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Abstract—Wireless power transfer (WPT) has emerged as
an attractive solution to power future wireless communication
networks. In this paper, we consider WPT using power beacons
(PBs) for a millimeter wave (mmWave) wireless ad hoc network.
Using stochastic geometry, we derive the moment generating
function (MGF) and the nth cumulant of the aggregate received
power from PBs at a reference receiver in closed-form. The
MGF allows the complementary cumulative distribution func-
tion (CCDF) of the aggregate received power from PBs to be
numerically evaluated. We also compare different closed-form
distributions which can be used to approximate the CCDF of the
aggregate received power. Our results show that the lognormal
distribution provides the best CCDF approximation compared to
other distributions considered in the literature. The results also
show that under practical setups, it is feasible to power users in
a mmWave ad hoc network using PBs.

I. INTRODUCTION

Wireless power transfer (WPT) is regarded as an attractive

solution for future wireless networks [1]. Compared to energy

harvesting from the ambient environment (e.g., using solar or

ambient radio frequency (RF) energy harvesting), it has the

advantage of being always available and controllable. There

are currently two major approaches to WPT: (i) simultaneous

information and power transfer (SWIPT) where information

and power are extracted from the same transmitted signal [1]

and (ii) power beacon (PB) based approach where dedicated

low-cost transmitters, which do not require backhaul links like

normal base stations, are deployed to charge users in their

vicinity [2]. In this paper, we adopt the PB based approach in

millimeter wave (mmWave) ad hoc networks.

MmWave transmission is a key enabler for future fifth

generation (5G) wireless networks, since larger bandwidths

are available at mmWave frequencies (> 6 GHz) compared

to conventional microwave frequencies (< 6 GHz). MmWave

systems have the following two distinctive features which have

been recently characterized very well both experimentally [3]

and analytically using stochastic geometry [4–7]: (i) propa-

gation environment is more susceptible to blockage causing

differences in the line of sight (LOS) and non light of sight

(NLOS) path-loss and fading characteristics and the signal to

drop out after a certain range and (ii) use of larger antenna

arrays (possible due to smaller wavelength) for beamforming
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at the transmitter and receiver (RX). MmWave transmission

is potentially a good combination with WPT, since both

technologies operate over short distances and narrow beams

in mmWave systems can focus the transmitted power [8].

In WPT systems, the aggregate received power (which

determines the harvested power) plays a key role in the system

performance. For instance, (i) in SWIPT systems, a common

assumption is that the energy constrained node has a large

battery to store the received power and, therefore, it transmits

with a constant transmit power which is proportional to the

aggregate received power [9, 10], (ii) in PB systems, the

complementary cumulative distribution function (CCDF) of

the aggregate received power plays a key role in determining

the power outage probability [2, 11, 12], and (iii) in low power

applications, statistical information such as the mean and

variance of the aggregate received power can potentially be

used to develop efficient sleep and transmission protocols [1,

13]. Thus, it is crucial to accurately characterize the aggregate

received power. In this regard, the moment generating function

(MGF) of the aggregate received power, which opens the door

for application of powerful toolsets from stochastic geometry,

has been numerically evaluated in microwave cellular and

device-to-device networks with ambient RF energy harvest-

ing [14, 15], mmWave SWIPT systems [6, 7] and microwave

PB systems [11]. To the best of our knowledge, a closed-

form expression for the MGF of the aggregate received power

in mmWave PB systems, incorporating the key propagation

characteristics of mmWave transmission, is not available in

the literature.

In this paper, we consider a mmWave wireless ad hoc

network where PBs are deployed. Using stochastic geometry,

we characterize the aggregate received power at a reference

RX. The novel contributions of this paper are:

• We derive the closed-form expressions for the MGF and

the nth cumulant of the aggregate received power at the

reference RX, taking a mmWave three-state propagation

model and multi-slope path-loss model into account. The

MGF allows the CCDF of the aggregate received power

from PBs to be numerically evaluated.

• We test the accuracy of well known closed-form distribu-

tions to model the aggregate received power. Our results

show that the lognormal distribution provides the best

CCDF approximation, compared to other distributions
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commonly considered in the literature.

• We investigate the feasibility of PBs to power users in a

mmWave ad hoc network. Our results show that under

practical setups, for PB deployment density between

10 − 100 per km2, the required PB transmitted power

to achieve an average harvested power of 15 dBm is

between 1.5−40 W, which is practical and safe for human

exposure.

II. SYSTEM MODEL

We consider a two-dimensional mmWave wireless ad hoc

network, where PBs are deployed to charge users. The PBs

are located outdoors and their locations form a homogeneous

Poisson point process (PPP) φ with density λ. Throughout

the paper, we use Xi to denote both the random location

as well as the ith PB itself. The PBs have access to a

dedicated power supply (e.g., a battery or power grid) and

transmit with constant power P using beamforming. The PB

transmissions set up an energy field over the wireless ad hoc

network region and users harvest power from the aggregate

PB received signal [16]. We assume that the PBs randomly

and independently choose a direction to point their main

beams. Given a sufficient density of the PBs, this simple

strategy ensures that the aggregate received power from PBs

at different locations in the network is roughly on the same

order. Similarly, the users point their main beam in a randomly

chosen direction. This avoids the need for channel estimation

and accurate beam alignment. In this paper, without loss of

generality, we focus on the characterization of the aggregate

received power from PBs at an outdoor reference RX, Y0,

located at the origin.

MmWave Blockage Model: For outdoor mmWave transmis-

sions, each link between the ith PB and the reference RX is

susceptible to building blockages due to their high diffraction

and penetration characteristics [4]. In this work, we adopt the

state-of-the-art three-state blockage model [5], where each link

can be in one of the following three states: (i) the link is in

LOS state if no blockage exists, (ii) the link is in NLOS state

if blockage exists and (iii) the link is in outage (OUT) state

if the link is too weak to be established.

Assuming that the link between the ith PB and the RX has a

Euclidean length of ri = ‖Xi − Y0‖, the probabilities pLOS(·),
pNLOS(·) and pOUT(·) of it being in LOS, NLOS and OUT

states, respectively, are

pOUT(ri) = u(ri − rmax);

pNLOS(ri) = u(ri − rmin)− u(ri − rmax); (1)

pLOS(ri) = 1− u(ri − rmin),

where u(·) denotes the unit step function, rmin is the radius of

the LOS region and rmax is the exclusion radius of the OUT

region. The values of rmin and rmax depend on the propagation

scenario and the carrier frequency. Typical values used in this

work are summarized in Table II.

MmWave Channel Model: Measurements have shown that

mmWave links experience different channel conditions under

TABLE I
PROBABILITY MASS FUNCTION OF Gi

k Gain Gk Probability pk

1 Gmax
p Gmax

r
θpθr

4π2

2 Gmax
p Gmin

r
θp(2π−θr)

4π2

3 Gmin
p Gmax

r
(2π−θp)θr

4π2

4 Gmin
p Gmin

r
(2π−θp)(2π−θr)

4π2

LOS, NLOS and OUT states [3]. Hence, in this work, we

adopt a path-loss plus fading channel model as follows.

We assume that a link in LOS state experiences Nakagami-

m fading, while a link in NLOS state experiences Rayleigh

fading. For the path-loss, we modify and adapt a multi-slope

path-loss model and define the path-loss between the ith PB

and the reference RX with a distance of ri as follows

l(ri) =



















1, 0 6 ri < 1

r−αL

i , 1 6 ri < rmin

βr−αN

i , rmin 6 ri < rmax

∞, rmax 6 ri

, (2)

where the first condition is added to ensure a bounded path-

loss model, αL denotes the path-loss exponent for the link

in LOS state and subscript L denotes LOS, αN denotes the

path-loss exponent for the link in NLOS state (2 6 αL 6 αN)

and subscript N denotes NLOS, the path-loss of the link in

OUT state is assumed to be infinite [5] and the continuity in

the multi-slope path-loss model is maintained by introducing

the constant β , rαN−αL

min [17]. We also define δL =
2
αL

and

δN = 2
αN

for convenience in presenting the analytical results

in Section III.

Beamforming Model: We assume that antenna arrays are

used for beamforming at both the PBs and the reference RX.

Following [4, 5], we approximate the actual antenna array

pattern by a sectorized gain pattern which can be expressed

as

Ga(θ) =

{

Gmax
a , |θ| ≤ θa

2

Gmin
a , otherwise

, (3)

where subscript a = p for PB and a = r for reference

RX, Gmax
a is the main lobe antenna gain, Gmin

a is the side

lobe antenna gain, θ ∈ [−π, π) is the angle off the boresight

direction and θa is the main lobe beam-width. Note this model

can be easily related to specific array geometries, such as an

N element uniform planar or linear or circular array [18].

As stated earlier, the main beam at the PBs and RX are

assumed to be randomly oriented with respect to each other

and uniformly distributed in [−π, π). Let Gi be the effective

antenna gain on the link from the ith PB to the reference RX.

As a result of sectorization, Gi is a discrete random variable

with probability distribution as Gi = Gk with probability pk,

k ∈ {1, 2, 3, 4}. The values of Gk and pk are summarized in

Table I.

Power Transfer Model: We assume that the reference RX

is equipped with a typical rectifier-based power receiver to



harvest power from the aggregate PB received signal [16].

Practical rectifier-based power receivers have a power receiver

activation threshold ǫ, i.e., the power receiver is only activated

when the aggregate received power from all the PBs is greater

than ǫ [11]. We assume that once the power receiver is properly

activated, then the harvested power is linearly proportional to

the aggregate received power from the PBs and the constant

of proportionality η is the power conversion efficiency.

III. AGGREGATE RECEIVED POWER FROM POWER

BEACONS

In this section, we provide the mathematical formulation to

characterize the aggregate received power at the reference RX

from all PBs.

Since the power harvested from the noise is negligible, the

instantaneous aggregate received power at the reference RX

from all the PBs can be expressed as

Pagg = P
∑

Xi∈φ

Gihil(ri), (4)

where P is the PB transmitted power, Gi is the effective

antenna gain between Xi and Y0, hi is the fading power gain

between Xi and Y0, which follows the gamma distribution

(under the Nakagami-m fading assumption) if the link is in

LOS state and exponential distribution (under the Rayleigh

fading distribution) if the link is in NLOS state and l(ri) is

the path-loss function in (2).

Note that Pagg in (4) is a random variable because of

the randomness in the antenna gain, mmWave channels and

locations of PBs. We use stochastic geometry to find its CCDF

and also its nth cumulant.

A. CCDF and MGF of the Aggregate Received Power from

Power Beacons

The CCDF of the aggregate received power at the reference

RX from all the PBs can be obtained by using the Gil-Pelaez

inversion theorem [19]

Pr(Pagg>z)=
1

2
+
1

π

∫

∞

0

Im[MPagg
(−jω) exp(−jωz)]dω

ω
, (5)

where Pr(·) denotes the probability, Im[·] denotes the imag-

inary part of a complex number, j =
√
−1 is the imaginary

unit, MPagg
(s) = E[exp(−sPagg)] is the MGF of Pagg and E[·]

is the expectation operator.

The following proposition characterizes the exact MGF of

Pagg in closed-form.

Proposition 1: The MGF of the aggregate received power

at the reference RX from all the PBs in a mmWave ad hoc

network, following the system model in Section II, is

MPagg
(s)=

4
∏

k=1

exp
(

πλr2minpk
(

mm(m+sr−αL

min PGk)
−m−1

)

+ πλpk (sPGk)
δL (Ξ1 (1)− Ξ1 (rmin))

+ πλpksPGkβ (Ξ2(rmin)− Ξ2(rmax))

+
πλ

2 + αN
pk(sPGkβ)

δN (Ξ3(rmin)− Ξ3(rmax))
)

, (6)

where

Ξ1(r) =
mm(r−αLsPGk)

−δL−mαLΓ(1 +m)

(2 +mαL)Γ(m)

× 2F1

(

1 +m,m+ δL;1 +m+ δL;−
mrαL

sPGk

)

, (7)

Ξ2(r) =
r2

rαN + sPGkβ
, (8)

Ξ3(r) =
(r−αNsPGkβ)

−δN−1

rαN + sPGkβ

(

sPGkβ(2 + αN)

−2(rαN+sPGkβ)2F1

(

1, δN+1; 2+δN;−
rαNβ−1

sPGk

))

,

(9)

where Γ(·) is the Gamma function and 2F1(·, ·; ·; ·) is the

Gaussian (or ordinary) hypergeometric function.

Proof: See Appendix A.

Remark 1: To the best of our knowledge, Proposition 1

presents the result for the MGF of Pagg in closed-form for

the first time in the literature In addition, (6) substituted in

(5) allows the CCDF to be numerically computed. Note that

although the MGF in (6) is in closed-form, the CCDF in (5)

cannot be expressed in closed-form due to complexity of the

MGF which is inside the integration. However, it can be easily

evaluated numerically using Mathematica.

B. nth Cumulant of the Aggregate Received Power from Power

Beacons

The nth cumulant of the aggregate received power at the

reference RX from all the PBs, κPagg
(n), can also be expressed

in terms of the MGF of Pagg as [20]

κPagg
(n) = (−1)n d

n lnMPagg
(s)

dsn

∣

∣

∣

s=0
, (10)

where ln is the natural logarithm. The following proposition

characterizes the nth cumulant of Pagg in closed-form.

Proposition 2: The nth cumulant of the aggregate received

power at the reference RX from all the PBs in a mmWave

ad hoc network, following the system model in Section II, is

given by

κPagg
(n) =

4
∑

k=1

(

Ψ1
k(n)−Ψ2

k(n)−Ψ3
k(n)

)

, (11)

where

Ψ1
k(n) = πλpkP

nGn
km

−nΓ(m+ n)

Γ(m)
, (12)

Ψ2
k(n)

=







2πλpkPGk ln rmin, αL=2 & n=1
2πλΓ(m+n)

(

1−r
−nαL+2

min

)

Γ(m)(2−nαL)
pk

(

PGk

m

)n
, otherwise

, (13)

Ψ3
k(n)=

2πλ
(

r−nαN+2
min −r−nαN+2

max

)

2− nαN
pkP

nGn
kβ

nΓ(1+n). (14)

Proof: See Appendix B.



C. Closed-form Approximation of the CCDF of the Aggregate

Received Power

Since the exact CCDF of the aggregate received power

cannot be expressed in closed-form, we test various distri-

butions which can be used to approximate the CCDF in

this section. The distribution of Pagg is approximated by the

well known closed-form distributions by second-order moment

matching, i.e., by matching the mean and the variance of the

two distributions, where the mean and the variance of Pagg can

be found from Proposition 2. First, we present the skewness

and the kurtosis of Pagg, which are two important measures of

a real-valued random variable.

Skewness and Kurtosis of Pagg: The skewness and the kur-

tosis describe the shape of the probability distribution of Pagg

and are given by

Skew [Pagg] =
κPagg

(3)

κPagg
(2)1.5

, (15)

Kurt [Pagg] =
κPagg

(4)

κPagg
(2)2

. (16)

The skewness shows whether a distribution is left or right

tailed and the kurtosis measures the heaviness of the tail.

Gaussian Distribution: The CCDF of the Gaussian distri-

bution is

Pr (Pagg > z)
Gaussian

= Q

(

z − κPagg
(1)

√

κPagg
(2)

)

, (17)

where Q(·) is the Q-function, κPagg
(1) and κPagg

(2) are the

first and the second cumulant of Pagg, respectively, which can

be calculated by (11).

Lognormal Distribution: The CCDF of the lognormal dis-

tribution is

Pr (Pagg > z)
lognormal

= Q

(

ln z − µlognormal

σlognormal

)

, (18)

where µlognormal and σlognormal are the location parameter and

the scale parameter given by

µlognormal = ln









κPagg
(1)

√

1 +
κPagg (2)

κPagg (1)
2









, (19)

σlognormal =

√

ln

(

1 +
κPagg

(2)

κPagg
(1)2

)

. (20)

Gamma Distribution: The CCDF of the Gamma distribution

is

Pr (Pagg > z)
gamma

= 1− γ
(

kgamma, z
θgamma

)

Γ (kgamma)
, (21)

where γ(·, ·) is the lower incomplete gamma function,

kgamma =
κPagg (1)

2

κPagg (2)
and θgamma =

κPagg (2)

κPagg (1)
are the shape param-

eter and scale parameter of gamma distribution, respectively.

TABLE II
SIMULATION PARAMETERS

Notation Parameter Value

αL LOS link path-loss exponent {2, 2.5}
αN NLOS link path-loss exponent 4

P PB transmitted power 10 dB

λ density of PB PPP 105 ∼ 1 per km2

rmin radius of the LOS region {50 m, 100 m}
rmax exclusion radius of the OUT region 200 m

m Nakagami-m fading parameter {5, 10}

fhL
(h) LOS link channel fading PDF

mmhm−1 exp(−mh)
Γ(m)

fhN
(h) NLOS link channel fading PDF exp(−h)

Gmax
p , Gmin

p , θp PB beamforming parameter

{[0 dB, 0 dB, 360o],
[20 dB,−10 dB, 30o],
[30 dB,−10 dB, 6o]}

Gmax
r , Gmin

r , θr RX beamforming parameter
{[0 dB, 0 dB, 360o],

[10 dB,−10 dB, 45o]}
η power conversion efficiency 0.5

IV. RESULTS

In this section, we present the analytical or numerical results

and compare with the simulation results. The simulation results

are generated by averaging over 108 Monte carlo simulation

runs. The values of the main parameters are summarized in

Table II, which are chosen to be consistent with the literature

in mmWave and WPT [1, 4]. Note that if the distance between

the PB and the RX is more than rmax = 200 m, the mmWave

link is in OUT state.

A. Distribution Approximation of the Aggregate Received

Power

The skewness and the kurtosis of Pagg versus the density of

PB λ are plotted in Fig. 1(a) and 1(b) respectively for different

path-loss exponents of LOS link αL = 2, 2.5 and different

Nakagami-m fading parameters m = 5, 10. We can see that the

curves are monotonic for the considered range of λ. Smaller

αL and larger m lead to smaller skewness and kurtosis. As the

density of PB increases, the gap between the different curves

becomes smaller. The distribution of the aggregate received

power is skewed to the right with a heavy tail, because both

the skewness and the kurtosis of Pagg are much greater than

0. Moreover, the skewness and the kurtosis of a Gaussian

distributed random variable are 0. Hence, we can conclude

that the aggregate received power under the considered system

model does not converge to a Gaussian distribution (even for

the very extreme case with a PB density of 0.1 per m2).

Fig. 1(c) plots the exact and approximated CCDF of Pagg

for αL = 2 and m = 5. The simulation results assume the

LOS links undergo Rician fading with K = 10 dB. The exact

CCDF is plotted numerically using (5) and (6), while the

approximated CCDFs are obtained using (17) for Gaussian dis-

tribution, (18) for lognormal distribution and (21) for gamma

distribution. From the figure, we can see that the CCDF of Pagg

under Rician fading LOS links can be closely approximated

by Nakagami-m fading by adjusting the m values. Gaussian

distribution does not provide a good approximation, which

agrees with our discussion above. Gamma distribution is found
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to provide a close approximation to the power distribution

of homogeneous PPP network [21] and heterogeneous PPP

network [22] with non-singular path-loss model, but it clearly

does not provide a good fit under the mmWave system model.

We have tested the CCDF approximations using inverse Gaus-

sian distribution, exponential distribution, Suzuki distribution

and inverse gamma distribution against the exact CCDF and

Rician LOS fading simulation under different channel param-

eters as well. However, they perform poorly and the results

are omitted here for the sake of brevity. Overall, our results

show that lognormal distribution provides the best CCDF

approximation of Pagg.

B. Mean Aggregate Received Power

Next, we investigate the impact of the channel parameters

and the beamforming parameters on the the mean aggregate

received power Pagg = κPagg
(1).
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being 100 m and the path-loss exponent being 2 and the Nakagami-m fading
parameter being 5 for LOS links.

Fig. 2 plots Pagg against the density of PB for different

path-loss exponents of LOS link αL = 2, 2.5 and different

radius of the LOS region rmin = 50 m, 100 m. We can see

that the simulation results match perfectly with the analytical

results. The figure also shows that Pagg increases with λ. With

smaller αL and larger rmin, Pagg grows at a faster rate. When

αL = 2.5, the traces of two different rmin overlap. We can see

that the benefit of increasing the radius of the LOS region is

insignificant, when αL is large.

Fig. 3 plots Pagg against the density of PB for dif-

ferent beamforming parameter for PB [0 dB, 0 dB, 360o],
[20 dB,−10 dB, 30o], [30 dB,−10 dB, 6o] and TX

[0 dB, 0 dB, 360o], [10 dB,−10 dB, 45o]. Again the simulation

results match perfectly with the analytical results. We can see

that a narrower main lobe beam-width gives a larger main

lobe gain which results in a faster rate of growth of Pagg with
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different path-loss exponents of LOS links and different radius of the LOS
region with the Nakagami-m fading parameter being 5 and the PB and RX
beamforming parameter being [20 dB, −10 dB, 30o] and [10 dB, −10 dB,
45o] respectively.

respect to λ.

C. Feasibility of WPT via PBs

In this section, we examine the feasibility of WPT via PBs

in a mmWave ad hoc network. In this regard, it is important

to note that the electronic circuitry of a power receiver has an

activation threshold which has a value typically between −30
dBm and −20 dBm [1]. In addition, the typical maintenance

power for a smart phone is between 20 mW and 30 mW [23].

Fig. 4 plots the required transmitted power of PB to achieve

an average harvested power of 15 dBm (= 31.62 mW), which

is the typical maintenance power for a smart phone and is

much higher than the power sensitivity level, versus the density

of PB by assuming a constant power conversion efficiency of

η = 0.5. From the figure, we can see that for a fixed PB density

the decrease in the LOS path-loss exponents brings a higher

saving in the transmitted power needed than the increase in the

radius of LOS region. From Fig. 4, the maximum transmitted

power required at a PB density of 10 per km2 is 39.12 W.

If PB transmits with this maximum value, the power density

at a distant of 1 m from the PB is 3.113 W/m2. This power

density is smaller than 10 W/m2, which is the permissible

safety level of human exposure to RF electromagnetic fields

based on IEEE Standard [16].

V. CONCLUSIONS

In this paper, the mmWave wireless ad hoc network where

RX harvests energy from all PBs was considered. We first

derived the MGF and the nth cumulant of the aggregate

received power at the RX to study the CCDF of the aggre-

gate received power. Furthermore, we compared the different

closed-form distributions which can be used to approximate

the characteristics of the aggregate received power. Our re-

sults showed that the lognormal distribution provided the

best CCDF approximation compared to other distributions

considered in the literature for microwave network. The results

have also shown that application of mmWave PB is feasible

under practical network setup.

APPENDIX A

PROOF OF PROPOSITION 1

Following the definition of MGF,

MPagg(s) = E [exp(−sPagg)] = E[exp(−sP
∑

Xi∈φ

Gihil(ri))]

= E[exp(−sP
∑

06ri<1

Gihil(ri))]

× E[exp(−sP
∑

16ri<rmin

Gihil(ri))]

× E[exp(−sP
∑

rmin6ri<rmax

Gihil(ri))]

= exp

(

−
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where Ehi,Gi
represents the expectation with respect to hi and

Gi. The first term A1 is evaluated as follows.

A1 = exp (−πλ (1− Ehi,Gi
[exp(−sPGihi)]))

= exp
(

−πλ+ πλm
m
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[
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, (23)

where we use the fact that the link in LOS state experiences

Nakagami-m fading with fhL
(h) = mmhm−1 exp(−mh)

Γ(m) .

The second term A2 is evaluated as follows.

A2 = exp
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where (24a) follows from changing variables and integration

by parts and (24b) is obtained after taking the expectation over

hL then Gi.

Similarly, the third term A3 can be worked out by taking the

expectation over hN, which has a PDF as fhN
(h) = exp(−h).

The details are omitted for sake of brevity. Finally, the MGF

expression in Proposition 1 is obtained by substituting A1, A2
and A3 into (22).

APPENDIX B

PROOF OF PROPOSITION 2

We cannot obtain the nth cumulant of Pagg by directly sub-

stituting (6) into (10), as the cumulant becomes incomputable

at s = 0. Instead, we use the integration form of the MGF in

(22) and substitute in (10) to obtain

κPagg(n)=(−1)
n+1

(
dn

dsn

π∫

−π

1∫

0

Ehi,Gi
[1−exp(−sPGihi)]λrdrdθ

∣
∣
∣
s=0

︸ ︷︷ ︸

B1

+
dn

dsn

π∫

−π

rmin∫

1

Ehi,Gi
[1− exp(−sPGihir

−αL)]λrdrdθ
∣
∣
∣
s=0

︸ ︷︷ ︸

B2

+
dn

dsn

π∫

−π

rmax∫

rmin

Ehi,Gi
[1−exp(−sPGihiβr

−αN)]λrdrdθ
∣
∣
∣
s=0

︸ ︷︷ ︸

B3

)
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where . The first term B1 is evaluated as follows.

B1 =
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Similarly, the terms B2 and B3 can be derived by following

similar steps as above. Substituting B1, B2 and B3 into (25)

gives the nth cumulant expression in Proposition 2.
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