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A b strac t

This thesis considers probabilistic finite automata (PFA), distributions of sequences over 
finite alphabets, the links between them and the learnability thereof. Pervasive in scientific 
fields ranging from computer science to electrical engineering to information theory, PFA 
models also find numerous practical applications in speech recognition, bioinformatics and 
natural language processing.

PFA models are the most general among the myriad of syntactic objects providing 
probabilistic extensions of finite state machines. Closely related to hidden Markov models 
(HMMs), PFAs have been the focus of extensive research, but continue to pose interesting 
theoretical and practical problems to this day.

The thesis presents geometric insights into the PFA learning problem, a characteriza­
tion theorem for the family of distributions induced by PFA models, as well as a number 
of applications of this theorem. For a subclass of PFA called probabilistic deterministic fi­
nite automata (PDFA), a number of learnability results are presented. These results place 
limits on the PDFA subclasses which are learnable using a class of algorithms collectively 
known as state merging.

The sample complexity of learning general distributions over countable sets is consid­
ered, and lower and upper bounds, which asymptotically match up to a logarithmic factor 
are developed. An example is constructed exhibiting a class of PDFA models which is 
efficiently learnable using state merging. It is demonstrated that distributions induced 
by this class are not efficiently learnable by direct estimation (making no assumptions on 
the distribution’s source) in the sense that the sample complexity is bounded below by an 
exponential in the number of states.
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C hapter 1

In troduction

The concept of a state machine is fundamental to the field of computer science. The 
subject of extensive investigation tracing back to the 1940’s and 1950’s, the state machine 
continues to pose interesting and open problems to this day.

The research presented in this thesis revolves around an extension of the state ma­
chine concept to the probabilistic framework, namely the probabilistic finite automaton 
(or PFA). The PFA is the most general among several syntactic objects providing prob­
abilistic extensions to the finite state machine concept1. The hidden Markov model (or 
HMM), probabilistic (or stochastic) deterministic finite automata (PDFA), Markov chains, 
7?-grams and probabilistic suffix trees are among the numerous special cases of PFA which 
have been proposed to model and generate distributions over sequences.

The PFA concept is widely used and studied in a number of theoretical as well as 
practical communities. In the information theory literature, PFA models (typically un­
der the name finite state sources) are frequently used to model communication channels, 
alongside their hidden Markov model (HMM) counterparts (sometimes referred to as hid­
den Markov processes). A comprehensive survey paper providing an overview of hidden 
Markov processes from the statistical and information-theoretic viewpoints was written 
by Ephraim and Merhav [2002].

In a recent pair of survey papers [Vidal et al., 2005a], [Vidal et ah, 2005b], the the­
oretical machine learning aspects of PFA were outlined. Aiming to enhance the thesis’ 
readability, we will attempt to adhere to the notation used in these papers where relevant 
and introduce new notation only where necessary.

From the practical perspective, many engineering disciplines including speech recogni­
tion, language modeling, machine translation and bioinformatics utilize the probabilistic 
finite state machine concept.

The remainder of this thesis is organized as follows:

• In the subsequent sections of this chapter we will rigorously define the concepts

1The term deterministic finite automaton (DFA) is sometimes used instead of finite state machine. We 
generally make no distinction between “machine” and “automaton” in this context.

3



4 Introduction

relating to probabilistic finite state machines, and provide detailed descriptions of 
their inter-relationships.

• In Chapter 2 we will describe the intrinsic geometry of the PFA models. We will 
examine the geometry of the interplay between the PFA’s parameterization, the 
mapping into distribution space, and the resulting distribution. Our focus will be on 
convexity properties, which will highlight the difficulty of the PFA learning problem.

• In Chapter 3 we will extend the well-known Myhill-Nerode theorem of finite state 
machines to PFA. Subsequently, we will show how the extension theorem can be 
used to prove certain distributions cannot be induced by PFA or PDFA models. 
The chapter will be concluded with applications of the Myhill-Nerode extension, 
placing bounds on the relative expressive power of the PFA and PDFA models in 
approximating arbitrary probability distributions over bounded-length strings.

• In Chapter 4 we will summarize and extend the theoretical results regarding the 
inference of PFA and PDFA models from data. Focusing on the PDFA models’ 
learnability, we will present a novel extension to a class of algorithms collectively 
known as state merging. We will then formulate and prove extended positive and 
negative learnability results. We will provide analysis showing learnability of novel 
PDFA subclasses that strictly include families already known to be learnable. We 
will conclude with a negative result, proving that state merging algorithms have a 
high likelihood of failure on another PDFA subclass.

• The sample complexity of PFA and discrete distribution learning is discussed in 
Chapter 5. We will summarize known results in the field, present and provide a 
novel analysis of a baseline algorithm against which any other algorithm’s sample 
complexity can be measured. Our analysis comprises a pair of sufficient conditions 
on the sample size required for learnability, as well as a sufficient condition for failure 
mode. The conditions are tight up to a logarithmic factor. We will perform a critical 
comparison between our analysis and the existing state-of-the-art results. In con­
clusion, we will construct an example on which the state-merging algorithm requires 
polynomial computational complexity, while the baseline algorithm’s complexity is 
exponential in the number of states.

• In Chapter 6 we present our conclusions and a discussion of possibilities for further 
research.

• In Appendix A we provide proofs for a number of technical lemmas.

• Appendix B contains a number of results repeated from [Clark and Thollard, 2004],
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serving to make the document self-contained. In order to enhance clarity, we have 
translated the results to the notation used throughout the thesis.

1.1 N otational C onventions

Throughout the thesis, standard symbols will assume the usual meaning, unless otherwise 
stated. The symbols O and o will have the usual meaning:

f(z) = 0(g(z)) as z w  means f (z)/g(z)  is bounded as z —> w,

f (z)=o(g(z) )  as z —> w means f (z)/g(z)  0 asz - +w.

When an asymptotic relation is stated for an integer variable n, it will implicitly be taken 
to apply only for integer values of n, and the limit will always be oo. Logarithms will be 
natural (to base e) by default, or to base 2 (when explicitly stated).

Given a random variable denoted by X , the expected value of X  is denoted E X , the 
variance of X  is denoted var(A), and the probability of some statistical event f ( X ) is 
denoted as Pr (f (X)).  Given some probability distribution D , the notation X  ~ D means 
X  is randomly drawn according to the distribution D.

The delta distribution S(x) where x G X (X  denoting some set) will denote a distrib­
ution with all probability concentrated on the (single) element x:

V y€T , Pr y~6(x)(y)

'

1 if y = x,
<

0 otherwise.

We denote by E a finite alphabet and by E* the set of all sequences (or strings) of 
characters taken from E, including the empty string denoted by e. The set of all strings of 
length n (resp. less than, at most n) will be denoted by En (resp. E<n,E -n). The length 
of a string s G E* is denoted by |s|. The substring of s from position i to position j  is 
written sl ...S j. Given two strings x ,y  € E*, their concatenation xy G E* is the string 
obtained by appending the suffix y to the string x.

A sample multiset S is a multiset of strings. Since they are typically obtained by 
sampling, a particular string may appear more than once. The total number of strings 
in a sample S is denoted by |5|, and the empirical distribution associated with S is 
S(s) := # { s  G 5'}/|5| (with # {s  G S} denoting the number of occurances of a specific 
string s in the multiset S ).

We will (for the most part, unless explicitly stated otherwise) follow the symbol con­
ventions summarized in the Glossary of Symbols (page 117).
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1.2 Basic Tools of Probability

The following basic probabilistic results are used in the thesis:

Theorem 1.1 (Markov’s inequality) Let X  be a nonnegative random variable, 
for every t > 0,

Pr {X > t) < EX
~ T ‘

Then

Theorem 1.2 (Chebyshev’s inequality) Let X  be a random variable with finite vari­
ance. Then for every t > 0,

PrflX - E X |  >

1.3 Stochastic Languages

A language is a subset of E*. A stochastic language L is a probability distribution over 
E*. We denote by Pr(s|L) the probability of the string s given the language L. The
distribution defined by L must satisfy Pr(s|Z/) = 1. The probability of any set (i.e.
not multiset) I C E *  given L is given by:

Pr(X|L) = Pr (z|L).
x€X

Given a set of probability distributions the convex hull of {-Dj}™=1 is the
set of distributions of the form D = where the coefficients Ai, . . . ,An are
such that A; > 0 for every i G {l , . . . , n}  and Aj =  1. For such a set of convex
coefficients it follows immediately that D is indeed a distribution. We will use the notation 
co(Zli,. . . ,  Dn) to denote such a set of distributions.

In the following definitions we (roughly) adopt the notation of [Carrasco and Oncina, 
1999]. Some of the symbols below are also used to denote other concepts, but any confusion 
is avoided by the context.

Definition 1.3 A stochastic regular grammar is a 5-tuple G = (E, V, S, R,p), with E 
a finite alphabet, V a finite set of variables, S a starting symbol, and R a finite set of 
derivation rules2 with either of the following structures:

X  -> aY 

X  -> e

2 See e.g. [Hopcroft and Ullman, 1979] for an explanation of the concept of derivation rules.
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where a G £, X. Y  G V , and a real-valued function p : R  —» [0,1] giving the probability of 
derivation. The sum, of the probabilities for all derivations from a given variable X  must 

equal to one.

Definition 1.4 A stochastic regular grammar G is deterministic if for all X  G V and for 

all a G £  there is at most one Y  G V such that p(X  —> aY) 7̂  0.

Every stochastic deterministic regular grammar G defines a stochastic deterministic reg­

ular language (SDRL), Lq , through the probabilities p (w \Lq ) — p{S => w), where the 
probability p(S => w) that the grammar G generates the string w £ E* is defined recur­
sively:

p ( X ^ e )  =  p ( X ^ e )  

p(X  => aw) = p(X —* aY)p(Y  => w),

where Y  is the only variable satisfying p(X  —> aY) ^  0 (if such a variable does not exist 
then p(X  —> aY) = 0).

Definition 1.5 The quotient language x ~ xL is the stochastic language defined by the 

probabilities of the strings in L starting with x, properly normalized:

_ ,,.iT- i n  ,= P(^w|L) p(xw\L)
P{ ' j ' P(*X*\L)- J2zes.p{xz\Ly

I f  P(xz\L) = 0 then by convention x~ lL =  0 and p(w\x~1L) = 0. Note that

e~l L = L.

Esposito et al. [2002] used residual language to denote the quotient language.

1.4 F in ite S tate M achines

We now introduce the finite state machine (FSM), a fundamental concept to the theory 
of computer science. Also referred to as the deterministic finite automaton (DFA), it is 
formally defined as follows3:

Definition 1.6 A DFA A  is a five-tuple A  = (Q, E, 6, qo: F), with:

• Q a finite set of states,

• E an alphabet or a finite set of symbols,

3We adhere to the notation of Hopcroft and Ullman [1979].
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• 6 : Q x E —» Q a transition function,

• qo £ Q a start state,

• F C Q a set of final or accepting states.

The transition function admits a recursive extension 6 using the recursion:

S(q,e) = q WqeQ,

6(q, (wi .. .Wk)) = 6(6(q,wi .. .Wk~i),Wk) Vie = w\w2 . . .  Wk € S*.

The DFA A accepts a (possibly empty) subset of £*, defining the language L 4 :

LA : = { w e Z *  I 6(q0, w ) e F } .

For a complete introduction to the theory of DFA, the reader is referred to [Hopcroft 
and Ullman, 1979].

1.5 Probabilistic F in ite A utom ata

The probabilistic finite automaton (or PFA) model has been extensively investigated in 
a number of scientific fields. Due to this, discussions of PFA models use widely differing 
terminology and notation4.

In the machine learning community, the PFA terminology is the most commonly used, 
occasionally creating confusion with the closely related hidden Markov model (or HMM, 
see Section 1.8.1 for a more detailed discussion of the relationship between the two models). 
In the information theory literature, the term finite state source (or FSS) is typically used 
(see [Ephraim and Merhav, 2002] for a thorough survey).

We now formally define the PFA model:

Definition 1.7 A PFA is a tuple A  — (QA,T,,8A,IA,FA,PA), where:

• Qa is a finite set of states,

• E is a finite alphabet,

• 6a  C Qa x E x Qa is a set of transitions,

• I A '■ Qa [0? 1] are the initial state probabilities,

• Pa '■ ^A [0,1] are the transition probabilities,

4 Parts of the exposition in the following sections include segments repeated from the survey papers 
[Vidal et al., 2005a] and [Vidal et al., 2005b].
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• Fa  '■ Qa ~> [0, 1] are the final state probabilities.

The transition set 6a should not be confused with the delta distribution due to the different 
number of arguments. When understood from context, the subscript A  will be dropped.

The transition probabilities of non-existing transitions are null, i.e. Pa {q, a, q') = 0 for 
all (q,a,q') <5̂ . The initial state probabilities I  a have J2qeQA Ia {q) — 1, while for the
transition and final state probabilities we have:

F a (q) +  p A ( q , a , q ’) =  1, Vq ^ Q a -
a€£

<7 '£Qa

PFA are often represented as directed labeled graphs. Figure 1.1 shows a graphic 
depiction of a PFA with four states, Q = {go, q\, g2, <73} and a single initial state qo (i.e. 
a state q with I(q) > 0) using a four-symbol alphabet, E =  {a, 6, c, d}. The numbers 
below each state and above each arrow are the final-state and transition probabilities 
respectively.

c(2 /5 )

F ig u re  1.1: Graphical representation of a PFA.

We define a concept introduced by Abe and Warmuth [1992] and used in PFA training 
scenarios where a subset of the PFA’s transition probabilities are forced to zero:

Definition 1.8 A PFA constraint is a tuple C (/, G) where I  is the initial state set5 
and G C Q 4 x E x Qa is a subset of all possible transitions. We denote the size of the 
constraint, written \C\ by: \C\ = \I\ + ]G|.

5In this context, any state not in I is constrained to zero initial probability.
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1.6 Probabilistic F inite A utom ata  as D istribution  G enera­

tors

Probabilistic finite automata can be viewed as mechanisms for generating strings randomly 
from a probability distribution. Given a PFA A , the process of generating a string proceeds 
as follows:

• Initialization: Choose (with respect to the distribution IA) one state qo G Q as the 
initial state. Define qo as the current state.

• Generation: Let q be the current state. Decide whether to stop, with probability 
F(q), or to produce a move (q,a,qr) with probability P(g,a, q'), where a G E U {e} 
and q' G Q. Output a and set the current state to q'. Repeat.

Formally, the PFA A  induces a probability distribution over £* in the following manner. 
Let 6 = {sq,x \ , s\ ,X2,S2, .. • ,Sk~\,Xk,Sk) denote a path traversed while passing through 
the states (so, • • •, Sfc) and producing the string x = (X\X2 . ■ ■ x*,). Equivalently, there is a 
sequence of transitions (so, x\,  si), (si, X2, S2), ■ ■ ., {xk-i, Xk, Sfc) C The probability of 
generating such a path is:

Pr^(0) = Ia (so) ■ ( n U P A ( * i - i ' x i ' 8i ) )  ' F^ Sk>>- (T!)

Definition 1.9 Given a string x G E*, a valid path for x is a path with probability greater 
than zero.

In general, a string x can be generated by A  through multiple valid paths. The set of all 
valid paths for x in A  is denoted &a (x )- The set of all paths in A  which are valid for 
some string i GE* will be denoted by O.4.

The probability of generating x with A  is:

PrA(x)=  J 2  pM(«)- (1-2)
oe&A(x)

A natural question is “under which conditions do the probabilities of Equation (1.2) 
sum up to 1?”. A PFA for which this holds is called consistent. A sufficient condition for 
PFA consistency established in [McAllester and Schapire, 2000] is the following:

Definition 1.10 A state of a PFA A is useful if it appears in at least one valid path of
G a .

Proposition 1.11 A PFA is consistent if all its states are useful.



§1.6 Probabilistic Finite Automata as Distribution Generators 11

Note that the condition of Proposition 1.11 is sufficient but not necessary: a non useful 
state is harmless if it is inaccessible; i.e., if no string can reach it with probability greater 
than zero. In the remainder of the thesis we will limit our discussion to consistent PFAs 
(unless stated otherwise).

Definition 1.12 A distribution is regular if it can be generated by some PFA.

The distribution over E* induced by the PFA A  will be denoted D_4 .
A concept closely related to (and which indeed usually assumes the same name as) the 

PFA is the non-terminating PFA (see e.g. [Abe and Warmuth, 1992]):

Definition 1.13 A non-terminating PFA is a PFA A  with F^iq) = 0 for all states q €

Qa -

In this model, the termination probabilities are null for every state, and therefore the 
model cannot generate any finite-length string. However, for any chosen integer I G N 
the model defines a distribution over E .̂ Specifically, given a length £ string x € E*, the 
individual paths’ probabilities are calculated by:

Piu(0) =  Ia (so) •

and the string’s probability is again given by (1.2):

(1.3)

P u W  = E (1-4)
0 £ @ a ( x )

Sometimes, use of a non-terminating PFA allows a clearer exposition.

Example 1.1

In the PFA of Figure 1.1, there is only one valid path for the string accb:

Qj\(accb) = {{qo,a,qi,c,qi,c,qi,b,q3 )}.

The probability of accb is:

PrA(accb) = I(q0) • P(q0,a,qi) • P{qi,c,qi) ■ P(qi,c,qi) ■ P{qu b,q3) ■ F(q3) 

= 1-0.125-0.4-0.4-0.4-1 

= 0.008.

For the string a, there are two valid paths:

©4 (a) =  {{qo,a,qi),{q0,a,q2)}.
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Therefore, the probability of a is:

Pr^(a) = /(go) • P(q0,a,qi) • F(qi) + I(q0) ■ P{q0,a,q2) • F(q2)

= 1-0.125-0.2+ 1-0.5-1

= 0.525.

Definition 1.14 If a PFA’s underlying graph is acyclic, the model is called an acyclic 
probabilistic finite automaton or APFA.

The set ®a (x ) can potentially have cardinality proportional to exponential in
the length of the string being generated. This precludes any attempt at direct calculation 
of Pr^(x). However, a simple dynamic programming recursion known as the forward 
algorithm was discovered by Chang and Hancock [1966] and later rediscovered by Baum 
et al. [1970], which reduces the computational complexity to 0(\x\ • |<5|), where \x\ is the 
length of x and |<5| is the number of transitions in A. We now describe their recursion.

1.6.1 T he Forward and B ackw ard A lgorithm s

In describing the forward algorithm we follow the notation of [Vidal et al., 2005a] and
repeat the relevant parts of their exposition. Let ax(i,q), for q G Q and 0 < i < |x|,
denote the probability of generating the prefix x\ .. .Xi and reaching state q:

i

otx{i,q):= J(so ) -Y iP is j -h X jT S j ) - l {q=Si}, (1.5)
(so ,si,...,5 j)G © ^(x i...X i) j = 1

where l{g=9'} = 1 if q = q' and 0 if q ^  q'. Equation (1.5) can be calculated using the 
following recursion (usually referred to as the forward recursion or Baum recursion):

ax(0,q) =  /(g), (1.6a)

<*x(*,g) = ^ 2  ax(i -  l,q') ■ P{q',Xi,q), 1 < i < \x\. (1.6b)
g'eQ

Given a string x G £*, it is straightforward to see that:

PrA(x) = ^ 2  ax{\x\,q) ■ F(q). (1.7)
qeQ

A closely related recursion called the backward algorithm calculates the probability 
(1.2) by introducing the backward density ßx{i,q) as the probability of generating the
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suffix Xi+ 1 ... X\x\ from the state q:

/  1*1
ßx(i,q)-= 1{g=^}-( I !  P (sj- ^ x3’sj )

(s t ,- ,« |i |)G © ^ (* * + l-* |* |)  V = * + 1

The backward density can be calculated using the backward recursion:

ßx(\x\,q) = F(q), (1.9a)

ßx(hq) = ^  ßx{iPi,q')  ■ P{q,x iiq'), o < i < \x\ -  l. (i.9b)
q'eQ

For a string x G E* we have:

P*a (x) = ^ I ( q )  -ßx(0,q). (1.10)
geQ

The calculation of both a  and ß can be performed with a time complexity of 0(\x\ ■ |£|).

1.6.2 The V iterbi A lgorithm

In Equation (1.2), the probability of generating x by the PFA A  is given by the sum of 
the probabilities over all valid paths that generate x. However, in some applications it is 
desirable to search for a valid path 6 that generates x with the maximal probability,

6X := argmax0G0̂ (x) Pr^(0). (1.11)

The probability of this optimal path 9X will be denoted P r 4 (:r). In practice, often the 
probability given by (1.2) is mainly distributed among a few paths close to the optimal 
one, in which case (1.11) is an adequate approximation. The optimal path 6 is of practical 
interest in many pattern recognition applications, since useful information can be attached 
to the states, and in many cases the problem is to search for the information that is in the 
optimal path. This path is also useful for an efficient estimation of the parameters of the 
model from a training sample (see e.g. [Ephraim and Merhav, 2002, Section VII]). The 
computation of 6 can be efficiently performed by defining a function 7X(«, q) Vg G Q,0 <  

i < \x\, as the probability of generating the prefix x \ , ,Xi through the best path and 
reaching state q:

i
7x(i,q) := max I(s0) • P(sj_i, x$, sj) ■ l {q=5i} . (1.12)

( S O , S i  J G H . 4  ( X I  .
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An efficient algorithm for calculating the above path is given by the following well-known 
recursion due to Viterbi [1967]:

7x(0, q) = I{q),

1x(i,q) = ma£7x(z — l,q') • P(q',Xi,q), 1 < i < \x\,
q'eQ

with Pr_4(:r) determined by:

Pr^rr) = max7x(|x|, q) ■ F(q). (1.13)
qeQ

The calculation of 7 has the same asymptotic time complexity as the calculation of a or 
ß. In practice, however, the implementation becomes simpler and the running time faster, 
as the complicated floating point operations are no longer required.

1.7 Probabilistic D eterm inistic F in ite A utom ata

A special case of the PFA occurs when the following restrictions are imposed:

• 3<7o £ Q (initial state), such that IA{qo) = 1,

• Vq G <5, Vcr G £, \{q' : {q,(T,q') € 6A}\ < 1.

In words, the restrictions amount to requiring a single initial state, and at most a single 
outgoing edge from any given state, emitting a given alphabet letter. These conditions 
ensure that for any given string, at most a single path generating the string exists in the 
automaton.

The resulting model is termed a probabilistic deterministic finite automaton, or PDFA, 
also referred to as the deterministic probabilistic finite automaton (DPFA) or the stochastic 
deterministic finite automaton (SDFA). The corresponding term in the information theory 
literature is the unifilar finite-state source or unifilar source.

In the PDFA model, the single path through states can be deterministically recovered, 
given the generated string. This fact enables the following recursive notation, which will 
prove useful in the sequel. Given a PDFA A = (QA,E,SA, IA, FA. PA), the transition 
function and transition probabilities can be recursively defined. Given a state q G QA and 
a string s = s \ ...  se,

• Sa (q, s) := M M g , s i) , s2 . . .  se),

• Pa ^ a ) ■= PA{q^A{q,s\),si) ■ PA(6A(q ,si),s2 ...se).
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The probability that A  will generate a s and terminate, given the current state of the 
PDFA is q will be denoted by:

Definition 1.15 A distribution is regular deterministic if it can be generated by a PDFA.

The regular deterministic distributions are a strict subset of the regular distributions6. 
This observation was proved by a simple counterexample in [Vidal et ah, 2005a, chapter 
IV], which we reproduce in Figure 1.2 below.

F ig u re  1.2: A simple PFA inducing a distribution which cannot be generated by a PDFA, using 
the single-letter alphabet £  =  {a}.

In Section 3.3.1 we will discuss this example again and offer an alternative proof.

We mention that the concept of a PFA constraint naturally extends to the so-called 
deterministic constraint, the situation (corresponding to a PDFA subclass with a fixed 
structure but variable transition probabilities) wherein a PFA has one initial state and 
for every given state qt and alphabet letter o G £, there is at most one transition from qx 
labeled with a in the transitions probabilities matrix.

1.8 C onnections to  R elated  Probabilistic M odels

We now mention a number of related probabilistic models, and briefly discuss their relation 
to the PFA. The discussion is arranged in an increasing order of the models’ expressivity.

6Which correspond to the stochastic deterministic regular grammars introduced in Section 1.4.

PA{s) := PA(q, s) ■ FA(6A(q, s)).

a(l/2)

(2/3)
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We repeat parts of the exposition of Vidal et al. [2005b, Section II], where a more complete 
exposition is offered.

The class of probabilistic residual finite state automata (PRFA) was introduced in 
[Esposito et ah, 2002] and shown to have expressive capability (strictly) greater than 
PDFA and (strictly) less than PFA models. We defer the definition of PRFA to Section 
3.1, as it relies on technical concepts introduced in that section (and is discussed solely in 
a context relevant to Chapter 3).

1.8.1 C onnections to  th e  H idden  M arkov M od el

PFA models are closely related to the well-known hidden Markov models (HMMs), which 
are used in numerous practical applications including speech recognition [Rabiner, 1989], 
handwritten text recognition [Raviv, 1967], machine translation [Jelinek, 1998], and bioin­
formatics [Abe and Mamitsuka, 1997]7. We define the HMM below and briefly discuss its 
relation to the PFA.

Definition 1.16 A HMM is a 6-tuple M. = (Q, E, 7, qf, T, E), where:

• Q is a finite set of states,

• £ is a finite alphabet of symbols,

• T : (Q \  {q/}) x Q —> R+ is a state to state transition probability function,

• I  : Q \  {qf} —> M+ is an initial state probability function,

• E : (Q \  {qf}) x £ —> 1R+ is a state-based symbol emission probability function,

• qf E Q is a special (final) state,

subject to the following normalization conditions:

£  7(«) =
q£Q\{q/}

^ T { q ,q ')  = 1, Vg G Q \ {qf }, 
qeQ
^ 2 E(q, a) = 1 , V q e Q \ { q f }.
aeT,

The main distinction between the PFA and the HMM is the manner in which the 
models’ output is generated. Specifically, in the HMM, the output is generated at the

'See [Vidal et al., 2005a] for additional references.
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states, while in the PFA the output is generated upon traversal of the edges8. Keeping 
this distinction in mind, the following propositions proven in [Vidal et ah, 2005b] are 
intuitive (Dm  denotes the distribution generated by Ad):

Proposition 1.17 Given a PFA A with m transitions and Pr^(e) = 0, there exists an 
HMM M. with at most m states such that D^ = Dm  ■

Proposition 1.18 Given an HMM M. with n states there exists a PFA A with at most 
n states such that Da — Dm  ■

Figure 1.3 summarizes the relative expressive capabilities of the probabilistic models 
mentioned above. Note that each class is unbounded in the number of states, and no 
attempts are made at approximation of any class by another.

PFA/HMMN-GRAMS PDFA PR FA

Figure 1.3: A hierarchy of probabilistic models. The models are arranged in order of expressive 
capabilities, with the assumption tha t the number of states in each class is unbounded.

Many practical applications involving HMMs generalize the alphabet to (typically high 
dimensional) continuous spaces. The discussion of the ensuing conceptual and algorithmic 
modifications lies beyond the scope of this thesis.

8There are (uncommon) exceptions to this rule, wherein HMMs are defined to produce emissions on 
transitions instead of states, see e.g. [Casacuberta, 1990] and [Bahl et al., 1983].
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1.9 D istance Functions Betw een D istributions

Given two distributions D\ and D2 over £*, we will use the following notions of distance: 
For 1 < p < 00, the Lp distance between D\ and D2 is defined as:

l|£>i--D2||p:= [ £  \Dl ( s ) - D 2(s)\p ] ' /P.
sGS*

In the limit p —> 00, we obtain the L ^  distance:

IID\ -  D2\\oo := max |£>i(s) -  £>2(s)| • 
sGS*

The distance between a given distribution D' and a class of distributions V  is defined as:

\\V-D'\\ := inf \\D -  D’II.Dev

An additional notion of proximity between distributions with deep roots in the infor­
mation theory literature is the KL-divergence, defined as:

KL(D, | |D2) : = g D 1(S) 1o g ( g g ) .

The KL-divergence can be interpreted as the expected extra message-length per datum 
that must be communicated if a code that is optimal for a given (wrong) distribution D2 is 
used, compared to using a code based on the (correct) distribution D\. Note that although 
frequently used as a criterion for proximity between distributions, the KL-divergence is 
not a metric. Pinsker’s inequality (see e.g. [Cover and Thomas, 1991]) states that for any 
pair of distributions D\ and D2 the following holds:

KL(D1\\D2) > -  d 2\\1

which in turn upper-bounds all Lp-distances, making this notion of distance stronger. 
We mention that certain refinements of Pinskers inequality have been proposed. These 
refinements are usually not dependent on the distributions D\ and D2, with the exception 
of a result discussed in [Weissman et al., 2003].



Chapter 2

T he G eom etry  of P ro b ab ilis tic  

A u to m a ta

In this chapter we discuss aspects of the geometry underlying probabilistic finite automata 
models, especially convexity, which is relevant for learnability. As we will discuss in 
Chapter 4, a number of hardness results show that the general problem of PFA learning 
is a difficult one. In this chapter we will try to illuminate some of the geometrical aspects 
behind PFA learning, providing insight into the general problem’s difficulty.

2.1 Basic G eom etric P roperties of PFA

In this section, we will discuss the geometric relationship between a PFA’s parameters 
and its induced distribution. We will focus on the transient (as opposed to stationary) 
behaviour induced by the model. At the end of the section, we will relate our observations 
to some existing results describing stationary behaviour.

Following Definition 1.13 of Section 1.6, we will use the (n-state) non-terminating PFA 
model in order to streamline the exposition. Denoted by A , the model is parameterized by 
its initial state probabilities I4  (n parameters1) and its transition probabilities P 4 (|£ |n2 

parameters2). Given these, the set of transitions £ 4  can be inferred. Graphically, the 
transition matrix can be pictured as a “stack” composed of |£| matrices of size n x n , 
as illustrated in Figure 2.1. This is the most common parameterization of PFA, which we 
will refer to as the usual parameterization.

2.1.1 Extrem e Points of the n-State PFA Set

Definition 2.1 Let C be a convex subset of a vector space X . A point x G C is called an 
extreme point if it is not an interior point of any line segment in C . That is, x is extreme 
if and only if x = \y  + (1 — A)z, A G (0,1) implies either y £ C or z ^ C .

^ o r e  precisely (n — 1) free parameters, due to the sum-to-one constraint.
2Rather |£|n(rc — 1) free parameters via similar reasoning. We will henceforth neglect the (inconsequen­

tial) effects of the sum-to-one constraints on the number of parameters.

19
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i = 1 ... n

Output letter 0

Output letter 1

Output letter k-1

Figure 2.1: Matrix stack representing a PFA transition function. The red “slice” on the left-hand 
side denotes all outgoing edges from state i =  1 , and its entry sum is 1 .

Proposition 2.2 The number of extreme points of the n-state PFA set (in the usual 
parameterization) is n(|£ |n)n.

Proof For each o G £, the n x n  matrix [Pa ^ i, Qj)]? j = \  is a row stochastic matrix (i.e. 
all entries nonnegative with rows summing to one). An easy observation in nonnegative 
matrix theory [Bapat and Raghavan, 1997] shows that the set of row stochastic matrices of 
order n is isomorphic to a poly tope in Rnxn . This polytope has nn “vertices” or extreme 
points, specifically the matrices with a single entry of 1 in each row.

For the transition parameters Pa , the number of extreme points is (|£ |n)n, specifically 
the transition matrices with exactly one entry 1 on each |£| x n “slice” (see red highlight 
in Figure 2.1) with all other entries 0’s. In other words, the location of the 1 entries can 
be chosen independently on n slices, each offering |£ |n possible positions, hence (|£ |n)n 
combinations. The proof that these are indeed the extreme points of the relevant set 
follows immediately from the non-negativity and sum-to-one properties. The additional 
degree of freedom stemming from the initial state distribution I  a adds a multiplicative 
factor of n to the number of extreme points, arriving at a total of n(|£ |n)n. ■

We will next use the PFA as a means of generating a probability distribution over 
£^, using Equation (1.4) as a mapping from parameter space onto the |£|^ probability 
simplex. Note that in the space of probability distributions over the number of pa­
rameters required to fully characterize an arbitrary distribution is |£|^, while the number
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of parameters characterizing a PFA is merely |£|r?2 + n. Note also that the PFA’s states 
may always be permuted without affecting the induced distribution. This ambiguity can 
be removed by ordering the states.

The extreme points described above denote extreme PFA which are “deterministic” in 
the sense that given a specific starting state, the ensuing state transitions as well as the 
automaton’s output are uniquely determined. However, they should not be confused either 
with finite state machines, with deterministic PFA constraints, or with PDFAs. Rather, 
they are maximally degenerate cases of PFA. In general, finite state machines (aside from 
the extreme PFA special cases) generate (generally infinite) languages as opposed to (valid) 
distributions. For any £ > 0, an extreme PFA generates a delta distribution <S(x), i  G

2.1.2 G eom etry of the n-State PDFA Subset

Proposition 2.3 Assuming n > |£|, the PDFA subset (in the n-state PFA parameter 

set) occupies a union of ^ni=o 1(n ~ *)) convex hulls of |E|n extreme points each.

Proof Assuming n > |£|, the largest set of PFA extreme points whose convex hull still 
includes only PDFAs contains |£ |n points. Such a set is readily constructed by taking at 
each n x  j£| slice any |£| extreme points with only a single “1” on each row, and repeating 
the process n times independently along the direction i.

The number of ways such a maximal set may be chosen is ^ni=o 1 (n — *)) • Thus, the 

PDFA subset occupies a union of ^n!=o 2(n ~ *)) convex hulls of |E|n extreme points 
each. ■

The PDFA subset includes many (intersecting) linear sections of the complete PFA poly­
tope, and is non-convex. For a single linear section defining a deterministic constraint, 
however, an efficient method for determining the optimal set of parameters exists. This 
is due to the fact that the optimization problem involved is convex. We will discuss this 
fact again in Section 4.1.1.

2.1.3 Geom etric Properties of the PFA M apping

We now develop some intuition regarding the PFA parameters’ mapping onto the |E|*- 
dimensional probability simplex (Equation (1.4)). In order to avoid degeneracies in our 
presentation, we restrict our attention to the case £ > n. We will present a series of 
propositions regarding the PFA mapping onto the probability simplex. A visualization is 
given in Figure 2.2 below:

In the figure, the left hand side corresponds to the convex polytope describing the 
PFA parameterization (of dimensionality |E|n2 + n). The right hand side describes the
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Parameter space Probability simplex

A

a

c

B

Figure 2.2: Visualization of the interplay between convex combinations of row stochastic matrix 
stacks parameterizing PFA (on left) and the induced distributions over X/ (on right).

resulting set on the (|X|^-dimensional) probability simplex. For n =  1, X = {0,1} and 
£  — 2, a visualization of the probability simplex is provided in Figure 2.3.

2.1.4 Extrem e PFA and the PFA M apping

We now consider the interplay between extreme points in parameter space and on the 
probability simplex.

Proposition 2.4 Each extreme point in the parameter space is mapped to an extreme 

point on the probability simplex. However, assuming £ > n, not all strings in X̂  can be 
induced by extreme PFA (i.e. corresponding to extreme points in parameter space).

Proof An extreme point in the parameter space always induces a delta distribution on 
X̂ , which is an extreme point on the probability simplex. In the example of Figure 2.3, 
the strings 00 and 11 can be induced by extreme single-state PFA, while the strings 01 
and 10 cannot, proving the proposition’s second statement. ■

Proposition 2.5 The mapping from matrix stack space to the probability simplex is not 

one-to-one. Furthermore, the set of extreme PFA which induce identical delta distributions 

on X̂  are not only those with permuted states, as the example in Figure 2.4 shows.

This proposition is graphically depicted in Figure 2.2 by the mappings a, a' —> A.

Proof The automata (a), (b) and (c) of Figure 2.4, all of which are extreme points 
of the set of 3-state automata over X — {0,1}, induce an identical distribution for any £. ■
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Figure 2.3: Visualization of the probability simplex for automata of the family n = 1,£ = {0,1} 
and f  =  2, graphically depicted in Figure 2.5(d). The space of all possible probability distributions 
over £ 2 is depicted by the pink region (which should actually be a 3-dimensional hyperplane in 
a 4-dimensional space), while the distributions which can be induced by one-state automata are 
depicted by the curved red line.

We now establish bounds on the number of distinct images of extreme PFA on the 
probability simplex.

Proposition 2.6 The number of distinct delta distributions induced by the set of extreme 
n-state PFA is lower-bounded by |£ |n and upper-bounded by n |£ |n.

Proof In this context, we restrict our attention to extreme PFA for which all states are 
accessible3. An immediate lower bound on the number of distinct produceable strings is 
|£ |n, the number of different length-n prefixes of length-^ strings.

All extreme PFA have only one outgoing edge from each state. In order to ensure no 
inaccessible states, all states must point to an as-yet unseen state, except the last state, 

which is free to point to any one of the n states. Thus, an upper bound on the number of 
distinct images of extreme PFA is n |£ |n.

3It is easy to show that any distribution generated by an extreme PFA with inaccessible states may 
also be generated by an extreme PFA with no inaccessible states.
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(a)

(b)

(c)

Figure 2.4: A set of extreme PFA inducing identical delta distributions.

2.2 C onvexity Properties

It seems natural in this context to ask when the image set under the PFA mapping (1.4) 

of a particular PFA constraint is convex. A convex combination of two extreme points 

in parameter space results in a valid PFA, a fact which follows immediately from the 

definitions. An example based on the PFA displayed in Figure 2.5 is instructive. We 

consider the space of 1-state PFA over the alphabet 52 =  {0,1}. In parameter space, this 

set has 2 extreme points, namely the autom ata shown in (a) and (b) of Figure 2.5. A 

convex combination of the two extreme points in parameter space takes the form of Figure 

2.5(d), which induces the distribution:

Pr(x) =  Ano(x)- ( l - A ) ni(;E), (2.1)

where no(x) and n\{x) denote the number of zeros and ones respectively in the word x. 

The function is continuous in A (as is depicted in Figure 2.3). For any fixed i  € N, a convex 

combination of the two autom ata (a) and (b) of Figure 2.5 on the probability simplex will 

induce a distribution of the form:

J 0̂  w.p. A 
x  =  <

j l { w.p. 1 — A.

This distribution cannot be induced by a single-state PFA (as it does not match Equation 

(2.1) for any value of A), and requires a two-state automaton, depicted in Figure 2.5(c). 

This example shows that the image under the PFA mapping of n-state PFAs is (in general) 

not convex. In general, a convex combination (on the probability simplex) of k PFAs of n 

states each requires a (kn)-state PFA to realize (by a trivial construction).
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1:1-A

(d )

Figure 2.5: Extreme points and convex combinations of single state PFA over E = {0,1}. The 
automata (a) and (b) denote the two extreme points, the automaton (c) shows the resulting convex 
combination on the probability simplex, while the automaton (d) shows the convex combination 
induced in parameter space. The parameters A and 1 — A of (c) denote the initial probabilities of 
each state.

2.2.1 C onvexity  of D is trib u tio n s  In d u ced  by PFA  C o n stra in ts

We now present two sufficient conditions for a PFA constraint set to be mapped to a 

non-convex set. We require the following definition:

Definition 2.7 Let C be a PFA constraint, and let C be the set of PFA allowable by the 

constraint C . I f a transition parameter can assume all values in [0,1] given the constraint 
C, then it is called a free parameter.

The first condition shows that free parameters on cycles immediately imply non­

convexity.

Proposition 2.8 Let C be a PFA constraint with a cycle of strictly positive probability 

containing a free parameter. Let C be the set of PFA parameters allowable by the constraint 

C. Then the image (on the probability simplex) of C is non-convex.

Proof Let V ext(C,I) be the set of extreme distributions over X* induced by all A  G C. 

Let V = Qii ’ • ■ Qic denote a cycle with a free parameter. Let v G E* be the sequence of 

letters emitted while traversing V . Fix all free parameters, and let xvz  G X/ be some 

positive probability string emitted by A , as depicted in Figure 2.6.

This implies that for all xvk G X-^, k E N, there exist strings with prefixes xvk which 

A  generates with strictly positive probabilities. Therefore, A  generates an unbounded 

number of strings with positive probability.

The number of distinct extreme distributions induced by A , however, is bounded. 

Appealing to Proposition 2.6, we obtain the upper bound

V ext(C,£)I < n |S |n.
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b
u  : 1  —

Figure 2.6: Construction used for showing all PFA constraints with free parameters on cycles 
induce non-convex distribution sets.

This upper bound does not depend on l. Thus, for some large enough £, there exists a 

string 2 ^ T>ext(C,£) such that T r ^ z )  > 0 , implying 4 ^ co (P ext(C,£)), implying the 

image set is non-convex. ■

The second condition illustrates a different situation, showing that cycles are not the 

only culprits responsible for non-convexity.

Proposition 2.9 Let C be a deterministic PFA constraint with no free parameters on 

cycles. Let \C\ denote the number of free parameters in C . Let C be the set of PFA 

allowable by the constraint C and let V ext(C,£) be the set of extreme distributions over 

induced by all A  E C. Then if for some £ € N

\C\ < I V ext{C,£)\,

then the image (on the probability simplex) of C is non-convex.

Proof By the assumption, for some £ € N, the number of free parameters is strictly 

smaller than the number of extreme distributions. The PFA constraint C is deterministic, 

and therefore each string generated with positive probability by A  follows a single path. 

Therefore, by the pigeonhole principle there exists a free parameter pf and (at least) two 

strings S\,S2 E (both extreme distribution) such that p j = 0 => P r^(si) =  P r^(s2) =  0. 

A convex combination with Pr_4(si) =  0 and Pr_4(s2) > 0 can therefore not be obtained 

by A , proving the proposition. ■

Despite the results above, the problem of training a PFA with a deterministic con­

straint4 is a convex optimization problem, and is indeed efficiently solvable. This fact was 

proved in [Abe and Warmuth, 1992, Chapter 4]5. However, the general PDFA learning

4Namely, setting the PFA’s parameters to maximize the likelihood of a given sample multiset, as defined 
rigorously in Section 4.1.1.

5The original proof, however, predates the paper.
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problem (i.e. over the set of all deterministic constraints) is readily shown to be non- 
convex, even when the PDFA structure is constrained to be acyclic. Indeed, the acyclic 
n-state PDFA learning problem is widely believed to be hard, as implied by the reduction 
of Kearns et al. [1994] which we will discuss in detail in Section 4.3.1).

2.2.2 C onvex O p tim iza tion  in  D is tr ib u tio n  Space

The following result shows that direct optimization6 of PFAs in distribution space cannot 
amount to useful learning.

Proposition 2.10 Let 1Z — { r i , . . . , r 2} be an arbitrary finite set of distributions over 
E". Let Vext(i) — {d\xt, ... ,dfxt) be the set of all extreme distributions induced by n-state 
PFA over E .̂

Then for all possible sets 1Z such that z — \7Z\ — co|E|n for some cq < 1, there exists 
a distribution d̂ xt G Vext{£) such that:

||co(TC)-drt||1 > i  - p p r •

Proof Using Proposition 2.6, the number of distinct delta distributions induced by the set 
of extreme n-state PFA is lower-bounded by |E|n. The fact that 2  = co|E|n with Co < 1 has 
the following implication. All distributions r G 1Z are over E^, and we assume i > n. The 
distribution d̂ xt G Vext(£) is a delta distribution inducing the string Si G E .̂ Therefore, 
there exists at least one distribution d£xt G Vext(£) such that for all distributions r G TZ, 
the following holds:

maxrW < ^  =

As a direct consequence, we have:

\\co(lZ) -  dlx%  > |maxr(sb) -  1| > 1 -

proving the proposition. ■

It follows that even for n = £, an exponentially large number of distributions would be 
needed to directly approximate the entire PFA set on the probability simplex.

2.3 R elated R esults

We briefly mention a number of relevant results from the information theory and statistics 
literature, placing the chapter’s results in a larger context. The results mentioned below

6Namely, an approximation of the target distribution using a mixture of distributions.
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were formulated for HMMs, but can be straightforwardly adapted to PFA.

Equivalence Classes of Identifiable PFAs

The identifiable HMM subclass was defined to resolve some of the degeneracies discussed 
above. This class, however, is defined only for stationary HMMs (those for which the 
likelihood of occupying a given state is independent of the time). An adaptation of the 
definition for PFA follows:

Definition 2.11 A stationary PFA A 0 with initial and state transition parameters 7  ̂ and 
P4 is said to be identifiable if for every PFA A  such that (7̂ , P4) ^ (7^, Pjf), there exists 
some 7 > 0 for which the distributions over E/ induced by A 0 and A  are not identical.

Leroux [1992, Lemma 2] showed that the equivalence class of the parameters of an identi­
fiable HMM comprises all parameters obtained by permutation of the HMM’s states. This 
result trivially carries over to the PFA model.

Exponential Forgetting

A property related to stationarity termed exponential forgetting was formulated and shown 
for HMMs with primitive transition matrices in [LeGland and Mevel, 2000, Theorem 
2.2]. In non-technical terms, the likelihood function associated with PFAs exhibiting this 
property has an exponential rate of forgetting of the initial conditions.

Lipschitz Continuity of the Forward Mapping

We also mention a relevant Lipschitz continuity result shown in [LeGland and Mevel, 2000, 
Theorem 2.1], who showed that for an HMM with a primitive state transition matrix', a 
Lipschitz continuity property holds for the forward recursion (1.6). Their result places an 
upper bound on the Lipschitz constant.

2.4 Discussion: Im plications for A utom ata Learning

General PFA or PDFA learning is a non-convex problem of exponential dimensionality 
(in the number of states), and therefore need be approached with due caution. Indeed, in 
their comprehensive survey paper Ephraim and Merhav [2002] comment that:

Algorithms for global maximization of the likelihood function p{yn\(f)) over 
c f) 6 <3> [the usual HMM parameterization] are not known for most interesting 
HMMs.

' A stochastic matrix Q is primitive if there exists an integer r such that the matrix Qr is positive
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We will briefly discuss a number of established local optimization methods suited to 
PFA learning in Section 4.1.1. Moreover, in subsequent sections of Chapter 4 we will 
discuss and analyze a number of algorithms dealing with learning (certain subclasses of) 
PDFA under certain (restrictive) frameworks. The positive learnability results which will 
be discussed there are not geometric (i.e. relying on convex optimization), but are rather 
due to efficient branching algorithms utilizing provably accurate statistical tests.

An interesting avenue for extending the research presented in this chapter involves the 
construction of distribution families which enable efficient learnability (and evaluation) 
on one hand, while providing good approximation to (interesting subsets of) PFA on the 
other.
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Chapter 3

The M yhill-N erode Theorem  for 
PFA

Characterization of distribution families is an important step toward gaining an under­
standing of the families’ expressive capabilities. In the context of formal languages, the 
classical Myhill-Nerode characterization theorem provides a useful tool for proving certain 
languages do not belong to the regular language class. In the present chapter we extend 
the Myhill-Nerode theorem to PFA, and present a number of applications.

After reviewing related work (Section 3.1), we present an extension of the well-known 
Myhill-Nerode theorem of finite state machines to the PFA family in Section 3.2. We 
then show how the Myhill-Nerode extension theorem provides a tool for proving that 
certain distributions cannot be modelled by PDFA or PFA models (Section 3.3), and 
show how it implies bounds on the relative expressive power of PFA and PDFA models 
in approximating arbitrary probability distributions over bounded length strings (Section 
3.4).

3.1 Related Work

We begin by stating the original Myhill-Nerode theorem [Hopcroft and Ullman, 1979], 
followed by an explanation of the terms and the theorem’s significance:

Theorem 3.1 (Myhill-Nerode) The following three statements are equivalent:

1. A formal language L C £* is accepted by some finite automaton.

2. L is the union of some of the equivalence classes of an extension invariant equivalence 
relation of finite index.

3. The equivalence relation on £* induced by L is of finite index.

The Myhill-Nerode theorem is concerned with a natural equivalence relation on strings 
induced by a DFA. Given a DFA A  and two strings x,y  £  £*, we say that x and y

31
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are equivalent modulo A  if after their generation the DFA reaches the same state. The 
resulting relation between strings constitutes an equivalence relation.

An equivalence relation induces equivalence classes, (possibly infinite) sets of strings 
which are equivalent. The (possibly infinite) number of equivalence classes in an equiv­
alence relation is called its index. An equivalence relation E  on £* is called extension 
invariant iff for all x,y, z  E £*, xEy  => xzEyz.

The Myhill-Nerode theorem states that a DFA is characterized by two properties: 
that the equivalence relation it induces is of finite index and that it is invariant under the 
extension of the strings by the same characters.

A related DFA result which is also sometimes called the Myhill-Nerode theorem, is 
described in the following [Hopcroft and Ullman, 1979]:

Theorem 3.2 The minimum state automaton accepting L is unique up to an isomorphism 
(i.e. a permutation of the states).

3.1.1 A PDFA Extension to the M yhill-N erode Theorem

For the class of PDFA models, Theorem 3.2 was generalized and proved by Carrasco and 
Oncina [1999]. We repeat their result here (using somewhat different terminology):

Theorem 3.3 If L is a SDRL1, then a canonical generator, or a minimal PDFA gener­
ating L exists.

We repeat the construction of the minimal PDFA generating a stochastic deterministic 
regular language (termed the canonical generator), which was shown in [Carrasco and 
Oncina, 1999]. This construction is based on the definition of an equivalence relation 
between strings on the one hand and between states on the other. Given an SDRL L, the 

minimal PDFA generating L is given by M  = {Qmi  <$m , %m -> Fm ), where:

Qm

5M {x~lL,a)

Qo m

Pm (x~1L, a)

{x~lL ^ ( D : x £ E * }

(xa)-1!/,

e~lL

p(aYA\x~l L).

A characterization theorem complementing the result in [Carrasco and Oncina, 1999] 
and completing the Myhill-Nerode extension for PDFA models was formulated (using 
somewhat different notation) and proved by Esposito et al. [2002, Theorem 3]:

1 I.e., stochastic deterministic regular language, see definition in Section 1.3.
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Theorem 3.4 (Myhill-Nerode Extension for PDFA Models) Let E be a finite al­

phabet. The following two statements are equivalent:

1. A distribution D over E* can be induced by an n-state PDFA.

2. There exists a set of n fixed distributions V  = { D \, . . . ,  Dn} over E* such that all 

quotient languages of D are members o fV .

3.1.2 A PRFA Extension to the M yhill-N erode Theorem

Esposito et al. [2002] also formulated and proved a characterization theorem for the class 
of probabilistic residual finite automata (PRFA)2, which we define now.

Let A  be a PFA, and let be a vector with the kth entry equal to 1 and all other 
entries 0. Define the PFA A qk (k = 1, . . . ,  n) by A qk = (Qai ^Aiek: Fa , Pa ) (be. a PFA 
identical to A , except for the initial state distribution which is concentrated on the kth 

state, qk), and let Lqk be the stochastic language induced by A qk.

Definition 3.5 A PRFA is a PFA A  — {Qa ^ A a A a -, Fa , Pa ) su°h that

where La  is the stochastic language induced by A  and Lq is the stochastic language induced 

by A q.

In other words, a PRFA is a PFA such that every state defines a quotient language.
In order to describe the PRFA characterization theorem, we define a number of addi­

tional concepts. Let L be a stochastic language on E and let U be a finite subset of E*. 
The set of linearly generated residual languages of L associated with U is:

where SL (E) is the set of all stochastic languages on E and {Au}u£U is a set of convex 
coefficients (i.e. non-negative, sum-to-one). The set U is a finite residual generator of L if 
every quotient language of L belongs to LGl (U). The class L/rg(E) is defined as the class 
of stochastic languages on E having a finite residual generator. The PRFA characterization 
result [Esposito et al., 2002, Theorem 4] states that the class of all stochastic languages 
induced by PRFA is the class of languages having finite residual generators:

2In their paper, the term residual language was used for a quotient language, shedding light on the 
naming of the PRFA.

Mq € Qai G £* such that Lq — u 1 La ,
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Theorem 3.6
Lfrg(Tf) — Lprfa(E).

3.2 A P FA  E x ten s io n  to  th e  M y h ill-N ero d e  T h eo rem

In this section we formulate and prove an extension of the classical Myhill-Nerode theorem 
to PFA models. We begin by formally defining the notions of a suffix distribution,
(the distributional analogue to the quotient language z~ lL , defined mainly for enhancing 
the clarity of exposition) and the suffix set:

Definition 3.7 Given a distribution D over E* and a string z € E* such that D{z) > 0, 
the suffix distribution D [2] is defined by:

If D(z) = 0 then D ^(x )  is undefined.

Definition 3.8 The set of all suffix distributions of a given distribution D is denoted by

Note that D E suff(D).

We are now in a position to present the following characterization theorem for PFA 
distributions:

Theorem 3.9 (Myhill-Nerode Extension for PFA Models) The following two 

statements are equivalent:

1. A distribution D over E* can be induced by an n-state PFA.

2. There exist n fixed distributions {D i , . . . .  Dn} over E* such that:

Proof 1 => 2: Assuming the distribution D is induced by some PFA A —
{Qa ^ ^ A i Ia i Fa i Pa ) with |Q_4 | < n, we show that the set of its suffix distributions 
is contained in the convex hull of (at most) n fixed distributions. For simplicity we as­
sume \Qa \ — n • In order to clarify the proof, we will use Sk to denote the kth state in the 
context of it being used as an initial state, and the notation q  ̂ to denote the kth state in

(3.1)

suffiD):

suMD) :={0 W}j€E..

suff(D) C co(Di , . . . ,  Dn).

other contexts.
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Let 2 G E* be a prefix, x  G E* a suffix, and let Dk, k = 1 ,. . . ,  n, denote the distribution 
induced by A qk. In analogy to Equation (1.5), the forward density for A qk is given by:

<*£(*> 9) = Et(sjfc) • Y n P A i s j - u W y H q , « ) ,

or in other words, a^.(i,q) denotes the probability of generating the prefix x\ ...Xi and 
reaching state q after starting from state sk. As there exist only n possible states to reach, 
we have the following equalities:

A M  =
e = i

Dk{zx) = Y az(\z \,Qi)De(x), 
t=i

(3.2)

where Dk(z) denotes the probability of generating a string 2 E E* conditioned on the fact 
that we started from state sk. Since the probability of starting in the state sk is given by 
/^(sfc), the overall probability of generating x  becomes D(x) = Ylk=l ^A{sk)Dk(x). Using 
Definition 3.7 and plugging in (3.2), we get:

D[z](x) _ D(zx) _  E L i  IA{sk)Dk{zx)
D(z) IA(sk)Dk(z)

= ELi J A { s k ) • ELi ^ z ( \ z \ - q e ) D ( { x )
ELi E L b L E ^ ^ U ')

_ ELi I A ( s k ) • <?i)
j r [  LELi EtM) • ELi a i ( \ z l w )

(3.3)

The bracketed coefficients are nonnegative, sum to 1, and do not depend on x, so the 
resulting expression is a convex combination of the distributions {D^(-)}”=1, proving the 
claim.

2 => 1: The distribution D is in suff(D)  and therefore in co(Di , . . . ,  Dn) (the convex 
hull of (D\ , . . . ,  Dn)). Thus, there exist nonnegative, sum-to-one (i . e convex) coefficients 

{7Tl, • • • ,7rn} such that D = E L i n»A-

For every a E E the distribution (A)[o-] is *n co{D\ , . . . ,  Dn), and hence can be written 
as (Di)^(x) — J2j K iDj (x ) f°r some set °f convex coefficients aE . When generating 
a string 2  = z\Z2 . --zk, we first pick Dx with probability 7q. We then pick Dq with 
probability A{i output Z\, and proceed to generate 2 2 . . .  zk. But since (Z)j)[22j is itself
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in co(Di , . . .  , Dn), the process is recursively repeated. Written formally, we have:

n n

D{z) = ^2 *i Di(zlZ2---zk) =
i=l i=1

=  x  ** t  K,iDh & • • ■ =jtwiit A ? . , i  it A 2 ,3 .  ° k ( z 3  • • • * * )
i=l Ji — 1 i=l ji = l j2 = l

=  ■■■ = t W’t  A « . <  it A ? 2 J 1  • • • X
i=1 ii=l J2=l Jfc=l

In order to construct an n-state PFA A = (Q.4 , X, 5.4 , Ct, F 4 , P 4 ) which induces the 
above distribution, we proceed as follows: identify each Dt with a state of A and set 
1A  — (tti, .  . .  , 7rn). The transition probabilities P a (Qi , cr, Qj) are set to XJai, and the final 
state probabilities are set to F^(^) = Dl(e). Using Equation (1.7) and writing out the 
recursion in (1.6), we have Pr^(z) = D(z) for any string z G X*. ■

Theorem 3.4 follows as a special case. In the first direction, the forward densities 
and initial state probabilities of (3.3) reduce to delta distributions, implying the suffix 
probabilities are in the set {D1, . . . ,  Dn}. In the second direction, the PDFA case has a 
delta initial distribution, setting the initial state. The parameters {AU}JF=1 satisfy the 
PDFA constraints, and the constructed automaton A reduces to a PDFA.

3.2.1 C onnections to  P R F A

We now elaborate on the distinction between PFAs and PRFAs, in light of their respective 
characterization theorems. The example presented in [Esposito et al., 2002] and repeated 
in Figure 3.1 is instructive.

Figure 3.1: A simple PFA using the single-letter alphabet X =  {a} and inducing a distribution 
which cannot be generated by a PRFA. The initial state probabilities are 1/2 for each state, and 
the termination probabilities are denoted within the states.

In their paper, the authors showed that the distribution induced by the depicted PFA
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cannot be induced by a PRFA. For this example, the probabilities of termination after 
emitting the string a( were shown to be:

Assuming ß < 1, the expression tends to 1 — ß  strictly monotonically as f  —> oo. This

implies the same for the suffix distributions, implying further that the distribution cannot 
be modelled by a PRFA.

A PFA, in contrast, can model the above suffix distributions by a convex combination 
of the two fixed distributions D\ and D2 , defined in this case by:

Oi(a') = 02l(l -  02); D2(ae) = -  0).

3.3 A pplications o f the PD FA  and PFA  M yhill-N erode Ex­

tension  Theorem s

In this section we give two examples where applications of the Myhill-Nerode extension 
theorems provide immediate proofs that certain stochastic languages are either not regular 
or not deterministic regular. The first example was discussed in [Vidal et al., 2005a] (and 
mentioned in Section 1.7), while the second is novel.

3.3.1 A Stochastic N on-D eterm inistic Regular Language

We recall the example presented in Section 1.7 (page 15), which we repeat below in Figure

We now provide an alternative proof of the fact that no PDFA can induce an identical 
distribution:

Proposition 3.10 No PDFA can generate the stochastic language induced by the PFA of 
Figure 3.2.

Proof Define the stochastic language L to be that induced by the PFA of Figure 3.2. 
For the string x = ak, the quotient x~lL is calculated as follows:

implies that for a given value of £, the probability Pr (e|(a^+1) lL ) cannot be expressed 
as a convex combination of the preceding probabilities {Pr (e|(al)_1I/) }^_ . In turn, thisas a convex

3.2.

(3.4)
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<*(1/ 2)

Figure 3.2: A simple PFA using the single-letter alphabet E = {a} and inducing a distribution 
which cannot be generated by a PDFA.

For the specific string w — a, we have D\(w) — 1/2-1/2 — 1/4, while ^ ( tc )  = 1/3-2/3 = 
2/9. Plugging this specific case into (3.4), we get:

Pr (aKa*)-1!,) H i ) * ' 1 + HD t - 1

+ (()*■’
(3.5)

Expression (3.5) assumes different values for different values of k, implying the number 
of quotient languages is not finite, which by Theorem 3.4 (the PDFA extension to the 
Myhill-Nerode theorem) implies the distribution cannot be induced by a PDFA. ■

3.3.2 A Stochastic Non-Regular Language

We now construct a distribution over {0,1}* that cannot be induced by any PFA. 

Proposition 3.11 The distribution specified by:

\ 2~n x = 0nl n, n > 1,
Pr(ar) =  <

0 otherwise

cannot be induced by any PFA model.

Proof Corresponding to the set of prefixes {0*1}^, we obtain the following set of 
quotient languages: {<5(lfe-1)}^=1 (with <$(•) denoting the delta function). For any finite 
n > 0, the set {^(l^-1)}^! cannot be contained in the convex hull of any n distributions. 
Indeed, for any set of distributions {Di , ... ,Dn} over E*, there exists an £ < n + 1 for
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which:
max Dl(l^) < 1,

DiE{D\,...Dn }

implying <5(U)  ̂co(D\ , . . .  Dn). ■

3.4 A p p ro x im a tio n  of D is tr ib u tio n s  over B o u n d ed  L en g th  

S trin g s

Little is known about the relative power of PFA and PDFA models in approximating 
arbitrary probability distributions. In this section we provide bounds which answer the 
following question: how well can (n-state) PFA and PDFA models approximate arbitrary 
distributions over bounded length strings. We also show that the task of approximating 
arbitrary distributions over strings with a given expected length is (in some strong sense) 
hard.

3.4.1 Upper Bound on PDFA Approxim ation of Bounded Length D is­
tributions

We begin by presenting an immediate upper bound on the number of PDFA states required 
to represent a bounded length distribution:

Lemma 3.12 Let D be a distribution with length bounded by L (i.e. w ~  D implies 
|rc| < L). Then a PDFA A with |E|L+1 — 1 states can be constructed which induces the 
distribution D.

Proof We construct a |E|-ary tree of depth (at most) L+  1 and set A’s initial state qo to 
be the tree’s root. For ql denoting one of the tree’s internal nodes, we let w{qx) denote the 
sequence of letters that had been traversed while reaching qx from go- For each alphabet 
letter o E E and internal node qx we label one outgoing edge from qx with cr, thus defining 
the state transition function £4. For a pair of nodes (qi,qj) such that (qi,cr,qj) E £4, we 
set the transition probability PA{qii&,qj) to:

E xge* D (™(qj)x) 
Exes* D{w{qx)x)

if Xlres* D(wiQi)x) > 0 and remove the transition otherwise. The final state probability
for state qx is set to:

Fa (Qi) =
D(w{qi))

Exes+ D(w(qi)x)'
(3.6)

where E+ = E* \  {e}.
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We now show that the PDFA A  thus constructed induces the distribution D. For a 
string z — z\ ... Z£ with t  < L, there exists a unique state q(z) € QA such that w(q(z)) — z. 
Calculating the probability of the (unique) path in A  from qo to q(z), we get:

e
\ \ P A  ■ ■ - Z i - i ) , Z i , q ( z i  . . . Zi ) )  
i= 1

Exes* D{z\x) Exes* p (zi z2 x) Exes* P{zi z 2 ... zex)
Exes* D (x) Exes* D (zix) Exes* D izi z2 • • • zt-\x)

= X ! D {z \ z2 ■ ■ ■ Z(>x) =  ^ 2  D (zx), 
x€S* x€S*

where the first term in the product (i.e. q{z\ ... 2 0 )) is taken to mean qo. The hnal state 
probability for q(z) is (via (3.6)):

pA(q{z)) =
P { z i z 2 . . . Z j )

Exes* D(ziz2 ... z£x)
D(z)

Exes* D (Z X Y

Pulling the calculated expressions together, we obtain:

t
F t a { z ) = Y [ PA (q(z 1 • • • Zi - 1), q(zi ■ ■ ■ Z i )) • FA(q(z)) =  D(z).

i=1

3.4.2 Lower Bounds on PDFA and PFA Approxim ations of Bounded  
Length D istributions

We will now present lower bounds for approximation of bounded length distributions by 
PDFA /  PFA models. The techniques used for obtaining the lower bounds are illustrated 
in Figure 3.3. In both cases, the target distribution is composed of a uniform prefix 
distribution followed by a “symmetry-breaking” set of suffixes.

In the case of the PFA, we require each suffix to be be poorly approximable by the 
convex hull of all other suffixes, so all the chosen suffixes are distinct delta distributions. 
Thus, the Li-distance between each suffix distribution and the convex hull of all other 
suffix distributions equals 2. In the PDFA case, we require a weaker condition, namely 
that the Li-distance between each suffix pair is at least 1/2. Therefore, (exponentially) 
shorter suffix lengths suffice.
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Figure 3.3: An illustration of the techniques used for proving lower bounds on the approximation 
ability of PFA (top) and PDFA (bottom) models. The triangles on the left illustrate uniform 
distributions, while the suffix distributions on the right hand side serve as “symmetry-breakers” 
(with 6i ,6 j  denoting two different delta distributions).

Lower bound for PFA Approximation of Bounded Length Distributions

In this section we apply the Myhill-Nerode theorem for PFA to derive a lower bound on 
the models’ approximation ability.

Theorem 3.13 There exists a distribution D* of bounded length L such that for any 

distribution D induced from a PFA with no more than IS I^ -1) states, \\D* — D||i > 1/2.

Before proving the theorem, we define the notion of suffix mass:

Definition 3.14 The suffix mass of a family of probability distributions V  is defined by:

For the family of distributions induced by n-state PFA we now show:

Lemma 3.15 Let T>n = {D : D is induced by an n-state PFA }. Then SM(Vn) < n.

Proof Denote the n-dimensional probability simplex by An = {a G M71 : > 0, i =

1 , . . . ,n,  a i = 1}- By the Myhill-Nerode extension for PFA (Theorem 3.9), all
suffix distributions S  G suff(D) in Definition 3.14 reside in the convex hull of at most n 

distributions, which we denote by {D \ , . . . ,  Dn}. We thus have:

SM(V)  := max max S(w).Dev Sesuff(D)
W £ 2 ^ *

n
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However, for each w G E* there exists an index i(w) G { l , . . . , n }  such that Dpw\(w) =  

maXagA71 a iDt(w). Observing that (z(rc) : w G E*} C { 1 ,... ,  n}, we have:

n

£
u;€£*

max
a € A n 2 = 1

^  A h (w) < ^ 1  = n ,
w(zT,* i—1

and the proof immediately follows.

We will also require the following technical lemma, for which a proof is supplied in 

Appendix A:

Lemma 3.16 Let D denote a distribution over {1 , . . . , iV} with individual probabilities 

(d\ , . . . ,  du), such that di > 0 and J2v= i ^  =  1- T = (t i , . . .  , tjv) 6e some sequence 
such that 0 < ti < 1. Then the following inequality holds:

i= 1

diU
l A

i=l

We are now in a position to prove the negative result mentioned earlier:

Proof (Theorem 3.13)
Define the target distribution D* as follows:

,, , f |E| - l / 2 w =  w'w', w ' e T .L!2
D-(w)  := {

0 otherwise.

Let V  be some family of distributions with SM('D) < let D G V  be an

approximating distribution and enumerate the set £ L/2 as w \ , . . .  ,wjy with N  = |£ |L//2. 

We proceed to lower-bound the Li-distance:

||D * -D ||, =  Y ,  \ D*( w) - D(w) \ >
weT.* w£T,l

N N

= ^  ID*(wiWi) -  D(wiWi)\ +  X !  S  ID*(wiwj) -  D(wiWj)\
i= i  *=i Wj  e s L

Wĵ Wi

^ £ — -  D(wlwi)

Plugging Lemma 3.15 above into Lemma 3.16, we have shown \\D* — D\\\ > 1/2. ■
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The preceding analysis is loose in the sense that (asymptotically) a square factor in the 
number of states separates the upper and the lower bounds of Lemma 3.12 and Theorem 
3.13 respectively. A tighter analysis for PDFA models follows.

Lower bound for PDFA Approximation of Bounded Length Distributions

We now present a sharper lower bound when the approximating class is restricted to 72- 
state PDFA models. We assume for simplicity that the alphabet’s cardinality is 2, and 
accordingly all logarithms used below are to base 2. Before presenting the bound we state 
the following lemma regarding the packing number on the probability simplex:

Lemma 3.17 Let Ad denote the d-dimensional probability simplex. Then the number of 
distributions on Ad which are at least £-separated in the L\-norm (denoted M(e, Ad, || *||i)^ 
is lower-bounded by:

The proof of Lemma 3.17 is provided in Appendix A.

Theorem 3.18 Suppose T = {0,1}. For any positive integer L, there exists a distribution

2L states, ||D* -  D ||i > 1/16.

Proof We set all L-length prefixes of D* to be equiprobable (i.e. of probability 2~L each) 
and let N\ — 2L. For i E {1,.. . ,  N\}, we denote the target suffix distribution following 
prefix i by D*. For the same prefix, we denote the approximating distribution’s prefix 
probability by dt and its corresponding suffix distribution by Dx.

We construct D* such that each suffix distribution D* is composed solely of strings of 
length Z/2 - We wish to construct a set of suffix distributions of cardinality N\, such that 
each pair is at least (l/4)-separated (i.e. ||D* — D*2||i > 1/4, i\ ^  «2 ). Denoting N2 =  2La 
(the number of possible length-Z/2 strings), we appeal to Lemma 3.17. In this case, the 
dimensionality d of the simplex is N2 . Setting L2 = logL and using Lemma 3.17, we see 
that the number of possible distributions conforming to the demands is lower-bounded by 
N\, as desired.

We now proceed to lower-bound \\D* — D\\\. Given that the approximating PDFA 
has (at most) N\/2  states, there exist (at least) N\/2  “coupled” pairs (21, 22) such that

D* over £ L+logL such that for any distribution D induced by a PDFA with no more than

Dix — D{2. Writing out ||D* — D||i, we get:
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n o * - O l l !  = £ | ß » - ö ( » ) l >  E  l o ’ M - D H l
weT,* W£ 52(L+l2)

Using the standard norm inequality ||x — y || > |||a;|| — ||y|||, we find that each term in 

the sum is lower-bounded by |^ -  — d{\. For the coupled pair («1,22), we therefore have:

t := — D l - d h Dh + — D* 
N\ 12

di 2 T) i 2

1 1 ^  _
>

N ~ r d "
+

w r d '>
> d ii  ^*2

1

However, as Dil = Di2, we also have that:

—  D*! -  dixDix +
1

do r, D j

>

>

Ah
(d * -  d *2) -  ( 4 ,  -  4 )dii di2 ) Uii 

dii *̂2

>
4 Ah

dii

Hence for all coupled pairs (iiU2), t > max(4 ]̂" ~ fr) where 6 =  |djj — di2\. Since 
l/(4Ah) — b > b for b < l/(8Ah), we have t > l/(8Ah) for any possible value of b. In other 

words, for all possible values of (d^ , di2) we have:

— D*i -  dh Dh + kD12 di2Di2 > 1
8Ah'

Summing over (at least) Ah/2 coupled pairs, we obtain \\D* D Hi -  Te-

3.4 .3  A pproxim ation  o f B ou n ded  E xp ected  L ength  D istr ib u tion s

A natural question in this context regards the PFA /  PDFA models’ ability to approx­

imate the class of bounded expected length distributions. The difficulty of such PFA 

approximation is shown in the following lemma:

Lemma 3.19 Given any e > 0 and L G N, there exists a distribution D ** of expected 

length bounded by L (i.e. Kw^ d ** M  < L), such that for any PFA A  with no more than
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L  — l 
8e states, the following will hold:

\\D" -  Da \U > s .

Proof The proof relies on the lower bound for PFA approximation presented in Section 
3.4.2. Let the distribution D* be as defined in Section 3.4.2 with L replaced by Lq. We 
define D** as follows:

It follows from the definition that Ew~d** M  = 1 — 4e + 4e(l + Lq) = 1 + 4eLq. Selecting 
L0 < guarantees \w\ < L. An £-approximation of D** can only be achieved
if D* is approximated to accuracy 1/2, which by Lemma 3.13 cannot be achieved using a

An analogous result for PDFA-based approximation can also be formulated, based on the 
lower bound shown in Section 3.4.2.

3.5 D iscussion  an d  C onclusion

The lower bounds presented in Section 3.4.2 are conceptually loose in the following sense: 
we made only partial use of the Myhill-Nerode extension theorems. Namely, when con­
structing the PFA lower bound, we only used Theorem 3.9 indirectly via Lemma 3.15. 
The lemma does not utilize the fact that all PFA suffix distributions must recursively and 
exclusively contain suffix distributions which also conform to the conditions of the theo­
rem. A proof technique utilizing this additional information could potentially provide a 
tighter result. In the PDFA case, a similar criticism holds true, but the result obtained is 
tight to a logarithmic factor, leaving little room for improvement.

Our main goal for extending the research presented in this chapter is to attain a com­
plete understanding of the relationship between distributions induced by PFA and PDFA 
families. Specifically, we seek to understand how well (and under which circumstances) 
PDFA models can approximate distributions induced by PFA models. This problem was 
addressed in [Zeitouni et ah, 1992], where assuming a certain condition (a lower bound 
on all the approximated PFA’s transition probabilities), an Loc-approximation result was 
shown. In this result, however, the number of states required grows exponentially with 
the (inverse of the) accuracy parameter; the approximation is in the (weak) sense, 
and the condition assumed may be unnecessarily strong. A more complete understanding 
would be theoretically desirable, and could potentially have practical implications.

D**(w) :
1 — 4e w = 0.
4e ■ D*(w') w = 1 w', \/w' E E*.
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C h ap te r  4

Com putational Com plexity of 

PFA Learning

In this chapter we consider the computational complexity of PDFA learning. Given a finite 
multiset of samples drawn from a target distribution generated by a PDFA, under which 
conditions can we guarantee “learnability”, and under which conditions is a learning algo­
rithm likely to fail? Learnability of PFA and PDFA models has been widely investigated. 
Characterization of the family of PDFA which can be learned efficiently is a deep question 
for which only partial answers are known so far. There are indications that the general 
PDFA learning problem is hard. For instance, Kearns et al. [1994] showed that KL-PAC 
learnability of PDFA implies the computability of the noisy parity function, thus violating 
the noisy parity assumption, widely believed to be true in the cryptography community 
(see e.g. [Kearns, 1993]). We seek to understand the criteria and algorithms which enable 
efficient PDFA learning, and the results presented in this chapter form a step in that 
direction.

The chapter is composed of the following sections:

• In Sections 4.1 and 4.2 we discuss a number of learning frameworks relevant to our 
discussion, and mention key results regarding PFA /  PDFA learnability within each 
framework.

• In Section 4.3 we present a thorough overview of existing PFA /  PDFA learnability 
results, and introduce the notation used when necessary. We discuss both negative 
and positive existing results, set the stage for our novel results, and highlight the 
incomplete aspects of the current understanding.

• In Section 4.4 we present an extension to a central negative result, justifying our 
selection of learning framework in the subsequent sections.

• In Section 4.5 we discuss and generalize the most important class of PDFA learning 
algorithms, namely the state merging (SM) algorithms.

47
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• In Section 4.6 we present a novel analysis and an accompanying algorithm which 
improves on (and asymptotically tightens) a recent result on testing L2 proximity 
between distributions. Using this result and the generalized SM algorithm of Section 
4.5, we extend the class of efficiently learnable PDFAs to the p2 ~distinguishable 
family.

• In Section 4.7 we present a novel analysis of the SM algorithm, further extending 
the efficiently learnable PDFA family to the p-distinguishable subclass.

• In Section 4.8 we summarize the results presented in the chapter and discuss avenues 
for extending the research.

4.1 PFA Learning M odels

Reflecting the extensive applicability of the models, numerous PFA “learning” algorithms 
have been proposed, alongside a host of learning frameworks. In this section we discuss the 
leading learning frameworks, the most commonly used algorithms within each framework, 
and present some relevant learnability results.

The learning frameworks discussed below all pertain to the non-terminating PFA 
model, and assume all sample strings have the same length £. This streamlines the pre­
sentation. However, all the algorithms discussed have general (variable-length) versions, 
and all hardness results carry over to the normal PFA setting trivially.

To enhance the clarity of our discussion, we will use the following notation for the 
probability of generating a string s G E* induced by A:

M(s) = Pr^(s).

4.1.1 Param eter E stim ation

The simplest and most commonly used PFA learning framework is parameter estimation, 
typically in the maximum likelihood (ML) setting1. In this framework, the PFA’s under­
lying graph structure has been preselected, and the models’ transition parameters and 
initial distribution are to be inferred from a given data sample.

Formally, the ML PFA parameter estimation problem is posed as follows:

Definition 4.1 (Maximum Likelihood PFA Parameter Estimation) Given a fi­
nite multiset S — {s i , . . . ,  sm} of strings G Tß-, find an n-state PFA A opi which, among 
the set of all n-state (non-terminating) PFA having a given underlying graph structure,

1A number of Bayesian PFA parameter estimation results are discussed in [Ephraim and Merhav, 2002].
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assigns the maximum generation probability (i.e. maximum likelihood) to S:

~\Aopt(si) = max M(s*) : \QA \ =  n
771

(4.1)

Lacking precision (e) and confidence (6) parameters, the definition above cannot di­

rectly be utilized to quantitatively study learning algorithms. To facilitate a quantitative 

discussion, the “approximate ML PFA parameter estimation” problem is dehned, following 

[Abe and Warmuth, 1992]2.

Definition 4.2 (Approximate ML PFA Parameter Estim ation) A randomized al­

gorithm T  is said to approximate the ML PFA parameter estimation problem for the class 

of n-state PFA within factor K  (possibly a function of various parameters of the problem) 

in time t, if given a multiset S = (si , . . . ,  sm), s* G 1 / for some t  > 0, T terminates in t 
steps and outputs an n-state PFA A , which with probability at least 1/2 satisfies:

where A opt is an n-state PFA satisfying (4.1).

This framework, however, is still not a probably approximately correct (PAC) defin­
ition. The following PAC model has been shown in [Abe and Warmuth, 1992] to match 

Definition 4.2 (in the sense dehned in Theorem 4.4 below):

Definition 4.3 (Distribution Free PAC Computational Complexity) Let S —

{ s i , . . .  ,sm}, (where si G Y>{), be a multiset and let Q over be a class of distributions. 
Let I Q I denote some measure of complexity associated with the class Q.

A (possibly randomized) algorithm T  trains Q if there exists some Mq = 

q(e~l i <5-1 ,^, I Q I) such that for an arbitrary distribution D over £*, if m > Mo then 

with probability at least 1 — S, T  outputs a distribution Q G Q such that either of the 

following criteria holds:

<  k
n ” i-4(S>) -  '

KL(D  11 Q) -  KL(D  || Q°pt) < e,

||i>-Q||1-||D-er><||1<£,
(4.2)

(4.3)

where Qopt G Q is a distribution satisfying (by the respective context):

KL(D  || Qopt) =  min{KL{D || P) : P  G Q}, 

\\D -  Qopi||x =  min{||D -  P ||j : P  G Q}.

2In that paper, the problem is called the “approximate sample MLM problem” .
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When (4.2) is the chosen optimization criterion (and assuming min{KL(D || P) : P  € Q} 

exists), the runtime of T  defines the (distribution free) KL computational complexity, 
while for (4.3) it defines the L\ computational complexity. I f the runtime o fT  is polyno­

mial, the computational complexity is said to be polynomial.

A polynomial computational complexity immediately implies the function g(-) (which will 
be referred to as the sample complexity in the sequel) is also polynomial in all its arguments.

In practice, aside from limiting the number of states, further constraints are usually 
placed on the optimization process. Typically, a set of transition probabilities are forced to 
zero, leaving the maximization process to deal with the complementary set (see definition 
of PFA constraint in Section 1.5).

The following result linking Definitions 4.2 and 4.3 was established in [Abe and War- 
muth, 1992, Theorem 4.1]:

Theorem 4.4 Let t denote the size of the input constraint to be trained, m the sample 

size, and i  the length of each sample string. For an arbitrary PFA constraint C, the 

following three statements are equivalent:

1. There exists a training algorithm for C with sample complexity polynomial in 

£~l ,S~1,t and I ,  running in time polynomial in the total sample length.

2. There exists a training algorithm for C with sample complexity polynomial in 

£-1,log(6~l ),t and I ,  running in time polynomial in the total sample length.

3. The ML parameter estimation problem (Definition 4.2) forC is approximable within 

a factor 1 + z, with probability at least 1/2, in time polynomial in z~l , t , I  and m.

In most theoretical contributions within this framework, the ML problem discussed 
is usually the degenerate case where the input consists of a single string (i.e. m  = 1). 
In most of the problems studied3, the complexity associated with the single-string ML 
estimation problem equals the general problem’s (i.e. multiple string).

We briefly discuss the key results in these frameworks.

Parameter Estimation Algorithms

Two common algorithms for PFA parameter estimation are the (iterative) Baum algorithm 
(sometimes referred to as the Baum-Welch algorithm), which is a particular instance of the 
EM algorithm of Dempster et al. [1977], and the closely related Baum-Viterbi algorithm, 
essentially an approximation to the Baum algorithm. For a complete discussion of these

3With the exception of the result of Farago and Lugosi [1989] mentioned below.
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algorithms, we refer the reader to [Ephraim and Merhav, 2002]. These algorithms provably 
converge to a local optimum, but convergence to the global optimum is not guaranteed.

A non-iterative, provably globally convergent maximum likelihood parameter estima­
tion algorithm has been developed for the special case of a left-to-right PFA4 [Farago 
and Lugosi, 1989]. This algorithm, however, is valid only when presented with a single 
sequence, limiting its practical applicability.

Abe and Warmuth [1992, Corollary 4.2] show that for any deterministic constraint, 
the computational complexity associated with learning is polynomial. This result, how­
ever, does not qualify as a PDFA learning algorithm, rather as a degenerate case of PFA 
parameter estimation (of limited practical value).

Hardness Results

Abe and Warmuth [1992] proved that for the class of 2-state PFA, the computational 
complexity of Definitions 4.2 or 4.3 cannot be a polynomial in |£|, unless RP = NP°.

Despite the hardness results mentioned, the parameter estimation framework (cou­
pled with additional heuristics) lies at the heart of practical applications such as speech 
recognition and handwritten character recognition.

4.1.2 Structure E stim ation

When a PFA’s structure is not assumed to be known in advance, the models’ structure 
has to be estimated as well as its parameters. The hardness result of Abe and Warmuth 
[1992] regarding PFA parameter estimation is immediately inherited by the (more gen­
eral) structure estimation problem. Approaches for dealing with the difficulty inherent to 
structure estimation range from the use of heuristic algorithms (with either asymptotic or 
no performance guarantees) to the adoption of various restrictions on the learning model, 
as we discuss in the next sections.

We mention that the related problem of order estimation, i.e. the estimation of the 
number of states in the PFA, has received significant theoretical attention. A number 
of information-theoretic approaches (of limited practical applicability) are described in 
[Ephraim and Merhav, 2002, Section VIII].

4The class of left-to-right PFA consists of all acyclic PFA with self-loops on any (and possibly all) 
states. This class is particularly useful in speech recognition applications, where PFA (or HMMs) are used 
to model temporal behaviour.

’The conjecture that RP is strictly contained in NP is widely held in the theoretical computer science 
community.
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4.2 PD FA  Learning Frameworks

Although technically a subfield of PFA learning, PDFA learning is most often discussed 
separately, and consists of a largely separate toolbox of learning frameworks, theoreti­
cal results and algorithms. Most notably, in PDFA learning, the rule (rather than the 
exception) is that both structure and parameters must be inferred from the data.

4.2.1 Identification in the Limit W ith Probability One

In this early learning paradigm due to E. M. Gold [Gold, 1967], [Gold, 1978], there is an 
infinite source of examples that are generated following the distribution induced by the 
(hidden) target. The learning algorithm is expected to return after each new example 
some hypothesis. The class is said to be identifiable in the limit with probability one if for 
all targets within the class, the algorithm identifies the target (i.e. there is a point from 
which all hypotheses are equivalent to the target) with probability one. The paradigm 
bears some obvious drawbacks:

• it does not entail complexity constraints,

• one typically does not know if the amount of data required by the algorithm has 
already been supplied,

• an algorithm can be proven to identify in the limit, but might return arbitrarily bad 
answers if the required amount of data is not provided.

Despite these drawbacks, the identification in the limit paradigm can be seen as a necessary 
condition for the potential learnability of a given class of models. If this condition is not 
met, the target class is surely not learnable.

Identification in the limit with probability one of the PDFA structure was shown in 
[Carrasco and Oncina, 1999], and the proof was extended to include identification of the 
probabilities in [Higuera and Thollard, 2000].

4.2.2 PAC Frameworks for PDFA Learning

The following PAC framework was proposed in [Ron et ah, 1995] and more recently used 
in [Clark and Thollard, 2004]:

Definition 4.5 (KL-PAC Learning) Given a class of distributions V  over E*, an al­
gorithm KL-PAC learns V if there is a polynomial q(-) such that for all D € V, e > 0 and 
Ö > 0, the algorithm is given a sample multiset S of size m drawn from D, and produces a 
hypothesis D, such that Pr KL(D || D) > e <6  whenever m > q( 1 /e, 1/5, \D\). By \D\ 
we denote some measure of the complexity of the target. The algorithm’s running time is 
bounded by a polynomial in m plus the total length of the strings in S.
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The definition of Lp-PAC learnability is analogous, with the corresponding change in 
distance measure. We mention that the novel results presented in this chapter all pertain 
to the Li-PAC learning framework, for reasons which we will establish below.

In this learning framework, the samples are drawn from a target distribution which 
is known to be regular deterministic, and therefore the framework differs from the usual 
(distribution-free) PAC setting. Results obtained within this learning framework do not 
provide performance guarantees for situations wherein the samples drawn are from an 
arbitrary distribution.

4.3 Related Work

We now present related work in the field, focusing on central results which will set the 
stage for our novel contributions.

4.3.1 N egative R esults for PDFA Learnability

In this section we discuss the main hardness result for PAC-learning of PDFA, due to 
Kearns et al. [1994]. In this result, a reduction is constructed showing that KL-PAC 
learnability of PDFA implies learnability of noisy parity functions, thus violating the 
noisy parity assumption, widely believed to be true in the cryptography community (see 
e.g. [Kearns, 1993]). We repeat the reduction here, and will extend it to the Li-PAC 
learning model in Section 4.4.

The reduction is demonstrated by showing how by KL-PAC learning a specific family 
of (acyclic) PDFA, one can learn the class of noisy parity functions. Placing the concepts 
on formal ground, we now define the parity function:

Definition 4.6 (Parity Function) Let a G {0, l} n be a fixed but unknown binary vector. 
For any x € (0, l} n, define f a(x) — X ^ = i Q-i^fimod 2).

Definition 4.7 (Noisy Parity Problem) Let 77 < 0.5 denote a “bit flipping” noise pa­
rameter, and let fd{x) denote a random variable which with probability 1 — 77 equals / a(ar), 
and with probability 77 equals ~>fa(x). Given a set of examples (x, fd(x)), drawn uniformly 
at random, the noisy parity problem is to infer the vector a within the PAC framework. 
It is widely believed that the noisy parity problem is hard (see e.g. [Kearns, 1993]).

A noisy parity PDFA (see example in Figure 4.1) can be used to generate a noisy parity 
function. It consists of n layers, each of which encodes one bit of the vector a. The PDFA 
comprises of two parallel, upper and lower tracks. A layer where all transitions remain 
on the same track encodes a “0” bit, while a crossover layer (for which the “1” transition
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crosses tracks) encodes a “1”. The last layer of the PDFA introduces noise, parameterized 
by ?i < 0.5.

o oo

Figure 4.1: Noisy parity PDFA family. In the specific example above, the first layer encodes a 
“0”, the second a ” 1”, and so forth, encoding the binary vector 0 1 ... 10. The last layer introduces 
noise via the parameter 77 < 0.5.

The distribution (over {0, l}n) induced by such a PDFA will be denoted Da. Given 
Da represented as a PDFA and a vector x G {0, l}n_1, we can compare between Da(x0) 
and Da(x 1) and subsequently determine f a{x).

Kearns et al. [1994] show that if one could efficiently KL-PAC learn the noisy parity 
PDFA, one could then compute f a{x) with arbitrary precision, violating the hardness 
assumption.

4.3.2 Positive R esults for PDFA Learnability

In this section we discuss positive PAC-framework PDFA learnability results, due to Ron 
et al. [1995], Clark and Thollard [2004] and Palmer and Goldberg [2005].

As shown in Kearns et al. [1994], the general PDFA PAC-learning problem is hard, and 
therefore additional conditions must be imposed before attempting to provide an efficient 
PAC learning algorithm. The concept of /7-distinguishability was first introduced by Ron 
et al. [1995], where it was shown to be sufficient for KL-PAC learnability of acyclic PDFA. 
Namely, (a variant of) the state merging algorithm (defined below) was shown to require 
sample and computational complexities polynomial in p~l (in addition to e-1, <5_1, 77. and 
|£|), where p is defined as follows6:

Definition 4.8 (/i-distinguishability) Let p > 0. Given a PDFA A  =
(Qai E, £4 , qo, Fa , Pa )> the state pair (qi,qj) G Qa x Qa is said to be /i-distinguishable if

IW-oSIL >/*•

A PDFA A is p-distinguishable if each of its state pairs is p-distinguishable.

6We use the notation to denote the distribution induced by Aqi.
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Clark and Thollard [2004] extended the result to general PDFA learning, while impos­
ing an additional condition, namely an upper bound on the expected string length from 
all states. The theorem’s formal statement is:

Theorem 4.9 (Clark, Thollard) Suppose A  is an n-state p-distinguishable PDFA such 
that the expected length of strings generated from, every state is upper-bounded by L. Then 
for every S > 0 and £ > 0, Algorithm f . l  outputs a hypothesis PDFA A such that with 
probability greater than 1 — 8, KL(D_4 || D-̂ ) < e.

The sample and computational complexities of Algorithm f . l  are polynomial in

We relegate a number of definitions of concepts used in Algorithm 4.1 to Section 4.5, 
where a more general algorithm is discussed in detail.

Algorithm 4.1: State Merging
Input: £,<5 (accuracy, confidence parameters), p (lower bound on the target’s 

distinguishability), nmax (upper bound on the number of states of the 
target) and L (upper bound on the expected length of strings generated 
from any state of the target). The algorithm is also supplied with a random 
source of strings generated independently by A , the target PDFA.

Output: A , a hypothesis PDFA such that KL(D^ |[ D^) < e with probability at 
least 1 — 5.

1 Compute mo, a threshold on the size of a multiset required for statistical testing;
M , the size of the sample we draw at each step of the algorithm, and p m j n , a small 
smoothing constant.

2 repeat
Draw M  strings from A
foreach u G V and a E XI such that 5^(u,cr) is undefined do 

Compute SUi(J (suffix multiset of (u,cr)) 
if \Su,a\ > mo then foreach v € V do

7

8 
9

10

S'u,(j Sy /i/2 then
oo

Add arc labeled with a from m to r.
end

end
else if Su.cr S v Wv G V then> ^ / 2

Create new node in graph G
Add an edge labeled with a from u to the new node

end 
end

16 until no candidate node has a suffix multiset of cardinality (at least) mo-
17 Complete G by adding a ground node which represents low frequency states.
1 8  Add a final state qf and transitions labeled with £ from each state to qj.

In Section 4.5 we will discuss aspects of the theorem’s proof in detail and generalize the 
result. Specifically, we will relax the /i-distinguishability condition and extend the result
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to a strictly larger PDFA class called /.^-distinguishable. In Section 4.7 we will further 
extend the class of SM-learnable PDFA to the so-called p-distinguishable class.

Clark and Thollard [2004] gave a counterexample showing that when the upper bound 
(L) on the expected string length from each state is lifted, KL-PAC learnability cannot 
be guaranteed. Moreover, their counterexample specifically shows that a bound on the 
PDFA’s overall expected string length cannot guarantee KL-PAC learnability.

In contrast, Palmer and Goldberg [2005] showed that in the (weaker) Li-PAC learning 
framework, the upper bound L can be lifted altogether. Their result uses Algorithm 4.1, 
with the modification that the graph completion and final state addition (lines 17 and 18 
respectively) are no longer required.

4.4 A n E x te n d e d  N eg a tiv e  P D F A  L earn ing  R esu lt

We presently show that even in the weaker Li-PAC learning model, general PDFA learn­
ability still violates the noisy parity assumption. This implies that the difficulty is inherent 
to PDFA learning, and not merely an artifact of the KL-divergence. In the following we use 
the notation of Murphy [1996]. We repeat the noisy parity PDFA graphic for convenience 
in Figure 4.2:

Figure 4.2: Noisy parity PDFA family. In the specific example above, the first layer encodes a 
“0”, the second a ”1”, and so forth. The last layer introduces noise via the parameter r) < 0.5.

Theorem 4.10 L\-PAC learnability of the noisy parity PDFA family violates the noisy 
parity assumption.

Proof As before, let Da denote the distribution induced by the noisy parity PDFA. To 
prove the theorem it is enough to show that given an L \-approximation to Da, we can 
determine f a(x) to arbitrary precision.

Let D be the estimated distribution, such that ||Da — D ||i < e. Given the specific 
architecture of noisy parity PDFAs, all correct parity strings xp such that p — f a{x) are 
assigned probability p ■ 2~n, while all incorrect parity strings xn (such that n = ->/a(x)) 
are assigned probability (1 — 77) - 2 ~n.

For any x E {0,1 }n, an error in the evaluation of f a{x) is encountered when 
D(xn) > D(xp). Each such error contributes at least (1 — 2p) ■ 2~n to j|Da — D\\i, and
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thus the total number of errors cannot exceed j2",^. Reconciling this with the fact that 
there are 2n strings x E {0, l}n, we have that the probability of error is bounded above 
by y^2Tf Thus, by varying e we can approximate / a(x) to arbitrary precision. ■

We mention that this particular method of reduction does not extend to the Lp-PAC 
learning framework for p > 1. To show this, we set the approximating distribution D to 
be the “opposite” of Da in the following manner: D(xn) = Da(xp)1 D(xp) = Da{xn) for 
every x E {0, l}n. Calculating the consequences, we find:

Dn -  D

2n [(1 — 2r/)2_n]p 

=  2 p  (1 —  2r])2~n 

=  (1 —  2p)2 (p~nK

i / p

For a large enough number of layers (i.e. n), however, the expression above can be made 
arbitrarily small. This example depicts a situation in which a good approximation in 
the Lp-PAC framework does not amount to useful learning* 7. Thus motivated, we will 
consider only the KL-PAC and Li-PAC learning frameworks throughout the remainder of 
this thesis.

4.5 Learnability of P D FA  via Oracles

As discussed in Section 4.3.2, efficient learnability using the state merging algorithm is 
known for the //-distinguishable PDFA subclass. In this section, we show that state merg­
ing algorithms can be extended to efficiently learn a larger subclass of PDFAs called 
^-distinguishable8. We will draw heavily on the positive result of Clark and Thollard 
[2004], and our result can indeed be seen as a direct extension of their work.

As discussed in Section 3.1.1, Carrasco and Oncina [1999] showed that corresponding 
to every distribution induced by a PDFA there exists a canonical PDFA with the minimal 
number of states which induces the same distribution. Furthermore, the suffix distributions 
of the states of the canonical PDFA are unique. Therefore, if we are given an oracle which 
can distinguish between two suffix distributions, we can learn the PDFA.

In this section we prove that for the L2 distance, a simple statistical test can effi­
ciently distinguish between sample multisets drawn from identical distributions and mul-

' Indeed, in a prominent density estimation textbook [Devroye and Lugosi, 2001, Section 6.5], a complete
section is titled “L 2 Distances Are To Be Avoided”.

8The work described in this section was published in [Guttman et al., 2005].
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tisets drawn from (sufficiently) distant distributions. We consequently show how the state 
merging algorithm can use an oracle to learn /^-distinguishable PDFA. Our definition of 
pp distinguishability is a generalization of /z-distinguishability. Namely, the suffix distri­
butions of any two states of a /^-distinguishable PDFA are at least p apart in the Lp 
distance for some 1 < p < oo.

4.5.1 T he G eneralized  S ta te  M erging A lgorithm : In trodu ction

The general PDFA learning problem is hard, and therefore additional conditions are re­
quired before attempting to provide an efficient learning algorithm. We seek to understand 
which criteria indeed enable efficient testing for discrimination between distributions. To 
this end, we present the SM algorithm in a more general setting using the concept of an 
oracle, which will be rigorously defined below.

In order to describe how state merging algorithms can use oracles to learn PDFA 
distributions, we first provide a modular analysis of the proof due to Clark and Thollard 
[2004], and then extend it to deal with oracles. In particular, we show that the state 
merging algorithm may be decoupled into two parts:

• A construction algorithm which iteratively builds the PDFA graph and sets the 
transition probabilities.

• An oracle, providing an accurate test for deciding whether or not two sample mul­
tisets were drawn from two distinct suffix distributions.

Given such an oracle, the state merging algorithm will induce a PDFA such that with 
high probability, the KL-divergence between target and induced distributions can be made 
arbitrarily small.

Generalized State Merging: Detailed Description

Pseudocode for generalized state merging (GSM) is given in Algorithm 4.2 below. The 
learning algorithm is given the following parameters as input: an alphabet E, an upper 
bound L on the expected length of strings generated from any state of the target, an upper 
bound n on the number of states in the target, a confidence parameter 6 and a precision 
parameter e. We will show that given a matching oracle (defined below), the algorithm 
will (with high probability) learn a PDFA class H.

The algorithm maintains a digraph G — (V, E) with labeled edges, V being the set of 
vertices (or nodes) and E  C V x E x V  a set of edges. The graph holds a current hypothesis 
about the structure of the target PDFA. A particular vertex vq G V corresponds to the 
initial state of the hypothesis. Each arc in the graph is labeled with an alphabet letter,



§4.5 Learnability of PDFA via Oracles 59

Algorithm 4.2: Generalized State Merging 
Input: e,S (accuracy, confidence parameters), nmax (upper bound on the number 

of states of the target) and L (upper bound on the expected length of 
strings generated from any state of the target). The algorithm is also 
supplied with On (a (<$i, mismatching oracle for H), and a random source 
of strings generated independently by A , the target PDFA.

Output: A , a hypothesis PDFA such that KL(D^ || D^) < £ with probability at 
least 1 — 6.

Data: The algorithm maintains a graph G = (V, E ) with labeled edges (i.e.
E  C V x £ x V), which holds the current hypothesis about the structure of 
the target automaton.

1 repeat
2 Draw M  strings from A
3 foreach u € V and a £ £ which does not yet label an edge out of u do
4 Hypothesize a candidate node, referred to as (u, a)
5 Compute Su,cr (suffix multiset of candidate node (u, cr) )
6 if \SÛ \ > mo then
7 foreach v E V do
8 Query On to compare Su,a with Sv
9 if On returns ACCEPT then

10 Add arc labeled with a from u to u.
11 end
12 end
13 if On returns REJECT on all comparisons then
14 Create new node to graph G
15 Add an edge labeled with a from u to the new node
16 end
17 end
is end
19 until no candidate node has a suffix multiset of cardinality (at least) mo-
20 Complete G by adding a ground node which represents low frequency states
21 Add a final state qf and transitions labeled with £ from each state to qj
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and there is at most one edge labeled with a particular letter from each node. For some 
node v E V, the notation 6g (v ,<j ) refers to the node reached by the arc from v labeled 
with cr, if such a node exists.

If S' is a multiset of strings from £*, for each s E £*, S(s) denotes the multiplicity 
of s in S, the cardinality of S is defined as \S\ := S(s), and f°r every a E £,

S(v) : =  S((ts).

Initially, the graph G consists of a single node representing the initial state qo of the 
target PDFA, and an accompanying multiset that is a sample of strings generated by 
the target PDFA. At any given moment in the course of the algorithm’s run, (with high 
probability) the graph is isomorphic to a subgraph of the target PDFA. For each node 
v E V, the suffix multiset Sv represents the multiset of suffixes of strings incident on v.

At each iteration (line 2) the algorithm is supplied with M  strings generated indepen­
dently by the target PDFA. For each node u in the graph and each letter a E E which 
does not yet label an arc out of u: a candidate node is hypothesized, referred to by the 
pair (u,a) (always in a relevant context, avoiding confusion). The algorithm computes 
SU:Cr, the multiset of suffixes associated with (u,er). This is performed by deleting from 
each string incident on u the prefix emitted before arrival at u. If a suffix begins with 
the symbol a , the symbol is deleted and the resulting string is added to the multiset Sucr. 
Intuitively, this sample represents the suffix distribution of the relevant state.

If at any point in the algorithm (line 6) a suffix multiset’s size, |5u?cr|, achieves the 
threshold mo, the oracle On is queried, comparing Su^  to all multisets Sv, v E V . If all 
comparisons to existing nodes in the graph are negative, a new node is created, and an arc 
from u to the new node is added, labeled with a. When a node is added to the graph, its 
accompanying multiset is kept and remains unchanged for the remainder of the algorithm.

After each iteration, all candidate nodes are deleted. The algorithm terminates when 
a sample had been drawn where no candidate node has a sufficiently large multiset. Sub­
sequently, the hypothesis PDFA graph is completed. If there are strings not accepted by 
the graph, a new node called the ground node is added, representing all low frequency 
states. The graph is then completed by adding all possible arcs from all states leading to 
the ground node, including from the ground node to itself. Since the hypothesis PDFA 
must accept every string, every state must have an arc leading out of it for each letter in 
the alphabet.

The transition probabilities are estimated using a simple additive smoothing scheme 
introduced in [Ron et al., 1995]. For a state u E Q^ and a symbol a E £, the transition
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)  • (X ~ (\^\ + 1)Pmin) +Pmin> with (4.4)
£

4(L + 1)(|E| + 1)-

A quick analysis shows that the number of oracle queries performed at each step of 
the GSM algorithm is upper bounded by n2|E|, as there are at most n nodes in the graph 
at any time and at most n|E| candidate nodes. When the algorithm runs correctly there 
are at most n|E| + 2 iterations. Therefore, over the course of a complete successful run, 
the number of oracle calls is at most n2|E|(n|E| + 2).

The main distinction between Algorithms 4.1 and 4.2 lies in GSM’s decoupling of 
the oracle (in the pseudocode, and more importantly in the ensuing analysis) from the 
remaining parts of the algorithm.

Formal Definition of Oracle

For our purposes, an oracle is a black-box which can distinguish between suffix distribu­
tions. More formally, we have:

Definition 4.11 (Oracle) Given a class Ft of PDFA, an oracle On is said to (<5, ra)- 
match the class Ft if for any PDFA A  € Ft and for any pair of states q,q' in A, given 
sample multisets of at least m samples drawn as suffixes from q and q', the oracle can 
determine with probability at least 1 — <5 whether or not the two multisets were drawn from 
suffix distributions of the same state.

The definition provides for an accurate test for deciding whether or not two distributions 
over strings are similar (i.e. drawn from the same suffix distribution). We argue in 
Section 4.5.2 below that such accurate testing can in fact be achieved efficiently under 
relaxed conditions compared to [Clark and Thollard, 2004], which in turn still guarantee 
KL-PAC learnability.

4.5.2 The Generalized State M erging Algorithm : Analysis

The learning algorithm we use is analogous to the state merging algorithm described in 
[Clark and Thollard, 2004], with the oracle On testing whether to merge a hypothesized 
candidate state (see Definition 4.13) with an existing one, or to construct a new state. 
Our main result is:

Theorem 4.12 Let Ft be a class of PDFAs over the alphabet E, e > 0, 6 > 0, L and n 
positive integers, and 6 1 , 6 2 ,£\, m 2  as defined in (4.9) and (4.10) below.

probability is set to:

^ 4 ( 9 ,  er) =

Pm in : =
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Suppose Oji is a (6\,m\)-matching oracle for hi. For every n-state PDFA A  G H such 
that the expected length of the string generated from every state is upper-bounded by L, 
with probability at least 1 — 6 over a random draw o/max(rai, 7772) samples generated by 
A, Algorithm 4.2 produces an hypothesis PDFA A  such that KL(D^  || D < e.

Our proof closely follows the proof in [Clark and Thollard, 2004], with two key changes:

• In the original proof, distinguishability between two states’ suffix distributions (with 
high probability) is inherent to the sample size bounds. In our case, the oracle 
provides the distinguishing test, so the size of the multiset drawn at each step of the 
algorithm is reformulated to reflect this (see (4.9)).

• In our case, two sources of randomness are present: the randomly drawn multisets 
and the oracle. To bound the probability of error, both sources need to be accounted 
for.

With the exceptions noted above, the original proof is directly transferable to our 
setting. In order to make the exposition self-contained, we repeat the statements and 
proofs of lemmas and theorems from [Clark and Thollard, 2004] in Appendix B, translated 
to the notation conventions used throughout the thesis.

We decompose our proof into the following modules:

(i) Given sufficiently many samples randomly drawn from A , a multiset is likely to be 
“good”. Namely, every string will appear with an empirical probability that is close 
to its actual probability.

(ii) Assuming an oracle which matches the PDFA family under consideration, at each 
step the hypothesis graph will be isomorphic to a subgraph of the target with high 
probability.

(iii) With high probability, when the algorithm stops drawing samples, there will be 
in the hypothesis graph a state representing each frequent state in the target. In 
addition, all frequent transitions will also have a representative edge in the graph.

(iv) After the algorithm terminates, (again with high probability) all transition proba­
bility estimates will be close to their correct target values.

(v) A KL-PAC result between target and hypothesis PDFAs follows.

Additional N otation

The following definitions quantify the notion of weight for the various elements of a PDFA:
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• For all q G Qa and £ G N, define

W,(q):=  E ,«)•

Öa (Q0,s )= Q

This quantity is the probability that A  will generate at least £ characters and be 
in the state q after having generated the first £ characters. Note that the defini­
tion addresses prefix probabilities rather than string probabilities, as the final state 
probabilities are not included in the summation. This quantity may be expressed 
recursively:

We(q) = £  Wi_,(6) E (4.5)
beQA a:ÖA(b,cr)=q

• For £ G N, define the probability that A  will generate a string of length at least £,

We : =  J 2  w i(q)-
q Sz Q a

• The weight of a state q G Qa is defined as:

oo

W(q):=YWe(q)= E
£=0 s € E * :

f>A(qo,s)=q

The expected length of strings generated from any state can be defined using these 
terms. The (assumed) bound L on the expected string length generated from any state 
q G Qa is expressed as:

s ) <  L  +  1.
s€S*

Using this bound, we can establish that for any string length k,

E we = E wi(i) E E  ̂LWb-
£>k q e Q A £>0 s<E

This enables the following bound, which will be useful in the sequel:

oo oc oo oo

E m d<i) < E tWe = E E E LŴ  L(L+')• (4-6)
^=0 £=0 £=0 k>£ £=0

The following definitions quantify the joint weight of state pairs in the target and 
hypothesis PDFAs, A  and A  respectively. Formally, given two PDFA A. A  and a pair 
of states q G Qa Q̂ £ QJ4 , the joint weight W(q,q) is the expected number of times the 
automata are simultaneously in the states q G Qa  and q G Q when strings are being
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generated by A  and parsed by A. The definitions proceed along similar lines to the single 
state weights.

For a string s E £*, define

Wl{q,q) := X Pa {QoA)- 
s:6A (qo,s)=Q
bg(^^)=q

I *H

Letting Wq{qo,qo) = 1, the definition can be expressed recursively:

W e ( q , q ) =  J 2  Y  w t - i ( b , b )  P-* (M -
beQA b€Q  ̂ a:6A(b,a)^q

ĝ(b,A=Q

We now define the expected number of times the first automaton will be in state q and 
the second in state q,

W(q,q)  

W (q)

X w t(q,q),

X
noting that

(4.7)
q£Qa

Given these quantities we can now use the following decomposition of the KL- 
divergence shown in [Carrasco, 1997]:

PA{q,cr)
KL(.4 M )  =  Y  Y  Y  W C T ) lo« j f  i f

q e A ^ a e x

The following notions define relationships between PDFA states to sets of strings:

• The set of strings that reach q for the first time (i.e. have no proper prefix that 
reaches q),

PA(q) ■= {s eY*  : dA(q0,s) = q A E Y* s.t. y ^ e  A xy = s A <%0,z) = ^)}-

• The probability of A  being in state q at least once,

P(q ) ’= X p^(qoA)-
s£Ra (q)

• The exit probability of a graph G with respect to a PDFA A  defines the probability
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that for a randomly generated string s, there exists no node v such that 5g(^o, s ) = v.

P e x i t ( G )  : =  2̂ Pa {Qo, s).
s € £ *  

s exits G

Definition Modifications

The following definitions from [Clark and Thollard, 2004] have been modified for the 
purposes of our proof. Definition B.l of a candidate node is generalized to the following:

Definition 4.13 (Candidate node) A candidate node is a pair (u, a) where u is a node 

in the graph G underlying the current hypothesis PDFA, er E E, and 8g {u , g ) is undefined. 

It will have an associated suffix multiset SUiCr. A candidate node (u ,o ) and a node v in a 

hypothesis graph G are similar if and only if the matching oracle On returns ACCEPT 
when queried with Su,a and Sv, where S denotes the empirical distribution induced by a 

multiset S.

Definition B.2 of a good multiset is relaxed, with the original distinguishability condi­
tion < /i/4 lifted:

Definition 4.14 (good multiset) A multiset S is £\-good for a state q if for every a E 

£, |(S(<t) / | S | ) - P » |  < ei .

The concept of a good hypothesis graph (Definition B.3) has been relaxed accordingly, 
with the (only) modification inherited from Definition 4.14.

Definition 4.15 (good hypothesis graph) A hypothesis graph G for a PDFA A  is

good if there is a bijective function $ from a subset of states of A  to all the nodes of 
G such that <f>(go) = Vo, and if 8g (u, g) = v then (5^($-1 (u), cr) = <f>-1(v), and for every 

node u in G, the multiset Su attached to u is z\-good for the state 4>-1(u).

Finally, the concept of a good sample (Definition B.4) has been relaxed in a similar 
manner, with the modification inherited from Definition 4.14.

Definition 4.16 (good sample) Given a good hypothesis graph G, a sample of size M  

is good if for every candidate node (u,a) such that |5Uj<7| > mo, Su,a is E\ -good for the 

state ^ ( $ _1(u),<r) and if PeXtt{G) > £e then the number of strings that exit the graph is 

more than \N P exn{G).

Note that if there are no candidate nodes with multisets larger than mo, then the total 
number of strings that exited the graph must be less than n|E|mo (since there are at 
most n nodes in a good graph, and therefore at most n|E| candidate nodes). Therefore in 
this circumstance, if the samples are good, we can conclude that either Pex\t{G) < eq or 

P ex i t (G )  < 2n|E|m0/M.
We proceed to analyze the algorithm, adhering to the module structure defined above.
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Module (i)

The threshold mo on the minimal multiset size required for testing distribution proximity 
in Algorithm 4.2 is set to

mo = max(mi, m2 ), (4-8)

where m\ is the number of samples required by the matching oracle O^ to guarantee an 
error probability of at most <5i, and m2  is the multiset size defined below, shown in Lemma 
B.5 to guarantee a good sample (according to Definition 4.14 above) with probability at 
least 1 ----tvj:

m 2 : =  ^ - 3  lo §
1

27?
24n|£|(|£| + l)(n |£ | + 2) 

S2
with (4.9)

£1 : =
16(|E| +  1)(L +  1)2-

The parameters and 62 are related to the confidence parameter Ö by Equations (4.10), 
and the number of samples drawn at each iteration of the algorithm is:

4n|£|L2(L + l ) 3 (  , 2(n|£| + 2 )\M  := ---------- --------- max ( 2n|£|mo, 4 log------- — I 5 with

£3 2(n+1) log (4(L + 1)(|E |+ !) /£ ) '

Module (ii)

We use the matching oracle to prove that with high probability, at all times over the course 
of the algorithm’s run, the hypothesis graph is good, as specified in Definition 4.15.

Lemma 4.17 Let H be a PDFA class and let Oji be a (6 \,m\)-matching oracle. As­
sume Gx, the hypothesis graph at the ith iteration, is good. Assume further that for every 
candidate node (u ,a ) such that |5Ui<t| > mo, the multiset Su^  is £\-good for the state 
(5g (4>_1 (u ), a), and there exists at least one such candidate node. Then with probability at 
least 1 — <$in2|E|, the hypothesis graph Gi+\ is also good.

Proof Consider a candidate node (u, a) and a node v. If both are representative of 
the same state, the oracle errs with probability at most £1 , and otherwise the (good) 
hypothesis graph G{ remains unchanged. If no node v representative of the same state 
exists, the algorithm constructs a new node v and sets 4>-1(u) to <5g ($_1(w), ct), in which 
case the new graph Gi+ 1 is also good. Additionally, since the candidate node multisets 
are £i-good, the multiset of this node will also be good.

The algorithm queries O^ at most n2|£| times at each iteration. By applying the 
union bound and using the definition of a matching oracle we obtain the lemma. ■
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Module (iii)

This module’s statements and proofs are given in Lemmas B.7 and B.8. Aside from nota­
tion, the two lemmas and their proofs remain unchanged relative to [Clark and Thollard, 
2004].

Module (iv)

Lemma B.9 rigorously formulates the relevant claim and presents its proof, both of which 
require no changes relative to [Clark and Thollard, 2004].

Module (v)

We now derive a KL-PAC bound. In comparison to the result in [Clark and Thollard, 
2004], our framework contains an additional degree of randomness due to the probabilistic 
nature of the oracle. However, if this probability of error is controlled, the same KL- 
divergence bound between target and hypothesis PDFA (namely e) follows. Setting:

C

<5‘ = 2n2|E|(n|£| + 2)’ (4'10a)

S2 = S/2, (4.10b)

using multisets of size mo = max(mi,m2 ), and applying the union bound, we bound the 
probability of error by S.

In order to prove the desired e approximation accuracy, we appeal to Theorem B.10. 
The proof of Theorem 4.12 follows.

4.6 Learnability of /^ -D istinguishable PD FA

4.6.1 R elated Work

We now discuss a recent result on testing distribution proximity in L2 due to [Batu et ah, 
2000], which was used in [Guttman et ah, 2005] to show efficient learnability of the fi2 ~ 
distinguishable PDFA class. The result applies to distributions over finite sets, and the 
computational complexity does not depend on the cardinality of the set.

Theorem 4.18 ([Batu et al., 2000]) Let Ö > 0 be a given confidence parameter and 
let A denote a finite set of cardinality |A |. Let D\ and D2 be two distributions over 
A. Given m = O log ( |) )  samples drawn from D\ and D2 , if \\D\ — D2 II2 < £ /2, 
Algorithm f.3  will output CLOSE with probability at least 1 — Ö. If \\D\ — D2 W2 > £ then the
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algorithm outputs FAR with probability at least 1 — 5. The running time of the algorithm 
is 0 ( e ~ 4 log(i)).

In Algorithm 4.3, rp denotes the number of self-collisions in the multiset Fp, namely 
the count of i < j  such that the zth sample in Fp is same as the j th sample in Fp. Similarly, 
cpxp2, the number of collisions between D\ and D2 is the count of (i, j)  such that the zth 
sample in D\ is same as the j th sample in

Algorithm 4.3: Z/2-Distance-Test 
Input: Samples from D\ and D2, parmeters ra,£,5 
Result: CLOSE or FAR

1 repeat
2 Draw Fpi, a multiset of m. samples from D\
3 Draw Fp2, a multiset of m samples from D2
4 Let rp j = I Fpx Pi Fpx | (the number of self-collisions in Fpfi)
5 Let rp2 = IFp2 D Fp2\
6 Draw a multiset of m samples from D\
7 Draw Qp2, a multiset of m samples from D2
8 Let cpxp2 = \Qpx CQpfi
9 Let r = ^ { r Dl+ r p 2)

10 Let s = 2cpxp2
11 if r — s > m2 e2 /2 then declare trial FAR else declare trial CLOSE
12 until O (log (^)) iterations
13 if majority of trials declared FAR then return FAR else return CLOSE

Note that Algorithm L2-Distance-Test’s running time is independent of the cardinality

I A |.

4.6.2 A Novel D istribution Proxim ity Testing Result

We now propose a novel analysis and an accompanying algorithm for testing distribution 
proximity in the L2 distance, improving the sample and computational complexities of 
Theorem 4.18 from 0(e~4) to 0(e~2). We use the trivial empirical proximity test for­
mally described in Algorithm 4.4, and our analysis involves a symmetrization inequality. 
Formally, we prove the following theorem:

Theorem 4.19 Let e , 6 >  0 be accuracy and confidence parameters and let A denote a 
finite set of cardinality | A|. Let D\ and D2 be two distributions over A. Given m = 
8192e~2 log (^) samples drawn from each of the distributions D\ and D2 , if D\ = D2 , 
Algorithm will output CLOSE with probability at least 1 — 5. If \\D\ — D2 II2 > £ 
then the algorithm outputs FAR with probability at least 1 —5. The running time of the 
algorithm is O (e~2 log (^)).

We will need the following (symmetrization) lemma, proved in Appendix A.
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Algorithm 4.4: Improved Z/2-Distance-Test 
Input: Samples from D \ , D2 , e,0 
Result: CLOSE or FAR

1 Draw 1024e~2 log ( |)  samples from the distributions D\ and D2

2 repeat
3 Draw m samples from D\, obtaining empirical distribution D\
4 Draw m  samples from Z>2 , obtaining empirical distribution D2

5 if I]D\ — D 2 W2 > £ /2 then declare trial FAR else declare trial CLOSE
6 until 8 log (j)  iterations
7 if majority of trials declared FAR then return FAR else return CLOSE

Lemma 4.20 Let {X i}rfLl be i.i.d. random variables. Then:

1 m

- y x i - E X im i=1
<  —  E x  E £ 

m i=1

where {£i}^Lj are Rademacher random variables, which assume the values —1 and 1 with 

probability 1/2 each. The expectations EA  are with respect to the (random) draw of 
the random variables, while Ee are expectations with respect to the Rademacher random 

variables.

We will also use the following lemma.

Lemma 4.21 Let {Xl}7jlL1 be i.i.d. Bernoulli random variables with E X\ < p, p < 1/2. 
Let Y  — X{. Then for m — clog  ̂ with c =

*{£§*>*}<*•
Proof By the Hoeffding bound [Motwani and Raghavan, 1995], for m i.i.d. Bernoulli 
random variables and any t > 0,

(  m  m  \

Pr < ^  Xi > ^  EAj + D  < e “2f2/m.
I i = i  i= 1 J

Substituting t — (^ — p) m, 6 = e-2*2/m and solving for m, we obtain the desired 
expression. ■

Proof (Theorem 4.19)
Let {Aj } 7jLi be i.i.d. random variables such that A) ~  D. Let d™ = ^  Y^jLi 1 {X,=i} 
denote the estimates of di, and Dm — {d1f l}7fL1 the corresponding distribution. We first
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bound the expected Z/2-deviation between Dm and D\

Dm -  D

= E
■| A| ^ m

—  Y 1 { X i = i ) - E 1 { X j = i }

2 1

E
i = l 3 =1

1/2

(Lemma 4.20) < 2E

= 2E

2E

(Ee £j ek = 0) = 2 E

^ e £
1=1

j  m

=<}
3= 1

2 1/2

77U z—1'i=l
E 'j =*}

3 =1

2 -I 1/2

1/2

^ E Ef 1{ /̂c=o
*=1 \j= l j=l k=l

| A |  m

E^Etrn  ̂  ̂ ^i=l j=l
1/2

1/2

(Jensen’s inequality) < —=\/m E E12
{**=<}

1 =  1

E E1{ X j = i }
1 =  1

1/2

1
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(4.11)

This result is independent of the distribution D and of the cardinality | A |. For any k G N, 
plugging m — ^  into (4.11), we get:

Dm -  D £< - .  
2 k

Using the Markov inequality, we have the upper-bound:

Dm -  D 8e ]  1> —  > < - .  2 k I 8 (4.12)

The analysis of D™ proceeds along standard lines. Let {Xj}TjL1 and {Yj}f j= 1

be i.i.d. random variables such that Xj  ~  D\ and Yj ~ D2 . Applying the triangle
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inequality, we establish the following:

- 2 1

t ~  1{W=d -  1(U=fi
i =1 3 = 1

1/2

D\n -  D™

D™ — D\ + D\ — D™ + D2 -  D2

> W D x - I h h - D ? - D  1 D ? - D 2

> £ (\\d ? - D 1 + > - - d 2
, ) ■

D™ — D™ , , , 8  8
2 ~ £ [ l ~  [ k  +  k

Using (4.12) and applying the union bound, we have: 

Pr

Plugging k = 32 into (4.13),

Pr

1 1 1
“ 8 8  4

D f - D ?  2 < ^  1 < 1/4, for =

(4.13)

(4.14)

Let D™ and D™ denote two independent empirical distributions, each using m samples
drawn from D\. Using similar reasoning for Dm _ Dm we get:

Pr (4.15)

Thus, the correctness of the statistical test described above can be considered a 
Bernoulli random variable, with probability of failure bounded above by 1/4. Algorithm 
4.4 uses a majority vote, so by Lemma 4.21, repeating the statistical test 8 log ( |)  times, 
the probability of error is bounded by 6, proving the theorem. ■

The sample complexity proved above matches the lower-bound of 2) shown in 
[Batu et al., 2000, Theorem 24], establishing the asymptotic tightness of our analysis.

4.6.3 Efficient L earnab ility  of /^ -D istin g u ish ab le  PD FA

We will now use Theorem 4.12 to prove efficient learnability of a new class of PDFA 
strictly larger than the //-distinguishable class. We begin by generalizing the notion of 
//-distinguishability:

Definition 4.22 (//p-distinguishability) Let p > 0 and 1 < p < 0 0 . Given a 
PDFA A = E 4 ,  Pa ), the state pair (qz,qj) E Qa x Qa sa d̂ to be pp-
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distinguishable if

A PDFA A is /ip-distinguishable if each of its state pairs is pp-distinguishable.

Note that for p — oo we recover the original /r-distinguishability condition. Moreover, 
for any distribution D over £*, if 1 < p\ < P2 < oo then we have \\D\\Pl > ||-D||P2; hence 
the pPl-distinguishable class properly contains the /^-distinguishable class.

As a consequence of Theorem 4.18, the L2 proximity test of Algorithm 4.4 can serve as 
a (S, <f f )-matching oracle for the /^-distinguishable PDFA class, where C2 is a constant 
hidden in the asymptotic notation. Thus, as a direct consequence of Theorem 4.12 and 
the 1/2 matching oracle, we have the following theorem:

Theorem 4.23 The P2 -distinguishable class is efficiently leamable.

A  Case for /^-Distinguishability

A natural question in this context involves the relative efficiency of generalized state 
merging (Algorithm 4.2) and “standard” state merging (Algorithm 4.1). We now show 
that for the noisy parity PDFA family described in Section 4.3.1, the GSM algorithm 
outperforms SM by an arbitrary polynomial factor.

In the n-state noisy parity PDFA family, the //i-distinguishability is a constant, while 
the /i2-distinguishability is 0 (2-n/2) and the /ioo-distinguishability is 0 (2-n ). Setting 
n = a  logt, we obtain a /̂ 2-distinguishability of 0 (t~Q/2), and a //oo-distinguishability of 
0{t~a).

For this example, comparing between and P2 and using Theorem 4.19, we have 
exhibited a PDFA learning problem for which GSM outperforms the SM by an arbitrary 
polynomial factor.

Learnability of /^-distinguishable Automata

For the case of /^-distinguishable PDFA with 1 < p < 2, a modification of Algorithm 4.4 
with II • I)2 replaced by || • ||p and an accompanying analysis similar to that of Theorem 
4.19, the sample size required can be shown to be m = O |̂ A |p_1 e~2 log(|)^ , which is no 
longer independent of | A |. We conjecture that for 1 < p < 2, no algorithm can guarantee 
a sample size that is independent of | A |, suggesting that the class of /rp-distinguishable 
PDFA is not efficiently learnable.

For the specific case p = 1, the result in [Batu et al., 2000, Theorem 19] places a lower- 
bound of D(|A |2/3) samples in order to distinguish between two (specific) distributions 
which have an L\ distance of 1. This result is in line with the reduction to the noisy parity 
problem discussed in Section 4.3.1.
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4.7 L ea rn ab ility  of p -D istingu ishab le  P D F A

As mentioned earlier, the positive PDFA learnability result of Theorem 4.9 [Clark and 
Thollard, 2004] requires a constraint on the expected string length of all states’ suffix dis­
tributions. In [Palmer and Goldberg, 2005], this constraint was lifted, and the algorithm’s 
correctness was shown for the (weaker) Li-PAC learning framework. In the present section 
we will prove that a PDFA subclass called p-distinguishable, which strictly includes the 
/^-distinguishable class, maintains learnability using the state merging algorithm.

The example shown in Figure 4.3 motivates the novel sufficient condition for learn­
ability presented in this section. In the figure, the target PDFA’s true distinguishability 
(fi) tends to 0 as e tends to 0. Running SM„ (defined in Algorithm 4.5 below) on (suf­
ficiently many) samples drawn from the target PDFA will (for most values of v) result 
in a hypothesis PDFA with the top and bottom states merged. The distribution induced 
by the hypothesis will, however, constitute a good approximation of the target distribu­
tion. By relaxing the distinguishability condition we show that even when two significant

l:p+£

Figure 4.3: a PDFA which can be learned using SM„ with v > p. In the example, p = ||Dqi — 
Z^lloo —» 0 as e —> 0. However, (given enough samples) running SM„ will result in a good 
approximation for many values of u.

states are wrongly merged, if their suffix distributions are sufficiently similar the resulting 
approximation remains good.

4.7.1 Effects of M erging States on Induced D istribution

Let A  be a PDFA inducing the distribution Da - Assume that some state qt E Qa has been 
deleted from Qa , and that all edges pointing to qi have been diverted to another state qj. 
Denoting the resulting PDFA A U' (and noting that the definition is not symmetric in 
its arguments), we seek to calculate the distances between distributions induced by the
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original and merged PDFAs.
We now calculate the KL-divergence and the Li-distance between the original PDFA 

distribution, Da , and the post-merge distribution D ^ 'Qj\

Lemma 4.24 Let A  be a PDFA, and let A lh ^  be the PDFA obtained by deleting the 

state qi G Qa  and diverting all edges incident on qi to qj G Qa ■ Then the L\-distance 

between the distributions induced by pre-merge and post-merge PDFAs can be expressed 

as:

DA - D l̂ ]\ i =  PA( q i ) - M - D ,>J\\l

while the KL-divergence can be expressed as:

(4.16)

KL ( d a II D\ = PA(ft) • KL (P* || (4.17)

Proof We use the definition of #^4(9), the set of strings reaching state q for the first time,

which we repeat for convenience, noting Pa {q)  — Y 1  Pa {Qo a )-
s € R A {q)

Ra {q) = {s G E* : 64(40, 5) = q A ($x,y  G E* s.t. y ^ e  A xy = s A 6(q0,x) = q)}.

Calculating the L \-distance,

Da  -  D [T 'Q]] 1

sGS*
E E \PA(qo,s1)P ^ (s2) -  PA (q0,S i)P qJ ( s 2)\

s\GRA(qi) S2€S*

E PAoo,si) E
S l E R A (qi) S2€S*

=  PA(q i)-\\P % -P qi \ \ , .

Performing a similar calculation for the KL-divergence,

k l  ( d a  11 A y * ’1) =

= E 0 -4^)*08
sGE*

DA(8 )
1
UA is)

Y Y  P-4 ^0 ,S l)P ^ (s2)log
s i £ R A (Qi) S2GS*

PA(qo,Sl)P%(S2)
PA(qo,sl)P ,J ( s 2)

E Pa (qo, s i) E Pa (s?) 1oS
ntRMi,) «es*

= PA( q i ) K L ( P « \ \ P qj ) .
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The expressions show that in both cases, the operation is not symmetric in the roles of 

the states qt and qj. For the Li-distance, we see that if either Pa {qi ) or Ŵ a  ~ ^ a \\\ 1S 
negligibly small, the effect of the merge will be negligible (as the first term is bounded by 
1 and the second by 2).

For the KL-divergence this is not generally the case, due to the unboundedness of 
KL (P^1 || P 4 )• Moreover, if two successive merges are performed then lacking a trian­
gle inequality for the KL-divergence, the analysis is more involved. However, given the 
bounded expected suffix lengths from all states and the smoothing procedure inherent to 
the induction algorithm, a similar statement holds true as is detailed below.

4.7.2 D efinition of p-Distinguishability

We now prove that a larger class of PDFA is efficiently learnable by using a generalization 
of Algorithm 4.1. The ensuing analysis is a further refinement of the results of Sections 
4.5 and 4.6.

Definition 4.25 (p-distinguishability) A PDFA A  is said to be p-distinguishable if for 
every state pair (qi,qj) such that qi A Qj, the following holds:

mBX{PA(qi),PA(qj )} ■ KL(P% || F%) ^

\\n-pqj\I, ~p'
In Algorithm 4.5, we present a version of state merging which includes two additional 

free parameters mo and v, used to obtain our positive result. The algorithm uses the L2 

distribution proximity test described in Section 4.6.2.
The algorithm’s inputs include the usual accuracy (e) and confidence (5) parameters, 

as well as a free distinguishability parameter (zz) and a minimal sample size for distribution 
proximity testing (mo). The distinguishability parameter v supplied to the algorithm may 
be different from the target PDFA’s true distinguishability p. We will use the notation 
SM  ̂ to denote the SM algorithm run with parameter u.

We state our result:

Theorem 4.26 Let v and m,o be as defined in (4.19). Let A be a p-distinguishable PDFA 
such that the expected length of strings generated from every state is upper-bounded by L. 
Then Algorithm f.5  run with the parameters v and mo will output a PDFA A such that 
KL (Da II D^) < e with probability at least 1 — 5.

Before proving the theorem, we define a number of new concepts and modify a num­
ber of existing definitions. An (ordered) state pair (qi,qj) is called first category if
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Algorithm 4.5: State Merging with Free Parameters v , mo
Input: £,0,v (accuracy, confidence and distinguishability parameters), mo

(minimal sample size for distribution proximity testing). The algorithm is 
also supplied with a random source of strings generated independently by 
A, the target PDFA.

Output: A, a hypothesis PDFA such that KL(D^ || Dj )̂ < e with probability at 
least 1 — 6.

Data: The algorithm maintains a graph G = (V, E ) with labeled edges (i.e.
E  C V  x £ x V), which holds the current hypothesis about the structure of 
the target automaton.

1 repeat
2 Draw M  strings from A
3 foreach u G V and a G E which does not yet label an edge out of u do
4 Hypothesize a candidate node (u, a)
5 Compute SUiCr (suffix multiset of candidate node (u, er) )
6 if |Su cr'| > mo then foreach vG V do

7

8 

9

10

a sv < v/2  then
Add arc labeled with a from u to v.

end
end

11

12

13

14

15

16

17

18

else if Su,cr

Create new noc
> v/2 \/v E V then

e to graph G
Add an edge labeled with cr from u to the new node

end
end
Complete G by adding a ground node which represents low frequency states 
Add a final state qf and transitions labeled with £ from each state to qj 

until no candidate node has a suffix multiset of cardinality (at least) m.Q.
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KL (P% || P 4  ) < £1 0 , and second category otherwise9. For a state q G Qa -, we define 
the set Z(q) of all states q' such that (q.q ') is a first category pair:

Z(q) := {</ e Qa  ■■ KL ( i*  || p f )  < £10} .

Note that q G Z(q).

In the analysis, Definition 4.15 of a good hypothesis graph is relaxed to the following:

Definition 4.27 A hypothesis graph G for a PDFA A  is good if there is a bijective 

function $ from a subset of states of A  to all the nodes of G such that $(qo) = no and 

if 6g (u , o ) = v then Öa  ($ _1(n),cr) G Z  (4>-1(u)). Moreover, for every node u in G, the 

multiset Su attached to u is £\-good for the state 4>_1 (w).

The relaxed version of good hypothesis graph (Definition 4.27) necessitates restating 
Lemmas B.7 and B.9. The lemmas’ proofs, however, are identical, as they accommodate 
the relaxed definition of a good hypothesis graph (Definition 4.27).

Restatement of Lemma B.7

Lemma 4.28 For any state q G Qa  of the target PDFA such that W(q) > £2 , if all 
sample multisets are good, then there will be a node u in the final hypothesis graph such 
that 4>_1 (u) = q', with q' G Z(q). Furthermore, for such a state q and any a G £ such 

that Pa ^Q^) > £5 * the node 5g {u,(7 ) is defined and is equal to $ (^ (g ', cr)).

Restatement of Lemma B.9

Lemma 4.29 Let q G Qa  be a state with W(q) > £2 . Then there exists a state q G A  

such that q — $(q') with q' G Z(q), and

W { q ' ) - W{ q ' , q ) < £ z .

Note that 4>(gr) may be undefined, in which case there exists a single q' G Qa  to the above 
specification.
Proof (Theorem 4.26)
Our analysis refines that of Clark and Thollard [2004] in that we consider the target 
PDFA’s state pairs, providing additional control over the approximation error. We first 
present a proof sketch. As shown in Theorem B.10, given the bound on expected string 
length (L) and the smoothing procedure inherent to the algorithm (pmin), all negligible- 
weight states may be effectively disregarded. For the remaining states, we show that if the

9We use double-digit indices to avoid confusion with earlier sections.
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pair (qi,qj) is first category then assuming $(qj) exists, the hypothesis PDFA A  may have 
substituted for the (undefined) <£(<&), again causing no significant approximation 

error. For the remaining state pairs, the p-distinguishability condition implies a large 
distinguishability parameter p2 , in turn implying a correct merge /  non-merge decision 
with high probability.

Confidence Bound and Sam ple C om plexity

Let (qt,qj) be a second category state pair (i.e. KL (P^ || P ^) > eqo) , with both states’ 
weights greater than £2. Therefore, by the p-distinguishability condition,

\n n  i u >
£2 ^io

Appealing to Theorem 4.19, the number of samples required to achieve a confidence of <5i 
is:

8 1 Q9 n2 /  1 \
(4.18)8192p2 ,

mo = 9 9 logf2t 2 fc10

This expression corresponds to the sample complexity required for a single L2 proximity 
test. For a complete (successful) run of the state merging algorithm, the required number 
of samples is therefore upper-bounded by raon2|£ |(n |£ | + 2), as shown in Section 4.5. 
Proceeding in an identical manner to Section 4.5, we use the expressions for <5i and 82 
provided in Equations (4.10):

Si = 82 = 8/2.2n2|£ |(n |£ | + 2)’

Running Algorithm 4.5 with the parameters v and mo set to

£2  £10

2 P
8192p2 , (  1 

m 0 =  — 5 - 5 — log —
S i

(4.19)

and appealing to Theorem 4.12, we obtain a confidence of 8, while the algorithm's com­
putational and sample complexities are polynomial in (n, |£|, p, £-1, }.

A pproxim ation  Error Bound

We now bound the approximation error, using the decomposition of Carrasco [1997]:

KLC4 IM) = £  £  £  W(q,q)PA(q, <7) log PA{q,v)
pM * Y

D(q, q) = W (q, q) ^  Pa (q, <*) log
crS£

PA{q,cr)
PA ^ 'a)

Defining
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we decompose the summation into four non-intersecting parts:

D \ Y Y
q£ Q a - q£Qx -

W( q) >£2 $(q)=q

d 2 Y Y
q£ Q a - qeQx-

W{q)>£2<f>(q)^q,
q£Z{q)

Ds Y Y
q£ Q a : q£Q x

W{q)>£2 &(q)jiq,  
q£Z(q)

D4 = Ŷ  'Y s u c h t e t

q£QA- q£Q^
W{q)<£ 2

K L ( A  II A ) =  D \ + D 2 +  +  D 4.

The terms Tfi, and D4 above are analogous to D\, D2 and D3 respectively in the 
analysis of Theorem B.10, and their respective bounds remain valid, as shown below.

Using Lemma B.8 and recalling that W(q) > W(q,q),

D\ < W {q) l°g(l + £4) < (L + 1) log(l 4- £4) < (L + 1) £4 .
q£ Q a -

W(q)>e2

For a state q with W(q) > £2 for which <&(q) is undefined, Lemma 4.29 ensures the 
existence of a (single) state q' G Z(q) such that $(q') is defined and W(q') — W(q', $(q')) < 
£3. This situation corresponds to the elements in the sum D2. Consider a pair (qi,qj) in 
the sum D2 above. Writing out the pair’s contribution to the KL-divergence,

Y W 5 )Pa {Qh o) log p 4' %' a\

1 )) < Y  logPa (Qi^ )
pA{qjiv)

+ Y  PA (Q i^) log
PA{qj,v)
PA^J^a)

(by Lemma B.8) < £10 + Y ,  PA(QjiV) log(l + £4)
<t€£

< £10 + £4 •

PA{qj,cr)
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The number of merges is upper-bounded by n, implying:

D2 < n(£io + ^4)-

As a consequence of Lemma 4.29, VT(g,g) < £3 . Therefore,
q£Qx-
<S>{q)J:q

Pmm
d 3 < w ^ ,q ) ^ 4 ( 9 , ^ )  i° g  ^

q&QA- qtQx-
W ( q ) > £ 2 4>(q)^g

\ ' 1 1
< 2 ^  £3 log— - < n £ 3 log-—

q£Qx-
W ( q ) > e  2

P m in P m in

The sum Da is bounded using (4.7) and the condition on W(q),

Da < pA Q ^ )^ °g —— < n£2log —
q£QA- q^ Q a 

W { q ) < e 2

Summing up the bounds, we have

P m  in P m in

KL(A II J4) < D\ + jD2 + D3 + D4 < (L + 1) £4 +n(£io T £4 ) + n £3 log-----+ n £2 log------
P m in  P m in

Setting

£4 =  £10 2 n(L + 1 )

and using the existing values for all other £ j ,  i £ {1,2,3,5,6 }, we have KL(.4 || A) < £, 
as desired. ■

The definition of p can be varied in the following manners:

• Substituting \\Dqi — Dq̂ x in the numerator for KL (P^ || P 4 ). In this case, the 
result becomes a (strict) generalization of the result of Palmer and Goldberg [2005], 
and the upper-bound condition (L) on the expected string length from each state 
can be lifted. We mention without proof that in this case, an Li-PAC learnability 
result follows.

• Substituting | | — P 4  | |x for ||P% — P% \ \ 2 in the denominator, a (strict) general­
ization of the result in [Clark and Thollard, 2004] follows.
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4.8 D iscussion

In this chapter we presented a number of positive PDFA learnability results. We have dis­

cussed the relevance of PDFA learning frameworks, and the learnability of PDFA families 

using state merging algorithms. Figures 4.4 and 4.5 provide a graphical summary of our 

current understanding in these regards.

KL-PAC Li-PAC Lp-PAC L o o -PAC

Figure 4.4: PAC-learning framework ordering displaying the relative difficulty and relevance of 
PDFA learning frameworks (hardest on left). In both the KL-PAC and the Li-PAC frameworks, 
general PDFA learnability implies a contradiction to the noisy parity assumption. For Lp-PAC 
(p > 1), the reduction to noisy parity does not apply, and successful learning does not amount to 
“useful” information.

/Ui-distinguishable

I -  —  —
/^-distinguishable

/^-distinguishable /loo-distinguishable

^-distinguishable

Figure 4.5: An ordering of distinguishability conditions (strongest on right). For p > 2, the pp- 
distinguishability condition guarantees (Li-PAC) learnability, as is the case for ^-distinguishability 
(and for poo-distinguishability by a straightforward extension). As implied by the noisy parity 
counterexample, /ii-distinguishability does not imply learnability, as is likely the case for pp- 
distinguishability, 1 < p < 2.

The general question of which PDFA subclasses are efficiently learnable (and which 

algorithm enables learnability) is not fully answered, but we feel the contributions in this 

chapter are a step in that direction.

A natural extension to the research presented in this chapter involves gaining an un­

derstanding of the behaviour of the SM algorithm when presented with samples drawn 

from non-PDFA distributions. This would be highly desirable theoretically, and may point 

the way to practical algorithmic modifications.
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C h ap te r  5

Sample Com plexity of PFA and 

Discrete D istribution Learning

In this chapter we consider the sample complexity of PFA and discrete distribution learn­
ing. In contrast to the computational complexity, even the most general PFA learning 
problem has only polynomial sample complexity (as detailed in Section 5.2).

We introduce and formally define the problems (Section 5.1), and provide an overview 
of known results (Section 5.2). We establish a pair of distribution dependent upper and 
lower sample complexity bounds for (general) discrete distribution learning (Section 5.3). 
We then present two instructive examples which compare our novel sample complexity 
bounds to the existing state-of-the-art. We construct (Section 5.4) an example on which 
the memorizer algorithm provably fails to learn a distribution (i.e. has a sample complexity 
lower-bounded by an exponential function in the number of states), while the state merging 
algorithm provably succeeds (i.e. has polynomial sample and computational complexities).

5.1 Sam ple C om plexity Frameworks and N otation

We will (mostly) adhere to notation introduced in previous chapters, with a number of 
additions. D and Q will denote probability distributions, while V  and Q will denote 
classes of probability distributions. A will denote a finite discrete set of a elements: 
A = {1 ,..., a}, and F will denote a countably infinite set.

A multiset X  — {Xj }1Jt=l will denote a collection of independent identically distributed 
random variables Xj  drawn from some arbitrary set. The multiset S = {sj}1jt=l is a string 
multiset, i.e. sj € E*.

Given a distribution D over F and a sample multiset X  =  { X j }™=1 £ Fm, Xj  ~  D , 

the empirical estimate (or memorizer) to D is defined as:

(5.1)

83
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We will also refer to the empirical estimate (5.1) as the memorizer algorithm.

We will use the following notion of learning for distributions:

Definition 5.1 (Distribution learning) Let D =  {(z, <i*)}i^F be an arbitrary probability 

distribution over F:

0 < di <  1 Vi G F ; dt — 1.
i£ F

For 1 <  p < oo, an algorithm T is said to (e, 6, mo)p-learn the distribution D if for any 

m > mo, given m samples T  will output a distribution D such that:

Pr | | |D  — D\\p > <  5.

For the specific situation of PFA learning, the closely related notion of sample com­
plexity is defined as:

Definition 5.2 (Sample Complexity) Let S  = { s i , . . . , s m}, s* G E* denote a sample 

multiset, let Q denote a distribution class over E*, and let |Q | denote some measure 

of complexity associated with the class Q. For an arbitrary distribution D over E*, let 
Qopf £ q  be a distribution satisfying either of the two conditions (\ < p < oo):

KL{D || Qopt) = m in{KL{D \\ P) : P G Q), 

l |D - Q <”’, ||p = m in { ) |D - P ||p : P e  Q}.

An algorithm T  learns Q if there exists some M  = f ( e~ l ,S~l , \ Q |) such that for an 

arbitrary distribution D over E*, if m >  M  then with probability at least 1 — 6, T  outputs 

a distribution Q G Q such that either of the following criteria holds:

KL{D || Q) -  KL(D || Q°rt) < e, (5.2)

ll-D ~ Qllp -  ll-D -  Q^Wp < C ■ (5.3)

When (5.2) is the chosen optimization criterion, the function /(•) defines the KL sample 

complexity, while for (5.3) it defines the Lp sample complexity. If the function /(•) is 
polynomial in all its arguments, the sample complexity is termed polynomial.

5.2 Overview of Existing R esu lts

Polynomial KL sample complexity for the class of distributions over E  ̂ defined by non­

terminating PFA was shown by Abe and W armuth [1992, Corollary 3.1]:
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Theorem 5.3 The class of distributions overE( induced by n-state non-terminating PFA 
is leamable with KL sample complexity:

o((^) n2|£| -log3 .jog I -log2 log . (5.4)

Theorem 5.3 shows that the PFA and PDFA learnability hardness results of Sections 4.1.1 
and 4.3.1 are due to the computational, rather than the sample complexity aspects of the 
problem. Abe and Warmuth [1992] conjecture that the bound (5.4) may be loose, and 
discuss various possible sources of looseness which could potentially be tightened.

5.2.1 D iscrete D istribution Learning R esults

Weissman et ai. [2003, Theorem 2.1] presented a distribution-dependent bound for the L\ 
deviation between the true and empirical distributions. We now repeat the relevant part 
of their result. For 0 < p \ ,p 2 < 1, let D b {p \ || P2 ) denote the binary divergence, defined 
as:

D ß (p i II P2 ) = Pi log — + (1 -  Pi) log i — — .
P2 1 -  P2

For p 6 (0,1/2), dehne:
tp(p) =

1 log 1 - p
1 —2 p p

setting <p(l/2) = 2. A graph of the function <p(-) is shown in Figure 5.1:

Figure 5.1: The function <p(p) graphed over the interval p G [0,1/2).
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For a probability distribution D on A, define:

no — max min{D(A), 1 — D(A)},
ACA

noting that no  < 1/2 for all D.

Theorem 5.4 (Weissman et al.) Let D be a probability distribution on the finite set 

A = {1 ,..., a}. Let X  = {X i,. . . ,  X m}, X j ~  D. Then for all £ > 0,

Rearranging Inequality (5.5b), we arrive at the following sufficient condition on the num­
ber of samples guaranteeing (e, 6, m)i-learnability:

5.3 Sam ple C om plexity o f Learning D iscrete D istributions

In this section we develop a novel distribution dependent sample complexity bound associ­
ated with memorization, and show that up to a logarithmic term, the bound is (asymptot­
ically) tight. Therefore, the bound can serve as a baseline against which one can compare 
other results and algorithms.

5.3.1 Learning by M em orization: Sufficient C onditions

The next result shows a pair of novel sufficient conditions on the number of samples 
required by the memorization algorithm to guarantee (e, 5, m)i-learnability:

Theorem 5.5 (Learning by Memorization: Sufficient Conditions) Let F be a

countable set, and let D = {(z, c?*)}ieF be an arbitrary probability distribution over F:

Let £, 6 > 0 be arbitrary precision and confidence parameters. Define the set R  C F  by:

Pr j||D  -  Dm\\i > s j  < (2a -  2)e-m[minÂ ADß(D^ +^lD(A))l

<  (2a -  2)e~mip(7rD)£2 / 4.

(5.5a)

(5.5b)

m > 4 ((l°ge 2) • a + log (g)) 
(p(no)s2

(5.6)

0 < di < 1 Vz £ F ; di = 1.

R = min V C F s.t. 
\V\
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set a — 1-Rj and dmm =  mind;. Let
iCR

(  H ielt Vdi )
mi (5.7)

m 2
dmin l0g (<5) ’

(5.8)

m 3
4  (HieR > /5) 

52 £2
(5.9)

If m > m in{m ax{m i,m 2 },m 3 } then the memorization algorithm is guaranteed to 

(£, Ö, m)\-learn the distribution:

Pr I \\Dm — D\\i <6.

In the theorem’s proof, we will use the following form of Chernoff’s bound [Motwani 

and Raghavan, 1995]:

Theorem  5.6 Let {Ai, A 2 , ■.., Am} be independent Bernoulli random variables with 

Pr(A* =  1) =  Pi, let X  = Y 7=i X i> and let V = E (X X  1 *i)- Then

Pr (A' < (1 — S)p} < 

P r{ A  > (1 + 6)p} <

e~^2/2,

(1+<5)(i +5)
U

0 <  6 <  1, 

6 >  0 .

(5.10a)

(5.10b)

If Pi — p, i =  1, . . . ,  m, we have the following corollary:

Corollary 5.7 Let {Ah, X 2 , ■.., X m} be independent Bernoulli random variables with 

P r(A t =  1) =  p, and let pm = x  Y lZ i 1{Xi=i}- Then:

Pr {pm < q) <
m (g-p)2

e 2 p Q<P , (5.11a)

Pr {pm > q] <
m {Q~pP

e 3 p p < q < 2 p , (5.11b)

Pr {pm > q] < _m .0 e 6 9 q > 2 p. (5.11c)

P roof Inequality (5.11a) is an immediate consequence of (5.10a), with the substitution 

q =  (1 — 6)p. The two inequalities (5.11b) and (5.11c) require the following basic inequality 

[Hagerup and Rub, 1990]:

( 1  4 -  e ) 1 + £

<  e -mm(E2,e)n/3^ (5.12)

Using (5.12) for q < 2p and plugging q =  (1 +  S)p into (5.10b), we readily obtain (5.11b). 

Using the same technique for q > 2p, we obtain Pr(pm > q) < e~~s^q~p\  which can
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trivially be relaxed to (5.11c).

Proof (Theorem 5.5)
For each j 6 ß , we set the number of samples to guarantee that with probability at least

1 — <5q, the quantity | di — d"1) is not greater than — 1. We then apply the
union bound and show that with probability at least 1 — aöo, this bound applies to all
di, i € R.

Let Z  ~  B(p,m) be a binomially distributed random variable (i . e the sum of m 
Bernoulli random variables, each with probability of success p) with p < 0.5, and let X  = 

be its associated normalized random variable. It is well known (see e.g. [Bertsekas 
and Tsitsiklis, 2002]) that for binomial random variables, E(Z — E Z)2 = mp( 1 — p). It 
follows immediately that for the normalized variable X  = ^-Z,

E { X - E X ) 2 _  P ( 1  ~ P )  

m

The Chernoff bound (5.11b) for the probability di gives

( a. 'i m  (<?,—ti, ) 2
Prjd™ > qx \ < e 3 ' dr .

Equating the right-hand side of the inequality to and solving for we get:

9i = d *+ v ( £ ) d,i°s ( £ ) -
The condition qi < 2di of (5.11b) now becomes m > j- log ( |) ,  which is included in the 
theorem’s statement as the condition on m2 , (5.8). Using (5.11a) we obtain an analogous 
expression for the situation qi < di, namely

Qi —  d i rnj Vd0

Collecting the inequalities, we have

Pr { \di -  d™ I > t / ( — ) dx log ( — ] } < (50, i e R
1

Applying the union bound over di, i G R, |i?| = a, we obtain
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Setting

5 = a*„, E  J(i) ^ logQ  = I
i €R  V x 7

and solving for m, the theorem’s condition on mi follows:

mi > 12l0gG )

Since \\D — Dm||i < \dl — d™| + pulling the results above together we have
established the first part of the theorem.

To obtain the condition on m3 we bound the expectation EJX —EXj  using the 
Cauchy-Schwarz inequality:

E\ X - E X \  < \Je { X - E X ) 2 =  yj

Therefore:
Dm -  D

i eR

M 1 - p )
V m

VI

di e
m + 2'

Using the Markov inequality, for all k € N:

Pr {E |<" - d*| ^ ( e  v®) -
{ i e R  \ i e R  /  )

Setting k =  and m =  45~2 e~2 (YheR  V ^i)2? we get:

Pr \ H  |C  ~ di > -  > < <5, implying Pr {e  Dm -  D > < <5,
[ i e R  Z )

showing the condition on m3 in (5.9) is sufficient.

5.3.2 Learning by M em orization: a Failure M ode

We now present a sufficient condition for failure of learning discrete distributions using 
memorization. Namely, we show that when the number of samples provided to the al­
gorithm is upper-bounded, a non-approximability situation ensues. Up to a logarithmic 
term (or an inverse-square confidence term), the number of samples in this condition as­
ymptotically matches that of Theorem 5.5, implying that the sum of probabilities’ square 
roots is the key quantity controlling the difficulty of learning discrete distributions.
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Theorem 5.8 (Learning by Memorization: a Failure Mode) Let F be a countable 

set, let D = {(i,dj)}jgF be an arbitrary probability distribution over F, and assume dt < 
1/2 Vz E F. Let e > 0 and define the set R  C F by:

R  = min V C F s.t.
\y\

Y , d ,  >  1
i £ V

e/2.

Let dmm = min d{. If
i £ R

20 1 C,£fiv̂ ) 2
dmin ~ 640000 £2

then Pr j \\Dm — D ||i > >2e.

(5.13)

The condition m > 20/dmin may seem counterintuitive, as it places a lower bound on 
the number of samples needed to establish a non-approximability result. However, the 
requirement is a result of the techniques used in proving the theorem. Specifically, our 
use of the Chernoff bound requires m (at least) on the order of magnitude of d~*n. It 
can be shown in a straightforward manner that for m = o (d“ jn) (e.g. m < 20/dmin), the 
approximation error for dmm is a constant fraction of dmin, implying a relative error at least 
as large for all dj, i ^ R, in turn guaranteeing a non-approximability result. We will not 
treat this case, however, as it does not illuminate any particular distribution dependent 
bound.

Before proving Theorem 5.8, we need two lemmas.

Lemma 5.9 (Converse to Markov’s inequality) Suppose X  is a nonnegative random 

variable bounded above by B : 0 < X  < B and p — EX . Then for all 0 < t < p,

Pr{X > t }>

Proof

p — E [X  l{o<x<£}) — E (X  l{0<x<i}) + E (X l{*<x<B})

< t,Pv{X < t} + B P r { X  > t) < t  + B P r { X  > t }.

Rearranging terms, the lemma follows. ■

Lemma 5.10 Let Z  ~  B{jp,m) be a binomially distributed random variable with p < 0.5, 
and let X  — L-Z be its associated normalized random variable. Then if m  > 20/p, there 

exist absolute constants C\ > 0 and C2 > 0 such that at least one of the following two
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inequalities holds:

( X - E X ) * 1  {p+c] y x  < * < P+C2̂ }\

( X - E X ) 2 1,
{ p ~ c2 y/~̂ rn ^  X  ^  P ~ C 1 \ f £ )

(5.14a)

(5.14b)

Proof We show that for specific values of c\ and C2 , the second moment’s contribution in 
each of the intervals 0, p -  c2 y ^  , p - C \  y ^ ,  p , p, p + c\ yj% and p + c2 y /^ , oo) 

amounts to not more than ~p̂ , i.e., less than a constant fraction of E(X — E X ) 2. We
prove the assertion for the interval P.P + C and the result follows for the interval

P ~ ci \ / £>P using the exact same reasoning (since E X  = p):

[{X - E X f l {p<_x<_p+ciVI}\ < f p r
m

Since p < 0.5 by assumption, choosing c\ = 0.25 leads to:

£iP P(1 ~ P) 
m  8m

We proceed to bound the contribution of the tail p + c2 y o o ) , using the Chernoff

bounds (5.11b) and (5.11c). We first deal with the interval p +  c2w — ,2p

(X -  E X ) 2 l{ p+C2y x < x <2p}

< E { X - E X f E *
n= 1

\
{P+«C2 < X  < p +  (n + 1 )c2 y/%}

/  J
y/4 m p

< ^  ((n + l)c2)2p ^

n = l
m ^ { p + n c 2y / % < X < p + ( n + l ) c 2 V ^ }

y/4 m p  
2  c 2

n = l  v y
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Using inequality (5.11b), we have Pr 
back into the tail calculation above:

nc2 \ ß )
_ (nc2)2

< e 3 . Plugging this

(X - E X ) 2 l {p+C2̂ x<2py
v/4 m p

PC  2 2 (nc2)2< —  > (n+  1 Ye 3
n=l

P c 2 (  i  \ 2 -  (nC2 2̂< ^  > (ra + 1 Ye 3 . 
m

n=l

In this infinite series the polynomial term is dominated by the decaying exponential. For 
C2 = 5, we obtain by a straightforward calculation:

OO 2

C2 y ^ ( n  +  l ) 2e ~ ( 32) < 1 /3 2 ,
n=l

giving the bound:

( X - E X f  1 {p+C2 <
32 m

< P(1 ~P) 
16 m (5.15)

The exact same argument (using Chernoff’s bound (5.11a)) also applies to the interval

Next, we need to bound E [(X — E X )2 1{2P< x  < oo}]- To this end, we employ in­
equality (5.11c) and proceed in a similar manner:

E [ ( X - E X ) 2 l(2p < x  < oo}]
OO

V — ^  . o  o  m n p  __m p  ,

< > ( n  + 1) p e 6 (define cq = e 6
n=2

P2J 2 { n + l ) 2c 5
n=2

= P 9c0 + 7c0 + 2c0
_ l - c 0 (1 -  C o ) 2 ( l - c o ) 3_

Performing the arithmetic, we see that for m > —:

(by a standard infinite series sum).

E [(X — E X )2 1{2p<_ x < x } ] < (5.16)

Collecting (5.15) and (5.16), we have the lemma.
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P roof (of Theorem 5.8)
Using Lemma 5.10 and assuming without loss of generality that of the two inequalities 
(5.14) inequality (5.14a) holds, we have (conditioned on m > ~):

- E { X - E X ) :

< E (X - E X ) :

< —  Pr { p + ci m,

1 {P+Cl VI<X< P+C 2 V ^ f} .

J I < X < P  + C [ l \ .
V m  V rn J

(5.17)

On the other hand:

E |X  - E X \

> E

> ciW — Pr <p + cix — < X  < p + c2\ —V rn

Combining the results, we have:

E \ X - E X \

* ik ^ E { x ~ EX) 2

Applying this inequality to the set of probabilities we get:

e ns*» -  Sn, > £ e Mr -  4i > -£-== e
i eR  i eR

Defining pm\n — H2ieR V^i and using Lemma 5.9 leads to:

Pr jll-D"1 -  D\\i > i j  > i  (pmin -  t ) , Vi < pmin-

Setting the number of samples to m = , using the values of c\ and C2

determined above and plugging in t = ^min/2, we have proved Theorem 5.8.

An inspection of the first sufficient condition (5.7) and the failure conditions (5.13) 
shows they asymptotically match, up to a factor O (log ( |) ) .  The second sufficient condi­
tion (5.9) asymptotically matches (5.13) up to a factor O (£-2).
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5.3.3 C ritical C om parison  B etw een  R esu lts

In this section we carry out a critical comparison between our results and the results of 
Weissman et al. [2003]. We present two instructive examples which serve to highlight the 
differences between the bounds of Theorems 5.4 and 5.5. We then end the chapter with a 
discussion of the results’ significance.

Example 5.1

We compare the bounds (5.5b) and (5.7) for the uniform distribution over the finite set 
A = {1,... ,o}, i.e. {pi}i=i = 1/a. We perform no comparison to the bound (5.9), as it 
includes a 6~2 term that cannot directly be compared to the bound (5.5b).

In this case, assuming a is an even number, we have np = 1/2 and therefore ^iyxp) = 2 
(in the case of a odd, xp) may become slightly larger, but still bounded by 2.5 for all 
a > 5). Inequality (5.5b) therefore implies the following sufficient condition for (£,<$, m)\- 
learnability:

2 log2 • a + log (I)
m >

The sufficient condition implied by (5.7) is:

£2

m > 12a log (I) 12a log a + 12a log (^)
e 2 E2

(5.18)

( 5 .19)

In this example, the bound implied by (5.18) is tighter, by an asymptotic term of log a. 
Our second example portrays a converse situation.

Example 5.2

Let £o < £, and consider a distribution with a small number of large probabilities spread 
uniformly about k of the a elements of A, with small probabilities on all other elements:

f  — * — 1, • • •, kk a —k
_ 1 Q _
a —k i = k + 1 ,..., a.

Assuming an even k , Inequality (5.5b) implies the same sufficient condition as in Example 
5.1, namely

2 log2 • a + log (I)
m  >

£ 2

As £o < £, Inequality (5.7) implies the sufficient condition

12k log (f)
rn >

E2

(5.20)

(5.21)
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Holding the parameter 6 fixed and assuming k = o the condition of Inequality

(5.21) is tighter than that of (5.20) by an asymptotic multiplicative term of k\^ga ■

The two examples illustrate tha t for “flat” distributions, the condition of Inequality 

(5.5b) is tighter, while for even moderately “peaked” distributions, i.e. where a large 

proportion of the probability mass is concentrated on a subset of cardinality k = o  ̂ ^ ,

Inequality (5.7) is tighter.

We mention that even in case (the tighter) Inequality (5.5a) is used, an immediate 

calculation oi Dp + ^ || ^) shows that the same asymptotic result, leading to the same 

conclusions.

5.4 S am ple C o m p lex ity  of L ea rn in g  //-D istingu ishab le  

P D F A

We now construct a family of PDFA for which learning by memorization provably requires 

an exponential number of samples (in the number of states), while the sample complex­

ity associated with state merging remains polynomial (in the number of states). Stated 

formally, we prove the following theorem

T h eo rem  5.11 There exists a family of PDFA such that A n has 0 (n ) states, the

sample and computational complexities of learning A n using state merging are polynomial 

in n, but the sufficient condition for a failure mode using memorization (Theorem 5.8) is 

exponential in n.

The theorem ’s proof is constructive and uses the family depicted in Figure 5.2.

o o o o o
0  : 0 . 5  -  Z i O : 0 . 5  -  £ 2

1 : 0 . 5  -  £ !

1 : 0 . 5  -  £ !

0  : 0 . 5  -  £ 1 0  : 0 . 5  -  £ 2

Figure 5.2: A modification of the noisy parity PDFA family for which the inverse distinguishability 
(^-1) is a polynomial function of n (as opposed to exponential, as in the “original” family in Figure 
4.1). The alphabet has been augmented to include the symbols {2,3}, which serve to “distinguish” 
between the upper and lower tracks. The parameters £* = 2( 1 ...

We prove two lemmas, the conjunction of which implies Theorem 5.11:
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Lemma 5.12 The computational and sample complexities of learning An via state merg­
ing are polynomial in n.

Proof Let An be an n-layer member of the PDFA family depicted in Figure 5.2. An uses 

the alphabet £ = {0,1,2,3}, and the parameters {£i}f=1 are set to £* = 2(n+i) • We will 
calculate ACs distinguishability parameter (p) and appeal to Theorem 4.9 to establish 
polynomial computational and sample complexities.

From the upper and lower matching states on the i th layer, the probabilities of 
emitting the (single character) string x — (2) are 2£; = l/(n  + i) and 0 respectively. 
Thus, the distinguishability between these state pairs is l/(n  + i). Between any two top 
(or bottom) layer pairs, using similar reasoning, the distinguishability is lower-bounded 
by l/(4n2). Thus, An is (^^distinguishable. Plugging into Theorem 4.9, we see that 
the computational complexity of learning An is polynomial in n. ■

Lemma 5.13 The sample complexity of learning An using memorization is lower-bounded 
by an exponential in n.

Proof For a given n, we show that the probability of reaching the rightmost state qj (see 
Figure 5.2) is 1/2, and therefore the set of length n + 2 strings has a cumulative probability 
of 1/2:

Prx~yi reaches qj}

(  n \  /  n + 1 \  /  2n — 1 \
\ n  + ly  Vn + 2 / \  2n ) = 1/ 2.

Assuming (e.g.) £ < 1/4, at least half of the length n + 2 strings need to be approxi­
mated. Calculating the sum of square roots ^ u-eEn+2 \/D {w), we see that the resulting 
expression grows exponentially with n:

£  2 " -  

U,e£ n + 2

2  2 ~ 2 .

Appealing to Theorem 5.8, the result follows.

5.5 D iscussion

We have established a novel pair of sample complexity conditions for success and failure 
modes of the memorization algorithm. The conditions asymptotically match up to a



§5.5 Discussion 97

logarithmic factor. Together, the two results can serve as a baseline against which any 
distribution learning algorithm can be compared.

Using these “memorization” bounds, we constructed an example showing that when 
provided with the knowledge that a distribution can be generated by a PDFA, the com­
putational and sample complexities can be reduced from exponential to polynomial.

The PFA sample complexity result of [Abe and Warmuth, 1992] mentioned in Section 
5.2 may be loose. An analysis using more modern tools of probability may yield a tighter 
result. Such an analysis would make an interesting avenue for further research.
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C hapter 6

C onclusions

In this thesis we have studied a number of problems relating to probabilistic automata, 
distributions of sequences over discrete alphabets, the links between and the learnability 
thereof. By studying the geometry of PFA models we have obtained insights into the 
factors which conspire to make the PFA learning problem hard.

Owing in part to the PFA extension to the Myhill-Nerode theorem presented in Chapter 
3, the distribution families induced by PFA, PRFA and PDFA models have been fully 
characterized. These insights have enabled us to place bounds on the PFA and PDFA 
models’ ability to approximate arbitrary distributions over bounded-length strings.

Although still incomplete, our understanding of the sample complexity of PFA learning 
is at a more advanced stage than the problem's computational complexity. Indeed, as 
a number of hardness results show, the general PFA learning problem’s richness is a 
consequence of purely computational difficulties.

The field of probabilistic automata learning remains a rich field with many open ques­
tions that are interesting from the theoretical as well as practical perspective. The rich 
structure offered by probabilistic automata models belies their practical attractiveness, but 
presents great difficulties in their inference. We feel that despite the considerable effort 
spent on the theoretical study of PFA learning, the most practically relevant contributions 
to the field remain heuristic.

6.1 N ovel C ontributions

Our novel contributions in this thesis include the following:

• A PFA extension to the classical Myhill-Nerode theorem (Section 3.2), and an ap­
plication thereof, bounding the PFA and PDFA’s approximation ability of general 
distributions over bounded-length strings (Section 3.4).

• An extension of a negative PDFA learnability result (the noisy parity reduction) 
from the KL-PAC to the Li-PAC learning framework (Section 4.4).

• A decomposition of the state merging algorithm and its analysis (Section 4.5).
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• A tight analysis and an accompanying algorithm for Z^-proximity testing between 
discrete distributions, leading to a positive (/^-distinguishable PDFA) learnability 
result (Section 4.6).

• A relaxed condition and an accompanying analysis proving efficient learnability of 
/»-distinguishable PDFA using the state merging algorithm (Section 4.7).

• A pair of distribution dependent upper and lower sample complexity bounds for 
(general) discrete distribution learning (Section 5.3). The bounds asymptotically 
match up to a logarithmic factor.

6.2 Ideas for Future Research

Throughout the thesis we have pointed out a number of open questions which we feel are 
important. These include the following:

• The construction of distribution families which enable efficient learnability (and eval­
uation) and which also provide good approximation to (interesting subsets of) PFA. 
This question is intimately related to the problem of determining which PFA sub­
families are efficiently learnable.

• An understanding of how well (and under which circumstances) PDFA models can 
approximate distributions induced by PFA models. This problem was addressed in 
previous research, but is still not well understood.

• An understanding of the state merging algorithm’s behaviour when presented with 
samples taken from non-PDFA distributions is still lacking. Such an understanding 
may also be desirable from the practical perspective.

• Tight sample complexity bounds for the PFA and PDFA learning.

• The relatively simple case of PFA learning using a finite alphabet is still not well 
understood. The analysis of PFA learning with continuous, high dimensional alpha­
bets, while theoretically daunting, may lead to novel insights as well as practically 
appealing algorithms.
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Proofs of Technical Lem m as

A .l  P roof o f Lemm a 3.16

We follow a two step approach. The first step is a reduction to an equivalent problem. 
The second step shows a bound on the equivalent problem, proving the inequality.

We start by partitioning the summands d\ t \ , . . . , into two mutually exclusive
sets Ii, I2 according to the following rule:

i e h  if diU < ■—, 

i e 12 if diU > —.

Adding and subtracting Yli£i2(V-^ — we get:

N N

\ l /N  — d{ti\ = 1 — diti + 2
i=l i—1 16/2

On the right hand side of the equality above, any term with drfi > l / N  is “doubly 
penalized” by the last sum. Indeed, we now show that given a specific pair {D.T}  we can 
construct an alternative pair {D,T}  such that drfi < l /N  for all z, and £T=1 11/AT — d{ti\ < 
S <=i |1/-/V — diU\. The constructive proof is detailed in algorithm 6.

To prove the algorithm’s correctness we note that no operation performed over the 
algorithm’s run will increase YliL 1 IV-^ — |, and that the algorithm terminates after a
finite number of steps.

If at any stage of the while loop of line 1 a suitable i is found, the existence of a 
suitable j  in line 2 is assured (drfi > l / N  =>• di > l / N  => 3dj < l /N).  The number 
of steps performed is bounded by the number of pairs (i, j)  and is therefore finite. In all 
reassignment operations, the values of both \1/N  — dtfil and 11 /N  — djtj\ are not increased, 

assuring that upon termination we have YliLi IV-W — diU\ < Ylv=i |1/A  — dit{\. We have
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A lg o rith m  A .l:  Reduction to a Uniformly Bounded Distribution d 
In p u t:  A distribution D = { d \, . . .  , dyv} and a set T  = { t i , . . . ,  £yv} with 0 < tx < 1. 
O u tp u t:  A distribution d and a set t with 0 < U < 1 , YliL i U —  J2iLi such that 

diL < 1/N  for all i, and l1/ ^  -  i S  I <  IL iLi \l / N  ~ <kU |.
1 w hile  3i G { 1 , . . . ,  A} such that drfi >  1 /A  do
2 Find j  G { 1 , . . . ,  A} such that dj < 1 /A
3 if dTi — 1/A  >  1/A  — dj th e n
4 Set di — di — (1 /A  — dj)
5 Set dj = 1 /A
6 else
7 Set di = 1 /A
8 Set dj — dj — (1 /A  —
9 end

10 end
11 Set d = D ,t = T.

thus shown that:

m in ^  |1 /A  — d tt i \  =  m in  y   ̂ (1 /A  — d jtj)
{D,T} {D,T} i=l

s.t. djU <  1 /A  Vi.

We now examine how the selections of d\ and t\ affect both (1 /A  — d\t\) and 

Yl!i=2 (1  /A  — dyt*), under the condition dTi <  1/A . If d\ =  1 /A  — e, we immediately 

have 1/A  — diU > £, due to U <  1. If d\ =  1 /A  -F e we have:

TV N  N

Y a/N - diti) > y  a/N - < y  > - w -  v/N - £] = £ -
i= 2 i= 2  i—2

Writing £1 as 1 — di, 0 < di < 1, we again examine the effect of the choice on 

IP\ =  (1 /A  — d\t\)  (denoting “immediate penalty” ) and on SP\ = Yl!i= 2  (V-W — diU) 
(denoting “subsequent penalty” ):

I  Pi = 1 /A  -  d\t\ = 1 /A  -  d i( l  — di),
N

SP\ =  ( l /A  — djtj) > max {di — 1/A, 0} .
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We can now deduce IP\ + 5 Pi > S\/N  by considering the following cases:

d\ < l /N  I P i>S i / N .

l / N  < d , <  S p i > di -  l / N
< => IPi + SPi > l / N  -  d\t\ + d i -  l / N

= d1( l - t 1) > 6 1/N.
d\ > Violates the constraint t\d\ < l /N.

Summing over i = l,...,iV w e  get:

N  N  N  N  N

E u/jv -  ditt) = Y , m  + s p , > ü  £ ■ =  n  E c 1 -  ‘i> = 1 -  n  E :t-
i = l  i = l  i = l  i = l  i = l

proving the lemma. ■

A .2 P roof of Lemma 3.17

The d-dimensional probability simplex, A d, is a subset of the f d sphere, which we denote 
by B d. The probability simplex consists of the positive quadrant of B f , and therefore the 
following volume relation holds:

vol(Ad) = (A.l)

Let A be a maximal packing of e-volume f d balls in A d. Due to A’s maximality it is also 
a cover of Bd (otherwise we would be able to fit in an additional e-volume ball). We 
therefore have:

A d C 

vol(Ad) <

a + e Bd, implying
ö £  A

a T  £ B vol(a + e B d)
a£A

\A\£dvo\(B^).

Plugging in (A.l), we have:

\ A \ >

A .3 P roof of Lemma 4.20

Let {Yi}P_i be i.i.d. random variables distributed identically to the random variables X{. 
The Rademacher random variables x are symmetric binary valued, so for the random
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variable Xi — Yi we have:

X i - Y i - e i i X i - Y i ) .

Therefore,

= E x

(by the triangle inequality) < Ex Ey

= Ex Ey

1 m  1 m

- Y jX1- E y - Y . Y 1
m  —* YYi

=  1 \

1 m

™ £ < * - * )
2=1

1 m

- E ^ X i - Y i )
2=1

The inequality holds for all selections {ej}™!, and therefore holds also when taking the 

expectation with respect to {eij-Tp

Ex Ey

= Ee Ex Ey

(by Fubini’s theorem) =  Ex Ey Ee

(by the triangle inequality) < Ex Ey E

= — Ex E,m

- Y 'MX i -Y i )m < ^
1
1 m

- Y ] e t(Xt - Y , )  
m  'i= 1 

m

- $ > ( * , - * )
2 =  1

m ...

- Y ] e i X i  + - Y e l Ylm  z—' m £—'
2 =  1

2 =  1



Excerpts from [Clark and 

Thollard, 2004]

A p p en d ix  B

In order to make the document self-contained, we repeat a number of results from [Clark 
and Thollard, 2004] which are used in the thesis. In order to enhance clarity, we have 
translated the original notation to that used throughout the thesis.

B .l  D efinitions

The following definitions of Clark and Thollard [2004] have been modified in the thesis. 
We repeat the original definitions’ statements using our notation, pointing to the relevant 
definitions in the paper.

Definition B .l  [Clark and Thollard, 2004, Definition 4]
A candidate node is a pair (u , a) where u is a node in the graph and a G £ , where 6g (u, a) 

is undefined. It will have an associated multiset Su>(T. A candidate node (u,a) and a node 

v in a hypothesis graph are said to be similar if and only if for all strings sGS*,

>u,cr - 5, </i /2 .

Definition B.2 [Clark and Thollard, 2004, Definition 7]
A multiset S  is p-£\-good for a state q G Q_4 if and only if 

every a € £ , |S(cr)/|S| -  Pa (q,(t)I < £\.
S ~ P qA < p/4  and for

00

Definition B.3 [Clark and Thollard, 2004, Definition 8]
A hypothesis graph G for a PDFA A  is good if there is a bijective function 4> from a 

subset of states of A  to all the nodes of G such that ^(^o) = Vo, and if 8g {u, g) — v 

then 6g {$~1{u),(j ) = 4>- 1(u), and for every node u in G, the multiset Su attached to u is 

pL-S\-good for the state <f>- 1(u).

Definition B.4 [Clark and Thollard, 2004, Definition 11]
Given a good hypothesis graph G, a sample of size M  is good if for every candidate

105
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node (u,cr) such that |SUiCT| > m.o, Su â is p-£\-good for the state l {u),a) and if

P e x i t { G ) > £6 then the number of strings that exit the graph is more than ^ N P exit ( G ) .

B.2 Lemm as and Theorem s

We repeat the statements and proofs of lemmas and theorems from [Clark and Thollard, 
2004] used in the thesis, with the relevant revisions in notation.

Lemma B.5 [Clark and Thollard, 2004, Section 6.1]

Let:

1 ,__f24n|E |(|E | + l)(n|E| +  2 ) \m2 = ^?loH------ *------ )’
£ 2

£l = 16(|£| +  1)(L +  1)2 '

Drawing a multiset of m2 samples from a PDFA A, the probability of generating a good 

multiset (according to Definition 4-M) is at least 1 — ^ j .

Proof We need to show that for every a £ £,

Pa {q, v )
Su{v)

I S . I < £ 1  •

Using the Chernoff bound, the probability of this occurring is less that e 2m^ei. Plugging 
in the expressions for m2  and £1 , we have:

—2m2 e \  _  _____________ ^2______________
24n|E|(|£| + l)(n |£ | + 2)’

and therefore:

n|£ |

Applying the union bound, the lemma follows. ■

Lemma B.6 [Clark and Thollard, 200f, Lemma 6]

Let A  be a PDFA such that the expected length from any state is at most L. Then for all 

q € Q A, P A( q) >W(q) / ( L  + l).

Proof Intuitively, after reaching the state q, the expected number of times we reach q 

again will be at most the expected number of times we reach any state after this, which
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is bounded by L. Formally:

w (q) = X pA qo, s )
sES(q):

<bd<70 , s)=q

X X Pa {Q0i rs)
tERa Iq)  sET*:

ÖA(Q0 , r s )= q

X X PA{qo,r)PA(q,s)
tERa Iq) r «€£*:

0A(Q0 , r s )= q

X pA{qo,r) Y  pA{q,s)
tERa Iq) sET*:

ÖA(qo,rs)=q

= pA{q) X pA(q,s)
SEE*:

ÖA(qo,rs)=q

< pA{q) X  pA(q,s)
SET,*

< PA (q)(L + 1).

Lemma B.7 [Clark and Thollard, 2004, Lemma 12] 
Define the following accuracy bounds:

£2 '' 2nL(L + 1) ’ ' 5: 2|E|L(L + 1) ’ ' L + 1*

Then for any state q £ QA of the target PDFA such that W(q) > £2 , if all sample multisets 

are good, then there will be a node u in the final hypothesis graph such that <L(g) = u. 

Furthermore, for such a state q and any o £ E such that PA (q, cr) > £5, the node öc(u, cr) 
is defined and is equal to <h(öA(q,cr)).

Proof Since W(q) > e2, by Lemma B.6 it follows that PA (q) > £2 /{L + 1). From the 
definitions of M  and £6

2n|E|mo
M < £6 < p A{q)e5 < Pa (q)-

If there were no representative node u for the state q, then all strings that reached 
the state would exit the graph, and thus we would have Pe-xit{G) > PA(q). Similarly, 
if there were no edge labelled a from the node, then Pexit (G) > PA {q)£5. By the 
goodness of the sample we know that either Pexit(G') < £§ or Pex\t{G) < 2n|E|rao/AL, 
and in both cases Pex[t (G) < PA (q)£5. Therefore, there is a suitable state u and edge in
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the graph, and since the final hypothesis graph is £i-good, 6g will have the correct value. ■

Assuming that all the samples drawn are good, the following lemma shows that the 
final smoothed transition probabilities will be close to the correct values.

Lemma B.8 [Clark and Thollard, 2004, Section 4-3]
Let q G Qa be a state with W(q) > £2 such that u = d>((/), and define

£4 :=
2 ( L+ 1 )  ’

P m in  -
£4

2(|£| +  1)'

Then for every symbol o G £ ,

<  1 +  £4
Pa (q, °

Proof By the goodness of the multisets we have:

Su{cr)
Pa (q,<7) -

|S«|
< £1

Plugging in the definitions of pmjn and £4 , the claim is easily verified.

The following lemma shows that for every frequent state q G Qa and its corresponding 
state in the hypothesis q = $(q) (which exists with high probability), the expected number 
of times A  “visits” q is close to the expected number of times A  visits q and A  visits q.

Lemma B.9 [Clark and Thollard, 2004, Lemma 13]
Let q G Qa be a state with W{q) > £2 . Then there exists a state q G A such that q = $(q) 

and
W ( q ) - W ( q , q ) < e 3 .

Proof The lemma is proved by induction on i .  For f  = 0 the claim is clearly true. Assume 
by induction that the claim holds for i  — 1. Using the symbols b G Qa and b £ Q ̂  to 
denote states, we rewrite the joint weight as

L  pAb,<r).
bCQA bEQ~. a:SA {b,a)=q

A S ^ ( b ) , a ) = i 7

Considering only the cases where W(b) > £2 and <f>(6) = b, we see that

W,(q,q)>J2  W t - i ( b ,* ( b ) )  Y .  PA(b,<r). 
beQ A - a:SA (b,cr)=q

W(b)>£  2 <5^(<t>(6),cr)=q
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By the inductive assumption, for these frequent states:

We(q ,q )>  E  H i i W  ( l -  2 ?l + i 0  E  Pa M -
beQ A - a:ÖA(b,cr)—q

W( b) >e2 <5̂ ( $ ( 6),ct)=9

Using the fact that Wg < 1 for all t  € N and using the recursive definition of Wg, the 

previous expression can be written as:

Wt (q,q) >

>

E w ^ b >)E Pa (M)
beQA- a:ÖA(b,a)—q

W( b)>£2 6Ä (<t>{b),a)=q

E W '-iib)e
beQA- a:ÖA{b,a)=q

W{ b) >e2

£3(1 -  1)
i ( i  + i)

E ŵ_i(6) e
beQA- cr:SA (b,a)=q

W(b)>£2 S2 (*(b) ,a)?q

£s(ß -  1)
L(L +  1) ’

(B.l)

We next show that most of the weight from Wg_\ must be from states b with W(b) > e2- 

This enables changing from Wg-\{b) to Wg(b).

Using Equation (4.5), we have:

WM) =  E We-̂b)E pA(b,<r)+ E E
beQA- a:ÖA(b,(r)=b beQA- a:ÖA(b,cr)=b

W( b)<£2 W(b)>£ 2

< n e 2 +  w *-i(b) Y  PA bw)-
beQA- a:ÖA(b,a)—b

W(b)>£2

Using this expression to replace the right-hand side of Equation (B .l), we get

Wg { b , b ) > Wg { q ) - n e 2 -
£ 3 (1  ~  1 ) 

L(L +  1) E w t - t f )  e  pA(b-°)-
beQA- 

W( b) >£  2
cr.ÖA(b,a)—q
S^(b),a)^q

Since by Lemma B.7 all of the transitions from frequent states with probability greater 

than £5 must go to the correct states, we know that the values of Pj i(6, a) in the final term 

must be less than £5.

Wg(q,q) >

>

Wg(q) - n e 2 -

Wg(q) - n e 2 -

£ 3(1 ~  1) 

L(L +  1)

£3(1 ~  1) 
L(L +  1)

E Wi-1 ( 6 ) E £5
beQA- ues

W{b)>£ 2

|E| £5 .
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By the definitions of £2 and £5,

ri£2 + |S |£5 < £3

Wt ( q ) - W t (q,q)<

L(L + 1) ’
e*m{q)

and therefore

L(L 4-1)

By Equation (4.6), < L iL + !)• For any q G W(g) = YT=oWM)-
Summing over all t  G N:

W(q) -  W(q, q) = f )  W<(g) -  Wt(q,q) < E  < £3
e=o =̂o ^  ’

Note that as a direct consequence of Lemma B.9,

E W(q,q)<e 3 . (B.2)
q-$(q)^q

We now duplicate the proof of the main result, showing approximation of A  by A.

Theorem B.10 [Clark and Thollard, 2004, Section 5] Assuming all samples drawn are 
good, KL(A || A) < £.

Proof In order to bound the approximation error, we recall the decomposition of the 
KL-divergence presented in [Carrasco, 1997]:

KL(A IM) = E E E W(«’ loS 10A\-
qeA$e2crex ’

The summation is divided into three (non-overlapping) parts. Define

D(q,q) = W(q,q) PA(q,<r) log
^  F^(g,cr)<tG£
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and split the state pairs into three categories:

D\ = X X d{QiQ)i
q^Q a - q£ Q x -

W ( q ) > e 2 <f>(q)=q

d2 = Y Y D(<Lq)i
qzQ a - q£ Q x

W ( q) > e 2 <i>{q)^q

Ds = * Y  Y ^  D(q.q), suchthat
q£ Q a -

W{ q) <e  2

K L ( A \ \ A )  = A + D 2  +  D3.

Note that for the frequent states with W(q) > £2, $  will be well-defined.

The bound on D\  uses Lemma B.8, recalling that W(q) > W(q,q):

D\  < ''y  ̂ VE(<jf) log(l +  £4) < (L + 1) log(l +  £4) < (L +  1) £4 .
Q€Qa -

W(q)>£  2

Bounding D2 is achieved by using Equation (B.2), the fact that Pa ^-,®) <  1 and that 

P^(q.o)  > pmin by the smoothing technique.

D2 <

<

X X Y p-4(̂ (7)lo§
Q£Qa - q£Qz

W( q ) > e 2 <J>(9 ) ^ q

1
P m in

X I log 
qzQa -

W( q) >e  2

1
P m in

< n £3 log-----
P m in

W ith regard to D3, using (4.7) and the bound on W(q)  we can see that

D3 < X X w(q> 9) X ^^^108
q€Q^: 9GQt <tGE

M/(7)<£2

1
P m in

< n £2 log-----
P m in

Substituting in the definitions of £2 and £5 (Lemma B.7) and assuming L > 1,

KL(.4 II A)  < (L + 1) £4 +  ( n e 3 + — I ̂  iog - i -

< (L +  1) £4+ (n  +  1) £3 lo g -J—.
Pmin

Substituting in the values of p m in> £3 and £4  gives

KL(A  I\ A ) < e .
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G lossary  of Sym bols

N the set of natural numbers
M the set of real numbers

£

5

E
a

w, u, v , re, x, y , 2 

e

e
L

accuracy parameter 
conhdence parameter

finite alphabet of symbols (letters)
a single symbol (letter) of the alphabet E
strings over the alphabet E
the empty string
length of a string
upper-bound on length of a string

Pr probability with respect to all random variables
Prx probability with respect to the distribution of random X
E expectation with respect to all random variables

expectation with respect to the measure y 
E(X) expectation of the random variable X
var(X) variance of the random variable X
1{^} indicator of the event A

D distribution
V  class of distributions
S(x) distribution with all probability concentrated on x

L stochastic language
x~lL quotient language, defined by the probabilities of the strings in L

starting with x, properly normalized 
C family of stochastic languages
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A  a probabilistic automaton (PFA or PDFA)
Qa the set of states of a PFA or PDFA A

5A set of transitions in A
I A initial state probabilities of A
Pa transition probabilities of A
Fa final state probabilities of A
n number of states in an automaton (n = \Qa \)
qi the ith state of a PFA or PDFA A

Da distribution induced by the PFA or PDFA A
PA{q, s) probability of the PDFA A  generating the prefix s starting from state q
Pa (s) probability of the PDFA A  generating the string s starting from state q
PA(q) probability of reaching state q
Ra {q) set of strings that reach state q for the first time

A  a hypothesis PDFA induced by an induction algorithm
G graph underlying a hypothesis PDFA A

S a multiset of strings
s a single string in the multiset S
S(s) multiplicity of the string s in multiset S
S(a) number of strings beginning with a in S
Sv multiset of suffixes incident on node v of hypothesis graph G
Su,a multiset of suffixes incident on candidate node (u, a) of hypothesis graph G
W{q) weight of state q
W(q, q) joint weight of (target) state q and (hypothesis) state q

7i  class of PDFA
Oyi an oracle matching the PDFA class H


