
Verification of Concurrent Data
Structures with TLA

Zixian Cai

A report submitted for the course
SCNC2102 Advanced Studies 2

The Australian National University

November 2018

c© Zixian Cai 2018

Typeset in Palatino by TEX and LATEX 2ε.

Except where otherwise indicated, this report is my own original work.

Zixian Cai
9 November 2018

Acknowledgments

First, I would like to thank my supervisor, Michael Norrish. We walked through
Logical Foundations1 last summer, where I got to know the formal side of software
construction. Logical and “illogical” discussions with you are always enjoyable. This
project would not have been possible with your patient guidance and inspiration.

I would also like to thank the TLA+ community, particularly Leslie Lamport and
Stephan Merz, for their help on using the TLA+ Model Checker (TLC).

Thank you for being there during difficult times, Brenda Wang. For the feedback
you gave on draft versions of this report I am also deeply grateful. Hope you get as
much happiness as you gave me and best luck with your own project.

1https://softwarefoundations.cis.upenn.edu

v

https://softwarefoundations.cis.upenn.edu

Abstract

Concurrent systems have critical applications such as aviation. Due to their inherent
complexity, mechanised verification is well suited for reasoning about the safety and
liveness properties of such systems. Temporal logics, such as TLA and LTL, have been
used to verify distributed systems and protocols. However, it is not clear whether
these logics are good fits for modelling and verifying concurrent data structures.

This work describes how Temporal Logic of Actions (TLA) can be adapted to
handle concurrent data structures and weak memory models. It also shows how the
TLA toolchain, especially the model checker, can aid in cleanly applying the logical
machinery to concrete programs.

I used litmus tests to validate my encoding of memory models against prior
work. These models enabled me to formalize various concurrent data structures,
including the Chase-Lev queue. Then, I am able to check the behaviours of these
data structures against abstract specification of their operations. In particular, my
modelling can successfully find bugs in a faulty implementation of the Chase-Lev
queue.

The results suggest that TLA is appropriate for modelling concurrent data struc-
tures. The formal models I designed and the related modelling techniques can be
used by the wider research community in their verification work.

vii

viii

Contents

Acknowledgments v

Abstract vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contribution . 2
1.3 Outline . 2

2 Temporal Logic of Actions 3
2.1 States and Actions . 3
2.2 Temporal Formulae . 4
2.3 Model Checking . 5
2.4 Summary . 6

3 Concurrent Data Structures 7
3.1 Global and Local States . 7
3.2 Control Flow . 8
3.3 Modelling Concurrent Stacks and Queues 9

3.3.1 ABA Problem . 9
3.3.2 Allocating New List Nodes . 9
3.3.3 Specifying Properties . 10

3.4 Summary . 11

4 Memory Models 13
4.1 Overview . 13
4.2 Litmus Tests . 14
4.3 Semantics of Memory Models . 15
4.4 Total Store Ordering . 16
4.5 WMM . 18
4.6 Dependency Ordering of Different Models 20
4.7 Summary . 23

5 Case Study: the Chase-Lev Queue 25
5.1 Overview . 25
5.2 The Chase-Lev Queue . 26
5.3 Bug in the C implementation . 26

5.3.1 Mapping C Atomic Operations . 26

ix

x Contents

5.3.2 Implementing Compare-Exchange 26
5.3.3 Checking Properties . 28

5.4 Discussion . 29
5.5 Bug in the ARM implementation . 29
5.6 Summary . 31

6 Conclusion 33
6.1 Future Work . 33

Bibliography 35

List of Figures

3.1 The next-state action of x += 1; y := 2*x 8
3.2 A property that a stack only consists of positive values 10
3.3 The pseudocode of maintaining the shadow queue whiling dequeuing

values . 11
3.4 A property that the linked list matches the shadow queue 11

4.1 Abstract Model of SC . 13
4.2 SB: test for store buffer . 16
4.3 Abstract Model of TSO . 16
4.4 The store operation of TSO . 16
4.5 The load operation of TSO . 17
4.6 The background process of TSO . 17
4.7 The commit fence of TSO . 18
4.8 LB: test for load-store reordering . 18
4.9 MP+Ctrl: test for control dependency ordering 19
4.10 Abstract Model of WMM . 19
4.11 Address-segregated definition of buffers of WMM 19
4.12 The store operation of WMM . 20
4.13 The background process of WMM . 20
4.14 The load operation of WMM . 21
4.15 The commit fence of WMM . 21
4.16 The reconcile fence of WMM . 21
4.17 Litmus test PPO015 . 22
4.18 Litmus test MP+dmb+fri+rfi-ctrlisb . 22

5.1 The workflow of verifying a program . 25
5.2 The C11 implementation of Chase-Lev queue 27
5.3 The lock operation of WMM . 27
5.4 The unlock operation of WMM . 28
5.5 The background process of WMM with the presence of lock 28
5.6 The load operation of WMM with the presence of lock 28
5.7 The ARM implementation of the steal operation 30
5.8 The translation of the ARM implementation of the steal operation . . . 31

xi

xii LIST OF FIGURES

Chapter 1

Introduction

Concurrent programs are notoriously hard to write, where hard-to-reproduce and
subtle bugs often manifest. This report focuses on specifying and verifying concurrent
data structures using Temporal Logic of Actions (TLA).

1.1 Problem Statement

Real-world systems are inherently concurrent, and computer systems are no excep-
tion. With the prevalent use of concurrent hardware nowadays, we need concurrent
programs to utilize the available concurrency. And proper synchronization is often
necessary for these programs to produce correct results.

Coarse-grained synchronization is a naïve way to ensure correctness. For example,
we can make a data structure thread-safe by using a mutex around the entire object.
However, this approach hinders scalability due to unnecessary synchronization.

Fine-grained synchronization mechanisms, such as the ones based on the compare-
and-swap operation, make programs more scalable. However, these mechanisms are
more difficult to reason about. Instead of dealing with a single, big critical section, we
need to consider more possible interleaving of operations. Even worse, the outcomes
of interleaving are often unexpected due to weak memory models that exhibits on
many hardware architectures.

Traditional approaches to reasoning about programs, such as pen-and-paper
proofs, do no scale up to the complexity we see in concurrent programs. Thus,
we need more scalable tools to help us understand the behaviours of large, real-
world concurrent programs. Several logic systems have been proposed to help such
reasoning, including concurrent separation logic [O’Hearn, 2007], linear temporal
logic [Pnueli, 1977], and rely-guarantee [Jones, 1983].

The Temporal Logic of Actions [Lamport, 1994] is widely used in the field of
distributed systems and protocols. However, it is not clear whether TLA is well
suited to specify and verify concurrent data structures.

1

2 Introduction

1.2 Contribution

I selected and modelled several classic concurrent data structures using TLA con-
structs. I also investigated weak memory models and encoded TSO and WMM in
TLA. The correctness of these encodings are cross-checked against prior work through
litmus tests. After integrating the above modelling, I am then able to reason about the
behaviours of different concurrent data structures on different memory models. In
particular, I successfully found a bug in an implementation of the Chase-Lev queue.

1.3 Outline

Chapter 2 gives an overview of TLA, which is the logic system used in this work.
Chapter 3 introduces techniques to encode different components of concurrent data
structures in TLA. Chapter 4 discusses memory models and how weak memory
models can be implemented in TLA. Then, Chapter 5 uses a concrete example, the
Chase-Lev queue, to demonstrate how the above modelling techniques can be applied
to complex data structures. Finally, Chapter 6 summaries the contribution of this work
and points out future work.

Chapter 2

Temporal Logic of Actions

Prose, which is prone to subtle errors, is a poor medium for conducting formal, rigor-
ous reasoning. Proposed by Lamport, the Temporal Logic of Actions (TLA) [Lamport,
1994] is a simple yet flexible logic system to specify concurrent systems. Contrasting
with Linear Temporal Logic (LTL) [Pnueli, 1977], TLA avoids the use of temporal
operators where possible. This is to reduce the complication involving in temporal
reasoning compared with nonmodal, first-order reasoning. In this chapter, I will sum-
marize important concepts of TLA, enabling the reader to follow the development of
modelling in Chapter 3 and Chapter 4.

2.1 States and Actions

A program can be described by the states it maintains, and the series of actions it
performs to manipulate these states. Therefore, it is important that we express these
two aspects in TLA.

The state of a program gives meaning to variables by mapping them to values.

St :: Var→ Val (2.1)

The meaning of a variable x in a state s is denoted by sJxK. Then, the meaning of
expressions, which consist of variables and constants, can be defined in the following
way. For an expression f , its value in a state s can be obtained by replacing each
variable v by its evaluation in that state.

sJ f K , f (∀v : sJvK/v) (2.2)

An action changes the state of a program. We can represent an action by a relation
between old states and new states using a boolean expression. This boolean expres-
sion can consist of variables, primed variables and constants, where primed variables
concern the new states and unprimed variables concern the old states. The semantics
JAK of an action A is defined by evaluating each of the unprimed variables and the
primed variables in the old state and the new state respectively.

sJAKt , A(∀v : sJvK/v, tJvK/v′) (2.3)

3

4 Temporal Logic of Actions

For example, for action x′ + x < 1, sJx′ + x < 1Kt evaluates to tJxK+ sJxK < 1. We call
a pair of state (s, t) an A step if and only if sJAKt.

Actions map naturally to operations of programs. That is, if A corresponds to an
operation of a program, then its execution in state s can lead to state t if (s, t) is an A
step. For example, incrementing a variable x can be represented by A , x′ = x + 1,
where ([x → 41], [x → 42]) is an A step.

2.2 Temporal Formulae

When reasoning about behaviours of programs, one often needs to consider execu-
tions, which are sequences of states.

JAK is true for a behaviour if and only if the first pair of states is an A step. That
is, for a behaviour σ, which represents sequence < s0, s1, . . . >, we have the following

σJAK =< s0, s1, . . . > JAK , s0JAKs1 (2.4)

Compound formulae are defined in terms of elementary formulae.

σJF ∧ GK , σJFK∧ σJGK

σJ¬FK , ¬σJFK
(2.5)

An F is always (�) true if it is true at every single point of “time”.

< s0, s1, . . . > J�FK , ∀n ∈ Nat :< sn, sn+1, . . . > JFK (2.6)

An F that eventually (♦) holds if it is not that case that F is always false (¬�¬F).
That is, there will be a point of “time” such that F holds.

< s0, s1, . . . > J♦FK ≡ ∃n ∈ Nat :< sn, sn+1, . . . > JFK (2.7)

It is sometimes desirable to make assumptions and exclude some unreasonable
executions. For example, if we have two or more processes, a reasonable scheduler
will allocate execution times to each process appropriately, and the executions should
be excluded where one process makes no progress even when it is possible to do so.
We call these assumptions fairness assumptions.

Before defining fairness, let’s define what it means that a program can make some
progress. An action A is enabled in a state if and only if it is possible to make an A
step in that state.

sJEnabled AK , ∃t ∈ St : sJAKt (2.8)

An execution is strongly A-fair if A must be taken when it is infinitely often possible
to do so.

SF(A) , (�♦Enabled A) =⇒ (�♦A) (2.9)

§2.3 Model Checking 5

An execution is weakly A-fair if A must be taken when it is always possible to do so.

WF(A) , (♦�Enabled A) =⇒ (�♦A) (2.10)

Note that strong fairness implies weak fairness.
Fairness is especially important if we try to verify liveness properties. For example,

for mutual exclusion, one might want to specify that each waiting process should
eventually enter its critical section. However, if the action of entering critical section
is not strongly fair, a process might stay in waiting states due to poor scheduling
despite being infinitely often possible to enter the critical section.

2.3 Model Checking

The specification language of TLA is called TLA+ [Lamport, 2002]. I will not discuss
its formal grammar and constructions here, and curious readers are encouraged to
read relevant chapters in [Lamport, 2002]. In practise, it is often more convenient and
concise to express systems in PlusCal [Lamport, 2009], which can be translated to
TLA+ for later use. PlusCal is heavily used in this work to express concurrent data
structures and operational models of memory models.

For systems and properties written in TLA+, there are two widely used tools to
help us verify the correctness of systems. The TLA+ Proof System (TLAPS) [Chaud-
huri et al., 2010] can be used to conduct machine-checked proofs. Another is the
TLA+ Model Checker (TLC) [Lamport, 2002], which is used in this work.

The model checking process aims to answer whether a system conforms to the
given specifications, and produces counterexamples if it is not the case. TLC employs
directed graphs as the data structure for maintaining the reachability of states. Each
node of the graph corresponds to a state, and each edge from state s to state t
represents that (s, t) is a valid step for some actions.

To explore reachable states, classic graph traversal algorithms, such as BFS and
DFS, can be used. At the beginning of the process, the model checker takes an initial
predicate Init, a next-state action Next, a set of variables vars and a temporal prop-
erty to be checked Temporal. First, a set of initial states are computed by evaluating
the initial predicate Init. When executing BFS or DFS, neighbours of a node, that
is the successor states of a known state, are computed by evaluating Next. For each
of the states encountered, TLC checks whether the state violates any prescribed in-
variant. For each of the edge encountered, TLC checks whether the given temporal
property is violated. If a property is violated, TLC produces a counterexample in
the form of a path, that is a sequence of states in the directed graph. Just like the
termination conditions of the standard BFS or DFS procedure, the model checking
algorithm terminates when all reachable states are explored.

The model checking process is extremely resource-hungry, as the number of
possible states are exponential in the number of variables. In addition, it is worth
noting that the results obtained from the model checking process is as good as the
model we use. In other words, whether we can faithfully model the real-world system

6 Temporal Logic of Actions

determines the quality of the results.

2.4 Summary

In this chapter, I talked about the logic system and concepts related to TLA. In Chap-
ter 3, I will show how different constructs of TLA can be used to model concurrent
data structures.

Chapter 3

Concurrent Data Structures

In Chapter 2, I gave an overview of relevant concepts of TLA. In this chapter, I will
show how different components of concurrent programs and data structures can be
modelled in TLA. I will also talk about how to express desired properties of systems
using temporal formulae. Although there are many concurrent paradigms, such
as messaging passing, this work focuses on concurrent data structures via shared
memory. However, the idea behind can be adapted to other paradigms as well.

Some of the ideas in this chapter are either originated from or inspired by how
PlusCal [Lamport, 2009] is translated to TLA+. In fact, there was an attempt of
checking multithreaded data structures with PlusCal [Lamport, 2006].

3.1 Global and Local States

States (or variables) maintained by a program can be divided into two parts, global
and local states. To model states, functions in TLA can be used. It is worth noting that
functions in TLA carry a different meaning compared with functions in traditional
programming languages. In TLA, functions are essentially mappings and work like
dictionaries. For example, a function foo that maps each element in set A by applying
operator bar can be defined like this foo == [a \in A |-> bar(a)].

Each process accesses the shared memory by reads and writes of global variables.
These variables map cleanly to variables in TLA, which can be changed by actions
of all processes. An alternative way to model global variables is to establish a single
TLA function that maps addresses to values memory == [a \in Adr |-> 0]. Then,
we can assign a unique address to each global variable, just like how addressing
works on real hardware.

On contrast, local states are only supposed to be accessible by the process that
owns them. Therefore, a plain variable in TLA does not suffice, as it cannot maintain
separate values for each of the processes. Note that although local states can be stored
in registers or on the stack, we do not need to differentiate them in TLA.

A straightforward way to model a local state is by using a function mapping the
ID of processes to values. For example, a local integer variable x initializing can
be defined like this x == [p \in PIDs |-> 0]. To read a local state, we can simply
query the function as follows x[p]. Similarly, to update a local state, we obtain a new

7

8 Concurrent Data Structures

function by making it returning the new value for a particular process. Recall that
actions represent relations between old states and new states. To increment local state
x, an action needs to establish what function x looks like in the old and new states. It
can be written as follows x’ = [x EXCEPT ![p] = x[p] + 1].

3.2 Control Flow

After encoding global and local states of programs using functions in TLA, we can
easily map each statement of a program to an action in TLA. However, simply com-
posing actions into the next-state action Next does not necessarily reflect the original
program faithfully.

Suppose we have a program that first increments x and then assigns double
of the value of x to y. The increment can be translated to action x’ = x + 1 and
the assignment can be mapped to action y’ = 2 * x. However, if we make Next
a disjunction of the two above actions, the original order will not be maintained.
For example, if we start with x = 1 /\ y = 0, we can end up in x = 2 /\ y = 2
or x = 2 /\ y = 4, with x = 1 /\ y = 2 and x = 2 /\ y = 0 being the respective
intermediate states. Note that both of the intermediate states are valid Next-steps
with respect to the initial state.

One way to solve the problem is to borrow the idea of program counter (PC) or
instruction pointer (IP). CPU uses PC to keep track of the instruction being executed.
When there is a change in the control flow, PC will have been modified and CPU will
load and execute next instruction in the new location. Analogously, we can maintain
a special local state PC for each process. In addition, we assign a distinct “address”
for each action in our program.

The control flow of a program can then be represented by the constraints of PC
for each action. Each action is amended to require that the current PC matches the
address of the action and the next PC matches the address of the next action. So for
the above sequential example above, we use I1 and I2 as the addresses for the two
actions respectively, and the next-state action of the program can be constructed as
shown in Fig. 3.1. Branching behaviours can be modelled in the similar way, with the

1 I1(p) == /\ pc[p] = "I1"
2 /\ pc’ = [pc EXCEPT ![p] = "I2"]
3 /\ x’ = x + 1
4 I2(p) == /\ pc[p] = "I2"
5 /\ pc’ = [pc EXCEPT ![p] = "Done"]
6 /\ y’ = x + 1
7 Next(p) == I1(p) \/ I2(p)

Figure 3.1: The next-state action of x += 1; y := 2*x

address of next action being the branching target.

§3.3 Modelling Concurrent Stacks and Queues 9

3.3 Modelling Concurrent Stacks and Queues

In this section, I will use two examples to show some tricky parts of modelling
concurrent data structures in TLA. The Treiber stack [Treiber, 1986] is a classic non-
blocking concurrent stack. It organizes the stack as a singly linked list, and each push
and pop operation is done via atomic compare-and-swap operations on the head
of the list. Treiber also proposed a non-blocking concurrent queue. However, it is
inefficient, as dequeuing takes time proportional to the size of the queue. Michael
and Scott [1996] proposed a non-blocking queue that has better performance.

In terms of modelling, the Treiber stack and the Michael-Scott queue share some
similarities. Therefore, I will discuss them in the same section.

3.3.1 ABA Problem

The ABA problem commonly refers to synchronization problems where it is unsound
to assume that an unchanged value in memory implies that nothing has changed.

A classic example would be a linked list that consists of A -> B -> nil. Thread
1 tries to pop A, and reads the head of the list. Then, thread 1 is swapped out and
thread 2 is scheduled. Next, thread 2 pops both A and B, and pushes A back, resulting
in A -> nil. Thread 2 subsequently frees the memory associated with B. After thread
1 resumes, it compares the head of the list, which is still A, and happily continues the
pop operation by setting the head of the list to B, which is now invalid.

A common method to solve the problem is to conceptually associate a version
number with a pointer, known as tagging. By doing this, a thread will be able to tell
that something has changed even though the value might still be the same. There
are many different approaches to implementing this efficiently on different hardware.
Fortunately, in TLA, tagging can be modelled easily. Instead of using a mapping from
addresses to values, the memory can be modelled as a mapping from addresses to
tuples, where the first element of a tuple is the value and the second element is the
version number (or timestamp). Whenever a value is modified (e.g., the head of a
list), the version number is incremented. In this way, even if a memory location is
changed multiple times and back to its original value, a thread will be able to tell the
difference as the version number will have changed.

3.3.2 Allocating New List Nodes

Both the Treiber stack and the Michael-Scott queue use linked lists to implement the
underlying data structure. When inserting a new element, a new list node must be
created and stored at some memory location. The actual implementations (e.g., in
C) usually allocate through the operating system or the allocation mechanism of the
programming language (such as malloc or new). TLA does not explicitly support
these operations, so I created a bare-minimum allocator.

A conceptually easy way is to use bump-pointer allocation. That is, we start with
a chunk of free memory and allocate nodes contiguously. However, one important

10 Concurrent Data Structures

drawback of this approach is the excessive memory consumption. Without the coun-
terpart of garbage collection mechanisms, we cannot reclaim the memory of the nodes
that are not in use. For example, if a process enqueues and dequeues alternatively,
the memory required is proportional to the number of operations, even though the
size of the queue stays constant. Recall that the model checking process takes time
exponential in the number of variables. This might make the verification intractable.

Another approach is to use the idea of free-list allocation. The trick is to use
another Treiber stack storing nodes that are available to use. Initially, all free memory
is available in this stack. When allocating a node for either the Treiber stack or the
Michael-Scott queue, we pop a node off the free stack. Similarly, when deallocating a
node, we push this now-free node back into the free stack. In this way, we are able to
cap the total number of addresses used and speed up the verification.

3.3.3 Specifying Properties

To verify whether the concurrent data structure is correct, it is important that we
are able to specify desired properties. They can be safety properties, i.e., something
that should not be violated. They can also be liveness requirements, such as a
process should make progress enqueuing a value. In terms of their abstraction levels,
properties can be divided into two parts, user-visible values and internal consistency.

Users observe and manipulate data structures by issuing operations and exam-
ining return values. Unfortunately, TLA does not provide means to model function
calls as in traditional programming languages. However, it is possible to have a
workaround. The key observation is that when a function returns, the return value
is local to the caller. That is, we can treat return values of a function as a special
part of the local state. For example, if a stack only consists of positive values, we can
have the following property (see Fig. 3.2) where x is the address of the action (see
Section 3.2) immediately after a pop operation returns.

1 [](\A p \in processes: pc[p] = x => pop_return[p] > 0)

Figure 3.2: A property that a stack only consists of positive values. [] means always (�) and
\A means forall (∀).

It is also important that the data structure is internally consistent. For example,
at any point of time, we should be able to traverse from the head of the list, follow
pointers, and reach a node pointed to by the tail of the list. I address the modelling of
internal consistency by using the idea of linearizability from Herlihy and Wing [1990].
Linearizability requires that each operation seem to take effect instantaneously at
some point between the invocation and response. In my modelling of the Michael-
Scott queue, a variable shadow_queue is maintained using a sequence in TLA. When
a process makes an operation visible by performing a compare-and-swap operation
on the head/tail of the queue, the shadow queue is modified accordingly as shown
in Fig. 3.3. By doing this, I am able to state a safety property shown in Fig. 3.4 that
the internal linked list of the queue matches the shadow queue at any point of time.

§3.4 Summary 11

1 def dequeue(q) {
2 local head = load(q.head);
3 ...
4 if compare_and_swap(q.head, head, head.next) { // successful update
5 shadow_queue = Tail(shadow_queue);
6 }
7 ...
8 }

Figure 3.3: The pseudocode of maintaining the shadow queue whiling dequeuing values

1 def compare(head, shadow_queue) {
2 match head with
3 | null => shadow_queue = <<>>
4 | otherwise =>
5 /\ Len(shadow_queue) /= 0
6 /\ head.value = Head(shadow_queue)
7 /\ compare(head.next, Tail(shadow_queue))
8 }

Figure 3.4: A property that the linked list matches the shadow queue

3.4 Summary

In this chapter, I showed how constructs of concurrent data structures can be repre-
sented in TLA. In the next chapter, I will discuss memory models, why it matters to
the verification of concurrent data structures and how I modelled it in TLA.

12 Concurrent Data Structures

Chapter 4

Memory Models

In Chapter 3, I showed how concurrent data structures can be represented in TLA.
Another integral part of the verification process is modelling memory of our hardware
targets. I will show why failing to take them into account can severely affect our
reasoning about the correctness of programs. I will also show how these memory
models can be encoded in TLA, which enables seamless integration with the TLA
modelling of concurrent data structures.

4.1 Overview

One might imagine that the techniques presented in the previous chapter were suffi-
cient to model and verify common concurrent data structures. Unfortunately, this is
not the case if we care about the behaviours of these data structures on many modern,
real-world hardware.

In Section 3.1, I use functions in TLA to model memory shared among processes,
where a memory read/write corresponds to an action that queries/updates the corre-
sponding TLA function. Recall that an action represents the change to program states
in a step. Therefore, under this modelling, a memory operation loads from or stores
to the atomic memory instantaneously (see Fig. 4.1). This model of memory is known

Memory

Proc
0

Proc
n ...

Figure 4.1: Abstract Model of SC

as Sequential Consistency (SC), where “the result of an execution is the same as if the
operations had been executed in the order specified by the program” [Lamport, 1979].

13

14 Memory Models

In SC, all processors have the same view of the memory, and stores from a processor
are visible to all processors at the same time.

Despite being definitionally simple, SC is not widely implemented on most hard-
ware. Since SC prescribes such a strong order, many architectural optimizations
(e.g., store buffers) are forbidden, and therefore performance suffers. With the de-
velopment of complex cache hierarchy and speculative execution on modern chips,
it is increasingly expensive to maintain SC guarantees. Since the strong guarantees
provided by SC are not necessary in many cases, hardware vendors deployed weak
memory architectures. These architectures relax some constraints of SC in order to
improve the performance of memory operations. To recover strong orders where
necessary, these architectures also provide memory fences (or memory barriers) that
prevent reordering. For example, x86 provides LFENCE, MFENCE and SFENCE.

Later, the behaviours of these architectures are formalized as weak memory models.
For example, a weak memory model might allow reordering a store-load pair. That
is, a load that happens after the store in program order might not see the new value
being stored. This permits store buffering and processors do not need to block for a
store to complete, which might lead to better performance.

However, the implications of relaxed orderings are profound. For example, sup-
pose there are two processes relying on a shared variable for mutual exclusion. When
one process enters the critical section, it atomically checks and changes the shared
variable to indicate its possession of the lock. Then, when the other process checks
the shared variable, it might see the stale value (i.e., unlocked) due to store buffering,
and subsequently enters the critical section as well. This leads to the violation of
mutual exclusion.

The example above shows that not accounting for memory models leads to cor-
rectness issues even for such a simple concurrent data structure. Therefore, it is
important that we integrate memory models into the verification process.

4.2 Litmus Tests

Just like shibboleths distinguish one group of people from another, litmus tests [Al-
glave et al., 2011] are quite effective in revealing the differences between different
memory models. Each litmus test consists a multithreaded program, and assertions
regarding shared memory and local states of each thread. These assertions can be
something that is required, possible, or forbidden. Litmus tests are used in the fol-
lowing sections to help the reader better understand possible behaviours introduced
by weak memory models.

Litmus tests are also helpful for me to establish the correctness of my encoding
of memory models. Using the encodings shown in Chapter 3, I can systematically
generate TLA models from these tests using templates. By comparing observable
outcomes with known models, I can determine whether my encoding allows desirable
behaviours and disallows erroneous outcomes.

In the remaining parts of this chapter, I will discuss what the implications of

§4.3 Semantics of Memory Models 15

various memory models are, and how their operational models can be realized in
TLA.

4.3 Semantics of Memory Models

Before encoding memory models, we should first understand what their implications
are. Formally, memory models define rules about loads and stores, and how they act
upon memory [Sorin et al., 2011]. In other words, among many possible outcomes
due to reordering and interleaving, a memory model allows correct execution results
and disallows (many more) illegal ones.

As shown by Sewell et al. [2010], informal prose is not a good medium for specify-
ing memory models. These loose descriptions do not address some of the subtleties
and are inevitably unsound. Worse still, one cannot check real programs against such
loose specifications, which leads to confusion when reasoning about executions in-
volving multiple threads. To address these problems, two formalizations of memory
models are commonly used instead in the literature. They are axiomatic semantics and
operational semantics.

An axiomatic semantics makes assertions on the relations of memory opera-
tions [Alglave et al., 2014]. For example, suppose there is a memory model that
forbids load-store reordering. Then for a pair (Ld, St), if the load precedes the store
in program order, their memory order should also be maintained in a valid execution.
However, this approach relies on guessing the entire execution trace of a program,
which is prohibitive for large programs that involve loops, branches, etc. [Zhang et al.,
2017].

An operational semantics describes computation using execution rules on an
abstract machine. This allows us to derive possible results of program execution
mechanically. Instantaneous Instruction Execution (I2E) is a popular notation used in
[Sewell et al., 2010] and [Zhang et al., 2017]. In I2E, possible reorderings of instruc-
tions are captured by putting different types of buffers between processors and the
atomic memory. I2E will be used in the following sections to describe the operational
semantics of some memory models.

The following two sections discuss the design and implementation of TSO and WMM
in TLA. By encoding memory models in the same logic used to encode programs, I
enable seamless integration. That is, by replacing memory reads and writes with the
corresponding operations in TSO or WMM, we can observe possible executions of a
program after relaxing some ordering constraints. To make it easier for the reader to
follow, pseudocode based on PlusCal syntax is used instead of raw TLA+.

16 Memory Models

4.4 Total Store Ordering

Total Store Ordering (TSO) is a widely implemented memory model, notably on x86
and SPARC architectures. Compared with SC, the most notable difference of TSO is
that it permits store-load reordering.

To illustrate the implication, the following litmus test (see Fig. 4.2) is used. No

Proc 0 Proc 1
St x 1 St y 1
r0 = Ld y r1 = Ld x
Proc 0: r0 = 0 ∧ Proc 1: r1 = 0

allowed on TSO

Figure 4.2: SB: test for store buffer

interleaving of instructions can lead to the above behaviour. However, due to store-
load reordering, the reads of x and y can be reordered before the writes, which results
in reading the stale values.

In the operational model due to Sewell et al. [2010], store buffers (SB) are introduced
between each process and the atomic memory (see Fig. 4.3) to model store-load
reordering. Since there is a store buffer associated with each processor, store buffers

Memory

Proc
0

Proc
n ...

SB SB

Figure 4.3: Abstract Model of TSO

can be treated as a special part of the local state and the FIFO buffer is represented by a
sequence in TLA. Instead of interacting with the atomic memory directly, stores from
a processor are queued into the respective buffer (see Fig. 4.4). When a processor

1 def store(addr, val) {
2 store_buffer[pid] := Append(store_buffer[pid], <<addr, val>>);
3 }

Figure 4.4: The store operation of TSO

loads from a memory address (see Fig. 4.5), it queries its own store buffer first,

§4.4 Total Store Ordering 17

returning the freshest store to that address if found. Otherwise, the processor loads
from the memory. Concurrently, a background process (see Fig. 4.6) repeatedly,

1 def load(addr) {
2 // To load the freshest store, we start from the tail of the buffer
3 return load_aux(addr, Len(store_buffer[pid]));
4 }
5

6 def load_aux(addr, idx) {
7 if idx = 0 {
8 return memory[addr];
9 } else {

10 if store_buffer[pid][idx][1] = addr { // entries are address, value pairs
11 return store_buffer[pid][idx][2];
12 } else {
13 return load_aux(addr, idx - 1);
14 }
15 }
16 }

Figure 4.5: The load operation of TSO

nondeterministically chooses a processor, dequeues the oldest entry in its store buffer,
and updates the memory1. To recover SC behaviour, a commit fence can be inserted

1 proc background {
2 while TRUE do
3 with p \in Procs do
4 if Len(store_buffer[p]) /= 0 then
5 head := Head(store_buffer[p]);
6 store_buffer[p] := Tail(store_buffer[p]);
7 memory[head[1]] := head[2];
8 end if;
9 end with;

10 end while;
11 }

Figure 4.6: The background process of TSO

after a store, which blocks the processor until its store buffer is empty (see Fig. 4.7).
This ensures all stores preceding the fence are visible to other processors.

I ran the litmus tests SB, IRIW, n6, n5, n4b, example 8-1, example 8-2, example
8-4, example 8-6, example 8-9, example 8-10 and AMD5 as described in [Sewell et al.,
2010]. The results I obtained matches the description in the literature. As we will see
in the next section, the implementation of TSO acts as a stepping stone towards the
implementation of WMM, as their operational models share some similarities.

1with represents nondeterministic choices among the members of a set

18 Memory Models

1 def commit() {
2 while Len(store_buffer[self]) /= 0 {
3 }
4 return;
5 }

Figure 4.7: The commit fence of TSO

4.5 WMM

It would also be interesting to study and encode some weaker memory models
compared with TSO. Such memory models can be found in commercial architectures,
such as ARM and POWER. However, their axiomatic and operational semantics
are very complex [Sarkar et al., 2011; Flur et al., 2016]. In addition, both of the
operational models rely on maintaining out-of-order (OOO) thread subsystems to
permit all possible behaviours. The thread subsystems keep track of instructions
committed/in-flight, where in-flight instructions are subjected to restarting if the
speculation turns out to be unsound. This requires the model to maintain some sort
of reorder buffer (ROB), which complicates the implementation.

WMM was proposed by Zhang et al. [2017] as a definitionally simple yet flexible
memory model for RISC-V. It permits all reorderings except load-store reordering.
This trade-off does not hinder the performance much, as per Zhang et al.’s per-
formance evaluation. In addition, it does not enforce any dependency ordering,
including data-dependent loads and control flow dependency. To demonstrate the
implications, I use two litmus tests. As shown in Fig. 4.8, stores cannot overtake
loads, and it cannot be the case that both r1 and r2 are 1. WMM does allow other

Proc 1 Proc 2
I1: r1 = Ld b I3: r2 = Ld a
I2: St a 1 I4: St b 1

r1 = r2 = 1
forbidden on WMM

Figure 4.8: LB: test for load-store reordering

reorderings, such as load-load reordering, as shown in Fig. 4.9. Due to the insertion of
a full fence (which prevents instructions moving across the fence) at I2, the two stores
from processor 1 must update memory in order. However, processor 2 is permitted to
see an up-to-date version of b and a stale version of a, despite the presence of control
flow dependency at I5.

The operational semantics of WMM is also given in I2E, making it a natural next
step from the encoding for TSO. Possible behaviours of WMM are captured nicely
using two kinds of buffers, which leads to clean definition and implementation. In
addition to store buffers (as in TSO), WMM introduces invalidation buffers (IB) for
each processor (see Fig. 4.10). The invalidation buffer, which is address-segregated,

§4.5 WMM 19

Proc 1 Proc 2
I1: St a 1 I4: r1 = Ld b
I2: FENCE I5: if (r1 != 0) exit
I3: St b 1 I6: r2 = Ld a

r1 = 1, r2 = 0
allowed on WMM

Figure 4.9: MP+Ctrl: test for control dependency ordering

Memory

Proc
0

Proc
n ...

SBIB SBIB

Figure 4.10: Abstract Model of WMM

allows a processor to see stale versions of an address. But once the processor has seen
a value v from address a at time t, it cannot see values from times before t. The store
buffers in WMM have a new flavour. Recall that in TSO, entries in the store buffer for
a processor are ordered by time, regardless of the address, and hence the name Total
Store Ordering. In WMM, store buffers are address segregated, just like invalidation
buffers. This allows stores of different addresses to update memory in different order.
These buffers lead to the behaviours shown in the litmus tests above.

Luckily, the encoding of WMM in TLA is not much harder if appropriate design
choices are made. Since both buffers are address-segregated, the trick is to make
buffers mappings from addresses to tuples for each processor (see Fig. 4.11). I will

1 variables sb = [p \in Procs |-> [a \in Adr |-> <<>>]],
2 ib = [p \in Procs |-> [a \in Adr |-> <<>>]];

Figure 4.11: Address-segregated definition of buffers of WMM

show how this representation helps the modelling of operations, starting with stores.
A store puts the new value into the corresponding SB and flushes the corresponding
IB as shown in Fig. 4.12. Concurrently, a background process repeatedly, nondeter-
ministically chooses a processor and an address (see Fig. 4.13). If the corresponding
SB is non-empty, it dequeues the oldest entry (WMM still maintains the store ordering
for an address), and updates the memory. In addition, the old memory value for
that address is added to the IB of every other process whose SB does not contain the

20 Memory Models

1 def store(addr, val) {
2 sb[pid][addr] := Append(sb[pid][addr], val);
3 ib[pid][addr] := <<>>;
4 }

Figure 4.12: The store operation of WMM

address. Finally, a load operation as shown in Fig. 4.14 checks whether an address

1 proc background {
2 while TRUE do
3 with p \in Procs do
4 with a \in Adr do
5 if Len(sb[p][a]) /= 0 then
6 // find the oldest entry for an address in sb
7 head := Head(sb[p][a]);
8 // for all processes
9 ib := [p’ \in Procs |->

10 // leave the ib of the original process untouched
11 // or if sb contains the address
12 IF p’ = p \/ Len(sb[p’][a]) = 0
13 THEN ib[p’]
14 ELSE [ib[p’] EXCEPT ![a] = Append(ib[p’][a], memory[a])]
15];
16 sb[p][a] := Tail(sb[p][a]);
17 memory[a] := head;
18 end if;
19 end with;
20 end with;
21 end while;
22 }

Figure 4.13: The background process of WMM. with represents nondeterministic choices
among the members of a set.

is present in SB. If that is the case, the store operation simply returns the freshest
entry. Otherwise, it nondeterministically looks up the memory or IB. If it queries the
memory, then the corresponding IB will be purged. If it reads an entry of the IB, then
any older entry will be removed. Either way, once a processor sees a version of an
address, it will not see any older version. WMM provides a commit fence as shown
in Fig. 4.15, which can be implemented in a similar fashion compared with TSO. In
addition, WMM provides a reconcile fence as shown in Fig. 4.16, which clears the
IB of the issuing processor. This prevents the processor from reading stale values.

4.6 Dependency Ordering of Different Models

Usually, many microarchitectural details of processors are not visible to programmers
modulo performance implications. However, some reorderings can lead to different
and quite unexpected execution results. Especially with respect to dependency order-

§4.6 Dependency Ordering of Different Models 21

1 def load(addr) {
2 if Len(sb[pid][addr]) /= 0 then
3 // address is presented in sb
4 idx := Len(sb[pid][addr]);
5 return sb[pid][addr][idx];
6 else
7 either
8 val := memory[addr];
9 ib[pid][addr] := <<>>;

10 return val;
11 or
12 with i \in 1..Len(ib[pid][addr]) do
13 val := ib[pid][addr][i];
14 // purging older entries
15 ib[pid][addr] := ib[pid][addr][i..Len(ib[pid][addr])];
16 return val;
17 end with;
18 end either;
19 end if;
20 }

Figure 4.14: The load operation of WMM. either ... or ... represents nondeterministic
choices.

1 def commit() {
2 while (\E a \in Adr: Len(sb[self][a]) /= 0) {
3 }
4 return;
5 }

Figure 4.15: The commit fence of WMM. \E means exists (∃).

1 def reconcile() {
2 ib[pid] := [a \in Adr |-> <<>>];
3 return;
4 }

Figure 4.16: The reconcile fence of WMM

22 Memory Models

ing, different memory models show a wide spectrum of behaviours. This warrants
some summary here.

Two litmus tests, PPO015 (“PPO”) and MP+dmb+fri+rfi-ctrlisb (“MP”), are used
here. These tests demonstrate different behaviours exhibited on different memory
models with regard to control-flow dependency and data dependency. In litmus test
PPO (see Fig. 4.17), the store in I5 has a data dependency on the load in I4 (even
though r0 xor r0 always evaluates to 0). Therefore, I7 depends on I4 via z. In litmus

Proc 1 Proc 2
I1: St x 1 I4: r0 = Ld y
I2: FENCE I5: St z (r0 xor r0)+1
I3: St y 1 I6: St z 2

I7: r3 = Ld z
I8: if r3 = r3 then skip else skip
I9: CFENCE
I10: r4 = Ld x

r0 = 1, r4 = 0?

Figure 4.17: Litmus test PPO015

test MP (see Fig. 4.18), the data dependency is removed, and I6 directly depends
on I4 via y. Both tests have a control fence2 (CFENCE) inserted. These fences are

Proc 1 Proc 2
I1: St x 1 I4: r0 = Ld y
I2: FENCE I5: St y 2
I3: St y 1 I6: r3 = Ld y

I7: if r3 = r3 then skip else skip
I8: CFENCE
I9: r4 = Ld x

r0 = 1, r3 = 2, r4 = 0, x = 1, y = 2?

Figure 4.18: Litmus test MP+dmb+fri+rfi-ctrlisb

meant to prevent loads (I10 of PP015 and I9 of MP) from happening before the branch
instructions (I8 of PPO and I7 of MP). On the face of it, the control fence together with
the data dependency should keep the load and the branching in order. However, as
indicated by the results below, these conditions are not sufficient in some memory
models. The results are summarized in Table 4.1.

The model proposed by Colvin and Smith [2018] is based on pair-wise reordering.
It was designed to be a generic framework for verifying programs on weak memory

2Control fences are implemented as isync on POWER, isb on ARM and reconcile on WMM

§4.7 Summary 23

Memory Model
PPO MP

Hardware Model Hardware Model
Colvin and Smith N/A X N/A X

POWER ? X × ×
ARM × × X X

WMM N/A × N/A ×

Table 4.1: Results of PPO015 and MP+dmb+fri+rfi-ctrlisb on different memory models. X
means the outcome is allowed by the model or observable on machines, × means the outcome
is forbidden by the model or not observable on machines, and ? means the outcome is not
reported by the literature I surveyed.

models, and was instantiated to capture the behaviours of the ARM and POWER
processors. Both of these litmus tests are permitted by this model.

The operational model of ARMv8 due to Flur et al. [2016] permits MP, and the
behaviour is observable on some ARM machines. However, this model forbids PPO
due to the data dependency.

The operational model of POWER due to Sarkar et al. [2011] forbids MP, and it is
not observed on tested POWER machines [Alglave et al., 2014]. The model permits
PPO, but the literature I have surveyed does not report whether this behaviour is
observable on POWER machines. I could not test this myself as I do not have access
to POWER machines.

WMM forbids both litmus tests. From the point of view of the axiomatic model,
reconcile orders all instructions. That is, all instructions after the fence in program
order also come after the fence in memory order. From the point of view of the
operational model, reconcile purges the IB, and the subsequent load will not read
the stale value.

4.7 Summary

In this chapter, I gave an overview of memory models and their semantics. I demon-
strated how TSO and WMM can be implemented in TLA, and therefore be integrated
as a part of the verification. I also discussed some discrepancies between different
memory models with respect to dependency ordering. In the next chapter, I will use
the Chase-Lev queue as a concrete example to show these encodings can be used to
verify complex, real-world data structures.

24 Memory Models

Chapter 5

Case Study: the Chase-Lev Queue

In Chapter 3 and Chapter 4, I showed how different pieces of software systems can
be represented in TLA. In this Chapter, I will use the Chase-Lev queue under the
WMM memory model as a concrete example to show how TLA can be used to model
real-world data structures.

5.1 Overview

The generic workflow of verifying a concurrent data structure is shown in Fig. 5.1.
First, the program and the corresponding memory model need to be translated into

Program Memory
Model

TLA
properties

TLA
action

TLC
(model checker)

Violated
+

counterexample

NOT
violated

Specification

Figure 5.1: The workflow of verifying a program

a TLA next-step action. Then, the specifications need to be translated into TLA
properties using temporal formulae. Next, the model checker takes the TLA action
and properties as inputs, and explores reachable states. If any property is violated,
the model checker will report the violation with a counterexample.

In previous chapters, I have addressed parts of the workflow. In Chapter 3, I
showed how a concurrent data structure and its specifications can be expressed in
TLA in general. And in Chapter 4, I demonstrated how memory models can be
encoded in TLA. In this chapter, I will show how these can be combined to achieve a

25

26 Case Study: the Chase-Lev Queue

verification goal for any given program. In particular, I will use a C implementation
of the Chase-Lev queue as an example to show how the above steps are realized.

5.2 The Chase-Lev Queue

The Chase-Lev queue [Chase and Lev, 2005] is a work-stealing queue using a circular
array as the backing storage. It is an important data structure for load balancing
between parallel workers. Each worker owns a queue of work items, and the worker
generates or consumes work by pushing and popping at the bottom of the queue.
When a worker runs out of work, it may steal from the top (instead of the bottom to
minimize contention) of the queues of other workers.

This data structure has also attracted some research interest in recent years. Lê
et al. [2013] provided implementations for weak memory models in C and ARMv7.
The C implementation uses atomic operations provided by the C11 standard [ISO,
2011]. The ARM implementation is hand-tuned to use as few fences as possible, and
Lê et al. claimed to have proven its correctness against [Sarkar et al., 2011]. However,
as pointed out by the literature [Norris and Demsky, 2013; Ou and Demsky, 2017;
Colvin and Smith, 2018], both the C and ARM implementations contain bugs.

It would be nice that if I could reproduce these results in TLA to validate these
claims in prior work.

5.3 Bug in the C implementation

5.3.1 Mapping C Atomic Operations

The excerpt of the C11 implementation of the Chase-Lev queue provided by Lê
et al. is shown in Fig. 5.2. The first step of the verification process is to translate
the C11 atomic operations into WMM operations. Fortunately, the translation is
readily available in [Zhang et al., 2017]. Specifically, loads with acquire translate to
load; reconcile sequences. This is to prevent instructions after the load overtaking
it. That is, subsequent instructions should not see stale values via IB. Stores with
release translate to commit; store sequences. This it to ensure the store not overtake
previous instructions. That is, previous instructions should successfully update the
memory before executing the current instruction.

The translation of compare_exchange is discussed below.

5.3.2 Implementing Compare-Exchange

The steal operation uses a compare-exchange operation for correct synchronization
on the top of the queue, and it is important that I implement this operation. However,
implementing compare-exchange for the WMM model in TLA proves to be surpris-
ingly complicated. The most important and difficult part is to ensure the atomicity of
the operation. Recall that the atomicity is only maintained at the action-level in TLA.
Since each operation consists of multiple TLA actions, I adopted a lock, which will

§5.3 Bug in the C implementation 27

1 void push(Deque *q, int x) {
2 size_t b = load_explicit(&q->bottom, relaxed);
3 size_t t = load_explicit(&q->top, acquire);
4 Array *a = load_explicit(&q->array, relaxed);
5 if (b - t > a->size - 1)
6 resize(q);
7 store_explicit(&a->buffer[b % a->size], x, relaxed);
8 thread_fence(release);
9 store_explicit(&q->bottom, b + 1, relaxed);

10 }
11 int steal(Deque *q) {
12 size_t t = load_explicit(&q->top, acquire);
13 thread_fence(seq_cst);
14 size_t b = load_explicit(&q->bottom, acquire);
15 int x = EMPTY;
16 if (t < b) {
17 Array *a = load_explicit(&q->array, relaxed);
18 x = load_explicit(&a->buffer[t % a -> size], relaxed);
19 if (!compare_exchange_strong_explicit(&q->top, &t, t+1, seq_cst, relaxed))
20 return ABORT;
21 }
22 return x;
23 }

Figure 5.2: The C11 implementation of Chase-Lev queue

be explained below. This seems paradoxical as people use atomic operations, such
as compare-exchange, to avoid using locks. However, a lock is essential in a TLA
modelling to ensure the processor issuing the operation has exclusive access to the
memory.

A compare-exchange operation with seq_cst ordering is decomposed into the
following steps. The process first atomically checks and acquires the lock. If it
successfully acquires the lock, it also sets the lock owner to itself simultaneously
(see Fig. 5.3). Then, it issues a commit; reconcile sequence to make sure that all

1 def lock() {
2 if Lock /= LOCKED then
3 Lock := LOCKED;
4 Lock_Owner := pid;
5 end if;
6 }

Figure 5.3: The lock operation of WMM

previous stores are committed to the memory, and it sees an up-to-date version of
the memory. Then, it loads the memory, and checks whether the value is expected. If
that is the case, it stores to the memory, and then issues a commit fence to make sure
the update can be seen by any subsequent instructions. After completing all these
actions, it releases the lock (see Fig. 5.4).

With the presence of a lock, any operation that reads or writes the memory also

28 Case Study: the Chase-Lev Queue

1 def unlock() {
2 assert Lock = LOCKED /\ Lock_Owner = pid;
3 Lock := UNLOCKED;
4 Lock_Owner := nil;
5 }

Figure 5.4: The unlock operation of WMM

needs to be modified accordingly. Specifically, the background process and the load
need to be changed. The background process can only dequeue an address-value pair
from the SB of the lock owner when the lock is held (see Fig. 5.5). Note that the store

1 proc background {
2 while TRUE do
3 with p \in {p’ \in Procs: Lock = UNLOCKED \/ Lock_Owner = p’} do
4 ...
5 end with;
6 end while;
7 }

Figure 5.5: The background process of WMM with the presence of lock

operations do not need to be changed as they only affect the SB of the issuing process,
and the modified version of the background process ensures that stores from other
processes will not update the memory while the lock is held. The load operations
simply block when the lock is held by other processes as shown in Fig. 5.6.

1 def load(addr) {
2 _loop:
3 if Lock = LOCKED /\ Lock_Owner /= self then
4 goto _loop;
5 else
6 ...
7 end if;
8 }

Figure 5.6: The load operation of WMM with the presence of lock

This completes the encoding of compare-exchange operations of seq_cst order-
ing.

5.3.3 Checking Properties

As pointed out by Norris and Demsky [2013], the bug in the C implementation is that
the ordering at line 17 of Fig. 5.2 is relaxed, which is too weak. The load of queue
data at line 18 can therefore be reordered before the load of array. This can result in
reading uninitialized memory when the queue is resized and moved.

§5.4 Discussion 29

To verify this claim, I initialized all memory addresses to a special value, e.g., 42.
I defined two processes, one for enqueuing and another for stealing. Their PIDs are 1
and 2 respectively. Process 1 tries to steal from the queue. Process 2 first pushes 2 to
the queue and copies the buffer to a new location, mimicking resizing of the queue. I
defined a safety property that process 1 should never read uninitialized memory, i.e.,
the return value of steal should never be 42.

I ran the model checker, which took around 11 seconds with 4 worker threads on
a laptop with Intel R© CoreTM i5-5257U CPU. Note that this is not intended to be a
rigorous performance evaluation. It is meant to give the reader a rough idea about
the performance of the TLA toolchain. The model checker successfully reported the
violation of the property. Since the load of array is relaxed, there is no insertion of
a memory fence. As a result, the subsequent load of queue data could and did read
the stale value from the IB. To fix the bug, the load of array needs to be changed to
acquire ordering. This will insert a reconcile fence after the load of array, which
will purge the IB and prevent the read of uninitialized memory. This is consistent
with what was reported by Norris and Demsky.

5.4 Discussion

In Section 5.3, I use the C implementation of the Chase-Lev queue as an example to
show the workflow of using TLA to verify a concurrent data structure. The idea be-
hind, however, is not limit to this particular data structure or programming language.
In fact, one advantage of using TLA is the elegance of unified representation. Since
the program, the memory model and the specification are all written in the same
logic, they can be reused across different verification goals. To handle a different
programming language, only the translation from that language to TLA needs to
be changed, and all programs in that language can then be automatically translated.
Likewise, to adapt a different memory model, one can keep programs untouched
and only redefine how loads, stores and memory fences work. Last but not least,
all of these can be checked using the same tool. The above properties make TLA an
appealing candidate for verifying concurrent data structures.

The flexibility might come with the cost of performance. For example, being
a generic tool, the current version of the model checker is unlikely to exploit the
property of memory buffers and adapt a better internal representation. I argue that
this is not an inherent problem with TLA, as it can be mitigated by providing more
efficient primitive types and more runtime optimizations.

5.5 Bug in the ARM implementation

Colvin and Smith [2018] claimed that the ARM implementation given by Lê et al.
contains an unnecessary control fence, and another incorrectly placed control fence.
Since WMM and ARM do not have equivalent memory models, I cannot validate

30 Case Study: the Chase-Lev Queue

the claim using WMM. I decided to consult the mapping of C atomic operations to
ARM [Sewell, 2016].

Disregarding the bug discussed in the previous section, the ARM implementation
still contains a bug in the steal operation. The C code was already shown in Fig. 5.2.
The corresponding ARM code, also provided by Lê et al., is shown in Fig. 5.7. Since

1 int steal(Deque *q) {
2 size_t t = R(q->top);
3 sync;
4 size_t b = R(q->bottom);
5 ctrl_isync;
6 int x = EMPTY;
7 if (t < b) {
8 Array *a = R(q->array);
9 x = R(a->buffer[t % a -> size]);

10 ctrl_isync;
11 bool success = false;
12 atomic
13 if (success = (R(q->top) == t))
14 W(q->top, t + 1);
15 if (!success)
16 return ABORT;
17 }
18 return x;
19 }

Figure 5.7: The ARM implementation of the steal operation

relaxed operations do not order anything, any insertion of a fence must be due to a
stricter C ordering. It is clear that the full ARM fence sync inserted at line 3 of the
ARM code corresponds to line 13 of the C code. Similarly, the control fence inserted
at line 5 of the ARM code is meant to realize the acquire semantics of the load at
line 14 of the C code. Preceded by two relaxed loads, the control fence at line 10 of
the ARM code can only correspond to the compare-and-swap operation at line 19 of
the C code.

However, the explanation (see Fig. 5.8) in [Colvin and Smith, 2018] does not seems
to be faithful. Since they have assumed CAS as a primitive, the cfence at line 8 should
not be included. However, the general reasoning in [Colvin and Smith, 2018] is correct:
to prevent the speculative load of line 7 in Fig. 5.8, a cfence must be placed after the
guard at line 6. That is, line 10 in the ARM code (see Fig. 5.7) should be moved after
the conditional at line 7. This is to ensure that the acquire semantics of line 14 of
the C code (see Fig. 5.2) is correctly realized. This is cross-checked by Sewell [2016],
who suggests that a correct translation of load-acquire in C is ldr; teq; beq; isb
to ensure the control-flow dependency1.

1Will Deacon at ARM remarks that although this usage is sound, a ldr; dmb ish sequence is
preferred [Sewell, 2016].

§5.6 Summary 31

1 steal
2 h := head;
3 fence;
4 t := tail;
5 cfence;
6 if h < t then
7 return := tasks[h mod L];
8 cfence;
9 if !CAS(head, h, h+1) then

10 return := fail
11 else
12 return := empty

Figure 5.8: The translation of the ARM implementation of the steal operation

5.6 Summary

In this chapter, I showed the bug-finding process for an implementation of the Chase-
Lev queue. Starting from source code in C11 atomic operations, I translated it into the
corresponding WMM operations. Then, by specifying the property as an invariant,
the model checker successfully found a problematic execution, which confirmed the
bug found in prior work. I discussed that how the same idea can be adapted to other
problems. I argued that TLA is indeed capable of verifying concurrent data structures
on weak memory models. At the end of the chapter, I also discussed the bug in the
ARM implementation of the Chase-Lev queue.

32 Case Study: the Chase-Lev Queue

Chapter 6

Conclusion

Verifying computer programs of any considerable size is hard. With concurrent
execution and the presence of weak memory models, the verification only becomes
harder. Since manual verification is less tractable in this case, many different machine-
aided approaches have been proposed. In this report, I argue that TLA and the
related software toolchains are suitable for modelling and verifying concurrent data
structures.

Chapter 2 summarizes TLA, and shows how this system’s logic can be related to
the program execution and properties.

In Chapter 3, I showed in general how concurrent data structures can be mapped
to TLA constructs. By using functions in TLA, both the local and global state of
a program can be captured. In addition, the control flow of programs can also be
represented in TLA via the idea of program counters. Moreover, I used the Treiber
stack and the Michael-Scott queue to demonstrate patterns involved in encoding
concurrent data structures and their specification.

Then, in Chapter 4, I discussed memory models and their semantics. I showed
how two weak memory models, TSO and WMM, can be smoothly encoded in TLA.
This enables seamless integration with concurrent data structures expressed in TLA.
Throughout the chapter, litmus tests are used to reveal the difference between memory
models. These tests also help when I checked my encoding against models in prior
work. At the end of the chapter, I discussed the impact of dependency ordering on
different memory models, which show quite a wide range of behaviours.

Finally, Chapter 5 used the Chase-Lev queue as a concrete example to show how
TLA can be applied to real-world data structures. Starting with C source code, I
first translated it to WMM operations. After constructing a sample scenario (push
and then resize) and specifying an invariant, I successfully found the bug found in
prior work. The results show that TLA is appropriate for modelling and verifying
concurrent data structures.

6.1 Future Work

More Comprehensive Litmus Tests Section 4.2 discussed litmus tests and how
they help contrasting different memory models and establishing the correctness of

33

34 Conclusion

my encodings. However, I only used a small set of litmus tests due to limited time.
There is a collection of litmus tests available online1. Future work could try

automatically translating these tests into their TLA encoding. This comprehensive set
of tests can help iron out bugs in corner cases. It might also be helpful to generate
more litmus tests automatically as discussed in [Wickerson et al., 2017; Mador-Haim
et al., 2010]

Automatic Program Translation In Chapter 3, I showed how concurrent data struc-
tures in general can be expressed in TLA. And in Chapter 5, I showed how to translate
operations of a programming language into operations of weak memory models. The
above process is quite manual, yet systematic. This means that it would be worth-
while developing a toolchain that takes an assembly or C program and translates it
into TLA. Such tools can make the verification process much more ergonomic and
thus appeal to a broad audience.

Asynchronous Satisfaction of Memory Requests In this work, I only encoded the
operational models of TSO and WMM in TLA. Their behaviours are nicely captured
by buffers like store buffers and invalidation buffers. These buffers can be easily
mapped to TLA using functions and sequences.

There are other operational models, such as Flowing/POP [Flur et al., 2016] that
are based on the idea of satisfying memory requests. However, these require a thread
subsystem that does explicit OOO, which is not easy to implement in TLA as it is not
a generic programming language. Future work might model this in TLA by allowing
asynchronous satisfaction of memory requests.

1http://www.cl.cam.ac.uk/users/pes20/rmem

http://www.cl.cam.ac.uk/users/pes20/rmem

Bibliography

Alglave, J.; Maranget, L.; Sarkar, S.; and Sewell, P., 2011. Litmus: Running
tests against hardware. In Proceedings of the 17th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems: Part of the Joint European
Conferences on Theory and Practice of Software, TACAS’11/ETAPS’11 (Saarbrücken,
Germany, 2011), 41–44. Springer-Verlag, Berlin, Heidelberg. http://dl.acm.org/citation.
cfm?id=1987389.1987395. (cited on page 14)

Alglave, J.; Maranget, L.; and Tautschnig, M., 2014. Herding cats: Modelling,
simulation, testing, and data mining for weak memory. ACM Trans. Program. Lang.
Syst., 36, 2 (Jul. 2014), 7:1–7:74. doi:10.1145/2627752. http://doi.acm.org/10.1145/
2627752. (cited on pages 15 and 23)

Chase, D. and Lev, Y., 2005. Dynamic circular work-stealing deque. In Proceedings of
the Seventeenth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’05 (Las Vegas, Nevada, USA, 2005), 21–28. ACM, New York, NY, USA.
doi:10.1145/1073970.1073974. http://doi.acm.org/10.1145/1073970.1073974. (cited on
page 26)

Chaudhuri, K.; Doligez, D.; Lamport, L.; and Merz, S., 2010. Verifying safety
properties with the TLA + proof system. In Automated Reasoning, 142–148. Springer
Berlin Heidelberg, Berlin, Heidelberg. (cited on page 5)

Colvin, R. J. and Smith, G., 2018. A wide-spectrum language for verification of pro-
grams on weak memory models. In Formal Methods, 240–257. Springer International
Publishing, Cham. (cited on pages 22, 23, 26, 29, and 30)

Flur, S.; Gray, K. E.; Pulte, C.; Sarkar, S.; Sezgin, A.; Maranget, L.; Dea-
con, W.; and Sewell, P., 2016. Modelling the ARMv8 architecture, opera-
tionally: Concurrency and ISA. SIGPLAN Not., 51, 1 (Jan. 2016), 608–621. doi:
10.1145/2914770.2837615. http://doi.acm.org/10.1145/2914770.2837615. (cited on
pages 18, 23, and 34)

Herlihy, M. P. and Wing, J. M., 1990. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12, 3 (Jul. 1990), 463–492.
doi:10.1145/78969.78972. http://doi.acm.org/10.1145/78969.78972. (cited on page 10)

ISO, 2011. Information technology – programming languages – C. Standard, Interna-
tional Organization for Standardization, Geneva, CH. (cited on page 26)

Jones, C. B., 1983. Specification and design of (parallel) programs. In Proceedings of
IFIP’83, 321–332. North-Holland. (cited on page 1)

35

http://dl.acm.org/citation.cfm?id=1987389.1987395
http://dl.acm.org/citation.cfm?id=1987389.1987395
http://dx.doi.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
http://doi.acm.org/10.1145/2627752
http://dx.doi.org/10.1145/1073970.1073974
http://doi.acm.org/10.1145/1073970.1073974
http://dx.doi.org/10.1145/2914770.2837615
http://dx.doi.org/10.1145/2914770.2837615
http://doi.acm.org/10.1145/2914770.2837615
http://dx.doi.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972

36 Bibliography

Lamport, L., 1979. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28, 9 (Sep. 1979), 690–691. doi:10.1109/
TC.1979.1675439. https://doi.org/10.1109/TC.1979.1675439. (cited on page 13)

Lamport, L., 1994. The Temporal Logic of Actions. ACM Trans. Program. Lang. Syst.,
16, 3 (May 1994), 872–923. doi:10.1145/177492.177726. http://doi.acm.org/10.1145/
177492.177726. (cited on pages 1 and 3)

Lamport, L., 2002. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA. ISBN 032114306X. (cited on page 5)

Lamport, L., 2006. Checking a multithreaded algorithm with +CAL. In Proceedings
of the 20th International Conference on Distributed Computing, DISC’06 (Stockholm,
Sweden, 2006), 151–163. Springer-Verlag, Berlin, Heidelberg. doi:10.1007/11864219_
11. http://dx.doi.org/10.1007/11864219_11. (cited on page 7)

Lamport, L., 2009. The PlusCal algorithm language. In Theoretical Aspects of Comput-
ing - ICTAC 2009, 36–60. Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on
pages 5 and 7)

Lê, N. M.; Pop, A.; Cohen, A.; and Zappa Nardelli, F., 2013. Correct and efficient
work-stealing for weak memory models. In Proceedings of the 18th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’13 (Shenzhen,
China, 2013), 69–80. ACM, New York, NY, USA. doi:10.1145/2442516.2442524.
http://doi.acm.org/10.1145/2442516.2442524. (cited on pages 26, 29, and 30)

Mador-Haim, S.; Alur, R.; and Martin, M. M. K., 2010. Generating litmus tests for
contrasting memory consistency models. In Computer Aided Verification, 273–287.
Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on page 34)

Michael, M. M. and Scott, M. L., 1996. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the Fifteenth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’96 (Philadelphia,
Pennsylvania, USA, 1996), 267–275. ACM, New York, NY, USA. doi:10.1145/248052.
248106. http://doi.acm.org/10.1145/248052.248106. (cited on page 9)

Norris, B. and Demsky, B., 2013. CDSchecker: Checking concurrent data structures
written with C/C++ atomics. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications, OOP-
SLA ’13 (Indianapolis, Indiana, USA, 2013), 131–150. ACM, New York, NY, USA.
doi:10.1145/2509136.2509514. http://doi.acm.org/10.1145/2509136.2509514. (cited on
pages 26, 28, and 29)

O’Hearn, P. W., 2007. Resources, concurrency, and local reasoning. Theoretical Com-
puter Science, 375, 1 (2007), 271 – 307. doi:https://doi.org/10.1016/j.tcs.2006.12.035.
http://www.sciencedirect.com/science/article/pii/S030439750600925X. Festschrift for
John C. Reynolds’s 70th birthday. (cited on page 1)

http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/177492.177726
http://doi.acm.org/10.1145/177492.177726
http://doi.acm.org/10.1145/177492.177726
http://dx.doi.org/10.1007/11864219_11
http://dx.doi.org/10.1007/11864219_11
http://dx.doi.org/10.1007/11864219_11
http://dx.doi.org/10.1145/2442516.2442524
http://doi.acm.org/10.1145/2442516.2442524
http://dx.doi.org/10.1145/248052.248106
http://dx.doi.org/10.1145/248052.248106
http://doi.acm.org/10.1145/248052.248106
http://dx.doi.org/10.1145/2509136.2509514
http://doi.acm.org/10.1145/2509136.2509514
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2006.12.035
http://www.sciencedirect.com/science/article/pii/S030439750600925X

Bibliography 37

Ou, P. and Demsky, B., 2017. Checking concurrent data structures under the C/C++11
memory model. In Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’17 (Austin, Texas, USA, 2017), 45–59.
ACM, New York, NY, USA. doi:10.1145/3018743.3018749. http://doi.acm.org/10.1145/
3018743.3018749. (cited on page 26)

Pnueli, A., 1977. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, SFCS ’77, 46–57. IEEE Computer
Society, Washington, DC, USA. doi:10.1109/SFCS.1977.32. https://doi.org/10.1109/
SFCS.1977.32. (cited on pages 1 and 3)

Sarkar, S.; Sewell, P.; Alglave, J.; Maranget, L.; and Williams, D., 2011. Under-
standing POWER multiprocessors. In Proceedings of the 32Nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’11 (San Jose, Califor-
nia, USA, 2011), 175–186. ACM, New York, NY, USA. doi:10.1145/1993498.1993520.
http://doi.acm.org/10.1145/1993498.1993520. (cited on pages 18, 23, and 26)

Sewell, P., 2016. C/C++11 mappings to processors. https://www.cl.cam.ac.uk/~pes20/
cpp/cpp0xmappings.html. [Online; accessed 05/11/2018] https://web.archive.org/web/
20181016220256/https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html. (cited on
page 30)

Sewell, P.; Sarkar, S.; Owens, S.; Nardelli, F. Z.; and Myreen, M. O., 2010. X86-
TSO: A rigorous and usable programmer’s model for x86 multiprocessors. Commun.
ACM, 53, 7 (Jul. 2010), 89–97. doi:10.1145/1785414.1785443. http://doi.acm.org/10.
1145/1785414.1785443. (cited on pages 15, 16, and 17)

Sorin, D. J.; Hill, M. D.; and Wood, D. A., 2011. A primer on memory consistency
and cache coherence. No. 16 in Synthesis lectures on computer architecture. Morgan
& Claypool, San Rafael, Calif. ISBN 978-1-60845-564-5 978-1-60845-565-2. OCLC:
930741576. (cited on page 15)

Treiber, R. K., 1986. Systems Programming: Coping with Parallelism. No. 5118 in Re-
search Report RJ. International Business Machines Incorporated, Almaden Research
Center. (cited on page 9)

Wickerson, J.; Batty, M.; Sorensen, T.; and Constantinides, G. A., 2017. Auto-
matically comparing memory consistency models. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL 2017 (Paris,
France, 2017), 190–204. ACM, New York, NY, USA. doi:10.1145/3009837.3009838.
http://doi.acm.org/10.1145/3009837.3009838. (cited on page 34)

Zhang, S.; Vijayaraghavan, M.; and Arvind, 2017. Weak memory models: Bal-
ancing definitional simplicity and implementation flexibility. In 2017 26th Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT), 288–302.
doi:10.1109/PACT.2017.29. (cited on pages 15, 18, and 26)

http://dx.doi.org/10.1145/3018743.3018749
http://doi.acm.org/10.1145/3018743.3018749
http://doi.acm.org/10.1145/3018743.3018749
http://dx.doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1145/1993498.1993520
http://doi.acm.org/10.1145/1993498.1993520
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://web.archive.org/web/20181016220256/https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://web.archive.org/web/20181016220256/https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
http://dx.doi.org/10.1145/1785414.1785443
http://doi.acm.org/10.1145/1785414.1785443
http://doi.acm.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/3009837.3009838
http://doi.acm.org/10.1145/3009837.3009838
http://dx.doi.org/10.1109/PACT.2017.29

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Statement
	Contribution
	Outline

	Temporal Logic of Actions
	States and Actions
	Temporal Formulae
	Model Checking
	Summary

	Concurrent Data Structures
	Global and Local States
	Control Flow
	Modelling Concurrent Stacks and Queues
	ABA Problem
	Allocating New List Nodes
	Specifying Properties

	Summary

	Memory Models
	Overview
	Litmus Tests
	Semantics of Memory Models
	Total Store Ordering
	WMM
	Dependency Ordering of Different Models
	Summary

	Case Study: the Chase-Lev Queue
	Overview
	The Chase-Lev Queue
	Bug in the C implementation
	Mapping C Atomic Operations
	Implementing Compare-Exchange
	Checking Properties

	Discussion
	Bug in the ARM implementation
	Summary

	Conclusion
	Future Work

	Bibliography

