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Abstract. Fusion cross-sections are computed for the 40Ca+40Ca system over a wide energy range with two

microscopic approaches where the only phenomenological input is the Skyrme energy density functional. The

first method is based on the coupled-channels formalism, using the bare nucleus-nucleus potential calculated

with the frozen Hartree-Fock technique and the deformation parameters of vibrational states computed with the

time-dependent Hartree-Fock (TDHF) approach. The second method is based on the density-constrained TDHF

method to generate nucleus-nucleus potentials from TDHF evolution. Both approaches incorporate the effect

of couplings to internal degrees of freedoms in different ways. The predictions are in relatively good agreement

with experimental data.

1 Introduction

Near-barrier fusion can be strongly affected by the cou-

pling between relative motion and internal degrees of free-

dom of the collision partners [1, 2]. In particular, cou-

plings to rotational states [3], as well as to low-lying col-

lective vibrations [2, 4–6], can enhance sub-barrier fusion

by orders of magnitude as compared to a single barrier

penetration model. Indeed, the couplings to collective

states induce a dynamical change of the density and thus

different potential barriers can be present in the entrance

channel. In addition to generate a barrier distribution, the

couplings generally also shift the centroid of this distribu-

tion, making it difficult to determine the bare (i.e., without

effects of the couplings) nucleus-nucleus potential.

Time-dependent Hartree-Fock (TDHF) calculations

have shown that the effects of the couplings on fusion are

expected to disappear at high energy as the shapes of the

nuclei do not have time to change during the approach [7].

In this case, capture occurs in the bare potential where

the nuclei still have their ground-state densities. As a re-

sult, the couplings are expected to induce an energy de-

pendence of the potential [7–10].

The coupled-channels (CC) method is the standard ap-

proach to investigate the effect of couplings on fusion

[1, 11–15]. CC calculations require external parameters to

describe the nucleus-nucleus potential and the couplings to

internal degrees of freedom, such as energies and deforma-

tion parameters of collective states. The latter have been

often measured for stable nuclei (see, e.g., Refs [16] and

[17] for compilations of 2+
1 and 3−1 states, respectively),

and nucleus-nucleus potential parametrisations such as the

Sao-Paulo [18] potential have been shown to reproduce

reasonably well near-barrier fusion cross-sections.
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The application of the CC method to reactions with

exotic radioactive beams will be more problematic. In-

deed, little is usually known about the structure of exotic

nuclei. In addition, it is not clear whether or not stan-

dard parametrisations of nucleus-nucleus potentials could

be applied to exotic nuclei, in particular close to the drip

lines, where neutron or proton skins and halos could be

present.

In this contribution, we discuss a recently proposed

method [19] where the nucleus-nucleus potential and the

properties of the collision partners entering CC calcu-

lations are determined from purely microscopic calcula-

tions with the Hartree-Fock (HF) method and its time-

dependent extension (TDHF). In this method, the only in-

puts are the choice of the states to be coupled and the

Skyrme energy density functional (EDF) [20] describing

the phenomenological interaction between the nucleons.

It is worth noting that the parameters of the Skyrme EDF

are fitted to structure properties only (see, e.g., [21]). The

resulting fusion cross-sections calculations are then com-

puted without any input coming from reaction mecha-

nisms. In this work, the 40Ca+40Ca system is considered

as a simple benchmark of this method.

Another method is also used to investigate the effect

of couplings on fusion in this system. It is based on the

density-constrained TDHF (DC-TDHF) technique to ex-

tract the nucleus-nucleus potential from TDHF trajectories

[37]. In this approach, the couplings induce an energy de-

pendence of the potential.

A brief outline of the first method is presented in sec-

tion 2. TDHF and CC calculations are described in sec-

tion 3 and compared with experimental data. The energy

dependence of the nucleus-nucleus potential is then inves-

tigated in section 4 with DC-TDHF before to conclude in

section 5.
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2 Method

We focus on the effect on the fusion process of the cou-

pling to vibrational states. The only input of the present

method is the Skyrme effective interaction [20]. The basic

steps of the approach are: (1) The bare nucleus-nucleus

potential is computed from the frozen Hartree-Fock tech-

nique. (2) A TDHF code is used to compute the strength

function of vibrational modes using the linear response

theory. (3) The strength function is used to extract the en-

ergy and deformation parameter of collective vibrational

states. (4) The bare nucleus-nucleus potential and the pa-

rameters of the coupling are used in standard coupled-

channels calculations to determine fusion cross-sections.

Near-barrier TDHF calculations are also used to de-

termine the fusion threshold which provides a realistic es-

timate of the centroid of the barrier distribution. If the

centroid of the final barrier distribution obtained from CC

calculations is in good agreement with the TDHF fusion

threshold, then we can reasonably conclude that the most

relevant internal degrees of freedom have been included in

the CC calculations. More details on the method can be

found in Ref. [19].

3 TDHF and CC calculations

The potential to be used in CC calculations is computed

with the frozen HF method [7, 8, 22] with the SLy4d
Skyrme functional [23]. It is plotted for the 40Ca+40Ca

system in Fig. 1 with a thick line. The resulting barrier

height is VB = 54.6 MeV at RB = 9.9 fm.
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Figure 1. Total potential energy as a function of the relative

distance between the fragments in 40Ca+40Ca central collisions.

The frozen HF potential is represented by a thick solid line. DC-

TDHF potentials calculated from TDHF density evolutions at

bombarding energies Ec.m. = 55 MeV (thin solid line), 60 MeV

(dashed line), and 65 MeV (dotted line) are also shown.

A first guess of the fusion cross-sections σ f us can be

obtained with this potential using the one-barrier pene-

tration model. The results are shown with solid lines in

Figs. 2 and 3 on logarithmic and linear scales, respectively.

We see that the calculations strongly underestimate the ex-

perimental data. The experimental barrier distribution, ob-

tained from the second derivative of σ f usE [24], is plotted

in Fig. 4. We see that the underestimation of the fusion

cross-sections is due to an apparent overestimation of the

barrier. Of course, this is because couplings are not yet in-

cluded. Indeed, it is well known that couplings may induce

a renormalisation of the potential [25].
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Figure 2. Fusion cross-sections on logarithmic scale as a func-

tion of center of mass energy for the 40Ca+40Ca system using

the frozen HF potential. The thick solid line shows the results

without coupling. Couplings to the 3−1 state and to the GQR lead

to the cross sections plotted with the dashed line and with the

dotted-dashed line, respectively, and to the dotted line when both

states are included in the coupled-channels calculations. The data

from Aljuwair et al. [26] and the more recent ones from Montag-

noli et al. [27] are plotted with open circles and filled triangles,

respectively.
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Figure 3. Same as Fig. 2 in linear scale.

To estimate the importance of the vibrational cou-

plings on the fusion cross-sections, we need to determine

the properties (energy and deformation parameters) of the

vibrational states. If available, the latter can be obtained

from experimental data, or, alternatively, from theoretical

calculations. For consistency, we extract these quantities

from strength functions computed with a TDHF code (see,

e.g., Refs. [19, 22] for details of the calculations) using the

SLy4d Skyrme functional [23]. Note that this approach is
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Figure 4. Experimental fusion barrier distribution as a function

of center of mass energy for the 40Ca+40Ca system. The lines

show the results obtained with the frozen HF potential without

couplings (solid line) and with couplings to the 3−1 and GQR

states (dotted line). Experimental data are shown with symbols

[26, 27].

fully equivalent to the random phase approximation (RPA)

which is a standard tool to investigate nuclear vibrations.

The coupling to octupole vibrations is known to have

an important effect on the dynamics of the nuclei [28].

Such coupling is naturally present in time-dependent self-

consistent approaches such as TDHF [19, 29, 30]. Figure 5

shows the strength function for octupole vibrations in 40Ca

(solid line). The main peak at low energy corresponds to

the collective 3−1 state. It is found at 3.44 MeV, which is

reasonably close to the experimental value of 3.74 MeV

[17]. Other peaks are also observed at higher energies.

However the latter are weaker and the main effect on the

cross sections is expected to come from the coupling to

the low-lying 3−1 state. It is interesting to note that this

microscopic approach reproduces features such as the fact

that the magic number 28 induces a larger energy of the

3−1 state (see dashed line in Fig. 5 showing the octupole

strength function of 56Ni).
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Figure 5. Octupole strength distribution calculated from TDHF

response to an octupole excitation in the linear regime. Results

are shown for the 40Ca (solid line) and 56Ni (dashed line) doubly

magic nuclei.

Other modes of vibrations can also be studied with

this technique. In particular, the coupling to low-lying

2+ states associated to collective quadrupole vibrations are

known to affect near-barrier fusion [4, 31]. However, the

low-lying 2+ states of 40Ca are not found to be collec-

tive and the quadrupole strength is essentially located in

the giant quadrupole resonance (GQR). Therefore, in the

following, we do not consider couplings to low-lying 2+

states in 40Ca. Only couplings to the GQR and to the 3−1
states are considered. The TDHF calculations predict the

energy of the GQR to be ∼ 18.1 MeV.

The deformation parameters βλ of vibrational states

need also to be determined. They are directly proportional

to the area of their associated peak in the strength function

and can then be directly extracted from TDHF calculations

[19, 32]. We get β3 = 0.24 for the 3−1 state of 40Ca. Note

that the experimental β3 = 0.3 − 0.4 of the 3−1 is larger

[17] and could then affect more strongly near barrier fu-

sion. A coupling strength of β2 = 0.16 is also obtained

for the GQR. Note that, although the direct decay of giant

resonances could be studied with TDHF [33–35], we treat

the GQR as a bound state for simplicity.

The effect of the coupling to the 3−1 state and to the

GQR in 40Ca+40Ca fusion is investigated with coupled-

channels calculations using the ccfull code [36]. The re-

sulting cross-sections are plotted in Figs. 2 and 3. We see

that the coupling to the 3−1 state accounts for most of the

enhancement of the cross-sections as compared to the cal-

culations without couplings. However, the effect of the

GQR is not negligible and a good agreement with data

is obtained when both the GQR and the 3−1 states are in-

cluded.

In such a light system, the effect of these couplings

is essentially to renormalise the potential to lower ener-

gies, as shown by the barrier distribution represented by

the dotted line in Fig. 4. We see that the experimental

barrier distribution is at slightly lower energy, indicating

that couplings to other states might play a role. This is

confirmed by computing the TDHF fusion threshold from

the fragment trajectories shown in Fig. 6 which lead to

a fusion threshold of 53.15 ± 0.05 MeV. This threshold is

∼ 0.15 MeV lower than the centroid of the barrier distribu-

tion from coupled-channels calculations with couplings to

the 3−
1 state and to the GQR. The excitation of other states,

such as the giant dipole (GDR) and monopole (GMR) res-

onances, could be responsible for this small difference.

In order to get a deeper insight into the possible role

of the couplings to other modes, the time evolution of

different multipole moments of the fragments have been

computed. The monopole, (isovector) dipole, quadrupole

and octupole moments of the fragments in the approach

phase are shown in Fig. 7 from top to bottom, respec-

tively. We see that they all deviate from their initial value,

indicating polarisation effects which could be interpreted

as an effect of couplings. It is interesting to note that

the isoscalar moments remain essentially unchanged until

later times when the nuclear interaction between the frag-

ments become non-negligible. This is not the case with the

isovector dipole moment which is affected by long-range
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Figure 6. Time evolution of the distance between the fragments

in 40Ca+40Ca central collisions at Ec.m. = 53.1 MeV (solid line),

53.2 MeV (dashed line) and 53.3 MeV (dotted line).

Coulomb polarisation. The effects of the excitation of the

GDR and of the GMR on fusion cross-sections remain to

be studied with coupled-channels calculations.
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Figure 7. Evolution of the monopole (Q0), isovector dipole

(QD), quadrupole (Q2) and octupole (Q3) moments along the col-

lision axis x and in the region x > 0 as a function of time for a
40Ca+40Ca central collision at Ec.m. = 53.3 MeV.

4 Energy-dependence of the potential

One effect of the couplings is to induce a dynamical

change of the density of the collision partners, and, then, of

their associated nucleus-nucleus potential. It is clear that

this effect is intrinsically time dependent. For instance, it

was shown in Ref. [19] that the couplings to the 3−1 state

in 40Ca+40Ca near the barrier induces an octupole shape

of the reactants within a time scale of approximatively one

zeptosecond. At energies well above the barrier, however,

the reaction is more rapid and the density of the collision

partners does not have time to deviate from the ground

state density. In particular, this was shown for several sys-

tems, including 40Ca+40Ca, by Washiyama and Lacroix

with TDHF calculations [7].

This effect can be investigated by extracting nucleus-

nucleus potentials directly from TDHF trajectories at dif-

ferent energies. Different approaches have been de-

veloped in the past to calculate these potentials, such

as the dissipative-dynamic TDHF [7] and the density-

constrained TDHF [37] methods. An energy dependence

of the potential is usually observed [7, 9]. At near barrier

energies, a dynamic adiabatic potential with a barrier mod-

ified by the couplings is observed, while at high energy

(typically twice the barrier energy [7]), the bare nucleus-

nucleus potential is recovered. The latter can be estimated

with the frozen HF method.

The energy-dependence of the potential is illustrated in

Fig. 1 [10]. The potentials calculated with the DC-TDHF

method at three TDHF energies are shown. The TDHF

evolutions are computed with the three-dimensional code

of Ref. [38] using the SLy4 interaction [21]. We observe

that the barrier height decreases, and the barrier radius in-

creases, with decreasing bombarding energy. The shape

of the barrier is also modified at the lowest energies which

can have an important effect on deep sub-barrier fusion

[10].

Each of these potentials can be used in a simple

one-barrier penetration model to compute fusion cross-

sections. These cross-sections are shown in Figs. 8 (linear

scale) and 9 (logarithmic scale). Of course, these cross-

sections are expected to be valid at bombarding energies

close to the TDHF energy used to compute the nucleus-

nucleus potential. Indeed, comparing with experimental

data, we clearly see that the potential obtained at bom-

barding energy Ec.m. = 55 MeV overestimates the data

well above the barrier, while the one at Ec.m. = 65 MeV

underestimates the cross-sections below the barrier.

A combined set of cross-sections (thick dashed lines

in Figs. 8 and 9) has been determined using potentials ex-

tracted from TDHF calculations between Ec.m. = 53 MeV

and 65 MeV, in energy step of 1 MeV. Cross-sections be-

low 53 MeV are computed from the potential obtained at

bombarding energy Ec.m. = 53 MeV. Indeed, at lower en-

ergy TDHF calculations do not lead to fusion and the po-

tential cannot be calculated. Despite fluctuations in the ex-

perimental data, we see that the calculated cross-sections

are in relatively good agreement with data over a large en-

ergy range, from well below to well above the barrier.

It is interesting to compare the combined DC-TDHF

fusion cross-sections with those calculated with the

coupled-channels approach. Although both methods are

very different, they both incorporate, to some extent, the

effect of couplings on fusion. This comparison is made

in Fig. 10. Overall, they both lead to a reasonable agree-

ment with data over a wide energy range. However, we

note that, around the barrier, the cross-sections are overes-

timated by the DC-TDHF calculations and underestimated

by the CC ones. The underestimation of the cross-sections
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Figure 8. Fusion cross-sections (liner scale) for 40Ca+40Ca.

Cross-sections obtained from the frozen HF potential and ne-

glecting couplings are shown with the thick solid line. Cross-

sections obtained from DC-TDHF potentials calculated with

TDHF density evolutions at bombarding energies Ec.m. =

55 MeV, 60 MeV, and 65 MeV are plotted with thin solid, dashed

and dotted lines, respectively. The thick dashed line, labelled

”E−dependent”, is obtained by combining DC-TDHF calcula-

tions at different bombarding energies (see text). Experimental

data are shown with symbols [26, 27].
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Figure 9. Same as Fig. 8 on logarithmic scale.

by the CC calculations could be a signature that more cou-

plings should be included. In principle, the DC-TDHF

calculations include all couplings, but only in an approxi-

mated way. Indeed, in this approach, only one barrier, in-

cluding the effect of the couplings ”on average”, is present

at each energy. It is then not surprising that, at near barrier

energies where the couplings could induce structure in the

barrier distribution, the DC-TDHF cross-sections are not

in perfect agreement with data.

5 Conclusions

Two methods have been used to predict fusion cross-

sections in the 40Ca+40Ca system over a wide energy range

from well below to well above the barrier. In both cases,

the only inputs are the parameters of the Skyrme energy
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Figure 10. Fusion cross-sections on linear (top) and logarithmic

(bottom) scales for 40Ca+40Ca as a function of center of mass

energy. DC-TDHF results (dashed line) obtained from TDHF

calculations at different energies are compared with the coupled-

channels results with couplings to the 3−1 and GQR states. Exper-

imental data are shown with symbols [26, 27].

density functional. Both methods lead to a relatively good

agreement with experimental data.

The first method is based on the coupled-channels for-

malism where both the nucleus-nucleus potential and the

coupling parameters are computed using the TDHF ap-

proach. It confirms the importance of the low-lying oc-

tupole states. The GQR also induces a small renormali-

sation of the potential. The role of other giant resonances

remains to be studied.

The second method is based on DC-TDHF calcula-

tions of the nucleus-nucleus potential. This potential is

shown to vary with the bombarding energy as an effect of

the couplings. In this approach, all couplings are included

to all order, but only in an approximated way. Indeed, in-

stead of a barrier distribution, the system is sensitive to

only one average potential barrier. Well above the bar-

rier, however, the couplings do not have time to induce a

change of the nuclear density and the bare potential is re-

covered.

These calculations are the first steps in a series of stud-

ies of more and more complicated systems. Indeed, the

couplings to rotational states could be studied in a similar

way [39, 40]. Applications to asymmetric systems could

lead to valuable information on the role of transfer chan-
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nels. Heavier systems will also allow study of the effect of

dissipative dynamics on fusion [22, 41–47].

It is likely that one will have to go beyond the Hartree-

Fock approximation which is used in the present case to

determine the structure properties of the nuclei as well as

their potentials and dynamics. Recent developments in-

cluding pairing could be used to improve the description

of the dynamics of non-magic nuclei [48–53]. Techniques

to compute transfer probabilities have also been developed

[43, 53–57] and could be used to investigate the effect of

transfer on fusion.
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