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Abstract. Above-barrier complete fusion cross sections of weakly-bound 6,7Li and 9Be are known to be sup-

pressed with respect to single-barrier penetration model calculations. Breakup of the projectile — either via

direct excitation of continuum states, or by transfer of nucleons — is thought to be the cause, preventing com-

plete capture of the projectile charge. Using the example of 7Li→8Be→ α + α we show how the contributions

to breakup from different resonances in 8Be can be identified, and discuss their likely influence on fusion.

1 Breakup and fusion suppression

Above-barrier fusion of light, weakly-bound projectiles

such as 7Li is known to be suppressed [1–3]: single-barrier

penetration model calculations, which accurately model

fusion of strongly-bound projectiles such as 18O, overes-

timate measured fusion cross sections for weakly bound
7Li by ∼25% (see Ref. [4] for a recent review). Breakup

reactions are thought to reduce the probability for fusion

of the entire projectile. Both direct breakup (7Li→ α + t)

and transfer-induced breakup (e.g., 7Li
+p−−→8Be→ α + α,

7Li
−n−−→6Li→ α + d, 7Li

−2n−−−→5Li→ α + p) have been found

to be important with 208Pb and 209Bi targets [5, 6].

Understanding the detail of these breakup processes is

crucial to understand their influence on fusion. Breakup

can only suppress complete fusion when the disintegra-

tion occurs when the projectile and target nucleus are ap-

proaching one another. However, from below-barrier mea-

surements of breakup, where incomplete fusion is negli-

gible, it is known that breakup often proceeds via long-

lived resonance states [2]. These states, such as the 8Be

ground state, survive until the ejectile is very far from the

target, and cannot suppress fusion. Short-lived states will

decay much nearer the target, but even sub-zeptosecond

(<10−21 s) lifetimes may be sufficient to alter whether the

projectile-like nucleus breaks up prior to reaching the fu-

sion barrier, and therefore reduce the impact of breakup on

fusion.

To investigate these effects we consider the example of

proton pickup by 7Li on a 58Ni target, giving 8Be. 8Be is

unbound with respect to decay into α + α, with the nar-

row 0+ ground state 0.092 MeV above the threshold, and

a broad 2+ resonance at 3.12 MeV [7]. The 58Ni target is

chosen to reduce, with respect to heavier 208Pb-region tar-

gets, the influence that the target has on the trajectories of

the fragments following breakup. Identification of asymp-
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totic and near-target breakup, classical dynamical simu-

lations of the resultant α fragment trajectories, and their

respective influence on fusion is discussed below.

2 Identifying asymptotic breakup

When investigating the impact of breakup on fusion, the

most important characteristic of the reaction is where (and

when) the breakup occurs. Only if the projectile breaks up

prior to reaching the fusion barrier will it affect fusion. At

above barrier energies, it is likely that one or other of the

fragments may still fuse with the target, giving a contribu-

tion to incomplete fusion, and making it harder to study the

breakup itself. A series of measurements at below barrier

energies has been made at the Australian National Uni-

versity Heavy Ion Accelerator Facility to clarify the detail

of the breakup mechanism. The measurements used the

BALiN double-sided silicon-strip detector array [8] to de-

tect the energies Ei and angles (θi, φi) of the resulting pairs

of charged fragments detected in coincidence.

The relative energy of the fragments Erel =
1
2
μv212 gives

a basic way to distinguish between breakup of long-lived

states and that occurring near the target nucleus. Long-

lived states have a well defined energy that is unperturbed

by any differential acceleration of the fragments by the

(highly remote) target following breakup. As such, when

the relative energy of the fragments is reconstructed, these

states appear as narrow peaks in the Erel spectrum. The

example of 7Li
+p−−→8Be→ α-α is shown in Fig. 1, for a 58Ni

target with a beam energy of 13.1 MeV (∼ 0.95VB). The

data is gated on the 2.981-MeV 1/2+ state in 57Co, which

is strongly populated in other proton pickup reactions with
7Li [9]. The red shaded region highlights the narrow peak

associated with the 8Be ground state, which sits on an ex-

ponentially decaying background.
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Figure 1. The relative energy of the two fragments can be used

to separate near-target and asymptotic breakup. Shown are the

measured α-α relative energies for 7Li+58Ni collisions. Long-

lived states, such as the 8Be ground state highlighted by the red

area, decay very far from the target, and as such, the relative

energy of the αs remains equal to the energy of the state. The

exponentially decaying component of the distribution is assumed

to result from breakup near the target.

3 Near-target breakup

Whilst asymptotic breakup manifests as a narrow peak in

the relative energy distribution, the origin of the remain-

der — the featureless, exponential background — is less

clear. It has previously been assumed [5, 6] that it arises

from breakup near the target nucleus. Half of these events

were assumed to occur as the reaction partners approached

one another, therefore half were supposed capable of sup-

pressing fusion. For the case of 9Be→8Be→ α + α, it was

suggested that the near-target breakup might proceed via

instantaneous breakup of the 8Be 2+ state [10]. Were it not

for the presence of the target, the 2+ would give a peak at

Erel = 3.12 MeV.

A more refined understanding is desirable. Useful

insights can be obtained by studying the distribution of

events as a function of the fragment opening angle θ12,

and the orientation of the fragments’ relative motion with

respect to that of their centre of mass, β [11, 12]. The

opening angle θ12 is typically strongly correlated with the

relative energy Erel (see e.g., Fig. 8(a) of Ref. [6]). If the

relative motion is aligned with the motion of their centre-

of-mass in the laboratory (β = 0◦ and β = 180◦), then

the opening angle θ12 will be minimised. Conversely, if

the relative motion is perpendicular to that of the centre-

of-mass (β = 90◦), the θ12 will be maximised and, for the

case of fragments of identical mass, the energies of the

fragments E1 and E2 will be equal. If there is no acceler-

ation of the α fragments by the target following breakup,

there is a well defined relationship between the orientation

angle β and the opening angle of the two fragments θ12 for

a given relative energy Erel (the asymptotic correlation).

Differential acceleration of the fragments following

breakup distorts this relationship. The experimental data

are shown in Fig. 2 compared to the expectations for

asymptotic breakup of the 8Be 0+ (Erel = 0.092 MeV) and

2+ (Erel = 3.12 MeV) states. Since the two fragments are
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Figure 2. The distribution of data with respect to the angles θ12

and β, shown here for 7Li+58Ni. The dashed and solid lines in-

dicate the expected correlation for asymptotic decay of the 8Be

0+ and 2+ states respectively. The 0+ band is clearly asymp-

totic, whereas the 2+ is not. The inset shows the projection of

the ground state band onto β, which is consistent with isotropic

emission (sin β curve shown in red).

identical, the data is symmetric about β = 90◦ and has been

folded about this point. The data is limited to θ12 < 132◦
— with limited efficiency for the largest θ12 — due to the

incomplete coverage of the BALIN detector array.

Two bands are seen in the data. The band on the

left is associated with breakup via the 8Be 0+ ground

state, and clearly follows the expected asymptotic corre-

lation (dashed line). Projected onto β (inset of Fig. 2),

the sinusoidal distribution for this band indicates isotropic

breakup. The second band does not follow the asymptotic

expectation, but it is interesting that it arises from the al-

most featureless relative energy distribution. The relative

closeness to the asymptotic prediction for the 8Be 2+ (solid

line) suggests these events do indeed originate from this

state.

4 Modelling post-breakup acceleration

To investigate how the distribution of events with β and θ12

is sensitive to the location of breakup, we need to model

the trajectories of the fragments after breakup. Assuming

that near-target breakup originates from 8Be in the 2+ res-

onant state, the initial relative energy of the fragments will

be equal to the resonance energy, ER = 3.12 MeV [7].

How the α particles accelerate will depend on (a) their ori-

entation with respect to the target [13], and (b) their dis-

tance from the target. This is illustrated in Fig. 3.

To investigate this further we make Monte Carlo sim-

ulations using a modified version of the PLATYPUS

code [14, 15] to model post-breakup acceleration effects.

The breakup location is fixed at some point Δr on the

projectile-target trajectory, where here Δr is some radial

distance after the distance of closest approach R0. This

is illustrated in Fig. 4. The fragments are initially placed

with their centre of mass at the breakup location, and are

separated by a distance equal to their mutual barrier radius

(∼ 6 fm). Breakup is thus defined to occur when the two

fragments have passed their mutual barrier. Prior to this
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Figure 3. The acceleration of the fragments, following breakup,

depends on their initial orientation with respect to the target nu-

cleus. (a) If the relative vector of the α-particles is aligned per-

pendicular to the field of the target, the post-breakup acceleration

will increase the α-α relative energy. (b) Conversely, alignment

with the field will tend to reduce the relative energy. (c) The

magnitude of the acceleration depends on the proximity to the

target - the further from the target, the smaller the post-breakup

acceleration.
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Figure 4. Illustration of the

projectile-target trajectory. In the

simulations, breakup is assumed to

occur at some fixed radial distance Δr
after the distance of closest approach

R0 has been passed. The opening

angle of the fragment asymptotic

velocity vectors is θ12.

point, we assume that the fragments remain sufficiently

well localised so as not to affect fusion. Tidal forces gen-

erated by the target may be important in hastening or in-

deed hindering breakup, but this is beyond the scope of the

present discussion. The orientation of the α-α relative po-

sition vector is randomly sampled from an isotropic distri-

bution. Having set these initial conditions, the fragments

and target propagate according to their mutual Coulomb

interactions, and the simulation is continued until all three

are sufficiently far apart. Five hundred events are sampled

to construct the correlation between asymptotic quantities

β and θ12. Further details can be found in Ref. [12].

5 Results for 7Li → 8Be → α + α
Here we focus on events when the projectile-like and

target-like nuclei are receding from each other. Breakup

prior to the projectile reaching the distance of closest ap-

proach, and the effects of resonance width and projectile-

target angular momentum, are discussed in Ref. [12]. The

present calculations are for zero projectile-target angular

momentum, and this axial symmetry means that for each

calculation all events lie along a single line. The results

for distances Δr = 1, 2, 4, 10 and 1000 fm after the dis-

tance of closet approach are shown in Fig. 5. At 1000 fm

the breakup is essentially asymptotic, and the correlation

found agrees with the analytic expectation shown in Fig. 2.

As the breakup point moves inwards towards the target nu-

cleus, the correlation becomes distorted. For those events

where the αs are aligned with the target potential [e.g.,

Fig. 3(b)], the acceleration reduces the relative energy and

θ12. For the α particles aligned perpendicular to the poten-

tial, the acceleration increases the relative energy and θ12.
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Figure 5. Data and simulations showing the correlation between

β and θ12. See the text for further discussion.

As the distance becomes smaller the distortions become

stronger. For the smallest distance, Δr = 1 fm, nearly

all the energy is locked into the fragment-target potential.

The release of this energy, in essentially independent in-

teractions of the fragments with the target, gives fragments

with very similar energies. As a result, all 500 events re-

construct to β values near 90◦.
The results of the simulations suggest that much of

what is seen in the present experiment arises from breakup

occurring only once the projectile and target have receded

by several femtometers from the distance of closest ap-

proach. Breakup when the two are approaching tends to

lead to large θ12 which the current experiment is not sensi-

tive to — further details can be found in Ref. [12].

6 Consequences for fusion

These results suggest that the properties of short-lived res-

onances [16, 17], such as the 8Be 2+, may play an impor-

tant role in determining the extent to which breakup sup-

presses fusion. This is illustrated in Fig. 6. The plot shows

the radial separation of the projectile and target as a func-

tion of time for a sample trajectory, coloured by the an-

ticipated transfer probability. This transfer probability is

expected to fall exponentially with increasing separation

(see e.g., [14, 18]). The transfer probability is peaked at

the distance of closest approach, but if the state populated

by the transfer has a lifetime of 0.5 zs, the breakup loca-

tions will be shifted (approximately) along the trajectory

to later times (shown in green). This lifetime effect could

explain why the simulations suggest breakup occurs pri-

marily when the projectile and target are already moving

apart. Moreover, at above barrier energies the reactants

will have crossed the fusion barrier before the resonant

state has had a chance to disintegrate, and so fusion will

not be suppressed.

7 Conclusions and outlook

The correlation between β and θ12 appears to be sensitive

to the distance between the projectile-like and target-like

nuclei at the point of breakup. The properties of broad
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Figure 6. Illustration of the influence of short-lived states on

breakup. The yellow-red-black line shows the projectile-target

trajectory as a function of the time from the distance of closest

approach and projectile-target separation R. It is coloured by

the transfer probability, which peaks at the distance of closest

approach and falls exponentially, as show in the inset. The green

region indicates the approximate breakup location, shifted due to

the unbound state populated having a short lifetime (∼ 0.5 zs).

resonant states may be very important in determining this

distance, and therefore the consequences for fusion. To

further understand the influence of breakup on fusion, new

measurements are required on a variety of targets to focus

on large opening angles θ12, to study breakup occurring

prior to the distance of closest approach. More sophis-

ticated classical dynamical modelling must also be per-

formed, taking into account both narrow and broad res-

onances and their characteristic shapes and lifetimes.

Furthermore, every nucleus, particularly every light

nucleus, is different. Due to differences in their struc-

ture the results found for β vs. θ12 for 6Li→ α + d and
7Li→ α + t coincidences are very different from those

shown here — both have long-lived narrow states, and

though they show evidence of near-target breakup, neither

has low-lying broad resonant states similar to the 8Be 2+.

The consequences for fusion may therefore be rather dif-

ferent, and require further detailed investigations.
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