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Abstract—We consider the downlink of a dense multicell
network where each cell region is divided into two zones. The
users nearby their serving base station (BS) in the inner zone
implement simultaneous wireless information and power transfer
(SWIPT), thus harvest energy and decode information using the
power splitting approach. Further, they try to eavesdrop the
information intended for other users within the same cell. The
users in the outer zone of each cell only implement information
decoding. Our objective is to maximize the minimum user
equipment (UE) signal-to-interference-and-noise ratio (SINR)
under constraints on the BS transmit power, minimum energy
harvesting levels of near-by users, and maximum SINR of
eavesdroppers in the presence of multi-cell interference. For such
a highly non-convex problem, semidefinite relaxation (SDR) may
even fail to locate a feasible solution. We propose two methods
to address such a difficult problem. In the spectral optimization,
we express the rank-one constraints as a single reverse convex
nonsmooth constraint and incorporate it into the optimization
objective. In the difference-of-convex-functions iteration method,
we directly solve for the beamforming vectors via quadratic
programming (QP), avoiding the matrix rank constraints. In
each iteration of the proposed algorithms, we only solve one
simple convex semidefinite program (SDP) or QP. Our simulation
results confirm that the proposed algorithms converge quickly
after a few iterations. More importantly, our algorithms yield
the performance that is very close to the theoretical bound given
by SDP relaxation with comparable computational complexity.

I. INTRODUCTION

Physical layer security is critical for simultaneous wireless

information and power transfer (SWIPT). Although high re-

ceived power levels help achieve desired energy harvesting

requirements, they may make the wireless information more

vulnerable to eavesdroppers. Thus, physical layer security

technology should be included as part of SWIPT systems

to guarantee secure communication [1]. Recently, secure

beamforming in multiple-input-single-output (MISO) broad-

cast channels for optimal beamforming design under energy

harvesting (EH) and secure communication constraints has

received great attention [1]–[7]. Particularly, different objec-

tives have been studied, e.g., maximization of harvested energy

among energy receivers (ERs) [2], [3], [5], minimization of the

total network power in a cellular network [4], maximization
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of the achievable secrecy rate [5], [6], and minimization of

transmit power in single-cell networks [7].

In order to design optimal beamforming vectors, [1]–[5]

recast the formulate nonconvex problem as an equivalent

semidefinite program (SDP) with rank-one matrix constraints.

The typical approach in these works is to ignore non-convex

rank-one constraints and solve for resulting semidefinite relax-

ation (SDR) problem. However, it is known that the rank-one

constraint relaxation may not be tight and solutions of rank

greater than one may result [6], [7]. In such cases, the optimal

solution achieved by SDR can only serve as a performance

bound [7].

To deal with rank-one matrix constraints, [8] proposes the

randomization technique. However, as shown in our present

paper and [9], the performance of such a method is far

from optimal performance. Recently, [6] recommends the use

of rank-reduction procedure of [10] to recover the rank-one

solution. However, the rank reduction technique of [10] while

giving a lower rank solution may not be able to locate a

rank-one solution in general. With the obtained lower-rank

solution, one still needs to employ further techniques such as

randomization to generate a rank-one solution. The work of [7]

reveals a sufficient condition for achieving rank-one solutions

for the relaxed problem.

In this paper, we consider a dense multicell network where

the multi-antenna serving BS in each cell communicates with

multiple users. Each cell region is divided into two zones. The

users nearby their serving BS in the inner zone implement

SWIPT, thus harvest energy and decode information using

the power splitting (PS) approach [11], [12]. Further, they

try to eavesdrop the information targeted for other users in

the respective cells. The users in the outer zone of each cell

only implement information decoding. Our design objective

is to maximize the minimum user equipment (UE) signal-

to-interference-and-noise ratio (SINR) under constraints on

the BS transmit power, minimum energy harvesting levels

of near-by users, and maximum SINR of eavesdroppers in

the presence of multi-cell interference. We observe through

extensive simulations that solving an SDR alone does not

return a rank-one solution for almost 88.5% of the cases

considered. Different from existing approaches, we propose

optimization methods that directly find the rank-one optimal

solution without assuming any conditions. We propose two

methods to efficiently and optimally solve rank-constrained
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problems. In the spectral optimization method, we express the

rank-one constraints as a single reverse convex nonsmooth

constraint and incorporate it in the optimization objective.

In the difference-of-convex-functions iteration method, we

directly solve for the beamforming vectors via quadratic

programming (QP), bypassing the matrix rank constraints and

matrix optimization. Each iteration of the proposed algorithms

only involves one simple convex SDP or QP. Numerical results

confirm that our algorithms converge quickly after very few

iterations. Significantly, the performance of our algorithms is

very close to the theoretical bound given by SDP relaxation

with comparable computational complexity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a dense network consisting of

K small cells with universal frequency reuse. The BS of a

cell k ∈ K , {1, . . . ,K} is equipped with M > 1 antennas

and it serves Nk single-antenna UEs within its cell. By BS

k and UE (k, n), we mean the BS that serves cell k and the

UE n ∈ Nk , {1, . . . , Nk} of the same cell, respectively.

The Nk UEs in cell k are divided into two groups, i.e., i)

N1,k zone-1 users, which are located nearby their serving BS

inside the inner circle, and ii) N2,k zone-2 users, which are

located far from their serving BS in the outer circle. We have

Nk = N1,k +N2,k. By UE (k, n1) and UE (k, n2), we mean

UE n1 ∈ N1,k , {1, . . . , N1,k} in zone-1 and UE n2 ∈
N2,k , {N1,k +1, . . . , Nk} in zone-2 of cell k, respecitively.

Let us denote wk,n ∈ C
M×1 as the beamforming vector

by BS k for its UE (k, n). Let hk̄,k,n ∈ C
M×1 be the flat

fading channel vector between BS k̄ and UE (k, n), which

includes the effects of large-scale pathloss and small-scale

fading, where k̄ ∈ K. We denote vk as the artificial noise

vector added by BS k to deal with eavesdropping [1].

We assume that zone-1 users, being close to their serving

BS, implement SWIPT, such that UE (k, n1) applies the

power splitting (PS) technique to coordinate both information

decoding (ID) and energy harvesting (EH). The power splitter

divides the received signal into two parts in the proportion of

αk,n1
: 1 − αk,n1

, where αk,n1
∈ (0, 1) is termed as the PS

ratio for UE (k, n1). The αk,n1
portion of the received signal

power is used for ID while the remaining 1 − αk,n1
portion

of the received signal power is used for EH [11].

The received SINR of UE (k, n) is given by

SINR-UEk,n = fk,n(w,v,α) ,
|hH

k,k,nwk,n|
2

ϕk,n(w,v,α)
(1)

where we denote w , [wk,n]k∈K,n∈Nk
, v , [vk]k∈K, α ,

[αk,n1
]k∈K,n1∈N1,k

ϕk,n(w,v,α) ,
∑

n̄∈Nk\{n}

|hH
k,k,nwk,n̄|

2 + |hH
k,k,nvk|

2

︸ ︷︷ ︸

intracell interference

+
∑

k̄∈K\{k}

∑

n̄∈Nk̄

|hH
k̄,k,nwk̄,n̄|

2 +
∑

k̄∈K\{k}

|hH
k̄,k,nvk̄|

2

︸ ︷︷ ︸

intercell interference

+ σ2
a + σ2

c/ᾱk,n, (2)

σ2
a and σ2

c are respectively the antenna and circuit noise

variances and

ᾱk,n =

{

αk,n, n ∈ N1,k

1, n /∈ N1,k

.

The energy harvested at UE (k, n) is given by

Ek,n(w,v,αk,n) , ζk,n(1− αk,n)pk,n(w,v), (3)

where

pk,n(w,v) ,
∑

k̄∈K

∑

n̄∈Nk̄

|hH
k̄,k,nwk̄,n̄|

2+
∑

k̄∈K

|hH
k̄,k,nvk̄|

2+σ2
a,

and the constant ζk,n ∈ (0, 1) denotes the efficiency of energy

conversion at the EH receiver.

In this paper, we consider the worst-case scenario, where

for UE (k, n), the zone-1 UEs (k, n̄1) ∀ n̄1 ∈ N1,k \n in cell

k cooperate to form a single eavesdropper (k, n′) with Nev

antennas, where Nev = N1,k − 1 or Nev = N1,k, for the cases

if n ∈ N1,k or n /∈ N1,k, respectively. In what follows, we

use EV (k, n′) to denote eavesdropper (k, n′), ∀ k ∈ K and

n′ ∈ Nk, which tries to eavesdrop on the received signal of

UE (k, n). Thus using the composite channel Hk̄,k,n′ ,
{

[hk̄,k,1, . . . ,hk̄,k,n−1,hk̄,k,n+1, . . . ,hk̄,k,N1,k
], n ∈ N1,k

[hk̄,k,1, . . . ,hk̄,k,N1,k
], n /∈ N1,k,

the received SINR corresponding to the signal intended for the

UE (k, n) at the EV (k, n′) is given by

SINR-EVk,n′ ,
‖HH

k,k,n′wk,n‖
2

qk,n′(w,v)
. (4)

where qk,n′(w,v) ,
∑

k̄∈K\{k}

∑

n̄∈Nk̄

‖HH
k̄,k,n′wk̄,n̄‖

2 +
∑

k̄∈K

‖HH
k̄,k,n′vk̄‖

2 +Nevσ
2
a

Our aim is to jointly optimize the transmit beamforming

vectors wk,n, the artificial noise vectors vk, and the PS ratios

αk,n1
for all k ∈ K, n ∈ Nk, n1 ∈ N1,k. The max-min SINR

problem is then formulated as

max
wk,n,vk∈CM×1

αk,n1
∈(0,1)

F (w,v,α) , min
k∈K,n∈Nk

fk,n(w,v,α) (5a)

s.t.
∑

n∈Nk

‖wk,n‖
2 + ‖vk‖

2 ≤ Pmax
k , ∀k ∈ K (5b)

∑

k∈K

∑

n∈Nk

‖wk,n‖
2 +

∑

k∈K

‖vk‖
2 ≤ Pmax (5c)

pk,n(w,v)−
emin
k,n

ζk,n(1− αk,n)
≥ 0, ∀k ∈ K, n ∈ N1,k,

(5d)

qk,n′(w,v) ≥ ‖HH
k,k,n′wk,n‖

2/cmax
k,n , ∀k ∈ K, n ∈ Nk.

(5e)

Constraint (5b) caps the total transmit power of each BS

k at a predefined value Pmax
k . Constraint (5c) ensures that

the total transmit power of the network does not exceed

the allowable budget Pmax. Constraint (5d) requires that the

minimum energy harvested by UE (k, n) is greater than some
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target threshold emin
k,n . Constraint (5e) requires the received

SINR by EV (k, n′) be smaller than some upper limit SINR

cmax
k,n . While (5b) and (5c) are convex, the objective (5a) is not

concave and the constraint (5d) is not convex due to the strong

coupling between wk,n, vk, and αk,n1
in both the SINR-UE

and EH expressions [see (1) and (3)]. Moreover, constraint

(5e) is nonconvex in its current form, whereas (5a) is also

nonsmooth due to the minimization operator. In summary,

(5) is a nonconvex nonsmooth function optimization subject

to nonconvex constraints, for which even finding a feasible

solution to (5b)-(5e) is not an easy task.

III. ITERATIVE OPTIMIZATION BASED SOLUTION

Upon defining Wk,n , wk,nw
H
k,n < 0, Vk , vkv

H
k < 0,

and Hk,k,n , hk,k,nh
H
k,k,n and introducing a new variable γ,

problem (5) is recast as:

max
Wk,n,Vk∈CM×M,

αk,n1
∈(0,1), γ

γ (6a)

s.t.
1

γ
Tr{Hk,k,nWk,n} −

∑

n̄∈Nk\{n}

Tr{Hk,k,nWk,n̄}

−
∑

k̄∈K\{k}

∑

n̄∈Nk̄

Tr{Hk̄,k,nWk̄,n̄} −
∑

k̄∈K

Tr{Hk̄,k,nVk̄}

≥ σ2
a +

σ2
c

ᾱk,n
, ∀k ∈ K, n ∈ Nk (6b)

∑

n∈Nk

Tr{Wk,n}+ Tr{Vk} ≤ Pmax
k , ∀k ∈ K (6c)

∑

k∈K

∑

n∈Nk

Tr{Wk,n}+
∑

k∈K

Tr{Vk} ≤ Pmax (6d)

∑

k̄∈K

∑

n̄∈Nk̄

Tr{Hk̄,k,nWk̄,n̄}+
∑

k̄∈K

Tr{Hk̄,k,nVk̄}

≥
emin
k,n

ζk,n(1− αk,n)
− σ2

a, ∀k ∈ K, n ∈ N1,k (6e)

Tr{Hk,k,n′H
H
k,k,n′Wk,n}

− cmax
k,n

∑

k̄∈K\{k}

∑

n̄∈Nk̄

Tr{Hk̄,k,n′H
H
k̄,k,n′Wk̄,n̄}

− cmax
k,n

∑

k̄∈K\{k}

Tr{Hk̄,k,n′H
H
k̄,k,n′Vk̄}

≤ cmax
k,n (N − 1)σ2

a, ∀k ∈ K, n ∈ Nk (6f)

Wk,n < 0, ∀k ∈ K, n ∈ Nk (6g)

rank(Wk,n) = 1, rank(Vk) = 1, ∀k ∈ K, n ∈ Nk. (6h)

Let us also denote W , [Wk,n]k∈K,n∈Nk
and V , [Vk]k∈K.

Since 1
1−αk,n1

is convex on αk,n1
∈ (0, 1), constraints (6c)–

(6g) are convex in (W,V,α, γ). Now, in order to solve (6),

we have to deal with the nonconvex constraints (6b) and

(6h). For a fixed value of γ, (6b) is convex in (W,V, αk,n1
)

because 1
αk,n1

is convex on αk,n1
∈ (0, 1). By fixing γ and

ignoring the difficult rank-one constraint (6h), (6) becomes a

feasibility (convex) semidefinite relaxation (SDR) (6b)–(6g)

which can be efficiently solved. Note that the optimal value

of γ can be found via a bisection search because (6b) is the

only constraint that involves γ and it is monotonic in γ. The

optimization process is repeated until (W,V,α, γ) converges

to (W?,V?,α?, γ?), ∀k ∈ K, n ∈ Nk, n1 ∈ N1,k, in which

case (6a)–(6g) is solved.

If rank(W?
k,n) = 1, ∀k ∈ K, n ∈ Nk and rank(V?

k) =
1, ∀k ∈ K, the rank-one constraint (6h) is automatically

satisfied. Thus, the optimal beamforming vectors w?
k,n and

v?
k of (5) can then be recovered from the eigenvalue decom-

position (EVD) of W?
k,n and V?

k, respectively, and its optimal

PS ratio is simply α?
k,n1

. However, the problem arises when

rank(W?
k,n) > 1 or rank(V?

k) > 1 for some UE (k, n). Unfor-

tunately, we find it to be true quite often and thus, γ? serves

only as an upper bound to the optimum of (6) and hence of (5).

Our simulation results in Sec. IV confirms that the solution

of (6a)–(6g) in a three-cell network has rank(W?
k,n) > 1

or rank(V?
k) > 1 for some (k, n) in about 88.5% of the

time. This clearly shows that solving the feasibility SDR (6a)–

(6g) alone is not acceptable to recover the optimal solution

(w?
k,n, α

?
k,n) of (5). The current approach in the literature

is to use randomization to extract the beamforming vectors

{wk,n,vk} from {W?
k,n,V

?
k} [8]. However, as shown in this

paper, the performance of randomization is worse than the

upper bound SDR. In the following, we propose two methods

to solve this problem.

A. SDP-based Iterative Spectral Optimization

For any matrix X < 0, it is true that Tr{X} − λmax{X} ≥
0, where λmax{·} stands for the maximum eigenvalue of a

matrix. Thus, rank-one constraints (6h) can be expressed as

Tr{X} − λmax{X} = 0 ∀ X ∈ {Wk,n,Vk}. For a given γ,

following the approach of [9] we reformulate problem (6) as

the following program:

min
Wk,n∈CM×M

αk,n1
∈(0,1)

F̃ (W,V) ,
∑

k∈K

∑

n∈Nk

Tr{Wk,n} − λmax{Wk,n}

s.t. (6b) − (6g), (7)

which is the exact penalization of (6). From [13], we have that

λmax{Xk,n} ≥ λmax{Wk,n}

+ (wmax
k,n )H(Xk,n −Wk,n)w

max
k,n , ∀k ∈ K, n ∈ Nk (8)

for any Xk,n < 0 and Yk < 0. As such, given

some feasible W
(κ)
k,n and V

(κ)
k of (7) at iteration κ with

the corresponding maximum eigenvalue λmax{w
max,(κ)
k,n }

and λmax{v
max,(κ)
k }, respectively, and unit-norm eigenvector

w
max,(κ)
k,n and v

max,(κ)
k , respectively, it follows that

F̃ (κ)(W,V) ,
∑

k∈K

∑

n∈Nk

Tr{Wk,n}+
∑

k∈K

Tr{Vk}

− λmax{W
(κ)
k,n} − (w

max,(κ)
k,n )H(Wk,n −W

(κ)
k,n)w

max,(κ)
k,n

− λmax{V
(κ)
k } − (v

max,(κ)
k )H(Vk −V

(κ)
k )v

max,(κ)
k,n (9)

≥ F (W,V), ∀ W,V

Thus, the following SDP

min
Wk,n,Vk∈CM×M

αk,n1
∈(0,1)

F̃ (κ)(W,V) s.t. (6b) − (6g). (10)
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Algorithm 1 SDP-based Iterative Spectral Optimization for

Problem (5)

1: Use bisection to find the optimal value γ? and

(W?
k,n,V

?
k, α

?
k,n) of the SDR (6a)-(6g). . Initialization

2: if Tr{W?
k,n} ≈ λmax{W

?
k,n}, ∀k ∈ K, n ∈ Nk and

Tr{V?
k} ≈ λmax{V

?
k}, ∀k ∈ K then

3: Extract w?
k,n from W?

k,n and v?
k from V?

k as described

at the end of Sec III-A and terminate the algorithm.

4: end if

5: Set W
(0)
k,n := W?

k,n, V
(0)
k := V?

k, α
(0)
k,n1

= α?
k,n1

, γlo :=
γ? − δ, γhi := γ? and κ := 0. . Optimization

6: repeat

7: Set γ := γlo+γhi

2 .

8: repeat

9: Solve SDP (12) for W
(κ+1)
k,n , V

(κ+1)
k , and

α
(κ+1)
k,n1

, ∀k ∈ K, n ∈ Nk, n1 ∈ N1,k.
10: Set κ := κ+ 1.

11: until F̃ (W(κ+1),V(κ+1)) ≈ F̃ (W(κ),V(κ))

12: if Tr{W
(κ)
k,n} ≈ λmax{W

(κ)
k,n}, ∀k ∈ K, n ∈ Nk and

Tr{V
(κ)
k } ≈ λmax{V

(κ)
k }, ∀k ∈ K then

13: Reset γlo := γ, W
(0)
k,n := W?

k,n, V
(0)
k := V?

k,

α
(0)
k,n1

= α?
k,n1

and κ := 0.

14: else

15: Reset γhi := γ, W
(0)
k,n := W

(κ)
k,n, V

(0)
k := V

(κ)
k ,

α
(0)
k,n1

:= α
(κ)
k,n1

and κ =: 0.

16: end if

17: until convergence of γ

18: Extract w?
k,n from W

(κ)
k,n and v?

k from V
(κ)
k .

is a convex majorant minimization of the nonconvex program

(7). Note that the optimal solution {W(κ+1),V(κ+1),α(κ+1)}
of (10) is a better solution to (7) than {W(κ),V(κ),α(κ)} as

F̃ (W(κ+1),V(κ+1)) ≤ F̃ (κ)(W(κ+1),V(κ+1))

< F̃ (κ)(W(κ),V(κ)) = F̃ (W(κ),V(κ)) (11)

as far as (W
(κ+1)
k,n ,V

(κ+1)
k , α

(κ+1)
k,n1

) 6= (W
(κ)
k,n,V

(κ)
k , α

(κ)
k,n1

)
for some (k, n). Program (10) can be further simplified to:

min
Wk,n∈CM×M

αk,n∈(0,1)

∑

k∈K

∑

n∈Nk

Tr{Wk,n} − (w
max,(κ)
k,n )HWk,nw

max,(κ)
k,n

+
∑

k∈K

Tr{Vk} − (v
max,(κ)
k )HVkv

max,(κ)
k (12)

s.t. (6b) − (6g). (13)

With (12), we propose to employ a bisection search in an outer

loop to obtain the optimal value of γ.

In Algorithm 1, we propose an SDP-based iterative al-

gorithm to solve the problem (5). We choose the ini-

tial solution (W
(0)
k,n,V

(0)
k , α

(0)
k,n1

) as the optimal solution

(W?
k,n,V

?
k, α

?
k,n1

) of (6a)-(6g). Hence, W
(0)
k,n or V

(0)
k may

not be of rank one, however, Optimization stage will ensure

a rank-one solution. In the Optimization stage, the inner loop

optimizes Wk,n,Vk, αk,n1
, ∀k ∈ K, n ∈ Nk, n1 ∈ N1,k

for a given value of γ by solving exactly one convex SDP

(12) in each iteration. Once F̃ (W,V) converges, the inner

loop terminates and we determine the rank of the optimized

beamforming matrices W
(κ)
k,n and V

(κ)
k . If Tr{W

(κ)
k,n} ≈

λmax{W
(κ)
k,n} and Tr{V

(κ)
k } ≈ λmax{V

(κ)
k }, we update

γlo := γ, and otherwise we set γhi := γ. The outer loop

optimizes γ via a simple bisection search. The upper and

lower limits for the bisection search are set as γhi = γ? and

γlo = γ? − δ, where δ > 0 and γ? is the optimal upper

bound obtained by solving (6a)–(6g) during the Initialization

stage. After the convergence of γ, the optimal beamforming

vectors w?
k,n and v?

k of problem (5) are recovered from

the optimal matrices W
opt

k,n , W
(κ)
k,n and V

opt

k , V
(κ)
k ,

respectively, according to w?
k,n = (λmax{Wk,n})

1/2
wmax

k,n

and v?
k = (λmax{Vk})

1/2
vmax
k .

B. QP-based Iterative Difference-of-Convex-Functions (DC)

Optimization

In what follows, we will show that it is possible to solve the

original problem (5) directly in the vector variables wk,n ∈
C

M×1 and vk ∈ C
M×1 via quadratic programming (QP), also

avoiding the bisection search.

Proposition 1: For π(x) = p(x)/q(x) with positive convex

quadratic function p and strictly positive and convex function

q(x), it is true that [14]

π(x) ≥ π̃(x) := (p(x̄) + 〈∇p(x̄),x− x̄〉)/q(x̄)

− p(x̄)(q(x)− q(x̄))/q2(x̄) ∀ (x, x̄), (14)

and π(x̄) = π̃(x̄), where ∇ defines the first order differential

operator, and 〈x,y〉 , xHy.

Applying Proposition 1 at {w
(κ)
k,n,v

(κ)
k } given from κ-th itera-

tion, the following program provides a minorant maximization

for the nonconvex program (5):

max
vk,wk,n∈CM×1

αk,n1
∈(0,1)

min
k∈K,n∈Nk

f
(κ)
k,n(w,v,α) (15a)

s.t. p
(κ)
k,n(w,v)−

emin
k,n

ζk,n(1− αk,n)
≥ 0, ∀k ∈ K, n ∈ N1,k,

(15b)

‖HH
k,k,n′wk,n‖

2/cmax
k,n − q

(κ)
k,n′(w,v) ≤ 0 ∀k ∈ K, n ∈ Nk

(15c)

(5b), (5c), (15d)

where

p
(κ)
k,n(w,v) =pk,n(w

(κ),v(κ))

+ 2
∑

k̄∈K

∑

n̄∈Nk̄

<
{

(w
(κ)

k̄,n̄
)Hhk̄,k,nh

H
k̄,k,n(wk̄,n̄ −w

(κ)

k̄,n̄
)
}

+ 2
∑

k̄∈K

<
{

(v
(κ)

k̄
)Hhk̄,k,nh

H
k̄,k,n(vk̄ − v

(κ)

k̄
)
}

, (16)

q
(κ)
k,n′(w,v) = qk,n′(w(κ),v(κ))

+ 2
∑

k̄∈K\{k}

∑

n̄∈Nk̄

<
{

(w
(κ)

k̄,n̄
)HHk̄,k,n′H

H
k̄,k,n′(wk̄,n̄ −w

(κ)

k̄,n̄
)
}

+ 2
∑

k̄∈K

<
{

(v
(κ)

k̄
)HHk̄,k,n′H

H
k̄,k,n′(vk̄ − v

(κ)

k̄
)
}

, (17)
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Algorithm 2 QP-based Iterative DC Optimization for Problem

(5)

1: Initialize κ := 0.

2: Find a feasible solution (w
(0)
k,n,v

(0)
k , α

(0)
k,n1

), ∀k ∈ K, n ∈
Nk, n1 ∈ N1,k of (5) by solving (20).

3: repeat

4: Solve QP (15) for w
(κ+1)
k,n , v

(κ+1)
k , and α

(κ+1)
k,n1

, ∀k ∈
K, n ∈ Nk, n1 ∈ N1,k.

5: Set κ := κ+ 1.

6: until convergence of the objective in (5).

and

f
(κ)
k,n(w,v,α) = fk,n(w

(κ),v(κ),α(κ))

+ 2<

{

(w
(κ)
k,n)

Hhk,k,nh
H
k,k,n(wk,n −w

(κ)
k,n)

ϕk,n(w(κ),v(κ),α(κ))

}

−
|hH

k,k,nw
(κ)
k,n|

2
(

ϕk,n(w,v,α)− ϕk,n(w
(κ),v(κ),α(κ))

)

(
ϕk,n(w(κ),v(κ),α(κ))

)2

(18)

For initialization, one can find a feasible solution of (5) by

solving

max
w,v,α

min
k,n

{
pk,n1

(w,v)− emin
k,n1

/ζk,n1
(1− αk,n1

),

qk,n′(w,v)− ‖HH
k,k,n′wk,n‖

2/cmax
k,n

}

: (5b), (5c) (19)

for which there is no issue in finding a feasible solution since

constraints (5b) and (5c) are convex. For this, at each iteration,

one can use Proposition 1 for lower bounding each function in

(19) as follows. Initialized from (w(0),v(0),α(0)), one solves

max
w,v,α

min
k,n

{

p
(κ)
k,n1

(w,v)− emin
k,n1

/ζk,n1
(1− αk,n1

),

q
(κ)
k,n′(w,v)− ‖HH

k,k,n′wk,n‖
2/cmax

k,n

}

: (5b), (5c) (20)

The iterative process stops whenever the value of (19) is more

than or equal 0. In Algorithm 2, we propose a QP-based iter-

ative algorithm to solve the max-min SINR problem (5). The

initial solution w(0) , [w
(0)
k,n]k∈K,n∈Nk

, v(0) , [v
(0)
k ]k∈K,

and α
(0) , [α

(0)
k,n1

]k∈K,n1∈N1,k
is obtained by iteratively

solving (20). We proceed to solving one QP (15) in each

iteration, the solution of which is used to improve the objective

value in the next iteration.

IV. NUMERICAL EXAMPLES

Fig. 1 shows the network topology with K = 3 cells and

N = Nk = 4, ∀ k ∈ K UEs per cell that we use in our

numerical examples. Out of the 4 users in each cell, two are

placed inside the inner-circle and two inside the outer-zone,

i.e., N1,k = N2,k = 2, ∀ k. We set the cell radius as 40m

and the BS-to-UE distance is 7m and 20m in the inner and

outer zone of each cell, respectively. The minimum energy

harvesting requirement for UEs inside inner circle is emin
k,n1

=
20dBm ∀, k, n1. We set the path loss exponent as β = 3.

For small-scale fading, we generate the Rician fading channel
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Fig. 1. Topology of the multicell network used in numerical examples

according to Rician factor, KR = 10dB [15]. For simplicity

and without loss of generality, we assume that ζk,n = ζ, ∀k, n.

In all simulations, we set ζ = 0.5, σ2
a = −90 dBm, σ2

c = −90
dBm, and Pmax = 34dBm. For the SDR method, we set the

upper and lower limits for the bisection search as γhi = 1, 000
(i.e., 30 dB) and γlo = 0. For Algorithm 1, we choose δ = 1
after fine tuning.

Fig. 2 illustrates the convergence of Algorithms 1 and

2 versus the SDR approach. In this figure, each iteration

corresponds to solving one SDP (6a)–(6g) or one SDP (12) in

Algorithm 1, one QP (15) in Algorithm 2, and one SDP (6a)–

(6g) in the SDR approach. Here, the initial SNR values for

both Algorithm 1 and the SDR approach are similar because

Algorithm 1 also solves the SDR in order to generate a feasible

initial solution. After 15 iterations, the SDR solution converges

and Algorithm 1 takes that converged solution to execute its

Steps 6-17. The remaining iterations in the curve for Algorithm

1 illustrate the number of SDP (12) solved in Steps 6-17 of

that algorithm. Algorithm 2 takes a single iteration during

the initialization stage and then converges quickly after 10

iterations to the optimal SINR.

We observe that solving an SDR fails to deliver a rank-one

solution in 88.5% of the time on average. In our simulations,

we establish that a matrix is only of rank one if the magnitude

of its second largest eigenvalue is less than ρ = 1/200 of

that of its largest eigenvalue. Since this criterion is much

more relaxed than conventionally where ρ is much smaller,

it ensures that a rank-one matrix is not mistaken. Fig. 3

plots the maximized minimum UE SINR for different values

of Pmax
k = {24, . . . , 30} dBm, while using M = 4 and

M = 5 antennas. It is clear that the performance of the SDR-

randomization method is away from the optimal upper bound

given by SDR. Increasing the number of antennas from M = 4
to M = 5 further increases the performance gap between

upper bound and SDR-randomization method. In contrast, the

performance of our proposed Algorithms 1 and 2 is quite close

to this bound, under different network setups. As shown in

Table I, we observe that for M = 5 antennas setup, SDR
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approach always fails to guarantee a rank-one W?
k,n solution.

In comparison, Algorithm 1 guarantees to always return rank-

one matrix solutions. Algorithm 2 of course directly gives

vector w?
k,n because no matrix optimization is involved.

TABLE I
PERCENTAGE OF TIME WHEN RANK{W?

k,n
} > 1 IN PROBLEM (5)

Algorithms / Pmax
k

= 24dBm 26dBm 28dBm 30dBm

SDR (M=4) 76% 77% 82% 74%

SDR (M=5) 100% 100% 100% 100%

Alg. 1 (M=4,5) 0% 0% 0% 0%

Alg. 2 (M=4,5) 0% 0% 0% 0%

1) Complexity Analysis: On average, in order to acquire

the optimal solution, the proposed Algorithm 1 solves 15
and 9.1 semi-definite programs (SDPs) during initialization

and optimization stage (including inner and outer optimiza-

tion loops for optimization stage), respectively, the proposed

Algorithm 2 solves 1 and 12.2 quadratic programs (QPs)

during initialization and optimization stages, respectively, and

the upper bound SDR approach solves for 15 SDPs. Our

simulation analysis shows that the average execution time per

iteration is approximately the same for SDP and QP, yielding

almost similar computational complexity for Algorithm 2 and

SDR approach and almost double computational for Algorithm

1. However, it is worth mentioning unlike the SDR-based

solution, the optimal beamforming matrices of the proposed

Algorithm 1 are always of rank one. Furthermore, the optimal

SINR of the proposed Algorithms 1 and 2 approximately

achieve the upper bound provided by SDR.

V. CONCLUSION

In this paper, we have addressed the joint design of secure

beamforming and receive power splitting in a dense multi-cell

network. Due to the unavoidable rank-one matrix constraints,

the conventional approach is not applicable in this case.

We have therefore proposed two new iterative optimization

approaches that offer maximized minimum SINR among all

UEs. The optimal solutions provided by our SDP-based spec-

tral optimization and QP-based DCI algorithms approach the

theoretical bound. Significantly, they do so with a complexity

that is comparable to that by existing methods. The merits

of our proposed algorithms have been confirmed through

numerical examples with realistic parameters.
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