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Abstract 
 

This research project’s end goal is on the Lone Wolf Terrorist. The project uses an 

exploratory approach to the self-radicalisation problem by creating a stylistic 

fingerprint of a person's personality, or self, from subtle characteristics hidden in a 

person's writing style.  It separates the identity of one person from another based on 

their writing style. It also separates the writings of suicide attackers from ‘normal' 

bloggers by critical slowing down; a dynamical property used to develop early 

warning signs of tipping points. It identifies changes in a person's moods, or shifts 

from one state to another, that might indicate a tipping point for self-radicalisation. 

Research into authorship identity using personality is a relatively new area in the field 

of neurolinguistics.  There are very few methods that model how an individual's 

cognitive functions present themselves in writing.  Here, we develop a novel 

algorithm, RPAS, which draws on cognitive functions such as aging, sensory 

processing, abstract or concrete thinking through referential activity emotional 

experiences, and a person's internal gender for identity.  We use well-known 

techniques such as Principal Component Analysis, Linear Discriminant Analysis, and 

the Vector Space Method to cluster multiple anonymous-authored works.  Here we use 

a new approach, using seriation with noise to separate subtle features in individuals.  

We conduct time series analysis using modified variants of 1-lag autocorrelation and 

the coefficient of skewness, two statistical metrics that change near a tipping point, to 

track serious life events in an individual through cognitive linguistic markers.  

In our journey of discovery, we uncover secrets about the Elizabethan playwrights 

hidden for over 400 years. We uncover markers for depression and anxiety in modern-

day writers and identify linguistic cues for Alzheimer's disease much earlier than other 

studies using sensory processing. In using these techniques on the Lone Wolf, we can 

separate their writing style used before their attacks that differs from other writing. 
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Chapter 1 
 

 

Introduction 
 

 
1.1 Thesis Statement 

The intent of this thesis is to create a method that extracts key linguistic features, or 

attributes, from a person’s writing style or speech that can characterise self for 

identification purposes and track changes in people’s mindset over time due to life 

events.  By collecting open source data within cyberspace, such as blogs and chat room 

discussions, this identity signature of a person could be used to predict the likelihood 

of conflict and provide early warning indicators to aid in the defence and regional 

security of Australia. It might be possible to use this to indicate a tipping point and 

predict self-radicalisation in people. 

To support an automated early warning system that can be deployed in the field, an 

algorithm must be constructed that can analyse an unknown author’s signature from 

anonymous, unstructured open source texts and through analysis of the content, key 

stylistic features that describe self must be extracted.  By uncovering self with cognitive 

functions such as aging through word richness, internal gender identification from 

personal pronouns (Kernot, 2016), abstract or concrete thinking through referential 

activity emotional experiences (Murphy, Maskit, & Bucci, 2015), and the mind’s 

sensory processing, a signature of a person can be created from their writing style. 

Visualisation and trend analysis of those key characteristics, messages tagged by 

richness, gender, referential activity and sensory style can be used to highlight 

different levels of conflict within that person for early warning security. 

This research has its genesis in a Master of Philosophy thesis completed in 2013, where 

observations about the application of gender and the Representational System sensory-

based writing styles highlighted an opportunity to extend its application into the 

conflict and early warning domain and apply it to current, real-world problems within 

the national security space. 
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1.2 Introduction 

There have been more than 200 wars since the start of the 20th century, leading to 

about 35 million battle deaths. However, efforts at forecasting conflicts have so far 

performed poorly for lack of fine-grained and comprehensive measures of geopolitical 

tensions (Chadefaux, 2014).  After the Vietnam War ended in 1975, the Australian 

government's military conflicts had been dominated by peacekeeping and low-risk 

deployments until the ANZUS Treaty was invoked in 2001 after the 9-11 terrorist 

attacks in the United States (US). Since 2001, Australian military force members and 

personnel from the International Security Assistance Force (ISAF) and the United 

Nations Assistance Mission in Afghanistan (UNAMA) suffered casualties in the war in 

Afghanistan.  A significant threat that grew in Afghanistan during this period was the 

risk of the insider threat (Bordin, 2011; Smith, 2012), the trusted insider, known in 

military circles as a 'green-on-blue' incident when the individual turns on his friends 

and colleagues.  Insurgents dressed as Afghanistan National Security Force (ANSF) 

members and Afghan Security Guards (ASG) perpetrated these "green-on-blue" 

incidents and accounted for a growing trend in that theatre of war.  Added to this is 

the threat from Improvised Explosive Devices (IEDs) placed by unknown insurgents, 

which are a major cause of death and battle casualty.  Such casualties are occurring, 

partly, because analysts do not have the right tools to identify the perpetrators pre-

emptively.  This need for tools to help identify perpetrators by scanning textual data 

and matching identifiable characteristics grew.  

Existing tools might help to identify perpetrators by scanning textual data and 

matching identifiable characteristics.  However, these tools only work when 

characteristics of possible perpetrators are known.  Exploitation of documents and text 

(DOCEX) and media (DOMEX) found near insurgents and in hidden caches only help 

when the perpetrators can be identified. Therefore, tools are needed where the 

characteristics of the perpetrators are not known and can identify them through their 

linguistic style.  A 2010 report by the US highlights that DOMEX is the new intelligence 

discipline and it crosses all aspects of intelligence (Cox, 2010). 

Identifying perpetrators is difficult in unconventional, or asymmetric warfare because 

the perpetrators hide among the general population. Osama bin Laden, leader of the 

Islamic terrorist group Al-Qaeda, was reported to have been killed in 2001 after a battle 

with the US in the Afghan mountain stronghold of Tora Bora, and there were doubts 

about the authenticity of the 30-35 audio, video, and electronic texts that circulated 
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(Bloxham, 2011; Cooper, 2011; Griffin, 2009, 2013).  Nordin Mohammad Top, a key 

member of the Al-Qaeda-linked militant group, Jemaah Islamiah rose to prominence 

after the Bali bombings of 2002, and he was Indonesia's most wanted Islamist militant. 

In a similar style to bin Laden, he is thought to have escaped a safe-house raid, and 

doubt was raised about his identity in video footage because bin Laden hid behind a 

mask. He too was reluctant to use mobile phones, relied on a close network of 

sympathisers, and used couriers to send messages (Reuters, 2009; Shears, 2009).  Many 

perpetrators operate inside of chat rooms, hidden in cyberspace where they can be 

anonymous and incite or plan violent acts.  They can generate social influence, media 

"buzz," and cause violent responses from their posts (Colbaugh & Glass, 2012).  This 

may have a lot to do with the power of cyberspace because of the anonymity it 

provides.  A recent study has shown that people are more likely to open up to a 

stranger they meet on the Internet and divulge information about themselves they 

wouldn’t admit to their closest friends and relatives. This confiding of our true-self 

presents opportunities for people to make friends with someone they have never met 

(Bargh, McKenna & Fitzsimons, 2002). 

The role in Afghanistan has now reduced in response to the diminished threat from the 

Taliban and Al-Qaeda. Many of Australia's military have returned home from 

Afghanistan since the major withdrawal in December 2013, when the Afghan people 

were deemed to be able to manage the threat of the Taliban and Al-Qaeda in the 

Uruzgan province.  However, a new threat has emerged from Al-Qaeda in Iraq1 in the 

form of the Islamic State (IS), otherwise known as DAISH (Arab acronym for Al-Dawlah 

Al-Islamiyah fe Al-Iraq wa Al-Sham meaning the Islamic State of Iraq and Syria, or Sham) 

(Saikal, 2015).  This new threat is one where the people of Iraq and Syria now face 

shocking casualties as DAISH fights to create an Islamic caliphate spanning Iraq, Syria2 

and other parts of the Levant to regain the territory they were promised before the 

Sykes-Picard Agreement of 1916, at the end of the First World War.   

The map, (Figure 1), shows the extent of the Islamic Caliphate in 750AD in comparison 

to the East Roman Byzantine Empire.  The three shaded areas highlight the conquests 

of the Arabs, or Saracens, up to the death of Mohammed in 632AD, then under the first 

three Khalifs in 632-656AD, and finally the Ommiad Khalifs in 661-750AD (Shepherd, 

1926).  The Sykes-Picard Agreement was a deliberate attempt by England, France, and 

                                                 
1 Listed as a Terrorist Organisation in Australia on 2 March 2005 as Tanzim Qa’idat al-Jihad fi Bilad al-
Rafidayn (http://www.nationalsecurity.gov.au/Listedterroristorganisations/Pages/default.aspx) 
2 As at November 2017, the ISIS hold on their de facto Syrian capital, Raqqa has collapsed 
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Russia to reduce the control held by the defeated Ottoman Empire that grew from the 

750AD caliphate.3  

The threat from Islamic State is different from Al-Qaeda because of their approach. 

Through the power of social media, the group has been able to reach a vast population 

of disenfranchised youth and recruit them in their fight within Syria and northern Iraq.  

They have been able to encourage attacks across the globe.  Australian military support 

has again travelled to Iraq, and now face a more complex IED threat from roadside 

bombs.  There are more considerable differences from the fight in Afghanistan because 

of the inclusive actions of DAISH. Social media and the Internet provided a readily 

available opportunity to convince young Westerners and Muslims alike to join in their 

crusade, and it gave them a powerful tool.  Now, many of these young people are 

returning to their homes, some to Australia.  DAISH's online magazine, Inspire, 

recently published an article called "Make a Bomb in Your Mom’s Kitchen," which was 

translated into Bahasa by Indonesian jihadists (Ramakrishna, 2014). 

Figure 1: Islamic Caliphate in 750AD 

 
 
To draw a parallel on the implications of people open to violent acts of terrorism, on 

the 7th of July 2005, in London, the first successful home-grown extremist group carried 

                                                 
3  "The Califate in 750." From The Historical Atlas by William R. Shepherd, 1926. 
https://commons.wikimedia.org/wiki/File:Califate_750.jpg 
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out attacks.  Akbarzadeh (2013: 453) highlights that these were "the first successful 

suicide attacks on Western European soil carried out by four British-born men.  The 

attacks catapulted into the public spotlight questions about the capacity of Muslims to 

integrate into secular, liberal democracies." Samantha Lewthwaite converted to Islam 

and married one of the London bombers, Germaine Lindsay, after meeting him in an 

internet chat room, and, after his death has become one of the world's most wanted 

terrorist suspects (Kirby, 2007; The Sydney Morning Herald, 2013).  

The insider threat, or the threat of the lone wolf or lone actor, has been highlighted 

through the tragic death of passengers when Malaysian Aircraft flight MH370 

vanished without a trace in 2014 with some suggestions the cause had something to do 

with pilot involvement (Holdaway, 2014).  This was further reinforced when the co-

pilot of Lufthansa subsidiary Germanwings Flight 4U 9525 crashed the plane into the 

French Alps killing 150 people in a suicide act (Flottau, 2015).  Because of technological 

trends, easy Internet access can expedite direct action, and some military strategists 

warn of Fifth Generation Warfare in which lone wolves mount crippling cyber-attacks 

on national infrastructure or deploy small radiological devices, dirty bombs, against 

cities (Ramakrishna, 2014). 

Australia's military involvement has now grown in response to the global threat 

against terrorism and is involved in over seven military operations throughout the 

Middle East and North Africa.  However, there is a growing threat within Australia 

and from its near region. 

There have been a number of self-radicalised people, lone wolves, conducting terror 

attacks throughout the world.  The Westminster attacker, Khalid Masood, born Adrian 

Russell Ajao in Dartford, Kent, UK, had converted to Islam.  With a violent criminal 

record, he had been investigated for violent extremism, but he was a ‘peripheral figure' 

and not part of the current intelligence picture. There was no prior intelligence of his 

intent, or of the plot when he killed five people and injured more than 50 (Bourke & 

Miller, 2017).  Omar Mateen killed 49 people and injured 53 in a lone wolf attack on the 

Pulse nightclub in Orlando in 2016 and is the deadliest terrorist attack in the United 

States since 9/114, and while officials had no warning. Mateen was repeatedly 

investigated by the FBI (Byman, 2016).  A 15-year-old high school student Farhad 

Khalil Mohammad Jabar who shot dead a NSW police employee outside the force's 

                                                 
4 Until 1st of October, 2017 when 64-year-old Stephen Paddock killed 58 people and injured 851 (452 from 
gunshot wounds) on the Las Vegas Strip in Nevada 
(https://en.wikipedia.org/wiki/2017_Las_Vegas_shooting) 
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headquarters in 2015 had not come to the attention of counter-terrorism police before 

he carried out the "politically motivated" attack, and it is believed the teenager was 

acting alone (Ralston, Benny-Morrison& Olding, 2015).  In 2014, Lindt café gunman, 

Man Haron Monis, born Mohammed Hassan Manteghi Borujerdi, held 18 people 

hostage and as a result, two people were killed, but he was not believed to be a threat 

to national security. There were no indications he intended to engage in terrorism, 

although he was known to Australian and overseas security agencies for his ongoing 

offensive and nuisance behaviour with the potential to incite others to violence (Tucker 

& Gelineau, 2016).  Melbourne teenager Numan Haider stabbed two police officers 

during an arranged meeting outside the Endeavour Hills police station in Victoria in 

2014, just days after having undergone a degree of radicalisation (Cooper, 2016).  

Reinforcing the earlier conclusions of Sarma (2017), here too, many of these individuals 

were known to authorities and not considered a current threat, but some were not 

known at all. 

There is no universally agreed definition of radicalisation.  It is mostly described as the 

process/es whereby individuals or groups come to approve and participate in violence 

for political ends, and the UK government's counter-terrorism strategy suggests it 

occurs when people turn to violence to resolve perceived grievances caused by 

experiences and events in their life (Stevens, 2009). While examples of self or auto-

radicalisation through the internet are rare, the functioning of Web 2.0 facilitates the 

radicalisation of youth with and without prior inclination toward jihadist activity 

(Conway & McInerney, 2008).  While a lone-actor undergoes their own ideological 

radicalisation process where personality traits are relevant (Bakker & Roy, 2015).  In 

their exploratory study of YouTube posts, Conway and McInerney (2008), highlight 

online supporters come from a younger male demographic (25 years and less) outside 

of the Middle East and North Africa in countries with half originating from the USA 

(35%) and UK (17%) and 15% from Canada (8%), Australia (4%), and Germany (3%). 

There is a consensus that there should be a way to monitor the environment for early 

warning indications of conflict as highlighted, for example, in the Defence White Paper 

(Commonwealth of Australia, 2013). This was reinforced in the Defence Intelligence 

Organisation's web page on intelligence (Commonwealth of Australia, 2002-14).  It was 

also mentioned in the Defence Science and Technology Organisation's 2014 vision of 

cyber (Commonwealth of Australia, 2014: 17) and with the Australian government’s 
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recent measures on countering violent extremism (CVE) (Commonwealth of Australia, 

2015). 

The program of research reported in this thesis focuses on the lack of authorship 

analysis tools and the identification of anonymous authors to identify people that 

might be insurgents, 'insiders', or a lone wolf.  It draws on existing anonymous 

authorship identification research and techniques (Kernot, 2013) and extends that 

research by addressing the gaps that were identified.  

This research extends these concepts by describing self (for a more detailed 

determination of self and how it relates to psychology and identity refer to Chapter 2, 

Section 2.5), and the anonymous identification of authors in cyberspace, by drawing on 

neuropsychology and neuroscience markers within the brain that appears in writing 

and discourse analysis.  The premise of the research is that by characterising an 

author's identity using multivariate features, or markers within writing, broken up into 

four categories, RPAS: Richness (R), Personal Pronouns that indicate Gender (P), 

Referential Activity Power (A), and Sensory-based Adjectives (S), it is possible to 

identify self from the textual data in cyberspace. Further, we draw on a phenomenon 

called Critical Slowing Down (CSD), a dynamical property used to develop early 

warning signs of tipping points (Slater, 2013).  By conducting time series analysis using 

modified variants of 1-lag autocorrelation and the coefficient of skewness, two 

statistical metrics that increase near a tipping point (Slater, 2013) changes in a person’s 

moods, as they shift from one state to another can be observed. Applying this concept 

to a lone wolf, before the point when they commit a terrorist act, these hidden 

characteristics or cues that are inherent in someone's writing style might be able to be 

used to predict a tipping point and provide early warning signals to prevent a possible 

crisis. 

1.3 Research Question 

The objective of this research is to separate the identity of individuals and to highlight 

changes within them that indicate self-radicalisation. Therefore, the aim of the program 

of research reported in this thesis is to develop an algorithm that extracts key linguistic 

features, or attributes, from a person's writing style or speech that can characterise self 

for identification by data mining open source data within cyberspace. This stylometric 

identity signature can then be used to predict the likelihood of conflict, in this case, 
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self-radicalisation within an individual and provide early warning indicators to aid in 

the defence and regional security of Australia. 

Several terms (richness, referential activity, personal pronouns or gender, and sensory 

adjectives) have been discussed in this chapter.  They have been highlighted as 

potential new stylometric characteristics of language that could identify self and be 

used in tools to identify people in cyberspace. 

Given the need to identify linguistic characteristics of people, several questions can be 

asked.  Can the content analysis of written text extract stylistic features that identify a 

person?  Can a person be described from gender pronouns?  Can richness be 

determined from a person’s writing style? Can a referential activity score be 

determined from linguistic particles?  Can a sensory-based representational system be 

determined from adjectives? Can changes in these stylistic features identify conflict in 

an individual prior to it occurring?  Can the stylistic features be placed into a 

framework to predict an event for early warning purposes?  In considering these 

questions, it must be understood that they feed the broader and overriding research 

objective that drives this thesis. Given the need for tools to identify people in 

cyberspace who wish to harm Australia and its national interests, the research question 

is: 

Can the automated extraction of key linguistic attributes from text-based data 

identify an author’s personality, or self, and be used to predict self-radicalisation? 

 

1.4 Research Hypothesis 

There are four research questions addressed:  

1. Can a stylistic fingerprint of a person’s personality – their personal signature 

– reveal their ‘identity’ from their writing style? 

2. Does a person’s ‘identity’ change over time because of life events, such as 

trauma, depression, and disease, or is it stable? 

3. Can the application of techniques visualise the critical slowing down 

phenomena and identify changes in a person’s moods, or shifts from one 

state to another, that might indicate a tipping point for self-radicalisation? 
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4. Can the final writings of suicide attackers be separated from ‘normal’ 

bloggers? 

These research questions can be expressed as hypotheses tests, as follows: 

Null hypothesis – H0: The stylistic fingerprint of a person’s personality – their 

personal signature – cannot reveal their ‘identity’ from their writing style. 

Alternate hypothesis - H1: The stylistic fingerprint of a person’s personality – their 

personal signature – can reveal their ‘identity’ from their writing style. 

Alternate hypothesis - H2:A person’s ‘identity’ changes over time because of life 

events, such as trauma, depression, and disease. 

Alternate hypothesis - H3:The application of techniques to visualise the critical 

slowing down phenomena can identify changes in a person’s moods, or shifts from 

one state to another, that might indicate a tipping point for self-radicalisation.  

Alternate hypothesis - H4: The final writings of suicide attackers can be separated 

from ‘normal’ bloggers. 

If the approach to identity using personality, through RPAS, is successful and it is 

possible to create a personal signature of individuals (research hypothesis 1), and to 

separate ‘normal’ writing from that written before a terrorist attack (research 

hypothesis 4), when taking into account the ‘normal’ changes in a person’s personal 

signature over time (research hypothesis 2), it might be possible to use techniques to 

visualise the  critical slowing down phenomena and determine the tipping point where 

a disenchanted person becomes self-radicalised (research hypothesis 3).  If the answer 

is yes to all four hypotheses, then it might be possible to stop lone wolves before they 

act. 

1.5 Aim and Scope 

The aim of the research reported in this thesis is to develop an algorithm (RPAS) that 

extracts key linguistic features, or attributes, from a person’s writing style or speech 

that can characterise self for identification by data mining open source data within 

cyberspace. This identity signature can then be used to predict the likelihood of self-

radicalisation in an individual, and aid in the defence and regional security of 

Australia. 
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To meet the aim of the research reported in this thesis, three research phases that test 

the development of the algorithm are required.  These are described briefly now. 

1.5.1 Phase One 

Data and Algorithms Development.  In this phase, the algorithms are developed to 

identify self through four feature-sets comprising twelve linguistic features to classify a 

person through RPAS: Richness (R), Personal Pronouns (P), Referential Activity Power 

(A), and Sensory-based Adjectives (S).  Reference data to identify a person is also 

generated to score the feature-sets. 

1.5.2 Phase Two 

Experiments.  In this phase, seven studies are conducted across three distinct groups 

or phases to test key aspects of the research question.  Table 1 shows the logic and 

structure of the experiments.  Each of the experiments is discussed in the subsequent 

paragraphs. 

Study 1 - Authorship Identification.  In this study, the works of William Shakespeare, 

Christopher Marlowe, and Elizabeth Cary are used to test the premise that RPAS can 

be used to create signatures of more than one person and identify self. 

Study 2 - Authorship Identification.  In this study, the works of William Shakespeare, 

Christopher Marlowe, and Thomas Kyd are used to test the premise that RPAS can be 

used to identify the authorship of an unknown author’s work, through the anonymous 

play Edward III. 

Study 3 - Authorship Identification.  In this study, the works of William Shakespeare, 

Christopher Marlowe, Thomas Kyd, Bartholomew Griffin, and Richard Barnfield, are 

used as a test case to test the premise that RPAS can be used to identify the authorship 

of many unknown author's works, through the publication, The Passionate Pilgrim. 

Study 4 - Authorship Changes over Time.  In this study, the single work of William 

Shakespeare, The Sonnets, is used to test the premise that RPAS can be used to 

characterise subtle differences, or changes, in a person’s writing style within small texts 

over time. 

Study 5 – Authorship Changes over Time. In this study, the works of Iris Murdoch 

and P.D. James are used to test if an author’s characteristics change over time using 

RPAS.  This time, the study is conducted within larger texts when one author has 
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depression and Alzheimer’s disease that might mimic the proximal events and life 

stressors faced by a terrorist. 

Study 6 – Authorship Changes over Time.  In this study, the works of Iris Murdoch 

and P.D. James are used to test if a tipping point can be discovered using the Critical 

Slowing Down (CSD) dynamical property prior to when a life-changing event occurs.  

In this case, the event is Iris Murdoch's Alzheimer's disease progression.  However, we 

believe this mimics the proximal events and life stressors faced by a terrorist as they 

become self-radicalised or prior to them conducting a terrorist act.  

Study 7 – Lone Wolf Study. In this study, the suicide notes and final manifestos of 

suicide attackers are compared to normal bloggers and a person with depression to see 

if their writing can be separated using RPAS. 

1.5.3 Phase Three 

Evaluation and Recommendations.  In this phase, the effectiveness of the algorithm to 

determine self and provide conflict early warning against the research question will be 

evaluated.  Recommendations will be made on further research. 

 

Table 1: Outline of different studies 

Study Chapter Aim Data Source 

1 4 Identifying features to identify authors 
(known authorship) from RPAS 

Shakespeare, 
Marlowe, Cary 

2 5 Testing RPAS on an unknown author. Edward III 

3 6 Testing RPAS on a set of multiple unknown 
authors. 

Passionate Pilgrim 

4 7 Identifying features of a single author to 
identify characteristics in small texts that 
change over time from RPAS. 

Shakespeare’s The 
Sonnets 

5 8 Identifying features of two authors to 
identify characteristics that change over time 
from RPAS when one has proximal events 
and life stressors that mimic a potential 
terrorist. 

Iris Murdoch and 
P.D. James 

6 9 Identifying characteristics that change over 
time using a tipping point and Critical 
Slowing Down phenomena from RPAS prior 
to a life changing event. 

Iris Murdoch and 
P.D. James 

7 10 Identifying different RPAS features of lone 
wolf suicide attackers that are different from 
normal or depressed writers. 

Lone wolf suicide 
attackers 
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1.6 Thesis Outline 

There are eleven chapters and bibliography in this thesis, and the outline of them is as 

follows: 

 Chapter 1 – Introduction. We highlight the need for research in the field of self-

radicalisation and how through author identification using personality or self 

might be beneficial. 

 Chapter 2 – Background and Related Work. A discussion on the changing 

nature of warfare brought about by the asymmetric tactics employed by 

insurgents, and summarise key findings of critical earlier research. We show 

how through several types of analysis of anonymous documents that it may be 

possible to identify insurgents, terrorists, and the lone wolf.  The chapter 

focuses predominantly on examining the methods to identify a person and 

uncover self.  We describe how word richness, a person's internal gender from 

personal pronouns, Referential Activity, and the sensory Representational 

System might overcome some of the current anonymous author identification 

shortfalls. In this chapter, we also state the research hypotheses that stem from 

the research objectives and questions. 

 Chapter 3 – Methodology.  We address phase one, Data and Algorithms 

Development, and describe the methodology that is best used to gather the data 

and create the author signatures.  We restate the research hypotheses and how 

they are tested through a series of studies.  We describe how the reference data 

list selection is created and highlight how the works are reduced into a Bag of 

Words (BOW).  We identify the RPAS equations that will be used to generate a 

signature of an author that describe self. 

 Chapter 4 – Authorship Identification.  We address one part of Phase Two, 

Experiments, and describe the first series of experiments (one through three).  

Drawing on the Elizabethan playwrights, and the works of William 

Shakespeare, Christopher Marlowe, Elizabeth Cary, Thomas Kyd, Bartholomew 

Griffin, and Richard Barnfield, the proposed algorithms are tested over three 

experiments to see if they can identify self and characterise an author’s writing 

style.  RPAS is tested on the works of William Shakespeare, Christopher 

Marlowe, and Elizabeth Cary to see how effective they are at separating the 

writing of different authors. 
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 Chapter 5 – Authorship Identification.  Again, we address one part of Phase 

Two, Experiments, and describe the second study in the first series of 

experiments on authorship identification.  Drawing on the works of William 

Shakespeare, Christopher Marlowe, and Thomas Kyd, the proposed algorithms 

are tested to see if we can identify known authorship from an author’s 

anonymous writing style through the anonymous play, Edward III. 

 Chapter 6 – Authorship Identification.  Again, we address one part of Phase 

Two, Experiments, and describe the last of the series of experiments looking at 

authorship identification.  Drawing on the works of William Shakespeare, 

Christopher Marlowe, Thomas Kyd, Bartholomew Griffin, and Richard 

Barnfield, the proposed algorithms are tested to see if we can identify known 

authorship from a more complex dataset when there are multiple unknown 

authors through the publication, The Passionate Pilgrim. 

 Chapter 7 – Authorship Changes Over Time Study.  We address another part of 

Phase Two, Experiments, and describe the second series of experiments (four 

through six).  This first study in this next part, we draw on William 

Shakespeare’s work, The Sonnets. We examine the changes in writing in a single 

author over time. 

 Chapter 8 – Authorship Changes Over Time Study.  Again, we address another 

part of Phase Two, Experiments, and describe the second experiment looking at 

authorship changes over time. Drawing on the works of the contemporary 

authors, Iris Murdoch and P.D. James, we examine the effects of time on an 

author’s signature. We examine larger texts when one author has depression 

and Alzheimer’s disease that might mimic the proximal events and life stressors 

faced by a terrorist. 

 Chapter 9 – Authorship Changes Over Time Study.  Again, we address another 

part of Phase Two, Experiments, and describe the third and final experiment 

looking at authorship changes over time (study six).  Again, the works of the 

contemporary authors, Iris Murdoch and P.D. James are examined, but this 

time they are used to test if a tipping point can be discovered using the Critical 

Slowing Down (CSD) dynamical property prior to a life-changing event 

occurring that mimics the proximal events and life stressors faced by a terrorist 

as they become self-radicalised or prior to them conducting a terrorist act.  
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 Chapter 10 – Lone Wolf Study.  We address the final part of Phase Two, 

Experiments, and describe the third series of experiments (study seven).  In this 

study, we compare the suicide notes and final manifestos of suicide attackers to 

normal bloggers and a person with depression to see if their writing can be 

separated. 

 Chapter 11 – Discussion and Conclusions.  We address Phase Three, Evaluation 

and Recommendations, and demonstrate that the aims as stated in Chapter One 

have been achieved by meeting the research objectives.  We describe the 

significance of our findings and its limitations and provide our conclusions and 

where future research in this domain should be directed. 

1.7 Publications 

 From Chapter 4: Kernot, D., Bossomaier, T., & Bradbury, R. (2018). Shakespeare's 

Sotto Voce: Determining True Identity from Text. Frontiers in Psychology Vol 9. 

March 2018 Article 289, 1-17. 

 From Chapter 5: Kernot, D., Bossomaier, T., & Bradbury, R. (2017). Did William 

Shakespeare and Thomas Kyd Write Edward III? International Journal on Natural 

Language Computing. Vol. 6, No. 6. December 2017. 

 From Chapter 6: Kernot, D., Bossomaier, T., & Bradbury, R. (2017). Stylometric 

Techniques for Multiple Author Clustering: Shakespeare’s Authorship in The 

Passionate Pilgrim. International Journal of Advanced Computer Science and 

Applications. Vol. 8 No. 3, 1-8.  

 From Chapter 7: Kernot, D., Bossomaier, T., & Bradbury, R. (2017). Novel Text 

Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's 

Sonnets. Journal of Quantitative Linguistics. Vol 24 No 4, 255-272. 

 From Chapter 8: Kernot, D., Bossomaier, T. and Bradbury, R. (2017). The Impact 

of Depression and Apathy on Sensory Language. Open Journal of Modern 

Linguistics, 7, 8-32. 

 From Chapters 8 and 9: Kernot, D., Bossomaier, T., & Bradbury, R. (2017). The 

Stylometric Effects of Aging and Life Events on Identity. Journal of Quantitative 

Linguistics.  Published online 6 Dec 2017, 1-21. 
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 From Chapter 10: Kernot, D., Bossomaier, T., & Bradbury, R. (2017). Identifying 

Suicide Attackers in Cyberspace (under review). 

 From Chapters 4-10: Bradbury, R., Bossomaier, T., Kernot, D. (2017). Predicting 

the emergence of self-radicalisation through social media: A complex systems approach.  

In Conway, M., Jarvis, L., Lehane, O., Mcdonald, S., Nouri, L. (eds) Terrorists’ 

Use of the Internet: Assessment and Response.  IOS Press. Vol 136, 379-389. 
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Chapter 2 
 

 

Background and Related Work 
 

 
In this chapter, we describe the context of the work in which this program of research 

reported in this thesis is situated and provide some background for the work this 

research draws from.  Drawing on the research questions and hypotheses, we highlight 

the problems faced by Australians in this context and summarise the related work that 

extends the earlier research. 

2.1 Background 

The program of research reported in this thesis draws on a Master of Philosophy thesis 

(Kernot, 2013).  The thesis proposed that by being able to create a signature that 

described an anonymous person from their texts in cyberspace, that insurgents and 

bomb-makers of Improvised Explosive Devices (IEDs) could be identified and that this, 

in turn, could be used to reduce the threat to deployed Australian troops stationed 

within Afghanistan. 

2.1.1 Gender Component 

In this section, the earlier work in the area of gender is described (Kernot, 2013), which 

was used to identify an anonymous author from their writing style.  The concept drew 

on Kernot (2013) from an ‘author's invariant' (Stanczyk & Cyran, 2007), as a method to 

detect subtle, hidden characteristics in written text that could differentiate one author 

from another.  Anonymous authorship identification techniques were tested through 

two novel approaches.  The first approach was based on the assumption that gender 

could be defined by a person's use of personal pronouns.  The study drew on the use of 

pronouns in gender identification (Argamon et al., 2003; Argamon et al., 2007; Chung & 

Pennebaker, 2007; Harré, 1999a, 1999b; Hota et al., 2006; Koppel et al., 2002; McGrath, 

2003; Newman et al., 2003; de Vel et al., 2001), and in particular the use of gender-based 

pronouns to determine authorship, by Argamon, Koppel, Fine, and Shimoni (2003). 

More recent work had been done by others (Herring & Paolillo, 2006; Kagstrom et al., 

2009; Lai, 2009) but did not achieve the gender classification accuracies greater than 

Argamon et al.'s (2003) level of 80%.   
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By extending Argamon et al.'s (2003) study and using their initial list of gender-based 

pronouns, Kernot (2013) assigned a gender to each pronoun, labelled M (more likely 

used by a male gender) or F (more likely used by a female gender) based on Argamon 

et al.'s (2003) median results, T-test significance levels, male and female means, and 

standard errors.  This new reference list was compared against a Bag of Words that 

comprised 30 samples taken from the Internet, with an average size of 1,000 words 

each (6 articles from 5 authors with a contribution of 6,000 words per author) resulting 

in a total Bag of Words size of 30,000 words. This list was reduced to 1,981 instances of 

the gender-based pronouns. Using logistic regression analysis on the data, 27 of the 30 

samples (90%) were correctly identified by gender using the three most statistically 

significantly words (my, her, and its), and a gender formula drew on the logistic 

regression predictor variables and coefficients. 

A recommendation was made that the algorithm is further tested against wider and 

larger datasets.  There was a belief that, outside of defining gender as male or female, 

the gender scores could be used to provide more fidelity to an author's anonymous 

signature. 

2.1.2 Sensory Component 

In this section, we describe the earlier work in the area of Neuro-Linguistic 

Programming (NLP in this case does not refer to the commonly referred term Natural 

language Programming) sensory predicates (Kernot, 2013), which was used to identify 

an anonymous author from their writing style.  The concept was based on the 

assumption that through sensory predicates (nouns, verbs, adverbs, and adjectives), it 

was possible to identify a person from the way they used their five senses and the 

different part of their sensory cortices. The term VAKOG (V – visual, A – auditory, K – 

kinaesthetic, O – olfactory, G – gustatory), described the Representation System (RS), 

which is the part of the brain that processes our five senses of sight, hearing, touch and 

body sensations, smell, and taste (see While cognitive psychology is more focused on 

the mind, cognitive neuroscience focussed on the brain (Bechtel, 2002).  Here, we use 

the sensory processing of the brain and how that impacts on the psychological aspects 

of the mind through linguistics. Our interests lie in how basic sensory information is 

represented, and how internal and external sensations of prior experiences are stored 

(see Oosterwijk et al., 2015) and integrated into language and cognition through a 

network of overlaid and combined neural functions, such as auditory, visual, tactile, 

and sensory-motor sensations (St Clair, 2017). 
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Figure 2)5.  While cognitive psychology is more focused on the mind, cognitive 

neuroscience focussed on the brain (Bechtel, 2002).  Here, we use the sensory 

processing of the brain and how that impacts on the psychological aspects of the mind 

through linguistics. Our interests lie in how basic sensory information is represented, 

and how internal and external sensations of prior experiences are stored (see 

Oosterwijk et al., 2015) and integrated into language and cognition through a network 

of overlaid and combined neural functions, such as auditory, visual, tactile, and 

sensory-motor sensations (St Clair, 2017). 

Figure 2: Motor and Sensory Regions of the Cerebral Cortex 

 

The sensory modalities of the Representation System was grounded in Neuro-

Linguistic Programming (NLP) techniques, the study of the structure of human 

subjectivity, and a model to demonstrate the basic process used to encode, transfer, 

guide, and modify our behaviour (Bandler & Grinder, 1979; Grinder & Bandler, 1976; 

Dilts et al., 1980; Grosu et al., 2017; Marashi & Abedi, 2017).  It grew from an idea that 

individuals have a "private language," a world of sensations, that is unique and 

individual to that person, and it defined how people interpreted their environment, 

and how they attached a ‘feeling' to each word expressed through their senses 

                                                 
5 From Blausen.com staff (2014). "Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). 

DOI:10.15347/wjm/2014.010. ISSN 2002-4436. 

 

https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014
https://en.wikipedia.org/wiki/Digital_object_identifier
https://doi.org/10.15347/wjm/2014.010
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://www.worldcat.org/issn/2002-4436
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(Wittgenstien, 1922). The Primary Representational System (PRS), a preferred or 

primary sensory cortex that people draw on to speak and write (Grinder & Bandler, 

1976) unconsciously determines a person's use of noun/verb/adverb predicates in 

their communication, and this is reflected in both their oral and written communication 

style. 

There was an assumption that NLP could provide techniques by which these hidden 

cues could be unmasked as a person speaks and/or writes because each person has a 

PRS (Grinder & Bandler, 1976; Heap 2008; Mercia & Johnson, 1984; Skinner & 

Stephens, 2003). 

After extensive debate on the scientific validity of NLP (Heap, 1988a; Heap, 1988b; 

Heap, 2008; Sharpley, 1984; Sharpley, 1987), it had mostly been abandoned by 

academia and psychology (Witkowski, 2010).  However, Colaco et al. (2010) developed 

a psychometrically-based Neuro-Linguistic analysis tool called NEUROMINER to 

classify one type of computer programmer from an OSS mailing list content and they 

used it to identify developer's personalities and general emotional content (Rigby & 

Hassan, 2007) from sensory-based Visual, Auditory and Kinaesthetic words or phrases. 

The Kernot (2013) study drew on the success of the Colaco et al. (2010) work and again 

tested the thirty articles obtained from the Internet by five authors across a range of 

sources.  A sensory-predicate algorithm was developed from discriminate analysis 

testing, and while no PRS could be identified, it was found that a signature of 

anonymous individuals could be created from a combination of all of the 

Representational System (RS) scores to identify people. 

The program of research reported in this thesis extends these concepts above by 

describing self. The focus is on the anonymous identification of authors in cyberspace 

and characterising them by the way people think.  It draws on neuropsychology and 

neuroscience markers within the brain that appear in writing and discourse analysis.  

We draw on a Critical Slowing Down (CSD), a dynamical property used to develop 

early warning signs of tipping points (Slater, 2013), and the use in a person is a 

relatively new concept (Trefois et al., 2015; Meisel et al., 2015; Scheffer, 2010; Slater, 

2013; van de Leemput et al., 2014). It is discussed in more detail below (Section 2.3.3 

Critical Slowing Down), but it has the potential to be used to predict the likelihood of 

events and identify the author of those texts in cyberspace. 
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2.2 New Gender Components 

"There is no general agreement as to what extent – if at all – the psychological make-

ups of the two sexes are different by nature, but there is no doubt that gender is 

represented through a person's choices of lexical and functional items" (Dam, 2014: 87-

88).  In determining the role of personal pronouns in the construction of female 

identity, Dam (2014) highlights the use of pronouns ‘we’, a deictic or dependent upon 

context pronoun, ‘you,' and ‘your,' as contributing to identity. 

Hancock et al. (2014) suggest that recent research on gender differences in language 

present a diminishing picture.  In their study (Hancock et al., 2014) of whether 

language use can predict perceptions of gender and femininity, 10 males, 12 females, 

and 13 transgendered women (male-to-female) speakers were rated against femininity.  

What the study highlighted was that 4 of the 14 variables differentiated males from 

females using T-units (known as the minimal terminable unit, where each T-Unit “is 

the shortest units into which a piece of discourse can be cut without leaving any 

sentence fragments and would contain one independent clause and its dependent 

clauses” (Hunt, 1965: p.189) and in Hancock et al. (2014) it focussed on dependent 

clauses and personal pronouns).  Hancock et al. (2014) found that transgendered 

females tended to be more distinct from the females than the men were. In the second 

part of the study where they compared the use of language, the transgendered 

women's scores were not significantly different from the men, but none of the 14 

individual variables alone were robust predictors of perceived gender or femininity. 

In a gender study, Lenard (2014), analysed 204 random speeches from the 113th United 

States Congress, split equally by gender with the LIWC (Linguistic Inquiry and Word 

Count) tool from Pennebaker et al. (2001). Lenard (2014) used US Congress speeches 

and analysed 70 language categories and highlighted that women's personal pronoun 

use was larger than men and they used the word 'we' more. Men used nouns, articles, 

and numbers more and tended to use the pronoun 'I' more. 

What is clear is from a literature search for further authorship identification techniques 

in the area of gender, that pronouns are a crucial part of speech in determining this. 

2.2.1 Key Pronoun Studies 

Flekova and Gurevych (2013), identified people by age and gender on social media 

websites using a combination of features, which included pronoun ratio for age, but 
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ignored pronouns to determine gender, and achieved a gender match of 0.58.  Rangel 

and Rosso (2013) drew from the work of Pennebaker (2011) and used a Support Vector 

Machine method to categorize Parts Of Speech (POS), but this performed better at 

identifying age than gender. They achieved a gender match of 0.57 when including 

singular and plural pronouns into their POS list.  Argamon et al. (2009) used a 

combination of pronouns (I, me, him, my) to identify females, but achieved 5-10% 

better success rates when they also considered content words about technology (males) 

and personal life and experiences (female). They achieved a gender match of 0.76 when 

looking at style and content feature sets.  In Argamon et al. (2007), a study of how 

writing topic and style vary with age and gender of the blogger highlighted similar 

gender results to the Argamon et al. (2003) study.  That Articles and Prepositions are 

used significantly more by male bloggers, while personal pronouns, conjunctions, and 

auxiliary verbs are used significantly more by female bloggers. 

From the literature, much of the work that includes gender has focussed on 

determining age and looking at author emotion. In all cases, the focus of determining 

gender was to categorise people as male or female, and this was done using many 

different techniques with varying success. The closest aligned work was from 

Argamon et al. (2009), and this was the study with the highest success rate of gender 

matching at 76% from female use of the pronouns ‘I,' ‘me,' ‘him,' and ‘my.'  While this 

is not as high as the 80% reached from Argamon et al. (2003), it demonstrates a 

reduction of the key contributing pronouns for gender identification and the power of 

personal pronouns.  In the Kernot (2013) study, a gender success rate of 90% was 

reached using three pronouns, ‘my,' ‘her,' and ‘its.'  A score of 93.3% was achieved 

using five pronouns, ‘my,' ‘her,' ‘its,' ‘themselves,' and ‘them,' but the underlying 

statistical results were not as significant, or reliable. Cheng et al. (2011) make the 

distinction between biological sex as male and female, and a person's gender-related 

language as a socially constructed aspect where not all men are masculine and not all 

women are feminine, but internally they can be other than their biological sex.  

2.2.2 Summary 

What is important here is, outside of the categorisation of people into purely male and 

female, the existing work in Kernot (2013) provides an opportunity to describe a 

person on a continuum between 0 and 1 from their use of personal pronouns for 

identification. At one end, they are likely to be female, and at the other male, but the 

scores from the gender equation (see Equation 2) provide an opportunity to identify 
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the internal, socially constructed gender of a person.  Another important point is the 

power of a pronoun to relate to self closely, and this point is researched further and 

discussed next in Referential Activity. 

2.3 Referential Activity 

It became apparent that the pronoun is a key part of speech and it is able to identify a 

person from gender (refer to the section above). The use of first person pronouns is also 

associated with the identification of age, sex, depression, illness, and more broadly, 

self-focus (Pennebaker & Lay, 2002), and there are other ways to use pronouns outside 

of gender to identify self.  Pronouns are relatively easy to identify cross-linguistically 

(Simon & Wiese, 2002), in other languages other than English which highlights their 

importance in language construction and their value to self. 

In the Psychological Aspects of Natural Language Use: Our Words, Our Selves, Pennebaker, 

Mehl, and Niederhoffer (2003) move us from the single pronoun, through the function 

word type of particles, and on to the concept of Referential Activity, defined as the 

function of connecting non-verbal experience with language (Mergenthaler & Bucci, 

1999), and underpinned by multiple code theory, a “cognitive model that emphasises 

the role of emotion in human cognition and the complex issues involved in translating 

emotional experience to verbal form.” (Bucci, 1997: 153).  The five key areas relevant to 

this thesis are listed below: 

(a) The words people use in their daily lives can reveal important aspects of 

their social and psychological worlds. 

(b) Pronouns may be an overlooked linguistic dimension and are markers of 

self versus group. 

(c) Pronouns are a group of function words known as particles, the glue that 

holds nouns and regular verbs together, and they can serve as markers of 

emotional state, social identity, and cognitive styles.  Particles are processed in 

different regions of the brain and in different ways than content words. 

(d) Particles include pronouns, articles, prepositions, conjunctives, and 

auxiliary verbs.  There are fewer than 200 commonly used particles, and they 

account for over half of the words we use. 
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(e) Particles are referential words that have tremendous social and 

psychological meaning.  In particular, third person pronouns and prepositions 

capture the ability to verbalize nonverbal experiences through Referential 

Activity. 

This self-referential process concerns stimuli that are experienced as strongly related to 

one’s own person (Northoff et al., 2006).  Another way to describe it would be self, and 

Northoff et al. (2006: 441) highlight that "When objects and events are viewed through 

the eyes of the self, stimuli are no longer simply objective aspects of the world, but they 

typically become emotionally coloured, and thereby more intimately, related to one’s 

sense of self." 

Grounded in Critical Realism, an approach that asserts the independence of an external 

world whilst accepting that knowledge of that world is socially constructed and 

transient (Bosward, 2017), the American philosopher, Roy Wood Sellers provided a 

linguistic framework guided by the brain's sensory referential sensations (Sellars, 1916; 

1959; 1961). Sellars highlighted referential activity as a biological mechanism that had 

'higher levels.' The concept was picked up for clinical studies into depression (Bucci & 

Freedman, 1981; Bucci, 1982; Bucci, 1984; Bucci & Millar, 1993). 

Wilma Bucci (2002) suggests we see all things through the lens of memory schemas.  

Grounded in neuropsychology from the levels of awareness and the sense of self by 

Damasio (2003), Bucci draws on multiple code theory (Bucci, 1997), to highlight that 

humans represent and process information through symbolic codes, and sub-symbolic 

or non-symbolic codes, to link words to non-verbal representations through a system that 

sits between the words (symbolic codes) and the subordinate non-verbal modalities (sub-

symbolic or non-symbolic codes).  Within the symbolic codes, there are non-verbal 

symbolic codes, or modalities (multi-modal images within the brain are fused within 

the posterior parietal region, and to a lesser extent the anterior parietal regions of the 

brain (see Kayser & Shams, 2015; Andersen & Gnadt, 1989) and refer to somatic 

sensory association area in While cognitive psychology is more focused on the mind, 

cognitive neuroscience focussed on the brain (Bechtel, 2002).  Here, we use the sensory 

processing of the brain and how that impacts on the psychological aspects of the mind 

through linguistics. Our interests lie in how basic sensory information is represented, 

and how internal and external sensations of prior experiences are stored (see 

Oosterwijk et al., 2015) and integrated into language and cognition through a network 
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of overlaid and combined neural functions, such as auditory, visual, tactile, and 

sensory-motor sensations (St Clair, 2017). 

Figure 2), and verbal symbolic codes, or modalities (words or low level symbols within 

the mind).  

A structure exists where discrete word entities refer to other discrete words and 

images, and similarly, discrete images refer to other entities across all of the sensory 

modalities (visual, auditory, tactual, kinesthetic, olfactory, and gustatory representing 

what we see, hear, feel, smell, and taste).  With the sub-symbolic system, there is 

systematic processing that occurs across each sensory modality as sounds, smells, 

feelings, not as words and images, but through representations at the modality level.  

The sub-symbolic representations are only expressed indirectly by abstract symbols of 

the verbal symbolic codes, and these discrete representational elements, or non-verbal 

symbols, connect to the symbols of the verbal symbolic codes. In Kosslyn (1994) there 

is an emphasis on the notion that information is represented as images and in Kosslyn 

(2005) a suggestion that this mental imagery draws on many of the same mechanisms 

as visual perception.  

Referential Activity (RA) is grounded in experimental cognitive psychology (Bucci & 

Kabasakalian-McKay, 2004: 3), and is defined as: "activity of the system of referential 

connections between verbal and non-verbal representations, as reflected in language 

style.  Nonverbal representations include imagery in all sense modalities, as well as 

representations of action, emotion, and somatic experience…" 

Clinical psychologists use the psycholinguistic variable, Referential Activity to score a 

person from their speech across four categories (Bucci, & Kabasakalian-McKay, 2004; 

Murphy, Maskit & Bucci, 2015): the extent that verbal expressions refer to sensate 

properties of actual things or events or to anything that is experienced as a sensation or 

feeling sensory characteristics of language (Concreteness); the vividness and 

effectiveness with which the speaker’s language is reflecting and capturing imagery or 

emotional experience, in any sense modality (Imagery); the quality of detail, e.g. 

degrees of articulation (Specificity); and, the organisation and focus (Clarity). The RA 

measures the degree to which a speaker or writer is able to translate experiences into 

words in a way that evokes corresponding experiences for the listener or reader. 

"The concepts of multiple code theory and the referential process is central to both 

consciousness and the sense of self." (Bucci, 2002: 766).  Over a period of many years, 
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the human approach to coding RA has been automated and tested to perform as well, 

if not better than humans.  The Computerized Referential Activity (CRA) program was 

developed to model against human raters of RA (Mergenthaler & Bucci, 1999) and 

from it grew the Weighted Referential Activity Dictionary (WRAD) dictionary of 

psycholinguistic variables which was used through the Discourse Attributes Analysis 

Program (DAAP) to automate the human process of determining a person's RA score 

(Bucci & Maskit, 2004; Bucci & Maskit, 2006; Bucci, Maskit, & Murphy, 2015).  But there 

is another source of computerised psycholinguistic data. The Medical Research Council 

(MRC) Psycholinguistic Database is a computerised database of psycholinguistic 

information with around 98,538 words (Colheart, 1981) and it has a number of key 

linguistic word properties, including scores for imageability and concreteness (from 

RA).  

2.3.1 Pronouns and Depression 

Pronouns are important in creating an identity and a sense of self (Priest, 2013).  Mental 

illnesses, such as depression and post-traumatic stress disorder (PTSD), are known to 

significantly alter pronoun use (Preotiuc-Pietro et al., 2015).  The use of first person 

pronouns in people with depression is clear (Bucci & Freedman, 1981; Weintraub, 1981; 

Stirman & Pennebaker, 2001; Rude, Gortner, & Pennebaker, 2004; Ramirez-Esparza et 

al., 2008). Bucci and Freedman investigated the relationship between Referential 

Activity and depression and found impairment in referential activity with clinical 

patients with severe depression (Bucci & Freedman, 1981).  This may in part be linked 

because of the contribution that particles, including pronouns, play in rating RA.  

2.3.2 RA and Dementia 

While some of the tests used to rate RA include spontaneous discourse, when a person 

is asked a series of non-scripted questions, this requirement of an immediate 

structured response puts pressure on the cognitive-linguistic system that through 

linguistic analysis of word use can highlight neurological diseases such as dementia 

(Bersha et al., 2015).   Drawing on a number of studies (Nicholas et al., 1985; Smith, 

Chenery, & Murdoch, 1989; Holm, Migne, & Ahlse, 1994; Kemper, Thompson, & 

Marquis, 2001; Maxim, Bryan, & Thompson, 1994; Bird et al., 2000), Bersha et al. (2015) 

reinforce the value of Referential Activity, when they highlight that dementia patients 

use high frequency low imageability words.  They also report on other key linguistic 

feature that describes self, such as a reduction in available vocabulary and lexical 
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repetition.  This richness can be mapped through the number of unique words used in 

the written text (Tweedie & Baayen, 1998), and an alternate way of describing it can be 

through species diversity (Karydis & Tsirtsis, 1996), or Menhinick’s Index (Menhinick, 

1964). 

2.3.3 Critical Slowing Down 

It is an important notion that function words (the higher set of words more than 

particles) do vary according to a person’s psychological state (Chung & Pennebaker, 

2007).  By combining discrete and continuous dynamics a rigorous, expressive, and 

computationally-tractable framework for modelling the dynamics of the complex, 

highly-evolved networks can be achieved (Colbaugh & Glass, 2012).  Slater (2013) 

highlight that complex systems across a variety of disciplines (ecology, climatology, 

finance, and medicine) demonstrate tipping-points or an abrupt, rapid change of state.  

Ecosystems and biological systems are known to be inherently complex and to exhibit 

nonlinear dynamics, and changing system dynamics have been suggested as early 

warning signals (EWS) for tipping points (Trefois et al., 2015).  In his study of social 

media sentiment measuring happiness, anxiety, and tension in blogs, Slater (2013) 

highlighted that protests and rebellion manifest as tipping points through a rise in 

anger, sadness or tension.  In a comparative study of four emotions in healthy and 

depressed people, van de Leemput et al. (2014) discovered that individuals go through 

a major transition in moods that are separated by tipping points.   

Early warning signals of such tipping-points can be detected via a concept called 

critical slowing down (CSD), and when measuring variation, 1-lag autocorrelation, or 

skewness, an increase can be observed near the tipping point. (Slater, 2013; Scheffer, 

2010).  Slater (2013) highlights that a composite CSD indicator can be computed based 

on a method introduced by Drake and Griffin (2010) and by using time series analysis, 

statistical signatures from moving window calculations, can plot the coefficient of 

variation, 1-lag autocorrelation, and coefficient of skewness. They highlight that to 

move to predictive analysis, a better understanding of the robustness of the CSD 

metrics is needed. Drawing on a broad class of neuroscience modelling Meisel et al. 

(2015) suggest an improved estimation of tipping points will occur by incorporating 

scaling laws.  Scheffer (2010) suggests that work in different scientific fields is now 

suggesting the existence of generic early-warning signals that may indicate for a broad 

class of systems if a critical threshold is approaching. 
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Bos and De Jonge (2014) suggest van de Leemput et al.’s (2014) results might be correct 

in their conceptualisation of depression as a dynamic system, but highlight the 

empirical evidence in the study is weak, and further studies should disaggregate (inter 

and intra) individual variability more carefully.  Wichers et al. (2014) further clarified 

van de Leemput et al. (2014) and agreed in part, highlighting that time series 

assessments obtained while individuals undergo a transition would be ideal because 

these would allow for direct intra-individual tests.  The logic behind their analysis was 

that, if individuals display early warning signals when closing in on a transition, then 

individuals who are closer to a tipping point should show higher levels of 

autocorrelation and variance.  In ecosystems, Dakos et al.  (2012) state that CSD the 

coefficient of variance approach can be systematically underestimated if the rates of 

change are slow relative to the frequency characteristics of the forcing regime, and 

therefore close to the tipping point it might increase or decrease.  However, 

autocorrelation is more effective because it always increases toward critical transitions. 

If social media sentiment measuring happiness, anxiety, and tension in blogs can 

highlight tipping points, manifested as a rise in anger, sadness or tension (Slater, 2013), 

then we would argue that as emotions such as anxiety, tension, fear and sadness 

increase prior to a tipping point, that the same change in a person’s mindset can be 

measured through a change in the use of particles (a subset of function words) used to 

measure Referential Activity.  Function words contain emotion like content words.  

Hancock et al. (2007), in a study of 40 dyadic interactions of happiness versus sadness, 

suggest that people can express emotion through text without any other context, and 

they discovered happy people wrote larger texts, and while the pronouns used were 

not different, articles differentiated people's emotions.  In people with 

neurodegenerative disorders, there can be a reduction in their syntactic complexity, in 

their proportion of words in sentences, and in the proportion of nouns with 

determiners (Garrard et al., 2005). Determiners are function words, and Pennebaker 

(2011) highlights function words, pronouns, and articles can indicate the ways people 

think, feel and connect. 

2.3.4 Summary 

Three key points arise from this section on Referential Activity.  The first is, that if 

particles can highlight depression and also describe self, and as we have seen, if 

concreteness and imagery from RA can highlight dementia and depression and reflect 

self, then by selecting particles from the MRC Psycholinguistic dataset that are high in 
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concreteness and imageability, it should be possible to identify self through a person's 

cognitive mental state. 

The second point is that there is a strong link between the gender identification 

pronouns, word particles used in Referential Activity, and our use of sensory words of 

self through pronouns and word particles, and to verbalising non-verbal ideas and 

concepts within the sensory cortex that reinforces the sense of self and identity.  The 

third point is that word richness through a species diversity equation can describe a 

person's unique word choice that reflects self through their cognitive function and 

contribute to being able to identify self.  The fourth point is that by using the concepts 

mentioned in the points above, it should be possible to measure a tipping point 

through Critical Slowing Down. 

2.4 New Sensory Components 

While Neuro-Linguistic Programming has been condemned (Witkowski, 2010), it has 

been used to enhance transcript analysis (Tosey & Mathison, 2010) in the area of 

psychophenomenology, research into first person accounts of experience. It does this 

by using distinctions in language, the internal sensory representations, and imagery. It 

draws on the NLP concept that people meld sights, sounds, and feelings before they 

speak (again, we reiterate the point in this thesis that NLP refers to Neuro-Linguistic 

Programming and not the commonly referred term Natural Language Programming).  

With the endorsement of NLP's founder, Dr. Richard Bandler, it has grown into an area 

called Medical Neuro-Linguistic Programming (Thomson, 2015) with a focus on the 

use and meaning within language to improve health. 

The Preferred Representational System (PRS) has been used in teaching. A study of 283 

teachers wanted to know if there was any modality dominance across the Visual and 

Auditory Representational System modalities (Tardif, Doudin & Meylan, 2015). They 

highlighted there is a distinction between visual and auditory modalities used by 

pupils in schools.  In another study, testing student’s preferences across the visual, 

auditory, and kinaesthetic Representational System modalities and helped teachers 

prepare lectures better (Ancusa, Bogdan & Caus, 2013).   

However, Gray (2012) draws on neuroscience to understand the tenets that underpin 

NLP and suggests it is underpinned by neuroscience, and that our perceptions are 

reshaped by memory, expectation, cognitive filtering and past experience and broken 

into a world of things and categories and the borders between objects and categories 
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by the brain.  By drawing on Canonical neuroscience, Gray (2012) shows that NLP can 

integrate new learnings using NLP in less than 24 hours, and not the usual thirty days 

it takes to transfer long term memory from the hippocampal stores to permanent 

cortical networks.  He highlights NLP activates a behavioural off-switch in one of the 

brain’s known circuits consisting of the ventro-medial prefrontal cortex, the anterior 

and posterior cingulate giri, medial temporal lobe and the precuneus related to related 

to evaluation, self-control, memory, prediction of future behaviour and empathic 

understanding of others. If this is true then research into neuroscience and the sensory 

modalities might open up a new avenue to explore. 

Churchland (2002), suggests the self is identifiable with a set of representational 

capacities of the physical brain, drawing on the 18th-century philosopher David 

Hume's description of self to highlight it as a collection of changing visual perceptions, 

sounds, smells, feelings, emotions, memories, and thoughts, etc.  While perception has 

been viewed as a modular sensory modality function, Shimojo and Shams (2001) and 

Yan et al., (2017), suggest they are not separate modalities.  They suggest that a unified 

consciousness, another word for self, is constructed from cross-modal inputs 

(Winkielman, Ziembowicz & Nowak, 2015). 

The U.S. Institute of Medicine of the National Academy of Science was commissioned 

in the late 80's to investigate neuroscience techniques (Martin & Pechura, 1991).  Of 

specific interest was functional Magnetic Resonance Imaging (fMRI).  Many studies 

have been conducted in to the area of the sensory modalities since, using fMRI, for 

example; visual and auditory areas (Linden et al., 1999), gustatory and somatosensory 

perceptions (Cerf-Ducastel et al., 2001), olfactory (Gottfried et al., 2002), visual and 

kinesthetic (Gulliot, 2009), and more interesting, haptic tactile imagery (Yoo et al., 2003; 

Deshpande et al., 2008).  The term haptic, a bidirectional sensory modality includes an 

awareness of the outer surface of the body (tactile), and movement, muscle tension and 

limb position (kinesthetic) (Tan, 2000). This is a wider definition than kinaesthetic that 

was used in the earlier NLP studies. 

What becomes clear is that there are cross-modal binding and integration of each 

modality (Calvert, Campbell & Brammer, 2000; Shimojo & Shams, 2001; Driver & 

Noesselt, 2008; Blank, Kiebel & von Kriegstein, 2015; Brunel, Carvalho & Goldstone, 

2015).  This is an important concept because the results of the earlier sensory study 

(Kernot, 2013) looked at each word as a single modality, and by considering the cross-
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modal aspects, the unified consciousness, or self can be represented through a more 

refined sensory algorithm that spans several modalities. 

2.4.1 Key Cross-Modal Studies 

In a study of 523 concrete object nouns by 420 undergraduate students, Amsel, Urbach, 

and Kutas, (2012) categorized each noun on the five sensory modalities, colour 

(Visual), sound (Auditory), graspability (Haptic), smell (Olfactory), taste (Gustatory), 

and on the motor modalities, motion and pain.  According to Amsel et al. (2012:1030): 

"Each of the five traditional Aristotelian sensory modalities (vision, touch, hearing, 

smell, and taste) is represented,” (in this study) “in addition to the sensation of pain. 

We assessed two kinds of visual knowledge, colour, and motion, which are represented 

in different brain regions proximal to the corresponding sensory cortex." 

Each noun object was scored across the seven categories and given a numeric score 

from 1 to 8.   They also provided a value for word familiarity, but no single dominant 

modality was provided and highlighted the value of concreteness as a key term in 

assessing sensory words.   

In a different study of 423 sensory-based prenominal adjectives by 55 native English 

speakers, Lynott and Connell (2009), collected words from a range of sources and 

categorized each object on the five sensory modalities. Lynott and Connell (2009:560) 

found a 74.8% variance from two factors principal component analysis. Their analysis 

highlighted significant correlations for the majority of modality pairs, although 

auditory ratings correlated negatively with all the other clusters and suggested that 

auditory experience has little to do with other types of perceptual experience. The 

strongest positive relationship was between olfactory and gustatory modalities, and to 

a lesser extent, a positive relationship also appeared in the visual-haptic cluster.  Only 

gustatory and haptic ratings showed no appreciable relationship. 

What is important from Lynott and Connell's (2009:526) study, is that they concluded 

most sensory-based words are multimodal rather than unimodal with clustering in the 

visual-haptic and olfactory-gustatory modalities.   

In another study, this one of 400 nouns by 34 native English speakers, Lynott and 

Connell (2013), obtained nouns from the MRC psycholinguistic database (Coltheart, 

1981; Wilson, 1987) to generate a random list. They categorized each noun object on the 

five sensory modalities.  Each noun was scored as a percentage of the mean, as was 
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word familiarity.  What was different from the Amsel et al. (2012) study was that 

Lynott and Connell provided a dominant modality and exclusivity percentage.  

Drawing on an earlier study about adjectives, Lynott and Connell (2009) discovered 

that concepts using nouns are more multimodal across the range of the five sensory 

modalities than adjectives.  This suggested that prenominal adjectives, words that 

immediately precede the noun, appear in fewer of the five sensory modalities.  

While the approach of both studies by Amsel et al. (2012), and Lynott and Connell 

(2013) use excellent sources of research data to categorize nouns by their modalities, 

any content analysis of text will be highly reliant on the occurrence of those nouns.  

Because Lynott and Connell (2013) highlight the benefit of prenominal adjectives over 

nouns, that there is more of a likelihood to have a more dominant modality, and that 

because a smaller set of adverbs, particularly prenominal adjectives, will occur more 

often over a wide range of nouns, sensory-based adverbs would seem a better 

approach to use for content analysis. 

van Dantzig, Cowell, Zeelenberg, and Pecher (2011), drew on the results of the Lynott 

and Connell (2009) study.  They collected modality ratings for a set of 387 properties, 

each paired with two different contexts to create 774 concept-property items rated 

through five perceptual modalities. They computed the degree a property is perceived 

exclusively through one sensory modality and provided modality exclusivity scores for 

the 387 words to a higher level of fidelity than previous studies. 

2.4.2 Summary 

In this section, we have discussed the recent developments in the literature in NLP and 

neuroscience within the context of the sensory modalities studies using NLP 

predicates.  By using the van Dantzig et al. (2011) data, better fidelity sensory scores 

that reflect a person's use of sensory words should be realised.  The concept of self 

through the multi-modal exchange of sensory information within the brain should also 

provide a better indication of authorship identification.    

2.5 Identification of Self 

Few authorship identification techniques attempt to identify self from the way a person 

thinks.   But linguistic characteristics can be drawn from a person’s writing style, and 

traces of their personality extracted to assist in their identification (for example Iqbal et 

al., 2013; Argamon et al., 2003; Argamon et al., 2007; Argamon et al., 2009; Zheng et al., 
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2006; Northoff et al., 2006).  By drawing on the cross-modal aspects of the brain, the 

unified consciousness, or self can be represented through the sensory modalities.  It can 

be further strengthened by incorporating personal pronouns that describe a person on 

a continuum and draws from a person's gender aspects.  And it can be further 

strengthened through a person's cognitive state by drawing on particles to characterise 

a person through their cognitive state.  By using word features that tap into the way a 

person thinks and to characterise a person’s writing quantitatively through the 

combination of referential activity, richness, gender, and sensory adjective scores, it 

should be possible to construct a multi-dimensional stylistic signature of a person that 

reflects self.  

While Bucholtz and Hall (2005) suggest that identity is the product rather than the 

source of linguistic and other semiotic practices and therefore is a social and cultural 

rather than primarily internal psychological phenomenon, we prefer to take it as an 

internal psychological phenomenon that blends the body and mind and call self.  We 

highlight this, drawing on Daly et al.’s(2018) links between body, personality and 

identity, where they note that while all illnesses can alter physical abilities and change 

relationships, it is the brain’s neurologic disorders such as Alzheimer’s disease and 

Parkinson’s disease that can uniquely alter fundamental personality traits that 

contribute to identity.  To help define identity in the context of this thesis, we center 

our idea of identity in the concept of embodied cognition. Embodied cognition is 

grounded in cognitive neuroscience and psychology, and research into it has risen 

exponentially over the last 25 years (Gjelsvik, Lovric, & Williams, 2018). Embodied 

cognition regards the human body and the environment as significant factors in the 

way we think and feel (Guell, Gabrieli, & Schmahmann, 2018). This is done by 

processing both emotional and modality-specific systems in the brain (Barsalou et al, 

2003; Niedenthal et al, 2005; Mahon, 2015; Tillman, & Louwerse, 2018), where both 

emotion and the sensory multi-modal specific processing of memory work together 

(Niedenthal, 2007; Dreyer & Pulvermüller, 2018), also known as semantic cognition 

(Ralph et al, 2017:2). Embedded cognition is grounded in the idea that the body is 

critical in idea generation and then acting on those ideas, or thoughts. When objects 

and events are viewed through the eyes of the self they typically become emotionally 

coloured, and thereby more intimately related to one’s sense of self (Northoff et al., 

2006: 441). 
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2.6 Extremist's Disorders 

Extremists and fundamentalists appear throughout history and exploit different 

religious and ideological beliefs to justify their violent behaviour (Simpson, 2014). 

Stottlemyre (2014) describes one aspect, lone wolf domestic terrorism as something that 

has been around since at least the nineteenth century. He references recent studies 

(Spaaij, 2012), that state the differences between lone wolf and group-affiliated 

terrorists are lone wolfs' motivations tend to be based on personal grievances, and 

political or religious ideologies, while the terrorist group's motives are almost 

exclusively ideologically based.  This view of the lone wolf is reflected in the view of 

the 'green-on-blue' insurgent (Bordin, 2011).  Lone wolf terrorism is often considered 

more dangerous than attacks conducted by terrorist groups. Because loners do not 

need to interact with or receive funding from a group, it is very difficult to track their 

movements or even their existence. It is difficult for law enforcement officials to detect 

when an individual becomes radicalized, whereas the ideology and general intent of 

terrorist groups are often widely publicized (Bakker & DeGraaf, 2010).  For all these 

reasons, lone wolf terrorists often do not end up under scrutiny from law enforcement 

officials until they have already conducted at least one attack says Stottlemyre (2014). 

Having discussed how to identify a person through self across features such as gender, 

Referential Activity, Richness, and the sensory aspects of adjectives, and highlighting 

the value of critical slowing down as a way to identify a tipping point, it is important 

to make a few brief points about research that indicates the mental state of extremists 

such as terrorists and lone wolves.  Of note, Canadian lone wolf, Martin Couture-

Rouleau, who killed a soldier outside Montreal, appeared to be depressed in a similar 

way to Justin Bourque, who shot and killed three police officers in Moncton, New 

Brunswick earlier the same year (Simpson, 2014).  There are links to depression, suicide 

and mental illnesses in the violent extremist. Mass murderer’s lives are plagued with 

psychosis, paranoia, depression, while lone wolves typically suffer from mental illness 

and tend to be suicidal (Capellan, 2015: p4).  With suicide terrorists, mental health 

problems, personal crises, coercion, fear of an approaching enemy, or hidden self-

destructive urges play a major role (Lankford, 2014).  Bobadilla (2014) suggests these 

self-destructive urges might be from vulnerable narcissism, and these timid and shy 

characteristics that hide the narcissism are related to avoidant personality disorder (see 

Meyer, Ajchenbrenner & Bowles (2005) and the comments about sensory sensitivity 

and high levels of depression in APD patients) that has been observed in would-be 
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suicide bombers.  As Lankford (2014: 351), so eloquently puts it: “By better 

understanding suicide terrorists, experts in the behavioural and brain sciences may be 

able to pioneer exciting new breakthroughs in security countermeasures and suicide 

prevention." 

It is known that lone wolf actors broadcast their intent, also known as seepage or 

signaling. While lone wolves may isolated from the physical world, they still 

communicate by the following means: threatening statements, letters, manifestos, 

and videotaped proclamations on the Internet that refer to a future attack (Hamm & 

Spaaij, 2017). Most lone actors are generally poor at maintaining operational security, 

and they leak their motivations and capabilities months or years before an attack 

(Schuurman et al., 2018), so that other people generally know about the offender's 

grievance, extremist ideology, and intent to engage in violence (Gill, Horgan, & 

Deckert, 2014). 

2.7 Classification Techniques 

There are many different techniques that can be used for authorship identification.  

Many involve counting the frequency of word types, looking at the length of sentences, 

or identifying commonly used keywords, or n-grams (Craig & Kinney, 2009; Vickers, 

2011, 2014).  Rudman (1998) identified over 1000 different possible features that could 

be used, but that a serious problem exists.  Rudman (2012) reviewed an additional 600 

studies with the same conclusion. 

In their review of stylometric writing techniques, Zheng et al. (2006), categorised 

authorship analysis studies into three major fields.  They defined authorship 

identification, or author attribution as a technique to determine the likelihood that a piece 

of writing is written by a particular author, by examining other works by that author.  

They defined authorship characterisation as a technique that summarised the 

characteristics of an author, such as gender, and cultural background to create a profile 

of the author. This second technique does not draw conclusions from the works of 

other works of known authors, but can be used to identify similar characteristics of an 

unknown author. This technique was used earlier by Kernot (2013).  Zheng et al.'s 

(2006), third technique is similarity detection, which compares multiple pieces of writing, 

to determine if a piece of writing was produced by a single author.  All three 

techniques have their place in determining authorship, but the focus of the program of 

research reported in this thesis is in characterising unknown authors. 
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After reviewing the techniques used in 23 previous studies across 270 lexical features, 

Zheng et al. (2006) tested four types of features across three popular, yet powerful, 

classification techniques: Support Vector Machines (SVM); decision trees; and feed-

forward networks, and determined that the SVM technique outperformed the others. 

However, over the past few years, big data and deep learning is becoming a very 

popular methodology, while the size of the dataset is relatively unimportant because 

samples are taken and processed using small sets of contiguous words to create penta-

grams and small image sets with few deep learning layers (Gaonkara et al., 2016; 

Hassan et al., 2017).  Making sense of big text to visualise spatial and temporal 

relationships data can be achieved through tools like Leximancer and Discursis where 

each speaker’s text segments can be visualised in a sequential way, gripping up each of 

their texts temporally, or using concept mapping to generate themes that can be 

visualised spatially across different authors (Angus, Rintel & Wiles, 2013; Stockwell et 

al., 2009). 

Stamatatos (2009), also surveyed modern techniques and emphasised Rudman's (1998) 

disappointment as to the state of authorship attribution after 300 publications over a 

period of 30 years, concluded that variations in text length, number of authors, and 

amount of training texts had an effect in determining the accuracy of results.  

Notwithstanding this, authorship attribution from text is admissible in court in some 

US jurisdictions because of the contributions from Abbasi and Chen (2008), Benjamin et 

al. (2014), and Chaski (2005; 2001). 

In reviewing Samuel Taylor Coleridge's 1816 work (edition of Coleridge 1984), Benatti 

and Tonra (2015) selected a supervised and an unsupervised approach to authorship 

identification. They experimented with two unsupervised methods (Cluster Analysis 

and Principal Component Analysis) and three supervised ones (Support Vector 

Machines, Nearest Shrunken Centroids and k-Nearest Neighbours), but in their paper, 

they limit their discussion to Cluster Analysis and Support Vector Machines, and 

highlight that neither the unsupervised nor supervised methods provided a probable 

attribution of authors.  

Stylometric analysis has been extensively used to determine the authorship, from the 

undocumented collaborations of the playwrights in the Elizabethan period (Segarra et 

al., 2017) to recent Prime Ministers (Garrard, 2009; Snowden, Griffiths & Neary, 1994) 

and famous novelists (Garrard et al., 2005; Le et al., 2011).However, there is dissension 

among leading scholars about an agreed method (Rudman, 1998; 2012; 2016; 
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Stamatatos, 2009), but the most successful and robust methods are based on low-level 

information such as character n-grams (a contiguous sequence of n items of text) or 

auxiliary words (function word, stop words such as articles and prepositions) 

frequencies (Stamatatos, 2009). The premier work in evaluating authorship includes 

MacDonald P. Jackson, Brian Vickers, and Hugh Craig and Arthur Kinney (Segarra et 

al., 2017). Jackson (2006) uses common low-frequency word phrases, repetition of 

phrases, collocation, and images to link word groups to other works. Vickers (2011) 

uses a tri-gram, or n-gram, approach instances where three consecutive words in a 

sentence closely match known authored works, while Hirch and Craig (2014) use 

function word frequency and other methods, that includes ones based on word 

probabilities and the Information Theoretic measure Jensen-Shannon divergence (JSD) 

and unsupervised graph partitioning clustering algorithms (Arefin et al., 2015).  For a 

detailed explanation of these techniques, we recommend Juola (2008).  The meaning-

extracting method (MEM) from the field of psychology to extract themes from 

commonly used adjectives and describe a person from their personality, or self is very 

different (Boyd & Pennebaker, 2015; Chung & Pennebaker, 2008). The methodology 

employed within this research thesis also focuses on personality as a driver and looks 

at why people say the things they do, their particular word choices, and how those 

aspects can create a unique stylistic fingerprint of a person. 

In discussing the different methods of authorship attribution, Juola (2008) concludes 

that the best choice of the feature set is strongly dependent upon the data to be 

analysed, and no method has yet emerged from any study as being particularly good 

within a narrow range of language, genre, size, etc.  Rudman (2012) revisited the 

problem, 13 years after his earlier critique, after well over a further 600 studies and 

concluded that there is still no consensus as to correct methodology or technique.  

Perhaps the state of continued flux in the determination of a small group of generic 

methods is unachievable because of the complexity of the problem. Rudman's view 

seems as consistent today as it was in Rudman (1998: 360): "One of the most important 

facts to keep in mind is that each authorship study is different. Not only are there the 

various types but each author, each genre, each language, each time period force 

variations on the experimental design and require unique expertise." 

However, five key points emerge from Juola's (2008: 319-324) recommendations that 

are critical in the determination of methods for this study. They are:  
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 Methods using a large number of features seem to outperform methods using a 

small number of features, provided that there is some method of weighting or 

sorting through the feature set. 

 Methods that do not use syntax in one form or another, either through the use 

of word n-grams or explicit syntactic coding tend to perform poorly.  

 Simple unsupervised analysis — most notably, principal component analysis 

(PCA) — will sometimes produce useful and easy-to-understand results. On the 

other hand, PCA and similar algorithms are often unable to uncover authorship 

structure that more powerful algorithms find. 

 The same vector space that categorizes text can be used to categorise individual 

words (or features); one can literally superimpose on the graphic separating A 

from B the words used, and the words near A are the ones that A uses and B 

does not. 

 The real heavyweights emerging from Juola’s Ad-hoc Authorship Attribution 

Competition (AAAC) are the same high-performing analysis methods that have 

been used elsewhere. These high-flyers include SVMs, linear discriminant 

analysis (LDA), and k-nearest neighbour in a suitably chosen space. 

2.8 Philosophical Theory 

This research thesis sits within the positivism area of philosophy. Epistemologically, 

we focus on discovering observable linguistic measures from a wide range of writing, 

including plays, poems, novels, suicide notes, manifestos, and a range of internet blog 

posts and newspaper articles. We use quantitative methods of analysis to develop 

hypotheses, which we test through a series of experiments.  Using a positivist approach 

and experimental design with meaningful data, we conduct experiments and test 

hypotheses.  We use a mathematical modelling approach to personality or self. 

In this research thesis, we use a multi-disciplinary approach and examine a person’s 

identity using personality through a complex systems lens.   We draw on a number of 

disciplines, including computer science, ecology, linguistics, mathematics, 

neuroscience, psychology, and statistics.  The overarching scientific discipline is 

neurolinguistics, a scientific discipline that studies the relationships between the 

human brain and language.  While it has been around in one form since the time of the 

Ancient Egyptians (Gross, 1987), in its current form, it is relatively new (Leikin, 2016), 
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and recent neurolinguistics studies have started to investigate the personality aspects 

of a human language to improve authorship profiling (see Pennebaker et al., 2015a; 

Litvinova et al., 2016; Skillicorn et al., 2017).  The ability to profile user personality, 

particularly by inferring stable differences in individual behaviour from writing, can be 

used to predict a person’s preferences and future behaviour with sufficient accuracy 

(Wright & Chin, 2014). 

2.9 Summary 

In this chapter, we have built on earlier research on gender pronouns and sensory-

based predicates and identified new key linguistic features from ecology, neuroscience, 

and neuropsychology and called it RPAS, where the Sensory (S) comprises of a 

multimodal classification of the five senses (VAHOG) to identify a person.  In the next 

chapter, data from the van Dantzig et al. (2011) study will be defined to construct 

sensory-based adjective references for scoring an author.  Data from the MRC 

Psycholinguistic database will be defined to construct referential activity predicate 

references.  The existing gender pronoun data from Kernot (2013) will be used to focus 

on the gender score as well as the Masculine / Feminine classification. We will discuss 

the research methodology that is used, and we focus on four specific aspects that have 

come about from this literature review to extract features that reflect self through 

RPAS.  We draw on the idea of Critical Slowing Down, and the recommendations 

highlighted above from Juola (2008) to answer the research question. 
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Chapter 3 
 

 

Methodology 
 

 
In this chapter, we address the Data and Algorithms Development phase.  We describe 

the approach undertaken to create the author signatures so that each individual 

author’s work can then be tested against a series of experiments.  We describe how the 

reference data list is created, and how the works are reduced into a Bag of Words 

(BOW).  We identify the Richness (R), Personal Pronouns (P), Referential Activity 

Power (A), and Sensory-based adjective (S) equations that will be used to create a 

signature of an author that describe self.  We describe how the research hypotheses are 

tested through a series of studies.   

3.1 The Approach 

Given that the general consensus (as discussed in 2.7 Classification Techniques) is that 

methods need to change to suit the data and the problem, the exact methods used vary 

with each study or experiment. 

However, we begin with an overview, and some aspects of the method will remain 

consistent.  The data, once identified, will be tokenised into a Bag of Words using the 

Stanford Parts of Speech tagger6 (Toutanova & Manning, 2000; Manning, 2011), and 

converted to lowercase.  The Stanford Parts of Speech tagger was chosen over other 

taggers because it uses the very popular English language Penn—Treebank phrase 

structure tags, is open source, but has other language options.  Some variation is likely 

to occur in the tagging of speech types, however this is unavoidable because there is no 

one single tagger. All punctuation and symbols including numbers will be removed 

before the data is aggregated into word lists.  The identified features that map to RPAS 

will be processed using the reference lists identified below, and each word category 

will be further processed using the equations below, to create a signature of each 

author's work that reflects self. 

As highlighted in Juola (2008), a vector space model that categorizes text is of value, as 

is SVM, linear discriminant analysis (LDA), and k-nearest neighbour.  Therefore, where 

                                                 
6 The Stanford Part-Of-Speech Tagger is available from the Stanford Natural Language Processing Group, 
Stanford University. Available at: http://nlp.stanford.edu/software/tagger.shtml 
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Phase 1: Data & Algorithm Development 

Generate 

signatures 

Generate reference lists 

Develop algorithms 

Select data 
Reduce 

data 

Run 

algorithms 

                                  RPAS 

Elizabethan Playwrights Study 

Longitudinal Study 

Lone Wolf Study 

T

E

S

T 
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Phase 2: 

Experiments 

possible a combination of one or more techniques will be used to test the author's 

signatures for each experiment.  We will draw on the recommended clustering 

approach in Burns and Burns (2012), and conduct Two Stage Hierarechical 

(Agglomerative) Clustering (HAC) using Ward’s Method and Squared Euclidean 

Distance.  We will use a vector space model that maps cosine and minmax similarity 

detection techniques.  We will use the intruder method (Koppel & Winter, 2014) and 

use k-nearest neighbour techniques through the R package seriation (Buchta, Hornik & 

Hahsler, 2008) that appear in some of the seriation methods (TSP- Travelling 

Salesperson, Chen – Rank-two ellipse seriation, ARSA – Minimise Anti-Robinson 

events using simulated annealing, HC – Hierarchical clustering, and OLO – 

Hierarchical clustering with optimal leaf ordering). 

Figure 3 highlights the general method to be applied, and Table 2 highlights the aims 

and the hypothesis to be tested for each study. Table 3 then summarises the techniques 

used prior to a detailed description of the equations and techniques. 

Figure 3: Methodology 
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3.2 Research Hypothesis Experiments 

In this section, we link the research hypotheses to the series of experiments.  There 

are three planned parts of experiments designed to answer the research question by 

testing the hypotheses. They are, Chapter 4 – 6, the authorship identification of the 

Elizabethan playwrights; Chapters 7-9, changes in an author’s signature over time, 

using Shakespeare, Iris Murdoch and P.D. James; and Chapter 10, lone wolf 

signature classification. Across the three parts, seven studies will be conducted to 

test the four hypotheses (stated below in Table 2) and answer the research 

question.  

Table 2: Chapter Experiments, Aims, and hypotheses 

Chapter Study Aim Test Hypothesis 

4 – Shakespeare, 
Marlowe, and 
Cary 1 

Identifying features to identify authors 
(known authorship) from RPAS 

H1 

5 – Edward III 2 Testing RPAS on an unknown author. H1 

6 – Passionate 
Pilgrim 3 

Testing RPAS on a set of multiple 
unknown authors. H1 

7 –The Sonnets 4 

Identifying features of a single author to 
identify characteristics in small texts that 

change over time from RPAS. H2 

8 – Iris Murdoch 
and P.D. James 5 

Identifying features of two authors to 
identify characteristics that change over 
time from RPAS when one has proximal 

events and life stressors that mimic a 
potential terrorist. H2 

9 – Iris Murdoch 
and P.D. James 6 

Identifying characteristics that change 
over time using tipping point techniques 

that visualises the Critical Slowing 
Down phenomena from RPAS prior to a 

life changing event. H3 

10 – Lone Wolf 7 

Identifying different RPAS features of 
lone wolf suicide attackers that are 
different from normal or depressed 

writers. H4 

 

In Table 2, the texts were chosen specifically to start off testing some simple tests and 

have them build in complexity.  Shakespeare and Marlowe were chosen because of the 

well-researched author identity claims that could be validated.  We include Elizabeth 

Cary to add an independent element of gender to the study. The Edward III and the 

Passionate Pilgrim also add a level of increasing complexity to the testing using 

multiple known and unknown authors.  The Sonnets were chosen to transition the 

approach from the Elizabethan period when looking at change in writing to 
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contemporary writing.  Murdoch and James have been well researched as longitudinal 

studies of linguistic change in individuals that have died from normal aging and 

mental disease. Lone wolves are a current problem that frames the research clearly in 

the national security space which is fitting for the national security college but also it is 

underpinned by the concepts from the previous studies. 

Table 3: A summary of all the techniques employed 

Study Technique 
Shakespeare’s Sotto Voce 

1 POS Analysis of Shakespeare data 
1 Pearson’s Product Moment Correlation, r, analysis 
1 PtoR, AtoR, and StoR plots  
1 Word Accumulation Curves (Richness testing alternative) 
1 Hierarchical Clustering Analysis (HCA) 
1 Principal Component Analysis (PCA) 
1 Stepwise Linear Discriminant Analysis (LDA) 
1 Partial synthetic data approach to testing results 

Kyd and Shakespeare’s Edward III 
2 PtoR, AtoR, and StoR plots  
2 Vector Space Method (VSM) 
2 Imposters Method 
2 Seriation – with noise 
Study Technique 

Shakespeare’s Passionate Pilgrim 
3 PtoR, AtoR, and StoR plots  
3 Principal Component Analysis (PCA) 
3 Linear Discriminant Analysis (LDA) 
3 Vector Space Method (VSM) 
3 Seriation – with noise 

Shakespeare’s Dark Lady 
4 Seriation – with noise 

Murdoch and James – Depression and Apathy` 
5 POS Analysis of Murdoch and James 
5 Mann-Whitney U tests on Richness 
5 Content to Function Word ratios 
5 Mann-Whitney U-Tests on Sensory words (S) 
5 Principal Component Analysis (PCA) on VAHOG 
5 Content word comparisons in different time periods (10-12 years) 
5 Function word comparisons in different time periods (10-12 

years) 
Murdoch and James - Impacts of aging and life events on identity. 

6 Richness (R) comparison of Murdoch and James. 
6 Personal Pronouns (P) comparison of Murdoch and James. 
6 Referential Activity power (A) comparison of Murdoch and James. 
6 Sensory Adjectives (S) comparison of Murdoch and James 
6 CSD - 1-lag autocorrelation (AR1) on Sensory Adjectives (S) 
 Continued next page 
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Study Technique 
Murdoch and James - Impacts of aging and life events on identity (cont.) 

6 CSD - Fisher-Pearson coefficient of skewness (G1) Sensory 
Adjectives (S) 

6 Principal Component Analysis (PCA) 
6 Stepwise Linear Discriminant Analysis (LDA) 

Suicide Attackers 
7 LIWC sentiment analysis Mann-Whitney U test to compare normal to 

Attackers 
7 Stepwise Multiple Regression Analysis on RPAV 
7 5-fold cross-validation 
7 Mann-Whitney U tests on 7 sentiment tags 
7 Comparison of Depression and terror suicidality 
 

3.3 Reference Lists 

Drawing on the work on the existing work on gender, and the new work on the 

Referential Activity and sensory adjectives, three reference lists underpin the equations 

in Section 3.4.  The reference lists for each of the three feature sets are included in the 

Appendix A.  For a brief explanation, a summary of the concepts is described below: 

3.3.1 Gender 

The gender reference list began from the Argamon et al. (2003) study.  In it, the 

different pronoun types were listed by their assumed gender and are labelled M (More 

likely used by a male gender) or F (More likely used by a female gender) based on the 

statistical results.  From the results of earlier gender testing, 27 pronouns were 

identified (Kernot, 2016) and highlighted the results of the accuracy by words from the 

earlier experiment. 

3.3.2 Referential Activity Power. 

The Medical Research Council (MRC) Psycholinguistic Database is a computerized 

database of psycholinguistic information with 98,538 words (Colheart, 1981) and it has 

a number of key linguistic word properties, including scores for imageability and 

concreteness.  Only particles (articles, pronouns, conjunctives, and prepositions), 

words that reflect self, were extracted from the MRC Psycholinguistic database.  

Within the database, each word had a score out of 700 for both imageability and 

concreteness.  The higher the score, the more the word held imagery and concrete 

aspects from Referential Activity. All words that scored zero in either category were 

removed, and this left a word list of 117 highly concrete and imagery words. The scores 
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from each word category were divided by 700 to convert them to a percentage.  Both 

categories were then added together and averaged.  For example, only a word that 

scored 700 in both imageability and concreteness would obtain a score of 1.  In the case 

of the words in the list, they ranged from 0.27 to 0.85.  This list appears in Table 33 of 

Appendix A.  Referential Activity examples would include: Articles – ‘a’, ‘an’, ‘the’; 

Prepositions – ‘about’, ‘after’, ‘to’; Conjunctives – ‘although’, ‘else’, ‘once’; Pronouns – 

‘all’, ‘every’, and ‘our’. 

3.3.3 Sensory-based Adjectives 

This list drew on the work of van Dantzig et al. (2011), and their collected modality 

ratings for a set of 387 properties, each paired with two different concepts to create 774 

concept-property items and rated through five perceptual modalities. They computed 

the degree a property is perceived exclusively through one sensory modality and 

provided modality exclusivity scores for the 387 words.  In the list, each word (sensory 

adjective) has two entries.  If the word is perceived exclusively in one sensory 

modality, then both entries will be the same modality.  If this is not the case, then the 

word is bi-modal, and each of the two highlighted modalities assigned to it will be 

different. The words in the list ranged from 0.1 to 0.98.  This list appears in Table 34  of 

Appendix A. Sensory Adjective examples would include: Visual – ‘abrasive’, 

‘big’, ‘immense’; Auditory – ‘banging’, ‘barking’, ‘plain’; Haptic – ‘abrasive’, 

‘immense’, ‘lukewarm’; Olfactory – ‘aromatic’, ‘garlicky’, ‘lemony’; Gustatory – 

‘creamy’, ‘garlicky’, and ‘tender’. 

3.4 Equations 

In this section, we identify the equations used to measure the RPAS and the CSD 

dynamical property, and they are described in detail below. 

3.4.1 The RPAS method 

In this section, Richness (R), Personal Pronouns, or internal gender (P), Referential 

Activity Power (A), and the Sensory-based Adjectives (S), also known as RPAS are 

described in detail. We employ a new methodology that adopts a multi-faceted 

approach to text analysis and reveals details about a person's personality; their sense of 

self, from subtle characteristics hidden in their writing style (Argamon et al., 2009; Iqbal 

et al., 2013; Northoff et al., 2006).  RPAS draws on biomarkers for creativity and known 

psychosis (Rosenstein et al., 2015; Zabelina et al., 2015) to identify characteristics within 
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an author’s writing.  RPAS comprises: Richness (R) (Menhinick, 1964; Tweedie, & 

Baayen, 1998), the number of unique words used by an author is linked to a person’s 

education level and also their age, where it can grow up to about 65 years of age 

(Hartshorne & Germine, 2015); Personal Pronouns (P) (Argamon et al., 2003; Kernot, 

2016; Pennebaker, 2011; Pennebaker, Mehl, & Niederhoffer, 2003), the pronouns used, 

closely aligned to gender and self; Referential Activity Power (A) (Bucci, 2002; Bucci & 

Maskit, 2004), based on highly concrete and imagability function words, or word 

particles, the concept has been used in clinical depression studies, and we draw on the 

Medical Research Council Psycholinguistic Database of English words; and Sensory 

(S) (Kernot, 2013; Lynott, & Connell, 2009; Miller, 1995; van Dantzig et al., 2011; 

Fernandino et al., 2015), five sensory measures (V-Visual A-Auditory H – Haptic O – 

Olfactory G - Gustatory) corresponding to the use of the senses. 

3.4.1.1 Richness (R) 

The Richness equation is a measure of a person’s ability to use a vocabulary of a 

determined size, and for two documents of the same length, the one with more 

different (unique) words – a larger vocabulary – has greater richness. While the values 

of lexical richness change for different measures used because of text length, it is 

necessary to correct for text length (Tweedie & Baayen, 1998) ), we do this with ratios 

(Singhal, Buckley & Mitra,1996; Kessler, Numberg & Schütze, 1997) because we are 

effectively examining the word density within each work and comparing it to the 

others (Gotelli & Colwell, 2011). Any global richness coefficient can be ignored in this 

case. The formula is given as:  

Equation 1: Richness 

Richness (R) =
𝑤

𝑁
 

                             where 𝑤 = number of unique words in the document,  and 
     𝑁 = total document word count. 

 

There are theoretical limits to this equation, and the size of documents must be 

matched to avoid artefacts. Eventually, the value will reach an asymptote as no new 

words are found.  Near that point, the larger the document size, the smaller the 

Richness score will be (0 𝑎𝑠 𝑁 → ∞). 

The type-token ratio (TTR) is the ratio of vocabulary size, to the text size, in log form 

(Tanaka-Ishii & Aihara, 2015) and it can be considered a similar, but an inverted 
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variant of Menhinick’s (1964) species diversity equation (Equation 1) that measures 

vocabulary richness.  TTR is one of the oldest and easiest ways of measuring richness 

but it is dependent on text size, and while many attempts to reduce this problem have 

been proposed no one has been fully successful (Kubát, & Milička, 2013). 

While TTR and its inverted reciprocal, the mean word frequency is affected by text 

length size, other alternate measures such as Herdan’s C, Simpson’s D, Honre’s H, 

Janenkov and Nesitoj’s LN, Yule’s K, Guiraud’s R, Sichel’s S, Dugast’s U, Herdan’s V, 

Brunet’s W, and Orlov’s Z were also found to be impacted by text length, the exception 

was Yule’s K and Orlov’s Z but given their within-text variability, they should be used 

with care (Tweedie & Baayen, 1998). 

In 1944, Yule introduced his author identification measure, Yule’s K to differentiate 

authors, and found that it converges to a value for a certain amount of text and remains 

invariant for any larger size, and its value could be considered as a text characteristic 

(Tanaka-Ishii & Aihara, 2015).  Linguist George Zipf popularised an observation made 

by earlier scientists, that given a corpus of natural language utterances, word 

frequency is inversely proportional to its rank in the frequency table, so that the most 

frequent word occurs approximately twice as much as the next word, and it three times 

as much as the next, and so on in a power law relationship (Powers, 1998).  In 1983, 

Orlov and Chitashvili considered the long tails of vocabulary distributions and 

deduced a parameter, Z, for which Zipf’s law does not hold, but Orlov’s Z is an 

extension of Zipf’s law and shows that the expected value of the vocabulary size for a 

given text can be mathematically determined using a sole parameter, Z (Kimura & 

Tanaka-Ishii, 2014). 

Kimura and Tanaka-Ishii (2014) examined Tweedie & Baayen’s (1998) report that 

Yule’s K and Orlov’s Z were convergent across a range of different languages, and 

found that Yule’s K using both a small 170, 000 word English corpora and a large 

18,000,000 corpora was convergent at 100,000, but that Orlov’s Z was not convergent 

across the same data.  In a separate report, Tanaka-Ishii and Aihara (2015) retested 

Yule’s K using smaller length documents and found that at a document size of 10,000 

or greater the index was convergent, but that smaller texts did not possess the 

discriminatory power of author identification for which Yule had hoped. 

Wimmer and Altman (1999) also reviewed Tweedie and Baayen (1998) and highlighted 

there were many different technique index values and different behaviours of their 
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asymptotes (the point at which the number of new words introduced is no longer 

effectively increasing). They stressed there was a need to understand the origin of each 

index and its underlying behaviour. 

In a study of Dutch first language and Dutch second language children using TTR, 

Vermeer (2000) tested it against two alternate approaches, Guiraud’s R and the Uber 

index. The index of Guiraud (1960) is similar to TTR, but it uses the square root of N 

(the total number of words in the document). While Dugast’s (1978) Uber Index is a log 

function variant of the TTR. Vermeer (2000) suggested that by keeping the acquired 

word count below a total of 3000 that the number of types (which are a part of TTR) 

and the Guiraud and Uber indexes seem to do well.  They also noted the impact of a 

person learning function words has an impact on the different types of lexical richness 

measures. 

Building on Vermeer’s (2000) approach, Van Gijsel, Speelman, and Geeraerts (2005) 

suggested that an alternative for the simple TTR is the Mean Segmental TTR (MSTTR), 

and by using text sections of equal length, richness scores worked well from 750 up to 

1350 tokens. 

In a later study of 4175 tweets from 14 Twitter users’ posts in English and Spanish, 

Juloa and Mikros (2016) showed that there is a very high correlation between ordinary 

stylistic variables measured on the two languages use using word length, which is 

often viewed as a proxy for vocabulary richness and complexity, the traditional type 

token ratio (TTR), hapax legomena (words that appeared only once), Yules K, and a 

collection of vocabulary richness measures from Kubat, Matlach, and Cech’s (2014) 

QUITA software package.  They suggest that TTR and Yule’s K were different, but 

generally most of the correlation between the various measures was extremely high, 

and they appeared to be generally measuring very similar things in the data. 

In summary, for text sizes greater than 10, 000 words that Yule’s K, or better still, 

Rényi’s higher-order entropy (this is a generalisation of the Shannon entropy 

(Shannon, 1948), an effective measure of uncertainty in the field of information theory) 

perform well and are independent of text size (Kimura & Tanaka-Ishii, 2014; Tanaka-

Ishii & Aihara, 2015).  For smaller texts the size of a tweet, or up to 3,000 words, the 

well-used type-token ratio (TTR) is sufficient when compared to many alternative 

techniques as they all suffer from increasing file size (Juloa & Mikros, 2016; Van Gijsel, 

Speelman & Geeraerts, 2005; Vermeer’s, 2000).  However, using individual files that are 
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identical in size, or very similar, up to 10,000 words will also reduce the error induced 

by the TTR (from Zipf power laws).  The biggest criticism of TTR is that it should not 

be used on its own, rather it should be incorporated into a larger suite of techniques 

(Kubát & Milička, 2013; Vermeer, 2000), and we avoid this criticism by using a 

multivariate technique. 

3.4.1.2 Personal Pronouns (P) 

A person’s personal pronouns use (Equation 2 or see Kernot, 2013 for further detail) 

provides a score that can identify an author’s unique style on a continuum between 0 

and 1 and can differentiate between authors of the same or different sex. The formula 

draws from the binary logistic regression model, also known as a logit model, where it 

attempts to classify or predict a discrete, categorical variable (in this case masculine M 

or feminine F writing) from predictor variables (here using the number of personal 

pronouns used in a person’s writing) and it classifies it as 0 (feminine) or 1 (masculine).  

In this case, we draw on two existing studies on gender (Argamon et al., 2003; Kernot, 

2013). 

The Argamon et al. (2003) study analysed 25 million words in 604 documents using a 

range of fiction and non-fiction articles (natural science, applied science, social science, 

world affairs, commerce, arts, belief/thought, and leisure) from the British National 

Corpus to assign a dominant gender across 29 statistically significant personal 

pronouns. These results were further distilled (Kernot, 2013; Kernot, 2016) and 

statistically significant gender identities determined to 90% accuracy using three 

personal pronouns from a collection of 25 thousand words, using articles from the 

internet (news reports, web articles, personal blog posts, book extracts, and an oration). 

The equation based on the three best predictors (the pronouns my, her, its) of a 

person’s socially constructed gender, how they present themselves outwardly 

independent of their actual physical sex (Cheng et al., 2011) is used to classify a 

person’s writing.  

Gender can be expressed as a Masculine (M) or Feminine (F) style.  Where the Personal 

pronouns score is greater than or equal to 0.5, we would allocate an M categorical 

value, but in Kernot (2016) we also use the actual score between 0 and 1 prior to the 

categorical logit classification of M or F. The Personal pronouns score (Kernot, 2013) 

can be determined by: 
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Equation 2: Personal Pronouns 

personal pronouns (P) =  
exp (−0.93 − 451.86𝛼 + 322.47𝛽 + 129.83𝛾)

1 + exp (−0.93 − 451.86𝛼 + 322.47𝛽 + 129.83𝛾)
 

where masculine style (P) ≥ 0.5, feminine style (P) < 0.5; 

𝛼='My', 𝛽='Her', 𝑎𝑛𝑑 𝛾='Its'. 
 

Within this thesis, there are a number of references to the gender aspects of Equation 2, 

where G is either M or F referring to either Masculine (M) or Feminine (F) internal 

writing style. The Personal Pronouns (P) score is a number between 0-1.  

3.4.1.3 Referential Activity Power (A) 

Grounded in ‘Critical Realism’, an approach that asserts the independence of an 

external world whilst accepting that knowledge of that world is socially constructed 

and transient (Bosward, 2017), the American philosopher, Roy Wood Sellers (1959), 

provided a linguistic framework guided by the brain's sensory referential sensations 

and that concept was picked up for clinical studies into depression (Bucci & Freedman, 

1981; Bucci, 1982; Bucci, 1984; Bucci & Millar, 1993; Bucci, Maskit & Murphy, 2015; 

Murphy, Maskit & Bucci, 2015).  

Clinical psychologists use the psycholinguistic variable, Referential Activity (RA) to 

score a person’s level of depression from their speech across the following four 

categories: properties of actual things or events or to anything that is experienced as a 

sensation or feeling sensory characteristics of language (Concreteness); the vividness 

and effectiveness of language in reflecting and capturing imagery or emotional 

experience, in any sense modality (Imagery); the quality of detail, e.g. degrees of 

articulation (Specificity); and, the organisation and focus (Clarity) (Bucci, & 

Kabasakalian-McKay, 2004; Murphy, Maskit & Bucci, 2015). While the RA measure 

assesses the degree to which a speaker or writer is able to translate experiences into 

words, it can map a continuum of a cognitive state from a healthy individual to one 

who has is diagnosed with depression (Bucci & Freedman, 1981). 

Pennebaker et al. (2003) suggest that Referential Activity can be measured by a person’s 

use of a group of function words known as particles, and include pronouns, articles, 

prepositions, conjunctives, and auxiliary verbs, and they can also serve as markers of 

emotional state and social identity. 
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We focus on the sensory aspects of Bucci’s concepts of Referential Activity and use two 

of the four categories; the sensory characteristics of language (Concreteness) and the 

effectiveness of language to capture imagery and emotional experience in any sensory 

modality (Imagery). We also draw on Pennebaker et al.’s (2003) idea that particles can 

reflect the sense of a person’s self, and using the Medical Research Council (MRC) 

Psycholinguistic Database (Coltheart, 1981), we select the particles (articles, 

conjunctives, prepositions and pronouns) that have concreteness and imageability 

scores greater than zero.  

These 117 highly concrete and imageability function word scores from the MRC 

Psycholinguistic Database (Coltheart, 1981) were averaged for each word and these 

scores, 𝜀𝑖 can be found in the RA column of Table 33 of Appendix A. From above, we 

create four referential categories, one each for articles, conjunctives, prepositions, and 

pronouns.  

For a given document, we let the number of words in each referential category, 

𝑖, be 𝜔𝑖 and 𝜀𝑖, the weight for each category then the RA Power score, Ak (Equation 3) 

can be determined by: 

Equation 3: Referential Activity Power 

Ak = ∑
𝜔𝑖

2𝜀𝑖

𝐷

𝑁𝑘

𝑖=1
   

where k = 1-4, Nk = 117, and D is the number of words in the document. 

In the process of calculating the four elements of RA Power (A, C, P, PRON), the data is 

normalized based on the document  or chunk size so that the ratio of Richness to 

Referential Activity Power becomes independent of document size. This normalised 

value is multiplied by its particular word weight ( 𝜀𝑖 ) and then squared by the word 

count frequency to emphasize the variance in the data.  The four different RA Power 

elements are then summed to provide an overall score, (A). 

3.4.1.4 Sensory Adjectives (S) 

Many Sensory (S) words are processed by the brain as sight/feel and smell/taste word 

categories (Lynott, & Connell, 2009 For more information see Miller, 1995; Kernot, 

2013; Fernandino et al., 2015).  We use adjectives over verbs or nouns because they 

appear more frequently in text and their context is not necessary.  We draw on a study 

of 387 adjectives (van Dantzig et al., 2011) that have been analysed in two different 
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contexts to assess the dominant visual (V), auditory (A), haptic (H), olfactory (O), or 

gustatory (G) sensory modality the word responds to.  The study provides a list of 774 

words because they were each tested in the two most dominant modalities.  These 774 

sensory words are allocated an exclusivity score, ( 𝜑𝑖 ) and can be found in the 

Exclusivity column of Table 34 of Appendix A that reflects the brain’s Representational 

System. In this thesis, we test the concept that these values capture the sensory gating 

biomarker characteristics of a person which in turn can be used to construct a unique 

signature of a person’s sensory cortex functions. 

There are five sensory categories, one each for V, A, H, O, G.  If we let the number of 

words in each sensory category, 𝑖, be 𝑤𝑖 and 𝜗𝑖, the weight, or exclusivity score for each 

category then the Sensory Adjectives, Sk (Equation 4) can be determined by: 

Equation 4: Sensory Adjectives 

Sk 1-5 = ∑
𝑤𝑖𝜗𝑖

𝐷

𝑁𝑘

𝑖=1
 

where k = 1-5, Nk = 774, and D is the number of words in the document. 

In the process of calculating the five elements of the Sensory Adjectives (V, A, H, O, G), 

the data is normalized based on the document  or chunk size so that the ratio of 

Richness to Sensory Adjectives becomes independent of document size. This 

normalised value is multiplied by its particular word weight ( 𝜗𝑖 ) but in this case, it is 

not squared by the word count frequency because there were almost seven times the 

quantity of these more frequently occurring prenominal adjectives to emphasize the 

variance in the data.  The five different Sensory Adjective elements are then summed to 

provide an overall score, (S). 

3.4.2 The CSD method 

Early mentions of Critical Slowing Down (CSD) in the late 60’s was attributed to the 

non-linear effects in Ising spin models of ferromagnets approaching the Curie point 

(temperature), where sharp changes in magnetic properties occur (Matsudaira, 1967).  

This abrupt, rapid change of state can be seen in complex systems across a variety of 

disciplines (ecology, climatology, finance, and medicine) as tipping-points Slater 

(2013). Ecosystems and biological systems are known to be inherently complex and to 

exhibit nonlinear dynamics, and changing system dynamics have been suggested as 

early warning signals (EWS) for tipping points (Scheffer, 2010; Drake & Griffen, 2010; 

Guttal & Jayaprakash, 2008; Barnett et al., 2013; Trefois et al., 2015).   
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While the CSD phenomenon has been observed on a number of other systems, it was 

originally defined in terms of the recovery time from a perturbation, and it can’t easily 

be measured from the text.  However, the definition has been broadened, and in a 

recent comparative study of four emotions in healthy and depressed people, van de 

Leemput et al. (2014) discovered that individuals go through a major transition in 

moods that are separated by tipping points.  Early warning signals of such tipping-

points can be detected via critical slowing down where statistical metrics such as 

variance, 1-lag autocorrelation, and skewness increase near the tipping point (Drake & 

Griffen, 2010; Slater, 2013).   

Here, we ignore variance, because in ecosystems, Dakos et al. (2012) state that CSD 

variance can be systematically underestimated due to the prevalence of low 

frequencies close to the tipping point (it might increase or decrease, so it is difficult to 

test for – see Section 2.3.3), but that autocorrelation always increases toward critical 

transitions. Variance is also subject to bin size and initial false positives (Slater, 2013). 

But in Dakos et al. (2008) the authors calculate the number of samples from the first one 

to the known CSD transition and apply a sliding window which is half that size and 

suggest that the window size can be varied and an appropriate one selected.  This 

approach works when the known tipping point exists within the data.  However, if this 

is not known, an alternate approach must be considered to eliminate the idea that we 

know where any event might be prior to testing.  Therefore, we modify the approach 

taken by Dakos et al. (2008) and Slater (2013), and rather than have a sliding window of 

a fixed size, we adopt a window-fixed perspective (Foster, Bevis & Businger, 2005) 

where we fix the window from the first observation so that the window size increases 

with each iteration.  This alternative technique has its own problems because of the 

increasing size of the data.  At some point, it would eventually impact the results, but 

after testing with a random sample of 50 data points, we suggest having a sample size 

of between 19-26 (the size of our Murdoch and James data) would reasonably 

represents the data before any flattening would occur. 

The Critical Slowing Down variables are modified from Dakos et al. (2008) and Slater 

(2013).  For a given set of measurements, Y1, Y2, …, YN (in this case a single component 

of the RPAS stylometric signature of an author over a number of their works) of each at 

time X1, X2, …, XN, then the 1-lag autocorrelation (AR1) (see Equation 5)  can be defined 

as follows: 
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Equation 5:  Modified Autocorrelation at lag 1 

𝐴𝑅1 =
∑ (𝑌𝑖 − �̅�)(𝑌𝑖+1 − �̅�)𝑁−𝑘

𝑖−1

∑ (𝑎𝑌𝑖 − �̅�)2𝑁
𝑖−1

 

 

where the first Yi, in this case, remains fixed at point 1. 

For a given set of measurements, Y1, Y2, …, YN (in this case a single component of the 

RPAS stylometric signature of an author over a number of their works), then the 

Fisher-Pearson coefficient of skewness (G1) (see Equation 6) can be defined as follows: 

Equation 6: Modified Coefficient of Skewness 

 
 

where 𝑌  is the mean, s is the standard deviation of the individual RPAS element used 

over the documents selected, N is the number of data points, and Yi in this case 

remains fixed at point 1. 

3.5 Seriation 

Seriation is used a number of times throughout this research thesis to support the 

findings of other techniques. According to Liiv (2010:71) “Seriation is an exploratory 

combinatorial data analysis technique to reorder objects into a sequence along a one-

dimensional continuum so that it best reveals regularity and patterning among the 

whole series.”  Seriation is the process of placing a linear ordering on a set of N multi-

dimensional quantities. The total number of possible orderings is N! (factorial). This 

grows extremely quickly with N. 5! = 120, 10! = 3.6 million and 20! = 2.4x1018, or 2.4 

billion billion (or quintillion). Thus, even for quite small N, we can't calculate the 

shortest path by calculating all possible paths. We need a heuristic or approximation. 

Inevitably any given approximation will work better with some data than others. Thus, 

for robust estimation of the shortest path, it might be necessary to try a range of 

different estimators and look for consistency among them. 

We use the free software environment for statistical computing and graphics, R, and its 

seriation package (Buchta, Hornik, & Hahsler, 2008), and provide the seriation package 

with the matrix consisting of the nine RPAS values for each of the datasets. Using the 

Euclidean distance option, seriation attempts to minimise the Hamiltonian path length 

(the Hamiltonian path on a graph is a path which visits all the nodes just once). We 
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evaluated the results of the six Hamiltonian path-length calculations produced by the 

seriation package (TSP: Travelling Salesperson, Chen: Rank two ellipse Seriation, ARSA: 

Anti-Robinson Simulated Annealing, HC: Hierarchical Clustering, GW: Hierarchical 

Clustering (Gruvaeus Wainer heuristic), and OLO: Hierarchical Clustering (Optimal Leaf 

Ordering)).  

Path length calculations are complex as Figure 4 shows.  If we consider each circle as a 

single dimensional representation of the multi-dimensional RPAS signature, each of 

these five documents (A-E) have a different score, and therefore the path between each 

of them varies.  The goal of the Travelling Salesperson (TSP) approach is to travel 

through each document only once, and the best order of the documents is achieved 

through the smallest path distance. In this case, this is done for each of the RPAS 

elements further compounding the complexity. 

Figure 4: Multi path problem 

 

While seriation gives a one-dimensional continuum, Dendrogram branch and leaf 

visualization are also provided, and clusters can be separated by their Hamiltonian 

path distances (Earle, & Hurley, 2015). We select the technique that provides the 

shortest Hamiltonian path and introduce noise into the matrix to examine the strength 

of the connected groups by using the jitter function in R. The function adds random 

noise to the vector by drawing samples from the uniform distribution of the original 

data (Stahel & Maechler, 2011). 

3.6 LIWC 

The Linguistic Inquiry and Word Count (LIWC) text analysis program has been shown 

to be an effective tool to measure positive and negative emotion in writing (Andrei, 

2014; Kahn et al., 2007).  The emotional expression can indicate how people are 

experiencing the world (Tausczik & Pennebaker, 2010). Using LIWC2015, seven 
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linguistic emotional categories are extracted.  They are emotional tone (tone), affective 

process (affect), positive emotion (posemo), negative emotion (negemo), anxiety (anx), 

anger, and sadness (sad). According to Pennebaker et al. (2015a), emotional tone is 

scored out of 100, and a high number is associated with a more positive, upbeat style, 

while a low number reveals greater anxiety, sadness, or hostility and a number around 

50 suggests either a lack of emotionality or different levels of ambivalence The 

remaining six emotional categories are: Affective processes (words describing feelings) 

-1393 words such as affect, happy, and cried, and its sub categories: Positive emotion - 

620 words such as love, nice, sweet; Negative emotion - 744 words, such as hurt, ugly, 

nasty; Anxiety - 116 words, such as worried, fearful; Anger - 230 words such as hate, 

kill, annoyed; Sadness - 136 words such as crying, grief, sad. 

3.7 Mann-Whitney U Testing 

We use the Mann-Whitney U-Test to compare data because it is a non-parametric 

independent group test to test the differences between two independent groups.  This 

test is ideal for unequal group sizes that are small, have dissimilar variances, and a 

distribution that is not normal (Burns & Burns, 2012).  SPSS provides three variables, U, 

W, and Z, but they are not overly useful. We adopt the common practice of ignoring 

the alternative Wilcoxon W and the Z scores given the small sample size and focus 

predominantly on the Asymptotic Significance (two-tailed) p-values whose rankings 

are generally reflected in the Mann-Whitney U scores. 

The test statistic for the Mann-Whitney U Test is denoted U and is the smaller of U1 

and U2, (see Equation 7) and is defined below: 

Equation 7: Mann-Whitney U Testing 

𝑈1 =  𝑛1𝑛2 + 𝑥
𝑛1( 𝑛1 + 1)

2
− 𝑅1 

 

𝑈2 =  𝑛1𝑛2 + 𝑥
𝑛2( 𝑛2 + 1)

2
− 𝑅2 

 
where R1 = sum of the ranks for group 1 and R2 = sum of the ranks for group 2.  

3.8 Step-wise Multiple Regression Analysis 

In many multivariate situations, scientists are presented with more variables than they 

would like, and stepwise multiple regression discards any variables that add little or 

nothing to the accuracy of the correlation with the dependent variable (Beale, Kendall, 
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& Mann, 1967). The technique remains an effective predictive tool (Abdullah, & Rahim, 

2016; Nazif et al., 2016; Pontone et al., 2016; Raghunath et al., 2016).  The order of entry 

for predictors is solely a statistical decision, and here the backward entry method is 

adopted using SPSS (Burns & Burns, 2012). This test begins with all the predictors, in 

this case RPAS (including the five sensory variables V, A, H, O, and G) and removes 

each variable, one at a time in an iterative process and each time it accepts the most 

statistically significant variable that contributes to the data variability until a point 

where only the variables that contribute significantly are used to classify the data. 

3.9 k-fold Cross-validation 

In k-fold cross-validation, sometimes called rotation estimation, the dataset is 

randomly split into k mutually exclusive subsets of an approximately equal size known 

as folds (Kohavi, 1995). In this case, we use the technique with regression analysis. By 

setting k to 5, 60 samples can be split into five groups containing 12 randomly assigned 

samples.  Conducting multiple regression analysis five times using RPAV as the 

independent variables, a model can be trained each time with a different fold left out 

so that there are five sets of unstandardized regression coefficients.  The regression 

scores are calculated for the five folds, and a resultant accuracy scores from the average 

can be obtained.  

3.10 Vector Space Method 

In this technique, the Vector Space Method (VSM) uses both cosine and minmax 

methods (Koppel, & Winter, 2014; Voorhees, 1998) for similarity detection by 

conducting pair-wise comparisons against a single known reference data set (Koppel & 

Seidman, 2013) of the RPAS elements. We use the cosine and the minmax results to 

plot a two-dimensional array, where the closest points to the top right-hand corner are 

most similar, and those at the bottom left-hand corner are most dissimilar to the 

reference single  

If we let  �⃗� =  〈𝑥1, … , 𝑥𝑛〉 𝑎𝑛𝑑 �⃗⃗� =  〈𝑦1, … , 𝑦𝑛〉 be the respective vector representations of 

documents X and Y, where each xi represents one of the RPAS stylometric signature 

elements of an author’s work, then (see Equation 8) cosine similarity can be defined as 

follows:  

Equation 8: Cosine Similarity 

𝑠𝑖𝑚 (𝑋, 𝑌) = 𝑐𝑜𝑠𝑖𝑛𝑒 (�⃗�, �⃗⃗�) = �⃗� ∗ �⃗⃗�/ ‖�⃗�‖ ∗ ‖�⃗⃗�‖ 
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If we let  �⃗� =  〈𝑥1, … , 𝑥𝑛〉 𝑎𝑛𝑑 �⃗⃗� =  〈𝑦1, … , 𝑦𝑛〉 be the respective vector representations of 

documents X and Y, where each xi represents one of the RPAS stylometric signature 

elements of an author’s work, then (see Equation 9) minmax similarity can be defined 

as follows:  

Equation 9: Minmax Similarity 

𝑠𝑖𝑚 (𝑋, 𝑌) = 𝑚𝑖𝑛𝑚𝑎𝑥(�⃗�, �⃗⃗�) =
∑ min (𝑥𝑖, 𝑦𝑖)

𝑛
𝑖=1  

∑ max (𝑥𝑖, 𝑦𝑖)𝑛
𝑖−1

 

 

3.11 Imposters Method 

This method extends the cosine and minmax approach of VSM (Seidman, 2013). We 

compare work that is not the work of the author of the referenced dataset, but an 

imposter. In this case, we introduce a third candidate, and the assumptions of 

similarity and dissimilarity are inverted.  This method gives surprisingly strong results 

for the verification problem, even when the documents in question contain no more 

than 500 words (Koppel & Winter, 2014).  Here, we use the cosine and the minmax 

results to plot a two-dimensional array, where the closest points to the top right-hand 

corner are most similar to the imposter  and therefore dissimilar to the likely author 

candidate, and those at the bottom left-hand corner are more similar to the candidate. 

3.12 Word Accumulation Curves 

There are theoretical limits to Menhinick’s Index (Equation 1) used to measure species 

diversity or species richness that we use above to describe Richness (R). Eventually, the 

value will reach the total species richness asymptote as no new species are found 

(Walther & Morand, 1998).  In ecology, the size of the area searched impacts on the 

possible sample size because it is the number of species collected in a particular area 

and not every possible sample that exists and the measurement is species density 

(James & Warner, 1982). The species accumulation curve is an intuitive way to compare 

the richness of two samples of different sizes (Gotelli & Colwell, 2011). The species 

discovery curve or species accumulation curve is linked to empirical Zipf distributions 

(Section 3.4.1.1) can highlight differences in word frequency distribution (Bentz et al., 

2014).  

While in Ecology, a graph where the x-axis is the number of individuals sampled, and 

the y-axis is the cumulative number of species recorded. Regardless of the species 

abundance distribution, this curve increases monotonically, with a decelerating slope 
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(Gotelli & Colwell, 2011). For text, the x-axis can be the document sample size, while 

the y-axis can be the number of unique words. 

This type of curve that plots word frequency can be used to estimate the total 

vocabulary of a writer from a given sample (Efron & Thisted, 1976).  We create two 

charts to examine Richness; an Accumulative Word Type Usage Curve for the largest 

100 word types, and a Word Accumulative Curve.  To describe the terms used, we 

reference Efron and Thisted (1976: 435): 

‘Note that 'type' or 'word type' will be used to indicate a distinct item in 

Shakespeare's vocabulary. 'Total words' will indicate a total word count 

including repetitions. The definition of type is any distinguishable arrangement 

of letters. Thus, 'girl' is a different type from 'girls' and 'throneroom' is a 

different type from both 'throne' and 'room'.’ 

An Accumulative Word Type Usage Curve for the largest 100 word types is calculated 

so that we can examine the Richness of the Shakespeare and Marlowe corpus from 

their plotted curves using the example in Efron and Thisted (1976).  Initially, we create 

a word type frequency list of the Shakespeare corpus and order the data from the 

smallest number of unique words (types) to the largest.  We aggregate the data for the 

first 100 word groups.  We do the same to the smaller Marlowe data and plot the 

results of both playwrights. The number of word groups (largest 100) appears on the x-

axis, while the number of accumulated unique word types. We then visually compare 

the asymptotes of both playwrights. 

A Word Accumulative Curve is calculated.  Each of the works of Shakespeare is 

ordered from the largest work size (number of individual tokens) to the smallest. Then 

the number of unique words in each work (new types) introduced is calculated.  This 

data is then aggregated, and we have a data point for each file that introduces new 

unique words (types).  This process is also done with the works of Marlowe. We plot 

both playwrights. The accumulated words are written in thousands (document sample 

size / number of tokens) appears on the x-axis, while the accumulated unique words in 

thousands (number of unique words / types) appears on the y-axis. 

Tweedie & Baayen (1998) have stressed lexical richness variation, and we rely on an 

approach using ratios (Kessler et al., 1997; Singhal et al., 1996) and sample below the 

point where the Richness variable converges.  Effectively, we are examining the word 

density within each chunk and comparing it to the others (Gotelli & Colwell, 2011). 
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There were a number of techniques used which have been described above.  Table 3 

highlights where they were used. 

3.13 Hierarchical Cluster Analysis 

Cluster analysis is a type of data reduction technique linked to the concept of similarity 

and works by combining cases into homogeneous clusters by merging them together 

one at a time in a series of sequential steps (Yim & Ramdeen, 2015). We measure the 

distance between clusters using Ward’s method. It is distinct from other methods 

because it uses an analysis of variance approach to evaluating the distances between 

clusters, and this method is very efficient and uses squared Euclidean distance to fuse 

cluster membership based on the smallest possible increase in the error sum of squares.  

SPSS provides five different types of clustering algorithms, including k-means, and 

Ward’s method, the most popular.  (Burns & Burns, 2012:553-558).  

3.14 Principal Component Analysis 

Principal Component Analysis (PCA) is a type of Exploratory Factor Analysis 

technique and aims to reduce data sets comprising a number of variables into a smaller 

number of datasets (called factors) that account for the underlying structure within the 

data (Burns & Burns, 2012: 443-450).  Williams, Onsman, and Brown (2010) provide an 

excellent five-step guide on its conduct.  However, PCA relies heavily on the Kaiser-

Meyer-Olkin (KMO) Measure of Sampling Adequacy (Kaiser, 1970) and Bartlett’s Test 

of Sphericity (Bartlett, 1950) before the factors, expressed as eigenvalues that account 

for the variance in the data, can be considered. 

3.15 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is used as an alternate classification technique to 

PCA (Balakrishnama & Ganapathiraju, 1998; Ye, Janardan, & Li, 2004). In this case, any 

anonymous works, or scenes are removed, and all of the individual known authors' 

works are numbered from 1 to N before training the model and reintroducing the 

unknown works (anonymous poems). Using the resultant coefficients from the 

Canonical Discriminant Functions, they can be aggregated, depending on how many 

there are above 2 to visually compare the clusters. 

3.16 Receiver Operating Characterisation (ROC) Curves 

Originally,  receiver operating characteristics (ROC) curves were used in the detection 

of radar signals, but now they apply to psychology, and they are also used in medical 
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decision making, bioinformatics, data mining and machine learning (Robin et al., 2011).  

They have been used to depict the tradeoff between hit rates and false alarm rates of 

classifiers (Metz, 1978).  The axis of the ROC Curve graphs is depicted by sensitivity 

and specificity.  Fawcett (2006) highlights, that in effect sensitivity and specificity 

represent two kinds of accuracy: the first for actually positive cases and the second for 

actually negative cases.  He states that one must note carefully that the terms "positive" 

and "negative" in these definitions concern some particular different state, which must 

be specified clearly in calculating and quoting sensitivity and specificity values.  Metz 

(1978) refers to sensitivity as the proportion of correctly classified positive observations 

and specificity as the proportion of correctly classified negative observations.  He 

provides the following descriptions:  

Sensitivity is the true positive rate (TP Rate), also called hit rate, recall or probability of 

detection. Specificity is the true negative rate (TN Rate) measures the proportion of 

negatives that are correctly identified   as negatives (See Fawcett, 2006 for a detailed 

explanation). 

Generally, the area under the curve (AUC) measures the performance of a classifier 

and is frequently applied for method comparison where a higher AUC means a better 

classification (Metz, 1978).  In this thesis, we use SPSS to construct ROC curves, and the 

curves are quite straight with a hard corner that reflects the Sensitivity and Specificity 

values. 

3.17 Summary 

In this chapter, we have addressed the Data and Algorithms Development phase.  We 

have described the approach, and techniques, to be undertaken to create the author 

signatures so that each individual author’s work can then be tested against a series of 

experiments.  We have described how the reference data lists were created, and how 

the works are reduced into a Bag of Words (BOW) using the Stanford Parts of Speech 

Tagger.  We have identified the gender (G), Richness (R), Referential Activity Power 

(RA), and sensory adjective (S) equations that will be used to create a signature of an 

author that describe self.  We have restated the research hypotheses and linked each 

one to each of the experiments that will be undertaken. 

In the next seven chapters, grouped together as Phase Two, Experiments, we will test 

the hypotheses and answer the research question through a series of connected studies, 

beginning with “Elizabethan Authorship Studies”.   
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Part One: Elizabethan Authorship Studies 
 

 
In part one of this research thesis, the focus is on identifying the authorship of a 

number of different works. Using 400-year-old data from the Elizabethan playwrights’ 

and poets’, William Shakespeare, Christopher Marlowe, Elizabeth Cary, Thomas Kyd, 

Bartholomew Griffin, Richard Barnfield, and Walter Raleigh, three studies are 

conducted.  Each study has increasing complexity.  In study one (Chapter 4) three 

known authors are tested.  In study two (Chapter 5) one known author and 15 

unknown authored play scenes are tested.  In study three (Chapter 6) five known 

authors and 12 unknown authored poems are tested.  In these three studies the first 

research question is addressed (Hypothesis H1): Can a stylistic fingerprint of a person’s 

personality – their personal signature – reveal their ‘identity’ from their writing style? 

In this section, we have ensured that each version is free of known editorial changes 

that commonly occurred after Shakespeare’s 1623 First Folio.  However, it is not 

possible to know what, if any, editorial changes were made during the printing 

preparation and this could add some minor variation to our findings.  

There are four papers that contribute to this first part (refer to Section 1.6) Using 

Shakespeare’s Sotto Voce to Determine True Identity from Text, Did William Shakespeare and 

Thomas Kyd Write Edward III?, and Stylometric Techniques for Multiple Author Clustering: 

Shakespeare’s Authorship in The Passionate Pilgrim. More detail about each one follows in 

the next three chapters. 
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Chapter 4 
 

 

Shakespeare, Marlowe, and Cary 
 

 
In this chapter, the first of the three studies into the Elizabethan playwrights’ and 

poets’ identity is addressed.  The study draws on the known works, and works of 

contested authorship, of William Shakespeare, Christopher Marlowe, and Elizabeth 

Cary.   

Using the Stanford Parts of Speech Tagger we pre-process the data, and analysis is then 

conducted of the Shakespeare data.  Pearson’s Product Moment Correlation, r, analysis 

is also conducted.  Using RPAS described in the methods section (Chapter 3), PtoR, 

AtoR, and StoR plots are constructed and analysed. Word Accumulation Curves are 

also constructed to support the analysis.  Hierarchical Clustering Analysis (HCA), 

Principal Component Analysis (PCA), and Stepwise Linear Discriminant Analysis 

(LDA) are conducted.  The findings are supported by a partial synthetic data approach. 

In this initial study, the first research question is addressed (Section 1.3), and 

Hypothesis H1 is tested (Section 1.4). 

The findings are clear. Given Principal Component Analysis (PCA) was able to 

separate the known contested authored works from the known author’s own works, 

and once the contested authored works were removed, Stepwise Linear Discriminant 

Analysis (LDA) was able to separate the three author’s works. Given these findings, 

we are able to reject the null hypothesis and say that the stylistic fingerprint of a 

person’s personality – their personal signature – can reveal their ‘identity’ from their 

writing style. 

This chapter is taken from a peer-reviewed paper: Using Shakespeare’s Sotto Voce to 

Determine True Identity from Text. It was published in Frontiers in Psychology. Vol 9. 

March 2018 Article 289, 1-17. 

4.1 Introduction 

Little is documented about Gulielmus (William) Shaksper or Shakspere, the person, 

outside of his christening at Stratford-on-Avon on 26 April 1564 and his marriage to 

Ann Hathaway in November 1582, whom he had three children with; a daughter 
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Susanna born in 1583 and twins, Hamnet and Judith born in 1585 (Ellis, 2000; Kreeger, 

1987). However, by 1623 and seven years after his death, more than 37 plays, at least 

four narrative poems, and 154 sonnets had been published in London.  William Shake-

speare, or Shakespeare, began to be identified as the author of these works, and over 

the next 200 years, this solidified into a tradition (Kreeger, 1987). 

Benjamin Disraeli, Lord Beaconsfield, was the first to place doubt on William 

Shakespeare’s identity in 1837, and since then the question of the authorship of 

Shakespeare’s publications has engaged a wide range of prominent people for more 

than two hundred years (Krsul & Spafford, 1997). 

This ongoing controversy has engaged a lot of analysts. There are those that defend 

Shakespeare as author, and others whose focus is on authorship identification in 

general.  We are in the latter group, with a focus on law enforcement identification 

(Kambourakis, 2014; Kaminski, 2013), and we believe this is a very fertile place to test 

new methods.  

Although Edward de Vere, the Seventeenth Earl of Oxford has been named as a very 

strong candidate from a pool of fifty-six names, four major figures in English literary 

history, Bacon, de Vere, Stanley, and Marlowe, are the most likely alternatives to 

Shakespeare (Kreeger, 1987). 

In 1901, Mendenhall counted the length of words and used word-length frequency 

distributions to separate the authored plays of William Shakespeare from Francis 

Bacon, and a further study found that the word-length distribution of Christopher 

Marlowe’s plays was more aligned with Shakespeare’s (Tuldava, 2004). 

Elliot and Valenza (1991a) used a different identification technique and conducted 

modal testing based on word usage to highlight the different style of Shakespeare’s 

poems to those of Edward de Vere and suggested that de Vere did not author the 

Shakespeare work. 

Little is known of the creative poems of Ferdinando Stanley, also known as Lord 

Strange and the Fifth Earl of Derby, but he was likely associated with Shakespeare 

through his company of actors (May, 1972).  Many believe that Shakespeare was a 

member of Ferdinando’s acting company in the early 1590s, known then as Lord 

Strange’s Men, before the next in line to the throne was assassinated in 1594 

(Daugherty, 2011). 
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In 1920 doubt was raised about the authorship of the play Titus Andronicus, suggesting 

it was a pre-Shakespearian play that was retouched by Shakespeare when it was in 

possession of Lord Strange’s men (Gray, 1920).  Around the same time, Marlowe’s 

involvement in Shakespeare’s Henry VI was also suggested (Brooke, 1922), and today, 

there is still uncertainty about the influence and collaboration between Shakespeare 

and Marlowe (Merriam, 1998; Sawyer, 2017; Yang, Peng & Goldberger, 2017). 

Other scholars have applied different techniques to the problem. Matthews and 

Merriam (1993) used a neural computational pattern recognition technique on 

Shakespeare, and fellow collaborator, playwright John Fletcher with considerable 

reliability, and extended their technique to the works of Shakespeare and Marlowe 

(Matthews and Merriam, 1994). Thirty-six Shakespeare plays, and seven Marlowe 

works were tested. Using ten canonical plays from Shakespeare and three of Marlowe’s 

plays Merriam and Matthews (1994) trained their model using fifty-one one thousand 

word samples before subsequently classifying the remaining twenty-six entire plays of 

the Shakespeare First Folio and the remaining four plays from Marlowe with a success 

rate of 93%.  They used five discriminants that comprised of a series of ratios using 

different combinations of the following 14 function words: but; by; did; do; for; no; not; 

on; so; that; the; to; upon; with. 

In the last decade, the interest in the Elizabethan playwrights has not faded. Recent 

work on Marlowe and Shakespeare by Tearle et al. (2008) highlights that Shakespeare 

was a collaborator on Titus Andronicus, but that it was easy to separate Shakespeare 

from Marlowe using neural networks.  Craig and Kinney (2009) suggest that there is 

doubt about the authorship of Henry VI and that Parts 1 and 2 are Marlowe’s and not 

Shakespeare’s. While Zhao and Zobel (2007) suggest that Marlowe did not write the 

works of Shakespeare.   Our analysis suggests Henry VI Part I is a Shakespeare Thomas 

Kyd collaboration. 

Stylometric analysis, the quantitative analysis of a text’s linguistic features, can be 

traced back to Augustus de Morgan’s resolution of authorship disputes using the 

frequency of word lengths in 1851. The first manual quantitative analysis occurred in 

the late 1880s by Thomas C Mendenhall (1887) who used word length distributions 

from the works of Bacon, Marlowe, and Shakespeare to identify the authorship of 

Shakespeare’s plays.  Stylometry has been used extensively to determine the 

authorship of many undocumented playwright collaborations from the Elizabethan 

period, including Shakespeare (Segarra et al., 2015). Below we summarise some 
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analytical techniques, but for a more comprehensive overview of stylometry and its 

classification techniques see Neal et al. (2017) and Aljumily (2015). 

Many of these stylometric text analysis techniques rely on basic statistical correlations, 

word counts, collocated word groups, or keyword density (Lamb et al., 2013; Leech & 

Onwuegbuzie, 2007; Matsuo & Ishizuka, 2004).  There are many different techniques in 

use today on Shakespeare and others.  For example, n-grams (Frantzeskou et al., 2007), 

and Latent Semantic Analysis, a method that relies on a mathematical technique called 

singular value decomposition to identify patterns in the relationship between terms 

and concepts within an unstructured mass of text (Raju et al., 2016). Then there are 

machine learning techniques (Jockers, & Witten, 2010).  However, there does not 

appear to be any one best technique. Juola (2008) concludes that the best choice of the 

feature set is strongly dependent upon the data to be analysed, and no method has yet 

emerged from any study as being particularly good.  Rudman (1998; 2012) revisited the 

problem, 13 years after his earlier critic after a further 600 studies and concluded that 

there is still no consensus as to correct methodology or technique for authorship 

attribution. 

There appears dissension among leading Shakespearean authorship attribution 

scholars about an agreed method (Rudman, 2016), but the most successful and robust 

methods are based on low-level information such as character n-grams or auxiliary 

word (function word, stop words such as articles and prepositions) frequencies 

(Stamatatos, 2009). The premier work in evaluating authorship in the 16th to mid-17th 

centuries includes MacDonald P. Jackson, Brian Vickers, and Hugh Craig (Segarra et 

al., 2017). Jackson (2006) uses common low-frequency word phrases, repetition of 

phrases, collocation, and images to link word groups to other works. Vickers (2011) 

uses a tri-gram, or n-gram, approach, while Hirch and Craig (2014) use function word 

frequency. They also use methods based on the Information Theoretic measure Jensen-

Shannon divergence (JSD,) and unsupervised graph partitioning clustering algorithms 

(Arefin et al., 2015). There are other techniques used in this period of Shakespearean 

analysis, including simple function words (Matthews & Merriam, 1993; Merriam & 

Matthews, 1994) and word adjacency networks (WANs) (Segarra et al., 2017), or 

looking at rare and unique phrases (Swaim, 2017). However, the most relevant to the 

RPAS technique used in this paper are the ones based on personality. The meaning-

extracting method (MEM) from the field of psychology (Boyd & Pennebaker, 2015; 

Chung & Pennebaker, 2008) is used to extract themes from commonly used adjectives 
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and describe a person from their personality. Pennebaker et al. (2015), Litvinova et al. 

(2016) and Skillicorn et al. (2017) are developing personality aspects of human language 

to improve authorship profiling. The ability to profile user personality and infer stable 

differences in individual behaviour from writing can be used to predict a person’s 

preferences and future behaviour with sufficient accuracy (Wright & Chin, 2014).  

We attempt to get better clarification by going beyond statistics and blind classification 

and attempt to infer a person's personality; their sense of self, can be seen in subtle 

characteristics hidden in their writing style (Iqbal et al., 2013; Argamon et al., 2009; 

Northoff et al., 2006).  Voice is the manifestation of author’s will, intent, and feeling; it 

is the animus of storytelling (Charmaz & Mitchell, 1996), an authorial voice which 

projects an image of the authors themselves (Lorés-Sanz, 2011).  We think of this as 

‘sotto voce’, the voice of the author that can’t help but utter an involuntary truth about 

his identity.  

Others claim to see Shakespeare’s voice within his narrative. Klein (1993) says it is 

apparent in the guise of Hamlet’s father and bound intrinsically to Shakespeare’s 

creation.  It appears in the poem, The Phoenix and the Turtle, as a three-part structure 

that foregrounds Shakespeare’s voice (Cheney, 2009). It is also evident in the voice of 

the speaker in The Sonnets (Kambasković-Sawers, 2007), where “Shakespeare the man” 

can be reconstructed more completely here than from any of his other works 

(Burnham, 1990). We suggest that this voice, a person’s sense of self, is reflected 

throughout all the works of Shakespeare, Marlowe, and Cary, and is an example of 

sotto voce. It can be used to determine an author’s true identity. 

Some of the techniques used here are not new. Richness is not, and Mendenhall used 

word frequency charts to separate the writings of different authors (Mendenhall, 1887).  

Using function words to reveal personality traits is recent but also not new 

(Pennebaker, 2011). Principal Component Analysis has been used extensively since the 

1980’s to separate the authorial styles of Shakespeare and other Elizabethan 

playwrights (Burrows & Craig, 2012). 

However, we apply these reliable techniques to the Elizabethan playwrights to 

highlight the consistency of our results against other well-documented results. The 

creation of a stylistic fingerprint of a person from a combination of a person’s internal 

gender, their use of sensory-based adjectives factored across the five sensory 

modalities, and using specific function words that have high levels of concreteness and 
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imagery scores which reflect self or sotto voce is new. We further highlight, how 

depressed a person may be from their writing. While outside the scope of this study, it 

is part of a broader body of work that is looking at using these techniques, particularly 

within the law enforcement area, where depression and the cognitive state of an 

individual’s mental state is a valuable identifier. Using techniques that draw on 

biomarkers for creativity and a person’s known psychological state (Zabelina et al., 

2015; Rosenstein et al., 2015), we identify characteristics of William Shakespeare, 

Christopher Marlowe, and Elizabeth Cary that allow us to separate their work using a 

new technique RPAS. 

4.2 Material and methods 

4.2.1 Preparing the text 

The works of William Shakespeare’s Sonnets are drawn from the complete works of 

Shakespeare (Farrow, 1993), and Christopher Marlowe from Farey (2014).  We also 

process the 1613 play, The Tragedy of Mariam, the Fair Queen of Jewry by English poet 

and dramatist, Elizabeth Cary (Mark, 2014), published after Shakespeare ceased 

writing, so there is an independent female writer for use in some of the testing.  These 

versions use Modern English spelling but still contain Early Modern English words 

where they cannot be directly transcribed, (such as ‘tis!; thou; doth, fix’d; o’er) and 

included for consistent word richness scores. 

We divide William Shakespeare’s histories, comedies, tragedies, poems and sonnets, 

Christopher Marlowe’s plays and poems, and Elizabeth Cary’s play into 57 pseudo-

random textual chunks, or files (based on encountering a title heading in each work), 

see Table 36 in Appendix A for original and chunked data separation.  This means that 

some chunks are partial works, such as The Passionate Pilgrim (chunks 23-25, and 41), 

The Phoenix and the Turtle (chunks 29-30) and The Passionate Shepherd to His Love (chunks 

55-56).  Theatrical stage direction is removed from the text (speaker titles, play actions 

and lists of characters for each scene) and we pre-process the files with the Stanford 

Parts Of Speech Tagger (Toutanova & Manning, 2000).  While the tagger uses the Penn 

Treebank labels based on today’s linguistic structure, these influences can be ignored 

because any variations are applied consistently across the dataset, and further they do 

not impact on the RPAS approach. Rather than remove all stop words – extremely 

common words – as is common practice, our method uses these prepositions and 

article word types because they carry meaning about self and a person’s state of mind 
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that would otherwise be removed, and we only remove punctuation and symbols.  The 

word corpus is aggregated by frequency for each chunk. We conduct an analysis of the 

corpus parts-of-speech tags to ensure it shows no biases and we construct a multi-

dimensional vector from the results of applying RPAS (Section 3.4.1).  While studies 

have successfully been conducted on one or two authors and with a single word group 

containing as few as 14 different words (Matthews, & Merriam, 1993, this one has three 

authors across a corpus of 1.031 million words and uses 507 different words in a 

multivariate way as described below. 

4.2.2 The RPAS method 

Richness is not a measure of all of the words in the English language. While the 

average English speaker has a passive vocabulary of about 100,000 words (Pennebaker, 

2011), we are interested in Shakespeare’s active vocabulary, hence limit the document 

size to around 30,000 words, the size of the largest Shakespeare work, rather than 

using smaller chunks and averaging.  It should be noted that Shakespeare’s Early 

Modern English is much closer to today’s language than that of Old or Middle English 

and personal pronouns have maintained number, case, and gender throughout the 

history of English (Horobin, 2010). However, its only came into print in 1598, and his 

was a neuter possessive where today we would use its, noting that Shakespeare’s First 

Folio, printed in 1623, kept the earlier form of his (Nevalainen, 2006). While we could 

replace its with his, there are 13 of Shakespeare’s works that contain the word its, and 

we elect not to replace his for its. This approach does not affect the algorithm’s 

effectiveness in comparing data from within the Early Modern English period. 

Replacing its with his would change the gender category of two poems, however, and 

we will mention that later. 

4.2.3 Correlation Analysis 

We use the SPSS (Chapman, 2017), and test the independence of the RPAS variables in 

the data and measure the degree of correspondence between the variables with the 

Pearson Product Moment Correlation or ‘r’ (Burns & Burns, 2012). We run three tests.  

In the first, we test the independence of the  four high-level elements, Richness (R), 

personal pronouns (P), Referential Activity Power (A), and Sensory Adjectives (S).  We 

test the sensory adjectives that make up the Sensory VAHOG elements: V – visual; A – 

auditory; H - haptic, O - olfactory, and G – gustatory.  We also test the four linguistic 

variables known as particles that make up Referential Activity Power: A – articles; C – 
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conjunctives; P – prepositions; and PRON - pronouns.  We interpret the correlation size 

using Burns and Burns (2012:346) descriptions. 

4.2.4 Word Accumulation Curves 

This type of curve that plots word frequency can be used to estimate the total 

vocabulary of a writer from a given sample (Efron & Thisted, 1976).  We create two 

charts to examine Richness; an Accumulative Word Type Usage Curve for the largest 

100 word types, and a Word Accumulative Curve. 

An Accumulative Word Type Usage Curve for the largest 100 word types is calculated 

so that we can examine the Richness of the Shakespeare and Marlowe corpus from 

their plotted curves using the example in Efron and Thisted (1976).  Initially, we create 

a word type frequency list of the Shakespeare corpus and order the data from the 

smallest number of unique words (types) to the largest.  We aggregate the data for the 

first 100 word groups.  We do the same to the smaller Marlowe data and plot the 

results of both playwrights. The number of word groups (largest 100) appears on the x-

axis, while the number of accumulated unique word types appears on the y-axis. We 

then visually compare the asymptotes of both playwrights. 

A different Word Accumulative Curve from the one mentioned in the previous 

paragraph exists, where each of the works of Shakespeare is ordered from the largest 

work size (number of individual word tokens) to the smallest. Then the number of 

unique words in each work (new word types) introduced is calculated.  This data is 

then aggregated, and we have a data point for each file that introduces new unique 

words (types).  This process is also done with the works of Marlowe. We plot both 

playwrights. The accumulated words are written in thousands (document sample size 

/ number of tokens) appears on the x-axis, while the accumulated unique words in 

thousands (number of unique words / types) appears on the y-axis. 

The values of lexical richness change for different measures used because of text 

length, and it is necessary to correct for this (Tweedie & Baayen, 1998).  We do this 

with ratios (Kessler et al., 1997; Singhal et al., 1996) because we are effectively 

examining the word density within each chunk and comparing it to the others (Gotelli 

& Colwell, 2011), and any global richness coefficient can, therefore, be ignored. 
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4.2.5 Three Complementary Clustering Techniques 

The data is clustered using three complementary techniques.  The first attempts to 

separate the playwrights, the second separates known works from contested works – 

publications believed to be of different authorship – and, the third separate the three 

playwright’s known works with the contested ones removed.  SPSS is used to conduct 

testing.  

The Hierarchical Cluster Analysis technique uses Ward’s Method (Burns & Burns, 

2012:557)  with Squared Euclidean distance measurement, and nearest neighbour using 

both Squared Euclidean distance and Cosine options (see Section 3.13).  The data is 

forced into three clusters for each playwright, Shakespeare, Marlowe, and Cary to 

observer where the chunks cluster. 

Iterative Principal Component Analysis, PCA (Burns & Burns, 2012:443) is conducted 

on the known and contested works (57 chunks) to optimise the RPAS algorithm (see 

Section 3.4).  EFA aims to reduce the variables in the data into a smaller set of factors 

that explain the pattern of the relationships between the variables (Burns & Burns, 

2012:443). By setting the threshold to 0.30 the most non-significant RPAS variable is 

removed and the data retested in an iterative process until the maximum variation in 

the data is explained (known as the eigenvalue and it corresponds to the sum of the 

squared factor loadings).  Once this is achieved, we use the identified components, also 

known as factors, for each of the significant variables that make up the components 

(factors) to plot the 57 chunks and observe how the known and contested works 

visually cluster. We test the data initially by using the Kaiser-Meyer-Olkin (KMO) 

Measure of Sampling Adequacy (Kaiser, 1970) to ensure the KMO is greater than the 

0.5 thresholds and deemed acceptable to continue with PCA. We also ensure that 

Bartlett's Test of Sphericity (Bartlett, 1950) has a significance value (p< 0.05) indicating 

there are some relationships between the variables so that PCA can extract meaningful 

data.  We apply Kaiser’s criterion rule (Kaiser, 1970) by producing a scree plot which 

highlights all of the eigenvalues and only retaining those factors that are above the 

eigenvalue of 1.  

Stepwise Linear Discriminant Analysis (LDA) as an alternate classification technique to 

PCA is conducted (Balakrishnama, & Ganapathiraju, 1998; Ye et al., 2004).  We remove 

the contested works from the data and categorise all of the individual known authors' 

chunks, numbering them 1 to 3 and train the model. Using the resultant coefficients 
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from the three Canonical Discriminant Functions, we plot the functions and compare 

the clusters. 

Finally, we test the effectiveness of the LDA resultant coefficients to correctly classify 

other works by Shakespeare.  Because there is no new Shakespearian to test on, a 

different approach must be chosen.  Rather than use k-fold cross-validation to test the 

accuracy of the LDA model (Rodriguez et al., 2010), we draw on the full and partial 

synthetic data approach by Little (1993) and Rubin (1993). We elect to use the partial 

approach because we are not concerned with data disclosure issues (Drechsler et al., 

2008).  Five Shakespearean works are chosen at random and divided into 2000-word 

chunks so that we end up with sixty-two of them.  Five partially synthetic samples are 

constructed using 12 randomly selected chunks.  These new 24,000-word synthetic 

works are calculated using the LDA resultant coefficients and overlayed against the 

uncontested works to see how close they cluster to Shakespeare, Marlowe, and Cary. 

4.3 Results 

Within this section, we discuss the correlation analysis results, the differences in the 

word accumulation curves, the hierarchical clustering, and principal component 

analysis.  We conclude with the stepwise linear discriminant analysis predictive model 

that is verified using a partial synthetic approach. 

4.3.1 Correlation Analysis 

The independence of the variables was tested using the Pearson correlation coefficient, 

‘r’, (see Table 38 in Appendix A) and determined for RPAS. The results were significant 

at the 0.01 level, with most of the relationships between the variables being deemed as 

weak or random (13-33%). Richness appeared to have a moderate to high correlation 

with Referential Activity Power, and the relationship bordered an inverse moderate to 

substantial level as it predicted around 69% of Referential Activity Power.  In all cases, 

the relationship between Referential Activity Power and all other variables had an 

inverse relationship. Overall, the elements were independent of each other. 

Pearson’s correlation testing was used on the sensory adjectives that made up the 

Sensory element: Auditory, Gustatory, Haptic, Olfactory, and Visual.  The results were 

significant at the 0.05-0.01 level.  Of the five senses, Auditory was the weakest with 

either no correlation or a small random predictor relationship of 8%. Visual had the 

most number of correlations, but it had a weak to moderate relationship to all of the 
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other sensory variables (varies between 8 – 61%).  Gustatory, Olfactory, and Haptic had 

the same correlations and did not have a significant relationship to Auditory.  They 

also had a weak to moderate relationship to all other sensory variables (varies between 

33 – 60%).  Again, the elements were independent of each other. 

Pearson’s correlation coefficient testing was used to determine the independence of the 

particles that make up Referential Activity Power. The results were significant at the 

0.01 level.  The analysis showed that Prepositions are substantial as shown by its 

relationship with Articles (80.8%) and Conjunctives (73.8%) but not with pronouns 

(50%), and the relationship was only moderate.  The correlation between Pronouns 

with Articles (47%) and Conjunctives (32%) highlight they were less correlated with a 

weak to moderate relationship.  In this case, it would seem overall that the elements 

were less independent of each other. 

4.3.2 Word Accumulation Curves 

There is a large difference in the sample sizes of Shakespeare, Marlowe, and Cary. 

Therefore, as an alternate test for the Richness calculations, Word Accumulation 

Curves were plotted for Shakespeare's 897,308-word, Marlowe's 116,446-word, and 

Cary’s 17, 376-word corpus to examine if their use of vocabulary was similar. As can be 

seen (lower panel Figure 5) Shakespeare's unique word list reached an asymptote at 

about the 50th largest word group, which is a total of 24,726 unique words.  Marlowe’s 

unique word list reached an asymptote at about the 21st largest word group, a total of 

8,565 unique words, and Cary’s unique word list reached an asymptote at about the 

15th largest word group with a total of 2,599 unique words. When we compared the 

point at where both word group curves asymptote, we could see that Marlowe used 

about 34.6% fewer unique words than Shakespeare, and Cary used about 89.5% fewer 

words than Shakespeare.  

However, there is a significant difference between the number of works each produced 

and comparison of word accumulation plots tells a different story (upper panel Figure 

5) . It highlighted that Marlowe and Shakespeare have similar word growth that might 

take into account the influence of vocabulary size. We cannot make a comparison with 

Cary with a single work. There is an age difference between Shakespeare and Marlowe 

which could account for these differences. People’s vocabulary is known to peak late in 

adulthood before it declines (currently peaking around 65 years. See Hartshorne & 
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Germine, 2015), but this could highlight that age differences contribute to and help 

differentiate people from their Richness scores. 

Figure 5: Word Accumulation Curves for Shakespeare, Marlowe, and Cary by groups of words the same size (word 
groups) and accumulated words. In the lower panel, the different number of words each playwright used (unique 
words) is shown and is different, but in the upper panel, the similarities between Marlowe and Shakespeare’s 
word usage is highlighted.  

 

Of all the works of Shakespeare over 10,000 words, the unique words contributed 

about 13-23% (2400-4600 words), and 45% of these words are of the small group of 450 

function words that account for less than 0.1 percent of the English vocabulary but 
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make up more than half of the words commonly used (Pennebaker, 2011).  Of all of the 

works of Marlowe over 10,000 words, the unique words contributed about 14-20% 

(2700-3200 words), and 42% are function words.  In both cases, the chunks are well 

below a size that would approach the asymptote, and we deem that this phenomenon 

occurs outside of our enforced limit of a 30,000-word sample. 

4.3.3 Hierarchical Clustering (HC) 

To determine if there are clear differences in the writing styles of the three playwrights, 

the data was forced into three clusters, through Hierarchical Cluster Analysis, (using 

Ward’s Method with Squared Euclidean distance measure, and nearest neighbour 

using both Squared Euclidean distance and Cosine measure).  It was expected that by 

forcing three clusters, one for each playwright (Shakespeare, Marlowe, and Cary), they 

would appear in separate clusters.  However, the data variations in the contested and 

non-contested authored works were too distant in Eucleadian space, and one of the 

clusters that formed had all three playwrights in them (see Table 4).  Another test 

would need to be performed on a smaller set of the data without the contested, non-

authored works, therefore as an alternative, Principal Component Analysis was 

conducted.  

Table 4: Hierarchical Cluster Analysis Membership for 3 clusters 

Cluster Membership 

Case 
3 

Clusters 
Case 

3 
Clusters 

Case 
3 

Clusters 

1:C1   1 20:C7   1 39:T9   1 

2:H1   1 21:C9   1 40:C14  1 

3:H2   1 22:T3   1 41:P8   3 

4:H3   1 23:P5   3 42:C15  1 

5:H4   1 24:P4   3 43:P9   1 

6:C2   1 25:P3   3 44:C16  1 

7:T1   1 26:C8   1 45:C17  1 

8:P1   2 27:T4   1 46:H10  1 

9:C4   1 28:C10  1 47:CM1  1 

10:T2   1 29:P6   3 48:CM2  1 

11:P2   1 30:P7   3 49:CM3  1 

12:C3   1 31:C11  1 50:CM4  1 

13:C5   1 32:C12  1 51:CM5  1 

14:H5   1 33:C13  1 52:CM6  1 

15:H6   1 34:T5   1 53:CM7  1 

16:C6   1 35:T6   1 54:CM8  2 

17:H7   1 36:T7   1 55:CM9  3 

18:H8   1 37:T10  1 56:CM10 3 

19:H9   1 38:T8   1 57:EC1  1 
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4.3.4 Principal Component Analysis (PCA) 

Iterative Principal Component Analysis to optimise RPAS on the basis of the maximum 

variance explained by eigenvalues was conducted. Initially, PCA was conducted on the 

four high-level variables.  Only one factor was extracted and accounted for 64.3% of the 

variance. All the remaining three factors accounted for (35.78%) and were not 

significant. 

Principal Component Analysis was extended, and the Referential Activity Power 

element was substituted with its four variables.  Articles, Conjunctives, Prepositions, 

and Pronouns were tested to determine if the total variance could be increased over the 

initial 63.4% results obtained from the single factor. However, only one factor was 

extracted, and it accounted for 65.6% of the variance.  All the remaining six factors 

accounted for 34.4% and were not significant.  Overall, the total variance explained by 

the single factor increased by 1.3% over the initial test. 

Principal Component Analysis was again extended, and the Sensory element was 

substituted with its five variables. Now, with the Visual, Auditory, Haptic, Olfactory, 

and Gustatory (VAHOG) variables, many correlations were in excess of 0.30, and both 

the KMO and Bartlett’s tests produced criteria that support the application of PCA 

(0.722, p < .001).  Communalities varied from .832 (Richness) to .354 (Gender).  By 

applying Kaiser’s Rule and scree test, two factors were deemed important.  Following 

rotation, factor one was loaded on five items that reflect four of the five sensory 

elements variables and RA Power accounted for 49.56% of the variance.  Factor two is 

loaded on the Richness, personal pronouns, RA Power, and two of the Sensory 

adjectives (Auditory and Visual) and accounted for 22.32% of the variance. Overall, the 

total variance explained by the two factors was 71.88%. This is an increase of 7.6% over 

the initial test and 6.3% better than the second test that expanded the Referential 

Activity Power elements.  Unweighted least squares Factor Analysis results 

highlighted Pearson’s r correlations and indicated the inverse nature of Referential 

Activity Power along with the isolated Auditory variable. The Correlation Matrix, 

KMO and Bartlett’s Test, Communalities, Total Variance Explained, and Component 

Matrix results are found in Table 39 - Table 45, along with the Scree Plot, Figure 36 of 

Appendix A. 

The results of the Hierarchical Clustering and the Principal Component Analysis can 

be overlaid to reinforce the consistency of the results (Figure 6) and show the 
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separation of the contested works from the main body of works. This was identified 

through the two leading factors of the PCA grouped by the Hierarchical Clustering 

results (blue ellipses). These methods are robust enough to correlate precisely. The 

cluster at the bottom contains most of the chunks for all three authors. The second 

largest cluster on the top left contains works of uncertain or mixed authorship, such as 

Shakespeare’s The Passionate Pilgrim (chunks 23-25, and 41), and Marlowe’s two-

authored The Passionate Shepherd to his Love (chunks 55-56). The exception was 

Shakespeare’s The Phoenix and the Turtle (chunks 29-30). While the differences in The 

Phoenix and the Turtle have been put down to Shakespeare's genius (Bednarz, 2012) and 

there is still some uncertainty over authorship (Richards, 1958), it is a generally 

accepted Shakespearian work. The cluster on the top right showed one work each of 

Shakespeare and Marlowe’s that is stylistically quite different from their other works 

(chunk 54 for example, Hero and Leander, was completed by George Chapman after 

Marlowe’s death (Williams, 2005), while Venus and Adonis was suggested to be written 

during Shakespeare's hard times during the plague (Stritmatter, 2004). It is said to lack 

a sense of form and seen as dull (Putney, 1941).  The results were reinforced by the 

personal pronoun analysis.  Here we highlighted that most works are low in this 

category, and seven chunks had scores over 25% (Figure 6 yellow boxes highlight 

chunks 8, 23, 29-30, and 54-56).  Two of these are high scores (> 80%) and appeared in 

the top right cluster.  When comparing Richness against Referential Activity Power, 

four very noticeable spikes occur (chunks 24, 29-30, 41, and 55-56), and these were also 

the works that appear in the top left cluster. Two lesser spikes occurred in the top right 

cluster (8 and 54).  This relationship between Richness and Referential Activity Power 

is unusual and is discussed further below.  To further reinforce these consistent results, 

analysis of Richness against Sensory identified a large cluster of Shakespeare and 

Marlowe’s works, but this time with a diffuse set of outliers. Most of these outliers 

were the same as those in the top clusters in Figure 6. 
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Figure 6: Results of the two clusters from the Principal Component Analysis overlayed with the Hierarchical 
Cluster Analysis results and showing the three clusters that form to separate the known works of the three 
playwrights from the works that are of contested authorship (or in the case of 8, 29, and 30 are stylistically 
different). The Personal Pronoun (gender) scores where they are > 0.25 are also shown to emphasise differences.  
The table highlights the contribution of the two components that the RPAS-VAHOG variables made. 

 

4.3.5 Stepwise Linear Discriminant Analysis (LDA) 

To look at the data in more detail, the contested works were removed from the data, 

and stepwise Linear Discriminant Analysis was conducted.  LDA is better at data 

classification than PCA, and it is less susceptible to shape and location changes when 

transformed to different spaces than PCA (Ye et al., 2004).  The results of LDA on the 

eleven elements showed that three variables contributed the most to the classification 

of the data: Auditory, Haptic, and Richness.  Two canonical discriminant functions 

were extracted, and both were statistically significant (p < 0.001, and p = 0.008), as was 

shown in the Wilks’ Lambda results. The Canonical Discriminant Functions plot of 

each playwright also highlighted clear separation in their centroids.  Using this 

information, we reviewed the two sensory elements, Haptic against Auditory, and 

Richness against Auditory to discriminate the works of each playwright.  Figure 7 

shows the work chunks clustered against the Auditory and Haptic sensory elements.  

From the group centroids, there was a clear separation of the authors.  Overall, 

Shakespeare’s chunks had a style that was higher than Marlowe in the Haptic element 

(0.13 vs. 0.08), and lower in Auditory (0.12 vs. 0.19) and Richness (15.5 vs. 18) with the 

auditory signature being a very strong separator. The LDA Eigenvalues of the first 
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two canonical functions, Wilk’s Lambda results, Discriminant Function 

coefficients, group centroids are found in Table 46 - Table 49, along with the 

first two dimensions of a canonical discriminant analysis applied to the 

uncontested works of Shakespeare, Marlowe, and Cary, Figure 37 of Appendix 

A. 

To further test the effectiveness of RPAS the new 24,000-word synthetic works were 

overlayed against the uncontested works.  As can be seen in the Haptic and Auditory 

plot (Figure 7), they visually aligned closer in style to Shakespeare, and their group 

centroid was closer in three-dimensional Euclidean space to Shakespeare than 

Marlowe (a distance of 31.7 vs. 34.2). 

We superimposed  Richness (R), and Referential Activity Power (A)and the AtoR 

mapping (Figure 8 inset) highlighted several works with stylistic features likely written 

during difficult periods of the playwright’s lives, perhaps brought about from the 

Bubonic Plague closing theatres, and against a backdrop of a poor economic 

environment and violent conditions in London during the late 1590s. The two insets 

highlighted a number of corresponding Richness spikes (upper diagram) with low 

Referential Activity Power values (chunks 8, 23, 24, 25, 41, 55, 56). These high Richness 

chunks were less concrete, more abstract and surreal, and they had less imagery and 

emotion across the sensory aspects, which highlighted a different style to the other 

works. 

To remove any chunking bias, we resampled Shakespeare's Venus and Adonis and 

Merchant of Venice into 2000 word–sized chunks and plotted AtoR (Figure 8). We would 

have expected a lower RA Power (Bucci & Maskit, 2004) in a depressed state, which is 

what we observed in the centroid differences between the two works. We see Richness 

as a very strong separator. However, we would also have expected to see more lexical 

repetition through a lower Richness score (Garrard et al., 2005). It is possible that the 

work was an early collaboration with another author, which was why it appeared near 

Marlowe's collaboration with George Chapman (refer to top right cluster in Figure 6). 

It is also possible that the higher Richness was due to Shakespeare's large vocabulary. 
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Figure 7: Results of the Linear Discriminant Analysis of the uncontested works of the playwrights showing the 
most significant element from each canonical function (Auditory and Haptic Sensory elements).   The mean of the 
works of each playwright is also shown.  After constructing five partially synthetic Shakespeare works and 
overlaying them against the original data, they are closest to Shakespeare. 

 

Figure 8: The Venus and Adonis play (8) which seems to be stylistically different and has an unusual Richness to 
Referential Activity Power relationship (see inset) is divided into 2000 word chunks as is the Merchant of Venice 
(16). The centroids of each play maintain the low RA Power / high Richness anomaly, highlighting the results in 
the inset is not an artefact of the size of the play. 
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4.4 Discussion 

Using modern techniques on 400-year old data has some limitations.  After William the 

Conqueror invaded England, Anglo-Norman (French) became the administrative 

language of Kings and nobility in England for more than 300 years.   However, Anglo-

Saxon (Old) English use remained in 95% of peasants and the lower class and resurged 

due to the 100 Year War against France, and the earlier Bubonic Plague in the mid-

fourteenth century. Shakespeare’s Early Modern England emerged, borrowing over 

10,000 Norman words, removing noun genders, and simplifying adjective inflections. 

The Great Vowel Shift commenced (Mastin, 2011)  and pronunciation changed during 

1350 to 1700.  It marked the point at which language became more standardised and 

akin to today. 

To further put the results into perspective, Early Modern English began around the 

sixteenth century when vocabulary expanded at its greatest rate, and it is much closer 

to today’s language than that of Old or Middle English (Horobin, 2010). By this time 

pronouns, they, their, them had become firmly established in the standard language, 

such as most personal pronouns that have maintained number, case, and gender 

throughout the history of English. The word its only came into print in 1598, and his 

was a neuter possessive where today we would use its (Nevalainen, 2006). While we 

elected not to replace its with his words because while its does not appear in any copy 

of Shakespeare’s works published during his lifetime, some instances do appear in his 

posthumous published plays. Replacing its with his would change the gender category 

of two poems, A Lover’s Complaint (personal pronouns score moved from .03 to .96) and 

The Rape of Lucrece (personal pronouns score moved from .003 to 1). While A Lover’s 

Complaint has been attributed to the poet John Davies of Hereford by Brian Vickers 

(2014), Wilson (1988) says that The Rape of Lucrece occupies an uncertain position in 

Shakespeare’s canon, as an early, apprentice, experimental piece. Our analysis before 

using the word his instead of its suggests that outside of the higher gender score from 

personal pronoun use, The Rape of Lucrece is a Shakespeare written poem, while A 

Lover’s Complaint was a contested work not written by Shakespeare.  Distinct sets of 

indefinite and definite articles and demonstratives also existed by this time and 

support our algorithm’s success to define the self from RA Power also, any many of the 

117 function words taken from the MRC Psycholinguistic database were used during 

this period.  While the meaning of some words has changed over time, many of the 
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sensory adjectives from the list were not identified, but there were enough early and 

simpler Early Modern English words identified to be of value. 

Empirical Zipf distributions and word accumulation curves have been used to 

highlight differences in word frequency distribution between Old English and Modern 

English of about 23%, whereas the differences between Early Modern English and 

Modern English is around 10% with the two modern language distributions being 

similar in terms of case, marking, and other inflectional paradigms like subjunctive 

ones, which have been replaced today by modal verbs (Bentz et al., 2014). Language 

does change over time, as does the meaning of some words, but by applying our 

approach across all of the Elizabethan works only and not drawing on any modern 

English works, any bias is consistent and does not change the clustering results. 

Estimating Shakespeare' word use for authorship identification purposes might be 

effective (see the Taylor poem in Thisted & Efron, 1987). It is known that Shakespeare 

had an active vocabulary of over 21,000 different words, and while today’s educated 

person’s vocabulary is less than half that, Shakespeare has been credited with 

introducing more than two thousand words into today’s everyday use (Bragg, 2003). 

Shakespeare’s strength was his support from the King, to write and perform his plays 

in the emerging trade centre, London for all to hear, the impact akin to today’s 

newspapers and the internet. Brown and Gilman (1989) suggest that Shakespeare’s 

dramatic text provide the best information on the colloquial speech of the period. He 

represented the conduct within court and society during a rich period of cultural 

reform and loaned from a library of lost voices (Bristol, 1996).  Shakespeare’s works are 

overrepresented in the first edition of the Oxford English Dictionary, contributing 

almost 33,000 quotations (Hoffmann, 2004), and he would have leaned on existing 

words in use during this important period of language reform. Notwithstanding this, it 

was estimated that Shakespeare knew an additional 35,000 words he did not use (Efron 

& Thisted, 1976).  Word accumulation curves (Figure 1) highlighted that during his life 

Shakespeare used around 21% more unique words than Marlowe.  However, there was 

a significant difference between the number of works each produced and comparison 

of word accumulation plots highlight they have similar word growth that might take 

into account the influence of vocabulary size varying with age differences (Hartshorne 

& Germine, 2015).  Regression Analysis showed similar Richness characteristics for 

Shakespeare and Marlowe, and results of two-sample T-Tests (p-value 0.980) also 

suggested no significant difference between Shakespeare and Marlowe when Johnson 
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Arcsine Transformations are applied to normalise the positively skewed data.   

Therefore, we suggest Richness (R) is a valuable stylistic contributor for authorship 

identification. 

The correlation analysis of the four high-level RPAS variables highlighted that the 

RPAS variables are best used in this configuration, or as RPAS (VAHOG) without the 

five independent sensory elements aggregated into one Sensory Adjective (S) variable.  

This was also highlighted in the results of the Linear Discriminant Analysis. 

There were also some periods where there seemed to be ‘depression-like’ episodes 

where RA Power dips predominantly (as shown by AtoR in Figure 8).  These results 

are also reflected in the sensory-based adjectives and might be useful in determining 

changes in the cognitive states of people.  Further analysis would need to be conducted 

using recent data of depressed subjects. However, it has the potential to identify 

characteristics of self within cyberspace for law enforcement purposes. 

4.5 Testing the PCA and LDA Concepts on Contemporary Data 

There is no doubt that the Shakespearian dataset is not sufficient to rely on solely.  

Therefore, we draw on contemporary data from research conducted in later chapters 

(Chapter 8 and 9) to emphasise the possible connection to low RA Power scores.  Using 

the techniques from the first study of the Elizabethan playwrights and poets, Principal 

Component Analysis (PCA) and Stepwise Linear Discriminant Analysis (LDA) is 

conducted on this data to demonstrate that the techniques can separate the writing of 

contemporary authors and not only 400-year-old text. Ten samples each from novelists 

Iris Murdoch and P.D. James were selected, ensuring that these were not at a point 

where Iris Murdoch’s markers for Alzheimer’s disease (AD) has manifested and skew 

the findings. 

As can be seen from the Principal Component Analysis in Figure 9, two components 

were sufficient to separate the stylometric signatures of both authors.  In conducting 

Linear Discriminant Analysis, Richness and Referential Activity Power, the two most 

significant elements from each canonical function are used. The means of the ten novel 

samples are highlighted in Figure 10 to suggest that Iris Murdoch’s Referential Activity 

Power and Richness are lower than P.D. James.  Murdoch’s writing throughout her life 

did indicate a trend of falling Richness values in her novels earlier than a period 12 

years before her formal diagnosis of AD, but a number of her works were quite high.  
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Figure 9: Results of ten samples each from the authors Iris Murdoch and P.D. James, showing the different 
groupings from the Principal Component Analysis.  These were early samples for both authors to ensure that the 
impacts of Murdoch’s Alzheimer’s disease did not increase the variance of her sample. The table highlights the 
contribution of the two components that the RPAS-VAHOG variables made. 

 

Figure 10: Results of the Linear Discriminant Analysis of the ten samples each from the authors Iris Murdoch and 
P.D. James showing the most significant elements from each canonical function (Richness and Referential Activity 
Power). A comparison of both means of the ten novel samples is also shown and highlights that Murdoch’s 
Referential Activity Power is lower (more depressed) with a lower Richness score, which would indicate there are 
still markers for depression / anxiety in the samples. 

 
 

There were also three documented periods in her life where her Referential Activity 

Power scores fell below 10 and matched times of her known depression. This could 
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suggest that Murdoch’s writing has markers for depression, as indicated by the lower 

Referential Activity Power scores, but we leave that idea for further discussion in 

Chapter 8. 

4.6 Conclusions 

We find RPAS is a different approach to the identification of self. It includes words that 

are strong in concreteness and imageability that reflect known psychological states in 

an individual's personality. The use of “sotto voce”, the authorial voice which projects 

the true identity of the authors has enabled us to separate Shakespeare’s works. Using 

RPAS and the PCA and LDA techniques on contemporary authors, we were also able 

to separate the authorship of Iris Murdoch and P.D. James. The broader implications of 

this research may provide signalling of depressive episodes that could have major 

social implications, such as averting suicide. 

4.7 Summary 

In this chapter, the use of RPAS equations was found to be effective at identifying the 

authorship of the Elizabethan playwrights.  The most significant findings for this 

chapter were that PCA was able to separate the contested authored works from the 

known works of the authors using RPAS and that the LDA technique was able to 

differentiate the known authored works using the Sensory Haptic and Auditory 

elements of RPAS. 
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Chapter 5 
 

 

Edward III 
 

 
In this chapter, the second of the three studies into the Elizabethan playwrights’ and 

poets’ identity is addressed.  The study draws on the known works of William 

Shakespeare and Thomas Kyd.  The study aims to identify the authorship of the 19 

unknown authored play scenes from the unknown authored play, The Reign of King 

Edward III using RPAS.  

Using RPAS (Chapter 3 methods), PtoR, AtoR, and StoR plots are constructed and 

analysed. The Vector Space Method (VSM) is conducted to cluster the unknown scenes, 

along with its variant, The Imposter’s Method.  The findings are supported using 

Seriation with noise. 

In this second study, the first research question is again addressed (Section 1.3) and 

Hypothesis H1 (Section 1.4) is retested using more complex data. 

The Vector Space Method (VSM) and alternate Imposters Method were supported by 

the Seriation with noise technique and the PtoR and StoR clustering. They consistently 

separated works by Shakespeare and Kyd. Given these findings, we are able to reject 

the null hypothesis and say that the stylistic fingerprint of a person’s personality – 

their personal signature – can reveal their ‘identity’ from their writing style. 

This chapter is taken from a peer-reviewed paper: Did William Shakespeare and Thomas 

Kyd Write Edward III? It was accepted for publication by the International Journal on 

Natural Language Computing. Vol. 6, No. 6. December 2017. 

5.1 Introduction 

The Reign of King Edward III (Edward III) play was first published in 1596 and is of 

uncertain authorship (Slater, 1988). However, it is a new addition to the Shakespeare 

canon, and even while there is a suggestion that Shakespeare is not the sole author, he 

is considered to be a significant one (Shakespeare, & Melchiori, 1998). It wasn’t 

included in the selection of traditional works used in Chapter 4. However, the idea that 

the work might be Shakespeare's was first suggested by Edward Capell in 1760 

(Champion, 1988). Many others have offered their own candidate from the list of 



 86 

popular playwrights of the time since then, including that the 19 scenes within it are all 

Shakespeare's, but more recently, Brian Vickers, using plagiarism detection software, 

has suggested that Thomas Kyd is the major author with Shakespeare having a lesser 

role (Vickers, 2014).  We test the claim that the anonymous play, Edward III, was co-

written by William Shakespeare and Thomas Kyd. 

5.1.1 An approach 

While many text analysis techniques rely on basic statistical correlations, word counts, 

collocated word groups, or keyword density (Lamb, Paul, & Dredze, 2013; Leech & 

Onwuegbuzie, 2007; Matsuo & Ishizuka, 2004), Vicker’s approach using trigrams, 

instances where three consecutive words in a sentence closely match known authored 

works, is a more recent technique.  

We use RPAS to create stylistic signatures of Shakespeare, Kyd, and Marlowe and 

compare them to the 19 scenes within the Edward III play to suggest the authorship 

before comparing these results to the recent study by Vickers. We also label the four 

commonly understood scenes attributed to William Shakespeare (scenes 1.2, 2.1, 2.2. 

and 4.4 which we refer to as chunks 2, 3, 4 and 13).  We then analyse and cluster the 

results to identify the likely authorship of the 19 unknown scenes within Edward III. 

5.2 Methodology 

We draw on the June 1999 Project Gutenberg Etext of The Reign of King Edward the 

Third, attributed in part to William Shakespeare, and the February 2011 Project 

Gutenberg EBook of The Spanish Tragedy, by Thomas Kyd.  While scholars have argued 

that Shakespeare's writing can be seen in the additional passages of Thomas Kyd's 

fourth quarto of The Spanish Tragedy (Bruster, 2013), we have used an earlier version, 

the second quarto printed in 1592 to avoid any influence of Shakespeare in the results.  

Consideration was given to using additional works from Kyd.  Cornelia was discarded 

because it is a translation of a known earlier work of another author. The anonymous 

play Soliman and Perseda is now being attributed to Kyd because it is presented as a 

summarized plot in The Spanish Tragedy, however, features within the play have also 

been attributed to Shakespeare, Marlowe, and Kyd (Merriam, 1995) and it too was 

discarded in favour of The Spanish Tragedy. 

We remove all stage direction and pre-process both files with the Stanford Parts Of 

Speech Tagger (Toutanova & Manning, 2000) to remove all stop words and then 
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aggregate the works by word frequency.  The Reign of King Edward the Third is further 

broken down into segments marked by the 19 scenes (average scene size of 1035 

words, 88 – 3720). 

We use William Shakespeare’s Venus and Adonis, and Christopher Marlowe's Hero and 

Leander, which are drawn from a pre-processed corpus (see Chapter 4) and originally 

sourced from the complete works of Shakespeare (Farrow, 1993) and Marlowe (Farey, 

2014).  We norrmalised the RPAS Personal Pronouns (P) across the 21,300 words from 

Kyd’s The Spanish Tragedy, the 19,600 words in the anonymous Edward III play, and 

divide them by the 897,000-word corpus of Shakespeare and Marlowe so that all of the 

Personal Pronoun results are consistent across all tests. 

We create a nine-dimensional array from the data using RPAS and apply three 

complementary techniques to reduce any single bias and determine the possible 

authorship of the 19 scenes.  As a final measure, we then use seriation to visualise the 

nine-dimensional array as a one-dimensional continuum and get some distance metrics 

between the clusters, before adding noise to test the strength of the co-located cluster 

edges. 

5.2.1 Three Complementary Techniques 

Apart from examining the individual RPAS values from the 19 Edward III scenes 

(which includes the Sensory sub-elements VAHOG Visual, Auditory, Haptic, 

Olfactory, and Gustatory measures), we plot Personal Pronouns (P) against Richness 

(R) (PtoR), Referential Activity Power (A) to Richness (R) (AtoR), and Sensory 

Adjectives (S) to Richness (R) (StoR) and examine the clusters that form. 

We then use the Vector Space Method (VSM) technique (Koppel, & Winter, 2014; 

Voorhees, 1998), see Section 3.10 for more details on the technique. We conduct pair-

wise comparisons of each of the 19 Edward III scenes against Thomas Kyd's work, The 

Spanish Tragedy and William Shakespeare’s poem Venus and Adonis (each a 36 pair-wise 

comparison) using both cosine and minmax similarity detection (Koppel & Seidman, 

2013). and plot them to examine the clusters. 

Extending the cosine and minmax approach of VSM, we then use the imposter’s 

method (Seidman, 2013), where we compare work that is not the work of either of the 

two authors and in this case, is used to cluster commonly authored scenes (see Section 

3.11). This method gives surprisingly strong results for the verification problem, even 
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when the documents in question contain no more than 500 words (Koppel & Winter, 

2014).  We select Christopher Marlowe's poem, Hero and Leander, completed by George 

Chapman after Marlowe’s death which is very stylistically different to both Kyd and 

Shakespeare’s work. 

5.2.2 Seriation 

We provide the R seriation package with the 9x19 matrix consisting of the nine RPAS 

values for each of the 19 scenes of Edward III.  A detailed description of the seriation 

method can be found in Section 3.5. 

5.3  Results 

Discriminating by sensory-based VAHOG measures having zero scores, chunks 8, 10, 

11, 12, 14, 15, 16, 17 stand out, and we include chunks 6 and 18 to the list when we 

consider Richness and Personal Pronouns scores (R > 50 or P > 0). 

We conduct visual clustering and plot Personal Pronouns (P) against Richness (R) 

(PtoR) (see , Referential Activity Power (A) against Richness (R) (AtoR), and Sensory 

Adjectives (S) against Richness (R) (StoR) and examine the results (see Figure 11 (PtoR) 

and Figure 12 (StoR). AtoR is omitted here because it mimics PtoR, (see Figure 38 in 

Appendix A).  PtoR discriminates chunks 6, 8, 10, 11, 15, 16, 17, and 18 by Richness and 

Personal Pronouns. Of these, chunks 6, 8, 15, 16, 17 have a richer and less feminine 

gendered style (R > 50 and P > 8) while chunks 10, 11, and 18 appear ambiguous. AtoR 

reinforces the Richness aspects but does not contribute further (see Figure 38 in 

Appendix A).  StoR supports the PtoR results and discriminates chunks 3, 6, 8, 10, 12, 

15, 16, 17, and 18 by Richness and a wide sensory range.  Of these, chunks 6, 8, 15, 16, 

and 17 have a richer and much wider sensory range (where R > 50), while chunks 10, 

12, and 18 appear ambiguous. 
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Figure 11: In this Edward III gendered Personal pronouns (P) versus Richness (R) diagram we see chunks 6, 8, 10, 
11, 15, 16, 17, and 18 with greater than 50% richness or greater than 0 gendered personal pronouns. Of these, we 
see the ‘Shakespeare 5’ in the smaller shaded ellipse having higher female gender scores and Richness, while 18, 
10, and 11 might be ambiguous. Of note, the four Shakespearian clusters marked with a red circle are those 
commonly attributed to Shakespeare.  Further, the ellipses are our visual clustering assignment. 

 

Figure 12: In this Edward III Sensory Adjectives (S) versus Richness (R) diagram with the VAHOG sensory 
allocations, we see chunks 3, 6, 8, 10, 12, 15, 16, 17, and 18 stand out because Richness is greater than 50% or 
they have a wide sensory range when compared to the shaded circle Kyd chunks. Of these, we see the 
‘Shakespeare 5’ (6, 8, 15, 16, and 17) having a much wider sensory range with higher Richness, while 18, and 10 
might be ambiguous. Of note, the four Shakespearian clusters marked with a red circle are those commonly 
attributed to Shakespeare. Further, the shaded circle is our visual clustering assignment. 

 



 90 

The cluster assignment is discretionary, however, through amalgamation these 

techniques identify two groups (Group 1: 1, 2, 3, 4, 5, 7, 9, 13, 14, 19 and Group 2: 6, 8, 

10, 11, 12, 15, 16, 17, 18) with some variation in chunks 10, 11, 12, and 18. 

5.3.1 Vector Space Method (VSM) 

We create a stylistic signature of Thomas Kyd's play, The Spanish Tragedy using the 

RPAS method, and compare it to the 19 Edward III scenes using both cosine and 

minmax similarity detection (36 pair-wise comparisons).  We plot these as an XY 

Cartesian product in Figure 13 and examine the clusters.  We expect Kyd's authored 

chunks to appear in the upper-right-hand corner (a larger value indicates the scene is 

more similar to Kyd), and ones furthest away (bottom-left-hand corner) to be 

Shakespeare’s works.  The similarity plot (Figure 13) highlights two clusters, and we 

assign Kyd's authorship to one (chunks 1, 2, 5, 7, 9, 10, 11, 12, 13, 14, 18, 19) and 

Shakespeare to the other (chunks 6, 8, 15, 16, 17).  Chunks 3 and 4 sit outside but also 

indicate Kyd. 

Figure 13: Using the 9-dimensional RPAS vector we compare Thomas Kyd’s Spanish Tragedy to Edward III scene 
chunks using minmax and cosine similarity detection. We see the extreme values of chunks 3 and 4(commonly 
attributed to Shakespeare), and these are clearly Kyd on this metric. The ‘Shakespeare 5’ (chunks 6, 8, 15, 16, 17) 
appears in the lower cluster.  Of note, the four Shakespearian clusters marked with a red circle are those 
commonly attributed to Shakespeare.  Further, the ellipses are our visual clustering assignment. 

 

Next, we compare Shakespeare’s Venus and Adonis to Thomas Kyd’s The Spanish 

Tragedy using both cosine and minmax similarity detection.  The similarity between 
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Shakespeare and Kyd’s work is small (cosine 21.96%, minmax 18.29% or ~79.9% 

dissimilar) so Shakespeare's authored chunks will sit closer to the upper-right-hand 

corner. The similarity plot (Figure 14) highlights a Shakespeare cluster (chunks 6, 8, 11, 

15, 16, 17), and a Kyd cluster (chunks 1, 2, 4, 5, 7, 9, 12, 13, 14, 18, 19). Chunks 3 and 10 

sit outside and are more like Kyd on the cosine measure, but ambiguous on the 

minmax measure. 

Figure 14: Using the 9-dimensional RPAS vector we compare William Shakespeare’s Venus and Adonis to Edward 
III scene chunks using minmax and cosine similarity detection. We see the ‘Shakespeare 5’ (chunks 6, 8, 15, 16, 
17) appear in the top cluster closest to Shakespeare’s work, but with the inclusion of cluster 11. The cluster in the 
lower left corner clearly highlights Kyd’s work as different from Shakespeare. Of note, the four Shakespearian 
clusters marked with a red circle are those commonly attributed to Shakespeare, and none falls close to 
Shakespeare.  Further, the ellipses are our visual clustering assignment. 

 

5.3.2 Imposters method 

We compare Christopher Marlowe's Hero and Leander to Thomas Kyd’s The Spanish 

Tragedy using both cosine and minmax. Marlowe’s work is considered to an imposter 

because he is neither Kyd nor Shakespeare. The similarity between Marlowe and Kyd’s 

work is small (cosine 22.096%, minmax 17.48% or ~80.2% dissimilar) so Kyd's authored 

chunks will sit furthest from the upper-right-hand corner. The similarity plot (Figure 

15) highlights a Shakespeare cluster (chunks 6, 8, 11, 15, 16, 17), and a Kyd cluster 

(chunks 1, 2, 4, 5, 7, 9, 12, 13, 14, 18, 19). Chunks 3 and 10 sit outside and are more like 

Kyd on the cosine measure, but ambiguous on the minmax measure. 
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Figure 15: Using the 9-dimensional RPAS vector we use the Imposter Method and compare Christopher 
Marlowe’s Hero and Leander to Edward III scene chunks using minmax and cosine similarity detection. Marlowe’s 
work is dissimilar to Kyd’s, and therefore, the work furthest away from Marlowe’s is Kyd’s. Logically, if there are 
only two authors in Edward III, then the work closest to Marlowe must be Shakespeare. We see the ‘Shakespeare 
5’ (chunks 6, 8, 15, 16, 17) appear in the top cluster closest to Marlowe’s work, but with the inclusion of cluster 
11. Of note, the four Shakespearian clusters marked with a red circle are those commonly attributed to 
Shakespeare, and they all fall close to Kyd.  Further, the ellipses are our visual clustering assignment. 

 

5.3.3 VSM using The Spanish Tragedy Chunks 

There are four commonly accepted scenes attributed to William Shakespeare by 

scholars (clusters 2 – scene 1.2, 3 – scene 2.1, 4 – scene 2.2, and 13- scene 4.4 are red 

circles in all of the figures) and in each case, we find they sit inside or close to Kyd's 

clusters.  We conduct further VSM analysis to counter the commonly held view that 

these are Shakespeare's. 

We chunk Thomas Kyd's The Spanish Tragedy into 25 scenes and conduct pair-wise 

comparisons of each of them against the four Edward III scenes attributed to 

Shakespeare (100 pair-wise comparisons) using both cosine and minmax similarity 

detection (see Figure 16).  We would expect the Shakespeare scenes to be very 

dissimilar to Kyd’s writing, and the majority of the 25 scenes would be quite far from 

the top right corner. However, this was not the case. We find 13 of the 25 scene chunks 

clearly identify with Kyd (~52%), which we believe is a relatively high number given 

the smaller size comparisons. 
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Figure 16: Kyd’s 25 Spanish Tragedy scenes compared four times (with the four Shakespeare scenes) giving a high 
number of similarity comparisons. 

 

5.3.4 Seriation 

Throughout these different visualization techniques, we see variability with chunks 6, 

10, 11, and 18, and the four commonly accepted scenes attributed to William 

Shakespeare (chunks 2, 3, 4, and 13) identify as Kyd, but many of the techniques have 

been dependent on an arbitrary visual clustering size. Therefore, to add further 

reliability to the results, we cluster the data using seriation. 

The R seriation package is fed a 9x19 matrix of the data, and using Euclidean distance 

we seriate the data to minimize the Hamiltonian path length. Results of the six 

seriation techniques available highlight that Hierarchical Clustering with Optimal Leaf 

Ordering (OLO) outperforms the Travelling Salesperson technique (path lengths 140.96 

vs. 157.52). The order of the 19 chunks is 8 17 15 16 6 10 9 11 18 19 13 14 12 5 1 2 7 4 3 

(see Table 5 for more detail). When we compare the distances between each chunk, the 

ordering sequence is important, but the distance information does not convey much. 
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Table 5: The Seriation results of the 19 Edward III scenes show that Ordinal Leaf Ordering (OLO) technique 
provides the shortest Hamiltonian path. The ‘Shakespeare 5’ appears at the beginning distant from the 
commonly attributed Shakespeare scenes (marked with *). 

OLO 

Order  

Chunk Scene Author 

1 8 3.4 WS 

2 17 4.8 WS 

3 15 4.6 WS 

4 16 4.7 WS 

5 6 3.2 WS 

6 10 4.1 TK 

7 9 4.9 TK 

8 11 4.2 TK 

9 18 4.5 TK 

10 19 5.1 TK 

11 13 4.4 TK* 

12 14 4.3 TK 

13 12 3.5 TK 

14 5 3.1 TK 

15 1 1.1 TK 

16 2 1.2 TK* 

17 7 3.3 TK 

18 4 2.2 TK* 

19 3 2.1 TK* 

*scenes traditionally attributed to Shakespeare 

 

To see how stable the results are, we insert noise into the initial 9x19 RPAS-scene 

matrix and recalculate the Euclidean distances with various amounts of noise (between 

1 – 2000).  An examination of the scene chunk order after seriation (see Table 6) 

highlights the susceptibility of chunks 10 and 11 to moderate amounts of noise, and 

there is some movement of the order of the scene chunks in the middle section with a 

significant amount of introduced noise.  However, we find the Shakespeare chunks (6, 

8, 15, 16, 17) do not move, nor do the three chunks commonly attributed to 

Shakespeare (2, 3, and 4), which remain in a large group with Kyd’s work (chunks 1, 2, 

3, 4, 5, 7). 
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Table 6: The different OLO seriation results are showing changes in order when noise is added to the RPAS scene 
matrix. Shakespeare’s work sits on the left (chunks 8, 17, 15, 16, 6), while Kyd's scenes sit on the far right with the 
commonly accepted Shakespeare scenes (5, 1, 2, 7, 4, 3). 

OLO Seriation of 19 Edward III scenes with introduced noise Noise 

8 17 15 16 6 10 9 11 18 19 13 14 12 5 1 2 7 4 3 0 

8 17 15 16 6 10 9 11 18 19 13 14 12 5 1 2 7 4 3 1 

8 17 15 16 6 11 9 10 18 19 13 14 12 5 1 2 7 4 3 50 

8 17 15 16 6 11 9 10 18 19 13 14 12 5 1 2 7 4 3 100 

8 17 15 16 6 10 18 19 13 14 12 11 9 5 1 2 7 4 3 200 

8 17 15 16 6 10 18 19 13 12 14 11 9 5 1 2 7 4 3 400 

8 17 15 16 6 11 9 10 18 19 14 12 13 7 5 1 2 4 3 800 

8 17 15 16 6 10 18 11 12 14 19 13 9 7 5 1 2 4 3 1000 

8 17 15 16 6 10 18 11 9 12 14 19 13 5 1 2 7 4 3 2000 

 

5.4  Discussion 

When we examine the 19 Edward III scenes using RPAS, the Visual, Auditory, Haptic, 

Olfactory, and Gustatory (VAHOG) Sensory (S) results split the data into two distinct 

groups (a 57/42% split). This split is in line with Brian Vickers' claim of a scene split of 

about 60/40%, but the data can also be separated by Richness (R) and Personal 

Pronouns (P) with similar results.  The amalgamation of the PtoR, AtoR, and StoR 

analysis clusters chunks 6, 8, 15, 16, and 17.  These chunks have a richer and much 

wider sensory range with a lesser feminine style (where R > 50 and P > 8), and it 

highlights the significance of using Richness, Personal Pronouns, and the Sensory 

VAHOG variables in RPAS. Chunks 10, 11, 12, and 18 stand out but appear to be 

ambiguous. 

By using VSM we can compare Edward III to a known work of Thomas Kyd, and we 

assign chunks 6, 8, 15, 16, and 17 to Shakespeare and the rest to Kyd.  Using 

Shakespeare’s Venus and Adonis, we again see some further variability in chunk 10 and 

11, but overall the chunks are consistent with the previous techniques.  These results 

are reflected in the Imposters Method with VSM using Marlowe’s Hero and Leander.  

The only change from Shakespeare's is the order of chunks 6 and 8, and again this 

reinforces the overall results adding another layer of consistency.  Using the imposter 

method in a study of 42 commonly attributed works of Shakespeare that also included 

both plays of Thomas Kyd and the Edward III play, the Koppel and Winter (2014) 

findings suggest that Edward III is more similar to Thomas Kyd’s plays than 39 of 

Shakespeare’s. 
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We also find all four commonly attributed Shakespeare scenes (chunks 2, 3, 4, and 13) 

consistently fall inside the Kyd clusters or close to them. Using ‘new-optics’ stylometric 

measures on Edward III play, Elliot and Valenza (2010) findings suggest that when 

taken as a group, Shakespeare’s authorship of the four scenes commonly attributed to 

him are unlikely, a view they say is supported in Marina Tarlinskaja (2006) 

unpublished article. 

When we conducted further VSM analysis by using VSM and chunking Thomas Kyd's 

The Spanish Tragedy into 25 scenes shows close similarities to 52% of Kyd's work. The 

results we believe, given the small size of the chunks, would appear to be a relatively 

high number of similar works and supports the earlier results that their authorship is 

probably Kyd’s and not Shakespeare’s. 

We find the arbitrary nature of the clustering size does influence the reporting to a 

small degree, and while we believe the cluster sizes reasonable, there has been some 

minor variability with chunks 6 and 18, but more so with chunks 10 and 11. However, 

using Seriation, it is clear that chunk 6 is part of the ‘Shakespeare 5’ (sits alongside 

chunks 8, 15, 16, and 17).  Chunks 10, 9, 11, and 18 are the closest chunks to the 

Shakespeare cluster but are separate from him.  By adding a moderate amount of noise 

to the seriation matrix, we find some variability with chunks 10 and 11. It is possible 

that they are collaborative scenes containing both the work of Kyd and Shakespeare.  

However, of the commonly accepted Shakespeare scenes, three of them clustered 

together (chunks 2, 3, and 4) at the opposite end to the Shakespeare work and no 

amount of introduced noise moved or separated them from Kyd’s work.  Only chunk 

13 sits away, and while it is six scenes from the ‘Shakespeare 5’, it is closer to Kyd. 

In comparing these results to Vickers' (2014), we find we agree with nine of the scenes 

that he has suggested are Kyd’s, and this analysis suggests that scenes 4.1 (chunk 10) 

and 4.2 (chunk 11) appear to be Kyd Shakespeare collaborations. We disagree with his 

analysis of scenes 3.2, 3.4, 4.6, and 4.8 (chunks 6, 8, 15, and 17 from the ‘Shakespeare 5’ 

cluster).  We also suggest that the four scenes commonly attributed to Shakespeare, 

scenes 1.2, 2.1, 2.2, and 4.4 (chunks 2, 3, 4, and 13) are written by Kyd, although scene 

2.1, and to a lesser extent scene 2.2 is more ‘Kyd-like’ and away from the main body of 

the other Kyd scenes (see Elliot & Valenza, 2010 for similarities to these findings).  As 

we show in Table 7, we agree with Vickers’ conclusion that the majority of the work 

Edward III was written by Kyd. 
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Using RPAS, we identify subtle characteristics within Shakespeare that identify him 

separately to Kyd. Shakespeare uses more unique words and less repetition than Kyd, 

less feminine personal pronouns, and more masculine ones, and overall, he used a 

wider range of visual descriptions, but draws less on sensory characteristics and 

emotional experiences, and is vaguer and more general than Kyd. 

Table 7: The 19 scenes of the Edward III play with the Shakespearian scenes are referenced to the 19 chunks. In 
the third column, the five commonly attributed Shakespeare scenes are shown against those unknown authored 
scenes. In column four are the results of Brian Vickers' Kyd trigram scene allocation.  Column five shows a 
summary of the results using RPAS. 

Chunk Scene Long-Held View Vickers View Our View  

1 1.1 U K K  

2 1.2 S S K  

3 2.1 S S K  

4 2.2 S S K  

5 3.1 U K K  

6 3.2 U K S  

7 3.3 U K K  

8 3.4 U K S  

9 3.5 U K K  

10 4.1 U K K/S* Collaboration? 

11 4.2 U K K/S* Collaboration 

12 4.3 U K K  

13 4.4 S S K  

14 4.5 U K K  

15 4.6 U K S  

16 4.7 U U S  

17 4.8 U K S  

18 4.9 U U K  

19 5.1 U K K  

 

5.4.1. A Limitation of the overall approach 

A limitation of this overall approach is that the results are dependent on the chunking 

of the data into 19 scenes.  Elliot and Valenza (2010) split scene 2.1 into two parts. If 

these scenes are not the true delineation between the efforts of two authors, then this 

would skew the results, but at the end of the day, it is difficult to tell what, if any, a 

split in the scenes may have been. Here we assume that each scene was written by a 

single author.  However, if this was not true then scene 2.1 would appear stylistically 

different from both William Shakespeare and Thomas Kyd’s other works as a third 

author. This did not occur, although as we have stated, scene 2.1 split and complete, 

and to a lesser extent scene 2.2 were more ‘Kyd-like’ than the other scenes.  There were 
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also two works that were similar to both authors (chunks 10 and 11, or scenes 4.1 and 

4.2) and they could well be collaborations.  In dealing with over 400 years old text, we 

suggest the exact details and events that led to this fascinating union of work by 

Thomas Kyd and William Shakespeare may well be lost within the strands of time. 

5.5. Conclusion 

In this analysis, the four scenes commonly attributed to Shakespeare identify as 

Thomas Kyd, but this is not unexpected (see Elliot & Valenza, 2010). However, it seems 

clear from the analysis that Thomas Kyd wrote the majority of the play and William 

Shakespeare played a lesser role.  On the basis of these findings, the collaborative play, 

The Reign of King Edward III, could well have been written by William Shakespeare and 

Thomas Kyd. 

In examining this multivariate technique, we find the analysis provided a consistent 

result, and therefore the techniques were resilient.  The results of seriation were found 

to be robust to perturbations in the RPAS features and strongly validate the approach 

to author identification.  Significant differentiation was found using RPAS and the 

neurolinguistics approach of Richness (R), gendered Personal Pronouns (P), Referential 

Activity power (A), and Sensory modes (S). 

5.6 Summary 

In this chapter, the use of RPAS equations was found to be effective at identifying the 

authorship of the Elizabethan poets.  The most significant findings for this study were 

that the different variations of the Vector Space Model (VSM) technique provided 

consistent results and was supported by the seriation techniques with noise to 

highlight Kyd likely wrote the four Shakespeare scenes and that Shakespeare and Kyd 

were the likely authors of the play. 
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Chapter 6 
 

 

The Passionate Pilgrim 
 

 
In this chapter, the third and final of the studies into the Elizabethan playwrights’ and 

poets’ identity is addressed.  The study draws on the known works of William 

Shakespeare Christopher Marlowe and Sir Walter Raleigh, Richard Barnfield, and 

Bartholomew Griffin.  The study aims to identify the authorship of the 12 unknown-

authored poems from the 21 poems within the publication, The Passionate Pilgrim, using 

the same methods as Chapter 5, again addressing the first research question and 

testing Hypothesis H1 (Section 1.4) with yet again more complex data. 

The results of the PtoR plot, Principal Component Analysis (PCA), Linear Discriminant 

Analysis (LDA), and the Vector Space Method (VSM) provided consistent clustering 

results.  The unknown poems fell into four of five clusters, where only one poem (12) 

didn’t belong to any of the five authors.  Given these findings, we are able to reject 

the null hypothesis and say that the stylistic fingerprint of a person’s personality – 

their personal signature – can reveal their ‘identity’ from their writing style.  

This chapter is taken from a peer-reviewed paper: Stylometric Techniques for Multiple 

Author Clustering: Shakespeare’s Authorship in The Passionate Pilgrim. It was published in 

the International Journal of Advanced Computer Science and Applications. (Accepted 14 

March 2017 for Vol. 8(3), 1-8). 

6.1 Introduction 

William Jaggard first printed The Passionate Pilgrim in 1598-99, and the authorship of 

the 21 poems within it was attributed to William Shakespeare (Erne, 2013). However, 

Bartholomew Griffin's 1596, Fidessa More Chaste Than Kind, already contained poem 11 

(Devington, 2007).  Another, poem 19, appeared anonymously in Anne Cornwallis’ 

1580 personal notebook alongside works from Sir Philip Sidney, Sir Walter Raleigh, Sir 

Edward Dyer and Edward de Vere, 17th Earl of Oxford (Woudhuysen, 1996). The list 

grows, and in 1598, Jaggard’s brother John printed Richard Barnfield’s, The Encomion of 

Lady Pecunia, containing poems 8 and 11 (Erne, 2013). By 1609, only five had been 

confirmed as Shakespeare’s (poems 1, 2, 3, 5, and 17) having appeared in The Sonnets, 

or his play, Love’s Labour’s Lost (Connor, 2014). Then, England's Helicon also printed a 
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version of poem 20, attributing it to Christopher Marlowe, although its reply (signed 

Ignato) was later said to be by Sir Walter Raleigh (Devington, 2007). Jaggard persisted 

with his claim, and in the 1612 third edition added a number of poems from Thomas 

Heywood, however, after complaints, Jaggard removed Shakespeare’s name from the 

title (Erne, 2013).  By then, the authorship of the 12 remaining anonymous poems lay in 

doubt, something that has remained for over 400 years. 

Modern scholars are divided on the authorship of the remaining anonymous twelve.  

Chiljan (2012) suggests Jaggard used Shakespeare’s name because the majority of the 

poems were Shakespeare’s, including the 12 unidentified poems in The Passionate 

Pilgrim said to be his earlier quality work and never meant for publishing.  She also 

adds there is some doubt surrounding the authorship of the Barnfield and Griffin 

poems.  Bednarz (2007) disputes Shakespeare’s authorship, while Elliott and Valenza 

(1991b) suggest eight, not 12 of the anonymous poems are Shakespeare’s.  However, 

Devington (2007) suggest poems 7, 10, 13, 14, 15, 16, and 19 use a similar six-line stanza 

format to Shakespeare’s Venus and Adonis, and poems 4, 6, and 9 are about Venus and 

Adonis and have Shakespearian similarities, but Chiljan (2012) says poems 7 and 13 

resemble Robert Greene’s poems. 

It is interesting to note that anonymous poem 12 gets little attention, even though it 

appears in Thomas Deloney’s The Garland of Goodwill, and entered into the Stationers 

Register ledger during 1592-3 (Korp, 2015). When chosen by Jaggard, Deloney was 

living with an arrest warrant over his head because of his insightful writing during the 

London riots and in no position to complain (Korp, 2015), but what is strange are the 

few references in the literature to Deloney as the author until recently. Either way, 

Jaggard cannot be asked about the true authorship of the 21 poems, and today, the 12 

poems, for the most part, remain unidentified. 

Stylometric analysis, the quantitative analysis of a text’s linguistic features have been 

extensively used to determine the authorship of the undocumented collaborations of 

the playwrights from the Elizabethan period, including Shakespeare (Segarra et al., 

2017). There appears dissension among leading Shakespearean authorship attribution 

scholars about an agreed method (Rudman, 2016), but the most successful and robust 

methods are based on low-level information such as character n-grams or auxiliary 

words (function word, stop words such as articles and prepositions) frequencies 

(Stamatatos, 2009). The premier work in evaluating authorship in the 16th to mid-17th 

centuries includes MacDonald P. Jackson, Brian Vickers, and Hugh Craig and Arthur 
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Kinney (Segarra et al., 2017). Jackson (2006) uses common low-frequency word phrases, 

repetition of phrases, collocation, and images to link word groups to other works. 

Vickers (2011) uses a tri-gram, or n-gram, approach, while Hirch and Craig (2014) use 

function word frequency and other methods, that includes ones based on word 

probabilities and the Information Theoretic measure Jensen-Shannon divergence (JSD) 

and unsupervised graph partitioning clustering algorithms (Arefin et al., 2014). 

However, there are other techniques used in this period of Shakespearean analysis, 

including simple function words (Matthews & Merriam, 1993; Merriam & Matthews, 

1994) and word adjacency networks (WANs) (Segarra et al., 2017).  However, the 

meaning-extracting method (MEM) from the field of psychology to extract themes 

from commonly used adjectives and describe a person from their personality, or self is 

very different (Boyd & Pennebaker, 2015; Chung & Pennebaker, 2008). We offer a new 

and alternative approach to authorship identification using personality. 

6.1.1 An Approach Using RPAS 

RPAS is used to create individual stylistic signatures of the 21 The Passionate Pilgrim 

poems and the known works of William Shakespeare, Christopher Marlowe and Sir 

Walter Raleigh, Richard Barnfield, and Bartholomew Griffin are labelled.  Three 

clustering techniques are then applied to identify the likely authorship of the 12 

anonymous poems within The Passionate Pilgrim. 

6.2 Methodology 

The Passionate Pilgrim contained within the complete works of Shakespeare (Farrow, 

1993) is pre-processed as per Section 3.1. The Passionate Pilgrim is further broken down 

into chunks that represent each known poem, and a decision made to follow the 

modern approach by editors (Devington, 2007), and divide poem 14 into two poems 

(labelled as 14 and 15) with a subsequent renumbering of the remaining poems so that 

there are twenty-one and not twenty poem chunks (see Table 37 in Appendix A). 

The 3,190-word data ends up as an aggregated matrix of 1,032 distinct word types 

across 21 poems, and the size of each varies between 96 and 377 words (average = 152). 

Putting this into perspective, they are slightly larger than a Shakespearian sonnet 

which varies between 91 and 132 words (average = 116). 

A 1613 play written after Shakespeare ceased writing is used to provide an 

independent author perspective and clustering technique. The Tragedy of Mariam, the 
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Fair Queen of Jewry by English poet and dramatist, Elizabeth Cary (Mark, 2014), was 

published 14 years after The Passionate Pilgrim, and stylistically very different to 

Shakespeare’s work and deemed an imposter (see Section 3.11). 

A nine-dimensional array is created from the data using RPAS before applying three 

complementary techniques to reduce any single bias and overlay the results against 

Richness (R) and Personal Pronoun (P) to determine the possible authorship of the 12 

anonymous poems.  As a final measure, seriation, an exploratory combinatorial data 

analysis technique, is used to visualise the nine-dimensional array as a one-

dimensional continuum and test the strength of the co-located cluster edges by adding 

random noise to the data vector. 

6.2.1 Complementary Techniques 

Principal Component Analysis (PCA) of the 21 poems was conducted (refer to Section 

3.14) Linear Discriminant Analysis (LDA) was conducted (see Section 3.15). The Vector 

Space Method (VSM) technique (Koppel & Winter, 2014; Voorhees, 1998) is used with 

Elizabeth Cary's, The Tragedy of Mariam, the Fair Queen of Jewry as an imposter 

(Seidman, 2013).  Pair-wise comparisons of each of the 21 Passionate Pilgrim poems is 

made against Elizabeth Carey's play (42 pair-wise comparisons) using both cosine and 

minmax similarity detection, to highlight the clusters that form based on their distance 

from Cary’s play (see VSM Section 3.10 and Imposters method Section 3.11 for more 

details on the methods). 

6.2.2 Seriation 

Seriation (refer to Section 3.5) was carried out on the 9x21 matrix consisting of the nine 

RPAS values for each of the 21 poems of The Passionate Pilgrim. 

6.3 Analysis 

Using RPAS Personal Pronouns (P) is plotted against Richness (R) (PtoR) for the 21 The 

Passionate Pilgrim poems (see Figure 17). PtoR discriminates the anonymous poems 14 

and 16 with Shakespeare (poems 2 and 3), and they have a low feminine gendered 

style (P > 10), while all of Shakespeare's known poems have a lower feminine gendered 

style (P > 30), contrasting this is the group consisting of the cluster with anonymous 

poems 7 and 19 that are similar in style to Griffin (poem 11) and Barnfield (poem 21) 

whom all have a higher masculine style (P >50). The Shakespeare (poem 1) and the 

Marlowe and Walter Raleigh (poem 20) are similar, as are Barnfield (poem 8) and 



 103 

Shakespeare (poem 5). The anonymous poem 12 (from Deloney) has a low Richness 

score is separate from the main body of poems. 

6.3.1 Principal Component Analysis (PCA) 

The findings show that many PCA correlations are in excess of 0.30. A visual indication 

of the correlation matrix highlights 24 coefficients are around 0.30 or higher and some 

are as high as 0.77, and Bartlett’s test is significant (p = 0.001) meaning there is some 

correlation between variables indicating that PCA is worthwhile. Four components are 

extracted and account for 81.95% of the variance.  

Figure 17: In this The Passionate Pilgrim gendered Personal pronouns (P) versus Richness (R) diagram, the 
overlays of the results of LDA, VSM, and PCA analysis highlight the consistency of other results. A Barnfield / 
Griffin series of poems can be seen (7, 11, 19, and 21) with greater than 50% gendered personal pronouns. This is 
supported by LDA, VSM and PCA Analysis. A Shakespeare series of poems can be observed (2, 3, 14, 17, and 18), 
also supported by LDA and VSM analysis. A Shakespeare / Marlowe / Raleigh series is observed (1 and 20) to 
have less than 20% gendered personal pronouns supported by LDA analysis.  Clearly, Deloney's poem 12 is 
supported by LDA, and PCA analysis as a standalone work also has the lowest Richness. In the range of 25-50%, 
gendered personal pronouns are the Shakespeare / Barnfield poems (5, 8, and 15) supported by LDA and VSM 
analysis, and these alongside the anonymous poems (4, 6, 9) (and 10, 13, 16 supported by LDA analysis). Further, 
the ellipses are a visual clustering assignment. 

 

In Figure 17, the two common clusters are overlaid. A Barnfield / Griffin group (11 

and 21) is found to sit with anonymous poems 7 and 19. While anonymous poem 12 

(Thomas Deloney) was close to Shakespeare (1) and Marlowe and Raleigh (20), it is the 

furthest poem from the Shakespeare cluster on Factor 1 and 2 scale that accounts for 

~55% of the variance. Additionally, the results highlight all of the known Shakespeare 

poems cluster (poems 1, 2, 3, 5, 17 with 6, 14, 15, and 16). Poem 4 is close to Barnfield 
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(8), and poems 6, 9, 15, and 16 are close to Shakespeare (5).  Richness is seen to be very 

narrow. 

6.3.2 Linear Discriminant Analysis (LDA) 

Three functions were extracted, and the first two accounted for 99.6% of the variance (1 

= 95.9 and 2 = 3.7). The Wilks' Lambda test (Coccia, 2008) of functions 1 through 3 was 

significant (p=0.009) which highlights that the null hypothesis can be rejected and 

suggests that all three functions together have a discriminating ability. The second and 

third functions together are not significant (p=0.190), neither is function 3 on its own 

(p=0.453). Functions 1-2 and functions 1-3 are plotted to generate six common 

clustering results (see Figure 17). It is found that the anonymous poems 10 and 13 are 

again close to Shakespeare (5) and Barnfield (8), as is 15. Anonymous poems 7 and 19 

are closer to Griffin (11) this time and further from Barnfield (21). Anonymous poem 12 

(Thomas Deloney) is again closest to Shakespeare (1) and Marlowe and Raleigh (20) 

but stands alone. Poem 14 is again close to Shakespeare (2 and 3).  

While poem 18 is also close to Shakespeare (1, 2, and 3), poem 4 is far from all the 

poems but closest to Griffin (11). Poem 6 is closest to Shakespeare (17). Poem 16 is 

closest to Shakespeare (5), and poem 9 is in the middle of Shakespeare (5), Barnfield 

(21) and Griffin (11). Again, there is some consistency with these results, but there 

seems to be a lack of clarity with poems 4, 6, 9 and 16. 

6.3.3 The Vector Space Method (VSM) 

Pair-wise comparisons of each of the 21 Passionate Pilgrim poems against Elizabeth 

Carey's play, The Tragedy of Mariam, the Fair Queen of Jewry (42 pair-wise comparisons) 

using both cosine and minmax similarity detection, highlights the clusters that form 

based on their distance from Cary’s play. Figure 17, indicates the three common 

clustering results. Here, anonymous poems, 7 and 19 are in a cluster with Griffin (11). 

Anonymous poem 14 is in a cluster with Shakespeare (1, 2, and 3) and Marlowe / 

Raleigh (20) and poems 12 and 18, and closest to Shakespeare (1), while Deloney’s 

poem 12 and 14 are closest to Shakespeare (2), but furthest away. Anonymous poems 4, 

6, 9, 10, 13, 15, and 16 are in a cluster with Shakespeare (5 and 17) and Barnfield (8). In 

this cluster Barnfield (8) is very close to Shakespeare (5), and poems 10 and 13 have an 

almost identical score. 
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Throughout these different analysis techniques, there is a consistency in three to four 

clusters forming with common poems in them, but many of the techniques have been 

dependent on a visual clustering size. Therefore, to add further reliability to the results, 

the data is clustered using seriation to measure cluster distances. 

6.3.4 Seriation 

The R seriation package is fed a 9x21 matrix of the data, and using Euclidean distance 

seriation of the data minimizes the Hamiltonian path length. Results of the six seriation 

techniques available highlight that Hierarchical Clustering with Optimal Leaf Ordering 

(OLO) outperforms the Travelling Salesperson technique (path lengths 214.63 vs. 

228.92). Incorporating the clustering of the OLO dendrogram at a height of 25, the 

order of the 21 chunks with clusters highlighted is [21 19 7 11] [4 9 6] [5 8 10 13 15 16 

17] [20 12 1 3 2 14 18] and it highlights some susceptibility between poems 11-4, 6-5, 

and 17-20. When the distances between each poem are compared, and either side of 

poems 11-4 (7-11-4-9), 6-5 (9-6-5-8), and 17-20 (16-17-20-12), the ordering sequence and 

distance information is important (refer Table 8).  

Table 8: Hamiltonian path distances between the 21 The Passionate Pilgrim poems. The OLO dendrogram edge 
clusters that form at a dendrogram height of 25 highlights a consistency in two of the three separation points. In 
the cluster split at poems 11-4, 7-11 and 4-9 are closer than 11-4 (27.3 versus 11.8 and 9.6). In the cluster split at 
poems 6-5, 9-6 and 5-8 are closer than 6-5 (10.61 versus 7.7 and 3.4), but in the 17-20 cluster split, while 16-17 
and 20-12 are closer than 17-20, the differences between 16-17 and 17-20 are marginal (15.8 and 12.6 versus 
16.8). 

Poem edges Path length 

21 19 16.60488 

19 7 24.69437 

7 11 9.561261 

11 4 27.27893 

4 9 11.78111 

9 6 7.683108 

6 5 10.61323 

5 8 3.444387 

8 10 4.88489 

10 13 3.22249 

13 15 3.455063 

15 16 4.449576 

16 17 15.8412 

17 20 16.75323 

20 12 12.6397 

12 1 14.13468 

1 3 11.68744 

3 2 8.28891 

2 14 13.00578 

14 18 6.162732 
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Further, when examining the OLO dendrogram edge clusters that form at a 

dendrogram height of 25 and find consistency in two of the three separation points. In 

the cluster split at poems 11-4, it can be seen that 7-11 and 4-9 are closer than 11-4 (27.3 

versus 11.8 and 9.6). In the cluster split at poems 6-5, 9-6 and 5-8 are closer than 6-5 

(10.61 versus 7.7 and 3.4), but in the 17-20 cluster split, while 16-17 and 20-12 are closer 

than 17-20, the differences between 16-17 and 17-20 are marginal (15.8 and 12.6 versus 

16.8). 

Table 9: The different OLO seriation results are showing changes in order when noise is added to the RPAS poem 
matrix. At around noise levels of 500, poems 15 and 16 switch positions, but then revert with further noise. At 
noise levels 800 and above, the Barnfield – Griffin cluster (7, 11, 19, and 21) move internally within the cluster but 
no poems leave. At noise levels 800 and higher the Shakespeare – Marlowe cluster (1, 2, 3, 12, 14, 18, 20) move 
internally. This suggests a high level of stability in the seriation OLO order and OLO clustering results  
([21 19 7 11] [4 9 6] [5 8 10 13 15 16 17] [20 12 1 3 2 14 18]). 

Noise 

Order 0 100 500 800 1000 2000 4000 8000 

1 21 21 21 7 7 7 7 7 

2 19 19 19 11 11 11 11 11 

3 7 7 7 19 19 19 19 19 

4 11 11 11 21 21 21 21 21 

5 4 4 4 4 4 4 4 9 

6 9 9 9 9 9 9 9 6 

7 6 6 6 6 6 6 6 4 

8 5 5 5 5 5 5 5 5 

9 8 8 8 8 8 8 8 8 

10 10 10 10 10 10 10 10 10 

11 13 13 13 13 13 13 13 13 

12 15 15 16 15 15 15 15 15 

13 16 16 15 16 16 16 16 16 

14 17 17 17 17 17 17 17 17 

15 20 20 20 14 20 20 14 14 

16 12 12 12 18 12 12 18 18 

17 1 1 1 20 1 1 20 20 

18 3 3 3 12 3 3 12 12 

19 2 2 2 1 2 2 1 1 

20 14 14 14 3 14 14 3 3 

21 18 18 18 2 18 18 2 2 

 

To see how stable the results are, in particular, the stability of the clusters connected at 

the poems 17-20 split, noise is inserted into the initial 9x21 RPAS-poem matrix and 

recalculate Euclidean distances with various amounts of noise (noise 1 – 8000). An 

examination of the scene chunk order after seriation (refer Table 9) highlights the high 

level of stability within the seriation and OLO clustering results. The different OLO 

seriation results are showing changes in order when noise is added to the RPAS poem 

matrix. At around noise levels of 500, poems 15 and 16 switch positions, but then revert 

back with further noise. At noise levels 800 and above, the Barnfield – Griffin cluster (7, 
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11, 19, and 21) move internally within the cluster but no poems leave. At noise levels 

800 and higher the Shakespeare – Marlowe cluster (1, 2, 3, 12, 14, 18, and 20) move 

internally, and at no point does poem 20 moves out of the cluster and join with poem 

17. 

6.4 Discussion 

Overall, the techniques were generally consistent, and seriation was useful because it 

was able to provide clustering and distance measures that appeared stable even with a 

relatively high level of introduced noise. Therefore, the basis of these findings lies in a 

rigorous multivariate approach to analysis and not a single technique.  However, one 

of the biggest concerns is the influence of the publisher.  While Jaggard or his 

associates cannot be discounted from having a hand in adding their own touches to 

some of these anonymous poems, blending them as it were so they appear as part 

collaborations, it is an unknown factor. It is known that Jaggard was able to get hold of 

some of Shakespeare's unpublished work, and both he and his brother John had access 

to a wide number of Elizabethan works.  What cannot be known is how much of this 

was early unpublished work. 

Of the 12 anonymous poems, two are likely Shakespeare's, possibly from his earlier 

unpublished works (poems 14 and 18 are similar to Shakespeare's poems 2 and 3 and a 

lesser extent poem 1). However, if they were not earlier Shakespearian poems, then 

they are from another poet entirely, one that has not been examined. Two other poems 

(7 and 19) have a blended style similar to Griffin (11) and Barnfield (21), and there is 

more of Griffin's style (similar to poem 11) in them than Barnfield's, and they are more 

likely to be Griffin's unpublished work. Again, if they are not an unpublished Griffin 

poem, then they too are a poet that has not been examined in this paper. Poem (12) has 

a blended style similar to Shakespeare (1) and Marlowe / Raleigh (20) but consistently 

shows itself to be different enough to be an independent poet and be the work of 

Thomas Deloney whose other poems were outside of this analysis. 

The remaining seven anonymous poems (4, 6, 9, 10, 13, 15, and 16) are all similar in 

style to a blended Shakespeare (5 and 17) and Barnfield (8). All of these, as are all of 

Shakespeare’s poems here, have a Richness score over 65%. They all have a Personal 

Pronoun score below 50%, which would be deemed as a feminine writing style which 

fits Shakespeare.  Poems 4, 6, and 9 are very similar in style to each other and closer to 

Shakespeare’s (5) style than Barnfield (8).  Poems 10, and 13 are closer to Barnfield’s (8) 
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style than Shakespeare (5, 17). Poems 15 and 16 have a higher Shakespeare (5) style 

than Barnfield’s (8) and are higher overall from the Shakespeare poems (5 and 17).  

This close style of Barnfield’s poem (8) to Shakespeare’s (5) is an anomaly, and if it 

were not for the work sitting in the Shakespeare cluster between 5 and 17, then it could 

be easily said that all the poems (4, 6, 9, 10, 13, 15, and 16) are Shakespeare’s. The 

literature around Richard Barnfield is examined more closely. While Barnfield and 

Shakespeare were certainly friends (Sauer, 2008) and could have collaborated, these 

poems are likely to be Shakespeare's because the style of Barnfield's poem (8) is very 

similar to Shakespeare's poem (5). It has been suggested, that the 1598 version of 

Barnfield's manuscript obtained by William Jaggard’s brother John was of insufficient 

length (indicated by the sparse printing layout), and William Jaggard provided his 

brother two poems from the yet unpublished The Passionate Pilgrim to extend 

Barnfield's Lady Pecunia publication. In the 1605 reprint of Richard Barnfield's Lady 

Pecunia, the two poems from the 1598 first edition (poems 8 and 21 from The Passionate 

Pilgrim) were not included (Barnfield, 1598; Barnfield, 1605). According to Barnfield 

(2008), he is said to have claimed authorship of only one of the two poems (stylistically 

likely poem 21). If this is true, then it explains the striking similarities between the 

Shakespeare and Barnfield poems (5 and 8), and a good indication that Shakespeare 

wrote both 5 and 8, and therefore poems 4, 6, 9, 10, 13, 15, and 16 are Shakespeare’s 

poems. While it further reinforces Jaggard’s approach to borrowing from other 

author’s works, from the analysis it is believed that Shakespeare wrote nine of the 

twelve anonymous poems (4, 6, 9, 10, 13, 14, 15, 16, and 18) including 1, 2, 3, 5, 17, and 

8. 

6.5 Conclusion 

Given Shakespeare's signature in almost three-quarters of the poems, Jaggard may 

have adopted shrewd marketing tactics in using Shakespeare's name as the sole author. 

Indeed, when he expanded the third edition with a collection of nine of Heywood's 

poems, he did not remove Shakespeare's name from the title, nor did he add Heywood 

as co-author, but in his collection of assorted verses.  Jaggard merely adopted what was 

a standard convention by publishers in the day (Reid, 2012). The analysis would 

suggest that the five authors, Barnfield, Deloney, Griffin, Marlowe, and Raleigh were 

not acknowledged, and several poems may well be collaborative works between 

Shakespeare and others but this also was common (Thomas, 2000). It is also possible 

that several poems (7, 14, 18, and 19) are not early work or collaborations, but other 
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writer’s poems not studied here. This failure to acknowledge all author’s poems would 

seem, at least by today's standards, to be an injustice. However, as it can be seen with 

Jaggard's publication of The Passionate Pilgrim and his later publication of 

Shakespeare's first folio, Jaggard focussed on promoting Shakespeare's work above all 

others. 

6.6 Summary 

In this study, the techniques used in study one (a PtoR plot, PCA, and LDA) were 

combined with the techniques used in study two (VSM and seriation with noise) and 

applied to a more complicated authorship scenario where there are multiple known 

and multiple anonymous authors. 

Again, the use of RPAS equations was found to be effective at identifying the 

authorship of the Elizabethan poets.  The most significant findings for this study 

outside of the consistency of the PCA, LDA, VSM, and seriation techniques were that 

one of the Barnfield poems (poem 8) was identified as Shakespeare’s work, and that all 

anonymous scenes were allocated authorship except one, believed to be written by the 

poet, Thomas Deloney. 

In the next part, the following three chapters look at authorship identity from the 

perspective of it changing over time. 
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Part Two: Longitudinal Studies 
 

 
In part one of this research thesis, the focus was on identifying the authorship of a 

number of different works using 400-year-old data from the Elizabethan playwrights 

and poets.  In part two, a further Elizabethan study is conducted using William 

Shakespeare’s sonnets to determine if identity changes over time. Then two further 

studies are conducted using contemporary data from the novels of the authors Iris 

Murdoch and Phyllis Dorothy (P.D.) James. The first one addresses the research 

question: Does a person’s ‘identity’ change over time because of life events, such as 

trauma, depression, and disease, or is it stable? Here we see if we can identity changes 

over time in a contemporary author’s work. 

The second one addresses the research question: Can the application of techniques to 

visualise the critical slowing down phenomena identify changes in a person’s moods, 

or shifts from one state to another, that might indicate a tipping point for self-

radicalisation? It is hoped that any observed tipping points observed in writing prior to 

significant events might mimic changes in the mind of a terrorist prior to them 

conducting some horrific act.   

In study four (Chapter 7) Shakespeare’s Dark Lady Sonnets are examined as an effect 

of writing changes over time.  In study five (Chapter 8) Iris Murdoch’s and P.D. James’ 

writing is compared using Parts of Speech analysis to show that the data is 

representative of larger known datasets to highlight known markers for dementia, and 

in particular, Alzheimer’s disease, 10-12 years prior to any formal medical diagnosis.  

In study six (Chapter 9) the Murdoch and James data is used to examine the effects of 

RPAS over time, and conduct visualisation techniques and detect the Critical Slowing 

Down dynamical property to identify any tipping points that might mimic a terrorist’s 

mindset prior to an attack.  In these three studies, there are two research questions that 

are addressed. In the next two studies the second research question is addressed 

(hypothesis H2): Does a person’s ‘identity’ change over time because of life events, such 

as trauma, depression, and disease, or is it stable? In the third study, the third research 

question is addressed (hypothesis H3): Can the application of techniques to visualise 
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the critical slowing down phenomena identify changes in a person’s moods, or shifts 

from one state to another, that might indicate a tipping point for self-radicalisation? 

Iris Murdoch was born in Dublin, Ireland, on the 15th July 1919, and she spent much of 

her life in Oxford and London in England during her writing career.  Her success was 

exemplified when she was made a Commander of the Order of the British Empire in 

1976, and a Dame Commander in 1987.  Iris Murdoch died in Oxford on the 8th 

February 1999 (aged 79).  P.D. James was born in Oxford, England, on the 3rd August 

1920, and she spent much of her life in Oxford and London during her writing career.  

She was made an Officer of the Order of the British Empire in 1983 and received life 

peerage as Baroness James of Holland Park in 1991.  P.D. James died in Oxford on the 

27th November 2014 (aged 94).  There are common ties of the same gender, close birth 

dates, and environmental experiences (both experienced two world wars and the same 

political and social transitions within England).  The novels of P.D. James were used to 

contrast Iris Murdoch’s results because unlike Iris Murdoch who stopped writing once 

she had been diagnosed with Alzheimer’s disease in 1997, P.D. James had not been 

diagnosed with Alzheimer’s disease and she continued to write up until her death. 

There are three papers that contribute to in this second part (refer Section 1.6): Novel 

Text Analysis for Investigating Personality: Identifying the Dark Lady in Shakespeare's 

Sonnets; The Impact of Depression and Apathy on Sensory Language; and The Stylometric 

Effects of Aging and Life Events on Identity. More detail about each one follows in the next 

three chapters. 
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Chapter 7 
 

 

The Dark Lady 
 

 
In this chapter, the last of the four studies into the Elizabethan playwrights and poets 

are addressed.  The study draws on William Shakespeare’s collection of sonnets.  The 

study aims to identify if it possible to group different styles within a single author’s 

writing as a precursor to monitoring changes in a person’s writing over time and also 

due to life events that might mimic the stresses a potential terrorist or suicide attacker 

might face.  In this study, 154 sonnets are used to see if it is possible to separate 

Shakespeare’s ‘voice’ and to highlight the group of Dark Lady sonnets.  Using RPAS 

described in the methods section (Chapter 3), Seriation with noise is used to cluster the 

subtle characteristics of Shakespeare’s voice. 

This fourth study uses data from a single author. In this study, the second research 

question is addressed (Section 1.3) and hypothesis H2 is tested (Section 1.4). 

In this case, the findings are not clear. The seriation with noise testing was able to 

cluster the different sonnets into the Dark Lady, Procreation, and Rival Poet categories.  

However, we can only conjecture and are unable to determine what life events, such as 

trauma, depression, and disease, if any may have contributed to these findings. Given 

these findings, we are not able to reject the null hypothesis and cannot say that a 

person’s ‘identity’ changes over time because of life events, such as trauma, 

depression, and disease.  

This chapter is taken from a peer-reviewed paper: Novel Text Analysis for Investigating 

Personality: Identifying the Dark Lady in Shakespeare's Sonnets. It was published in the 

Journal of Quantitative Linguistics, Vol 24 No 4, 255-272. 

7.1 Introduction 

Social media has become an important source for information about people and real-

world events (Ghajar-Khosravi et al., 2016). Until relatively recently, people who 

commit crimes have tried to hide their actions and identities, but with the rise of social 

media, identity is more important, and the public can follow criminal activity as it 

happens (Ray, 2016). An example of this was the terrorist organization al-Shabaab’s use 

of Twitter to claim responsibility for and live tweet of the Nairobi Westgate Mall attack 
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in 2013 (Mair, 2016). Terrorists now use social media to spread their message, recruit, 

and indoctrinate, and Twitter is a key medium (Wright et al., 2016). Equally, lone wolf 

terrorists make use of social media such as Twitter and Facebook to spread their beliefs 

and opinions and obtain information to plan an attack (Brynielsson et al., 2013).  With 

the rise of online radicalization, conducting social network analysis (SNA) and 

identifying the authorship of anonymous blog posts from those who seek to promote 

terrorism and criminal activity has become paramount for law enforcement agencies, 

but even when a person's identity is known, conducting content analysis of weblogs 

and posts to determine their sentiment (mood, anxiety levels, happiness) is equally 

important (Bermingham, 2009; Kambourakis, 2014; Kaminski, 2013; Yang & Ng, 2007). 

We analyse Shakespeare’s Sonnets because their size falls in between a twitter post and 

a small weblog post, and as an accepted single-authored work it is reputed to contain 

several ‘voices’ (Kambasković-Sawers, 2007). While the construction of a tweet and a 

small poem structured poem are created in different contexts, both are highly 

constrained in size with a goal of maximising the power of the message through word 

choice, and to portray meaning from the symbolic encoding behind language that is 

greater than the sum of the words. 

William Shakespeare's Sonnets were first published by Thomas Thorpe and printed by 

George Eld in 1609 (Duncan-Jones, 1983).  It is said they are among the most beautiful 

and powerful poems in English literature (Rickards, 2014), deeply moving and 

thought-provoking (Popescu, 2014).  The 154 sonnets can be divided into two main 

sequences.  Sonnets 1-126 are addressed to the Fair Youth, an unnamed young man, 

while sonnets 127-154 address the Dark Lady (Fort, 1933), a promiscuous married 

woman (Bell, 2008).  The presence of the mysterious ‘Rival Poet’ in sonnets 78-86 falls 

within the ‘Fair Youth’ group, and is touted to be Christopher Marlowe, George 

Chapman, or an amalgam of other contemporaries (Jackson, 2005), while sonnets 1-17 

have been singled out as the provocative Procreation sonnets because they encourage 

the same young man to marry and father children (Crosman, 1990). 

What is clear to the reader is that there are three voices: a masculine voice, a feminine 

voice, and a deliberately disjointed and contradictory speaker at its center to create the 

effect (Kambasković-Sawers, 2007).  The sonnets are split by the speaker’s sexual love 

for the Dark Lady, and the spiritual love for the Fair Youth (Matz, 2007), but the author’s 

voice is clear in his suspicion of an affair between both his beloveds (Kambasković-

Sawers, 2007).  It has been suggested that ‘Shakespeare the man’ can be reconstructed 
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in the sonnets more completely than from any of his other works (Burnham, 1990), and 

many believe the sonnets to be autobiographical and cite sonnet one of the Dark Lady 

sonnets, (sonnet 135) as proof Shakespeare names himself (Stapleton, 1993). 

We use RPAS (Section 3.4.1), to create individual stylistic signatures of each of 

Shakespeare’s 154 sonnets and from seriation (Section 3.5), we see if we can separate 

Shakespeare’s ‘voice’ to highlight the Dark Lady sonnets.  As part of the analysis, we 

also comment on the Rival Poet and the Procreation sonnets. 

7.2 Methodology 

The works of William Shakespeare’s Sonnets are drawn from the complete works of 

Shakespeare (Farrow, 1993) and pre-processed (see Section 3.1). The Sonnets are further 

broken down into the 154 individual sonnets and are a maximum of 132 words. We 

construct a 9-dimensional vector from the results by applying RPAS and then provide 

the seriation package (refer Section 3.5) with 9 RPAS values for the 154 sonnets. 

7.3 Analysis 

It is clear from the prior construction of a number of stylistic signatures from 

Elizabethan playwrights’ and poets’ that the Sonnets are the work of Shakespeare, and 

a stylistic signature can be created from works as small as a sonnet (Chapter 4). What 

we are uncertain of is if subtle characteristics of the author’s ‘voice’ or personality that 

reflect mood and tone can be extracted from the short, iambic pentameter form of a 

sonnet.  Given all the sonnets are in the same 14-line format (with the exception of 

sonnets 99, 126, and 145), rhyme, rhythm, and length are constant (Simonto, 1989). It is, 

therefore, hoped it would support the identification of an author’s subtle 

characteristics from within these small texts of between 91 – 132 words as it changes 

over time.  Here we conduct two series of tests using seriation in an iterative manner to 

attempt to maximize the Dark Lady group and cluster size and inject random noise into 

the matrix to examine the strength of the collocated sonnets. 

We seriate the data to minimize the Hamiltonian path length.  In doing so the seriation 

package in R analyses the different distances of the 154 sonnets in nine-dimensional 

space, ordering each sonnet so that we have a single dimension continuum, where each 

sonnet has the sonnet most similar on either side of it.  It does this using the six 

different techniques (TSP, Chen, ARSA, HC, GW, and OLO) and provides an overall 

measure of the distance between the two furthest sonnets (at each end of the 
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continuum), known as the Hamilton path length.  In this case, the initial results 

highlight the Travelling Salesperson (TSP) technique outperforms all of the other five.  

We then remove each of the RPAS elements one at a time, run seriation again, and see 

if the path length is reduced without fragmenting the sonnet group clusters, and then 

return the element.  We do this six times, as shown in Table 10 and examine the 

location of the 28 Dark Lady sonnets and the Hamiltonian path length.  Each time TSP 

provides the shortest path. The RPAS configuration that only uses the Richness, 

Referential Activity Power and Sensory Adjectives (RAS) and the alternate, one that 

also uses the Personal Pronouns masculine (M) / feminine (F) gender assignment P(G), 

or expressed fully as elements RP(G)AS, perform equally well, but RAS has a smaller 

Hamiltonian path size. In Table 10, the masculine (M) and feminine (F) gender element 

is referred to as G-MF to separate it from the Personal Pronouns score that occurs 

between 0-1. Importantly, while reducing the number of elements would typically 

reduce the dimensionality of the data and inherently provide a smaller path length, we 

find that with our groupings, this has not impacted on our results and smaller 

dimensions have increased path length reflecting the inherent underlying structure of 

the data (see RP(P&G)A, otherwise the dimensions have been 8 ± 1).  

Table 10: Results of the Dark Lady clustering for the different RPAS configurations ordered by path size. Note that 
RAS and RP(G)AS perform equally well, but RAS has a smaller Hamiltonian path size. Path size is weakly 
correlated with dimensionality. If we can assume a single-authored work, then the Masculine / Feminine Gender 
aspects of the Personal Pronouns (A) element A(G) is not required, and RAS is superior.  

Grouping Removed Clusters Cluster sizes Path size 

Dark Lady Sonnets (ideal) 1 28 1 

RP(P&G)AS  - 2 25 3 1229 

RP(P&G)A  S 4 24 2 1 1 1183 

RP(P)AS  Gender (G-MF) 2 25 3 1158 

RP(P&G)S  A 3 25 2 1 1060 

P(P&G)AS  R 2 26 2 926 

RP(G)AS  P Score 1 28 809 

RAS  P (Score & G-MF) 1 28 760 
 

We also examine the nine Rival Poet sonnets (78-98), and the 17 Procreation sonnets (1-

17) to see how they cluster with the different configurations (see Table 11).  We find 

that RP(G)AS outperforms all other RPAS configurations by clustering both groups, 

with RAS also forming a group of 16 Rival Poet sonnets, but it does not do as well with 

the nine Procreation sonnets (a cluster of 5 and 4), although RAS has a shorter 

Hamiltonian path (760 vs. 809).  In performing further iterative seriation, we remove 

the R, A, and S elements from the RAS configuration and find the clusters worsen 

(fragment further or lose structure). 
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To see how stable the results are, we insert noise into the initial 9x154 RPAS-sonnet 

matrix and recalculate Euclidean distances using various amounts of noise (between 1 

– 4000).  An examination of the sonnet order after seriation (see Table 12) highlights the 

susceptibility of sonnets 127, 128, and 132 to moderate amounts of noise and sonnets 

124 and 126 are introduced into the Dark Lady cluster.  The Rival Poet sonnets have a 

minimal susceptibility to the introduced noise, with movement occurring in sonnet 12 

only, and we find the Procreation sonnets are sensitive to small amounts of noise with 

the cluster constantly forming into different group sizes.  What is interesting, are that 

sonnets 18 and 19 tend to shift with the procreation sonnets, even under small amounts 

of introduced noise. 

Table 11: Results of the Rival Poet and Persuasion sonnet clustering for different RAS configurations.  Note that 
RP(G)AS performs better than RAS, but we prefer to use RAS because it has a smaller Hamiltonian path. With the 
exception of RP(P&G)A = 4, all other groupings are 8 ±1. 

Grouping Removed Rival Poet 
Clusters 

Sizes Procreation 
Clusters 

Sizes 

RP(P&G)AS  - 3 10 6 1 2 8 1 

RP(P&G)A  S 3 13 3 1 2 8 1 

RP(P&G)S  A 2 14 3 2 8 1 

P(P&G)AS  R 2 14 3 2 8 1 

RP(P)AS  G-MF 3 10 6 1 2 8 1 

RAS  P (Score & G-MF) 1 16 2 5 4 

RP(G)AS  P Score 1 16 1 9 
 

Table 12: The different TSP seriation results showing changes in order when noise is added to the RAS sonnet 
matrix. Shakespeare's Dark Lady Sonnets move position, but the cluster only splits because of the interaction of 
Sonnet 126, which is the last of the Young Man/Fair Youth sonnets and has a different structure from all of the 
other sonnets. The Rival Poet sonnets are stable with minor fragmentation of sonnet12 around noise levels of 
400, while the Procreation sonnets are quite susceptible to noise but follow sonnets 18 and 19. 

Noise 

Order 0, 1, 50, 100, 200, 400, 800, 1000, 2000, 4000, 

1 53 120 53 140 65 72 38 120 65 77 

2 49 117 49 139 66 71 35 117 66 70 

3 51 116 51 141 60 74 34 114 60 69 

4 57 114 57 145 59 75 33 113 59 68 

5 58 113 58 144 56 76 32 112 56 66 

6 61 112 61 147 54 79 30 109 54 65 

7 63 109 63 148 55 81 29 105 55 60 

8 62 105 62 150 52 83 26 106 52 59 

9 71 103 71 149 50 84 24 102 50 56 

10 72 98 72 152 48 88 23 103 48 54 

11 73 99 73 154 45 90 22 98 45 55 

12 75 100 75 153 44 92 21 91 44 52 

13 76 97 76 151 38 91 20 92 41 50 

14 79 95 79 146 35 98 18 90 38 48 
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Noise 

Order 0, 1, 50, 100, 200, 400, 800, 1000, 2000, 4000, 

15 78 89 78 143 34 102 19 88 35 45 

16 80 87 80 142 33 103 16 84 34 44 

17 82 85 82 138 32 106 15 83 33 38 

18 86 86 86 137 30 105 14 81 32 35 

19 85 82 85 135 27 109 13 79 30 34 

20 87 80 87 136 25 112 10 78 25 33 

21 89 78 89 134 19 113 6 77 27 32 

22 94 73 94 133 16 114 3 70 28 30 

23 95 67 95 130 15 120 2 69 21 27 

24 93 64 93 131 14 117 1 68 20 25 

25 96 63 96 129 13 121 4 64 19 16 

26 101 61 101 124 10 123 5 67 18 15 

27 100 58 100 127 6 124 7 66 17 14 

28 97 57 97 132 3 127 8 65 15 13 

29 104 62 104 128 4 129 9 60 16 10 

30 106 53 106 126 2 131 11 59 7 6 

31 108 42 108 125 1 130 12 56 5 3 

32 107 47 107 122 5 133 17 54 1 2 

33 110 46 110 118 7 134 25 55 2 1 

34 111 43 111 123 8 136 27 51 4 4 

35 115 40 115 121 11 135 28 49 8 5 

36 118 41 118 119 9 137 31 52 9 7 

37 122 36 122 115 12 138 36 50 3 8 

38 125 39 125 116 18 142 37 48 6 9 

39 126 37 126 111 20 149 39 45 10 11 

40 128 31 128 110 17 150 40 44 11 12 

41 127 29 127 107 21 152 41 38 12 17 

42 132 26 132 108 22 148 44 35 14 18 

43 139 27 139 104 23 153 45 34 13 19 

44 141 28 141 100 24 154 48 33 22 20 

45 143 24 143 101 26 151 50 32 23 21 

46 144 23 144 99 28 146 49 30 24 22 

47 145 22 145 97 29 145 51 25 26 23 

48 140 21 140 95 31 147 52 20 29 24 

49 146 18 146 94 36 144 54 19 31 28 

50 147 19 147 96 37 143 55 16 36 26 

51 151 20 151 93 39 141 59 15 37 29 

52 153 17 153 89 41 139 60 17 39 31 

53 154 12 154 87 40 140 56 14 40 36 

54 152 11 152 85 42 132 61 11 42 37 

55 150 7 150 86 47 128 63 8 47 39 

56 149 5 149 82 46 126 64 9 46 42 

57 148 4 148 80 43 125 68 7 43 47 

58 142 1 142 73 49 122 69 5 51 46 
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Noise 

Order 0, 1, 50, 100, 200, 400, 800, 1000, 2000, 4000, 

59 138 2 138 78 51 118 70 1 49 43 

60 137 6 137 77 57 119 65 2 53 40 

61 135 3 135 70 58 116 66 4 57 41 

62 136 8 136 69 53 115 67 3 58 49 

63 134 9 134 68 62 111 73 6 62 51 

64 133 10 133 66 61 110 78 10 61 53 

65 131 13 131 65 63 108 80 13 63 57 

66 130 14 130 60 64 107 82 12 64 58 

67 129 15 129 59 67 104 86 18 67 62 

68 124 16 124 56 68 97 85 21 69 61 

69 123 25 123 55 70 95 87 22 70 63 

70 121 30 121 54 69 100 89 24 68 64 

71 119 32 119 52 73 101 94 23 73 67 

72 116 33 116 50 74 99 95 26 76 73 

73 117 34 117 48 71 93 97 28 75 78 

74 120 35 120 45 72 96 100 27 72 80 

75 114 38 114 44 75 94 101 29 71 82 

76 113 45 113 41 76 89 102 31 74 86 

77 112 44 112 38 83 87 103 36 77 85 

78 109 48 109 35 84 85 106 37 78 87 

79 105 50 105 33 80 86 105 39 79 89 

80 103 49 103 34 78 82 109 41 81 94 

81 102 51 102 32 82 80 112 40 88 95 

82 99 52 99 30 86 78 113 43 91 97 

83 98 55 98 28 85 73 114 46 90 100 

84 91 54 91 27 87 67 117 47 92 104 

85 92 56 92 25 89 66 120 42 93 107 

86 90 59 90 20 94 65 130 53 96 108 

87 88 60 88 17 95 60 138 57 101 110 

88 83 65 83 12 97 59 134 58 99 111 

89 84 66 84 9 100 56 136 61 98 115 

90 81 68 81 11 104 55 133 63 103 116 

91 74 69 74 8 106 54 135 62 102 119 

92 77 70 77 7 111 52 137 72 106 118 

93 70 77 70 5 110 51 142 71 105 122 

94 69 74 69 4 107 49 143 74 109 125 

95 68 72 68 1 108 50 144 75 112 126 

96 64 71 64 2 116 48 145 76 113 128 

97 67 75 67 3 115 45 147 73 114 127 

98 66 76 66 6 118 44 149 80 117 124 

99 65 79 65 10 119 41 150 82 120 129 

100 60 81 60 13 121 38 152 86 121 132 

101 59 83 59 14 123 35 148 85 123 131 

102 56 84 56 15 124 34 153 87 124 133 
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Noise 

Order 0, 1, 50, 100, 200, 400, 800, 1000, 2000, 4000, 

103 54 88 54 16 127 33 154 89 127 135 

104 55 91 55 19 126 32 151 94 129 137 

105 52 90 52 18 125 30 146 93 131 142 

106 50 92 50 21 122 25 140 96 130 148 

107 48 93 48 22 128 20 141 101 133 152 

108 45 94 45 23 132 19 139 99 135 149 

109 44 96 44 24 140 16 132 100 136 150 

110 38 101 38 26 139 15 128 95 134 154 

111 35 102 35 29 141 7 131 97 138 153 

112 34 106 34 31 143 5 129 104 137 151 

113 33 104 33 36 144 4 127 107 142 147 

114 32 107 32 37 147 1 124 108 143 146 

115 30 108 30 39 145 2 121 110 148 140 

116 27 110 27 40 146 3 123 111 152 145 

117 28 111 28 43 151 6 126 116 150 144 

118 26 115 26 46 154 9 125 119 149 141 

119 24 118 24 47 153 8 122 121 153 139 

120 22 119 22 42 152 11 118 123 154 143 

121 23 121 23 53 149 10 119 115 151 138 

122 21 124 21 51 150 13 116 118 146 136 

123 20 123 20 49 148 14 115 122 147 134 

124 17 122 17 57 142 12 111 125 144 130 

125 19 125 19 58 137 18 110 126 145 120 

126 18 126 18 62 138 17 107 128 141 123 

127 12 128 12 63 135 21 108 132 139 121 

128 8 127 8 61 133 22 104 127 140 117 

129 9 129 9 64 136 24 98 124 132 114 

130 10 131 10 67 134 23 99 129 128 113 

131 6 132 6 71 130 26 96 131 126 112 

132 3 130 3 72 131 28 93 130 125 109 

133 4 138 4 74 129 27 92 134 122 105 

134 2 134 2 75 120 29 90 136 119 106 

135 1 136 1 76 117 31 91 133 118 102 

136 5 133 5 79 114 36 88 135 115 103 

137 7 135 7 81 113 37 84 137 116 98 

138 11 137 11 83 112 39 83 138 111 99 

139 13 142 13 84 109 40 81 142 110 101 

140 14 143 14 88 105 42 79 143 108 96 

141 15 149 15 90 103 43 77 141 107 93 

142 16 150 16 92 102 46 74 139 104 92 

143 25 152 25 91 98 47 76 140 100 90 

144 29 148 29 98 99 53 75 146 97 91 

145 31 153 31 102 101 57 72 145 95 88 

146 36 154 36 103 96 58 71 144 94 84 
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Noise 

Order 0, 1, 50, 100, 200, 400, 800, 1000, 2000, 4000, 

147 37 151 37 106 93 62 62 147 89 83 

148 41 146 41 105 92 63 58 151 87 81 

149 40 147 40 109 91 61 57 154 84 79 

150 39 144 39 112 90 64 53 153 83 76 

151 42 145 42 113 88 69 47 148 80 75 

152 47 141 47 114 81 68 46 149 85 74 

153 46 139 46 117 79 70 43 150 86 71 

154 43 140 43 120 77 77 42 152 82 72 

 

We examine the Hamiltonian path distances between the Dark Lady sonnets taking note 

of their distances to adjoining sonnets (see Table 13) to see why sonnets 127, 128, and 

132 are susceptible to moderate amounts of noise.  We find the Hamiltonian path 

distances of the two Dark Lady edge sonnets (127 and 128) are closer to the non-Dark 

Lady ones (124 and 126) between the 26 Dark Lady sonnets, including the edge sonnets 

124, 125, 126.  Some of the results are from the noise jitter we introduced, but this is 

likely due to the unusual 'non-iambic pentameter' structure of sonnet 126. Sonnet 126 is 

different in structure from the other sonnets, not only because it is smaller, or a short 

stanza, but it is also a concluding one and a juncture between the end of the Fair Youth 

sonnets and the beginning of The Dark Lady ones.  It has 12 lines consisting of six 

rhymed couplets instead of Shakespeare’s normal 14 lines of five rhymed couplets, so 

there are fewer linked themes, but each has more content. 

Table 13: Hamiltonian path distances between the 26 Dark Lady sonnets, including the edge sonnets 124, 125,126 
where 124 and 126 are the Fair Youth sonnets.  We find 127 closer to 124 (Fair Youth) and 128 closer to 126 (Fair 
Youth), most likely attributed to the unusual 'non-iambic pentameter structure of sonnet 126. 

Co-located Sonnets Distance  Co-located Sonnets Distance 

124 127 3.645803  149 150 1.50537 

127 129 6.165869  150 153 8.574628 

129 131 6.675812  153 154 2.235739 

131 130 7.896462  154 151 3.26277 

130 138 8.454266  151 146 6.238941 

138 134 6.252812  146 147 5.676883 

134 136 5.208263  147 144 3.813679 

136 133 5.820263  144 145 4.282785 

133 135 3.070293  145 141 4.994587 

135 137 3.467677  141 139 3.27575 

137 142 5.394506  139 140 6.189313 

142 143 3.505065  140 132 9.30889 

143 148 8.592909  132 128 5.420591 

148 152 7.145475  128 126 3.737001 

152 149 5.761041  126 125 2.867308 
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7.4 Discussion 

When we examine the 154 sonnets using 10 different configurations of RPAS, we find 

we can optimize the algorithm and cluster the 28 Dark Lady sonnets using two different 

configurations. Using RAS, the number of unique words used by an author (Richness), 

function words, or word particles used to identify clinical depression (Referential 

Activity Power), and the way people interpret images and concepts through their 

visual, auditory, haptic, olfactory, and gustatory senses (VAHOG sensory elements) 

provides the shortest Hamiltonian path score using the Travelling Salesperson (TSP) 

seriation method.  This can also be achieved with an RP(G)AS configuration that 

includes the pronouns closely aligned to gender and self (Personal Pronouns) 

indicating a person's writing style or gender (G) as masculine or feminine, but this is 

achieved with a longer TSP Hamiltonian path score (809 vs.760).  

We also find RAS groups the 16 Rival Poet sonnets, and forms two small clusters of the 

nine Procreation sonnets, while RP(G)AS outperforms all other RPAS configurations by 

clustering both groups (see Table 14).  We do find that sonnet 18 19 follow the 

procreation sonnets and thematically are tied through the mention of time, and it could 

be that they are part of the procreation group and if we included them much of the 

procreation fragmentation disappears.  Pilla (2012) suggests that sonnet 19 is 

sometimes seen as the last of the Sonnets group. 

By introducing noise, we see the influence of sonnet 126 (structurally different from 

most other sonnets) on the Dark Lady sonnets, but are able to show the strength of the 

Dark Lady sonnets' 'voice'. This is true of the Rival Poet sonnets also, but not of the 

Procreation sonnets whose structure is more tenuous and breaks into different sized 

groups with a small amount of noise. Taking the noise testing into account highlights 

the similarity of the RAS and RP(G)AS clustering results, but RAS still has a smaller 

Hamiltonian path score, and if we assume we know the identity of the author then the 

P(G) element is not required and we can state that the RAS configuration is superior.  

7.5 Conclusion 

RPAS provides a clear ordering of the Shakespeare sonnets, differentiating the Dark 

Lady, Procreation and Rival Poet categories.  No other technique has so far succeeded 

in doing this.  Since the smallest sonnet here is 91 words, the technique could be 

applied to short blog posts and thus could be used in a range of problems where 

authorship or author-state-of-mind is sought. 
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Table 14: Iterative Seriation of the 9-dimensional RPAS vector, from left to right, showing the clustering of the 28 
Dark Lady sonnets (127-154), the 9 Rival Poet sonnets (78-86), and the 16 Procreation sonnets (1-17). Note that 
the RAS configuration performed best for single-authored works. It had the smallest Hamiltonian path distance, 
but the RP(G)AS configuration clustered all three groups. 

RP(P&G)AS 

41 11 9 3 6 4 1 5 7 8 12 18 25 

39 43 53 58 55 56 59 67 68 69 70 77 73 

84 95 94 93 96 98 106 104 126 143 138 129 123 

116 107 108 110 111 115 119 118 122 125 128 132 140 

139 141 145 144 147 146 151 154 153 148 152 150 149 

142 137 135 136 134 133 130 131 127 124 121 120 117 

114 113 112 109 105 103 102 101 100 97 99 92 90 

91 88 89 87 83 85 86 82 80 78 79 81 76 

75 74 72 71 62 63 61 64 66 65 60 57 54 

52 50 48 49 51 46 47 42 40 44 45 38 35 

34 33 32 37 36 31 29 30 27 28 26 24 23 

22 21 20 17 19 16 15 14 13 10 2 

   

No Sensory (S) VAHOG  

152 150 149 148 153 154 151 146 147 144 145 140 141 

139 142 137 135 133 136 134 130 131 132 127 124 128 

125 122 118 119 121 120 117 114 113 112 109 105 102 

103 110 111 115 108 107 97 100 101 99 92 90 91 

88 89 87 85 86 82 80 83 81 79 78 76 75 

74 72 71 66 65 60 64 61 63 62 57 54 52 

49 51 46 47 42 40 50 48 45 44 38 35 34 

33 32 30 36 37 31 29 27 28 26 24 23 22 

21 20 17 19 16 15 14 13 10 2 6 4 1 

5 7 8 12 18 25 3 9 11 41 39 43 53 

58 55 56 59 67 73 69 68 70 77 84 93 96 

94 95 98 104 106 116 123 129 126 138 143 

   

No Referential Activity Power (A) 

39 43 53 58 55 56 59 67 68 69 70 73 77 

84 95 94 93 96 98 104 106 116 123 129 120 112 

109 113 114 117 121 124 127 130 131 133 134 136 135 

137 142 139 141 144 148 152 149 150 153 154 151 147 

146 145 140 132 128 125 122 118 119 115 111 110 108 

107 97 100 99 102 103 105 101 92 91 90 88 89 

87 85 86 82 80 78 83 81 79 76 75 74 72 

71 66 65 60 64 63 62 61 57 54 52 50 48 

45 44 49 51 47 46 42 40 36 37 38 33 35 

34 32 30 27 29 31 28 26 24 23 22 21 20 

19 16 15 17 14 13 10 2 6 4 1 5 7 

8 12 18 25 3 9 11 41 126 138 143 

   

Continued on next page 
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No Richness (R) 

53 55 56 59 58 67 73 68 69 70 77 84 93 

95 94 96 98 104 106 116 123 129 140 142 146 148 

153 154 152 151 150 149 147 145 144 141 139 137 136 

135 132 133 134 130 131 128 127 125 124 122 121 119 

118 120 117 114 112 113 115 111 110 109 108 107 105 

103 102 101 100 99 97 92 91 90 89 87 88 86 

85 83 82 79 81 80 78 74 76 75 72 71 62 

63 64 66 65 61 60 57 54 52 51 50 49 48 

47 46 44 45 42 40 38 35 36 37 34 33 32 

31 29 30 28 27 26 24 23 22 21 20 19 17 

16 15 14 13 10 2 1 4 6 5 8 7 12 

18 25 39 43 3 9 11 41 126 138 143 

   

No Personal Pronoun (P) 

109 112 113 114 117 120 116 119 121 123 124 129 131 

130 133 134 136 135 137 138 139 143 142 149 150 152 

148 153 154 151 146 147 144 145 141 140 132 127 128 

126 125 122 118 115 111 110 108 107 104 106 105 103 

102 98 99 101 100 97 95 94 96 93 92 90 91 

88 89 87 85 86 82 80 78 83 84 81 79 76 

75 74 72 71 73 67 64 61 63 62 58 57 51 

49 53 42 47 46 43 40 39 37 36 31 29 27 

28 26 24 23 22 21 18 19 16 15 14 13 10 

6 3 2 1 4 5 7 8 9 11 12 17 20 

25 30 32 33 34 35 38 41 44 45 48 50 52 

55 54 56 59 60 66 65 68 69 70 77 

   

No Personal Pronouns Gender (G) 

41 11 9 3 6 4 1 5 7 8 12 18 25 

39 43 53 58 55 56 59 67 68 69 70 77 73 

84 95 94 93 96 98 106 104 126 143 138 129 123 

116 107 108 110 111 115 119 118 122 125 128 132 140 

139 141 145 144 147 146 151 154 153 148 152 150 149 

142 137 135 136 134 133 130 131 127 124 121 120 117 

114 113 112 109 105 103 102 101 100 97 99 92 90 

91 88 89 87 83 85 86 82 80 78 79 81 76 

75 74 72 71 62 63 61 64 66 65 60 57 54 

52 50 48 49 51 46 47 42 40 44 45 38 35 

34 33 32 37 36 31 29 30 27 28 26 24 23 

22 21 20 17 19 16 15 14 13 10 2 

   

Continued on next page 
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No Personal Pronouns (A) including no Gender (G) 

38 35 34 33 32 30 29 26 24 23 22 21 18 

19 16 15 14 13 10 6 3 4 2 1 5 7 

8 9 11 12 17 20 25 27 28 31 36 37 39 

40 41 44 45 48 50 52 55 54 56 59 60 66 

65 68 69 70 77 74 71 72 75 76 79 81 83 

84 88 91 90 92 93 94 96 101 100 99 98 102 

103 105 109 106 104 108 110 111 114 113 112 120 117 

116 119 121 123 124 127 129 131 130 138 134 136 133 

135 137 142 143 148 152 149 150 153 154 151 146 147 

144 145 141 139 140 132 128 126 125 122 118 115 107 

97 95 89 87 85 86 82 80 78 73 67 64 61 

63 62 58 57 51 49 53 42 47 46 43 

   

7.6 Summary 

In this study, the seriation with noise technique was applied to a single-authored work. 

The most significant findings were that when using seriation, the subtle characteristics 

of a person performed best with an RP(G)AS configuration, another word, using 

gender and masculine or feminine over the actual personal pronouns score. However, 

if the gender of the author was known, then those aspects could be discarded and a 

configuration of RAS also was just as effective in examining the subtle characteristics of 

a person’s personality. 

In the next chapter, a comparative longitudinal study of the contemporary novelists, 

Iris Murdoch and P.D. James is conducted to determine if a person’s ‘identity’ change 

over time because of life events, such as trauma, depression, and disease. 
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Chapter 8 

 

 

Language Markers Using POS Analysis 
 

 
This chapter is the second of the three studies looking at the changes in an individual’s 

writing style over time, and the first of the two studies using the novels of Iris 

Murdoch and P.D. James. In the previous study (Chapter 7 or study four), the focus 

was on examining subtle changes within a single author’s work that had reported to be 

written over a long period of time.  However, Shakespeare’s collection of sonnets is 

over 400 years old.  In study five, the works of contemporary authors are collected to 

examine the effects of Alzheimer’s disease on RPAS over time.  The study aims to 

compare Iris Murdoch’s and P.D. James’ writing using Parts of Speech analysis to show 

that the data is representative of larger known datasets to highlight known markers for 

dementia, and in particular, Alzheimer’s disease. A feature of our analysis is identified 

10-12 years prior to any formal medical diagnosis.  

In this study, the second research question is addressed again (Section 1.3), but this 

time using contemporary data to test hypothesis H2 (Section 1.4). 

The Parts of Speech analysis, Mann-Whitney U-Testing, and Principal Component 

Analysis identified both normal aging and changes over time because of life events. 

Given these findings, we are able to reject the null hypothesis and say that a 

person’s ‘identity’ changes over time because of life events, such as trauma, 

depression, and disease.  

This chapter is taken from a peer-reviewed paper: The Impact of Depression and Apathy 

on Sensory Language. It was published in the Open Journal of Modern Linguistics (Volume 

7, 8-32, 2017). 

8.1 Introduction 

The debate over the notion that language strongly influences thought (Whorf, 1997) is 

met equally by those who argue that language does not influence it, but historically, 

language was thought to be tied to an ability to form thoughts (Wicklund, Johnson, & 

Weintraub, 2004).  Some believe that language and thought are combined to modify 

language and thought further (Ammar & Gohar Ayaz, 2016). Others suggest human 
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language is an instrument of thought and communicates the attributes of human 

culture (Lieberman, 2016), or that language allows us to share the knowledge and 

experiences of others to increase our mental resources (Corballis, 2016). Through this 

embodied cognition, our concepts are grounded in our sensory and motor systems to 

develop new abstract representations (Jamrozik et al., 2016). We would argue that the 

way we think comes through clearly in the multimodal sensory elements of our 

language and that these aspects of language (such as through sound and visual body 

language cues) impact on thought, but that disease impacts these. 

While thought strongly influences language, depression, and apathy severely impact 

thinking, they can occur without dementia.  There is a close link with depression in 

dementia, and apathy and depression are the most frequent neuropsychiatric 

symptoms in one type of dementia, Alzheimer’s disease (AD) (Robert, Bremond, & 

David, 2016). In a different kind of language-based dementia, known as Primary 

Progressive Aphasia (PPA), patients who could not find the right words to express 

their thoughts, could still demonstrate they could think clearly (Fedorenko & Varley, 

2016; Wicklund, Johnson, & Weintraub’s, 2004). While language in PPA is a prominent 

dysfunction for the first two years of the disease, Alzheimer’s disease comes to medical 

attention because of forgetfulness, usually accompanied by apathy, but not from 

language dysfunction (Mesulam, 2003). Personal identity, self, persists far into the end 

stage of the disease (Sabat, & Harré, 1992), while apathy is characterized by reduced 

motivation, social disinterest, and emotional blunting in the absence of mood-related 

changes (Chau et al., 2016). 

If writing is the ability to think and put language on paper or some other visual 

medium, then the impact of depression and apathy on thought and language might be 

measurable, but this concept is not new. We draw on a number of recent articles on Iris 

Murdoch and Alzheimer’s disease progression where it is stressed that the author’s 

works had little to no editorial changes (Garrard et al., 2005; Hirst, & Wei Feng, 2012; 

Lancashire, & Hirst, 2009; Le et al., 2011; Pakhomov et al., 2011; van Velzen, Nanetti, & 

de Deyn, 2014).  

To test the hypothesis that thought and language are impacted by depression and 

apathy and revealed in a person’s writing style 12 years before a formal diagnosis of 

Alzheimer’s disease presents, we draw on earlier studies of AD.  We use the novels of 

Iris Murdoch and P.D. James, however, we use a larger, more complete set than 

previously used by Garrard et al. (2005) and Le et al. (2011).  We use broader Parts of 
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Speech analysis techniques, and we also use a new analytical technique from sensory 

adjectives, to determine what can be seen in language from the impact of depression 

and apathy in the early onset of Alzheimer’s disease. 

8.2 Methodology 

In this section, we discuss the existing studies conducted into identifying Alzheimer’s 

disease through writing. We draw on two of the RPAS variables, Richness (R) which 

have been described already (Section 3.4.1). We also draw on Sensory Adjectives (S) 

(Section 3.4.1), but there is a more detailled description provided here. We also 

describe what is done with the data in the pre-processing stage so that we can visualise 

markers for depression, apathy, and Alzheimer’s disease in language. 

8.2.1 Existing Alzheimer’s disease (AD) markers 

The idea that cognitive decline in Alzheimer’s disease is visible in writing appeared in 

Snowdon et al.’s (1996) findings of a longitudinal study of 678 Catholic sisters. Known 

as the Nun Study, researchers were able to correlate post-mortem markers for AD in 

the sister’s brains to the density of ideas (from Kintsch & Keenan, 1973 and Turner & 

Green, 1977) expressed in sentences using Parts of Speech (POS) Tag analysis. Idea 

density uses elements of language, verbs, adjectives, adverbs, prepositions, and 

conjunctions divided by the number of words to create a measure of cognitive ability 

(Brown et al., 2008). Garrard et al. (2005) were also instrumental in highlighting 

Alzheimer’s disease through changes in writing and used a different approach which 

included some other elements of language (nouns, verbs, adverbs and adjectives and 

function words, e.g., conjunctions, and pronouns) to create word lists.  Garrard et al. 

(2005) highlighted significant lexical differences between in Iris Murdoch’s early 

writing and her final novel using fully-parsed texts. Extending these findings, Le et al. 

(2011) conducted a large-scale longitudinal study of Iris Murdoch using 20 fully parsed 

texts and included P.D. James as a non-Alzheimer and healthy control with no known 

cognitive decline using 15 of her fully parsed novels.  Using the Type Token Ratio to 

measure lexical richness, Le et al. (2011) identified a decline in Iris Murdoch’s lexical 

richness over time and a dip in the data in the middle of her writing career. As Ahmed 

et al. (2013) and Ferguson et al. (2014) point out; the study of the subtle language 

changes over the lifespan of well-known writers (Lancashire, 2010), including Iris 

Murdoch and Agatha Christie (eg Garrard et al., 2005; van Velzen & Garrard, 2008; 

Lancashire & Hirst, 2009; Le, 2010; Le et al., 2011) and political figures (Garrard, 2009) 
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has highlighted that Alzheimer’s disease may be apparent years or even decades 

anyone becomes aware of any symptoms of cognitive deterioration.  AD is apparent 

through lexical repetition and is marked by smaller, higher frequency vocabulary and 

lower use of Function Words over Content Words (Bird et al., 2000; Garrard et al., 2005). 

A recent study suggests that Alzheimer’s disease can be seen in people’s writing 10-12 

years before the disease is diagnosed (Rajan et al., 2015).   

8.2.2 Sensory Adjectives (S) 

While apathy is characterised by reduced motivation, social disinterest, and emotional 

blunting in the absence of mood-related changes, it has been associated with low 

norepinephrine levels in the brain (Chau et al., 2016). In the following paragraphs, we 

describe the link between apathy and depression in people to different levels of 

norepinephrine in the brain, and how it might be apparent in sensory processing and 

impact the sensory language of Adjectives. 

Many mental disorders have also been associated with alterations of neurotransmitters 

in the brain (Heilman, Nadeau, & Beversdorf, 2003; Nonen et al., 2016; Sun, Hunt, & 

Sah, 2015; Szot, 2016;), and the neurotransmitter, norepinephrine, has been seen to be 

lacking in depressed suicide victims (Khan et al., 2016; Klimek et al., 1997; Ramirez, 

2016). Norepinephrine levels have also been linked to studies on two types of creative 

people (Zabelina et al., 2015), and in them both, a reduction in their aural sensory 

processing, known as sensory gating is tied to the neurotransmitter, while creative 

achievers have shown “leaky” sensory gating because they simultaneously focus on a 

large range of stimuli (Zabelina et al., 2015). They have low levels of norepinephrine 

which increase the size and distribution of the brain’s concept representations. Their 

ability to modulate the frontal lobe-locus coeruleus system and reduce norepinephrine 

levels leads to the discovery of novel orderly relationships, or creative innovation 

(Heilman, Nadeau, & Beversdorf, 2003). The other type of creative people, divergent 

thinkers, on the other hand, reduce sensory gating, which is also a marker of psychosis, 

including schizophrenia (Zabelina et al., 2015). They have high levels of norepinephrine 

that restricts their concept representations (Heilman, Nadeau & Beversdorf, 2003), and 

therefore their sensory processing narrows to focus tightly on the task at hand. Here, 

thought influences ideas and modified aspects of the sensory cortex that feeds 

language. 
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8.2.3 Preparing the text 

A collective corpus of 180,000 words contains a 104,000-word sample from 26 Iris 

Murdoch novels and a 76,000-word sample from 19 P.D. James novels (see Table 50 

and Table 51).  The 4,000-word novel sample is from the first 3,000 words and the last 

1,000 words.  Generally, in a novel, this is where characters, rich in setting and plot, are 

introduced and at the end, a conclusion of the general novel 'problem' has been 

resolved and summarised.  We process the files as per Section 3.1.  We also aggregate 

the data from the 45 POS types into 12 more general POS types, representing higher 

classes of Nouns, Verbs, Adverbs, Adjectives, Modal Verbs, Conjunctives, Prepositions, 

Determiners, Pronouns, Existential There, Articles, and Other categories, comprising 

Cardinal Numbers, Interjections, and Foreign words. 

8.3 Analysis 

In this section, we begin by testing for markers within the Richness (R) of language that 

can highlight Alzheimer’s disease (AD), and we support this with Mann-Whitney U-

Testing.  We use Parts of Speech (POS) analysis to group the data by Content and 

Function Words and use ratios to support the presence of AD in the data further, and 

we back up this claim with Mann-Whitney U-Testing.  We test for markers within the 

Sensory (S) aspects of language to see if the variables can identify additional markers 

for AD, and support these results with Mann-Whitney U-Testing and Principal 

Component Analysis. 

8.3.1 Testing for Alzheimer’s disease markers in Richness 

Alzheimer’s disease is apparent through lexical repetition, marked by smaller, higher 

frequency vocabulary 10-12 years before the disease is diagnosed (Garrard et al., 2005; 

Rajan et al., 2015).  Iris Murdoch was diagnosed with Alzheimer’s disease in 1997 (aged 

78), and she died two years later in 1999, just four months before her eightieth 

birthday, and a post-mortem confirmed Alzheimer’s disease (Garrard et al., 2005). P.D. 

James was not diagnosed with Alzheimer’s disease or dementia and died in 2014 (aged 

94). 

As can be seen in Richness (Figure 18), there appears to be a trough in Iris Murdoch’s 

Richness scores marked by a period covering 9 years between age 46 to 55 (B9 - B16).  

Her Richness scores seem to climb through her writing career from the age of 35 to 76 

(B1 - B26) so that her last book is 12.13% richer than her first.  If we consider the point 
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where she was 61 years of age (B20), her word richness is higher again, and is an 

approximate 21.47% increase in unique word use, before it falls between ages 61 and 76 

(B20 - B26). 

If not for an anomaly at the age of 81 (B15), much of P.D. James scores are more 

consistent overall. As can be seen, the results are relatively flat.  Similarly to Iris 

Murdoch, P.D. James has a trough marked by a period covering 7 years between age 55 

to 62 (B6 – B9).  In P.D. James’ case, there appears to be a decline in her Richness scores 

during her writing career, marked by B15 and B19, and her last book is approximately 

5.2% less rich than her first.  If we ignore her final book, however, (B19), then her 

Richness score is overall higher, and it grows between the ages of 42 and 88 years of 

age by approximately 12%. 

The total mean of Iris Murdoch’s writing is 29.5, while P.D. James’ is slightly higher at 

31.9, suggesting there is less lexical repletion than Iris Murdoch’s. Separating the last 12 

years of works highlights that this period in Iris Murdoch’s case is slightly lower (29.48 

versus 29.52), while P.D. James’ is slightly higher (32 versus 31.86) and these do not 

appear to be significantly different. 

Figure 18: Richness by Age at Publication 

 

To test this, we separate each author’s writing into two groups, so that we can compare 

any changes in their last 12 years with earlier writing. We conduct a Mann-Whitney U-

Test on the Richness scores. In this hypothesis testing for differences in a person’s 

writing style, we use the Mann-Whitney U-Test because it is a non-parametric 

independent groups test.  In this case, the total sample size for Iris Murdoch is 26, with 
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the group sizes of 21 and 5, and for P.D. James, the total sample size is 19 with the 

group sizes being 15 and 4.  This test is ideal for unequal group sizes that are small, 

have dissimilar variances, and a distribution that is not normal (Burns & Burns, 2012). 

We find significant differences in the lexical repetition of Iris Murdoch’s works (see 

Table 15 for the Mann-Whitney U test mean ranks of the two groups and Table 16 for 

the test statistic results) during the writing period 1984 – 1996, 12 years before her 

diagnosis when compared to the earlier period of writing 1954 - 1983 (U=12.5, p = 

.009).  There are no significant differences in the lexical repetition of P.D. James works 

(see Table 17 for the Mann-Whitney U test mean ranks of the two groups and Table 18 

for the test statistic results) during the writing period 1962 – 2001, 12-years before her 

death when compared to the period 2002 - 2011 (U=29.0, p = .920). 

Table 15: Iris Murdoch Mann-Whitney U-test 12-year ranks 

Ranks 

 AD N Mean Rank Sum of Ranks 

Rank of RICHNESS by 

AD 

1 21 15.40 323.50 

2 5 5.50 27.50 

Total 26   

 

Table 16: Iris Murdoch Mann-Whitney U-test 12-year statistics 

Test Statisticsb 

 Rank of RICHNESS by AD 

Mann-Whitney U 12.500 

Wilcoxon W 27.500 

Z -2.605 

Asymp. Sig. (2-tailed) .009 

Exact Sig. [2*(1-tailed Sig.)] .006a 

a. Not corrected for ties. 

b. Grouping Variable: AD 
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Table 17: P.D. James Mann-Whitney U-test 12-year ranks 

Ranks 

 AD N Mean Rank Sum of Ranks 

Rank of Richness 1 15 10.07 151.00 

2 4 9.75 39.00 

Total 19   

 

Table 18: P.D. James Mann-Whitney U-test 12-year statistics 

Test Statisticsb 

 Rank of Richness 

Mann-Whitney U 29.000 

Wilcoxon W 39.000 

Z -.100 

Asymp. Sig. (2-tailed) .920 

Exact Sig. [2*(1-tailed Sig.)] .961a 

a. Not corrected for ties. 

b. Grouping Variable: AD 

 

8.3.2 Content and Function Word Analysis 

It is generally understood that while the ratios of different word types is relatively 

uniform across age, sex, and level of education in normal speakers, that there is a lower 

use of Function Words over Content Words in people with dementia and different 

aphasia types that impact speech and language (Bird et al., 2000).  This is because 

sentences are less complex. Function Words contain little meaning and tend to hold 

sentence structure together. They are word types such as pronouns, articles, 

prepositions, and conjunctions.  Content Words, on the other hand, tend to describe the 

message of a sentence through verbs, nouns, adverbs, and adjectives. 

Given these differences in Function and Content Words (Bird et al., 2000), we would 

expect that as a person develops dementia, there would be an increase in the use of 

Content Words, and in their Content to Function Word ratios.  We test the use of 

Content Words by aggregating the 12 tagged Parts of Speech groups into Content 

Words and Function words (see Table 19 for Iris Murdoch and Table 20 for P.D. James).   
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We separate the last 12 years of works to compare the later writing to the earlier 

period.  In Iris Murdoch, there is a mean increase in Content Words use of 3.16%, or 

75.4 (2380.0 – 2456.3), and a mean decrease in Function Words use of 4.65%, or 75.4 

(1619.1-1543.67) in the later 12 Years period. In contrast, in P.D. James’, there is a mean 

increase in Content Words use of 1.77%, or 42.28 (2344.46-2386.75), and a mean 

decrease in Function Words use of 2.55%, or 42.29 (1655.53-1613.25) in the later 12 

Years period (Table 21).  Iris Murdoch’s use of Content Words was approximately 44%, 

or 33.11 (42.29-75.4) larger in the period 12 years before her diagnosis of Alzheimer’s 

disease.  

Table 19: Iris Murdoch Aggregated Content and Function Word Ratios 

WORK Content Words Function Words Ratio 

B1 2284 1716 0.751 

B2 2307 1693 0.734 

B3 2424 1576 0.650 

B4 2284 1716 0.751 

B5 2281 1719 0.753 

B6 2439 1561 0.640 

B7 2368 1632 0.689 

B8 2227 1773 0.796 

B9 2321 1679 0.723 

B10 2407 1593 0.662 

B11 2487 1513 0.608 

B12 2404 1596 0.664 

B13 2451 1549 0.632 

B14 2516 1484 0.590 

B15 2320 1680 0.724 

B16 2478 1522 0.614 

B17 2341 1659 0.709 

B18 2427 1573 0.648 

B19 2391 1609 0.673 

B20 2461 1539 0.625 

B21 2343 1657 0.707 

B22 2432 1568 0.645 

B23 2465 1535 0.623 

B24 2517 1483 0.589 

B25 2500 1500 0.6 

B26 2481 1519 0.612 

 

  



 134 

Table 20: P.D. James Aggregated Content and Function Word Ratios 

WORK CW FW Ratio 

B1 2400 1600 0.667 

B2 2445 1555 0.636 

B3 2317 1683 0.726 

B4 2425 1575 0.649 

B5 2373 1627 0.686 

B6 2375 1625 0.684 

B7 2267 1733 0.764 

B8 2307 1693 0.734 

B9 2382 1618 0.679 

B10 2279 1721 0.755 

B11 2308 1692 0.733 

B12 2340 1660 0.709 

B13 2328 1672 0.718 

B14 2369 1631 0.688 

B15 2252 1748 0.776 

B16 2371 1629 0.687 

B17 2404 1596 0.664 

B18 2358 1642 0.696 

B19 2414 1586 0.657 

 

Table 21: Function to Content Word Ratios 

WORK Content Words Function Words Ratio 

P.D. James 4000 word sample 

B1 2400 1600 0.667 

B16 2371 1629 0.687 

B17 2404 1596 0.664 

B18 2358 1642 0.696 

B19 2414 1586 0.657 

Iris Murdoch 4000 word sample 

B1 2284 1716 0.751 

B21 2343 1657 0.707 

B22 2432 1568 0.645 

B23 2465 1535 0.623 

B24 2517 1483 0.590 

B25 2500 1500 0.6 

B26 2481 1519 0.612 

 

Having seen differences in Content Words, we test their Content to Function Word 

ratios for signs of dementia.  Drawing on a technique from Garrard et al. (2005) and 

used in Le et al. (2011), we extend the approach by using a larger, more complete data 

set of the authors. We also look at ratios, which is a new approach (see Kavé & Goral, 
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2016). We compare the first work of Iris Murdoch to the period 12 years before her 

diagnosis of Alzheimer’s disease. We plot the Function to Content Word ratio of Iris 

Murdoch and P.D. James (Table 21). 

These results in Iris Murdoch’s writing (Figure 19), reflect the findings of Garrard et 

al.’s (2005) observations that by her final book Jackson’s Dilemma (B26), she was 

suffering from cognitive decline caused by Alzheimer’s disease.  Here, we extend the 

data from three of her novels (the first, middle and last) to seven (first and final six) 

and we find the Function Word to Content Word ratios are all lower for the six works 

12 years before the diagnosis of AD. There is a steady decline in Iris Murdoch’s work 

until the fourth work (B24) where the ratio is approximately level. 

Figure 19: Iris Murdoch Content to Function Word Ratio Comparison of her first work to the six works 12 years 
prior to her diagnosis with AD. All variables are lower than her early work. 

 

As we can see in P.D. James’ writing (Figure 20), the Function Word to Content Word 

ratios are different from Iris Murdoch’s.  Here they appear as a sawtooth pattern, and 

while two are much higher (B16 and B18), the other two are lower (B17 and B19).  

There is only around 5.7% variation in P.D James’ ratios (0.65 – 0.69), which suggests 

that there is neither a steady incline or decline in the 12 years before P.D. James’ death.  

Iris Murdoch’s variation is approximately 22.6% (0.58 – 0.75) which is a much higher 

level of variation. In Table 21 it is clear that Iris Murdoch’s use of Content words 

increases, which is an indicator for AD, and this is seen in her use of Modal Verbs and 

Verbs generally. 

These results are supported by the Mann-Whitney U-Testing, which show that there 

are significant differences in the use of Function Words and Content Words by Iris 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

B1 B21 B22 B23 B24 B25 B26

R
a

ti
o

Works of Iris Murdoch

Function to Content Word Ratio



 136 

Murdoch (U=24, p = 0.028) 12 years before her diagnosis of AD (see Table 22 and Table 

23). As we would expect in a person without dementia or AD, there is no significant 

difference for P.D. James (U=17, p = 0.194) 12 years before her death (see Table 24 and 

Table 25). 

Figure 20: P.D. James Content to Function Word Ratio Comparison of her first work to the four works 12 years 
prior to her death. The increasing sawtooth pattern is neither higher nor lower overall than her early work, and 
the results are very different to the Iris Murdoch results. 

 

Table 22: Iris Murdoch Function to Content Word Ratio Mann-Whitney U-test Ranks  

Ranks 

 AD N Mean Rank Sum of Ranks 

Rank of Ratio 1 20 15.30 306.00 

2 6 7.50 45.00 

Total 26   

 

Table 23: Iris Murdoch Function to Content Word Ratio Mann-Whitney U-test Statistics 

Test Statisticsb 

 Rank of Ratio 

Mann-Whitney U 24.000 

Wilcoxon W 45.000 

Z -2.191 

Asymp. Sig. (2-tailed) .028 

Exact Sig. [2*(1-tailed Sig.)] .028a 

a. Not corrected for ties. 

b. Grouping Variable: AD 
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Table 24: P.D. James Function to Content Word Ratio Mann-Whitney U-test Ranks  

Ranks 

 AD N Mean Rank Sum of Ranks 

Rank of Ratio 1 15 10.87 163.00 

2 4 6.75 27.00 

Total 19   

 

Table 25: P.D. James Function to Content Word Ratio Mann-Whitney U-test Statistics 

Test Statisticsb 

 Rank of Ratio 

Mann-Whitney U 17.000 

Wilcoxon W 27.000 

Z -1.300 

Asymp. Sig. (2-tailed) .194 

Exact Sig. [2*(1-tailed Sig.)] .221a 

a. Not corrected for ties. 

b. Grouping Variable: AD 

 

8.3.3 Testing for Sensory Alzheimer’s disease markers 

Many sensory words are processed by the brain as sight/feel and smell/taste word 

categories (Lynott & Connell, 2009), and we use a group of 387 sensory adjectives and 

allocate them a modality exclusivity score that reflects the brain’s Representational 

System (van Dantzig et al., 2011).  These sensory words can be used to capture the 

sensory gating biomarker characteristics of a person (Fernandino et al., 2015) to create a 

unique signature of their inner self. 

Examining the differences between the earlier sensory variables to the final 12 years of 

Iris Murdoch’s and P.D. James’ writing (see Figure 21), we find that there is no overlap 

in the standard errors of their results.  The mean of Iris Murdoch’s writing is higher in 

the last 12 years, while P.D. James’ Sensory variable 12 years before her death shows a 

lower sensory score.  Overall, Iris Murdoch’s Sensory mean is slightly higher than P.D. 

James (0.022 versus 0.018), but their earlier works are very similar.  What is significant 
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are the opposing differences (Murdoch’s higher and James’ lower) that suggest a 

higher use of Adjectives in Murdoch’s later writing. 

Figure 21: Iris Murdoch and P.D. James’ Sensory Mean with Standard Error bars highlighting Murdoch’s higher 
use of sensory adjectives during the period 12 years prior to her diagnosis with AD. Note the error variance is 
smaller in the latter period and there are no overlaps in the standard error bars. In P.D. James’ case, there is 
lower use of sensory adjectives during the period 12 years prior to her death. Note that these results are the 
reverse of the Iris Murdoch results in that the error variance is larger in the latter period with a lower mean. 
Again, there are no overlaps in the standard error bars.  

 

These results are supported by the Mann-Whitney U-Testing, which show that there 

are significant differences in the use of Sensory Words by Iris Murdoch (U=18, p = 

0.011) 12 years before her diagnosis of AD. This is also true of P.D. James (U=7, p = 

0.021) 12 years before her death (refer detailed results Table 52 - Table 55 in Appendix 

A), but in P.D. James’ case, her use of Sensory Words is lower, not higher. 

Overall, these observations are further supported in the underlying five sensory 

variables for Iris Murdoch. Except for the Olfactory element, all of the other means of 

the sensory elements (V, A, H, & G) were higher in the period 12 years before her 

diagnosis of AD. However, there were overlaps in the Haptic and Olfactory Standard 

Errors.  In contrast, all of P.D. James Visual, Auditory, Haptic, Olfactory, and 

Gustatory (VAHOG) elements were lower in the 12 years before her death, and there 

were no overlaps in the Standard Errors (see Figure 43 - Figure 52 in Appendix A). 
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Principal Component Analysis is initially conducted on RPAS using the five sensory 

Visual, Auditory, Haptic, Olfactory, and Gustatory (VAHOG) variables, so we have 

eight variables (RPA-VAHOG). Correlation analysis highlights 18 of the 56 possible 

correlations are in excess of 0.30, with many of them being quite strong. Both the KMO 

(.694) and Bartlett’s tests (p=.001) produce criteria that support the application of PCA.  

Communalities varied between 0.851 and 0.535.  Applying Kaiser’s Rule and scree test, 

three factors are deemed important.  Following rotation, factor one is loaded on the 

five sensory element variables and accounts for 31.9% of the variance.  Factor two is 

loaded on the Richness and the five sensory element variables and accounts for 21.7% 

of the variance.  Factor three is loaded on Personal Pronouns (Gender) and RA Power 

and accounted for 14.6% of the variance.  Overall, the total variance explained by the 

three factors is 68.24%.  

Table 26: Iterative PCA of the 45 words of Iris Murdoch and P.D. James, showing the effect of removing one of the 
sensory modalities 

Element 
Removed 

Total variance 
% 

Bartlett's Test 
(p-value) 

Impact on Variance 
(%) 

Nil 68.24 0.001  -  

Olfactory 46.38  < 0.001 21.86 

Haptic 57.54 0.011 10.7 

Visual 58.56 0.009 9.68 

Auditory 61  < 0.001 7.24 

Gustatory 65.3  < 0.001 2.94 
 

Iterative PCA is conducted on the RPA variables, and in all cases, the total variance is 

reduced (varied between 58 - 60.9%) and Richness contributes the most to the variance 

(10.24%), highlighting its value as an indicator for differences.  Iterative Principal 

Component Analysis is conducted on the VAHOG elements, and each one is removed 

and replaced one at a time to measure the effect it has on the total variance and to 

examine if it can be increased.  In all cases, applying Kaiser’s Rule and scree test, two 

factors were deemed important in every case except with Olfactory, which was limited 

to one factor. The total variance explained varied between 2.94 – 21.86%.  As can be 

seen in Table 26, the order of contribution to the sensory variance is Olfactory, Haptic, 

Visual, Auditory, and Gustatory. 

The works of Iris Murdoch and P.D. James are separated and iterative PCA conducted 

on each author’s work to look at the large change in Olfactory impacts on total 

variance.  We find that except for the Olfactory element, the results are relatively 
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similar across V, A, H, & G for both Iris Murdoch and P.D. James (see Table 27).  In the 

case of the Olfactory element, we see a large, negative impact from its removal, 

highlighting the significant contribution, and therefore difference, which this element 

plays within the Iris Murdoch data.  This large role played by olfaction is not seen in 

P.D. James work, where it’s removal has a positive effect on the total variance 

explained within the data.  Alzheimer’s disease impacts normal olfactory function with 

suggestions that olfactory loss may be a biomarker for AD and cognitive decline 

(Wesson et al., 2010; Woodward et al., 2015). 

Table 27: A comparison of the sensory contribution to PCA variance.  Here it is clear that the impact on Iris 
Murdoch’s Olfactory variable is significantly larger than any other result for either author. 

Impact on Variance (%) 

Sensory Element Iris Murdoch P.D. James 

Visual -0.86 -1.13 

Auditory 2.93 5.1 

Haptic -2.05 -1.3 

Olfactory -16.19 3.87 

Gustatory 6.74 0.36 

 

8.4 Discussion 

Analysis of the Richness of each of the writer’s novels using a Mann-Whitney 

U-Test highlighted significant differences in the lexical repetition of Iris 

Murdoch’s works in the last 12 years of her writing (1984 – 1996). However, 

there were no significant differences in the works of P.D. James 12 years before 

her death. When using Parts of Speech analysis to group each work into 

Content and Function words., there was an increase in the use of Content 

Words in the later 12 Years of their writing. In Iris Murdoch’s case, they were 

approximately 44% larger than P.D. James’. A decrease in Content to Function 

Word ratios as an indication of dementia was observed in the overall works of 

Iris Murdoch 12 years before the diagnosis of AD, with four of the six works 

declining before the ratios levelled. A Mann-Whitney U-Test supported the 

significant differences in the later period of her writing. No such decrease or 

significant difference was observed in the works of P.D James, and the rising 

and falling sawtooth variation showed a pattern of neither steady incline nor 

decline in the 12 years before her death. 
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While there are no prior documented links to the Sensory variable and dementia or 

AD, we test this and the five Sensory elements (VAHOG) for indications. We found 

that overall, Iris Murdoch’s Sensory mean in the period 12 Years before her diagnosis 

of AD is higher, while P.D. James is lower than their earlier work, and these two 

groups are significantly different for both writers. Comparisons of the underlying five 

sensory variables for Iris Murdoch and P.D. James (see Table 28) highlight the means of 

the sensory elements (V, A, H, & G) were higher in the period 12 years before Iris 

Murdoch’s diagnosis of AD. The Olfactory element was the exception. While some 

people have a poor sense of smell, in Iris Murdoch’s case, her early olfactory scores 

were similar to P.D. James’, and the difference lies in the comparison to her other 

sensory modalities, and how they were all different from P.D. James in the last 12 years 

of writing.   

Table 28: Summary of Sensory Means of Iris Murdoch and P.D. James showing the overall higher sensory 
component in Iris Murdoch’s results during the 12-year period prior to her diagnosis of AD, where P.D. James’ 
results were all lower. Note that there was Standard Error overlap in Murdoch’s Haptic and Olfactory scores and 
that the Olfactory value was equal, or only slightly higher than the earlier period.  

Comparison of overlapping Stand Error bars between author’s mean scores 

Variable 

Early Writing Last 12 Years 

Iris Murdoch P.D. James Iris Murdoch P.D. James 

Sensory No No Higher Lower 

Visual Sensory No No Higher Lower 

Auditory Sensory No No Higher Lower 

Haptic Sensory Yes No Higher Lower 

Olfactory Sensory Yes No Almost Equal Lower 

Gustatory Sensory No No Higher Lower 

 

While olfactory dysfunction is seen in normally aging individuals, AD begins in the 

entorhinal cortex an area that affects the olfactory function and has the potential to be 

an early marker of neurodegenerative conditions such as AD, multiple sclerosis, 

schizophrenia and Parkinson’s disease (Zou et al., 2016). This change in olfaction is a 

physical one that is more significant than observed in normal aging.  Looking at the 

observations from a linguistic perpective we see that all of P.D. James Visual, Auditory, 

Haptic, Olfactory, and Gustatory (VAHOG) elements were lower in the 12 years before 

her death. While there were overlaps in Iris Murdoch’s Haptic and Olfactory Standard 

Errors, overall, the sensory elements except Olfactory were higher in the last 12 years 

prior to her diagnosis of AD.  When conducting Principal Component Analysis and 

removing each of the five sensory elements of VAHOG one at a time we can see a 

significant observation in the Olfactory area of Iris Murdoch.  The range of variation in 
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PCA analysis for P.D. James was -1.13 - 5.1 across all of the senses, while the range of 

variation in Iris Murdoch across all the senses (excluding Olfactory) was -2.05 - 6.75, 

which is quite similar.  However, when the Olfactory element is removed the variation 

changes by -16.19, showing the high contribution that Olfactory words contribute to 

the variation in the data.  Another words, the use of Olfactory words is significantly 

different in Iris Murdoch’s writing (see Table 27). 

Both Richness and POS analysis supported by Mann-Whitney U-Test highlight the 

evidence of dementia and AD in Iris Murdoch’s writing in the latter 12 years before her 

diagnosis.  These can be seen in Richness, a higher-level use of Content Words, and a 

lower and lower Content to Function Word ratios. We also find that a higher Sensory 

mean might suggest the presence of AD in the period 12 Years before Iris Murdoch’s 

diagnosis, possibly because of her reliance on adjectives (and function words) rather 

than nouns. While this is supported by the analysis of the different means in the last 12 

Years of writing and the earlier works, and the comparative differences in Principal 

Component Analysis variances, the exceptionally low Olfactory element compared to 

her other sensory modalities throughout her life and also observed in the last 12 years 

of her writing is quite different in Iris Murdoch’s writing. 

Murdoch’s depression and apathy have been well documented through her prolific 

habit of writing about herself throughout her life (Dooley & Nerlich, 2014; Martin & 

Rowe, 2010; Murdoch, 2016; Wilson, 2004).  Her decline into Alzheimer’s disease has 

also been recorded by her husband (Bayley, 1998; 1999). We have stated earlier that 

there is a strong link between depression and apathy in dementia and particularly AD. 

It is known that while a depressed mood and apathy alter brain function in the 

prefrontal limbic network,  that it overlaps regions dealing with olfaction, such that 

depression can reduce olfactory ability (Croy et al., 2014). 

A limitation to this longitudinal study is that it is the writing of only two authors and is 

not sufficient to suggest that AD, or indeed depression or apathy can be determined 

from the sensory writing of individuals. However, in this new approach to identifying 

the style of a person’s writing using sensory adjectives, there were clear differences 

between both author’s works in their last 12 years that warrant further study of other 

known authors who developed dementia. 



 143 

8.5 Conclusion 

In a study of two highly creative and prolific authors, we have been able to draw on a 

complete set of novels, more than that used by Garrard et al. (2005) and Le et al. (2011) 

to characterise a person’s use of language through writing.  In doing so, we have 

applied both known techniques to identify linguistic markers for Alzheimer’s disease, 

depression, and apathy (through lexical repetition and function to content word ratios) 

and test a new technique based on sensory adjectives.  Our results support the 

hypothesis that thought and language are impacted by depression and apathy and 

revealed in a person’s writing style 12 years before a formal diagnosis of Alzheimer’s 

disease present.  Using Richness to measure lexical repetition (a form of the type-token 

ratio, Section 3.4.1.1) the writing of Iris Murdoch is statistically significantly lower in 

the last 12 years of her novel writing.  This result is also reflected in Iris Murdoch’s use 

of Function Words and Content Words). In contrast, a healthy P.D. James’ writing 

during the same period showed no decline in lexical repetition and function to content 

word ratios and was not different to her earlier writing.  There were clear differences in 

their use of sensory adjectives, with Iris Murdoch’s use higher and P.D. James lower 

during their latter 12 years of writing, but in Iris Murdoch’s case, her use of olfactory 

words, a biological sensory marker for Alzheimer’s disease, depression, and apathy, 

was low. It is possible that olfactory sensory words in language could be used to help 

identify depression and apathy in people.  We suggest that cognitive diseases such as 

dementia impact on thinking, as seen through depression and apathy and can 

influence language use. 

8.6 Summary 

In this study, the Parts of Speech analysis, Mann-Whitney U-Testing, and Principal 

Component Analysis identified both normal aging, and changes over time because of 

life events. The study demonstrated that the sample size used was sufficient to contain 

biomarkers for depression and Alzheimer’s disease because the results were similar to 

other existing studies. 

The most significant findings from this study were that when comparing a writer’s 

earlier work to that 12 years prior to a formal diagnosis of AD, there are indications of 

lower Richness, increased content word use and a corresponding decrease in function 

words, another word, a falling Function to Content word ratio.  With the exception of 
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Olfactory words, there was an increase in the use of sensory adjectives, suggesting that 

lower use of Olfactory words might be a marker for AD and cognitive decline.  
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Chapter 9 
 

 

RPAS Over Time and CSD Indicators 
 

 
In this chapter, the third of the three studies looking at the changes across an 

individual’s writing style over time is addressed, and it is the second of the two studies 

using the novels of Iris Murdoch and P.D. James. In the previous study (study five), the 

focus was on identifying both normal aging, and changes over time because of life 

events.  In this study (study six), the aim is to use techniques to visualise the Critical 

Slowing Down phenomena and see if it is possible to identify any tipping points that 

might mimic a terrorist’s mindset prior to an attack.  

Using RPAS comparisons between Iris Murdoch and P.D. James, and the 1-lag 

autocorrelation and Fisher-Pearson coefficient of skewness techniques, analysis of the 

stylometric markers identified in the previous chapter are conducted to discover if a 

tipping point can be found in Iris Murdoch’s writing and not in P.D. James’. To 

reinforce our earlier results and choice of sampling (study five), we conduct an 

independent comparative assessment of Iris Murdoch’s writing style, prior to 

identified decline into Alzheimer’s disease, using the Linguistic Inquiry and Word 

Count (LIWC) text analysis program.  Using the techniques from the first study of the 

Elizabethan playwrights and poets (Chapter 4), Principal Component Analysis (PCA) 

and Stepwise Linear Discriminant Analysis (LDA) is conducted on this data to 

demonstrate that the techniques can separate the writing of contemporary authors, and 

not only 400-year-old text. 

In this study, the third research question is addressed (Section 1.3) and hypothesis H3 is 

tested (Section 1.4) 

In this case, the findings are clear. Using 1-lag autocorrelation (AR1) and Fisher-

Pearson coefficient of skewness (G1) techniques to measure the Critical Slowing Down 

(CSD) phenomena on the Sensory element, a tipping point was identified in Iris 

Murdoch. Given these findings, we are able to reject the null hypothesis and say that 

the application of techniques to visualise the critical slowing down phenomena can 

identify changes in a person’s moods, or shifts from one state to another, that might 

indicate a tipping point for self-radicalisation. 
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This chapter is taken from a peer-reviewed paper: The Stylometric Impacts of Aging and 

Life Events on Identity. It was accepted for publication by the Journal of Quantitative 

Linguistics. (Accepted 12 November 2017). 

9.1 Introduction 

This paper is part of a wider study into the self-radicalisation problem using 

quantitative linguistic techniques to create a stylistic fingerprint of a person’s 

personality – their personal signature – and reveal their ‘identity’ from their writing 

style.  Here, we extend these quantitative linguistic techniques to determine if a 

person’s ‘identity’ changes over time because of life events, such as trauma, depression, 

and disease, or if is it stable.  Using the critical slowing down phenomena, a behaviour 

of complex dynamical systems (Dakos et al., 2012; Drake & Griffen, 2010; Slater, 2013), 

on a person’s writing to see if it is possible to identify changes in a person’s moods, or 

shifts from one state to another, when a person is unable to cope with their 

environment, and whether this might indicate a tipping point for self-radicalisation.  

The issue of self-radicalisation is a problem that can be benefited through the 

application and analysis of linguistic techniques, in particular, stylometry. 

While the rise of terrorism throughout the world is a key concern (Department of 

Defence, 2016). This threat is amplified when a terrorist act occurs within our 

neighbourhood by self-radicalised individuals with no known affiliation to terrorist 

organizations. No fully scientific theory has yet been developed to explain self-

radicalisation or provide a predictive framework for current policy and operational 

needs (Reardon, 2015; Schiermeier, 2014), but terrorist organizations continue to exploit 

the use of social networking and other Internet sites by targeting Western people for 

recruitment, and radical material on social networking sites allows for self-

radicalization, creating home-grown terrorists (Fuentes, 2016).  The US government has 

no comprehensive strategy to combat the use of social media to radicalize potential 

terrorists, and law enforcement needs to better understand how to assess precursors of 

radicalization exhibited by potential terrorists (Layton, 2016). 

With suicide terrorists, mental health problems, personal crises, coercion, fear of an 

approaching enemy, or hidden self-destructive urges play a major role in their actions 

(Lankford, 2014).  Many of these illnesses are also prevalent in highly creative people. 

Creative writers, playwrights, and poets are believed to have a higher prevalence of 
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pathological personality traits, such as depressive disorders, bipolar affective 

psychosis, and alcoholism (Post, 1996).  

We wonder if there is some linguistic markers within the writing of home-grown 

terrorists that might help support a predictive framework. It is believed that many 

mass murderer’s lives are plagued with psychosis, paranoia, and depression, while 

lone actors typically suffer from mental illness and tend to be suicidal (Capellan, 2015). 

With suicide terrorists, mental health problems, personal crises, coercion, fear of an 

approaching enemy, or hidden self-destructive urges play a major role in their actions 

(Fuentes, 2016). However, despite a growing interest in the motivations and 

psychological profiles of suicide attackers, few empirical studies have examined their 

personal writings and recordings (Smith, 2016), and suicide terrorism is still a poorly 

understood phenomenon (Cohen, 2016). While suicide terrorists kill more people on 

average overall, non-suicide attacks can be just as lethal, but suicide operations are 

laden with symbolism and significance (Mroszcyk, 2016) The declared intention to die 

in order to kill others turns a suicide attacker into a powerful, highly dangerous, and 

utterly unpredictable weapon (Filote, Potrafke, & Ursprung, 2016). 

Suicidality, the behavior related to contemplating, attempting, or completing suicide 

generally, appears higher in sexual minority youths than their heterosexual peers 

(Bostwick et al., 2014). However, the views on suicidality in attackers and whether 

attackers more generally are mentally ill is conflicting (Metzl & MacLeish, 2015). While 

many of the views held by the political science and international relations fields are 

that suicide terrorists are not suicidal, due to relatively few formal systematic studies 

of suicidality in suicide terrorists, there is emerging evidence to suggest that suicidality 

may play a role in a significant number of cases (Sheehan, 2014). Many agree there is a 

notion of Durkheim’s (1897) ‘altruistic suicide’ where attackers motives are driven by a 

higher selfless act for the greater good (Pape, 2008; Nilsson, 2017). 

In a study of 119 lone-actor terrorists and a matched sample of group-based terrorists, 

the odds of a lone-actor terrorist having a mental illness is 13.49 times higher, and 

those with a mental illness were more likely to have a proximate upcoming life change 

and experienced proximate and chronic stress (Corner & Gill, 2015; Meloy & Gill, 

2016). The results identify behaviours and traits that security agencies can utilize to 

monitor and prevent lone-actor terrorism events (Corner & Gill, 2015). We believe that 

by drawing on data from creative writers, including ones with known depression and 

cognitive decline throughout their life, that it might be possible to mimic some of the 
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inner turmoil faced by suicide terrorist’s face (Hoffman, 2017; Bhui, 2014; Speckhard & 

Akhmedova, 2006) using stylometric analysis techniques.  We draw on the research 

conducted in Chapter 8. 

We use RPAS to create individual stylistic signatures of the 45 Iris Murdoch and P.D. 

James novels. From simple comparative graphs, and a modification on the coefficient 

of skewness and 1-lag autocorrelation equations used in the Critical Slowing Down 

(CSD) dynamical property, we can observe the impacts of aging events on identity. 

9.2 Methodology 

We achieve a 180,000-word sample by taking 4,000 words from each of Iris Murdoch’s 

26 fiction novels (see Table 50) and 19 of P.D. James’ fiction novels (see Table 51 ).  We 

pre-process the data (Section 3.1).  These 104,000 words from Murdoch’s and 76,000 

words from James’ writing were taken from the first 3,000 words from the beginning of 

each novel and the last 1,000 words once punctuation is removed. 

We had hoped this approach would capture the narrative structure of the story at a 

point in the introduction where characters, rich in setting and plot, are introduced and 

at the end, a conclusion of the general novel 'problem' has been resolved and 

summarized.  This would reduce our data variation to more readily help ‘see’ any 

subtle changes in writing over time.  Gee and Grosjean (1984) suggest sentences have a 

spatial aspect where they are related to sentences proceeding and following them, and 

that have a temporal element, where each one flows after the other in time, and that 

this narrative grouping is intuitively logical.  However, Lehnert’s (1981) model of story 

structure, suggests narrative is nothing more than simple plot units combined and 

connected to make up complex plot configurations.  Books are not generally written 

from beginning to end without different areas being revisited and words added, so the 

temporal and spatial elements can be treated as one within the confines of a book’s 

overall creation.  

To test if we have captured a part of the narrative structure that is different from the 

rest of a novel’s structure, we use the Linguistic Inquiry and Word Count (LIWC) text 

analysis program (Pennebaker et al., 2015) to segment Iris Murdoch’s The Sandcastle 

into 38 3,000 word chunks.  Using eight of the commonly occurring parts of speech 

(adjectives, adverbs, articles, auxiliary verbs, conjunctives, prepositions, pronouns, and 

verbs) we compare the first 3,000-word segment (the one we used) to the remaining 37 

segments.  Mann-Whitney tests show that there is no significant differences in our 
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sample compared to any of the other 3,000 word samples in the novel (adjectives 

(U=10, p=.438), adverbs (U=14, p=.681), articles (U=1, p=.110), auxiliary verbs (U=0, 

p=.091), conjunctions (U=1, p=.110), prepositions (U=0, p=.092), pronouns (U=5, 

p=.218), and verbs (U=2, p=.132)). Perhaps as Brewer (1984) says, there is structure to 

story, but its scope is not set in any particular size. Therefore, we cannot be certain if 

we have captured a particular part of the narrative structure, but we do know that this 

study draws on previously reported data that is known to contain markers for 

Alzheimer’s disease and cognitive decline (see Chapter 8). 

9.2.1  Existing Alzheimer’s disease (AD) markers 

An in-depth discussion on AD markers can be found in Section 8.2.1, and this current 

chapter draws on much of the work in Chapter 8. Our data is representative of the full 

novels as demonstrated by the similarities of our findings using the data when 

comparing it to the findings of Le et al. (2011) and Garrard et al. (2005).  Further, we use 

Parts of Speech Tag analysis of Content and Function word ratios to highlight the 

cognitive decline in Iris Murdoch’s writing. Using well-documented Parts of Speech 

(POS) techniques from a number of these recent articles we show that this data sample 

is robust enough to highlight markers for dementia and in particular, Alzheimer’s 

disease, 10-12 years prior to diagnosis (refer to Chapter 8). 

Here, we apply the RPAS multivariate technique to determine if we can further 

separate the effects of natural aging from Alzheimer’s disease, which is something that 

van Velzen, Nanetti, and de Deyn (2014) have raised as a valid concern missed within 

these prior Alzheimer studies.  We use the 19 novels of P.D. James as a control author 

because unlike Iris Murdoch, there were no indications she had any symptoms of 

Alzheimer’s disease prior to her death.  

9.2.2  Critical slowing down (CSD) visualisation 

The approach taken with critical slowing down, including the two equations used, can 

be found in the Methods Section 3.4.2. 

9.3 Analysis 

In this section, we begin by making observations of the four RPAS elements and 

compare the works of Iris Murdoch against P.D. James using their approximate ages 

based on the novel publication dates.  In reality, many of P.D. James novels were 

written over a period of three years prior to publication, while Iris Murdoch was 



 150 

generally a quicker writer, producing novels around one to two years prior to 

publication.  We then focus on the results of the Sensory element and conduct Critical 

Slowing Down (CSD) visualisation using the Skewness and 1-lag autocorrelation 

techniques. 

9.3.1  RPAS visualisation 

Richness (R). In Figure 22, there appears to be a trough in Iris Murdoch’s Richness 

scores marked by a period covering 9 years between age 46 to 55 (B9 - B16).  Her 

Richness scores seem to climb through her writing career from the age of 35 to 76 (B1 - 

B26) so that her last book is 12.13% richer than her first.  If we consider the point where 

she was 61 years of age (B20), her word richness is higher again, and is an approximate 

21.47% increase in unique word use, before it falls between ages 61 and 76 (B20 - B26). 

If not for an anomaly at the age of 81 (B15), much of P.D. James scores are more 

consistent and flat overall. Similarly, to Iris Murdoch, P.D. James has a trough marked 

by a period covering 7 years between age 55 to 62 (B6 – B9).  In P.D. James’ case, there 

appears to be a decline in her Richness scores during her writing career, marked by 

novels B15 and B19, and her last book is approximately 5.2% less rich than her first.  If 

we ignore her final book, however (B19), then her Richness score is overall higher, and 

it grows between the ages of 42 and 88 years of age by approximately 12%.  Overall, 

P.D. James has a higher Richness score than Iris Murdoch. 

The unusual dip toward the end in the Iris Murdoch data, before falling into decline 

prior to her being diagnosed with Alzheimer’s disease, is highlighted as a key AD 

marker in Le et al. (2011). 
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Figure 22: Richness (R) by Age at Publication for Iris Murdoch and P.D. James showing James’ higher scores 

 

Personal Pronouns - Gender (P). In Figure 23, there is a decline in Iris Murdoch’s 

scores marked by a period covering 7 years between the age 47 to 54 (B10 –B15).  With 

the exception of B16, there is what appears to be a trough covering 14 years between 

the age 47 to 61 (B10 - B19).  After that point, there is a continuous switching high and 

low during her writing career from age 66 (B22 - B26). There is also a major transition 

from age 44 to 45 (B7 - B8).  Overall, there is a declining trend in the use of Personal 

Pronouns over Iris Murdoch’s 26 novels, and the low points at B8, B15, and B19. 

Between the low points B15 and B19, there is the large transit at B16 and during this 

time Iris Murdoch was troubled by her mother’s illness.  The point prior to the earlier 

low point at B8 was preceded by another difficult time in her life when she had to leave 

St Anne’s College. All three novels (B8, B15, and B19) are told from a male narrator’s 

perspective and highlight the use of female personal pronouns ‘my’ and ‘her’ over the 

male use of ‘its’.  

P.D. James in comparison has fewer transitions, but there are three consecutively larger 

dips at age 55, 72, and 81 (B6, B12, and B15). Otherwise, most of the variables are very 

similar and quite high in value.   

Unlike Iris Murdoch, there is no a constant steady trend in the use of Personal 

Pronouns over P.D. James’ 19 novels.  There is no publically available data to suggest 

any low points B6, B12, and B14, outside of initial novels prior to B6. Like Iris 

Murdoch, all three novels are told from a male narrator’s perspective and highlight the 
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use of female personal pronouns ‘my’ and ‘her’ over the male use of ‘its’. From age 77 

during the rest of P.D. James’ writing career, the gender pronouns tended to mimic the 

Richness results above. Overall, P.D. James has a higher Gender Pronoun score at 

80.72%, while Iris Murdoch’s is lower at 53.12%. 

Figure 23: Personal Pronouns – Gender (P) by Age at Publication for Iris Murdoch and P.D. James showing James’ 
higher and more consistent scores. 

 

RA Power (A). In Figure 24, there are two low points in Iris Murdoch’s RA Power 

scores at age 43 and 57 (B6 and B18).  There seems to be a decline from age 39 to 43 (B4 

- B6), and possibly overall from age 35 to 43 (B1 - B6) if the low peak at age 39 (B4) is 

discounted.  There also seems to be a decline from age 52 to 57 (B14 - B18), and 

possibly overall from age 49 to 57 (B11 - B18) if the low peak at age 52 (B14) is 

discounted. 

At 42 years of age, P.D. James commences at a low point (B1) and shows a more 

consistent mapping.  There are two other low points at age 62 and 85 years of age (B9 

and B17).  At age 85 (B17), RA Power rises before dropping lower again. While Iris 

Murdoch’s work tends to transition to low points over many iterations of her work, 

P.D. James’ seems to have more iterations of climbing to a high point.  There appear 

more transitions and variation in Iris Murdoch's work over her writing career than P.D. 

James.  Overall, P.D. James has a slightly higher Referential Activity Power score, 

sitting above 10, while Iris Murdoch’s falls below at B3, B6, and B16-18. When the two 

author’s scores are compared, Murdoch’s levels at scores below ten correspond to 
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documented low points in her life where is struggling with depression, anxiety and, 

personal trauma. 

Figure 24: Referential Activity Power (A) by Age at Publication for Iris Murdoch and P.D. James showing James’ 
higher and more consistent scores between 10-16, and Murdoch’s three groups falling below ten.  B3 at age 38, 
B6 at age 43, and B16-B18 at ages 55-57 mark documented low points in her life. 

 

Sensory Adjectives (S). In Figure 25, there are two major sensory transitions in 

Iris Murdoch’s work between the age of 54 to 56 (B15 - B16 and B16 - B17).  

These transitions are much larger than P.D. James’ ones (B15 - B16 is 0.0343 

compared with P.D. James’ combined score of 0.0155 for B10-B12 at age 66 to 72 

years).  Iris Murdoch’s Sensory indicators seem to increase by approximately 

52.31% during her 41-year writing career. 

At 42 years of age, P.D. James commences at a low point (B1).  There is a low 

point at age 72 (B12) and another lower again at the age of 91 (B19).  Overall, the 

Sensory indicators seem to fall during her 50-year writing career by 

approximately 114.65%, and this is mainly due to the final work at age 91(B19).  

If B19 is ignored, then the Sensory indicators appear to increase by 

approximately 44.65%. There is an overall decline from ages 74 to 91 years of 

age (B13 - B19). 

Between the time when they commenced publishing novels up to a point at age 

74, both Iris Murdoch’s and P.D. James’ sensory elements have similar 

characteristics of highs and lows (ignoring the large transition at age 54 to 56, 
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B15- B16- B17), and with an overall increase. There is a decline seen from the 

age of 74 to 91 in the work by P.D. James, and of note, there is a similar pattern 

of decline seen in the work of Iris Murdoch’s from age 64 until she ceased 

writing at age 76, although it is not as pronounced as P.D. James (~8.83% versus 

~262%) and is of shorter duration (12 years versus 17 years).  Overall, Iris 

Murdoch’s work has a higher Sensory score, even when B16 at age 55 is 

removed. 

Figure 25: Sensory Adjectives (S) by Age at Publication for Iris Murdoch and P.D. James showing James’ overall 
consistent decline and Murdoch’s frequent transitions including B15-16 at age 54.  The transition to B16 marks a 
major life event, a point of known difficulty in Murdoch’s life where she was nursing her dying mother.  

 

9.3.2  CSD visualisation 

The sensory scores were processed using both an adjusted 1-lag autocorrelation 

technique (AR1) and an adjusted Skewness (G1) technique.  A zero score was added to 

the end of the AR1 data, so this final variable can be ignored with little change in 

results. The results of both techniques have been shifted by the lowest negative value 

to display them in the positive quadrant. 

Looking at the AR1 results first, we see two tipping points where the data climbs 

steadily over a number of accumulated samples and then falls (Figure 26). With the Iris 

Murdoch accumulated data, it climbs to a peak B1-B7 and then falls through B8-B15 (a 
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tipping point at B7 prior to the change). The remaining 11 accumulated samples are 

similar and appear as a flat line.  What is interesting is that the flat line B3-B4 and B15-

B26 mark times when Murdoch was also troubled.  In comparison, P.D. James work 

falls through B1–12, but then climbs B15 and then falls through B16-B19 (a tipping 

point at B15 prior to the change).  Unfortunately, P.D. James’ has no documented life 

event that might explain this, but she was noted for keeping her personal life private. 

Figure 26: 1-lag autocorrelation (AR1) of the accumulated 26 Iris Murdoch novels and 19 accumulated P.D. James 
novels. In Murdoch, we see a tipping point at point B7, where the rising autocorrelation falls.  It rises with a 
decline through to point B15 where it flat lines (from age 54).  This point at 15 and the transition at 3-4 are two 
other known times where Murdoch was troubled.  In the corresponding P.D James’ dataset, we see also see a 
rising trend between 12 and 15, with a tipping point at 15 (from age 81). 

 

Figure 27: Skewness (G1) of the 26 Iris Murdoch and the 19 P.D. James works. In Murdoch, we see many 
transitions before a tipping point at point B18, while in James’ works we see an overall rise and fall with a 
possible tipping point at B16. 
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Looking at the G1 results, we see two tipping points where the data climbs steadily 

over a number of accumulated samples and then falls (Figure 27).  With the Iris 

Murdoch accumulated data, it climbs to a peak B15-B18 and then falls through B19-B26 

(a tipping point at B18 prior to the change). There is a lot more variation in the data 

compared to the AR1 technique.  In comparison, P.D. James work falls through B13–

B16, but then falls through B17-B19 (a tipping point at B15 prior to the change) and 

close to the AR1 results. 

9.4 Discussion 

When looking at the results of the RPAS visualisation a number of points can be made.  

Overall, Iris Murdoch used fewer unique words and had more repetition than P.D. 

James which can be an indicator for dementia and Alzheimer’s disease (Bird et al., 2000; 

Garrard et al., 2005; Lancashire & Hirst, 2009).  P.D. James used more consistently male 

gendered pronouns in all her novels (~80%), and it didn’t matter whether the main 

character was Adam Dalgliesh or Cordelia Gray (see B5, B9). It is possible that Iris 

Murdoch’s Personal Pronoun score (~53%) reflected her well documented sexuality 

(Murdoch, 2016). P.D. James Sensory scores were lower overall, indicating that she 

drew less from her emotional experiences and used less imagery, while her writing 

concepts were more vague and abstract.  P.D. James’ work was also more consistent 

with less variance in her RPAS results.  In comparison, Iris Murdoch works had more 

and larger transitions.  Two clear differences were observed in the Referential Activity 

Power score and Sensory results. 

Overall, P.D. James has a slightly higher Referential Activity Power score, sitting above 

10, while Iris Murdoch’s falls below at B3, B6, and B16-18.  These might indicate 

negative life events.  At the low point in 1957 (B3 aged 38), after the death of her father, 

Iris Murdoch admitted to being depressed and she abandoned her unpublished novel, 

Jerusalem when it was given a bad review by her lover and mentor, her depression 

fuelled by the varied reception of her earlier novels (Martin & Rowe, 2010; Murdoch, 

2015).  At the low point in 1962 (B6 aged 43), Murdoch was torn between her desire for 

a number of male and female lovers and the security of her married life, but was asked 

to leave her teaching post at St Anne's because of an inappropriate 'incident' with a 

fellow female staff member (Murdoch, 2016; Wilson, 2004).  At the low point during 

1974 - 1976 (B16-B18 aged 55-57 years), Iris Murdoch highlights that she has been 

dealing with a host of problems, her mother’s mental health problems and diagnosis of 

dementia, requiring Iris’s mother to stay with her while Iris took on a large burden of 
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care (Dooley & Nerlich, 2014; Murdoch, 2016; Wilson, 2004). We also know that P.D. 

James struggled with a schizophrenic husband during 1962-1963 during her first two 

novels (B1-B2 aged 42-43 years), and although for the most part he was locked away in 

an asylum, he did have regular home visits before he finally killed himself in the 

family home on their 24th wedding anniversary (Wilson, 2014). Her third book was 

written three years after his death, in 1967 (B3 aged 47 years), and tracks in the positive 

direction. 

Looking at the Sensory elements and the Critical Slowing Down visualisation, we see 

that overall, Iris Murdoch’s Sensory scores were higher, indicating that she drew more 

from her emotional experiences and imagery, and her concepts were less vague and 

less abstract than P.D. James.  What is interesting is the major transition at B15-16 

which is reinforced by the low Referential Activity power scores at the same period.  It 

has also been stated that Alzheimer’s disease (AD) can be seen in people’s writing 10-

12 years before the disease is diagnosed, and it has been suggested that in a few cases 

this might extend out to 18 years (Rajan et al., 2015).  Given that we had identified 

markers for Alzheimer’s disease 10-12 years out prior to Iris Murdoch’s diagnosis in 

the Richness scores, and found no markers in P.D. James in the same period, we 

suggest that the rising peak on the G1 chart is a tipping point at B17 (Figure 27) that 

rises from B15.   

Further, given the AR1 flat line observation (Figure 26) at B15 in 1973 (aged 54), we 

wonder if this might be a linguistic marker for AD 20 years prior to her last novel when 

it had become clear her writing was impacted by AD, and given there were no 

corresponding indications in the results from P.D. James which suggest her steady 

decline observations in AR1 (Figure 26) could be from normal aging. 

There are several differences in this approach compared with other earlier studies. 

Garrard et al.’s (2005) study highlighted significant lexical differences between Iris 

Murdoch’s early work and her last novel.  In their study, they used fully-parsed texts 

of both Murdoch’s first novel, Under the Net (1954), the last novel, Jackson’s Dilemma 

(1950), and the first 100 pages of her awarded novel, The Sea, The Sea (1978). Le et al.’s 

(2011) large-scale longitudinal study of Iris Murdoch and P.D. James used fully parsed 

texts and a larger number of measures to improve on the Garrard et al.’s (2005) study.  

Le et al. (2011) used 20 fully parsed Iris Murdoch novels and 15 of P.D. James’ novels.  

In this study, we have taken a consistent 4,000 sample from all 26 of Iris Murdoch’s 

fiction novels and all 19 of P.D. James’ fiction novels.  We can see the similar trough 
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identified in Murdoch’s work by Le et al. (2011), and the lexical differences identified 

by Garrard et al. (2005). 

We believe this study takes the above-mentioned results further. Using 45 works and 

multivariate techniques that include RPAS, and a variation on 1-lag autocorrelation 

and coefficient of skewness, we have tried to account for van Velzen et al.’s (2014) 

criticism of the impacts of natural aging on identity. We find a distinctive tipping point 

in the works of Iris Murdoch and P.D. James, and this could be a useful technique to 

apply to the CSD phenomena. However, what is interesting is the AR1 point 20 years 

earlier than Murdoch’s formal diagnosis of AD (that compares to the extreme estimates 

in Rajan et al. (2015), and yet the results show what appears to be only signs of natural 

aging in the works of P.D. James. 

While this stylometric approach shows merit, it is not sufficient to suggest that AD can 

be determined from the sensory writing of individuals using modified techniques 

within the CSD phenomena, but it warrants further study. 

9.5 Conclusion 

When combining RPAS with the modified 1-lag autocorrelation and coefficient of 

skewness, clear differentiation in the style of Iris Murdoch and P.D. James’ writing can 

be seen. In addressing van Velzen et al.’s (2014) concerns about changes in a person’s 

identity over time, these findings extend the finding of Rajan et al. (2015) by between 2-

8 years.  It is clear that a person’s identity changes over time due to aging and life 

events, and we find that life events such as depression, anxiety, and Alzheimer’s 

disease might be identified outside of natural aging through a tipping point 

phenomenon.  We believe these techniques might be a useful self-help tool to aid in the 

signaling of depressive episodes, such as averting suicide, and the early identification 

of Alzheimer’s disease, or for law enforcement personnel monitoring terrorists on 

watch lists. 

9.6 Summary 

In this chapter, the use techniques to visualise the Critical Slowing Down phenomena 

were effective at identifying a tipping point in the writing of Iris Murdoch.  The most 

significant findings from this study were that the flat signal observed at Murdoch’s 15th 

novel in the AR1 and G1 techniques could indicate the beginning of Alzheimer’s 

disease at a point 20 years prior to a formal diagnosis.  The falling Referential Activity 
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Power that corresponds to known difficult times in Iris Murdoch’s life was also 

significant.   

From this study, knowing that suicide attackers and lone wolf terrorists are more likely 

to have a mental illness, experience chronic stress, and have an upcoming life change, it 

is hoped this technique will be able to identify changes within them.  Therefore, in the 

next chapter, the study of the final manifestos and notes of suicide attackers, we aim to 

attempt to improve the classification of a terrorist’s theoretical writing, and separate 

their stylistic signature from both a normal person and somebody with depression who 

suffered from life changes see if we can separate their writing from normal blog posts. 
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Part Three: Terrorist Characterisation 
 

 
In part three, the last in this research thesis, the focus is on improving the classification 

techniques identified in parts one and two. 

In this part, the suicide notes and final manifestos of suicide attackers are compared to 

normal blog posts (Chapter 10) to see if RPAS is able to differentiate the writing. The 

works of Iris Murdoch are then added and compared, to see if a normal person with 

depression who is suffering from life events – something a terrorist and suicide 

attacker would also have – can be separated from a suicide attacker. In this study, the 

fourth and final research question is (hypothesis H4): Can the final writings of suicide 

attackers be separated from ‘normal’ bloggers? 

There is one paper that contributes to this in this third part (refer Section 1.6): 

Identifying Suicide Attackers in Cyberspace. More detail about it follows in the following 

chapter. 

  



 161 

Chapter 10 
 

 

Suicide Attackers 
 

 
In this chapter, the final study in this research thesis is addressed.  The study draws on 

the suicide notes and final manifestos of suicide attackers, normal blog posts, and the 

works of Iris Murdoch, to see if RPAS is able to differentiate their writing and improve 

the classification techniques from the previous studies (Chapters 4 – 9). Iris Murdoch is 

chosen because of the known life events she suffered (Chapters 8-9), something a 

terrorist and suicide attacker may also have experienced. 

Using the Linguistic Inquiry and Word Count (LIWC) tool (Pennebaker et al., 2015), the 

analysis is conducted of the Suicide Attacker data to ensure it contains expected 

negative emotion and anger sentiment. Mann-Whitney U testing and Stepwise 

Multiple Regression Analysis are conducted.  The findings are supported by 5-fold 

cross-validation techniques. 

In this study, the fourth research question is addressed (Section 1.3) and we test 

hypothesis H4 (Section 1.4). 

In this case, the findings are clear. The nine elements of RPAS (including VAHOG) 

were used in step-wise multiple regression analysis, and four of the eight variables 

(RPAV) were statistically significant in predicting suicide attackers. Given these 

findings, we are able to reject the null hypothesis and say that the final writings of 

suicide attackers can be separated from ‘normal’ bloggers. 

This chapter is taken from an accepted abstract and a paper presented at the Terrorism 

and Social Media Conference, in Swansea, Wales in June 2017, titled: Identifying Suicide 

Attackers in Cyberspace. It has been peer reviewed by the Studies in Conflict and 

Terrorism Journal. 

10.1 Introduction 

The rise of terrorism throughout the world is a key concern (Department of Defence, 

2016). This concern is amplified when an act of terrorism occurs in the neighbourhood 

by self-radicalised individuals with no known affiliation to terrorist organizations. 

While no fully scientific theory has yet been developed to explain self-radicalisation, or 
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provide a predictive framework for current policy and operational needs (Reardon, 

2015; Schiermeier, 2014), terrorist organizations continue to exploit the use of social 

networking and other Internet sites by targeting Western people for recruitment and 

creating home-grown terrorists (Fuentes, 2016). 

It is believed that many mass murderer’s lives are plagued with psychosis, paranoia, 

and depression, while lone wolves typically suffer from mental illness and tend to be 

suicidal (Capellan, 2015).  With suicide terrorists, mental health problems, personal 

crises, coercion, fear of an approaching enemy, or hidden self-destructive urges play a 

major role in their actions (Lankford, 2014).  However, despite a growing interest in the 

motivations and psychological profiles of suicide attackers, few empirical studies have 

examined their personal writings and recordings (Smith, 2016) and suicide terrorism is 

still a poorly understood phenomenon (Cohen, 2016).  While suicide terrorists kill more 

people on average overall, non-suicide attacks can be just as lethal, but suicide 

operations are laden with symbolism and significance (Mroszczyk, 2016). The declared 

intention to die in order to kill others turns a suicide attacker into a powerful, highly 

dangerous, and utterly unpredictable weapon (Filote, Potrafke, & Ursprung, 2016). 

Suicidality, the behavior related to contemplating, attempting, or completing suicide 

generally, but appears higher in sexual minority youths than their heterosexual peers 

(Bostwick et al., 2014). While many of the views held by the political science and 

international relations fields are that suicide terrorists are not suicidal, and this is due 

to relatively few formal systematic studies of suicidality in suicide terrorists, but there 

is emerging evidence to suggest that suicidality may play a role in a significant number 

of cases (Sheehan, 2014).  One study (Egnoto & Griffin, 2016) believe suicide terrorists 

are not suicidal, and in their study of three separate groups, the suicide notes, legacy e-

mails, and social media text from people who commit multiple murders without a 

cooling-off period (known as spree killers), were compared to people who commit 

suicide without killing anyone else, and also to normal students.  Their study 

highlighted that spree killers’ negative emotions, and anger vocabulary use was 

significantly higher than normal students and those who commit suicide, but that the 

spree killers’ use of personal pronoun and future tense vocabulary use was the same as 

normal students and higher in suicide victims. 

This chapter is part of the wider thesis study into the self-radicalisation problem, and 

to date, it has been able to create a stylistic fingerprint of a person’s personality – their 

personal signature – and revealed their ‘identity’ from their writing style (see Chapters 
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7 and 8).  It has also determined that a person’s ‘identity’ changes differently over time 

because of life events, such as trauma, depression, and disease, compared to someone 

who has not suffered the same way (see Chapter 6).  By applying CSD techniques to 

visualise the tipping points (Section 3.4.2), it is possible to identify these changes in a 

person’s moods, or shifts from one state to another, when a person is unable to cope 

with their environment, and these events might indicate a tipping point for self-

radicalisation (see Chapter 9).  Here, the earlier research is extended to determine if the 

final notes and manifestos of suicide attackers’ writing are different from normal 

bloggers’ online writing. There are linkages because lone wolf terrorists are more likely 

to have a mental illness or a proximate upcoming life change and experienced 

proximate and chronic stress (Corner & Gill, 2015). Many of them will also broadcast 

their intent through blogs (Cordy, 2017). 

10.2 Methodology 

The Global Terrorism Database or GTD (START, 2016) is used to identify 65 instances 

where a suicide attacker killed at least one other person before taking their own life. 

Using the 65 instances from the GTD, an open source search was then conducted for 

available open source data on the internet to gather as many suicide notes and final 

manifestos as possible. Only twenty-five English notes were found (average 1,704, 69-

12,479 words), and many were handwriting images that needed transcribing into text 

files so they could be processed.  Five web posts were added to an existing anonymous 

randomly collected data sample of 30 web posts and online articles (see Kernot, 2013).  

The suicide attacker data comprised of suicide notes and final manifestos from attacks 

in the USA (20 attacks), Germany (1), Canada (2), Brazil (1), and Finland (1).  The 

average age of the attacker was 25.32 years, with the youngest being 12 and oldest, 53 

years of age.  There was a range of weapons used by the assailants, and they were 

mainly guns (23), but also aircraft (2), a smoke bomb (1), and a hammer (1). There was 

only one female assailant in the data, and 19 of the attacks occurred inside of schools 

(see Table 58 for suicide attacker modus operandi and summary statistics).  The 

anonymous data was sourced from random news reports, web articles, personal blog 

posts, book extracts, and an oration transcript from healthy people still alive today.  

See Table 58 for a list of the 25 suicide attacker modus operandi and summary 

statistics.  A total of 60 records were used in this series of experiments to characterise a 

suicide attacker. 
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Using the Linguistic Inquiry and Word Count (LIWC) tool (Pennebaker et al., 2015), 

Egnoto and Griffin (2016) identified spree killers’ negative emotions, and anger 

vocabulary use was significantly higher than students who did not commit suicide. 

Following the approach by Egnoto and Griffin (2016), we use LIWC to extract seven 

sentiment tags (emotional tone, affective process, positive emotion, negative emotion, 

anxiety, anger, and sadness) from our dataset.  Mann-Whitney U testing was then 

conducted to examine if anger and negative emotion can statistically separate the data. 

We assess the results using the LIWC sentiment tags and compare the results from our 

dataset to the Egnoto and Griffin (2016) results.  We then extended their approach to a 

rules-based scoring clarifier using our data. This approach is continued using RPAS.  

We used step-wise multiple regression analysis to train the model and determine if it is 

possible to identify suicide attackers in cyberspace better than using LIWC.  The 

resultant regression analysis unstandardized coefficients were used to weight the data, 

and the weighted RPAS variables were summed for a single score and plotted. A 

Jackknife Estimation Method (McIntosh, 2016) variation of 5-fold cross-validation was 

conducted with 12 random posts in each fold, to determine the optimum regression 

score that most accurately differentiated the RPAS data. 

Here we assume that a suicide attacker could be suffering from depression and stresses 

from life change events (Corner & Gill, 2015).  We attempt to better classify the model 

and added additional data containing non-suicidal blogger posts whose writing 

contains linguistic markers for depression (see Chapters 8 and 9 for the 45 Iris 

Murdoch and P.D. James data). The LIWC sentiment tag approach is also used to see if 

the classification can be improved and can better separate people with depression from 

suicide attackers, who may well suffer similar life change stressors. 

A 65,800-word sample is achieved through 33,111 words from 25 suicide attacker notes 

and manifestos and 32,689 words from 35 anonymized blog posts and online articles 

from still living people on the internet. 

The data is pre-processed using the Stanford Parts Of Speech (POS) Tagger (Toutanova 

& Manning, 2000) to remove all punctuation, numbers, and symbols before creating a 

nine-element array using RPAS to conduct step-wise multiple regression analysis. 

Initially, the data is randomised, and 50 records are used to classify the data using 

stepwise multiple regression analysis. Five suicide attackers and five normal, non-

suicidal blogger’s records are held aside.  All 60 records are then used to plot RPAS.  
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The model validated with a Jackknife (McIntosh, 2016) variation of 5-fold cross-

validation with 12 samples in each of the five folds.  This is done to determine the 

average classification value to fine tune the classifier before plotting Receiver 

Operating Characteristic (ROC) Curves are calculated. 

We further draw on earlier studies (see Chapters 8 and 9), where two sets of RPAS data 

from Iris Murdoch and P.D James exist.  One is 45 sample of both authors (each of size 

4,000 words), and another 104 sample from Iris Murdoch only (each of size 1,000 

word.) 

The data is processed to create a signature using RPAS for each suicide note, manifesto 

and blog post (for a more detailed explanation, refer to the Methods Section 3.4.2).  

Details on The Linguistic Inquiry and Word Count Tool (LIWC) can be found in the 

Methods Section 3.6. The approach taken with the Mann-Whitney U-Test can be found 

in the Methods Section 3.7. Here, we use the Mann-Whitney U-Test to compare the two 

groups across each of the seven sentiment tags from LIWC.  Stepwise multiple 

regression analysis is conducted, and details can be found in the Methods Section 3.8. 

Stepwise multiple regression analysis is conducted to construct a model of the data 

that classified a suicide attacker.  

K-fold cross-validation analysis is detailed in the Methods Section 3.9.  By setting k to 5, 

60 samples are split into five groups containing 12 randomly assigned samples.  

Conducting multiple regression analysis five times using RPAV as the independent 

variables, the model is trained each time with a different fold left out so that there are 

five sets of unstandardized regression coefficients.  The regression scores are calculated 

for the five folds, and the resultant accuracy scores are compared between a regression 

score range of 0.5 - 3.0. The optimum regression score value to classify the data is 

determined, and an averaged accuracy of the technique is calculated. 

10.3 Analysis 

10.3.1 Testing on LIWC Emotions 

To ensure that the suicide attacker data is similar to spree killers’ and contains 

significantly higher negative emotions and anger vocabulary than a normal person’s, 

seven sentiment tags are extracted (emotional tone, affective process, positive emotion, 

negative emotion, anxiety, anger, and sadness) using the Linguistic Inquiry and Word 

Count tool. Mann-Whitney U testing (Section 3.7) is conducted to examine if anger and 
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negative emotions can statistically separate a suicide attackers’ note or manifesto from 

a normal blog post (see Table 29). We adopt the common practice of ignoring the 

alternative Wilcoxon W and the Z scores given the small sample size and focus 

predominantly on the Asymptotic Significance (two-tailed) P values whose rankings 

are reflected in the Mann-Whitney U scores. The tests found statistically significant 

differences in anger (p <.001), negative emotion (p=.002), emotional tone (p=.01) and 

affective process (p=.048).  Mann-Whitney U tests results highlighted anger as the most 

statistically significant differentiator between suicide attackers and non-suicidal people 

(U=151.5, p < 0.001), followed by the use of negative emotion (U=219, p=0.002). 

Even though our data is different, the most significant two sentiments, anger, and 

negative emotion, correlate with the findings in Egnoto and Griffin (2016).  In Figure 

28 we can separate the data with an anger value of 0.85 and a negative emotion value 

of 2.5. The majority of the non-suicide articles have low anger (74%) and low negative 

emotion values (71%), while the suicide attackers demonstrate high levels of anger 

(95%) and high levels of negative emotion (85%).  In Figure 28, anger is a better 

differentiator between both groups, but there is some ambiguity between 0.85 – 1.5. At 

0.85, 3 (5%) of attackers would be incorrectly classified with 9 (15%) of normal bloggers 

being incorrectly classified. 

Table 29: By examining the Asymptotic Significance (two-tailed) p-values, the seven linguistic emotion categories 
from LIWC2015 highlight statistically significant differences (p<.05) between suicide attackers and normal blog 
posters in the area of anger, negative emotion, emotional tone, and affective process.  As can be seen, Anger 
followed by Negative Emotion is the most significant (p values <0.01) and have the two smallest Mann-Whitney U 
scores.  Due to the small sample size, we ignore the alternate Wilcoxon W and Z scores as is common practice. 

Test Statisticsa 

 Tone Affect Positive 

Emotion 

Negative 

Emotion 

Anxiety Anger Sadness 

Mann-Whitney U 257.500 296.000 346.000 219.000 335.500 151.500 419.000 

Wilcoxon W 582.500 891.000 671.000 814.000 660.500 746.500 744.000 

Z -2.570 -1.979 -1.212 -3.160 -1.380 -4.196 -.092 

Asymp. Sig.  

(2-tailed) 

.010 .048 .226 .002 .167 .000 .927 

 a. Grouping Variable: Suicide Attacker r Normal  
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Figure 28: As expected from the LIWC negative emotion and anger categories, the majority (74%) of the non-
suicide articles have low anger and negative emotion values, and 9 of them are away from the main group (anger 
> 0.85). All but 3 of the suicide attacker data is higher than 0.85. The results of Mann-Whitney U tests highlighted 
anger as the most statistically significant differentiator between suicide attackers and non-suicidal people 
(U=151.5, p < 0.001), followed by the use of negative emotion (U=219, p=0.002).  In this diagram, anger is a better 
differentiator between both groups, but there is some ambiguity between 0.85 – 1.5.  One suicide attacker has 
been omitted here because its value was -1.16615 and a large false negative. 

 

It is clear that the underlying sentiment in the data, that there are differences between 

both groups. Receiver Operating Characterisation (ROC) Curves (Section 3.16) were 

calculated for both Anger and Negative Emotion (Figure 29), to take into account false 

positive rate (Specificity) and true positive rate (Sensitivity).  The Area Under the 

Curve (AUC), Table 30, demonstrates that Anger provides a better overall classification 

than Negative Emotion (81.1% versus 73.7%). 
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Figure 29: ROC curves for Anger and Negative Emotion.  Here Anger tracks the left-hand border and then the top 
border at a better rate than Negative Emotion suggesting Anger is a more accurate test. Here we can see the 
differences between Sensitivity and Specificity, showing that Anger has less false positives (Specificity) and Anger 
has more true positives (Sensitivity) than Negative Emotion 

 

Table 30: The results of the Area under the curve (AUC) for anger and negative emotion showing the better ROC 
curve classification rates for anger over negative emotion. 

 

Area Under the Curve 

 

Test Result Variable(s):Anger and Negative Emotion 

Variable Area 
Std. 

Errora 
Asymptotic 

Sig.b 

Asymptotic 95% 
Confidence 

Interval 

Lower 
Bound 

Upper 
Bound 

Anger 0.811 0.058 0 0.697 0.926 

Negative Emotion 0.737 0.067 0.002 0.606 0.868 

 

The test result variable(s): Anger and Negative Emotion 
have at least one tie between the positive actual state 
group and the negative actual state group. Statistics may 
be biased. 

 

a. Under the nonparametric assumption 

 

b. Null hypothesis: true area = 0.5 

 

10.3.2 Testing using RPAS 

After having seen how successful LIWC sentiment emotions can be to separate suicide 

attackers from normal bloggers, we use RPAS to ascertain its usefulness as a classifier. 

From RPAS, an eight-element vector is constructed of the 60 items.  We conduct step-
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wise multiple regression analysis using SPSS (Chapman, 2017). We use 50 of the 

dataset records (keeping 5 suicide attackers and 5 normal non-suicidal bloggers aside) 

and train the model, by removing one RPAS (including VAHOG) variable at a time 

until only statistically significant variables remain. When these four variables are 

combined, the synergy between the variables produces a statistically significant result 

to predict suicide attackers (F (4, 46) = 11.152, p < .0001, R2 = .492). These are the 

Richness (R), Personal Pronouns (P), Referential Activity Power (A), and the Visual (V) 

variable from the Sensory Adjectives (S) category. These values are identified as RPAV. 

Using the resultant unstandardized coefficients and the constant variable regression 

score from the regression analysis, each of the RPAV variables is multiplied by its 

regression coefficient and sum the constant variable to the results.  All 60 data have 

regression scores applied and are plotted (Figure 30).  We find a regression score of 1.5 

separates suicide attackers  and normal blog posters with 83% accuracy.  Seven 

(~11.6%) of attackers would be incorrectly classified, while 4 (~6.6%) of normal 

bloggers are incorrectly classified. Using a range between 1.5 – 1.7 captures most of the 

false positives and negatives, and outside of this range the classifications are correct 

except three. However, this introduces ambiguity. 

To fine tune the RPAV technique, the data is randomized, and 5-fold cross-validation is 

conducted with 12 random posts in each fold to determine the optimum regression 

score that most accurately classifies the data. The results are plotted below (Figure 31) 

and highlight an average accuracy of 81% (78.3 - 85). It indicates a regression score of 

1.45 will provide the best classification. 

Receiver Operating Characterisation (ROC) Curves (Fawcett, 2006) were calculated for 

RPAV using the regression score of 1.45 to take into account false positive rate 

(Specificity) and true positive rate (Sensitivity) and compared with the LIWC anger 

values (Figure 32).  We see that the LIWC Anger category has a higher number of true 

positives, while RPAS has a lower number of false positives. The Area Under the 

Curve (AUC) Figure 32, demonstrates that RPAV (RPAS with only the Visual modality 

present) provides a slightly better overall classification than Anger Emotion (83.1% 

versus 81.1%). 
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Figure 30: Stepwise Multiple Regression using the four RPAV elements on the 25 suicide notes and manifestos 
from suicide attackers and 35 ‘normal’ blog posts and articles from people who are not mass attackers or have 
committed suicide. This method is better at indicating false positives, but not as effective with false negatives. 

 

Figure 31: The original classification accuracy for regression scores between 0.65 - 2.5 is overlaid against the 
results of 5-fold cross validation showing the minimum and maximum ranges. As can be seen, the highest 
accuracy is achieved with a score of 1.45 
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Figure 32: ROC curves for Anger and RPAV.  Here RPAV tracks the left-hand border better than Anger and not 
quite as good as Anger on the top border suggesting these two tests are accurate.  Here we can see the 
differences between Sensitivity and Specificity, showing that RPAS has less false positives (Specificity) and Anger 
has more true positives (Sensitivity). 

 

Table 31: The results of the Area under the curve (AUC) for anger and RPAV showing the better ROC curve 
classification rates for RPAV over anger. 

 

Area Under the Curve 

 

Test Result Variable(s):Anger and RPAV 

Variable Area 
Std. 

Errora 
Asymptotic 

Sig.b 

Asymptotic 95% 
Confidence Interval 

Lower Bound 
Upper 
Bound 

Anger 0.811 0.058 0 0.697 0.926 

RPAV 0.831 0.059 0 0.715 0.948 

 

The test result variable(s): Anger and RPAV have at least 
one tie between the positive actual state group and the 
negative actual state group. Statistics may be biased. 

 

a. Under the nonparametric assumption 

 

b. Null hypothesis: true area = 0.5 

 

10.3.3 Testing for depression 

Having verified the model, an additional 45 samples (Iris Murdoch and P.D. James) are 

added to the data to determine if it is possible to identify sentiment tags that highlight 

differences in Iris Murdoch because of her known depression.  Although the data 

includes works where Murdoch’s depression and Alzheimer’s disease, Mann-Whitney 
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U testing (Section 3.7)  of the LIWC data (Table 32) highlights Iris Murdoch is no 

different to normal bloggers, in that the writing is significantly different from suicide 

attackers in emotional tone (U=161, p=0.017), affective process (U=153.5, p=0.010), 

negative emotion (U=130, p=0.002), anger (U=69.5, p < 0.001).  Excluding tone, P.D. 

James is little different (affective process (U=96.5, p=0.004), negative emotion (U=122.5, 

p=0.036), and anger (U=49.5, p < 0.001)). However, what is different is that both are 

significantly different from suicide attackers in anxiety (Murdoch - U=158, p=0.014, 

and James - U=89.5, p=0.002). Comparing Iris Murdoch and P.D. James to the normal 

bloggers, there are no significant differences with any of the sentiment tags in the case 

of Iris Murdoch, but P.D James is significantly different in the areas of positive emotion 

(U=154.5, p=0.007), and anxiety (U=174.5, p=0.023). A comparison between Iris 

Murdoch and P.D. James shows significant differences in tone (U=139, p=0.013), and 

positive emotion (U=123.5, p=0.005).  

Table 32: Mann Whitney U-Test results of Iris Murdoch and P.D. James compared to Suicide Attackers and 
Normal non-suicidal bloggers. Note: due to the small sample size, we ignore the alternate Wilcoxon W and Z 
scores as is common practice. 

Test Statisticsa 

  
  

Rank of 
Tone 

Rank of 
affect 

Rank of 
posemo 

Rank of 
negemo 

Rank of 
anx 

Rank of 
anger 

Rank of 
sad 

Iris Murdoch vs Suicide Attackers 

Mann-Whitney U 161 153 223.5 130 158 69.5 242.5 

Wilcoxon W 392 504 454.5 481 389 420.5 473.5 

Z -2.397 -2.568 -1.059 -3.06 -2.467 -4.356 -0.653 

Asymp. Sig. (2-
tailed) 

0.017 0.01 0.289 0.002 0.014 0 0.514 

P.D. James vs Suicide Attackers 

Mann-Whitney U 163 96.5 180 122.5 89.5 49.5 173.5 

Wilcoxon W 394 286.5 370 312.5 320.5 239.5 404.5 

Z -0.989 -2.79 -0.528 -2.086 -2.992 -4.063 -0.705 

Asymp. Sig. (2-
tailed) 

0.333 0.004 0.611 0.036 0.002 0 0.486 

Iris Murdoch & P.D. James vs Normal non-suicidal bloggers 

Mann-Whitney U 190 220.5 154.5 259.5 174.5 277.5 227 

Wilcoxon W 380 410.5 344.5 724.5 639.5 742.5 692 

Z -1.949 -1.324 -2.678 -0.523 -2.268 -0.154 -1.19 

Asymp. Sig. (2-
tailed) 

0.051 0.186 0.007 0.601 0.023 0.878 0.234 

a. Not corrected for ties.       

 

Having verified the model, an additional 104 samples of Iris Murdoch are added to the 

data (all 1000 words in size) to determine if it is possible to separate Iris Murdoch from 

a suicide attacker using the RPAV technique.  These are compared these against 
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normal bloggers and suicide attackers Figure 33 and the results highlight that Iris 

Murdoch identifies as normal with regression scores above 1.45. 

Figure 33: The RPAV stepwise regression results, this time showing the addition of one hundred and four 1,000 
word samples of the works of Iris Murdoch, which all occur above the classification value of 1.45. 

  

All of the data processed using the Linguistic Inquiry and Word Count Tool (LIWC) 

extracted seven different sentiment tags (emotional tone, affective process, positive 

emotion, negative emotion, anxiety, anger, and sadness). Mann-Whitney U testing 

confirmed that anger and negative emotions were both statistically significant and 

could be used to separate a suicide attacker’s writing from normal posts, as per Egnoto 

and Griffin’s (2016) spree killers study. While the Mann-Whitney U testing highlighted 

four statistically significant sentiment tags in anger (p >.001), negative emotion 

(p=.002), emotional tone (p=.01) and affective process (p=.048), visually, only anger 

and negative emotion provided the best results with anger at a value of 0.85 providing 

the most accurate separation (76.5%) as seen in Figure 33. Of the three suicide attacker 

scores below this anger value of 0.85, no other similarities could be found by 

examining the six other sentiment tags produced by LIWC. Dutiel, the only female, 

(scored 0) de Oliveira (0.27), and Morrison (0.4) had low anger scores, and she showed 

no other obvious similarities in age, victim count, locality or year of the event that 

might categorise her as a suicide attacker. 
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Until now, RPAS ability to separate broad styles of text in one group of authors from 

another was untested.  By constructing a model using eight variables in RPAS 

(including the five sensory variables, VAHOG), step-wise multiple regression analysis 

highlighted Richness (R), Personal Pronouns (P), Referential Activity Power (A), and 

the Visual (V), or RPAV, as statistically significant to predict suicide attackers (F (4, 46) 

= 11.152, p < .0001, R2 = .492).  

From RPAV, the resultant unstandardized coefficients were used to classify the data 

regression scores (see Figure 30) at using a value of 1.5 with an accuracy of 86%, and 

using a range between 1.5 – 1.7 didn’t improve the results.  However, compared to the 

LIWC method using negative and angry emotions (76.5% accuracy), it performed 

better as a classification technique. 

A validated RPAV model using 60 randomised samples with 5-fold cross-validation 

(Figure 31), highlighted an optimum regression score of 1.45, with an average accuracy 

of 81% (78.3 - 85).  

Through testing, limitations on the file size were discovered.  Christopher Dorner’s 

manifesto was almost 13,000 words, with a resultant regression score of -1.5.  While he 

still classified correctly, the regression score was very distant from the smaller suicide 

notes. The algorithm is suitable for file sizes of up to around 2000 words, but it has 

been optimized for files up to 800-1000 words.  It will work on file sizes around 4000 

words, and upwards using a different set of unstandardized coefficients that use all 

five of the sensory element, not just the Visual variable.  We have not reported on this 

approach because it is inferior to the approach we have identified above.  As an 

alternative to addressing the larger file size issue, the Referential Activity Power 

variable could be recalculated so that the results are then square rooted (effectively 

removing the original squaring factor).  This would reduce the range of the large 

negative scores observed. However, it would not change the existing relationship 

between the findings of the different authors. 

10.3.4 Separating depression from suicide attackers 

There were two key goals for this chapter. One was to determine if it were possible to 

separate a suicide attacker’s notes and manifestos from a normal blogger, and the 

second was to examine if the algorithm could further separate a person with 

depression (Iris Murdoch) from a suicide attacker.  In previous research on Iris 

Murdoch (Chapter 8 and 9), data with known markers for depression had been used to 
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help identify possible tipping points that might indicate self-radicalisation.  Retesting 

the Murdoch data with RPAV would refine the wider study. 

Mann-Whitney U testing (Section 3.7) of Iris Murdoch was unable to highlight 

significant differences in sentiment against the suicide attacker writing outside of 

anxiety. Comparing Iris Murdoch and P.D. James to the normal bloggers, there were 

no significant differences with any of the sentiment tags in the case of Iris Murdoch, 

but P.D James was significantly different in the areas of positive emotion and anxiety. 

Figure 34: A comparison between the known depressive periods in Iris Murdoch's life (novels 3, 5, 6, 16, 17, and 
18) where the RA Power levels fall below 10. These are compared to the stepwise regression analysis results.  
Note, there is no correlation between these low regression scores where they approach a value of 1.45 – the 
separator between a suicide attacker and a normal blogger – which suggests it might be possible to separate 
depression in a normal person from depression in a suicide attacker. 

 

Using the LIWC sentiment tags, the results of the Mann-Whitney U test could not 

statistically separate Iris Murdoch from a suicide attacker. Therefore, one hundred and 

four 1,000 word segments were selected from the 26 novels of Iris Murdoch (4,000 

words per novel).  This data was compared to normal bloggers and suicide attackers 

(Table 58) and found it classified correctly above 1.45. It was known that Iris 

Murdoch’s novels contained signs of depression or where she had suffered from life 

events (see Chapters 8 and 9) as shown in the RPAS Referential Activity Power (A) 

variable falling below a value of 10 (novels 3, 5, 6, 16, 17, and 18). By taking the 104 
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1,000 word samples of Iris Murdoch and averaging each of the 4 samples from the 26 

novels (and including the minimum and maximum scores for each), the results of the 

regression analysis was compared to the known signs of depression.  While none of Iris 

Murdoch’s work identified as a suicide attacker, there were five instances where they 

fell at or below 1.55 (8 – 1.46, 9 – 1.55, 15 – 1.55, 21 - 1.51, and 24 - 1.48).  These known 

points of depression from life events were compared to the five low regression scores. 

If the points correlated, it would have meant that depression was likely linked to the 

RPAV model. However, this was not the case.  This finding suggests that RPAV is 

better than LIWC given it should be possible to separate general depression in an 

individual from the writing style of a suicide attacker, but more examples are needed. 

10.3.5 Limitations 

While this approach to the identification of a suicide attacker shows merit, it is 

dependent upon a longitudinal study of only two authors that highlighted depression 

from life events in Iris Murdoch.  However, Murdoch’s depression and anxiety have 

been well documented through her prolific habit of writing about herself throughout 

her life (Dooley & Nerlich, 2014; Martin & Rowe, 2010; Murdoch, 2015; Wilson, 2004), 

and there have been a number of scientific studies that verify it.  In this chapter, her 

anxiety was also observed in the LIWC anxiety tag. With regards to the suicide attacker 

data, there is only one record for each attacker.  While they would have been suffering 

from life events at that point in time, there is no way to compare their current state of 

mind to earlier times before they had become radicalised and make a proper 

assessment of their likely levels of depression at the time they wrote their manifestos 

and final suicide notes. 

10.4 Conclusion 

In this study of suicide notes, final manifestos, book extracts, newspaper articles, blog 

posts, and orations, a clear differentiation between the writing style of suicide 

attackers’ final manifestos and suicide notes was found when compared to the posts of 

normal bloggers.  While this approach lends itself to be automated based on a resultant 

regression score of 1.45, it might be useful in separating the depressed posts of normal 

people from suicide attackers.  Importantly, the findings indicated no correlation 

between a normal blogger’s low periods in their life and their low regression scores. 

The authors suggest that this exploratory approach using step-wise multiple regression 
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analysis and the four RPAV variables has the potential to identify suicide attackers in 

cyberspace. 

10.5 Summary 

In this chapter, the study of the final manifestos and notes of suicide attackers, we have 

been able to improve the classification of a terrorist’s theoretical writing, and separate 

their stylistic signature from both a normal person and somebody with depression who 

suffered from life changes see if we can separate their writing from normal blog posts. 

The most significant findings from this study were the RPAV method was more 

effective than the LIWC technique that used the anger category or the negative 

emotion category.  Using RPAS, we were also able to separate the writing of Iris 

Murdoch, someone with depression and suffering from life events, from that of suicide 

attackers who were likely to have been suffering from critical life events, and possibly 

also depression. 
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Chapter 11 

 

 

Discussion and Conclusions 
 

 
11.1 Introduction 

In this chapter, the findings of the thesis are discussed. We summarise the aims and 

scope of the research thesis and the key issues that have emerged from the seven 

studies that were conducted in a three-phased approach to the self-radicalisation 

problem. We discuss our contributions to the theory and the limitations of those 

findings. Conclusions are drawn from the data presented in the studies with 

suggestions made to extend the scope and direction for future work. 

Our focus in this research thesis is on the stylometric processing of sensory open 

source data. The aim is to create a method that extracts key linguistic features, or 

attributes, from a person’s writing style or speech that can characterise self for 

identification and be used to predict self-radicalisation is the principal focus for this 

research thesis. We use biomarkers for personality that are reflected in language to 

improve authorship profiling, examine changes in time from normal aging and from 

disease and depression. We use this to create a mathematical model of identity that can 

show tipping points in a person’s state of mind. However, we still have to define an 

input and output framework, so the model was more complete. 

This research is driven by the terrorism problem facing Australia, from the growing 

threat of returning foreign fighters from Iraq and Syria, its increase within Australia’s 

wider near-region, specifically Indonesia and the Philippines, and from home-grown 

threats. Research on terrorism is underdeveloped, and no fully scientific theory can 

explain these phenomena. Its significance can be seen by the rise within our region of 

planned attacks, both successful and foiled where many attackers were known to 

authorities, and existing risk assessment systems had failed. The anonymity of social 

media and the internet makes it difficult to identify who is becoming radicalised and 

when a person with radical or politically motivated beliefs changes to act in a violent 

way. 
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The program of research reported in this thesis focuses on the lack of authorship 

analysis tools and the identification of anonymous authors to identify people that 

might be insurgents, 'insiders', or a lone wolf. It draws on neuropsychology and 

neuroscience markers within the brain to characterise an author's identity using 

features, or markers within writing to identify self. By looking at cues, with CSD 

(Section 3.4.2), we posit the point prior to when a lone wolf commits a terrorist act 

might be identifiable to provide an early warning and prevent a possible crisis. 

Drawing on the four research questions (Section 1.3), the objective of this research is to 

separate the identity of individuals and to highlight changes within them that indicate 

self-radicalisation. This research shows that using personality for identity (RPAS) it is 

possible to create a personal signature of individuals (research hypothesis 1) and to 

separate ‘normal’ writing from that written before a terrorist attack (research 

hypothesis 4). When taking into account the ‘normal’ changes in a person’s signature 

over time (research hypothesis 2 and 3), it is possible to use techniques to visualise 

CSD (Section 3.4.2) and determine tipping points of change in an individual (research 

hypothesis 3). 

Access to a larger and varied set of real-world data permitting, using the techniques 

from this research on disenchanted people, it might be possible to identify the tipping 

point before a terrorist become self-radicalised and stop lone wolves before they act. 

11.2 Significant and Original Outcomes 

There were a number of significant outcomes from the thesis. We developed a new 

neuro-linguistic technique, RPAS, which creates a signature of an individual’s identity 

from their writing mapping personality or self. 

We found that a Multi-disciplinary approach is quite effective to characterise 

personality from writing. While there were a number of statistical analysis techniques 

used in this thesis to visualise identity (AR1, G1, LDA, PCA, Seriation, VSM), RPAS 

itself stems from a number of disciplines. 

Richness (R) is grounded in ecology, and studies of species diversity and species 

density. It is linked to neuroscience and studies into age and the decline of cognitive 

functions of the brain. It is also used in an inverted form as the Type Token Ratio (TTR) 

in computational linguistic studies. Personal Pronouns (P) is grounded in 

computational linguistic studies of gender identity. Referential Activity Power (A) is 
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grounded in neuropsychology and used in clinical studies of depression. Sensory 

Adjectives (S) and the five modalities (visual, auditory, haptic, olfactory, and 

gustatory) are grounded in neuroscience and the function of the sensory cortex. They 

also have their basis in Neuro-Linguistic Programming (NLP). 

We found that identity does change over time in an individual due to natural aging. 

While healthily aging adults may also experience a decline in their cognitive abilities, it 

is seen in their language but is significantly less severe (Maxim & Bryan, 1994). This 

was reinforced through study 4 and 5 (Chapters 7-8), and demonstrated through a 

number of different techniques. Such as, from the way the RPAS signature and the use 

of seriation with noise technique was able to highlight the subtle characteristics of 

writing in Shakespeare’s Sonnets. 

When comparing the works of Iris Murdoch with P.D. James, a healthy aging control 

whose novels follow the patterns expected for normal aging elders (Le et al., 2011), the 

signs of normal aging in P.D. James were demonstrated through falling sensory 

adjectives across all five sensory modalities (visual, auditory, haptic, olfactory, and 

gustatory). There were no statistically significant changes in function word to content 

word ratios throughout her writing career over 50 years. There were no statistically 

significant changes in Richness scores in the last 12 years of her writing before her 

death when compared to the previous 40 years of her writing career. 

While autocorrelation is growing in interest within longitudinal psychology studies 

(Bringmann et al., 2017) our approach is new. While mostly untested on writing, CSD 

with RPAS can show a tipping point. This was reinforced through study 6 (Chapter 9), 

and demonstrated by the use of the modified 1-lag autocorrelation (AR1) and Fischer-

Pearson coefficient of skewness (G1) techniques on the RPAS Sensory variables. Signals 

observed in the AR1 and G1 techniques indicated tipping points and in Murdoch’s 

case, an unusual change in her 15th novel. This was strongest using the combined 

sensory modalities of RPAS and closely followed the visual modality, which is a 

dominant modality (Posner et al., 1976). This correlates with the findings of the 

previous study (Chapter 8 study 5) using Parts of Speech (POS) Function to Content 

word ratios and Richness. This could indicate the early signs of Alzheimer’s disease at 

a point 20 years prior to Murdoch’s final novel when her cognitive decline had become 

apparent. To support this claim, we provide an overview of AD, and its impacts on 

sensory processing in memory recall and creating new ideas. 
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An Overview of the relationship between AD and Sensory Functions  

The Relationship between the progression of AD and the impacts of it on memory 

forming, recall, and sensory words is important at this point, as it reinforces all of the 

experiments conducted.  There are six (Braak) stages in the development of AD. In 

their book on neurodegeneration of the cerebral cortex, Cechetto and Weishaupt (2016: 

pp84-92) provide a good explanation of these stages, summarised below. In the first 

two stages, the preclinical stages where there is an absence of clinical signs, 

neurofibrillary tangles (NFTs) develop in the transentorhinal cortex, and entorhinal 

cortex (EC) region. In stage three and four, the limbic stages or the pre-dementia phase 

where mild cognitive impairment (MCI) occurs, NFTs spread to the subiculum, the 

Cornu Ammonis (CA)1, and CA3 regions of the hippocampus (associated with 

memory and in particular long-term memory, and a part of the limbic system that 

regulates emotion) before reaching the dentate gyrus (DG), a region in the 

hippocampus responsible for the formation of new episodic memories. Plaques 

(abnormal clusters of a protein known as beta-amyloid) appear in the brain between 

the EC and the hippocampus. Patients experience mild memory loss and executive 

function decline (such as poor attention, manipulation skills, and a lack of ability to 

regulate behavioural control). Finally, in stages five and six, the neocortical stage 

where dementia is apparent, the NFTs severely affect the neocortical association areas 

and spread to the structures in the temporal, parietal and frontal lobes affecting the 

motor and sensory areas in the brain.  In Figure 35, the pathways are shown in more 

detail (Cechetto & Weishaupt, 2016; Braak & Braak, 1995). 

NFTs are composed of a number of smaller paired helical filaments (PHF), and the core 

protein in these filaments is the microtubule associated protein tau (Cechetto & 

Weishaupt, 2016: p84). Recent studies into AD show that prior to the formation of 

plaques and NFTs, there is a build-up of tau that collects in the densely-interconnected 

brain regions causing connections to weaken memory (Cope et al., 2017). 

The EC, where NFTs first form, acts as a central hub, a multimodal association area for 

sensory information from isocortical areas (providing inputs from visual, auditory, 

somatosensory, somatomotor, gustatory and olfactory cortices (Cechetto & Weishaupt, 

2016: pp91-92). In the creation of new episodic memories, to encode our daily personal 

experiences, and to retrieve episodic memories, the outputs of neocortical association 

areas (sensory-specific temporal isocortical brain regions) are channelled through the 

EC to the hippocampus, and some of the earliest indicators of AD are when tests 
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highlighted a patient can recognise a visual object but has word-finding difficulty 

(Dickerson & Eichenbaum, 2010). 

Figure 35: A map of the cerebral cortex showing the critical path of the entorhinal region, and where AD first 
occurs. Note: aud = auditory, ant thal nuclei = anterior thalamic nuclei, cm = mammillary body, som sens = 
somatosensory, som mot = somatomotor, vis = visual. 

 

Using RPAS, it is possible to observe stylometric markers from Alzheimer’s disease 

extending back 20 years before a medical diagnosis, which is better than the results 

from Garrard et al. (2004), Le et al. (2011), and Hurst and Feng (2012). We also observed 

depression in writing over time using RPAS. Some of the detail here has been 

mentioned in above, and reinforced through study 5 and 6 (Chapters 8-9), and 

demonstrated through times of low Referential Activity Power when Murdoch was 

known to be depressed. The Sensory element of RPAS highlights a lower use of 

Olfactory words which might be a marker for AD and cognitive decline. Referring back 

to our discussion on the progression of AD, the NFTs did not impact the primary 

sensory cortices at Braak’s stage three and four where MCI occurs (Cechetto & 

Weishaupt, 2016), the olfactory bulbs were damaged very early (i.e. Braak's stage one 

or before (Esiri & Wilcock, 1984). Olfactory deficits in AD and MCI are reliably 

observed in multiple olfactory domains, including odour detection threshold, 

identification, and recognition and olfaction loss is an early marker for AD and MCI 

(Quarmley et al., 2017). 

It is possible to separate suicide attackers writing from normal people, and people with 

depression who are not suicide attackers using RPAS. This was reinforced through 

study 7 (Chapters 10), and demonstrated through step-wise multiple regression of the 
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RPAS variables. Four of the eight variables were statistically significant to predict the 

writing of suicide attackers when compared to normal blog posts. They were RPAV: 

Richness (R), Personal Pronouns (P), Referential Activity Power (A), and the Visual (V) 

variable from the Sensory Adjectives (S) category. 

11.3 Answering the Research Questions 

To answer the thesis research question (Can the automated extraction of key linguistic 

attributes from text-based data identify an author’s personality, or self, and be used to predict 

self-radicalisation?), four questions (see Section 1.3 and 1.4) expressed as hypotheses 

tests were tested, as follows: 

Hypothesis H1 (The stylistic fingerprint of a person’s personality – their personal signature – 

can reveal their ‘identity’ from their writing style) can be demonstrated by the experiments 

conducted in Chapters 4-6, which highlighted the following: 

 PtoR, AtoR, and StoR plots highlighted stylistic differences between 

Shakespeare, Marlowe, and Cary writing chunks, and separated the four 

generally accepted Shakespeare scenes from Kyd in Edward III. 

 Word Accumulation Curves of Shakespeare and Marlowe highlighted that both 

author’s unique word use was similar. 

 The known authored works of Shakespeare, Marlowe, and Cary were able to be 

separated from the known contested works believed to be written by other 

playwrights and poets using Principal Component Analysis (PCA) on the RPAS 

signatures. It also highlighted two works, The Phoenix and the Turtle, and Venus 

and Adonis, which are believed to be written by Shakespeare, are stylistically 

different from his other works. 

 The Haptic and Auditory Sensory elements of RPAS were able to differentiate 

the known authored works of Shakespeare, Marlowe, and Cary using Stepwise 

Linear Discriminant Analysis (LDA). 

 The four generally accepted Shakespeare scenes in Edward III were more 

stylistically similar to Kyd’s authorship than Shakespeare’s when using Cosine 

and minmax similarity detection and the Vector Space Method (VSM). The 

Imposters Method with Marlowe’s Hero and Leander reinforced these findings. 

 Seriation was effective at separating and clustering the works of Shakespeare 

and Kyd in Edward III, and adding different levels of noise into the seriation 

matrix was effective at testing the weakest connections. 



 184 

 Kyd likely wrote the four Shakespeare scenes in Edward III, and Shakespeare 

and Kyd were the likely authors of the play. 

 The 12 anonymous poems in The Passionate Pilgrim consistently clustered eight 

of the nine known authored works using a PtoR plot, Principal Component 

Analysis, Linear Discriminant Analysis, and the Vector Space Method. 

 One of the commonly accepted Barnfield poems within The Passionate Pilgrim 

was identified as Shakespeare’s work. 

 All 12 anonymous scenes in The Passionate Pilgrim were allocated authorship 

except one believed to be written by the poet, Thomas Deloney. 

Hypothesis H2 (A person’s ‘identity’ changes over time because of life events, such as trauma, 

depression, and disease) can be demonstrated by the experiments conducted in Chapters 

7-9, which highlighted the following: 

 Seriation with RPAS was able to create the best grouping of the Dark Lady 

sonnets by using Richness (R), and a person’s internal or socially constructed 

gender expressed as feminine or masculine (P). However, if the gender of the 

author was known, then those aspects could be discarded, and a configuration 

of RAS also was as effective. 

 When comparing Iris Murdoch’s earlier work to that 12 years prior to her 

formal diagnosis of Alzheimer’s disease (AD), there were indications of lower 

Richness and a falling Function to Content word ratio which are linguistic 

markers for AD. 

 With the exception of RPAS Olfactory words, there was an increase in 

Murdoch’s use of RPAS sensory adjectives in the last 12 years of writing where 

James had a decreased use of all sensory word modalities, suggesting that a 

comparative lower use of Olfactory words might be a marker for AD and 

cognitive decline, consistent with current neuroscience theory. 

 The RPAS Referential Activity Power for Murdoch’s works shows a 

considerable amount of variation compared to James’, and there are at least 

three excursions that are much lower than James during times of significant life 

events. 

Hypothesis H3 (The application of techniques to visualise the critical slowing down 

phenomena can identify changes in a person’s moods, or shifts from one state to another, that 

might indicate a tipping point for self-radicalisation) can be demonstrated by the 

experiments conducted in Chapter 9, which highlighted the following: 
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 Using the RPAS Sensory element, we visualised CSD using the AR1 and G1 

techniques. The results showed rising trends followed by falls that were 

indicative of CSD near a tipping point. 

 An unusual signal was observed around Murdoch’s 15th novel in the AR1 

technique using RPAS Sensory Adjectives. This could indicate the early signs of 

Alzheimer’s disease at a point 20 years prior to Murdoch’s final novel when her 

cognitive decline had become apparent. 

Hypothesis H4 (The final writings of suicide attackers can be separated from ‘normal’ bloggers) 

can be demonstrated by the experiments conducted in Chapter 10, which highlighted 

the following: 

 Discriminant Regression analysis of RPAS separated suicide attackers’ notes 

and final manifestos from non-attacker blog posts. 

 Negative emotion and anger using the Linguistic Inquiry and Word Count 

(LIWC) program separated suicide attackers’ notes and final manifestos from 

non-attacker blog posts. 

 The RPAS method outperformed the LIWC technique using the anger category 

(86% versus 80%) with one less suicide attacker being incorrectly classified. 

11.4 Impact 

Drawing on the significance of this study, we consider who will benefit. It is likely that 

there are three general areas. The first is those who seek to use an alternate approach to 

authorship identification that draws on personality, or self to separate an author’s 

writing. The second is for those that see the benefits in using critical slowing down to 

develop early warning signs of tipping points from sensory data for the self-

radicalisation problem prior to an attack. Third, the research might be useful in 

highlighting Alzheimer’s disease 20 years prior to a formal medical diagnosis. 

There were several unanticipated outcomes in the study. As far as we know, there is 

little to no research into mapping the individual sensory modalities (sight, hearing, 

feeling, smell, and taste) and using them for identity. The use of two-modality sensory 

adjectives in identity is novel. The surprises come from the analysis of the sensory 

aspects of Iris Murdoch, both in terms of the different Olfactory scores when 

comparing them against her other sensory modality scores and also the differences 
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against the P.D. James’ scores, and in using Critical Slowing Down to highlight the 

tipping point on the amalgamated Sensory score. 

Having seen that the writing in Iris Murdoch, a person who developed Alzheimer’s 

disease, is different 12 years prior to her formal diagnosis, we find that with the 

exception of Olfactory, her sensory scores are also higher and not lower 12 years prior 

to diagnosis. Conducting techniques that visualise the critical slowing down 

phenomena, a change was predicted around the 12-year mark prior to her formal 

diagnosis with the disease, but the surprise came in seeing an unusual response in the 

data much earlier, about 20 years prior to her last novel where the linguistic signs of 

her disease were clear. While these are the results of a comparison between only two 

authors, they were unusual given the known, recorded aspects of her writing from 

other people’s studies. This approach is new, but drawing on an ecosystems 

framework and CSD, the predictive early warning signals have been found in type II 

diabetes (Li et al., 2013) and in clinical depression (van de Leemput et al., 2014), with a 

view to using the approach for Alzheimer’s disease (Hubin, et al., 2016). 

To support the sensory observations, we conduct Principal Component Analysis on the 

sensory VAHOG elements. We measure the total percentage of variance these elements 

contribute to the overall extracted components and iteratively remove and replace 

them to determine the impact that each one has on the total component’s variation. We 

find that except for the Olfactory element, the results are relatively similar across V, A, 

H, and G for both Iris Murdoch and P.D. James. In the case of the Olfactory element, 

we see a large and significant contribution, and therefore a difference, which this 

element plays within the Iris Murdoch data. While Alzheimer’s disease has been 

known to impact normal olfactory function with suggestions that olfactory loss may be 

a biomarker for AD and cognitive decline (Wesson et al., 2010; Woodward et al., 2015), 

it was a surprise to be able to observe a difference in olfactory sensory adjectives. 

As far as we know, there is also little to no research in using the concept of Referential 

Activity from clinical studies in depression as a linguistic marker for identity. The use 

of highly concrete and imageability articles, pronouns, conjunctions, and prepositions 

were shown to relate to self, successfully predicting the authorship of Elizabethan 

playwrights. The surprises come from the analysis of the Referential Activity Power 

where Iris Murdoch’s lowest scores correlated to difficult and depressed times in her 

life. Given that P.D. James writing began from a dark place, we allocated scores that 

fell below 10 as a significant event, of which P.D. James did not have. 
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Adding different levels of noise to the combinatorial technique seriation and test the 

strength of the connections between authored texts successfully predicted the 

authorship of the Elizabethan playwrights, and also highlighted subtle differences in 

single-authored works. 

The use of modified variants of the 1-lag autocorrelation and Fischer-Pearson 

coefficient of skewness equations with the RPAS algorithm detected tipping points that 

highlighted Alzheimer’s disease progression around 20 years before a formal medical 

diagnosis occurred. 

11.5 Limitations 

There are several limitations to these findings and the RPAS algorithm. The major 

limitation has to do with document size and is linked to the Richness element of RPAS. 

The type-token ratio (TTR) can be considered a variant of Menhinick’s (1964) species 

diversity equation that measures vocabulary richness. While TTR is one of the oldest 

and easiest ways of measuring richness, it is dependent on text size, and while many 

attempts to reduce this problem have been proposed no one has been fully successful 

(Kubát, & Milička, 2013; Poiret & Liu, 2017). The biggest criticism of TTR is that it 

should not be used on its own, rather it should be incorporated it into a larger suite of 

techniques (Kubát & Milička, 2013; Vermeer, 2000). We avoid this by using the RPAS 

multivariate technique. 

However, this study indicates that with large file sizes over 20,000 words, there are 

better-suited techniques, such Yule’s K, or Rényi’s higher-order entropy which perform 

well and are independent of text size (Kimura & Tanaka-Ishii, 2014; Tanaka-Ishii & 

Aihara, 2015). To alleviate this, a recommendation would be to chunk the data into 

smaller sized files of equal size, mark them as the same author, and highlight the 

centroid. A file size of 4000 words performed well. However, it is possible that another 

file size might perform better. We have used sizes as small as 80 words. In this study, 

keeping all data files a similar length when comparing results over time reduced any 

variation. 

These results are limited to two longitudinal studies on Iris Murdoch and P.D. James. 

A longitudinal study of only two authors is a small sample, however, while the data 

highlighted depression from life events in Iris Murdoch and markers for Alzheimer’s 

disease, they show promise, but they are not conclusive, even if Murdoch’s depression 

and anxiety have been well documented through her prolific habit of writing about 
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herself throughout her life (Dooley & Nerlich, 2014; Martin & Rowe, 2010; Murdoch, 

2015; Wilson, 2004), and there have been a number of scientific studies that verify it. 

In the case of the findings of the Suicide Attacker study, when correlating the known 

times of depression in Iris Murdoch against the attackers one record was collected for 

each of the 25 attackers, so we cannot know whether individuals were depressed at the 

time they wrote their manifestos and final suicide notes.  However, more research can 

be conducted using the Distress Analysis Interview Corpus (DAIC) (Gratch et al., 

2014), which contains transcripts of clinical interviews designed to support the 

diagnosis of psychological distress such as anxiety, depression, and post-traumatic 

stress disorder. 

11.6 Conclusions 

This thesis contributed to the medieval literature authorship debate of Elizabethan 

playwrights and provided a new technique to separate works of disputed authorship. 

It introduced the idea that self or personality can be captured from a person’s writing 

style using RPAS, a multi-disciplinary approach to identity. It found that sensory data 

can contribute to the early identification of Alzheimer’s disease when used with critical 

slowing down to identify tipping points. It also found cognitive linguistic markers for 

depression and anxiety can be identified during troubled periods of a person’s life 

from writing. 

There were a number significant findings highlighted from the thesis: 

1 – We determined that a multi-disciplinary approach to identity is an effective way to 

characterise a person’s personality from writing. 

2 – We were able to develop a new neuro-linguistic technique, RPAS, which is based 

on measures of a person’s personality or self to create a signature of an 

individual’s identity and find that it can separate people by their writing. 

3 – We found that identity changes over time in an individual’s writing due to natural 

aging (n=3). 

4 – The use of highly concrete and imageability articles, pronouns, conjunctions, and 

prepositions were shown to relate to self, successfully predicting well-

documented periods of depression and anxiety from writing (n = 2). 
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5 – We developed new techniques to visualise critical slowing down using RPAS and 

identify tipping points in individuals. 

6 – We found it is possible to use sensory data from writing to detect linguistic markers 

of Alzheimer’s disease (n=2). 

7 – The use of modified variants of the 1-lag autocorrelation and Fischer-Pearson 

coefficient of skewness equations for critical slowing down can be used with 

RPAS to detect tipping points. 

8 – Using RPAS and critical slowing down, we observed stylometric markers of 

Alzheimer’s disease extending back 20 years before a formal medical diagnosis, 

which is earlier than results from Garrard et al. (2004), Le et al. (2011), and Hurst 

and Feng (2012). 

9 – We determined that RPAS can separate the final manifestos and suicide notes of 

lone wolf suicide attackers from normal bloggers. 

10 – We found that depression in an individual does not alter the RPAS classification of 

a person as a suicide attacker or ‘normal’ blogger. 

11.7 Future Research 

Many of the findings in this study have been exploratory, and therefore, this research 

could benefit from further testing to refine the RPAS algorithm. One area would be to 

retest the critical slowing down (CSD) phenomena that occur near tipping points by 

collecting data from one or more known terrorists across a period of their lives that 

includes writing just prior to their attack to see the point where any self-radicalisation 

might have occurred using the modified AR1 and G1 techniques. At this stage, our 

testing has only mimicked cognitive disorders, and testing real data from known 

terrorists would be beneficial. However, this is problematic in an unclassified arena 

due to attacker data being removed by agencies after a catastrophic event, often to stop 

copycat actions, or for legal reasons. 

We also found that while chunking our data into file sizes of 4000 words provided 

good results in our contemporary author’s dataset, it is possible that RPAS might 

perform better using a different file size, and this could be tested to optimise the 

algorithm further. 
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This thesis used a small dataset. It would benefit from using other modern data sources 

to further test the effectiveness of the RPAS algorithm to identify contemporary 

authors, including its ability to work against spoofing – the process where people write 

like another person or not like themselves to hide their identity. Internet Anonymity is 

becoming an increasingly sought-after concept (Faust et al., 2017). While there are a 

number of Anonymous Social Networks (ASNs) that claim to provide anonymity and 

protect people’s privacy (Day et al., 2016), Brennan, Alfroz, and Greenstadt (2012) have 

developed techniques to conceal writing style, known as Adversarial Stylometry and 

avoid an author being recognised (Day et al., 2016). 

We have not tested the idea that somebody might be deliberately changing their 

language and their use of function words to evoke a different experience for the 

receiver (for propaganda or to hide their identity) and what this impact might be on 

the RPAS algorithm’s effectiveness. 

The RPAS algorithm would benefit from being placed within a mathematical 

modelling framework, where it could be automated to select input data and provide 

output charts. So, the research would benefit from mapping the elements of RPAS into 

a Bayesian Network model. Bayesian Belief Networks can be modelled to account for 

the influence of complex human behaviours and reduce the risk of decision making 

and uncertainty (Trucco et al., 2008). Subjective logic, a powerful Bayesian reasoning 

model tool for conditional reasoning, is used in situations involving partial information 

and makes it possible to analyse Bayesian network models with uncertain probabilities 

(Jøsang, 2008). Subjective Logic is an extension of standard logic that uses continuous 

uncertainty and belief parameters instead of only discrete truth values and is suitable 

for handling uncertainty (Jøsang, 1997). Each of the RPAS element can be given a 

measure of effectiveness, both on each RPAS element generally, and on the particular 

piece of data being analysed. An overall confidence level could then be applied to the 

information to help in the classification of large datasets. It would make it easier to 

measure the distance between connections of different authors for social network 

analysis. 

More work on authors with and without depression or cognitive disease could be 

conducted, such as using Patrick White (who did not have any reported cognitive 

decline) and Agatha Christie, British Prime Minister Harold Wilson, and US President 

Ronald Reagan (all of whom were reported to have cognitive decline in their later 

years). Outside of any real-world data on terrorists, this would strengthen the findings 
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on depression and the visualisation techniques for the Critical Slowing Down 

phenomena. 

As an alternative to the sentiment tags used in LIWC for the research on suicide 

attackers, alternate datasets could be considered, such as the affective norms for 

English words (ANEW) database (Bradley & Lang, 1999), or Canada’s National 

Research Council Sentiment and Emotion Lexicon (Mohammad & Turney, 2013). 

Finally, the sensory processing of people over time could be extended to look at more 

types of diseases, such as Parkinson’s disease where MCI is common prior to the 

development of a slightly different form of dementia than in AD (Lin & Wu, 2015). 

This could include off the cuff interviews and speeches from former world leaders, 

such as US President George H. W. Bush, Margaret Thatcher, and Canadian Prime 

Minister Pierre Elliot Trudeau, where there have been little to no edits by other parties. 
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Appendix A 
 

 
Table 33: Referential Activity Power data 

WORD TYPE RA 

 

WORD TYPE RA 

A A 0.29857 

 

ONCE C 0.455 

ABOUT P 0.32286 

 

ONE PNOUN 0.57929 

AFTER P 0.32786 

 

ONLY P 0.33786 

ALL PNOUN 0.42786 

 

OR P 0.33714 

ALTHOUGH C 0.30429 

 

OTHER PNOUN 0.38571 

AN A 0.29429 

 

OUR PNOUN 0.4 

AND C 0.31857 

 

OUT P 0.41357 

ANY PNOUN 0.30571 

 

OVER P 0.43857 

ANYBODY PNOUN 0.48 

 

OWN PNOUN 0.46714 

AS PNOUN 0.27286 

 

PAST P 0.52786 

AT PNOUN 0.29929 

 

POST P 0.75071 

BAR P 0.82929 

 

ROUND P 0.71214 

BECAUSE C 0.31429 

 

SAME PNOUN 0.41 

BEFORE P 0.36857 

 

SAVE P 0.485 

BEST PNOUN 0.43286 

 

SELF PNOUN 0.66071 

BOTH PNOUN 0.44286 

 

SHE PNOUN 0.62857 

BUT PNOUN 0.30929 

 

SIN P 0.51 

BY P 0.31214 

 

SINCE P 0.365 

CAUSE C 0.40643 

 

SO C 0.30143 

CROSS P 0.725 

 

SOME PNOUN 0.42 

DOWN P 0.57 

 

SOUTH P 0.58786 

EACH PNOUN 0.42 

 

STILL C 0.49929 

ELSE C 0.30714 

 

SUCH PNOUN 0.33357 

EVERY PNOUN 0.37929 

 

THAN C 0.28643 

EXTRA P 0.42786 

 

THAT PNOUN 0.32643 

FAILING P 0.51143 

 

THE A 0.31857 

FEW PNOUN 0.45857 

 

THEIR PNOUN 0.36571 

FOR P 0.32929 

 

THEM PNOUN 0.50857 

FORE P 0.45714 

 

THEN C 0.28143 

FORTH P 0.47 

 

THESE PNOUN 0.37643 

FROM P 0.31143 

 

THEY PNOUN 0.44857 

GIN P 0.85286 

 

THIS PNOUN 0.37071 

HE PNOUN 0.60786 

 

THOSE PNOUN 0.35786 

HER PNOUN 0.63071 

 

THROUGH P 0.42429 

HIM PNOUN 0.56357 

 

THWART P 0.47429 

HIMSELF PNOUN 0.43 

 

TILL C 0.52071 

HIS PNOUN 0.46929 

 

TO P 0.29929 
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I PNOUN 0.67714 

 

UNDER P 0.53214 

IF C 0.30857 

 

UP P 0.565 

IN P 0.43714 

 

UPON P 0.46071 

INN P 0.83571 

 

US PNOUN 0.58929 

INTO P 0.40357 

 

VICE P 0.58 

IT PNOUN 0.38286 

 

WE PNOUN 0.47071 

ITS PNOUN 0.31286 

 

WHAT PNOUN 0.38714 

LESS P 0.39429 

 

WHEN PNOUN 0.32143 

LIKE P 0.45571 

 

WHERE C 0.365 

ME PNOUN 0.67214 

 

WHICH PNOUN 0.33714 

MINE PNOUN 0.69571 

 

WHILE C 0.36143 

MORE P 0.39143 

 

WHO PNOUN 0.35357 

MY PNOUN 0.39357 

 

WHOM PNOUN 0.38857 

NEAR P 0.53214 

 

WHY C 0.37 

NEXT P 0.46286 

 

WITH P 0.39643 

NONE PNOUN 0.50929 

 

WITHOUT C 0.40643 

NOR C 0.30929 

 

WITHOUT P 0.40643 

NOW C 0.41786 

 

YET C 0.34714 

OF P 0.28357 

 

YONDER PNOUN 0.49214 

OFF P 0.43357 

 

YOU PNOUN 0.55 

ON P 0.37857 

 

YOUR PNOUN 0.38929 

 

List of function words and their RA Power values, where Type A = Article, C = 

Conjunctive, P = Preposition, and PNOUN = Pronoun. 
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Table 34: Sensory Adjectives data 

Word  Modality Exclusivity 

 

Word  Modality Exclusivity 

abrasive visual 0.469512 

 

icy visual 0.35412 

abrasive haptic 0.433761 

 

immense haptic 0.640601 

absorbent auditory 0.401216 

 

immense visual 0.89823 

absorbent visual 0.479784 

 

insipid gustatory 0.379187 

aching haptic 0.647287 

 

insipid auditory 0.604839 

aching haptic 0.640741 

 

itchy haptic 0.62776 

acidic gustatory 0.494737 

 

itchy haptic 0.644599 

acidic gustatory 0.471178 

 

jagged visual 0.534435 

acrid olfactory 0.434641 

 

jagged visual 0.441176 

acrid gustatory 0.474619 

 

jammy gustatory 0.259601 

adhesive haptic 0.448666 

 

jammy gustatory 0.289428 

adhesive haptic 0.48072 

 

jingling auditory 0.480638 

alcoholic olfactory 0.437198 

 

jingling auditory 0.5 

alcoholic gustatory 0.422535 

 

juicy gustatory 0.301887 

amber visual 0.636364 

 

juicy gustatory 0.230769 

amber visual 0.749035 

 

khaki visual 0.644068 

aromatic olfactory 0.510582 

 

khaki visual 0.659722 

aromatic olfactory 0.62585 

 

large visual 0.484694 

astringent gustatory 0.462427 

 

large visual 0.441237 

astringent olfactory 0.402632 

 

laughing visual 0.515957 

azure visual 0.616935 

 

laughing auditory 0.522788 

azure visual 0.689498 

 

leathery haptic 0.329389 

babbling auditory 0.505102 

 

leathery haptic 0.377404 

babbling auditory 0.440514 

 

lemony gustatory 0.439331 

balmy haptic 0.356688 

 

lemony olfactory 0.655629 

balmy haptic 0.252492 

 

light olfactory 0.717131 

banging visual 0.385776 

 

light haptic 0.472362 

banging auditory 0.456422 

 

lilting auditory 0.639391 

barbecued olfactory 0.157601 

 

lilting visual 0.529727 

barbecued olfactory 0.180068 

 

lithe visual 0.727273 

barking auditory 0.536524 

 

lithe visual 0.416235 

barking auditory 0.530864 

 

long visual 0.665625 

beautiful visual 0.516971 

 

long auditory 0.668342 

beautiful auditory 0.699634 

 

loose visual 0.488491 

beeping auditory 0.615337 

 

loose visual 0.483333 

beeping auditory 0.623907 

 

loud auditory 0.570225 

beery olfactory 0.497076 

 

loud visual 0.497268 

beery olfactory 0.216354 

 

low auditory 0.7 

beige visual 0.785441 

 

low visual 0.569405 

beige visual 0.915493 

 

lukewarm haptic 0.518625 

big visual 0.748062 

 

lukewarm gustatory 0.348115 

big visual 0.392276 

 

lumpy visual 0.305147 
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bitter gustatory 0.530026 

 

lumpy haptic 0.514234 

bitter haptic 0.483745 

 

lush visual 0.433628 

black visual 0.512195 

 

lush gustatory 0.265976 

black visual 0.877551 

 

meaty visual 0.453165 

black and white visual 0.879464 

 

meaty gustatory 0.299669 

black and white visual 0.73617 

 

mellow auditory 0.730612 

bland gustatory 0.499106 

 

mellow gustatory 0.44697 

bland visual 0.769811 

 

melted visual 0.427208 

blaring auditory 0.613181 

 

melted visual 0.230279 

blaring auditory 0.594901 

 

metallic gustatory 0.312989 

bleating auditory 0.516129 

 

metallic visual 0.534574 

bleating auditory 0.524476 

 

mild gustatory 0.470862 

bleeping auditory 0.593865 

 

mild visual 0.419825 

bleeping auditory 0.531507 

 

miniature visual 0.578947 

bloody visual 0.456057 

 

miniature visual 0.452214 

bloody visual 0.378486 

 

minty gustatory 0.422907 

blotchy visual 0.665595 

 

minty olfactory 0.502907 

blotchy visual 0.651389 

 

moaning auditory 0.586806 

blue visual 0.932692 

 

moaning auditory 0.491139 

blue visual 0.910638 

 

moist gustatory 0.314841 

blunt haptic 0.541916 

 

moist haptic 0.318264 

blunt haptic 0.444604 

 

motionless haptic 0.391421 

boiling auditory 0.308772 

 

motionless visual 0.528395 

boiling visual 0.185185 

 

mottled visual 0.418457 

booming auditory 0.4447 

 

mottled visual 0.394191 

booming auditory 0.412664 

 

mouldy visual 0.39798 

bouncy haptic 0.477064 

 

mouldy visual 0.38322 

bouncy visual 0.436428 

 

muddy visual 0.341991 

branching visual 0.57622 

 

muddy visual 0.356137 

branching visual 0.606918 

 

murky visual 0.443031 

braying auditory 0.412616 

 

murky visual 0.461728 

braying auditory 0.493151 

 

murmuring auditory 0.608187 

breakable visual 0.417582 

 

murmuring auditory 0.515464 

breakable visual 0.412346 

 

mushroomy visual 0.508621 

breezy auditory 0.242126 

 

mushroomy gustatory 0.393574 

breezy haptic 0.371901 

 

mushy haptic 0.226714 

bright visual 0.981481 

 

mushy haptic 0.351145 

bright visual 0.707719 

 

musty olfactory 0.469208 

brilliant visual 0.729167 

 

musty olfactory 0.291221 

brilliant auditory 0.840164 

 

narrow visual 0.660436 

briny gustatory 0.353391 

 

narrow visual 0.511393 

briny visual 0.221631 

 

noisy auditory 0.545685 

bristly haptic 0.38785 

 

noisy auditory 0.759717 

bristly haptic 0.47773 

 

nutty gustatory 0.219055 
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brittle haptic 0.391192 

 

nutty gustatory 0.412037 

brittle haptic 0.452309 

 

odorous olfactory 0.523929 

broad visual 0.543354 

 

odorous olfactory 0.510753 

broad visual 0.723164 

 

oily gustatory 0.272866 

broken visual 0.328814 

 

oily visual 0.389706 

broken visual 0.415842 

 

oniony visual 0.452872 

bronze visual 0.601329 

 

oniony gustatory 0.367311 

bronze visual 0.558912 

 

open visual 0.407336 

brown visual 0.736641 

 

open visual 0.335185 

brown visual 0.793358 

 

orange visual 0.91866 

bubbling visual 0.237288 

 

orange visual 0.395299 

bubbling auditory 0.3 

 

oval visual 0.508816 

bulky visual 0.474074 

 

oval visual 0.622951 

bulky visual 0.484485 

 

painful auditory 0.570621 

bumpy haptic 0.402 

 

painful haptic 0.557229 

bumpy haptic 0.450602 

 

pale visual 0.837302 

burning visual 0.37747 

 

pale visual 0.962617 

burning olfactory 0.217929 

 

patterned visual 0.713311 

burnt haptic 0.320704 

 

patterned visual 0.662539 

burnt gustatory 0.228614 

 

peachy gustatory 0.476427 

bursting auditory 0.404124 

 

peachy visual 0.525 

bursting visual 0.377593 

 

peppery gustatory 0.437367 

buttery haptic 0.454343 

 

peppery gustatory 0.375472 

buttery gustatory 0.281365 

 

perfumed olfactory 0.432432 

buzzing auditory 0.528455 

 

perfumed olfactory 0.501597 

buzzing auditory 0.539823 

 

petite visual 0.620178 

caramelised gustatory 0.2443 

 

petite visual 0.626546 

caramelised gustatory 0.241796 

 

pink visual 0.669903 

charred visual 0.271868 

 

pink visual 0.951111 

charred visual 0.200918 

 

plain visual 0.617555 

cheesy gustatory 0.289515 

 

plain gustatory 0.414894 

cheesy olfactory 0.479254 

 

plastic visual 0.355967 

chequered visual 0.794574 

 

plastic haptic 0.281955 

chequered visual 0.745923 

 

polished visual 0.417051 

chewy gustatory 0.334677 

 

polished auditory 0.682482 

chewy gustatory 0.314629 

 

popping auditory 0.414942 

chilly haptic 0.46832 

 

popping auditory 0.412998 

chilly haptic 0.428571 

 

portly visual 0.329377 

chiming auditory 0.559229 

 

portly visual 0.59542 

chiming auditory 0.60479 

 

prickly haptic 0.48642 

chirping auditory 0.665517 

 

prickly haptic 0.563177 

chirping auditory 0.585366 

 

puffy haptic 0.474299 

chocolatey gustatory 0.345576 

 

puffy visual 0.542029 

chocolatey visual 0.507808 

 

pulsing visual 0.702929 
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chubby visual 0.517073 

 

pulsing haptic 0.467192 

chubby visual 0.490566 

 

pungent olfactory 0.537572 

circular visual 0.513661 

 

pungent olfactory 0.459854 

circular visual 0.433486 

 

purple visual 0.773723 

citrusy olfactory 0.48125 

 

purple visual 0.915584 

citrusy gustatory 0.4375 

 

purring auditory 0.483029 

clammy haptic 0.548387 

 

purring auditory 0.485175 

clammy visual 0.288381 

 

quiet auditory 0.553672 

clamorous auditory 0.36253 

 

quiet auditory 0.514986 

clamorous auditory 0.444444 

 

radiant visual 0.677656 

clanging auditory 0.537468 

 

radiant visual 0.413408 

clanging auditory 0.484988 

 

rancid gustatory 0.371041 

clean olfactory 0.3186 

 

rancid olfactory 0.455338 

clean visual 0.460526 

 

raspy auditory 0.891667 

clear visual 0.677193 

 

raspy haptic 0.385027 

clear visual 0.752727 

 

rectangular visual 0.512887 

clicking auditory 0.455847 

 

rectangular visual 0.788491 

clicking auditory 0.486216 

 

red visual 0.845833 

cloudy visual 0.536634 

 

red visual 0.567568 

cloudy visual 0.644951 

 

reddish visual 0.804878 

cloying haptic 0.504582 

 

reddish visual 0.943299 

cloying gustatory 0.461538 

 

resounding auditory 0.614089 

coarse haptic 0.418478 

 

resounding auditory 0.585714 

coarse haptic 0.485531 

 

reverberating auditory 0.731449 

coconutty gustatory 0.434053 

 

reverberating auditory 0.388672 

coconutty olfactory 0.501377 

 

rhythmic auditory 0.413462 

cold gustatory 0.356589 

 

rhythmic auditory 0.562682 

cold haptic 0.42539 

 

ripe gustatory 0.342803 

colorful visual 0.945833 

 

ripe gustatory 0.279035 

colorful visual 0.922414 

 

rippled visual 0.382423 

colossal visual 0.734483 

 

rippled visual 0.436782 

colossal visual 0.536649 

 

roaring auditory 0.526923 

compact visual 0.558824 

 

roaring auditory 0.540404 

compact haptic 0.482972 

 

roasted visual 0.20205 

conical visual 0.432304 

 

roasted olfactory 0.2411 

conical visual 0.590747 

 

rotten visual 0.267564 

contoured visual 0.414948 

 

rotten olfactory 0.321859 

contoured visual 0.473239 

 

rough visual 0.616352 

cooing auditory 0.47027 

 

rough haptic 0.444976 

cooing auditory 0.573431 

 

round visual 0.482436 

cool haptic 0.440299 

 

round visual 0.719665 

cool haptic 0.382766 

 

rubbery gustatory 0.325188 

crackling auditory 0.336576 

 

rubbery haptic 0.377454 

crackling auditory 0.321839 

 

rumbling auditory 0.49589 
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craggy visual 0.522818 

 

rumbling auditory 0.458904 

craggy visual 0.571429 

 

rustling auditory 0.373303 

crashing visual 0.459135 

 

rustling auditory 0.431034 

crashing visual 0.302655 

 

rusty visual 0.395876 

creaking auditory 0.491443 

 

rusty visual 0.364238 

creaking auditory 0.529399 

 

salty gustatory 0.465854 

creamy haptic 0.396588 

 

salty gustatory 0.418803 

creamy gustatory 0.371595 

 

savory gustatory 0.332779 

creased visual 0.425882 

 

savory gustatory 0.370927 

creased visual 0.495775 

 

scaly haptic 0.366013 

crimson visual 0.580716 

 

scaly haptic 0.465218 

crimson visual 0.855183 

 

scented olfactory 0.662252 

crinkled visual 0.450739 

 

scented olfactory 0.44802 

crinkled visual 0.326568 

 

scratchy auditory 0.502591 

crisp olfactory 0.278676 

 

scratchy haptic 0.515625 

crisp gustatory 0.197514 

 

scrawny visual 0.614907 

crooked visual 0.557971 

 

scrawny visual 0.539945 

crooked visual 0.55914 

 

screaming auditory 0.517966 

crowded visual 0.34965 

 

screaming auditory 0.58011 

crowded visual 0.347584 

 

screeching auditory 0.637462 

crunching auditory 0.252087 

 

screeching auditory 0.531328 

crunching auditory 0.425968 

 

shadowy visual 0.787149 

crying auditory 0.419831 

 

shadowy visual 0.776423 

crying visual 0.417391 

 

shaggy visual 0.5 

curly visual 0.363758 

 

shaggy haptic 0.455422 

curly visual 0.525381 

 

shallow auditory 0.544025 

curved visual 0.492537 

 

shallow visual 0.435768 

curved visual 0.521303 

 

sharp gustatory 0.415217 

cute visual 0.428899 

 

sharp haptic 0.509822 

cute visual 0.442516 

 

sheer visual 0.690377 

damp haptic 0.370098 

 

sheer visual 0.504505 

damp haptic 0.353783 

 

shimmering visual 0.533569 

dank visual 0.336538 

 

shimmering visual 0.677419 

dank visual 0.346864 

 

shiny visual 0.651163 

dappled visual 0.699422 

 

shiny visual 0.64557 

dappled visual 0.736909 

 

short visual 0.553977 

dark visual 0.405405 

 

short visual 0.558333 

dark visual 0.753623 

 

shrieking auditory 0.542284 

dazzling visual 0.911628 

 

shrieking auditory 0.528967 

dazzling visual 0.505319 

 

shrill auditory 0.462766 

dead visual 0.383795 

 

shrill auditory 0.829787 

dead auditory 0.629758 

 

silky haptic 0.516971 

deafening auditory 0.571429 

 

silky haptic 0.516854 

deafening auditory 0.722222 

 

silver visual 0.741935 
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deep visual 0.930036 

 

silver visual 0.439678 

deep visual 0.471883 

 

sizzling auditory 0.236755 

delicious gustatory 0.354724 

 

sizzling visual 0.106354 

delicious olfactory 0.657439 

 

skinny visual 0.577205 

dim visual 0.254613 

 

skinny visual 0.504878 

dim visual 0.936937 

 

slick visual 0.446512 

dirty visual 0.32037 

 

slick visual 0.445652 

dirty visual 0.373757 

 

slimy haptic 0.341719 

downy visual 0.417625 

 

slimy haptic 0.380631 

downy visual 0.462484 

 

slippery haptic 0.467933 

drab visual 0.587333 

 

slippery haptic 0.36699 

drab visual 0.504801 

 

slushy gustatory 0.262579 

dry gustatory 0.364641 

 

slushy haptic 0.320463 

dry visual 0.410138 

 

small visual 0.474304 

dull visual 0.779592 

 

small visual 0.550279 

dull auditory 0.556391 

 

smelly olfactory 0.517073 

dusty visual 0.314928 

 

smelly olfactory 0.538058 

dusty visual 0.441805 

 

smoky olfactory 0.222034 

earthy visual 0.568643 

 

smoky visual 0.316629 

earthy gustatory 0.283019 

 

smooth haptic 0.451613 

echoing auditory 0.649231 

 

smooth haptic 0.497423 

echoing auditory 0.789343 

 

snarling auditory 0.660156 

eggy olfactory 0.523179 

 

snarling auditory 0.48329 

eggy olfactory 0.288889 

 

snorting auditory 0.544833 

elastic haptic 0.496124 

 

snorting auditory 0.63522 

elastic haptic 0.407407 

 

soapy gustatory 0.343669 

elegant visual 0.574286 

 

soapy visual 0.34749 

elegant visual 0.57377 

 

sodden haptic 0.36039 

empty visual 0.378906 

 

sodden visual 0.339779 

empty visual 0.32906 

 

soft haptic 0.436508 

enormous visual 0.476551 

 

soft auditory 0.821012 

enormous visual 0.540682 

 

solid haptic 0.403587 

faint visual 0.290323 

 

solid haptic 0.402273 

faint olfactory 0.5 

 

sonorous auditory 0.654711 

falling visual 0.735409 

 

sonorous auditory 0.741007 

falling visual 0.204412 

 

sore haptic 0.871245 

fat visual 0.503817 

 

sore haptic 0.401114 

fat visual 0.27707 

 

soundless visual 0.464497 

fatty gustatory 0.343612 

 

soundless auditory 0.569721 

fatty visual 0.346392 

 

sour gustatory 0.556507 

fetid olfactory 0.374724 

 

sour gustatory 0.506527 

fetid olfactory 0.324503 

 

sparkly visual 0.946188 

feverish visual 0.828704 

 

sparkly visual 0.31064 

feverish haptic 0.690236 

 

speckled visual 0.468708 
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filthy visual 0.371429 

 

speckled visual 0.73454 

filthy visual 0.321755 

 

spicy olfactory 0.573668 

flaky visual 0.268293 

 

spicy gustatory 0.42887 

flaky visual 0.351579 

 

spiky haptic 0.479381 

flat visual 0.467626 

 

spiky visual 0.453581 

flat gustatory 0.39905 

 

spotted visual 0.92891 

fleshy visual 0.451087 

 

spotted visual 0.536818 

fleshy gustatory 0.289466 

 

square visual 0.538462 

flexible haptic 0.474453 

 

square visual 0.552279 

flexible haptic 0.503817 

 

squeaking auditory 0.5225 

flickering visual 0.654362 

 

squeaking auditory 0.70949 

flickering visual 0.808163 

 

squealing auditory 0.480952 

floppy visual 0.567935 

 

squealing auditory 0.589385 

floppy haptic 0.29264 

 

stagnant olfactory 0.273871 

floral olfactory 0.599315 

 

stagnant visual 0.475374 

floral visual 0.821277 

 

stale gustatory 0.46438 

flowery visual 0.549723 

 

stale gustatory 0.30767 

flowery olfactory 0.755396 

 

steep visual 0.620579 

fluffy haptic 0.471526 

 

steep visual 0.529101 

fluffy visual 0.284483 

 

stenchy olfactory 0.554572 

foamy visual 0.32906 

 

stenchy olfactory 0.477747 

foamy visual 0.360417 

 

sticky haptic 0.392996 

foggy visual 0.654362 

 

sticky haptic 0.454756 

foggy visual 0.487047 

 

stinging haptic 0.484375 

forked visual 0.644689 

 

stinging haptic 0.498592 

forked visual 0.48164 

 

stinky olfactory 0.383929 

fragrant olfactory 0.577844 

 

stinky olfactory 0.609091 

fragrant olfactory 0.560773 

 

straight visual 0.776471 

freezing haptic 0.363458 

 

straight visual 0.77381 

freezing haptic 0.420779 

 

striped visual 0.875648 

fresh olfactory 0.486486 

 

striped visual 0.959459 

fresh olfactory 0.165505 

 

strong haptic 0.497297 

frosty visual 0.434144 

 

strong gustatory 0.482838 

frosty visual 0.331839 

 

sturdy visual 0.50411 

fruity olfactory 0.471591 

 

sturdy haptic 0.468665 

fruity gustatory 0.422658 

 

sunny visual 0.482234 

fuzzy haptic 0.462075 

 

sunny visual 0.578947 

fuzzy visual 0.95045 

 

sweaty visual 0.29202 

gamy gustatory 0.247573 

 

sweaty haptic 0.278195 

gamy gustatory 0.3361 

 

sweet olfactory 0.696768 

garlicky olfactory 0.630573 

 

sweet gustatory 0.465066 

garlicky gustatory 0.404711 

 

swift visual 0.602305 

gigantic visual 0.366089 

 

swift visual 0.579832 

gigantic visual 0.509615 

 

swinging visual 0.463104 
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giggling auditory 0.421171 

 

swinging auditory 0.656667 

giggling auditory 0.466825 

 

tall visual 0.620991 

glamorous visual 0.571288 

 

tall visual 0.808765 

glamorous visual 0.308285 

 

tangerine visual 0.769912 

glistening visual 0.889831 

 

tangerine visual 0.361478 

glistening visual 0.537433 

 

tangy gustatory 0.477064 

glittery visual 0.715356 

 

tangy gustatory 0.475128 

glittery visual 0.621019 

 

tapering visual 0.331461 

glossy visual 0.4725 

 

tapering visual 0.544118 

glossy visual 0.385776 

 

tarry visual 0.32636 

glowing visual 0.655455 

 

tarry visual 0.416021 

glowing visual 0.820084 

 

tart gustatory 0.474201 

gold visual 0.609907 

 

tart gustatory 0.508929 

gold visual 0.682862 

 

tasteless visual 0.421725 

gooey haptic 0.330709 

 

tasteless gustatory 0.553314 

gooey gustatory 0.243655 

 

tender haptic 0.553009 

gorgeous visual 0.578171 

 

tender gustatory 0.353896 

gorgeous auditory 0.798354 

 

tepid haptic 0.461538 

grainy visual 0.712727 

 

tepid gustatory 0.365285 

grainy haptic 0.330258 

 

thorny haptic 0.473538 

granular visual 0.280353 

 

thorny haptic 0.488312 

granular haptic 0.321596 

 

thudding auditory 0.539474 

grassy gustatory 0.442029 

 

thudding auditory 0.411622 

grassy visual 0.402322 

 

thumping auditory 0.449883 

gray visual 0.955556 

 

thumping haptic 0.538482 

gray visual 0.917749 

 

ticklish haptic 0.607455 

greasy gustatory 0.26484 

 

ticklish haptic 0.58104 

greasy haptic 0.414188 

 

tight haptic 0.526455 

green visual 0.643963 

 

tight haptic 0.486874 

green visual 0.575301 

 

tinkling auditory 0.356796 

grinding visual 0.284 

 

tinkling auditory 0.408163 

grinding auditory 0.438725 

 

tiny visual 0.585434 

gritty visual 0.382022 

 

tiny auditory 0.819328 

gritty haptic 0.43377 

 

tough haptic 0.483791 

groaning auditory 0.571429 

 

tough gustatory 0.361419 

groaning auditory 0.567568 

 

translucent visual 0.706678 

grotesque visual 0.621795 

 

translucent visual 0.854251 

grotesque visual 0.508108 

 

transparent visual 0.814672 

growling auditory 0.479218 

 

transparent visual 0.834008 

growling auditory 0.632968 

 

triangular visual 0.621455 

gurgling auditory 0.460396 

 

triangular visual 0.42723 

gurgling auditory 0.346792 

 

ugly visual 0.598071 

hairy haptic 0.414416 

 

ugly visual 0.533791 

hairy visual 0.5025 

 

uneven visual 0.654545 
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handsome visual 0.679739 

 

uneven haptic 0.456311 

handsome visual 0.613095 

 

unripe gustatory 0.277448 

happy visual 0.589286 

 

unripe gustatory 0.34188 

happy auditory 0.712687 

 

vinegary olfactory 0.353333 

hard gustatory 0.407328 

 

vinegary gustatory 0.486413 

hard haptic 0.433708 

 

vivid visual 0.901408 

harsh auditory 0.521909 

 

vivid visual 0.281095 

harsh haptic 0.336207 

 

wailing auditory 0.494186 

heavy visual 0.474801 

 

wailing auditory 0.633333 

heavy visual 0.428635 

 

warbling auditory 0.706806 

herby gustatory 0.422222 

 

warbling auditory 0.572368 

herby visual 0.330693 

 

warm haptic 0.429671 

high auditory 0.791165 

 

warm haptic 0.557065 

high visual 0.758364 

 

waxy haptic 0.432373 

hissing auditory 0.5 

 

waxy haptic 0.439589 

hissing auditory 0.483627 

 

weak haptic 0.562937 

hoarse auditory 0.709821 

 

weak visual 0.864035 

hoarse auditory 0.459732 

 

weightless visual 0.672535 

hollow visual 0.4197 

 

weightless haptic 0.491573 

hollow visual 0.54388 

 

wet visual 0.343685 

honeyed gustatory 0.342056 

 

wet haptic 0.327451 

honeyed auditory 0.773333 

 

whining auditory 0.568915 

hot gustatory 0.38758 

 

whining auditory 0.502347 

hot haptic 0.366667 

 

whistling auditory 0.561497 

howling auditory 0.488943 

 

whistling auditory 0.578804 

howling auditory 0.548649 

 

white visual 0.788 

huge visual 0.382269 

 

white visual 0.889868 

huge visual 0.562147 

 

wide visual 0.540616 

humid haptic 0.349765 

 

wide visual 0.666667 

humid haptic 0.307571 

 

wiry visual 0.546125 

humming auditory 0.603499 

 

wiry haptic 0.436474 

humming auditory 0.755304 

 

wispy visual 0.792579 

hushed auditory 0.529915 

 

wispy visual 0.416058 

hushed auditory 0.615385 

 

woolly haptic 0.517857 

husky haptic 0.385765 

 

woolly haptic 0.486811 

husky auditory 0.889831 

 

yellow visual 0.816794 

icy haptic 0.563025 

 

yellow visual 0.849206 

 

List of 387 Adjectives and their Sensory Values for each corresponding 

Representational System, which across both of the modalities equals 774 words. 
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Table 35: Summary of the findings of Argamon et al.'s (2003) gender study 

Pronouns Tag Female  ± 
stderr 

Male  ± 
stderr 

t-test Female 

median 

Male 

median 

he M 271 9 3 305 11 p<0.05 * 276 305 

her F 53.8 5.1 18.5 3.5 p<0.0001 29.8 5.60 

hers F 53.8 5.1 18.5 3.5 p<0.0001 29.8 5.60 

herself F 53.8 5.1 18.5 3.5 p<0.0001 29.8 5.60 

him M 271 9 3 305 11 p<0.05 * 276 305 

himself M 271 9 3 305 11 p<0.05 * 276 305 

his M 271 9 3 305 11 p<0.05 * 276 305 

I F 149 14 86 8 p<0.0002 66.7 50.2 

it F 89.1 2.8 86.7 2.4 n/s 85.3 82.9 

its M 15.3 0.93 19.0 0.79 p<0.005 12.2 19.0 

me F 149 14 86 8 p<0.0002 66.7 50.2 

mine F 149 14 86 8 p<0.0002 66.7 50.2 

my F 149 14 86 8 p<0.0002 66.7 50.2 

myself F 149 14 86 8 p<0.0002 66.7 50.2 

our F 149 14 86 8 p<0.0002 66.7 50.2 

ours F 149 14 86 8 p<0.0002 66.7 50.2 

ourselves F 149 14 86 8 p<0.0002 66.7 50.2 

she F 53.8 5.1 18.5 3.5 p<0.0001 29.8 5.60 

their F 97.8 4.6 81.8 2.7 p<0.005 83.9 78.8 

theirs F 97.8 4.6 81.8 2.7 p<0.005 83.9 78.8 

them F 97.8 4.6 81.8 2.7 p<0.005 83.9 78.8 

themselves F 97.8 4.6 81.8 2.7 p<0.005 83.9 78.8 

they F 97.8 4.6 81.8 2.7 p<0.005 83.9 78.8 

us F 149 14 86 8 p<0.0002 66.7 50.2 

we F 149 14 86 8 p<0.0002 66.7 50.2 

You F 63.9 8.0 30.0 5.2 p<0.0005 16.7 3.9 

Your F 63.9 8.0 30.0 5.2 p<0.0005 16.7 3.9 

Yours F 63.9 8.0 30.0 5.2 p<0.0005 16.7 3.9 

Yourself F 63.9 8.0 30.0 5.2 p<0.0005 16.7 3.9 

 

Table 36: Shakespeare, Marlowe and Carey's Works and how they were broken into chunks 

ID YEAR* TITLE TY

PE 

SHORT 

TITLE 

IN WORK 

WILLIAM 

SHAKESPEARE 

1 1589 Comedy of Errors C C1 Comedy of Errors 

2 1590 Henry VI, Part II H H1 Henry VI, Part II 

3 1590 Henry VI, Part III H H2 Henry VI, Part III 

4 1591 Henry VI, Part I H H3 Henry VI, Part I 

5 1592 Richard III H H4 Richard III 

6 1593 Taming of the Shrew C C2 Taming of the Shrew 

7 1593 Titus Andronicus T T1 Titus Andronicus 

8 1593 Venus and Adonis P P1 Venus and Adonis 

9 1594 Love's Labour's Lost C C4 Love's Labour's Lost 

10 1594 Romeo and Juliet T T2 Romeo and Juliet 

11 1594 The Rape of Lucrece P P2 The Rape of Lucrece 

12 1594 Two Gentlemen of 

Verona 

C C3 Two Gentlemen of Verona 
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13 1595 Midsummer Night's 

Dream 

C C5 Midsummer Night's Dream 

14 1595 Richard II H H5 Richard II 

15 1596 King John H H6 King John 

16 1596 Merchant of Venice C C6 Merchant of Venice 

17 1597 Henry IV, Part I H H7 Henry IV, Part I 

18 1597 Henry IV, Part II H H8 Henry IV, Part II 

19 1598 Henry V H H9 Henry V 

20 1598 Much Ado about 

Nothing 

C C7 Much Ado about Nothing 

21 1599 As You Like It C C9 As You Like It 

22 1599 Julius Caesar T T3 Julius Caesar 

23 1599 Love's Answer P P5 The Passionate Pilgrim 

24 1599 Sonnets to sundry 

notes of music 

P P4 The Passionate Pilgrim 

25 1599 The Passionate 

Pilgrim 

P P3 The Passionate Pilgrim 

26 1599 Twelfth Night C C8 Twelfth Night 

27 1600 Hamlet T T4 Hamlet 

28 1600 Merry Wives of 

Windsor 

C C10 Merry Wives of Windsor 

29 1601 The Phoenix and the 

Turtle 

P P6 The Phoenix and the Turtle 

30 1601 Threnos P P7 The Phoenix and the Turtle 

31 1601 Troilus and Cressida C C11 Troilus and Cressida 

32 1602 All's Well That Ends 

Well 

C C12 All's Well That Ends Well 

33 1604 Measure for Measure C C13 Measure for Measure 

34 1604 Othello T T5 Othello 

35 1605 King Lear T T6 King Lear 

36 1605 Macbeth T T7 Macbeth 

37 1606 Anthony and 

Cleopatra 

T T10 Anthony and Cleopatra 

38 1607 Coriolanus T T8 Coriolanus 

39 1607 Timon of Athens T T9 Timon of Athens 

40 1608 Pericles C C14 Pericles 

41 1609 A Lover's  Complaint P P8 The Passionate Pilgrim 

42 1609 Cymbeline C C15 Cymbeline 

43 1609 Sonnets   P P9 Sonnets   

44 1610 Winter's Tale C C16 Winter's Tale 

45 1611 Tempest C C17 Tempest 

46 1612 Henry VIII H H10 Henry VIII 

CHRISTOPHER 

MARLOWE 

47 1590 Tamburlaine Part I   M1 Tamburlaine The Great Part I 

48 1590 Tamburlaine Part II   M2 Tamburlaine The Great Part II 

49   Edward II H M3 Edward II 

50   The Jew of Malta T M4 The Jew of Malta 

51   Doctor Faustus   M5 Doctor Faustus 
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52   Dido Queen of 

Carthage 

  M6 Dido Queen of Carthage 

53   The Massacre at Paris   M7 The Massacre at Paris with the Death 

of the Duke of Guise 

54   Hero and Leander P M8 Hero and Leander 

55   The Passionate 

Shepherd 

P M9 The Passionate Shepherd to His Love 

56   Walter Raleigh P M10 The Passionate Shepherd to His Love 

ELIZABETH 

CAREY 

57 1612 The Tragedy of 

Mariam 

T EC1 The Tragedy of Mariam, the Fair 

Queen of Jewry 

 
Type: C = Comedies, H = Histories, T = Tragedies, P = Poems 

* The Year may not have any bearing as many works may well have been written 

earlier. In Marlowe’s case, all but two of his works were published after his death. 

 

Table 37: The list of the poems by Shakespeare, Barnfield, Griffin, Marlowe including the 12 unknown authored 
poems in The Passionate Pilgrim Poems by Author and Abbreviated ID. 

ID Abbreviated Author 

1 1S William Shakespeare 

2 2S William Shakespeare 

3 3S William Shakespeare 

4 4U Unknown 

5 5S William Shakespeare 

6 6U Unknown 

7 7U Unknown 

8 8B Richard Barnfield 

9 9U Unknown 

10 10U Unknown 

11 11G Bartholomew Griffin 

12 12U Unknown (Thomas Deloney) 

13 13U Unknown 

14 14U Unknown 

15 15U Unknown 

16 16U Unknown 

17 17S William Shakespeare 

18 18U Unknown 

19 19U Unknown 

20 20M 
Christopher Marlowe and 

Walter Raleigh 

21 21B Richard Barnfield 
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Table 38: Pearson correlation coefficient, R, results of RPAS, the five sensory elements (VAHOG), and the four 
Referential Activity Power elements. 

Correlations 

     R P A S   

Richness (R) 

Pearson Correlation 1 .399** -.833** .456**   

Sig. (2-tailed)   0.002 0 0   

N 57 57 57 57   

Personal_Pronouns (P) 

Pearson Correlation .399** 1 -.451** .366**   

Sig. (2-tailed) 0.002   0 0.005   

N 57 57 57 57   

RA Power (A) 

Pearson Correlation -.833** -.451** 1 -.575**   

Sig. (2-tailed) 0 0   0   

N 57 57 57 57   

Sensory (S) 

Pearson Correlation .456** .366** -.575** 1   

Sig. (2-tailed) 0 0.005 0     

N 57 57 57 57   

    V A H O G 

Sensory - Visual (V) 

Pearson Correlation 1 .284* .715** .784** .571** 

Sig. (2-tailed)   0.032 0 0 0 

N 57 57 57 57 57 

Sensory - Auditory (A) 

Pearson Correlation .284* 1 -0.038 0.167 -0.119 

Sig. (2-tailed) 0.032   0.777 0.215 0.378 

N 57 57 57 57 57 

Sensory - Haptic (H) 

Pearson Correlation .715** -0.038 1 .632** .772** 

Sig. (2-tailed) 0 0.777   0 0 

N 57 57 57 57 57 

Sensory - Olfactory (O) 

Pearson Correlation .784** 0.167 .632** 1 .628** 

Sig. (2-tailed) 0 0.215 0   0 

N 57 57 57 57 57 

Sensory - Gustatory (G) 

Pearson Correlation .571** -0.119 -0.119 .628** 1 

Sig. (2-tailed) 0 0.378 0.378 0   

N 57 57 57 57 57 

    A C P PRON   

RA Power  - Article (A) 

Pearson Correlation 1 .800** .899** .686**   

Sig. (2-tailed)   0 0 0   

N 57 57 57 57   

RA Power  - Conjunctive (C) 

Pearson Correlation .800** 1 .859** .563**   

Sig. (2-tailed) 0   0 0   

N 57 57 57 57   

RA Power  - Preposition (P) 

Pearson Correlation .899** .859** 1 .706**   

Sig. (2-tailed) 0 0   0   

N 57 57 57 57   
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RA Power  - Pronoun (PRON) 

Pearson Correlation .686** .563** .706** 1   

Sig. (2-tailed) 0 0 0     

N 57 57 57 57   

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

 
Table 39: PCA Descriptive Statistics Shakespeare, Marlowe, and Cary 

Descriptive Statistics 

 Mean Std. Deviation Analysis N 

Richness 2.2034958792E

1 

1.52579825997

E1 

57 

Gender Pronouns 5.9897442035E

0 

2.02163110795

E1 

57 

RA Score 4.2469364069E

1 

2.09366559396

E1 

57 

Auditory .1469911971 1.13237041280

E-1 

57 

Gustatory .1338646183 9.37442724914

E-2 

57 

Haptic .1317616465 8.45222795429

E-2 

57 

Olfactory .1353649594 1.20863535652

E-1 

57 

Visual .7033064182 3.70917467781

E-1 

57 
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Table 40: PCA Correlation Matrix for Shakespeare, Marlowe and Cary 

Correlation Matrixa 

  

Richness P_Pronouns 

RA 

Score Auditory Gustatory Haptic Olfactory Visual 

Correlation Richness 1.000 .399 -.833 .606 .311 .195 .296 .372 

P_Pronouns .399 1.000 -.451 .252 .210 .340 .169 .362 

RA Score -.833 -.451 1.000 -.439 -.430 -.343 -.430 -.520 

Auditory .606 .252 -.439 1.000 -.119 -.038 .167 .284 

Gustatory .311 .210 -.430 -.119 1.000 .772 .628 .571 

Haptic .195 .340 -.343 -.038 .772 1.000 .632 .715 

Olfactory .296 .169 -.430 .167 .628 .632 1.000 .784 

Visual .372 .362 -.520 .284 .571 .715 .784 1.000 

Sig. (1-

tailed) 

Richness  .001 .000 .000 .009 .073 .013 .002 

P_Pronouns .001  .000 .029 .058 .005 .104 .003 

RA Score .000 .000  .000 .000 .005 .000 .000 

Auditory .000 .029 .000  .189 .389 .107 .016 

Gustatory .009 .058 .000 .189  .000 .000 .000 

Haptic .073 .005 .005 .389 .000  .000 .000 

Olfactory .013 .104 .000 .107 .000 .000  .000 

Visual .002 .003 .000 .016 .000 .000 .000  

a. Determinant = .004 

 
Table 41: PCA KMO and Bartlett's Test for Shakespeare, Marlowe, and Cary 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .722 

Bartlett's Test of Sphericity Approx. Chi-Square 290.851 

df 28 

Sig. .000 
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Table 42: PCA Communalities for Shakespeare, Marlowe, and Cary 

Communalities 

 Initial Extraction 

Richness 1.000 .832 

Gender Pronouns 1.000 .354 

RA Score 1.000 .787 

Auditory 1.000 .695 

Gustatory 1.000 .772 

Haptic 1.000 .830 

Olfactory 1.000 .711 

Visual 1.000 .770 

Extraction Method: Principal Component 

Analysis. 

 

 
Table 43: PCA Total Variance for Shakespeare, Marlowe and Cary 

Total Variance Explained 

Component 

Initial Eigenvalues 

Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% Total 

% of 

Variance 

Cumulative 

% 

1 3.965 49.565 49.565 3.965 49.565 49.565 3.163 39.537 39.537 

2 1.786 22.322 71.887 1.786 22.322 71.887 2.588 32.350 71.887 

3 .807 10.093 81.980       

4 .652 8.148 90.128       

5 .327 4.084 94.213       

6 .221 2.766 96.979       

7 .126 1.581 98.560       

8 .115 1.440 100.000       

Extraction Method: Principal Component Analysis. 
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Table 44: PCA Component Matrix for Shakespeare, Marlowe, and Cary 

Component Matrixa 

 Component 

 1 2 

Richness .684 -.603 

Gender Pronouns .532  

RA Score -.787 .409 

Auditory .388 -.737 

Gustatory .734 .483 

Haptic .755 .510 

Olfactory .777 .327 

Visual .855  

Extraction Method: Principal Component 

Analysis. 

a. 2 components extracted. 

 
Table 45: PCA Rotated Component matrix for Shakespeare, Marlowe, and Cary 

Rotated Component Matrixa 

 Component 

 1 2 

Richness  .895 

Gender Pronouns  .535 

RA Score -.377 -.803 

Auditory  .822 

Gustatory .877  

Haptic .910  

Olfactory .817  

Visual .799 .363 

Extraction Method: Principal Component 

Analysis.  

 Rotation Method: Varimax with Kaiser 

Normalization. 

a. Rotation converged in 3 iterations. 
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Figure 36: PCA Scree Plot for Shakespeare, Marlowe, and Cary 

 
Table 46: LDA Eigenvalues of the first two canonical functions 

Eigenvalues 

Functio

n Eigenvalue % of Variance Cumulative % 

Canonical 

Correlation 

1 2.266a 79.1 79.1 .833 

2 .598a 20.9 100.0 .612 

a. First 2 canonical discriminant functions were used in the analysis. 

 
Table 47: LDA Wilks' Lambda results of the two canonical functions 

Wilks' Lambda 

Test of 

Function(s) Wilks' Lambda Chi-square df Sig. 

1 through 2 .192 66.919 16 .000 

2 .626 18.985 7 .008 
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Table 48: LDA Discriminant Function coefficients for the two canonical functions 

Standardized Canonical 

Discriminant Function Coefficients 

 Function 

 1 2 

Richness 1.115 .092 

Gender .369 -.346 

RA Score -.119 .832 

Auditory .816 .394 

Gustatory -.084 .672 

Haptic -1.733 -.127 

Olfactory .642 -.251 

Visual -.180 .831 

 
Table 49: LDA Group Centroids of the three Playwrights for both canonical functions 

Functions at Group Centroids 

Playwri

ghts 

Function 

1 2 

1 -.645 .070 

2 3.423 .327 

3 1.205 -5.037 

Unstandardized canonical 

discriminant functions evaluated 

at group means 
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Figure 37: The first two dimensions of a canonical discriminant analysis applied to the uncontested works of 
Shakespeare, Marlowe, and Cary 
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Figure 38: PtoR discriminates chunks 6, 8, 10, 15, 16, 17, and 18 mainly by Richness, while the RAtoR inset Radar 
plot highlights a constant Referential Activity Power plot in the center (green). Of note, the four Shakespearian 
clusters marked with a red circle are those commonly attributed to Shakespeare.  Further, the ellipses are our 
visual clustering assignment. 
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Table 50: Iris Murdoch's novels by year published 

ID Iris Murdoch Novels Published 

B1 Under the Net 1954 

B2 The Flight from the Enchanter 1956 

B3 The Sandcastle 1957 

B4 The Bell 1958 

B5 A Severed Head 1961 

B6 An Unofficial Rose 1962 

B7 The Unicorn 1963 

B8 The Italian Girl 1964 

B9 The Red and the Green 1965 

B10 The Time of the Angels 1966 

B11 The Nice and the Good 1968 

B12 Bruno's Dream 1969 

B13 A Fairly Honourable Defeat 1970 

B14 An Accidental Man 1971 

B15 The Black Prince 1973 

B16 The Sacred and Profane Love Machine 1974 

B17 A Word Child 1975 

B18 Henry and Cato 1976 

B19 The Sea, the Sea 1978 

B20 Nuns and Soldiers 1980 

B21 The Philosopher's Pupil 1983 

B22 The Good Apprentice 1985 

B23 The Book and the Brotherhood 1987 

B24 The Message to the Planet 1989 

B25 The Green Knight 1993 

B26 Jackson's Dilemma 1995 
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Table 51: P.D. James' novels by year published 

ID P.D. James Novels Published 

B1 Cover Her Face  1962 

B2 A Mind to Murder  1963 

B3 Unnatural Causes  1967 

B4 Shroud for a Nightingale  1971 

B5 An Unsuitable Job for a Woman 1972 

B6 The Black Tower  1975 

B7 Death of an Expert Witness  1977 

B8 Innocent Blood  1980 

B9 The Skull Beneath the Skin  1982 

B10 A Taste for Death  1986 

B11 Devices and Desires  1989 

B12 The Children of Men  1992 

B13 Original Sin  1994 

B14 A Certain Justice  1997 

B15 Death in Holy Orders  2001 

B16 The Murder Room  2003 

B17 The Lighthouse  2005 

B18 The Private Patient  2008 

B19 Death Comes to Pemberley  2011 

 

 
Table 52: Iris Murdoch Sensory Word Mann-Whitney U-test 12 year Ranks  

Ranks 

 Group N Mean Rank Sum of Ranks 

Rank of Sensory by Group 1 20 15.60 312.00 

2 6 6.50 39.00 

Total 26   
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Table 53: Iris Murdoch Sensory Word Mann-Whitney U-test 12-year statistics 

Test Statisticsb 

 Rank of Sensory 

by Group 

Mann-Whitney U 18.000 

Wilcoxon W 39.000 

Z -2.559 

Asymp. Sig. (2-tailed) .011 

Exact Sig. [2*(1-tailed Sig.)] .009a 

a. Not corrected for ties. 

b. Grouping Variable: Group 

 

Table 54: P.D. James Sensory Word Mann-Whitney U-test 12 year Ranks  

Ranks 

 Group N Mean Rank Sum of Ranks 

Rank of Sensory 1 15 11.53 173.00 

2 4 4.25 17.00 

Total 19   

 

Table 55: P.D. James Sensory Word Mann-Whitney U-test 12-year statistics 

Test Statisticsb 

 Rank of Sensory 

Mann-Whitney U 7.000 

Wilcoxon W 17.000 

Z -2.300 

Asymp. Sig. (2-tailed) .021 

Exact Sig. [2*(1-tailed Sig.)] .020a 

a. Not corrected for ties. 

b. Grouping Variable: Group 
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Figure 39: Iris Murdoch Content Words POS Mean with Standard Error bars. We see the aggregated Content 
Words part-of-speech is higher than the earlier work for the 12 year period before the diagnosis of AD, and there 
is no overlap between the Standard Error means.  There is more variability in the 12 Years period (25.6 versus 
18.2). 

 

 

Figure 40: Iris Murdoch Function Words POS Mean with Standard Error bars. We see the aggregated Function 
Words part-of-speech is part-of-speech is lower than the earlier work for the 12 year period before the diagnosis 
of AD, and there is no overlap between the Standard Error means.  There is more variability in the 12 Years 
period (25.6 versus 18.2). 
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Figure 41: P.D. James Content Words POS Mean with Standard Error bars. We see the aggregated Content Words 
part-of-speech is higher than the earlier work for the 10-12 year period before death, and there is no overlap 
between the Standard Error means.  There is less variability in the 10-12 Years period (13.28 versus 14.81). 

 

 

Figure 42: P.D. James Function Words POS Mean with Standard Error bars. We see the aggregated Function 
Words part-of-speech is lower than the earlier work for the 10-12 year period before the diagnosis of AD, and 
there is no overlap between the Standard Error means.  There is less variability in the 10-12 Years period (13.28 
versus 14.81). 
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Figure 43: Iris Murdoch Visual Sensory Mean with Standard Error bars 

 

 

Figure 44: Iris Murdoch Auditory Sensory Mean with Standard error bars 
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Figure 45: Iris Murdoch Haptic Sensory Mean with Standard Error bars 

 

 

Figure 46: Iris Murdoch Olfactory Sensory Mean with Standard Error bars 
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Figure 47: Iris Murdoch Gustatory Sensory Mean with Standard Error bars 

 

 
Figure 48: P.D. James Visual Sensory Mean with Standard Error bars 
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Figure 49: P.D. James Auditory Sensory Mean with Standard Error bars 

 
 
Figure 50: P.D. James Haptic Sensory Mean with Standard Error bars 
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Figure 51: P.D. James Olfactory Sensory Mean with Standard Error bars 

 
 
Figure 52: P.D. James Gustatory Sensory Mean with Standard Error bars 
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Table 56: RPAV values of Iris Murdoch’s novels 

Work Richness Gender RA Power Auditory Gustatory Haptic Olfactory Visual Sensory 

B1 26.775 .2274041057 14.64112357 0.001893795 0.000606055 0.002230414 0.000755071 0.010487843 0.015973177 

B2 28.225 .9988632278 10.91681071 0.004351909 0.000934004 0.001351208 0.000697118 0.01319293 0.020527169 

B3 27.05 .6818886726 9.404984821 0.002329807 0.000758867 0.001059749 0 0.007099236 0.011247658 

B4 29.975 .9992511049 10.688015 0.002438754 0.001595562 0.001201171 0.000433125 0.009126269 0.014794881 

B5 27.05 .7374709587 9.552148929 0.002960395 0.000762951 0.002010495 0.001478563 0.016298165 0.02351057 

B6 27.95 .9977307804 8.272718929 0.003540101 0.000393781 0.001799469 0.00043903 0.016143835 0.022316217 

B7 29.875 .9783518633 11.85225607 0.00423449 0.000879715 0.002699774 0.001005129 0.021633528 0.030452636 

B8 26.65 .00607305159 10.66224143 0.003232946 0.000580226 0.002330373 0.002396304 0.018234171 0.02677402 

B9 32.85 .6237562588 13.711175 0.002032694 0.000502611 0.001055165 0.000617499 0.01099064 0.015198609 

B10 30.5 .9549280115 10.11495821 0.002555026 0.001420173 0.002804278 0.001504859 0.017856794 0.02614113 

B11 30.125 .3714940843 13.48681929 0.003345157 0.000711792 0.002249554 0.000258933 0.01959184 0.026157277 

B12 27.875 .715987102 12.66331125 0.001772125 0.00068321 0.001564729 0.000785346 0.007221765 0.012027176 

B13 28.425 .3271111805 10.52469571 0.002747985 0.000776946 0.001584777 0.00050321 0.015172254 0.020785173 

B14 30.2 .409396082 12.38081589 0.003120931 0.000290687 0.001703315 0.000836775 0.01652829 0.022479998 

B15 27.975 .00143685599 10.31764107 0.00211228 0.000193012 0.000750602 0.001145771 0.004066245 0.008267911 

B16 32.625 .8847944567 8.917867321 0.004879224 0.001563242 0.003954923 0.002459478 0.02972535 0.042582217 

B17 30.625 .04474590248 8.905393214 0.00405686 0.001464366 0.000971551 0.000433125 0.012902288 0.01982819 

B18 32.125 .2454288474 8.324514107 0.004014093 0.001024097 0.002398647 0.000467281 0.012330571 0.020234689 

B19 32.25 .00058177055 11.75330482 0.004062375 0.001306952 0.003040376 0.000677774 0.023688011 0.032775488 

B20 32.525 .795808045 10.07604304 0.002812599 0.000572938 0.001208413 0.000258933 0.012121138 0.01697402 

B21 28.425 .2762734483 14.60917536 0.003544998 0.001568156 0.00261391 0.001106735 0.017818173 0.026651971 

B22 29.5 .2084366097 15.29405339 0.004923521 0.000655771 0.002330931 0.001184612 0.017276033 0.026370869 

B23 28.05 .9754244341 10.40844714 0.002847366 0.000771076 0.001770474 0.000657758 0.018985835 0.025032509 

B24 30.8 .1037074883 10.94683518 0.002624943 0.000947219 0.000490868 0.000243463 0.014818279 0.019124771 

B25 29.025 .9780120518 15.20716125 0.004633742 0.00186321 0.002422845 0.000613222 0.016629775 0.026162794 
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B26 30.025 .2670096963 12.45499464 0.004133144 0.001050177 0.002431245 0.001398164 0.015477225 0.024489954 

 
Table 57: RPAV values of P.D. James’ novels 

Work Richness Gender RA Power Auditory Gustatory Haptic Olfactory Visual Sensory 

B1 30.4 0.940645 10.00232 0.002711 0.000563 0.001162 0.001051 0.007264 0.01275 

B2 31.55 0.919922 10.80736 0.002661 0.000731 0.001719 0.000663 0.012255 0.018029 

B3 34 0.889581 12.87791 0.001755 0.001393 0.002247 0.000259 0.014544 0.020197 

B4 34.075 0.954264 15.18456 0.003247 0.001025 0.002996 0.001091 0.015896 0.024255 

B5 33.375 0.853502 11.10274 0.002124 0.001027 0.001869 0.000174 0.014274 0.019467 

B6 34.275 0.303183 11.87774 0.003538 0.000888 0.002602 0.000179 0.012304 0.019512 

B7 30.05 0.9513 15.41543 0.004463 0.001192 0.002928 0.002557 0.015941 0.027081 

B8 30.625 0.829785 10.91935 0.002079 0.000834 0.001406 0.000601 0.015989 0.020909 

B9 34.325 0.978708 10.10973 0.003301 0.000322 0.001157 0.000612 0.015161 0.020554 

B10 30.55 0.996497 13.41248 0.003375 0.001416 0.002557 0.001716 0.016954 0.026017 

B11 31.525 0.99423 13.68775 0.003608 0.000752 0.001258 0.000254 0.013601 0.019472 

B12 32.675 0.273332 11.98495 0.003458 0.000178 0.000888 0.00087 0.005123 0.010517 

B13 32.7 0.995679 12.55905 0.002692 0.000833 0.001289 0.001319 0.01535 0.021483 

B14 31.525 0.985426 12.88715 0.001869 0.000619 0.000807 0.000239 0.011505 0.01504 

B15 26.375 0.047602 14.99576 0.002917 0.000479 0.00144 0.000517 0.011575 0.016928 

B16 32.5 0.689278 11.40292 0.001975 0.000793 0.000481 0.00087 0.010119 0.014237 

B17 32.575 0.888029 9.989731 0.002328 0.00022 0.000492 0.000163 0.006911 0.010114 

B18 34.05 0.999632 14.26961 0.001656 0.000592 0.0023 0.000647 0.013249 0.018443 

B19 28.9 0.847247 10.56264 0.001274 0.000403 0.000711 0 0.003552 0.00594 
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Table 58: List of Suicide attackers highlighting their different 'modus operandi’ and event summaries 

ID Perpetrator Date wounded killed total type of data Location Sex Age What 

1 Joseph Stack 18-Feb-10 15 2 17 manifesto Austin, Texas, USA M 53 Aircraft-building 

2 Charles J Bishop 1-May-02 0 0 0 suicide note Tampa, Florida, USA M 15 Aircraft-building 

3 Jose Reyes 21-Oct-13 2 1 3 final letters Sparks Middle School M 12 gun - school 

4 Karl Pierson 13-Dec-13 0 1 1 journal extracts Arapahoe High School, USA M 18 gun - school 

5 Jiverly Wong 3-Apr-09 4 13 17 suicide note American Civic Association, USA M 41 gun - school 

6 
Pekka-Eric 
Auvinen 7-Nov-07 12 8 20 

manifesto - 3 
documents Jokela High School, Finland M 18 gun - school 

7 Elliot Rodger 23-May-14 14 6 20 

autobiography 
and retribution 
video translation University of California, USA M 22 gun - school 

8 Duane Morrison 27-Sep-06 0 1 1 suicide note Platte Canyon High School, USA M 53 gun - school 

9 Dorothy Dutiel 12-Feb-16 0 1 1 suicide note Independence High School, Arizona, USA F 15 gun - school 

10 Gang Lu 1-Nov-91 1 5 6 
Letters and 
statement University of Iowa, USA M 28 gun - school 

11 Charles Whitman 1-Aug-66 32 16 48 
Letters / suicide 
note University of Texas, USA M 25 gun - school 

12 Michael Slobodian 28-May-75 13 2 15 suicide note Centemmial Secondary School, Canada M 16 gun - school 

13 Adam Lanza 14-Dec-12 2 27 29 
personal 
messages Sandy Hook Elementary School, USA M 20 gun - school 

14 Myron May 20-Nov-14 3 0 3 
final writing and 
letters Florida State University, USA M 31 gun - school 

15 
Wellington de 
Oliveira 7-Apr-11 12 12 24 suicide note Escola Municipal Tasso da Silveira, Brazil M 23 gun - school 

16 Marc Lépine 6-Dec-89 14 14 28 suicide note  École Polytechnique, Canada M 25 gun - school 

17 Eric Harris 20-Apr-99 13 8 21 Journal Columbine High School, USA M 18 gun - school 

18 Seung Hui Cho 16-Apr-07 17 32 49 school papers Virginia Tech University, USA M 23 gun - school 

19 Robert Butler, Jr. 5-Jan-11 2 1 3 suicide note Millard South High School, USA M 17 gun - school 

20 Bastian Bosse 20-Nov-06 37 0 37 Journal Geschwister Scholl, Germany M 18 gun - school 
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21 Dylan Klebold 20-Apr-99 110 5 15 Journal Columbine High School, USA M 18 gun - school 

           

52 
Robert A. 
Hawkins 5-Dec-07 2 10 12 Suicide Note Westroads Mall, Nebraska, USA M 19 gun - mall 

53 Kyle Aaron Huff 25-Mar-06 2 6 8 Suicide Note Capitol Hill, Seattle, Washington, USA M 28 gun - party 

54 
Christopher 
Dorner 3-Feb-13 3 4 7 Manifesto California, USA M 33 gun 

55 Mark Barton 29-Jul-99 13 12 25 Suicide Note Georgia, USA M 44 hammer / gun 
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External Data 
 

 
Johnson Arc Sine Transformation of Richness for Shakespeare. 
POS Analysis of Shakespeare data. 
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