employ the BFS code for plane isomorphism we have to consider the mirror 
image of graphs as well. So we define

BC (G;e,d) =
Bcode(G;e), d — 1

Bcode(Mir(G);e), d = — 1

In the first attempt we use the BFS code to define a function C\ for canonical 
coding. Firstly, for a l e G we define W(/) as follows:

•  If / = (G, u, x) e Q\\ Let e = we define:

W(l) = min{BC(G; e, 1),BC(G; e, —1)}.

• If / = (G,x, {w, u}) e @2 ’ Assume e\ = xib and ei = x i i .  Then taking d = 1 if 
cr(e\) = e2, and d = — 1 otherwise, we define:

W(/) = mm{BC{G;el fd),BC{G;e2,-d)}.

• If / = {G,x,w,y,u,z) g C,2>: Assume e\ = yu and e2 = üi. Then taking d = 1 if 
(p(e 1) = e2 and d = — 1 otherwise, we define:

W(/) = BC{G;eh d).

Finally, we define the canonical code C \  such that for / g L,(G), Ci (/) =  [z, W (/)]. In 
practice comparing lower objects using C \  could be very slow as the complexity of 
computing the code is O(n). To reduce this time we define some easily computable 
invariants / i , / 2, • • • ,/f and use them in combination with w to define codes of the 
form [/1 (/)/ f i ( l ) r  ■ ■ • W(/)]. Then based on the lexicographic definition of code
comparison in Chapter 1, we can check the invariants first and only compute w, only 
if all invariants gave the same values.

Assuming F(l) to be the face affected by the application of the reduction pre
served in /, we define the following invariants. We did not specify many invariants 
for £3 because it is used negligibly often in comparison to the other operations in
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practice,

W )

m

Ia(l)

W )

d(x), l = (G, u,x) e Q\ 

d(x), l = (G,x,{w,u}) e Q2  

0, otherwise

min{d(y),d(z)}, l = (G,u,x) e Q\ a {xy,x%} = (cr(Tw),(7_1(xw)} 

min{d(w),d(u)}, l = {G,x,{w,u}) e Q2 

0, otherwise

# of darts of F(l) whose inverse is in k-faces, / £ Q3

0, otherwise

1 , l E Q\

2, l eg2

3, l e g 3 

If{l) = size of F(l)

Finally, we define c(l), the canonical code of a lower objects /, as

Amongst the invariant defined above, If plays the most important role for k > 6. 
Let G be a graph in the process of the generation that has exactly one face F of size 
in the interval [5,k — 1]. Then by Theorem 2.7, F can be reduced by either e\, C2 or 
C3. In such case If makes sure that F is the selected face, so we can filter reductions 
made from other faces and the canonical reduction is one of the reductions of F. This 
rule guarantees that all intermediate graphs have at most one intermediate face i.e. 
a face which is neither a F-face nor a triangle/quadrangle depending to the parity 
of k. Thus, we can fix t in each step and only look for the reductions on f-faces. 
Then, the intermediate graphs can only be {(3,/i), (t, 1), (A:, /I2)}-angulations and this 
can reduce the number of intermediate graphs.

For example, Figure 2.4 shows how much lf(l) filters better than —If (l) for (9,8)- 
angulations. In this case the total number of intermediate graphs for C\, (395204638) 
is less than half of ca (807769744). Note that ca makes sure that we expand all faces 
from triangles to 5-faces, then expanding all to 7-faces and finally to 9-faces. Also 
not having If(l) at all is trivially worst than —//(/) because removing it means that 
in each step every f-face with t < k can be expanded and this increases the number 
of intermediate graphs.
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ca(l) = [-If(l)>Ii(l)/ W(l)] 
Cb(l) = [ //(/U (/),W (/)]

7 8 9 1011 1213141516171819 20 2122 23 24 25 26 27 28 29 30
Number of Vertices

Figure 2.4: Number of intermediate graphs in generation of (9,8)-angulations with
two different canonical codes.

2.3.3 Optimizing by Looking Ahead

Considering Algorithm 1.1, let G be an upper object, G e /'(G ) and G e L(G') i.e. G' 
is a descendant of G. Now let H e m(G'). By definition of our canonical code, c(H) 
has the minimum code amongst all lower objects of G' . So if c{H) is smaller than 
c(G'), G will be rejected (See Line 11). In some cases, it is not very difficult to realize 
that a child is going to be rejected without applying the expansion. Thus another 
type of optimization which can be used is to avoid making children if they are not 
made from the inverse of their canonical reduction. This optimization can be done 
by removing unnecessary upper objects from A.

The first part of the canonical code c is the invariant if. Let Fq be the face of 
G which is expanded by G, ¥& be the corresponding face in G' and Fh be the face 
reduced by H. Now if \Fq/\ > \Fh \, then c(G') > c(H) and G will be rejected. So 
G can be accepted only if there is no other face Fh such that \Fq\ — 2 > \Fh \ > 4; 
otherwise Fh is reducible with a lower code. So we can remove the upper objects 
from U(G) for which such Fh exists.

The second part of c is about prioritizing operations. Note that any usage of 
e\ adds a vertex of degree one and other operations do not modify degrees of 1- 
valent vertices, so as soon as applying e\ on a face, in every decedent (not necessarily
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immediate) of G, that face can be reduced by r\. Also applying e-i on a face guarantees 
that no vertex can be adjacent to all vertices of the affected face. These properties also 
allows to remove some ineffective upper objects.

Finally, we can use third part of c to see if choosing a specific expansion does not 
have a canonical reduction in its parents. Assume an upper object G e U(G) expands 
a face F using e. Also assume in the resulting graph, there is another face which is 
reducible using inverse of e and has more k-face neighbours than F. This means that 
G cannot be accepted so we can remove it from U(G). These three look-ahead rules 
helps us to considerably improve the running time of the generation.

2.4 Conclusions

In this chapter we discussed how /c-angulations can be generated recursively from 
triangulations or quadrangulations. Then we optimised the generator using a careful 
definition of canonical code for the graphs used in the generation tree in addition to 
looking ahead and discovering the children which are not going to be accepted and 
pruning the generation tree.

We defined the recursive generation such that intermediate graphs are not re
quired to belong to the target family (in this chapter /c-angulations). This approach 
allowed us to start from triangulations or quadrangulations, but as we discussed 
in Section 1.3, this extra flexibility impacts the performance. So to improve this 
result one could think of another approach which starts with a set of irreducible k- 
angulations and define the expansions such the intermediate graphs be /c-angulations 
too. Such a generator is quite likely to be more efficient as potentially it could have 
very few intermediate graphs in comparison.

A natural extension of this study is to generate to not only /c-angulations which 
have only faces of size k, but also {/ci,/c2 , ••• ,/cf}-angulations which include plane 
graphs with all face sizes in the set |/ci,/c2 , • • • ,/q}. This extension will be discussed 
in detail in Chapter 3. We also hope the recursive generation discussed in this chapter 
will inspire induction proofs for some properties of /c-angulations.



Chapter 3

Recursive Generation of Plane 
Graphs based upon their Face 
Sequences

3.1 Introduction

The face sequence of a plane graph is the non-increasing sequence of its face sizes. In 
Section 2.2 we showed how to generate E-angulations recursively, but with the oper
ations we designed we can go even further to recursively generate all plane graphs 
whose face sequence contains only odd numbers or only even numbers. So we can 
have the following theorems with the same proof as Theorems 2.9, 2.12 and 2.13.

Theorem 3.1. The set of all simple {(/ci,/i), • • • ,(k„ ,/„)}-angulations with all kjS having 
the same parity can recursively be generated from the triple ( X f E , U ^ )  in which f  = 
H = i f i  and is either (Qf  v  { Q } ,{ £ i ,E2}) or (T f u {Ck},{E1,E 2,E 3}) depending
on the parity o fk\.

Theorem 3.2. The set of all simple {(E i,/i), • • • , {kn, /„)} -angulations with no 1-valent ver
tex and all kjS having the same parity can recursively be generated from the triple ( i f  E, Ukp-) 
in which f  = H = i f i and & > £ ) is either (Qf \ {V3) u  {Ck}, {E2}) or (Tf v  { Q } ,{ £ 2/ E3}) 
based on the parity ofk\ .

Theorem 3.3. The set of all 2-connected simple {(E i,/i), • • • , (kn, f„)}-angulations with all 
kjS having the same parity can recursively be generated from the triple ( i  f  E,U \V) in which 
f  = H = i fi and (Zf ' £ ) is either ( 0 / \ { p3} u {Cjt}, {£2}) or (Tf u {Cjt}, {£2, £3 }) based on 
the parity of k\.

In this chapter we show how these results can be extended to generate these 
classes of simple {ki, ■ ■ ■ ,/:„}-angulation without any limit on the parities of kjS.

• 2-connected simple

• 1-connected simple

• 1-connected with 5 > 1

35
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The generator that we introduced in Section 2.2 starts from triangulations or 
quadrangulations as the irreducible objects and expands the faces to the desired 
sizes and that is why we were able to easily extend them to Theorems 3.1, 3.1 and 3.3 
because each operation just increased the size of one face by two without affecting 
other faces. But in order to generalize these to plane graphs with given face sequence 
with no parity restriction we need some extra operations which will be discussed in 
Section 3.2.

3.2 Generation of Plane Graphs based on their Face Sequences

In order to extend Theorems 3.1, 3.1 and 3.3 to all simple {k\,- ■ ■ , kn}-angulations 
without the parity limit our idea is to have a pre-generator to make {3,4}-angulations 
and then use the same idea as Section 2.2 to extend 3-faces and 4-faces to build 
odd and even sized faces, respectively. To generate {3,4}-angulations we start by 
triangulations which can be generated very fast using plantri [20]. Then, we try to 
add as many 4-faces as we need.

The first approach to generate {(3,/ß), (4, fa)}-angulations is to generate all (3,/3 +
2 • /jj-angulations and then remove some edges to make 4-faces. Removal of each 
edge would merge two adjacent 3-faces into a 4-face. This approach could be useful 
when there are few even sized faces in the desired family. But if we have many 
even sized faces in comparison, this process becomes very time consuming because 
each {3,4}-angulation can be generated from many different ways and the number 
of intermediate graphs becomes too large.

To have an estimate of the ratio between the number of irreducible graphs (tringu- 
lations) and the final ones ({3,4}-angulations with many 4-faces in comparison), we 
used the ratio between number of triangulations and quadrangulations which can be 
found in Chart 3.1. For example, for 21 vertices we have 28,615,703,421,545 triangu
lations and just 57,974,895,671 quadrangulations.

So instead of removing edges to make 4-faces, we preferred to add new faces of 
size 4 to graphs from the previous steps using the operations presented in Figure 3.2. 
Let T  be the set of all {(Aq,/i), • ■ • ,{k,uf n)}-angulations. We use the operations e\, 
C2 and £3 with their inverse r\, r2 and 7*3 defined in Section 2.2 and Figure 2.1 plus 
two new pairs of operations to achieve this goal. The first operation e$ takes a path 
of length two and inflate it to add a 4-face (Figure 3.2(a)) and es rearranges three 
separating cycles/faces H\, H2 and H3 as in Figure 3.2(b) to add a 4-face. The op
erations C4 and es have these preconditions: These operations have the following 
preconditions:

• Ce4(G;iv,y,z):

-  w and z are neighbours of y.

-  dc(w) > 1 and dc{z) > 1.

• Ce5(G}X,u,y,w):
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8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Number of Vertices

Figure 3.1: Ratio between number of simple triangulations and quadrangulations.

-  x, y and w are pairwise adjacent.
-  u is adjacent to x, y and w.

Now we can define the expansions £4 and £5 as:

£4 (G) = {e4 (G; {w,z},y) :w ,y ,zeV (G )  a  Cei{G'rw,y,z)} (3.1)
£4 (G) = {es{G',x,u,{y,w}) : x,y,w ,u  e V{G) a Ce5 (G;x, u,y,w)} (3.2)

As graphs are defined as incidence structures and the faces as the orbit of darts, 
each of the operations defined above only create/delete a 4-face and does not affect 
the rest of faces.

Lemma 3.4. Assume G is a non-trivial simple {(3,/3), (4, fa)}-angulation with a 4-face 
F = {wyzt) in which y and z are neither adjacent nor have a common neighbour. Also let 
dG{iv),dc{z) ^  3, then G' = r4 ({w7,z}, {y, f}) is a simple {(3, f 3 ), (4, f 4  —1)}-angulation 
and all faces of G' and G are the same except F being removed in G'.

Proof The only face that is affected by the operation is £ which will be removed. 
The simplicity of G' is trivial because y and t are not adjacent and do not have 
any common neighbours. Also G' is planar because the number of vertices, edges 
and faces are reduced by 1, 2 and 1, respectively so |V(G')| — |E(G')| -t- ^(G ')| = 
|V(G)|-|E(G)| + |F(G)|. □
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Figure 3.2: Operations to add/remove 4-faces to/from {3,4}-angulations

Lemma 3.5. Assume G is a simple {(3, fa), {A, f^)}-angulation with a 4-face F = (yztw) 
whose vertices all adjacent to a vertex x. Then G' = rs(x, {y, w}, {z, t}) is a simple {(3, f f ) ,  
(4 , / 4 — \)}-angulation and all faces of G' and G are the same except F being removed in G'.

Proof The only face that is affected by the operation is F which will be removed. 
Assume to the contrary that G' is not simple. Trivially G' does not have a loop so 
there should be multiple edges between two vertices say v and s in G' (Figure 3.2(b)).

• If r  e {s,v}, then in G, x should have been adjacent to a vertex inside H2 

because the new neighbours of x are all in FI2 , but this is impossible to the JCT.

• If y e  {s, v} (the same for w), then there are multiple edges between s and v in 
G too, because N c f y )  ^  Nc(y).

• If z e {s, v} (the same for t), then by JCT 2 has multiple edges towoards a vertex 
z' e {s, v) in H\ or H2 which means there are multiple edges between u and z! 
in G as well.

Moreover, G' is planar because the number of vertices, edges and faces are reduced by 
1, 2 and 1, respectively so |V(G')| -  |E(G')| + |F(G')| = | V(G)| -  |E(G)| + |F(G)|. □

Theorem 3.6. Assume G is a non-trivial simple {(3,^3), (4, f 4 )}-angulation with a 4-face 
then there is a face F which can be removed by either r4 or r$ to convert it to a simple 
{(3,/3), (4 , / 4 — \)}-angulation while keeping the rest of faces unchanged.
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Proof. Let F = (yztw) be a 4-face. If there is a vertex x adjacent to all vertices of F 
then by Lemma 3.5 the result is obtained. So assume there is no such vertex. By JCT 
at most one of edges yt or zw can be in E(G) and if one of them say yt does exist, 
by Lemma 3.4, G' = r^({y, t}, {z,w}) is a desired graph. Similarly, if there is a vertex 
outside of F adjacent to yt or zw, r\ is applicable.

In the final case there is no edge and no common neighbours for pairs (y, t) and 
(z,w). In this case we only need to show at least vertices of one these pairs have 
degree more than 2 to be able to use Lemma 3.4. Assume to the contrary that this is 
not true. As G is not trivial at least one of the vertices of F has more than 2 vertices 
say w so by the assumption dc(z) = 2  and at least one of y and t are 2 -valent as well. 
Without loss of generality we assume dc(y) = 2. This means apart from F, vertices 
w, y and 2 belong to another face say F'. But this violate either the fact that G is 
non-trivial, simplicity of G or |F'| > 4 which means G is not a {3,4}-angulation. □

Theorem 3.7. The set of all shnple {(A.i,/i), • • • , (kn, /„)}■-angulations is recursively be gen
erated from the triple (Tf u Qf u {Q}, {Ei, £2, E3, E4, E^],Uk̂ ) in which f  = fi-

Proof We can prove this by induction on Y!i=\ K x Assume G is a {(ki,fi), • • • , 
(kn, f n)}-angulation. If G is trivial then G = Q . Otherwise if G has a face F whose 
size is more than 4, then it could be reduced using either Ej, £ 2  or £ 3  by Theorem 2.7 
to a simple {{k[,f[)f • • • , (A:',,/')}-angulation with ^  k'{ x / '  = x f )  — 2. The next 
case is when G is {(3 , / 3 ), • • • , (4 , / 4 )}-angulation with / 3 , / 4  > 0 which by Theorem 3.6 
can be reduced to a simple {(3,/ 3 ), * - * , (4 ,/i  — l)}-angulation. Finally, for the rest of 
graphs (basis of induction) G must have only 3-faces or only 4-faces so G e T f  o
Qf. □

Theorem 3.8. The set of all simple {(Fi,/i), • • • , {kn, /„)}-angulations with no 1-valent is 
recursively be generated from the triple (Tf u Qf\P?, u {Q}, (£2, £3, £4 , E$},Uk'f) in which
/ -S L / i-
Proof Similar to the proof Theorem 3.7. □

Theorem 3.9. The set of all simple 2-connected {(Fi,/i), • • • ,(kn, f n)}-angulations is re
cursively be generated from the triple (Tf u Qf\P3 u {Q}, {£2, £3, £4, Es},Uk,f) in which
f - U - i f i -

Proof Immediate result of Theorem 3.8. □

3.3 Implementation

Theorems 3.7, 3.8 and 3.9 in conjunction with the canonical construction path method 
[83] can be used to generate all non-isomorphic /c-angulations. To employ CCP we 
need to define some terms which will be introduced in Section 3.3.1.



40 Recursive Generation of Plane Graphs based upon their Face Sequences

3.3.1 Adapting the Generator to CCP

Let the symmetric group of degree n be Sn. We take the group Y = Si x S2 x S3 x • • •, 
where the action on a graph G is such that the factor S„ permutes the vertices on 
graphs of order n.

Let Q be the set of all labeled plane graphs in Uk,f  and G e Q, we define the set 
of lower objects of G, denoted by L(G), as the union of disjoint sets Li(G), 7.2 (G) and 
1.3(G), defined in Equations 2.4, 2.5 and 2.6, with 1.4 (G) and L$(G) defined as follows:

L4 (G) -  {(G,{w,z), {y,t}) : r4 (G; {w,z}, {y,t}) e Q) (3.3)
L5(G) = {(G,x, {y,w},{z,t}) : r5(G;x,{y,w},{z,t}) e Qj (3.4)

Similarly, we define the set of upper objects of G, written as 17(G), to be the union 
of disjoint sets L/i(G), U2(G) and 113(G), defined in Equations 2.7, 2.8 and 2.9, with 
l/4 (G) and L7s(G) defined as follows:

U4(G) = {(G,{w,z),y) : e4(G; [w,z),y) e Q} (3.5)
U5(G) = {(G,x,u, {y,w}) : e5 (G;x,u,{y,w}) e Q) (3.6)

Using these sets we define the set of all lower and upper objects denoted by 
Q = 1 1 1  Si and ö = u l i  §i' respectively in which = |JGeg L,(G) and Qx = 
(JGeg Ui(G). Also, we extend the set of parents of an upper object G, denoted by 
p(G), which was defined in Section 2.3.1 in the to G e Q4 u £5  and the action of Y 
to the lower and upper objects in Q4 u Q5 in the similar fashion to the way used in 
Section 2.3.1.

The orders of lower and upper objects are defined as the order of their graph 
(first element). We call a function 7 whose domain is the set of lower objects an 
invariant, if 1(1) = I(Is) for every g e T. More specifically, an invariant c which maps 
lower objects to vectors with elements in a totally ordered set with the criteria that 
c(h) = c(lf) o  e T : if = h  is called a canonical code for the lower objects. Using 
the lexicographic ordering for comparing canonical codes, we define a function m for 
labeled plane graphs as m(G) = {/ e L(G) : Ml' e L(G) : c(l) ^  c(Z')}, i.e. m(G) is the 
set of all lower objects in L(G) with the minimum canonical code, members of m(G) 
are called canonical reductions of G.

Now we can employ CCP using these definitions and by [83, Theorem 1] we can 
generate all families that were discussed in Section 2.2 without isomorphic copies. 
There are generic ways to optimize the running time of the generation which are in 
Lines 7 and 11 of the algorithm. Firstly, we can reduce the time required for the 
computation of m and then we can remove upper objects which are not going to be 
accepted (passing the condition of Line 11 of Algorithm 1.1). These two approaches 
are discussed in Sections 2.3.2 and 2.3.3.
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3.3.2 Optimization of Canonical Code Comparison

The first issue for the implementation is how to define the canonical code for the 
lower objects.

In the first attempt we define a function C\ for canonical coding. Firstly, for a l e G 
we extend the function W(/) defined in Section 2.3.2 to lower objects in £4 and £5 as 
follows:

• If / = (G, {w,z}, {y,t}) e Ga- Assume e\ = \fi, e\ = yib, e\ = tw, e\ = Tz. Then 
taking d = 1 if a ^e^ ) ) )  = x{e\), and d = — 1 otherwise, we define:

W(Z) = min{BC(G;e[, d), BC(G; -d),  BC(G; e[, d), BC(G;ê , —d)}.

• If / = (G, x, {y, w}, {z, t}) e G5: Assume e\ = zt, ei = Tz and e$ = tw. Then 
taking d = 1 if <£(£3) = e2 and d — — 1 otherwise, we define:

W(/) = min{BC(G;e1,d),BC(G;e2/-d)}.

Then, we define the canonical code C\ such that for / e L,(G), Ci(/) = [/, W(/)]- In 
practice comparing lower objects using c\ could be very slow as the complexity of 
computing the code is O(n). To reduce this time we define some easily computable 
invariants /i,/2 , • •• ,ft  and use them in combination with w to define codes of the 
form [_/i (/)/ fiG)/ ■ ■ • W(/)]. Then based on the lexicographic definition of code
comparison in Chapter 1, we can check the invariants first and only compute w, only 
if all invariants gave the same values.

Assuming F(l) to be the face affected by the application of the reduction pre
served in /, we define the following invariants. Noted that as £3, £5 are used negligi
bly often in comparison to the other operations in practice, we did not define many 
invariants for it.

h(l) =

d{x)r l = (G,u,x) e Q\

d(x), l = (G, x, {w,u}) e G2

min{d{w),d{z)}, l = (G,{w,z}, {y,t}) e QA

0, otherwise

I number of darts of £(/) whose inverse belong to £-faces, / ^ G3 u Gs 

[ 0, otherwise

If(l) = size of £(/)
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m  =

W )  =

mm{d(y)/ d(z)}/ l = (G,u,x) £ Q\ a  {xfj,xZ} = {cr(ru),a~l (xu)} 

min{d(w),d(u)}, l = (G,x, {w,u}) e Q2 

mm{d{y),d(t)}, l = (G,{w,z},{y,t}) e

0, otherwise

1, I £ Q\

2, I £02
3, / 6 C/3

4, I £ Qa

5, I £ § 5

Finally, we define c(/), the canonical code of a lower objects /, as

c(/) = [// (/),/,(/),/«(/) j s(/), m, w(z)].

3.3.3 Optimizing by Looking Ahead

The canonical code defined in this chapter is an extension of the canonical code de
fined in Section 2.3.2 and because of that the same lookahead rules as in Section 2.3.3 
can be employed to optimize the generation and we do not address them again here 
as the discussion would be the same.

3.4 Conclusions
In this chapter we discussed how simple plane graphs with specified face sizes can be 
generated recursively from triangulations or quadrangulations. Then we optimised 
the generator using a careful definition of canonical code for the graphs used in the 
generation tree in addition to looking ahead and discovering the children which are 
not going to be accepted and pruned the generation tree.

We also hope the recursive generation discussed in this chapter will inspire induc
tion proofs for some properties of simple plane graphs with given face sequences.



Chapter 4

Isomorphism Rejection and 
Canonical Testing of 2-Connected 
Plane Graphs

4.1 Background

This chapter is a joint study with G. Brinkmann and B. D. McKay.

4.2 Introduction

If a planar graph is 3-connected, by Whitney's theorem it has a unique embedding 
[122] otherwise it can have several different embeddings on the plane. For example 
Figure 4.1 presents two non-isomorphic embedding of the same graph. It is very easy 
to verify this claim as Figure 4.1(a) contains a face with two 1-valent vertices but Fig
ure 4.1(b) does not. Programs like plantri [20] which generate many families of plane 
graphs (embeddings), output the graphs isomorph-free up to plane isomorphism i.e., 
different embeddings of planar graphs. But if we want to have the graphs isomorph- 
free up to abstract isomorphism, we may get isomorphic copies in the output in the 
case that they are not 3-connected.

(a) (b)

Figure 4.1: Two isomorphic graphs which are not plane-isomorphic
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To generate such a family of graphs without abstract isomorphic copies, two ap
proaches can be used: generating all such plane graphs and then remove isomorphic 
copies or generate all such graphs and then eliminate the ones which are not planar. 
For example to obtain the list of 2-connected planar graphs we can either run abstract 
isomorphism test on the output of 2-connected plane graphs or filter non-planar ones 
from the set of 2-connected graphs. If we can find a fast approach for abstract isomor
phism rejection for plane graphs, the first approach could be much more efficient as 
families of planar graphs are usually exponentially smaller than the corresponding 
non-planar family. For example Figure 4.2 shows the number of simple 2-connected 
plane [23, 20, 111], planar [99, 43, 110] and generic graphs [100, 112].

Simple 2-connected graphs 
Simple 2-connected plane graphs 
Simple 2-connected planar graphs

•c  1 0 11

Number of Vertices

Figure 4.2: Number of simple 2-connected planar, plane and generic graphs.

We can extend the notion of canonical labelling to embeddings of plane graphs 
and define a canonical embedding as an invariant mapping every planar graph G to an 
specific embedding of it and we may refer to that as the canonical embedding of G.

In the scope of graph generation, there are four questions regarding abstract 
isomorphism testing and canonicality of plane graphs:

Ql. Whether two planar (or plane) graphs are isomorphic or not?

Q2. How we can define a canonical code for planar (or plane) graphs?

Q3. Whether a plane graph is embedded canonically or not?

Q4. What is the canonical embedding of a planar graph?
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The first question has been targeted by several researchers and there are differ
ent sequential [55, 56, 57, 120, 35] and parallel [46, 60] algorithms for this purpose. 
For 3-connected planar graphs there is an algorithm by Weinberg [120] which is 
0(n2) order-preserving isomorphism check which can be easily extended to plane- 
isomorphism and because 3-connected plane graphs have unique order-preserving 
embedding on the plane these two types of isomorphism become equivalent. In 
1974 Hopcroft and Wong showed that this problem is linear time [57] although they 
noted that the linear time is theoretical and not for practical purposes. Later Kuk- 
luk, Holder and Cook [73] in 2004 designed a practical isomorphism test algorithm 
in 0(n2). They compared their implementation with other isomorphism tests and 
showed that for planar graphs with not many edges, their method is quite fast.

Answering Q2 can solve Q1 as well: note that two graphs are isomorphic if and 
only if their canonical codes are same. In particular, Kukluk, Holder and Cook used 
this idea for isomorphism testing. They exploit a combination of SPQR-trees [9] 
and Weinberg's method to design an 0{n2) canonical code computation with the 
following steps:

1. Make the SPQR-trees for both graphs.

2. Compute a code for both trees which only depends on the tree and 3-connected 
components.

3. If the codes for both graphs are the same, they are isomorphic; otherwise they 
are not.

Therefore, after the second stage their algorithm produces a canonical code which 
the original planar graph can be reconstructed from. For generic graphs there are 
many canonical labelling algorithms in the literature which are very fast like nauty 
and traces [82, 85, 94, 84], bliss [67, 66] and saucy [28]. But planarity or embedding 
information are very strong properties which can be utilized to speed up the process.

To our knowledge, for Q3 and Q4 there are no answers in the literature. If a 
generator outputs every embedding of a given family of graphs to remove abstract- 
isomorphic copies we can remove every output whose embedding is not canonical. 
The fact that every embedding appears in the output guarantees that we have at least 
one copy in the filtered result and by definition of canonical labelling, exactly one of 
the outputs has it which means exactly one output from each abstract-isomorphism 
class will be in the filtered result.

In this chapter we design a canonical embedding for 2-connected plane graphs up 
to abstract-isomorphism which can answer Q3. Note that for a 3-connected graph ev
ery canonical labelling up to plane-isomorphism is a canonical labelling for abstract- 
isomorphism as well. To specify the canonical embedding, firstly, we define a bi
section Rep mapping every embedding to a string, called the representation of that 
embedding, such that the original embedding can easily be reconstructed from that 
string. Then we define an embedding to be canonical if it has the lexicographically 
smallest representation amongst the set of representations of every embedding of
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that graph. The representation of the canonical embedded graph is called the canoni
cal representation of the class abstract-isomorphic embeddings which is an trivially an 
invariant.

The way that we define the representations allows us to solve Questions Ql, Q2 
and Q4 for plane graphs too but not directly planar graphs. We use embedding infor
mation to speed up the process, so if the input does not include the embedding, first 
the input graphs should be embedded in some way (not necessarily in the canonical 
way) and then our approach can find the canonical embedding (Q4) and canonical 
code (Q2) which can be used for isomorphism testing (Ql) as well.

A practically important feature of our algorithm is that it gives us instant infor
mation while the computation is being done. As we mentioned earlier an embedding 
is canonical if it has the smallest value of representation. We define representations 
recursively from some partial representations which can be computed locally based 
on some subgraphs of the original graph (Definition 4.22). Then we define the term 
canonical in the way that an embedding is canonical, if all partial representations are 
canonical too (Theorems 4.34, 4.38 and 4.39). So as soon as finding a non-canonical 
partial representation, one can realise that the whole embedding is not canonical.

The way that we define partial subgraphs is based on connectivity, as Whit
ney proved, 3-connected plane graphs have unique embedding on the plane up to 
plane isomorphism [122]. So with any definition of "canonical embedding", each 
3-connected subgraph, is canonically embedded. We define a term 2-block in Sec
tion 4.3 which allows us to find 3-connected components of graphs, then we check 
whether all of them are canonically embedded and if so, we use three operations 
defined in Section 4.4.1 to replace each of those components with an edge. Then 
we define the original graph to be embedded canonically if and only if the obtained 
graph using reduction is canonically embedded too.

For the sake of convenience in the rest of this chapter we define the canonical 
embedding up to order-preserving isomorphism, instead of plane isomorphism. This 
can be resolved easily as we can define a plane graph G to be canonical embedding 
up to plane isomorphism if either G or Mir(G) is canonically embedded up to order
preserving isomorphism.

In this chapter we put labels on the edges and use them to build representa
tion of plane graphs. For this purpose we define a plane labelled graph as a tuple 
(V,E, CDErOCfCT̂ ) in which (V ,E, I,DE,cc,a) is a plane graph and E : De —* N  is a 
function which maps each dart to its label. In this section we refer to plane labelled 
graphs simply as plane graphs unless it is strictly mentioned otherwise.

4.3 2-Blocks of 2-Connected Graphs

A 3-connected planar graph has a unique embedding but 2-connected graphs could 
have different embeddings. But still any 3-connected subgraph of a 2-connected 
graph has a unique embedding. So this might raise an idea to partition the graph 
into 3-connected parts and then work on their relation to come up with a canonical
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embedding. The motivation of this section is this idea and for a 2-connected plane 
graph a tree called 2-block tree is defined which contains the structure of the 3- 
connected components.

The same idea for dividing the graph into 3-connected components is studied in 
[73] in which the graphs are considered as planar graphs not plane graphs and they 
defined an isomorph check for planar graphs. But it cannot be used for isomorph 
rejection of plane graphs because the canonical code defined is not based on the 
embeddings so one can not realise if a specific embedding is canonical or not. In this 
work a representation will be defined for each embedding which makes it possible 
to check if an embedding has the canonical representation or not.

Definition 4.1. Assume T is a 2-cut of a 2-connected graph G and C is one of the components 
of G\T. Nozv hy removing all edges with both endpoints in T from the induced subgraph of 
T u V(C) a graph is obtained which is called an attached component ofT in G.

Definition 4.2. Assume T is a 2-cut of a 2-connected graph G and A is one of its attached 
components, the graph Ba,t which is made by adding an edge between vertices o fT  to A is 
called a semi-2-block of G. Furthermore, Ba j  is called a 2-block of G, if it is 3-connected. 
The edge which is added to A is called the virtual edge of Ba,t-

Example 4.3. Consider the graph G presented in Figure 4.3(a) and the cut set T = 
{1,10}. The attached components of T are A\ and A 2 shown in Figures 4.3(b) 
and 4.3(d). Furthermore, the semi-2-blocks Bavt and Ba2,t are shown in Figures 4.3(c) 
and 4.3(e), respectively. As Baut is 3-connected it is a 2-block but Ba2j  is not because 
{1,7} is a 2-cut.

Lemma 4.4. Assume G is a 2-connected graph and B = Ba,t is one of its semi-2-blocks and 
assume x,y  e B. Then for any path P in G from x to y, by replacing any subpath outside of 
B with an edge whose endpoints are both in T another path P' is obtained which connects x 
toy in B and V(P') c  V{P).

Proof Assume P is a path in G between x and y. If V(P) <= V(B) then the result is 
trivial. So assume there is a vertex 2 in P\B, then the subpath from x to z should pass 
through a vertex 11 e T; because T is a cut set. Also the subpath from 2 to y should 
also pass through the other vertex of T say tj_. Now replacing the part t\ —*• z —> t2 

in P with the edge t\t2 a new path is obtained in B with no additional vertices. It 
should be noted that after this modification there is no vertex in the resulting path 
outside of B otherwise P goes through t\ or ^  more than once. □

Lemma 4.5. Every semi-2-block of a 2-connected graph is a 2-connected graph.

Proof. Assume G is a 2-connected graph and B = Ba,t is one of its semi-2-blocks and 
assume x,y £ V(B). As G is 2-connected there are two vertex-disjoint paths in G 
connecting x to y say P] and P2. Now by Lemma 4.4 there are paths P[ and P2 from 
x to y in B such that V(P{) G V{P\) and V^Pf) Q V{Pi)- So the vertices of P[ and P'2 
remain disjoint. Thus there are two internally vertex-disjoint paths from x to y in B 
which means B is 2-connected. □
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Figure 4.3: Example for attached components, semi-2-blocks and 2-blocks

Lemma 4.6. Assume 7Z is the binary relation such that (Gi, G2) e 7Z when G2 is a semi-2- 
block of G\. Then 7Z is transitive.

Proof Assume G is a 2-connected graph, B\ = Bac,tx is one of its semi-2-blocks and 
B2 = Bac,,t2 a semi-2-block of B]. In order to prove the lemma it should be shown 
that T2 is a 2-cut of G and A2 is one of its attached components. Let x e C' and 
y e V(G)\V(B2). Let P be an arbitrary path from y to x. Now we consider two cases:

Case y e V(B\): By Lemma 4.4 there should be a path P' with V(P') <= V(P) such 
that E(P') c  E(B\). By the assumption, T2 is a 2-cut of B\ and y $ V{B2). So P' 
should pass through a vertex of T2 so V(P) n T2 ^  0 .

Case y <£ V(B\): As T\ is a 2-cut of G and x e V(B2) c: V(B\), P should go through a 
vertex in T\ say 11. Now the subpath of P from t\ to x goes through a vertex of 
T2 similar to the previous case so V(P) n T2 A 0 .

Considering these two cases it can be concluded that any path from a vertex in 
V(G)\V(B2) to a vertex of C  passes through T2 and |T2 I = 2 . So T2 is a 2-cut of 
G which means B2 is a semi-2-block of G. It should be noted that there is a path 
between any two vertices in the induced subgraph of G induced by C'; otherwise Aq> 
could not be an attached component of B2 . □
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Definition 4.7. Let G be a 2-connected graph. A tree zuith root G defined as follows is called 
a 2-block tree of G: If a node N is 3-connected or K3, it is a leaf; otherwise it is not a leaf 
and the set of its children is

M  = {Ba t '■ A is an attached component ofT in N }

for a 2-cut T of N. It should be noted that 2-block tree of a graph is not necessarily unique 
because at each node different choices for 2-cuts might be available.

Theorem 4.8. Let G be a 2-connected graph and T  be a 2-block tree of G. Then the leaves of 
T  which have at least 4 vertices are precisely the 2-blocks of G.

Proof. Assume C is the set of leaves of T  which have at least 4 vertices and B is the 
set of 2-blocks of G. Then the theorem is equivalent to proving C = B.

First of all, if the tree has just one node then G = B and the result is trivial. So 
assume B is a leaf of T  having more than three vertices and also has a parent. By the 
definition of the tree it should be a semi-2-block of its parent node. Now by induction 
on the height of the tree and Lemma 4.6 one could check that B is a semi-2-block of 
G. Moreover, by the definition of leaves, B is 3-connected because it has more than 
3 vertices. So B is a 2-block of G and the arbitrary choice of B allows us to conclude 
C ^ B .

For proving B Q C let B = Ba,t he an arbitrary 2-block of G and N  be a node 
such that V(B) Q V(N) but for all children N'  of N, V{B) <£ V(N'). If N = B then it 
is 3-connected and so is a leaf. This means B e C. So assume V(B) £  V(N). Let x 
and y be the two vertices of T, z e V(N)\V(ß),  N' = N\(V(B)\T). As N is connected, 
z £ V(B) and T separates V(B)\T from V (N)\V  (B) there should be two paths in N' 
from z to x and y. So by removing the possible cycles from the walk y —* z —* x a 
path P in N' from y to x is obtained.

Now assume a and b are two arbitrary distinct vertices in B. As B is 3-connected 
there are three vertex-disjoint paths from a to b in B. If none of them uses the virtual 
edge e between x and y (which is not necessarily in N) then the same paths exists 
between them in N; otherwise e used in exactly one of the paths say P\. Then by 
replacing e in P\ with the path P obtained above three vertex-disjoint paths between 
a and b are found. Thus there is no way to split a and b with a 2-cut which means 
all vertices of B should be in one of the children of N. But by the assumption for any 
children N' of node N, V{B) $  V(N'). This means that N  does not have any children 
and is a leaf. So N is 3-connected which also means B = N because it does not have 
any 2-cut that B could be made from one of its attached components so B e C. So in 
all situations B e C which proves B cz C and as a result C = B. □

4.4 Representation of Plane Graphs

In this section we define the representation of 2-connected plane graphs denoted by 
Rep in a way that the embedding can be reconstructed from it. This definition is 
recursive and in each step, using three operations, we replace some subgraphs of a
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given graph with two labelled edge encoding the corresponding subgraphs, until the 
graph become either a cycle or 3-connected.

Then we define a string which represents the exact embedding of the labelled 
3-connected or cycle graph. The string captures two deterministic traversal of the 
graph based on both clockwise and counter-clockwise choice of vertices neighbours.

To make this idea more efficient in terms of the length of the representation string, 
instead of labelling edges with the strings, a table is defined which assigns a number 
to each string. So each edge is labelled with a number. In this way every code is kept 
just once even if the part of the graph corresponding to that part occurs many times 
in the process. But as a down-side, to reconstruct the graph both the resulting graph 
and the table are required.

The first concept to define for achieving representations is Bcode(G;c) for a dart 
e of a plane graph G (Definition 4.9). The code is obtained from a deterministic 
traversal of the graph which is used for encoding some parts of the graph during 
the computation of representations. The default label for all edges are set to 0 in the 
beginning. Also the vertices are supposed to have a value called their colour which 
is an invariant. By default we use degree as the colour function unless it is specified 
differently.

Definition 4.9. Let G = (V, E, I, De, ft, er, L) be a connected labelled plane graph with n 
vertices in which each vertex has a colour. For a dart of G say e, the bfs code of e denoted by 
Bcode(c) or Bcode(G;e) is defined as follozvs. First a breath-first search is run on G starting 
from the head of e and assign an index to each vertex from 1 to n, consecutively as they are 
discovered during the search. To make the bfs search deterministic, for each vertex the edges 
are traversed in clockzvise order starting from the first edge ofthat vertex which is the inverse 
of the edge that the vertex is discovered from except the first vertex whose starting edge is e. 
After this indexing, the Bcode(c) is defined as a vector

( r j , / i ( l ) )  , . . . ,  (rj(1)/7rf(i )( l) )  ,0, • • • ,cn, {r^ l f i n) ) ,  • • • , (r3(n),Zd(„)(n)) ,o] (4.1)

in which cl, Ifii) and r' are the colour, the label of the j-th edge and the index of j-th neighbour 
of the vertex indexed i.

Definition 4.10. Considering min as the lexicographically minimum, the bfs code of a 
plane graph is defined as

Bcode(G) = min Bcode(G;e) (4.2)
eeD£(G)

This definition of Bcode is only dependent on the rotation system, labels and 
colours hence it is an invariant under order-preserving isomorphism.

The operations which we will define reduce |V| + \E\ as discussed above. Each 
operation replaces a subgraph G' of a graph which can be separated from the rest of 
the graph by a pair of vertices say (u, v) with two darts. Theses new darts are inverse 
to each other and join u and v. Also the darts üb and vu will be labelled to encode 
G' and also show which direction üb and/or vu has produced the smallest code for
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G'. Note that if the codes computed from u and v are the same the labels of the darts 
will be the same too.

To encode subgraphs as labels we have two special cases that we have to consider; 
otherwise two isomorphic graphs could be reduced to non-isomorphic ones. Let 
cu < cw be the codes defined for vertcies u and v of G', respectively. Now if in 
Mir(G') the codes for u and v are c'u and c'v such that du = cv and c'v = cU/ which 
means u and v are equivalent under taking mirror from G' then we mark both wb 
and vu with a an * symbol and refer to those edges as starred edges. The second case 
is when there is another embedding of G' apart from Mir(G') for which the code 
obtained from u (or v) is smaller than the cu (or cv). In such a case we mark the dart 
going out of u (or v) with a 1 symbol and call it a flagged edges.

A Bcode or a BcodeM is unacceptable if there is a flagged edge e for which index 
computed in the code for head(c) is smaller than the index of tail(e).

Definition 4.11. A marked plane graph is a tuple (V, E, I, De, oc, a, L, S, F) such that 
(V, E, I, De, oc, <j , L) is a labelled plane graph and S u  F <= De- The sets S and F are the set 
of starred and flagged darts of the graph with the property that

\/e e S : inv(e) e S.

Also we define the flagged edge closure of G, written as Fq or F as

Fc = {e e De : e e F v inv(e) e F}

Assume G is made from its parent Gp from an operation. When we take the 
mirror from a graph G we can also think of applying the mirror of the operation on 
the mirror of Gp. But there is a case which need to be considered. Let e be an starred 
edge in G which is made by the operation and assume it is made from a subgraph 
G' of Gp. Now when we take mirror from Gp it implies the mirror on G' too. As e is 
an starred edge, the code obtained from head(e) was the same as the code for tail(e) 
but in Mir(G'). So now that we have the mirror of Gp and G' instead of Gp and G', 
after applying the operation we have to swap the labels of e and inv(c) which leads 
us to the next definition for Mir* which we should use as the mirror instead of Mir 
for marked graphs.

Definition 4.12. Let G be a labelled plane graph,. Then the Mir*(G) has the same rotation 
system and labels as Mir(G) except for the starred edges whose labels are swapped with their 
inverse.
Definition 4.13. In the same way as Bcode but using counter clockwise order for neighbours 
the bfs mirror code of ebfs mirror code of edges is defined as Bcode(Mir*(G);e) which is 
denoted by BcodeM(e) or BcodeM (G;e). Also

BcodeM(G) = min BcodeM(G;e) (4.3)
eeDsiG)

We can extend the definition of isomorphism of labelled multigraphs to marked 
graphs with the next definition.
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Definition 4.14. Two marked plane graphs G\ = (Vi, Ei,/i, De1 ,«1, £71,1,1, Si, Fi) and 
G2 — {V2,E2rh,DE2' 0c2'cr2,L2,S2,Fi) are called marked-isomorphic, if there is a bijec- 
tion 7T : Vi u Ei u De, (Gi ) —> V2 u £2 u De2 (G2) such that

1. The mapping n is a plane isomorphism between Gi and G2.

2. Me e De, (G) : e e Si <=> n(e) e S2 .

3. Me e  D ex{ G)  : (label(e),label(inv(e))} = {label(7r(e)),label(inv(7r(e)))}.

4. Me e D e i ( G)  : e $ (Si u Ei) a n(e) $ (S2 u F2) => label(e) = label(7r(e)).

In the case that neither of the graphs has any starred or flagged edges, by the 
last condition of the above definition the bijection should preserve the labels of darts 
which makes the third condition redundant and also we get the natural extension of 
plane isomorphism for plane labelled graphs.

The next definition is another code called Bcode*(G;e) which is very similar to 
Bcode(G;e) with one difference. Whenever it reaches an edge of which neither itself 
nor its inverse has been visited, it chooses the best between current embedding of the 
edge or its mirror version (considers the mirror of the subgraph which is replaced 
by this edge). If the mirror version is better, it replaces that edge and its inverse 
with their mirror. Using this code one can determine if all edges with label more 
than 1 represent the best embedded of their corresponding subgraphs which will be 
discussed later on. It should be noted that for starred edges taking mirror is the same 
as exchanges label of the edge with its inverse.

Definition 4.15. The Bcode*(G;e) is defined in the same way as Bcode(G;e) as:

c \  (r}, /?(!)) , ■ ■ • , (rj,, /?,(!)) ,0, ■ ■ ■ ,c\(if, /?(»)), ■ ■ ■ , ,o] (4.4)

in which considering efii) to be the j-th edge of the vertex indexed i as defined in Bcode(G; e), 
lj(i) = label (ß/(0), l'fi) — label(inv(c;(/))), index(i;) is the index of vertex v amongst the 
vertices in Equation 4.4 and l*(i) is defined as:

l?(i)

I j Ü) ,

min

max

£?;(/') i  S u F

ef i j )  e S u  E a index (tail (ey(i))) > i 

, l ' j ( i ) \  / ei ( j) e S u  E a index(tail(c;(/))) < i

Similarly using counter clockwise ordering for neighbours we can define Bcode^(G; e). Also 
in the same way as Bcode*(G) and Bcodej^(G) we can define Bcode*(G) and Bcode^(G) 
as follows.

Bcode*(G) = min Bcode*(G;e),
ecDE(G)

BcodeM(G) = min BcodeJVI(G;c)
eeDE(G)

(4.5)

(4.6)
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4 .4.1 Reduction Operations

The operations that we define in this section replace a subgraph G' of a graph G with 
an edge (two darts). We choose the subgraphs in a way that they only share two 
vertices with the rest of the graph. So replacing them with a single edge does not 
disturb the structure of the graphs. The darts are labelled with vectors that encode 
the corresponding subgraphs although these vectors will be replaced by numbers 
in practice for optimization purposes. The codes are based on Bcode but could be 
modified in some cases.

Definition 4.16. If G is a plane graph with no vertices of degree 2 and no consecutive 
multiedges; then BfsRep(G) is defined as BfsRep(G) = Bcode(G).

The first operation called the path reduction (See Definition 4.17 and Figure 4.4) 
is an operation which replaces a path made of 2-valent vertices with a single edge.

o@----- @ ----- (S3)------------------@)------(Q----- (S)<]

(a) A path P in a plane graph

e\ C2 cm- 2  en-\

inv(ci) inv(e2) inv(e„_2) inv(e„_i)
(b) Directed version of P

e

(c) Result of VIZ on P

Figure 4.4: Path Reduction Operation

Definition 4.17. Let the path P = v\e\V2e2 • • • Vn-iCn-iVn be an induced subgraph of a 
plane labelled graph G and l be a number. Also assume b\ = Bcode(P;ei) and b2 = 
Bcode(P;ei). Now the path reduction operation V1Z(P, L) is defined as follows:

1. Remove all edges and vertices of P except v\ and vnfrom G.

2. Add two labelled darts from v\ to vn and vice versa, respectively named e and e'. In 
terms of embedding, e and e' occupy the previous position ofe\ and inv(e„_i) in rot(Pi) 
and rot(p„), respectively. To label e and e' the following cases should be considered.

(a) If b\ = f?2/ label both e and e' with l.

(b) Ifb \ < f?2/ label e and e' with l and l + 1, respectively.
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(c) I f h \ >  bz, label e and e' with l + 1 and l, respectively.

The edges e and e' are starred i fb\  ^ bz and Bcode(P;ei) = BcodeM(P;inv(e„_i)). Also 
assuming b* = Bcode*(P;ei) and b\ = Bcode*(P;^n-i); darts e and e' are flagged if 
b* < b\ or b* is unacceptable; and b\ < bz or is unacceptable, respectively. Moreover, the 
BfsRep(P) is defined as BfsRep(P) =

The second operation called the multiedges reduction (See Definition 4.18 and 
Figure 4.5) replaces a sequence of consecutive edges between two vertices with a 
single edge. It should be noted that the operation is applicable on a set of multiedges 
between two vertices V\ and vz  only if they are consecutive in rot(i>i) and rot(i>2); 
otherwise it should be applied on each consecutive sequence of edges separately.

But before we define the multiedges reduction operation, we need three new 
codes for a marked plane graph A4 with only two vertices which are defined as 
follows. Let v be one of the vertices of A4 and e e rot(u). Now Mcode(A4,e) and 
McodeM(A4,e) are the sequence of label of darts in rot(p) in G and Mir*(G) starting 
from e. Also the code Mcode*(A4, v) is the increasing sequence of l*(e) for all e e 
rot(u) in which:

l*(e)
label(e), e $ S u P

min{label(e),label(inv(e))}, otherwise

A Mcode(A4,e) or a McodeM(A4,c) is unacceptable if there is a flagged edge e' e 
rot(head(e)) for which index computed in the code for head(e') is smaller than the 
index of tail(e').

(a) Some multiedges M in a (b) Directed version of M (c) Result of M R  on M
plane graph

Figure 4.5: Multiedges Reduction Operation

Definition 4.18. Let V\ and vz be two vertices of a 2-connected plane labelled graph G with 
I V(G)| > 2, A4 be the induced subgraph of G induced by some contiguous multiedges between 
v\ and vz in the rotation system and l is a number. Then assume edges of A4 are e \ , . . . , e n
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(n ^ 2) in the same order as the rotation system. So we have rot(i?i) = (e\ , . . .  ,e n, x \ , . . .  ,xfi) 
and rot(i;2) = (inv(e„),. . .  ,m v { e \) ,y \ , . . .  ,y f)  for some edges X; (0 ^ i < k) and y,- (0 ^ 
i t). Firstly, zve define b\ and bj as follows.

Now the multiedges reduction operation A47Z(M ,l) is defined asfollozvs:

1. Remove all edges of M from G.

2. Add two labelled darts from v\ to V2 and vice versa, respectively named e and e'. 
In terms of embedding after adding these two darts rot(z>i) = {e,X\,...,X\t) and 
rot(ü2 ) = {e ',y i, . . .  ,yf)- To label e and e' the following cases should be considered.

(a) lfb \ = b2 , label both e and e' with l.

(b) Ifb\ <  b2 , label e and e' zvith l and l +  1, respectively.

(c) If b\ > £>2/ label e and e' with l + 1 and l, respectively.

The edges e and e' are starred ifk  ^ 0, b\ ^  &2 and Mcode(M;ei) = McodeM(M;inv(e„)).
Also assuming b* =  Mcode‘(M;i>i) and b% =  Mcode‘(Al;i>2); darts e and e' are flagged if 
b* < b\ or b* is unacceptable; and frf < b2 or b\ is unacceptable, respectively. Moreover the 
BfsRep(M) is also defined as BfsRep(M) = minlfri,^}-

The third operation called the block reduction (See Definition 4.19 and Figure 4.6) 
replaces a 2-block with a single edge. To prove that this operation is well-defined 
based on the rotation system, it should be shown that the edges of the 2-block ad
jacent to V\ and V2 are consecutive (in Figure 4.6(b)); otherwise there are different 
position in rot(i>i) and rot(1̂ 2 ) that the new edges e and e' (in Figure 4.6(c)) can oc
cupy. This property will be result of Lemma 4.20.

Definition 4.19. Let B =  Ba,t be a 2-block of a 2-connected plane labelled graph G and ev 
is one of its virtual edges and V\,V2 its endpoints and let l be a number. Also assume we have 
rot(üi) = ( e \ , . . .  , en, x i , . .  . , xf )  and rot (1*2) = ( ^ , . . . , ^ , 1/1, . .  . , y t ) such that tail(c,) e B 
and tail(e') e B for all 1 ^ i ^ n and 1 ^ j  ^ m. Moreover assume b\ — Bcode(B;ei) and 
f»2 = Bcod e(B;e[).  Now the 2-block reduction operation B7Z(B,l) is defined as follows:

1. Remove all edges and vertices of B except v\ and V2 -

2. Add two labelled darts from v\ to V2 and vice versa, respectively named e and e'. 
In terms of embedding after adding these two darts rot(i;i) = (e, X\, . . . ,xfi) and 
rot (1̂ 2 ) = W, y \ ,  ■ • •, yt). To label e and e' the following cases should be considered.

Mcode(M; ef),

min(,erot(i;1) Mcode(M;c), otherwise

k *  0

b2 =
Mcode(M;inv(e„)), t ^ O

minferot(z;2) Mcode(M;c), otherwise
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(a) Attached component 
of a 2-block in a
plane graph

Figure 4.6: Block Reduction Operation

(a) lfb\ = b2 , label both e and e' with l.

(b) lfb\ < b2 , label e and e' with l and l + 1, respectively.

(c) If b\ > b2 , label e and e' with l + 1 and l, respectively.

The edges e and e' are starred if b\ # £>2 and Bcode(B;ei) = BcodeM(B;0- Also
assuming b* = mm{Bcode*(B;e-1)/Bcode^vl(B;en)} and = min{Bcode*(B;inv(en)), 
Bcodejvl(B;inv(ei))}; darts e and e' are flagged if b* < b\ or b* is unacceptable; and 
b\ < b2 or b\ is unacceptable, respectively. Moreover the BfsRep(B) is also defined as 
BfsRep(B) = minfbi,^}-

Lemma 4.20. Let B = B ^ j be a 2-block of a 2-connected plane graph G, e be one of its 
virtual edges, en = nexty(g)(e) and ep = prevV(B̂ (inv(c)). Also assume v = head(e) and 
rot(G;v) = (en,x 0, . . . ,x k,eP,y0f. . . ,y t). Then E(B;v)\e = {x0, . . . , x k}.

Proof. Let X = {xq, . . . ,  x^}, Y = {yo, ■ ■ ■ ,ytj and v' = tail(e). As the order of edges in 
the rotation systems are not changed while making B, Y n E(B) = 0  and E(B; v)\e Q 
X. Assume by contrary that E(B;v)\e =£ X. Thus there is an edge e' e X such that 
e' $ E(B;v)\e. Now consider vn = tail(e”) and vp = tail(ep). As B is 3-connected 
there are three internally disjoint paths between vtl and vp so at least there is a path 
P between them in B which does not go through v and v'. But the fact that G is 
2-connected allows x to have two internally disjoint path to v' and by JTC any path 
from x to v' goes through a vertex in the cycle en —> P —*• inv(ep) (See Figure 4.7). 
This means that x is reachable from a vertex of P after removing v and v'. But all 
vertices of P are in B so x is in the same attached component as other vertices of B 
and thus x e B which is a contradiction. □
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Figure 4.7: Edges of 2-blocks are consecutive

4.4.2 Formal Definition of Representation

Definition 4.21. The BfsRep(G) of a graph G is unacceptable if the minimum code(s)from 
which it is computed is(are) unacceptable.

For example in Definition 4.17 BfsRep(P) = minjfri,^}- So if b\ < 1?2 and b\ is 
unacceptable, BfsRep(P) is too. Note that if b\ = bi, then BfsRep(P) is unacceptable 
only if both b\ and bi are unacceptable.

Definition 4.22. The representation of a plane graph G with labelled edges is denoted by 
Rep(G) which is defined in Algorithm 4.7.

Theorem 4.23. The algorithm Rep is a well-defined mathematical function on the set of all 
plane graphs.

Proof. If G is a cycle or a simple 3-connected graph the result is obtained as Bcode(G) 
is a well-defined function because the rotation system is reconstructible from it. For 
the rest of the cases the result can be proven by the induction on the number of edges 
of Rep. We need to consider three cases:

If G has some 2-valent vertices, its maximal induced path subgraphs are unique 
because it is not a cycle. Also by the maximality the paths share no edges and 
vertices except their endpoints so the order of applying path reductions does 
not change the output graph.

Else If G has some multiedges, its maximal induced multiedges subgraphs are unique. 
Thus C = — |E(Si)|2 is well-defined too. Also by the maximality the multi
edges does not share any edges so the order of applying multiedges reductions 
does not change the output graph.

Else G is not 3-connected and has no 2-valent vertex. So the set of 2-blocks of G by 
Theorem 4.8 is the set of leaves of any 2-block tree of it. Also no 2-blocks share 
the same edge except possibly their virtual edges otherwise the 2-blocks would 
have made from the same attached component and so were equal. Thus the or
der of applying 2-block reductions does not change the output graph. Note that
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Algorithm 4.1 C o m p u te s  R ep resen ta tion  o f P lan e G raphs

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

function Rep(G: Plane graph)
TZT = unknown t> Recurision type
S  = unknown c> Subgraphs to be reduced
TZ = unknown c> Reduction operator

if G has at least a 2-valent vertex and is not a cycle then 
S  = list of all maximal induced path subgraphs
TZT «— Path and 7Z = PR c> Path reduction

else if G has some consecutive multiple edges then
S  = list of all maximal induced multiedges subgraphs 
7ZT = MultiEdge and 7Z = MR o  Multiedges reduction

else if G is 2-connected then
S  = list of all 2-blocks of G with only one virtual edge 
7ZT = TiuoBlock and TZ = BR c> 2-block reduction

else
return [— Bcode(G)]

end if

Sort S  based on the BfsRep of its items
for each D e S  do

Index(D) = \{D' : BfsRep(D') < BfsRep(D) and D' e S}\
end for
A = [] t> Empty vector
for i = 1 —*■ do

if BfsRep(S[i\) is unaccepted then
A = A concatenate with [BfsRep(<S[i]),l]

else
A = A concatenate with [BfsRep(«S[z]),0]

end if 
end for

a  = g
k = maxeeD£(G) label(c) + 1 
for i = 1 —*■ |«S| do

G' = 7Z(G';S[i],k + 2 x Index(<S[/])) > Apply reduction
end for

if TZT = Path then
return [-4 ,A,Rep(G')] 

else if TZT = MultiEdge then
c  = - H U  |E(s,)|2
return [—3,C, A, Rep(G')] 

else if TZT = TwoBlock then 
return [—2, A, Rep(G')]

end if
end function
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we only use the 2-blocks with just one virtual edge, otherwise replacing them 
with edges are not possible as the endpoint of new edges would be removed 
because of some other 2-blocks.

Based on these discussions the reduced graph is well-defined which has less edges 
and by the induction hypothesis its representation is well-defined. □

Definition 4.24. A 2-connected plane graph G can be categorised as one of types {P, M, B, C, T} 
defined as:

C-Type : If G a cycle graph.

P-Type : If G is not a cycle but has at least a 2-valent vertex.

B-Type : If G is simple but is neither 3-connected nor has a 2-valent vertex.

M-Type : If G does not have any 2-valent vertex but has some multiple edges.

T-Type : If G is a 3-connected simple graph.

Lemma 4.25. Any 2-connected plane graph has exactly one of types {P, M,B,C,T}.

Proof. To show that any graph as at least one of these types, we prove the follow
ing equivalent claim. If G is a 2-connected graph which is neither of the types 
{P, M,B,C},  then G is a T-type graph. If G has none of those types, it does not 
have a 2-valent vertex; otherwise it would be either P-type or C-type. Also G is sim
ple otherwise it would be M-type. Moreover G is 3-connected otherwise it would be 
a B-type graph. So G is simple and 3-connected which means it is a T-type graph. 
The proof that G has at most one of the types is straightforward as the definition of 
each type contradicts the others. So no graph could have two of these types. □

Theorem 4.26. Every plane graph can be reconstructed from its representation uniquely.

Proof. We use induction on the number of recursion used to build the representation 
of a graph G. For the base case that no recursion is used in Algorithm 4.1 (G is 
C-type or T-type), then the representation is [—l,Bcode(G)j based on Line 16 but the 
rotation system and labels can be reconstructed from Bcode(G).

Now assume all graphs whose representation is computed by at most n ^  0 
recursion are reconstructible from their representation. Now let G be a plane graph 
whose representation computation needs n + 1 recursion (G is of type P, B or M).

In all these three cases we can reconstruct G from its representation as follows. 
The first element of the representation indicates which type G is: —4, —3 and —2 
indicate P, M and B types, respectively (Lines 39,42 and 44). Also, by the induction 
hypothesis we can reconstruct G', the graph used for the recursion, from its repre
sentation. Then, we can use the part A of the representation to find BfsRep of those 
sub-objects (paths, multiedges and 2-blocks). Finally, by replacing edges whose la
bels belongs to the interval [k, k + 2 x (|5| — 1)] with their corresponding sub-objects, 
the graph G will be obtained. □
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4.5 Canonicity Check

In this section we introduce our canonicity check algorithm based on representation 
of graphs (Definition 4.22). First in Definition 4.27 the canonicity is defined then how 
canonicity check works for C-Type and T-Type (Section 4.5.4), P-Type (Section 4.5.1), 
M-Type (Section 4.5.2) and B-Type (Section 4.5.3).

Definition 4.27. A 2-connected plane graph is said to have the canonical embedding or to 
be canonical if it has the least representation amongst the representations of all its embeddings.

Lemma 4.28. For a marked plane graph G, if there is a subgraph X in the set S of Algo
rithm 4.1 whose BfsRep is unacceptable, then G is not canonical.

Proof. If BfsRep(X) is not canonical, by the definition, there is another embedding of 
X or one of its subgraphs which has a smaller code. So replacing that subgraph with 
its better embedding, decreases the code of that subgraph, BfsRep(X) and as a result 
Rep(G). □

Lemma 4.29. For any edge e of a plane graph G

Bcode*(c) ^ Bcode(e)

Proof. Lets assume Bcode(e) and Bcode*(e) are defined as in Definitions 4.9 and 4.15. 

Bcode(e) = [c1, (r} ,/j(l)) ,• • • ,  (^ ,,^ ,(1 ))  ,0, • • • ,cn,(rj,/i(n)), • • ■, (rS,, (« )) ,0

B c o d e »  = [c1, (r } ,/f( l))  ,• • • , (rj,,/d* (1)) ,0,- • • (rj,/,*(«)), • • • , ,o'

Now considering the first difference between these two sequences. The difference 
happens where f(i) A /*(z) for some i and j  as the rest of values are the same in both 
sequences. This means that ej(i) e S u F and Zy(z') A l*(i) so /'(z) = Z*(z). Assume 
to the contrary that Bcode*(G;e) > Bcode(G;e). So /'(z) = l*(i) > f(i)  which means 
i' = index(tail(cy(z))) < z which is the third case in the definition of l*(i). Now 
considering the f  for which ep(if  = in v(cy(z)) we have i = index(tail(cy/(z7))) > i' and 
so l*,(if = /',(/') which is the second case in the definition of l*(if.  Thus l*,(if = 
label(inv(c;v(/'))) = label(^(z)) = f(i).  But we already knew that lj(i) < /'(z) = lj>(if 
which means l*, ( i f  < Ip ( i f  and this contradicts the assumption that l*(i) A lj(i) has 
been the first difference because i' < i. □

Lemma 4.30. For any plane graph G there is an embedding G* marked-isomorphic to G such 
that Bcode(G*) = Bcode*(G).

Proof. Let e is one of the edges of G for which Bcode*(G;e) = Bcode*(G). Now by 
exchanging labels of all ef i)  for which /*(z) A l j ( i ) with their inverse G* is obtained. 
Note that the exchanging only occurs if efi) S u F which ensures G* is marked- 
isomorphic to G. □
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Lemma 4.31. Let Gi he a marked plane graph and G2 be a copy of it except for some starred 
and/or flagged edges the labels are exchanged with their inverse. Then Bcode* (Gi; e) = 
Bcode*(G2; e) for all edges e.

Proof For an arbitrary edge e assume Bcode*(Gi;e) be the sequence

[c \  ( r U ( l ) ) . - ,  (ri,, /,*(1)),0,.. /?(»)), • • •, M„,/ J » )  ,o ] .

Now considering Bcode*(G2;c) we have the same values for c(i) and r(i). So we 
should check l*(i) to see if it gives the same value for both Gi and G2. If efli) $ S u F, 
then l*(i) = lj(i) which is the same for both graphs. In the remaining case the result 
is the same because {lj(i),/•(*)} = {/'(/), //(*)} so the minimum and maximum will be 
unchanged. Thus Bcode*(Gi;e) = Bcode*(G2;e). □

Corollary 4.32. Let G\ be a marked graph and G2 be a copy of it except for some starred 
and/or flagged edges the labels are exchanged with their inverse. Then Bcode*(Gi) = 
Bcode* (G2).

Proof. By Lemma 4.31 for all edges Bcode*(Gi;c) = Bcode*(G2;e) which means:

Bcode*(Gi) = min Bcode*(Gi; e) = min Bcode*(G2;e) = Bcode*(G2). □
eeDi(G\) eeDE(G2)

Based on the categorisation of Definition 4.24 the canonicity check can be sub
divided into checking for each category similar to the following pseudocode. The 
procedures used in this pseudocode are defined in Sections 4.5.1 to 4.5.4.

4.5.1 Canonicty of P-Type Plane Graphs

In this section it is discussed how a P-type plane graph can be checked if it is canon
ical or not.

Theorem 4.33. If G is a canonical P-type graph, then for any maximal induced subpath 
P = v§e\V\.. .envn of G, then BfsRep(P) = min{Bcode*(P;ei),Bcode*(P;inv(e„))}.

Proof. Assume to the contrary that G\ is canonical but there is a path P\ = . . .  e„vn
such that BfsRep(Pi) ^  Bcode*(Pi;ei) and BfsRep(Pi) A Bcode* (Pi; inv(e„)). So 
based on the definition of BfsRep and Bcode* the first difference point in the se
quences BfsRep(Pi) and Bcode*(Pi;e\) is when we have an starred edge e such that 
label(inv(c)) < label(e). Thus Bcode*(Pi;ci) < BfsRep(Pi) and similarly the first dif
ference in BfsRep(Pi) and Bcode*(Pi;inv(e„)) is when an edge e' is reached such that 
label(inv(P)) < label(P) which means Bcode*(Pi;inv(e„)) < BfsRep(Pi).

Let G2 be the copy of Gi except in e, inv(e), e' and inv(e') for which their label 
are exchanged with their inverse. Then assume P2 is the path e \ , . . . ,e n in G2. As 
e is an starred edge, G2 is isomorphic to Gi as changing these labels is the same 
as taking mirror for the subgraph replaced by e and inv(e). Also as in G we had
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label(inv(e)) < label(e) and label(inv(c')) < label(P), Bcode(P2;ei) < Bcode(Pi,ei) 
and Bcode(P2;inv(e„)) < Bcode(Pi,inv(e„)) which means BfsRep(P2) < BfsRep(Pi).

Now based on Definition 4.22, the Rep(Gi) = [—4, A\, Rep(G\)] and Rep(G2) = 
[—4, Ai, Rep(G'2)] for some A\, Aj, G[ and G'2. Let <Si and S2 be the value of *5 in 
Definition 4.22 for Gi and G2 respectively. Based on the way G2 is defined from 
Gi it can be obtained that <Si\c>2 = (BfsRep(Pi)} and <S2\£ i = (BfsRep(P2)}. But 
BfsRep(P2) < BfsRep(Pi) that means A2 < A\ because A\ and A2 are made from 
«Si and S2- So as a result Rep(G2) < Rep(G\) which is a contradiction with the 
assumption that Gi is canonical. □

Theorem 4.34. Let G be a P-type plane labelled graph. Then G is canonical if and only if:

• For every maximal induced subpath P = v$e\V\... envn of G,
BfsRep(P) e {Bcode*(P;ei),Bcode*(P;inv(e„))}.

• None of the maximal induced subpath P of G have unacceptable BfsRep.

• The graph G' obtained after applying reductions in Definition 4.22 is canonical.

Proof. (=>) If G is canonical by Theorem 4.33 and Lemma 4.28 it satisfies the first and 
second conditions. To prove the third condition assume to the contrary that G' is 
not canonical then there is another embedding of G' say G' which is canonical. So 
Rep(G'c) < Rep(G'). Now applying the inverse of reductions on the G'c a graph Gc is 
obtained which is isomorphic to G and so has the same set of maximal paths. Thus 
Rep(G) = [—4, A, Rep(G')] and Rep(Gc) = [-4, A, Rep(G[.)] for the same value of A 
because of condition two. But by canonicity of Gc, Rep(G'c) < Rep(G') which means 
Rep{Gc) < Rep(G) and this contradicts the assumption that G is canonical

(<=) Let G be a plane graph satisfying the criteria and Ga be an arbitrary em
bedding of G. As G and Ga are isomorphic they have the same maximal subpaths 
and so Rep(G) = [—4, A, Rep(G')] and Rep(Ga) = [—4, A, Rep(G'a)] for the same val
ues A because none of the maximal subpaths is unacceptable. Also G' is isomor
phic to G'. So canonicity of G' guarantees that Rep(G') ^  Rep(G'a) and as a result 
Rep(G) ^  Rep(Ga). Therefore, G has the least representation amongst all embedding 
which means G is canonical. □

Theorem 4.34 gives a simple way to recognise if a P-type graph is canonical or 
not. It is enough to apply the path reductions and then check if the obtained graph 
is canonical or not. Algorithm 4.2 shows how this idea can be implemented.

4.5.2 Canonicty of M-Type Plane Graphs

In this section it is discussed how a M-type plane graph can be checked if it is 
canonical or not. Two necessary conditions for a M-type plane graph to be canonical 
is proven. Then adding another criterion, a necessary and sufficient condition for 
canonicity of M-type plane graphs is defined.
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Algorithm 4.2 Canonical Testing for P-Type Graphs
1: function IsCanonPath(G: Plane graph)
2: V  = list of all maximal induced path subgraphs
3: for each P e V do
4: r(P) = BfsRep(P)
5: if r(P) {Bcode*(P;ei),Bcode*(P;inv(e„))} then
6: return f a ls e
7: end if
8: if r(P) is unaccaptable then
9: return f a ls e

10: end if
11: end for
12:

13: for each P e V  do
14: Index(P) = \{P' e V  : r(P') < r(P)}|
15: end for
16:
17: k = maxeeD£(G) label(e) 4-1
18: for i = 1 —*■ \P\ do
19: G' = V'JZ(G';V[i],k + 2 x Index('P[z])) t> Apply path reduction
20: end for
21:

22: return IsCanon(G')
23: end function

Theorem 4.35. Let G be a M-type graph containing some multiedges from vertices v\ and vi 
which are e1, . . . ,  en in the same order as rot(z;i). Then G is not canonical; unless e \ , . . . , en 
are contiguous.

Proof. Let G be one such graph. We prove e \ , . . . ,e n should be consecutive; otherwise 
G is not canonical. Assume e \,. ..  ,en are not contiguous and rot(i?i) and rot(u2) are

rot(üi) (Cj , • • • / / 2̂/ *2,0/ • • • / *2,12/ * * ' n /*m,0/ • • • / *tt,in )
rot(zz2) = (inv(e„), y„t0/. . . ,  yn>jn, . . .  ,inv(e2), 1/2,0/ • • • / yi,j2 / inv(^i )/2/i,0/ • • • / yi,/i)

Now consider graph G' obtained from G by modification of rot(i>i) and rot(i>2) as

rot(lZj) (Cl / • • • ßn / *1,0/ • • • / *1,1] / • • • /*m,0/ • • • / *n,in )
rot(i?2) = (inv(e„) , . . . ,  in v fo ), yn,0, . . . ,  yn,jn, • ••, J/i,0/ • • • /1/1,/,)

this way e i , . . .  become consecutive and G' is still planar and also isomorphic to 
G. Now if G has no contiguous multiple edges between no two vertices, then based 
on the definition Rep(G) is of form [—2 ,...]  or [—1,...] but as G' has some consec
utive multiedges Rep(G') is of form [—3, C ',...] which means G is not canonical. So 
assume G has at least some consecutive multiedges which means Rep(G) is of form
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[—3,C ,...]. But still Rep(G) > Rep(G') because C > C'. □

Theorem 4.36. Let G be a M-type graph containing some contiguous multiedges from ver
tices V\ and V2 ■ Then ifG is canonical, BfsRep(M) = min{Mcode*(M;i;i),Mcode*(M;i;2)}

Proof Assume for the contrary that Ls < L,s but L ^ Ls for some G satisfying the 
theorem criteria. Now for all 1 ^ i ^ n exchanging ez with ej and correspondingly 
e'n_j with e'n_j in rot(i>i) and rot(i>2 ), a new embedding G' of G is obtained.

Now considering their representation, they are the same except subsequence A in 
Definition 4.22. Moreover it is not hard to see that A for G' is less than G because the 
set S  is the same for both except in the changed part for which BfsRep computed for 
the modified part is reduced. So Rep(G') < Rep(G) which means G is not canonical.

The same discussion can be applied for the case when Ls = L's to prove that if 
neither L = Ls nor L' = L's hold, then the graph is not canonical. □

Theorem 4.37. Let G be a canonical M-type containing some contiguous multiedges from 
vertices v\ and V2 . Also assume M is a subgraph of G induced by maximal set of edges 
e \,. . .  ,en from v\ to V2 . Then BfsRep(M) e {Bcode*(M;ci),Bcode*(M;inv(c„))}.

Proof Let Gi be a canonical Mi-type graph and M a subgraph of Gi satisfying the 
criteria except BfsRep(Mi) A Bcode*(Mi;ei) and BfsRep(Mi) A Bcode*(Mi;inv(e„)). 
So based on the definition of BfsRep and Bcode* the first difference point in the 
sequences BfsRep(Pi) and Bcode*(Pi;ei) is when we have an starred edge e such that 
label(inv(e)) < label(e). Thus Bcode*(Mi;ei) < BfsRep(Mi) and similarly the first 
difference in BfsRep(Mi) and Bcode*(Mi;inv(e„)) is when an edge e' is reached such 
that label(inv(e')) < label(e') which means Bcode*(Mi;inv(e„)) < BfsRep(Mi).

Let G2 be the copy of Gi except in e, inv(e), e1 and inv(e') for which their la
bel are exchanged with their inverse. Then assume M2 is the subgraph of G in
duced by edges e \ , . . . ,e n. As e is an starred edge, G2 is isomorphic to Gi as chang
ing these labels is the same as taking mirror for the subgraph replaced by e and 
inv(c). Also as in G we had label(inv(c)) < label(e) and label(inv(e')) < label(c'), 
Bcode(M2;ci) < Bcode(Mi,ei) and Bcode(M2;inv(c„)) < Bcode(Mi,inv(e„)) which 
means BfsRep (M2 ) < BfsRep (Mi).

Now based on the Definition 4.22, the Rep(Gi) = [—3, C, A\, Rep(G[)] and Rep(G2 ) 
= [—4, C, A 2 , Rep(G'2)] for some C, A\, A2 , G\ and G'2. Now based on Definition 4.22, 
Si\S2 = {BfsRep (Mi)} and S2\Si = {BfsRep (M2)}. But BfsRep(M2) < BfsRep (Mi) 
that means A2 < A\ and as result Rep(G2 ) < Rep(G\) which contradicts the assump
tion that Gi is canonical. □

Theorem 4.38. Let G be a canonical M-type graph. Then G is canonical if and only if:

• All multiedges satisfy the criteria of Theorems 4.35, 4.36 and 4.37.

• None of the maximal multiedges M of G have unacceptable BfsRep.

• The graph G' obtained after applying reductions in Definition 4.22 is canonical.
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Proof. (=>) If G is canonical then it satisfy the criteria of Theorems 4.35, 4.36 and 4.37; 
and Lemma 4.28. To prove the third condition assume to the contrary that G' is not 
canonical then there is another embedding of G' say G' which is canonical. Now 
applying the inverse of reductions on the G' a graph Gc is obtained which has the 
same set of multiple edges and so is isomorphic to G, but Rep(Gc) < Rep(G) be
cause Rep(G) = [—3,C, A, Rep(G')] and Rep(Gc) = [—3,C, A, Rep(G'c)] for the same 
values C, S and A; but Rep(G'c) < Rep(G') because G' is canonical and G' is not. So 
Rep(Gc) < Rep(G) which contradicts the assumption that G is canonical

(<=) Assume G satisfies the criteria and assume Gc is the embedding of G which 
is canonical. By the fact that Gc is canonical it satisfies the criteria of Theorems 4.35, 
4.36 and 4.37. Also considering that G is isomorphic to Gc, the set »5 defined in 
Definition 4.22 would be the same for G and Gc. So Rep(G) = [-3, C, A, Rep(G')] 
and Rep(Gc) = [—3, C, A, Rep(G'c)] for the same values C and A because none of 
the subgraphs is unacceptable; but G' is canonical by the assumption so Rep(G') ^  
Rep(G'c). Thus Rep(G) ^  Rep(Gc) which means G is canonical. □

Theorem 4.38 gives a simple way to recognise if a M-type graph is canonical or 
not. One could check every maximal induced multiedges to see if the edges are 
consecutive and in the correct order. If at least one of them violates the criteria the 
graph can be rejected instantly. If none of the subgraphs cause rejectio, the reduced 
graph after applying all multiedges reductions can be used to check whether the 
original graph was canonical or not. Algorithm 4.3 shows how we can determine if 
a M-type graph is canonical or not.

4.5.3 Canonicty of B-Type Plane Graphs

In this section we discuss how a B-type plane graph can be checked if it is canonical 
or not.

Theorem 4.39. A B-type plane graph G is canonical if and only if

• All 2-blocks of G are canonical.

• None of the 2-blocks B of G have unacceptable BfsRep.

• The graph G' obtained after applying reductions in Definition 4.22 is canonical.

Proof (=>) If G is canonical by Lemma 4.28 it satisfies the second condition. Assume 
to the contrary that G is canonical and B is one its 2-blocks which is not canonical. 
Now consider the graph Gc obtained from G by replacing B with its canonical em
bedding Bc. Therefore, [—2, A, Rep(G')] = Rep(G) > Rep(Gc) = [—2, AC/ Rep(G'c)]. 
The reason behind is that A and A' are sorted elements of two sets say S and Sc such 
that S\SC = {BfsRep(B)} and SC\S  = {BfsRep(Bc)}. But Rep(B) > Rep(Bc) which 
means A > Ac and as a result Rep(G) > Rep(Gc). This contradicts the assumption 
that G is canonical.

To prove the third criteria, assume to the contrary that G' is not canonical then 
there is another embedding of G' say G' which is canonical. Now applying the
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Algorithm  4.3 Canonical Testing for M-Type Graphs
1 function Is C a n o n M u l t i E d g e (G : Plane graph)
2 A4 = list of all maximal induced multiedges subgraphs
3 for each M e  A4 do
4 if edges of M are not consecutive in G then
5 return f a l s e o  Check Theorem 4.35
6 end if
7

8 v  = one of the vertices of M and v ' = the other vertex of M
9 b* = min{Mcode*(M; y),Mcode*(M; v ')}

10 if b* is unaccaptable then
11 return f a l s e
12 end if
13 if G  = M then
14 b\ = min^ro^y) Mcode(M;e)
15 bi  = mint,erot(i;/) Mcode(M;c)
16 else
17 e = the v v '  dart in M whose previous edge is not in M
18 e' = the v 'v  dart in M whose previous edge is not in M
19 b\ =  Mcode(M;e)
20 b i =  Mcode(M;e')
21 end if
22 r ( M )  =  min b i ,b 2

23 if r(B) is unaccaptable then
24 return f a l s e
25 end if
26 if b * *  r(M) then
27 return f a l s e
28 end if
29 end for
30

31 for each M e  A4 do
32 Index(M) = |{M' e M  : r(M ') <  r(M)}|
33 end for
34 k = maxeeDE(G) label(e) + 1
35 for i = 1 —*• \A4 \ do
36 G = A4K(G ;M \i],k + 2 x Index(A<[i])) t> Apply path reduction
37 end for
38

39 return I s C a n o n ( G ') o  Check Theorem 4.38
40 end function

inverse of reductions on the G'c a graph Gc is obtained which has the same set of 
multiple edges and so is isomorphic to G, but Rep(Gc) < Rep(G) because Rep(G) = 
[—2, A, Rep(G')] and Rep(Gc) = [—2, A, Rep(G'c)\ for the same value of A because of
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Algorithm 4.4 Canonical Testing for B-Type Graphs
1: function IsCa n o n2Block(G: Plane graph)
2: B = list of all 2-blocks
3: for each B e B do
4: Let {v , v '} be the 2-cut that B is attached to
5: es = the vv '  dart in B whose previous edge is not in B
6: ee = the vv' dart in B whose next edge is not in B
7: e's = the v 'v  dart in B whose previous edge is not in B
8: e'e = the v 'v  dart in B whose next edge is not in B
9:

10: b* = min{Bcode’f(B;cs)/BcodeJvl(B;ee)/ Bcode*(B;c')/ BcodeJvl(B;4)}
11: if is unaccaptable then
12: return fa lse
13: end if
14:
15: b\ = Bcode(B;es) and = Bcode(B;e')
16: r(B) = min{b\,b2 }
17: if r(B) is unaccaptable then
18: return fa lse
19: end if
20: if b* ^  r(B) then
21: return fa lse
22: end if
23: end for
24:
25: for each B e  B do
26: Index(B) = |{B' e B : r(B') < r(B)}|
27: end for
28:
29: k = maxfeDE(G) label(e) + 1
30: for i = 1 —► \B\ do
31: G' = BTZ(G'; B[i\,k +  2 x  Index(#[z])) o  Apply 2-block reduction
32: end for
33:
34: return IsC a n o n (G')
35: end function

the second condition; but Rep(G'c) < Rep(G') because G'c is canonical and G' is not. 
So Rep(Gc) < Rep(G) which contradicts the assumption that G is canonical.

(<=) Assume G satisfies the criteria and let Gc be the canonical embedding of 
G, so by the previous discussions, all 2-blocks of Gc are canonical and the graph 
G'c obtained from Gc after reduction is canonical too. Also the set of 3-connected 
subgraphs is independent of the embedding so the set of 2-blocks of G and Gc 
are the same graphs and as all are canonical, they have the same embedding. So
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Rep(G) = [—2, A, Rep(G')] and Rep(Gc) = [—2, A, Rep(G'c)] for the same value of A 
because none of the 2-blocks is unacceptable; but G' is canonical by the assumption 
so Rep(G') ^  Rep(G'c). Thus Rep(G) Rep(Gc) which means G is canonical. □

4.5.4 Canonicty of T-Type and C-Type Plane Graphs

In this section we discuss how a T-type or a C-type plane graph can be checked if it 
is canonical or not.

An cycle graph with no flagged and starred edge has only one embedding on the 
sphere. But if C has some starred edges, then swapping the label of any of them with 
its inverse edge produces isomorphic graphs.

Theorem 4.40. Any cycle graph C is canonical if and only if for Bcode(C) = Bcode*(C) 
and Bcode(C) is acceptable.

Proof (=>) Assume C is a canonical cycle graph, by Lemma 4.30 there is an embed
ding C* such that Bcode(C*) = Bcode*(C) and by Lemma 4.29 we have Bcode(C) ^  
Bcode*(C) which means Bcode(C) ^  Bcode(C*). So C is not canonical unless Bcode(C) 
Bcode(C*) = Bcode*(C). Note that by Lemma 4.28 if Bcode(C) is not acceptable then 
it is not canonical.

(<=) Let C be a cycle graph for which Bcode(C) = Bcode*(C) and Cc be the canon
ical embedding of C. As a cycle graph has a unique embedding except the flagged 
and starred edges that can swap their labels by their inverse, by Corollary 4.32 
Bcode*(Cc) = Bcode*(C). But Bcode*(Cc) ^  Bcode(Cc) by Lemma 4.29 which means 
BcodefC) ^  Bcode(Cc) and so C is canonical. □

Algorithm 4.5 Canonical Testing for C-Type Graphs
1: function IsCa n o nCycle(G: Plane graph)
2: b* = Bcode*(G)
3: if b* is unaccaptable then
4: return fa lse
5: end if
6: b = Bcode(G)
7: if b is unaccaptable then
8: return false
9: end if

10: if b = b* then
11: return true
12: else
13: return false
14: end if
15: end function

Theorem 4.41. A simple 3-connected marked graph G is canonical, if and only z/Bcode(G) = 
Bcode*(G) ^  Bcode^(G) and Bcode(G) is acceptable.
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Proof. (=>) Assume G is a canonical 3-connected simple graph, by Lemma 4.30 there 
is an embedding G* such that Bcode(G*) = Bcode*(G) and by Lemma 4.29 we have 
Bcode(G) ^  Bcode*(G) which means Bcode(G) ^  Bcode(G*). So G is not canonical 
unless

Bcode(G) = Bcode(G*) = Bcode*(G). (4.7)

Also let Gm = Mir*(G) and G^ be the embedding of Gm such that Bcode(G](1) = 
Bcode^GM)- As G is canonical, Bcode(G) ^  Bcode(G^) =  Bcode*(GM) = BcodeJVI(G). 
Combining this result with Equation 4.7 and Lemma 4.28, the desired result is ob
tained.

(4=) Let G be a 3-connected marked graph for which Bcode(G) = Bcode*(G) ^  
BcodeJVI(G) and Gc be the canonical embedding of G. A 3-connected graph has at 
most two embedding (mirror of each other) except for the flagged and starred edges 
that can swap their labels by their inverse. By Corollary 4.32, Bcode*(Cc) = Bcode*(C) 
because Bcode(G) is acceptable and Bcode*(G) ^  BcodeJvl(G). But Bcode*(Gc) ^  
Bcode(Gc) by Lemma 4.29. Therefore, Bcode(G) ^  Bcode(Gc) and G is canonical. □

Algorithm 4.6 Canonical Testing for T-Type Graphs
1: function IsCanonTriConnected(G: Plane graph) 
2: b* = min{Bcode*(G),BcodeJvl(G)}
3: if b* is unaccaptable then
4: return fa lse
5: end if
6-. b = Bcode(G)
7: if b* is unaccaptable then
8: return fa l s e
9: end if

10: if b = b* then
11: return true
12: else
13: return fa l se
14: end if
15: end function

Finally, using Lemma 4.25 which shows there are exactly five types of 2-connected 
plane graphs we can design the Algorithm 4.7 to check canonicity of a 2-connected 
plane graph.

4.6 Conclusions

In this chapter we discussed how a 2-connected planar graph can be embedded 
canonically and how we can do an isomorphism rejection using the canonical embed
ding that we defined. Software canemb [63] contains the implementation of a filter for 
non-canonically embedded 2-connected graphs based on the theories of this chapter.



7 0  Isomorphism Rejection and Canonical Testing of 2-Connected Plane Graphs

Algorithm 4.7 Canonical Testing for 2-Connected Plane Graphs
1: function IsCanon(G: Plane graph)
2: if G is P-Type then
3: return IsCanonPath(G)
4: else if G is M-Type then
5: return IsCanonMultiEdge(G)
6: else if G is B-Type then
7: return IsCanon2Block(G)
8: else if G is C-Type then
9: return IsCanonCycle(G)

10: else if G is T-Type then
11: return IsCanonTriConnected(G)
12: end if
13: end function

The fifth and sixth columns of Table 4.1 contain the number of 2-connected planar 
graphs computed using canemb and their running time which confirm the previous 
known results [23, 20, 111] too.

In addition, we have checked the 2-connected planar bipartite graphs too and the 
numbers of graphs and computation times can be found in Table 4.2. The number of 
planar bipartite graphs up to n = 14 has been known [109]. Using canemb we have 
extended this results to n = 16.

\V\ 2-Connected 2-Connected
Plane

Generation
Time

2-Connected
Planar

Filtering
Time

2 1 1 <ls 1 <ls

3 1 1 <ls 1 <ls

4 3 3 <ls 3 <ls

5 10 10 <ls 9 <ls

6 56 61 <ls 44 <ls

7 468 564 <ls 294 <ls

8 7123 7593 <ls 2893 <ls

9 194066 123874 <ls 36496 2s

10 9743542 2262877 2s 545808 34s

11 900969091 44190279 30s 9029737 16m

12 153620333545 904777809 14m 159563559 355m

Table 4.1: Number of 2-connected generic, plane and planar graphs; and the time for 
generation of plane graphs using plantri and filtering isomorphic copies using canemb
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Bipartite

\V\ 2-Connected 2-Connected Generation 2-Connected Filtering
Plane Time Planar Time

4 1 1 <ls 1 <ls

5 1 1 <ls 1 <ls

6 5 4 <ls 4 <ls

7 8 6 <ls 6 <ls

8 42 28 <ls 30 <ls

9 146 77 <ls 92 <ls

10 956 386 <ls 521 <ls

11 6643 1787 <ls 2781 <ls

12 65921 10354 <ls 18161 <ls

13 818448 62040 <ls 121835 2s

14 13442572 404093 <ls 869379 16s

15 287665498 2725484 6s 6361801 2.5m

16 8099980771 19078248 42s 47802651 24m

Table 4.2: Number of 2-connected bipartite generic [107], plane [109] and planar 
graphs; and the time for generation of bipartite plane graphs using plantri and filter

ing isomorphic copies using canemb

We mainly focused on how we can determine if a plane graph has the canonical 
embedding or not. But one can find the canonical embedding from any given embed
ding with the same recursive approach. It is enough in each step to replace subgraphs 
with edges whose label are based on the Bcode* and Bcodej^ instead of Bcode for P- 
type, B-type, C-type and T-type; and Mcode* instead of Mcode for M-type marked 
plane graphs. Also for testing if two plane graphs are abstract-isomorphic or not, 
one can compute their canonical representation (the representation of their canonical 
embedding) and check if they are equal or not.

A possible future direction is to extend this approach to all connected plane 
graphs. This extension could be done using block graphs. The block graph of G is 
the graph obtained from G by replacing every maximal 2-connected component with 
a vertex, and two vertices in the resulting graph are adjacent if there is an edge be
tween two vertices of their corresponding 2-connected components. One can check 
the canonicity of each 2-connected component using our approach and then extend 
the result to its block graph. This could be specially for graphs with order more than 
10. Figure 4.8 shows that after n > 10 the ratio of generic graphs to plane graphs 
increases dramatically.
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Simple connected graphs 
Simple connected plane graphs 
Simple connected planar graphs

3  10

10 11 12 13 14
Number of Vertices

Figure 4.8: Number of simple connected generic, plane and planar graphs [23, 108,
113].



Recursive Generation of 4-Face 
Deflatable Hypohamiltonian 
Graphs

Chapter 5

5.1 Background

This chapter contains the material published in "Planar Hypohamiltonian Graphs 
on 40 Vertices" which is a joint study with B. D. McKay, P. R. J. Östergärd, V. H. 
Pettersson and C. T. Zamfirescu [64].

5.2 Introduction

Chvätal [26] asked in 1973 whether there exist planar hypohamiltonian graphs, and 
there was a conjecture that such graphs might not exist [49]. However, an infinite 
family of planar hypohamiltonian graphs was later found by Thomassen [115], the 
smallest among them having order 105. This result was the starting point for work 
on finding the smallest possible order of such graphs, which has led to the discovery 
of planar hypohamiltonian graphs of order 57 (Hatzel [53] in 1979), 48 (C. Zamfirescu 
and T. Zamfirescu [126] in 2007), and 42 (Wiener and Araya [123] in 2011). These four 
graphs are depicted in Figure 5.1.

Grinberg [48] proved a necessary condition for a plane graph to be Hamiltonian. 
All graphs in Figure 5.1 have the property that one face has size 1 modulo 3, while 
all other faces have size 2 modulo 3. Graphs with this property are natural candi
dates for being hypohamiltonian, because they do not satisfy Grinberg's condition. 
However, we will prove that this approach cannot lead to hypohamiltonian graphs of 
order smaller than 42. Consequently we seek alternative methods for finding planar 
hypohamiltonian graphs. In particular, we construct a certain subset of graphs with 
girth 4 and a fixed number of 4-faces in an exhaustive way. This collection of graphs 
turns out to contain 25 planar hypohamiltonian graphs of order 40.

In addition to finding record-breaking graphs of order 40, we shall prove that 
planar hypohamiltonian graphs exist for all orders greater than or equal to 42 (it is

73
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proved in [123] that they exist for all orders greater than or equal to 76). Similar 
results are obtained for hypotraceable graphs. We show that there is a planar hypo- 
traceable graph of order 154 and of all orders greater than or equal to 156; the old 
records were 162 and 180, respectively [123].

(a) Thomassen's Graph (|V| = 105)

(c) Zamfirescu and Zamfirescu's Graph (|V| = 48)

(b) Hatzel's Graph (| V| = 57)

(d) Wiener and Araya's Graph (WA42)

Figure 5.1: Planar hypohamiltonian graphs of order 105, 57, 48, and 42

T. Zamfirescu defined C[ and P'k to be the smallest order for which there is a pla
nar /c-connected graph such that every set of i vertices is disjoint from some longest 
cycle and path, respectively [127]. Some of the best bounds known so far were 
C\ ^  42, C| ^  3701, P3  ^  164 and P | ^  14694, which were found based on a planar 
hypohamiltonian graph on 42 vertices [123]. We improve upon these bounds using 
our graphs to C] ^  40, C3  ^  2625, P] ^  156 and P | ^  10350.

The chapter is organized as follows. In Section 5.3 we define Grinbergian graphs 
and prove theorems regarding their hypohamiltonicity. In Section 5.4 we describe 
generation of certain planar graphs with girth 4 and a fixed number of 4-faces, and 
show a summary of hypohamiltonian graphs found among them. In Section 5.5 we 
present various corollaries based on the new hypohamiltonian graphs. The paper is 
concluded in Section 5.6.
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5.3 Grinbergian graphs

Consider a plane hypohamiltonian graph G = (V,E), and let k(G), £(G), and A(G) 
denote the vertex-connectivity, minimum degree, and edge-connectivity of G, respec
tively. We will use tacitly the following fact.

Theorem 5.1. k(G) = A(G) = <5(G) = 3.

Proof. Since the deletion of any vertex in V gives a Hamiltonian graph, we have 
k(G) ^  3. Tutte [118] proved that every 4-connected planar graph is Hamiltonian, 
so k(G) ^  3. Thomassen [116] showed that V must contain a vertex of degree 3, so 
3(G) ^  3. The result now follows from Whitney's Theorem [121, Theorem 4.1.9]. □

The set of vertices adjacent to a vertex v is denoted by N(v). Let n = \V\, m = |E|, 
and /  be the number of faces of the plane graph G. They satisfy Euler's formula 
n -  m f  — 2. A k-face is a face of G bounded by k edges. We define

Ij := {i ^  3 : i = j mod 3},

and let V j  be the family of k-faces with k e I j .
We call a graph Grinbergian if it is 3-connected, planar and of one of the following 

two types.

Type 1 Every face but one belongs to Vj-

Type 2 Every face has even order, and the graph has odd order.

The motivation behind such a definition is that Grinbergian graphs can easily be 
proven to be non-Hamiltonian using Grinberg's Theorem. Namely, their face sizes 
are such that the sum in Grinberg's Theorem cannot possibly be zero. Thus, they are 
good candidates for hypohamiltonian graphs.

Our definition of Grinbergian graphs contains two types. One could ask, if there 
are other types of graphs that can be guaranteed to be non-Hamiltonian with Grin
berg's Theorem based on only their sequence of face sizes. The following theorem 
shows that our definition is complete in this sense.

Theorem 5.2. Consider a 3-connected simple planar graph with n vertices (n ^  42) and 
Fj i-faces for each i. Then there are non-negative integers f , f '  ( f  + f- = Ff satisfying the 
equation J^fi -  2 )(/,• — ft) = 0 if and only if the graph is not Grinbergian.

Proof. Since the graph is simple and 3-connected, every face must have at least 3 
edges. Applying [121, Theorem 6.1.23] to the dual of the graph gives fj = 2e ^  
6 / — 12, where /  is the number of faces. Thus, the average face size is at most 
6 — (12//). In addition, the size of a face has to be smaller than or equal to the 
number of vertices in the graph.

Given a sequence of face sizes F„ the problem of finding coefficients / , / '  that 
satisfy the equation can be reduced to a simple knapsack problem. Namely, note 
that 2 f(i -  2)(ft -  / ')  = 2,-(i -  2)(F, -  2/') = J]t{i -  2)F; -  2(i -  2)//, so solving
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the equation corresponds to solving an instance of the knapsack problem where we 
have Fi objects of weight 2(i — 2), and we must find a subset whose total weight is 
Yifi  — 2)Fj .  The result can be then verified with an exhaustive computer search over 
all sequences of face sizes that fulfill the above restrictions. □

It should be noted that the result in Theorem 5.2 most likely holds for all n, but 
for our purposes it suffices to prove it for n ^  42.

By Grinberg's Theorem, Grinbergian graphs are non-Hamiltonian. Notice the 
difference between our definition and that of Zaks [125], who defines non-Grinbergian 
graphs to be graphs with every face in Vi- We call the faces of a Grinbergian graph 
not belonging to Vi exceptional.

Theorem 5.3. Every Grinbergian hypohamiltonian graph is of Type 1, its exceptional face 
belongs to V\, and its order is a multiple of 3.

Proof Let G be a Grinbergian hypohamiltonian graph. There are two possible cases, 
one for each type of Grinbergian graphs.

Type 1: Let the /-face F be the exceptional face of G (so j <£ h), and let v be a 
vertex of F. Vertex v belongs to F and to several, say h, faces in Vj- The face of G — v 
containing v in its interior has length 3h + / — 2 (mod 3), while all other faces have 
length 2 (mod 3). Since G is hypohamiltonian, G — v must be Hamiltonian. Thus, 
G — v cannot be a Grinbergian graph, so 3h + j — 2 e I2, whence j e I\.

Type 2: As G contains only cycles of even length, it is bipartite. A bipartite graph 
can only be Hamiltonian if both of the parts have equally many vertices. Thus, it is 
not possible that G — v is Hamiltonian for every vertex v, so G cannot be hypohamil
tonian and we have a contradiction.

Hence, G is of Type 1, and its exceptional face is in V\. Counting the edges we 
get 2m = 2( f  — 1) + 1 (mod 3), which together with Euler's formula gives

2n = 2m -  2 / + 4 = 2 / -  1 -  2 / + 4 = 0 (mod 3),

so n is a multiple of 3. □

Lemma 5.4. In a Grinbergian hypohamiltonian graph G of Type 1, all vertices of the excep
tional face have degree at least 4.

Proof Denote the exceptional face by Q. Now assume that there is a vertex v e V(Q) 
with degree 3, and consider the vertex w e N(v)\V(Q). (Note that N(v)\V(Q) 0 ,
because G is 3-connected.) Let k be the degree of w. Now consider the graph G' 
obtained by deleting w from G. Denote the number of vertices in the faces of G that 
contain w by Nj (1 ^  i ^  k); we have N,- =  2 (mod 3). The number of vertices in the 
face of G' containing w in its interior is now m = XI/M — 2) = 0 (mod 3). Assume 
that G' is Hamiltonian. The graph G' contains only faces in V2 except for one face 
in V\ and one in Vq. The face in V\ and the face in Vo are on different sides of any 
Hamiltonian cycle in G', since the cycle must pass through v. The sum in Grinberg's 
Theorem, modulo 3, is then (m — 2) -I-1 = 2  (mod 3) or — (m — 2) — 1 = 1 (mod 3), 
so G' is non-Hamiltonian and we have a contradiction. □
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In Section 5.4, we will use these properties to show that the smallest Grinbergian 
hypohamiltonian graph has 42 vertices.

5.4 Generation of 4-face deflatable hypohamiltonian graphs

We define the operation 4-face deflat er denoted by T V  4 which squeezes a 4-face of a 
plane graph into a path of length 2 (see Figure 5.2). The inverse of this operation is 
called 2-path inflater which expands a path of length 2 into a 4-face and is denoted by 
VX 2 . In Figure 5.2 each half line connected to a vertex means that there is an edge in
cident to the vertex at that position and a small triangle allows zero or more incident 
edges at that position. For example has degree at least 3 and 4 in Figures 5.2(a) 
and 5.2(b), respectively. The set of all graphs obtained by applying P I 2 and T V 4 on 
a graph G is denoted by VX 2 (G) and TV flG ), respectively.

Figure 5.2: Operations T V 4 and V I 2

Let Vs (/) be the set of all simple connected plane graphs with /  faces and min
imum degree at least 5, which can be generated using the program plantri [22]. Let 
us denote the dual of a plane graph G by G*. We define the family of 4-face deflat
able graphs (not necessarily simple) with /  4-faces and n vertices, denoted by M^(n),  
recursively as:

(G* : Ge Vs ( n ) } ,  f  = 0;

M}{n) = < (5.1)

ÖGeMj^in-l) ^ 2(G), /  > 0.

It should be noted that applying VX 2 to a graph increases the number of both vertices 
and 4-faces by one. Then, we can filter for possible hypohamiltonian graphs and 
we define based on it as:

Xt4f{n) = {G e Ai^(n) : G is hypohamiltonian}. (5.2)

The function 'Hflfln) can be defined for n ^  20 because the minimum face count 
for a simple planar 5-regular graph is 20 (icosahedron). Also it is straightforward to
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check that f  ^  n — 20 because FL*{n) is defined based on F t i f ln  — 1) for /  > 0.
To test hamiltonicity of graphs, we use depth-first search with the following prun

ing rule: If there is a vertex that does not belong to the current partial cycle, and has 
fewer than two neighbours that either do not belong to the current partial cycle or 
are an endpoint of the partial cycle, the search can be pruned. This approach can be 
implemented efficiently with careful bookkeeping of the number of neighbours that 
do not belong to the current partial cycle for each vertex. It turns out to be reasonably 
fast for small planar graphs.

Finally, we define the set of 4-face deflatable hypohamiltonian graphs denoted by 
714(h) as:

n- 20
H \n )  = U  Hj(n).  (5.3)

/= 0

Using this definition for 414(h), we are able to find many hypohamiltonian graphs 
which were not discovered so far. The graphs found on 105 vertices by Thomassen 
[115], 57 by Hatzel [53], 48 by C. Zamfirescu and T. Zamfirescu [126], and 42 by 
Wiener and Araya [123] are all 4-face deflatable and belong to 41q(105), Fi\(57), 
Fi\{48) and Fi\{42), respectively.

We have generated 714(h) exhaustively for 20 ^  n ^  39 and all possible /  but 
no hypohamiltonian graph was found, which means that for all n < 40 we have 
414(n) = 0 .  For n > 39 we were not able to finish the computation for all /  due to 
the amount of required time. For n = 40,41,42,43 we finished the computation up 
to /  = 12,12,11,10, respectively. The only values of n and /  for which FiAfln) was 
non-empty were 414(40), Fi\{42), 414(42), 41.4(43) and 415(43). More details about 
these families are provided in Tables 5.1, 5.2 and 5.3. Based on the computations we 
can obtain the Theorems 5.5, 5.6, 5.7 and 5.8. The complete list of graphs generated 
is available to download at [62].

4-Face Count Face Sequence Degree Sequence Count

5

3 0 x 3 , 10 x 4  4

3 1 x 3 , 8 x 4 , 1 x 5  10

5 x 4,22 x 5 32 x 3,6 x 4,2 x 5 9

33 x 3,4 x 4,3 x 5 2

All 25

Table 5.1: Facts about Fi\{40)

Theorem 5.5. There is no planar 4-face deflatable hypohamiltonian graph of order less than 
40.

Theorem 5.6. There are at least 25 planar 4-face deflatable hypohamiltonian graphs on 40 
vertices.
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4-Face Count Face Sequence Degree Sequence Count

1 1 x 4,26 x 5
34 x 3,8 x 4

35 x 3,6 x 4,1 x 5

5

2

3 0 x 3 , 1 2 x 4 4

31 x 3,10 x 4,1 x 5 28

32 x 3,8 x 4,2 x 5 57

33 x 3,6 x 4,3 x 5 49

7 7 x 4,22 x 5 33 x 3,7 x 4,1 x 5, x 6 11

34 x 3,4 x 4,4 x 5 10

34 x 3,5 x 4,2 x 5,1 x 6 5

34 x 3,6 x 4,2 x 6 6

35 x 3,4 x 4,1 x 5,2 x 6 2

All All All 179

Table 5.2: Facts about TL\{42) and H j{42)

Theorem 5.7. There are at least 179 planar 4-face debatable hypohamiitonian graphs on 42 
vertices.

Theorem 5.8. There are at least 497 planar 4-face debatable hypohamiitonian graphs on 43 
vertices.

Lemma 5.9. Let G be a hypohamiitonian planar graph whose faces are at least 5-faces except 
one which is a 4-face. Then any G' in (G) has a simple dual.

Proof. As G is a simple 3-connected graph, the dual G* of G is simple, too. Let 
G' e T V \ (G) and assume to the contrary that G'* is not simple.

If G'* has some multiedges, then the fact that G* is simple shows that either 
the two faces incident with V\Vg  or with V3 V5  in Figure 5.3(b) (we assume the first 
by symmetry) have a common edge VgVg in addition to V 1 V5 . Let V \ V ^  and V \ V i  

be the edges adjacent to v\Vg in the cyclic order of v\. Note that vg 4  V 7  because 
d(G'; V i )  ^  3 by Lemma 5.4. If v \  and Vg were the same vertex, then V\ would be a cut 
vertex in G considering the closed walk V\Vg ■ • • V g { = V \ ) .  But this is impossible as G 
is 3-connected, so V\ 4  vg. Now we can see that {v\,vg} is a 2-cut for G considering 
the closed walk v\Vg • • • vg • • • V7V\.

Also, if G'* has a loop, with the same discussion, we can assume that the two faces 
incident with V 1 V5 are the same but then V\  would be a cut vertex for G. Therefore, 
both having multiedges or having loops violate the fact that G is 3-connected. So the 
assumption that G'* is not simple is incorrect, which completes the proof. □



8o Recursive Generation of 4-Face Deßatable Hypohamiltonian Graphs

4-Face Count Face Sequence Degree Sequence Count

36 x 3,6 x 4,1 x 6 1
4 4 x 4,23 x 5,1 x 7

37 x 3,4 x 4,1 x 5,1 x 6 1

34 x 3,9 x 4 8

35 x 3,7 x 4,1 x 5 20

5 x 4,22 x 5,1 x 8 36 x 3,5 x 4,2 x 5 19

37 x 3,3 x 4,3 x 5 1

37 x 3,4 x 4,1 x 5,1 x 6 1

32 x 3,11 x 4 52

33 x 3,9 x 4,1 x 5 148

5 34 x 3,7 x 4,2 x 5 175

34 x 3,8 x 4,1 x 6 2

35 x 3,5 x 4,3 x 5 56
5 x 4,24 x 5

35 x 3,6 x 4,1 x 5,1 x 6 6

36 x 3,3 x 4,4 x 5 1

36 x 3,4 x 4,2 x 5,1 x 6 4

37 x 3,2 x 4,3 x 5,1 x 6 1

37 x 3,3 x 4,1 x 5,2 x 6 1

All All All 497

Table 5.3: Facts about ^ 4 (4 3 ) and H|(43)

Theorem 5.10. Any Type 1 Grinbergian hypohamiltonian graph is 4-face deflatable. More 
precisely, any Type 1 Grinbergian hypohamiltonian graph of order n is in TL^n) u  FL\(n).

Proof Let G be a Type 1 Grinbergian hypohamiltonian graph with n vertices. By 
Theorem 5.3 the exceptional face belongs to V\ so its size is 4 or it is larger. If the 
exceptional face is a 4-face, then by Lemma 5.4 the 4-face has two non-adjacent 4- 
valent vertices. So we can apply T V 4 to obtain a graph G' which has no face of 
size less than 5. So 0(G'*) ^  5 and G'* is a simple plane graph by Lemma 5.9. Thus 
G'* e Vs and as a result of the definition of A4j, G'** = G' e A4<j(n — 1). Furthermore, 
G e M \(n )  because G e V TßG ') and as G is hypohamiltonian, G e TL\{ri).

But if the exceptional face is not a 4-face, then by the fact that it is 3-connected 
and simple, G* is simple as well and as the minimum face size of G is 5, £(G*) ^ 5  
which means G e A4q(n) and so G g H q(u). □
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Figure 5.3: Showing that T V 4 (G) has a simple dual

Corollary 5.11. The smallest Type 1 Grinbergian hypohamiltonian graph has 42 vertices and 
there are exactly 7 of them on 42 vertices.

Proof. By Theorem 5.10 any Type 1 Grinbergian graph belongs to Ti^n) u  Ti\{n) but 
according to the results presented in the paragraph preceding Theorem 5.5, we have 
TL^fn) u TL\{n) = 0  for all n < 42. So there is no such graph of order less than 
42. On the other hand, we have Hq(42) = 0  and \H\{42)\ = 7 which completes the 
proof. □

5.5 Results

We present one of the planar hypohamiltonian graphs of order 40, discovered by us 
in Figure 5.4, and the complete list of 25 in Figure 5.6.

Theorem 5.12. The graph shown in Figure 5.4 is hypohamiltonian.

Proof. We first show that the graph is non-Hamiltonian. Assume to the contrary that 
the graph contains a Hamiltonian cycle, which must then satisfy Grinberg's Theorem.
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Figure 5.4: A planar hypohamiltonian graph on 40 vertices (H40,i )

The graph in Figure 5.4 contains five 4-faces and 22 5-faces. Then

£ ( i  -  2)(/f - / ' ) = / ; -  / 4 =  ° (m°d 3),

where / 4 + f'A = 5. So /[ = 1 and / 4 = 4, or = 4 and / 4 = 1. Let Q be the 4-face on 
a different side from the four others.

Notice that an edge belongs to a Hamiltonian cycle if and only if the two faces it 
belongs to are on different sides of the cycle. Since the outer face of the embedding 
in Figure 5.4 has edges in common with all other 4-faces and its edges cannot all be 
in a Hamiltonian cycle, that face cannot be Q.

If Q is any of the other 4-faces, then the only edge of the outer face in the em
bedding in Figure 5.4 that belongs to a Hamiltonian cycle is the edge belonging to Q 
and the outer face. The two vertices of the outer face that are not endpoints of that 
edge have degrees 3 and 4, and we arrive at a contradiction as we know that two of 
the edges incident to the vertex with degree 3 are not part of the Hamiltonian cycle. 
Thus, the graph is non-Hamiltonian. Finally, for each vertex of the graph, Figure 5.8 
shows a cycle omitting the vertex. □

We now employ operation Thn (See Definition 1.14 and Figure 1.6), defined 
by Thomassen [117], for producing infinite sequences of hypohamiltonian graphs. 
Wiener and Araya use this operation to show that planar hypohamiltonian graphs 
exist for every order greater than or equal to 76. That result is improved further in 
Theorem 5.14.

Lemma 5.13. The graphs H43, H44, H4 5 , H46 , H47 and H49  in Figure 5.5 are all hypohamil
tonian.

Proof. Using a computer search, it can easily be checked that the graphs H43 and 
H45 are not Hamiltonian. By Lemma 1.16 the rest of them are also non-Hamiltonian 
because H44 e ThH(H40;i), H46 e ThH(WA42), H47 e ThH(H43) and H49 e ThH(H45).

Figures 5.7, 5.9, 5.10, 5.11, 5.12 and 5.13 shows the vertex-omitting Hamiltonian 
cycles of them, respectively. □
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(a) H43

(d) H46

(b) H44 (c) H45

(f) H49

Figure 5.5: Planar hypohamiltonian graphs of order 43, 44, 45, 46, 47 and 49

Theorem 5.14. T/rcre exist planar hypohamiltonian graphs of order n for every n 42.

Proof. Lemma 5.13 shows the graph H43, H44, H45, H46, H47 and H49 are hypohamil
tonian. Also each of H44, H45, H47 and H49 have a 4-cycle whose vertices are 3-valent 
so by repeated application of the operation Thn (Definition 1.14) and Theorem 1.17 
there is a planar hypohamiltonian graphs on n ^  44. Adding the fact that H43 and 
WA42 are hypohamiltonian, the result is obtained. □

Whether there exists a planar hypohamiltonian graph on 41 vertices remains an 
open question.

Wiener and Araya [123] further prove that there exist planar hypotraceable graphs 
on 162 + 4k vertices for every k ^  0, and on n vertices for every n ^  180. To improve 
on that result, we make use of the following theorem, which is a slight modification 
of [114, Lemma 3.1].

Theorem 5.15. There exist planar hypotraceable graphs on 154 vertices, and on n vertices 
for every n ^  156.

Proof All the graphs obtained in the proof of Theorem 5.14 have a vertex with de
gree 3. Consequently, Theorem 1.19 can be applied to those graphs to obtain pla-
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nar hypotraceable graphs of order n for n = 40 + 40 + 40 + 40 — 6 = 154 and for 
n ^  40 + 40 + 40 + 42 — 6 = 156. □

The graphs considered in this work have girth 4. In fact, by the following theorem 
we know that any planar hypohamiltonian graphs improving on the results of the 
current work must have girth 3 or 4. Notice that a planar hypohamiltonian graph 
can have girth at most 5, since a planar hypohamiltonian graph has a simple dual, 
and the average degree of a simple plane graph is less than 6.

Let H be a cubic graph and G be a graph containing a cubic vertex w e  V(G). We 
say that we insert G into H, if we replace every vertex of H with G — w and connect 
the endpoints of edges in H to the neighbours of w.

Corollary 5.16. We have

c j  ^  40, c f  < 2625, Pj ^  156 and P* ^  10350.

Proof. The first of the four inequalities follows immediately from Theorem 5.12. In 
the following, let G be the planar hypohamiltonian graph from Figure 5.4.

For the second inequality, insert G into Thomassen's graph H from [117, p. 38]. 
This means that each vertex of H is replaced by G minus some vertex of degree 3. 
Since every pair of edges in H is missed by a longest cycle [101], in the resulting 
graph G' any pair of vertices is missed by a longest cycle. This property is not lost if 
all edges originally belonging to H are contracted.

In order to prove the third inequality, insert G into X4. We obtain a graph in 
which every vertex is avoided by a path of maximal length.

For the last inequality, consider the graph H from the second paragraph of this 
proof and insert H into X4, obtaining H'. Now insert G into H'. Finally, contract all 
edges which originally belonged to H'. □

5.6 Conclusions
Despite the new planar hypohamiltonian graphs discovered in the current work, 
there is still a wide gap between the order of the smallest known graphs and the 
best lower bound known for the order of the smallest such graphs, which is 18 [1]. 
One explanation for this gap is the fact that no extensive computer search has been 
carried out to increase the lower bound.

It is encouraging though that the order of the smallest known planar hypohamil
tonian graph continues to decrease. It is very difficult to conjecture anything about 
the smallest possible order, and possible extremality of the graphs discovered here. 
It would be somewhat surprising though if no extremal graphs would have nontriv
ial automorphisms (indeed, the graphs of order 40 discovered in the current work 
have no nontrivial automorphisms). An exhaustive study of graphs with prescribed 
automorphisms might lead to the discovery of new, smaller graphs.

The smallest known cubic planar hypohamiltonian graph has 70 vertices [2]. We 
can hope that the current work inspires further progress in that problem too.
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5.A List of All 4-Face Deflatable Hypohamiltonian Graphs on 
40 Vertices

Figure 5.6: List of 4-face deflatable hypohamiltonian graphs on 40 vertices
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5.B  V e r te x -O m itt in g  c y c le s  o f  H404, H43, H44, H45, H47 and

H 49

Mm m.m
i0w0 wm

Ä mif Ü]00mg j10Mis
Figure 5.7: All vertex-omitting cycles of H4 3  up to automorphism
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Figure 5.8: Vertex-omitting cycles of H4 0 J
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Figure 5.9: All vertex-omitting cycles of H4 4
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Figure 5.10: All vertex-omitting cycles of H45 up to automorphism
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Figure 5.11: All vertex-omitting cycles of H4 5  up to automorphism
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Figure 5.12: All vertex-omitting cycles of H47
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Figure 5.13: All vertex-omitting cycles of H4 9  up to automorphism



Chapter 6

Face-spiral Codes in 3-Connected 
Cubic Plane Graphs with no Large 
Face

6.1 Background

This chapter contains the material published in “Face-spiral codes in cubic polyhe
dron graphs with face sizes no larger than 6“ which is a joint study with P. W. Fowler 
and G. Brinkmann [38].

6.2 Introduction

A polyhedron is a 3-connected planar graph. By Whitney's theorem each polyhedron 
has a unique embedding on the plane up to plane isomorphism [122]. So the poly- 
herdons can be referred to as 3-connected plane graphs.

Cubic polyhedron structures built from carbon and other atoms are of current in
terest in chemistry, physics and materials science for many reasons. They are exem
plified by the fullerenes [72, 70, 40, 41], and also occur as skeletons of the polyhedron 
hydrocarbons [33, 69, 32, 93] known collectively as 'spheroalkanes' [97]. They are 
studied as models for electron-precise clusters involving other elements (e.g., clus
ters with pairwise replacement of carbon atoms by BN) [105]. They occur as motifs 
in supramolecular frameworks [106], act as finite models for many of the forms of 
carbon that have emerged since the discovery of the fullerenes (cubic polyhedrons 
which have only 5-faces and 6-faces) [58, 119, 102, 78, 71, 59, 92] and for chemically 
plausible 'spheroarene' [96] generalisations of the fullerene class [39, 3, 42, 31, 68].

The face-spiral conjecture for fullerenes claims that the surface of every fullerene 
can be unwound in a face-spiral of edge-sharing 5-faces (pentagons) and 6-faces 
(hexagons) such that each face in the spiral after the second, has an edge in com
mon with the previous face and another with the first face in the proceeding faces 
which has an edge that has an open edge (the edge only belongs to one of the pre
vious faces) with the condition that a face-spiral must contain each face exactly once 
[81, 40, 41]. The stronger version of this conjecture replaces "fullerences" with “cubic

93
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polhral"; and "5-faces" and "6-faces" with "faces". Both conjectures are known to be 
false and the smallest known fullerenes with no face-spirals have 380 (Figure 6.1(a)) 
[80] and 384 vertices (Figure 6.1(b)) [124]. Recently, it is proven that these two are the 
smallest fullerenes with no face-spirals and there is no counterexample upto 400 ver
tices [17, 47]. An example of failed spiral for the smallest fullerene counterexample 
is presented in Section 6.2.

(a) |V| = 380 (b) |V| = 384

Figure 6.1: The fullerenes with up to 400 vertices having no face-spirals

Figure 6.2: An example of failed spiral

Although it has been known for a while that not all fullerences have face-spirals, 
this idea has been used to design the first generator (non-exhaustive) for fullerences 
[40] which was improved later to an exhaustive generator in [14,15].

6.3 Spirals and classes of cubic polyhedra

If the maximum face size is restricted to six, and graphs without multiple edges 
are considered (simple {3,4,5,6[-angulations), simple counting with Euler's theorem
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for polyhedra gives 19 distinct face-signatures {fa, fa, fa), where fa, fa and fa are the 
respective numbers of triangle, quadrangle and pentagonal faces.

In the following, we explore each face-signature class and attempt to provide a 
minimal unspirallable example, or at least to place bounds on the size of the small
est unspirallable polyhedron in the class. The initially plausible suggestion that 
fullerenes may be the 'best' cubic polyhedra for the spiral conjecture proves to be 
incorrect with respect to vertex numbers: while the smallest non-spiral fullerene has 
380 vertices, the smallest non-spiral polyhedron in the class (2,3,0) has as many as 
2170 vertices. If, instead, we consider the number of structures in the class that are 
smaller than the minimal counterexample, fullerenes can, however, still be claimed 
to be best suited for spiral coding.

Two methods are used here for finding counterexamples. The first method is 
exhaustive generation of each family, at each vertex number, followed by a check 
of the results for spirals. The counterexamples resulting from this approach are 
presented in Table 6.1. We used the program CGF by Harmuth [19, 50] which can be 
obtained as part of the package CaGe [16]. The non-spiral examples were all tested 
independently by the two programs used elsewhere [17] to check fullerenes without 
spirals and for the case of fullerenes only, the generation step itself was also checked 
with an independent program.

Face Signature Order Figure

(4,0, 0} 36 Figure 6.3(a)

(3,1, 1} 304 Figure 6.3(e)

(3,0, 3) 80 Figure 6.3(b)

(2,3, 0} 2170 Figure 6.6

<2,2, 2) 96 Figure 6.3(c)

(2,1, 4) 98 Figure 6.3(f)

(2,0, 6) 96 Figure 6.3(d)

<1,4, 1> 304 Figure 6.3(g)

<0,6, 0) 306 Figure 6.3(h)

(0,5, 2) 304 Figure 6.3(i)

(0,0,12) 380 Figure 6.3(j)

Table 6.1: Minimal counterexamples for classes with no face-spirals found by exhaus
tive generation. In each case, there is a unique counterexample with the given vertex

number within the class.
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(g) (1,4,1), |V |=  304

(i) (0,5,2), IV| = 304

(h) (0,6,0), \V\ = 306

(j) (0,0,12), |V| = 380

Figure 6.3: Minimal counterexamples for classes with no face-spirals
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In cases where, within reasonable time limits, no counterexamples could be found 
by exhaustive generation, we modified existing counterexamples from other classes 
using operations in Figure 6.4. Using these four operations we were able to construct

Figure 6.4: Operations used for converting graphs between face-signature classes

counterexamples for all remaining values of fa, fa and fa and the result is presented 
in Table 6.2.

Counterexample Parent

Signature Order Signature Order Operation

(1,3, 3) 302
(1,4, 1) 304#

24

A2(1,2, 5) 300

<0,4, 4} 302
<0,5, 2) 304#

A

(0,3, 6) 300 A2

(0,1,10) 386
(0,0,12) 384*

D

(0,2, 8) 388 D2

(0,1, 9) 382 (0,0,12) 380# C

(1,1, 7) 326 <1,3, 3) 330* B

Table 6.2: Counterexamples for classes with no face-spirals generated by modifica
tion. The parents marked with # are unique minimal counterexamples within their 
own family. The parent marked with ★  is the unique second smallest counterexam
ple within the fullerene family [124, 17]. The parent marked with |  is a non-minimal 

counterexample for (1,3,3) which is shown in Figure 6.5.
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Figure 6.5: Parent of the counterexample for the class (1,1,7)

6.4 Conclusions
One obvious comment on the results presented here is that non-spiral cases are found 
reasonably early for all but one of the 19 classes, with one set of classes having non
spiral counterexamples of order 100 or less, and another having counterexamples in 
the range 300 to 400. The outstanding exception is the class (2,3,0) which requires 
about five times as many vertices as the smallest fullerene counterexample. This 
example is an egregious exception (Figure 6.7). It is natural to wonder why it needs 
so many vertices.

Although this is perhaps not the most precisely defined of questions, we can at 
least note that all the other counterexamples have one of two rough shapes: either a 
characteristic roughly tetrahedral cluster of defects, or a trigonal-sandwich structure. 
The class (2,3,0) does not allow either of these groupings. For polyhedra in this 
class, the total defect of 12 is made up of contributions 3, 3, 2, 2, 2. A triangular shape 
would require distribution of these defects in 3 groups of defect 4 each (not possible). 
Similarly, a tetrahedral shape would require 4 groups of defect 4 each (again not 
possible) The eventual first counterexample in (2,3,0) includes four groups of defect 
3, 2, 3 and 4, respectively, and spring embedding [16] suggests a starfish-like shape, 
with four arms (Figure 6.8).

For cubic graphs that also allow faces of size larger than 6, counterexamples occur 
early, and are abundant [13]. These results suggest the conjecture that every infinite 
class of cubic polyhedra described by allowed and forbidden face sizes contains non
spiral elements.
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Figure 6.6: Minimal counterexample for sequence (2,3,0) with 2170 vertices
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Figure 6.7: The landscape of spiral counterexamples. In the triangular coordinate 
system, the vertices of the master triangle represent 'pure' types (4,0,0), (0,6,0) and 
(0,0,12), and in general the values p3, p$, and ps are proportional to the lengths 
of perpendiculars to the triangle sides. Each black dot represents a counterexample 
with the number of vertices indicated; minimal counterexamples are labelled in bold 

face; those numbers marked with an underline are not claimed to be minimal.
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6.A A 3D em bedding  of the m in im al counterexam ple from  
the class (2,3,0)

Figure 6.8: A 3D embedding of the minimal counterexample from the class (2,3,0)
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Conclusion

In this thesis we discussed recursive algorithms for generation of three families of 
graphs, namely: /c-angulations, {ki,k2,- ■ ■ ,k t}-angulations and 4-face deflatable hy- 
pohamiltonian graphs. The last generator allowed us to find the smallest known 
planar hypohamiltonian graphs with 40 vertices while the previous smallest known 
has 42 vertices. Then we designed a method for isomorphism checking and canonical 
labelling of 2-connected plane graphs and finally we analysed the face-spiral conjec
ture for fullerenes on a larger family of plane graphs and showed that it does not 
hold.

In the second chapter we discussed how /c-angulations can be generated recur
sively from triangulations or quadrangulations. Then we optimised the generator 
using a careful definition of canonical code for the graphs used in the generation tree 
in addition to looking ahead and discovering the children which are not going to be 
accepted and pruning the generation tree.

We defined the recursive generation such that intermediate graphs are not re
quired to belong to the target family (in this chapter /c-angulations). This approach 
allowed us to start from triangulations or quadrangulations, but this extra flexibil
ity impacts the performance. So to improve this result one could think of another 
approach which starts with a set of irreducible /c-angulations and define the expan
sions such the intermediate graphs be /c-angulations too. Such a generator is quite 
likely to be more efficient as potentially it could have very few intermediate graphs 
in comparison.

A natural extension of this study is to generate not only /c-angulations which have 
only faces of size k, but also {/ci,Zc2 , • • • ,/Cf}-angulations which include plane graphs 
with all face sizes in {Zci,/c2 , • • • , k t}. This extension is discussed in detail in the fourth 
chapter where we showed how simple plane graphs with specified face sizes can be 
generated recursively from triangulations or quadrangulations. Then we optimised 
the generator using a careful definition of canonical code for the graphs used in the 
generation tree in addition to looking ahead and discovering the children which are 
not going to be accepted and pruning the generation tree.

In the sixth chapter we tackled the problem of finding the smallest hypohamil
tonian graph and reduced the previous record from graphs with 42 vertices to 40 
vertices. Despite the new planar hypohamiltonian graphs discovered, there is still a 
wide gap between the order of the smallest known graphs and the best lower bound 
known for the order of the smallest such graphs, which is 18 [1]. One explanation for 
this gap is the fact that no extensive computer search has been carried out to increase 
the lower bound.

It is encouraging though that the order of the smallest known planar hypohamil-
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tonian graph continues to decrease. It is very difficult to conjecture anything about 
the smallest possible order, and possible extremality of the graphs discovered here. It 
would be somewhat surprising though if no extremal graphs would have nontrivial 
automorphisms (indeed, the graphs of order 40 discovered in the current work have 
no nontrivial automorphisms). An exhaustive study of graphs with prescribed auto
morphisms might lead to the discovery of new, smaller graphs. The smallest known 
cubic planar hypohamiltonian graph has 70 vertices [2]. We can hope that the current 
work inspires further progress in that problem too.

In chapter seven we work on the face-spiral conjecture and consider not only 
fullerenes which have only faces of size 5 and 6, but also plane graphs with 3-faces 
and 4-faces and realized that the conjecture does not hold for any of these families. 
One obvious comment on the results presented here is that non-spiral cases are found 
reasonably early for all but one of the 19 classes, with one set of classes having non
spiral counterexamples of order 100 or less, and another having counterexamples in 
the range 300 to 400. The outstanding exception is the class (2,3,0) which requires 
about five times as many vertices as the smallest fullerene counterexample. This 
example is an egregious exception (Figure 6.7). It is natural to wonder why it needs 
so many vertices.

For cubic graphs that also allow faces of size larger than 6, counterexamples occur 
early, and are abundant [13]. These results suggest the conjecture that every infinite 
class of cubic polyhedra described by allowed and forbidden face sizes contains non
spiral elements.

We also hope the recursive generations discussed in this thesis will inspire other 
induction proofs or other generator to help solving or finding counterexamples for 
different problems in mathematics, computer science and chemistry.
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