
Extensions of Modal Logic KTB and
Other Topics

Michael Stevens

August 2009

A thesis submitted for the degree of Doctor of Philosophy
of the Australian National University

Dedicated to my parents.

D eclara tion

The work in this thesis is my own except where otherwise stated.

Michael Stevens

A cknow ledgem ents

I would like to thank Tomasz Kowalski, my first supervisor, for his support during
the first couple of years of my work. He was always available for discussion, and
his help was invaluable.

I also thank Rajeev Gore, who stepped into the supervisor role after Tomasz
left Australia, and did an impressive job, in spite of his unfamiliarity with my prior
work. I’d also like to thank Tomasz’s colleagues, particularly Yutaka Miyazaki,
who provided me with some of Tomasz’s notes, enabling me to reconstruct some
of our work after his departure.

Thanks to John Lloyd and John Slaney. Both have taken time to provide
useful advice and input at various points. John Lloyd in particular was so good
as to read an earlier draft of this thesis, and provide comments.

vii

A b strac t

This thesis covers four topics. They are the extensions of the modal logic KTB,
the use of normal forms in modal logic, automated reasoning in the modal logic
S4 and the problem of unavoidable words.

Extensions of KTB: The modal logic KTB is the logic of reflexive and
symmetric frames. Dually, KTB-algebras have a unary (normal) operator / that
satisfies the identities f(x) > x and ->x < f(~>f(x)). Extensions of KTB are
subvarieties of the algebra KTB. Both of these form a lattice, and we investigate
the structure of the bottom of the lattice of subvarieties. The unique atom is
known to correspond to the modal logic whose frame is a single reflexive point.
Yutaka demonstrated that this atom has a unique cover, corresponding to the
frame of the two element chain. We construct covers of this element, and so
demonstrate that there are a continuum of such covers.

Normal Forms in Modal Logic: Fine proposed the use of normal forms
as an alternative to traditional methods of determining Kripke completeness.
We expand on this paper and demonstrate the application of normal forms to a
number of traditional modal logics, and define new terms needed to apply normal
forms in this situation.

Automated reasoning in S4: History based methods for automated rea­
soning are well understood and accepted. Pliuskevicius & Pliuskeviciene propose
a new, potentially revolutionary method of applying marks and indices to se-
quents. We show that the method is flawed, and empirically compare a different
mark/index based method to the traditional methods instead.

Unavoidable words: The unavoidable words problem is concerned with
repetition in strings of symbols. There are two main ways to identify a word
as unavoidable, one based on generalised pattern matching and one from an
algorithm. Both methods are in NP, but do not appear to be in P. We define
the simple unavoidable words as a subset of the standard unavoidable words
that can be identified by the algorithm in P-time. We define depth separating

homomorphisms as an easy way to generate a subset of the unavoidable words
using the pattern matching method. We then show that the two simpler problems
are equivalent to each other.

C on ten ts

Acknowledgements vii

Abstract ix

1 Introduction 1

2 Logical and Algebraic preliminaries 5
2.1 Formulas... 5

2.1.1 Sem antics.. 6
2.1.2 Substitution... 7
2.1.3 Normal Form s.. 7

2.2 L o g ic s .. 9
2.2.1 Classical Logic ... 9

2.3 Modal Logic.. 10
2.3.1 Syntax of K ... 10
2.3.2 Semantics of K ... 11
2.3.3 Logics KTB and S 4 ... 13

2.4 Sequent C a lcu li... 13
2.4.1 Modal Negation Normal F o rm .. 14
2.4.2 Basic sequent c a lc u lu s .. 15
2.4.3 Modal Rules... 16
2.4.4 Creating countermodels ... 18

2.5 A lg e b ra ... 19
2.5.1 Boolean A lgebras.. 19
2.5.2 Modal Logic and Boolean Algebras with Operators 25

3 Extensions of KTB 29
3.1 Introduction... 29
3.2 Definitions.. 29

xi

CONTENTSxii

3.3 Prior Results .. 32
3.4 The n-Spider .. 33
3.5 The Infinite Saw .. 38

4 Normal Forms 47
4.1 Introduction... 47
4.2 Preliminary Definitions... 48
4.3 Standard model constructions.. 52

4.3.1 The graded model... 52
4.3.2 The graded t r e e ... 53
4.3.3 The ungraded m o d e l ... 54

4.4 Some basic results.. 55
4.5 A pplica tion ... 55

4.5.1 E x am p les.. 56
4.5.2 A failure... 61

5 Proof Search in S4 65
5.1 Introduction... 65

5.1.1 Termination issues in S 4 ... 65
5.2 Heuerding’s C alcu lus.. 68

5.2.1 Refining Heuerding’s c a lc u lu s .. 71
5.3 The Marks and Indices m e th o d ... 71

5.3.1 Method discussion .. 73
5.3.2 Issues .. 75

5.4 Alternative Marking M ethod... 77

6 Unavoidable Words 81
6.1 Introduction... 81

6.1.1 Formal D efin itions.. 82
6.1.2 Decidability... 83

6.2 Other defin itions.. 85
6.3 Basic R e s u lts .. 86

6.3.1 Singletons.. 86
6.3.2 The Zimin w ord ... 87

6.4 Simplifications.. 90
6.4.1 Simply reducible w ords.. 90
6.4.2 Long unavoidable w o rd s ... 91

6.5 Implied Unavoidability... 92

CONTENTS xiii

6.6 Counterexamples.. 93
6.6.1 Unification as the first step ... 94
6.6.2 Partial red u c tio n .. 94
6.6.3 Free-set s iz e ... 94
6.6.4 Simple strings.. 95
6.6.5 Splitting entails a red u c tio n ... 95
6.6.6 Ordering reductions... 95

7 C onclusions and Further W ork 97

A E num eration o f long words 101

B Som e F in ite G raphs Covering V (A2) 103

B ibliography 106

Chapter 1

Introduction

Modal logic is an extension of classical logic. Where classical logic merely states
things as true or false, using syntactic connectives for conjunction (A), disjunc­
tion (V), implication (—>) and negation (-1), modal logic extends this to handle
concepts that are possibly true or false, with extra connectives for necessity (□)
and possibility (O). This thesis covers a number of disparate topics, but modal
logic forms a unifying thread for most of the various chapters.

While classical logic uses truth tables for its semantics, the semantics of modal
logic is based on directed graphs, called frames. Intuitively, every vertex in a
graph can give a different truth value to logical propositions. The normal modal
logic K is based on the set of all possible graphs, but there are many modal logics,
each based on a different set of graphs. For example, KTB is based on reflexive,
symmetric graphs, while S4 is based on reflexive, transitive graphs.

Axiomatically, classical logic uses a finite set of axioms and the rule of Modus
Ponens. To this, the modal logic K adds a new rule of inference, the rule of
necessitation, which allows our reasoning to extend from a single vertex to many.
As with classical logics, one may characterise individual modal logics by extending
a base modal logic with axioms. The logic KTB is the logic K extended by axioms
Up — *■ P (reflexivity), and OUp — ■» p (symmetry), while S4 is K extended by the
axioms Op —> p (reflexivity) and Up — > p (transitivity).

Classical logic has well defined normal forms, such as disjunctive normal form
and conjunctive normal form. It is possible to transform any formula into one
of these normal forms without changing its logical validity. If a formula is true
under a particular set of circumstances, then the normal form of the formula will
also be true, and vice versa. Modal logic, being based on classical logic, inherits
this property, albeit with more complex normal forms.

1

2 CHAPTER 1. INTRODUCTION

While humans can work with modal logics with relative ease, computers re­
quire strict rules. Automated reasoning focuses on the proof methods that allow
computers to create a proof within the logic without human input. Usually, we
care about satisfiability proofs, showing that under some set of circumstances, a
formula is true, and that these circumstances are compatible with the assump­
tions of the logic under discussion.

Each chapter of this thesis covers a different field. One chapter discusses
extensions of the modal logic KTB, one discusses normal forms in modal logics,
one discusses the automated reasoning methods for the modal logic S4, and a
last covers unavoidable words. Each chapter has been made as self-contained as
possible. It is possible to read and understand an individual chapter without
touching the other three.

KTB is in some sense, a logic of graphs, so the question of its possible exten­
sions is an interesting one. It is well known that the logic, like all reflexive logics,
has a single maximal extension. The problem of almost maximal extensions, in
the sense that any further specification will reach the maximal extension, has also
been solved. Chapter 3 discusses the logical next step from these two results, the
case of logics that, if extended, will reach an “almost-maximal” extension, and
shows that while the previous two classes were small, this class is uncountably
large.

While our intuition of modal logics is that they reason within directed frames,
some logics are not so simple. The property of being defined by a set of frames, as
KTB is defined by reflexive, transitive frames, is known as Kripke completeness.
When discussing modal logics, the problem of Kripke completeness is essentially
a practical one. Kripke frames are a powerful and intuitive tool for reasoning
about logics. However, Kripke frames can only be applied to Kripke complete
logics. Thus, proving Kripke completeness is an important step in applications of
modal logic. There are a couple of methods that are popularly used to prove that
a logic has Kripke completeness. Chapter 4 discusses a third, less well known
method of demonstrating completeness.

Automated reasoning is a reasonably mature field, with applications in arti­
ficial intelligence [35], computer security[11] and other areas [4]. For automated
reasoning, it is necessary to guarantee termination since it is possible for a com­
puter to enter an infinite loop, applying the same rules over and over. The
standard, history-based methods of ensuring termination keep track of rule ap­
plication and prevent repetition. They are well understood. However, the paper
[36] claims a new method, that could potentially be dramatically more efficient

3

than the existing methods. Chapter 5 discusses this new method, and how it
compares to the existing methods.

Chapter 6 is not about modal logic. Instead, we consider the problem of
unavoidable words, which has applications to assorted algebraic problems, as was
first discovered in 1906. Loosely, it involves determining that some patterns must
occur in any sufficiently long string, while other patterns can be avoided by strings
of arbitrary length.

The obvious question that arises from such a problem is determining which
patterns are unavoidable, and which may be avoided. In the 1970’s an algorithm
was discovered to solve this problem. However, the algorithm is complex. Chap­
ter 6 discusses some properties of the problem, and how they might be used to
simplify the algorithm.

4 CHAPTER 1. INTRODUCTION

C h ap te r 2

Logical and A lgebraic
p relim inaries

Some of the chapters in this thesis use common definitions of logic and algebra.
For convenience, these definitions are placed here, in a separate chapter, rather
than being repeated in each chapter. Readers familiar with modal logic and
algebra may skip this section. Readers seeking a more detailed introduction to
modal logic are advised to consult a textbook. The logical introduction is based
mostly on the book Modal Logic, by Chagrov and Zakharyaschev [10]. An exellent
introduction to algebraic logic is provided by Venema [7]

2.1 Formulas

To begin with, we shall define formulas. A formula, usually written with lower
case Greek letters p, ip, 1S made up of some basic elements, bound together
with some set of logical connectives. A set of formulas will be denoted with
uppercase Greek letters, such as T, E, A. We shall commence with a purely
syntactic definition:

The first basic element of a formula is its set of propositional variables,
denoted with lower case Roman letters p , q , r . . sometimes with subscripts or,
more rarely, superscripts for distinguishing multiple variables. The second basic
element is the logical constant of falsehood, J_.

To create a formula, these basic elements are bound together with binary
logical connectives A (and), V (or), —■* (implies), and the punctuation of “(” and
“)”. Thus, we recursively dehne the set of formulas:

As a base case, T is a formula, as is any propositional variable p.

5

6 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

For the recursion, if p and iß are both formulas, then so are:

(f A iß p A iß p —> iß (p)

To this, we add a few derived elements. The unary logical operator (not) is
defined by -up = (yj 1). The logical constant of truth, T, is defined by being
not falsehood: T = -i± = (_L —> _L).

2.1.1 S em antics

Having defined the syntax of formulas, it is reasonable to ask what they actually
mean. A valuation is a function that maps propositional variables to true/false
values. A valuation v can be used to construct a recursive function f v that maps
formulas to truth values, as follows:

If p is true for some particular we say that v\ provides a model for p. If
p is false for a valuation we say u2 provides a counter-model for ip, or that u2
refutes p. We say that a formula p is valid if for all possible v we have f v{p) =

f v(T) = false

fv(p) = v(p)

true if f v(p) = true and f v(iß) = true

false otherwise

true if f v(p) = true or f v(pß) = true

false otherwise

true if f v(p) = false or f v(ip) = true

false otherwise

From this definition, we can derive f v for our derived operators:

fv(T) = true

true.

2.1. FORMULAS 7

2.1 .2 S u b stitu tio n

The operation of substitution transforms formulas into other formulas. A su b ­
s t i tu t io n s is a set. Its elements have the form ip/p, where p> is a formula and p
a propositional variable. In a substitution, each propositional variable occurs at
most once on the right hand side: it cannot have both ip/p and ip/p as members.
From the substitution s, we define a function s from propositional variables to
formulae:

s (p) = [V if f / p € s
p otherwise

Given this function, we define the operation ips of applying a substitution to
a formula as follows:

As a base:
ps s(p)

T s = _L

For the recursive case, for any binary operation Q ,

(i f O 'Ip)S = p s O p j s

So, for example, if we take the formula ip = (p A q) V (-p A ->q), and the
substitution s = {(p —> r)/p } , we have:

ps = ((p —> r) A g) V (-i(p —♦ r) A -«g)

Observe that the substitution is applied only once. We do not recursively
apply the substitution to the new formula, which would create an infinite loop of
substitutions.

2.1 .3 N orm al Form s

At several points in this thesis, we shall rely on normal forms to simplify an
argument. It is clear from the semantics and our use of derived operations that
there are various formulas that have equivalent truth values. The idea behind a
normal form is to use such equivalences to produce formulas of known structure.
For instance, we have the De Morgan laws:

P A q = - '(- ’P V -iq)

pM q — -10P A -,q)

8 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

We could use the De Morgan laws to remove all instances of the A operator from
a formula.

An example of normal form which we shall refer to later is negation normal
form. Placing a formula into negation normal form is a two stage process. First
convert all instances of the —» operator into instances of the -> operator, using the
conversion p — > rjj = ip\/-ip. The second step of the conversion is to “push in” the

operator so that in any subformula of the form - kp, p is a single propositional
variable. To do this, we use the De Morgan laws and eliminate double negation:

= (-up) A (- ^)

A iß) = (- îp) V (-«VO

= i f

Repeated application of these three laws w ill produce a new formula that has the
same truth value as the old formula. However, it will have no instances of —
and all -> instances will be immediately followed by a propositional variable. For
example, the formula (p A q) —> r becomes r V - i(p A q), and then r V (~>p V ->q)
when converting to negation normal form.

When using normal forms, especially for automated reasoning, the complexity
of the the process, and the complexity of the resulting formula are important con­
siderations. We use normal forms to simplify our reasoning, but the complexity
of reasoning about an arbitrary formula is based on the complexity of reasoning
about the simpler formula, plus the complexity of reducing the arbitrary formula
to normal form. If the conversion process is exponential in complexity, then it
does not matter if we can apply a simpler reasoning to the resultant formula,
reasoning about arbitrary formulas w ill require exponential complexity.

The negation normal form is not exponential in complexity. The conversion
of p —> ip into iß V ->p replaces one operator with two, for a linear change in
complexity. Eliminating double negation actually reduces complexity, and, in
the worst case, the De Morgan laws will take a formula of length l to one of
length 2/, a linear multiplication of the complexity of a formula. In the extreme
case, a single -> operator can be turned into a -> operator in front of every single
propositional variable in a formula. For example:

(p V (q A (r V p))) = ->p A (->(/ V (t A -ip))

2.2. LOGICS 9

2.2 Logics

A logic L is considered to be a set of formulas, closed under some set of inference
rules. An extension of the logic by a formula p, written L 0 p is the closure of
the set HJM under the same rules. We call the basic set of formulas, before
taking the closure, the axioms of the logic. We call any member of the set L a
theorem of the logic L.

2.2.1 Classical Logic

For an example, take classical logic, the simplest logic that will be of interest
within this thesis. One set of axioms for classical logic, taken from Chagrov and
Zakharyaschev [10] is:

A1 po -> {pi po)
A2 (p0 -* (pi -> p2)) -»> {{po -> pi) -> (p0 p2))
A3 po A p i -+ po
A4 Po A p i p i
A5 po * (pi * Po A Pi)
A6 po -> Po V pi
A7 Pi -» Po V pi
A8 (po p2) -♦ ((pi -> p2) -> (Po V pi —> p2))
A9 _L -> po
A10 po V (po -> ±)

Classical logic further has these two rules of inference:

Modus Ponens: From p and p —+ ijj, we can infer tp.

Substitution: From a formula (p, we can infer ps for any substitution s.

A derivation of a formula p is a finite sequence of formulas xjji.. . ^ n = p,
where each ipi is either an axiom, created by applying the substitution to some
earlier ^ , or created by applying the rule Modus Ponens to some earlier elements
of the sequence i/jj, xj)k- Clearly, to make the rule of Modus Ponens applicable, 'ipk
must have the form ijjj —> If such a derivation exists for a formula, we say it
can be derived.

The logic defined by the calculus consists of the set of all formulas that can
be derived. A calculus such as this is said to be sound if every formula that can

10 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

be derived in this manner is a semantically valid formula. It is complete if every
formula that is semantically valid can be derived.

This calculus is a sound and complete with respect to the semantics defined
in Section 2.1.1 [10].

2.3 M o d a l Logic

Modal logic extends our syntax by adding a new unary operator, □. We may
define its dual operator, O by Op = ->0->p. This □ operator can have many in­
terpretations, however, one common interpretation is that □ denotes necessity . 1

Under this interpretation, Op then denotes that that “not p is not necessary”.
That is, p is possible.

2.3.1 S yn tax o f K

The basic normal modal logic is K. It starts with the same axioms and inference
rules as classical logic, and then adds the axioms and inference rules for a new
operator □. Thus, our method for formula construction becomes:

T is a formula, as is any propositional variable p.
If p and 'ip are formulas, then so are:

p Alp p A'lp p ip (p) Op.

Compared to the definition in Section 2.1, the only addition is the clause that
if p is a formula, so is Op.

For our modal calculus, this addition is meaningless without some way of
introducing formulas of the form Op into derivations. Thus, we add a new axiom
to the logic:

A ll D(p0 -> pi) -> {Op0 - > 0 Pl)
and a new inference rule:

Rule of Necessitation: From p, we can infer Op.

Just as the classical calculus was sound and complete with respect to the
semantics outlined in Section 2.1.1, this new calculus is sound and complete with
respect to the semantics of K, outlined formally at the end of Section 2.3.2 [10].

1 Other interpretations include provability (Op means p can be proven), tense (Op means p
is true in all future states) and epistemic (Op means p is known to be true).

2.3. MODAL LOGIC 11

2.3 .2 Sem antics o f K

The semantics of K hinge on the interpretation of □. Interpreting it as a ne­
cessity operator, we use the semantics of possible worlds. In classical logic,
a statement is either true or false. However, in reality, some statements can be
circumstantially true.

We formalise our intuition of modal logic using Kripke frames. Kripke seman­
tics is a formal semantics for modal logic. The basic element of this semantics
is the Kripke frame. A Kripke frame lays out some set of possible worlds, and
an accessibility relation between the worlds. A Kripke model adds a valuation.
Where classical valuations map propositional variables to true or false values, a
valuation in a Kripke model maps world-variable pairs to true/false values.

Within a world of a Kripke model, a valuation defines the values that propo­
sitional variables have at that world. Formulas without any occurrence of the
modal operators are evaluated at that world just as they would be in classical
logic.

If a formula has the form Dp, then it is true at a world if p is true at all
worlds related to that world under our accessibility relation. Dually, a formula
of the form Op is true at a world if p is true at some world related to that world
under the accessibility relation.

Some formulas will be true at every world in a model. We say these formulas
are true in the model. Some formulas will be true in every model based on a
particular frame. We say these formulas are true in that frame.

When a formula p is not true at some world in a Kripke model, we say that
the model is a countermodel for p.

Formally, a Kripke frame is a pair (IT, i?), where IT is a set of worlds and
R C W x W a relation between worlds. A valuation V on a Kripke frame is a
map from propositional variables to sets of worlds. If w G V(p), then p is true at
the world w. A Kripke model is the triple (IT, i?, V).

When we need to refer to particular Kripke frames, we generally use a partic­
ular font. We denote frames with letters T ', £/, and models with letters

As with Section 2.1.1, we build the truth of a formula at a given world in a
model inductively:

Given a Kripke model (IT, R, V), a world w G IT, we construct a function f w
to map formulas to truth values at the world w:

fw(-L) = false

12 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

I true if w G V (p)
fw(P) = <

false otherwise

fw(<P A VO
true if f w(<p) = true and fw(ijj) = true

false otherwise

true if fw(<p) = true or f w(ip) = true

false otherwise

true if fw(tp) = false or fw{i>) = true
fwVP -* = <

I false otherwise

I true if Vx 6 W, if rei?x then fx(p) = true
fwiS-^p) = \

I false if 3x G ft7 such that wRx and fx\p) — false

A model Ad = (W, /?, V) validates a formula <p, or equivalently, </? is true in the
model if, for all w G W, fw((p) = true. We write this A4 t= p.

A frame T = (W, i?) validates a formula <p, or equivalently, is true in the
frame, if for all possible valuations V, the model (W, R,V) validates <p. We write
this T h (/?.

A frame T validates a logic L if T h p for all formulas p G L. We write this
T N L. A frame (W, i?) is finite if the set W is finite.

A logic is Kripke complete if there exists a set of frames S such that for
every F G 5 , F N L, and for every formula p ^ L, there exists a frame F G 5

such that F p. A logic has the Finite Model Property (FMP) if it is Kripke
complete with respect to a set of finite frames.

All logics with the finite model property are of course Kripke complete, but
not all Kripke complete logics have the finite model property, and not all logics
are Kripke complete. Examples of logics without the FMP can be found in [17],
while some logics without Kripke completeness can be found in [15]. Fortunately,
this thesis deals in logics that are Kripke complete, so the issues of representing
non-Kripke complete logics need not arise.

The modal logic K is the set of formulas that is validated by every possible
Kripke frame. That is, for a formula p G K, and an arbitrary Kripke frame F ,

F\= (p.

2.4. SEQUENT CALCULI 13

2.3.3 Logics K T B and S4

Two extensions of the logic K are K T B and S4. Both add axioms that can easily
be defined as restrictions on frames. They are both normal extensions of the logic
K . That is, both K T B and S4 are closed under the operations of Modus Ponens,
Substitution and Necessitation2

The first, K T B , adds two axioms to the axiom set of K . These axioms are
Op —■» p and OUp —► p. We write this as K T B = K ® ü p -> p 0 OOp —> p,
where the 0 operator indicates adding an axiom and taking the closure under
the three inference rules of K. The axiom Up —+ p is the axiom of reflexivity. A
frame (W, R) validates Up — » p iff for all w E VP, it is the case that wRw. The
axiom OOp — > p is the axiom of symmetry. A frame (VP, R) validates OOp — > p
iff for all w, v E IP, it is the case that wRv implies vRw.

The logic S4 also adds two axioms to K. As before, we add Op —> p, the
reflexivity axiom. The second axiom we add is Dp —> Ddp, the axiom of transi­
tivity. A frame (IP, R) validates □ p —> OOp iff for all w, v, u G VP, it is the case
that wRv and vRu, together, imply that wRu.

An important consideration for axioms is that as □ and O are dual operators,
every axiom involving one modal operator has an equivalent using the other.
Thus, reflexivity, Op —> p, may also be written p —► Op. Likewise, symmetry can
be written p —► DOp and transitivity may be written OOp —> p.

2.4 Sequent Calculi

An alternative formalism for discussing logics is the use of sequent calculi, also
known as Gentzen systems. Where our prior formalism involved many axioms
and few inference rules, a sequent calculus involves only a couple of axioms, and
many inference rules.

The strength of sequent calculi that concerns us in this thesis is their applica­
bility to automated reasoning. Unlike the semantics of the previous section, the
inference rules of the sequent calculus can be applied backward with ease. For
example, given a formula <p A ip, we can use an inference rule to state that this
formula only belongs to our logic if both tp and xp belong to our logic.

Thus, repeated backwards application of our inference rules allows us to work
backwards, going from one formula to several simpler formulas, until we eventu­
ally reach formulas that are axiomatically true. Of course, it is also possible to

2There exist subnormal logics, but these are outside the scope of this thesis.

14 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

attempt to derive a formula that is not true. In this case, our derivation will reach
a state where there is no applicable inference rule, but none of the formulas we
have reached are axiomatically true, in which case we terminate the backwards
application, declaring that this formula is not a formula of our logic.3

For the sake of simplicity, this thesis shall consider only single-sided sequent
calculi, without explicit structural rules. The traditional structural rules of weak­
ening (adding extra formulas to a formula set), contraction (removing duplicate
formulas from a formula set and permutation (reordering the formulas within a
set) are still valid. They are simply not made explicit. Substructural logics omit
one or more of these rules, and are not covered within this thesis.

All our sequent calculi shall be cut-free. That is, they do not contain the rule
of inference known as cut. The cut rule states that if we can derive a formula p
from a formula set T, and we can derive a formula set A from ip, then we can derive
a A from T. Including the cut rule can make derivations significantly shorter.
However, for the calculi we discuss, it is not necessary for any derivation, and
our primary use of sequent calculi within this thesis is for automated reasoning.
The cut rule creates significant difficulties for automated processes.

Other kinds of sequent calculi exist, but are outside the scope of this thesis.
Further, we shall assume all our formulas are in a modal variant of the negation
normal form in Section 2.1.3. We describe the necessary modifications to handle
modalities below. We take our discussion from Troelstra & Schwichtenberg [42].

2.4.1 M odal N eg a tio n N orm al Form

As in the non-modal case, the first step in converting a formula to negation
normal form is to convert all instances of the —» operator into instances of the ->
operator, using the conversion <p —> iß = ip V -up.

The second step, pushing the -i in to simplify subformulas of the form -up,
requires an additional pair of rules to properly handle the modal □ and O oper-

3Alternatively, as discussed later, backwards application may enter an infinite loop, never
terminating. That’s bad, we shall discuss ways of preventing this from happening.

2.4. SEQUENT CALCULI 15

ations. Thus, our new set of rules is:

V x p) = (~>p) A (-1^)

A tp) = (-up) V (-u/>)

—)□(£? = 0 —*p

— i O y ? = □ — 1<^?

= v
Again, repeated application of these equalities will eventually reach a formula

where all instances of -> are immediately followed by a propositional variable.
As before, converting a formula to negation normal form is a non-exponential
process. The only new rules handle modalities, and these rules do not actually
change the length of the formula.

2.4 .2 B asic se q u e n t ca lcu lu s

We shall begin by laying out a sequent calculus for classical logic, without any
modal operators. A sequent in our one-sided calculus is a set of formulas. We say
a sequent p \ , .. . p n holds if the disjunction of all the formulas p\ V . . . M pn is true.
When we need to discuss individual elements of the sequent, we can consider the
comma to act as a form of set union. The sequent written T, p, A is the formula
set T U {p} U A.

In classical logic, we have the axiom A10: po V (po —► _L). We shall use this as
the basis for the axiom of our calculus. A sequent <pi,.. .<pn holds axiomatically
if there exist some i , j such that pi = p and pj = ~>p for some propositional
variable p.

For our inference rules, we need to handle the various operators of our logic.
Since we have reduced our formulas to negation normal form, we only need to
handle the operations of A and V.

The operation of V is simple. As we said, a sequent p i , . . . p n holds if the
disjunction of all its the formulas pi V . . . V pn is true. As such, for any set of
formulas T, the sequent T, xp holds if and only if the sequent T, p V xp holds.

The second inference rule, for A, requires slightly more complexity. Recalling
our semantics for classical logic, we observe that if both the sequents T, p and
F, xp hold, then so will T,p f\xp. Thus, unlike our V rule, the rule for A will require
two sequents for premises.

We write these rules in Figure 2.1. For the rules (A) and (V), the sequent(s)
above the line are the premise, and the sequent below the line is the conclusion.

16 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

{Axiom) p , —ip, T (Verum) T, F

(V) p v 'ip, r

(A)
v, r -0, r

9? a -0, r

Figure 2.1: Basic inference rules

The conclusion holds if all the sequents in the premise hold. The axioms are
sequents that always hold, as discussed above.

Now, we can either read these rules forward, as taking axioms and building
more complex formulas until we have the desired proof, or backwards, taking
complex formulas and breaking them down into subformulas until we reach ax­
ioms. We call the set of applied rules that go from axioms to conclusions a proof
tree. An example proof tree is in Figure 2.2, which derives {{p A q) V ~>q) V ->p,
which is the negation normal form of p —■* (q — + {p A q)).

axiom axiom
^ ~<p. ^q. p ^p. ->(/. q

^ -'P, A q
(p A q) V ^ q , ^ p

(i p h q) V -•q) V -.p

Figure 2.2: A simple prooftree

It is important that our sequent calculus reflects the semantics that we have
previously outlined. As in Section 2.2.1, we care about the soundness and com­
pleteness of the logic. The inference rules in Figure 2.1 are sound and complete
with respect to classical logic.

2.4.3 M odal R ules

The next important step for our calculus is to add rules to handle the addition
of the □ and O modalities to our formulas4.

4Because we reduce everything to negation normal form, we cannot simply use the duality
of □ and O to handle both with one rule

2.4. SEQUENT CALCULI 17

Exactly what inference rules we shall need depend on our logic. The inference
rules encode information that would previously have been placed in axioms. Thus,
any modal logic we wish to encode will need its own inference rules.

We shall only present the inference rules for the logic S4. Firstly, this is
the only logic we shall actually use with the sequent calculus. Secondly, for
simplicity, we have chosen to present only cut-free sequent calculi. While cut-free
formulations of S4 are well known [14], there is no known cut-free calculus for
KTB. the other main logic of interest. The modal logic S5, which has transitivity,
reflexivity and symmetry does have cut-free formulations, but all require extra
notation.

To create a sequent calculus for S4, we need to add two new rules to the rules
in Figure 2.1. One shall handle O, and will embody reflexivity. The second shall
handle □ formulas, and will allow us to properly handle transitivity. These two
new rules are given in Figure 2.3.

(O) ^ £(□, JUM — —
Dv?,oA,r

Figure 2.3: Modal rules for S4

It can be shown that using the rules in Figures 2.3 and 2.1, we create a calculus
for S4 that is both complete (can derive all formulas within S4) and sound (will
not derive any formula not in S4) ([42], [23]).

To demonstrate the application of these modal rules, we shall derive the ax­
ioms □ p —* p and Dp —» UUp within our logic. First, we reduce the axioms
to negation normal form. Dp —> p becomes p V O-ip, and Dp —► p becomes
□ □p V O-ip. Then, we may derive them as shown in Figure 2.4.

Axiom

(O) -

(V)

p, O-ip, -1

p V O—ip

Axiom

(O) El o - PE
(□, JUMP)

(□, JUMP) Dp’ °~ ip
DDp, Q—'P

□ □p V O—>p

Figure 2.4: Deriving the axioms of S4 within our sequent calculus

One issue with these rules that is immediately apparent is that the basic
inference rules for classical logic move from simple premises to more complex

18 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

conclusions. However, this is not necessarily the case with the modal rules. In­
spection shows (O) has a premise that is no simpler than the conclusion. The
(□, JUMP) rule can also cause problems. While human mediated derivations can
deal with such things, when these modal rules are given to a computer for com­
pletely automated deduction, they can cause termination issues. These problems,
and the ways they can be solved, are discussed in more depth in Chapter 5.

2.4 .4 C reating cou n term od els

As mentioned before, it is possible to read the inference rules backwards, breaking
a formula down into simpler rules. While we have mostly focused on successful
proofs with our sequent calculus, it is possible to try and apply a backwards
proof search to a formula that is not actually in the logic. In this case, if our
search terminates, we shall eventually fail, and some branch of our proof tree
will terminate in a sequent to which our inference rules do not apply. Using the
sequent calculus provided above, the non-termination of our search is a distinct
possibility.

However, if the proof search does terminate in a failure, it is actually possible
to use our failed attempt at a proof to produce a countermodel for the formula
under consideration. That is, we view the backwards application of rules not as
creating a derivation of the formula from axioms, but as an attempt to create a
countermodel. In this case, the semantic meaning of our rules changes. Instead
of having a sequent to be proven, the sequent contains the set of formulas we are
attempting to render false. If our derivation reaches the axiom p, -p , this means
that we would simultaneously need p and -p to be false to create a countermodel
(which is clearly impossible).

This is the origin of the name (□, JUMP) for our □ rule; To create a model
in which the formula Dip in the conclusion of the sequent is false, we must move
(jump) to a new world, the premise, and demonstrate that we can make the
formula <p false. And of course, if we are to falsify a formula of the form O^, it
must also be false in the new world, so the rule (□, JUMP) preserves formulas of
the form Otp, even though it discards most other formulas when read backwards.

Examples of this process can be found in a number of sources [2], [19]. In this
thesis, we shall not need to do this. Our focus will be on termination of the S4
calculus when backwards reasoning is applied. The creation of models from the
backwards reasoning process is not something we consider.

One issue that arises when performing a backwards proof search is the im-

2.5. ALGEBRA 19

portance of backtracking. Read backwards, a rule like (□, JUMP) states that
when given formulas of the form Dip, we choose to focus on a single formula and
discard the other □ formulas. However, the process of countermodel construc­
tion can only work if all the formulas of the sequent are falsified. Thus, if our
backwards reasoning does not terminate in the axiom, we must go back to the
sequent where we applied the rule (□, JUMP) and check for other possible rule
applications (including applying (□, JUMP) to other formulas of the form □(£>).

Consider, for example, a sequent of the form ODp, CUT, Dp. If we are reasoning
backward, and apply the (□, JUMP) rule to the formula □/?, we get the sequent
Oüp, p. Here, by repeated application of the rules (O) and (□, JUMP), we could
loop forever. On the other hand, if we apply the (□, JUMP) rule to the formula
□T, then we get the sequent Oüp, T, and our axiom (Verum) is immediately
applicable, terminating our attempt with a successful derivation.

2.5 A lgebra

Algebras form the third tool that we shall use to discuss logics. While there
exist Kripke incomplete logics, algebras are a more general structure, capable of
representing arbitrary logics without completeness issues. This comes at a cost,
as algebras are also more complex and less intuitive than Kripke frames.

Universal algebra is an immense field, and this introduction is the bare min­
imum needed to understand the algebras used within this thesis. Readers inter­
ested in more detail are urged to seek out one of the numerous textbooks on the
subject. Burris & Sankappanavar [8] provide an explanation of Universal Alge­
bra, the Handbook of Modal Logic [7] explains the connection between logic and
algebra in more detail and the three volume Handbook of Boolean Algebras [33]
gives substantially more detail on boolean algebras. This introduction draws on
all three of these sources, and others, as needed.

2.5.1 B oo lean A lgebras

Thanks to the well known Stone Isomorphism theorem [39], all boolean algebras
are in fact isomorphic to algebras of sets. Here, we explain this treatment and
how it relates to traditional classical logic.

To begin, we define a boolean algebra as a set A , containing two distinguished
elements which we name 0 and 1, with some operators on the set: Two binary

20 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

operators + and *, and a unary operator —. We frequently identify the set A and
the associated algebra, writing A for the tuple (A , 0,1).

To be a boolean algebra, the operators must obey some basic properties. We
take the following list of properties from the Handbook of Boolean Algebras [33]:
Associativity x + (y + z) = (x + y) + z x • (y ■ z) = (x • y) • z
Commutativity x + y = y + x x • y = y • x
Absorption x + (x • y) = x x ■ (x + y) = x
Distributivity x • (y + z) = (x • y) + (x • z) x + (y • z) = (x + y) • (x + z)
Complementation x + (—x) = 1 x • (—x) = 0

All Boolean algebras have a canonical partial order <, defined by x < y iff
x + y = y (or, equivalently, x < y iff x ■ y = x). Further, under this canonical
order, 0 is the least element of the algebra and 1 is the greatest. Of course, from
< we may define <, > and similar operations in the usual manner.

One of the simplest examples of a Boolean algebra is the power set algebra,
Given an arbitrary set5 A, we define a boolean algebra on its power set P(X),
where 0 is the empty set, 1 is A, + is the operation U, • is the operation D and
—A is the complement A \ A of A with respect to A.

The canonical partial order < on a power set algebra is simply the order
defined by subset inclusion.

Now, for an algebra, we can define subalgebras. For an algebra B, defined
on a set B to be a subalgebra of an algebra A. defined on a set d , ß must be
a subset of A, and the operators of B must be the operators of A. restricted to
operating on the set B.

A homomorphism is a structure preserving map. Given two algebras A =
{A,+a ,-a , - a ,ÜaO a) and B = (B, + ß , -ß , - ß , 0ß , l ß), we say that a function
/ : A —> B is a homomorphism if the operations are preserved. That is, for all
x, y in A:

1. f (0A) = 0B, f (l A) = lB

2. f (x +,4 y) = f (x) + B f(y), f (x ■A y) = f{x) •B f(y)

3. f { - Ax) = - ß f (x)

The function / is an isomorphism if the function is bijective. If such a function
exists, we say A and B are isomorphic.

5This set A is not necessarily finite. If it were, many of our definitions would become
significantly simpler.

2.5. ALGEBRA 21

An algebra of sets is either a power set algebra, or some subalgebra of a
power set algebra. While it is possible to create Boolean algebras in other ways,
in 1936, Stone [39] proved a representation theorem. We provide the aspect of it
most significant to our work:

Theorem 2.1 (Stone’s representation theorem). All boolean algebras are isomor­
phic to some algebra of sets.

As such, we may assume when dealing with a Boolean algebra that it is an
algebra of sets.

Important Terms

When discussing algebras, some terms will come up repeatedly. Here we define
the various terms we shall use. These terms are not defined in alphabetical order,
but rather so a new reader may read from start to finish and understand each
new definition by reference to prior definitions.

Many of these terms are used in universal algebra, which requires somewhat
more general definitions. Here we only concern ourselves with the applications
and definitions that this thesis will apply to Boolean algebras.

Lattice A lattice is a partially ordered set in which any two elements have a
unique least upper bound and a unique greatest lower bound. All Boolean
algebras are lattices under the canonical order <.

Lattices have naturally defined meet (A) and join (V) operations. The
meet of two elements is their unique greatest lower bound. The join of two
elements is their unique least lower bound. A lattice is distributive if these
two operations distribute over each other. That is, x/\(y\/z) = (xAy)\ / (x/ \z)
and x V (y A z) — (x V y) A (x V z).

All boolean algebras are distributive, using • for the meet operation and +
for the join operation.

Atom An element a of an algebra is an atom if there is no other element x such
that 0 < x < a. In a power set algebra P(X), the atoms are singleton sets
{x}, for x G X . An algebra is atomic if for each element x of the algebra
(except 0), there exists an atom a < x. All finite algebras are atomic.

Term A term is a function, defined using our existing operators and variables,
x, x • y, x + y • 1 are all terms of Boolean algebra, and any element of the
algebra may be used in place of the variables x and y to produce a value.

22 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

Filter For a Boolean algebra A, p C A is a filter if:

• 1 G p and,

• Vx G p and My G A, x < y implies y G p and

• Vx, y G p, x • y G p.

If 0 E p , then p — A. For all elements x G A, the set p = {y : x < p} is a
filter. We call this the principal filter generated by x. It is the trivial
filter if x = 1. If 0 ^ p, we say p is a proper filter.

Ultrafilter A filter p of an algebra A is an ultrafilter if for each x G A, it is the
case that either x G p or —x G p, but not both.

Some other properties are equivalent to being an ultrafilter. A filter p is
prime if it is a proper filter and Vx, p G A, x + p G p implies x G p or y G p.
A filter p is maximal if it is a proper filter and there is no proper filter q
such that p is a proper subset of q.

The three properties of being prime, maximal and an ultrafilter are equiva­
lent. The principal filter generated by an arbitrary element a is an ultrafilter
iff a is an atom of A. In a finite algebra, all ultrafilters are principal filters.

Congruence For an algebra A, an equivalence relation ~ on A is an congruence
if for all x, x', y , y' in A, x ~ x' and y ~ y' implies —x ~ — x' and x + y ~
x' -F y'. That is, the equivalence relation respects the operations of — and
-f- (and so, by duality, also respects the operation of •).

All algebras have two trivial congruences. The first comes from the uni­
versal equivalence relation, where all elements of the algebra are considered
equivalent. The second comes from the identity relation, where no element
of the algebra is considered equivalent to any element except itself.

If an equivalence relation ~ is a congruence, then the relation ~ is entirely
defined by the set of elements x such that x ~ 1. A congruence ~ is finer
than a congruence 0 if x ~ y implies xOy. Using this as an ordering, the set
of all possible congruences on an algebra form a lattice.

We say an algebra is Congruence Distributive if the lattice of all possible
congruences on the algebra is distributive. Boolean algebras are congruence
distributive.

2.5. ALGEBRA 23

Congruence Extension Property An algebra A has the congruence extension
property if for every subalgebra B of A, and every congruence ~ on B, there
is a congruence 6 on A such that ~ = 0 G B 2.

Quotient Algebra Given a congruence ~ on A, the quotient algebra of A by
~, written A / ~ is the algebra based on the set of equivalence classes
defined by ~, and with operations defined in a natural way: a/ ~ +6/ ~ =
(a + b)/

Direct Product The direct product of two algebras A and B is defined by
taking the Cartesian product A x B, and defining all operations componen­
twise. That is, (ai, b\) + (02, 62) — (ai + a 0-2, &i + b 62)- This definition can
be extended to the product of more than 2 algebras in the obvious way.

Further, we can take the product of a set of algebras Ui£jA[, where / is an
arbitrary set. In particular, the set / can be part of some other algebra I.
In this case, an ultrafilter U in the algebra I will define a congruence on
IIje/Ai, by a ~ b if Vi € £/, a* = fy.

Ultraproduct An ultraproduct is defined with an index algebra I, a set of alge­
bras Ai , for i € /, and an ultrafilter U in I. As mentioned in the definition
of product, the ultraßlter U defines a congruence ~ in the product algebra
n iejAi. The ultraproduct is the quotient algebra created by applying this
congruence to the product algebra. We write this YlieiAi/ ~.

Note that if I is a finite set, this definition is uninteresting, since then the
ultrafilter will be defined by an atom a of I, and the quotient algebra will
be isomorphic to the algebra Aa.

Discriminator A discriminator function t is a ternary operation defined by

fa if a 7̂ b
t(a,b,c) = <

I c if a = b

An algebra has a discriminator term if there is some ternary term t(x, y , z) in
the algebra that represents the discriminator function. That is, if elements
of the algebra a, 6, c are used in place of the variables x, ?/, 2, and the term
evaluated, the result given is a if a ^ 6, or c if a = b.

Simple Algebra A simple algebra is an algebra in which the only possible con­
gruences are the trivial ones. All algebras with a discriminator term are
simple.

24 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

Variety A class of algebras is a variety if it is closed under homomorphisms,
subalgebras and direct products. That is, taking a homomorphism or sub­
algebra of a member of a variety, or taking the direct product of multiple
members of the variety will produce a member of the variety. If K is a
class of algebras, V(K), the variety generated by K is the smallest variety
containing K. Of course, K may contain only a single algebra A, in which
case we shall identify A and the class consisting of A, and write V(A).

Discriminator Variety If A is a class of algebras with a common discriminator
term t(x,y, z) then V(K) is a discriminator variety.

Projection map Given a direct product of some family of algebras IIje/Aj, the
projection map onto the j th coordinate ttj : Ebe/A ? —> Aj is defined by
7Tj({ai : i E /}) = dj. This map is always a homomorphism.

Subdirect Product An algebra B is the subdirect product of an indexed fam­
ily (Aj)i€/ if B is a subalgebra of n ie/Aj, such that for each i E /, the
projection map 7r* is a surjective mapping.

Subdirectly Irreducible Algebra An algebra is subdirectly irreducible if it
cannot be expressed as the subdirect product of other algebras. Formally, if
B is subdirectly irreducible, and B is isomorphic to some subdirect product
of a family Ai? then there exists some i such that B is isomorphic to A*.

Important Theorems

In addition to the previously mentioned Stone isomorphism, there are some other
results that will be needed, and so bear mentioning explicitly.

Theorem 2.2 (Tarski). Let K be a class of algebras. The variety generated by K
is created by taking the class of all homomorphic images of subalgebras of products
of elements of K (Written HSP(K)) [fO].

We define the variety generated by K as the smallest class containing K closed
under homomorphisms, subalgebras and direct products. This theorem tells us
that we can generate all the elements of the variety by taking these operations in
a particular order.

Theorem 2.3. Every algebra can be subdirectly decomposed into subdirectly ir­
reducible algebras. As a corollary, every variety is generated by its subdirectly
irreducible members [5].

2.5. ALGEBRA 25

This theorem tells us that subdirectly irreducible algebras are to algebras as
prime numbers are to integers. Each algebra has a subdirect decomposition, just
as each integer has a prime decomposition.

Theorem 2.4 (Jonnsson’s Lemma). Let K be a class of algebras such that the
all elements of the variety generated by K are congruence distributive. Then all
subdirectly irreducible members of the V(K) belong to the class of homomorphic
images of subalgebras of ultraproducts of members of K (Written H SPu{K))
I25j.

This lemma, together with the prior theorem, gives us another way of generat­
ing a variety. Boolean algebras with operators are always congruence distributive.
Further, if K is a finite set of finite algebras, P u (if) = K, which greatly simplifies
the problem.

Theorem 2.5. I f V(K) is a discriminator variety, then all subdirectly irreducible
members o f V(K) are simple algebras [8].

Discriminator varieties have a number of useful properties. However, this is
the only one that we will need.

Classical Logic

When dealing with classical logic, the various operators of Boolean algebras have
natural isomorphisms. The distinguished elements 1 and 0 map to T and J_, +
and • become V and A, while — becomes -i. With these natural isomorphisms,
we can translate formulas of our logic directly to terms in the algebra.

The relation < is akin to —►, in that for an algebra, x < y iff x • —y = 1,
and for a logic, x —> y is true iff x V ->y is true. However, they are not directly
equivalent, as < is a relation between elements of the algebra, where —> is an
operator, used to construct formulas.

From this, an isomorphism between algebras and classical logic becomes sim­
ple. Consider the two element Boolean algebra, in which 1 and 0 are the only
elements. Given a valuation V that assigns truth values to propositional vari­
ables, we can simply use these natural isomorphisms to directly compute the
truth value of a formula.

2.5 .2 M od al Logic and B oo lean A lgebras w ith O perators

Just as modal logic adds an extra operator □ and its dual O to classical logic,
the algebraic analog adds an extra operator / , which functions similarly to O

26 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

to Boolean algebras. It is important to bear in mind that the structure thus
described is actually dual to that of a Kripke frame so described. We have a
theory of duality, rather than isomorphism.

That is, where a Kripke frame has a set of worlds IT and a relation 7?, and the
O operator looks forward along the relation R , the operator / looks backwards
along the relation R. Fortunately, within this thesis, our main concern with
algebras is their connection to KTB, where the relationships are all symmetrical.

To formalise this duality, consider a Kripke frame (W, R). Now, take the power
set algebra on IT. That is, elements of our algebra are sets of worlds in our frame.
To define the modal operation / , analogous to O, we define f (x) = {y E W\yRx}.
Thus, if x represents the set of worlds where Lp is true, f (x) represents the set of
worlds where Op> is true.

Now, a valuation, as previously defined, maps propositional variables to sets
of worlds. In an algebra of sets, each element is also a set of worlds, so a valuation
maps propositional variables to elements of the algebra.

As with classical logic, it is possible to turn formulas into terms, and calculate
the truth value of a term directly. Thus, given an arbitrary Kripke frame, we can
define an algebra dual to the frame.

When we define logics by adding axioms, the algebraic equivalent is to impose
conditions on the operator / . For the basic logic K, there are only two conditions
on the operator / . The first property is a distributive property: f (x + y) =
f (x)+f (y) . This corresponds to the distributive property of our modal operators,
O (a V b) = Oa V Ob. The second property is that /(0) = 0. This corresponds to
the logical formula 0_L = JL.

However, not all algebras are dual to a Kripke frame. Some algebras have no
dual Kripke frame. This is not the case for any finite algebra. All finite algebras
are atomic, and by treating their atoms as the worlds of a frame, we can get a
dual frame. On the other hand, if we start dealing with non-atomic (and hence
infinite) algebras, then it is possible to create an algebra with no dual Kripke
frame. The classes of algebras with no dual Kripke frames correspond to the
logics that are not Kripke complete.

There are tools that can deal with Kripke incomplete logics, such as general
frames. A general fram e takes the (IT, R) pair of a Kripke frame, and adds an
additional set 7, containing subsets of IT. The members of 7 are called distin­
guished worlds. The set 7 must be closed under the traditional set operations
of U, D, —, and also the operation □, defined here as DA = {x 6 IT : My G
W,xRy —> y £ A}. While reasoning about models based on general frames, we

2.5. ALGEBRA 27

work with the same definitions as a Kripke model. However, we restrict the po­
tential valuations by adding a rule that for any valuation V , and any propositional
variable p, V(p) must be a member of our set I.

There are three important operations on algebras that preserve truth. These
are taking homomorphisms, taking subalgebras and taking direct products [10].
Recalling Theorem 2.2, this means that if a class of algebras all make certain
formulas true, so will the variety generated by that class. Just as a logic actually
corresponds to some set of Kripke frames, a logic corresponds to a variety of
algebras.

Extensions of a logic correspond to smaller sets of Kripke frames, and these
extensions form a lattice under the relation of inclusion. Likewise, extensions of
a logic correspond to smaller varieties, and the extensions form a lattice under
the relation of inclusion.

Modal Algebras for S4 and KTB

As mentioned, we can create modal algebras for specific logics by adding condi­
tions to the possible values of the operator / . As the logics we look at are exten­
sions of K, they inherit its restrictions of /(0) = 0 and f (x + y) = f (x) + /(p).

For the modal logic S4, we add axioms of reflexivity and transitivity. Each
of these corresponds to a restriction on / . Reflexivity, dp —> p, is dually p —> Op
and corresponds to a restriction that x < f (x). Transitivity, dp —> ddp, is
dually OOp —» Op corresponds to a restriction that f (f (x)) < f{x). If an
atomic Boolean algebra has an operator with these two restrictions, as well as
the restrictions inherited from K, then it is dual to a reflexive, transitive Kripke
frame.

For the modal logic KTB, we add axioms of reflexivity and symmetry. Re­
flexivity is the same as for S4. For symmetry, Odp —> p, we add a restriction
that x < —f — f(x). Again, adding the restrictions for symmetry and reflexivity
to the restrictions for K, we get a set of four restrictions. If the operator on an
atomic Boolean algebra corresponds to these four restrictions, then it is dual to
a reflexive, symmetric Kripke frame.

28 CHAPTER 2. LOGICAL AND ALGEBRAIC PRELIMINARIES

C h ap te r 3

E xtensions of K T B

3.1 Introduction

The modal logic KTB is a normal extension of the modal logic K, explained in
Chapter 2. The logic KTB adds to K a pair of axioms representing reflexivity and
symmetry. This logic is Kripke complete with respect to the class of reflexive,
symmetric frames. In a sense, KTB is a logic of graphs. Here, we consider
extensions of KTB. Axiomatically, an extension involves taking the logic KTB
and adding axioms. Semantically, it involves taking the set of undirected graphs
and removing some to produce the logic of a smaller set of graphs.

If we consider the extensions of KTB to be logics with more axioms, then
a “large” extension adds almost as many axioms as possible without causing a
contradiction. Dually, if we consider an extension to be defined by a smaller
set of graphs, then the large extensions are defined by very small sets of graphs.
In this chapter, we will discuss the cardinality of these “large” extensions of
KTB. We shall show that there exists a continuum of near-maximal extensions of
KTB. where “near-maximal” means that the logic has at most one non-maximal
extension.

3.2 D efin itions

Throughout this chapter, we will be moving between Kripke frames, graphs and
algebras. We shall establish a few conventions to make these transitions smoother.

Firstly, we shall use consistent fonts to denote logics L, graphs A , B , C, Kripke
frames A, B, C and algebras 21, 53, £.

When using isomorphisms between our various kinds of structure, we shall

29

30 CHAPTER 3. EXTENSIONS OF KTB

Algebra:
a b

Graph: •----•

a b
Frame: •+—+•

Figure 3.1: Equivalent structures A2, A2 and $ 2

Graph:

Frame:

Algebra:
{a, 6, c, d}

Figure 3.2: Equivalent structures; Note the rapid growth of the algebra

use consistent letters as we shift font; That is, if G = (V, E) is a graph, then
Q — (V, R) is a Kripke frame with the same universe and the reflexive closure of
E for its accessibility relation R , and 0 is the associated algebra.

Figure 3.1 shows this duality for a simple graph/frame/algebra set, while
Figure 3.2 shows the duality for a more complex set. From inspection of these
figures, it should be clear that, at least as far as diagrams are concerned, showing
both the frame and graph is redundant, while showing the algebra rapidly gets
too complex for any simple diagram.

As we progress through the chapter, we shall define several standard graphs.
We begin with the complete graphs. A* is the graph with i vertices and a universal
accessibility relation, where every vertex is connected to every other vertex. /Q
and are the associated Kripke frame and algebra, respectively.

We must define some commonly used terms for our various structures. Many
of these definitions were in Chapter 2, but are repeated here for convenience.

A graph G is connected if for any pair of vertices a, 6, there is a chain of

3.2. DEFINITIONS 31

vertices v \ . . . vn from V such that a = V\ E .. . Evn — b. The length of this chain is
equal to the number of points, n, minus one. The distance between two vertices
is the length of the shortest such chain. For purposes of this discussion, we will
only be interested in connected graphs.

The diameter of a connected graph G is the greatest distance between any
two points. That is, if a graph has diameter n, then any pair of points a, b will
be connected by a chain of at most n points.

A variety of algebras is a class of algebras closed under homomorphisms,
subalgebras and direct products.

An equivalence relation on an algebra is a congruence if it contains a subal­
gebra within a single equivalence class. A congruence is determined entirely by
the set of elements that are in the same equivalence class as the identity element.
Trivial congruences can be created by assuming that the identity element is the
only member of its equivalence class, or by assuming every element is in the same
class as the identity. An algebra is simple if the trivial congruences are the only
congruences possible on the algebra.

A relation between graphs that we shall use later is that of the bounded
morphism. A function / : A —> B is a bounded morphism if it obeys the following
two conditions:

Homomorphic Condition: For all elements x, y 6 A, if xRaV then / (x)Rb f {y)•

Back Condition: For all elements x G A, and all elements v G B, if f(x)RßV
then 3y E A such that xR^y and that f(y) = v.

The concept of a bounded morphism extends naturally to frames and, for
algebras, it has a natural connection to subalgebras1. If a frame F is a bounded
morpic image of a frame G, then dually, $ is a subalgebra of 0 .

We define the modal logic K as outlined in Chapter 2.
The logic K TB adds the axioms T = p —> Op and B = p —» DOp to K. The

axiom T is a reflexivity axiom; for a given frame T , we have T 1= T iff for every
point x in the frame, xRx. The axiom B is a symmetry axiom; for a given frame
T , we have T N B, iff for every pair of points x, y in T, xRy <=> yRx.

We shall be discussing the normal extensions of KTB, that is to say, the
lattice NExt(KTB). A normal extension is created by adding a new formula <p

headers familiar with computer science may recall the concept of a bisimulation, which is a
generalisation of bounded morphisms. Unlike a bisimulation, a bounded morphism is directional
[6] ,

32 CHAPTER 3. EXTENSIONS OF KTB

to the logic, and then taking the closure under the standard rules of deduction
(Substitution, Modus Ponens arid Necessitation), as outlined in Chapter 2.

There is a duality between general frames and boolean algebras, defined
in Chapter 2. We can define a KTB-algebra as having the structure 21 =
(A; A, V, - I , / , 0,1), where (A; A, V, - i , 0,1) is a Boolean algebra, and / is a unary
operation satisfying the following conditions:

1. / (0) = 0

2. f (x V y) = f{x) V }{y)

3. x < f (x)

4- X < - n / (i / (x))

The first two conditions are standard for a boolean algebra with operators.
They are dual to the modal logic principles that OT <-> _L and O (pVq) OpVOq.
The third condition is the dual of reflexivity, p —> Op, and the fourth condition
is dual to symmetry, p —■» DOp. Both the third and fourth conditions can also be
rendered as identities, using the standard rule that x < y x/\y = x <t4> y\/x = y,
so the class of KTB-algebras is a variety, which we shall write KTB.

We recall one of the manifestations of the duality between general frames and
algebras:

Proposition 3.1. If a graph G is connected and its diameter bounded by some
positive integer k, then any modal algebra on Q is simple and possesses a discrim­
inator term.

Note that if G is finite, its diameter must be bounded.
We shall denote by A(KTB) the lattice of subvarieties of KTB. Another man­

ifestation of the duality of frames and algebras is:

Proposition 3.2. The lattices NExtfKTB) and A(KTB) are dually isomorphic
[26],

3.3 Prior R esu lts

The first result discovered about NExt(KTB) is that there is a single greatest ex­
tension, the logic defined by the frame JC\. This comes from Makinson’s Theorem
[29] that all normal serial logics are sublogics of the identity logic.

3.4. THEN-SPIDER 33

e

Figure 3.3: A simple frame, divided

The second result, harder to prove, comes from a theorem of Yutaka [31], and
says that there is a unique second-greatest extension of KTB. This is the logic
defined by the frame /C2.

Yutaka proves that all frames T (other than K\) have a trivial bounded mor­
phism to the frame /C2. To create this bounded morphism, start with a single
point x, and let X = {x}. Then take the set Y — {y : xRy} — x. Then define
X' = {x : 3y 6 Y,yRx} — Y and Y' = {y : 3x £ X,xRy} — X ' . Using X' and
Y' as our new X and Y, repeat. This process can be iterated until it reaches a
fixpoint.

Having reached the fixpoint, we create our bounded morphism mapping all
elements of X to one point in the frame /C2, and all elements of Y to the other.
In Figure 3.3, we see an example of this, starting from the node a and dividing
the frame into “upper” and “lower” sections.

Dually, these theorems give us that the lattice A KTB has a single atom V (^i),
and this atom has a single cover V(Ä2). Here, we concern ourselves with the set
of covers of U(£2).

3.4 T he n-Spider

We now introduce the notion of n-spiders, which we use to demonstrate that
there are at least a countable number of covers of U (£2) in the lattice A(KTB).
The n-spiders create a countable family {©n}neu; of finite KTB-algebras with
the properties:

1. Vn € a;, ©n is a simple algebra

34 CHAPTER 3. EXTENSIONS OF KTB

Other branches

n points

Figure 3.4: The n-spider graph

2. If 77- m then ©n is not isomorphic to ©m

3. Each ©n has exactly 2 proper subalgebras, and £ 2.

Given a family of algebras with these properties, we can show:

Lem m a 3.3. For each n E lj, the variety V(©n) covers V(&2) in A(KTB).
Moreover, i f n ^ m , then V(&n) ^ P(©™)-

Proof. Let V be a subvariety of V (6 n) for some n E lj. We may assume V = V (21)
for some subdirectly irreducible 21.

By Jonsson’s Lemma [25], 21 E H SPu(6„). By the finiteness of 6 n and the
Congruence Extension Property, we have H SPu© n = HS(©n) = SH(@n).

Because property 1 states 6 n is a simple algebra, SH(©n) = S ({6n,X}),
where X is the trivial algebra.

Property 3 gives us S (6 n) = {^i,Ä 2,©„}, and we have S (6 n) = Vs/(@n),
the subdirectly irreducible members of V(&n).

Therefore, V must be one of V [Z) ,V (&\) ,V (Rf) or V(&n). Thus, V (6 n)
covers E (^ 2)

If we assume that L(©n) = V(©m), then we have Vsi(Gn) — Vsi(&m) and
so S (© n) — S(&m). From this, it follows that 6 n is isomorphic to ©m. H

Thus, all we need to do is define the family {©n}n(Eu,. We do this through the
duality of frames and algebras, and the isomorphism of graphs and frames.

3.4. THEN-SPIDER

(3,3)

(3,2)

(3 , 1)

35

(0 ,0) (1,1) (0,0) (1,1) (0,0)

Figure 3.5: The graphs So, Si, S2, S3

We define the graph Sn = (Vn, En), shown in Figure 3.4. For the vertex set
Vn, we take:

Vn = {(0 , 0), (1,1), (2,1), (2, 2), . . . , (m, 1), . . . , (m, m) , . . . , (n, 1), . . . , (n, n)}.
Then define a relation Tn, where (p, k)Tn(q, l) iff either of the following con­

ditions holds:

• p = k = 0 and / = 1

• p = q and / = k + 1

Using this definition, Tn makes (Vn,Tn) a tree with root (0,0) and branches
((0, 0), (k , 1), . . . , (k, k)), for all k < n. For En, we take the reflexive, symmetric
closure of Tn.

As shown in Figure 3.5, the first few graphs 50,51, S 2 are all chains, while the
graph S3 begins to show signs of more interesting complexity. Figure 3.4 shows
the general graph 5n.

Now, we prove that the family of algebras ©n, dual to our family of graphs,
form a countable set of covers of £ 2-

First, given a graph G = (V, E), we recall that the valence of a vertex x G V
is the number of outgoing edges. We write val(x) for the valence of x and N(x)
for the set {y E V : yEx,y ^ x}. Thus, val(x) = |7V(rr) | for any x G G.

Lemma 3.4. Let G\ — (Vi,Ei), G2 = (V2, E 2) be graphs and y: V\ —> V2 a
surjective bounded morphism. Then, val(x) > val(//(x)) for any r G V).

Proof. Let Q stand for {y(y)‘- y £ N(x)}. For any x £ V\ we have \{y(y): y £
Af(x)}| < |iV(x)|. Since y is a bounded morphism, for every y' £ N(y(x)) there
is a y £ N(x) with y(y) = y'. Thus, N{y(x)) C Q, so val(y(x)) = |iV(^(x))| <
IQI < |iV(x)| = val(x). H

36 CHAPTER 3. EXTENSIONS OF KTB

Lemma 3.5. Let G — (W, D) be a graph and y : Sn G be a surjective bounded
morphism. If there exists a distinct pair of points x and y in Sn such that y(x) =
y(y), then there exists a point z (0,0) in Sn such that y(z) = /i(0,0).

Proof Assume that there exists such a pair of points x,y, with x = (m,z) and
U — (&5 j)- We must consider two cases, i ^ j and i — j.

For the case i ^ j , assume, without loss of generality, that i < j, and perform
an induction on the value of i. Firstly, if i = 0, our claim holds true trivially,
with x being the point (0,0), and y being our point 2 .

Suppose that the claim holds true for all i! < i. Then since (m, i)En(m, i — 1),
we have y((k, j)) — /z((m, i))Dy((m, i — 1)). So by the back condition, there
exists a point a in Sn such that /i(a) = p((m,z — 1)) and (k , j)Ena. Thus,
a E {(k, j — 1), (k,j), (k , j + 1)}. (If k = j, the point (k, j + 1) does not exist,
and there are only 2 possibilities for a.)

Now, since i < j, we have z — 1 < j — 1, and so we can conclude that a = (k, s),
for some 5 > i — 1, and the inductive hypothesis applies.

For the case i = j , assume, without loss of generality, m < k. If i ^ m, then
there is a point (m, i + 1). Now, (m, i)En(m, i + 1) => /i((m, i))D//((m, z + 1)).
Thus, by the back condition, we have a point a E {(k , j — 1) , (k , j) , (k , j + 1)},
such that (i{a) — /z((m,z + 1)). If a is anything but the point (&, j + 1), then we
reduce to the previous case of i j .

Thus, we establish that if z ^ m, then either /i((m,z + 1)) = /z((/c,j + 1)), or
we have returned to the case of z j. By an inductive process, this repeats until
we have fi((m,m)) = y((k,m)).

In this case, by Lemma 3.4, /x((m, m)) has some unique point a such that
/lz((m, m))Da. By the back condition, a = /z((m, m — 1)) Since ((&, m))En((k, m-f-
1)), we have /d((k,m))Dfi((k,m + 1)). Thus, /x((fc, m + 1)) is equal to either
/z((m, m)) or /z((m, m — 1)). Either way, we have reduced this to the case of

* 7^ j - H

Note that for small values of n, Sn is uninteresting; So = Ki, S i = A"2, and
S2 is merely the 4 element chain. However, for larger values of rz, we have the
following lemma:

Lemma 3.6. Let n be at least 2. If /1 : Sn —> G is a surjective bounded morphism,
then G is isomorphic to one of {K\, K 2 , Sn} .

Proof. In this proof, let Sn — (Vn,E n), G = (W, D).

3.4. THE N-SPIDER 37

S3 : (0,0)
(2, 1)

(1 .1)
(3,1)

(3,3)

Figure 3.6: S3 is the first interesting n-Spider. is its only nontrivial image

The lemma holds for S2 in trivial fashion; The image of a chain must be a
chain, and it is easy to see that the 3 element chain is not a bounded-morphic
image of the 4 element chain. Figure 3.6 shows the morphism between S3 and the
two element chain. Note that the points (2, 2) and (0, 0) map to the same point,
as do the points (1,1) and (3,3). Generalising this, along with an observation
that bounded morphisms cannot increase the distance between two points, is
pivotal to the following proof.

Assume that G is not isomorphic to K\ or Sn. We show that it must be
isomorphic to K 2.

Since G is not isomorphic to Sni and p is surjective, there exist a pair of points
x and y in Sn such that p(x) = p(p) and x ^ y. By Lemma 3.5, there must be
some point a such that a ^ (0, 0), but p(a) = p(0, 0).

Now, since a ^ (0, 0), it follows that val(a) < 2. So by Lemma 3.4, val(p((0, 0)))
val(p(a)) < 2.

If val(p((0,0)) = 0, it is trivial to see that G is isomorphic to Afi. Because of
this, we assume that val((0, 0)) > 1.

Since there are no points x G Sn other than (0,0) with val(x) > 2, it follows
that for all points y G G, val(p) < 2. That is, G is a chain.

The point (1,1) has a valence of 1, and so we may conclude that it is one
of the endpoints of the chain. The same applies to the points (2,2) and (3,3).
Now, because a chain only has 2 endpoints, it follows that at least two elements
of {(1,1), (2, 2), (3,3)} must map to the same point.

If p((2,2)) = p((l, 1)), then since (1, l)E'n(0, 0), p((2, 2))Z)p((0,0)), and so
p(2 ,1) — p(0,0). If G is not K2, there must exist a third point x such that
x p((2,2)), x 7̂ p((0, 0)) and /i(0, 0)Dx. This requires p (2 ,1)Dx, and so by
the back condition, there must exist some y such that y ^ (2, 2),y ^ (0, 0) and

38 CHAPTER 3. EXTENSIONS OF KTD

(2,1)Eny. No such y exists. Thus, G = K 2 or 2)) ^ p,((l, 1)).
Thus, //((2, 2)) and //((l, 1)) are distinct endpoints of the chain G. From this,

we can conclude that the chain G is at most 4 elements long, since that is the
distance from (2, 2) to (1,1). However, /z((3, 3)) is also an endpoint of the chain,
and it is 5 steps away from (1,1) and 6 steps away from (2,2). From this, we
can conclude that the length of the chain is a divisor of 6 and 4, in the case
/i((3, 3)) = /i((l, 1)), or that the length of the chain is a divisor of both 5 and 4,
in the case ^((3, 3)) = /i((2, 2)). Clearly, the only values that fit this are a chain
of length 2, i.e K 2, or the chain of length 1, i.e. K\. H

T heorem 3.7. For each n G lj, n > 2, the variety V (©„), where 6 n is the algebra
associated with the graph Sn covers V(&2). Moreover, ©n is simple and V{&n)
and V(&m) are distinct when n m. Therefore, the set of C (6 n)n€u, provide a
set of countably many, finitely generated covers ofV(&2) in A(KTB).

Proof. From Lemma 3.6, we can establish that the set of bounded morphic images
of Sn is {Ki, K 2, Sn}, provided that n is at least 2. Further, Sn is a connected
finite graph, and if n m, Sn is not isomorphic to Sm.

Thus, by duality, for any n > 2 the algebra ©n = (p(Vn)\ U, fl, —, i?“1, 0 , Vn)
is a simple algebra and its only subalgebras are K\, K2 and itself. And if n m,
&n is not isomorphic to ©m

From this and Lemma 3.3, the theorem follows. H

3.5 T he Infin ite Saw

Having seen that there are at least a countable number of covers of V(R2), we
now demonstrate the existence of a continuum of such covers. This is harder,
because we must move from the simple case of finite algebras and Kripke frames
to the notably more complex case of infinite algebras and general frames.

We can generalise the n-spider graphs to produce the infinite spider Su. How­
ever, this is inadequate as the basis for an infinite algebra that covers V(AZ). It
is fairly easy to show that given a modal algebra 51 based on S^, if A is not one
of the very simple algebras equivalent to Ai or R2, then A is infinite, and from
there, we can show that the three element chain is a member of the set SHPufill).

The problem is caused by the infinite diameter of Su. This means that al­
though an algebra 51 based on Sf may be simple, the ultrapowers are not obliged
to be “well-behaved” in any useful sense.

3.5. THE INFINITE SAW 39

Figure 3.7: Finite graphs, with a distinct pattern

b\ 62 bi bi+1

Figure 3.8: An infinite version of the finite graphs

Because of this, it makes sense to look at infinite graphs of finite diameter. Af­
ter some work with automatically generating finite graphs, detailed in Appendix
B, we found the three graphs of Figure 3.7. It is straightforward to verify that
all 3 graphs have a diameter of 5 and the varieties of their associated algebras
provide covers of V(&2)-

It is immediately apparent that the three graphs can be generalised to produce
graphs with a longer “saw-blade” at the end, culminating in the shown in Figure
3.8.

This graph is almost what is needed. Unfortunately, is impossible to properly
seperate the points e* from the infinte section of the graph. However, it has many
of the traits we want to generate an infinite cover of V (£ 2), and it can be modified
to fix this issue while preserving its “nice” traits. This produces the graph Gu
shown in Figure 3.9

Further, we can generalise the graph Gu to produce an uncountable family
of similar graphs by adding “bristles” to various points, as in Figure 3.9, which
adds such a bristle to the point ai+1 .

40 CHAPTER 3. EXTENSIONS OF KTB
b\ b2 bi bi+\ b\ 62 bi bi+i

Figure 3.9: The graph shown with and without an added point hi

Formally, we define our family of graphs over any subset Q of positive integers
that does not contain 0 or l 2. Given such a subset, the graph (Vq , E q) is defined
as follows.

We begin with sets A = {a* : i 6 a;}, B = {bi : i G u \ {0}}, C = {ci,C2 },
D = {rfi}, E = {ei, e2}, F = { / 1 , / 2, / 3}, H = {hi, h2, h3, h4} and J Q - (j, : i G
Q}3. From this, we define Fq = 4 U 5 U C U UZ) U F U F U F U J q . We then
define E q to be the symmetric, reflexive closure of the following connections:

• C\Eqc2

• C2EQd\,C2EQe\, c2EQfi, c2EQhi

• ei E Qe2

• f i F q f 2 ■> h F q f o

• h iE q h 2, h2E qhs1 h^Eqh^

• aoE qa ,

• Mi G cj, C\EqOLi

• Mi > 0,aiEQbi,biEQai+i

• Mi e Q, diEqji

2This does not impair the uncountable nature of the possible Q, but eliminates some edge
cases from the proof.

3To avoid confusion, we do not have sets G or I.

3.5. THE INFINITE SAW 41

That is, the hrst 6 connections create the initial portion of the graph (the
“handle” of the saw.), the next 2 create the infinite portion of the graph (the “saw-
blade”), and the final condition adds bristles to various members of the graph to
distinguish it from other members of the family (no saw related metaphor here).
Note that 54 from the previous section is a substructure of the initial portion of
the graph.

Having defined our family of graphs, we must then show that they provide
our set of infinite covers of H(.h2).

Let 5Fq = (Vq, EQi1q) be a general frame on (Vq, Eq), with Tq the universe
of the modal algebra generated by {h4}.

Lemma 3.8. For any subset Q of integers, where Q does not contain 0 or 1, Tq
consists of subsets ofVQ whose intersection with A is either finite or cofinite in A,
whose intersection with B is either finite or cofinite in B and whose intersection
with Hq is either finite or cofinite in Hq . In particular, all singletons are in Tq .

Proof. Let U be the family of those subsets of Vq whose intersection with A is
either finite or cohnite in A , whose intersection with B is either finite or cofinite
in B and whose intersection with Jq is either finite or cofinite in Jq. We must
show that U = Tq.

It is clear that U is closed under the boolean operations and contains all
singletons. Further, {ci} is a member of U, and so every member of U containing
{ci} can be expressed as {ci} U X for some set X not containing C\ .

For every vertex x in Vq other than c\, val(:r) < 5. Thus, O X fl A is finite
or cofinite if and only if X fl A and X n B and X fl Hq is finite or cofinite, and
similarity for OX D B and OX fl Hq.

If Y = X Ö {ci}, then OY fl A = A because 0{c i} fl A = A, and OY fl B =
OX fl B , and OY fi Jq = OX fl Jq , because 0{ci} fl (B U Jq) = 0. Thus, OY
is cofinite in A and finite (cofinite) in B and hnite (cofinite) in Hq iff X is finite
(cofinite) in B and finite (cofinite) in A and finite (cofinite) in Hq.

From this, we see that U is closed under the modal operator, and since {h4}
is in U, we have U O Tq.

For the reverse inclusion, we need that every member of U can be generated
starting from {/i4}. For this, it is sufficient to show that every singleton may be
so generated.

It is trivial to see that every element of the chain {h^, h2, h\, c2} may be
generated from {/i4}. From here, 0{c2} = {c2, C\, e\, d\, f \ , hi} We can separate
out c2 and hi, to produce the set {c4, e\, d\, f i}.

42 CHAPTER 3. EXTENSIONS OF KTD

We know 0 { c u eu du / J \ {ci, d , du /i} = 4 U {e2, / 2,c2}. Again, we can
seperate out the c2 singleton as already having been generated, to produce A U
{e2, / 2 }- From here, 0 (4U {e2, / 2})\(A u {e2, / 2}) = BU {ei, / i , / 3, Ci}. Comple­
mentation of this set with the set {ci, ei, rfi, /i} allows us to generate the singleton
{di}, and so the set {ci, ei, /i}, as well as the set B U { /3}.

Further, 0(ßU {/3})\(ßU {/3}) = (A\ao)U{/2}, and since we have generated
A U {e2, / 2}, we can take the difference of these two sets to generate {ao,e2}.
O{ao,e2} = {ao, ai, Ci, ei, e2}. This, along with the set { d ,e n /i} allows us to
generate the sets {ci,ei} and {/i}. From {f i} and {c2}, it is trivial to generate
{ /2} and {/3}.

Having generated {/3}, we may seperate it from the set B U {/3}, giving us
the set B. OB \ B = A \ ao, and 0(A \ a0) \ (A \ ao) = B U {ao, Ci}, and already
having generated B , we have the set {a0, Ci}. from this and the already generated
set {ci,ei}, we can generate the individual sets {ci}, {ao}, {d} and so {e2}.

Now, we have successfully generated all singletons in the sets C, D, E , F and
H , as well as {a0}. From {a0} and {c3}, we can trivially generate {ai}. From
here, we shall use an inductive method; We shall show if we have generated {a*},
it is possible to generate {6*}, {a*+i} and, if necessary, {ji}.

Assume we have generated all singletons {a*}, {6*} and {ji} for i < n, and the
singleton {an}. Call the set of all singletons generated so far S. We consider two
cases; in the first case, there exists an element {jn}, in the second, there does
not.

If there is an element {j n}, then the set 0{an} \ S = {bn, j n}. The set
0{bn, j n} \ { S U {bn, j n}) = {an+1}. The set 0{an+i} D {bn, j n} = {bn} and
the set {bn, j n} \ {bn} = {jn}- This means that we have generated the sets
{an+i} ,{bn} and {jn}.

If there is no element {jn}, then the set O{an} \ S = {6n}, and the set
^ { ^ n } \ { ®n} { ^ n + l } *

Thus, by mathematical induction, we have shown that all singletons, and
hence all members of U are in the set Xq, and so the two are equal. H

Next, we have a proposition that should be obvious from inspection of T q

Proposition 3.9. Let X E Tq be non-empty. If 0 6X / Vq, then either X =
{/z-4 } or -i0 6X = {̂ ,4 }

Since T q has diameter 7, it is clear that the only X such that 0 6X ^ Vq are
{h-4 } and subsets of B.

3.5. THE INFINITE SAW 43

As this proposition makes clear, {h4} is very nearly a term definable constant.
The next few lemmas make clear how easily {h4} can be retrieved from almost
any set in Tq .

Let us call a set X G Tq balanced if OX = V = 0~>X. Clearly, any balanced
set generates a 4 element subalgebra of Tq isomorphic to &2. Further, the set
X = Vq clearly generates the two element subalgebra isomorphic to We will
show that any other X generates {h4}, and hence Tq .

Lem ma 3.10. Let X G Tq be such that X n H = 0. Then X is not balanced and
there are unary terms t i , £3 , ^4 such that tfiX) — {h4} for some i G {1, 2, 3,4}.
Moreover, the following holds:

• I f 0 6X Vq, then t4(X) = {h4}

• If 0 6X = VQ and 0 5X ^ VQ, then t3(X) = {h4}

• If 0 5X = Vq and 0 4X ^ Vq , then t2(X) = {h4}

• If 0 4X = Vq and 0 3X Vq , then t \ (X) = {h4}

• 0 3A' ^ Vq .

Proof. Let t ^ X) = ^ 0 3X, t2(X) = ~^04X, t3 = - 0 5X and t4 = ^ 0 6X. It
is obvious that if X fl H = 0, then h2 $ OX, and so X is not balanced, and
h4 0 0 3X.

By inspection of the frame, it is immediately seen that “>03{c2} = {h4}, and
for any X such that X fl H = 0, there exists an n < 4 such that OnX contains
c2, but no element of H. Then for this n , ->03+nX is one of our terms L, and
ti(X) = {h4}.

From here, the lemma follows. H

Next, we must consider the case of generating {h4} from sets X G Tq with
X fl H 0. We do this by showing that unless X is balanced, or X = Vq , we
can generate a set Y such that Y fl H = 0, and 7 ^ 0 . With such a Y, we can
apply Lemma 3.10.

Lem ma 3.11. Let X be unbalanced, with X fl H 0 and X ^ Vq . Then we
can generate a non-empty set Y such that Y fl H = 0 using one of a finite set of
terms.

44 CHAPTER 3. EXTENSIONS OF KTB

Proof. To generate such a set Y, it is sufficient to generate a set Z such tha t

Z 3 H and Z ^ Vq. Then our Y is simply ->Z. W ithou t loss of generality,

assume tha t {/? i} is in X (Otherwise, we could apply these arguments to - A

instead). From here, we have an argument by cases, for the various values of

I O H:

• I H H — {h\}: Suppose C2 G X. Then 0 2X 3 A U C ö D U E U { f i , / 2},

however, h4 0 0 2X. Thus ->02A C B U { / 3 , f i4}. Clearly, 0 3->02A 3

H and 0 3-iC>2A f l E = 0. Thus, ->03- i0 2A is a non-empty set and

'O3 <o2 x n h = 0.

Conversely, suppose c2 ^ I . Then we have two cases. In the first case,

0 3A 7 ̂ Vq. In th is case, - i0 3A is the desired Y. Conversely, 0 3A = Vq
implies 0 3X 3 F. Combined w ith c2 0 A , this gives us tha t there is some

i such tha t /* G X, which in tu rn give us tha t 0 2X 3 F. From this, we

may conclude tha t { y*3} 0 O 3-i<02A . Thus, -<03- i0 2A is a non-empty set

and A > 3-n02A n H = 0.

• X f l H = { f i i , f i 2}: I f c2 G X , then -> 0 -iA f l H = {hi } , which case has

already been covered.

Suppose c2 ^ X. Now, 0 2X 3 H , so either 0 2X = Vq or ->02A is our

desired Y. I f 0 2X = Vq, th is means e2 G 0 2X, which combined w ith

c2 ^ X means tha t some e* is in A", and so OX 3 E. From this, ->OA

contains h4, but not e i,e 2 or c2.

Now, i f c2 G 0 -> 0 A , then 0 2- iO A 3 H, but e2 ^ 0 2-«0A , so our desired

Y is - i0 2-i<C>Ah On the other hand, i f c2 O -iO A , then e2 ^ 0 3->0A and

0 3- i0 A 3 H, so our desired Y is -<03-<0A .

• I n H = {hi , hs}: Here, OAT n H = H = O -A h I f O X = VQ = O - A ,

then A is a balanced set, contrary to our assumptions. Thus, our desired

Y is either ->OX or -> 0 -A .

• A H H = {h i ,h4}:Here, OX n H = H = 0 - .A . I f O A = Vq = O - A , then

A is a balanced set, contrary to our assumptions. Thus, our desired Y is

either ->OA or -> 0 -A .

• A OH = {h\, f i2, h3}: I f c2 G A , then - < 0 - A OH = {fix, h,2}, a case already

covered.

3.5. THE INFINITE SAW 45

Otherwise, -<0-A 0 H = {fi2}, and for all points y such that c2 € 0{?/},
y gt ->0-A, and as such, neither d\ or c2 are in O-1O-1A. Thus, we have
0 2->0-A contains all hi, but does not contain d\. As such, - i0 2-<0-iA is
our desired Y.

• X C\ H = {h\, h2, /?.4}: If c2 G A, then ->0-A = {hi,h2}, a case already
covered.

If c2 G -A , then 0-.A n H = H = O X 0 H. If O X = VQ = O -A , then
A is a balanced set, contrary to our assumptions. Thus, our desired Y is
either ->OA or -iO-iA.

• XH H = {hi,h3,h 4}: Here, O -A fli/ = {hi, h2, h3}, a case already covered.

• A D H = {hi, h2, hs, /14}: Since it is a condition of the lemma that A ^ Vq ,

our desired Y is simply - i A

H

Given Lemma 3.10 and Lemma 3.11, we may combine them for the following
deduction:

Lemma 3.12. There are finitely many terms t i .. .t^ such that for any unbalanced,
set A, there is a tn 1 < i < k, such that tfiX) — {114}.

Now, we have a proposition that follows directly from inspection of the frame:

Proposition 3.13. {^4} is the unique atom a in Tq such that all of Oa \ a,
0 2a \ Oa, Osa \ O2a and 0 4a \ O3a are all atoms.

Since it is possible to express the property of being an atom with a first order
algebraic formula, it is also possible to express the property of being the atom
{hh} with a first order algebraic formula. Let us call this formula H±, that is:

Definition 3.14. For any A C Vq, we have H fiA) if and only if A = {^4}.

Let 21 q be the modal algebra dual to the frame T q.
Now, since the frame has finite diameter, V(2lq) is a discriminator variety,

which gives us a number of nice properties, including that subdirectly irreducible
algebras are simple [8].

Lemma 3.15. Let 23 G P(2lq) be a simple algebra. If^B is not isomorphic to &i
or &z, then 21q is a subalgebra of ^3.

46 CHAPTER 3. EXTENSIONS OF KTD

Proof. By Jonsson’s Lemma [25] and V(%1 q) being a discriminator variety, 93 E
S P u (OIq). Since 93 has more than 4 elements, there is an element b E 03 with
06 7 ̂ 1. Then, by Lemma 3.12, there is some term t{ such that B \= Hfltflb)),
and by definition, the element tflb) will generate an isomorphic copy of 01q. Thus,
01 q is a subalgebra of 03. H

Now, one final lemma, and we may produce our theorem.

Lemma 3.16. For distinct Q,Q', the dual algebras of T q and T q> are non­
isomorphic.

Proof. Since the algebras involved possess a discriminator term, atoms are first
order-definable. As such, any isomorphism between the two must map atoms to
atoms.

Without loss of generality, assume that there exists some i E Q \Q '. Then
0{aj} in T q is the join of five atoms ({a*, 6j, 6j_i, Ci , /i*}), while 0 { a j } in T q> is
the join of four atoms ({a*, 6*, 6j_i, Ci}).

But an isomorphism between the dual algebras must provide an isomorphism
from one set to the other, so there is a contradiction. H

From Lemmas 3.15 and 3.16, we have:

Theorem 3.17. For any subset Q of the natural numbers, not containing 0 or
1, the variety of the algebra dual to the frame T q covers V (& 2) in the lattice
A(KTB).

For any distinct subsets Q ,R of the natural numbers, the covering varieties
created thus are non-isomorphic.

As such, V(&2) has an uncountable number of covers in the lattice A(KTB).

Corollary 3.18. Each of the general frames T q validates a symmetric, reflexive
logic with only two consistent normal extensions.

Corollary 3.19. There are an uncountable number of logics L in N E xtfK T'B)
such that L has only two consistent normal extensions. These extensions are the
logic of the two element chain and the logic of the single reflexive point.

C h ap te r 4

N orm al Form s

4.1 Introduction

In the study of modal logics, one recurring question is the Kripke completeness
of logics, as outlined in Chapter 2. When given a logic L and a formula ip £ L,
the key to Kripke completeness is being able to construct an appropriate frame
JF, such that T 1= L, but T \f p.

There are two methods commonly used to show Kripke completeness. The first
of these is semantic tableaux, which provide a constructive proof of completeness.
However, Fine [16] claims that tableau methods are “not elegant” .

On the other hand, maximally consistent theories provide an elegant way to
show Kripke completeness. However, they are not constructive, which is some­
thing of a drawback.

As an attempt to create a method that is both elegant and constructive, Fine
[16] presents normal forms. However, while normal forms can be elegant, it is
also the case that there are certain common pitfalls that occur when trying to
use normal forms. This chapter reviews the definitions and methods needed to
produce results using normal forms, and provides several example results, point­
ing out some pitfalls that can occur. While tableau methods can be automated,
using normal forms for an automated decision procedure is not really practical.
The complexity of a normal form explodes rapidly compared to the complexity
of the original formula.

As pointed out in Chapter 2, the finite model property (FMP) is a stronger
property than Kripke completeness. As such, if you can show a logic has the finite
model property, Kripke completeness follows. Since normal forms are extremely
well suited to the generation of finite models, we frequently use it to show the

47

48 CHAPTER 4. NORMAL FORMS

FMP. In this case, we can assume as a corollary that the logic is Kripke complete.
Note that, this work was done without knowledge of the paper [34] which also

covers the method of normal forms, and reworks the definitions in light of other
work, such as [27]. The paper [18] also discusses normal forms, and takes a more
algebraic approach.

4.2 P re lim in a ry D efin itio n s

An important abuse of notation when discussing normal forms is the use of for­
mulas to name points in a Kripke frame. That is, when we speak of a point A in
a model, we associate with A some formula a. For the most part, it is desirable
that the formula a is true at the point A. We write this A t= a. We shall be con­
sistent in associating formulas a, ß with points A , B. Indeed, the great strength
of normal forms is this geometric approach, where each normal form is in some
sense simultaneously a formula of the logic and a point in the frame.

When working with normal forms, we assume a fixed finite set Q = {qo . . . qh)
of propositional variables, and suppose that all formulas are constructed from the
variables of Q. The exact size of Q is irrelevant. When dealing with a particular
formula, we assume that Q is sufficiently large to contain all variables needed in
that formula. Given this set Q, it is clear that propositional variables are ordered,
and it is trivial to extend this to a standard order on formulas.

We define the degree, deg((p), of a modal formula as follows:

Definition 4.1 (Degree).

deg(qi) = deg(_L) = 0

deg(->i/j) = deg(ip)

deg(ip V x) = max(deg(ip), deg(x))

deg{^ A x) = ma x(dep(^), deg(x))

deg(O'ip) = deg(n^) = 1 + degfy)

This definition allows us to perform induction over the degree of a modal
formula, something we will frequently exploit when using normal forms.

The set of normal forms itself is defined using recursion over the degree of the
normal form.

4.2. PRELIMINARY DEFINITIONS 49

Definition 4.2 (Normal Forms). F0, the set of norm al forms of degree zero
is the set of formulas of the form Ai*=o where each 77 is either blank or -i,
and the qi range over all the members of our variable set Q.

For n > 0, we define Fn, the set of norm al forms of degree n as the set of
formulas of the form ß A where ß G F0, and 77 is either blank or -i,
and the cq are all m elements of Fn_i in a standard order.

Since a normal form of degree n contains Oa or -iOa for every normal form a
of degree n — 1, when referring to a normal form, it is sufficient to list only those
normal forms that occur in the form Oa, and assume that if an element of Fn_i
is not listed, then it occurs in the form -iOa. We will write this as a = ß A <>{7*}
and refer to this as the Oset notation.

When we must discuss normal forms of multiple degrees, we shall use a con­
sistent formula symbol for elements of each Fn, and use subscripts to distinguish
elements. That is, if we need to have formulas from Fn, Fn_i and Fn_2 for some
n, then elements of Fn shall be a i , a 2. . ., elements of Fn_i shall be ß\, /?2 • • • and
elements of Fn_i shall be 71, y2__

Now, while an individual normal form is overly specific for most purposes, it
is proven in [16] that any formula p is equivalent in K to either _L or a disjunction
of normal forms of the same degree as p. Furthermore, it is a natural corollary
of the proof method that a given disjunction of normal forms is unique.

A normal form may be seen as describing a section of a model out to a given
depth; It states which variables are true at a point, and which variables are true at
related points, and so forth, until reaching the limit of the normal form’s degree.

An important component in a normal form a is the degree zero term that
describes the current point. We call this the leading term and denote it a1.

Intuitively, consider the normal form a = a 1 A 0{/?i, /?2, /?3}, where ß\ = ß\ A

<>{71,72}, #2 = ß l2 A <>{72,73}, & = ßl3 A <>{72,73,74} and a l, ß { , ß\, ß l3, 71, . . . 74
are all distinct normal forms of degree zero. From this form a, we can create the
frame Ta in Figure 4.1. With each formula a, /?*, 7*, we associate a point A, Fj, C*,
and if for any pair of formulas p, ip, we have p —> 0-0, we add a directed edge
from the associated point of p to the associated point of 0. If we desire to turn
this frame into a model such that A h a , then we can do so by allowing the
leading terms to define the variables true at each point. For formalisation of this
process, see Section 4.3.

One basic result on normal forms is that normal forms of the same degree
disagree. That is, if deg(a) = deg(ß), and ö / / 1, then K h a —> ->ß. When we

50 CHAPTER 4. NORMAL FORMS

Cx

Figure 4.1: Frame T a

discuss normal forms, there are many results of the form K 1= a —» ß. For the
most part, we shall write only a —► /?, and leave the choice of logic implicit.

On normal forms, we define some binary relations:

• a > ß iff 0/3 is a conjunct of a

• a >n ß iff 3 7 1 . . . 7 n—1, such that a > 71 > . . . > 7 n_i > ß

• a ß iff 3n such that a >n ß

• a 7- ß iff V7, ß > 7 =7 a > 7

If we continue to use the intuition of a normal form describing a part of the
model, then a >n ß tells us that our A point sees a B point in n steps, and
a ß tells us that a B point is within the n-th upward closure of A for some n.

The relation a >- ß is less intuitive. However, it can be considered to mean
that A sees every point that B sees. In a transitive frame, if our A point is related
to the B point, then 7- follows by transitivity.

Lastly, we dehne a way to move between different degrees of normal forms.
Firstly, we take the correlate, a' which can be considered a zooming in op­

eration; it is the unique normal form of degree one lower than a such that
K b a -+ a'.

Definition 4.3 (Correlate). The correlate a' of a normal form a is defined
recursively.

\ a1 if deg(a) = 1
o = <

I A Aa <>ß A Afte-Fn-AA* -'Oß otherwise.

where AQ = {ßr : a > ß}

4.2. PRELIMINARY DEFINITIONS 51

More simply, using our previous “Oset” notation, if a = a1 A 0{/^}, then
a' = a1 A 0{/?'}

For normal forms of degree 0, various relations and the correlate are undefined.
For most purposes this is unfortunate, but largely irrelevant. In the search for
elegance, it is possible to introduce T as a normal form of ’minimal degree’, and
claim that if dey(a) = 0, a' = T, and a > T. Most proofs will continue to work
without modification, and some are even simplified. This does however, lead to
assuming that within the logic under consideration, a —> OT holds for all normal
forms a. This is fine when working with seriality, or stronger axioms such as
reflexivity. However, if it is necessary that there be a normal form a such that
{ß : a > ß} = V), then this definition can cause problems. Thus, we do not use
this definition. However, it can be useful in such cases as deontic logic (see Fine
[16]).

While knowing a is enough to determine a \ even brief examination of the
case where deg(a) = 1 is enough to demonstrate that there can be many normal
forms ß with deg(ß) = 2 and ß' = a. Thus, because of this discarding of
information, there can be no convenient inverse operation o to the correlate, such
that (a')° = a. However, we can define operations o such that (a °)' = a. Since
such counter-correlate operations can be useful, we define two such operations
here:

Definition 4.4 (Maximal Counter-correlate). We define the maximal counter­
correlate a° of a as the greatest (under >-) normal form ß such that ß' = a.
Equivalently, if deg (a) = n:

a° = a1 A / \ Oß A / \ -.O/?
/?€£a ßeFn\za

where Ea = {ß : a > ß'}.

Definition 4.5 (Limited Counter-correlate). We define the limited counter­
correlate of a to be the normal form ß that “sees” nothing that a does not
see:

{ a1 A O0 if deg(a) = 0
a = <

\ a l A 0{ß~ : a > ß} otherwise.

The important property of counter-correlates is that (a0)' = (o-)7 = o. Thus,
since we already know a —> cd, we have:

Proposition 4.6. a° —> a, and a ” —> a.

52 CHAPTER 4. NORMAL FORMS

4.3 S ta n d a rd m o d el c o n s tru c tio n s

It has been stated a couple of times already that a normal form can be considered
as describing a point in a model. In this section, we outline three standard ways
to go from normal forms to models.

In our model, each world is associated with a specific normal form. We name
worlds for their associated normal form. From these associations, we define the
standard valuation on a frame:

Definition 4.7 (Standard Valuation). The standard valuation Vs on a frame
T , whose worlds are associated with normal forms, is the valuation such that for
any world A , associated with a, we have (J7, Vs), A 1= a1.

To interpret this, we recall that cd, a normal form of degree 0, has the form
A to m i, where 77 is either blank or If 77 is blank, then A is in Vs(qi)- If 7r*
is -i, then A is not in Vs{qi). From the definition, we have:

Proposition 4.8. a —> qi iff A E Vs{qi).

4.3 .1 T h e graded m odel

The graded model 2lQ is generated to make a specific normal form a true. We
take A, associated with a as its root, and add enough extra points, of increasingly
lower degree, to make Aha : true. Formally:

Let our set of normal forms be {a} U {/? : a ß}, and associate with
each normal form a point. The point A shall be associated with a, and for
each ft, we associate a point f t . Then let Wa = {A, f t , . . . , ft} . That is,
our frame will contain the worlds associated with the normal forms contained
in a. We define the relation Ra by saying there is a connection B R aC if, with
the normal forms f t 7 associated with B and C, we have ß > 7 . That is, let
Ra = { (B , C) e W t : ß > 1 }.

From this, let J~a = (Wft, ft*), and 21 a = (f t , Vs), with Vs being the standard
valuation outlined earlier.

We call this 2lQ the graded model for a, as the degree of the normal forms at
each point gets lower as we progress down the model.

For an example of constructing a graded model, consider the earlier example of
Figure 4.1. The construction used to produce that frame is the same construction
used to produce graded models. Having defined the construction of the graded
frame for a formula a, we may also see that the limited counter-correlate will

4.3. STANDARD MODEL CONSTRUCTIONS 53

define the same graded frame. Figure 4.2 shows the frames J~a and T a- , where
a is defined as for Figure 4.1.

Figure 4.2: Graded frame J-a and the counter-correlate frame T a~.

In Fine [16] and Moss [34], the graded model is defined starting with the set of
all normal forms of degree n. Essentially, our definition is the submodel generated
by A.

4.3 .2 T h e graded tree

The graded tree is a variant of the graded submodel, created to produce a tree
with many of the same basic properties. A normal form a could contain a trio
of normal forms /?i,#n7, with the property ß\ > 7 and ß2 > 7 . In the graded
model 2lQ, this trio of normal forms would be represented by three worlds, with
BiR aC and B2RaC.

On the other hand, in a graded tree, we would split the world C into two
worlds Cßx and Cß2, and have BiRCß1 and B2RCß2. For the associated model,
we would keep an identical valuation for both Cßx and Cß2.

We construct the graded tree recursively. For a normal form a of degree 0,
the graded tree XQ is a single point, identical to the graded frame.

For a normal form a of degree n, construct the trees Tß for all ß such that
a > ß. Then, take the disjoint union of these trees, distinguishing otherwise
identical world names with subscripts, and add a world A, with ARB for the
root node B of each tree %ß.

The graded tree in Figure 4.3 is based on the same normal form A as the
frame in Figure 4.1.

The graded tree is very similar to the graded model, and can be used for many
of the same proofs. However, it has the property that for a point X , there is only
a single point Y such that Y RX. For an example of how this is used, see the
proof that K T B 0 a /£ n has the finite model property in Section 4.5.1.

54 CHAPTER 4. NORMAL FORMS

Figure 4.3: The graded tree Li a

4 .3 .3 T h e ungraded m odel

The graded model works by taking a normal form a and then the set of normal
forms {(3 : a > ß}, and the set of normal forms {7 : a > 2 7}, and so gradually
working down to points of degree zero. For some logics, this is inadequate. The
graded model is always irreflexive and asymmetric. While modifications can get
around this (trivially so, in the case of irreflexivity) it is nonetheless desirable to
have a model where these properties fall out naturally.

For an example of the application of such a model, see [16], where the ungraded
model is used to show the FMP for transitivity - the simple graded model is
inadequate to distinguish K4, extending K by adding the axiom Up —> □□ p and
GL, extending K4 by adding the axiom n(Up —+ p) —> Up.

To dehne 2ln, the ungraded model of degree n, we take a world set containing
a world for every normal form of degree n, and dehne the relation set by saying
a world has a connection to some other world if, for the associated normal forms
01,0:2, we have aq —> Oo^. That is, aq sees the correlate of a 2.

As before, we construct the model 2ln from T n = (Wn, Rn) and the standard
valuation: 2ln = (iFn,Vs).

Assuming that Fn, the set of normal forms of degree n, contains m formulas
and is indexed as oi}0 < i < to, then we dehne the world set Wn = {A* : 0 <
i < to}. For each z, we associate the world A* and the formula cq. Then for the
relation set we have Rn = {(Aj, Aj) € : o* > a '} .

While for simple normal forms, the graded model may be easy to draw, the
ungraded model includes all the normal forms of a given degree. This num­
ber grows extremely rapidly, and quickly becomes unfeasibly large to capture,
especially when the set of possible variables Q is large.

4.4. SOME BASIC RESULTS 55

4.4 Som e basic results

The following results are all stated without proof. Most are trivial, and proofs
for the others can be found in Fine [16] or Miyazaki [32]:

• a > ß => a' > ß'

• a >- ß => a' >- (3'

• deg(a) = deg(ß) & a ^ ß => a —* -*ß

• \ J F n = T

• K f c m o'

• (a 0) ' = q

• K 1= a° —̂ a

• a = ß' => a° ß

• a > ß => a° > ß°

• <21 a , £ > 1= / ?

• (2 t n , A j > 1 = Q f .

4.5 A pplication

One of the basic applications of normal forms is to produce constructive proofs of
Kripke completeness, and one of the easiest ways to do this is to show the existence
of the finite model property (FMP). That is, we show how to construct finite
Kripke models that refute formulas not within the logic. Key to this procedure is
the theorem of Fine [16], which states that all modal formulas <p, with deg(ip) = n
are equivalent in K to either 1 or to a disjunction of normal forms of degree n.

The first stage in using normal forms to demonstrate the FMP for a logic
K ® -ip is to define the set of ̂ -suitable normal forms. In the logic K ® ^ , normal
forms that are not ^-suitable are equivalent to _L. Given this equivalence, and the
prior theorem, it is apparent that any formula ip of degree n is equivalent in K 0 ß
to some disjunction of ^-suitable normal forms of degree n. The equivalence to
a disjunction of normal forms is a theorem of K, and the normal forms that are
not ^-suitable play no role in the disjunction’s truth in K ® ^ .

56 CHAPTER 4. NORMAL FORMS

Thus, if we can successfully define -^-suitable normal forms, we can state that
all formulas </?, of degree n are equivalent in K 0 0 to 1 or a disjunction of
^-suitable normal forms of degree n.

The second stage in demonstrating that a logic has the FMP is to demonstrate
a way to take a -^-suitable normal form a and produce a model (JFQ, Vs), where
Ta 1= t/’, with some world A in this model such that ((Tq, Vs), A) h a.

Given this, from the previous observation, if p is not in K ® tJ), then -xp is
not equivalent to 1 in K 0 ß. So, it must be equivalent to some disjunction of
^-suitable normal forms. Thus, we can take one ^-suitable normal form, a, from
the disjunction, and produce a t/j-model that makes a true at a point, and since
a —* -up, we have 2lQ ¥ <p.

Generally, to derive the relevant model, it is sufficient to use some variant of
the graded or ungraded model. When using the ungraded model, it is essential
to restrict Wn to only contain ^-suitable normal forms, and can sometimes be
necessary to restrict Rn as well.1

4.5 .1 E xam ples

In [16], normal forms are used to show the FMP for K, T, K4 and all uniform
extensions of D. Here, we use the technique outlined above to show the FMP for
some other common logics.

First, we reproduce the result for T, as several examples of the finite model
property generalise easily from L to L 0 T, and understanding how T works is
important for doing this.

Modal logic T

T = K 0 T where T — □ p p. We define T-suitable normal forms:

Definition 4.9 (T-suitable normal forms). A normal form a is T-suitable if

• deg(a) = 0 or

• a > a' and

• V/?, a > ß implies ß is T-suitable.

^ o r example, in [16], FMP for K4 is shown using a restriction of Rn to {(Ai,Aj) £ W? :
cti > a'j & ai y a j } .

4.5. APPLICATION 57

Since a —> a', it is trivial to see that for any normal form a, either a —> Oa1
(and so Oa' is a conjunct of a) or T 1= a _L.

The other two conditions of T-suit ability, that all degree 0 normal forms are
T-suitable, and a normal form of degree n > 0 is only T-suitable if all ß such
that a > ß are T-suitable, are general conditions. Similar conditions apply to
L-suitability for all logics L.

Since degree 0 normal forms do not contain any modal operators, then axioms
that make statements about modal operators are irrelevant to their potential
truth. And if a > ß, and ß is not L-suitable, then L h ß _L, and so a contains
a conjunct equivalent to Oi_, which makes a equivalent to J_.

For an appropriate model for T-suitable logics, Fine [16] uses the ungraded
model, with no modifications beyond restricting the frame (Wn, Rn) for a normal
form of degree n, to T-suitable normal forms. It is simple to show that this still
has the property (21 n,A*) h cq, and since cq > a[for all T suitable cq we also
have (Aj, Aß e Rn.

It is also possible to modify the graded models to produce a satisfying model
for a T-suitable cq it is trivial to show that if a is T-suitable, then the reflexive
closure of 2lQ maintains the property that (2la , A) t= a.

Directed Modal logics

A directed frame has the following property:

Vrr, y , z(xRy A xRz A y ^ z —> 3u(yRu A zRu))

For frames, it can be shown that T f= 0(üp A q) —► m(Op V q) iff T is directed.
We call the formula 0 (ü p A q) —> □(<>p V q) dir, and show that K 0 dir has the
finite model property.

We define directed normal forms:

Definition 4.10. A normal form a is directed if

• deg(a) = 0 or deg(a) = 1

• a > ßi & a > ß2 & ß\ 7 ̂ß2 => s.t. ß\ > 7 h /?2 > 7

• V/?, a > ß => ß is directed.

Here, the graded frame 2lQ works almost without modification. However, to
preserve the directedness of the frame at the lowest points, it is necessary to add

58 CHAPTER 4. NORMAL FORMS

a world a to Wa , and modify Ra to include (A, a) for all A whose associated
formula a has degree 02. Verifying that this frame is directed is trivial.

To show that non-directed normal forms are equivalent to _L in K 0 dir, we
may reason like this:

Suppose that a is not directed. This means 3ßi,ß2 such that a > ß \ , a >
f t , A 7̂ f t and ßi > 7 implies f t 7 -

Take Lp = -> \/{7 : ß > 7 }- Now ß2 —■» d p since otherwise, ß2 —> O7 , for some
ßi > 7 , a contradiction.

Thus, a —> 0(Dcp A ß2). Therefore, by the axiom dir, under substitution, we
have a —> □(<>(/? V ß2). Now, ßi ^ f t , so f t —> -<ft, and by the definition of <p,
ßi —► ^ 7 means 7 —> -up. So B —> ->0(p.

Therefore, we have a —* m(Oy?Vft) and a: —♦ 0 (- f t A~iO<p), a contradiction.
We may conclude K 0 dir 1= A _L.

Connected m odal logics

A connected frame T has the following property:

Vx, y , z(xRy A irifc A y z —> yRz V zRy)

Modally, this is equivalent to the statement T h □ (p A Dp —> q) V d(q A Dq —-► p).
We shall call the formula n(p A Dp —* q) V D(q A Qq —> p) r3, and show that
K 0 r 3 has the finite model property.

Firstly, we define connected normal forms.

Definition 4.11 (Connected normal form). A normal form a is connected if:

• deg(a) = 0 or

• a > ßi & a > ß2 & ßi 7̂ ß2 => (ft > ß'2 or ß2 > ß[) and

• V/?, a > ß => ß is connected.

Now, we show that if a normal form is not connected, it is equivalent to _L in
K 0 r 3 :

Assume that a is not connected; a > f t , a > f t , ß\ ^ ß2 and neither f t > ß'2
nor ß2 > ß[.

Letting p = - f t , and q = -ift, under a simple substitution, the axiom r3
becomes □ (- f t A D - f t —» - f t) V n (- f t A D - f t —> - f t) .

2This is similar to the construction used in [16] for the logic D.

4.5. APPLICATION 59

Now, f t —> --ft and f t —> f t, so ßi ß> ß'2 gives us f t —> --Oft. Thus, we have
ßi —► ->ft A ü -ift, so, either f t —» --ft, or □(-ift A D-ift —► --ft).

Similar reasoning with f t leads us to conclude that either f t —* --ft or
f t —> --ft. Thus, we have a contradiction, and non-connected normal forms
are equivalent to _L in K 0 r3.

Now, for a suitable model to realise a connected normal form a, we start with
the graded model 2la, and augment /f t by adding (71,72) whenever 7x > 73.

This model illustrates an important point; If a > f t then A t= a as long as
the A point sees at least one B point. Adding additional connections to other B
points cannot create a situation where A is no longer true. And since ß —> ft,
our addition for connectedness is valid.

That is, if f t > 7, and f t = 7, it does not matter if the associated point B\
is connected to C, B2 or both, we will still have B\ t= ft.

A ltn

The modal condition altn = Dpl V n(pi —> p2) V . . . V D(pi A .. . A pn —* pn+1)
places a bound on the number of points accessible from each point in a frame.
That is, VT, x \ . .. xn(/ \r- ^ xRxi —> \JlyLj Xi = Xj). We define altn suitability:

Definition 4.12. A normal form a is altn su itable if:

• deg(a) = 0 or

• If a > f t , a > f t . . . , a > ßn+i then Eh, j such that i ^ j and ft = f t and
Vi, ft is altn suitable.

It is essentially trivial to verify that if a is not a/ft-suitable then a is a
contradiction in K 0 a l f n, and completely trivial to show that the frame for the
graded model 2la will indeed verify altn. We include this example not for its
interest, but for its application to the later, substantially more complex example
of KTB 0 altn.

Sym m etric logic

The symmetric modal logic p —> □<>p is an interesting condition because, intu­
itively, the way to do it is to have a form of the counter-correlate a 0, that allows
us to state a > ß —> f t > a'. See [32] for an example of attempting such an
approach.

However, because there is no unique counter-correlate for any given f t this
approach is unworkable. Instead, we define the B-suitable normal forms as:

60 CHAPTER 4. NORMAL FORMS

Definition 4.13 (B-suitable). A normal form a is B-suitable if:

• deg(a) = 0 or deg(a) = 1 or

• V/?, a > ß => ß > a" and ß is B suitable.

Now it is clear that a normal form that is not B-suitable is equivalent to T
in B. Since a —> a", and by the axiom of symmetry, a" —> □<>a", we have
a —> DO a". If ß ^ a", then ß —> ->0 a". Thus, if a > ß, and ß ^ o", we would
have a —> DOa" and a —■» -iDOa", a contradiction.

To create a model realising a B-suitable normal form a, we take the symmetric
closure of the graded model 2la. Using similar reasoning to the case of connected
models, if ß > a" then adding (/?, a) to Ra does not affect the truth of the
statement (21 a, B) N /?, and as long as that is unaffected, then for all points C,
where CRaB , it is still the case that (21,4, C) h 7.

Thus, we may conclude that B has the finite model property.

Reflexive, Symmetric logic

While defining L-suitable forms for a particular logic can be easy, it is good
to be able to combine various logics easily as well. A very simple example of
this is the logic KTB, which combines reflexivity and transitivity. For defining
KTB-suitable, we simply combine the definitions of T-suitable and B-suitable -
A normal form is KTB-suitable if it is both T-suitable and B-suitable.

Deriving an appropriate model is again simply a matter of combining the
model conditions of the two component logics - A KTB-suitable normal form a
is satisfied in the symmetric, reflexive closure of the graded model 2lQ.

K TB © altn

Having seen that it can be simple to combine logics to produce the FMP, it is
important to note that the combining of known logics is not always as simple
as the example of KTB. For an example of a more complex logical issue, take
K T B © a/£ n. All the components of the logic have already been explored, and
as before, we can say that a normal form a is K TB © a/tn-suitable if it is T-
suitable, B-suitable and a/£n-suitable.

However, when we attempt to take the reflexive/symmetric closure of a model,
we add additional relations, causing the frame to fail the condition altn. This
requires a more complex model construction.

4.5. APPLICATION 61

To construct the relevant model, we start with the graded tree TQ. Now,
in the worst case for any world B, B sees n other worlds. By the definition of
KTB-suitable, one of these other worlds B' is associated with the normal form
/?', and one of the worlds A" is associated with the normal form form a", where
A, associated with a is the parent world of B.

Now, if we add the links (B , B), and (B , A), and simultaneously remove the
links (B ,B r) and (B.A"), then we still satisfy the condition that (eZa,B) 1= ß,
while not actually changing the number of alternative worlds accessible from B.

Thus, we can construct our appropriate model, and conclude that K TB 0 altn
has the FMP.

v

4.5 .2 A failure

There are some cases where simple application of normal forms does not provide
an easy way to show the finite model property. An example of this is attempting
to generalise transitivity. According to [16], a normal form a is K4 suitable if
V/?i,7 (a > ßi > 7 => 3ß2(a > Anß2 = 7 ,ß\ >- &))•

Now, the axiom 4 = Up —> p generalises neatly to 4n = / \”_0 —► Dn+1p
[10]. It is tempting to suppose that K4-suitability generalises in a similar fashion
to K 4n-suitability.

The obvious step to take is to generalise the y relation to y n, in much the
same way > was generalised to >n. That is, an y n a2 if a2 >n ß an > n ß. Just
as A R B , in a transitive frame, implies a y ß for the associated normal forms, in
an n-transitive frame, ARB should imply a y n ß. Then, a simple generalisation
of K4 suitability gives us:

Definition 4.14. A normal form a is 42-suitable if V/?i,7i,ä, when a > ß\ >
7i > 6, either

• 3ß2 such that a > ß2, ß2 = 6, ß\ y 2 ß2 and 71 y 2 ß'2 or

• 372 such that a > 2 72, y2 = S, ß[y 2 72 and 71)-2 72.

Of course, we add the usual caveats about the base case of deg(a) = 0 always
being 42-suitable, and that all of {ß : a > ß} must also be 42-suitable.

However, it turns out that this generalisation will not work; 4n is too ’loose’
a condition to properly dictate a frame. It is obvious that while the transitive
closure of a frame is unique, the n transitive closure is not. See for instance
Figure 4.4, which shows three different ways to provide the 2-transitive closure of

62 CHAPTER 4. NORMAL FORMS

Figure 4.4: Non-unique closures

* D * E

Figure 4.5: A failure in the ungraded frame

a simple 4 element chain. This looseness is reflected in the normal forms. While
the >- condition can lead to a suitable frame for K4 [16], it is not the case that
y 2 constrains the normal form equally well.

To some extent, this is the same problem as arises when trying to define the
counter-correlate - there isn’t enough data to step back from a" to a uniquely. In
the case of 4, we are constraining the elements ß such that ARB in the associated
model, which we can do safely. In the case of 42, we must constrain the elements 7
such that A R 2C in the associated model. This creates submodels of the ungraded
model like Figure 4.5, where for the associated formulas 7 and 6 for the worlds
D and E , we have 7" = S". Essentially, the inability of normal forms to see past
a certain depth works against us. The normal form a , associated with A satisfies
4q suitability because A sees E , even though it actually needs to see D.

4.5. APPLICATION 63

Another problem that arises is the situation of boundary cases at the very low
degrees.

Take a set of leading terms {a, 6, c, d, e). From these we define the normal
forms a = a A 0(6}, ß = b A 0{c}, 7 = c A 0{d} and 6 = d A O0.

Then we have a set of normal forms <pi... <£4, where ^ = eA 0{<a}, y?2 =
e A 0{/3}, = e A 0{y} and </?4 — e A {(5}.

Lastly, we define a normal form ip = e AO{cpi : 1 < z < 4}.
If we associate these normal forms with various worlds, where is associated

with a world and xp is associated with a world O, we can produce the frame
shown in Figure 4.6, where it can clearly be seen that while xp is 42 suitable, the
point A fails to satisfy 42. Thus, any definition of 42 suitability would have to
refute the possibility of xp being 42 suitable.

Figure 4.6: K 42-suitable, yet refuting 42

CHAPTER 4. NORMAL FORMS

C h ap te r 5

P ro o f Search in S4

5.1 Introduction

Sequent calculi, or Gentzen systems, outlined in Chapter 2, can be used as a tool
of automated reasoning. They provide a set of rules that are used to manipulate
sets of formulas, called sequents. Instead of working with a large set of axioms
and a couple of simple inference rules, a sequent calculus has but a couple of
axioms, and many inference rules.

The strength of Gentzen systems for automated reasoning is that the rules
can be applied backwards. If you desire to prove a formula </?, it is possible to
start from ip and work backwards, saying <p is a theorem if one of </>i,. . . (f)n is a
theorem, and work from there until one of the required formulas is an axiom.

However, automated reasoning has a weakness, and that is the potential for a
backwards derivation to loop infinitely. There are ways to deal with this problem,
usually involving additional notation. This chapter will look at the causes of
non-termination, and discuss two attempts to solve the problem. Heuerding’s
approach [24] is to add histories of what has already been done, while Pliuskevicius
and Pliuskeviciene [36] attempt to solve the problem by adding various marks and
indices to the syntax of the logic. We compare these two methods, and mention
some flaws in the method of [36].

5.1.1 Termination issues in S4

The most basic Gentzen systems are extremely simple, requiring explicit struc­
tural rules for such simple operations as contraction (That is, a sequent with
two occurrence of <p is identical to one with only a single occurrence of <p). For

65

66 CHAPTER 5. PROOF SEARCH IN S4

purposes of this discussion, we shall ignore these simple calculi and restrict our
attention to right-sided sequent calculi, leave the structural rules implicit, and
assume that all formulas have been reduced to negation normal form, as defined
in Chapter 2. This does not affect the correctness of the discussion, but the more
powerful calculi are easier to work with. We shall discuss the sequent calculus
S4. It is defined in Chapter 2, but for convenience, we reproduce it in Figure 5.1.

{Axiom) p , ->p, T (Verum) T, T

(V) v? v r (A)
y ,r ip,r

(p a ip, r

o<p, r (□, JUMP) — ^ ,<>A□<p,oA,r

Figure 5.1: Right sided Gentzen calculus for S4

When used for automated proof search, this calculus is not guaranteed to
terminate. The axiom, and the classical logical rules of (A) and (V) pose no
termination problems. However, the modal rules pose a significant problem for
automated backwards proof search. The calculus, as presented, does not in gen­
eral terminate. There are two problems that lead to non-termination.

The first problem with proof search in S4 is looping via the rule (O). This
arises with a formula of the form Op. Backwards applying the rule (O) to this
formula produces the pair Op,p. The rule (O) can be backwards applied to this
pair to produce Op, p, p. And so ad infinitum.

The naive approach to resolving this problem would be to observe that unlike
our other sequent rules, the rule (O), when applied backwards, does not reduce
the complexity of the sequent. A simple, but incorrect, approach to solving this
problem would appear to be using an alternate O rule, like this:

(O, WRONG)o<p, r
This clearly prevents the non-termination problem; After an application of

(O, WRONG), the relevant formula is no longer in the premise, so the looping
cannot occur. Unfortunately, it introduces a completeness problem. The formula
0(p V D O -ip) is a theorem of S4, but as outlined in [24], if we attempt to derive

5.1. INTRODUCTION 67

statements such as 0(p V DO->p) then we need the original rule (O). Consider
the difference:

_____ ____ Axiom___________
Q(p V DO-rp),p, D O -^O -np , -ip

0 (p V DQ ^) , p V ,0 x
Q(p V DQ-ip), O-ip, ->p

0 (p V D 0 -.p) ,0 - .p (Di J w p)
Q(pV DO-ip),p, DO-np

o(p v no-ip), pv no-<p
O (p V D O ^)

(O, WRONG)
— (□,
P’D° ^ (v)

p V D ° " p (O, WRONG)
0(p v no-.]?)

The left shows the derivation of the formula using the rule (O), while the right
shows the failed attempt at backwards derivation using the rule (O, WRONG).
As can be seen, having the rule (O) preserve the original formula in some form is
essential to deriving some formulas. However, we have already established that
repeated application of (O) can cause an infinite loop, which is problematic for
automated application.

The better way to solve the problem is simply to ensure that (O) is not
applied repeatedly to a particular formula. There are a couple of ways of doing
this, however, all are basically isomorphic. We shall look at two methods, both
of which boil down to sequestering the O<p formulas after application of the (O)
rule.

The second problem is an infinite looping branch, as with formulas of the form
ODp. If we establish rules to limit the repeated application of (O) to a given
formula, it must still be possible to apply (O) more than once, as the issues with
(O, WRONG) shows. In particular, we need to be able to apply the (O) rule
after using the (□, JUMP) rule. However, this requires further limits to prevent
a second kind of infinite loop, as shown below.

------- 1------- (O)

— ° Dp’p— (□, JUMP)
ODp, □ p,p

(□, JUMP)
O D P’ a P (Q)

o Up

68 CHAPTER 5. PROOF SEARCH IN S4

5.2 H e u e rd in g ’s C a lcu lu s

{Axiom) //||E |p , -ip, r [Verum) t f | |E |T , r

(V)
h | | s |^ ,x , r

(O, NEW) ^ s
H ||E |0 ^ ,r

(A)
H ||E|y»,r / / | |s |x ,r

ff||s|v>AX,r

// ||E |o v , r

(□, JUMP) . p g H
H||E|nv ,D A ,r

Figure 5.2: Heuerding’s calculus for S4

Heuerding’s calculus [23], shown in full in Figure 5.2 deals with the nonter­
mination problems of S4 by making sequents consist of three sets of formulae.
There is the primary set, to which the logical rules apply as usual. There are also
formula sets E and H , separated from our main formula by || and |. Thus, where
an ordinary right-handed sequent contains only a single formula set T, a sequent
in this calculus has the form /f | |E|r.

These two additional formula sets provide a history of our rule applications,
enabling us to avoid infinite loops in backwards derivation. In a backwards deriva­
tion, both sets start empty, and application of our modal rules adds formulas to
these history sets. If a set is already present in the history, then this blocks the
application of the relevant rule, so we cannot start the infinite loop.

For an example of a derivation in this new calculus, consider the previously
mentioned example of 0(p V □<>-■ p):

____________ Axiom____________
e ||o (p v m o-ip), o -ip |-ip ,p , m o-ip

£||0 (p v mo-vp), o-ip\-ip,p v m o-ip

e ||0 (p v m o-ip), O —ip|—ip, 0 (p v mo-ip)

o p 11 o (p v m o-ip)|o -ip , 0 (p v mo-ip)
e\\o (p v m o-ip) |p, m o-ip

«s 11 o (p v m o-ip) |p v m o-ip

£ ||e |0 (p v mO-ip)

(V)

(O)
(O, NEW)
(□, JUMP)

(V)
(O ,NEW)

The non modal rules of the calculus are essentially unchanged. They do not
modify the additional formula sets E and H , and their application is not modified

5.2. HEUERDING ’S CALCULUS 69

by the contents of these sets. They act only on the primary formula set. The
only way to interact with the sets £ and H is via the new modal rules.

When we write the new modal rules, as in Figure 5.2, then we need to add a
new element to the rules. Before, we had the premise (top line), the conclusion
(bottom line) and the rule name (to the left). Now, we add conditionals, written
to the right of the rules. If the conditional is not fulfilled, then the rule may not
be used. This prevents the repeated application of (□, JUMP) and (O, NEW).

The set £ is used to prevent the simpler infinite loop problem, where we simply
repeat the (O) rule without limit. In the basic calculus, backwards applying the
(O) rule to a formula Op produces a sequent containing both Op and p. In our
new calculus, we have two rules for <0. When we apply the (O, NEW) rule, we
place the formula ip into the primary formula set, but Op into the set £. Since
the O rules are not applicable to a formula in £, they cannot loop, but Op will
still be available when it is needed, unlike in the naive example of (O, WRONG).

The rule (O) also produces the formula p, but does not add Op to £. This
is because its side condition requires that Op is already in £, and adding an
additional instance of Op to £ is not necessary. The other difference is that the
rule (O, NEW) resets the formula set H. We shall discuss the importance of that
shortly.

The set H is necessary to prevent the more complex infinite loop, caused by
such formulas as OOp, since the side condition of the rule (□, JUMP) will prevent
repeated application of the rule. Thus, when attempting a backward derivation
of ODp, this calculus will terminate:

p \\o ° p \p , UP
p||ODp|p, OOp

£\\OOp\\Jp
£||e|0 Up

(O)
(□, JUMP)

(0 ,NEW)

Here, because the set H already contains the formula p, we cannot apply the
rule (□, JUMP) to Dp, and our attempted derivation fails.

The subtlety that arises in this calculus is the interaction between the rules
for (O) and (□, JUMP). The rule (□, JUMP), when applied, copies the formulas
in £ back to the primary sequent. This ensures that they are still available for
use, as in our example of deriving 0(p V □<>-p). When the (O) rule is applied to
a formula Op, and Op is not already in the set £, we reset the history H to the
empty set. The change in £ changes the state of our derivation enough to render
our prior history irrelevant. However, since we are working with finite formulas,

70 CHAPTER 5. PROOF SEARCH IN S4

and £ never resets, these interactions can only occur a finite number of times,
and will not prevent termination.

It is necessary to provide the reset of histories, otherwise the calculus would
become incomplete. Consider the derivation of the formula <>□(□<>p V DO-ip):

_____________________ Axiom_____________________
e ||o n (D O p v m o-ip), Op, O —<p|—ip, om (m Op v m o -p) , p

e||om (m O p v m o-ip), Op, O —>p| —<p, om (m Op v m o-ip), Op

□Op v mo-ip, Op, o -.p ||om (m O p v m o-ip), O p |o-ip , om (m Op v mo-tp), Op

□Op v □ o -ip ||O c (Q O p v n o -ip) , Op I □ Op, n o -ip , o n (n O p v n o -ip) , Op
□Op v □ o -n p ||o n (n O p v n o -ip) , O p |nO p v n o -ip , o n (n O p v n o —<p), Op

(O)
e||on(D O p v no-ip), Op|p, n (n O p v no-ip)

e ||on (nO p v no-ip), Op, |p, <>□(□<> p v co-ip)
□Op v n o -ip , Op, o - .p ||o n (n O p v □o->p)|Op, o n (o O p v mo-ip)
□Op v □ o -ip ||o n (Q O p v □ o -ip) |n O p , c o - ip , o n (n O p v mo-p)

□Op v □ o ^ p ||o a (D O p v n o ~ ip) \n o p v n o -ip , o n (n O p v n o -ip)

(O ,NEW)
(□, JUMP)

(V)
(□, JUMP)

e ||O D (üO p V □ 0 -ip) |0 (G 0 p V DO-ip)
e|OD(DOp V DO-ip)

(O, NEW
(C2, JUMP)
-(v)
- (□, JUMP)

(0,NEW)

If we did not reset the history H after modifying £, then the backwards
application of (□, JUMP) marked with <= in the derivation above would not be
possible, and the derivation would fail.

Another subtlety of the (□, JUMP) rule is that it adds all □ formulas in the
primary formula set T to if, instead of only the primary formula of the rule.

This is actually an optimisation, to limit the amount of backtracking needed.
Consider that we must allow for backtracking after applying the rule (□, JUMP).
Suppose we apply the rule (□, JUMP) to a formula set containing both □(/?, Ox, T,
producing the new primary formula set p, £. If we later derive a sequent Dx, T',
without modifying the set £, then applying the rule (□, JUMP) will produce a
primary formula set x, £, which we could have produced directly from our original
formula set.

If the set £ is changed, then we empty our history anyway. If our derivation
from p, £ had failed, we’d need to backtrack and check the results of applying
the rule (□, JUMP) to the primary sequent. There’s no need to check this twice,
so adding x to our history H saves us some work.

For proof that this calculus is sound, complete and terminating, see [23] or
[24].

5.3. THE MARKS AND INDICES METHOD 71

5.2.1 R efin ing H eu erd in g’s calcu lus

As the astute reader will have noticed, the primary purpose of the rule (O) is to
act on Oip formulas that are already in E. Now, if we have not invoked the rule
(□, JUMP) since Op was added to E, this is clearly unnecessary, as the formula
p was added to our primary sequent when we added Op to E, and we won’t need
to add it twice.

On the other hand, when we jump, then we copy all the formulas Op in E back
to our primary sequent, and promptly remove them again with the rule (O). This
action is almost automatic, and certainly does not enhance our understanding of
the derivation in any meaningful way.

As an alternative, we know that all formulas in E have the form Op for some
p. Suppose we allow the <0> to be implicit rather than making it explicit every
time. That is, when we apply the (O, NEW) rule, instead of adding Op to E, we
add p.

If we do this, then we do not need to apply the rule (O) after a jump, since
the formulas we copy across from E will already have the O removed. Indeed,
we should never need to apply the rule (O) to a formula Op, as whenever p is
in E, then we will already have added p to our primary sequent, either by using
the rule (O, NEW) or by copying it back from E with the rule (□, JUMP). As
such, we may remove the rule, (O) from our calculus, producing the revised set
of modal rules in Figure 5.3.

(0 ,N E W)
e | |y ,£ |y , r
H||s|Ov,r v & £ (□, JUMP) f , A, g||S |yp,S

ff | |E|CV,DA,r
f ? H

Figure 5.3: Revised modal rules for history-based S4

5.3 The Marks and Indices m ethod

Heuerding’s calculus, based on maintaining history sets, shows the normal ap­
proach used to guarantee termination for proof search in S4 and other logics.
However, [36] presents a different calculus. Instead of maintaining a extra for­
mula sets, this calculus is based on marking the various modalities to indicate
usage. The claim is made that this enables us to eliminate the added overhead
of a history set, and restrict the need to backtrack after choosing to apply the
(□, JUMP) rule to the wrong formula.

72 CHAPTER 5. PROOF SEARCH IN S4

(O *)
(D.+) rg+,o*rg+,y? , p +,o t^

o</?,r s ,o t ,dV e,o t ,dv
Figure 5.4: The marks and indices rules for S4

0=0 r,OT,y>
E ,O T , d<p

There are two marks used by this method, + and *, and two sets of indices,
i and o j.

The marks and indices method is a two step process. First, indices are assigned
to all the □ subformulas of the sequent, like so:

Firstly, □ formulas that are not within the scope of a O are left alone. In a
backwards derivation, only formulas within a O formula reoccur, so we do not
need to mark them to prevent looping.

Secondly, every □ within the scope of a O receives a unique index i. This
index is either a simple index, written d z or a special index, written d°*.

An index defaults to being simple. Hip receives a special index only if:

• ip contains a subformula of the form O'lp and

• (p has no subformula dy, such that \ has a subformula of the form O0.

Then we modify our modal rules that convert the indices to marks when
applied. In these sequents, r a+ means converting all instances of the index a
(which may have the form i or oi) to the mark +. The basic logical rules of (A)
and (V), and the axiom, remain as outlined in Figure 5.1. The new modal rules
are shown in Figure 5.4

These rules are backward applied subject to a particular strategy - The intent
is to limit the amount of backtracking needed. The strategy hinges on ordering
your application of modal rules as follows:

1. Apply the rule (O*) if possible.

2. Apply the rule (□) if possible.

3. Apply the rule (□<r+) if possible. This rule is always applicable to formulas
with a special index of the form d ofc. It is only applicable to formulas of
the form d zA if the following conditions are met:

• In O T , there is an occurrence of d z<p where all subformulas of <p are
marked. That is, if is a subformula of A, then /i = +.

• O T contains no subformulas of the form d ok,iJj for any k.

5.3. THE MARKS AND INDICES METHOD 73

4. apply the rule □* to formulas of the form □*<£, subject to the following rules
of priority:

• Formulas containing some □ okiJ) as a subformula

• Formulas Ux<p that are subformulas of some other in the sequent.
If there are multiple such formulas then we give priority to the one
that is a subformula of as many distinct formulas as possible.

• Other formulas of the form □*<£.

For example, consider again the formula O (p V DO->p). We add indices to
produce the formula 0(p V (□0l0-ip), and then run our derivation process

_____________ Axiom_____________
Q*(p V D + O-np), O D + Q-np

0*(p V D+0^p),0*-ip,
Q*(p V D+0-ip),Q ^p,p V D+Q-ip ol+

Q*(p V DolO— DolO-ip
Q*(p V DolO-ip),p V □olQ—ip [

0(p V □ olO-ip)

5.3 .1 M eth o d d iscussion

For backwards proof search, the * marking on O performs the same purpose as
the £ set in Heureding’s method: It prevents repeated application of the (O) rule
to a formula. Since the rule (O*) can only be invoked on unmarked O formulas,
each application of the rule must be to a different formula.

The + marking performs some of the same functions as the histories in Heured­
ing’s method. However, Heureding’s method always adds a formula to the history
set H when the (□, JUMP) rule is invoked, and resets the history occasionally.
The marks and indicies method instead refrains from marking a formula if there
is a chance we shall need to use the formula again, and never resets marks. This
in turn requires multiple rules for handling formulas of the form □(£>, depending
on how we plan to handle the mark.

Consider the formula <>□ p, the formula that previously demonstrated the
nontermination problems arising from transitivity. When we apply the marks and
indices method, we mark the formula to OCdp, and then produce the following
terminating derivation:

74 CHAPTER 5. PROOF SEARCH IN S4

O*ü+p, ü +p,p
P^p, cTp

o n lP (O’)

Thus, this calculus clearly provides termination in circumstances where the
basic sequent calculus does not. However, as we shall soon see, termination in
some simple cases is not the same as a proper proof of termination in all cases.

We have three transitivity rules, and our choice of rule depends on how we
intend to manipulate the marks. The first rule, (ü a+) introduces a mark on all
instances of a particular index cr, effectively removing the subformula U° p from
consideration in future. The second rule only marks a couple of instances of an
index. It prevents us from applying a transitivity rule to a particular U lp twice
in a row, but does not rule out reusing U lp higher in our derivation.

The third transitivity rule exists only for unindexed boxes: occurring outside
the scope of any P formula, they will not reoccur once the rule has been applied,
and there is no need to mark them in our history.

The definition of strongly special formulas P ofc, and consequent restriction on
the rule (üa+), is necessary to preserve completeness. Consider, for example, a
formula of the form P(PpVPPP-ip). If we apply the rule (ma+) to the subformula
Up too early, then it is locked out of consideration, and the attempted derivation
fails, as shown below:1

Axiom
P*(P +p V □2P +P-ip), P*-ip, -Ip,p, □ +p V n 20 +0->p

p^cdp v p 2p +p^p), o*ip, -np, □ V, u 2u+o^p (□ o1)

o *(p 1p v n 2n+o-^p), p-np, dV, d2d+p ^p
(o*)

0*(U1p V □2D+P~ip), P-np, Ulp V D2D + P-ip
P*(Dxp V □2Do3P —ip), Do3P-ip, □ □+□ o3P-np

0*(U1p V D2Do3P-np), D^P-ip, □ 1p V □ + □ o3P-np

(V)

o*(nlp v □2Do3p -1p),p, □+p, □2□ °3p p
p*(n1p v d2do3p ^p),p , □+p v □2n o3p —ip

(□°3+)

(V)
(□ 2)

O'fD'p v a 2̂ 03̂ ^) , n lp, □2Do3o-ip

(v)
(□*)<=

0*(D1p V □2Do30-ip), D'p V □2Do30-'p
0(n*p v □2Do3o^p)

(V)
(O')

LOf course, in S4, we can apply modal reduction principles to reduce this and several later
examples, producing a simpler formula that lacks the properties we want. It’s not hard to add
complexity to the examples to prevent this, and we want to keep the examples to the simplest
possible demonstration of a property

5.3. THE MARKS AND INDICES METHOD 75

If, at the step marked with 4=, we use the rule D1+ instead of the rule Ü1,
then the subformula □ lp is locked out of consideration, and is not available for
the final application of the rule n 1+. Thus, the derivation would fail if we were
allowed to apply n CT+ to □* formulas while there is a formula of the form Dokz/;
still available in the sequent.

5.3 .2 Issues

As is immediately apparent , there are some drawbacks to this method. The index­
ing process adds some complexity, especially with the distinction between simple
and special indices. Secondly, more importantly, we must check for subformulas,
while the traditional method only needs to check for equality.

The need to check for subformulas is not necessarily insoluble. During the
marking pass, we can do all the processing needed to create a list of subformulas,
making it quick to check if one formula is a subformula of another. Since the
subformula checking is only necessary on indexed formulas, it suffices to augment
the indices z to indices z, j such that if a formula has indices a, 6, where a > z,
b < j , then Ba'bp is a subformula of

So, for example, if we mark the formula 0 (D p V □ (□ /? A □<>p) with these
augmented indices, we’d get the marked formula <>(□ 1,1p V □ 2,4(D 3,3p A □ 4’4O p),

making it easy to quickly check for subformulas. That is, we can quickly see that
□3,3p and □ 4,4O p are subformulas of D2,4^ , while 0 1'1p is not.3

T erm ination , lack th ereo f

The most significant problem of the calculus is that it is non-terminating, contrary
to the claim of termination in [36] Since the sole motivation for using anything
but the basic calculus for S4 is to provide termination, this is something of a
problem.

Consider as a first example, the formula 0 (ü ü ü p A □ □□/?), and observe
the reduction tree (for simplicity’s sake, we omit most of the branching for
(A), focusing only on a single non-terminating branch). Let ip be the formula
D 1D2D3p a D4D5D6p-

2If we view formulas as trees, this prevents a tail recursive indexing method. However, that
ship sailed once we started caring about the distinction between regular and special indices.

3Technically, Dp is a subformula of □(□pADOp). However, in the marks and indices method,
□ V and Ô ip are different unless i = j. This confusion is a drawback of the method.

76 CHAPTER 5. PROOF SEARCH IN S4

o V , n 1n 2a 3p, D°n°p5 1—16 ,
(D 1)

branch omitted
OV , g W g3/? a a + a 5a 6p, g5g6p

(A)

0 *<p, a 4G5G6p, □■‘□•’p2 r—13„ branch omitted
OV, G+G2G3p A G4G5G6p, G2G3p

(A)

o v , □ 1d 2d 3p

0*{<p),(p

(D 1)

(A)

0 (D 1G2D3p a a 4a 5a bp)
(O *)

That’s a simple example, and could perhaps be solved by extending the sub­
formula checking, though as mentioned before, subformula checking is hard to
implement. We were lucky that the limited subformula checking could be han­
dled so easily.

There is another similar, more significant non-termination example, arising
from the condition on applying (Ga+) to simply indexed formulas:

The formula for consideration has the form Oj(Dp V Gp) A GOp). Let <p be
the formula (G ^V □ 2p) A Go3Op), in the derivation:

O*(<p),p, (G+p V G2p) A Go3Op)
o *V),p , g ^ v g +p

(a 1)
branch omitted

o *{<p),p, (a ‘p v □+p) a ü o3Op)
(A)

0 *(¥>).P. D+p, a '2P ^
(□ 2)

O*(<p),p, G+p V G2p branch omitted
0 *0p),p, (g +p v g2p) a a°3Op)

(A)

0 *(<p), G'p, G2p
(a 1)

o*(<p), a ‘p v a 2p
(v)

branch omitt

o *(¥>),¥>
O(ip)

(O -)

This example might be fixable as well. Maybe. In the meantime, we must aban­
don the marks and indices method as a convoluted failure.

However, such a fix comes at the cost of the simplifications provided by using
right-sided sequents and negation normal form, so is unlikely to prove useful for
automated reasoning.

5.4. ALTERNATIVE MARKING METHOD 77

5.4 A lternative M arking M eth od

Considering the problems that arise with the marks and indices method, it is
tempting to assume that any method based on marking formulas instead of his­
tories is doomed to failure.

However, recall that the rule (O*) is essentially identical to the E set of the
histories method. Indeed, from a theoretical viewpoint, there is little difference
between using marks carried around by the formula, and using a history as a
lookup table. A little thought will reveal that it is possible to produce a calculus
where the marking rules behave essentially identically to the H sets of the histories
method, like so:

Firstly, we assume that all modalities, both □ and O have been assigned a
unique index i. We also have two marked modalities, O* and ü + which are part
of the syntax.

Secondly, we have two operations; Firstly, we can mark indices taking a modal-
• ity □* to Dz+ and Ol to Oz*. We represent this operation with Fl* or Tz+ to
represent marking all instances of the index i within T with the mark * or +.
Secondly, we can reset a mark, reversing the operation. We represent this with
the operation r°, which replaces all + marks within F with the original indices.4 * *

Lastly, we have the following modal rules:

(0‘)
OM, A, (r0)"

(□•)
A, (EJ+)i+, Q*(E;+)i+

□M, G7 A, o*e , r

As can be seen by comparison to the histories method, marking a O formula
is equivalent to adding it to the E set, and marking a □ formula is roughly
equivalent to adding it to the H set

Now, this method is not perfectly isomorphic to the histories method. It’s
handling of repeated subformulas is different: compare 0(ü<p V □<£?), for an ex­
tremely simple example. Again, while too simple an example could be trivially
resolved during preprocessing, there can be more complicated examples.

4It’s not necessary to reproduce the original indices, just so long as they maintain the
uniqueness condition on the original indices. For instance, it would be possible to simply keep a
counter, incremented when an index was assigned, and use values from the counter to guarantee
the use of a completely fresh index.

78 CHAPTER 5. PROOF SEARCH IN S4

In the histories method, our derivation adds Dp to the history no matter
which side of the V we resolve first, and prevents us from resolving the second.
This is arguably the correct behaviour.

On the other hand, the index based method assigns each modality an index,
producing 0 1(ü 2(^V D3̂). The method views U2p and ü 3̂ as being different
formulas, and will attempt to resolve them separately. While this behaviour is
unfortunate, it is a necessary consequence of mark based methods. The com­
putation time that would be consumed by equality checking during the marking
process outweighs the consequences of this edge case.

Nonetheless, this indexed method is sufficiently close to the histories method
that we may show soundness and completeness by recourse to the soundness and
completeness of the history method. The soundness of the method is trivial, since
any derivation in this marked method can be replicated exactly in the basic S4
sequent calculus, just by stripping out the indices.

The completeness of this method is also simple. Any derivation admissible
in the history method can be reproduced in this calculus. Showing this simply
requires comparing the circumstances under which a formula is marked and the
circumstances under which the history method would transfer a formula to one
of its sets E or H . If a derivation in the history method would require use of the
(□, JUMP) rule on a formula □(/?, then p would not be in H , and in the mark
method, the formula Olp would not be marked. Likewise, if the history method
would require use of (O) or (O, NEW) on a formula Op, then the corresponding
formula Ol will not be marked.

Showing termination is a matter of showing steady reduction in complexity.
In the previous method could have an increase in the number of unmarked boxes
when the weak transitivity rule was applied. However, in this calculus, a O
formula, once marked, is never unmarked. Further, the □ formulae are only
unmarked when a O formula is marked. Thus, in a sequent with n O formulae
and m □ formulae, the rule (□*) can be applied at most m times before applying
the rule (Ol). Since the rule (O*) applies only once to each O formula, it can be
easily seen that the modal rules may be applied to this sequent at most n * m
times.

However, the method is so close to the history based method that it raises the
question of what benefit can be gained from adopting this method.

Certainly, the method provided has no purpose but to demonstrate that a
marking based calculus may actually be viable5. However, it appears self-evident

°However, the viability of a calculus that never resets its marks, like the prior calculus,

5.4. ALTERNATIVE MARKING METHOD 79

that pre-processing the sequent before commencing reasoning has some benefits.
As a simple example, □ formulae outside the scope of O formulae need not

be added to the history. The marking provides a way to keep track of this, and
reduces the size of the history that needs to be kept. Thus, marking provides a
more efficient way of deriving formulas such as □ (p V □(<? V ü(p V -p))), as the
history method would end with a history set {D(pV U(q VD(pV->p))), □(gVD(pV
-ip))), D(pV -p)))}, which is wasted overhead in the derivation process. However,
such overhead appears to be generally small, especially compared to the cost of
having two distinct □ rules and operators.

Further, the strategy of reducing □ outside O formulas first is sound, as
formulas within the scope of a O will be brought back by the jump rule. Once
the derivation is underway, it is much harder to determine the original state
of a formula without marking. Consider the formulas D(p V ->p) V and
Uq V OD(p V —>p):

With the strategy of reducing a □ outside a O before one within* 6:

Axiom
p, -■p, OUq

p V —ip, OUq
V

□ (p V ~ip),OUq, Uq
□ (p V —ip), OUq

in, JUMP)

(O)

□ (p V ->p) V ODq
(V)

(V)

_____ Axiom_____
OD(p V - i p) ,Pi^P

om(p v ->p), p v -ip
g,O D (pV ~ip), D(p V —’p)

9, QD(P V ~IP)
uq, o m(p v -ip), □ (p v -ip)

Uq, om(p v ip)

(□, JUMP)

(O)

~{U,JUMP)

- (O)
(V)

Uq V OD(p V -ip)
On the other hand, compare the exact opposite strategy, with reducing a □ inside
the O before one without:

-------------^ --------- (□, JUMP)
□(p V *p), OUq, Uq

□ (p V i p ^ O D g

□ (p V -ip) V OUq

Axiom_____
QD(p V -ip),p,-ip ^

ou(p v _ip),p v -ip
uq, on(p v -ip), m(p v -ip)

Uq, OU[p V -ip)
Oq V OD(p V -ip)

(□, JUMP)

(O)

remains an open question
6For simplicity, these proofs have been constructed using the naive sequent calculus. The

features intended to provide termination for automated reasoning only complicate these fairly
simple examples

80 CHAPTER 5. PROOF SEARCH IN S4

While the right derivation is basically similar, the left derivation fails, and we must
backtrack. Thus, although the first strategy successfully resolves both cases, the
second runs into problems in some cases.

However, the cost of marking is the need for more detailed rules, and added
complexity in the application of those rules. As the prior method demonstrates,
while the distinction between strong and weakly special □ formulas may have
merit, the added complexity of the rules needed almost certainly outweighs the
value of the distinction.

C h ap te r 6

U navoidable W ords

6.1 Introduction

This chapter is not about modal logic. Instead, it discusses the complexity of the
unavoidable words problem. This problem is essentially concerned with patterns
of repetition in strings of symbols. In particular, the problem, is one of identifying
those patterns that must occur in any sufficiently long string.

This problem was first outlined by Thue [41], who applied it to a problem in
group theory. He used the concept of avoidablility to outline a sequence. This
sequence has been discovered on a couple of other occasions, and tends to show
up in a number of different areas, as outlined by Allouche and Shallit [38].

The unavoidable words problem is a subproblem of more general pattern
matching problems (see [9] and [21] for examples of more general problems).
There is an algorithm suitable for solving the problem, discovered by Bean,
Ehrenfeucht and McNulty [3], and independently by Zimin [43]. This algorithm
establishes the problem as being firmly in NP. Investigations of this algorithm
([1], [20]) indicate it is unlikely the problem is in P. There are, however, many
open problems relating to the unavoidable words [13].

We shall explain the problem, borrowing terms from both [3] and [43] as
appropriate. As an altenate reference, the textbook Algebraic Combinatorics on
Words [28] devotes an entire chapter to this problem. This chapter presents some
fairly simple results that follow from the algorithm, as well as an interesting result
about the complexity of unavoidability testing for strings that are “long”, relative
to their alphabet. We then finish by presenting a selection of counter-examples
to demonstrate that the problem is indeed hard.

81

82 CHAPTER 6. UNAVOIDABLE WORDS

6.1.1 Form al D efin ition s

We start by defining an a lphabet A as a set of symbols, and a word W on A
as a string of symbols taken from A. Note that while a word may be infinitely
long, all alphabets are finite sets.

Definition 6.1. The set of all possible words on an alphabet A shall be denoted
w(A).

Next, we must define what it means to encounter a word:

Definition 6.2. Given a pair of alphabets A and B , a word W on A is a sub­
stitution instance of word U on B if there exists a function / : B —> to A, such
that if U — U 1 U 2 . .. then W = f {u\) f (u2)

Definition 6.3. A word W encounters a word U if there is some substring of
W that is a substitution instance of U.

If W does not encounter £/, we say W avoids U.
Because of our use of substitution instances, the exact nature of the symbols

constituting an alphabet is largely irrelevant. All alphabets of a given (finite)
size may be considered isomorphic. For all our purposes, a word abcca would be
equivalent to the word xyzzx.

We define an unavoidable word as follows:

Definition 6.4. A word U on A is unavoidable by an alphabet B if the set
{W E roB : W avoids U} is a finite set.

Note that clearly, if a word W is unavoidable by an alphabet B , we can say
that W will also be unavoidable by all alphabets C, where |C\ < \B\. If B has k
letters, we say that W is ^-unavoidable. If W is /^-unavoidable for all k , then
we call W unavoidable. Words that are not unavoidable are called avoidable.

It is not in general the case that /c-unavoidability is equivalent to complete
unavoidability. For instance, the word xx is unavoidable on a 2 letter alphabet.
However, it is possible to avoid xx with any alphabet that has three or more
letters [41].

The question of if there exists some number k such that A:-unavoidability is
equivalent to general unavoidability remains open. Clark [12] demonstrates an
example of a word that is 5-unavoidable, which is not unavoidable in general. This
is the highest value of k for which /c-unavoidability is known not to be equivalent
to general unavoidability. It may be possible to derive a larger 6-unavoidable word
that is not in general unavoidable, but checking such a word for 6-unavoidability
is currently computationally unfeasible.

6.1. INTRODUCTION 83

6.1.2 Decidability

Having defined the property of unavoidability, it is natural to ask if it is in gen­
eral possible to decide if a word is avoidable. Note that even without a general
decidability result, the theory of unavoidable words can still produce useful re­
sults. For instance, [41] produces results based on the avoidability of xx, without
referencing more complex words.

There are two papers, [43] and [3] that independently established the decid­
ability of the unavoidable words problem. Both use a similar decision procedure,
albeit with different notation. The decision procedure is exponential in com­
plexity, but the ultimate complexity of the problem is unknown. Heitsch [22]
establishes that most of the ’obvious’ candidates for refining the decision proce­
dure are inadequate.

The Zimin Word

One of the important results on unavoidable words is that for any given alphabet
W, there are only finitely many unavoidable words that can be created using that
alphabet.

In [3], the existence of an upper bound on the length of unavoidable words on
an alphabet is established. However, [43] and [37] both go further, establishing
that there is a single longest unavoidable word on an alphabet, and it encounters
all shorter words on that alphabet. This word is called the Zimin word, and is
defined as follows:

Definition 6.5. Let An be the alphabet cq . . . an. Let Zn be the longest unavoid­
able word on An, as defined below:

Z\ = a i
^ n + 1 ^n^"n-\-l^n

Note that the alphabet An is a generalisation for any alphabet on n characters,
and substitution instances of Zn are perfectly acceptable as unavoidable words.
For instance, xyx , a\a2a\ and bab can all be considered instances of Z2.

The proof of the unavoidability of Zn is a simple one. Firstly, it is trivially true
that Z\ is unavoidable. Secondly, any sufficiently long word must encounter an
unavoidable word multiple times. Thus, if we define f(a n+1) to be the sequence
of characters between some two encounters of Zn, then the word encounters Zn+i.
Thus, by induction, Zn is unavoidable for all n.

84 CHAPTER 6. UNAVOIDABLE WORDS

Bear in mind that for all Zi: Zj, the first m characters of Z{ and Z2, if defined,
will be identical. This fact is used later, in Section 6.3.2.

The Decision Procedure

Both [43] and [3] provide the same basic procedure for determining if a word is
unavoidable. This procedure hinges on two basic results. Firstly, we can simplify
a word in a way that preserves avoidability - if the original word was avoidable,
either the simplification is impossible or the simplified word is also avoidable.
Secondly, for any unavoidable word, there is a sequence of simplifications that
will eventually reach the word Zi, which is trivially unavoidable.

To apply the procedure, we start with a set of definitions.

Definition 6.6. Rw is a relationship on the alphabet of the word W. We say
aRwb iff ab is a subword of W. Thus, Rw defines the relationship of adjacency.

Definition 6.7. Given adjacency, we can create a bipartite graph, where every
letter a in the alphabet creates two points and c l r . If we have aRwb for some
pair a, 6, then we create an edge connecting the points and br . This is called
the adjacency graph of the word. Figure 6.1 provides an example of such a graph.

Figure 6.1: Adjacency graph for abacbab

Definition 6.8. A letter a is free in a word W if there is no path in the adjacency
graph of W connecting ül and clr. For the graph in Figure 6.1, both a and b are
free, but c is not.

Definition 6.9 (Deletion). Given a word W and a letter a, let W — a be the
word created by removing all instances of the letter a from W. For instance, if
W = xyxzyxy , W — y — xxzx.

Definition 6.10 (Unification). Given a word W and a set of letters cr, let W aa
be the word created by replacing every occurrence of a letter in o by the letter
a. For instance, if W = xyxzyxy , a = {x, z}, W aa = ayaayay.

6.2. OTHER DEFINITIONS 85

Definition 6.11. A word is locked if it contains no free letters. For example, the
word cabadcb has the adjacency graph shown in Figure 6.2, and is locked.

Figure 6.2: Adjacency graph for the locked word cabadcbc

Now, both [43] and [3] show that given an unavoidable word, there exists a
sequence of unification and deletion of free letters that will reduce the word to
Z\ (and the only possible operation on Z\ is a deletion to reduce it to the empty
string). If a word is avoidable, then any sequence of unification and deletion
operations must eventually produce a locked word.

Since both unification and deletion reduce the number of different letters in
the word and there are only finitely many options at each stage, there are only a
finite number of possible sequences to consider. It is simple to see that the process
must always terminate, and so the unavoidable words problem is decidable.

6.2 O ther definitions

We can simplify the working for our problem by defining a number of other
operations and objects.

It is a feature of the algorithm that letters need only be unified immediately
before deletion. This can be seen from the definition of free letters - unification
cannot make a set of letters free. Thus, postponing unification until it is necessary
to delete multiple letters at once cannot prevent us from discovering any necessary
reductions. Because of this, it is convenient to replace our two operations of
unification and deletion with a single operation, reduction by free sets.

Definition 6.12. A free set is a set of letters a used in a word IT, with the
property that a is a free letter in the word W aa.

Definition 6.13. Given a word W and a set of letters <r, IV—a is the word created
by deleting all instances of all letters in a. We call this operation reduction by
the free set a.

86 CHAPTER 6. UNAVOIDABLE WORDS

A point to note here, originally made by Heitsch [21] is that if a word is
unavoidable, then there exists a reduction by free sets that uses only free sets
with the property that \/x,y G cr, there is a chain of letters Z \ . . . zn, with
xR z\R ~lZ2 . . . RznR~1y.

Translated into the terms of unification/deletion relations, this result means
that unification is only necessary if performing the unification does not change
the collection of free sets in the word.

6.3 Basic R esu lts

The following results are all fairly simple consequences of the correctness of the
decision procedure. However, they are often not mentioned in the literature, and
can be useful when trying to work with unavoidable words.

6.3.1 S in g leton s

A singleton is a letter that occurs only once in a word. These letters have a
number of special properties. Individually, these properties make it simpler to
work with unavoidable words under some circumstances. Taken as a whole, they
lead to the equivalence between unavoidable words and unavoidable formulas
cited in [12].

Firstly, there is the trivial note that as with any other letter, the identity of
singletons doesn’t matter. The words abacaba and abadaba are essentially the
same word, when checking for unavoidability. Now, when it is necessary to check
the interaction of words, the identity of singletons becomes important - aba and
bab behave in identical fashion in isolation, but while abacaba and babcbab are
both unavoidable, the word abacbab is avoidable.

Secondly, we augment this result with the following theorem:

Theorem 6.14. A word W can be reduced to an empty string by a sequence
of reductions if and only if it can be reduced to a word S which contains every
singleton in IT, and only singletons.

Proof. To prove this, we rely on the reduction procedure, and note that it is
never a disadvantage to leave a singleton out of a reduction; If cq is a free set in
W — (cr2 U {«}), where s is a singleton, then a\ is a free set in W — cr2. Thus, if
we take a valid reduction of W to an empty word, removing any singletons from

6.3. BASIC RESULTS 87

the reduction sets produces a reduction of W to S. From here, a simple inductive
argument suffices to prove the hypothesis.

That singleton reductions are never necessary for a set to become free follows
from the definition - if removing the letter w from a word would make a set <j\
free, then there is some pair x ,y in the adjacency graph such that xrRwiR~1yr.
But this is a statement that the word contains the pairs xw and yw , which would
require w to occur multiple times.

The converse is trivial - any word S containing only singletons can be reduced
to the empty string by a few extra reductions. H

Now, given these two results, we can justify abbreviating singletons, using
only a single character that is used for every singleton in the word; abxacybc
becomes ab.ac.bc. We do not need to include the . character when building ad­
jacency graphs, and when the word has been reduced to ..., we can conclude
unavoidability.

We next note results that are in a way opposite to the prior result. Having
noted that removing singletons is never necessary, we now note that there are
some circumstances when singletons can be removed immediately, to simplify a
word.

Firstly, observe that when singletons occur together, as in the word abaxyaba,
we can remove one singleton immediately, producing abaxaba (or, equivalently,
abayaba) without affecting the unavoidability of the word.

Further, singletons at the beginning and end of words can be removed imme­
diately. In a word like xabacabay, the x and y play no part in the unavoidability
of the word.

These results all hinge on the nature of reductions - a word has no valid
reductions only if all suitable free sets have been locked. As outlined previously,
a set a is locked iff it has a path within the adjacency graph connecting Xl to
yn for some x ,y E a. In the adjacency graph, singletons must be the endpoints
of a path, and so irrelevant for any set unless they are a member, and by our
previous theorem, it is possible to remove the singleton from any necessary free
set. Thus we justify considering the word xabaycabzbad as being identical to
aba.ab.ba, which has a much clearer structure.

6.3 .2 T h e Z im in w o rd

The Zimin word is an interesting one, and there are some basic results connected
to it. Having these results can make it easier to work with other unavoidable

88 CHAPTER 6. UNAVOIDABLE WORDS

words, as Zn is highly structured, and all unavoidable words have some connection
to Zn.

The Zimin sequence

While the Zimin word is defined recursively, it is good to have an iterative defini­
tion, such that we can tell (for example), the 35th letter of Z6, without running
through the other letters of the 64 character word. Thus, we define a sequence
zn, called the Zimin sequence, over the (infinite) alphabet an,n € N:

Definition 6.15. Zk = a>f(k), where:
/ (2 i - l) = l
f(2i) =f(i) + 1.

The letter zn corresponds to the n-th letter of the Zimin word. Thanks to its
recursive definition, the prefix of the Zimin word Zn is identical for all n.

For most practical values of zn, we can map the sequence from the natural
numbers to a more normal alphabet a, 5, c , . . . without running out of letters.
Words on more than 10 letters are difficult to handle, and there is a combinatorial
explosion as more letters are added. Running out of letters when trying to write
32 million character words is not going to come up within this thesis.

Subsequences of the Zimin word

All unavoidable words on n characters are subsequences of Zn. (Not necessar­
ily a unique subsequence.) For example, the word abcab can be mapped to a
subsequence of Z3 in two ways, after renaming:

Z3 = xyxzxyx
ab cab

abc ab
Interestingly, this is never mentioned in Heitsch [22], although the proofs

provided imply this fact, indirectly.
Indeed, using the splitting algorithm provided in Heitsch [22], it is possible to

get the relevant subsequence of Zn in trivial fashion. The splitting provides an
ordering on letters, and this ordering corresponds to the ordering based on the
frequency of letters in Zn.

This makes enumerating the possibilities for extremely long words relatively
simple, allowing us to extend the results of Schmidt [37], establishing an upper
bound on the number of words of length 2n — m for any m < 2-1n. Further, this

6.3. BASIC RESULTS 89

upper bound is constant as n changes, and for sufficiently large n, is a complete
enumeration.

To do this, we simply exploit the need for the Zimin word to encounter this
subsequence. We can, for instance, create all words on 2n — 2 characters by
taking the Zimin word, and removing a character. Since the new word must
encounter the Zimin word, every instance of a given letter must have the same
set of deletions surrounding it. When deleting only a single character, we can
either delete from the ends of the word, or from the characters surrounding the
singleton in the middle. The singleton in the middle is the only character that can
be expanded by a homomorphism to cover the deletion without also expanding a
character without an associated deletion

For instance, if we take Z4 = abacabadabacaba, and delete the third character,
to produce abcabadabacaba, then the only homomorphisms that would take the
left hand side of the word to abacaba are f(b) = ba and g(c) = ac (Both / and
g act as an identity mapping on the other characters in the word). But under / ,
we get the word abacabaadabaacabaa, which is clearly avoidable, while under g,
we get abacabadabaacaba, again, including the avoidable word aa.

So, with this understanding, we can consider the options for deleting two char­
acters from Z\ , as shown in the following list, with the characters to be deleted
shown in bold:

abacabadabacaba.
abacabadabacaba
abacabadabacaba
abacabadabacaba
abacabadabacaba
abacabadabacaba
abacabadabacaba
abacabadabacaba
abacabadabacaba
abacabadabacaba
abacabadabacaba

abacabadabaacaba
After performing the marked deletions, and removing those patterns that are

equivalent under reversal, we get the 7 unavoidable patterns in Schmidt.
For further enumeration of the upper bounds on the number of unavoidable

words of length 2n — m, see Appendix A, which shows the result of some simple

90 CHAPTER 6. UNAVOIDABLE WORDS

brute force calculation for values of m up to 25.
This is an upper bound, rather than an exact enumeration, because, for small

n, deletion from one point may be indistinguishable from deletion from another
point. For instance, deleting 2 characters from abacaba, if we remove both letters
to the right of a 6, we shall reduce the word abacaba to bacba. If we instead a
letter to the left of c and the final character from the word, we reduce abacaba
to abcab, an identical pattern. However, for sufficiently large n, there will always
be the full set of words.

Splitting words

As previously mentioned, [22] offers a polynomial time algorithm that accepts
all unavoidable words and many avoidable ones, and provides a “split-based”
ordering on letters. The algorithm, applied to a non-empty word W on n letters,
is as follows:

Definition 6 .16 . Begin with X = {W}.
If W G X, U is empty, accept the word.

Else if there exists l such that for all U G A, either l is not in U, or U = VIV\
where l is not in V or V', then repeat with the set X ' = {U\U G X , l 0 U] U

{V\VIW G X } U {V'\VIW G X}.

For a proof that this accepts all unavoidable words, but does not accept only
unavoidable words, see [22]. However, if we keep track of our choice of l at each
step, then we produce an ordering on letters. Most usefully, if the choice of l was
unique at each step, then the reverse of this ordering is the only possible valid
reduction on W. This single reduction is quickly checked, and goes some small
way to reducing the number of false positives encountered by the algorithm.

6.4 S im p lifica tions

The unavoidable words problem is a difficult one. In this section, we look at some
simpler, yet closely related problems.

6.4.1 Simply reducible words

A simple reduction is one that involves no unification steps - The word can be
reduced entirely by reducing single characters. Such words are far easier to work

6.4. SIMPLIFICATIONS 91

with, and avoid one of the major causes of combinatorial explosion when checking
for unavoidability.

6.4.2 Long unavoidable w ords

Many of the hardest words to show unavoidability are the ones that are “short”,
relative to the number of characters in the word. A word with many short blocks,
separated by singletons, has more options at each stage of the reduction. By con­
trast, if looking for valid reductions for Zn, then there is only one valid sequence
of reductions, and attempting to remove a letter out of order immediately results
in a trivially unavoidable word.

The longer a word gets, the closer it grows to the Zimin word, and the easier
it must be to reduce.

An equivalence result

Theorem 6.17. All sufficiently long words are simple words, in the sense of the
previous section. For this purpose, “sufficiently long” means words on n letters
of length at least 2n_1.

Proof. We prove this by induction.
The base case of the induction, words on only one or two letters, is essentially

trivial.
For the inductive step, assume that for all m < n, words on m characters of at

least length 2m_1 are simply unavoidable. Take an unavoidable word on n letters
of length at least 2ra_1. Since it is unavoidable, there exists either a unification
or reduction operation that will take it to a simpler unavoidable word.

If we apply a unification operation to the word, we have a word on at most
n —1 letters that is longer than the Zimin word, and is as such trivially avoidable.

Therefore, there must be a single letter reduction to take it to a simpler
unavoidable word. This single letter must be free, which means that it can occur
at most every second character (otherwise, we have a subword of the form aa)

Because of this, if our original word has length l > 2n_1, then the resulting
word after a single letter reduction will have length at least |_Z/2J > 2n_2, which
is a long word on n — 1 characters, and so we can apply the inductive hypothesis.
H

92 CHAPTER 6. UNAVOIDABLE WORDS

6.5 Im p lied U n av o id ab ility

Given that a word W is unavoidable, it is often possible to immediately determine
that some other words are also unavoidable. As a simple example, all subwords
of W will be unavoidable. This kind of implication can be useful when trying to
create lists of unavoidable words, as it allows for various a priori methods to be
applied:

• The most basic implication has already been discussed - We can turn all
instances of one letter into a different letter, not occurring in the word,
without affecting unavoidability. Thus, aba is an unavoidable word iff xbx
is an unavoidable word.

• By the same token, the discussion of singleton pruning leads to the real­
isation that introducing new singletons to a word cannot make the word
avoidable. However, they can make an avoidable word unavoidable. For an
extremely simple example, aa is avoidable, but adding b can produce the
unavoidable aba.

• A necessary consequence of the algorithm is that a word W \ . . .wn being
unavoidable is equivalent to the reversed word wn . . . W \ being unavoidable,
with the same valid reductions. At each stage of the reduction, the adja­
cency graph of one will be the mirror image of the adjacency graph of the
other, and so they will permit the same set of free sets.

• Also, there is a trivial result that states all subwords of an unavoidable
word are unavoidable. This result is quite useful in the inverse form, stating
that to be an unavoidable word, it is necessary that all subwords must be
unavoidable. Because of this, locating an avoidable subword suffices to show
that an entire word must be avoidable.

Because of this result, the most “difficult” avoidable words to detect are of
the form W = xUy1 where both xU and Uy are unavoidable. If there were
some easy way to detect unavoidable words of this form, then the entire
problem would be simpler.

• It was shown by Zimin [43] that all unavoidable words on n characters
encountered Zn, and, as with subwords, this can theoretically be used to
identify avoidability, by finding a homomorphism to map a word W to Zn.

6.6. COUNTEREXAMPLES 93

Indeed, the unavoidable words problem can be more simply viewed as a
problem of identifying those words the Zimin word encounters.

However, the problem of encountering in general is itself a very difficult
problem. Because of this, it may well be the case that identifying words
encountered by the Zimin word is also an NP-complete problem - its com­
plexity is currently unknown.

• The operation of unifying two distinct letters does not introduce unavoid-
ability. The contrapositive of this is that taking a letter and replacing some
(but not all) instances of the letter with a new letter does not introduce
avoidability, since the change cannot reduce the available free sets and the
resulting word can simply unify the two letters when the need arises.

• The operations involved in reduction are not affected by (suitably sepa­
rated) duplication of a subword. For instance, if we have a reduction for
the word aba, then this reduction is a valid reduction to reduce the word
abacaba to c.

As such, if we have an unavoidable word X , then X .X , where . is a singleton
not occurring in X , is also an unavoidable word.

• To generalise the previous idea, given two unavoidable words X and Y , if
Y is either a subword of X or the overlap between the alphabet of X and
the alphabet of Y is empty, then X .Y is an unavoidable word.

• The general replacement operation introduced by Heitsch [22], preserves
unavoidability. This is an especially potent operation, since it makes it
relatively easy to generalise examples. Given a single counterexample to
a conjecture, this operation can be used to generate an infinite number of
distinct counterexamples.

• A hnal operation that will create a new unavoidable word from an old
unavoidable word is of course adding a free set, since that operation is
trivially reverseable when looking for a reduction.

6.6 C ounterexam ples

There are a number of conjectures about the unavoidable words that are not
obviously false. However, if they were true, they could make the unavoidable

94 CHAPTER 6. UNAVOIDABLE WORDS

words problem much easier. Presented here are a number of these conjectures,
and the counterexamples we found:

6.6.1 U n ifica tion as th e first step

The algorithm, as presented, involves two kinds of operation, unification and re­
duction. It is immediately clear that for some words, it is not necessary to reduce
immediately after unifying. One may conjecture that given a sequence of reduc­
tion and unification operations, it is possible to rearrange these operations such
that the unification operations are complete before the first reduction operation.
If true, this could make it possible to turn every unavoidable word into a simple
word by a process of repeated unification.

The counterexample to this is the word xaxbxaxcdebecb The only valid re­
duction for this is to reduce by x , then unify a and e. However, if we unify a
and e before reducing by rr, then x is no longer a free set, and the resulting word
xaxbxaxcdxbxcb is avoidable.

6.6 .2 P artia l redu ction

Given an unavoidable word X , and a free set cr, such that X — a is unavoidable,
it is tempting to make conjectures about the word X.(X — a). Unfortunately,
there is no clear result.

It is not invariably avoidable, as is made clear by such trivial examples as
aba.b and xabax.aba. However, it is not invariably unavoidable. An example of
an avoidable word of this form is provided by abacaba.bcb.

6.6 .3 F ree-set size

The unavoidable words problem would be made far easier if there were some easy
way to determine the appropriate free set. One tempting strategy to take is to
look at free set size. Alas, this is inadequate. There are words where the smallest
free set is not the appropriate next reduction, such as abacdebecb, and there are
words where the largest free set is not the appropriate next reduction, such as
abacabadxax.

For a more detailed explanation of this failure, see Heitsch [21].

6.6. COUNTEREXAMPLES 95

6 .6 .4 S im p le s tr in g s

Call a simple string one in which no character is repeated. It is clear that a word
can be made entirely of simple strings, separated by singletons, abc.acb is one
example of an unavoidable word with such a property, and ab.ba.bc.cb.ca is an
example of a locked word with such a property. While such words seem simpler
than the general problem of unavoidable words, it is not in general the case that
such words must be locked or unavoidable, axb.bax.bc.cb.cax is an example of
a word that is avoidable, in spite of having a reduction. Both a and x are free
letters, however, it clearly encounters the locked word ab.ba.bc.cb.ca.

6.6 .5 S p li t t in g e n ta ils a r e d u c tio n

As previously mentioned, when using the splitting algorithm defined in Heitsch
[22], if the resulting ordering is unique, and the word is unavoidable, then the
ordering is identical to that provided by the reduction. However, it is simple to
verify that when a unification step is necessary in the reduction of a word, the
ordering must not be unique.

Given that the long unavoidable words never require a unification step in their
reduction, we could conjecture that the ordering supplied will always correspond
to a valid reduction in this particular case. That is to say, the only reason that
the algorithm does not produce a unique splitting is because of the inability to
impose an order on letters that must be unified. The counterexample here is
the word yaxbyxax, which has multiple distinct orderings based on the splitting,
and is a long word, where any unification will produce a word too long to be
unavoidable. But, the word only has one valid reduction, namely y , x , a, b.

6.6 .6 O rd e r in g re d u c tio n s

The standard way of demonstrating that a problem is NP-complete is to embed
some other problem, known to be NP-complete, into the problem. This is not
easy. For the unavoidable words problem, there would need to be some way of
limiting valid reductions that didn’t trivially produce over constrained reductions.

One idea is to attempt to impose order on the reductions. It is trivial to see
that if aba is a subword of an unavoidable word, then in any valid reduction, a
must be reduced before b, lest the reduction created the avoidable subword aa.

While ordering in this manner is possible, it is immediately obvious that
overconstraining is an issue; aba.bcb.aca is a locked word. If one were to place

96 CHAPTER 6. UNAVOIDABLE WORDS

an ordering on multiple letters (that is, a before b before c), then adding the
transitive closure of this ordering can trivially lock the word.

However, we can reduce the amount of detail used to create the ordering. This
delays, but does not fix the problem. Take the basic partial order A > B > C > D
and A > E > D. Attempting to impose this on a reduction by creating the
word aba.bcb.cdc.aea.ded produces a locked word. This is a common issue when
attempting to embed problems into the unavoidable words problem; Even though
a problem might embed easily for small cases, the non-local nature of locking can
produce a locked word when extended to a slightly more complex problem.

On the other hand, creating orderings using the Zimin word has its own prob­
lems. While abacabadabacaba.aeadaea is not locked, and is indeed unavoidable,
the immediate issue is that the Zimin word grows exponentially in length as ad­
ditional constraints are added. It can hardly be considered an “easy” way of
ordering reductions.

C h ap te r 7

C onclusions and F u rth e r W ork

This thesis has covered four topics, with an emphasis on modal logic. In this chap­
ter, we shall review the results provided in earlier chapters and suggest directions
for further work.

Chapter 3 discusses the structure of the lattice of normal extensions of KTB.
Thanks to the duality of logic and algebra, this is also the lattice of subvarieties
of KTB. The lattice has a few known structural properties. Of particular interest
to us, the lattice of normal extensions has a unique greatest element, the logic
of a single reflexive point, and a unique second greatest element, the logic of two
connected reflexive points.

Our work has two theorems discussing the set of third greatest elements in this
lattice. The first, simpler theorem is Theorem 3.7. This theorem demonstrates
a construction of infinitely many cocovers of the algebra of two points. While
this theorem is unnecessary in light of later results, it is significantly simpler
to prove than subsequent theorems, relies only upon Kripke frames, while the
subsequent theorem requires the use of general frames. Thus, the result retains
some theoretical interest.

The second major theorem of Chapter 3 is Theorem 3.17. This is a more
complex theorem than the first, and requires substantially more effort to prove.
However, it is still a constructive proof, this time that there are uncountably many
cocovers of the algebra of two points. Thus, this theorem is strictly stronger than
Theorem 3.7.

The primary reason that the second theorem is so much more complex than the
first is that to demonstrate the existence of uncountably many cocovers, we must
work with infinite structures. At this point, we are forced to use general frames
instead of Kripke frames. For a general frame, having added a set of distinguished

97

98 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

points to a Kripke frame, we must deal with the possibility of a logic based upon
the same Kripke frame, with a different set of distinguished worlds. Fortunately,
by placing a bound on the diameter of the frame, we successfully limited the
potential complexities involved.

In the algebra dual to our infinite frame, this bound on the diameter of the
frame gives us a simple way to deal with ultraproducts when discussing the va­
riety that the algebra generates. This makes the proof substantially simpler.
Indeed, the bulk of the proof is a relatively simple argument of cases, since with
ultrapowers omitted, we need only worry about direct subalgebras, and these can
be divided into a few well-defined cases.

Since KTB only has uncountably many normal extensions, we may conclude
that the second theorem is as strong as possible. There is no room for a theorem
that shows even more cocovers of the algebra of two points.

While the result for KTB may not be improved, further work could look at
other, related logics to see if a similar result could be obtained. One suggestion is
the set of axioms altn. These limit the potential branching of our frames. Since
the results obtained rely on having a point that can see arbitrarily many other
points, the question for extensions of KTB 0 altn remains unanswered.

However, such a proof would be substantially more complex. The proof for
KTB simplified the problem by placing a bound on the diameter of the infinite
frames we dealt with. However, a frame with finite diameter and finite branching
is itself finite. For K T B 0 a / f n, if it were possible to show uncountably many
cocovers of the algebra of two points, then we would need to cover the potential
disruption caused by ultrapowers.

Normal forms are a tool for showing that a logic has the finite model property
or Kirpke completeness. Chapter 4 was inspired by noticing a mistake in [32],
regarding normal forms for KTB. The chapter was written to fix that error,
and explain some pitfalls that could lead to such an error. This chapter presents
normal forms for directed frames, connected frames, symmetric frames and frames
with restricted branching. It details the process of creating models from normal
forms.

Most importantly, the chapter looks at how the various normal forms combine
when multiple axioms are added to a logic, using the example of KTB 0 altn to
show that while the modifications can often be done, they are not always trivial.
The further example of n-transitivity shows an example of a case where normal
forms are not applicable.

While it is quite possible to spend time producing appropriate normal forms

99

for any well-behaved logic, this is not an area of great interest for further research.
Far more interesting is the pursuit of general results such as those provided in
[16], [34] and [18].

The greatest strength of normal forms is their strong association between
worlds in a model and particular formulas. This makes reasoning from the struc­
ture of a formula to the structure of a model significantly easier, and enables the
creation of useful theoretical results. However, normal forms are not a practical
tool of reasoning, as a sequent calculus can be. The structure of a normal form
is prone to exponential growth, and trying to represent a particular formula in
normal form is not generally practical. It is worth noting that most works on
normal forms are content with existence proofs, and avoid trying to write out
normal forms in full.

Chapter 5 compared two ways of creating a sequent calculus for the logic
S4 that terminates when used in a “backward” manner. On the one hand the
established method of histories works by keeping multiple formula sets. These
extra formula sets are used to carry along a record of prior rule applications, and
terminate a derivation before it enters an infinite loop.

The alternative is the new concept of mark and index based methods, claimed
to be sound and complete in [36]. These add markup to the formula set to try and
prevent the non-termination issues that arise in a regular sequent calculus. How­
ever, as presented, the marks added lack the context needed to guarantee both
termination and completeness, which indicates significant flaws in the claimed
proofs of [36]. While we have shown it is possible to create a mark and index
based calculus that is essentially identical to the history based method, we have
failed to find any compelling situation where the marks and index based method
offers an actual improvement when compared to history-based methods, and rec­
ommend not using mark and index based methods in future.

The unavoidable words problem is a very difficult problem. A significant
portion of Chapter 6 is dedicated to showing techniques that do not work when
applied to the problem.

A major positive result of the chapter is Section 6.3.2 an extension of [37],
explaining the structure of long unavoidable patterns. With this, we provide a
complete description of the upper end of the problem, and it is only the (more
difficult) lower end that remains open.

Further, Theorem 6.17 explains exactly how the long unavoidable words are
simpler than short words. The unavoidable words problem can be resolved by
the operation of deletion by free sets. For long words, the necessary free sets are

100 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

strictly single element sets, while short words can be created that need arbitrarily
large free sets to successfully reduce.

It should be possible to extend the result enumerating the long unavoidable
patterns to also provide some enumeration of the shorter unavoidable words. This
would provide a relatively efficient way of generating all the unavoidable words,
and while still too complex to be a practical decision procedure, it would give a
much clearer description of the growth of the problem.

The best avenue for further research in the field of unavoidable words probably
lies in A;-unavoidability. There are suggestions of interesting patterns in [12],
and computers have improved noticeably over the years, so the search for a 6-
unavoidable word may be computationally feasible, especially if there is some
useful simplffication/pattern to be found.

A ppend ix A

E n u m era tio n of long w ords

This table shows the upper bound on the number of unavoidable words of length
2n—m, for m up to 25. Note that for compatibility with the results of Schmidt [37],
symmetric words are considered identical; both abacab and bacaba are considered
the same word. Actually attaining the upper bound may require an extremely
large alphabet, so higher values of m lack some practical interest.

101

102 APPENDIX A. ENUMERATION OF LONG WORDS

m M ax im u m n u m b e r of

u n a v o id a b le w ords w ith

le n g th 2n — m
1 1

2 2

3 7

4 14

5 32

6 58

7 109

8 182

9 307

10 482

11 757

12 1134

13 1692

14 2442

15 3503

16 4902

17 6816

18 9298

19 12605

20 16830

21 22340

22 29290

23 38191

24 49286

25 63281

A ppend ix B

Some F in ite G raphs C overing

V(Ä2)

To create these finite graphs, a simple C program was written to check for sub­
graphs, and this was connected to Brendan McKay’s nauty program [30] to gen­
erate sets of graphs of an appropriate size.

After this, creating the images was a matter of patience and a decent graphics
program.

First, we show all the graphs covering V(&2) with 8 points:
Secondly, we show a small subset of the 10 and 11 point graphs - The number

of graphs covering V ($2) on a given number of points grows rapidly, from the
8 graphs on 8 points to 849 graphs on 10 points, and far too many to calculate
easily on 12 points.

103

104 APPENDIX B. SOME FINITE GRAPHS COVERING V{&2)

Figure B .l: All 8 point covers of V(RZ)

105

Figure B.2: Some covers of V(R2) on 10 points

Figure B.3: Some covers of V(&2) on 11 points

106 APPENDIX B. SOME FINITE GRAPHS COVERING V(&2)

B ibliography

[1] K. A. Baker, G. F. McNulty, and W. Taylor. Growth problems for avoidable
words. Theoretical Computer Science, 69:319-345, 1989.

[2] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark method for
the propositional modal logics K, KT, S4. Journal of Automated Reasoning,
24:297-317, 2000.

[3] D. R. Bean, A. Ehrenfeucht, and G. F. McNulty. Avoidable patterns in
strings of symbols. Pacific Journal of Mathematics, 85(2):261-294, 1979.

[4] B. Bennett. Modal logics for qualitative spatial reasoning. Bulletin of the
Interest Group in Pure and Applied Logic (IGPL), 4(l):23-45, 1996. WWW
address ftp://ftp.mpi-sb.mpg.de/pub/igpl/Journal/V4-l/index.html.

[5] G. Birkhoff. Subdirect unions in universal algebra. Bull. Amer. Math. Soc.,
50(10):764-768, 1944.

[6] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cam­
bridge tracts in theoretical computer science. Cambridge University Press,
2002 .

[7] P. Blackburn, J. van Benthem, and F. Wolter, editors. Handbook of Modal
Logic. Elsevier, 2007.

[8] S. Burris and H. Sankappaanavar. A Course In Universal Algebra. Num­
ber 78 in Graduate Texts in Mathematics. Springer-Verlag, 1981.

[9] A. Burstein and S. Kitaev. On unavoidable sets of word patterns. SIAM
Journal on Discrete Mathematics, 19(2) :371—398, 2005.

[10] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford Science Publica­
tions, 1997.

107

ftp://ftp.mpi-sb.mpg.de/pub/igpl/Journal/V4-l/index.html

108 BIBLIOGRAPHY

[11] C. L. Chen, P. S. Grisham, S. Khurshid, and D. E. Perry. Design and
validation of a general security model with the Alloy Analyzer. 2006.

[12] R. J. Clark. Avoidable Formulas in Combinatorics on Words. PhD thesis,
University of California, Los Angeles, 2001.

[13] J. Currie. Open problems in pattern avoidance. The American Mathematical
Monthly, 100(8) :790—793, October 1993.

[14] H. B. Curry. The elimination theorem when modality is present. The Journal
of Symbolic Logic, 17(4):249—265, December 1952.

[15] K. Fine. An incomplete logic containing S4. Theoria, 40:23-29, 1974.

[16] K. Fine. Normal forms in modal logic. Notre Dame Journal of Formal Logic,
16(2):229—237, April 1975.

[17] D. Gabelaia, A. Kurucz, and M. Zakharyaschev. Products of transitive modal
logics without the (abstract) finite model property. In Proceedings of AiML
2004, September 2004.

[18] S. Ghilardi. An algebraic theory of normal forms. Annals of Pure and Applied
Logic, 71:189-245, 1995.

[19] R. Gore. Cut-free Sequent and Tableau Systems for Propositional Normal
Modal Logics. PhD thesis, University of Cambridge, November 1991.

[20] C. E. Heitsch. Exact distribution of deletion sizes for unavoidable strings.
In Proceedings of the 8th International Symposium on String Processing and
Information Retrieval, Laguna de San Rafael, Chile, November 2001. IEEE
Computer Society Press.

[21] C. E. Heitsch. Generalized pattern matching and the complexity of un-
avoidability testing. In CPM ’01: Proceedings of the 12th Annual Sym­
posium on Combinatorial Pattern Matching, pages 219-230, London, UK,
2001. Springer-Verlag.

[22] C. E. Heitsch. Insufficiency of four known necessary conditions on string
unavoidability. Journal of Algorithms, 56(2):96-123, 2005.

[23] A. Heuerding. Sequent Calculi for Proof Search in Some Modal Logics. PhD
thesis, Universität Bern, 1998.

BIBLIOGRAPHY 109

[24] A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for
backward proof search in some non-classical propositional logics. In Theorem
Proving with Analytic Tableaux and Related Methods, volume 1071 of LNCS,
pages 201-225. Springer Berlin / Heidelberg, 1996.

[25] B. Jönsson. Algebras whose congrence lattices are distributive. Mathematica
Scandinavica, 21:110-121, 1967.

[26] T. Kowalski and Y. Miyazaki. All splitting logics in the latice NExt(KTB).
Trends in Logic, 27:1-15, 2008.

[27] D. Kozen and R. Parikh. An elementary proof of the completeness of PDL.
Theoretical Computer Science, pages 113-118, 1981.

[28] M. Lothaire. Algebraic Combinatorics on Words, volume 90 of Encyclobedia
of Mathematics and its Applications. Cambridge University Press, 2002.

[29] D. Makinson. Some embedding theorems for modal logic. Notre Dame
Journal of Fonnal Logic, 12(2):252-254, April 1971.

[30] B. McKay, nauty. http://cs.anu.edu.au/bdm /nauty/. a program for com­
puting automorphism groups of graphs and digraphs.

[31] Y. Miyazaki. The structure of the lattice NExt(KTB). Trends in Logic III
International Conference in memoriam Andrzej Mostowski, Helena Rasiowa,
Cecylia Rauszer, September 2005.

[32] Y. Miyazaki. Normal forms for modal logics KB and KTB. Bulletin of the
Section of Logic, 36:3/4:183-194, 2007.

[33] J. D. Monk and R. Bonnet, editors. Handbook of Boolean Algebras. Elsevier,
1989.

[34] L. S. Moss. Finite models constructed from canonical formulas. Journal of
Philosophical Logic, 36(6):605-640, December 2007.

[35] V. Padmanabhan and G. Governatori. A fibred tableau calculus for modal
logics of agents. In M. Baldoni and U. Endriss, editors, DALT, volume 4327
of Lecture Notes in Computer Science, pages 105-122. Springer, 2006.

[36] R. Pliuskevicius and A. Pliuskeviciene. A new method to obtain termination
in backward proof search for modal logic S4. Journal of Logic and Compu­
tation Advance Access, November 2008.

http://cs.anu.edu.au/bdm/nauty/

110 BIBLIOGRAPHY

[37] U. Schmidt. Long unavoidable patterns. Acta Informatica, 24:433-445, 1987.

[38] J. O. Shallit and J.-P. Allouche. The ubiquitous prouhet-thue-morse se­
quence. In C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and
Their Applications: Proceedings of SETA ’98, pages 1-16. Springer-Verlag,
1999.

[39] M. H. Stone. The theory of representation for boolean algebras. Transactions
of the American Mathematical Society, 40(1) :37—111, July 1936.

[40] A. Tarski. A remark on functionally free algebras. Annnals of Mathematics,
47(1): 163-166, 1946. January.

[41] A. Thue. Über unedliche zeichenreihen. Norske Vid. Selsk. Skr., I. Mat.
Nat. Kl., Christiana, 7:1-22, 1906.

[42] A. Troelstra and H. Schwichtenberg. Basic Proof Theory. Number 43 in
Cambridge Tracts in Theoretical computer science. Cambridge University
Press, 2nd edition, 2000.

[43] A. Zimin. Blocking sets of terms. Math. USSR Sbornik, 47(2):353-364, 1984.

Index

□ , 10
O, 10

- L , 5

A, 5
V, 5

5

algebra
atom, 21
atomic, 21
congruence, 22, 31
congruence distributive, 22
direct product, 23
discriminator, 23, 31, 32
dual to modal logic, 26, 30, 32
filter, 22

maximal, 22
prime, 22
principal, 22
proper, 22
trivial, 22

homomorphism, 20
isomorphism, 20
isomorphism to classical logic, 25
of sets, 21
quotient, 23
simple, 23, 31
subalgebra, 20
subdirect product, 24
subdirectly irreducible, 24
term, 21

ultrafilter, 22
ultraproduct, 23

alphabet, 81
axiom, 9

boolean algebra, 19
bounded morphism, 31, 33

completeness, 10
Congruence Extension Property, 23

derivation
classical, 9

Finite Model Property, 12
Finite Model Property, 55
FMP, see Finite Model Property
formula, 5
free letter, 84
free set, 85

general frame, 26
Gentzen system, see sequent calculus
graph

connected, 31
diameter, 31
distance, 31

infinite saw, 39
definition, 40

Jonnsson’s lemma, 25

K

111

112 INDEX

semantics, 11-12
syntax, 10

K
algebra, 26

Kripke completeness, 12, 26
Kripke frame, 11
Kripke model, 11
KTB

algebra, 27
axioms, 13
normal form, 60

KTB
algebra, 32

lattice, 21
distributive, 21
of normal extensions, 32

properties, 38
properties, 33, 34, 46

logic
classical, 9

semantics, 6
definition, 9

logical connectives, 5
long unavoidable word, 90

Modus Ponens, 9

n-Spider
definition, 35
properties, 34

Necessitation, 10
negation normal form, 8, 14
normal form

altn suitable, 59
associated model

graded, 52
graded tree, 53

standard valuation, 52
ungraded, 54

basic results, 55
connected, 58
correlate, 50
counter-correlate

limited, 51
maximal, 51

definition, 48-49
degree, 48
directed, 57
leading term, 49
relations between, 50
suitable for a logic, 55
symmetric, 59
T-suitable, 56

normal forms
classical, 7

power set algebra, 20
projection map, 24
propositional variables, 5

reduction by free sets, 85

S4
algebra, 27
axioms, 13
Sequent calculus, 17
sequent calculus, 17

sequent calculus, 13
backward reasoning, 13
classical, 15-16
countermodel creation, 18
S4, 16-17

simply reducible word, 90
singleton letter, 86
soundness, 10

INDEX 113

Stone’s representation theorem, 21
substitution, 7, 9
substitution instance, 82

theorem, 9

unavoidability, 82
^-unavoidable, 82

validate
formula, 12
logic, 12

valuation
classical, 6
Kripke frame, 11

variety, 24, 31
discriminator, 24
generated by a class, 24

word, 81
adjacency graph, 84
encountering, 82
locked, 85
unavoidable, 82

Zimin word, 83, 88

