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Abstract 

 

Autoimmunity is an immunological disorder whereby patients have lost 

immunological tolerance to self-antigen. It has extreme financial and socioeconomic 

burden with costs of over 100 billion dollars in the USA alone, and an estimated 

prevalence of 9.4%, and evidence indicates that this estimate has increased at a rate of 

5% per year for the past 3 years. These phenotypes can be manifested in more severe 

forms through polyautoimmunity, whereby patients are carrying 2 or more 

autoimmune conditions. In addition to that, there is also the most extreme phenotype 

of autoimmunity known as the Multiple Autoimmune Syndrome (MAS), consisting of 

cases where patients have 3 or more autoimmune diseases. These extreme phenotypes 

are extremely important for genetic research as will be elaborated upon in this thesis. 

For more than 20 years, pedigrees from the world’s largest known genetic isolate, 

from the Paisa region of Colombia have been ascertained and thoroughly followed by 

Dr. Juan-Manuel Anaya and Dr. Mauricio Arcos-Burgos. This population has 

maintained its status as a genetic isolate since the 16th century, during the early 

colonization by the Spanish Conquistadors. 

In this thesis, our attempts in identifying potential candidate variants potentially 

underpinning the genetic etiology of autoimmune phenotypes in this population is 

facilitated by the fact that families are derived from cohorts where genetic 

homogeneity is maximized. Candidates are identified in both sporadic as well as 

familial cases. This is primarily achieved through combination of linkage analysis and 

association tests for both rare and common variants, derived from variant-calling 

pipelines and that had undergone quality control, filtering and functional annotation, 

via bioinformatic anlayses. Genes harbouring variants with significant evidence of 

linkage and association were primarily involved in negative regulation of apoptosis, 

phagocytosis, regulation of endopeptidase activity, response to lipopolysaccharides 

and plasminogen urokinase receptor activity. These findings, that were obtained by 

utilizing the combinations of statistical as well as network-based analyses have 

relevant potential implications in autoimmunity, and can be further supported with 

additional studies. 
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Chapter 1: Introduction 

 

1.1 Autoimmunity: Impact Upon Populations 

 

Medical research into autoimmunity first began over 100 years ago during its initial 

discovery [1]. The disease comprises an immune system defect in recognition of self-

tissues that leads to them being attacked as foreign antigens [1]. Studies suggest there 

are 81 autoimmune diseases (ADs) worldwide [2]. Some estimates indicate that 

autoimmunity prevalence is 4.5-5.3% worldwide [3-4]. However, in recent studies, 

this figure has increased to 9.4% [4-6]. The financial burden for 7 of the 81 known 

ADs in the USA alone is over $100 billion [6]. Currently, there is no cure for 

autoimmunity, and only symptoms can be treated. However, further knowledge of the 

genetic etiology of these conditions has been increased in recent years, to which our 

studies contribute. 

 

1.2 Physiological Understanding of Autoimmunity 

 

Patients with diseases such as Rheumatoid Arthritis (RA) often have high levels of 

IL1 beneath the synovial membrane.  These cytokines stimulate the production of 

proteinases (such as collagenases), which destroy matrix proteins within the cartilage 

and bone, allowing synovial fluid to enter these regions.  This results in irreversible 

damage and painful swelling around the join structures.  Also the presence of high 

Rheumatoid Factor (RF) titres is associated with the disease.  Whilst the actual 

mechanism is unknown, one theory for the way in which this autoantibody leads to 

the disease phenotype is that the localization of RF in the synovial membrane leads to 

excess cytokine and chemokine release creating a positive feedback mechanism that 

increases the deposition of immune complexes of RF with the Fc portion of IgG [5].  

This binding leads to activation of macrophages and neutrophils which seemingly 
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play an important role in the intense inflammatory symptoms and joint destruction 

observed in RA. 

 

Another example of highly prevalent AD is Systemic Lupus Erythematosus (SLE).  

The presence of anti nuclear antibodies (ANA) is often associated with the presence 

of SLE.  Studies indicate that defective apoptosis in SLE patients prevents effective 

clearance of all components of apoptotic cells.  This potentially exposes these nucleic 

acids (antigens) to the immune system, resulting in the stimulation of ANA 

production [6].  Production of these antibodies can be enhanced by simultaneous 

occurrence of B lymphocytes that are unable to respond to suppressor signals or 

defective T regulatory lymphocytes.  These ANA complexes can be deposited in 

different organs such as the heart, kidney and the skin, leading to activation of 

complement, emigration of neutrophils and release of kinins and prostaglandins 

ultimately resulting in inflammation [5].   

 

As well as joint and organ damage and excess inflammation, metabolic impacts are 

also evident in autoimmunity as mentioned earlier.  In the case of AITD, there are 

often elevated levels of anti thyroglobulin antibodies.  This prevents efficient 

homeostatic maintenance of T3, T4 and Thyroid Stimulating Hormones (TSH) [5], 

which are crucial in metabolism.  Thus the disease will affect iodine levels, which 

lead to Goitre, and also affects processes such as protein and carbohydrate 

metabolism, neural maturation, Sodium ion transmembrane transport and protein 

synthesis for stability of bones and joints [5].  Such impacts on metabolism lead to 

rapid fluctuation in body weight and heart rate, and brittle bones, and these symptoms 

are potentially serious as those of the diseases described above.       

 

1.3 Current Genetics Knowledge of Autoimmunity 

Early functional studies revealed that antigen presentation to T cells has a crucial role 

in triggering onset of AD.  This prompted investigation into the HLA gene locus, a 

7.6Mb region, encoding the Major Histocompatibility Complex (MHC) [7].  The 
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polymorphic nature of this locus means that it can produce many HLA subtypes and 

haplotypes, resulting in a greater chance for finding candidate mutations in 

immunologically relevant genes.  It has now been well established that molecular 

studies validated early findings from the functional investigations.  This is 

demonstrated from linkage analysis results, which thus far have revealed strong 

evidence of associations of various HLA subtypes with autoimmunity.  For example 

HLA-DRB1 has been shown to have significant association to RA, particularly in 

Latin American populations [8], whilst HLA-DQA2 has been linked to Autoimmune 

Thyroid Disease (AITD) [8].  There are many proposed mechanisms for illustrating 

the role of these HLA subtypes in autoimmunity.  One theory is that the genetic 

variants will lead to variation antigen binding grooves of the MHC protein molecule, 

such that it binds to self-antigen, which is then subsequently destroyed by the immune 

system.  Many other plausible theories exist, but the exact mechanism will depend on 

the deleterious base change that has occurred within the gene’s DNA sequence [7]. 

 

Whilst many autoimmune diseases such as SLE, RA and AITD have been shown to 

have a common association with the HLA locus, this genomic region only accounts 

for a minor fraction of genetic etiology for AD phenotypes. Thus it is logical to 

assume that the disease inheritance in patients (including those from whom these 

DNA samples were obtained) will have a multifactorial inheritance [9].  In order to 

address this issue, multiple candidates must be found to account for the presence of 

AD and MAS phenotypes observed in populations where these diseases are prevalent.  

Our Colombian population is no exception in this case. 

Since the introduction of GWAS (Genome Wide Association Studies) substantial 

progress has been made in accounting for the multifactorial genetic origins of 

autoimmunity.  For example the BLK gene encodes B cell kinases that are important 

for B cell differentiation, whilst IRGM encode a GTPase used for intracellular 

pathogen defence [10].  Often many of these variants have been associated with more 

than one disease. For example, PTPN22 contains a single coding SNP (Single 

Nucleotide Polymorphism) linked to T1D, SLE and Rheumatoid Arthritis phenotypes. 

However according to the data by Arcos-Burgos and Anaya [8], individuals show a 

high concordance of autoimmune diseases between families in comparison to other 
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members of the region’s population, suggesting that variants not necessarily common 

to the wider population, contribute to the observed phenotypes.  Thus, individuals 

with a single autoimmune disease are susceptible to MAS. It is hypothesized that both 

common and rare variants contribute to the disease manifestations of this complex 

disorder. Arguments in favour of common variants follow the common disease 

common variant (CDCV) hypothesis. I.e., due to the fact that rare variants have low 

allele frequencies in any given population, it is very unlikely that (individually) they 

will have sufficient overall effect size to show statistically significant evidence of 

contributing to a particular disease phenotype (in this case MAS, autoimmunity and 

polyautoimmunity). This may be the case even with very large sample sizes [11]. 

Common variants on the other hand are theoretically more likely to be identified 

amongst affected individuals. For this reason, it is argued that many common variants 

of small individual effects, simultaneously contribute to observed disease phenotypes 

[11]. 

In total than 2000 disease associated common variants have been identified through 

GWAS [12], so this approach has had considerable success in many complex 

diseases. Many of these variants have high population frequencies, in accordance with 

the CDCV hypothesis [13-15].   

 

Although GWAS findings have made considerable inroads to this problem in the past, 

the biggest challenge for finding candidate genetic variants is the issue of missing 

heritability. In fact, indications are that over 50% of autoimmune loci aren’t 

elucidated [9].  For example, even though in a study with more than 150,000 

individuals, more than 70 loci exhibited genome-wide significance in association with 

Type 2 Diabetes, only 11% of heritability has been explained [16]. Likewise in 

Crohn’s disease, with 210,000 individuals, only 23% of inheritance has been 

accounted [16].    

Due to reliance on common variants, GWAS are often underpowered to detect rare 

variants due to insufficient effect size.  I.e. the presence of rare variants amongst 

patients is not frequent enough to give a strong statistical association between the 

presence of these variants and the occurrence of disease [11].  Furthermore, the 

genetic basis of these complex diseases cannot be explained by the rare variant 
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hypothesis or the CDCV hypothesis alone.  Instead results from many previous 

studies into MAS indicate that the disease phenotypes are due to an interaction of 

many common variants which have small but additive impacts, as well as major effect 

variants of lower frequency [11]. 

 

To further support the rare-variant hypothesis, evolutionary and selection theory must 

also be considered. That is, disease-causing variants are likely to have reduced allele 

frequency due to their deleterious nature, as a result of purifying selection [11]. In 

particular, loss-of-function mutations, which disrupt the production of functional 

proteins, should be very rare [11]. Therefore, one can argue that pathogenic rare 

variants will potentially have greater disease effects and penetrance compared to 

common variants. 

 

Therefore there has been a greater shift towards analysis of rare variants in order to 

underpin the genetic etiology of complex diseases, including autoimmunity [11, 16]. 

Due to the low allelic frequency of rare variants as mentioned earlier, such objectives 

are more likely to be achieved via linkage analysis and Rare Variant Association 

Testing (RVAT) algorithms, as explained later [16-18]. 

 

Thus, in order to address the issue of missing heritability, methods to analyse rare 

variants are essential for studying complex diseases such as autoimmunity [16-18]. In 

particular, the power of such studies can be enhanced from genetic isolates [19]. 

 

1.4 The Value of Population Isolates in Genetic Studies 

As stated before, that the benefit of population isolates in genetic studies arises from 

the maximization of genetic and environmental homogeneity. Also, there is also 

minimization of population stratification [20]. Thus, this increases the likelihood of 

finding variants that are overrepresented and shared amongst affected individuals (be 
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it familial or sporadic cases) with autoimmunity, polyautoimmunity and MAS [20], 

compared to more admixed populations. 

In this case, our studies were conducted on the Paisa genetic isolate from Medellin, 

within the province of Antioquia in Colombia. Even though the initial founder 

population had substantial Amerindian and Iberian Spanish admixture, the 

descendants of these founders have been largely geographically and culturally 

isolated for over 400 years [19-20]. This is largely due to the mountainous 

environment, the resource rich landscape as well as the cultural 

restrictions/domination imposed by the conquistadors and representatives of the 

Spanish crown during the initial founding stages of this population, and for a long 

time thereafter. I.e., during colonial periods, the Spanish rulers would enforce strict 

segregation laws, whereby individuals of mixed Iberian-Amerindian ancestry were 

only permitted to marry with those from invading Hispanic heritage and not within 

their own communities [19-24]. Meanwhile, unmixed Native Amerindians were 

isolated over time. Continuation of this practice for many generations and exclusion 

of individuals with full Amerindian ethnicity, eventually led to a genetic structure 

whereby Paisas had greater than 85% Caucasian ancestry, deduced by identity 

coefficient analyses [19-24].  This was followed by wars for independence, whose 

outcome resulted in change of territorial distribution (for loyalists and separatists 

respectively) and hence further separation between the Paisa population and other 

regions [19-24]. Thus, from all of these historical events, for a large proportion of the 

time since the initial colonization, this population remained genetically isolated due to 

limited additional admixture and gene flow, from neighbouring subpopulations within 

the remainder of Colombia [19-24]. 

 

Thus owing to genetic evolutionary forces such as founder effects and genetic drift, 

large DNA sequence regions and haplotypes are shared between many individuals. 

This can lead to not only enrichment in common, but also rare variants, due to allelic 

fixation. In the case of the Paisa community, allelic architecture within this genetic 

isolate may have also been potentially influenced population bottlenecks, which may 

have occurred due to the large impact of historical, geographical and political 

influences. All of these factors will contribute to the unique allelic architecture of this 
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population, thereby influencing the outcome of our studies, with regard to the 

likelihood of success in identifying disease-causing variants, during genetic studies. 

 

A unique aspect about this population is the presence of a multi-ethnic founder effect 

[19-20]. As mentioned before, the founder population of the Paisas consisted of both 

Spanish invaders and Amerindian locals [19-24]. In addition to the colonizers of 

Extramadura, Andalusia and to a lesser extent the Catalan province of Spain, the Paisa 

region also received Basque and Sephardic Jewish immigrants. These groups 

migrated to this area in order to escape cultural and religious persecution, particularly 

as a consequence of the Spanish Inquisition, where tribunals were set in many 

colonies of the empire. Around the same time, the Spanish empire also sought to 

maintain a cultural monopoly on a linguistic level as well, by only allowing the use of 

the Castilian language. For this reason, the Basque and Sephardi Jewish immigrants 

sought geographical isolation from the urban bases of the Spanish Conquistadors [19-

24]. Thus, spatial and temporal admixture amongst the Basque, Sephardic Jewish and 

majority ruling Castilian ethnicities over time shaped the Paisa population, as well as 

the initial Amerindian founders in the colonization stage. This was followed by a long 

period (> 400 years or 20 generations) of geographic and cultural isolation from other 

regions. These phenomena were influential in the population genetics and multi-

founder effect of the Paisa community. Such phenomena contribute to increased 

levels of genomic linkage disequilibrium (LD) [19]. Over time, the combination of 

these evolutionary forces also increases the overall frequency and proportion of 

variants shared across a given genomic region, especially with the loss of 

heterozygosity, which can occur across multiple generations via genetic drift [7], as 

previously mentioned. 
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1.5 Utility of Extreme Phenotypes from Genetic Isolates 

In addition to the genetic homogeneity, the extreme phenotypes of autoimmunity 

carried by this cohort further enhance the power for these genetic studies. This is due 

to the fact that extreme phenotypes can facilitate the identification of rare as well as 

common variants. The reason is that the likelihood of identifying causative, major 

effect variants is higher in individuals carrying extreme phenotypes, compared to 

those with less severe manifestations of the phenotype in question [25]. This is 

illustrated using proofs based upon the principles of mathematical induction [25]. The 

proof elaborates that major effect variants are more likely to be enriched in 

individuals with more extreme/severe disease phenotypes. This was achieved by 

performing the mathematical proof, conditional on the effect size as well as the 

probability that a particular variant is causative, given the extremity of the observed 

disease phenotype, as detailed in chapter 2 [25]. Individuals can be selected, after 

adjusting for covariates, based on trait values or risk factors. For example, in case-

control analysis, one may select individuals with early onset and family history, 

comparing those to late onset, and no family history or known lifestyle factors that 

confer disease risk. For quantitative and binary traits, EPS approaches are more 

powerful than random sampling. Empirical studies suggest that selecting from the 

upper and lower tails of phenotypic distribution can reduce the required sample size 

by up to 50% or in some cases 7 fold [25-27]. Therefore, analyses utilizing such 

extreme phenotypes are advantageous, as they can remain substantially powerful, 

even with small sample sizes, particularly when cohorts are derived from genetic 

isolates, as is the case with the Paisa community. 
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1.6 Large Output Next Generation Sequencing Data 

 

Inspite of the difficulties described above in uncovering the genetic basis of MAS 

(which also apply to other complex diseases), the availability of Next Generation 

Sequencing Technologies (NGS) data generated from sequencing projects has enabled 

substantial advancements to be made in this area.  The use of automated Illumina 

HiSeq Sequencing by Synthesis pipelines (relying on cluster generation, bridge 

amplification and light wavelength detection from fluorescently labelled nucleotides) 

for exome and whole genome sequencing (WGS) data allows massive parallel 

sequencing of reads, making it a high throughput technology [28-31].  In fact up to 

1Gb of DNA is generated for each run with average error rates of less than 0.3% per 

base [28-31].   

 

 Also, during every sequencing cycle all 4 nucleotides are present as single separately 

fluorophore-labelled molecules that are competing for hybridisation to the template 

DNA, thereby minimising chances of incorporation bias.  In addition, the combination 

of paired end technology and mate pair libraries allows flexibility in insert sizes 

(200bp-5kb), sufficient to maximise coverage, minimise gaps and enable accurate 

sequencing over small repetitive regions within the exome [28-31].  Otherwise the 

short reads can align to vastly different regions in the exome and create gaps in the 

assembly, particularly in repetitive sequences.  At the same time, excessively large 

insert sizes may have the disadvantage of low coverage.  Hence Illumina sequencing 

is a powerful tool, as it can implement a combination of large insert mate pair reads 

with contiguous sequences and high coverage reads with smaller insert sizes to 

address both of these issues.  This property will be useful for de novo assembly of 

new versions of the human genome, which may be required to uncover any hidden 

variation that is present in poorly annotated genomic regions [28-31].   

 

Subsequently, more projects have emerged that generate a higher quantity of variant 

data, which can be used to search for candidate disease genes in ADs.  The emergence 

of NGS has substantially increased the volume of variant data available, as it can 

develop billions of short sequence reads in a cost-effective manner [28-31]. One such 

project is the 1000 genomes project.  This project involved the sequencing of 1092 
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human genomes worldwide (in phase 1), including 60 Colombians from Medellin, as 

well as other regions from the Americas, Africa and Europe [32].  The aim of this 

project is to use the genetic variation obtained from these different populations as a 

representative catalogue of known human genetic variation.  In total the project 

consortium has genotyped and generated haplotype maps for a large number of 

variants comprising of 38 million SNPs, 1.4 million indels and 14000 large deletions 

[32].  Also a large fraction of the reference genome (94%) used in this project for 

variant annotation is accessible due to long sequence read lengths. Therefore, this 

database provides is useful in assisting experimental design and analyses aimed at 

enhancing our understanding of the genetic basis of autoimmunity.  

 

As well as the advances in next generation sequencing (technologies), sequencing 

procedures can also be enhanced in efficiency by the use of exome capture. Firstly, it 

is a cost effective technique that employs efficient capture by hybridisation 

techniques, using exon specific oligo nucleotides to enrich only protein coding 

sequences that can be later used for sequencing.  Prior estimates in various studies 

indicate that the proportion of disease variants located in protein coding regions and 

canonical splice sites is as low as 25% and a maximum of 85% [33-34].  This is a 

considerably high estimate, given that the exome sequence comprises of only 1.2% of 

the entire genome.  This makes exome capture more cost effective, because fewer 

sequence reads are required than Whole Genome Sequencing in order to maximise 

coverage [35].  The comparatively low cost of this technology means that exome 

databases are rapidly expanding.  Therefore there is a large abundance of 

chromosomes that can be used as controls for identifying candidate disease genes 

[36]. The most extensive of these is that of Exome Aggrehation Consortium (ExAC) 

[37-38]. The ExAC project has combined many samples including but not limited to; 

exome sequencing data from the 1000 Genomes project, National Heart Lung and 

Blood Institute (NHLBI) Exome Sequencing Project (ESP) cohort [39]. In total there 

are over 10 million catalogued variants across 60,706 individuals [37-38], making it 

the largest single exome sequence database, compared to its predecessors, thereby 

offering several analytical advantages. The size of ExAC database allows for 

detection of mutational occurrence, whereby the same mutations repeatedly occur 

throughout the population history of a given cohort [37-38]. Large proportions of 

variants found in external unrelated trio samples are also shared in the ExAC 
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database, suggesting independent origins of mutations within given cohorts at 

different points in time.   

 

The ExAC database is also valuable for the diversity of sampled populations as 

reflected in the geographic ancestry axes of variation from the Principal Component 

Analysis [37-38]. The large overall sample size and cataloguing of variants from 

continentally diverse population groups, ensures minimal identification of spurious 

results from stratification and population structure. Empirical data suggests that the 

total number of candidate variants by 7 fold compared to the NHLBI ESP project [37-

38]. To compliment its variant filtering ability, the database also consists of many 

MNPs (multi-nucleotide polymorphisms) which are often missed by many 

sequencing, variant calling and quality control pipelines. This is because the variant 

calling pipeline, Genome Alignment Tool Kit (GATK) HaplotypeCaller [37-38, 40-

42], is capable of assembling reads into haplotypes and later realigning them, when 

variants falling within the same codon are encountered, for multi-nucleotide 

polymorphism (MNP) identification [37-38, 41-43]. These realignment algorithms are 

adapted from those, used for mapping insertions and deletions (INDELs) [37-38, 40-

42]. Thus, the utility ExAC as a filtering tool for identifying rare and de novo 

candidate disease alleles, based on minor allele frequencies is increased.  

 

Despite its advantages, one must be aware of the fact that exome sequencing has 

limitations.  This is because hybridisation probes are not available for all annotated 

exons within the ENSEMBL database, particularly those harbouring repeat sequences 

on chromosomal ends. Also exome sequencing will have little success to detect 

mutations in non-coding DNA that alter gene function by various regulatory 

mechanisms and enhancer effects [43]. Such variants (in recent times) are emerging 

as important contributors to genetic disease and they occur in >98% of the human 

genome, which is undetectable by exome capture, and can only be obtained by WGS 

[43-44]. Nevertheless, when performed in well-selected and phenotyped cohorts and 

powerful statistical analyses, this approach is still capable of substantial success, 

especially considering the small fraction of exome DNA across the genome.                                                         
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1.7 Developments in Linkage and Association Analyses 

 

The increase in data output of NGS means more rare-variants are seen, which 

previously were undetected by Sanger or SNP-chip technologies. To utilize the higher 

data output from NGS, enhancement of statistical analyses algorithms was essential, 

especially to identify undiscovered rare, pathogenic variants. Therefore, linkage and 

RVATs have been further enhanced, as alluded to earlier [16, 18]. When there is 

limited availability of families, the best alternative is RVAT [16, 18]. Unlike 

traditional GWAS (Genome Wide Association Studies) analyses, this method relies 

on variant aggregation/clustering. That is, rare variants within a gene can be collapsed 

together into single multi-site genotypes [16, 18]. Therefore, the association test 

statistic and the corresponding P-value to evaluate the degree of 

enrichment/overrepresentation of cases over controls is in fact reported as a gene-

based, rather than a variant-based quantity. I.e., instead of utilizing information from a 

single variant in association analyses, multiple variants are simultaneously evaluated 

as a single genotype [16, 18]. This overcomes the issue of low effect size for single 

rare variants and reduces the need for collecting extremely large sets of samples. 

 

Previous results have shown that obtaining odds ratios in excess of 1.4, with 80% 

power will require more than 500,000 samples, with disease prevalence levels of 5% 

assumed and nominal significance of 5 x 10-8.  Naturally, as sample sizes are 

increased, the number of rare causal variants will also rise along with the proportion 

of explained phenotypic variance and heritability. Using the exome sequencing 

project (ESP) by NHLBI, it was observed that explanation of phenotypic variance of 

rare variants were as high as 84% and as low as 18% for varying effect size 

simulations [16]. In fact, by these calculations it can be inferred that the estimates of 

phenotypic variance will still be underestimated, even with ~ 1000,000 individuals, 

reiterating the point of rare variant effect sizes [16].  
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Also, given that human genomes predominantly consist of higher proportions of low 

frequency, rare and/or de novo mutations over common ones, more stringency on 

variant filtering may be required [11, 16]. This further reduces analytical power, 

especially by increasing false negatives [11, 16]. Therefore, when applying multiple 

testing corrections to gene-based variant collapsing tests, one only has to adjust for ~ 

20-25000 genes in the genome, instead of millions of SNPs, thereby reducing the 

number of hypotheses to be tested.  

 

To supplement rare variant association tests, many bioinformatics tools to predict 

protein functionality of SNPs affecting amino acid sequence changes are prevalent 

[45-49], based upon sequence conservation and molecular structures. Nevertheless, 

these tools are prone to misclassification, with some studies obtaining false prediction 

rates as high as > 40% [50]. To overcome this, rare-variant tests can conduct adaptive 

weighting for combinations of multi-site genotypes within given genes according to 

their sample risk (number of individuals with genotype and disease divided by total 

number of affected people), similar to algorithms such as the Kernel Based Adaptive 

Cluster (KBAC) [18]. Therefore, the likelihood of obtaining false positive or false 

negative results, due to bias introduced by premeditated filtering strategies (based on 

protein deleteriousness predictors) is minimized [18]. However, even though variant 

effect predictors are susceptible to misclassification, information regarding protein 

functionality still needs to be utilized. This has been recently achieved with the rare-

variant based composite likelihood ratio test in the variant annotation and analysis 

search tool (VAAST), by incorporating information of amino acid sequence 

conservation in various protein databases.  

 

Whilst this strategy is successful, large sample sizes may still be required to overcome 

genome-wide significance levels for genes harbouring sets of extremely rare causative 

variants [16-18]. Also, one has to overcome the issue of ascertainment bias causing 

potential population structure. Therefore, familial-based linkage studies have been 

helpful in this regard [16-18]. In this case, the power of linkage analysis lies in the 

homogeneity within families [17]. This is because, even though the disease causative 

variants may be rare in a particular population, individuals within families are 
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expected to share large numbers of variants and haplotypes, compared to non-related 

individuals [17]. Therefore, the segregation patterns within families are likely to show 

significant evidence of linkage, as long as the candidate disease variant has greater 

representation in the affected (compared to unaffected) pedigree members, even if the 

sample size is not large [17]. For this reason, linkage analysis will be more powerful 

than single variant based association studies of rare variants. 

 

The fact that familial samples have greater homogeneity than population-based 

cohorts is advantageous for detection of highly penetrant rare and/or low frequency 

disease variants. Here linkage analysis algorithms can identify the likelihood of 

disease cosegregation, depending on the transmission patterns of variants from 

parental to offspring generations. Nevertheless, obtaining familial samples as large as 

typical case-control cohorts is challenging. Thus, the power of genetic studies, 

especially rare-variant analyses is enhanced with the integration of linkage and 

association information [51]. The reason is, pathogenic rare variants are more likely 

to be shared in families by cosegregation, than case vs. control cohorts.  

 

Moreover, linkage analysis has been enhanced with developments that facilitate 

detection of de novo variants and compound heterozygotes, as implemented in tools 

such as the Pedigree Variant Analysis and Annotation Search Tool (pVAAST) [51], 

explained in chapter 2. These features explain why this algorithm substantially more 

powerful than other linkage approaches for disease analyses. Also, previously 

developed linkage algorithms are based upon the notion that selected markers for 

testing are not causative, but only cosegregating/linked with the disease variant.  

Conversely, the Elston-Stewart based pVAAST algorithm (considered as a modern 

form of linkage analysis) is based upon the assumption that causative variants can be 

directly assayed, under a gene-based model [51-52]. This allows the algorithm to be 

successful in sequence-based analyses with large variant numbers. Also, the gene-

based nature of the analysis enables information from multiple variants to be 

combined (as is the case with RVATs), during the LOD score calculation [51]. Thus, 

once again, detection of potentially underrepresented variants is potentially 

empowered via this strategy.  
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Despite the benefits of combining linkage and association, genetic heterogeneity must 

also be addressed, for complex diseases. Genetic heterogeneity is accounted for in 

pVAAST, by the structure of the null and alternate model. The alternate model allows 

for current loci (genetic loci under investigation) and latent loci (those unlinked to the 

current loci) to both simultaneously contribute to the disease, thereby allowing for 

locus heterogeneity [51]. The null model, conversely only attributes disease 

phenotypes to latent loci. Hence, pVAAST-based linkage analysis is informative and 

powerful for single-gene Mendelian and polygenic complex disorders. Therefore, 

given all of these factors, it is no surprise that under conditions of reduced penetrance, 

missing phenotypes and heterogeneity, that this approach outperforms other 

previously developed linkage analysis algorithms [51]. Specifically, when these 

situations were simulated on previously tested datasets with known causative disease 

genes, the unified linkage and association algorithms, evidently present more 

consistent solutions than other algorithms [51]. Hence, this provides the platform for 

implementation of a powerful analytical framework for analyzing large outputs of 

NGS variant data in determining the genetic etiology of complex diseases including 

autoimmunity and MAS.  

 

1.8 Scope of Study 

 

The main topic of this thesis describes the results from implementation of a 

framework used to identify candidate genes in autoimmunity and patterns of genomic 

variation in selected genetic isolates that may influence disease susceptibility. Both 

sporadic and familial autoimmunity are analysed. The framework combines linkage 

analysis, gene-based association tests, pathway and network analyses as a means of 

data mining to achieve these goals. 

 

In chapter 2, the algorithmic procedures for each of the aforementioned analyses 

required to attain our overarching aims is described. Their mathematical concepts are 
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fully explained. Key points emphasize the importance of genetic isolates, control for 

population stratification as well as the mathematical and statistical concepts detailing 

the linkage, rare-variant association, pathway/network analyses as well as calculations 

of physiological relatedness by biological distance.  

 

In chapter 3, we performed genetic analysis on whole exome capture (WEC) data 

from patients with sporadic forms of MAS and autoimmunity, compared against a set 

of controls. Sequencing was performed via the Illumina HiSeq 2000 NGS facilities. 

Variants were filtered based on minor allele frequency and functionality (determined 

by predicted pathogenicity of encoded proteins or appearance in regulatory regions). 

The collected sample has phenotypic heterogeneity (4 out of the 12 disease carriers 

have Sjogren’s syndrome only, whilst others carry MAS) and they are unrelated 

cases, along with the small sample size. Although the autoimmune tautology argues 

for similar genetic origins of these diseases, this cannot apply for all phenotypes. Thus 

it is unlikely that any single variant will be enriched in a large proportion of affected 

individuals. Hence, in this scenario, a hard filtering approach is considered as the 

most successful approach to identify possible disease genes [51]. Genes harboring 

variants that were predicted to have damaging amino acid sequence changes or 

important in regulatory regions, absent from the controls and the 1000 Genomes 

Project were retained after filtering. Additional evidence of pathogenicity of these 

genes, in particular LRP1 was supported by pathway and network enrichment 

analysis, and metrics of biological distance. 

 

Having identified disease genes in sporadic cases, we aimed to build upon these 

findings via familial analysis. From the Paisa genetic isolate, we analyzed families 

ascertained by Dr. Arcos-Burgos and Dr. Juan-Manuel Anaya. In total, 18 families 

were sampled from this particular cohort, out of which 10 were selected for whole 

exome sequencing (WES) and linkage studies. Variants identified from the GATK 

Best Practices pipeline, were analysed under the pVAAST unified framework of 

linkage and association tests, integrated with functionality information. LOD scores 

and permutation-based p-values were used as a means of gene prioritization. Those 

meeting criteria for LOD score, P-value thresholds and sequence read quality were 
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also extracted for studies of functionality. We identified that the SRA1, DHX34, 

ABCB8, MLL4 and PLAUR genes all harbor mutations exhibiting statistical evidence 

of familial linkage, and are also involved in apoptotic-related processes as suggested 

by network analyses. It is granted that affected patients carrying these mutations have 

differences in phenotypic manifestations. However, the effectiveness of the study is 

not only due to the relatedness of the sampled individuals, but also the fact that they 

share phenotypes conforming to the autoimmune tautology (in particular RA and 

SLE). Hence it is hypothesized that some disease phenotypes in these patients share 

similar immunogenetic etiology and pathophysiological mechanisms. This increases 

the likelihood of overrepresented variants, identified within these families, in having 

clinically relevance. 

 

The success of the studies involving sporadic and familial autoimmune patients can 

be attributed to the population genetics of the Paisa isolate. This is explored in chapter 

5. Here, we describe the comparison of genome-wide LD between 1000 Genomes 

individuals from the Paisa population and other cohorts obtained from Europe and 

South America. We found that the Paisa had considerably higher overall ranked levels 

of LD and greater levels of rare variation than all of the European and most of the 

South American populations. As discussed, these findings have string correlations 

with population history. 

In chapter 6, we place our statistical findings of candidate genes from linkage and 

case-control analysis in a biological context. We also discuss the utility of our LD and 

rare variation comparisons of our population genetics analysis, and how this can be 

complimented with future studies that can aid knowledge of complex disease. 
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 Chapter 2: General Framework to Detect Causative 

Autoimmune Genes and Comparing Genomic Variations 

Within and Between Population Isolates 

 

Abstract 

Identifying causative mutations using rigorous analysis is key for understanding the 

genetic aetiology of all complex diseases including autoimmunity. In this chapter, a 

combined framework from genetic, statistical and bioinformatics resources is 

elaborated. Essential components and algorithms part of the framework include 

extreme phenotypes (EPs), genetic isolates, linkage and association analysis and 

biological networks. The key properties and mathematical theory behind each of these 

elements that enhances their utility in complex disease studies is explained in detail. 

This comprehensive strategy ensures that thorough analysis is conducted genetic, 

statistical and physiological perspective.    

 

2.1 Extreme Phenotypes from a Genetic Isolate 

The crucial element for genetic analysis in searching for disease-causing variants is 

the quality of phenotyping for patients carrying autoimmunity. The advantages of the 

sampling efforts by Dr. Arcos-Burgos and Dr. Juan-Manuel Anaya are that many 

patients, part of the Paisa isolate are carrying extreme phenotypes of autoimmunity, 

manifesting as MAS Proofs based on mathematical inductions plus probabilistic and 

statistical axioms, support the notion that the likelihood of identifying causative rare 

variants is greater via EP approaches than otherwise obtained from random sampling 

of cases and controls. Hence, this means that minor allele frequencies (MAFs) of rare 

causal variants are more likely to be enriched via extreme phenotype sampling (EPS), 

compared to affected members of the given population [1]. Frequencies of given rare 

causative variants is conditioned on the effect size of given genotypes, regression 
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coefficients for the analysed variants and covariates, genotypic effect size, threshold 

for phenotypic cut-off as well as the mutation’s frequency in other members (carrying 

non-EPs) of studied populations. Using the phenotypic threshold cut-off (for severe 

and non-severe phenotypes respectively) and the conditioning on the premise that the 

studied genotype has a positive (causative) effect on phenotypes, the proof of rare-

variant enrichment within EPs is obtained. The first step in this procedure is to model 

the phenotype as follows: 

yi = a0 + X’α + G’iβ + εi (2.1) 

In the above equation, Yi is the coded phenotype, whilst α and β are the vectors of 

regression coefficients for the covariates represented by X and genetic variants 

denoted by G respectively [1]. The term a0 represents the intercept value, a quantity 

that contributes to the phenotypic variance when all other terms are equal to 0. The 

final variable is the error term, representing the quantity of phenotypic variance not 

accounted for by the regression coefficients and the intercept value. It is a number, 

calculated as a function of the variance of the phenotypic term, yi. Thus, the higher 

the value of the beta regression coefficient, the greater is the strength of the 

phenotype-genotype association for a given variant. The genotype and phenotype 

terms derived from this equation are then used to prove the notion hypothesised for 

EPS vs. non-EPS sampling, for the single causal variant/no covariate model [1]. Thus 

the covariates term and y-intercept values are equal to 0, giving: 

Yi = G’iβ + εi (2.2) 

The likelihood of present variants under EPS can now have a rearranged 

mathematical expression [1]. The probability that the genotype (G) contains the 

causative variant (either in homozygous or heterozygous form), given the presence of 

the EPs (i.e. y > c, where c is the phenotypic cut-off), can be equivalently expressed 

by the equation on the right hand side in (2.3. In this case, P(y>c) is conditioned on G 

[1].  This is derived with the assumption, beta > 0 (i.e. variant has causative effects).  

Pr(𝐺𝐺 > 0) |(𝑦𝑦 > 𝑐𝑐) =  Pr (𝐺𝐺 > 0)
Pr(𝑦𝑦 > 𝑐𝑐) |(𝐺𝐺 > 0)

Pr(𝑦𝑦 > 𝑐𝑐) (2.3) 
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To achieve the proof of concept, we must find Pr(y>c)|(G>0) – Pr(y>c) which equals: 

= Pr(y>c)|(G>0) – Pr(y>c|G=0)Pr(G=0) – Pr(y>c|G>0)Pr(G>0) (2.4.1) 

= (Pr(y>c)|(G>0) – Pr(y>c)|(G=0))Pr(G=0) > (Pr(y>c)|(G=1) – Pr(y>c|G=0))Pr(G=0) 

= (P r(β +  ε > c) −  Pr (ε > c))Pr (G = 0) (2.4.3) 

Once this is obtained, it is necessary to determine the probability of the disease trait 

exceeding the cut-off for EPs (y>c), conditioned on the inference that the genotype is 

carrying the alternate, causative allele, in a heterozygous or homozygous state [1]. 

Later, the equation can be reorganized, enabling us to subtract from this value, the 

likelihood that the potentially causative allele is carried in a heterozygous state only. 

Thus the overall difference between the 2 conditional probabilities is given. As this 

mathematical proof is conducted via an additive model, this explains the outcome of 

the steps b and c in the equation sequence. Therefore, it is intuitive that Pr(y>c)|(G>0) 

> Pr(y>c)|(G=1), as the conditioned probability term on the LHS of the inequality 

accounts for the presence of homozygous genotypes, which in additive modes of 

inheritance will theoretically generate a greater likelihood of EPs [1]. However, this 

same expression also clarifies that this theorem can also be proven via the dominant 

and recessive models (as G=1, only considers heterozygotes). Furthermore, it is 

apparent that if the genotype isn’t causative, Pr(G>0) will be the same when 

conditioned under EPs or otherwise. Thus the MAF of variants under EPS is the same 

as the general population.       

When genotypes are causative, this should lower the value of Pr(G=0) and Pr(epsilon 

> c) in EPs. Simultaneously, the regression coefficient should have a significantly 

high value, raising the probability that the beta coefficient and error term will 

contribute a large proportion to the value of y, such that y > c, compared to the 

likelihood when beta = 0 (i.e. non-causative genotypes) [1]. Subsequently, as the 

covariates = 0, it is clear that Pr(y>c)|(G>0) > Pr(y>c). Hence, it is proven that the 

MAF of causal variants (or likelihood to identify causal variants) is greater in EPs, 

relative to the remaining sampled population. 

The proof of concept can be extended to multiple causative disease variants models. 
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The key variables for determining the MAF of pathogenic variants in EPs have been 

previously mentioned [1]. One of these variants, the genotype effect size, can be 

derived from the strength of the phenotype-genotype association (a), and the 

logarithm of the MAF as follows: 

βj = -alogMAF (2.5) 

Therefore, based upon the outcome of single variant case, as well as the effect size 

and phenotype-genotype association parametric quantity (a), the proof is also 

replicated in the case of polygenic traits (i.e. Pr(y>c)|(Gj=g) > Pr(y>c). When 

obtaining Pr(y>c)|(Gj=g) and Pr(y>c) for in the multilocus model, the cross-product 

for genotype probabilities [1], plus likelihood of all variables contributing to y > c, 

summed across all tested loci is required, as expressed below: This avoids inflation of 

the error term and other variables, including those from other genotypes not 

corresponding to the jth variant. 

Pr(𝑦𝑦 > 𝑐𝑐) |�𝐺𝐺𝑗𝑗 = 𝑔𝑔� − Pr(𝑦𝑦 > 𝑐𝑐) = 

Σg1=02 … Σgp=02 ϕ�αβj + Σl=jβlgl − c�Π Pr(Gl = gl) −  Σg1=02 Σgp=02 ϕ(Σl=1
p βlgl − c) 

(2.6) 

Hence, similar to the previous example, the parameter incorporating alpha and beta 

must be sufficiently large for y (phenotype) to exceed c, under the assumption beta > 

0 [1]. Hence, presence of EPs is likely to yield greater enrichment of potentially 

deleterious genotypes, compared to minor other sampled individuals, as supported by 

mathematic evaluation. Extending equation 3 and 4 to the multiple variants 

assumption, once the probability of genotypes is obtained, expected MAF can be 

derived, based upon the following formula: 

Pr(G > 1) |(y > c) =
E�Gj�(y > c)

2
 

         = 0∗Pr (G = 0)|(y > c) + 0.5∗Pr (G = 1)|(y > c) +  1∗Pr (G = 2)|(y > c)    

(2.7) 
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The formula takes accounts for the presence of compound heterozygotes, thereby 

explaining the inclusion of 0.5*Pr(G=1)|(y>c) in the equation, as well as homozygotes 

[1]. In this particular case, a recessive model is being tested, from which the estimated 

frequency of 2 alleles present in given loci (i.e. compound heterozygote or 

homozygote state) can be calculated. Thus, the mathematical evidence shows the 

benefits of EPS from the Paisa community, in addition to their genetic homogeneity. 

 

2.2 Principal Component Analysis 

Nevertheless, in case-control designs, small levels of microdifferentiation can still 

have confounding effects in case-control studies.  One way to control for this is the 

application of Principal Component Analysis (PCA) [2-4].  This requires an 

orthogonal transformation of linearly correlated variables into uncorrelated 

variables/factors.  The purpose of this is to identify potential evidence of population 

structure across all variants and individuals used during analysis. In brief, this firstly 

involves representation of a database as a matrix X containing m markers and n 

individuals [2-4]. This matrix is later decomposed into USVT whereby S is considered 

as the n by n matrix for which the eigenvalues (values denoting the quantity of 

variation explained by a single component or dimension in the dataset) of the original 

matrix entries are present, V is a matrix of the principal components, or in this case 

‘ancestral vectors’ relating genotypes to samples (i.e. eigenvectors or axes of 

variation, corresponding to each individual sample) [2-4]. U represents the coordinate 

values for a given eigenvector. Given that the purpose is to find a potential 

mathematical relation between these elements of the matrix (i.e. individuals and 

markers) these eigenvectors can be thought of as genotypic ancestry components in 

PCA [2-4]. The matrix decomposition is expressed as: 

 

XTX =  VSTUTUSVT =  VSTSVT, (2.8) 
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Where T is the matrix transposition. It is known that V is an eigenvector matrix, which 

forms the principal components [2-4]. Given that the eigenvalues and eigenvectors of 

the m by n matrix in X are represented by lambdak and vk respectively, it is known 

that: 

 

XTXvk =  γkvk (2.9) 

 

This step is followed by correction of individual data elements by markers. Assume 

that g is a genotype vector value (response variable), corresponding to other 

independent variables [2-4]. The average value for all g vectors is subtracted from 

each element. This gives the value (written as g0), for the first element of g (g1), and 

gk-1 for the kth g vector [2-4]. Therefore, for all g, we can now calculate the corrected 

value of gk (gk corrected):  

 

gk corrected =  gk−1 − γkvk (2.10) 

 

k is derived from the eigenvectors of the original marker and sample matrix, as well as 

individual genotype vectors. Thus, further derivation gives: 

 

γk =  vk. gk−1 (2.11) 

 

The value of γk in turn is also proportional to quantities of the variance-covariance 

matrix, quantifying the mathematical relation between every genotype and sample, 

summed across all individuals [2-4]. This equation is expresnnnned as: 

 

Σjajkgj(k-1) / Σja2
jk (2.12) 
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Thus, after decomposition of the original matrix, mathematical relations between each 

dimension or principal component, upon which the data points are projected can be 

quantified, using a variance-covariance matrix [2-4].  In this case, a is the value 

showing these between-dimensional relations, specifically between genotypes and 

samples in the variance-covariance matrix, for j individuals and k markers [2-4].  This 

enables derivation of the Euclidean distances of each of the coordinates (markers) 

within the multi dimensional space, constructed by multiple dimensions from the 

eigenvectors.   

Finally, from all of the above formulas, principal components accounting for the 

largest proportion of variance in a given dataset can be determined, by identifying the 

eigenvectors with the largest eigenvalues [2-4]. This facilitates identification and 

subsequent adjustments for potential population structure. Hence, PCA was applied to 

the analyses of the sporadic autoimmune cases against the sampled unaffected 

controls, whereby diagrammatic plots can ensure minimisation of differentiation 

between disease carriers and non-carriers [2-4]. The PCA quality control algorithm is 

implemented in EIGENSTRAT software, from the SVS Golden Helix Suite [2]. 

 

2.3 Whole Exome Capture, Illumina Next Generation Sequencing 

and Sequence Read Quality Evaluation: 

Whole exome capture was performed via the Axlegen and Nimblegen kits, and 

sequencing was conducted via Illumina NextGen Hiseq facilities at the BRF 

(Biomolecular Resource Facility) for all samples [5-8]. The FASTX Toolkit was then 

implemented in trimming of adaptors and removal of low quality bases. Once the 

FASTQ files are generated, GATK (Genome alignment ToolKit) Best practices 

pipeline is applied for sequence read alignment (using BOWTIE). This generates a 

sequence alignment map (SAM) file, which are later converted into a binary (BAM) 

aligned format. Duplicates that emerge through PCR amplification in the sequencing 

by synthesis process are removed, after this step and base scores are recalibrated, 

along with the variant calls derived from the alignment maps [9-11]. Accuracy of 
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variant calls can be obtained by the mapping quality and Phred score values, using the 

Integrative Genomics Viewer (IGV) software. The mapping quality determines the 

likelihood of the read being aligned to the correct portion of the reference sequence. 

The Phred score is the probability of the correct base call from the GATK Pipeline 

[12-13]. Both of these measures were used for quality control purposes in our 

sporadic and familial autoimmune studies.      

 

2.4 Unified Combination of Linkage and CLRT (Composite 

Likelihood Ratio Test) 

Firstly, the VCF files containing variants for each sequenced individual were 

converted into GVF (Genome Variant Format) files using the vaast_converter script, 

part of the pVAAST package [14].  After that, the GVF files are subsequently 

annotated with the Variant Annotation Tool (VAT) Perl script in order to determine 

the variants in each individual that are non-synonymous, found in splice sites, intronic 

etc.  This annotation process is based through comparison of variants against the 

reference human genome sequence (hg19) [14].   

 

After implementation of VAT, the annotated variants for each family member are 

unified into a single condensed variant file (cdr file).  There is one CDR file generated 

for each family, and once these files are generated, we then proceed to construction of 

the pedigree file.  Once these input files are generated we then perform the pVAAST 

analysis, whilst simultaneously integrating individuals from the 1000 genomes 

database as our control population.  The linkage parameters for mode of inheritance 

are set in a parametric file [14].  Within the same file, we also activate the detection of 

de novo mutations, using the default mutation rate per site per generation in the 
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human genome.  This final step is the component of analysis for generation of 

Logarithm of Odds (LOD) and CLRTp scores (using the VAAST script), which are 

produced through integration of linkage information and composite likelihood ratio 

(CLRT data) test data.  Note also that the CLRT in turn includes information about 

the severity of amino acid substitutions [14].    

 

2.4.1 Mathematical Algorithm of Linkage Analysis 

Linkage analysis was conducted for 47 individuals across 10 families subjected to 

WEC and NGS from the Paisa community. In total, there were 32 affected and 15 

unaffected individuals (full study described in chapter 4). In brief, the algorithm 

assumes that the observed disease phenotype is caused by either a latent (unlinked) 

locus or loci under investigation (current loci). The null hypothesis is assuming that 

only the latent locus is causal, of the observed disease phenotype.  The alternate 

hypothesis is that either one of the loci could be causal [15]. The calculation is 

derived, based upon adaptations of the Elston Stewart algorithm [15-16]. This is 

different to the Lander-Green algorithm, whereby Markov-Chain formulas are used 

for determination of genotype and Identity by Descent (IBD) probabilities for 

inheritance vectors at candidate loci (vi+1), derived by conditioning genotypic IBD 

states and observed phenotypic data, at a known locus (vi) and transition matrix 

values (between vi and vi+1 for loci Mi and Mi+1). The probability of observed 

phenotypes across all possible values of inheritance vectors are also required [17]. 

This is evidently a Markov-Chain algorithm as the probability calculations of 

inheritance vectors and genotypic states in vi+1 are dependent on those in vi, to obtain 

the eventual recombination numbers and fraction [17]. In contrast, the Elston-Stewart 
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algorithm relies on exact likelihood derivations, via recursive genotype probability 

calculations from observed data across each generation of given pedigrees.  Firstly, 

the likelihood of the obtained genotype is determined conditional on the parental and 

founder genotypes, as well as the probability of an individual’s phenotype given their 

respective genotype (thereby deriving the genotypic disease probability or penetrance) 

and phenotypes of the descendants [15-16].  

 

L = ΣG1ΣnPr(Xi|Gi)ΠPr(Gfounder) Pr(G0|Gf, Gm) (2.13) 

 

After that, the conditional probability of the genotypes and the observed phenotypes 

for the pedigree data (as per the Elston-Stewart algorithm), given the present allele 

frequencies in the analysed cohort as well as the genotypic disease probability is then 

obtained [15-16]. These likelihood values (under the null and alternate models) are 

calculated for the current and latent loci respectively by:  

 

L = Pr(gc, gl, p)|(Pc, Pl, fc, fl)(2.14) 

 

  The variables gc, gl, fc, fl and Pc, Pl are the genotypes, frequencies and genotype 

disease probabilities (or penetrance) of the current and latent loci respectively, and p 

is the phenotypes [15]. This calculation is performed under the null and alternative 

hypothesis, for derivation of the LOD score.  
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Σi=1n log10 Pr �
Obs|Linkage

Obs|No Linkage
� (2.15) 

   

This will identify variants within the gene that maximise the gene-based LOD score, 

across all pedigrees. 

 

2.4.2 Extension of Analysis to Compound Heterozygotes 

 

The advantage of pVAAST implementation is that under a recessive model, it is also 

possible to evaluate compound heterozygotes during the joint linkage and association 

algorithm [15].  Compound heterozygotes are evaluated in such a way that one 

doesn’t falsely assume independence in the genotype disease probabilities of 

heterozygous variant sites.  Instead, one constructs Boolean risk vectors for multi site 

genotypes for heterozygous variant sites, denoting them as either D (conferring 

disease susceptibility) or N (neutral) [15].   Using these risk vectors, it is then possible 

to implement a joint likelihood function, conditional on the probability that individual 

with a risk and neutral associated genotypes respectively, are affected, as follows: 

 

Li =  Prna(1 − Pr)nbPnnc(1 − Pn)nd (2.16) 

 

Pr and Prn represent the probabilities that individuals with risk and neutral genotypes 

are affected, where as na and nb are total number of affected/unaffected individuals 



 53 

with risk genotypes and nc, nd are corresponding, with neutral genotypes. Multiple 

iterations are later conducted, randomly switching Boolean risk vectors of variant 

sites, until likelihood calculations are converged [15]. Markov chains are 

subsequently constructed from these risk vector likelihoods. Furthermore, using the 

summed indicator functions (ID(k)) to denote the causality and predicted 

deleteriousness of all selected variants, the functional score (F) can be used to 

generate the modified likelihood for compound heterozygotes:   

 

F =
ΣkCLRTv(k). ID(k)

2ΣkID(k)
 

 

Therefore, the most likely risk vector can be selected and used for the aforementioned 

LOD score formula under the recessive model [15].  

 

2.4.3 Inclusion of De Novo Mutations  

The predominant drawback of many linkage analysis algorithms is that de novo 

mutations occurring in the offspring but absent within the parents are often 

disregarded as Mendelian Errors [15, 18].  However, in this case these Mendelian 

errors are given a transmission probability of 1.2 x 10-8, which from previous studies 

is established as the mutation rate per site per generation in the human genome.  

These de novo mutations are then incorporated during permutation and gene-drop 

simulation [15]. 
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2.4.4 CLRT: Integration of Case-Control Algorithms 

 

The composite likelihood ratio test (CLRT) statistic is derived from 2 components: 

the severity of amino acid substitution (in the case of non synonymous variants) as 

well as indel and or splice site severity weights (which depend on the levels of 

sequence conservation between residues) and the allele frequency differences between 

cases vs controls [19].   The controls in this case are derived not only from the 

unaffected members of the pedigrees, but from exome sequencing data within the 

1000 genomes population (from now onwards referred to as the background 

population) [20].    

 

 In the case of non-synonymous variants, the potential deleterious nature of amino 

acid substitution is calculated using an algorithm, similar to the derivation of the 

block substitution matrix (BLOSUM) [21]. This involves deriving the observed and 

expected values of amino acid frequencies when performing multiple sequence 

alignments of the query and target protein sequences as well as target sequence 

alignments with other proteins within the same conserved family [19, 21].   This 

calculation is performed for the background population as well as the affected 

individuals.  This value, obtained when sampling the affected individuals is then 

expressed as a ratio compared to the proportion of cases in the OMIM (Online 

Mendelian Inheritance in Man) database database, specifying the given amino acid 

substitution as a disease causing variant [19, 22-23]. Both these values (denoted as hi 

and ai) are then included in the calculation of the CLRTv test statistic.   
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When evaluating non-protein coding variants, such as annotated splice sites, their 

importance in functionality is evaluated by transition matrix scores, based upon the 

conservation of sequence data between various species [19].  Once again, this is 

calculated for the background population and affected pedigree members.  The latter 

of these two values is then compared to the variant proportions in the OMIM 

database.  Both values (ai and hi) are included in the calculation of the CLRTv test 

statistic for the alternate and null hypothesis respectively [19, 22-23]. 

 

Once these components are obtained, the following variables are required to calculate 

the test statistic: 

m - the number of variant collapsing categories or groups (i.e. a set of multiple 

grouped variants) [19]. 

lk+m – Number of individual collapsed variants from various sites in each of the mth 

collapsing category [19].   

niA and niU – Total number of affected and unaffected individuals respectively [19].    

k - the number of variant sites that are not grouped or collapsed with other variants 

[19]  

PiA and PiU - minor allele frequencies of affected and unaffected individuals for 

collapsed and uncollapsed variant sites respectively [19]. 
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XiA and XiU - The number of affected and unaffected individuals containing given 

variant allele(s) (at uncollapsed sites) or multi-locus allele(s) (for collapsed variant 

sites). [19]  

These components are incorporated into the derivation of the test statistic as below: 

λ = ln (LNull
LAlt

) (2.18) 

 

= � hi(pi)Xi(1−pi)2lini−Xi

ai(piU)XiU(1−piU)2liniU−XiU�piA�
XiA�1−piA�

2liniA−XiA
� (2.19) 

 

  

The calculation simplifies to the likelihood under the null (numerator) vs. alternate 

(denominator) hypothesis [19]. Equation shows that the CLRTv score is conditional 

on the observed minor allele frequencies across all, affected and unaffected 

individuals at a given variant or variant collapsing site. Hence statistic based on allele 

frequencies plus collapsed variant sites under null and alternate model is summed 

across all collapsed and uncollapsed variant sites [19]. As well as minor allele 

frequencies, the calculation also takes into account the functionality of non-

synonymous variants. The variable hi is the proportion of expected amino acid 

substitutions in the background 1000 genomes dataset for a given pair when aligned 

with proteins in the BLOCK database [21], where as ai is the observed/expected 

frequency of aa pairs in affected individuals relative to the known disease causing 

mutations involving these specific aa substitutions in the OMIM database [22-23]. 
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2.4.5 Derivation of the Combined Linkage/Association Test Statistic 

 

The combined test statistic is obtained through combination of the summatory LOD score 

(calculation explained above) along with the CLRTv value.  The natural logarithm of the CLRTv 

score multiplied by 2 is subtracted from the summatory LOD score [15].   

 

CLRTp = 2∗ln10(Σi=1n LODi) − 2λ (2.20) 

 

This calculation is performed across all families from i =1 to i = n.    

 

2.4.6 Evaluation of Statistical Significance 

After generation of the test statistic, statistical significance is determined by randomization and 

gene drop simulation [15].  Firstly, affection status is shuffled and the expected genotype 

frequencies are derived conditional on parental alleles [15].  The score is calculated after each 

permutation.  In total 10000 permutations were conducted, based on Monte Carlo simulations. 

 

2.5: Evaluating Pathogenicity of Candidate Variants and Variant Quality Scores 

Following the Linkage and Rare-Variant Association Analysis, variants were further evaluated 

based on their potential functional impact.  This was achieved using SIFT [24], Polyphen2 [25-26], 

MutationTaster [27], and Provean [28-29]. 
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2.5.1 Variant Effect Prediction Algorithms 

Classification algorithms across all of these variant effect predictors are performed using any of the 

following criteria: 

 

UniProt- When a query amino acid sequence of a protein is submitted to Uniprot, the software can 

search the uniprot database annotations, which indicate whether the substitution took place at a 

Transmembrane domain, carbohydrate molecule, lipid side chain etc [25-26, 28-29]. For example, 

changes between 2 amino acids in a sequence that are hydrophilic are tolerated, but changes from 

hydrophilic to hydrophobic and vice-versa are considered as damaging. 

 

PSIC (Position Specific Independent Counts) profiles- Present in the Polyphen variant classifier, 

PSIC profiles compute the probability that any given variant amino acid is likely to be found at a 

particular position in the protein, after Polyphen2 identifies homologous sequences from the 

BLAST search of the UniRef 100 database [25].  Sequence alignments are maintained if the 

alignment length is greater than 75 amino acids and if the sequence identity is between [30] and 

94% [25-26].  Thus regions of the protein that are prone to amino acid changes in regions that have 

a high level of conservation are likely to have an important function, and therefore are more likely 

to be damaging [25-26]. This and the Uniprot-based approach are implemented in the PolyPhen 

predictor.      

 

Sequence Homology and Conservation.  This approach uses a normalized transition probability 

matrix, i.e. based on the amino acid position what is the probability that the amino acid (which in 

this case is the state), will change states to another particular amino acid.  Those with low transition 

probabilities will be deleterious [24]. These algorithms are predominantly seen in SIFT [24]. 

Further extensions of this are evident in MutationTaster, whereby sequence conservation at splice 

sites as well as amino acid substitutions are evaluated [27]. Also, using various biomedical 

databases, sequence changes that influence mRNA levels are identified [27]. 

 

Sequence Cluster Alignment Score: The score is derived in the PROVEAN algorithm. It 

quantifies the difference between a reference and variant protein sequence, against a comparator 

homologue when a variation (insertion, deletion or amino acid substitution) is introduced [28-29]. 

The score is calculated across all sequence clusters. Firstly, all homologous and distantly related 

proteins are clustered. The delta alignment scores for individual sequences are dependent upon 

BLOSUM (in turn derived from the observed and expected frequencies of amino acid substitutions 
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of the Block database, containing multiple alignments of conserved regions in protein families) [21, 

28-29]. The calculation for the delta alignment values is: 

 

Δ(Q, v, S) =  A(Q′, S) −  A(Q, S)(2.21) 

 

A(Q’S) and A(Q,S) are the alignments scores for the reference and alternate variant sequence 

against the comparator respectively, derived from the BLOSUM62 substitution matrix values [28-

29]. Low delta scores indicate minimal differences between the 2 protein sequences on the semi-

global alignments [28]. Hence, any introduced variation amongst this sequenced region is predicted 

to be deleterious. Scores are summed across all sequence clusters to give the unbiased average delta 

score.  

 
1
N
Σc=1N �

1
Nc

Σi=1Nc ∆c,i� (2.22) 

 

Calculations can be extended to neighbouring points of a given amino acid sequence position, and 

therefore applied to INDEL variations [28-29]. 

 

2.6 MetaCore Pathway and Network Analysis Workflow 

 

After applying the filtration steps, described above the refined gene list was then used as an input 

source for functional network and pathway analysis algorithms in the Metacore software suite, 

licensed by GeneGo [30].  The network and pathway analysis algorithms are available through a 

web interface, and the software suite also includes a manually curated gene ontology database.  

These networks can be constructed via the metacore web interface [30].  The algorithm to build 

these networks is known as incorporates a subset of our input gene list into a single dense network.  

This is known as a ‘global network’, which is then divided into biologically functional sub-

networks.    

 

The local networks are prioritised based on the extent of interaction between genes from the input 

list and other network nodes from the Metacore GeneGo database [30]. The probability that a given 

number of genes from the input list are present in one of these subnetworks is represented by a 
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hypergeometric distribution, as illustrated in the equation below: 

 

 

P(r, n, R, N) =  
CRr . CN−Rn−r

CNn
=  

R! . (N− R)!
N!

 .
n!. (N − n)!
r!. (R − r)!

.
1

(n − r)!. (N − R − n + r)!
 

(2.23) 

In this equation, the variables are as follows: 

N – The total number of nodes in the Metacore database, collectively known as the global network 

[30]. 

R – Nodes in the global network containing genes that match the input list [30]. 

n – The total number of nodes corresponding to a single network under investigation, constructed 

from the input list. It can be thought of as a subnetwork to the global network [30].  

r – A subset of n, corresponding to nodes matching the input genes, within the single analysed 

network being studied [30]. The sum of the probabilities for values equal to or larger than r, gives 

the likelihood that genes from the input list are present within the constructed network by chance, 

under the null hypothesis [30].  

 

P − value =  ΣrnP(r, n, R, N)(2.24) 

 

The probability values generated from equation 3 that form this hypergeometric distribution are also 

used to calculate the Z score [30]. This is a measure to determine the extent to which each network 

differs from the mean of the hypergeometric distribution, regarding enrichment of candidate input 

genes [30]. The Z-score requires mean and variance for these distributions of given networks is 

obtained as follows: 

 

µ = n.R
n

 (2.25) 

 

σ2 =  Σr=0n r2. P(r, n, R, N) −  µ2 =  n.R.(N−n).(N−R)
N2.(N−1)  (2.26) 

 

 

 

Using these values, the Z-Statistic is calculated by: 

 

Z =  
r−nRN

√(n(RN)(1−RN)(1−n−1N−1))
=  r− µ

σ
 (2.27) 
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Thus, in essence, the Z-score is a representation of the magnitude of differentiation of r (number of 

nodes in a particular network or subnetwork, overlapping with the gene list) from its expected mean 

value corresponding to the hypergeometric distribution [30].  

 

Within these networks, each node (connected by 2 or more genes) can also match corresponding 

subsets of gene ontology processes [30].  These can be used in a heuristic manner to identify genes 

with important functions in autoimmunity.  The ontology terms for a gene (which is connected to 

other genes via network nodes) within the networks are prioritized by p values which are calculated 

based on the size of the intersection between the network process in question and nodes in the 

Metacore database of interactions (a subset of which contain genes marked by intersection with the 

input gene list [30].  This p value is a statistical probability genes from the input gene list, within 

the network would randomly overlap with a particular GeneGo ontology process.   

This is calculated by considering the following variables:  

N – The total number of nodes within the ‘global network’, with direct physical interactions with 

the genes from the input dataset [30].  

R – Number of nodes that are associated with the GO process category of interest (e.g. Calcium 

signalling, T cell costimulation etc) [30].   

n-   The number of nodes under evaluation in the subnetwork (also known as the local network) 

[30].  

r -  The number of nodes containing genes in the subnetwork associated with the GeneGo ontology 

process of interest (subset of n) [30].    

 

 
R! n! (N − R)! (N− n)!

N!
Σi=max(r,Rn−N)
min(n,R) 1

i! (R − i)! (n − i)! (N − R − n + i)!
(2.28) 

 

This indicates whether or not there is a random association between the genes matching the input 

list and the GO category [30].  The p-value to ascertain this is given below (as obtained from the 

Metacore Sotware Suite, Licensed by Thomson Reuters): 

  

The p-value in this case is defined as the probability that within the nodes of a particular 

subnetwork (which are subsets of N), there would be a random intersection of genes of the user’s 

list associated with a particular GeneGO ontology process of size r or larger [30].   
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The only nodes used for statistical evaluations are those with direct physical interactions with 

network elements connected with our input genes (i.e. our gene list generated from the filtration 

strategies described above) [30].  This is done to help minimize artefacts in the statistical analysis, 

which can arise from genes in the database, which may be in the same network, but have no 

functional connection or interaction with any gene from our filtered list.  

 

2.7 Human Gene Connectome (HGC)  

The Human Gene Connectome is applied in order to prioritize candidate genes associated to or in 

linkage with autoimmunity based on their potential functional roles in disease pathogenesis.  

However, unlike the Metacore database, the HGC is not designed to construct biological pathways 

or networks for this purpose.  Instead, genes are assessed for mechanistic relevance to the disease of 

interest by generating measurements of biological distance [31-32].  These measures provide an 

estimate of quantifying the functional relatedness between the candidate genes and core genes  

One of the challenges of identifying specific candidate genes for diseases that exhibit a monogenic, 

Mendelian mode of inheritance is that current bioinformatic methods in combination with high 

throughput NGS data output 1000s of variants per individual exome sample [31-32].  Hence it is 

often difficult to identify a single genetic variant that is overrepresented in affected compared to 

unaffected individuals in monogenic Mendelian traits.  This difficulty is further enhanced by the 

fact that most bioinformatic analyses methods for variant filtration and prioritization analysis don’t 

contain well developed metrics for estimating the relatedness of genes that are not part of the same 

pathways or networks [31-32].  Also, by using only genetic means (i.e. population genetic 

association, variant effect predictors, allele frequency databases), it is difficult to identify morbid 

variants [31-32]. It is for this purpose the HGC is implemented (to evaluate the degree of 

physiological homogeneity between a given set of genes which may be implicated in a disease 

pathogenesis pathway, by estimation of biological distance) [31-32].  The workflow of the 

algorithms used by the programming scripts in the HGC database is as follows: 

Lists of binding and pathway interactions from the Genes of interest in the STRING database are 

collected.  These interactions in STRING are obtained from multiple sources including: Protein 

Databank, MINT (molecular interactions) and GO (gene ontology).  The interactions are then 

applied to derive a raw quality score which determines the ratio of annotations showing an 

interaction between a given pair of genes vs. annotations which show no interaction [31-32].  This 

is illustrated in the following formula: 
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Q =  log (Ntogether.Ntotal)
(Nalone1+1).(Nalone2+1)

(2.29) 

 

N together represents the number of times a given set of genes were found to have a binding and/or 

pathway interaction, N alone denotes otherwise and N total is the full number of interactions for any 

given gene pair of interest [33-34].  After that, empirical evidence from the quality scores (Q) is 

used to derive the confidence scores of protein interactions [33-34] (see figure 2.1).     

 

Figure 2.1: Empirical estimates of confidence scores derived from quality scores for HGC algorithm. Generated 

from equation 2.29 above.  These results are determined based on the number of interactions (either through direct 

protein binding as shown in this figure or co occurrence in the same pathway) annotated in databases such as Gene 

Ontology, STRING and Protein Databank for a particular set of proteins.  
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This is achieved by using the plot depicting proportion of annotations that are shown to have a 

pathway interaction in the manually curated KEGG database against the raw quality score, for each 

database source in the STRING repository (Gene Ontology, Protein Databank and MINT) [33-34].  

The pathway interactions in the KEGG database correspond to the probability or confidence score 

(from 0 to 1) that the binding interactions in the STRING repository contain functional relevance.  

For example, empirical estimate of the graph above shows that a given set of genes with a Q score 

(from equation 1) of 2.5, corresponds to a confidence level of approximately 0.8 (or 80% chance) 

that the protein interactions have mechanistic importance in biological pathways that underpin 

disease pathogenesis [33-34].  This value is denoted by the variable, Si. 

For each value of S (derived from benchmarking GO, Protein Databank and MINT protein 

interactions against the KEGG database), a combined score of confidence is then calculated 

(equation 2): 

 

S = 1 −  Πi(1 −  Si) (2.30) 

 

Si is the confidence score of interaction for protein annotations for each separate database source 

(mentioned above) in the STRING repository, for the ith set of proteins.  Substituting this value in 

equation 2 gives the combined or weighted score of confidence for protein interactions [33-34].  

This calculation fulfils the assumption that if protein interactions (pathway or binding) are reported 

in multiple database sources that are contained within the STRING repository, they will have a 

greater weighted confidence score. 

Finally the biological distance between the genes (i and j respectively) of interest is obtained by 

taking the inverse value of Si,j.   

 

Di,j =  
1

Si,j
 (2.31) 

 

Once this process is complete for direct interactions (via a custom Python Script by Itan et al 2013) 

[31-32], the nodes and edges can be subsequently connected for genes that do not have direct 

interactions, by combining nodes that interact directly [31-32].  This generates a complete 
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connectome network. If there is more than one node separating the genes of interest, then the 

summed distance (between the 2 genes) is multiplied by the number of nodes separating them.  

Hence, genes with non-direct interactions will have a larger, weighted biological distance.     

 

It should be noted that the Human Gene Connectome provides a comparatively more powerful 

analysis than HumanNet and Funcoup (alternate database repositories) respectively [31-32].  

HumanNet is able to identify new genes in a biological pathway, whilst FunCoup is sufficient for 

identifying only closely related genes (predominantly those with direct interactions). Also they are 

powerful for analysis of polygenic disease, as in such cases there is no core gene required, when the 

candidate gene list is submitted for analysis, and networks can be provided that are inferred to be 

associated with a disease of interest [31-32]. However approaches, using these sources are not gene 

centric, and therefore provide no information of the biological proximity to the core gene, and the 

routes between the central and candidate genes.  Also Funcoup and HumanNet are only able to 

provide a qualitative (yes/no) answer to gene interaction and functional relatedness, and therefore it 

is difficult to distinguish between multiple genes with close functional relatedness to core gene(s) 

[31-32].  Thus it is clear that the gene centric approach of the HGC as well as its ability to rank 

genes by biological distance and route between genes of interest makes it adaptable for analysis of 

monogenic as well as polygenic disease, as it can differentiate between genes with close relatedness 

to core genes [31-32].  This enables more efficient detection of new candidate disease genes, 

especially in cases where pathways with a high likelihood of involvement in disease pathogenesis 

are available. 

 

2.8 Genetic Analysis of Population Isolates: 

 

As further outline in chapter 6, population isolates often exhibit unique patterns of genomic 

variation that may be influence disease susceptibility. These include linkage disequilibrium and 

enrichment of rare variation. The mathematical algorithms to calculate their significance and to 

compare them between the Paisa and selected populations from the 1000 Genomes Project are 

outlined below. 
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2.8.1 Linkage Disequilibrium 

 

Linkage disequilibrium (LD) is the occurrence of non-random association of alleles and genotypes 

at different loci, more than what is expected by chance from the population allelic frequencies [35]. 

It is a powerful quantitative indicator of factors such as genetic drift, admixture and genomic 

structural variation within and between given populations. There are 2 main measures of LD. These 

are D’ and r2. The D’ statistic depends upon the difference (D) between the observed frequencies at 

which alleles of 2 separate loci are segregated together in the analysed population (i.e. D = Pab – 

PaPb) [35-36]. Afterwards, the theoretical maximum of D is required, derived from multiplication 

of the observed allele frequencies, at the respective loci [36-39]. I.e. suppose that PA and Pa, 

represent the allele frequencies at locus x, whilst qA and qb denote those at locus y [36-39]. 

Therefore, the theoretical maximum of D is determined by the alleles giving the smallest product of 

multiplied allele frequencies, as per the following formula: 

 

D′ =
D

Dmax
=  

D
min(PAqbor PaqB)  when DAB

′ > 0 (2.32)  

 

D′ =  
D

Dmax
=  

D
min(PAqB or Paqb)  when DAB

′ < 0 (2.33) 

 

Thus it is clear from the formula, that the D’ statistic is able to detect LD in a non-variant frequency 

dependent manner, as it is dependent upon the value of D and its theoretical maximum, which can 

include the product of frequencies from the reference and/or alternate allele [36-39]. This is also the 

case for rare variants.  However, this method is prone to yielding false positives, as estimates can be 

inflated in small samples or when one variant allele frequency is low. Whilst the D’ may still 

maintain its accuracy with one common and one rare allele at respective loci, the statistic may still 

be inflated in this instance [36-39]. However, if both alleles are rare, it is difficult to reliably 

establish LD, unless the sample size is considerably large. 
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The alternate statistic that is preferred by most geneticists is the r2 value. The r2 is obtained by: 

r2 =
DAB
2

PA(1 − PA)PB(1− PB)
 (2.34) 

 

Unlike the D’, the r2 value is totally dependent upon the frequency of the variant allele. Thus, as the 

variant allele frequency decreases, so does the r2 value [36-39]. Therefore, r2 is more powerful for 

detecting LD with common variants. Nevertheless, the likelihood of false positives (which can arise 

through D’) amongst rare variants can also be reduced [36-39]. Thus, for the purposes of comparing 

LD between the Paisa and other selected 1000 Genomes populations, the r2 statistic was used. The 

next step was to evaluate the significance of LD comparisons. The LD calculations are derived from 

PLINK software [40]. 

 

2.8.2 P-values of Pairwise LD comparisons 

When differentiating the relative magnitude in LD between the Paisa and other European plus Latin 

American cohorts, pairwise analyses of the Wilcoxon Rank Sum Test were conducted [41]. The 

advantage of this test is that it is not conditional on the assumption of data or observations 

following a normal distribution. Let m be the number of observations in Cohort 1 and n be the 

number of observations in cohort 2.   The test procedure first involves combining all observations 

from both cohorts into a single groups and ranking them from smallest to largest. Afterwards, the 

rank sum (denoted by W1 and W2) of both treatments are obtained [41-44]. The smaller of the two 

rank sums (assume W1) is selected. This is followed by the permutation status for the values 

corresponding to given observations. The total number of possible permutations is given by X 

= m+nCn. However, for very large values, an approximate p-value estimate is derived, as it can be 

computationally intractable to perform all permutations [41-44]. In our case, the number of 

permutations conducted in R is such that the most significant estimate of the P-value is < 2.2 x 10-

16. The number of occasions that the permuted rank sum (#Wperm) is smaller than the observed value 

of W1 divided by the number of permutations performed (N) gives the one-tailed p-value [41-44]. 

Thus: 

#Wperm ≤ W1obs
N

 (2.35) 
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The p-value therefore gives the probability of obtaining a greater rank sum in one cohort over 

another by chance. This statistical analysis can be performed through the R programming language, 

using the ‘coin’ package [45-46]. 

 

2.8.3 Quantifying Differences in Rare Variation Proportions: Z-Proportion Test 

 

To contrast the proportion of rare variation across all loci between populations, we then determine 

the respective percentages of variants in each cohort with <= 5% MAF in the 1000 Genomes 

database, via custom python scripts [47]. The significance of these differences is quantified by 

pairwise Z-proportion tests, via the ‘MASS’ package in R [48].  

 

Z proportion score =  
p1 −  p2

((�ppooled�1 −  ppooled� �
1

N1
+  1

N2
�)

 (2.36) 

 

The variables p1 – p2 are the differences between the percentages. N1 and N2 are the sample sizes 

for each cohort, whilst ppooled is the combined proportion of rare variants, added across both cohorts 

[49]. ppooled is used in the formula, because the calculation is done under the assumption and 

hypothesis of no difference between population groups 1 and 2.  

 

2.8.4 P-value of Z proportion test 

The statistical significance depends upon where the score fits within a normal distribution, as per 

the null hypothesis [49].  To do this, the area between the tail of the distribution and the critical 

value on the distribution, best corresponding to the test statistic is obtained [49]. Thus the p-value 

can be subsequently derived. The greater the difference between proportions, the more likely that a 

score at least as extreme as the observed statistic is not obtained by chance alone. 
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Chapter 3: Novel and Rare Functional Genomic Variants in Multiple 

Autoimmune Syndrome and Sjögren's Syndrome 

Abstract: 

 Multiple autoimmune syndrome (MAS), an extreme phenotype of autoimmune disorders, is a very 

well suited trait to tackle genomic variants of these conditions. Whole exome sequencing (WES) is 

a widely used strategy for detection of protein coding and splicing variants associated with inherited 

diseases. The DNA of eight patients affected by MAS [all of whom presenting with Sjögren's 

syndrome (SS)], four patients affected by SS alone and 38 unaffected individuals, were subject to 

WES. Filters to identify novel and rare functional (pathogenic-deleterious) homozygous and/or 

compound heterozygous variants in these MAS patients were applied. Bioinformatics tools such as 

the Human Gene Connectome as well as pathway and network analysis were applied to test 

overrepresentation of genes harbouring these variants in critical pathways and networks involved in 

autoimmunity. Eleven novel and rare functional variants were identified in cases but not in controls, 

harboured in: MACF1, KIAA0754, DUSP12, ICA1, CELA1, LRP1/STAT6, GRIN3B, ANKLE1, 

TMEM161A, and FKRP. Notably, the LRP1/STAT6 novel mutation was homozygous in one MAS 

affected patient and heterozygous in another. LRP1/STAT6 disclosed the strongest plausibility for 

autoimmunity. Network analysis indicates LRP1/STAT6 are involved in extracellular and 

intracellular anti-inflammatory pathways that play key roles in maintaining the homeostasis of the 

immune system. Further; networks, pathways, and interaction analyses showed that LRP1 is 

functionally related to the HLA-B and IL10 genes and it has a substantial impact within 

immunological pathways and/or reaction to bacterial and other foreign proteins (phagocytosis, 

regulation of phospholipase A2 activity, negative regulation of apoptosis and response to 

lipopolysaccharides). Amongst all the novel and rare variants identified, the LRP1/STAT6 novel 

mutation has the strongest case for being categorised as potentially causative of MAS given the 

presence of intriguing patterns of functional interaction with other major genes shaping 

autoimmunity.  
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3.1 Introduction 

 
Recent evidence supports the involvement of rare variants (population allele frequency < 1%) in the 

aetiology of common diseases [1],[2]. It is possible that much of the genetic control of common 

diseases is due to rare and pathogenic variants with a major effect on the phenotype. The detection 

of these rare genomic variants harboured in coding regions has shown to be achievable using 

extreme phenotypes (those exhibiting an unexpected and extreme accumulation of signs and/or 

symptoms than those expected by the disease’s natural history) and pedigrees segregating 

exceptional phenotypes [1],[2].   

   

Polyautoimmunity is defined as the presence of more than one autoimmune disease (AD) in a single 

patient [3]. When three or more ADs coexist, the condition is called multiple autoimmune syndrome 

(MAS), which characterises the best example of polyautoimmunity, and probably the most 

conspicuous extreme autoimmune phenotype [4] i.e., (i) MAS amalgamates signs and symptoms 

that are present in several ADs, (ii) the MAS signs and symptoms clustering is not random but it 

outlines the presence of subtypes, (iii) in many occurrences, it clusters in families, and (iv) major 

gene effects and the potential location of these MAS major loci have been established [4],[5]. 

Consequently, it is fair to consider that MAS, as an extreme phenotype of autoimmunity, would be 

critical for dissecting genes of major effect conferring susceptibility to autoimmunity [5],[6]. 

Sjogren´s syndrome (SS), an autoimmune exocrinopathy, is frequently observed in MAS patients 

[7].  

 

Whole exome sequencing (WES) is a cost effective technique, becoming the first-line approach for 

monogenic disorders, and an alternative one for dissecting extreme phenotypes of complex 

inherited conditions [5]. WES is a highly effective approach for identifying homozygous, 

compound heterozygous, novel, germinal, and de novo rare coding variants [5]. Its ultimate 

rationale remains in that genetic variants located in exons are more likely to be pathogenic, with 

major effect than many of those located in introns or between genes. The power of this strategy has 

increased with available access to large numbers of publicly available exome sequence databases 

that allow the controlled comparison of frequencies, as well as the identification of de novo variants 

and stratification by ethnicity. In this manuscript we report the identification of rare and novel 

variants observed in sporadic MAS and SS patients. 

 

 



 75 

3.2 Methods 

 

3.2.1 Patients and controls 

Eight patients with MAS and 4 patients with SS alone, fulfilling validated classification criteria as 

previously reported [3],[4],[8], were included. Patients were assessed at the Center for Autoimmune 

Diseases Research (CREA), at the University of Rosario, in Bogotá and Medellin, Colombia (Table 

3.1). Patients and controls did not present other phenotypes such as cardiovascular disease (i.e., 

ischemic heart disease or stroke), or diabetes. 

  

Table 3.1:  Phenotypic Information for individuals carrying a MAS or Sjögren’s phenotype, amongst sporadic 
cases of autoimmunity. Abbreviations: AITD: Autoimmune Thyroid Disease; SLE: Systemic Lupus Erythematous; 
SS: Sjögren’s syndrome; SSc: systemic sclerosis; RA: Rheumatoid Arthritis; VIT: Vitiligo; PSO: Psoriasis; AIH: 
Autoimmune Hepatitis.  

 

Sample Phenotype Gender  

1 MAS (SS, AITD, VIT) F 

2 MAS (SS, SSc, AIH, AITD) F 

3 MAS (RA, SS, AITD,) F 

4 MAS (PSO, RA, SS) F 

5 MAS (AITD, RA, SS) F 

6 MAS (AITD, RA, SS) F 

7 MAS (SLE, SS, AITD) F 

8 MAS (RA, SLE, SS) F 

9 SS F 

10 SS F 

11 SS F 

12 SS F 
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3.2.2 DNA library preparation, exome capture and sequencing protocol 

  

Libraries were constructed from 1 μg of genomic DNA using an Illumina TruSeq genomic DNA 

library kit at the Biomolecular Resource Facility, John Curtin School of Medical Research. 

Libraries were multiplexed with 6 samples pooled together (500 ng of each library). Exons were 

enriched from the pooled 3 μg of library DNA using the Nimblegen Exome enrichment kit. Each 

exome-enriched pool was run on a 100-base-pair paired and run on an Illumina HiSeq 2000 

sequencer.  

 

3.2.3 Sequence read processing, alignment, variant calling and analyses by filtering 

 

The sequencing image data was converted to FASTQ files containing DNA base calls (A, C, G and 

T) and quality scores using the Illumina CASAVA pipeline in order to convert raw image data into 

sequences. The resulting FASTQ files were further processed for variant analysis. 

 

The workflow for data curation and analysis for variant calling was developed by the Genome 

Discovery Unit (GDU), at the Australian National University (ANU). Key components of the 

workflow include: i) Quality assessment; ii) Read alignment; iii) Local realignment around the 

known and novel insertions/deletions (indel) regions to refine indel boundaries; iv) Recalibration of 

base qualities; v) Variant calling using the Genome Alignment Tool Kit (GATK) algorithm; and vi) 

Assigning quality scores to variants [9-13].  

 

Subsequently, we included a filtering phase (using information from dbSNP and the 1K Exome 

Project), with the following sequential steps: 1) identification of novel variants i.e. those variants 

absent from the 1000 genomes and dbSNP databases (the 1000 genomes - phase3 - has a set of 95 

individuals recruited from Colombia; the same area of ascertainment of these sporadic cases); 2) 

filtering of variants to include either pathogenic or specific variants associated to disease with 

numerous tools i.e., SIFT, PolyPhen2, Mutation Taster, Mutation Assessor, and FATHMM (more 

detailed information in the Additional file 1) as implemented in the DNA-seq Analysis Package 

SVS7.7.6, Golden Helix, Bozeman, USA [9]. Variants were not excluded if classified as potentially 
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damaging by at least one of these filtering tools. These variants are not necessarily non-

synonymous, but can also include those found in splice sites or that are a part of splicing regulatory 

elements, as identified by the Variant Classification and Human Splice Finder algorithms 

respectively [14]-[18] and 3) Filtering of damaging variants based on genes known to be associated 

with human disease. The identification of likely compound heterozygous polymorphisms, and rare 

recessive homozygous polymorphisms, was performed with different modules of the DNA-seq 

Analysis Package in SVS7.7.6, Golden Helix, Bozeman, USA [14], in combination with custom 

Python scripts. For any homozygous intronic variants identified (in cases only) during the initial 

filtration process, further analysis was conducted using algorithms of the Human Splice Finder [17], 

in order to identify possible motifs harbouring mutations that might have an effect on splicing 

regulation (Splicing Regulatory Elements or SREs). In brief, Position Weight Matrices are 

constructed for the predicted sequence motifs, in order to measure the level of nucleotide sequence 

conservation, as well as their enrichment in introns vs. exons [17]. Sequences that have more 

enriched matrix scores in a given intronic region compared to other locations in the gene’s exons 

and introns are considered as candidate splicing regulators [17].  Thus our approach is attempting to 

extract as much information as possible from non-synonymous and splicing variants as well as other 

non-coding variants proximal to exon boundaries, in order to reduce the risk of excluding genes that 

may have substantial importance in the phenotypes of these autoimmune patients.           

3.2.4 Principal Component Analysis 

 

Population stratification and substructure can generate spurious association and consequently 

inaccurate conclusions about the enrichment of candidate variants in cases over controls. Although 

our dataset contains exome-sequencing variants from individuals who are from a homogeneous 

region, small levels of microdifferentiation may be present. We control this potential confounder by 

applying genotype based Principal Component Analysis (PCA), as implemented in SVS 7.7.6, 

Golden Helix, Bozeman, USA [14],[23], to identify outliers. PCA is applied to both filtered and 

unfiltered datasets. 

 

3.2.5 Network analysis 

 

To identify potential enriched MAS related physiological pathways, network analyses were 

performed. For constructing networks and pathways, variants with potential functional changes, 

detected as novel and in homozygote state, were examined with the ‘Analyse Network’, ‘Process 
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Networks’, ‘Shortest Paths’ and ‘Direct Interactions’ algorithms implemented within the MetaCore 

software suite (Version 6.2, Build 66481, Thomson Reuters, New York, USA) (Details regarding 

some the differences between the algorithms can be found in the MetaCore Manual). These 

procedures allowed us to use a heuristic integration of maps and networks and rich ontologies for 

diseases based on the biological role of candidate genes. 

 

3.2.6 The Human Gene Connectome (HGC) Analysis 

 

Similar to MetaCore, the rationale of implementing the HGC is also for prioritizing candidate genes 

on the basis of their functional relevance to autoimmune phenotypes. In this case however, 

candidate genes were chosen on the basis of their quantitative relatedness or biological distance to 

genes already established as having functional importance in ADs. This was used to calculate 

biological distances between candidate genes identified from the aforementioned filtering strategies 

and previously identified genes with potential functional relevance in autoimmunity, including but 

not limited to rheumatoid arthritis (RA), SS, systemic lupus erythematous (SLE) and autoimmune 

thyroid disease (AITD) [19]-[21]. The genes with known functional/physiological relevance and/or 

association to autoimmunity were obtained from the Gene Prospector database [21]. Genes within 

the top 10% listed for each disease and shared amongst multiple ADs of interest (present in the 

MAS patients) were selected for the HGC analysis of candidate genes [21]. To evaluate the 

significance of these distances, P-values were estimated via random permutation of pairwise gene 

interactions in the HGC database. These values were subsequently corrected using the Benjamini 

and Hochsberg false discovery rate (FDR) method [22]. 
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3.3 Results 

 

3.3.1 Evaluating for potential population structure 

 

After applying PCA, there was no evidence of stratification effect between cases and controls. No 

outliers from both groups were identifiable, across the eigenvectors and eigenvalues. 

 

3.3.2 Candidate genetic variants identified from filtering strategies 

 

The filtering strategies were essential tools in order to successfully obtain a refined, prioritized list 

of candidate genes, with potential importance in the MAS patients. Using the aforesaid approach, 

we successfully identified 11 variants within the following genes: DUSP12, GRIN3B, MACF1, 

KIAA0754, LRP1, STAT6, ANKLE1, BABAM1, TMEM161A, MICAL1, ICA1, FKRP and CELA1.  

As shown in table 3.2 Ten out of the 12 affected individuals had at least 1 homozygous or a pair of 

compound heterozygous variants within genes, which were not observed in the controls.  

  

By definition, mutations in the CELA1 and TMEM161A genes were considered as splice mutations.  

This is because these variants are located within a GT-AG nucleotide portion of the intron along the 

DNA sequence that encodes the messenger RNA, which is evident after implementation of the 

Integrative Genomics Viewer (IGV) [16],[24],[25].  It has been previously observed, that variants in 

these regions outside the exon boundary are well conserved in splice sites [16]. In addition, two 

heterozygous variants within the MACF1 gene were present in one of the four patients with SS. 

With the exception of the rare variants harboured in KIAA0754 and CELA1, each of these variants 

was absent from both: the dbSNP and the 1K databases. All of them had potentially deleterious 

effects according to at least one of the following variant effect predictors: Polyphen, SIFT, 

FATHHM, MutationTaster and Mutation Assessor (Table 3.2).  
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Of particular importance was the DUSP12 gene; harbouring one homozygous novel 

mutation in a MAS patient affected by AITD, RA and SS, as well as a second 

heterozygous novel mutation in another MAS individual (diagnosed with Psoriasis, 

RA and SS). The LRP1 gene has one novel, non-synonymous mutation variants in 2 

individuals. Both were affected with MAS. The heterozygote individual had AITD, 

SS and vitiligo, whilst the homozygote individual was diagnosed with AITD, RA and 

SS (Table 3.2 and 3.3). Interestingly, apart from non-synonymous and predicted 

splicing variants, 2 intronic single nucleotide polymorphisms (SNPs) within MICAL1 

and ICA1 respectively were also identified as part of our list of candidate autoimmune 

causing mutations. Both of these variants are considered as ‘Disease Causing’ by the 

MutationTaster algorithm [26],[27]. After implementing IGV, it was found that the 

ICA1 homozygous variant was located in an adenosine rich region, proximal to the 

3’UTR of the mRNA sequence in one of the gene’s exons [24],[25]. In the case of 

MICAL1, the homozygous variant is 22bp from the intron-exon boundary. In addition, 

it was also found that this variant is harboured within the vicinity of  (i.e. <10bp from) 

a sequence region containing 2 hexamer non-coding elements (also named as intron 

identity elements or IIE), which may act as splicing motifs, according to the 

algorithms implemented in Human Splicing Finder [17]. These motifs contain the 

following sequences: ATGGTG and TGGTGG [17-18]. 
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Table 3.2: Candidate genetic variants identified amongst individuals carrying autoimmunity, 
which are absent from controls. The gene name and nucleotide position, amino acid change (HGVS 
Protein: for non-synonymous variants) along with transcript ID at a particular variant is listed.  The 
reference and alternate alleles are also given, along with identifiers to distinguish novel variants (i.e. 
absent from 1000 genomes and dbSNP databases).   

 

 

 

 

 

Chr Position Type of Mutation Gene Exon HGVS Protein 

1 39,854,131 Nonsyn MACF1 52 
p.Asn3144Thr 

1 39,879,412 Nonsyn KIAA0754/MACF1 
1 

p.Ala1159Thr 

    6        109,767,639 
Intronic/potential 

regulatory 
MICAL1 

  

1 161,719,833 Nonsyn DUSP12 1 p.Pro81Arg 

7 8,196,577 Intronic/potentially 
regulatory 

ICA1 
  

12 51,740,405 Splicing CELA1 1 ? 

12 57,522,754 Nonsyn LRP1/STAT6 1 p.Thr3Pro 

19 1,009,552 Nonsyn GRIN3B 9 p.Ala1028Gly 

19 

 

17,392,775 Nonsyn BABAM1/ANKLE1 1 p.Arg70Trp 

19 19,245,591 Splicing TMEM161A 2 ? 

19 47,259,734 Nonsyn FKRP 4 p.Glu343Gln 
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Table 3.3: Phenotypes and genotypes of individuals carrying potentially genetic deleterious 

variants in autoimmunity, absent from controls. The chromosome and nucleotide position of the 

variant harboured within the candidate gene is given with the corresponding individuals, their 

phenotypes and the genotypes. 

 

 

 

 

Variant 
Individual ID and  

Phenotype 
Genotype 

1:39,854,131 9 (SS) (AC) 

1:39,879,412 9 (SS) (AG) 

1:161,719,833 
5 (AITD, RA, SS) (GG) 

4 (PSO, RA, SS) (CG) 

6:109,767,639 6 (AITD, RA, SS) (CC) 

7:8,196,577 12 (SS) (TT) 

12:51,740,405 6 (AITD, RA, SS) (GG) 

12:57,522,754 
1 (AITD, SS, VIT) (AC) 

3 (AITD, RA, SS) (CC) 

19:1,009,552 4 (PSO, RA, SS) (GG) 

19:17,392,775 11 (SS) (TT) 

19:19,245,591 
11 (SS) (CC) 

2 (SS, SSc, AIH) (AC) 

19:47,259,734 
11 (SS) (CC) 

7 (SLE, SS, AITD) (CC) 
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3.3.3 Quality evaluation of sequence reads 

 

The information about mapping quality, which measures the confidence that a 

sequence read, corresponds to its aligned position in the genome, based on the 

strength of the alignment, and the Base Phred Score (a quantitative estimate of the 

probability of an incorrect base call), reported a high quality of reads. In our case 

homozygous variants harboured in the DUSP12, ICA1 and LRP1/STAT6 genes had a 

mapping quality of 42, greater than any other variant. In addition, the Phred Quality 

Scores for each of these genes was 34, 29 and 27 respectively (table 3.4). This shows 

that for these variants, the probability of correct mapping during the alignment of 

these reads harbouring the variants is greater than 99.99%. Also, the likelihood of 

accurate base calls at each of these nucleotide positions is more than 99.8%.  
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Table 3.4 Measures of quality scores for sequence reads containing potentially 
deleterious variants in individuals with autoimmunity. Apart from the position of the 
genetic variants of interest and phenotype information for each individual, the mapping 
quality and Phred scores for the sequence reads containing the variants are also present.  
Finally, we also have the list of specific variant effect predictors which calculated each 
variant as being potentially deleterious.   

 

 

 

 

 

 

 

Gene Variant Individual 
(Phenotype) 

Mapping 
Quality 

Phred 
Score 

Variant Effect Predictors that 
considered each variant as 

potentially deleterious 
DUSP12 1:161,719,833 5 (AITD, RA, SS) 

4 (PSO, RA, SS) 

42 34 FATHMM (damaging) 

ICA1 7:8,196,577  12 (SS) 42 28 Mutation Taster (Disease Causing) 

MACF1 1:39,854,131 9 (SS) 42 32 PolyPhen2 (possibly damaging), 

Mutation Taster (Disease Causing) 

MACF1/KIAA0754 1:39,879,412 9 (SS) 42 33 Mutation Taster (Disease Causing) 

CELA 12:51,740,405 6 (AITD, RA, SS) 23 27 Mutation Taster (Disease Causing) 

LRP1/STAT6 12:57,522,754 1 (SS, AITD, VIT) 

3 (AITD, RA, SS) 

40 27 FATHMM (Damaging) 

GRIN3B 19:1,009,552 5 (AITD, RA, SS) 31 35 Mutation Taster (Disease Causing) 

BABAM1/ANKLE1 19:17,392,775 11 (SS) 42 30 SIFT (damaging) 

MICAL1 6:109,767,639 6 (AITD, RA, SS) 40 26 Mutation Taster (Disease Causing) 

TMEM161A 19:19,245,591 4 (PSO, RA, SS) 42 33 Mutation Taster (Disease Causing) 

FKRP 19:47,259,734 11 (SS) 

7 (SLE, SS, 

AITD) 

40 

42 

34 

34 

PolyPhen, FATHMM, Mutation 

Taster (Probably Damaging, Disease 

Causing, Damaging) 
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3.3.4 Pathway and Network Analysis 

 

Significant results from the ‘Analyze Network’ algorithm show that the alpha 2-

macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2 

MR/LRP/A2M receptor, a large cell-surface glycoprotein (encoded by the LRP1 

gene) is phosphorylated by Protein kinase C- alpha (PKC alpha) during the following 

processes: phagocytosis, negative regulation of apoptosis and phospholipase A2 

activity. According to MetaCore, these processes are also seemingly activated when 

Plasminogen Activator Urokinase Receptor (PLAUR) binds to the A2M receptor 

(Figure 3.1 and Table 3.5). In addition, the application of the ‘shortest paths’ network 

algorithm, found that interferon (IFN) gamma interacts with the A2M receptor by 

regulating its transcription, which is important in response to lipopolysaccharides 

(Figure 3.2 and Table 3.5). MICAL1 is another intriguing gene identified through 

network analyses (Figure 3.3). Like LRP1, MICAL1 is also involved in apoptosis 

regulation, actin filament depolymerisation, and negative regulation of cysteine type 

endopeptidase activity . 
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Figure 3.1 Network analysis of candidate genes involving LRP1 and its potential role in 
autoimmunity. The network is showing the mechanisms by which protein kinase molecules 
activate the A2M receptor encoded by the LRP1 gene. The protein highlighted with a hexagonal 
yellow dot is formed from one of the genes that were identified from the preliminary filtration 
strategies and used as an input list for the network-building algorithm (in this case gene 
was LRP1). The cellular locations (i.e., cytoplasm and extracellular membrane) of the interacting 
molecules, which in this case include protein kinases and the A2M receptor is given. Also 
included are the mechanisms by which one molecule interacts with 
another. P phosphorylation, B binding, GR group relation, TR transcriptional regulation. The 
effect of these mechanisms is denoted in the colour of the symbols corresponding to the respective 
nodes is as follows: pink activation (by phosphorylation), grey activation (by 
binding), blue activation (by transcriptional regulation), green unspecified effect due to group 
relation. 
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Figure 3.2 Network analysis of candidate genes involving the A2M receptor intracellular 
domain. In this network, the effect of the A2M receptor (encoded by LRP1) intracellular domain 
upon IFN-gamma is illustrated. Locations of relevant proteins in this network are shown in the 
nucleus, cytoplasm and extracellular membrane respectively. The mechanistic nature of the 
protein interactions in the network are as follows: TR transcriptional 
regulation, B binding, P phosphorylation. The downstream effects exhibited by the protein–protein 
interactions between a given set of nodes are represented by the following colours on each of the 
mechanism symbols: green inhibition (by transcriptional regulation), grey activation (by 
binding), pink activation (by phosphorylation). The A2M receptor and the STAT6 transcription 
factor are highlighted with a yellow dot, showing that they are part of the candidate gene list used 
as an input source for the network-building algorithm implemented to generate this biological 
network. 
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Figure 3.3 Network analysis illustrating the function of MICAL1 in autoimmune related 
processes. Of particular importance in the network is the interaction between protein kinase C mu 
and MICAL. The MICAL protein is highlighted with a circular yellow dot (as was the case for the 
A2M receptor in Figures 1 and 2) because it is encoded by the MICAL1that was part of the user 
generated input list for the MetaCore network-building algorithm. The mechanistic nature of the 
protein interactions in the network are as follows: P phosphorylation. The downstream effects 
exhibited by protein–protein interactions between a given set of nodes are represented by the 
following: pink activation by phosphorylation, grey phosphorylation with unspecified effect. 

 

 

 

 

 

 

https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-015-0525-x#Fig1
https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-015-0525-x#Fig2
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Table 3.5: Network and pathway analysis showing the most likely candidate genes with functional relevance in autoimmunity. The first P-Value is of 
the constructed network.  This gives the probability of obtaining a certain number of genes obtained from a given network algorithm from the input list by 
random chance.  Also given are the network nodes and their corresponding biological processes that may have functional importance in ADs. 

Gene Network Algorithm  

(P-value) 

Network Node GeneGO ontology Process Processes P-Value 

LRP1 Analyse Network  
(3.03e-7) 

PKC alpha (Phosphorylation of the A2M 
Receptor encoded by LRP1) (Figure 1.) 

Phagocytosis 7.596e-8 

LRP1 Analyse Network 
(3.03e-7) 

PKC-alpha (Phosphorylation of the A2M 
Receptor encoded by LRP1) (Figure1.) 

Regulation of Phospholipase A2 Activity 3.597e-13 

LRP1 Analyse Network 
(3.03e-7) 

PKC-alpha (Phosphorylation of the A2M 
Receptor encoded by LRP1) (Figure 1.) 

Negative Regulation of Apoptosis 6.703e-21 

LRP1 Shortest Paths (N/A) LRP1 (Transcription Regulation) IFN-
gamma (Figure 2.) 

Response to Lipopolysaccharide 7.616e-21 

MICAL1 Analyse Network 
(7.32e-10) 

PKC-mu 

MICAL1 (Figure 3.) 

Negative Regulation of apoptotic process 7.901e-15 

MICAL1 Analyse Network 
(7.32e-10) 

PKC-mu 

MICAL1 (Figure 3.) 

Actin Filament Depolymerisation 2.34e-2 

MICAL1 Analyse Network 
(7.32e-10) 

PKC-mu 

MICAL1 (Figure 3) 

Negative regulation of cysteine type 
endopeptidase activity 

5.403e-3 
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3.3.5 Human Gene Connectome output 

 

The LRP1 gene has very short biological distances from the HLA-B, MBL2 and IL10 

genes, as is the case with the distance between STAT6 and IRF5 (table 3.6). The 

functional relatedness of LRP1 with HLA-B and IL10 is closer than most pairwise 

comparisons of core and candidate genes, used in this analysis. After FDR correction, 

the probability of obtaining shorter distances after random permutation and sampling 

of pairwise distance measurements for STAT6 and LRP1 against the remaining genes 

in the HGC database was less than 0.05 in all cases. The FDR corrected P-values for 

these distances involving LRP1 were 0.02486, 0.04428 and 0.04938 respectively. The 

distance measurement for STAT6 and IRF5 yielded an adjusted P value of 0.0388 (see 

table 3.6). It must also be noted that STAT6 and ICA1 have already been identified as 

genes with established functional importance in SLE and SS respectively within the 

GeneProspector database [16]. MICAL1 is another gene, which had close relatedness 

to important immune system genes such as PTPN22 and TLR9, whilst DUSP12 had a 

significantly short distance to TSHR. However, these distances only had nominal 

significance. Even though the variant in MICAL1 is not within a coding region or 

splice site, it is still considered functionally relevant, according to the variant effect 

predictor and biological network analyses. 
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Table 3.6: Biological distances and between core and candidate autoimmune genes. Core 

genes represent those that are associated or found to have strong functional and mechanistic 

evidence with ADs in previous studies. The candidate genes listed are part of those that were 

identified from our studies of the 12 sporadic cases from all of the analyses we conducted 

before applying the HGC algorithm. For each of the distance values, the significance levels 

before (P-value) and after (FDR) multiple testing are given. 

 

3.4 Discussion 
 

As a whole, our strategy has been successful in identifying candidate genetic variants that 

may account for the MAS phenotype present in a subset of affected patients as well as in 

patients with SS. One factor that must be acknowledged in this approach is the identification 

of compound heterozygotes for the MACF1 gene. Given that this gene spans 92 exons and 

more than 402Kb [28], this increases the likelihood of identifying more than 1 heterozygote in 

a particular individual by chance (compared to smaller genes), regardless of whether these 

variants are causative or not. On this basis, one can argue that such genes should be excluded, 

but at the same time, size alone cannot rule out the fact that these variants may be potentially 

causative. In this case, these variants were included, as part of our analysis. However their 

inclusion or exclusion does not change our conclusions about which genes are the best 

candidates for observed MAS phenotypes.  

 

Core Gene Candidate Gene Distance P-Value       FDR 

MBL2 LRP1 4.329 0.00113 0.02486 

HLA-B LRP1 4.20532 0.00552 0.04928 

IL10 LRP1 5.38512 0.00672 0.04928 

IRF5 STAT6 4.72812 0.01408 0.03888 

AIRE ICA1 1.25 0.00014 0.028 
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Other studies involving correlated meta-analyses and factor analysis for inflammatory 

markers and metabolic traits have suggested that MACF1 and KIAA0754 contained significant 

pleiotropic association with high density lipoprotein cholesterol and C-reactive protein levels. 

Consequently, this renders these genes as risk factors for metabolic syndrome, which may 

result in a genetic predisposition for cardiovascular disease and diabetes [29]. Although no 

patients from our study were diagnosed with either condition those carrying the KIAA0754 

and MACF1 may have an increased susceptibility to these disorders [29].   

 

Based on these comprehensive analyses we also found intriguing evidence that LRP1 and 

STAT6 have the strongest case for being categorised as potentially causative genes of MAS. 

This observation came along with: (i) the ascertainment of patients with extreme autoimmune 

phenotypes; (ii) the recruitment from a population exhibiting features of a well-established 

homogeneous population; (iii) the identification by whole exome capture and sequencing of 

novel (i.e. not present in dbSNP or 1000 genomes projects) and rare functional coding 

variants (some of them in at least two patients); and (iv) the presence of intriguing patterns of 

functional correlations among them, or with other major genes shaping autoimmunity. 

 

Undoubtedly, the association of LRP1 with the phenotypes of two MAS patients constitutes 

an interesting finding that validates the results of the present study. Indeed, several lines of 

evidence suggest that LRP1 product is involved in crucial extracellular and intracellular anti-

inflammatory pathways that play key roles in maintaining the homeostasis of the immune 

system [30]-[34]. Therefore, a damaging mutation in this gene might largely contribute to the 

occurrence of MAS.  

 

LRP1 is largely expressed in phagocytic cells such as peripheral macrophages and brain 

microglia that play crucial roles in engulfing cellular debris such as apoptotic cell bodies, 

amyloid ß peptide and chromatin [32],[33],[35]. Remarkably, it has been previously described 

that reduced clearance of dying cells by macrophages causes accumulation of cellular 

fragments in several tissues [36-37]. This process appears to induce dendritic cells (DC), 

professional antigen presenting cells that activate naïve T-cells, to uptake apoptotic debris 

[36]. After that, DCs might present self-antigens to naïve T cells and activate autoreactive T 

cells [36]. Thus, impaired LRP1 action could ultimately cause autoimmunity.  
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The crucial anti-inflammatory role of LRP1 in counteracting deleterious effects of 

neurodegenerative diseases has been previously reported [30-33]. For instance, decreased 

expression of LRP1 has been hypothesized to be crucial in the extracellular accumulation of 

beta amyloid protein occurring during Alzheimer’s disease [30]. Furthermore, LRP1 has also 

been hypothesized to play a crucial role in clearing apoptotic cells during multiple sclerosis 

[33]. In summary, the involvement of LRP1 in the removal of cellular debris might constitute 

a key step in preventing autoimmunity. 

 

There are other lines of evidence suggesting that LRP1 has anti-inflammatory roles, which 

indirectly could also aid in the prevention of autoimmunity. First, one of the key LRP1 

ligands, alpha-2-macroglobulin (A2MG), enhances survival during sepsis through a novel 

mode of interaction between cells that involve plasma membrane-shed vesicles containing 

large proteins and lipid mediators [34]. These vesicles are termed microparticles and one of 

their key components to prevent sepsis is A2MG, which acts through LRP1 [35]. Secondly, 

increased levels of glucocorticoids occur during inflammatory challenges aimed at self-

containing the inflammatory cascade also increase the expression of LRP1 in phagocytic cells 

such as macrophages, which contribute to the removal of apoptotic cells as described above 

[32]. Thirdly, there is an intracellular self-limiting anti-inflammatory process that involves 

LRP1 [31]. Recent in-vitro studies described that proteolytic processing of the intracellular 

domain of the protein encoded by LRP1 triggered nuclear signalling to dampen the expression 

of key inflammatory lipopolysaccharide (LPS)-induced genes such as IFN regulatory factor-3 

(IRF-3) [34]. More specifically, it was shown that the soluble intracellular domain encoded by 

LRP1 translocates to the nucleus to repress the LPS-induced increase of IRF-3, a crucial 

transcription factor that regulates the expression of other inflammatory genes. 

 

The HGC and the MetaCore analyses provided additional evidence for LRP1 and STAT6 as 

potentially causal genes within these particular individuals from a functional perspective. As 

mentioned earlier, IL10 is related to LPR1 and has an important role in immunological 

function acting as a negative regulator of the inflammation response [38]. Therefore, a 

mutation that disrupts this gene’s function would lead to a hyper inflammatory response, 

which might account for the elevated IL-10 levels in RA [38] and SS [39].  

 

Based on the significance of the distance measurements, the functional proximity between 

core and candidate genes on the cluster plot and the assumptions of the connectome analysis, 
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LRP1 may have an important role in ADs such as RA, SS and AITD via similar mechanisms, 

networks and/or pathways as IL10.  Evidence for this interpretation is further enhanced by the 

fact that the individual homozygous for the LRP1 variant contains these precise phenotypes 

(i.e., RA, SS, AITD).  

 

Although LRP1 has the strongest evidence as a candidate gene, MICAL1 also may have 

physiopathological relevance in ADs, as it has a close biological proximity to PTPN22, an 

autoimmune gene. A functional SNP C1858T in PTPN22 which alters the responsiveness of 

T and B cells is associated with some ADs in our population including SS [40],[41].  

 

In addition to the genes above, it is also clear that this approach identified well known genes 

associated with autoimmunity within the exome variant data of these patients, which in this 

case are ICA1 and STAT6 (encoded by the same variant as LRP1).  This suggests that the 

filtration strategies we applied have good validity and reliability in identifying potential MAS 

causing genes. The significantly short functional proximities of these genes is to be expected, 

given that ICA1 interacts with AIRE in the production of self-antigen [42] and therefore has 

been functionally linked with SS [43]. The signal transducers and activators of transcription 

(STATs) including STAT6 are latent cytoplasmic proteins that undergo tyrosine 

phosphorylation by Janus kinases (JAKs) in response to cytokine exposure (mainly IL-4 and 

IL-13) in the extracellular milieu [44]. This involves phosphorylation of JAKs, which allows 

dimerization of STAT molecules, enabling transcriptional regulation of target genes. 

Transcriptional regulation by STAT6 occurs as a result of its capability to transform chromatin 

between open and closed states at target loci [44].  It should be stressed that the variants 

identified within ICA1 and MICAL1 are not categorised as coding or splice-site SNPs. 

However, this does not mean that these variants are not functionally relevant, because the 

ICA1 homozygous variant is seemingly part of a poly A tail, which is suggested through its 

sequence analysis via the use of the IGV [24-25]. Another possible explanation is that the 

sequenced region has high levels of sequence conservation. Both of these explanations may 

account for the assignment of this variant as ‘Disease Causing’ by the MutationTaster 

algorithm (table 3.3). Conversely, the variant harboured in MICAL1 is located in a region that 

could be important in intron splicing regulatory element activity as mentioned earlier [17-18]. 

This inference is not only based on the results from the Human Splice Finder (motif predictor) 

[17-18].  Instead, empirical observations from previous studies have illustrated that intronic 

splicing regulatory elements up to 150 bp from alternatively spliced exons are highly 
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conserved compared to constitutive exons [45]. Therefore, given that this sequence is 22bp 

from the intron exon boundary of MICAL1, it may have high levels of conservation. Thus if 

this SNP is located in a highly conserved region, it makes sense as to why it is predicted as a 

functional variant, as it may have important regulatory mechanisms in splicing, based on the 

evidence obtained thus far [24]-[27].   

 

It must also be noted that ICA1, coding for ICA69 autoantigen, has been previously associated 

with Diabetes mellitus type 1 (T1DM ), based on cDNA expression analysis in islet cells, as 

well as being implicated in SS [46],[48].  It has been observed in past investigations that mice 

heterozygous for ICA1 as well as those carrying mutations for ICA1 and AIRE (thereby 

hindering thymic ICA69 expression), exhibited suboptimal negative selection of ICA69 

reactive T cells in the thymus. This can drive autoreactive T cell mediated destruction, as is 

the case with T1DM, and also cause impaired function of other organs expressing ICA69 (i.e., 

the thyroid, the salivary glands, the brain, the stomach), meaning that it can contribute to a 

potential mechanism in the pathogenesis of ADs.  This will occur especially if the 

autoreactive T cells affect the target organ.  Further verification of this proposed mechanism 

is evident through the fact that no islet destruction was observed in cells carrying the ICA69 

wildtype [46-47]. Hence this mutation may be important in the SS phenotype observed in the 

individual homozygous for ICA1. In addition, ICA69 autoantibodies have been reported in SS 

and may reflect the broad spectrum of autoimmune abnormalities in this condition [48]. 

 

Although SS and T1DM share several genetics factors, the coexistence of both diseases is 

uncommon [41]. On the other hand, patients with SS may be prone to develop early 

subclinical atherosclerosis and have an altered lipid profile with potential atherosclerotic risk 

[49]. Nevertheless, the role of dyslipidaemia in favouring organic arterial wall damage in 

these patients appears to be marginal [49]. Thus, other mechanisms including genetics may 

play a key role in determining the acceleration of atherosclerosis in SS. Therefore the 

identified variants in our research may not only be relevant for the observed phenotypes in the 

MAS and SS patients, but also other subphenotypes that could develop in these individuals 

later on. 
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3.5: Conclusion 
  

The application of different databases and quality control for filtering purposes has ensured 

that identified and filtered variants have been corrected for batch effects as well as analysed 

by any relevant bioinformatics tools, not just in terms of population frequency, but also from 

a physiological perspective. Thus, based on our results, these genes (in particular LRP1) 

should be considered as strong candidates for conferring risk to autoimmunity. Furthermore, 

additional variants found in MACF1, ICA1 and KIAA0754 may confer susceptibility not only 

to autoimmunity but also to other diseases such cardiovascular disease [50]. Hopefully our 

findings can be supported by future analysis of multigenerational families segregating 

autoimmunity [51], and will help to decipher the common mechanisms of autoimmunity (i.e., 

the autoimmune tautology) [6]. 
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Chapter 4: Identification of Candidate Disease Mutations in 
Familial Autoimmunity 

 

Abstract 
 

Familial autoimmunity and polyautoimmunity represent extreme phenotypes ideal for 

identifying major genomic variants contributing to autoimmunity. Whole exome sequencing 

(WES) and linkage analysis are well suited for this purpose due to its strong resolution upon 

familial segregation patterns of functional protein coding and splice variants. The primary 

objective of this study was to identify potentially autoimmune causative variants using WES 

data from extreme pedigrees segregating polyautoimmunity phenotypes. DNA of 47 

individuals across 10 extreme pedigrees, ascertained from probands affected with 

polyautoimmunity and familial autoimmunity, were selected for WES. Variant calls were 

obtained through Genome Analysis Toolkit. Filtration and prioritization framework to 

identify mutation(s) were applied, and later implemented for genetic linkage analysis. Sanger 

sequencing corroborated variants with significant linkage. Novel and mostly rare variants 

harbored in SRA1, MLL4, ABCB8, DHX34 and PLAUR showed significant linkage (LOD 

scores are >3.0). The strongest signal was in SRA1, with a LOD score of 5.48. Network 

analyses indicated that SRA1, PLAUR and ABCB8 contribute to regulation of apoptotic 

processes. Novel and rare variants in genetic linkage with polyautoimmunity were identified 

throughout WES. Genes harboring these variants might be major players of autoimmunity. 

Our findings here were published in the Journal of Autoimmunity, 2016. 
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4.1 Introduction 

 

Recent evidence supports the involvement of rare genetic variants with a major effect 

underpinning the etiology of complex disorders and that a large proportion (1/3) of 

deleterious alleles have a frequency of <5%. This distribution of rare variants is likely due to 

the fact that deleterious variants will be unfavorable due to selection, thereby reducing their 

minor allele frequency in any given population [1]. The detection of these rare variants has 

shown to be achievable using severe phenotypes segregating in exceptional pedigrees [1]. 

Polyautoimmunity is defined as the presence of more than one autoimmune disease (AD) in a 

single patient [2]. If three or more ADs coexist, the condition is called multiple autoimmune 

syndrome (MAS), which characterizes one conspicuous and extreme example of 

polyautoimmunity [2,3] i.e.: (i) MAS amalgamates signs and symptoms that are present in 

several ADs, (ii) the MAS signs and symptoms clustering is not random but linked to 

subtypes, (iii) MAS frequently clusters in families, and (iv) Mendelian segregation and 

linkage to major loci have been established for MAS [2-3]. 

 

During the last years we have ascertained, through probands affected by polyautoimmunity, 

several multigenerational and extended pedigrees clustering additional relative members 

affected by either single or polyautoimmunity syndromes (i.e., familial autoimmunity) [4-6]. 

Several of these pedigrees were ascertained from the “Paisa” genetic isolate, where several 

major loci to complex disorders, including MAS have previously been mapped [7-10]. Given 

the phenotypic characteristics of the polyautoimmunity pedigree members it is fair to 

hypothesize that autoimmunity segregates in those pedigrees in a Mendelian fashion with 

different patterns of penetrance (Fig. 4.1). In here we report the analysis of whole exome 

sequencing (WES) of affected and unaffected members of ten pedigrees clustering 

autoimmune phenotypes (Fig. 4.1). Using classical and modern techniques of genetic pedigree 

analyses, we found strong and significant signals of genetic linkage of exonic and regulatory 

mutations with polyautoimmunity. Given the functional nature of these mutations and the 

strong linkage to polyautoimmunity it is very likely that genes harboring these mutations are 

major contributors in causing autoimmunity. 
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4.2 Methods 

4.2.1 Families segregating polyautoimmunity. 

 Phenotypes of the individuals that were subject of exome capture from the ascertained 

pedigrees are presented in Table 4.1, and the corresponding pedigrees are in figure 4.1. All 

the individuals were enrolled in the Center for Autoimmune Diseases Research (CREA) at the 

Universidad del Rosario, in Bogota and Medellin, Colombia. Written informed consent was 

obtained from all individuals before enrolment in this study, which was approved by the 

ethics committee of the Universidad del Rosario. Most of the families (47 individuals) were 

recruited from the Paisa community living in Antioquia, Colombia. Historical evidence has 

documented that individuals from the Paisa community are endogenous, homogenous and 

have very little population stratification [11]. All patients were diagnosed and followed-up by 

a single team (JMA, JCS, ARV, RDM) according to international classification criteria (table 

4.2) [12-29]. 
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Table 4.1: Phenotypes of Individuals in the 10 families segregating autoimmunity. 

Family ID Individual ID Gender 
(1 = male, 

2 = female) 

Individual Phenotype 
(1 = Unaffected, 2 = affected) 

540 FE44 1 1 
540 FE43 1 1 
540-A HUM1377 2 2 (AITD, APS, SSc) 
540-B HUM1378 2 2 (SLE, ITP, MG) 
3528-A HUM1381 2 2 (SS, APS) 
3528-B HUM1382 2 2 (SS, AITD, RA, ITP) 
3528-C FE72 2 2 (RA) 
3528 FE73 1 1  
3543-A FE53 2 2 (SS) 
3543-B FE54 2 2 (RA, SLE, VIT, AAV) 
3686-B FE75 2 2 (RA) 
3686-A FE74 2 2 (SS, AITD) 
5564-A FE6 2 2 (RA) 
5564 FE7 2 1 
5564-C FE8 2 2 (RA, SS, AITD, SLE, DM) 
5564-D FE9 1 2 (RA, SS, SLE, AITD) 
5564 FE10 2 1 
5564 FE11 1 1 
5564 FE12 2 2 (RA, AITD) 
5564-H FE13 2 2 (RA, AITD) 
5564-I FE14 2 2 (SS) 
5564 FE15 1 1 
5564-M FE16 2 2 (T1D, AITD) 
5627-A FE79 2 2 (RA, SS) 
5627-B FE80 2 2 (RA) 
5627 FE81 2 1 
5627-D FE82 2 2 (AITD, APS) 
5627-E FE83 2 2 (RA, APS) 
5653 FE35 1 1 
5653 FE36 2 1 
5653-A HUM1374 2 2 (RA, AITD) 
5653-B HUM1375 2 2 (AITD, SLE, APS) 
5653-C HUM1376 2 2 (SLE, AITD, APS) 
5653-D FE30 2 2 (AITD, APS) 
5653 FE31 1 1 
5653-H FE33 1 2 (AITD) 
5675-A HUM1379 2 2 (RA, SS) 
5675-B HUM1380 2 2 (AAV) 
5675 FE47 2 1 
5675 FE48 2 1 
5675 FE49 2 1 
5744-A FE51 2 2 (RA, SS, AITD, SLE) 
5744-B FE52 2 2 (VIT, AITD) 
10532-D HUM1383 2 2 (AITD, MG) 
10532-B HUM1384 2 2 (AITD, RA) 
10532-A HUM1385 2 2 (T1D, AITD) 
10532 FE97 2 1 
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Autoimmune Disease (abbreviation) [Ref] 

Antiphospholipid syndrome (APS) [12] 

Autoimmune hepatitis (AIH) [13] 

Autoimmune thyroid disease (AITD)  

   Hashimoto’s thyroiditis [14] 

   Graves’ disease [15] 

Dermato-polymiositis (DM) [16] 

Diabetes mellitus type 1 (T1D) [17] 

Anti-neutrophil cytoplasmic antibodies -
associated vasculitis (AAV) 

[18] 

Myasthenia Gravis [19] 

Idiopathic thrombocytopenic purpura (ITP) [20] 

Megaloblastic anemia (MA) [21] 

Multiple sclerosis (MS) [22] 

Primary biliary cirrhosis (PBC) [23] 

Psoriasis (Pso) [24] 

Rheumatoid arthritis (RA) [25] 

Scleroderma (SSc) [26] 

Sjögren's syndrome (SS) [27] 

Systemic lupus erythematosus (SLE) [28] 

Vitiligo (VIT) [29] 

Table 4.2: Autoimmune diseases investigated in probands and relatives of extreme pedigrees 
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4.2.2 DNA library preparation, exome capture and sequencing protocol 

 

Libraries were constructed from 1 mg of genomic DNA using an Illumina TruSeq genomic 

DNA library kit at the Biomolecular Resource Facility (BRF), John Curtin School of Medical 

Research (JCSMR). Libraries were multiplexed with 6 samples pooled together (500 ng of 

each library). Exons were enriched from the pooled 3 mg of library DNA using the 

Nimblegen Exome enrichment kit (BRF). Each exome-enriched pool was run on a 100-base-

pair paired end run on an Illumina HiSeq 2000 sequencer (BRF, JCSMR) [30-32].  

 

4.2.3 Sequence read processing, alignment and variant calling 

 

 The sequencing image data was converted to FASTQ files containing DNA base calls (A, C, 

G and T) and quality scores using the Illumina CASAVA pipeline (a software programs that 

converts raw image data into sequences). The resulting FASTQ files were further processed 

for variant analysis. The workflow for data curating and analysis for variant calling was 

developed by the Genome Discovery Unit (GDU), at the Australian National University. Key 

components of the workflow include: i) Quality assessment; ii) Read alignment using the 

BOWTIE aligner; iii) Local realignment around the known and novel insertions/deletions 

(indel) regions to refine indel boundaries; iv) Recalibration of base qualities; v) Variant 

calling using the GATK (Genome Alignment Tool Kit) algorithm; and vi) Assigning quality 

scores to variants (see more detailed workflow information published elsewhere) [30-35].  

 

4.2.4 Linkage analysis and CLRT unified framework 

 

 We used the Pedigree Variant Annotation Analysis and Search Tool (pVAAST) [36-38] to 

identify candidate genetic variants enriched in affected family members co-segregating (in 

genetic linkage) with polyautoimmunity. In brief, the pVAAST algorithm allows the 

identification of potential disease causing variants through a method that combines classical 

linkage analysis (Elston-Stewart algorithm), with casecontrol association, and functional 
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impact of the tested variant using a Composite Likelihood Ratio Test (CLRTv). This produces 

a gene-based LOD score and CLRTp (pVAAST test statistic) value. Dominant, codominant, 

and recessive models were maximized under the assumption of upper bound penetrance 

proximal to 100%. The significance of these test statistics is derived using a combination of 

permutation tests (in this case 10,000) without replacement and gene-drop simulation. This 

was achieved using a total of 1366 individuals as controls. This control dataset includes 1057 

individuals from the 1000 genomes project (Phase 1), 184 Danish exomes, 10 individuals 

from the 10Gen database and 62 additional unaffected controls from the same geographical 

and cultural region where the extreme pedigrees were ascertained (the 1000 genomes 

ephase1e has a set of 60 individuals recruited from Medellin, Colombia; the same area of 

ascertainment of most of these pedigrees). 

 

4.2.5 Further refinement and curating of candidate gene list generated via pVAAST 

algorithm 

 

Candidate genes reported as containing a significant pVAAST test statistic (based on LOD 

score and case-control allele frequencies) were further filtered as follows: of all the genes that 

were significant, those containing a CLRTp score greater than the mean and with a LOD 

score greater than 3.0 were retained for further downstream analysis. This is conditional on 

the fact that variants within these genes had an allelic frequency of < 5% in the ExAC (Exome 

Aggregation Consortium), dbSNP and the 1000 Genomes database. Afterwards, additional 

filtration was conducted based upon annotations from variant effect predictors (including: 

Polyphen2, SIFT, MutationTaster, and FATHMM), as implemented in the DNA-seq analysis 

package SVS (SNP and Variation Suite) Version 8.3.4 (Golden Helix, Bozeman, USA), as 

well as PROVEAN (Protein Variant Effect Analyser) [39-45]. Mutations predicted to be 

damaging from at least one of these variant effect predictor algorithms are considered as 

plausible disease candidates for further downstream analysis.  
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Figure 4.1: Pedigrees from the Paisa community segregating familial autoimmunity subject to WEC and linkage analysis. Phenotype 

abbreviations are for diseases corresponding to those listed in table 4.2.
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4.2.6 Sanger sequencing and variant quality scores 

 

Sanger sequencing was performed for the validation of the gene variants reported herein as 

previously described [30]. Briefly, a flanking region around each sequence variant site was 

amplified by PCR. We used the following PCR conditions for the amplification of all the 

amplicons: (1) initial activation step of 3 min at 94 C, (2) 40 cycles as follows: 45 s of 

denaturing at 94 C, 30 s of annealing between 53 and 62 C (according to the primer pair, 

Supplementary Table 3), 60 s of extension at 72 C, and (3) final extension step of 10 min at 

72 C. A 15-mL aliquot of the PCR product was analysed by electrophoresis in a 1.5% agarose 

gel to confirm the expected size of the amplicons. Afterwards, 85 mL of each PCR product 

was purified with the Qiaquick nucleotide removal kit (Qiagen, Valencia, CA, USA) 

following the manufacturer’s guidelines. Thereafter, the purified PCR products were 

spectrophotometrically quantified with a NanoDrop ND-1000 (Wilmington, DE, USA), and 

sent for Sanger sequencing to the Australian Cancer Research FoundationdBiomolecular 

Resource Facility (BRF) at the John Curtin School of Medical Research. Bidirectional 

sequencing of PCR amplicons were carried out by using Big DyeTM chemistry (Big Dye 

Terminator, Version 3.1; Applied Biosystems, Foster City, CA, USA) with the sequencing 

primers reported in Supplementary Table 3 of our manuscript in the Journal of Autoimmunity. 

The sequencing protocol was followed according to the BRF standard operative procedures. 

In addition to the Sanger sequencing, variant Phred and Mapping Quality scores are also 

obtained, using IGV [46-47]. For the variant under consideration, the Phred score will 

quantify the probability of an incorrect base call. Meanwhile, mapping quality determines the 

likelihood of an incorrect alignment of the sequence read containing the identified variant(s) 

[46-47]. 
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4.2.7 Metacore pathway and network analysis 

 

 To identify potentially enriched polyautoimmunity related physiological pathways involving 

candidate genes from the pVAAST data, network analyses were performed. For constructing 

networks and pathways, were examined with the ‘Shortest Paths’ algorithm implemented 

within the MetaCore software suite (Version 6.24, Build 67895, Thomson Reuters, New 

York, USA) [48]. Details regarding some the differences between the various algorithms can 

be found in the MetaCore Manual. These procedures allowed us to obtain a heuristic 

integration of maps and networks and rich ontologies for diseases based on the potential 

biological functions of these candidate genes. 

 

4.3 Results 

Significant signals of linkage were obtained for variants harbored in five genes: SRA1, MLL4, 

ABCB8, PLAUR, and DHX34 (Table 4.3). When conducting permutation tests (number of 

permutations / 10,000), each of these genes ascertained a p-value of < 0.005 for the CLRTp 

test statistic. SRA1, ABCB8 and PLAUR exhibited a maximisation of the LOD score (and 

consequently the CLRTp test statistic) under the recessive model for linkage analysis. In the 

case of DHX34 and MLL4, the greatest maximisation occurred under the dominant model. In 

addition, the input parameters suggest that LOD scores are maximized for candidate variants 

within these genes at a disease allele penetrance between 70 and 99%. This result can account 

for the presence of potential phenocopies within this cohort.Sanger sequencing, as shown in 

Figure 4.2, corroborated these variants. Also, mapping quality and Phred scores from IGV 

quantified the accuracy of the base calls and read alignments, as shown in table 4.4 [46-47]. 

These results indicated that the likelihood of incorrect base calls and alignments is is <0.1% 

and 0.01% respectively.   
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Gene Variant 
(rs id) 

LOD Score Linkage 
Model 

pVAAST 
CLRTp 
Score 

Permutation 
Based 

P-Value 

Alleles 
 

Ref/Alt 

SRA1 5:139931629-Ins 
(rs5871740) 

 

5.5 Recessive 214.030 0.0001 C/CTCG 

SRA1 5:139931629-SNV 
(rs202193903) 

 

5.5 Recessive 214.030 0.0001 C/G 

ABCB8 7:150744528 4.1 Recessive 27.359 0.00903 G/T 

ABCB8 7:150744370 4.1 Recessive 27.359 0.00903 CGT/- 

DHX34 19:47883126-SNV 
(rs151213663) 

3.8 Dominant 46.873 0.0003 C/T 

PLAUR 19:44153100 
(rs4760) 

 

3.6 Recessive 20.031 0.004 A/G 

MLL4 19:36218440-SNV 
(rs186268702) 

3.4 Dominant 137.17 0.0001 G/A 

Table 4.3: LOD score and pVAAST test statistics of genes harbouring genetic variants with significant 

values of linkage to MAS in the 10 families.  LOD scores are calculated based on the Elston-Stewart algorithm, 

pVAAST scores are gene-based and P-values are derived from permutation (without replacement) and gene-drop 

simulation. 
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Table 4.4: Mapping quality and Phred scores of chosen variants generated from Linkage and CLRT in 

pVAAST. Mapping quality indicates the strength of the alignment. I.e. the likelihood of incorrect alignment of 

sequence reads harbouring a given genetic variant, with the reference sequence. Phred score quantifies the 

likelihood of an incorrect base call at the position of identification for the variant. Calculations of these scores 

are based on the log10 scale. 

 

 

 

 

 

 

 

 

Gene Variant Mapping Quality Phred Score 

MLL4 

  

19:36218440-SNV 

(rs186268702) 

42 

  

34 

  

DHX34 

  

19:47883126-SNV 

(rs151213663) 

42 

  

36 

  

ABCB8 7:150744528-SNV 42 32 

ABCB8 

  

7:150744370-SNV 

(rs71712832) 

42 

  

31 

  

SRA1 

  

5:139931629-Ins 

(rs7871740) 

42 

  

33 

  

SRA1 

  

5:139931629-SNV 

(rs202193903) 

40 

  

31 

  

PLAUR 

  

19:44153100-SNV 

(rs4760) 

42 

  

33 
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Figure 4.2. Chromatograms of the results of the Sanger sequencing of unaffected (top rows) and affected 
individuals (bottom rows) segregating variants harbored in genes in significant genetic linkage with 
polyautoimmunity. The bold subheading on the top indicates the chromosome (Chr) number and the variant 
position for each one of the studied genes; from left to right they represent PLAUR, DHX34, MLL4, 
SRA1and ABCB8 (last two panels). Also each row represents the DNA of a separate individual. The available 
reference SNP (rs) numbers are also shown between parentheses. Below, it is shown the position of the changes 
either within the protein (p) or the cDNA (c) sequence for the 5 coding and 2 non-coding variants, respectively. 
In each coding variant the left capital letter indicates the aminoacid occurring in the unaffected individuals, and 
the right capital letter shows either the aminoacid change (rs4760, rs151213663, rs186268702 and rs202193903) 
or the insertion (ins) of an arginine (R) in the rs5871740 variant that occurs in the affected individuals. With 
regards to the non-coding variants, the capital letters indicate a nucleotide change (rsN/A) or a trinucleotide 
deletion (del) in the rs71712832 variant. In both coding and non-coding variants each capital letter color 
corresponds to that of the nucleotide involved in the variation as shown in Sanger chromatograms. A short 
sequence is shown under each individual chromatogram. In case of heterozygosity, there are two sequence reads 
representing the maternal and parental DNA. The red and orange arrows signal the nucleotide position where the 
variations occur. The orange inverted and non-inverted Y-shaped pointers depicts the expansion and contraction 
of the sequence occurring as consequence of the insertion and deletion, respectively, in affected individuals. 
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Genotypes of individuals carrying the corresponding alternate allele are given in table 4.5. Table 4.6 

shows the number of affected and unaffected carriers respectively. The data here also shows that all 

of these variants are rare or novel, according to the 1000 Genomes and dbSNP databases, and that 

SRA1 has the highest number of affected carriers, across all analysed families. This gives an 

accurate reflection of the fact that this candidate gene generated the highest LOD score   

Gene Variant Individuals with Variant  
(Genotype, * (a = homozygous, b = heterozygous) 

MLL4 
 

19:36218440-SNV 
(rs186268702) FE30(b), FE33(b), HUM1374(b), HUM1375(b), HUM1376(b) 

DHX34 
 

19:47883126-SNV 
(rs151213663) FE6(b), FE8(b), FE12(b), FE13(b) 

ABCB8 7:150744528 FE8(b), FE9(b), FE14(b) 

ABCB8 7:150744370 
(rs71712832) 

FE6(b), FE7(b), FE8(b), 
FE9(b), FE10(b), FE14(b), FE16(b), FE53(b) 

SRA1 5:139931629-Ins 
(rs7871740) 

FE13(a), FE14(a), FE16(a), FE75(a) FE6(a), FE79(a), FE80(a), 
FE9(a), FE12(a), FE52(a), FE53(a), FE82(a), FE83(a) 

HUM1385(a), FE10(b), FE11(b), FE31(b), HUM1374(b), 
HUM1375(b), HUM1376(b) FE97(b), FE30(b) HUM1381(b), 

FE8(b) 

SRA1 5:139931629-SNV 
(rs202193903) 

FE6(a), FE8(b), FE9(b), FE14(b), FE11(b), FE16(b), FE12(b), 
FE79(b), FE82(b), FE83(b), FE51(b), FE52(b), FE53(b), 

FE43(b) 

PLAUR 19:44153100-SNV 
(rs4760) 

FE8(a), FE12(a), HUM1379(a), HUM1380(a), FE79(a), 
FE82(a), FE6(a), FE7(b), FE9(a), FE10(b), FE14(b), FE16(a), 

FE13(b), FE53(a) 
Table 4.5: Genotypes of candidate variants in genes in affected and unaffected individuals giving significant 

LOD scores. Data is presented for individuals across all 10 analysed families. 
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Table 4.6: Number of affected and unaffected individuals with mutations in candidate genes from the pVAAST 

analysis, and allele frequencies in external databases (dbSNP, 1000 Genomes and ExAC). 

 

 

 

 

Variant/Gene Number of 
Affected 

Individuals 
(Across 

Families) 

Number of 
Unaffected 
Individuals 

(Across 
Families) 

dbSNP allele 
frequency 
(build 141) 

1K allele 
Frequency 
(Phase 3) 

ExAC 
Frequency 

 
5:139931629-

Ins 
(rs7871740) 

SRA1 

 
14 

homozygous 
 

5 
heterozygous 

 
4 

heterozygous 

 
Absent 

 
Absent 

 
Absent 

 
 

5:139931629-
SNV 

(rs202193903) 
SRA1 

 
 

1 homozygous 
 

11 
heterozygous 

 
 
2 

heterozygous 

 
 

Absent 

 
 

Absent 

 
 

Absent 

 
 
19:36218440-
SNV 
(rs186268702) 

MLL4 

 
 
5 

heterozygous 

 
 
0 

 
 

0.184% 

 
 

0.1% (real 
allele freq, 

other based on 
sample counts) 

 
 

 
 

0.07% 

 
19:47883126-

SNV 
(rs151213663) 

DHX34 

 
4 

heterozygous 

 
0 

 
0.587% 

 
0.24% 

 
0.4718% 

 
 

7:150744528 
ABCB8 

 
 

3 
heterozygous 

 
 
0 

 
 

Absent 

 
 

Absent 

 
 

Absent 

 
7:150744370 

ABCB8 

 
6 

heterozygous 

 
2 

heterozygous 

 
 

30.367% 

 
 

31.73% 

 
 

Absent 
 
 
 

19:44153100-
SNV 

(rs4760) 
PLAUR 

 

 
 
 
2 

(homozygous), 
8 

(heterozygous) 

 
 
 
5 

heterozygous 

 
 
 

9.248% 

 
 
 

6.85% (1.2% 
homozygotes) 

 
 
 
12.25% 
(Homozygotes 
1.9%) 
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In addition to the high LOD scores and significant pVAAST statistics generated from the 

aforementioned analysis, these genes may also have substantial relevance in biological pathways 

and networks, thereby influencing key processes that underpin the physiological basis for 

autoimmunity in these patients (Table 4.7). In particular SRA1 and PLAUR are seemingly both 

involved in the negative regulation of apoptosis (P-value = 1.791e-3), as well as negative regulation 

of cysteine type endopeptidase activity (Pvalue = 1.287e-5). As indicated in the Metacore analysis in 

Fig. 4.3 and Table 4.7, these processes seemingly occur as a consequence of the SF1 transcription 

factor binding to and subsequently activating the SRA1 protein. This in turn activates the ESR1, 

which then subsequently has a seemingly inhibitory effect on the protein encoded by PLAUR (Table 

4.7 and Fig 4.3). 

 

Gene(s) Network 
Algorithm 

GeneGo Process 
Annotation 

Annotation 
Process P-Value 

Network Nodes 

PLAUR 
SRA1 

Shortest Paths Negative 
regulation of 

apoptosis 

1.791e-13 SF1 
SRA1 

ESR1 (nuclear) 
PLAUR 

 
PLAUR 

SRA1 
Shortest paths Negative 

Regulation of 
Cysteine type 
endopeptidase 

activity 
 

1.287e-5 SF1 
SRA1 

ESR1 (nuclear) 
PLAUR 

PLAUR 
SRA1 

Shortest Paths Positive 
Regulation of 

Phosphorylation 

1.592e-20 SF1 
SRA1 

ESR1 (nuclear) 
PLAUR 

 
PLAUR Shortest Paths Negative 

Regulation of 
Proteolysis 

 

1.761e-4 ESR1 (nuclear) 
PLAUR 

PLAUR Shortest Paths Urokinase 
Plasminogen 

Activator 
Signalling 

2.404e-3 ESR1 (nuclear) 
PLAUR 

Table 4.7. GeneGo ontologies for biological process descriptions produced by the Metacore network analysis for 

the candidate gene list.  Table gives the nodes corresponding to the process descriptions as well as the P-value. 
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Figure 4.3: Metacore network analysis of candidate genes from the pVAAST analysis. Network is generated by the 

‘Shortest Paths’ algorithm. Proteins encoded by genes from candidate list are generated by circular red dot. 

Abbreviations for the mechanism of interaction between each node for each of the respective proteins is as follows: TR 

= transcriptional regulation, B = binding. In addition, effects and mechanisms of these types of interactions are given by 

the following colour coordination: red = inhibition, green = activation.   

 

4.4 Discussion 

 

As a whole, we are presenting significant evidence of linkage of functional exonic variants harbored 

in five genes that cosegregate with polyautoimmunity in extreme pedigrees clustering autoimmune 

phenotypes. The power of exome sequencing is further enhanced by the fact that this study was 

done in families, most of them belonging to a genetic isolate, a circumstance that increases genetic 

and environmental homogeneity. The strongest candidate of the five genes identified is SRA1 with a 

LOD score of 5.48. No unaffected individual was heterozygous for both of the identified variants, 

harbored in this locus. The 3 base insertion at chr5:139931629 (which was denoted to be damaging 

by the Provean variant effect prediction algorithm, as a consequence of an Arginine insertion 

between the Valine and Alanine at this position) was not present in any unaffected individual. The 
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fact that SRA1 has been enriched according to the linkage analysis and pVAAST test statistics in 

affected pedigree members is further supported by the aforementioned network analysis. The 

relationship between SRA1 and the immune system remains to be studied in more detail. However, 

it is noteworthy to mention that in mouse studies SRA1 levels of mRNA expression were found to 

be relatively high in mouse spleen, which presumably exerts proinflammatory actions [49]. In fact, 

SRA1 KO mice showed significantly reduced expression of a subset of inflammatory-related genes, 

including tumor necrosis factor-a (TNF-a) and monocyte chemotactic protein-1 (MCP-1), that was 

accompanied by decreased levels of blood TNF-a [49]. Another candidate gene is PLAUR (LOD = 

3.62), which encodes the urokinase plasminogen activator receptor (uPAR). When the endogenous 

ligand urokinase plasminogen activator (uPA) binds to uPAR, it triggers the conversion of 

plasminogen into plasmin, an active serine protease that is involved in key pathophysiological 

mechanisms occurring in cancer [50]. Interestingly, uPA and uPAR occur in immune cells, in 

particular on activated T-cells [51] and monocytes [52], and several of the uPAeinduced effects are 

independent from plasminogen such as regulation of cell migration, angiogenesis, and adhesion 

[53]. Also, uPAR expression is enhanced by proangiogenic as well as proatherogenic growth factors 

and cytokines such as IL-1, suggesting its involvement in inflammatory and proliferative processes 

[54]. The Metacore network analysis of candidate genes from the pVAAST analysis is depicted in 

Fig. 4.3. The fact that the analysis revealed both PLAUR and SRA1 are involved in the negative 

regulation of apoptosis and cysteine type endopeptidase activity suggests they have a potentially 

important contribution to the autoimmune pathophysiology within these patients. Hypothetically, 

the occurrence of the rare variants harbored in SRA1 and PLAUR could contribute to the 

development of autoimmunity by dysregulating apoptosis. Thus, a putative explanation of this 

network would be that the transcription factor stereoidogenic factor-1 (SF1) increases the 

expression of SRA1, which in turn can positively modulate anti-apoptotic pathways mediated by 

estrogen receptor-1 (ESR1), via a binding interaction [55-56]. For instance, downstream anti-

apoptotic pathways activated by ESR1 could counter PLAUR-induced apoptosis in line with the 

negative interaction depicted between ESR1 and PLAUR in the network analysis described in Fig. 

3. Additionally, in this network, the tumor suppressor protein p53 is hypothesized to negatively 

regulate PLAUR, presumably by its non-apoptotic actions [57]. On the other hand PLAUR receives 

stimulatory feedback from its ligand (PLAU), and two transcription factors named transcription 

factor 7-like 2 (TCF7L2) and nuclear factor-kappa B (NF-kB), which in turn could positively 

influence PLAUR-mediated apoptosis. The P-values indicate that the association between the 

corresponding nodes and these GeneGo processes is highly unlikely to have arisen by chance. 

Furthermore, based on the results from the pVAAST and Metacore test statistics, it can be 

hypothesized that the negative regulation of apoptosis may be disrupted as a consequence of 
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deficient cysteine type endopeptidase activity due to one or both mutations in each of these 

respective genes. Therefore, a deficiency in negative regulation of apoptotic signaling, may lead to 

enhanced destruction of non-foreign cells, underpinning the basis of the ADs carried by these 32 

affected patients. The crucial role of apoptosis in autoimmunity has been studied since more than 20 

years [58-60]. 

 

Thus, the possible functional relationship between SRA1 and PLAUR and autoimmune-related 

apoptosis should be investigated in future studies. Although the remaining genes identified from the 

pVAAST analysis did not show evidence of pathway or physiological significance in the Metacore 

analysis, this does not rule out their potential relevance in autoimmunity. A brief description of their 

biological relevance is provided below. MLL4 encodes an enzyme named histone methyl transferase 

that methylates ’Lys-40 of histone H3, which is a key epigenetic modification involved in gene 

activation. This enzyme can cause diand trimethylation to H3 histones interacting with transcription 

start sites during gene transcription [61-62] and monomethylations to H3 histones associated with 

enhancer sequences [63]. MLL4 appears to be involved in different types of cancers such as 

endometrial, large intestine, glioma and liver carcinomas [64]. Mutations harboured in its paralog 

gene, namely MLL2, have been associated with Kabuki syndrome, which is a complex multisystem 

developmental disorder characterized by craniofacial, intellectual and cardiac defects [65]. 

Remarkably, it has been recently reported that patients with Kabuki syndrome carry mutations 

within MLL2 presented in humoral immune diseases and in some cases, autoimmunity [66]. In the 

case of MLL4, empirical data is also present for its potential relevance in autoimmunity. It has been 

found that the methyltransferase encoded by MLL4 seemingly binds to PTIP (Pax Transactivation 

Domain Interacting Protein) [67]. PTIP in turn controls for class switch recombination on the 

immunoglobulin heavy chain locus. Thus a mutation in MLL4, may affect the binding of the 

methyltransferase with PTIP, thereby potentially resulting in defects in class switching. 

Consequently, this evidence suggests that MLL4 might also be involved in key pathophysiological 

aspects underlying autoimmunity.  

 

ABCB8 encodes a multi-pass protein (ABCB8) that is an integral component of the inner 

mitochondrial membrane. ABCB8 is an ATP-dependent transporter involved in mitochondrial iron 

export, which is crucial for normal cardiac function. Mice, with deficient expression of ABCB8 in 

their heart showed aberrant iron homeostasis, increased mitochondrial damage and developed 

cardiomyopathy [68]. ABCB8 is a member of the MDR/TAP subfamily. Members of this subfamily 
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are involved in antigen processing and presentation by pumping degraded cytosolic peptides across 

the endoplasmic reticulum into the membrane-bound compartment where class I molecules 

assemble [69-70]. The identified variants chr7:150744528 and chr7:150744370 both are located in 

the E2F1 binding site (http://htd.cbi.pku.edu.cn). By themselves the mutations likely decrease 

ABCB8 expression, reduce mitochondrial potential, render the cells susceptible to redox stress, and 

promote cell death. The effects of the mutations may hence converge with cell cycle arrest of 

infected cells (e.g., by Parvovirus B19) [71]. Thus, the possibility exists that mutations of ABCB8 

could contribute to autoimmunity by altering cell death and antigen processing and presentation to 

the adaptive immune system.  

 

Finally, DHX34 encodes an RNA helicase (DHX34). In vitro studies suggested that DHX34 is 

involved in nonsense-mediated decay (NMD), a surveillance process that degrades aberrant 

mRNAs that harbour premature stop codons and also might regulate the abundance of RNAs [72]. 

DHX34 belongs to the DEAD box protein family; another RNA helicase from this family such as 

DHX33 has been reported to play a crucial role in sensing viral RNA in myeloid dendritic cells 

[73]. The possible biological relationships between DHX34 and autoimmunity, remains to be 

elucidated. 

 

4.4.1 Study’s limitations 

We acknowledge the lack of functional genetics as a shortcoming of our study. In addition and as 

we have mentioned elsewhere: hybridization probes are not available for all annotated exons within 

the gold standard databases. Also, exome sequencing is not able to detect mutations in non-coding 

DNA that alter gene function by various regulatory mechanisms and enhancer effects. Such variants 

are emerging as important contributors to genetic disease and they occur in > 98% of the human 

genome, which is missed by exome capture [3]. Thus, it is recognized that all genes associated with 

polyautoimmunity were not included in our study and that new associated genes may be discovered 

as updated information becomes available. It is worth mentioinng that the dissection of major 

genes, harboring mutations predisposing to polyautoimmunity, in this manuscript, does not discard 

interactions of these loci with environmental causes (i.e. the autoimmune ecology) [74], neither 

does it the switch of the polyautoimmunity phenotype on by infectious diseases. With the available 

methods for analysis of pedigrees it is very challenging to dissect epigenetic effects. The twins and 

casecontrol cohorts are better suited to characterize these nonhereditary factors than the use of a 
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limited number of extended and multigenerational pedigrees that maximize the best strategies of 

physical gene mapping. 

 

4.5  Conclusions 

In summary, our linkage analysis in combination with the pVAAST composite likelihood ratio test 

has successfully identified 5 candidate genes that account for the observed autoimmune phenotypes 

in extreme pedigrees with polyautoimmunity. The strongest candidate from a statistical and 

biological relatedness point of view was by far SRA1. It is hoped that further functional studies can 

validate the postulation for the contribution of these genes in ADs. 
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Chapter 5 

Genetics of Population Isolates: Comparisons of Genomic 

Variation in the Paisa Population with other Cohorts from 

Europe and South America 

 

Abstract 

Having identified candidate variants contributing to sporadic and familial autoimmunity, we 

now perform population genetics comparisons of the Paisa cohort with others part of the 1000 

Genomes project. The purpose of this is to elaborate differences in genomic patterns that 

render population isolates, in particular the Paisa community, suitable for genetic 

epidemiological studies. Specifically, we obtained pairwise linkage disequilibrium values of 

all variants in the Paisa cohort and compared these to Finnish, British, Italian, Iberian 

Spanish, Utah, Peruvian and Puerto Rican populations of the 1000 Genomes database. We 

found that the Paisa cohort exhibits higher overall LD rankings compared to all populations 

except for the Peruvian cohort, based on the Wilcoxon Rank Sum Test. Also, when 

conducting Z proportion tests for the differences in rare variation percentages (i.e. proportion 

of variants <5% in the 1000 Genomes Project), the Paisa cohort significantly exceeded all 

cohorts except for the Puerto Ricans. Both these outcomes are reflective of demographic and 

population genetic history over time.    

 

5.1 Introduction 

A genetic isolate represents populations separated by geographical and/or cultural barriers 

that results in minimal admixing between individuals from external populations [1]. Such 

populations often arise through founder effects and/or population bottlenecks as a 

consequence of and along with these barriers. One of the most well known examples of this 

phenomenon, is that of the Paisa community, residing in Norther Colombia (including the 

departments of Antioquia, Risaralda, Caldas and Quindio) [1].  
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Although individuals of the Paisa region have mixed genetic lineages tracing back to the 

Spanish conquistador and Amerindian ancestry, this population has formed a genetic isolate 

over time. The founding population of the Paisa descended from genetic admixture from 

Iberian Spanish Conquistadors from the regions of Andalusia, Extramadura as well as early 

settlers from the Basque region and Sephardic Jewish individuals escaping religious 

persecution, dating back to the 15th century [1-3]. According to historical archives, the current 

population of the Paisa isolate are descended as a result of subsequent genetic admixture 

between these European colonizers with Amerindian females, supported by past admixture 

analyses. Over time, the regulations imposed by the Spanish monarchy as well as the 

geographic barriers within the Paisa region, resulted in the current Paisa individuals 

containing reduced Amerindian, and greater European ancestry, resulting in the world’s 

currently largest known genetic isolate [1-3]. This is supported by previous genetic ancestral 

studies, suggesting that more than 94% of Y-chromosomes in the Antioquian population trace 

back to European lineages, whilst the remainder point towards African and Amerindian 

ancestry at proportions of 5% and 1% respectively [4]. Furthermore, more than 90% of the 

mtDNA gene pool pertains to Amerindian lineages. This sex-based bias in ancestry concurs 

with the historical fact that most of the non Native American migrants were males. In the 

descendent admixed individuals, there is still noticeable allelic structure of Amerindian 

ancestry within admixed mestizo individuals (in particular females) in the Paisa region [4].  

 

Unlike other areas of South America, there is relatively little evidence of African ancestry 

(predominantly thought to have been derived from historical slave trade), amongst the Paisa 

population [5]. African ancestry is present amongst Paisa individuals. However, this may 

have been subsequently facilitated due to genetic exchange between Spain and North Africa, 

as both were under Arab rule during overlapping time periods. Data to support this this is 

from short tandem repeat (STR) microsatellite comparisons, suggesting that Andalusians have 

shorter genetic distances from Northwest Africans, compared to many other European as well 

as Non-European populations [5]. Furthermore, it was found in this particular study, that the 

overall genetic distanced, evaluated by Delaunar Triangulation and Neighbour-Joining 

algorithms was much closer between European and African as a whole, compared to those 

extracted from single populations compared between each continent [5]. Therefore, it can be 

interpreted that there has been previous instances of small, but noticeable gene flow from 

Northwest Africa to Andalusia, the latter of which (in turn) made substantial contributions to 
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the ancestry of modern Paisas. To support this theory, must note that gradients can be 

observed between Spanish, Antioquians and North African individuals, possibly reflecting 

gene flow patterns during Arab occupation of Iberia [5]. These historical events, can also 

explain the prevalence of Sephardic Jewish ancestry in current Antioquians [4-5]. It was 

around this time, where expulsion of Jewish individuals was taking place in the Spanish 

community, many of whom migrated to North Africa and the Americas, thereby potentially 

explaining substantial degrees of allele sharing along regions of the Y chromosome between 

Sephardic Jews and current Antioquians, providing evidence that the former had evident 

influence of shaping the ancestry of the Paisa community [4-5]. 

 

In addition to the Andulusian and Sephardic Jewish ancestry, allele sharing of Y chromosome 

loci has also been observed amongst Antioquians with Basque and Catalan populations. Once 

again, this is consistent with documented history, with alleles observed exclusively in Basque 

individuals, exhibiting a frequent (>5%) prevalence in the Antioquian population. Thus, these 

patterns of admixture and immigration from diverse population groups, have all contributed to 

shaping the population genetics of the Paisa genetic isolate over time [1-5].     

 

The demographic and genetic history of the Paisa population has substantial implication for 

genetic studies. There has been a recent shift from GWAS based approaches of the common-

disease common-variant hypothesis, into developing and analytical strategies for 

identification of rare-variants as disease candidates [6-7]. This is because common variants 

can’t always account for the missing phenotypic heritability for a particular trait or disease. In 

addition to the compensation of low effect size by aggregating multiple rare variants into a 

single multi-site genotype, the power of these analyses are also enhanced through the use of 

genetic isolates such as the Paisa population [8]. This is due to their genetic homogeneity, 

resulting in a greater potential enrichment of rare variants as a subsequent effect of 

evolutionary forces such as founder effects, bottlenecks, genetic drift and unique admixture 

patterns [1, 6-8]. Furthermore, it has been previously hypothesised that isolated populations 

with admixture among individuals with divergent ancestry during the founder time are more 

likely to have higher levels of linkage disequilibrium, between a given set of variants [1]. 

Empirical evidence indicates, that this leads to a potentially increased power for mapping and 

identification of candidate disease genes [9-11].   
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In this study our objective is to determine the level of linkage disequilibrium and proportion 

of rare variation within the Paisa community, relative to other admixed populations that are 

either admixed (non-isolates) or arose from a unique founder effect (i.e. from a single ethnic 

group). In order to achieve this, various population groups (harboured within the continents 

ancestral origin of the current Paisa population, as determined by historical and genetic 

records) from the 1000 Genomes Project will be used. This is aimed to quantitatively 

elucidate the value of population isolates in association, linkage or any genetic 

epidemiological study. 

 

5.2: Individuals and Methods 

 

5.2.1 Samples Used and Preparation of VCF Files 

Variant data for analyses was downloaded from the 1000 Genomes (Phase 3, hg19) 

Consortium [12]. These included populations from the Americas are: Colombians in Medellin 

(CLM), Peruvians in Lima (PEL), Puerto Ricans in Puerto Risco (PUR). Europeans 

populations include: Iberian Spanish (IBS), Utah individuals with Central European Ancestry 

(CEU), Finnish in Finland (FIN), British from England and Scotland (GBR) and Toscani in 

Italy (TSI). In total 794 individuals across 8 different populations in the 1000 Genomes 

database were analysed [12]. Note: The MXL (Mexicans in Los Angeles) are not part of this 

analysis, as their exact origins in Mexico, or their extent of genetic admixture with Non-

Latino groups in the USA is not known. VCF files from the 1000 Genomes Consortium from 

each of these populations (for all autosomal chromosomes) were extracted and filtered for 

genotyping quality, using the information provided in the GATK best practices pipeline, as 

well as the gvf conversion tool. Variants with genotyping quality (Phred score) greater than or 

equal to 30 (representing >99.9% probability that the nucleotide base call is correct), were 

retained for downstream analysis [13-18]. Also, variants were filtered on the basis of whether 

they occur in exonic or intronic regions, with the aid of the Variant Effect Predictor. All 

variants occurring in coding or splice regions were included for analysis. Amongst the coding 

variants, only those that were non-synonymous were incorporated. Those in intronic regions 

were excluded [19]. 
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5.2.2 Linkage Disequilibrium Analyses  

LD was calculated for each population, using the PLINK software package, by Purcell et al. 

Due to the fact that the r-squared (r2) measure of LD is frequency dependent, common 

variants were filtered (>5% individual frequency in the population) and subsequently used for 

this analysis [20]. Matrices were constructed, and the magnitudes of LD values between all 

pairs of variants within the matrix were compared (by ranking) between Paisa and other 

populations, using the Wilcoxon Rank Sum Test [21-24]. This gives the likelihood that any 

given LD value from the Paisa matrix will be greater than each of the other population groups 

included in this analysis. Pairwise Wilcoxon Rank Sum Tests were conducted for the 1000 

Genomes Paisa individuals against each chosen population.  

 

5.2.3 Rare Variant Proportions Analyses 

Using the Pyhton programming language, the proportion of rare variants for each population, 

(defined in this case as those with less than 5% Frequency in the total 1000 Genomes 

population) was calculated [25]. This threshold for rare variation is based on the threshold set 

by Gibson et al, stating that more than 1/3 of exonic variants consist of minor allele 

frequencies of less than 5% in a given population [25-26]. Significance of the differences in 

rare variant proportions were evaluated by implementing a Z-prportion test, avalialable 

through the Epitools package in R version 3.2.5 [27]. 

 

5.3 Results 

5.3.1 Linkage Disequilibrium Comparisons Between Populations 

The significance of differences in the relative magnitude of LD between populations is 

determined from the P-value calculated from the Wilcoxon Rank Sum statistic, as in table 5.1. 

It was found that the rank sum statistic in the Paisa individuals was higher than all 

populations (Wilcoxon P-value = 0.0004705 against British population, P-value < 2.2e-16 for 

all other pairwise comparisons) except for the Peruvians in Lima. The Peruvians in Lima had 
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a significantly greater rank sum statistic than all of the other populations, in each of the 

pairwise comparisons (P-value < 2.2e-16) [21-24].  

Cohort 1 (C1) Cohort 2 (C2) Wilcoxon Rank 
Sum Test 
Statistic (C1) 

Wilcoxon Rank 
Sum Test (C2) 

P-value 
(Hypothesis: C1 
> C2) 

CLM CEU 2.197316e+14 2.043272e+14 <2.2 x 10-16 

CLM GBR 2.085402e+14 2.053634e+14 0.004705 
CLM TSI 2.2121e+14 1.948166e+14 < 2.2 x 10-16 
CLM FIN 2.41472e+14 2.27722e+14 < 2.2 x 10-16 
CLM IBS 1.756964e+14 1.557886e+14 < 2.2 x 10-16 
CLM PUR 2.5938e+14 2.41186e+14 < 2.2 x 10-16 
PEL CLM 1.43957e+14 1.342066e+14 < 2.2 x 10-16 
PEL CEU 1.381798e+14 1.199198e+14 < 2.2 x 10-16 
PEL GBR 1.29987e+14 1.206172e+14 < 2.2 x 10-16 
PEL TSI 1.389102e+14 1.142724e+14 < 2.2 x 10-16 
PEL IBS 1.031602e+14 9.14122e+13 < 2.2 x 10-16 
PEL FIN 1.519298e+14 1.336676e+14 < 2.2 x 10-16 
PEL PUR 1.536323e+14 1.415656e+14 < 2.2 x 10-16 
Table 5.1: Wilcoxon Rank Sum Test for 1000 Genomes Phase 3 variants from 

Populations compared against the Paisa (CLM) and Peruvian Cohorts. For each row, the 

populations compared in the pairwise tests are given in Columns 1 and 2 respectively. (CLM 

= Colombians in Medillin, CEU = Central Europeans in Utah, GBR = British in England and 

Scotland, TSI = Toscani in Italy, FIN = Finnish in Finland, IBS = Iberian Spanish in Spain 

PUR = Puerto Ricans in Puerto Rico, PEL = Peruvians in Lima). The Wilcoxon Rank Sum 

value for each cohort in every pairwise test is given. Significance of the difference in the 

magnitude of the LD values (from the matrices constructed by plink software) in terms of 

their relative rankings are given in the final column (P-value). This P-value is for the 

hypothesis that random LD values extracted from the first cohort are greater than those in the 

second cohort (C1 > C2).    

 

In order to adjust for potential bias in LD comparisons as a consequence of unequal 

population sizes, results of this analysis are also given for 85 randomly individuals randomly 

extracted from each population. These are presented in table 5.2. This is to ensure that all 

populations are of equal size when applying the Wilcoxon Rank Sum Test on their LD values. 

The reason for applying this test on 85 individuals for each subset is that this was the number 

of individuals present in the PEL population. We see in this case that the Paisa population 

(CLM) again had a significantly greater rank statistics than all other populations (P-value < 
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2.2e-16 for all pairwise comparisons) except for the PEL cohort. In turn, the rank sum statistics 

for the PEL cohort were greater than all other cohorts compared against (P-value < 2.2e-16). 

 

Cohort 1 (C1) Cohort 2 (C2) Wilcoxon Rank 
Sum Test Statistic 
(C1) 

Wilcoxon 
Rank Sum 
Test (C2) 

P-value 
(Hypothesis: C1 > 
C2) 

CLM CEU 1.872024e+14 1.808598e+14 < 2.2 x 10-16 
CLM GBR 1.877942e+14 1.829036e+14 < 2.2 x 10-16 
CLM TSI 1.86989e+14 1.804066e+14 < 2.2 x 10-16 
CLM FIN 2.07647e+14 2.024176e+14 < 2.2 x 10-16 
CLM IBS 1.538702e+14 1.48819e+14 < 2.2 x 10-16 
CLM PUR 2.177824e+14 2.155802e+14 < 2.2 x 10-16 
PEL CLM 1.30064e+14 1.240102e+14 < 2.2 x 10-16 
PEL CEU 1.228502e+14 1.177616e+14 < 2.2 x 10-16 
PEL GBR 1.23484e+14 1.19904e+14 < 2.2 x 10-16 
PEL TSI 1.227116e+14 1.174624e+14 < 2.2 x 10-16 
PEL IBS 1.009778e+14 9.68946e+13 < 2.2 x 10-16 
PEL FIN 1.362702e+14 1.318086e+14 < 2.2 x 10-16 
PEL PUR 1.529494e+14 1.403666e+14 < 2.2 x 10-16 

Table 5.2: Wilcoxon Rank Sum Test for 1000 Genomes Phase 3 variants from 

Populations compared against the Paisa (CLM) and Peruvian Cohorts, with each set 

having an equal number (85) of individuals. For each row, the populations compared in the 

pairwise tests are given in Columns 1 and 2 respectively. (CLM = Colombians in Medillin, 

CEU = Central Europeans in Utah, GBR = British in England and Scotland, TSI = Toscani in 

Italy, FIN = Finnish in Finland, IBS = Iberian Spanish in Spain PUR = Puerto Ricans in 

Puerto Rico, PEL = Peruvians in Lima). The Wilcoxon Rank Sum value for each cohort in 

every pairwise test is given. Significance of the difference in the magnitude of the LD values 

(from the matrices constructed by plink software) in terms of their relative rankings are given 

in the final column (P-value). This P-value is for the hypothesis that random LD values 

extracted from the first cohort are greater than those in the second cohort (C1 > C2).  

 

5.3.2 Rare Variant Proportion Comparisons Between Populations 

Given the shift in genetic studies for study of rare variants as mentioned above, we have also 

obtained results for the proportion of rare variants (<%5 frequency in the 1000 Genomes 

Project), that are present in each of the ascertained populations. Results of all rare-variant 

proportions for each population are given in table 5.3 [26-27]. Out of all the populations 

scanned for rare variants, the CLM population had the highest proportion of rare variants and 
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the pairwise Z scores were higher than all of the groups analysed (P-value <0.05) with the 

exception of the Puerto Ricans. These results corroborate well with the demographic structure 

and history for each population group.        

Cohort 1  Cohort 2 Z –Proportion 
Statistic 

P-value (C1 > C2) 

CLM CEU 55.601 < 0.0002 
CLM GBR 78.75 < 0.0002 
CLM PUR -23.166 0.0231 
CLM FIN 95.001 < 0.0002 
CLM IBS 37.152 0.0017 
CLM TSI 47.18 < 0.0002 

Table 5.3: Rare variant proportion comparisons between the Paisa and Peruvian 

cohorts with other populations of the 1000 Genomes project phase 3. Identity of cohort 

for comparison is given in columns 1 and 2. Differences in proportions are given by a Z-

value, followed by the significance of this score in the 3rd and 4th columns respectively. 

  

5.4 Discussion 

 

Our results suggest that Paisa (CLM) individuals have a higher proportion of rare variants. 

Also, they have a greater probability of harbouring mutations with higher ranked LD values 

relative to most other 1000 Genomes populations in these analyses (when LD values in each 

matrix are chosen at random as per the protocol of the Wilcoxon Rank Sum Test). This 

supports the theory stated by Arcos-Burgos and Muenke, that genetic isolates descended from 

populations undergoing admixture during the founder time are more likely to exhibit higher 

levels of LD, compared to populations with unique founder effects from non-divergent 

population ethnic groups [1]. Previously sampled isolates also exhibited similar patterns, 

whereby LDU map lengths were shorter in younger isolates with divergent founders (i.e. 

Antioquian cohort) compared to outbred populations or older isolated cohorts, from Europe 

[28]. As previously mentioned, this is the case with the Paisa, as their demographic history is 

shaped by admixture between Iberian as well as Amerindian founders. Also founding time in 

the Paisa (~ 450 years) is much later than the other analysed cohorts in this study  
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When comparing the LD values via the Wilcoxon Rank Sum Test of the Paisa, with all 7 

other population groups, we find that results show correlation with population history, 

according to the theory stated by Muenke and Arcos-Burgos [1]. Firstly, the CEU population 

is originally descended from a group of Mormons in the 1840s, arising from a relatively 

small, and substantially isolated population [29-30]. These individuals were almost 

exclusively of Northern and Western European Ancestry. This is determined by previous 

studies, indicating significant correlations in SNP frequencies between Irish populations and 

HapMap individuals. The authors from this study also found that the CEU had the highest LD 

(r2) correlation with the Irish population (>0.95), relative to those from Finland and the UK. 

Furthermore, CEU individuals and those from Southern England have been shown to be 

almost indistinguishable in terms of Fst and PCA results. Hence, the current CEU population 

did not descend from admixture between largely divergent founders, unlike the Paisa 

community [31-32]. Many of these individuals, related to the Mormons, many of whom in 

turn are descended from single common ancestors.  

 

Like the CEU, genetic evidence also points towards a unique founder effect amongst the TSI 

population. Although rulers from Rome and other Italian regions colonized Tuscany over 

time, Etruscan DNA dominates the majority of this region’s genetic ancestry, according to Y 

chromosome haplotype studies.  Ancestral studies of mtDNA lineages support the hypothesis 

that the Etruscans (one of the first groups to have been established in Italy) population 

development can be traced back to local origins [33]. Furthermore, Italians share many 

ancestral genetic components amongst individuals across the country (albeit in different 

proportions) [34-36]. In fact, Haplogroup R1b on the Y-chromosome is present in the highest 

frequency, relative to other haplotypes in majority of the Italian population. Amongst all 

populations analysed, Tuscan regions have the highest proportion of this haplogroup [34-36]. 

Genetic maps constructed for Europe indicate that Italy has substantially distinct genomic 

components compared to the remainder of Europe [37]. This phenomenon occurred, mainly 

due to large alpine mountain chains, as well as the Mediterranean Sea, acting as geographic 

barriers to restricting migration and gene flow (from outside the country) for many 

generations since the establishment of this population. Thus, it has been previously concurred 

among geneticists that historical external migrations into the Italy, had little effect (apart from 

ancient Greek and Roman migrations) in causing major alterations of the genetic composition 

of Italian populations [38-40].  
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As well as geographic barriers, the Black Plague, striking Tuscany twice in medieval history 

also led to population bottlenecks. Consequently, this led population underwent multiple 

founder effects [41-42]. Any traces of genetic admixture between Etruscans and other 

population groups within Italy, would have been depleted. All these complex historical and 

geographic factors point to limited ethnic divergence amongst the founding ancestors of the 

current TSI population [1, 41-42]. Although, modern migration patterns have facilitated 

greater admixture between Tuscan and other Italian populations, this mainly results in gene 

flow of haplotypes that are already shared amongst many Italian groups [34-36]. Also, any 

influences of LD due to cross-migration between these populations would have been reduced 

from chromosome recombination, over many generations. Hence, (as previously mentioned) 

this founder effect is not the same as the Paisa, whereby initial admixture led to 

overrepresentation of newly introduced genetic variation (in the founder time) over successive 

generations, and LD effects are still present and will persist for many generations, before they 

are depleted by allelic recombination [1-2, 4]. These phenomena may all account for the 

substantially lower LD ranks in the TSI (and CEU) cohorts compared to the Paisa individuals. 

 

Having accounted for these differences, one must note, that Finnish as well as British and 

Iberian Spanish populations also descend from ancestors of diverse ethnic groups. In other 

words, historical data indicates that these cohorts arose through divergent founder lineages 

[43]. In the case of the Finns, the dual origin model represents their emergence from 2 

different geographical locations (Uralic speakers from Ladoga Lake as well as migrants 

arriving from south of the Gulf of Finland [43]. These 2 groups together formed a small 

founder population, whose growth was not rapid due to war, famine and disease. This was 

followed by expansion (of the descendent population) into the North, West and East of the 

Country.  

 

In addition to the Finnish population, genetic isolation has also seemingly played a major role 

in British populations as reflected in their fine-scale population genetic structure [44]. Also, 

the regions of Orkney and Kent have exhibited different levels of ancestry arising from 

Scandinavian and Anglo-Saxon migrations into the British Isles [44].  
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Lastly, in the case of the Iberian Spanish populous, colonization also had a substantial effect 

on their genetic structure, during the Arab conquest of Spain as previously mentioned 

[5]. However (particularly in the case of the Finns and British cohort), these initial admixture 

events during the establishment of these populations occurred many generations ago (> 1000 

years). Therefore, the effects of LD would once again have been reduced over many 

generations as a subsequent effect of genetic recombination over time [1]. Moreover, as the 

IBS cohort was collected from all autonomous communities of Spain, one can assume that 

these individuals descend from populations established from the period of Arabic rule and 

thereafter, mainly to due religious and ethnic-based autocracy, resulting in many population 

bottlenecks and subsequent founder effects from multiple conflicts. This would have created a 

relatively uniform genetic architecture amongst Spanish populations, as opposed to the 

admixed/multi-founder effect of the Paisa [45]. As already mentioned, whatever limited 

admixture took place would have been reduced by recombination. Thus, once again in 

accordance with Arcos-Burgos and Muenke, that provides an explanation for the significantly 

higher LD ranks of the Paisa over the FIN, GBR and IBS cohorts [1]. 

 

Thus our results had greater LD rank sum statistics in the Paisa over each of the analysed 

European populations, coinciding strongly with spatial and temporal demographics in each 

case. However, the Paisa population, had overall significantly lower rank sum statistics 

compared to the PEL cohort, once again pointing to the latter’s unique geographic and genetic 

history. The Peruvians in Lima follow similar historical demographics to the Paisa 

community. They too have experienced the effects of Iberian admixture with Native 

American populations [46]. Over time, there have been high levels of migration and gene 

flow within Lima from various ethnicities. However, previous studies involving ancestry 

specific PCA (ASPCA) are more closely related to the Aymara and Quechua populations, 

(who form the population majority among Native American groups in the Andes Highlands), 

than other Native American Andean groups such as the Huilliche, Inga and Yaghan, as well 

as those in the Southern Amazonian basin [46]. The Aymara and Quechua populations in turn 

seemingly had high effective population sizes and gene flow between themselves, suggested 

by Reynolds’ genetic distance and Median-Joining (MJ) networks identifying their shared 

haplotype lineages [46-47]. Nevertheless, according to the allelic structure and differentiation 

identified in the aforementioned ASPCA, the Quechua and Aymara still seemingly 
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experienced genetic isolation from other Native American groups, due to geographic 

obstacles of the Andes [46]. 

 

Following the Pre-Columbian era, Peru also experienced a multi-founder effect, from Iberian 

colonization, similar to the Paisa community. Nonetheless, the last major migration and 

admixture pulse from the Iberian Peninsula and Native Americans (who in turn established 

the founder population) was 9 generations ago, according to tract length distribution studies. 

This is 2 generations later than the Paisa community [46]. This can account for the higher LD 

ranking levels in the Peruvians over the Paisa and the other 1000 Genomes American and 

European populations part of our study, concurrent with the multi-founder effect theory in 

population isolates [1]. 

 

Not only is the Paisa isolate useful for their genetic studies due to the above mentioned 

linkage disequilibrium evidence, but they also harbour substantial rare variation, thereby 

aiding disease studies [1]. Given the migratory, isolation and admixture patterns across all 

populations, it is of no surprise that the proportion of rare variation in the Paisa significantly 

exceeds all of the European cohorts, and the Peruvians in Lima [1]. In addition, when 

comparing the Paisa and Puerto Rican populations, one must consider that the latter are one of 

the world’s most admixed populations. This is not only due to contribution of genetic 

variation from Europeans and Native Americans, but also the introduction of a large colonial 

labour from Africa, during the invasion of the Spanish empire. 80% of Africans who migrated 

to the Americas for this purpose disembarked at Puerto Rico and other Caribbean Islands. 

However, these divergent groups did not form a genetic isolate, (potentially leading to lower 

observed LD magnitudes as per Wilcoxon scores). As can be inferred from the current 

genomic ancestry of Puerto Rico genetic flow across the island was strongly maintained. 

Mitochondrial and Y-chromosome DNA analysis showed that more than 15% of genetic 

ancestry could be traced to African and Native American individuals respectively [48-49]. 

These proportions along the Y-chromosome are substantially greater than the Paisa isolate [2-

4]. Also mtDNA sampled from women part of the Puerto Rican diaspora contain > 80% of 

ancestry markers from African, Native American and European populations. The maximum 

percentage of women with ancestral markers derived only from one of these ethnicities was 

5% [50]. Additionally Puerto Rico has experienced continuous immigrant influx since its 
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initial occupation from various European nations such as France, Ireland, Italy, Germany and 

Scotland as part of the Royal Decree of Graces, 1815 [51]. This was followed by further 

European migration post WW2 and influx from the United States during the country’s strong 

economic development in the 20th century.  All these factors promote the introduction of new 

genetic variation, thereby resulting in an increased likelihood of identifying rare variants.  

 

5.5: Conclusion 

Thus, it is evident from the above LD and rare-variant analyses that individuals recruited for 

DNA sampling from the Paisa community, offer a powerful analytical tool for genetic 

epidemiology. Potentially, these results suggest that within this cohort, there is a greater 

likelihood of identifying rare variants harboured in regions with higher levels of relative LD 

magnitude compared to most European and American populations in the 1000 Genomes 

database. It must be noted that the 1000 Genomes population doesn’t represent all variation 

across both these continents. Nevertheless, these results still provide strong quantitative 

evidence of the value of the Paisa isolate in genetic analysis due to their multi-founder effect. 
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Chapter 6: Discussion 

 

6.1: Success of Sporadic and Familial Studies 

Rare variants, enriched in sporadic cases and families from a well known genetic isolate, 

potentially sharing similar immune mediated pathways may be responsible for contributing to 

observed, extreme autoimmune phenotypes. For many years, given the modest outcomes of 

the CDCV hypothesis, in accounting for the heritability of complex diseases (especially 

autoimmunity and MAS), identification of rare variants has been of great interest in genetic 

analysis [1-3]. This has been facilitated, not only by the development in modern sequencing 

technologies [4], but also the emergence of new linkage and rare-variant association analysis 

algorithms [5-6]. The power of these statistical studies has been further boosted, by 

algorithms combining linkage analysis and association tests into a unified framework, with 

incorporation of de novo mutations [5-6]. 

 

In polyautoimmunity and Multiple Autoimmune Syndrome, our findings of the LRP1 and 

SRA1 genes [7-8] are of special relevance, as they can impact upon early diagnosis and 

potential development of targeted therapies. Such success can only be achieved through the 

use of genetic isolates such as the Paisa community, due to their genomic and environmental 

homogeneity, as previously mentioned [9-10]. This not only benefits Paisa patients, but also 

other cohorts around the world. This is because the same, potentially pathogenic mutations, 

overrepresented in the Paisa cohorts may also be disease causing in other populations. 

However, if they are prevalent in populations with diverse ethnic and genomic backgrounds, 

they may not be easily detectable due to stratification. 

 

6.1.1: Similarities of Results between Sporadic and Familial Autoimmunity Analyses 

Although the list of candidate genes, in both the sporadic case-control and familial linkage 

analyses yielded different lists of candidate genes, these 2 studies still potentially reveal 

similar findings on a pathophysiological and functional level. Evidence from pathway and 

network analysis 3.3 suggest sharing of biological networks and processes amongst identified 
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genes from case-control and linkage analyses from studies of the sporadic and familial cases 

respectively [7-8]. This was identified via the implementation of the Metacore-based pathway 

and network analysis, involving data mining from the GeneGo ontology database. 

Specifically, both cases involved the PLAUR (Plasminogen Urokinase Receptor) protein. As 

previously mentioned, this protein was shown to be a part of a series of nodal interactions 

with LRP1 and SRA1 in the candidate gene lists from the sporadic and familial cases 

respectively, associated to processes that are relevant to autoimmune pathophysiology [7-8]. 

Furthermore, the processes shared between these nodes in both cases are all similar in nature, 

as they are centred around the occurrence and/or regulation of apoptotic activity 

(phagocytosis, negative regulation of apoptosis, endopeptidase activity etc) [7-8, 11-17]. 

Additionally, given the interactions of both SRA1 and LRP1 with PLAUR [7-8], all 3 of these 

genes can potentially regulate inflammatory responses by IL-1 and IL-10 signalling pathways, 

uPAR expression on monocytes and phospholipase A2 activity, (leading to IFN-gamma 

activation) respectively [7-8, 17-24]. Therefore, understanding of the autoimmune tautology 

and pathophysiology for phenotypes observed in this cohort is enhanced. It’s true that our 

studies (involving both linkage and rare-variant association analyses) did not share any 

overlapping genes, between sporadics and familial cases [7-8]. However they successfully 

identified mutations that may have important similarities in terms of their biological 

pathways, networks and mechanisms [25-26], in the context of autoimmunity, 

polyautoimmunity and MAS.             

 

Nevertheless there is sufficient evidence, supporting the identification of autoimmune genes 

in these studies, particularly through the combine linkage and association algorithm, 

implemented upon the pedigrees. This evidence could be strengthened by replication of 

results in new, untested populations. In addition, the findings could also develop a platform 

for targeted therapies that target the SRA1, MLL4, DHX34, ABCB8 and PLAUR genes. This 

will depend upon findings from functional validation, evaluating these mutations as disease 

causing variants. Assuming that positive results are obtained from such experiments, 

therapeutic agents may be able to be implemented. For example, gene therapy, targeting 

specific mutations within these listed genes may be able to successfully initiate growth, 

development and replication of cells not carrying any of these variants in their DNA 

sequence. This may ensure that the proteins encoded by these genes are retaining their 

required homeostatic function. Another option is the development of antigens or inhibiting 
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agents that can accelerate or reduce the apoptotic, endopeptidase or Plasminogen Urokinase 

activity of these proteins (the latter of which mediates IL1 responses) [7-8, 11-24], depending 

on whether they are loss or gain of function mutations. Such therapeutics may take time to 

develop, but these findings provide a strong platform for molecular biologists to understand 

the approach that needs to be taken limiting the effects of these autoimmune phenotypes.  

 

6.2 Future Directions 

The rigorous statistical analysis was successful in combining the algorithmic power of rare-

variant association tests and linkage studies to successfully identify candidate autoimmune 

genes. However, the next step is to implement future strategies and directions to build upon 

the current findings, developed from our current framework. This can improve the clinical 

applications of this research, based on the findings we have thus far. 

  

6.2.1 Development of pVAAST Algorithm to Test for Multiple Loci 

 

The advantages of pVAAST have previously been mentioned, due to its ability to incorporate 

linkage and association analyses (robust to both common and rare variants), test for de novo 

mutations and include compound heterozygotes as part of the analyses [5-6]. The algorithm 

provides strong evidence for aforementioned genetic variants contributing to autoimmune 

phenotypes, but it is not applicable to test likelihood ratios and allele frequency differences of 

multiple loci simultaneously [5-6, 27-29]. Hence, further developments may be needed to 

introduce this capability, in order to further understand the importance of gene interactions in 

these diseases. This can be implemented by the incorporation of two-trait-locus models into 

the linkage and association algorithms of pVAAST for dominant, recessive and co-dominant 

modes of inheritance [27-29]. That means, the LOD score calculation, computing the 

probability of the genotypes and phenotypes at the current and latent loci, conditional on the 

penetrance/genotype disease probability and allele frequencies will be calculated for 2 

candidate loci simultaneously [27-29]. In brief, this works by conditional probabilities of 

genotypes and phenotypes using the allelic inheritance vector approach. These amendments 

can be programmed into the source code of the software package. To begin, the loci identified 
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from familial and sporadic cases can be tested in this algorithm on the same dataset, used in 

our studies thus far.  

 

6.2.2 Meta Analysis of Previous Studies Combined with the Paisa Cohort: 

Now that results from well-developed statistical algorithms are obtained, they can then be 

combined with our previous studies, to extract additional statistical information about 

potential causative genes in autoimmunity. This further increases the statistical power in 

identifying and validating disease risk genes. The best option for this will be Genome Scan 

Meta Analysis (GSMA), combining results from the Paisa dataset, along with those of 

previous studies in other cohorts [30-31]. GSMA works by dividing the genome into equal 

bins, and the most significant mutations in each bin (determined by P-value or LOD score) are 

listed, and the bins are ranked according to these results. Ranks of the variants in each bin are 

combined across studies to get the sum rank (SR), the significance of which is determined by 

permutation [30-31]. This gives the probability of observing the same sum rank in descending 

order across the permuted replicates. To adjust for differences in sample numbers across 

studies, ranks can be weighted according to the number of cases and families included across 

all individual analyses [30-31]. The advantage of this algorithm is that candidate disease 

genes are not determined by the absolute value of the LOD score, but instead are prioritised 

by ranking and relative significance across all studies [30-31]. It will also adjust for 

heterogeneity introduced by study designs or population diversity, by calculation of the Q-

adjusted statistic, that determines the sum of squared differences between the individual and 

average bin ranks across each study. Therefore, studies can be included in the meta-analyses 

that don’t necessarily use the same statistical algorithms [29-31]. This can be applied to both 

single locus and gene interaction based composite likelihood ratio test as per the combined 

linkage-association analysis framework (of pVAAST) [5-6]. 

 

6.2.3 Alternative Approaches to Association Analyses: Pooling/Bootstrap GWAS and 

Versatile Gene-Based Association 

The strategies suggested above for future analyses will be successful, only when additional 

multigenerational pedigrees are available. Extensive collection of DNA samples from families 

of the Paisa isolate has led to successful studies thus far. Nevertheless, one cannot guarantee 
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that such well-phenotyped pedigrees with extensive genealogical records will be available 

when conducting this research amongst other populations. Thus alternative strategies for 

association tests need to be considered, especially in cases of small sample sizes. We have 

previously referred to gene-based variant collapsing statistical calculations, in order to 

identify disease-causing mutations. However, these methods are primarily designed for rare 

variants [2, 26]. When analysing common variants, the elevated allele frequencies may lead to 

spurious associations, and without the availability of pedigrees, linkage analyses are not an 

option. Therefore, increasing the analytical power of identifying such variants with relatively 

few samples becomes a challenge. One alternative is that suggested by Velez et al [32], 

combining pooling and bootstrapping methods with GWAS (pbGWAS)-based case vs. 

control studies. 

 

 In brief, the algorithm involves multiple rounds of bootstrap based resampling of subsetted 

data. The test statistic is conditional on the difference in allelic frequencies between cases and 

controls, as well as the variance of these differences, across each pooling step. P-values are 

then obtained for evaluating the significance of this test statistic, based on the fact that the 

value will follow a Chi-Square distribution under the null hypothesis. P-values from all stages 

of pooling are subsequently combined, using Stouffer’s method, which enables P-value 

mapping, according to a standard normal distribution, as these values will follow this pattern 

under the null hypothesis [32-34]. The key variables in performing this calculation include: 

the weight and quantile of the standard normal distribution (obtained from corresponding 

effect size estimates and individual P-values respectively calculated for all individual test 

statistics, derived from case-control allele frequency differences across each pooling 

simulation) [32-34]. In addition, assumption of independence between simulated pairs (of 

case and control pools respectively) doesn’t always hold. Thus, the parameter of the 

correlation coefficient is introduced, quantifying the degree of dependence in allelic 

frequency distributions between the pairs of pooled samples. This value can be estimated (if 

unknown), based upon the inverse value, variance vectors and quantiles of the standard 

normal distribution, corresponding to calculated P-values across all pooled case-control 

subsamples [32-34]. These formulas incorporated in this algorithm, substantially increase its 

overall power, compared with other commonly used methods [32]. 
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The power of this mathematical structure can be attributed to its weighting approach. That 

means, during combination of P-values, each study is weighted according to its overall power, 

obtained from the square standard error of the effect size estimate from each individually 

pooled subset [32-34]. Empirical observations indicate that when combining studies of both 

equal and unequal sample sizes, weighted approach of Stouffer’s collaborated P-value are 

more powerful than algorithms applying unweighted statistics [32-34]. This can account for 

bias in sample quantities, as effect size info is based on relative differences in magnitude, 

rather than P-values. The variance of this difference, is a denominator in effect size 

calculation. This can potentially add weight to studies with larger pools of data as well as 

those with greater effect size, thereby offsetting sample size bias [32]. To some extent, this 

can also reduce publication bias, whereby studies with P-values < 0.05 are more likely to be 

published than those with P-values > 0.05.  

 

Another issue to address when combining P-values is their asymmetry across multiple studies. 

Certain methods such as Fisher’s Test are more sensitive to smaller than larger P-values, 

further exacerbated (once again) by differences in sample sizes [33-34]. It must also be noted 

that high P-values close to 1 are likely to favour the opposite alternate hypothesis. For this 

reason, even though high and low P-values differ by a substantial margin, they can both arrive 

at the same conclusion in rejection of the null hypothesis, when separate subsets of samples 

are combined. [33-34] Once again, this is neutralised by Stouffer’s weighted Z 

transformation, as weighting procedures are more reliant on effect sizes, as mentioned earlier 

[33].  

 

Given the mathematical properties of the weighted Z transform method in reducing sources of 

bias, it is of no surprise that this algorithm generated the best correlation between observed 

individual and combined P-values from empirical data [32-33]. Additionally, performance 

evaluation by Velez et al for this algorithm indicated 98% identification significantly 

associated SNPs (with 99% classification rate accuracy) using smaller sample size, with 

resampling of multiple pools, compared to traditional GWAS methods recruiting much larger 

cohorts, in the Welcome Trust Case-Control Consortium (WTCCC) [35]. Thus, it is 

worthwhile considering its implementation when trying to identify common disease 

mutations, when only sporadic cases are available, due to its overall efficiency in providing 



 150 

high quality results, whilst minimising the sample size, and therefore the financial cost of 

these studies.  

 

Advantages of the pooling and bootstrap based GWAS methods are not only limited to 

evaluation of single variants. Instead, this can also be extended to gene-based statistics. This 

is evident in the formulas built in the Versatile Gene-Based Association Studies (VEGAS) 

software package [32, 36]. The analysis involves simulation of n multivariate normally 

distributed vectors, corresponding to the n number of SNPs in a given gene, represented by 

the LD matrix of P-values. This matrix is then decomposed, known as Cholesky matrix 

decomposition. This gives new vectors (obtained from random variables) with multivariate 

normal distribution [32, 36]. The p-values for the association signal of these vectors are later 

transformed into vectors with 1 degree of freedom chi square variables.  Subsequently, these 

elements (representing the grouped SNPs within the given gene) are summed and combined 

into generating the overall test statistic, simulated, by comparing the overall case-control 

distribution, over multiple resampling rounds. The P-values are then derived from the 

proportion of simulated gene-based statistics exceeding the observed test case value [32, 36].  

 

The accuracy of significance levels quantified from resampling seemingly matches that 

obtained from permutation procedures. Also, this algorithm (like the rare-variant collapsing 

methods) is ideal to reduce the effects of the multiple testing problem, as testing 25,000 genes 

is likely to reduce the FDR, compared to analysing millions of individual SNPs genome-wide 

[32]. As well as the time-based efficiency and accuracy of significance calculations to 

minimise Type 1 error, the analytical approach of VEGAS is also essential to increase the 

overall power of GWAS studies in terms of its ability to reduce false negatives [32]. The 

reason is that common variants are often observed to exhibit smaller effects than rare variants, 

based on current and previous empirical data [32]. Therefore, information from multiple 

variants from the same gene into a single vector with multiple elements is combined [31, 35]. 

This may enable identification of multiple mutations that can simultaneously account for a 

larger proportion of phenotypic variability in a given population, compared to single variants 

alone.  
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 Furthermore, the VEGAS analysis also offers benefits that are available specifically through 

the incorporation of common variants in disease studies. Firstly, test statistics can be adjusted 

by linkage disequilibrium. Due to the fact LD measures (in particular r2) are often allele 

frequency dependent, this is an advantageous property [37]. Correction for LD can reduce the 

likelihood of obtaining synthetic associations from other pathogenic common variants giving 

false signals [32, 37]. This is especially important in large genes, where multiple variants may 

be present. Whilst the algorithm may overlook the effect of rare variants, this can be 

overcome by cross-referencing results from VEGAS analysis with rare-variant collapsing 

data. This will increase the overall capacity in research to enhance understanding of the 

genetic etiology of complex diseases, with simultaneous identification of rare and common 

mutations.  

 

6.2.4 Correlating Genomic Ancestry of Paisa with Population History 

Thus far, we have quantified the value of the Paisa isolate as a population descended from 

multifounder effects, in terms of its LD patterns compared with other cohorts, from the 1000 

Genomes Project. Nevertheless, in addition to LD, further analyses on this population’s 

genomic ancestry can be conducted, which is useful for genetic epidemiological purposes. 

These include: Ancestry Specific Principal Components Analysis (ASPCA), IBD (Identity By 

Descent) determination within and between populations, and analysing tract lengths to infer 

population migration and admixture patterns [38-40].  This can be achieved using the 1000 

Genomes populations [41] as (or other collected samples) per the European and Latin 

American populations (including Puerto Rico), analysed in chapter 5. These approaches have 

been previously used, and can be further expanded to the Paisa population, to provide 

additionally quantify its advantages as a genetic isolate. Subsequently, analysis of these 

cohorts can be compared to results obtained from previously analysed South American and 

European reference panels. European (POPRES) and Latin American reference panels are 

available [42-43]. However if possible, more localised samples, corresponding to countries of 

origin and recorded demographic history of each cohort of European populations from the 

1000 Genomes project may also be selected. These studies will elucidate the genetic and 

demographic history of these populations, which can be pivotal in influencing disease 

susceptibility.  
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The first possible approach to consider is ASPCA. It is known that the aim of traditional PCA 

is to project genetic data points onto multidimensional space (each dimension representing a 

component), in order to illustrate as much variability between individuals as possible [38, 44, 

45]. However, in this case, PCA is only performed on components of individual’s ancestry 

that pertain to a given continental or geographic area of origin (I.e. European or Native 

Amerindian ancestry in this case). This is achieved by masking haplotypes that do not 

conform to the ancestry component being tested, identified on a locus specific level. 

Adjustment for missing values is conducted by obtaining the 1st and 2nd order derivatives of 

the mathematical function that facilitates data entry in the PCA matrix [46]. This is known as 

the Hessian matrix function [46]. These derived functions can then be used to input entries for 

missing data points, based on observed matrix values. Comparing this to previous results will 

potentially distinguish (between Paisa and other cohorts) population genetic differentiation 

and clustering patterns on the basis of position in PCA multidimensional space [38], for 

analyses corresponding to European and Native American ancestry components respectively. 

 

Inferences of ancestry differentiation between chosen populations can be further analysed by 

calculating and comparing tract length distributions, within and between populations [38, 47]. 

Programs and software packages perform this by implementing an optimization function to 

infer tract length under given migration/population history models and with observed tract 

lengths. Therefore, migration models can be subsequently fitted upon local observed and 

calculated ancestry tract length distributions [38, 47]. This allows patterns of migration, 

admixture and population ancestry to be inferred, both in terms of the source populations and 

timing (number of generations ago, that these events occurred). The calculation of tract length 

distributions is predominantly a Markov chain process. Lengths are determined on the basis of 

transition rates and probabilities between states (of alleles and genotypes), taking into account 

genetic drift, variances in fraction of chromosome lengths obtained from migrant plus local 

populations and ancestry recombination switch points [38, 47]. Probability of allelic states are 

dependent on rates of recombination and the likelihood of finding ancestry of haplotype p at a 

given locus, depends on the ancestry proportions of the parental pools [38, 47]. This is 

supported by analysis of the assortment variance, which works on the premise that not all 

individuals contribute the same amount of genetic material to descendants [38, 47]. This can 

be reflected by the decay of heterozygosity over time, whose value can be used to derive the 
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total assortment variance, from which the time of a given migration pulse can be inferred, as 

expressed in the mathematical models [38, 47].  

 

Studying IBD patterns within and between populations can further support findings from the 

aforementioned tract length analysis. Therefore, it is possible to corroborate results and 

provide additional evidence of multifounder effects specifically within the Paisa community 

[38], which may influence linkage disequilibrium patterns and enrichment of disease 

susceptibility loci as described from our studies of comparative LD patterns.     

 

Comparison of Wright-Fischer simulated data with Markov Chain predictions, have 

previously shown strong agreement, with regards to predicted migration rates. Also, Tract 

lengths under this algorithm were highly significant when applied to external data sets (ASW 

cohort of HapMap project), after multiple simulations [38, 47]. Therefore, given the observed 

evidence this model’s accuracy, and that it accounts for the aforementioned evolutionary 

forces (drift, migration), this could be informative about drawing further comparisons of the 

population genetic history of the Paisa community and other analysed (chapter 5) cohorts 

[38]. Subsequently, this influences the impact of founder effects, admixture etc. on 

distribution of potential disease variants in studied populations.  

 

6.2.5 Functional Validation of Identified Candidate Mutations. 

Thus far we have shown strong statistical evidence of specific candidate mutations 

underpinning autoimmunity, both in terms of segregation patterns across families and 

sporadic cases, plus network analyses. In addition, we have also identified population genetic 

variation patterns that may affect the prevalence of pathogenic variants in given populations. 

However, it will also be important to back these findings with functional studies. Whilst 

network analysis can provide insights into the mechanism by which these genes can lead to 

disease phenotypes, this too is based purely on statistical algorithms, dependent on the size 

and specific identities of gene list elements. Therefore mechanistic validation of the 

mutations, harboured within these genes is required. To begin, it is possible to evaluate the 

apoptotic, endopeptidase, plasminogen urokinase activity and inflammatory activity of the 
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candidate mutations, as these were key processes identified as being associated (from 

metacore analysis and additional literature searches) with the corresponding genes [7-8, 11-

24]. Additionally, new mechanisms may also be identified in the future, increasing 

development options for therapeutic targets.  

 

6.3 Conclusion 

The incorporation of bioinformatics, statistical, population genetic and biological mechanism evidence 

in this epidemiological and population genetics study has enabled us to successfully identify SRA1, 

LRP1, DHX34, ABCB8, MLL4, PLAUR as potential contributors to autoimmune disease etiology. We 

also correlated populationn genomic variation patterns from comparative studies of LD and rare-

variant prevalence of the Paisa community and other selected cohorts with their demographic history.  

These findings are informative about the population genetic history of the Paisa isolate, and how this 

influences the allelic distribution of disease variants within this cohort. It is hoped that all these results 

can aid future studies in epidemiology of autoimmune and other complex diseases, as well as facilitate 

development of targets for therapeutic intervention. 
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