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Abstract 

Land use in the river catchments of tropical North Queensland appears to have increased the 

export of sediment and nutrients to the coast. Although evidence of harmful effect of 

sediment on coastal and riverine ecosystems is limited, there is a growing concern about its 

possible negative impacts. Sugarcane cultivation on the floodplains of the tropical North 

Queensland river catchments is thought to be an important source of excess sediment in the 

river drainage systems. 

Minimum-tillage, trash blanket harvesting has been shown to reduce erosion from sloping 

sugarcane fields, but in the strongly modified floodplain landscape other elements (e.g. 

drains, water furrows and headlands) could still be important sediment sources. The main 

objectives of this thesis are to quantify the amount of sediment coming from low-lying cane 

land and identify the important sediment sources in the landscape. The results of this thesis 

enable sugarcane farmers to take targeted measures for further reduction of the export of 

sediment and nutrients. 

Sediment budgets provide a useful approach to identify and quantify potential sediment 

sources. For this study a sediment budget is calculated for a part of the Ripple Creek 

catchment, which is a sub-catchment of the Lower Herbert River. The input of sediment 

from all potential sources in cane land and the storage of sediment within the catchment have 

been quantified and compared with the output of sediment from the catchment. Input from, 

and storage on headlands, main drains, minor drains and water furrows, was estimated from 

erosion pin and surface profile measurements. Input from forested upland, input from fields 

and the output at the outlet of the catchment was estimated with discharge data from gauged 

streams and flumes. Data for the sediment budget were collected during two 'wet'-seasons: 

1999-2000 and 2000-2001. 

The results of the sediment budget indicate that this tropical floodplain area is a net 

source of sediment. Plant cane fields, which do not have a protective trash cover, were the 

largest net source of sediment during the 1999-2000 season. Sediment input from water 

furrows was higher, but there was also considerable storage of sediment in this landscape 

element. Headlands tend to act as sinks. The source or sink function of drains is less clear, 

but seems to depend on their shape and vegetation cover. 

An important problem in this study is the high uncertainty m the estimates of the 

sediment budget components and is, for example, likely to be the cause of the imbalance in 

the sediment budget. High uncertainties have particularly affected the results from the 2000-

2001 season. The main source of uncertainty is spatial variation in the erosion and deposition 
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processes. Uncertainty has to be taken into consideration when interpreting the budget 

results. 

The observation of a floodplain as sediment source contradicts the general understanding 

that floodplains are areas of sediment storage within river catchments. A second objective of 

this thesis was therefore to provide an answer to the question: how can floodplains in the 

tropical North Queensland catchments can be a source of sediment? 

In geomorphic literature various factors have been pointed out, that could control 

floodplain erosion processes. However, their importance is not 'uniquely identified'. Among 

the most apparent factors are the stream power of the floodwater and the resistance of the 

floodplain surface both through its sedimentary composition and the vegetation cover. 

If the cultivated floodplains of the North Queensland catchments are considered in the 

light of these factors, there is a justified reason to expect them to be a sediment source. 

Cultivation has lowered the resistance of their surface; increased drainage has increased the 

drainage velocity and flood control structures have altered flooding patterns. 

For the Ripple Creek floodplain four qualitative scenarios have been developed that 

describe erosion and deposition under different flow conditions. Two of these scenarios were 

experienced during the budget study, involving runoff from local hillslopes and heavy 

rainfall, which caused floodplain erosion. In the longer term larger flood events, involving 

floodwater from the Herbert River, may lead to different erosion and deposition processes. 

The present study has shown that the tropical floodplain of the Herbert River catchment 

can be a source of sediment under particular flow conditions. It has also shown which 

elements in the sugarcane landscape are the most important sediment sources under these 

conditions. This understanding will enable sugarcane farmers to further reduce sediment 

export from cane land and prevent the negative impact this may have on the North 

Queensland coastal ecosystems 
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Chapter 1 

Introduction 

1.1 Humid tropics and sugarcane cultivation 

Land use in the river catchments of tropical North Queensland appears to have 

increased the transport of sediment and nutrients to the coast. The increase is 

believed to threaten coastal and marine ecosystems as well as the freshwater 

ecosystems of the catchments. This thesis is focused on the transport of sediment in 

and from one type of land use in this region: sugarcane cultivation. A sediment 

budget is used to quantify rates of sediment production, deposition and export. 

An outstanding feature of the North Queensland wet tropical coast is the 

concentration of high annual rainfall in a few months of the year; during this period 

several hundred millimetres of rain can fall within days or even hours. The intense 

rainfall causes large amounts of runoff and makes water levels in river drainage 

systems rise quickly. Because the rainstorms often persist for several days, flooding 

occurs frequently. 

Large areas of sugarcane cultivation occupy the lowlands of North Queensland 

(Figure 1.1). Sugarcane crop needs 1500 mm of rainfall or irrigation each year and 

can survive under inundated conditions for several days. These characteristics make 

it a suitable crop for cultivation in the flood prone tropical lowlands. Production of 

sugarcane is now one of Australia's largest intensive agricultural industries. In the 

2000-2001 season 424,350 hectares of cane was harvested (Canegrowers, 2002). 

To make the lowlands of the North Queensland catchments suitable for sugarcane, 

several adjustments have been made to the landscape. The first requirement is the 

clearing of the original vegetation. In North Queensland native vegetation has been 

substantially reduced and replaced by sugarcane. Since 1988 the area used for 

sugarcane growing has increased by more than 40%. 
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Figure 1.1: Map of North Queensland with sugarcane cultivation areas; seven of the major coastal 

catchments, including the Herbert River Catchment; and the Great Banier Reef. 

Johnson et al. (2000) studied vegetation changes in the lower part of the Herbert 

River Catchment, the largest wet tropical catchment in North Queensland. They 

observed that the three key vegetation types in the original landscape, which are 

Eucalyptus dominated forest, Melaleuca (paper-bark) don1inated forest and 

Rainforest, have all been reduced, while the area under sugarcane has expanded. The 

highest loss was in the freshwater wetland Melaleuca communities (65 %). According 

to these authors , similar trends are apparent in other North Queensland catchments. 
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A second requirement to prepare country for cane growing is drainage of the 

cultivated surface. The natural landscape has very low relief and contains many 

depressions where water accumulates for some time after a flood. Creeks drain most 

of the lowland, but to remove the ponded water additional drainage lines are 

necessary. The high tropical rainfall is very welcome for the thirsty sugarcane crop, 

but prolonged waterlogging or inundation is not desirable because it reduces the cane 

yield (Cameron McNamara, 1980; Dick, 1982, in Herbert River Improvement Trust, 

1993; R. Burry pers. comm.) and makes access to the fields with heavy 1nachinery 

difficult. Figure 1.2 shows an aerial photo of the Ripple Creek Catchment, a sub­

catchment of the Herbert River, illustrating the typical cane land dissected by a dense 

network of drains (blue lines). 
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Figure 1.2: Aerial photo of Ripple Creek Catchment, a tributary of the Herbert River. Photo of 

fore sted upland section was not available. The (mostly artifi cial) drainage network in the catchment 

lowlands is highlighted in blue. 

1.2 Increase in soil erosion since European settlement: the off-site 

effects 

Similar to the Queensland sugarcane country, adjustments have been made to the 

landscape throughout Australia, mostly in the form of clearing of the native 

vegetation. A recent study estimates that about 32% of Australia 's native vegetation 
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in the intensively used areas (primarily the agricultural and urban zones) has been 

cleared or substantially modified (Cofinas and Creighton, 2001). 

The human disturbance has a significant impact on the health of the landscape. 

Johnson et al. (2000) for example describe the vegetation changes in the lower part 

of the Herbert catchment as a 'decline of the diversity, quality, and integrity of the 

tropical lowland ecosystems'. Many researchers have also noticed how clearing and 

subsequent introduction of European style agriculture has led to severe degradation 

of the soil and increased erosion rates (yV asson and Galloway, 1986; Moss et al., 

1992; Wasson et al., 1996). Large parts of the eroded material are redeposited 

elsewhere in the river catchments (Wasson et al., 1996), but a significant amount of 

sediment is exported to the catchment outlets, into the ocean. This has led to an 

increase of sediment, and associated nutrient, export to the coast from Australian 

river catchments. Moss et al. (1992) estimated a three to five-fold increase in 

sediment and nutrient export from the Queensland coastal catchments since 

European settlement. 

On the land, degradation of the soil surface is not always recognized or 

acknow !edged as a problem. In certain areas the effects of increased sediment loads 

from rivers, have become the first reasons for concern. This is the case in tropical 

North Queensland (Rayment and Neil, 1996; Wasson, 1996). All coastal catchments 

in this region drain directly into the Great Barrier Reef World Heritage Area 

(GBRWH). The concern about potential impacts of the increased sediment loads 

from these catchments has been growing among scientists, government management 

agencies, and among the general population. 

The Great Barrier Reef Marine Park occupies the Queensland coastal zone between 

the tip of Cape York and the Mary River near Hervey Bay, approximately 200 km 

north of Brisbane (Figure 1.1). The area contains the world's largest system of coral 

reefs (GBRMPA, 2001). It is best known for the astonishing coral reefs out in the 

ocean, but it also comprises many reefs closer to the shore, large areas of mangrove 

forest, and coastal wetlands. Increase in water turbidity is thought to harm coral reefs 

and more recently researchers have also become aware of the potential impact of 

sediments on coastal mangrove and freshwater wetland and river (eco) systems, 

which are important in the functioning of the Marine Park. The following section 

reviews the information upon which the concern is based. 
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1.3 Effects of sediments and nutrients on the Great Barrier Reef 

World Heritage Area and riverine ecosystems 

1.3.1 Increased sediment and nutrient inputs 

CRC Reef Research Centre (2001) provides a concise overview of the current state 

of know ledge on runoff from the land. On average 14 million tonnes of sediment, 

49,000 tonnes of nitrogen and 9,000 tonnes of phosphorus are carried into the 

GBRWH each year. This is a threefold increase of sediments and nitrogen over the 

last 150 years and more than IO-fold for phosphorus. Slightly higher increases are 

listed in the recent report by the Great Barrier Reef Marine Park Authority 

(GBRMPA) (2001), which also states that the loads are still increasing without a sign 

of abatement. A large part of the nitrogen ( 40%) and phosphorus (80%) carried by 

the rivers is attached to fine sediment particles. River water concentrations of other 

chemicals used in agriculture such as pesticides and their components ( e.g. Diuron, 

atrazine, mercury and cadmium) are very low, but can accumulate in sediment 

deposits and may have biological impacts (Bryan and Langston, 1992). 

Over the last 15-20 years extensive research has been done to understand the 

effects on the reef and coastal wetland systems of changes in runoff from the land. 

Numerous reports have been published on this research by the involved organisations 

(e.g. GBRMPA, Australian Institute for Marine Science (AIMS), CSIRO, etc.) and 

regularly the findings are reviewed (Baldwin, 1990; Hillman, 1995; Crossland et al., 

1997; Hutchings and Haynes, 2000). The latest of such reviews are reported in 

(GBRMPA, 2001; Williams, 2001; WWF, 2001). 

1.3.2 Effects of sediment on coral reef systems 

It is generally assumed that the increase of sediments, nutrients and other chemicals 

will lead to increased degradation of coral reef systems (Wilkinson, 1999; Edinger et 

al., 1998). Sediments are seen as a potential threat to coral reef systems, but the exact 

effect of increased sediment loads is however still not very well understood. The 

following reasons are given for concern about sediments. 

They can exclude light from corals (Well-developed outer reef systems occur 

only in seawater with low suspended particulate concentrations) 

They can smother corals (Wilkinson, 1999) 
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- They can prevent the settlement of coral larvae on the reef surf ace 

Apart from direct threats there are possible indirect impacts, but their functioning is 

even less well known: 

Crown-of-thorns (starfish) outbreaks may be related to increased phytoplankton 

levels, caused by increased nutrient loads (partly associated with sediments) from 

terrestrial runoff (Day, 2000) 

- Changes in habitat due to reduction in micro-topography can have an indirect 

effect on the survival of corals 

The scientific literature on all of these impacts is both limited and contradictory 

(McClanahan and Obura, 1997; Williams, 2001; Marohasy and Johns, 2002). 

Very recently some researchers have questioned the argument that higher 

sediment loads increase turbidity of the seawater and cause the problems mentioned 

above. Larcombe and Woolfe (1999) argue that turbidity levels and sediment 

accumulation rates are at most coral reefs currently not limited by sediment supply. 

Sediment input from rivers will not add significant extra turbidity to what is caused 

by regular seabed disturbance already. They do note that the seaward terrigenous 

sediment edges and coral reefs immediately adjacent to identified point sources of 

sediment input should be studied more closely. 

Effects of sediment related chemicals 

Besides impacts on coral reefs directly related to increased sediment concentrations 

in the seawater, there are problems caused by fertilizers and pesticides bound to 

particulate matter. Large amounts of these chemicals leave the land connected to soil 

particles and are transported into the ocean. When river water mixes with seawater 

there is a possibility that they are released from the soil particles. Brodie and 

Mitchell (1992) found a significant proportion of inorganic Pin the flood plume of 

the Fitzroy River after mixing of the freshwater with seawater. The process of 

sorption and desorption of nitrogen and phosphorus from flood plumes into the 

seawater is however not sufficiently understood 

Devlin and Taylor (1999) and GBRMPA (2001) list a number of observed 

increases in chlorophyll concentrations in flood plumes and in water with sediment 

resuspended by strong winds. Because phytoplankton and bacteria rapidly consume 

nutrients in seawater, nutrient levels are typically low and a poor indicator of the 
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nutrient status of reef water. Chlorophyll provides a better integrative measure of the 

amount of nutrients held' and cycling in the reef ecosystems. The increased 

concentration among suspended sediment could indicate increased bioavailability of 

nutrients attached to sediments. 

Cavanagh et al. (1999) failed to detect significant amounts of organochlorine in 

near-shore sediments, although easily detectable amounts were found in sugarcane 

soils in the Herbert and Burdekin catchments, and the chemicals are known to move 

attached to soil particles. There is no detectable organochlorine contamination of the 

GBRWH from historic agricultural activities in the catchments. 

1.3.3 Effects of sediment on other marine ecosystems 

Seagrass beds are important ecosystems in the GBRWH, situated in coastal areas 

close to the input sources of terrestrial runoff. The beds can experience impacts from 

sediment in direct and indirect ways similar to the coral reefs. Some research has 

shown that seagrass beds can die due to light deprivation as a result of increased 

turbidity (Preen et al., 1995; Longstaff and Dennison, 1999). Potential impacts of 

nutrients are assumed, butno clear proof of negative impacts is available (Williams, 

2001). 

Many marine species rely on the coastal freshwater wetlands and mangroves as 

breeding and nursery areas (Robertson and Lee Long, 1991; GBRMPA, 2001). 

Mixing between mangrove creek water and coastal seawater through tides ensures a 

strong dynamic link between mangroves and coastal waters (Wolanski et al., 1990), 

making mangroves vulnerable to pollutants in the near shore waters. Trott and 

Alongi (1999) observed increased nutrient concentrations in mangrove creeks during 

the summer wet season, which are probably due to erosion, solubilization and 

transport of nutrients from adjacent catchments into creeks. Negative impacts of the 

elevated nutrient levels were not noted. 

1.3.4 Effects of sediments on freshwater ecosystems 

Freshwater ecosystems also play an essential role in the functioning of the Great 

Barrier Reef Marine Park. Many organisms, for example, use the fresh river water as 

breeding grounds. Because increased input of sediments and nutrients are routed 

through the rivers, these freshwater systems are directly affected. 
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There are several potential problems related to increased sediment loads in rivers 

(Arthington et al., 1997). Suspended sediment causes water turbidity, which can 

diminish the light that is available for photosynthesis of stream vegetation, and 

decrease water temperature through increased reflection. Suspended material can 

also inhibit respiration and feeding of stream biota (Ryan, 1991). 

Crossland (1999) points out that aquatic organisms in tropical rivers are well 

adapted to short term events with high concentrations of sediments and nutrients, 

because disturbance by floods is a normal occurrence in North Queensland streams. 

It is, however, a continuing supply of enhanced levels of nutrients and sediments 

through the year via seepage, runoff, and irrigation tailwater that are likely to be of 

greater importance to aquatic communities. 

1.3.5 Conclusion 

The forgoing overview shows that there are potential direct and indirect impacts of 

increased sediment loads on many of the ecosystems of the GRBWH and the closely 

related freshwater systems. Firm evidence of a serious decline in any of the systems 

is however currently limited. This does not mean that terrestrial runoff can be 

ignored. Large-scale systematic studies on the GBRWH only started in the last 20 

years or less and we do not know what the area looked like before European 

settlement. There are also studies from other parts of Australia and the rest of the 

world that indicate negative effects of sediments and nutrients on coral reefs and 

especially seagrass communities (Robertson and Lee Long, 1991; Edinger et al., 

1998; Corredor et al., 1999). Similar effects could occur in the GBRWH and increase 

with continued or increasing inputs. Clearly most at risk are near-shore ecosystems 

such as near shore reefs and seagrass beds, because of their vicinity to the sites of 

sediment input. 

A final very important concern is the potential cumulative effect of the increased 

(chronic and episodic) impacts of sediment pollution. Coral reefs and other 

ecosystems may be able to cope with impacts for a considerable time, but continued 

stress and unobserved sub-lethal effects can lead to fatal degradation in the longer 

term. Some studies worldwide have shown examples of systems that display such 

threshold effects (Williams, 2001). 
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Introduction 

1.4 Soil erosion in low-lying sugarcane land 

Sugarcane land is mainly located in the low-lying areas of the North Queensland 

catchments (see Figure 1.1). This industry is therefore situated adjacent to the many 

coastal and freshwater ecosystems that play a role in th~ survival of the Great Barrier 

Reef. The drainage water from the cane fields flows directly into these aquatic 

ecosystems. During storm flows the drainage water has a 'dirty' colour, which 

suggests that considerable amounts of sediments leave the catchment. Attached to the 

sediments will be fertilizers and pesticides that are used abundantly for cane 

growing. 

The only published research on soil erosion from cane land in Australia was done 

on sloping cane land. In the Mackay region erosion rates in excess of 200 t ha-1 were 

measured (Sallaway, 1979). Prove and Hicks (1991) observed values ranging from 

50 to 500 t ha-1 on the wet tropical coast, where the magnitudes of erosion depended 

on rainfall amount and intensity, not soil type and slope. Although no numbers are 

available for erosion from low-lying cane land, their location close to the coast and 

the observations of sediment export through river water provide grounds for public 

concern that sugarcane land is a major source of pollution. Even though decline of 

the Great Barrier Reef due to terrestrial runoff is not clearly demonstrated the 

sugarcane industry is often mentioned as, at least, a threat to the health of the Great 

Barrier Reef (Flannery, 1994; WWF, 2001). 

As a result of early observations of erosion, and signs of pollutants leaving the cane 

lands, ameliorative action began in the 1980s (Prove and Hicks, 1991). Around that 

time Green Cane Trash Blanket (GCTB) harvesting was introduced in parts of the 

Queensland cane-growing region. This is a type of minimum-tillage harvesting, 

where the leaves of the cane plant are left on the fields as trash cover after the harvest 

of the cane stalks. GCTB harvesting now occurs in nearly 70% of the cane lands. 

Prove et al. (1995) showed that the GCTB method reduces sediment runoff from 

sloping fields to levels comparable with those from rainforest, which were estimated 

at around 4 t ha-1 by Capelin and Prove (1983). Williams (2001) describes 

unpublished research on sediment cores from Hinchinbrook Channel and Missionary 

Bay that display a decline in terrestrial sediment supply rates over the last two 

decades, which could be related to green cane harvesting practices in the Herbert 
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River valley. Evidence of how much GCTB-harvesting reduces sediment export from 

the cane lands is however still not abundant, and criticism of cane growers continues 

by environmentalists. 

1.4.1 Sources of sediment: the first thesis objective 

Erosion research in the cane district has paid little attention to sediment sources other 

than the cultivated fields, although there may be some of considerable importance. 

The establishment of a cane property in the tropical low lands requires more than just 

the clearing of the original vegetation. One of the most important additional 

requirements is an artificial drainage system. In erosion studies on natural low land 

drainage systems elsewhere in the world, bank erosion has been identified as an 

important source of sediment besides sheet erosion (Knighton, 1998; Laubel et al., 

1999). The same process can be expected in artificial drainage systems (Urban, 

2002) and could be of particular importance in the sugarcane district with its high 

rainfall and runoff. 

In addition to the drains there could be other unidentified sources of sediment in 

the modified cane lands. A number of landscape elements, which are schematically 

presented in Figure 1.3, are common in most of the low-lying sugarcane land. Each 

of these elements could be a sediment source: 

Plant cane fields: fields with a first year crop. The soil surface beneath the plant 

cane crop is still bare. Sheet erosion can be expected. 

Ratoon fields: sugarcane is grown for up to four return cycles called 'ratoon'. The 

soil surface beneath the ratoon crop is protected with a trash cover from earlier 

harvests, but sheet erosion might occur under extreme runoff. 

Water furrows: shallow trenches in fields for improved drainage. Concentrated 

field runoff that flows through furrows could easily scour the bare surface. 

Drains: because of the low gradient in a flood plain environment, a dense 

drainage network is necessary to quickly drain the high volumes of rainwater. 

Bank erosion can be a major sediment source in lowland drainage systems 

(Laubel et al.1999). 

Headlands: 2 - 5 meter wide strips of land along the margins of cane fields, used 

for the turning of cane harvesters and as access roads. Their slightly sloping 
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surface and sometimes sparse grass cover can make them susceptible to rill and 

sheet erosion. 

Figure 1.3: Schematic close-up of sugarcane land illustrating typical landscape elements: ratoon 

fields, plant cane fields, drains, headlands and water furrows. 

If the sugar industry wants to further improve cane growing practices to reduce 

erosion and downstream impacts of runoff, they need to know the importance of the 

above mentioned potential sources. This thesis aims to assist improvements of cane 

land management by studying these sediment sources and provide an answer to the 

following questions: 

How much sediment is coming from low-lying sugarcane land? 

What are the important sources of sediment in low-lying sugarcane land? 

The problem is approached by developing a sediment budget for an area of cane land 

in the Herbert River Catchment. In the budget the amount of sediment generated 

from the various sources is compared with the export of sediment from cane land . 

For the composition of the budget, measurement data are collected from a field site 

in the Herbert River Catchment. 

If significant sources of sediment are identified and if processes are sufficiently 

understood, the answers to these questions can lead to recommendations for 

improved management of the sugarcane land. This will allow cane farmers to 

effectively protect their land and reduce off-site pollution. 
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1.4.2 Soil erosion on floodplains: a second thesis objective 
' 

Much of the cane land is situated in what has in previous pages been described as 

'lowlands' or 'low-lying areas'. Most of these areas are actually floodplains. In a river 

catchment floodplains are usually sediment storage areas; areas that collect sediment, 

rather than generate it (Schumm, 1977; Alexander and Marriott, 1999), which 

contradicts the observations of cane land as a source of sediment. 

To improve the understanding of the contribution of cane land to the sediment 

input of rivers and to put the results from the sediment budget in a broader context, 

the thesis will try to answer an additional question: 

How can floodplains of tropical North Queensland nvers be a source of 

sediment? 

This problem is approached first by means of a literature review on the functioning 

of floodplains in river catchments. Then process insight from the review, in 

combination with information from local sources and the budget study results, is 

used to develop scenarios that describe erosion and deposition processes for part of 

the Herbert River floodplain. The scenarios will help answering the additional thesis 

question and give an indication of the representativeness of the results from the 

sediment budget study. 

1.5 Thesis outline 

This introductory part of the thesis will continue with a description of the Herbert 

River Catchment, which is the area on which the study focuses. Special attention is 

paid to Ripple Creek, the sub-catchment of the Herbert River, where most of the 

fieldwork is performed. 

Part II of the thesis describes the approach and results of the sediment budget 

study that was performed in the Ripple Creek Catchment, with the aim to answer the 

first thesis questions. Part III comprises a literature review and a discussion of the 

information available from the Ripple Creek Catchment, which leads to the 

development of qualitative scenarios for erosion and deposition processes in this 

area, in answer to the additional thesis question. 

In the final part (IV) the conclusions drawn from the previous parts will be 

combined and presented, together with recommendations for future research to assist 

management of the low-lying cane lands. 
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Chapter 2 

The Herbert River Catchment: a site description 

2.1 Introduction 

The Herbert River Catchment (Figure 2.1) is the largest catchment along the sub­

humid to humid tropical coast of northeastern Australia and the fifth largest 

catchment draining into the Great Barrier Reef, providing 4. 8 % of the total input of 

freshwater runoff (Furnas and Mitchell, 2001). The catchment includes the largest 

area of cane land under wet tropical conditions. The canegrowing region extends 

further north along the coast under humid tropical conditions, but in smaller 

catchments ( see Figure 1.1 in Chapter 1). Further south larger catchments such as the 

Burdekin River catchment also have considerable areas of cane land, but the climatic 

conditions are drier and the cane is often irrigated (Arthington et al., 1997). 

Because of its large area of typical low-lying cane land, the Herbert River 

Catchment is chosen as the study area for this research. Previously various Australian 

research organisations (e.g. CSIRO, Great Barrier Reef Marine Park Authority 

(GBRMPA) and Australian Institute of Marine Science (AIMS)) have concentrated 

research within this catchment (e.g. Horsley et al., 1982; Hillman, 1995; Bramley 

and Johnson, 1996; Johnson and Murray, 1997; Mitchell et al., 1997; Cavanagh et 

al., 1999; Bramley and Wood, 2000; Johnson et al., 2000; Bramley and Roth, 2002). 

There is, therefore, an existing base of knowledge that is of use to this project. 

Within the Herbert River Catchment the Ripple Creek Sub-catchment is chosen as 

the main study site. The location of the Ripple Creek Sub-catchment is shown in 

Figure 2.1. This sub-catchment is thought to be representative for areas of 'low-lying 

cane land', and it is also the most intensively studied sub-catchment of the Herbert 

River. 
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Figure 2.1: Herbert River Catchment and Ripple Creek Sub-catchment with sugarcane cultivation 

areas and approximate Upper and Lower Herbert River divisions and Herbert River Gorge. 
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2.2 General catchment description 

The Herbert River drains a catchment area of approximately 10,000 knl. The 340 

km long river flows through three distinct geomorphic zones before it reaches the 

Coral Sea north of Halifax. The river rises at 1070 m elevation in what is called the 

'Upper Herbert River Catchment'. This upstream zone (approx. 6,000 km2
) has 

topography ranging from level alluvial plains to rugged, deeply incised ranges. In the 

eastern part of the Upper catchment the topography is gently undulating, while in the 

west, the topography rises irregularly and reaches altitudes of up to 1000 m (Johnson 

et al., 2000). The north and west sides of the Upper catchment are bounded by the 

Great Dividing Range. The eastern boundary is the Cardwell Range. 

The downstream end of the Herbert River flows through the so-called 'Lower 

Herbert River Catchment'. This zone consists of a coastal plain flanked by steep 

mountains of the Cardwell Range in the north and the Seaview Range in the south. 

The mountains reach altitudes of over 1000 m, but have an average height of around 

750 m. The Upper and Lower Herbert River Catchment are connected by a third 

intermediate zone (1000 km2
), the 'Herbert River Gorge'. 

The lower part of the Herbert River Catchment was first settled in 1865 for 

pastoral use. Sugarcane production started in 1872 (Pulsford, 1996). Sugarcane is 

only grown on the alluvial soils of the Lower Herbert River Catchment. Here it 

occupies approximately 650 km2 (Shrubsole et al., 1999) and is the largest intensive 

agricultural industry in the catchment. Harvested sugarcane is supplied to two mills 

(Victoria and Macknade) for sugar production. Most cane is grown close to the mills 

near the catchment outlet. The growing area extends upstream along the main river 

towards Abergowrie and along the Stone River tributary to Upper Stone. 

Other important industries in the Herbert River Catchment are forestry, beef cattle 

and small areas of crops such as pineapples, melons and pumpkins. Most of the 

Upper Herbert River Catchment remains under native vegetation with extensive 

cattle grazing. Grazing in the Lower catchment occurs mainly on improved pasture. 

2.3 Geology 

The geology of the Herbert River Catchment is described by de Keyser and has been 

summarized in the Herbert River Catchment Atlas (Johnson and Murray, 1997). The 

following information is paraphrased from the Atlas. 
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The lowland of the Lower Herbert River Catchment consists largely of 

Quaternary alluvial deposits: beach sand, and mangrove muds. The deposits reach a 

depth of more than 96 m and are interbedded due to sea level oscillations. The steep 

mountains surrounding the deposits consist of Carboniferous granites, with rocks of 

various compositions and texture grading into one another. Palaeozoic basalt occurs 

within the Herbert Gorge. The Upper Herbert River Catchment consists of four units. 

The rugged highland in the north consists of incised Paleaeozoic sediments, acid 

extrusives and granite. The level to gentle undulating plain in the centre has low rises 

of granite and metamorphic rock. The plain in the south and southwest consists of 

Cainozoic basalt, extruded from local craters. The geology of the Coastal Range 

along the eastern edge of the catchment boundary is complex. It consists of andesite, 

and rhyolite volcanics, locally intruded by granite, Cainozoic basalt flows and an 

area of undifferentiated granite. 

2.4 Geomorphology 

No publications exist on the geomorphology of the Upper Herbert River Catchment. 

Because this part of the catchment is not relevant to the subject of this thesis, no 

attempt will be made to describe and explain the geomorphology in this area. Some 

understanding of the geomorphology of the Lower Herbert River Catchment is, on 

the other hand, essential for the research of this thesis. Moreover, there is 

information available from this area. 

Wilson and Baker (1990, also presented in: Johnson and Murray, 1997) mapped 

the landforms and the closely related soil types in the Lower Herbert River 

Catchment. A copy of the map presented in Johnson and Murray (1997) (Figure 2.2) 

is added to illustrate the following geomorphological features. 

The hills and mountains of the Cardwell and Seaview Ranges provide a clear 

geomorphic contrast with the lowland of the Lower Herbert River Catchment. The 

Ranges surrounding the lowland have a low to very high relief with gently inclined 

to precipitous slopes and fixed erosional stream channels ( classification according to 

the Australian Soil and Land Survey Field Handbook (McDonald et al. , 1990). The 

main forces that shaped the mountains are probably water erosion and mass wasting, 

although so far no detailed geomorphological survey has been done here. 
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The Herbert River Catchment: a site description 

The low land is a fan shape depositional area spreading out towards the Coral Sea. 

Within the lowland a geomorphic subdivision can be made between deposits of 

mainly fluvial origin and deposits of marine origin. A band of around 5 km wide 

from the coast consists of marine deposits. The most common depositional features 

here are tidal flats, mangrove muds, and beach ridges. Further inland the lowland 

consists of mainly fluvial deposits. Along the footslopes of the Ranges , runoff and 

debris from local slopes have created alluvial fans. The fans have slopes of up to 8% 

and are built on an alluvial plain. The alluvial plain consists of deposits from both the 

local creeks and the Herbert River. 

The Herbert River has a channel pattern ranging from low sinuosity to 

meandering stretches. Scroll ridges formed during migration of the meander bends 

are visible in scroll plains of up to 300 m wide along the river (map unit 'Alluvial 

Plain channel bench' and 'Alluvial Plain scroll'). Excavations in several of the scroll 

plains in the Lower Herbert River Catchment showed that the lateral migration of 

meander bends has left behind mainly sandy floodplains covered with an up to 1 m 

of mud produced by over bank deposition (R.J. Wasson, pers. comm). Frequent 

floods have created levee deposits along these parts of the Herbert River and the 

Stone River tributary where scroll plains are absent, which are up to three meters 

higher than the surrounding plain. Along both rivers terraces also occur. 

The Herbert River delta 

Johnson and Murray ( 1997) describe the Lower Herbert River alluvial plain as an 

asymmetric delta. Most of the recent deposition happens towards the northern edge 

of the delta. Here the Herbert River ends in a network of minor branching channels. 

Russell (1967) argues that all major channel patterns in a delta are originally 

established under water. At its outlet a channel becomes divided by an island 

structure that forms through preferred deposition in the middle of the channel. With 

continuing sedimentation the channel splits and a distributary is created. The 

distributaries continue building their levees and finally surface. Some become closed 

off at point of branching by extensions of levees along more favoured channels. The 

creek patterns on the Lower Herbert alluvial plain are the remnants of a network of 

prior deltaic distributaries. The Seymour River is the only former major distributary 

that is still connected with the Herbert River and still carries part of its flow. The 

Trebonne and Cattle Creek systems are probably some of the earliest maJor 
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distributaries. From their, now cut-off, point of branching the Herbert River has 

migrated northward. 

Most of the former deltaic plain is regularly inundated by floodwater from the 

Herbert River (see Section 2.6). During flood conditions the prior distributaries may 

still divert some of the Herbert flow. The delta area that consists of fluvial deposits 

can now be defined as the floodplain of the Herbert River, comparable to the delta 

area of the River Niger in West Africa, as described by Allen (1964). The Niger delta 

can be divided into three zones, which consist of terrestrial, transitional and marine 

sediment input. Like the Herbert River alluvial plain, the upper part of the delta is the 

terrestrial zone consisting of a floodplain environment with levees and backswamps. 

2.5 Climate 

The rainfall in the North Queensland wet tropics is among the most intense by world 

and tropical standards. Daily totals can exceed 250 mm. For a site near Babinda 

(median annual rainfall 3600 mm) the mean number of days with rainfall greater than 

100 mm is seven per year (Bonnell et al., 1986, in Isbell and Edwards, 1988). The 

Herbert River Catchment is located at the southern edge of the wet tropics. 

Therefore, it does not receive as much rainfall as the central parts. The catchment 

average is 1500 mm (Bureau of Meteorology, 1988), but the actual amount varies 

considerably within the catchment. Totals in excess of 3000 mm occur on the top of 

the Cardwell Range, while areas in the west receive only 750 mm. Of the total annual 

rainfall 7 5 % falls in the warm summer months between December and April. This 

period is referred to as the 'wet season'. In Ingham the temperatures during these 

months have a mean monthly maximum of 32 °C and a mean monthly minimum of 

23 °C. The winter months are mild and dry, with maximum mean monthly 

temperatures of 25 °C and minimum mean monthly temperatures of 13 °C (Johnson 

and Murray, 1997). 

In contrast to many of the world's humid tropical regions, in the North Queensland 

tropics the major source of the rainfall is not a zone of thunderclouds within the 

monsoon trough. This type of rainfall happens occasionally, but usually the monsoon 

trough does not extend far enough south. More significant is the development and 

movement of vortices on the monsoon trough in the vicinity of the wet tropical coast 

(Bonell, 1988). These systems occur generally as tropical depressions, but they can 

deepen and upgrade to tropical cyclones. The presence of a depression causes heavy 
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rainfall over a few days, followed by periods of little precipitation until the 

development of a new depression. Other important sources of rain are orographic and 

convergence systems. The latter causes most of the rainfall between April and 

November. 

2.6 Hydrology of the Herbert River 

The hydrographs of the rivers draining the North Queensland wet tropical catchments 

closely follow the seasonal distribution of the rainfall, with the major part of the flow 

concentrated in the wet summer months (Gilmour, 1977). The rainfall patterns during 

the wet season cause variable river flow with infrequent, high-intensity flood events 

(Mitchell et al., 1997). These flood events, especially extreme floods resulting from 

cyclonic activity, cause problems for agriculture ( e.g. yield loss (Horsley et al., 1982) 

and personal damage (Cameron McNamara, 1980; Hausler, 1991)). Extensive 

flooding usually occurs on the alluvial plains, at the downstream ends of the tropical 

rivers. These flat, low-lying and flood-prone areas are favoured locations for 

settlement and agricultural development. 

Discharge patterns in the Herbert River Catchment 

The Herbert River has a highly variable discharge, seasonally, as well as between 

years and over decades, which is typical for the North Queensland catchments (see 

Figure 2.3 (Furnas and Mitchell, 2001) ). The average annual discharge, since first 

recorded in 1915, is 3.3 km3, varying between 0.14 km3 (1961) and 10.4 km3 (1974) 

(Furnas and Mitchell, 2001). 

In Table 2.1 the average discharge of the Herbert River is compared with those of 

the Rhine and the Murray Darling. The mean discharge to drainage area ratio of the 

Herbert River is similar to that of the Rhine, a river in the temperate part of Europe. 

However in high discharge years the Herbert can generate three times its mean 

annual discharge, while the Rhine rarely generates more than two times 

(Middelkoop, 1997). Most Australian rivers generate considerably less discharge per 

square kilometre. The Murray Darling River is Australia's largest river catchment, 

which drains an area that includes several drier climate zones. Its drainage area is 

more than 100 times larger than the Herbert River Catchment, but generates less than 

10 times the amount of discharge. 
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Figure 2.3: Daily (top) and annual (bottom) discharge from the Herbert River between August 1915 

and September 1995. Data source: Queensland Department of Natural Resources and Mines (Furnas 

and Mitchell, 2001). 

Table 2.1: Discharge and sediment loads of the Herbert River compared with the Rhine (Europe) and 

the Murray Darling (Australia). 

Drainage area 
(103 km2) 

Mean discharge 
(km3 il) 

Herbert River* }:}. (Q.4.~}Q) 
Rhine** 69 . r 

Mean suspended 
sediment load 
(106til) 

.......... , ....... . 

0.4 
2.1 
30 Murray Darling*** 22 I 

Based on: *Furnas and Mitchell (2001), **Middelkoop (1997), ***Knighton (1998) 

Overall 60% of the water discharged from the Herbert River is derived from the 

Lower Herbert floodplain and the mountains surrounding the Herbert River gorge 

and floodplain (approx. 40% of the total catchment area). Only during the summer 

wet season is discharge at Ingham is significantly higher than at Abergowrie (see 

map in Figure 2.1). This reflects the increased contribution from the downstream 

tributaries in the wet season, when the downstream area receives much more rainfall 

(Bramley and Johnson, 1996). Because of the relatively high downstream input, the 

Herbert River behaves hydrologically like a wet tropical river, although the 
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catchment is seasonally dry and the land cover of the Upper catchment closer 

resembles the drier catchments of the rivers to the south (Furnas and Mitchell, 2001). 

Large flood events, such as that caused by a cyclone in 1977, can inundate the 

alluvial plain of the Lower Herbert River Catchment (700 km2
, was inundated in 

-
1977) (Figure 2.4 ). Floods of the 1977 extent have a recurrence interval of 25 years. 

They will be referred to as 'major' floods. Floods of similar extent in the last century 

occurred in 1927, 1964, 1967, 1986 and 1991 (Johnson and Murray, 1997). These 

floods caused considerable change to the natural and damage to the built 

environment. Every year smaller flood events occur as a result of heavy rainfall. 

They will be referred to as 'minor' floods. These minor flood events usually only 

cause local inundation, but can do considerable damage to agriculture, depending on 

their timing, duration, and location. 
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Figure 2.4: Map of Herbert River Catchment with an indication of the extent of the flood caused by 

heavy cyclonic rainfall in the Upper Herbert River Catchment (Cameron McNamara, 1980; Johnson 

and Murray, 1997). 

Sedi,nent and nutrient runoff 

The bulk of sediments and the nutrients nitrogen and phosphorus leave the Herbert 

River Catchment in runoff during brief flood events, which are usually related to 
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cyclones. Relatively little material leaves the catchment during dry years. Furnas and 

Mitchell (2001) estimated for example 2,600 tonnes of N-export for the 1990-91 

season and only 140 tonnes for the following season (1991-92). Phosphorus loads 

showed a similar difference between these seasons: 432 tonnes for the first season 

and 12 tonnes for the next. During seasons with below average rainfall and low flow 

periods in general, nutrient concentrations in the Herbert are below ANZECC 1992 

target levels for protection of freshwater ecosystems and statutory levels for drinking 

water (Bramley and Johnson, 1996). 

One cyclone event has been very well documented for the Herbert River 

Catchment. Cyclone Sadie in 1994 exported at least 600 t N, 65 t P and 100,000 t 

suspended sediment from the catchment over a period of six and a half days 

(Mitchell et al., 1997). 85 % of this occurred over just two days. Thus such events can 

produce as much or even more sediment and nutrient export in just a couple of days 

as produced in a whole year without cyclonic activity. Half of the N and 80% of the 

P in the runoff from cyclone Sadie was transported in particulate form. 

Water samples taken from various locations within the Lower Herbert River 

Catchment mainly during low-flow or recession phases showed lower particulate 

fractions for both N (<25%) and P (<45%) (Bramley and Roth, 2002). The same 

study also showed how in the Lower Herbert River Catchment sediment as well as 

nutrient concentrations are higher in streams draining sugarcane land compared with 

streams draining predominantly grazing and forestry areas. Earlier research had 

already pointed out that nutrient concentrations in the Herbert River increase 

between the upstream end of the floodplain at Abergowrie and the downstream end 

near Ingham (Bramley and Johnson, 1996; Furnas and Mitchell, 2001 ). 

2.7 The Ripple Creek Sub-catchment 

Most of the research described in this thesis has been performed in the Ripple Creek 

Catchment, a sub-catchment of the Lower Herbert River (Figure 2.1). The tributary 

joins the main river approximately 7 km northeast of Ingham. Ripple Creek rises in 

the Mount Leach Range, which forms the southeastern end of the Cardwell range on 

the north side of the Herbert River floodplain. The watershed of Mount Leach Range 

is the northern boundary of the Ripple Creek Catchment. The north part of the sub­

catchment consists of rolling to steep mountains. The south part is a segment of the 

Herbert River alluvial plain. The boundary between the alluvial plain and footslopes 
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of the mountains causes a distinct change in topography. Along this border, the 

alluvial plain is locally covered with alluvial or colluvial fans derived from the 

mountains. The low-lying part of the Ripple Creek Catchment lies in a bend of the 

Herbert River. The levees of the river form the boundaries on the southwest, south, 

southeast and east side of the catchment. 

The Ripple Creek drainage system 

From its origin, Ripple Creek flows down the mountains towards the south until it 

reaches the alluvial plain. Here it turns to the east and continues in this direction until 

it joins with the Herbert River. Several tributary creeks drain the slopes of Mount 

Leach Range and join Ripple Creek on its way down. The low-lying part of the 

catchment is drained by a largely man-made drainage system. Ripple Drain is the 

main drain in this system. It drains the area of alluvial plain bounded by Hawkins 

Creek in the West and Ripple Creek in the east. Ripple Drain starts at the foot of 

mount Hawkins about 500 m southeast from the point where Hawkins Creek flows 

from the hill slopes onto the floodplain. At its origin Ripple Drain is fed with water 

from an upland creek. From here it flows in an easterly direction across the plains, 

n1ore or less parallel to the Herbert River, until it meets Ripple Creek. On its way 

down numerous smaller drains join the main drain. Some of these are fed by creeks 

that drain the mountain slopes. 

Land use 

The area of cultivated land in the Ripple Creek Catchment (approx. 45 %) is 

restricted to the alluvial plain (Figure 2.6). Almost all agriculture is sugarcane 

cultivation. The steeper mountain slopes are forested with mainly Eucalypt 

dominated vegetation and strips of rainforest along creek incisions. Most of the 

forested upland is National Park. Only in a few areas along Ripple Creek low input 

grazing under native vegetation occurs. 
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Figure 2.5: Topographic map of the Ripple Creek Catchment. 

, 

~ . 

N 

A 
0 

l<ilom eters 

'.j ,.., 
~ 

~ 
& 
~ 

~ 
~ ,,_ _ 
t 
~ 
"'I 
r:, 
~ 

R' 
;::s-. 
~ 
~ 
;::s 
,-..,. .. 
~ 
V) 

~-
f} 
V) 
r:, 
"'I 

-6 " ,-..,. 
c3 · 
;::s 



The Herbert River Catchment: a site description 

Ripple Drain 
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Figure 2.6: Land-use in the Ripple Creek Catchment (after Johnson and Murray, 1997). 

Soils 

Several soil maps have been created for the Herbert River Catchment or parts of the 

catchment (Johnson and Murray, 1997). The Ripple Creek was mapped at a scale of 

1:100,000 by Wilson and Baker (1990) and at 1:8 ,000 by Wood (1984). Figure 2.7 

shows the soils in the catchment according to the classification by Wood . Both 

surveys only cover the catchment lowlands; no survey has been done in the forested 

upland. The soil types in the Ripple Creek Catchment are very similar to soils 

elsewhere in the Lower Herbert River Catchment and are closely related to the 

geomorphology of the area. 

Soils in the alluvial fans at the footslopes of the granitic and acid volcanic hills 

contain fine gravel or sand throughout the profile. In the upper part of the alluvial 

fans the soils are generally red , while grey colours occur at the down slope end of the 

fans. The following soil type occurs in the alluvial fans of the study area (summary 

from Wilson and Baker (1990): 

Rungoo (Rg): 0.05-0.15 m dark loamy sand to light sandy clay loam Al horizon over 

conspicuously bleached A2 horizon to 0.4-0.75 mover acid mottled grey, yellow-brown to yellow 

fine gravelly sandy clay to medium clay B horizon to 1.2+ m. 
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Wood (1984) subdivides this soil type into 'grey sand', 'red sands' and 'red loams' for 
' the Ripple Creek Catchment. 

In the sediment that is derived from the creeks that drain the local hillslopes creek 

alluvial soils have formed. These soils are generally less fertile than the soils that 

have formed in the alluvial material derived from the river. The soil texture ranges 

from sandy in the deposits from minor prior streams to loamy in levee and terrace 

deposits and larger prior streams, and finer material further away from the prior 

drainage lines. The following soil is an example of the creek alluvial soil that is 

found in the study area (summary from Wilson and Baker, 1990): 

Ripple ( Rp ): 0.1-0.3 m dark loam fine sandy to clay loam, fine sandy Al horizon over 

conspicuously bleached A2 horizon to 0.3-0. 7 m over acid strongly mottled grey to grey-brown 

medium to heavy clay B horizon to 1.2+ m. 

Most of this soil type is for the Ripple Creek Catchment classified by Wood ( 1984) 

as 'clays'. 

The alluvial deposits derived from the Herbert River in the Ripple Creek 

Catchment are relatively young compared to the deposits further south in the Lower 

Herbert River Catchment. The soils in the river alluvium that occur in the Ripple 

Creek Catchment mainly have a silty clay, clay or clay loam texture. The following 

three soils are among the most common in the Ripple Creek Catchment and occur in 

the study area (summary from Wilson and Baker, 1990): 

Toobanna (Tb): 0.1-0.3 m dark to grey-brown loam fine sandy to clay loam fine sandy Al 

horizon over conspicuously bleached A2 horizon to 0.3-0.8 m over acid to alkaline mottled 

yellow-brown to brown medium to heavy clay B horizon to 0.6-1.2 mover acid to alkaline mottled 

grey to yellow-brown sand to sandy clay loam D horizon to 1.2+ m. 

Hamleigh (Hl): 0.1-0.2 m dark to grey-brown hardsetting silty clay to medium clay Al horizon 

over sporadically bleached A2 horizon to 0.35 mover acid to alkaline mottled grey to grey brown 

medium to heavy clay B horizon to 1.2+ m. 

Leach (Lh): 0.15-0.2 m dark to grey-brown light medium to medium clay A horizon over 

acid strongly mottled grey to grey-brown medium to heavy clay B horizon to 1.2+ m. 

Wood (1984) classifies these soils mainly as 'silty clays' and 'terrace silt loam'. 
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Figure 2.7: Soils in the Ripple Creek Catchment (after Wood, 1984). 
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The Herbert River Catchment: a site description 

Pabnas' site 

Research in the Ripple Creek Catchment has been concentrated around a location 

locally known as 'Palmas' site' (see Figure 2.5) . This site was equipped with a 

weather station and two Parshall flumes that each drain ·a one hectare sugarcane field. 

Figure 2.8 shows the daily rainfall measured at Palmas ' site during two field seasons 

of the sediment budget project. Both seasons had above average rainfall. The total 

rainfall between 1 October 1999 and 31 May 2000 was approximately 2950 mm. 

Rainfall over the same period in the 2000-01 season was approximately 2210 mm. 

Average yearly rainfall for the Palmas' site is around 2000 mm. 
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Figure 2.8: Daily rainfall (mm) recorded by the weather station at Palmas' site in the Ripple Creek 
Catchment. The figures show data for two wet seasons: November 1999 - May 2000 and December 

2000 - May 2001. 
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PART II 

COMPOSITION OF A SEDIMENT BUDGET FOR 

LOW-LYING SUGARCANE LAND 

OUTLINE 

Comparison of sediment sources can be done by means of a sediment budget 
calculation. This approach is applied in this part of the thesis, to identify, quantify, 
and compare potential sediment sources in the highly modified sugarcane production 
landscape. 

In chapter 3 the sediment budget concept is introduced and its advantages and 
limitations when applied in the sugarcane landscape are discussed. Chapter 4 
describes the development of the sediment budget for the cane land in the Ripple 
Creek Catchment, considering the limitations discussed in the previous chapter. This 
includes a discussion of the methods that can be used to quantify the sediment budget 
components. In chapters 5 to 9 the specific field measurement methods are explained 
that were used to quantify input into the sediment budget from various sediment 
sources. The chapters cover fields, headlands, drains and water furrows, input from 
forested upland, and catchment output. Each chapter includes the results of the 
measurements and a discussion. In chapter 10 the sediment budget equation is 
composed using the results obtained from the previous chapters. The reliability of the 
results from individual components and the total budget equation are discussed in 
Chapter 11. 
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Chapter 3 

The sediment budget approach 

3.1 Erosion and storage 

When sediment is transported through a landscape it is not on the move 

continuously. At the field scale soil particles detached by rainsplash or flowing water 

will be transported down slope by overland flow. When during transportation the 

overland flow conditions change, for example reduction of flow velocity due to a 

change in slope or reduction of overland flow volume due to infiltration, particles 

can be deposited. The deposited sediment remains stored in the landscape for 

variable lengths of time. Transport could continue at the onset of a new rainstorm, 

but the sediment could also become buried by additional material and subsequently 

fixed by vegetation. When the sediment is fixed it will only be remobilized after a 

longer period of time as a result of some major 'disturbance' (e.g. a change in land­

use or stream incision). 

The sequences of deposition and re-mobilization occur at different scales. In a 

large catchment, for example, sediment generated in steep headwaters can be 

deposited under the slower flow conditions downstream on the floodplain. Changes 

in the hydrology or in the sediment transport regime of the river could however 

convert this storage area into a sediment source. 

Trimble (1981, 1993, 1999) describes an example from the Coon Creek basin in 

the Driftless Area of Wisconsin, USA. In this catchment, improvement of 

agricultural land management led to a strong decrease in erosion of upland hillslopes, 

and consequently to a reduction of sediment supply into the catchment drainage 

system. Erosion of the tributary floodplains and upstream parts of the main river 

channel, that were initially important stores for the upland sediment, turned them into 

important sediment sources. In spite of the large changes in erosion and deposition 

processes in different parts of the catchment, it had remarkably little effect on the 
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sediment yield of the Coon Creek. During the studied period the low sediment yield 

of the catchment hardly changed. 

3.2 The sediment budget approach 

3.2.1 Analysing catchment systems 

Due to the variable patterns of storage and remobilization of sediment, catchment 

yield is usually smaller than the erosion rate in a catchment. The discrepancy can be 

described as the catchment Sediment Delivery Ratio (SDR) (Glymph, 1954): 

SDR = Catchment yield/ Gross catchment erosion. 

Both catchment yield and SDR are emergent properties of a catchment system, 

resulting from the interactions of many individual components. 

The movement of material through a river catchment can be thought of as a 

complex system; that is, a system with many components and agents that interact in 

many ways. It is well known that complex systems cannot be understood by 

examining their emergent properties alone (e.g. yield or SDR), and require a whole 

system perspective (De Boer and Ali, 2002; Wasson, 2002). Such a perspective is 

provided by sediment budgets. A sediment budget is an accounting of the various 

sediment sources in a catchment and the possibilities of storage when the sediment is 

routed through that catchment, which results in the catchment sediment yield (Reid 

and Dunne, 1996; Knighton, 1998). 

3.2.2 Sediment budget applications 

Leopold et al. (1966) and Dietrich and Dunne (1978) are some of the earliest authors 

of sediment budgets. Since then numerous researchers have applied this approach, 

which provides a convenient ineans of presenting and analyzing erosion, deposition 

and sediment yields of river catchments (Walling, 1999). The sediment budget 

approach has particular advantages for resource management purposes. The budget 

principal ensures that all components in a catchment sediment transport system are 

examined, so that important sediment fluxes can be identified and management 

appropriately targeted. In addition it can provide information about the interactions 

between components of the system and therefore an understanding of how the system 

will respond to changes (Trimble, 1993; Reid and Dunne, 1996). 
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3.2.3 Sediment budget presentation 
' A sediment budget is usually described by the following mass balance equation 

(Roberts and Church, 1986; Slaymaker, 1993; Brunton and Bryan, 2000): 

I- ~S = 0 

in which O is the output of sediment (the yield) from the studied catchment, I is the 

input of sediment from erosion sources and ~S is the change in amount of sediment 

stored in the catchment. Budget components I and ~S represent a range of sources 

and sinks depending on the processes acting in a particular catchment. More effective 

in presenting a sediment budget are the flux diagrams used by Trimble (1999) and 

Walling et al. (1998). This type of presentation (Figure 3.1) allows a quick 

assessment of the relative quantitative importance of sources and sinks, and can give 

some information on the spatial arrangement of sediment sources and sinks. 

Figure 3 .1 shows the sediment budgets for the study in Coon Creek by Trimble 

(1999). The figures show that erosion and deposition processes vary over three time 

periods as a result of the changes in land management. The budgets show how 

reduction of erosion by 7 5 % in the catchment upland had no effect on the catchment 

yield, but was compensated by changes in erosion and storage processes elsewhere in 

the catchment. 

3.3 Sediment budget limitations 

3.3.1 Variation in time and space 

The example of the Coon Creek catchment illustrates how sediment budgets can vary 

in time. Similarly, budgets will vary for different positions in space and at different 

spatial scales due to variation in environmental conditions. A sub-catchment of a 

river is likely to have a sediment budget that is different from that of the whole river 

system. For example, an upland sub-catchment could have relatively steep slopes and 

only a poorly developed floodplain. This will result in relatively little deposition 

within the sub-catchment compared to the whole river system. 

Sediment budgets can also be applied to only a part of a river catchment. Roberts 

and Church (1986), for example, used a budget equation to describe erosion and 

storage along a single river stretch, and Brunton and Bryan (2000), and Oostwoud 

Wijdenes and Bryan (2001) limited their budget to describe geomorphic processes in 

34 



The sediment budget approach 

an individual gully. The budgets of sub-systems can be combined to obtain a budget 

that describes the sediment transport in a whole catchment (Sutherland and Rorke, 

1991). 
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Figure 3.1: Sediment budgets for Coon Creek, a 360 km2 catchment in Wisconsin, USA, over the 

period 1853-1993. Numbers are annual averages in 103 Mg year·1
• All values are direct measurements 

except "Net upland sheeet and rill erosion," which is the sum of all sinks and the efflux minus the 

measured sources. The lower main valley and tibutaries are sediment sinks, whereas the upper main 

valley is a sediment source' (Trimble, 1999, modified from Trimble, 1981). 

3.3.2 Budget balance and uncertainty 

Although providing a useful framework to document and analyse sediment source, 

sink, transport and yield, the difficulty of quantifying sediment generated by different 

sources or stored in sediment sinks is often considerable. However, several authors 
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applied the sediment mass balance equation to obtain estimates of the magnitude of 

either unquantified or hard to measure budget components. Lehre (1982) for example 

obtains estimates of sediment storage on hillslopes by subtracting measured amounts 

of mobilized sediment and sediment input to the river channel. In the same way he 

obtains estimates of sediment storage in the riverbank and bed from input into the 

river channel and the sediment yield of the catchment. These residuals are for some 

years more than 80% of the total budget. Rondeau et al. (2000) use along-river 

differences of suspended sediment in the St. Lawrence River, Canada, to estimate the 

relative input from bank erosion, which amount to 65% of the total suspended load. 

Kem and Westrich (1997) also attribute the lack of balance in their budget to 

'erosion' in the river reach. 

Assumptions about the imbalance of sediment budgets are usually based on field 

experience and in many cases the researchers will be correct, but rarely is the 

magnitude of possible errors known. Kondolf and Matthew (1991) give several more 

examples of authors who ascribe the imbalance in their sediment budget to 

unmeasured budget components. They point out that a detailed error analysis is 

important in budgets that use such residual terms, because the residual will also 

include the net error of other budget terms. For the same reason they argue that 

budget error can not necessarily be considered equal to the sediment budget 

imbalance. The imbalance may underestimate actual sediment budget errors if they 

include compensating positive and negative errors. Recently more attempts have 

been made to quantify errors involved in budget studies; to design methods to test 

potential errors (Hill et al., 1998); or to provide more detailed discussions of the 

possible sources of budget imbalance, as done by Loughran et al. (1992) in the first 

sediment budget for an Australian catchment. 

Despite the large uncertainties involved in sediment budget studies, they should 

not discourage the development of sediment budgets; not even budgets that obtain 

one of their terms by subtraction. According to Kondolf and Matthews (1991) 

'Budgets still give valuable information on the magnitude of erosion processes and 

the transport processes involved. And even budgets based on incomplete information 

can give an indication of the relative importance of different sources and linkages'. 
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3.3.3 Summary 
' 

The previous overview of the sediment budget concept and its applications shows 

that it provides a useful approach to study complex catchment systems. In resource 

management, this type of approach is particularly necessary in order to make correct 

decisions. However, it becomes clear that several things need to be considered when 

developing a sediment budget: 

Budget balance: a sediment budget should preferably be closed by measuring all 

sources and sinks. 

Spatial variability: Spatial variability could cause misleading budget results. 

Measured quantities for both sides of the budget equation should come from the 

same area or catchment. 

Temporal variability. A budget will only apply to the time over which the 

components were estimated. All components should be quantified for the same 

time period. 

Accuracy and uncertainty: To make budget results most useful, the most accurate 

methods have to be chosen to quantify the budget components. Even a closed 

budget can obscure errors by cancelling positive and negative errors. To improve 

the value of the budget an estimate of uncertainty should be provided with the 

budget. 

3.4 Considerations for a sediment budget in low-lying cane land 

The description of low-lying cane land in the introduction illustrated how 

canefarmers created several typical landscape elements. Viewed from a geomorphic 

perspective each of these elements has the potential to be either a source or store of 

sediment. Knowledge of the magnitude of both the erosion and deposition capacity 

of each landscape element is important for the management of sugarcane land. 

Besides reduction of erosion from sources in the landscape, the trapping capacity of 

other landscape elements could be managed to reduce sediment concentrations in the 

cane land runoff. 

A sediment budget study can aid soil management in sugarcane land by showing 

the relative importance of the various landscape elements as sediment source and the 

importance of deposition of the material elsewhere in the catchment. The budget 
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balance can confirm adequate representation of processes in the sugarcane landscape 

or reveal unexpected sources as well as budget errors. 

Balancing the budget equation 

To create a balanced budget all sources and sinks in- the studied area have to be 

known. In the case of low-lying cane land the important sources and sinks are not 

clear, because prior research has not been done. So, the a priori composition of an 

equation that includes only the quantitatively significant components for erosion 

input and sediment storage is not possible. The budget has to be composed in a 

different way. Instead, all typical landscape elements that make up the sugarcane 

landscape will initially become the components of the sediment budget. From what is 

known from the literature and field observations, all of these elements have the 

potential to be either a source or a sink of sediment, and in many cases both. Thus , 

erosion and deposition processes have to be quantified separately for each individual 

element and are separately included in the budget equation. The general budget 

equation is for this study therefore modified to: 

Equation 3.1 

I-S = 0 

1n which I is the amount of sediment input into the drainage system from each 

landscape element, S is the amount of deposition within each landscape element and 

0 is the total output of sediment from the studied area. Figure 3.2 illustrates the 

initial budget. The question marks indicate the information that is needed to establish 

the budget. 

Because there is not sufficient knowledge of the erosion and deposition processes 

within each landscape element, the methods used to measure these processes should 

cover the total route of sediment transport through each element and record both 

erosion and deposition processes along that route. If this is not done properly, 

sources or sinks could remain unidentified and the budget will be unbalanced. In the 

drain landscape element, for example, material can erode from the drain bank and be 

directly transported to the catchment outlet by the drain water. It is however possible 

that the eroded material from the banks is deposited on the drain bed. The 

measurement method applied to estimate budget components I and S for landscape 
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element 'drain' must be able to distinguish and quantify both the erosion (from the 

banks) and subsequent deposition (on the drain bed). 
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From the study area 

Figure 3.2: Sediment budget outline for low-lying sugarcane land. 

Spatial variation 

Properties of each landscape element, such as soil type, slope or morphology will 

vary in space. Examples are differences in the shape of drains or changes in the slope 

of headlands. The variation in such properties will have an effect on the magnitude of 

erosion and deposition processes. Less vegetated headlands are for example likely to 

be more erodible. If spatial variation within landscape elements is not accounted for 

in the quantification of budget components, the relative importance of processes in 

landscape elements could be misinterpreted and compromise the budget results. 

Temporal variation 

It is important that the budget is calculated over a short, recent time period. If 

farmers want to take action now and stop the degradation of cane land they need to 

know where sediment is coming from under present conditions. An average of 

processes acting over periods longer than ten years back will not be useful, because 
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agricultural practices and environmental condition have changed a great deal over 

that period of time. Also, all components have to be quantified for the same period of 

time. If, for example, one side of the sediment budget equation consists of catchment 

output averaged over 10 years, the other side of the equation should not be derived 

from average erosion and deposition rates in drains over only the last two years. The 

density of the drainage systems might have increased considerably over ten years. 

Consequently the average discharge over 10 years does not reflect the current 

contribution of the drainage system to the sediment budget and will create a budget 

imbalance. 

Budget uncertainty 

If a closed budget can be produced, than it is likely that all budget components have 

been included. It is however not guaranteed that all components are quantified 

correctly. As Kondolf and Matthews (1991) showed, cancelling of error on both 

sides of the budget equation can result in an apparent balanced budget, and in the 

same way a budget might be unbalanced by errors on one side of the equation. To 

avoid this problem, the most accurate methods to estimate the components have to be 

chosen and an estimate of the uncertainty should be made to understand the possible 

effects of errors on the mass balance. 
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Chapter 4 

Development of the sediment budget and methods 

for quantification of the budget components 

4.1 Introduction 

The previous chapter showed how sediment budgets are a useful framework for 

studies of sediment sources and storage. When this framework is applied to study the 

sediment sources in low-lying cane land, there are a number of requirements and 

restrictions for the design of the budget and the measurement methods that can be 

used. This chapter describes the further development of the sediment budget for low­

lying cane land according to those requirements. It includes the definition of the 

budget area and reasons for the choice of methods used to quantify the budget 

components. 

4.2 Budget Area 

To obtain a closed budget, the area described by the budget has to be well defined. 

There should be no sediment transport across the boundaries of the budget area, 

unless these can be quantified. 

For practical reasons such as accessibility, equipment requirements and 

composition of the landscape ( e. g. land use and geomorphology), it was decided to 

develop a budget for only a part of the Ripple Creek Catchment. The chosen site 

consists of a 5.4 km2 sub-catchment in the westernmost comer of the Ripple Creek 

Catchment. For the purpose of this research the sub-catchment is called the Ripple 

Comer Catchment. Ripple Comer Catchment includes a distinct flat segment of the 

alluvial plain (3.2 km2
) bordered on the south side by the Herbert River and on the 

north side by the piedmont and hills of the Mount Leach Range. All of the lowland is 

in use for sugarcane cultivation apart from farm buildings and some fields with 

pumpkin and melon cultivation. The bordering mountain slopes are forested. 
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Development of the sediment budget 

The low-lying part of the study area is drained by a major drain, known as Ripple 

Drain, which discharges into Ripple Creek approximately 12 km east of the study 

area. Hawkins Creek Road forms the south boundary of the study area. The road is 

slightly elevated above the floodplain surface on a natural levee of the Herbert River. 

All water and sediment north of this road is expected to drain towards Ripple Drain. 

Water south of the road drains directly into the Herbert River via local drainage lines. 

On the northwest side of the study area, the Hawkins Creek Road approaches the 

mountain slopes to within 500 m. The catchment boundary leads from the road to the 

foot of the mountain approximately 250 m west from the point where Ripple Drain 

starts. From the foot of the mountain the boundary follows the watershed of the 

mountain slope towards the northeast. Water and sediment from the mountain slopes 

within the boundary are expected to drain towards the lowland, mostly via permanent 

creeks. At the foot of the mountain the creeks continue as straight artificial drains. 

The west boundary of the study area leads from Hawkins Creek Road, just east of 

Biasi's Road tum-off, more or less straight north to the foot of Mount Hawkins. The 

exact boundary on this side of the study area is determined by the drainage direction 

of the fields. Figure 2.5 and 4.1 show the boundaries of the sediment budget area in 

detail. 

4.3 Budget output and upland input components 

All drains and creeks within the study area eventually discharge into either Ripple or 

Prosser Drain. Prosser Drain starts about 3 km downstream from the origin of Ripple 

Drain, and is fed by one of the smaller upland creeks that drain the mountain slope 

between Post Creek and J ap Creek. Prosser Drain flows parallel to Ripple Drain 

about 500 m to the north. After 1 km the drain turns 90° to the south and joins up 

with Ripple Drain. The west boundary of the Ripple Comer Catchment is located 

500 m upstream from this point and thus intersects both drains. The drains form the 

outlet of the budget area. All water and sediment from the area is assumed to leave 

the catchment through the two drains, constituting the output component of the 

sediment budget. 

Figure 4.1 (next page): Aerial photo of the study area for the sediment budget study. The boundary of 

the cultivated lowland is indicated in red. 
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Development of the sediment budget 

Some sediment will be generated in the forested upland. This will be transported 
with the water that drains 'the mountain slopes and passes through the low-lying 

cultivated area before it reaches the outlet of the study area. Potential erosion and 

storage occurring within the forested upland is not relevant for this sediment budget, 

because it only aims at sources in the cultivated lowland. However, during transport 
to the outlet of the study area, sediment from the upland could get trapped and 

remain stored in the cultivated lowland and/or contribute to the output from the 

whole catchment. The forested upland therefore becomes an input component for the 
sediment budget. Only the net amount of sediment entering the cultivated lowland is 

part of the budget equation and has to be monitored. 

In most sediment budgets the output component is derived from stream gauging 
data over the budget period (e.g. Trimble, 1981; Sutherland and Rorke, 1991; 

Walling et al., 1998). In this budget the output can be obtained by monitoring the 
sediment load at the two outlet drains. Similarly the sediment input to the budget 
fro1n the forested upland can be obtained by monitoring the sediment load of upland 

creeks. Details of the procedures applied for the quantification of these budget 
components will be described and discussed in Chapter 5 and 6. 

4.4 Quantification of the sediment sources and sinks 

4.4.1 Introduction 

The most difficult task in the budget development is quantification of the remaining 
budget components. For all landscape elements within the cultivated lowland both 
sediment input and sediment storage have to be estimated. There are various methods 

to quantify erosion and deposition processes, and most have been applied to quantify 
components of sediment budgets. All methods however have their specific problems 
and limitations (Stocking, 1987; Loughran, 1990; Hudson, 1993). Loughran (1990) 
reviewed advances in the measurement of soil erosion. He concludes that of all 
techniques the caesium-137 (Cs-137) tracer method has shown the greatest potential. 
However, some methods are more suitable for certain situations than others. This 
section discusses the most commonly used methods and their appropriateness for the 
sediment budget constructed for the Ripple Creek Catchment. 
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4.4.2 Caesium-137 tracer 
' To comply with the requirements for the cane land sediment budget that were 

pointed out in Section 3 .4, the most accurate method should to be chosen to quantify 
the budget components, with the aim to avoid imbalance in the budget equation. 
Because many authors have argued that the use of the caesium tracer has a number of 
advantages that make it less sensitive to problems of spatial and temporal variation, 
and of measurement error, (Campbell et al., 1988; Loughran, 1990; Walling and He, 
1997; Collins et al., 2001), this method is considered first. 

Caesium was released into the atmosphere during nuclear testing from the end of 
World War II till the 1970s. The nuclide was distributed globally and deposited on 
the earth's surface as fallout both in precipitation and in dust, where it attached 
rapidly and strongly onto fine soil particles (Walling and Quine, 1992). Cs-137 is 
now used to trace redistribution of soil particles. An increase or decrease of total 
caesium in the soil profile compared to an undisturbed reference site allows 
identification of areas subject to deposition or erosion respectively (see Campbell et 

al., 1988 for method description). Alternatively the annual variation in input over the 
period since the first atomic tests in 1945 might be visible in a soil profile and 
provide an indication of soil accumulation rates (Walling and He, 1997). The 
difference between the Cs-13 7 content of sub-soil and surface soil is also used to 
'fingerprint' the source of sediment in river discharge. If the sediment in a river 
contains little Cs-137 this indicates it originates mostly from sub-surface sources, for 
example from bank erosion, while a high Cs-13 7 content indicates predominant 
surface sources (Wallbrink et al., 1996). 

Walling and Quine (1993) identified the following conceptual benefits of the Cs-
137 technique for studies of rates and patterns of erosion and deposition: 

The technique permits retrospective assessment of decadal erosion rates 

Both rates and patterns of soil redistribution may be quantitatively assessed 

- The estimated rates and patterns represent the sum of all erosive processes 

Estimated soil redistribution rates integrate extreme events 

The Cs-137 technique is also the only technique that can be used to make actual 
measurements of soil loss and redeposition quickly and efficiently (Ritchie and 
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Ritchie, 2000). The benefits make the technique especially useful for assessment of 

the often slow process of sheet erosion. It can also be used to estimate rates of 

accumulation and degradation in floodplain environments if measured in depositional 

profiles (Walling and He, 1997). 

Unfortunately some of these benefits make the caesium tracer unsuitable for use 

in a sediment budget for low-lying cane land. Firstly, the method averages soil 

redistribution over a 30-year time period. During that time the low-lying cane lands 

and sugarcane growing conditions have undergone major changes, so the caesium 

data can not provide information on the specific effects of recent changes and the 

present condition of cane land. Additionally it can not identify the origin of deposited 

sediment or the alternating occurrence of erosion and deposition. Using the Cs-13 7 

content in runoff to 'fingerprint' the sources is not useful for this budget either, 

because it can not provide information about the detailed spatial variability of 

different sources. Finally Quine (1999) describes how tillage causes soil 

redistribution in addition to movement by water. This lead to an unexpected 

discrepancy between results from a water erosion model and results of caesium 

measurements. As a result of various maintenance practices on the different 

landscape elements in the cane land, soil is moved around. This might have similar 

unexpected effects on caesium measurements and make the method unreliable for 

this application. 

4.4.3 Other indirect erosion measurement methods 

Because of their long half-life most other radionuclide tracers, such as lead-210 

(Blake et al., 1999), are not suitable for this particular budget either. Blake et al. 

(1999) investigated the use of beryllium-7 in a field in the UK. This tracer has a half­

life of only 53 days and can therefore give information on short-term erosion 

processes, for example sediment relocation over the duration of a single rainfall 

event. However the application of this short-term tracer has not been tested 

extensively, and its reliability is therefore uncertain. 

Many other types of tracers or fingerprinting techniques have been suggested to 

identify sediment sources and erosion rates . Some examples are geochemical 

fingerprinting (Peart and Walling, 1988; Walling et al. , 1998), variation in sediment 

colour along suspended sediment - discharge curves (Grimshaw and Lewin, 1980), 

or mechanical tracers (e.g. magnetic beads (Ventura Jr. et al., 2001). But, all 
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techniques appear to have some limitations that make them unsuitable in this 

particular application, mainly due to the extremely wet conditions in the study area 

or the lack of geochemical differences between the sources. 

Another promising method to study sediment sources on a floodplain is the use of 

optical-infrared remote sensing images (CSIRO Land and Water, 1998). Variation in 

the optical characteristics of water, which are visible from remotely sensed images 

can be related to variation in water quality variables such as turbidity. With this type 

of information, areas of high sediment concentration can be indicated and quantified. 

Several studies have already provided insight into the dynamics of water and 

sediment movement in floodplain environments (Mertes, 1997; Mertes, 2002). The 

particular advantage of this method is that is avoids problems with ground access. 

However, the high costs of images, the coarse spatial and irregular temporal 

resolution, and the common presence of a thick cloud cover during the wet season in 

North Queensland make this method impractical. 

4.4.4 Modelling 

Soil erosion models could be applied to predict ce11ain components of a sediment 

budget, but this also includes some problems. Firstly very little is known about 

erosion and deposition processes in tropical floodplain landscapes. Specific models 

for these conditions do not exist and the necessary values for model parameters of 

existing models are likely to lie outside the constraints under which these models 

were developed. 

Furthermore erosion prediction through models is generally not very accurate, 

which is inconvenient for a floodplain landscape where erosion rates are likely to be 

small. In combination with empirical data, which is necessary to validate and 

calibrate a model, self-cancelling of lager errors in either the model or the data, could 

occur. This is the same problem that is described for sediment budget equations in 

Section 3.3.2 (Kondolf and Matthews, 1991). Nearing et al. (1999), Nearing (2000), 

Brazier et al. (2001) and Zehe et al. (2001) encountered the problem in the validation 

of their model studies. Obviously models are not likely to provide the verifiable 

accuracy needed for the construction of a reliable sediment budget for low-lying 

sugarcane land. 
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4.4.5 Plot studies 
' 

Direct field measurement methods, such as erosion pins and runoff plots, are the 

most common way to estimate soil erosion and deposition. These methods are 

however not thought to be very reliable. They are sensitive to measurement error 

and, especially in the case of plot scale measurements, their coverage of spatial and 

temporal variability is limited. Additional operational difficulties and cost of the 

surveys, make direct measurements only practical in small basins (Walling, 1999). 

Clear advantages of direct field measurements are that they can be designed to 

separately quantify erosion and deposition processes. Also, observations made while 

carrying out the fieldwork can improve the understanding of the processes that are 

being measured. 

4.5 Budget composition 

The specific requirements of this study, to distinguish between many potential 

sediment sources as well as identifying both erosion and deposition processes, leave 

little choice in what method to use for quantification of the sediment budget 

components. Despite the problems involved with direct field measurements, it seems 

the only possible method to quantify different sediment sources as well as storage 

areas in the sugarcane landscape. 

In summary, the inadequacies of (plot scale) direct field measurements can be 

related to some of the problems that have to be considered in the development of a 

sediment budget (Chapter 3): 

Direct measurements are not thought be accurate, while accuracy of the budget 

components is important for the significance of the budget results. 

Especially plot scale measurements provide only limited representation of spatial 

variability, while insufficient representation of spatial variability for budget 

components can result in an unbalanced budget. 

Short-term measurements might not represent temporal variability. In the budget 

all components have to represent the same time period in order to achieve a 

sound budget. Temporal variation does not have to be a problem as long as all 

measurements provide a continuous record for the total budget period. However, 
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during interpretation of the budget results, attention has to be paid to the 

significance of the results beyond the budgeted period. 

These points have to be taken into account in the further design of the measurement 

techniques, and their consequences will be evaluated in the discussion of the budget 

results. 

Because all landscape elements are morphologically different and are affected by 

different erosion and sedimentation processes of different magnitudes, it is difficult 

to apply the same measurement design to all elements. Also for practical reasons one 

method will not suit all landscape elements. Chapter 7 to Chapter 9 separately 

discuss the measurements in landscape elements: headlands, fields, drains, and water 

furrows. 

The field study was performed during three wet-seasons: in the summer of 1998-

1999 (98-99), 1999-2000 (99-00), and 2000-2001 (00-01). During the 98-99 season 

only preliminary data were collected. In Chapter 10 the data from all budget 

components for the 99-00 and 00-01 season will be used to create a separate budget 

for each season. The budgets can be compared to obtain some indication of temporal 

(seasonal) variation. No measurements were performed during the winter seasons; 

the climate is too dry in winter for significant sediment movement. 

4.6 Particle size problems 

At the start of the project all researchers involved and people consulted were under 

the impression that most sediment in the catchment moves in suspension. Because 

bedload is also notoriously hard to measure (Gomez et al., 1990; Thomas and Lewis, 

1993; Gomez and Troutman, 1997), it was decided to restrict the budget to 

suspended load. The size fraction of material that moves in suspension was assumed 

to be particles <20 µm. This assumption was confirmed by a set of water samples 

taken from various locations in the catchment (see Appendix A). For all samples, less 

than 1 % of residue remained when passed through a 20 µm sieve. 

The decision to restrict the budget to suspended sediment has the following 

limitations: 

Some observations during the fieldwork period contradicted the original belief, 

and bedload does seem to be an important component in the sediment load. 
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Some of the applied methods provide information on the bulk of material eroding 

and depositing, including particles >20 µm. Such data have to be adjusted for 

sediment size. 

Erosion, deposition and sediment transport processes are particle size selective 

(Stone and Walling, 1997). Deposits can for example consist of different amounts 

of coarse material due to sorting. This complicates the adjustments of the budget 

calculations. 

In Chapter 10 will be described how particle size adjustments have been made in the 

budget calculation. Here the importance of bedload in the sediment transport system 

will also be further discussed on the basis of observations made during the fieldwork 

for this project. 
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Chapter 5 

Output from the Ripple Corner Catchment 

5.1 Introduction 

The Ripple Comer Catchment was described in Chapter 4, along with an account of 

how runoff leaves the catchment through two drains. The largest share of the water 

flows through the main Ripple Drain. A much smaller amount of water leaves 

through Prosser Drain. The total load of sediment transported by the water passing 

through both drains in a season makes up the output component for the sediment 

budget of the Ripple Comer Catchment. In this chapter the methods used to quantify 

the total sediment output from the drains during the 1999-2000 and 2000-2001 wet 

seasons are described. 

5.2 Water discharge estimation 

The sediment load of a stream is obtained by integrating sediment discharge over a 

defined time period. Instantaneous sediment discharge is calculated from the 

instantaneous water discharge and sediment concentration of the stream. These two 

variables can be measured in the field. 

A common way to measure water discharge is by installing a weir in the stream 

cross-section (Gregory and Walling, 1973). From the weir dimensions and the head 

of the water above the weir crest, stream flow velocity can be calculated. By this 

method only water depth at the weir has to be measured to obtain discharge. 

Alternatively several velocity measurements can be performed in the stream at 

different water stages. These measurements can be used to create a depth - discharge 

rating curve. The curve can be used in combination with continuous depth 

measurements to estimate water discharge. 

For various reasons neither of these methods was suitable to gauge the outlet 

drains of the Ripple Comer Catchment in the current project. The main problems are 

caused by the hydrology of the study area. Firstly, the tropical rainfall events 
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generate extremely large quantities of water. Especially in a large drain such as the 

Ripple Drain a very large weir structure would be needed to conduct the flood flows. 

Secondly, in the flat landscape of the study area backwater processes occur under 

flood conditions. 
-

Backwatering means that water flow in a certain direction is restricted by a larger 

body of water (stagnant or flowing) or a structural element (e.g. bridge, culvert). The 

flow velocity can be reduced or completely blocked by the obstructing element. 

When, in the case of two water bodies, the pressure difference between the bodies 

becomes too large, the flow of the smaller body might be reversed and fed by water 

from the larger body. This process is called 'reverse flow'. Under backwater and 

reverse flow conditions the flow velocity of a stream may not be directly related to 

water depth, which could affect the development of a reliable depth - discharge 

rating curve. This method is therefore not considered suitable to gauge the outlet 

drains of the Ripple Comer Catchment. 

Continuous velocity measurements 1n combination with continuous depth 

measurements can avoid the above problems with discharge estimation. Both outlet 

drains were therefore equipped with Unidata ST ARFLOW Ultrasonic Doppler 

meters. This type of velocity meter can measure reverse flow (Unidata, 1998). 

Discharge can be estimated directly from the flow velocity records and (wet) drain 

cross-sections based on continuous depth records. A single point velocity 

measurement might however not sufficiently represent velocity across the drain 

cross-section. In Section 5. 7 the application of the method to estimate discharge from 

the outlet drains will be discussed in more detail. 

5.3 Sediment concentration estimation 

A large amount of literature exists on the estimation of sediment concentration in 

streams to obtain sediment load values. Many techniques are proposed (NSW 

Environment Protection Authority, 1999). The suitability of a technique for a 

particular situation depends on practical factors (financial, logistic, etc.) and 

characteristics of the sampled stream (variability in the load, sediment size 

distribution, etc.). Because manual sampling for direct suspended solid concentration 

(SSC) estimates is prone to high uncertainty, a continuous automated method is 

favoured. 
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An often-proposed method uses continuous measurements of stream water 

turbidity to obtain sediment concentration data. Turbidity in streams is mainly caused 

by sediment in suspension, which can be measured with an optical device. In 

combination with a relationship between turbidity and SSC the turbidity meter can 

provide continuous sediment concentration records. However, in many cases it is not 

possible to establish a useful relationship between turbidity and SSC data or the 

relationship proves highly variable both in time and space (Gippel, 1995, 1989). 

The sediment budget for the Ripple Comer Catchment consists only of the 

sediment fraction <20 µm, which is suspected to move predominantly in suspension. 

If a relationship exists between turbidity and SSC in the Ripple Comer Catchment, 

continuous monitoring of the sediment concentration at the drain output should be 

possible using a turbidity probe. 

5.3.1 SSC - turbidity relationship for the Ripple Corner Catchment 

During the budget study many water samples have been taken from the catchment. 

Most of these samples were analysed in the lab for both turbidity and SSC. SSC was 

analysed by pouring the water samples through a 20 µm sieve and drying and 

weighing duplicate 50 ml sub-samples at 105 C0
• Turbidity was measured from sub­

samples with a Merck 'Turbiquant 1500' bench top turbidity meter. 

From the sampling date, water samples have been stored in a fridge for periods of 

time varying from weeks up to several months. To resuspend settled material each 

sample is vigorously shaken by hand for 2 minutes (measurement procedures added 

in Appendix D). 

The SSC and turbidity values of each sample are plotted in Figure 5 .1. Samples 

from each budget season are plotted separately. There appears to be little difference 

between the relationships for each season. Similarly, little difference was observed 

between samples from individual rainfall events , and between samples from different 

locations in the catchment. 

Both outlet drains were equipped with turbidity meters, which provided 

continuous turbidity records (see Section 5.4). The regression equation in Figure 5.1 

based on all available water samples can be used to estimate SSC from the 

continuous records of stream turbidity at the drain outlets: 
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Equation 5.1: 

SSC = 1.2 * Turbiquant tu~bidity + 23.3 (R2 = 0.9) 

Details of the SSC estimates from the outlet drains are described in Section 5.8. 
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Figure 5.1: Scatter diagram of turbidity versus SSC for all drain water samples taken in the Ripple 

Comer Catchment. Both budget seasons plotted separately. Also shown are linear regression curves 

for each data set. 

5.4 Location and equipment 

The gauging stations in Ripple and Prosser drain were installed at the catchment 

boundary (see Figure 4.1). The gauging equipment at both sites consists of a 

'Dataflow Pressure Sensor (0-5 m)' connected to a 'Dataflow 392' data logger; a 

'ST ARFLOW Ultrasonic Doppler Instrument' to measure water flow velocity, which 

has a built-in pressure transducer; and a 'Greenspan TSl00' turbidity meter, 

connected to a 'Campbell CRl0X' data logger. Thus velocity, turbidity and two sets 

of depth data are available for each outlet drain. 

In Ripple Drain the depth and turbidity sensors were connected to the concrete 

base of a wooden bridge that leads across the drain. A few meters upstream from the 

bridge a concrete block was dug into the drain bed at the deepest point in the drain. 

The Starflow velocity meter was fixed on top of the block, level with the surrounding 

drain bed surface. From the bridge across the Ripple Drain, a track leads north along 

the cane paddocks straight to Prosser Drain. There is no bridge over this drain; the 

track simply continues across the drain bed. The gauging station for Prosser Drain 

was located about 5 m downstream from the drain crossing. The turbidity and depth 
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sensor were held in place with three-sided metal stakes (so called 'star pickets') at the 

edge of the drain. The velocity meter is again connected to a concrete block in the 

deepest part of the drain. Attempts to make the sensor level to the drain bed failed. 

The sensor remained slightly above the surrounding drain bed (<5 cm). 

The track across Prosser Drain is only rarely used by traffic. So, increased 

turbidity as a result of disturbance of the drain bed by car wheels has not affected the 

observations. Water samples were always taken before crossing the drain. 

Figure 5.2 shows the profiles of the drain cross-sections at the Ripple and Prosser 

Drain gauging sites. The profiles were estimated with a Dumpy Level between 

marked points on the drain banks. 
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Figure 5.2: Profiles of cross-sections through Ripple Drain (a) and Prosser Drain (b) at gauging sites. 

5.5 Raw data availability 

All data sets collected at the gauging sites contain periods of missing data, mainly 

due to failure of the equipment. In the 00-01 season the gauging equipment was 

removed on 3/04/01, a month before the end of the budget period. In this section the 

availability of raw gauging data for the two budget periods, between 21/12/99 and 
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3/5/00 for the 99-00 wet season and between 7/12/00 and 15/5/01 for the 00-01 wet 
' season, is reviewed. The significance of data gaps is assessed and whenever possible 

they are filled using original data. The quality of the raw data and the methods used 

to calculate the final loads when the original gauging data are not adequate, are also 

discussed in subsequent sections. 

5.5.1 Ripple Drain 99-00 

During the 1999-2000 wet season at both the Ripple and Prosser Drain gauging sites, 

Starflow and Dataflow depth and velocity data were logged every 5 minutes and 

Greenspan turbidity data every 30 minutes. 

An overview of gaps in the depth data sets of Ripple Drain for the 1999-2000 

season is listed in Table 5 .1 and graphically presented in Appendix C. In addition to 

the listed gaps, the data also includes a number of smaller gaps with duration of less 

than an hour. Such gaps are ignored, because they become unimportant during later 

stages of the load calculations and will not affect the final budget figures. 

The gap between 5/04/00 12: 15 and 6/04/00 12:25 is probably a leap in the 

timestamps. Data before this gap shows peaks in depth around 12 hours before a 

rainstorm, the same length of time as the missing data period. The depth data series 

from the end of the previous gap (28/03/00 10:40) is therefore moved forward in 

time until the gap is filled. The resulting graph appears more realistic. As a result of 

the data adjustment, the gap that starts 22/03/00 12:55 now continues till 29/03/00 

10:45. 

Table 5.1: Data availability Ripple Drain 1999-2000. 

Data:flow depth data Starflow depth and velocity data Starflow and Data:flow combined 
Start I End Start I End Start • End 

4/02/00 20: 15 15/02/00 12:30 17/12/99 14:45 13/01/00 0:55 • 17/12/99 15:00 22/03/00 12:55 
16/02/00 12:20 22/03/00 12:55 13/01/00 10:25 10/02/00 2:50 28/03/00 10:40 5/04/00 12: 15 
28/03/00 10:40 5/04/00 12:15 15/02/00 12:30 3/03/00 4:30 6/04/00 12:25 21/07/00 10:55 

6/04/00 12:25 l 7 /06/00 11 :40 8/03/00 17:30 9/03/00 14:30 • 
• 

i 
10/03/00 1 :35 ! 19/03/00 17 :50 

................... 
23/04/00 6:05 I 20/05/00 8: 10 

············ i 7 /06/00 11 :55 10/06/00 9:05 • 

Data records from corresponding periods in the 99-00 Starflow and Dataflow 

depth data sets are plotted in Figure 5.3. A linear regression equation for Dataflow 

and Starflow values is used to estimate Starflow depth values from the Dataflow data 

and create one more complete depth data set for the season: 

Starflow depth= 1.0 * Dataflow depth+ 266 (R2 = 1.0) 
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Two gaps remain after combining the two data sets (Table 5.1). To fill these 

remaining gaps linear interpolation of the adjacent data is sufficient, because no 

rainfall was recorded over these periods. 
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Figure 5.3: Scatter diagram of Ripple Drain Dataflow depth data versus Starflow depth data and a 

linear regression curve for 99-00 season. 

Gaps in the 1999-2000 Starflow velocity data correspond with those in the 

Starflow depth data. Greenspan turbidity data are missing for two short time periods, 

during one rainfall event (see Table 5.2). Linear interpolation might not be sufficient 

for these gaps. Alternative possibilities to fill the gaps are described in Section 5.9. 

Table 5.2: Availability Greenspan turbidity data Ripple Drain 99-00. 

Greenspan turbidity data 
Start • End 

20/12/99 16:45 • 3/04/00 12: 15 
3/04/00 18:45 • 3/04/00 20:45 

I······························································································<····························································································· 

6/04/00 12:30 • 7 /06/00 11: 15 

5.5.2 Ripple Drain 00-01 

In the 2000-2001 season all sensors at both gauging sites were logged every 15 

minutes. The data from the Ripple Drain Starflow sensor contain a number of 

duplicate timestamps, but they have little effect on the overall data recording. 

Furthermore there is only one missing data period in the 2000-2001 data sets. This 

period is the same for all depth, velocity and turbidity data. Table 5 .3 lists the 

availability of the 2000-2001 data. 
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The only gap in the 00-01 data is filled by linear interpolation of the neighbouring 

data. Some rain fell over the period of missing data, but this was only a small amount 

and it is not thought to have caused a significantly higher sediment load. 

Table 5.3: Availability of Starflow velocity and depth, and Greenspan turbidity data 2000-2001. 

Starflow velocity and depth, and 
Greenspan turbidity data 
Start • End 

1/12/00 13:30 i 29/01/01 14:00 
2/02/01 12:30 i 3/04/01 11:00 

5.5.3 Prosser Drain 99-00 

The Dataflow data from Prosser Drain for the 99-00 season is completely discarded. 

The data set contains too many gaps and periods with faulty records. The remaining 

useful data do not add any extra information to the more complete Starflow depth 

data set. The gaps in the Starflow depth and velocity data sets are listed in Table 5 .4 

(see also Appendix C). The 99-00 turbidity data contains only one gap, which is also 

shown in Table 5.4. 

Table 5.4: Availability Starflow depth and velocity data and Greenspan turbidity data Prosser Drain 

99-00. 

Starflow depth data Starflow velocity data Greenspan turbidity data 
Start : End Start I End Start : End 
20/12/99 18:30 : 22/03/00 12:00 20/12/99 18:30 27/02/00 17:25 20/12/99 18:15 10/03/00 20:15 

17/04/00 6:00 • 21/07/00 10:40 28/02/00 22:35 3/03/00 20:20 • 22/03/00 12:45 16/07 /00 15: 15 

• 

8/03/00 16:35 19/03/00 20:10 . 
• 

• 

; 17 /04/00 6:00 28/04/00 15:35 · 

• 
1/05/00 17:35 21/07/00 10:40 • 

• 

5.5.4 Prosser Drain 00-01 

Like the Ripple Drain data for this season, the Prosser Drain data sets all have one 

missing data period at the end of January (see Table 5.5). 

Table 5.5: Availability Starflow velocity and depth and Greenspan turbidity data 2000-2001. 

Starflow velocity and depth, and 
Greenspan turbidity data 
Start l End 

1/12/00 14:30 • 29/01/01 13:45 
2/02/01 12: 15 • 3/04/01 0:30 

5.6 Water depth and drain cross-sectional areas 

For those periods covered by the data records, the availability of velocity data allows 

easy calculation of discharges by multiplying the velocity with the (wet) cross-
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sectional areas of gauging sites. The cross-sectional areas of the Ripple and Prosser 

Drain gauging sites are estimated for the recorded water depth values with a 'water 

depth-cross-sectional area' function. The function is constructed from the drain 

cross-section profiles of the gauging sites (Figure 5 .2). Cross-sectional surface areas 

are calculated from each of the profiles for 6 water depths. Fourth order polynomials 

are fit through the points calculated for each site. This type of function is chosen 

because it perfectly fits the data points (R2 = 1.0). The functions will only be used to 

interpolate between existing data points, not for further extrapolation of the data. 

To relate the depth recorded by the pressure transducers to the drain profiles and 

their depth-cross-sectional area functions, manual measurements of the water level 

were taken from reference points close to the gauging sites. The heights of these 

reference points were included in the drain profile survey. The transducer depth 

record at the time of the manual measurement can therefore be related to a water 

depth and cross-sectional area in the drain profile. In some cases the manual 

measurements were not documented in enough detail, so some assumptions had to be 

made for the transformation of the transducer data. The next sections describe these 

assumptions and the transformations that were applied to the raw depth data for each 

drain and each season. 

5.6.1 Depth adjustments Ripple Drain 99-00 

The reference point chosen for Ripple Drain is the bridge to which the gauging 

devices were connected. During the 99-00 season 7 manual water depth 

measurements were taken from this point. Figure 5 .4 shows the regression curves for 

the manual depth measurements and the records from both pressure transducer types. 

The 'manual depth-Starflow' regression equation is used to transform the Starflow 

depth records to depth values that can be used to calculate drain cross-sectional 

areas: 

Equation 5.2 

Manual depth = 1.1 *Starflow depth - 0 .2 
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Figure 5.4: Scatter diagram of Ripple Drain transducer depth (Starflow and Dataflow) versus manual 

depth at the gauging site for both budget seasons. Regression curves for Starflow depth data (99-00 

data thick, 0 0-0ldata thin). 

5.6.2 Depth adjustments Ripple Drain 00-01 

During the 00-01 season only three manual measurements were taken and only 

Starflow data records exist, but documentation of the measurements is reliable and 

the manual depth-Starflow depth regression curve closely fits a 1: 1 line. Because the 

regression of only three points is not significant, the decision was made to average 

the difference between the manual measurements and the Starflow measurements 

and add this average to all Starflow data. Table 5 .6 shows the differences between all 

manual measurements and the corresponding Starflow records and the average of the 

differences. The measurements are also plotted in Figure 5 .4. 

Table 5.6: 00-01 Ripple Drain manual depth measurements and corresponding Starflow records. 

Measurement date Manual de th (m) Starflow de th (m) Difference (m) 
_ , _____ }!Q!{Q} !?:QQ ,,, ·- __ g} ______ _ _____ 0.2 _________ ,., .. , ..... _,,_,.... _QJ ---

16/02/01 12:00 1.3 1.2 0.1 -------------·--··-···-------------------------------------·----· -------------------····- ---------·---------------·-····---· ' «-------···""'"··------·----------- -- ·····------------- ·-----···. ·····--··-··---~--· 
26/02/01 12:25 0.4 0.3 0.1 

0.1 

5.6.3 Depth adjustments Prosser Drain 99-00 and 00-01 

There is no obvious fixed reference point in the vicinity of the Prosser drain gauging 

site, therefore various different reference points were used. However, the 
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documentation of the reference points was inadequate for both gauged seasons. The 

reliability of the data from the Starllow sensor can not be checked either, because 

most of the matching Dataflow records are missing due to failure of the data logger. 

Three of the 10 manual measurements are clearly documented, one for the 99-00 

season and two for the 00-01 season. From the Ripple Drain depth calibration it 

appears that depth generated from the transducers is more or less proportional to the 

true water depth, and that the transducer data only need adjustment with a constant 

for the height of the sensor in the drain profile. 

The only documented manual measurement in the 99-00 season (3/01/00) is taken 

from the concrete block on which the Starflow sensor is fixed. This measurement 

reads 33 cm deeper than the measurement by the Starflow sensor. One of the 

measurements is obviously incorrect. Adjusting all Starflow depth data by adding the 

33 cm results in low flow depth greater than 30 cm. It is known from field 

observations that this is too deep. Thus, 'calibration' of the 99-00 Starflow data with 

this one manual measurement is not possible. 

The 00-01 data have a similar problem. Of the three 'calibration' measurements 

from the 00-01 season, two (3/01/01 and 16/02/01) are sufficiently documented to 

relate them to the drain profile. A line drawn through the two points has a 1: 1 slope, 

but the more than 40 cm difference in depth between the manual and the Starllow 

measurement is again not correct. 

Table 5.7: 00-01 Prosser Drain manual depth measurements and corresponding Starflow records. 

Measurement date Manual depth (m) I Starflow depth (m) 
3/01/01 12:39 0.6 

• 
0.1 

16/02/01 12:30 1.0 
• 

0.5 
·········· ···················································· 

26/02/01 12:45 0.3 I 0.4 

Since the Starflow sensors are located almost level with the bed in the deepest part 

of the drains, depth records are expected to lie close to the true depth values. Only 

some deviation may be expected from either a slight elevation of the block above the 

drain bed or from errors in the profile survey. The two seasons of Ripple Drain data 

required a +0.16 m and a -0.09 m adjustment for the sensor depth. Based on these 

findings the manual measurements taken in the Prosser Drain were ignored and it 

was assumed that the Starflow records give the best representation with an error 

based on the variation in the Ripple Drain data. Because Prosser Drain is a much 

smaller drain, this variation will have a greater impact on the total load calculation 
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The concrete block with the Starflow meter was not level with the bed of the 

Prosser Drain. Section 5.10 on load calculations will discuss the effect of adding an 

extra 0.05 m to the depth records to compensate for the elevation of the sensor. 

-

The adjusted depth curves from both Ripple Drain and Prosser Drain for each season 

are shown in Appendices F (1-6). 

5.7 Water flow velocity 

The Starflow meters that were installed at the outlet drains record the average flow 

velocity of the water column above the sensor. The generated data in general appears 

very noisy (see velocity curves in Appendices F (1,3 and 5). It is not clear whether 

this is the result of a sensor problem or whether it reflects natural variability in the 

drain flow velocity. The Starflow manual (Unidata, 1998) mentions the occurrence of 

signal noise, but only when flow velocities become very low, which is not likely to 

be the problem. 

The 99-00 velocity data from the Ripple Drain contains a large number of gaps 

but it does not show any unexpected behaviour. The 00-01 data contains only one 

gap, but certain parts of the data appear to be unreliable. There are for example some 

periods of up to 18 hours during the flood peak between 16/02/01 and 20/02/01 when 

the velocity records do not change. Also the highest velocities measured in the 00-01 

season are over 3 m s-1 compared to a maximum of 1.8 m s- 1 in the previous season. 

In general the Prosser Drain data appear noisier than the Ripple Drain velocity 

data. The higher short-term variation in the Prosser Drain data sets is probably due to 

the much shallower and more responsive flow in this drain. There do not seem to be 

any problems with the 99-00 data set. Flow velocity increases with increasing water 

depth during a rainfall event, as expected. Only towards the end of the season ( after 

15 May 2000) the flow velocity becomes zero in between rainfall events. This 

probably occurs when the water column above the Starflow sensor becomes either 

too shallow or disappears. The 00-01 velocity data appear different. There is some 

increase in velocity at the onset of rainstorms , but the increase is not as pronounced 

as during the previous season, and the noise in the data seems to overrule the event 

based variation. 
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These general observations indicate that some of the velocity data might not be 

reliable. If there are errors iri the Starflow velocity data, this could mean that there 

are also errors in the Starflow depth data. 

5.7 .1 Velocity calibration 

A few times during the two gauged seasons velocity measurements were taken with a 

hand-held 'OTI C2 current meter SN15721' (the pulse output of the device was 

captured using a PSION workabout). Table 5.8 compares the manual velocity 

estimates in the deepest part of the drain with the Starflow values recorded at the 

same time. At all measurement dates the Starflow velocity curves consist of a broad 

band of small scale noise with a width of about 0.1 m s-1
. Maximum changes in the 

noise can occur within half an hour. Considering this amount of variation in the 

Starflow velocity data, the manual measurements seem to correspond reasonably 

well and no calibration/transformation needs to be applied. The only measurement 

that does show a considerable difference is the one taken in Ripple Drain at 16/02/01. 

The Starflow records around this date have earlier been identified as unreliable. 

5.7.2 Velocity distribution 

Due to friction of the water along the drain bed and banks, flow velocity is not 

constant throughout a drain cross-section. The Starflow meter in each drain is located 

in the deepest part of the profile where the friction is lowest and flow velocities are 

highest. Therefore discharge calculated directly from raw Starflow data is likely to 

overestimate true flow. 

Table 5.8: 00-01 manual velocity measurements and corresponding Starflow records for Ripple Drain 

and Prosser Drain. 

Measurement Prosser Drain Ripple Drain 
date Manual velocity Starflow velocity Manual Starflow velocity 

(m s-1
) (m s-1

) velocity (m s-1
) (m s-1

) 

18/02/00 0.4 0.5 
• 

0.8 0.6 ····--- ----···---···--···~·-"--··· ...... - ......... -.. -----------····· 
I 
- -·---···-·· - ... ·········- ...... ,. ··-··-- ....... ..... ··-········· --------- ·•· ······-·· 

8/03/00 0.1 n.a. 0.7 i n.a. 
17/03/00 0.5 0.4 1.4 ! 1.1 
03/01/01 0.3 0.3 0.4 i 0.3 .................................................... 

16/02/01 0.6 0.6 • 1.5 i 2.6 

To get an estimate of horizontal variation in flow velocity, manual measurements 

were done at several distances along the profile. Vertical variation was not measured; 

instead manual measurements were taken at 2/3 of the water depth, which is 
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generally considered to provide the average flow velocity of the water column 

(Shaw, 1983). 

The variation of the velocity in the drain cross-section at Ripple Drain gauging 

site is studied from four velocity measurement sessions with the hand-held meter. 
-

For each manual measurement, the ratio between manual and Starflow velocity 

values is calculated. All ratios are plotted against the drain width in Figure 5 .5. The 

graph shows that the manual measurements in the middle of the drain are always 

higher than those estimated by the Starflow meter. Only at the edges of the profile 

velocities are measured with the hand-held meter lower than the Starflow velocities. 

The information from the graph suggests that the Starflow data might not 

overestimate the true average velocity in the drain profiles. 

In the same way velocity ratios are calculated from the Prosser Drain data. They 

show a similar pattern as the Ripple Drain ratios, with values higher than one in the 

middle of the profile and less than a half towards the edges. Because of the smaller 

size of the drain the influence of friction along the drain banks is more important. In 

this drain the Starflow values probably overestimate the average flow velocity for the 

whole cross-sectional area. 

1.6 

1.4 

1.2 

1 

0 
0.8 +-' co 

a: 
0.6 

0.4 

0.2 

0 

.------------------------.- 1.8 

' 
\ ... 

'1 
\ 
i 

A 

A 

A A 

A 

A M mud,'S taflow 
ratio 1.6 

A ------------------- R if:+ie Drdn 
p-ofile 1.4 

1.2 

--- 1 
--E --..s::: 
+-' 
CL 

0.8 Q) 

\ 
\ 
\ 

A 
A 

0.6 

0.4 

0.2 
; 

- ---✓ ----------
-t------...-----~--""--,--=-'"'---------------.-------,--____,_ 0 
-2 0 2 4 6 

Distance from reference point (m) 

0 

Figure 5.5: Ratios between manual velocity measurements as observed along the Ripple Drain surface 

profile and Starflow velocity as measured in the deepest part of the drain. 

The most detailed velocity profile in Ripple Drain has only five points. This 

number of points does not give sufficient information on the width of the area 

affected by the friction of water along the drain bank. All other profiles consist of 
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Table 5.9: Manual velocity/Starflow velocity ratios for Ripple Drain. 

Measurement 
date 

18/02/00 

10/03/00 

17/03/00 
3/01/01 

. ·----·-··--· ·~······--·········---·····~•-·· 

Distance from Manual 
reference velocity 
point (m) (m s-1

) 

1.2 0.7 
2.2 0.8 

Starflow 
velocity 
(m s- 1

) 

0.6 
0.6 

manual/ 
Starflow ratio 

1.2 
1.4 ·······································!········································································,···························· 

3.2 
0.8 
1.2 
2 0.7 

-·······. ·······---

3 0.7 
3.8 0.3 
2.2 1.4 
1.5 0.2 
2.5 0.4 
3.5 0.1 ... ·• ······-·-···· . ··············••·•··· 

0.6 
•· .. -·--··· ..... -. ~--···· ·· 

0.6 
0.6 
0.6 
0.6 
0.6 

1.3 
......... •-'• ...... -.--.. ~--
0 .6 
1.2 
1.2 
1.1 
0.5 
1.2 
0.5 
1.5 

············ ··················· ···· ······,·························· 

0.2 
············-······ •••• •••••-••----•--~••••••W•" > 

Average 1.0 

even fewer points. It is also not known how representative the manual measurements 

are, because the reliability of the manual measurement device has not been tested and 

the exact vertical velocity distribution is not known. It is therefore impossible to 

develop a quantitative transformation of Starflow velocity records to account for 

velocity variation across the drain profiles. For the calculation of the sediment load 

Starflow records are assumed representative for the whole profile. This assumption is 

expected to be sufficient, because the average of the ratios in this profile is 1.0. 
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Figure 5.6: Ratios between manual velocity measurements as observed along the Prosser Drain 

surface profile and Starflow velocity as measured in the deepest part of the drain. Inaccurate 16/02/01 
estimates plotted separately. 
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Table 5.10: Manual velocity/Starflow velocity ratios for Prosser Drain 

Measurement Distance from Manual Starflow 
velocity 
(m s- 1

) 

manual/ 
Starflow ratio date reference velocity 

18/02/00 
8/03/00 

.v ••. 

17/03/00 
3/01/01 

16/02/01 * 

point (m) (m s- 1
) 

0.8 0.4 0.5 0.8 
·····························,······································ 

0.8 0.1 0.4 
1.2 0.1 0.3 0.4 ............ ~ 

0.8 0.5 0.4 1.2 
·•••••••••••···••••••••·•·••••••••••••••••••••••••••••·••••••••••·•❖••••··••••••••••••••••••••••••• 

0.5 0.1 0.3 0.4 
1 0.3 0.3 1.1 

" ..... -~--·· ······ •• v ••• " 

1.5 0.1 0.3 0.4 
-1 0.4 0.6 0.6 .,, ..... ,_._ .... , ....... 

0 0.4 0.6 0.6 
1 0.6 0.6 1.0 

•·········································································'······································ 

2 0.5 0.6 0.9 
······························,····································· 

3 0.4 0.6 0.6 
Average 0.7 

*Distance from reference point and depth at which velocity measurements were taken are 
rough estimates. They were not measured. The data are however thought to be 
representative of the field conditions observed at this date. 

Although the average ratio of 0.7 for the Prosser Drain (Table 5.10) suggests that 

the Starflow values overestimate the average flow velocity in the cross-sectional 

area, unadjusted Starflow records will be used in the load calculation. The average of 

the Manual/Starflow ratios is not based on sufficient data to represent the velocity 

distribution. To test the error that may be introduced this way, an additional load 

value based on reduced velocity values will be calculated in Section 5.10.2. 

5. 7 .3 Flood events 

The drain profiles are measured from the highest points of each drain bank. This is 

the point where the steep drain bank changes to a gentler sloping headland. During 

high flows water depths regularly exceed the maximum bank height. Under these 

conditions so called 'overbank flow' occurs. Excess water starts flowing across the 

headlands and often reaches into the cane fields. During field visits water levels of 

more than 1 metre were observed on the headlands along Ripple Drain. The drain 

profiles need to be extrapolated for such overbank flow periods. Initially the 

assumption is made that flow velocities of the water on the headlands and beyond are 

very small and the additional discharge from this excess water can be neglected. In 

this case the edges of the drain profiles are extrapolated vertically to provide cross-
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sectional areas for water depths deeper than the maximum drain bank heights (Figure 

5.7). 
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Figure 5.7: Profile of cross-sections through Ripple Drain with vertically extrapolated banks, used for 
discharge calculation during flood conditions. 

Later observations showed that the water that flows over the headlands can have 

significant velocity and does contribute to the total discharge. At 16 February 2001 a 

profile of five velocity measurements was taken in the Prosser Drain under flood 

conditions. The exact position of the measurements along the width of the drain has 

not been determined, but their approximate position is indicated in Figure 5.6. The 

velocity of the two measurements taken in the flow on the headland surface is more 

than half of the velocity measured by the Starflow meter in the deepest part of the 

drain. After this observation, no more opportunities arose to make more precise 

estimates of overbank flow velocities. Calculation of the discharges is therefore 

based on the earlier assumptions. 

5.8 Suspended sediment concentrations 

The relationship between turbidity and SSC is dependent on the properties and the 

organic content of the sediment concentration and the specifications of the 

measurement device (Gippel, 1989). Although the Turbiquant hand held meter is 

regularly calibrated in the lab and the Greenspan in-stream device was calibrated at 

the factory before the 00-01 season, this does not mean they will measure the same 

values. Because the turbidity - SSC relationship (Equation 5.1) is based on turbidity 

values of water samples measured with the Turbiquant hand-held meter, SSC values 

can not be obtained directly from the continuous Greenspan data. First Greenspan 
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NTU has to be related to Turbiquant NTU. The following sections describe the 

procedures of the adjustments for each season. 

5.8.1 Ripple Drain 99-00 

During the 99-00 season 11 water samples were taken -at the Ripple Drain gauging 

site (D21). After storage in a refrigerator for periods varying from days to months, 

the turbidity of the samples was measured in the lab with the Turbiquant turbidity 

meter (see Appendix D for procedures). Figure 5.8 shows the relationship between 

the Turbiquant sample turbidity and the Greenspan in-stream turbidity at the time of 

sampling. The regression equation for the data points is used to transform the 

Greenspan data records to Turbiquant values: 

Equation 5.3 

Turbiquant turbidity= 2.1 * Greenspan turbidity+ 11.8 (R2 = 0.9) 

The SSC can be estimated from the Turbiquant values with the Turbidity - SSC 

relationship (Equation 5.1, Section 5.3.1): 
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Figure 5.8: Scatter diagram of Greenspan turbidity records versus grab sample Turbiquant turbidity 
and SSC, with regression curve for Turbiquant turbidity. All samples taken from Ripple Drain 
gauging site during the 99-00 season. 
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5.8.2 Ripple Drain 00-01 

Because the Greenspan turbidity probe had been calibrated at the beginning of the 

00-01 season, a small number of water samples was thought to be sufficient to adjust 

the data. Four samples were taken. The grab sample Turbiquant turbidity values are 

plotted in Figure 5 .9 against the Greenspan turbidity values in the drain at the time of 

sampling. The equation of a regression curve through these points does not provide a 

transformation that would make the 00-01 turbidity data comparable with the 99-00 

data. 
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Figure 5.9: Scatter diagram of Greenspan versus Turbiquant turbidity data, for grab samples taken at 

Ripple Drain gauging site (D21) (with and without ) and at Palinas' site (D4) in the 00-01 season. 

Regression curve for D4 and D12 samples (without erroneous sample) included. 

The Turbiquant values from grab samples taken upstream in Ripple Drain, at the 

Palmas' site (D4, see Appendix A) do generate a useful regression equation with the 

Greenspan values from the gauging site. Because there is no significant sediment 

input from tributary drains between the two sites, values are expected to be similar. 

This is confirmed by data from the previous season, when D4 and D21 samples have 

very similar turbidity values. Apparently an error occurred during the measurements 

of the sample turbidity for the 00-01 samples. A new regression was developed based 

on the D4 and D21 samples without the erroneous value. The following regression 

equation is used to transform the 00-01 Greenspan turbidity records to sample 

turbidity values, which can then be transformed to SSC with Equation 5 .1: 
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Equation 5.4 

Turbiquant turbidity= 0.6 * Greenspan turbidity+ 0.7 (R2 = 0.8) 

The range of the resulting SSC-graphs for the two seasons is (more or less) similar. 

The SSC curves for each drain and each season are shown in Appendix F(l-6). 

5.8.3 Prosser Drain 99-00 

Eight water samples were taken at Prosser Drain gauging site (D24) and analysed 

with the Turbiquant meter in the 99-00 season (Table 5.11). One sample had to be 

discarded, because the corresponding Greenspan measurement fell outside the 

measurement range of the probe. This occurred because the probe had not been 

calibrated at the beginning of the season. The remaining samples do not result in a 

significant regression, see Figure 5 .10 (P = 0.07). 

250 -.-----

--o, 200 
E _.. 

0 
(f) 

150 (f) ---:) 
I-z 100 _.. 
>, 
+-' 

i5 
-e 

50 ~ A 
El 

0 

0 

• 

100 200 300 

Greenspan turbidity (NTU) 

400 

o SSC (D24+D25+028) 

A Turbiquant turbidity 
(D25+028) 

y = 0.4x + 55.7 
R2 = 0.6 

• Turbiquant turbidity 
(D24) 

y = 0.4x + 65.9 
R2 = 0.5 

Figure 5.10: Scatter diagram of Greenspan turbidity versus Turbiquant turbidity and SSC for grab 
samples taken at Prosser Drain gauging site (D24) and downstream locations in Prosser Drain 
(D25+D28) in the 99-00 season. Regression curves for Turbiquant data from locations D24 (thick) 
and D25+D28 (thin) included. 

The best explanation for the poorer relationship between the turbidity values from 

the in-stream sensor and the water samples is probably a combination of drain size, 

variation in the exact sample sites and time of sampling, and incomplete mixing of 

the drain water. A small tributary joins the Prosser Drain a few meters upstream from 

the gauging site. Under certain conditions the water from this tributary stream may 
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not have mixed sufficiently with the water from Prosser Drain and therefore caused 

unexpected variation of the in-stream or water sample turbidity values. 

Table 5.11: 99-00 Prosser Drain water quality data and corresponding Greenspan turbidity records. 

Measurement Greenspan Turbiquant Turbiquant SSC (D24 +D25 + 
date turbidity turbidity D24 turbidity D25 + D28) (mg r1

) 

(NTU) (NTU) D28 (NTU) 
3/2/00 12:00 38 43 

' 
94 

3/2/00 12:40 6 46 +- 102 .... -- .... .... .. -"-. ·- ....... ····- ·-·· . -··· ... ,..._. ··-·----······ ... -···. ·····-·· . ., ~- .. .•. .. . •.. 

4/6/00 12:00 9 37 108 
2/25/00 12:00 30 

• 

106 115 
4/4/00 12:00 78 ... . l ... 109 127 ·····- ----··· ••· ·-······ ....... ..... ._ ... ·- -- .. ·---- .... . --- -... , ..... ~......--- . ..... . . -------· .. - .... , ·-··· ·•··· 

1/18/00 14:10 11 28 140 .•. ..... ~· ... .- ··~· . ................. ------., .•. -· . . . ----·-- ·- -·--··-· ...... ..... -....... ... . .. , ... .- ,.,, ..... -.. ····•-•-.• ... . ...... ..... 

2/7/00 15:15 161 
• 

132 163 ································· ···························· 

2/10/00 10:45 267 
• 

138 
• 

191 
2/16/00 13:25 150 191 • 194 ----·· . ---- . .. ·-· .. -----·-·· ... . --····-·-····· .. •······· .. ... ... ··•···· ......... . . 1---- .... •'<-••···--------··•· .. ·-··--· ·------------ ••• ----••••••••"W•••• -· .... ----···--· ........ -·~---- ... --·-·-·---
2/10/00 11:10 270 134 201 
2/18/00 12:33 333 164 i 

212 
··--1--

i . . . . ... -- . -~--·-··· .... --· ·-·· .... ....... --····· ········••.•.•· - -------- ···-···· - -··· ···· •.... -------- ........ -·-- ........ - ..... -- --~- .... .. . .. ·········-
2/18/00 13:13 333 175 218 ·········•· .•. ·-·-··•· ... ................ ·- ··--- -····· ••••-•••••••" -~-••¥•••·••••-•••••• • .....•.. ·-----··--······ -------·· ---·-·. ............... .. ----··-- .. . ......... -· ···········--·-

2/18/00 13:00 333 178 222 

Samples were also taken from Prosser Drain at two sites further downstream (D25 

and D28, see Appendix A). Between the gauging site and these sample sites, no 

significant amount of water is supplied from tributaries. The measurements are 

consistent with both the D24 and Greenspan values , supporting the idea that the other 

manual samples are affected by local input, not observed at the gauging site. A 

regression curve for all Prosser Drain samples (D24, D25 and D28) is little different 

from the curve based on only D24 samples (see Figure 5.10) , but its relationship is 

significant (P = 0.01) The resulting equation (Equation 5.5) will be used to transform 

the 99-00 Prosser Drain turbidity data: 

Equation 5.5 

Turbiquant turbidity= 0.4 * Greenspan turbidity+ 55.7 (R2 = 0.6) 

5.8.4 Prosser Drain 00-01 

The records from the Greenspan sensor show extreme values that do not obviously 

relate to the grab sample data. These extreme values result from the strange 

behaviour of the sensor that has already been mentioned. No pattern is recognised 

that could explain the behaviour of the turbidity meter. The transformation suggested 

by the regression equation in Figure 5.11 obviously does not improve the data: 

71 



Output from the Ripple Corner Catchment 

Turbiquant turbidity= 0.04 * Greenspan turbidity+ 99.6 (R2 = 0.7) 

The data have to be discarded. Other ways to obtain SSC data will be considered 

further on in the chapter. 
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Figure 5.11: Scatter diagram of Greenspan turbidity versus Turbiquant turbidity and SSC for grab 

samples taken at the Prosser Drain gauging site in the 00-01 season. Regression curve for turbidity 

data included. 

Table 5.12: 00-01 Prosser Drain water quality data and corresponding Greenspan records. 

Measurement Greenspan Turbiquant SSC (mg r1
) 

date turbidity turbidity 
(NTU) (NTU) 

3/01/01 12:22 0.4 74 147 
16/02/01 12:25 1404 160 140 
"""'••••-•••'••••"'""""'.-""'"~""•••••••••••"~"•••n•-•- ..... .. _._. .. , _.. ··---·- -····-·, . ········=·· 

26/02/01 12:45 0.4 109 129 
····•·············· 

3/04/01 10:55 0.4 116 133 

5.9 Further data improvement 

After the modifications of the raw gauging data, as described in the previous 

sections, the data are further studied with the aim to find possible relationships 

between the gauged variables that could help filling in remaining gaps in the data 

sets. 

First, discharges are calculated from the transformed depth and velocity data for 

each gauging site. Next all data are averaged over 6-hourly periods. This is done to 

obtain comparable units of time that facilitate the study of relationships between 

seasons, between sites and between gauged variables, and the calculation of total 
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loads. It also smooths some of the fine scale noise ( especially present in the velocity 

data) that does not contain important information. The averaging period of six hours 

was chosen because this time period does not affect the shape of the flow peaks. 

The section on raw data (5.5) mentioned gaps that could be filled by simple linear 

interpolation of the existing data. Such interpolation is done after the data are 

transformed and averaged. 

5.9.1 Depth-discharge rating curve Ripple Drain 99-00 

The initial tidying of the Ripple Drain data resulted in an uninterrupted depth data set 

for the 99-00 season that covers the whole budget period. Because problems were 

expected due to backwater processes, depth discharge rating curves were not thought 

to be useful for the initial estimation of sediment load. However, with the now 

available depth and discharge data, such a curve can easily be established and studied 

and it might provide a good method to replace missing velocity data. A depth­

discharge rating-curve is plotted from the depth and all available discharge data. A 

power function can be fitted through the data points (see Figure 5.12). The function 

is used to calculate 6-hourly discharges for periods with missing velocity data: 

Equation 5.6 

Discharge= 3.3 * depth 2·
0 (R2 = 1.0) 

With this method all missing discharges for the 99-00 budget period can be 

calculated. 
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Figure 5.12: Scatter diagram of Ripple Drain depth versus Ripple Drain discharge for both budget 

seasons. 00-01 data plotted both with and without suspect data records. 
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Figure 5.13: Scatter diagram of Ripple Drain depth versus Ripple Drain velocity for the 99-00 budget 

season. 

Backwatering did not seem to significantly affect the relationship between depth 

and discharge. Some effect is however visible when the velocity data of Ripple Drain 

are plotted against water depth (Figure 5.13). At 0.3 m water depth in the Ripple 

Drain, the drain flow velocity temporarily stops increasing with water depth, 

probably because the drain flow is obstn1cted downstream by floodgates or river 

water. 

5.9.2 Depth-discharge rating curve Ripple Drain 00-01 

Although the 00-01 data sets for Ripple Drain are complete, a depth - discharge 

rating-curve is created for the 00-01 season as well. The curve is plotted in the same 

graph as the 99-00 curve (Figure 5.12), to enable comparison. The rating curve of the 

00-01 season follows the same trend as the 99-00 curve, but there is more scatter in 

the data. A possible explanation for the deviant behaviour of the 00-0ldischarge 

curve is the quality of the velocity data for this season, as was already commented on 

in Section 5. 7. To test whether the suspicious periods in the velocity data cause the 

diversion in the 00-01 depth-discharge rating-curve, a third curve is plotted in the 

same graph. This curve shows the 00-01 data from which the suspicious records are 

omitted. Some of the major anomalies have disappeared in the new curve. This 

confirms the idea that the depth-discharge rating curve for the two seasons should be 
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similar. Especially in the higher depth and discharge ranges both curves follow a 

similar line. The deviation that is still present in the lower ranges could be the result 

of other, less obvious errors in the velocity or depth data. 

5.9.3 Depth-discharge rating curve Prosser Drain 99-00 

Missing velocity data in the 99-00 Prosser Drain data set can be estimated in the 

same way as for the Ripple Drain by creating a depth-<lischarge rating curve. From 

the data plotted in Figure 5 .14 the following Depth - discharge rating curve is 

estimated for Prosser Drain Starflow depth: 

Equation 5.7 

Prosser Drain discharge = 1.0 * Prosser Drain depth2
·
0 (R2 = 0.9) 

To test the effect of the elevation of the depth sensor, a total sediment load value 

has been calculated based on the original depth data plus an extra 5 centimetres to 

account for the difference between the drain bed surface and the sensor. A rating 

curve is calculated for this condition too. The depth - discharge rating curve for 

Prosser Drain Starflow depth accounting for 5 cm elevation of the depth sensor 

above the drain bed is as follows: 

Equation 5.8 

Prosser Drain discharge = 1. 1 * Prosser Drain depth2
·
2 R2 = 0.9 

The loads generated by these different relationships will be discussed in section 5.10. 

The combined presentation and discussion of all load calculations in this last section 

enables quick evaluation of the various data adjustments. 

After fixing the minor gaps in the velocity data, one gap with a length of almost a 

month remains. The only other continuous data that are available over this period are 

rainfall and turbidity, but neither of these variables shows a clear relationship with 

depth or discharge. An alternative is to estimate the water depth/discharge in Prosser 

Drain from the Ripple Drain water depth/discharge. This possibility will be 

examined below. 
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Figure 5.14: Scatter diagram of Prosser Drain depth versus Prosser Drain discharge for both budget 
seasons, unadjusted data 
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Figure 5.15: Scatter diagram of Prosser Drain depth versus Prosser Drain discharge for both budget 
seasons. Data adjusted for errors. 

5.9.4 Depth-discharge rating curve Prosser Drain 00-01 

For both seasons of Ripple Drain data and for the 99-00 Prosser Drain data the depth 

- discharge rating curves were shown to provide some information on the gauging 

data quality. A similar rating curve is thus created to check the 00-01 Prosser Drain 

data. When both Prosser Drain curves are plotted in the same graph they show a 
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distinct difference. The trend of both curves is similar, but the 00-01 data cover a 
much wider range of discharge values. At a closer inspection it shows that the 00-01 
curve consists of two separate sections. One section consists of data collected before 
28/12/00, the other section of data collected after this date. It is not completely clear 
whether the split in the depth - discharge curve is caused by a change in the velocity 
data and/or by a change in depth data. The following section compares the available 
data for both drains. This will provide more insight into the origin of the errors. 

The vertical tails of the Prosser Drain depth-discharge curves (Figure 5 .14) cover 
periods of zero velocity. When the water depth above the Starflow sensor becomes 
too low, the sensor is not able to detect flow velocity and the velocity recordings fall 
to zero. This sudden fall causes the sharp change in the depth - discharge curve. For 
the estimation of the rating curve equations these low discharge values were 
discarded. The same effect is shown in the 00-01 curve for Ripple Drain (Figure 
5.12). 

5.9.5 Comparison of Ripple and Prosser Drain data 

Since Prosser Drain is a tributary of Ripple Drain, there may be some relationship 
between the gauged variables. Potential relationships between the drains can help 
solve the problem of missing discharge data in the 99-00 season for Prosser Drain 
and explain the difference between the depth - discharge rating curves for both 
seasons. Figure 5.16 and 5.17 show how depth and velocity are related in both outlet 
drains, for both seasons. 

The lack of relationship between both drains for velocity (Figure 5 .17) might be a 
result of the backwatering in the system or perhaps because of unreliable data. Depth 
does show some relationship (Figure 5.16), but the curves for both seasons are split. 
This split indicates a sudden change in the Prosser Drain depth relative to the Ripple 
Drain data, which could be caused by a change in the position of the depth sensor. 

The split in the 00-01 data corresponds with the moment of sudden change in the 
Prosser drain data around 28/12/00, as identified in the section above. At that date 
the depth suddenly decreases by approximately 30 cm. The 99-00 data are affected 
by two depth changes. One change of approximately 6 cm (it is not possible to 
reconstruct the exact change) coincides with a sudden fall in the Prosser drain 
hydrograph at 8/03/00 that was not previously considered of importance. The second 
change of approximately 3 cm is added to the previous one and starts after the 
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22/03/00 gap in the data. This change is undone at the end of the measuring period 

(6/07/00). 
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Figure 5.16: Scatter diagram of Ripple Drain depth versus Prosser Drain depth for both budget 
seasons, unadjusted data. 
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Figure 5.17: Scatter diagram of Ripple Drain velocity versus Prosser Drain velocity for both budget 
seasons. 
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Figure 5.18: Scatter diagram of Ripple Drain depth versus Prosser Drain depth for both budget 
seasons and a regression curve for the 99-00 data. Data adjusted for errors. 

After the discovery of these errors, the depth data sets have been adjusted and new 

discharges and averages have been calculated. Figure 5 .18 shows the new 

relationships between the Ripple and Prosser Drain depth -data. A power function 

now fits the data for both seasons: 

Equation 5.9 

Depth Ripple Drain= 0.6 * (Depth Prosser Drain)0
·
7 

R2 = 0.9 

This function is used to estimate the missing Prosser Drain data. 

There is some doubt about the correctness of the adjusted depth data. Figure 5 .15 

shows how the depth changes affected the depth - discharge rating curves for Prosser 

Drain. The trend in the curves is similar for both seasons, but the biggest part of the 

00-01 depth-discharge curve lies lower than the 99-00 curve. The Ripple Drain -

Prosser Drain curve also suggests that the Prosser Drain depth is not correct, because 

at low flows Prosser Drain depths are higher than Ripple Drain depths (Figure 5 .16). 

It could be questioned whether the assumed 30 cm decrease in the second half of the 

00-01 depth data actually meant that the earlier data records were too high. A 30 cm 

decrease in the first half of the curve would however make parts of the data negative, 

which is impossible. The only other explanation could be a gradual change in depth. 
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5.9.6 Missing turbidity data 

Apart from periods of missing data there is another problem with the turbidity data. 

Because the Greenspan sensors were not calibrated at the beginning of the 99-00 

season, the settings of the sensors were not suited to rec~rd high turbidity values. The 

measured values go 'out of range' during periods with high turbidity. Unfortunately 

no significant relationship between turbidity and any of the other gauged variables 

was found for both the Ripple and Prosser Drain. Turbidity in Ripple Drain is not 

related to the turbidity in Prosser Drain and, unlike the upland creeks (see Chapter 6), 

turbidity in the lowland drains is not clearly related to rainfall. The lack of any 

relationship is probably a result of backwatering in the drainage system and the big 

difference in the size between the drains. 

As an example the SSC and depth of Ripple Drain are plotted in a graph (Figure 

5 .19). The graph suggests an increase in the suspended sediment concentration with 

water levels up to 0.8 m. At higher water levels the sediment concentration remains 

relatively constant with further increase of the water depth in Ripple Drain. More 

comments on the relationships between velocity, discharge and SSC will be given in 

Chapter 13. 

Ripple Drain turbidity data do not contain any significant gaps. The 99-00 data have 

periods of 'out of range' values, but they only occur for a significant amount of time 

during a low flow period between 4/01/00 and 5/01/01, not during high flow events. 

Under high flow conditions turbidity values are relatively low probably due to 

dilution, backwatering and/or source depletion. The problem of the 'out of range' 

values is therefore not thought to cause a significant reduction of the total calculated 

sediment load for this season. 

The 99-00 Prosser Drain data contain one major gap, and 'out of range' values 

occur under peak flow conditions. The exact behaviour of sediment concentrations 

during peak flows is therefore not known for the 99-00 season. Comparison with the 

turbidity/flow peaks of the following season is not possible because of the poor 

quality of the 00-01 data. This means that only some indication of the sediment load 

for the 99-00 season exists, which can only be corrected roughly for the missing 

information. The data from 00-01 are useless and no possibility exists to replace 

them. 
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Figure 5.19: Scatter diagram of 99-00 Ripple Drain depth versus SSC. 

5.10 Load calculations 

The transformed, substituted and averaged data will now be used to calculate total 

sediment loads, total discharges and runoff coefficients for each drain and each 

season. Total loads are calculated by multiplying the discharge with the SSC for each 

6-hourly interval and summing these for the whole season. For each season several 

different loads are calculated to compare the effects of the various data adjustments 

and transformations. The total discharges and runoff coefficients are used to assess 

the reliability of the data. 

5.10.1 Ripple Drain load calculations 

Table 5.13 lists all estimates of the Ripple Drain 99-00 sediment load and water 

discharge. Load calculation 1 is based on all available depth and velocity data. 

Periods of missing data are not included. In calculation 2 the missing discharge data 

are estimated from the depth - discharge rating curve (Equation 5.6). In calculation 3 

remaining gaps in the turbidity data are linearly interpolated. The difference between 

calculation 2 and 3 is relatively small so the gap in the turbidity data has little effect 

on the total sediment load. Calculation 3 is expected to be the best estimate of water 

discharge and sediment output through the Ripple Drain over the 99-00 budget 
period. 
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Table 5.13: Load calculations for the 99-00 Ripple Drain data. Best estimate is shaded. 

Ripple Drain 99-00 season 
Discharge and sediment load calculated from: 

1. All available depth, velocity and turbidity 
data 
2. Depth and depth - discharge rating curve 

··•····•·.§ i t••••···•·JSih~aii ,tiit;i6~,tiol!IBi1Bi.tl!if~l~s~l1; ········· 
Total rainfall (xl0 m) = 11.7 

Unit area 
sediment 
load* 
(t ha-1

) 

3.8 

Sediment Runoff 
load (t) coefficient 

1226 0.6 -

Total 
discharge 
(1 06m3) 

7.3 

* Sediment load per unit area cane land = Sediment load (tonnes) minus 269 t of sediment 
originating from forested upland 

Sediment load and water discharge for the 00-01 season are listed in Table 5 .14. 

Calculation 1 is based on all available depth and velocity data. Periods of missing 

data are not included. SSC is calculated directly from the Greenspan records with 

Equation 5.4. Calculation 2 is done in the same way, but periods with suspect 

velocity data are excluded. This significantly reduces the discharge at Ripple Drain 

outlet. For calculation 3, SSC is estimated with a regression equation based only on 

water sample data from the 00-01 season (Figure 5 .1 ). This makes little difference to 

Table 5.14: Load calculations for the 00-01 Ripple Drain data. Best estimate is shaded. 

Ripple Drain 00-01 season 
Discharge and sediment load 
calculated from: 
1. All available data; Turbidity -
SSC regression based on all SSC 

.... data;original Greens pan .records ..... 
2. Suspect velocity data excluded; 
Turbidity - SSC regression based on 
all SSC data; original Greenspan 
records 
3. Suspect velocity data excluded; 
Turbidity - SSC regression based on 
just 00-01 SSC data; original 

g~~~~~P'-1? ~~?.~~~ .. 
4. Suspect velocity data excluded; 
Turbidity - SSC regression based on 
all SSC data; Greenspan records 
adjusted ............. . 
5. Greenspan records adjusted; All 
discharge data calculated with the 
99-00 depth - discharge rating curve 

:f!fl!!B:s, 

Unit area 
sediment load 
(t ha-1

) 

6.5 

3.7 

3.5 

2.3 

3.8 

Sediment 
load (t) 

2080 

1184 

1120 

736 

1216 

Runoff 
coefficient 

1. 1 

0.5 

0.5 

0.5 

0.9 

Total 
discharge 
(1 06 m3

) 

9.3 

4. 1 

4.1 

4.1 

7.5 
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the total sediment load. In calculation 4 the Greenspan data are transformed with 
' Equation 5 .4 before the SSC is calculated. This significantly reduces the sediment 

load estimate. For calculation 5 all discharge is estimated from the depth data with 

the 99-00 Ripple Drain depth - discharge rating curve. The best estimate for the 00-

01 sediment load is given by calculation 6, which consists of calculation 4 combined 

with estimates for the missing data based on the 99-00 Ripple Drain depth -

discharge rating curve. 

The fact that the runoff coefficients for both seasons are equal gives some 

confirmation that the discharge estimates are correct, although it is no proof.For 

some missing Ripple Drain data no replacement was found and therefore can not be 

included in the final load calculations: 

All data from the last month of the 00-01 budget period is missing. Some rain fell 

during this period, but no major events occu1Ted. The error for the total sediment 

load is expected to be less than 10%. 

- Some of the 99-00 turbidity data go 'out of range', but this occurs under low flow 

conditions so the effect of the underestimated sediment concentrations is 

insignificant for the sediment load. 

5.10.2 Prosser Drain load calculations 

The 99-00 sediment load and water discharge calculations for Prosser Drain are 

listed in Table 5.15. Calculation 1 is based on all available depth, velocity and 

turbidity data. For calculation 2 the depth data are adjusted by 5 cm to assess the 

possible error as a result of the elevation of the sensor above the drain bed. 

Apparently it can cause an error of approximately 15%. In the further calculations 

the sensor is assumed to be level with the drain bed. In calculation 3, depth is 

adjusted for the displacement of the sensor as proposed in Section 5 .9 .5. This 

adjustment has little effect on the total load. For load calculation 4 the gap in depth 

data between 22 March and 18 April 2000 has been filled with data based on the 

Ripple Drain depth values, using Equation 5.9. This significantly increases the 

sediment load and discharge values. This calculation is thought to best represent the 

output through Prosser Drain over the 99-00 budget period. Load 5 shows the 

considerable effect that misrepresentation of the velocity could have on the sediment 
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load estimate. For this calculation flow velocity is assumed to be 0.7 times the 

measured velocity. 

Table 5.15: Load calculations for the 99-00 Prosser Drain data. Best estimate is shaded. 

Prosser Drain 99-00 season Unit area Sediment Runoff Total 
Discharge and sediment load calculated from: sediment load (t) coefficient discharge 

load (106 m3) 
(t ha-1) 

1. All available depth, velocity and turbidity 3.1 143 1.5 1.3 
data 

................ 

..... 2 . .. Depth+0.05 m and velocity, gaps.filled ... 3.6 166 1.7 1.5 
3. Depth adjusted for two jumps and velocity, 3.2 147 1.5 1.3 
gaps filled 
. 4;.. . I)epth g~ptfille,g b,~§;d qp f4ppl~ dat![ . 

···················· 
/\ ,., t . 1 ·•·•· . J ,. .6 .•.... . ... .. ·.-. ·····•·•• •·•·••····· 5. Depth gap filled based on Ripple data; 2.6 119 1.1 1.1 

velocity x 0.7 to account possible overestimate 
Total rainfall (10b nl) = 1.0 (0.9 with open gap) 

All 99-00 calculations result in discharges that are at least 1.6 times higher than the 

rainfall in the catchment, which is not possible. There are several possible 

explanations for the high 1unoff coefficients. The discharge might be overestimated 

due to errors in depth and/or velocity values. If the discharge is overestimated this 

means that the true sediment load from the Prosser Drain will be lower. Another 

possibility is underestimation of the rainfall. As a result of its proximity to the 

mountains the Prosser Drain catchment is likely to receive more rainfall than that 

measured at Palmas' site. Finally the catchment boundary might not be correctly 

delineated and additional discharge might be derived from outside what is thought to 

be the catchment boundary. During field visits under extreme flood conditions it was 

observed how water from the Ripple Drain diverted into the Prosser Drain. 

Table 5.16: load calculations for the 00-01 Prosser Drain data. Best estimate is shaded. 

Prosser Drain 00-01 season 
Discharge and sediment load calculated 
from: 

..... 1: .... Original .. depth .and.velocity .. data ..... 
2. Depth+ 0.05 m and velocity 

,~t~~~~~l tt°1~1t,:~~$!- .. 
4. Original depth and 99-00 PD rating 
curve 

··············· ···························· ·····················-································· ························· 
5. Corrected depth and 99-00 PD rating 
curve 
Total rainfall (10 m) = 0.7 

Unit area Sediment Runoff 
sediment load (t) coefficient 
load (t ha-1

) 

1.0 
1.2 

1.0 

2.9 

Total 
discharge 
(106m3) 

0.8 
0.9 
1 

0.8 

2.2 

For the 00-01 season sediment loads can not be calculated for Prosser Drain, because 

the turbidity data are unreliable. Water discharges are listed in Table 5 .1 6. 
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Calculation 1 is based on all available depth and velocity data. For calculation 2 the 

depth is increased with 5 cm to assess the effect of the raised depth sensor. This 

results in a maximum error of 20%. In calculation 3 the depth is adjusted for the 

jump in the depth data. This significantly increases the discharge. In calculation 4 
-

and 5 discharge is estimated from the corrected and uncorrected depth with the 99-00 

Prosser Drain depth - discharge rating curve (Equation 5.7). 

The calculations with adjusted depth data result in extremely high runoff 

coefficients, indicating that the depth adjustment is not correct. The high baseflow 

depths of the Prosser Drain depth curve and the difference between the Prosser Drain 

- Ripple Drain relationships for each budget season already suggested this. It is not 

possible to reconstruct what went wrong with the depth data in the 99-00 season. 

The following data are still missing in the Prosser Drain data sets: 

No substitute has been found for the missing turbidity data between 10 and 23 

March 2000. The missing load is expected to be significant (error >10%). 

- Due to 'out of range' values for the 99-00 season in the Prosser Drain turbidity 

data, sediment concentrations during peak flows were underestimated. It is hard 

to quantify the importance of this error, because there is no information available 

on the behaviour of sediment concentrations during peak flows. 

Turbidity data of the 00-01 season is unreliable for calculation of SSC. 

5.10.3 Summary of the load calculations and implications for the sediment 

budget 

Table 5 .17 gives a summary of the best estimates of the load and discharge values for 

each season and each outlet drain. 

Table 5.17: Summary of best estimates of sediment load, discharge values and runoff coefficients. 

Runoff Coefficient 
Sediment load (t) 

..... .. . ... . ····--1 . . 
Sediment load (t ha- ) 

Ripple Drain 
99-00 • 00-01 

9.5 7.0 
11.7 8.8 
0.8 

I 
0.8 

1580 1120 
4.9 

• 
3.5 

Prosser Drain 
99-00 I 00-01 

• 

1.6 1.7 
0.9 

I 

0.7 
' 

1.6 2.3 
170 -

• 
3.7 -

The sediment load data from the Prosser Drain are insufficiently accurate for the 

sediment budget study. The 5 cm elevation of the depth sensor above the drain bed 
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could cause a more than 10% error in the final sediment load and there are obviously 

more factors that cause even larger errors. 

Prosser Drain drains a separate catchment that can be subdivided from the Ripple 

Comer Catchment. The budget study can than be restricted to only the 'Ripple Drain 

catchment'. When this is done there is a possibility of errors due to diversion of water 

between the Prosser and Ripple Drain under flood conditions. However, the total 

discharge through Prosser Drain is 17% of the Ripple Drain discharge and the total 

sediment load is little more than 10%. Less than half of this is expected to be derived 

from Ripple Drain. Reduction of the sediment load at the Ripple Drain outlet due to 

di version will the ref ore be insignificant. 
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Chapter 6 

Upland input 

6.1 Introduction 

Suspended sediment in runoff from the forested upland becomes an input component 

of the sediment budget as pointed out in Chapter 4. Within the budget area there are 

nine points along the foot of Mt Hawkins where drainage water enters the alluvial 

plain in distinct channels. The total amount of sediments added to the Ripple Drain 

drainage system from these streams is assumed to represent the upland input. The 

amount of sediment that enters the cultivated lowland via overland flow is assumed 

to be insignificant for the budget, since the mountain slopes are well vegetated. 

The most reliable way to estimate total sediment input from the forested upland 

into the floodplain drainage system would be through continuous monitoring of the 

sediment discharge from all input streams. For practical reasons this is not possible. 

Instead only one of the streams is instrumented and the data from this stream are 

extrapolated to obtain the sediment input from the remaining upland area. 

The stream gauging site was not equipped with a velocity meter that provides 

continuous data like the gauging sites in Ripple and Prosser Drain at the catchment 

outlet. Water discharge data have been estimated from a depth - discharge rating 

curve, which was obtained from velocity profiles measured at the site. Since the 

gauged creek drains the steep slopes of Mt Hawkins, its flow is not expected to be 

influenced by backwater processes and there should be no difficulty in establishing a 

rating curve. Sediment concentrations are estimated from a turbidity - SSC 

relationship. 

6.2 Gauging location and equipment 

Only two creeks drain most of the upland area, and both are suitable for gauging. 

Both creeks have a catchment area of similar size. Of the two creeks 'Post Creek' is 

chosen for observation, because this creek is most accessible under flood conditions. 
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The gauging station is situated at the distinct transition between hillslopes and 

alluvial plain. The vegetation on the west (right) bank of the drain changes at this 

point from forest to sugarcane. On the east bank the forest continues for another 100 

m, and the creek retains its natural sinuous course. At the point where the vegetation 

changes to sugarcane the channel is a straight man-made drain. The exact location of 

the gauging station is indicated on the map in Figure 4.1 

Post Creek flow depth is gauged with a pressure transducer and Dataflow data 

logger, and turbidity is recorded by a Greenspan turbidity meter similar to that at the 

gauging sites described previously. At the gauging site the creek is about 8 m wide 

and 2 m deep with very steep banks and an approximately 2.5 m wide sandy bed. 

The gauging equipment was placed in the stream channel several cm above the 

stream bed at 2 m distance from a reference point on the west bank of the creek. The 

pressure transducer was located in a perforated PVC pipe. The pipe was fixed to an 

overhanging tree. The Greenspan turbidity meter was fixed to a tree root nearby. 

Figure 6.1 shows the profile of the creek cross-section, as measured with a Dumpy 

level in between fixed reference points on each bank. It also shows the location of 

the gauging instrumentation. 

1.8 ---,----- -------------------------. 
1.6 ....._,__ _____ _ 

Location of 1.4 +---->.------
pressure 

E 1 ·2 
+------>.----- transducer and 

_. 1.0 ------------------! 
..c turbidity meter g- 0.8 N S 
O 0.6 ------4-----------+-------------+----------

0.4 +----~ ,------~ ------------,-/----------------i 

0.2 +-----~ -----------:_,.,,L------------------i 

0.0 +-------,---------===,-..£_-----r-------,-------1 

0 2 4 6 8 10 

Width (m) 

Figure 6.1: Profile of cross-section through Post Creek at gauging site (December 2000). 

6.3 Raw data Post Creek 

The gauging station in Post Creek was operational during both budget seasons. 

Appendix C shows the availability of the data for each season and Appendices F (7 

and 8) show the hydrographs for each season. 
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6.3.1 1999-2000 data 
' 

During the first wet-season water depth in Post Creek was logged every 5 minutes 

between 3/12/99 23:00 and 12/05/00 13:19. The data from the first season contain 

many gaps due to malfunctioning of the data logger. Table 6.1 lists the availability of 

the depth data. 

Table 6.1: Data availability Post Creek 1999-2000. 

99-00 Post Creek Depth data 99-00 Post Creek Turbidity data 
Start • End End I Start 

21/12/99 13:50 5/01/00 13:25 5/01/00 13:30 16/03/00 21 :45 
6/01/00 13:35 31/01/00 10:45 22/03/00 12:00 12/05/00 12:45 

31/01/00 13 :50 15/02/00 15:10 
8/03/00 11 :33 22/03/00 11 :34 

.... , .............. 

6/04/00 10: 40 12/05/00 13:19 

The turbidity data for the same season starts at 5/01/00 13:30 and ends at 12/05/00 

12:45. Data were logged every 30 minutes. There is only one major gap in these data 

(Table 6.1). Five times during the season the turbidity data logger took a 15-minute 

time step, instead of a 30-minute step. There is no explanation for these incidents and 

they do not seem to significantly affect the correspondence between the turbidity and 

rainfall peaks throughout the season (after adjustment of the major data gap, as 

described in the next section). 

6.3.2 Gap filling 1999-2000 data 

The original flow depth and turbidity curves show a discrepancy between 31/01/00 

13:50 and 15/02/00 15:10. Over this period turbidity peaks about three hours before 

water depth peaks and rainfall. Later data do not show a similar delay between peaks. 

The most probable explanation for the discrepancy is a jump in the depth data 

timestamps. The missing data between 31/01/00 10:45 and 31/01/00 13:50 

approximately covers the three hours delay between depth and turbidity maxima. 

When the timestamps for depth are adjusted by three hours, the turbidity peaks 

correspond with water depth peaks. 

Data gaps of less than one day or with insignificant amounts of rain were filled by 

linear interpolation of existing data. The coverage of the remaining data gaps is 

discussed later in this chapter (see Section 6.5.2 and 0). 
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6.3.3 2000-2001 data 
' 

During the 2000-2001 wet-season, depth data were recorded every 5 minutes from 

12/11/2000 10:20 to 22/03/01 9:45. Turbidity measurements were taken every 15 

minutes between 12/11/00 10:30 and 22/03/01 9:45. There are no major gaps in the 

data sets for this season. A number of gaps of less than an hour length were filled by 

linearly interpolating the adjacent data, and some double timestamps and 'out of 

range' values were removed. 

6.3.4 Raw data appearance 

The available depth and turbidity data are plotted in Appendices F (7 and 8). The 

depth data for both seasons show some anomalies that may need to be considered in 

further analysis: · 

- The baseflow level of the last part of 99-00 depth curve is approximately 5 cm 

lower than that of the first part of the curve. Furthermore the depth data for this 

season appear to be reliable. 

- The first 10 days of the 00-01 hydrograph appear to be similar to the 99-00 

hydrograph, but after 23/11/00 the diurnal variation in the depth data becomes 

much more pronounced and the baseflow suddenly increases by approximately 8 

cm 

- Base flow increases towards the end of the 00-01 season 

- Some flow peaks (e.g. 8/12/00 - 14/12/00) do not coincide with rainfall peaks. 

- In general the 00-01 data are unreliable and are expected to affect the load 

calculations that are presented in this chapter. 

6.4 Depth data adjustment 

In the 1999-2000 wet-season five manual water depth measurements were taken. 

Only two of the measurements can be used to relate the Dataflow data records to true 

flow depth in Post Creek (Table 6.2). For the other depth measurements 

corresponding Dataflow records are missing, due to failure of the data loggers. In the 

2000-2001 season only two measurements were taken. The difference between 

manual depth and Dataflow depth varies considerably between each measurement 
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date. To solve this problem the values can either be averaged per season or applied 

separately to different parts of the depth curve. 

Table 6.2: Post Creek manual depth measurements and corresponding Dataflow records. 

Season Date Manual Dataflow Difference Average 
depth (m) depth (m) 

1999-2000 10/02/00i 0.33 0.14 I 0.19 I 

17/03/00 0.64 0.40 ! 
0.24 0.22 ~· ----- ··-•--•s-. 

3;6i161 
.,. . ._ ...... -~--··-····· ....... , ..... ·-·-······ , .. . ...... - ., 

2000-2001 0.24 0.17 0.07 --·- ·--· ·-- -. . --- ... -- ........ '" - .. , ... ,.- .. -·· -------•······ ... ~--··- ,,,. >•••~······ .... , ... , .. , . 

26/02/01 . 0.27 
• 

0.33 -0.06 0.00 

The strong decrease in base flow depth in the last months of the 99-00 

observations suggests that different adjustments might be necessary for different 

parts of the curve. New depth data are calculated with both the average depth 

adjustment and separate adjustments for parts of the curve. When the calibrated data 

are related to the Prosser Drain depth data it appears that separate adjustments are 

more appropriate (Figure 6.2). Depth adjusted with the average value results in a 

greater scatter, which suggests that this method partly overestimates and partly 

underestimates the data. 

For the 00-01 data there is no clear point in the depth curve where a sudden 

change in depth could have occurred. The only possibility in this case is to apply the 

average depth difference. The 00-01 relationship with Prosser Drain depth is plotted 

in Figure 6.2. The scatter is slightly lower than the 99-00 curve. This suggests that 

some of the data from either Post Creek or Prosser Drain are still not properly 

corrected. 

6.5 Discharge estimation 

6.5.1 Depth - Discharge rating curve 

Discharge in Post Creek is estimated from the adjusted depth data and a depth -

discharge rating curve. The rating curve is based on a number of single discharge 

estimates, which are obtained from manual flow velocity measurements and creek 

cross-sectional areas. 

Although accessibility was taken into consideration when choosing the upland­

input monitoring site, it was still a problem to reach the site during flood events. The 

number of velocity measurements is therefore small (4) and covers only a limited 
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range of flow conditions. Appendix E lists all velocity data that are available for the 

Post Creek gauging station. 
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Figure 6.2: Relationship between Prosser Drain depth and Post Creek depth data for both budget 

seasons, and different Post Creek depth adjustments . 

For three of the four velocity estimates, the creek cross-section is divided into 

several segments. In each segment velocity is measured separately. Because depth 

estimates for individual segments are unavailable at most sample dates, it is not 

possible to calculate separate discharges for each segment. Instead the measurements 

are averaged and assumed constant across the whole creek cross section. Wet cross­

sectional areas are estimated from the adjusted Dataflow depth and the creek profile 

in the same way as for the outlet drains (see Section 5.6). The resulting discharges 

are listed in Table 6.3. 

Table 6.3: Discharge estimates for Post Creek based on manual velocity profiles. 

Date Number of Dataflow Adjusted Wet creek Average Discharge 
measure- depth (m) depth (m) cross- velocity (m3 s-1) 
ments section (m s·1) 

(m2) 
18/02/00 1 0.17 0.41 

' 1.01 
• 

0.65 0.65 
8/03/00 7 0.05 0.29 

• 

0.60 
• 

0.16 : 0.10 
17/03/00 5 0.28 0.52 

• 

1.44 0.42 0.60 
3/01/01 3 0.17 0.17 0.29 0.20 0.06 
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Figure 6.3 shows the Post Creek depth - discharge rating curve. The regression 

equation for the curve is used to estimate continuous discharge from the true depth 

data records. Although the regression is not significant (P = 0.08), it is accepted, 

because it provides the only means to calculate Post Creek discharge. 

Equation 6.1 

Discharge Post Creek= 3.4 * (Water depth) 2 .4 

El 

0.10 
Water depth (m) 

m 

y = 3.4x2.4 

R2 = 0.9 

1.00 

Figure 6.3: Post Creek depth- discharge rating curve (n=4, P=0.08). 

6.5.2 Missing discharge data substitution 

(R2 = 0.9) 

Considerable parts of the 99-00 depth data are missing and thus can not be used to 

estimate discharge. Other available data have been investigated to find methods for 

discharge data substitution. For this purpose data are averaged over 6-hourly periods, 

as was done for the study of the outlet drains. The missing 99-00 data are directly 

substituted by discharge values estimated from the regression curve for discharge and 

rainfall (Figure 6.4 ). A polynomial function is fitted though the curve (Equation 6.2). 

Data from the 00-01 season, which are plotted in the same graph, do not follow the 

same curve. This might be due to the strange behaviour of the 00-01 depth data. 

Equation 6.2 

Post Creek Discharge = 0.01 * (Rainfall) 2 + 0.08 * (Rainfall) + 0.2 (R2 = 0.8) 
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Figure 6.4: Scatter diagram Rainfall versus Post Creek Discharge for both budget seasons (n=196, 
P<0.01). 

6.6 Sediment concentration estimation 

6.6.1 SSC estimation 

The SSC in the Post Creek discharge can be estimated from the turbidity in the same 

way as was done for the outlet drains in Chapter 5. The water of the Post Creek is 

however much less turbid than the water in the lowland drains. When water samples 

taken from the creek are plotted in a turbidity - SSC curve together with samples 

from the lowland part of the catchment, they occupy only the lowest sediment 

concentration ranges (Figure 6.5). When the samples from Post Creek are plotted as a 

separate turbidity - SSC graph, the relationship between the variables is less clear 

and results in a rather different regression curve, which has a low significance (P = 

0.09, see Figure 6.6): 

Equation 6.3 

Turbidity= 0.4 * SSC + 73 

Because the range of creek flow conditions that is sampled was restricted due to 

poor accessibility, the turbidity - SSC curve is not thought representative. The 

regression equation based on all samples (Equation 5 .1 in Chapter 5) will therefore 

be used to estimate the sediment concentrations from the Post Creek turbidity 
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records. The effect of this assumption on the sediment load calculations is tested in 

Section 0. 

1400 
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• • -- • :::::::: 800 0) • E - y = 1.2x + 23.3 --- R2 = 0.9 • 0 600 
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Turbidity (NTU) 

Figure 6.5: Scatter diagram of Turbidity versus SSC for Post Creek water samples and all Ripple 

Comer Catchment water samples (n=lO and n=261). 
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Figure 6.6: Scatter diagram for Post Creek turbidity versus SSC for both budget seasons (n=lO and 

n=3 , P=0.09). 

6.6.2 Turbidity meter calibration 

For the 99-00 season Greenspan records are calibrated with turbidity values from 

water samples as measured by the Turbiquant bench top meter. Turbiquant turbidity 

and SSC data for the water samples and the corresponding Greenspan records are 
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listed in Table 6.4. The Greenspan-Turbiquant relationship for 99-00 season is 

presented in Figure 6. 7. The following regression equation is obtained from the data 

and will be used to transform the Greenspan turbidity records: 

Equation 6.4 

Turbiquant turbidity= 1.8 * (Greenspan turbidity) + 11.7 

120 
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0) 
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Figure 6.7: Calibration of Post Creek Greenspan turbidity probe with Turbiquant grab sample 

turbidity estimates and SSC estimates for both budget seasons (n=6 and n=3, P<0.01). 

Table 6.4: Post Creek water quality data and corresponding Greenspan records. 

Date Greenspan Turbidity SSC (mg r1
) 

(NTU) (NTU) 
5/11/99 - 21 71 .. ········••···· "·-·•----.. ..... ·-·-·····"·" ·- ········ 

19/11/99 -
• 

3 45 
1/18/00 15:30 -4.2 I 2 102 
2/16/00 12:13 -2.3 9 84 .. - .. -.-. ...... ---·------····----··--- ------ ···-- ···--··~-·-- .,.-----------·-••' ·········"-'•"-··-·· ····=·-------•-·····---·--······--···· -----------•-·· .....• '······- ···· -~----·-- --···· .. ---··· 

2/18/00 12:00 -2.2 
• 

6 87 
2/25/00 14:10 4.21 

• 

19 88 
••••, • •••.•w•., •• ,.•--• •.•N• ••---••,-••w ·······-·· 

3/2/00 12:26 -3.41 8 58 ·--------···--·-····-----·-··· -- ··---------.... ---------- .. -... --........ ------------------ ··-··--- •··•····•· .. .. ----··. ·=··--·•- ""••··· · 

3/17/00 10:50 -
• 

95 112 
4/6/00 12:00 -4.6 

• 
4 74 

-~~----••--•-•~~••-••----•--•••.-.•w.•••-.-,,.._. .. w•• --~•--• ··,·~---- .... --.... ··-· 

• 1/3/00 11:40 - 13 81 

The Greenspan probe used for the turbidity measurements in Post Creek was 

calibrated before installation for the 00-01 season. Laboratory calibration of the 
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device does not necessarily mean that the Greenspan NTU values correspond with 

Turbiquant NTU's as pointed'out in Chapter 5. Three grab samples taken during the 

00-01 season can not provide a significant relationship with the Greenspan records 

and they do not fit the regression of the 99-00 data. Because there are no other means 

of calibrating the turbidity data, Turbiquant and Greenspan values are assumed equal, 

which is supported by the fact that the available values fit close around a 1: 1 line 

(dashed) through the origin of Figure 6.7. 

6.6.3 Missing turbidity data 

The relationship between Post Creek turbidity and rainfall data, which is used to 

estimate the two periods of missing turbidity data for the 99-00 season, is as follows 

(see Figure 6.8): 

Equation 6.5 

---:::::::: 
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E --
0 
en 
en 

SSC= 5.2 *(Rainfall)+ 34.4 (R2 = 0.5) 
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Figure 6.8: Regression curves Rainfall and Post Creek SSC for both budget seasons (n=488, P<0.01). 

The relationship between Post Creek turbidity and depth for the same season (99-

00) in Figure 6.9 shows an increase in NTU values at the lowest water depths. These 

low water depths only occur at the end of the season, between the end of April and 

the beginning of May. Although it is not verified with observations in the field, the 

most obvious explanation is a drop in water level below the sensor surface. 

According to the Greenspan manual (Greenspan Technology, 2002) noise of up to 
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20NTU can occur in the records when the turbidity meter is not covered with water. 

Exclusion of the affected data does not significantly change the rainfall - depth 

regression equation (Equation 6.5), used to substitute missing turbidity data. 

The 00-01 data are different from the 99-00 data. This could again be the result of 

the dubious depth data quality. 
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Figure 6.9: Scatter diagram of Post Creek Depth versus SSC for both budget seasons. 

6. 7 Load calculations 

According to the methods presented 1n the previous section, rmss1ng depth and 

turbidity data are estimated from rainfall. Discharge is estimated from adjusted depth 

data and the rating curve based on velocity measurements. SSC is estimated from the 

turbidity records. With this information sediment discharge has been estimated and 

summed over the budget period, which results in the total sediment load for the Post 

Creek catchment. A number of different calculations are made to test and illustrate 

the effect of some of the assumptions and data adjustments that were made. All loads 

are listed in Table 6.5. 

The first calculation (1) is based on the original data without adjustments for 

depth. A specific depth - discharge rating curve is estimated for this calculation: 

Equation 6.6 

Post Creek Discharge = 3.3 * (Original water depth) 2 
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Gaps in the data are filled with a rainfall - discharge regression equation estimated 

from the unadjusted depth data: 

Equation 6. 7 

Post Creek Discharge= 0.1 * (Rainfall) - 0.06 (R2 = 0.7) 

For calculation 2 all discharge data are estimated from this rainfall - discharge curve 

(Equation 6.7). The results for both calculation methods are very similar. It is not 

likely that this method of data substitution produces a large error. 

For calculation 3 all depth data are adjusted with the average calibration value of 

0.22 m (see Section 6.4). A specific depth - discharge rating curve is estimated from 

the adjusted data: 

Equation 6.8 

Post Creek Discharge = 5.3 * (Original water depth+ 0.22) 3 (R2 = 0.7) 

Gaps are filled using a specific depth - rainfall regression. 

Equation 6.9 

Post Creek Discharge= 0.2 *(Rainfall)+ 0.1 (R2 = 0.7) 

In calculation 4 different calibrations are applied to different parts of the depth 

curve, using the depth - discharge rating curve (Equation 6.1) presented in Section 

6.5.1 and the rainfall- discharge relationship (Equation 6.2) from Section 6.5.2. 

Calculation 5 shows the importance of estimating missing data. The calculation is 

similar to 4, but without the gaps filled. The approximately 15% reduction of the 

total load shows that filling of the gaps is necessary and gives an indication of the 

maximum error that could be introduced when the gaps are filled. Calculation 6 

shows the load estimated completely from the rainfall - discharge equation (Equation 

6.2). In this case the estimate from rainfall is much lower than the estimate based 

mainly on depth ( 4 ). However, if the method is only used to substitute a limited 

amount of missing data, the estimate based on the rainfall data are not thought to 

produce a more than 10% error in the load estimate. 

Calculation 7 is similar to calculation 4, except for the regression equation used to 

calculate SSC from the turbidity records. This calculation uses Equation 6.3 from 

Section 6.6.1. The big difference in sediment load stresses the potential error that is 
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introduced by assuming that the relationship between SSC and turbidity is uniform 

throughout the Ripple Comer Catchment. 

Discharge and consequently sediment transport vary considerably with the 

different adjustments of the depth data. Calculation 4 is assumed to be the best 

estimate, because this calculation uses depth data adjusted in what is thought to be 

the best possible way, as pointed out in Section 6.4. However the relatively high low 

flow water levels and the extremely high runoff coefficients make the correctness of 

the large depth adjustment questionable. The runoff coefficient from the original data 

is more realistic. 

Table 6.5: Post Creek load calculations for the 1999-2000 budget season. Best estimate shaded. 

Upland input 99-00 season 
Discharge and sediment load calculated 
from: 

1. Original data (missing data 
estimated from rainfall -discharge 

.. . E~£r.~~~~g~) .. 
2 . Only rainfall data and rainfall -
.................. discharge regression ..... 
3. Depth data adjusted with 0.216 m 

data 

with two adjustments 

(~~~t~gg~t~ P<?t.E~PJ~~~sl). 
6. Only rainfall data and rainfall -
- _____ dischargeregression .. -·-·-- _ .. 
7. Depth with two adjustments 

(missing data estimated). Alternative 
turbidity - SSC relationship 

Total rainfall (xl0 m) = 1.5 

Unit area 
sediment 
load* (t ha- 1

) 

0.7 

0.7 

2.5 

1.6 

3.9 

Sediment Runoff Total 
load coefficient discharge 
(tonnes) (xl06 m3

) 

48 0.5 0.6 

42 0.4 0.6 

162 2.3 3.2 

99 1.7 2.4 

247 2.1 3.0 

Table 6.6 shows the best Post Creek load estimate for the 00-01 season. Despite the 

fact that depth data for this season were not adjusted, it also has a high runoff 

coefficient. This could indicate that the 00-01 depth data were correct and adjustment 

of the 99-00 data was necessary, while other factors caused the high runoff 

coefficients. Possible factors are underestimation of the Post Creek catchment 

surf ace area, errors in the depth - discharge rating curve or underestimation of the 

total rainfall in the catchment. However, the quality of the depth data remams 

dubious and some anomalies have not been explained. 
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Table 6.6: Post Creek load calculation for the 2000-2001 budget season. 

Upland input 00-01 season 
Discharge and sediment load calculated 
from: 

Unit area 
Sediment 
load (t ha-1

) 

Sediment 
load 
(tonnes) 

Runoff 
coefficient 

Total 
discharge 
(x106 m3

) 

2::r 2:b 

The best estimates of the Post Creek sediment load and discharge are summarized 

in Table 6.7, together with the best estimates of the Ripple Drain and Prosser Drain. 

Post Creek catchment consists completely of forested upland and receives a 

considerably larger amount of rainfall than estimated at the weather station in the 

cultivated lowland. David Post (pers. comm.) estimated from rainfall surfaces that 

the yearly rainfall in the upland areas is approximately 1.2 times higher than in the 

lowlands (2400 mm compared to 2000 mm) around Palmas' site. According to these 

numbers excess rainfall only partly explains the high runoff coefficient. The 

coefficient for adjusted rainfall is 1.75. To get a more realistic input for the sediment 

budget, the load is reduced, assuming a maximum likely runoff coefficient of 0.85. 

The loads used as input for the budget calculation then become 72 t (99-00) and 56 t 

(00-01). 

Table 6.7: Summary of best estimates of sediment load, discharge values and runoff coefficients. 

Ripple Drain* Prosser Drain* Post Creek 
(based on data) 

99-00 00-01 99-00 00-01 00-01 99-00 
7.0 1.6 

Post Creek ( used 
m the budget 
calculation) 
99-00 • 00-01 

8.8 0.9 
Total Discharge (10° m3

) 9.5 1.7 3.0 2.0 .. ............ -.-................. ...... ..... .......... € ..... .. 3 .................. , ..................................... ,................... . ...................... ·· ·-····• · .. ·· ....... . .. - ............ ,..... . ...................................... ......................... , ........ ............... . 
Total Rainfall (10 m) 11.7 0.7 1.5 1.0 ························································... . ······································ :-•··································<····································<·· .. ··························· ·······················•·····································'············ .. ······················'························· .. ···················· l ······· 

• 1.6 0.8 
1120 

• 

170 
-i.;~~~~1~[[:{tff~-............. , ..... ~ ...... s .. 8 .. 8 ...... 0 ........... -...... ,. ............... ~-·-3---··· ........... ... ..... ,. ~4~ .... .. ~ls---..... if5 

····· 1 .. ils .... .. .. 
3.5 • 3.7 

. ....................... ............... ... .. . I .... , ................................................................................................................ , ... . 
Sediment load (t ha-) 4.9 - 2.3 1.8 1.1 • 0.9 
* Ripple Drain and Prosser Drain data are discussed in Chapter 5 

To obtain the upland input value for the sediment budget, the information 

obtained from the Post Creek catchment has to be extrapolated across the remaining 

upland surface. This procedure will be described with the budget calculation in 

Chapter 10. 
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Chapter 7 

Fields 

7 .1 Introduction 

The budget component that covers the largest surface area in the catchment is 'fields'. 

There are three types of fields: plant cane fields with first year crop, ratoon fields 

with return crops and fallow fields without crop. Ratoon crops are grown from the 

stubble left behind after the harvest. Two or three ratoon crops follow a plant cane 

crop before the land is rested (fallow), ploughed and replanted. 

Fields under different crop stages are expected to generate different sediment 

loads, because of the presence or absence of a cane trash cover beneath the crop. The 

different crop stages will also require different erosion control management. In order 

to apply most effective management, it is necessary to know the relative contribution 

of each type of field to the sediment budget. The input from plant cane and ratoon 

fields is therefore quantified separately in this chapter. Fallow fields were not 

studied, because there was no suitable fallow field available for study during the field 

seasons. Field observations suggested t~at the sediment export from fallow fields lies 

in between that from plant cane and ratoon. In Chapter 10 is explained how the area 

of fallow fields is incorporated in the sediment budget. 

At the start of the budget study it was assumed that sediment transport from fields 

would only occur down slope via inter-rows and water furrows. It was also assumed 

that, because of the dense network of drains, runoff from each field would drain 

directly into a drain at the down slope end. No lateral exchange of sediment was 

expected to occur between neighbouring fields. If these assumptions are correct it 

means that fields do not serve as storage space for sediment from external sources. 

They will only (temporarily) store sediment generated within the field. For the 

sediment budget, only knowledge of its significance as a net sediment source is 
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important, although for management purposes storage processes within the fields are 

of importance to enable reduction of the export from fields. 

The measurement design for the budget input from fields, described in this 

chapter, is based on these assumptions. However, in later stages of the research they 

proved only partly correct. Under flood conditions reverse flow from drains onto the 

fields occurs and during extreme flood conditions completely different flow 

scenarios could occur. Under these conditions sediment from external sources could 

be stored on the fields. The effect this has on the interpretations of the sediment 

budget will be discussed in Chapter 13. 

A common way to estimate discharge and sediment export from fields is with the use 

of runoff flumes (Hudson, 1993). This method does not allow separate identification 

of erosion and storage rates within this landscape element, but this information is not 

necessary as pointed out above. An important reason why this method was chosen is 

that two fields at the Palmas' site were already equipped with runoff flumes at the 

start of the project. Furthermore the method can provide information on the average 

surface level change for a whole field and thus avoids problems of small-scale spatial 

variation within that field. 

7 .2 Ratoon data 

7.2.1 Set up 

The two flumes at the Palmas' site are referred to as 'north flume' (NF) and 'south 

flume' (SF). Each drains a field of approximately one hectare. The fields are located 

along Ripple Drain at approximately 100 m distance from each other (see Figure 

4.1). The positions of the flumes were chosen for their accessibility under inundated 

conditions. 

Both flumes at Palmas' site are Parshall flumes with an 80 cm wide neck. Each is 

located at the downstream end of a water furrow. Sheets of zinc bunding 40 cm high 

(inserted + 10 cm into the soil) direct water from seven rows on each side of the water 

furrow towards the mouth of the flume. The total width of the bunded funnel is 20 m. 

The length of the field drained by the north flume is 480 m. A part of the upstream 

end of the field is cleared to accommodate the weather station. To clearly define the 
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area gauged, bunding was installed upstream at 450 m distance from the flume. The 

total area drained by this flume therefore is 0.9 ha. 

A cabin above each flume contains an ISCO automatic water sampler. A depth 

sensor, located in a stilling well at the flume entrance, triggers the sampler at a set 

flume water depth (see Figure 7.1). The sampler then takes water samples every two 

hours until the water in the stilling well drops below the threshold level. A data 

logger records the water depths in the stilling well. During the second field season 

(99-00), the south flume was also equipped with a ST ARFLOW Doppler velocity 

meter (Unidata, 1998). This instrument was placed in the centre of the flume 

entrance (see Figure 7.1). 

Cabin with ISCO 
automatic water 
sampler and "-
data logger -"" ...... ,..., 

Stilling well 

/ VVater furrow 

STARFLOVV 
tlow velocity meter 

Figure 7.1: Set up of Parshall flume at the ratoon field site (side view). 

Sugarcane 

In the original design one flume would drain a ratoon field and one flume a plant 

cane field each season. However, due to the weather and the crop conditions neither 

of the gauged fields was replanted over the duration of the project. The flumes at 

Palmas' site therefore only provided information on sediment runoff from ratoon 

fields. For the last field season an alternative set up was created to also obtain data 

for plant cane fields. This set up is presented in Section 7.3.2. 

7.2.2 Raw data 

During the first two budget seasons (98-99 and 99-00) both flumes were operating. 

During the last season (00-01) only the south flume was in use. Because the data 

from the 98-99 season is not used for the calculation of a sediment budget, it will not 

be discussed at length, although some of the data will be used for clarification. The 

availability of the data for both budget seasons is listed in Table 7.1 and also 

illustrated in Appendix C. Daily changes in temperature cause small fluctuations in 
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the 00-01 Dataflow depth data. These fluctuations are removed prior to use. All 

available and corrected data for each season are plotted in Appendices F (9 and 10). 

The appendices also show the turbidity and SSC results from the flume water 

samples. The first samples for the 99-00 season were taken in December when the 
-

gauges were not yet operating. All events are fully sampled, apart from the 6-8 

February event, for which only the last half is sampled. There were three rainfall 

events during the gauged period of the 00-01 season. No water samples were taken 

during the first event, and the first few samples of the last two events are missing, 

due to problems with the ISCO sampler. 

Table 7.1: Availability of depth and velocity data from the south flume gauging site for the 99-00 and 

00-01 season. 

Start • End 
99-00 Starflow velocity 31/01/00 10:05 • 12/5/00 12:35 
and depth data 

• 00-01 Dataflow depth 20/12/00 18:00 20/02/01 2: 15 
data 

' 

7 .2.3 Flume hydrographs and backwatering 

During the first field season (98-99) it was recognized that backwatering affects the 

flow through the flumes at Palmas' site. Runoff from the fields is reduced when the 

water level in the adjacent drains rises above the mouth of the flumes. Because the 

standard stage/discharge formula of the flumes assumes unimpeded flow of water, it 

can in this situation not be used to calculate discharge from the flume water depth. 

Towards the end of the season the south flume was equipped with a flow velocity 

meter, to overcome this problem. 

Figure 7.2 shows an example of a storm event for the south flume from the first 

field season (2 - 4 April 1999). The flow depth curve shows a peak as a result of the 

rainfall over this time period. The flow velocity does however not increase with 

increasing flow depth. After an initial increase the velocity suddenly decreases. At 

peak water depth, flow velocity is lowest. This indicates that runoff through the 

flume was impeded. The sudden change in flow velocity and thus the start of 

backwatering occurs at a water depth between 5 and 6 cm. A similar pattern is shown 

in Figure 7 .3, although less pronounced, partly because of faulty data. With 
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increasing water levels the flow velocity in the flume decreases, due to increasing 

pressure from the drain water. 

450 · -·· ... ---·=-----,.,----, i ,~,../•.••., . .,.__..,,.• ._,_.,. ... ._. \~ f........ /'·"•.. . . ." ·• /""'•;.,"'; ··,. ,(/,,,, •.· .. ,,,, ... ·u,•,,._•''"·•"• •·•····· 
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Figure 7.2: Gauging data, south flume (2- 5 April 1999). 
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Figure 7.3: Gauging data, south flume (15 - 19 March 2000). 

7.2.4 Rating curves 

To calculate the sediment load from the south flume, discharges are first calculated 

from the depth and velocity data. Next, all depth, velocity, turbidity and discharge 
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data are averaged over periods of six hours, in the same way as for the gauging data 

from the outlet drains (Chapter 5). 

The velocity meter was only installed in the flume during the 99-00 season. For 

this season, discharge can be calculated directly from velocity data, water depth 

records and the flume cross-section. Flume discharge for the 00-01 season is 

estimated from a rating curve, which was established with the 99-00 averaged depth 

and discharge data. The curve is shown in Figure 7.4. 
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Figure 7.4: Depth- discharge rating curve based on 99-00 south flume data. (n=189, P<0.01) 

Because of the backwater conditions, the water depth in the flume is strongly 

dependent on the depth of Ripple Drain. The relationship based on 6-hourly 99-00 

Ripple Drain and south flume depth data are shown in Figure 7 .5. The curve consists 

of two obviously different sections. The kink in the curve represents the point where 

the water level from the nearby drain reaches the flume mouth and starts obstructing 

the runoff from the field. For water depths above this point there appears to be a 

close relationship between the drain and flume depth. For the lower depths the 

relationship is not clear. For the two parts of the curve two different regression 

equations are established. For both seasons missing south flume depth data at the 

beginning and the end of the budget periods are estimated from Ripple Drain data. 
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Figure 7.5: Relationship between Ripple Drain water levels and south flume water depth (separate 

regression equations for RD depths <1.0 m (n=429, P<0.01) and >1.0 m (n=58, P<0.01)) 

7 .2.5 Sediment export 

The flume water samples were analysed for SSC and turbidity in the same ways as 

the drain samples (see Section 5.3.1). Figure 7.2 and 7.3 show how the sediment 

concentration of the flume runoff is affected by backwatering. The SSC of the flume 

samples follows the flow velocity curve of the runoff. Concentrations are highest at 

the shallowest flume depths, when the runoff is not yet impeded by drain 

backwatering and runoff velocities are highest. During the peak water depths the 

concentrations are lowest, because the flow velocities are low, so sediment is 

allowed to settle and the flow has least erosive power. At the end of the flow peak 

when the water level lowers and the flow velocity increases again, the sediment 

concentration increases as well, which indicates that the concentration decreases 

under peak flow conditions is not just source depletion as is often seen under 

unimpeded flow conditions. 

To obtain a continuous SSC record for the calculation of the sediment load, a 

rating curve has been developed. Due to the backwater conditions sediment 

concentration is not well related to discharge. A better rating curve is obtained from 

the depth data. For each water sample the flume depth at time of sampling is plotted 

against the SSC. The regression equation for the 99-00 data is used to calculate 

continuous sediment concentration data for the final load estimation (see Figure 7.6): 
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Equation 7 .1 

SSC = -43 * ln(Depth SF) + 365 (R2 = 0.7) 

The logarithmic relationship was chosen, because it best represents the elevated 

concentrations at low flow depths. 
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Figure 7.6: Suspended sediment concentration - water depth relationship for the south flume. 

Samples for each season and the first event of each season shown separately (n=78). 

Figure 7.6 shows the samples for the first events of both seasons separately. When 

the samples for the first event of the 99-00 season were taken, water depth was not 

yet being recorded. The flume water depth at the time of sampling is therefore 

estimated from the Ripple Drain depth with the equations in Figure 7.5. Most of the 

first event samples have relatively high sediment concentrations. This is thought to 

be the result of disturbance of the surface after installation of the bunding each 

season. It could also be due · to the so-called 'first flush' effect, which is a high 

sediment concentration in the first runoff after the dry season. This effect will be 

discussed in more detail in Section 7.3.9. Because the results from these samples are 

not representative for the sediment concentrations during the budget period, they are 

not used in the calculation of the rating curve. 

7 .2.6 Ratoon fields load calculation 

All missing depth data at the beginning and end of both seasons is substituted with 

data estimated from Ripple Drain depth (Figure 7 .5) where possible. All discharge 
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data for the 00-01 season and the missing periods of the 99-00 season are estimated 

from the rating curve in Figure 7.4. With the equation from Figure 7 .6 sediment 

concentrations are estimated for the runoff from both seasons. The cumulative 

sediment discharge results in 3 .2 tonnes sediment load from the south flume ratoon 

field in the 99-00 season and 2.5 tonnes in the 00-01 season. 

Because the gauged field includes a water furrow, the estimated load includes 

sediment derived from the water furrow. In the budget study, water furrows are 

considered separate budget components that require specific soil conservation 

management. To obtain the export solely from the ratoon field surface, the amount of 

sediment expected to originate from the furrow is subtracted from the total sediment 

load measured at the flume outlet (see Table 7.2). The estimate of the furrow input is 

derived in Chapter 9. The water furrows occupy 12.5 % of the field surface. (2.5 m 

furrow width per 20 m field width). Thus for the 99-00 season: 

Soil loss field without furrow (t) = Soil loss field - (12.5% * (Soil loss furrow)) 

1.4 = 3.6 - (12.5% * 18) for the 99-00 season and 

0.7 = 2.8 - (12.5% * 20) for the 00-01 season. 

Table 7.2: Results of the sediment load estimation from the south flume 

South flume Sediment Sediment Load minus Runoff 
whole budget load (t) load (t ha-1

) furrow coefficient 
period component 

(t ha-1
) 

99-00 3.2 3.6 1.4 1.2 
00-01 2.5 2.8 • 0.7 1.0 

To obtain the total input for the sediment budget, the results from the ratoon flume 

are considered representative for all ratoon fields and extrapolated across the budget 

area. Further details on the extrapolation methods are described and discussed in 

Chapter 10. 

So far only data from the south flume have been discussed. Because the north 

flume has never been equipped with a velocity meter, it was not possible to calculate 

discharges for this flume. It is the ref ore not possible to make a second estimate the 

sediment load that could confirm the south flume result. However, both the depth and 

the suspended sediment measurements from both flumes were very similar. 
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7 .3 Plant cane data 

7 .3.1 Introduction 

During the first budget season several observations were made of much higher 

sediment concentrations in the runoff from plant cane fields compared with runoff 

from ratoon fields. This suggested that the plant cane fields were potentially an 

important source of sediment; and sediment load data from ratoon fields alone would 

not sufficiently represent the sediment export from cane fields. Unfortunately the 

gauged fields at Palmas' site were not replanted during the remainder of the project. 

To obtain some information on the sediment export from plant cane fields, an 

additional flume gauging site was installed during the last season elsewhere in the 

catchment. The only field suitable and available for this purpose was 1 km 

downstream from the Palmas' site (Figure 4.1). 

There are a number of important differences between the ratoon field gauging site 

and the new gauging site for plant cane fields. These differences are likely to 

influence comparison of results between the two sites and will have to be taken into 

consideration in the interpretation of the budget results. Firstly the soil texture of the 

plant cane site is classified by Wood (1984) as clay, while the soils at Palmas' site are 

silty clay. The difference in soil texture is likely to cause differences in erodibility of 

the field surface, which will influence the measured sediment loads. Secondly the 

plant cane field was laser levelled and therefore does not contain water furrows. This 

required a change in design of the flume set-up. It also means that the flume runoff 

does not contain sediment derived from water furrows. Finally the field was located 

along a farm drain at 1.2 km distance from Ripple Drain, while Palmas' site is 

located along Ripple Drain. The difference in distance from the main drain has an 

effect on the hydrology and erosiveness of the field runoff. 

To illustrate the difference between the sites and the effect it might have on the 

load calculation, the hydrology and SSC data from the plant cane site will be 

compared with the data from the ratoon site that was presented above. 

The plant flume site was only installed at the beginning of the 00-01 season. 

There is no plant cane gauging data for the 99-00 season. Section 7.3.9 describes an 
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alternative method that is used to estimate plant cane budget input for the first budget 

season. 

7.3.2 Set up 

The gauging installation at the plant cane site consisted of tvvo small cutthroat flumes 

with 30 cm wide throat (Walker and Skogerboe, 1987) (see Figure 7.7). Each flume 

collected the runoff from seven rows. Runoff at the downstream end of the rows was 

directed to the throat of the flume with zinc bunding (similar to the ratoon set-up). 

The rear and sides of the area were not bounded. The total area drained by each 

flume is approximately 0 .6 ha. 

Still ing well with --
prnssurn transdu cer __ ,__,,., 

. // : -;/ 
./ 

Cutthroat flume 

Cabin with ISCO automatic 
water sampler 
(located above plant flume) 

Figure 7.7: Set up of cutthroat flumes at the plant cane site. 

.. 

~-'' -

Water depth in each flume was gauged with depth sensors in a stilling well 

connected to Dataflow data loggers. One of the flumes was also equipped with an 

ISCO water sampler and a Starflow Doppler velocity meter, similar to those used for 
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the flumes at Palmas' site. The fully gauged flume at the plant cane field will be 

referred to as plant flume (PF). 

7 .3.3 Raw data 

Velocity and depth data from the Starflow meter at the plant flume covers the whole 

period between 20 December 2000 and 20 February 2001 (Table 7.3). The Dataflow 

data from the same flume do not add any extra information and will be discarded. 

Three storms occurred over the gauging period. The depth and velocity curves for 

these storms are shown in Appendix F (11). Between 2 and 6 January 2001 both 

velocity and depth data show suspect behaviour. 

All events were sampled. Only the last samples of the last event are missing, 

because there were no spare bottles left in the ISCO sampler. Sample SSC-s are also 

plotted in Appendix F (11). 

The purpose of the second flume at the plant cane site was to provide a back up 

for the runoff depth recordings of the first flume. Because SSC and velocity data are 

not recorded at this flume it cannot be used to confirm the estimate of the sediment 

load. The depth graphs of both flumes are identical. The data from the second flume 

will therefore not be discussed any further. 

Table 7.3: Data availability for the plant flume 00-01 season. 

Start End 

00-01 Starflow velocity 20/12/00 18:00 20/02/01 2: 15 
and depth data 

7 .3.4 Reverse flow 

Figure 7. 8 shows the plant flume gauging data for the storm period between 13 and 

20 February 2001. During this event the plant flume velocity data often become 

negative. This also occurs during the other recorded events. There are two possible 

explanations for the negative flow velocities. It could be an artefact of the velocity 

meter, or for very low flow velocities the sensor might produce signal noise. 

However the instrument can measure velocities as little as 21 mm s-1 and the noise 

should consist of very high velocity signals ( <3 m s-1
, Unidata, 1998), which is not 
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the case. It is more likely that the flume experienced reverse flow, which means that 

overbank water from the draih flows through the flume onto the field. 
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Figure 7.8: Plant flume gauging data (13 - 21 February 2001). 

Reverse flow seems to occur especially during and just after rainsto1ms, when the 

water depth in the flume rises. Only when the flow peak lowers and the pressure 

difference between drain and field runoff decreases, water starts draining from the 

field. The signal is however very noisy, with many switches between normal and 

reverse flow. It is not possible to fully explain the shape of the velocity curve. 

In addition, the position of the flumes in the catchment could have an effect on the 

hydrographs. Runoff from the plant cane field further downstream may be blocked 

for a longer period of time. 

7.3.5 Comparing hydrographs 

Figure 7. 9 shows the flow depth curves for both the south flume and the plant flume. 

The graph does not reveal anything about the total water discharge from the fields, 

because the flumes have different dimensions, but it does show how drainage from 

the ratoon is much more efficient. The recession of the plant flume hydrograph takes 

longer than that of the south flume. The most likely cause is the design of the fields. 

The ratoon field is drained with water furrows , in contrast to the laser-levelled plant 

cane field. The water furrows allow faster drainage of the field surface and will 

produce higher peak runoff. 
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Figure 7.9: South flume and Plant flume depth and SSC data (13-21 February 2001). 

Reverse flow was never recorded in the flumes at Palmas' site. At peak water 

levels in the South flume flow velocity was reduced, but never reached zero or 

became negative. The south flume reached flow velocities of up to 0.6 m s- 1
. 

Velocities in the plant flume were predominantly between 0.1 and -0.1 m s-1
. 

7 .3.6 Rating curves 

Because the 00-01 plant flume data do not cover the full budget period, the existing 

data have to be extrapolated. Similar to the ratoon load calculations , rating curves are 

developed based on all available, averaged data. The plant flume depth - Ripple 

Drain depth curve is shown in Figure 7 .10 and the depth - discharge curve in Figure 

7.11. 

The depth relationship with Ripple Drain is not as distinct as for the ratoon flume. 

There appears to be a hysteresis effect. The drainage from the field is relatively slow 

compared with the water level decrease in Ripple Drain. This could be partly due to 

the slow drainage from laser-levelled fields and partly due to a delayed response 

because the site is not in direct contact with the main drain. The depth - discharge 

rating curve is especially unreliable. This is again caused by the particular 

backwatering and reverse flow conditions at the gauging site. The suspect data 

pointed out in Section 7 .3 .3 do not seem to significantly change the relationship 

shown in Figure 7 .11 . 
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Figure 7.10: Scatter diagram of Ripple Drain (RD) versus plant flume (PF) water depth data (n=229, 

P<0.01). 
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Figure 7.11: Depth- discharge rating curve based on 00-01 plant flume (PF) data (n=247, P<0.01 ). 

7 .3. 7 Sediment export 

Concluding from the analysis of the raw data, there are only three storm events 

recorded at the plant flume in the 00-01 season. The SSC of the samples taken from 

the flumes every two hours during the 14-18 February storm event are plotted in 

Figure 7.8. Other events are plotted in Appendix F (11). 
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A remarkable aspect of Figure 7 .8 is that the sediment concentration peaks in the 

plant flume seem to coincide' with both rainfall and reverse flow velocity peaks. It is 

not clear why these three processes occur at the same time. High sediment 

concentrations during a rainstorm are understandable, because the rainfall detaches 

new sediment from the field surface, which is transported with the runoff. However, 

the reverse flow that appears to occur at the same time, indicates that water from the 

drain flows back into the flume. Drain water is expected to be less turbid than water 

draining directly from the field, which contradicts the high sediment concentrations 

in the water samples. The flow velocity pattern is however rather noisy, which makes 

interpretation of the flume data difficult. 

In the south flume, SSC was reasonably well related to flume water depth. When 

the plant flume samples are plotted in the same graph (Figure 7 .12), it shows that 

some of the samples have relatively high sediment concentrations. Most of the high 

concentration samples are taken at intermediate flume flow depths of 20 to 30 cm. 

Samples taken at higher water levels have concentrations comparable to the south 

flume samples. This effect is also shown in the hydrograph of the only event during 

which both the plant and south flume were sampled ( 14-18 February 2001, see 

Figure 7.9). 

It is difficult to explain the variation in sediment concentration from plant flume 

samples with the current data. It could indicate that water with relatively high 

sediment concentrations is still draining from the fields at intermediate drain water 

levels, while at higher flows this water is impeded and sediment-poor drain water is 

sampled. However, the velocity pattern of the flume does not confirm this 

interpretation. 

It is hard to fit a curve through the Plant flume SSC data. This means that the 

sediment load from the plant flume will remain much more uncertain than the load 

from the South flume. To get some estimate of the total load a composite 'model' is 

used to estimate SSC from flume depth. For flume depths smaller than 200 mm the 

South flume equation is used and for all depths greater than 200 mm a new power 

function is fitted (see Figure 7 .13). 
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Figure 7.12: Suspended sediment concentration - water depth relationship for the south flume and 

plant flume. Samples for each season shown separately. 

,_ 
::::::: 
0) 

E ---
0 
Cf) 
Cf) 

0.1 

• 

<2• 

y = 2?x-1 .s 

R2 = 0.4 
o Water depht PF 

<20cm 

m Water depth PF 
>20cm 

Depth PF (m) 
1 

Figure 7.13 Suspended sediment concentration - water depth relationship for plant flume water 

depths >20 µm (n=75). 

7.3.8 Plant flume load estimation for the 00-01 season 

To obtain plant flume sediment discharge for the whole budget period, missing depth 

data are estimated from the equation in Figure 7 .10, where possible. Missing 

discharge data are estimated from the rating curve in Figure 7 .11. With the 'model' 

proposed in Section 7 .3. 7, the sediment concentration of the runoff is estimated. 
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Based on these estimates a total sediment load for the season is estimated, which is 

presented in Table 7 .6. 

Negative sediment discharge is treated as such in the load calculation. Negative 

discharge means that sediment is imported onto the field from elsewhere instead of 
-

exported from the field, so there will be accretion rather than erosion. The observed 

amount of reverse flow might not be representative, because the bunding funnel 

blocked most of the flow from the drain onto the field and concentrated the runoff. 

7.3.9 Plant flume load estimation for the 99-00 season 

There is no gauging data for a plant cane field for the 99-00 season, but during this 

season a large number of grab samples were taken in the catchment. Some of these 

samples were taken directly from the runoff that leaves the fields via inter-rows. 

Based on these water samples an estimate is made of the sediment export from plant 

cane fields during that season. 

The SSC of all grab samples taken from plant cane rows are averaged. The 

average sample concentration is multiplied with the monthly runoff, providing an 

estimate of monthly sediment loads. The monthly runoff is calculated from rainfall 

and monthly runoff coefficients estimated for plant cane fields (David Mitchell, pers. 

comm.) (see Table 7.5) This method indicates a total sediment load of 5.9 tonnes per 

hectare plant cane. 

Table 7.4: Turbidity and SSC in runoff from plant cane and ratoon rows. 

Grab samples plant cane runoff 99-00 Grab samples ratoon runoff 99-00 
Field Date Turbidity TSS Field Date .Turbidity TSS 
number (NTU) (mg r 1

) number • (NTU) (mg r 1
) 

102 (PC) 7-Feb-00 164 136 ?.~ (13:Q) .. 5-Nov-99J 35 190 
!02 (PC:.) . ~ .?=N"-9..Y=?.?r·· 131 278 29(RG).. 7-Feb-00 102 140 
47 (~?) ... . . 7~~~~=99 j .. 103 127 4~ (~?) 5-Nov-99J 104 199 
50(PS) ?=N".2.Y=??L 325 394 ......... 58 (RS) . ?=N'2.Y=??.! 149 ' I 

59 (PS) • 25-Feb-00 190 170 .. ~Q(~?)... 5-Nov-99 .}.47 
62 (PS) 5-Nov-99 1030 969 ............................................. 

!: ~~~ t~~~:iit ~01°s
1 

. ~~~ 
............................... ········· · a;~;ag~sscJ .... 41s 

! l 

.. . . ..... ayi;:~gi$$d 165 
stdev SSC i 341 stdev SSC i 97 

P = Plant cane field; R = Ratoon field; C = Clay; S = Silty clay; G = Grey sand 
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Table 7.5: Plant cane field load estimate based on grab sample SSC and runoff coefficients. 

Month Rainfall Runoff Runoff Plant cane Ratoon 
(mm) coefficient (mm) sediment load sediment load 

(Mitchell, based on based on 
pers. comm.) sample SSC of sample SSC of 

415-mg r 1 (kg) 165 mg r 1 (kg) 
from 21/12/1999 232 

' 
0.5 116 481 191 

Jan-00 98 
' 

0.2 20 81 32 
........ 

. ··•·· 

Feb-00 1027 0.8 821 3409 1355 --- -· ···--- -· 33i··· 1--
-·- . -·--·--·--~ ,.,.,. ~~ -- - ... ----··· ~-,.-· .... .~ ....... ·- ··-- ·········-·--•-• ... -•--·-· 

Mar-00 0.7 236 978 
• 

389 .. ............................... ·······························•······ 

Apr-00 442 0.5 221 917 
• 

365 
till 3/05/2000 0 

• 

0.1 0 0 0 
Total 2189 

' 
• 

1414 5867 2332 

A similar calculation based on the ratoon samples gives a sediment load of 2.3 t 

ha-1 from a ratoon field. The 2.3 t ha-1 is not very different from the estimate of 1.4 t 

ha-1
, based on total seasonal discharge and SSC information from all flume water 

samples adjusted for furrow contribution. 

It has to be stressed that most of the water samples used in the calculations of both 

the plant cane and ratoon load were taken early in November 1999, during one of the 

first summer rainstorms (see Table 7.4). Sediment concentrations in the runoff were 

relatively high compared to concentrations later in the season. This has two causes. 

Firstly, early in the wet-season the cane crop is still very small and does not provide 

a protective cover for the field surface. Secondly, the North Queensland wet tropics 

experience what is known as the 'first flush' effect (Mitchell et al., 1991; Devlin et 

al., 2000; Williams, 2001). The runoff from the first significant rainstorms of the wet 

season usually contain high sediment and nutrient concentrations, reflecting the 

mobility of oxidised N (and P to a lesser extent), and easily erodible soil material 

that has become available over the dry-season. Later in the season this source 

becomes depleted and sediment concentrations decrease. The total load calculated 

from samples predominantly taken in November is therefore likely to overestimate 

the 'true' load. 

7 .4 Comparison and discussion of plant cane and ratoon sediment 

loads 

Table 7.6 summarizes the sediment load estimates in tonnes per hectare for both 

plant cane and ratoon fields, based on the methods described above. 
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Table 7.6: Summary of sediment loads estimated from plant cane and ratoon gauging sites. 

99-00 
00-01 

Sediment load (t ha- ) 

5.9 
1.7 

n/a 
1.1 

Fields 

For both seasons the amount of sediment coming from plant cane fields is clearly 

higher than that coming from ratoon fields. However, the methods used to estimate 

the sediment load are very different, and comparison of the ratoon and plant cane 

values and the differences between the seasons must be made cautiously. The method 

used to obtain the 99-00 sediment load for plant cane is thought to have the highest 

uncertainty and is likely to overestimate the true load, because of the biased sampling 

strategy. 

The method used to obtain the 99-00 sediment load for ratoon is thought to be 

most accurate. The discharge used to calculate the load results however in a runoff 

coefficient of 1.3, which is impossible. If the rain gauge provides representative data, 

there are two possible explanations for the overestimated discharge. Either the runoff 

was over estimated due to errors in the calculation methods or data measurements, or 

n1noff from outside the assumed catchment area was measured at the flume. Either of 

these explanations means that the sediment load is overestimated. 

In Section 7.3.1 it was mentioned how differences in field characteristics between the 

plant cane and ratoon gauging site can complicate comparison and application of the 

data. The effects of the differences occur in combination; it is not possible to assess 

them separately. The following observations suggest how they may affect the 

sediment load estimates: 

Soil type will affect erosion rates. The clay soil is thought to be less erodible than 

the silty clay soil (Timmer, 1998). This is confirmed by the water samples taken 

from field runoff (see Table 7.5). The samples taken from clay fields have relatively 

low SSC. Because the soil in the catchment is predominantly silty clay, the plant 

flume in clay soil would therefore underestimate the average sediment load from 

plant cane fields. 
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The effect of the differences in the hydrology between the site has been 

commented on earlier. Overall flow velocity from the plant cane field is lower, 

allowing less sediment transport and erosion by the runoff. This suggests that the 

plant cane site yields less sediment compared to the ratoon site. 

The effect of the difference between the set up of the two gauging sites 1s 

unknown. Adjustment of the load from the ratoon flume for water furrow erosion 

will increase the error at this site, but it is not known whether this would cause either 

over or underestimation of the load. 

An important observation made at the plant flume is the reverse flow of drain water 

onto the fields. This process violates the assumption made in Section 7.1, that fields 

do not serve as storage for sediment from external sources. In the load calculation for 

plant cane fields in 00-01 (Section 7.3.8), reverse flow has been taken into account. 

However, the results have been affected by the flume structure that blocked the flow. 

It is not possible to quantify this effect, but it should be noted that overbank flow 

does not only cover the headlands, but can also reach into the field beyond. 

Potential errors in the gauging data due to movement of sensors, similar to what was 

observed at the drain outlets, have been ignored, because they cannot be quantified. 

There were some indications that parts of the depth data might be incorrect, but there 

were no ways to check this. 
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Headlands 

8.1 Introduction 

Headlands are common elements of cane growing areas. They are strips of grassland 

along the margins of the cane fields with a width of 2-5 meters. The purpose of 

headlands is in the first place to allow turning space for the large cane harvesters, but 

they are also used to allow access into areas without roads and tracks. To improve 

drainage from the fields towards the drains, headlands usually slope several degrees 

in the direction of the drain. 

Long grass on the headlands tends to attract cane rats. Cane rats feed on the 

sugarcane stalks and can considerably reduce the cane yield (Bureau of Sugar 

Experimental Stations, 2002). Canegrowers therefore prefer to maintain the shortest 

possible grass cover on their headlands. In most of the study area the grass is cut with 

'slashers'. These machines cut the grass to the base of the plant and often leave 

patches of bare soil with a little grass stubble. 

The combination of intensive vegetation management and a slightly sloping 

surface creates a situation that can be susceptible to erosion. At the start of the 

research some headlands showed clear signs of soil erosion such as rills and soil 

pedestals. Headlands were therefore identified as a potentially important source of 

sediment in sugarcane land. Reduction of sediment export from this landscape unit 

would require specific alterations of management practices. It therefore becomes a 

separate component in the sediment budget. In this chapter sediment export and 

sediment storage processes on headlands are quantified, so that their share in the 

sediment budget can be estimated. 

8.2 Headland erosion and deposition processes 

Preliminary erosion and deposition measurements were done on the headlands during 

the 98-99 season. The results of these measurements and additional observations in 
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the catchment provided a first insight into the erosion and deposition processes on 

the headlands. The experimental design that was used to quantify the headland 

budget component in the following seasons is based on these first impressions. 

Erosion and deposition processes on headlands are thought to occur by two types of 

water flow. The first type of flow consists of water that drains from the inter-row 

spaces of fields across the headland towards the drain. This flow creates rills, which 

develop mainly from the margin of fields where concentrated runoff flows onto the 

headland surface. In situations where runoff from a field is rich in sediment, 

deposition occurs rather than erosion, and fan shaped deposits have been observed at 

the field margins. The second type of flow occurs when drains overflow onto the 

headlands during flood events. This process deposits coarse sediment in the 

vegetation along the edge of the drains and causes some surface scouring in the 

direction of the flow. 

The combined effect of the two types of water flow causes a variable pattern of 

erosion and deposition across the headlands. The effects of both sediment deposition 

and scouring by overbank flow are expected to decrease further away from the drain, 

as velocity decreases. Runoff from the fields has most effect closest to the field 

margin. At the catchment scale, the magnitude of erosion and deposition processes 

probably varies as a result of spatial variation in headland surface conditions, drain 

proximity and drain size. The following headland surface conditions were identified 

as factors that potentially influence variation in erosion and deposition on headlands: 

Soil type: The texture of the soil in the catchment varies from clay to sand. Soil 

type has in earlier studies been identified as an important erosion controlling 

factor (Morgan, 1986; Timmer, 1998). 

Type of drain along which the headland stretch is located: Overbank flow from 

Ripple Drain and other major drains has high velocities and is therefore erosive 

and can transport more sediment than minor drains. 

Crop cover on the fields bordering the headlands: More sediment is expected to 

be transported onto the headlands from plant cane fields compared to ratoon 

fields. 
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Vegetation cover: Sites with clear signs of surface erosion often have low 

vegetation cover. 

8.3 The erosion pin method 
-

Erosion pins have been used to measure erosion and deposition on headlands during 

the two budget seasons. Pins are put into the ground as reference points from which 

changes of the soil surface level can be recorded. The method has been widely used 

in soil erosion research, because it is a fast and cheap way to obtain direct estimates 

of surface level change (Haigh, 1977; Stocking, 1987). An important reason for the 

application of the method in this study is also that it can provide separate information 

on both erosion and deposition rates. 

Sutherland and Rorke (1991) applied erosion pins to measure several components 

of their sediment budget for the Katiorin drainage basin in Kenya. The application 

was not completely successful, because most of the pins were disturbed, which 

reduced available data and hampered analysis. In his review of the use of erosion 

pins, Haigh (1977) mentions this as a matter that requires attention, together with the 

accuracy of the method; the interpretation of the measured surface level changes; and 

the potential influence of erosion pins on the measured processes. In addition to this 

Loughran (1990) notes how the method can not be used for long-term experiments in 

cultivated areas. All these matters have been taken into consideration for the erosion 

pin study on headlands and will be discussed in the following description of the 

application. 

Often erosion pins are used in combination with washers, which serve as a solid base 

for the estimates of the pin height. In some studies the washers are not permanent but 

only applied at the time of measurement (Sirvent et al., 1997). Haigh (1977) 

describes in his review how the continuous presence of the washer can have several 

advantages. By either collecting sediment on top of the washer in case of deposition 

or maintaining a soil pedestals beneath the washers in case of erosion, the washer can 

provide additional information on processes acting on the studied surface. 

During trials on the headlands in the 98-99 season, both deposition on top of the 

washer as well as soil pedestal beneath the washer were observed. Disturbance of the 
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processes due to the presence of the washer was not apparent. The use of washers is 

therefore thought beneficial in' this study. 

8.4 Pinplot distribution: capturing variation 

8.4.1 Transect sampling 

Erosion pins can be used in a flexible set up, although they are usually installed as 

plots consisting of an array of pins. The measurements from the plot serve as a 

random sample of the local variation in surface level change. In this project it is 

important that the pin measurements sufficiently represent the variation in erosion 

and deposition processes on the headlands, because misrepresentation of the 

headland component will cause imbalance in the sediment budget. 

The spatial variation in the type and magnitude of erosion and deposition 

processes on headlands, combined with the typical elongate shape of the landscape 

element determined the decision to use a transect type sampling plan. Pinplots were 

laid out as transects, which extend from the edge of the field to the drain. Each plot is 

five pins wide and seven to nine pins long depending on the width of the headland. 

Thirteen plots were spread throughout the catchment in the 99-00 season to include 

all surface conditions that were pointed out above. In the 00-01 season only seven 

plots were installed. For each plot an erosion and deposition rate is calculated. 

Statistical tests are then used to determine whether these rates are significantly 

different for plots on headlands with different surface conditions. If this is the case, 

the rates can be averaged across-catchment for areas with similar surface conditions, 

in order to obtain total amounts of erosion and storage on headlands in the budget 

area. 

There are however a few difficulties with this method. On the headlands in the 

study area a wide range of different surf ace conditions occur that have the potential 

to influence erosion and deposition rates. For practical reasons it is not possible to 

compare the effects of all these conditions separately. The total number of sites that 

can be sampled and their distribution throughout the catchment is restricted by the 

following issues: 

- Time to install, measure and remove plots is limited 
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Pinplots prohibit access of vehicles to headlands or parts thereof and can thus 

only be in place when access is not required (that is during the wet season) 

Not all farmers allow access to their properties 

8.4.2 Pinplot distribution per season 

In the 99-00 budget season 13 pinplots were installed in the Ripple Comer 

Catchment. Because soil type is thought to have much influence on the magnitude of 

erosion and deposition, the initial distribution of the plots was based on the three 

main soil types in the area. Two plots were located on clay soils, four plots on grey 

sand, and seven plots on silty clay. The boundaries of the soil types were taken from 

the Wood soils map (Wood, 1984). Within the three soil classes, plot sites were 

distributed among headland stretches along different drain orders. In total six plots 

were located along Ripple Drain, four plots along other major drains, and three plots 

along minor drains. At each of the selected headland sites two plots were installed. 

Where possible one of the plots was located along a field with plant cane crop and 

one along a ratoon field. This resulted in a total of seven plots along plant cane fields 

and six along ratoon fields. The number of plots that cover each surface condition are 

listed in Table 8.1 and the location of each plot is shown in Appendix B. 

In the second season (00-01) the number of plots within the Ripple Comer 

Catchment was reduced to save operating time. However, the same sites were used to 

allow comparison between the seasons. None of the sites contained a plant cane crop 

so no plots were present along plant cane fields in the 00-01 season. The number of 

plots that represent each of the surface conditions for this season are listed in Table 

8.1. The site locations are plotted in Appendix B. 

Table 8.1: Distribution of pinplots across headland sites with different surface conditions. 

Surface condition 1999- 2000-
2000 2001 

Soil type Silty_clay ________ _ 7 3 
Grey_sand _____ _ 4 2 

• Clay 2 2 
Drain type • ____ Ripple _Dra~-----­ 6 2 

4 l_ 11.~J9.!. 4-!ajJ?:_ _ _ _ 1-------------------------------------------------­ 2 
• Minor drain 3 3 

················································ 

Crop type Plant cane 7 
• Ratoon 6 7 
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Vegetation cover of the headland surface was not taken into account in the 

distribution of the pinplots. Cover percentage is a continuous variable with a high 

spatial variability and is therefore studied in a different way. The cover percentage is 

estimated for each plot at the end of the season and its relationship with the erosion 

and deposition rates studied with a regression analysis. 

8.5 Pinplot set up and measurements 

Each erosion pin plot is five pins wide. The number of rows varies between seven 

and nine depending on the width of the headland. The distance between pins is 50 

cm. The decision for this plot size is based on visual observations of the small scale 

spatial variation and magnitude of the erosion processes. The pins consist of 350 mm 

long steel rods with a 5 mm diameter. They are driven into the soil with a hammer. 

The force used may have slightly disturbed the surrounding surface, but this is not 

thought to have significantly affected the measured processes. A 12 mm zinc washer 

is put on each pin. 

The distance from the top of the erosion pin to the surface of the washer is 

measured with a digital calliper at a precision of 0.1 mm. The height of each erosion 

pin above the soil surface is measured twice on opposite sides of the washer. The 

mid-point of the two measurements is taken as the soil surface level at an erosion 

pin. This method handles measurement variation when the washer is not horizontal. 

When a washer is obviously affected by erosion or deposition processes, this is taken 

into account by taking additional measurements from the new soil surface level. The 

height values of all pins are averaged to obtain the net surface level change in mm 

for a pin plot. Erosion and deposition rates are obtained by separately summing 

positive and negative values and dividing them by the total number of pins in a plot. 

8.6 Results 

In the 99-00 season the headland plots were installed in December, one week before 

the start of the stream/flume gauging. No rainfall was recorded on these first days, so 

the surface level change that occurred over this period is assumed insignificant and 

will not affect the total erosion and deposition rates. 

All pinplots were measured at least twice after installation each season, in March 

and May. The successive measurement sessions provide information on temporal 

variation in the erosion and deposition processes, and disturbance of the plots can be 
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detected and corrected. Appendix G lists for both budget periods the net surface level 

change on each plot. Changes between individual measurement sessions within each 

season are also listed. 

The 00-01 erosion value of plot M has an exceptionally high average erosion rate, 

considering its high vegetation cover of 99%. During the February measurements 

there was a clear sign of removal of soil around the pins , probably through digging 

by animals. The data from this plot are therefore excluded from further analysis. 

8.6.1 Variation of erosion and deposition rate 

The variation in erosion rates, deposition rates and net surface level changes for the 

different headland surface conditions is presented in boxplots. The boxplots for the 

99-00 pinplot data are shown in Figure 8.1, 8.2 and 8.2. They are interpreted as 

follows: 

There appears to be more deposition on plots on clay soil, resulting in a relatively 

high net surface level change. 

There appears to be more deposition on plots along minor drains , resulting in a 

relatively high net surface level change. 

There appears to be a difference in both erosion and deposition rates between 

plots adjacent to plant cane and ratoon fields, resulting in a relatively high net 

surface level change on plots adjacent to plant cane fields. 

Because the number of plots that could be installed was restricted and because their 

distribution was not random, the data are not appropriate for analysis using 

parametric statistics. Instead non-parametric statistics are used to test if there are 

differences in erosion and deposition rates between headland stretches with different 

surface conditions. The Kruskal-Wallis test, which is a non-parametric alternative for 

the one-way ANOV A test, is used. 

The test results indicate that none of the erosion rates, deposition rates or net 

surface level changes is significantly different (a= 0.05) due to differences in any of 

the studied headland surface conditions (Table 8.2). The only difference is in the net 

surface level change on plots adjacent to fields with different crop types. In this case 

the Kruskal-Wallis test indicates a significantly higher positive surface level change 
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adjacent to plant cane fields relative to ratoon fields. Table 8.2 shows the probability 

(P) for all tests. 
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Figure 8.1: Boxplots for the variation in erosion rate, deposition rate and net surface level change on 

headlands during the 99-00 season, grouped by soil type. 

130 



16----------------------~ 

14 

12 

10 

8 

-s:: 6 

-----E 
-S 4 
Q) 

"§ 2 
C 
0 

8 0 ,.._ 

Q) -2 ~------.,,,.-----------------__,J 
N= 6 7 

ratoon plant cane 

crop type 

12 

10 ¾J oo 

8 

- 6 >-
----- *00 E 
E -Q) 4 -Cil ,.._ 
C 
0 
~ 2 
(/) 

0 ():; oo Q. 
Q) 

"O 0 - -
N= 6 7 

ratoon plant cane 

crop type 

6 

*00 

4 

~2 
E 
-S 
Q) ~00 
0) 0 
C 
Cil 

..c 
() 

g; -2 

~ 
Q) 
() 

~ -4 
:J 
(/) -Q) 
C -6 - -

N= 6 7 

ratoon plant cane 

crop type 

Headlands 

Figure 8.2: Boxplots for the variation in erosion rate, deposition rate and net surface level change on 

headlands during the 99-00 season, grouped by crop type. 
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Figure 8.3: Boxplots for the variation in erosion rate, deposition rate and net surface level change on 

headlands during the 99-00 season, grouped by drain type. 
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From the boxplots in Figure 8.1, 8.2 and 8.3, deposition rates for headlands along 

minor drains and headlands on clay appear to be higher than for other surf ace 

conditions. These observed differences are however not significant, perhaps because 
-

of low sample numbers. Because the rates of change along minor drains are the same 

as those on clay soils, it is also not possible to say which of these conditions is likely 

to be more important in causing the difference in deposition rates. 

Table 8.2: Results of Kruskal-Wallis tests for differences in surface level change due to differences in 

headland surface conditions. 

Headland 
surface 
conditions 
Soil type 

Surf ace level 
change 

I Net 
t ................................................... . 

! Erosion 
~--· ... ············································ 

..... ......................................... . J P..~P9~i!~<?P: ... . 
Crop type Net 

Erosion 

P for 99-00 data 

0.08 
0.50 
0.17 
0.04 
0.51 

.... ························ .......... ·············································I············································································· 

Deposition 0.72 
0.06 
0.55 
0.21 

Drain order I r~r 
, ~~9~~<?P: ........... . 
I Deposition 

P for 00-01 data 

0.12 

• 

0.14 
' 

• 

0.15 
• -
• ··········· 

• 

-
-

• 

0.07 

• 

0.07 
0.15 

The boxplots for the 00-01 season are shown in Figure 8.4 and 8.5. The plots 

suggest that there is variation between the variables, but this is not confirmed by the 

Kruskal-Wallis test. The test indicates that none of the erosion rates, deposition rates 

and net surface level changes is significantly different ( a = 0.05) due to differences 

in any of the studied headland surface conditions (Table 8.2). The sample sizes are, 

however, small and may not sufficiently represent surface conditions (see Table 8.1). 

The difference between headlands adjacent to plant cane and ratoon fields could 

not be tested for this season, because none of the plots was located adjacent to plant 

cane. The total area of plant cane was less in this season: 20% compared to 34% in 

the 99-00 season (see Chapter 10) and there were no plant cane fields near sites 

suitable for the installation of pinplots. 
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Figure 8.4: Boxplots for the variation in erosion rate, deposition rate and net surface level change on 

headlands during the 00-01 season, grouped by soil type. 
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Figure 8.5: Boxplots for the variation in erosion rate, deposition rate and net surface level change on 

headlands during the 00-01 season, grouped by drain type. 
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8. 7 Alternative load estimates 
' 

Surface level change on headlands was expected to vary with certain variable 

headland surface conditions, so that generalization to catchment scale based on those 

variables would be possible. However, there are no significant differences in erosion 

and deposition rates for any of the surface conditions, based on the available data. 

Total headland erosion and storage, which are required to estimate the sediment 

budget components, therefore have to be estimated in a different way. 

8. 7 .1 Averages and medians 

Given that spatial variation of erosion and deposition cannot be ascribed to headland 

condition, the most straightforward estimate could be based on averaging of erosion 

and deposition rates for all pinplots. However, the practical constraints for the 

location of pinplots resulted in a biased spread of pinplots across the catchment. 

Some extreme outliers are included in the data (see histograms in Figure 8.6). 

Because of the small sample numbers, these outliers will strongly affect the estimates 

of the average and cause significant overestimates of the total erosion and deposition 

rates. 

The distributions of the 99-00 erosion and deposition rates appear lognormal. For 

the erosion rate data, logarithmic transformation results in a near normal distribution 

(Figure 8.7). A new average is calculated from the transformed data. The same 

transformation does not improve the distribution of the deposition rate data. In this 

case the median of the samples will best represent the total headland storage, because 

this statistic is not so much affected by the data outliers. 

For the 00-01 data, totals are calculated from both the sample averages and 

medians. The sample size of the 00-01 data is too small to allow meaningful study of 

the sample distribution. The results of all described estimates are presented and 

discussed in Section 8.7.3. 

136 



12 

10 a 

>, 8 
() 
C 
Q) 

::J 6 
CY 
Q) ,_ 

LL 
4 

2 

0 

-3 -1 3 5 7 9 11 13 fvlore 

Erosion (mm/y) 

12 

10 b 

>, 8 
() 
C 
Q) 

::J 6 
CY 
Q) ,_ 

LL 
4 

2 

0 

-3 -1 1 3 5 7 9 11 13 fvlore 

Deposition (mm/y) 

12 .-------- - ------------, 

10 

>, 8 
() 
C 
Q) 

::J 6 
CY 
~ 

LL 
4 

2 

0 

C 

-3 -1 1 3 5 7 9 11 13 fvlore 

Net surface le\€1 change (mm/y) 

Headlands 

Figure 8.6: Histograms of erosion rate (a), deposition rate (b), and net surface level change (c) of all 

99-00 pinplots from the Ripple Comer Catchment. 
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pinplot data. 

8.7.2 Estimate based on vegetation cover 

Vegetation cover influences the occurrence of erosion and deposition (De Ploey, 

1981; Morgan, 1986). Observations from the pinplots in the Ripple Comer 

Catchment indicate that high erosion rates occur on bare headland patches, while 

more deposition is observed on well-vegetated surfaces. 

At the end of each budget period the vegetation cover percentage was estimated 

for each pin plot. The estimates consisted of simple visual assessment of the covered 

surface by two people. The average of the two independent estimates was used for 

the analysis. In addition to that a survey was made of vegetation cover percentages 

on headland stretches in a large part of the Ripple Comer Catchment during the 99-

00 budget season. This survey was done in a similar way by the same two people. 

The data from the pinplots has been studied to find out if it can be used m 

combination with the vegetation cover survey to predict the spatial distribution of 

headland surface level change. Based on the survey an alternative estimate of total 

headland erosion and storage could then be made. 
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For each season the pinplot vegetation cover estimates (VC) are plotted against 

the values for net surface level change (NSLC) (Figure 8.8). Both seasons show 

increasing surface level (deposition) with increasing vegetation cover and severest 

erosion with lowest vegetation cover as was expected. The trend in the 99-00 season 
-

data is however not significant ( a = 0.05), because two outliers (G and F) affect the 

regression. If the data from these plots are excluded the regressions for both seasons 

become very similar. This is not necessarily expected, because yearly surface level 

changes could be different due to different weather conditions. 

The following equations were derived from the regression curves. 

For the 99-00 season: 

Equation 8.1 

NSLC = 0.06 * VC - 2.8 (R2 = 0.2, not significant) 

For the 00-01 season: 

Equation 8.2 

NSLC = 0.06 * VC - 4.3 

8 

- 6 E 
E --

El 99-00 season Cl 

• 00-01 season m 
Q) 
0) 

4 
C :~:; 

~ 
..c 

2 (.) 

~ 
Q) 

0 
Q) 
(.) 

.g 
-2 ::::J 

Cl) 

.. 

y = 0.06x - 2.8 ~ / "m 
R2 = 0.2 .--"¢- El 

' 

!~ ij- •' iD 20 40 .. --------··----6(t 80 100 1:D 
~--• El • ---·-· 

y = 0.06x - 4.3 

0 

+-' 
Q) 

-4 z 
El R2 = 0.9 

-6 

Vegetation cover (%) 

Figure 8.8: Scatter diagram of vegetation cover percentage and net surface level change (mm), with 

separate regressions for the 99-00 and 00-01 data (n=l3, P=0.09, and n=6, P<0.01). 

During the vegetation cover survey, vegetation cover percentages were estimated 

for stretches of headland. A stretch usually extends along a drain segment, in 

between two side drains. From the cover percentages, net surface level change can be 
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estimated with Equation 8 .1. Thus, for each surveyed stretch of headland a total 

sediment load ( erosion or deposition) can be calculated from its surface area and 

surf ace level change estimate. Surf ace area is calculated from headland width 

(measured in the field) and length ( estimated from an aerial photo). When the loads 
-

for all surveyed headland stretches are added and divided by the total headland 

surface area this results in an average net surface level change of 1.7 mm 

( deposition). 

The vegetation survey was only done for approximately 7 5 % of headland surface 

in the Ripple Comer Catchment, but the information is thought to be representative 

for the whole catchment. 

The surface level change value obtained this way is not very reliable because it is 

based on the 99-00 regression, which is not significant. The relationship for the 00-

01 season is significant, but the headland cover survey was not repeated. For this 

season an estimate is the ref ore made based on the 99-00 cover data, assuming that 

the overall cover was similar for both seasons. There is no reason to expect a 

significant difference between the seasons, although local variation between the 

seasons was observed. The estimate results in a net surface level change of O. 7 mm 

( deposition) for the 00-01 budget period. 

8.7 .3 Overview and discussion of estimates 

The methods described above resulted in different values for net surface level change 

and erosion and deposition rates on the headlands. All values are listed in Table 8.3. 

The cells with values that are considered best estimates are shaded. 

Table 8.3: Different estimates of erosion and deposition rates and net surface level change on 

headlands in the Ripple Comer Catchment. Best estimate shaded. 

Rates in mm Average 
y -1 

Erosion 
_ Deposition _____ . 
Net 

Log 
transformed 

Median 

Erosion 1.1 

·-De p()s i ti on ----··I---·-·-·-·---·--·-·-·----·----------·-·-·-·--"'---·-·----•--·•----·-·----·--·--------··---······--• ... -•. _ . ____ _ __ Q --~ 
Net -0.5 -0.2 
*Calculated from insignificant regression equation 
**Estimated using 99-00 cover survey data 

Vegetation 
cover based 

*l.7 

. --~---

**0.7 
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All estimates for the 99-00 season result in a positive net surface level change 

( deposition) on the headlan'ds that ranges from 1. 7 to 2.1 mm. The differences 

between estimates based on averages and medians show that the erosion rate, in 

particular for this season is strongly affected by outliers in the data. Logarithmic 
-

transformation of these data corrects the problem. The deposition rate is also 

considerably higher, but transformation does in this case not improve the data 

distribution, so an alternative deposition rate can not be calculated. For the net 

surface level change, which does not have a skewed distribution, the difference 

between averaged and median estimates is still more than 10%. The surface level 

change estimated from the vegetation cover information is equal to the estimate 

based on average data. This provides some confirmation of the results, although the 

uncertainties around each of the estimates are likely to be considerable. 

Surface level changes estimated from the average and median of the 00-01 data 

indicate -0.5 and -0.2 mm headland erosion. Apart from the estimates for the 

deposition rate, differences between averages and medians are much greater than 

10% percent for the 00-01 season. The value estimated from the vegetation cover 

data results in a positive surface level change. Because the estimates for this season 

are based on insufficient data and possibly incorrect assumptions, it is difficult to say 

which of these estimates is most reliable and will best represent the surf ace level 

change rates. 

8.8 Additional observations 

The measurement design used to quantify the seasonal rates of surface level change 

on headlands did not aim to provide information on the processes that cause erosion 

and deposition. In order to apply effective sediment control measures it is however 

useful to understand the functioning and importance of the different processes. 

Several observations made during the fieldwork period give some insight into the 

processes and might be of help for the design of soil management strategies. 

8.8.1 Observations of sediment deposits 

During the field study it became apparent that headlands can be important sediment 

stores. The material that is being stored originates from both types of water flow 

described in Section 8.2. The origin of the sediment influences the condition of 
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deposition and its size characteristics. Several observations were made of different 

types of sediment storage on' headlands. 

Thick deposits were often observed in dense grass cover close to the edge of 

Ripple Drain and the major drains. Analysis of soil surface samples from these 
-

locations showed that the material was sandier and better sorted than other headland 

surface samples (see Section 10.2). These deposits obviously originated from the 

drain water. Observations of sediment deposits on washers further away from the 

drain generally appeared to have finer texture, although they have not been analysed 

for sediment size. These deposits could have come from both field runoff and drain 

water. 

Striking observations of sediment deposition on headlands were made after the 

first rainstorms in November of the 99-00 wet season. Especially headland stretches 

adjacent to plant cane fields were covered with sediment, while stretches along 

ratoon and fallow fields were not (Figure 8.9). The obvious source of this material is 

the runoff from plant cane fields. These sudden large amounts of deposition have 

never been quantified with erosion pin measurements, because installation of the 

pinplots was only possible later in the season when cultivation of the fields had 

finished. 

Much of this observed sediment storage is likely to be only short term. In some 

situations the excessive deposition seemed to have smothered the headland 

vegetation cover, leaving a highly erodible surface. 

8.8.2 Variation within pinplots 

The average values of erosion and deposition estimated from the pinplots disguise 

variation within a plot. Because this small-scale information is not of direct 

importance for the sediment budget calculation, is has not been studied in detail. 

However, the pinplot measurements confirmed some of the observations of headland 

processes that were described above. 

Figure 8 .10 shows spatial representations of the surface level changes on well 

vegetated (95% cover) pinplot M and bare (20% cover) pinplot J between four 

measurement sessions in the 99-00 season. Plot M shows slight and near uniform 

sediment accumulation and erosion across the plot. In contrast plot J gives an 

extreme example of severe erosion on the side of the plot that borders the cane land, 

probably caused by runoff from the fields. At the same time large amounts of 
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deposition occur along the edge of the drain, which probably consists of sediment 

trapped from overbank flow in grass patches. 

Figure 8.9: Headland along a plant cane (foreground right) and fallow (background) field. The 

headland section along plant cane is covered with sediment derived from the field after a heavy 

rainstorm in November 1999. The sediment buried the vegetation (see also inset; measuring-tape 

indicates 50 cm). 

With the exception of plot J, which on average only erodes, plots do not show 

consistent erosion or deposition. There is also no consistency between different parts 

of a season, between separate seasons, or between adjacent plots. For individual pins, 

consistency is also unclear. Some plots (D and J) show evidence of alternating 

erosion and deposition between subsequent measurement sessions. In these cases the 

distance between the washer and the top of the pin had increased compared to the 

previous measurement session (indicating erosion), but a considerable layer of 

sediment had also accumulated on top of the washer. The high temporal variability is 

also visible from Figure 8.8. 
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Figure 8.10: Spatial distribution of net surface level change on pinplots J and M between 

measurement sessions during the 99-00 season. 
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8.9 Other factors influencing erosion and deposition rates 

Other factors affecting surface level change 

There are a number of other factors that have not been addressed previously, but 

which might play a role in the observations that were made on the headlands: 

Slope of the headland: Headland slope could especially influence the effect of 

field runoff. An increase in slope will increase flow velocities and thus reduce the 

possibilities for deposition. 

To improve field drainage a height difference is maintained between the field 

surface and the headland surface: A high step from the field onto the headlands 

may increase the possibility of scouring and rill formation by field runoff. 

Orientation of the headland relative to the rows (parallel or perpendicular). 

Headlands perpendicular to the rows receive most of the runoff from the fields. 

Headlands parallel to the field will be hardly influenced by this type of flow. 

There were indications that each of these factors might affect erosion and deposition 

processes. There is however not sufficient evidence to make quantitative estimates of 

their importance for changes in headland surface level. 

Swelling and shrinking processes 

The results of erosion pin measurements can be affected by the process of soil 

swelling and shrinking, which occurs in certain clay soils. Initially the process was 

not thought to be important, and potential effects vvere thought to be precluded by 

performing all measurement sessions under similar soil moisture conditions. An 

observation in the 00-01 season however changed this idea. On a number of plots 

some washers became attached to the pins by rust. Some of these washers were no 

longer level with the surface at the time of the last measurement session. They got 

stuck a few millimetres above the soil surface. For this to happen soil could have 

either eroded from underneath the washer or the soil could have shrunk. Also at the 

time of measurement, cracks were observed in the soil surface of the plots, 

confirming the possibility of shrinkage. 

The plots with most of the 'raised' washers were F, G, M, and P, which are on 

silty clay and clay soils. For a few pins both the distance to the washer was measured 
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while it was still attached to the pin and after it had been pushed level with the 

surface. Table 8.4 shows the 'difference between these measurements for three pins. 

Table 8.4: Pin height estimates for pins with rusty, stuck washers. 

Pin height from Average Pin height from Average Diff-
stuck washer (mm) washer when level erence 

with surface (mm) 
Pin 1 92.6 92.4 92.5 95.9 96.9 94.1 3.9 
Pin 2 130.6 130.4 130.5 134.8 135.4 132.3 4.6 ••••-•~ ••••••·•w;••••-"•'""" • ..... ., ___ 

-s••···-······ ····-···· 

Pin 3 143.4 143.3 143.4 146.3 145.9 144.5 2.7 

Only a few pins in the concerned plots had their washers stuck, so it was not 

possible to say if similar surface level lowering occurred across the plot. Average 

surface level lowering across the plots is less (-1.3, 0.2, -1.4, and 0.0) than the values 

obtained from the pins with stuck washers; and pins showing deposition occur as 

well. 

8.10 Conclusion: budget values 

Various observations indicate that there are at least two different processes causing 

erosion and deposition on headlands (i.e. water draining from the fields and overbank 

flow from the drains). A wide range of factors potentially influences the magnitude 

of these processes, for example vegetation cover. As a result, both erosion and 

deposition rates show highly variable patterns in space and time. There is, however, a 

general indication that headlands can be a net store for sediment, especially when 

sufficient vegetation cover is present 

Quantitatively only one of the headland surface conditions was identified to have 

a significant effect on headland erosion and deposition processes. Net surface level 

change was found to be greatest on headlands along plant cane fields. Several other 

observations also indicated increased sediment storage in relation to plant cane 

fields, stressing both the importance of sediment transport from plant cane fields and 

the importance of headlands in reducing sediment transport to the drains. 
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Chapter 9 

Drains and Water furrows 

9.1 Introduction 

Sugarcane production in a low-gradient floodplain landscape that receives large 

amounts of high intensity rainfall requires an efficient drainage network. Without 

this network runoff from the fields is slow and crops could be damaged when the soil 

remains waterlogged for too long. Figure 1.2 shows an example of the dense network 

of drains that accommodates the runoff from the cane fields in the Ripple Creek 

Catchment. The drains represent another landscape element and therefore another 

component of the cane land sediment budget. 

Several sediment budget studies have shown that stream banks can account for 

more than 50% of the sediment export from a catchment (Walling and Woodward, 

1992; Wallbrink et al., 1998; Laubel et al. , 1999). However, the occurrence and 

magnitude of bank erosion processes , depends on many factors , which vary by 

location. For sections of several British rivers, Hooke (1979) showed that peak 

discharge and soil moisture condition are dominant factors in the occurrence of 

different types of bank erosion processes. Other authors also showed the importance 

of, for example, vegetation (Abernethy and Rutherfurd, 1998, 2000), frost (Stott, 

1997; Prosser et al., 2000) or lifestock (Trimble, 1994) for bank erosion. In most 

situations the importance and interactions between the factors that cause bank 

erosion are still not fully understood (Stott, 1997; Green et al. , 1999; Laubel et al. , 

1999). 

If peak discharge and soil moisture control bank erosion processes under the wet 

tropical conditions in the Lower Herbert River Catchment, like they do in the British 

rivers studied by Hooke (1979) , drain banks have a particularly high potential to be 

an important sediment source. The high frequency and prolonged periods of tropical 

rainfall will cause high moisture levels in the banks, which can promote the 
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occurrence of bank slumping. The high magnitude of peak discharge in the drains 

will cause direct scouring. 

In addition to the climatic factors, the design of the drainage systems could also 

be of importance. Man-made drainage systems are not always able to drain the large 

amounts of runoff on floodplains. In such cases drainage systems have been shown 

to be sources of sediment (Lee, 1968). 

9.2 Integrated Drainage Survey 

Within the Ripple Creek Catchment there are drains at the down slope end of most 

fields. All drains are connected and ultimately discharge into Ripple Drain, which is 

the main drain in the area. The size, catchment area, and design of all drains in the 

Ripple Creek Catchment were surveyed in detail as a part of the Integrated Drainage 

Survey (ID Survey) (BSES and CSIRO, 1997). During this survey information on the 

shape of the drains, their vegetation status, and signs of (bank) erosion were also 

documented. 

Drains vary in size depending on their position in the drainage network, and thus 

the amount of discharge they carry. The results from the ID Survey indicated that the 

shape of the drains is closely related to their size and position in the system. Of the 

total length of drains in the catchment, the largest percentage has a 'spoon' shape. The 

cross-sectional profile of this drain type is curved (like a spoon). Spoon-shaped 

drains are usually the smallest drains, which form the lowest order branches in the 

network. They are shallow and their surface is usually covered with grass. These 

drains will be referred to as 'minor drains'. 

The larger drains that discharge directly into Ripple Drain and that are fed by the 

minor drains will be referred to as 'major' drains. Ripple drain and most of the major 

drains have a 'regular' profile, which is a trapezoidal shape with relatively steep, 

straight banks. Less than 20% of the drains have more complex shapes. The profiles 

of the drain types that occur in the catchment are illustrated in the legend of Figure 

9.1 (Roth et al., 2000). 

The information that was obtained from the ID Survey on bank erosion along the 

drains in Ripple Creek Catchment is summarized in Figure 9 .1. The survey results 

show that spoon shaped drains show few signs of erosion, while most signs of severe 

erosion are observed in the regular drain type with steep banks. 
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Figure 9.1: Signs of soil erosion in different drain types in the Ripple Creek Catchment; results from 

the Integrated Drainage Survey (Roth et al., 2000). 

9.3 Water furrows 

In addition to the drainage structures 1n between cane fields, drainage is also 

improved within the fields through the installation of water furrows. Water furrows 

are drainage structures that extend over the full length of a field. They are spaced at 

intervals of approximately 20 meters. Water furrows have a spoon-shaped profile, 

but are narrower than drains and do not have a vegetation cover. The recommended 

size of water furrows is 2.5 m wide and 0.25-0.5 m deep, usually set by the size of 

the laser-controlled scoop, with which they are created (Kingdon, 1991). Water 

furrows are regularly re-worked to maintain sufficient depth and to remove 

vegetation. 

In-field drainage structures such as water furrows are rarely discussed in the 

literature, although they can be important sediment sources (Alonso et al., 1988). 

The processes that occur in water furrows are distinctly different from most river and 

drain erosion, where bank collapse is important. They are also different from field 

runoff, because runoff in water furrows is concentrated and might become more 

powerful. 

Because erosion and deposition processes are likely to be different and because of 

their particular position within the cane fields, water furrows require soil 
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management procedures different from those for drains. In the sediment budget they 

will be represented as individual budget components. However, the same methods 

were used to quantify erosion and deposition rates in these landscape elements, 

therefore water furrows and drains are discussed together in this chapter. 

9.4 Surface profile meter method 

Erosion in rivers is often quantified with erosion pins in the riverbank (Hooke, 1979; 

Lawler, 1993; Stott, 1997; Laubel et al., 1999; Couper et al., 2002). This method is 

similar to that applied in the study of erosion and deposition rates on headlands 

(Chapter 8). However, erosion as well as deposition processes in rivers and drains 

can also occur on the riverbed. To obtain a closed sediment budget of the Ripple 

Comer Catchment, erosion and deposition rates on both the bed and banks need to be 

quantified. In the larger drains, which carry water throughout the year, measurements 

of pins placed in the drain bed will be difficult. Pins in the drain cross-sections will 

also catch vegetation debris, such as grass and logs, which are likely to cause 

significant disruption of the position of the pins (Lawler, 1993). In some situations 

erosion pins can even modify erosion processes by reinforcing the riverbanks 

(Thome, 1981). 

An alternative method for the direct measurement of erosion and deposition 

processes on stream profiles is the surface profile meter (Hudson, 1993; Sirvent et 

al., 1997; Prosser et al., 2000). A profile meter is a datum from which changes in 

surface level are measured. The datum usually consists of a horizontal bar, which can 

be attached to supports, fixed in the ground. From the bar a rod is lowered down to 

the soil surface. The fixed supports enable repeated measurements at exactly the 

same location each time. 

9.4.1 Profile meter design 

Based on the principle outlined above, a new profile meter was designed and built for 

the budget study. A schematic drawing of this profile meter is shown in Figure 9.2. 

The horizontal bar (the datum) of the profile meter consists of a square aluminium 

pipe. Holes are drilled in the pipe at 10 cm intervals. An aluminium rod fits tightly 

through the holes, so lateral variation in the position of the rod is minimized. The bar 

has a total length of 5 m but can be split to facilitate transportation. For short drain 

and furrow profiles it is sufficient to use only one half of the bar. The bar rests on 
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two aluminium legs. The legs fit tightly into aluminium supports, which are installed 

at fixed positions in the soil on either side of a drain or water furrow. The supports 

are 35 cm long aluminium tubes with pointy tips, which are driven into the ground 

until the opening on top is level with the soil surface. The aluminium rod that is used 

to measure the distance from the profile meter bar to die ground surface is 2 cm in 

diameter and contains a mm scale. 

·¢=:i.•··· Measurement rod 

Figure 9.2: Schematic representation of the surface profile meter. 

9 .4.2 Method disadvantages 

It was mentioned before that the surf ace profile method has the advantage over the 

erosion pin method that the method of measurement does not disrupt erosion and 

deposition processes. The design of the two permanent supports, which are level with 

the soil surface, also ensures that the method interferes less with farming practices. 

Besides advantages, the method also has the following important disadvantages: 

(Undetected) disturbance/movement of the profile supports can influence the 

measurements. 

Movement of the profile bar and rod during measurements v1ill cause variation in 

the measurements. 

The weight of the measurement rod can compact the soil surface during 

measurement, causing an underestimation of net surface level change. 

The analogue scale is less precise than the digital calliper used for the pin 

measurements. 
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The method does not provide an additional opportunity to detect erosion and 

deposition processes, like 'the washers do for the erosion pin method. 

These disadvantages mainly cause the method to be considerably less accurate. 

However, because the rates of erosion and deposition are expected to be larger in the 

drains and water furrows compared to the rates observed on the headlands, the 

percentage error for each method might be similar. The effect of error In the 

measurement of budget components will be further discussed in Chapter 11. 

9.5 Profile distribution: capturing variation 

9.5.1 Erosion and deposition processes in drains and water furrows 

In the 98-99 season, preliminary measurements were carried out in drains and water 

furrows around Palmas' site. The observations from this season combined with the 

information that was obtained from the Integrated Drainage Survey suggested that 

the following drain characteristics were important factors in the control of the 

erosion and deposition processes in drains and water furrows. 

Soil type: The texture of the soil in the catchment varies from clay to sand. Soil 

composition is thought to be a major factor that determines the occurrence of 

bank erosion (Hooke, 1979; Green et al., 1999). 

Size of drain: Ripple Drain and the major drains carry more water with higher 

flow velocities. In these drains erosion is likely to be higher than in the minor 

drains. 

Shape of the drain: This could influence erosion and deposition processes In 

different ways. Steep drain banks might, for example, be more prone to 

undercutting and collapse than gently sloping banks. 

Crop type: For water furrows the crop type of the field in which they are situated 

might affect erosion and deposition rates, mainly because of the different 

composition of the runoff they conduct. This factor is not expected to have 

significant effect on drain erosion and deposition processes, however. 
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9.5.2 Transect sampling 

Erosion and deposition processes will vary across the drain, particularly in drains 

with a regular shape where there is a distinct difference between drain bank and drain 

bed. With the surface profile meter a transect of sample points is measured. The 

average erosion and deposition rates calculated from a profile are assumed to 

represent processes at the point in the drain or water furrow where the profile was 

taken. The magnitude of these processes will change throughout the drainage system 

as a result of variation in the drain and water furrow characteristics pointed out in 

Section 9.5.1. For profiles in drains and water furrows with similar characteristics, 

the average erosion and deposition rates are expected to be similar and will be used 

to calculate the final sediment budget value. 

Erosion rate is calculated from the surface profile data by adding all records of 

soil surf ace level decrease and di vi ding them by the total number of records in the 

profile. Deposition rate is calculated in the same way by adding all records of surface 

level increase. Net surface level change is obtained by adding all records and 

di vi ding them by the total number of records. 

The profile method does not obstruct cultivation activities, like the erosion pm 

method does (Section 8.4.1). The distribution of measurement sites through the 

Ripple Comer Catchment was therefore more representative. However, the number 

of profiles was still limited because of time constraints and limited access to certain 

areas. For practical reasons clusters of three or four profiles were located in the same 

stretch of drain. The stretches were chosen to represent a wide range of drain 

characteristics (soil type, drain order). The data were not sufficient to compare each 

of the drain characteristics separately, and because many profiles are taken in the 

same stretch of drain or water furrow, it is in many cases not possible to single out 

factors influencing erosion and deposition rates. However, a general analysis of the 

data is performed using non-parametric statistics. 

9.5.3 Profile distribution per season 

The distribution of the profiles through the Ripple Comer Catchment in the 99-00 

season firstly aimed to cover all drain types (main, major and minor), because this 

was assumed to be the most important factor influencing erosion and deposition 

processes. Next, profiles for each drain type were located in the different soil types. 
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This was not always possible, because in the study area not all drain types were 

present in each soil type. There were only Ripple Drain profiles in silty clay. There 

were no major drain profiles in clay, and no minor drain profiles in grey sand. 

In the second season (00-01) the number of profiles was reduced to save operating 

time. The same sites were used to allow comparison between the seasons and the 

same combinations of drain type and soil type were covered. Four profiles are 

exactly the same as in the 99-00 season (profiles 18-21). 

The number of profiles that represent the various drain and furrow characteristics 

in each season are listed in Table 9 .1. Initially more profiles were installed, but the 

data from these became useless in the course of the field season for the reasons listed 

in Section 9.6. The location of the profiles in each budget season are indicated on the 

maps of Appendix B. 

Table 9.1: Distribution of profiles across drains and water furrows with different characteristics 

(numbers used for data analysis). 

1999-2000 I 2000-2001 
Drain type gi pple dEaj!l 

I ~~js>E dEaj~ . --
······································ 

. t __ Minor_.drain 
Soil type 1.§i.Jty ~Ja.y 
drains . Qrex sa114 .. . - ....... . 

····················· ................ J Clay ... 
Soil type j Silty clay 
water furrow _Qr~y .sa..n4 

.Clay ...... . 
Crop type • Plant cane 
water furrow • Ratoon 

9.5.4 Particle size adjustments 

4 5 
11 
8 
14 
7 
2 
8 
11 
8 
8 
19 

. _,_____ ·- . 

5 
8 

14 
2 
2 
3 
3 
3 

The profile measurements provide estimates of the volumes of soil being eroded or 

deposited. Because the budget will only include particles <20 µm, the profile meter 

data have to be adjusted, in order to represent this sediment size. For each measured 

profile, adjustments are made based on the type of soil in which the profile was 

located. In the major drains, further adjustment is also made for particle size 

differences in bank and bed material, because sediment samples from the drain beds 

were significantly sandier than those from banks (see Section 10.2). Adjustments are 

made to individual data records in a profile before erosion and deposition rates are 
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calculated. A description of the exact methods used is given in Chapter 10. 

The adjustments change the data from different profiles in different ways. They 

will therefore influence statistical tests on differences in surface level change in 

relation to soil type as well as in relation to drain type. 

9.6 Results 

9.6.1 Profile data availability 

In the 99-00 season the profiles were installed in December, one week before the 

start of the stream/flume gauging. No rainfall was recorded on these days, so the 

surface level change that occurred over this period is assumed insignificant and will 

not affect the total erosion and deposition rates. 

All profiles were measured twice after installation, in March and May. 

Subsequent measurements provide information on temporal variation in the erosion 

and deposition processes, and disturbance of the site could be detected. During the 

two field seasons several profile supports were lost, disturbed or for other reasons not 

useful. Some profiles were measured only once after installation. These profiles are 

listed below, and it is noted whether or not a profile is included in further analysis. 

99-00 Season: 

Profile supports 4,5 and 6 had been lifted after March measurement. May 

measurements have been adjusted by assuming that the first record of the 

affected side should be equal to the same record of the March measurement and 

that the first record on the unaffected side is correct. All records in between are 

adjusted proportionally and are included in the analysis. 

Profile 21 (lost), 30 (bent), and 31 (bent) were not measured in May. Profiles are 

included in analysis, because considerable changes were recorded between 

December and March. Potential misestimation of processes due to the missing 

May data are taken into consideration with the interpretation of results. 

There are no profile numbers 22 and 23. 

Profile 24 first installed in March and is not included in the analysis. 

Profile meter leg did not fit in support of profile 55 after installation and is not 

included in the analysis. 
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44-4 7 Removed and re-installed in January and included in analysis . 

5 ,6, 11, 25-27, and 36-43 not measured in March and included in analysis. 

12 lost after installation and not included in analysis. 

00-01 Season: 

Profile 1 and 2 supports lost, so no May measurement and not included 1n 

analysis . 

Profile 15 support removed and re-installed 1n March and not included 1n 

analysis. 

Profile 21 support damaged and not included in analysis. 

Profile 8 disturbed and not included in analysis . 

All drain and water furrow measurements are shown as surface profile graphs in 

Appendix I. Figure 9.3 gives an example of a profile for a water furrow in a ratoon 

field on grey sand (profile 1). The difference between the profile records on the three 

measurement dates show how during the 99-00 season certain parts of the water 

furrow surface were eroding, while deposition occurred in other parts. 
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Figure 9.3: Example of a surface profile through a water furrow in a ratoon fi eld on grey sand (profile 1). 

9.6.2 Variation of erosion and deposition rates for drain types 

Because there is a close relationship between drain type and drain shape, these 

factors are not studied separately. Only different drain types are studied to find out if 

there are significant differences in erosion and deposition processes. The boxplots in 
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Figure 9 .4 and 9 .5 show the variation in ( original) net surface level change and 

erosion and deposition rates for all drain types in the 99-00 and 00-01 season. Water 

furrows are also included in the graphs for comparison. The data for both seasons is 

listed in Appendix H. The appendix also shows the data after adjustment for 

sediment size. 

The data from profiles taken in Ripple Drain stands out in both seasons, because 

of the high deposition rates. Field observations show that most of the deposition is 

sandy material on the bed of Ripple Drain. After adjustment of the data for sediment 

size the amount of deposition is considerably reduced. The high deposition rate in the 

00-01 season is not reflected in the net surface level change, because its effect is 

offset by a high erosion rate. Minor Drains show net deposition for both seasons. 

Furrows show net erosion for both seasons. 

The non-parametric Kruskal-Wallis test indicates for both seasons that the erosion 

and deposition rates on the profiles calculated from the original data are significantly 

different (a = 0.05) for at least one of the drain types (Table 9.2). The data from 

Ripple Drain is obviously most different. Only the net surface level change of the 00-

01 season does not show a significant difference. In this season erosion and 

deposition cancel-out. When the data are adjusted for sediment size the different 

magnitude in erosion and deposition processes in the Ripple Drain is masked, 

because it mainly consists of coarse material. 

Table 9.2: Results of Kruskal-Wallis tests for differences in surface level change in drain profiles due 

to differences in soil and drain type. Significance of original and adjusted data for each budget season 

are shown. 

Profile Surface P for 99-00 P for 99-00 Pfor Pfor 
surface level original data adjusted 00-01 00-01 
conditions change data original adjusted 

data data 
Soil type Net 0.82 0.17 0.30 

' 
0.23 

; ...... ··················· 

[ :Erosion 0.27 0.08 0.08 
• 

0.07 
.................. ! ____ Deposition 0.43 0.20 j 0.70 0.24 

········································ ...... 

I Drain type • Net 0.01 0.12 0.40 0.49 
~--·-·· 

• Erosion 0.01 0.18 0.01 0.17 
~- ··························· 

Deposition 0.01 0.01 0.03 0.80 
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Figure 9.4: Boxplots for the variation in erosion rate, deposition rate and net surface level change 

( original data) in different drain types ( and water furrows) during the 99-00 season. 
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Figure 9.5: Boxplots for the variation in erosion rate, deposition rate and net surface level change 

(original data) in different drain types (and water furrows) during the 00-01 season. 
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9.6.3 Variation of erosion and deposition rates for soil type 

Drains 

When the drain profiles are grouped by soil type, the Kruskal-Wallis test does not 

show a significant difference ( a = 0.05) between the groups for net surface level 

change, erosion or deposition rates (see Table 9.2). This is the case for both the 

original and adjusted data from each season. The boxplots for the original data by 

soil type group in Figure 9 .6 show that there is more variation between profiles in 

silty clay than profiles in clay and grey sand in the 99-00 season. This could however 

be caused by the fact that there are no Ripple Drain profiles in clay or sand. Ripple 

Drain profiles generally have highest erosion and deposition rates, which is more 

likely to be due to the size and shape of the drain. The difference in variation is not 

as large for the 00-01 season data (Figure 9.7), but in this season the erosion and 

deposition rates in Ripple Drain cancel-out. Also, the number of samples for clay and 

grey sand are too small to be representative. 
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Figure 9.6: Net surface level change in the original 99-00 drain profile data, grouped by soil type 

(silty clay, clay and grey sand). 

Water furrows 

When the original 99-00 water furrow profile data are grouped by soil type, there is a 

significant difference between the groups for erosion rate and net surface level 

change (Table 9.3). After adjustment of the data, only the deposition rates show a 
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significant difference The original 00-01 profile data are significantly different for 

both erosion and deposition ' rates. For the adjusted data this changes to the net 

surface level change and erosion rates. 
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Figure 9.7: Net surface level change in the original 00-01 drain profile data, grouped by soil type 

(silty clay, clay and grey sand). 

The boxplots for water furrows grouped by soil type are shown in Figure 9.8 and 

9.9. The 00-01 profile data (Figure 9.9) shows a remarkably high erosion rate for 

furrows in clay soil, which is not expected because clay is thought to be the least 

erodible of the three soil types. The number of furrow samples for this season is 

however rather small and samples for each soil type were taken from only one 

furrow. It is therefore possible that other factors are responsible for the differences 

between the groups ( e.g. maintenance). 

9.6.4 Variation of erosion and deposition rates for crop types 

The furrow data of the 99-00 season are also tested for differences in relation to the 

crop type of the field in which they are located. This information was not available 

for the 00-01 season, because there were no profiles in plant cane fields during this 

season. The boxplots for the original water furrow data grouped by crop type are 

shown in Figure 9.10. The Kruskal-Wallis test shows a significant difference in 

erosion rate and net surface level change for both the original and the adjusted data 

(Table 9.3). For soil type clay and sand, both plant cane and ratoon fields were 

sampled. Furrows in silty clay were only sampled on ratoon fields. The difference 
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between ratoon and plant cane fields is therefore not caused by the same samples that 

cause the difference between the soil type groups. 

Table 9.3: Results of Kruskal-W allis tests for differences in surface level change in water furrow 

profiles due to differences in soil type and crop conditions. Significance of original and adjusted data 

for each budget season are shown. 

Profile Surf ace 
surf ace level 
conditions change 

P for 99-00 
original 
data 

P for 99-00 
adjusted 
data 

Soil type ~~! 0.04 0.26 
t Erosion 0.00 0.09 

P for 
00-01 
original 
data 

0.06 
i 

0.04 ' ' 
0.03 

' 
' 

. ! .Deposition······I··· .................... 0 .......... 5 ....... s ............................ , .......................... o ......... 0 ....... 2 ............................ : ................................................................. . 
-

' -
-

Crop type ~~!. ... . ... , ........................ o .......... 0 ...... 2 ............................. , ......................... o ......... o ...... 3 ............................. , ................................................................... . 
i .Erosion ..................... , ......................... o .......... 0 ...... 0 .............................. , ......................... o ...... · .. 0 ...... 0 ............................. , .............................................................. . 
I Deposition 0 .5 8 • 0. 96 

9.7 Input for the budget calculation 

9.7.1 Drains 

P for 
00-01 
adjusted 
data 

0.05 
! 0.04 
' ! 0.06 
l 
l 
l 

Data analysis in Section 9.6.2 and 9.6.3 indicated that there are several factors that 

seem to influence the erosion and deposition rates measured in the drains and water 

furrows. For drains the results can be summarized as follows: 

In both budget seasons: surf ace level change calculated from original data was 

significantly dependent on drain type 

In both budget seasons: surface level change was not dependent on soil type 

Field observations confirmed that there was an obvious difference in erosion and 

deposition processes between drain types, as indicated by the unadjusted data. 

Although the adjusted data did not show the difference, it was considered necessary 

to study the contribution of the drains in the sediment budget separately. The 

different processes in the drain types are, for example, likely to need different 

management. 
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( original data) in water furrows, grouped by soil type (99-00 season). 
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Figure 9.9: Boxplots for the variation in erosion rate, deposition rate and net surface level change 

(original data) in water furrows, grouped by soil type (00-01 season). 
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Figure 9.10: Boxplots for the variation in erosion rate, deposition rate and net surface level change 

(original data) in water furrows, grouped by crop type (00-01 season). 
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To obtain the sediment load from the total drain landscape element, individual 

erosion and deposition rates are calculated for the different drain types because there 

appears to be a significant difference. Soil type is clearly not the most important 

factor that causes variation in the erosion and deposition processes within the 

drainage network. No further subdivision for soil type was attempted for individual 

drain types, because the data were insufficient. 

The erosion and deposition rate and the net surface level change are calculated as 

follows. Data records for each profile are first adjusted for sediment size (see 

Chapter 10). Next the records for each profile are averaged, assuming that the data 

records from a profile can be considered a random sample and that their distribution 

is near-normal. The averages of the profiles are then grouped for different drain 

types. From each group average erosion and deposition rate, and net surface level 

change are calculated. The average rates can be used to calculate the final sediment 

budget input, which is explained in Chapter 10. The averages for each drain type are 

listed in Table 9.4. 

Table 9.4: Estimates of erosion and deposition rates and net surface level change for different drain 

types in the Ripple Comer Catchment. 

Rates in mm y- : Average 
Ripple 
Drain 

Net surface 
level change 

Median 
Ripple 
Drain 

Average 
IllaJOr 
drains 

Median 
IllaJOr 
drains 

Average Median minor 
nnnor drains 
drains 

2.7 2.7 
1.1 1.5 

It is questionable whether the average erosion and deposition rates will result in the 

best estimates of sediment load from the drains, for the following reasons: few of the 

histograms for the (adjusted) drain data indicate a normal distribution (see examples 

for the 99-00 season in Appendix J); variation in the data may have been introduced 

with variation in the amounts of adjustment; the samples may be biased because 

many were taken from the same drain sections; and the sample sizes for each drain 

type are small. It is possible that outliers have a strong influence on the average data 
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values. The medians of the data might better represent the export and storage in the 

drain landscape element. 

Median values are also listed in Table 9 .4. The table shows that in several cases 

there is a big difference between the average and median estimates. The average 

erosion rate for major drains in the 99-00 season is for example very high, mainly as 

a result of three profiles (profiles 7, 8 and 9) with 8-27 mm erosion rates, which were 

located in the same drain. Field observations suggested that the high erosion rates in 

this drain were not representative of the whole catchment area. 

It is difficult to decide which of the estimates best represents the surface level 

changes in the drains. The median will be applied as best estimate, but the average 

will also be used in the budget calculations in chapter 10. 

9.7.2 Water furrows 

Analysis of the furrow data (Section 9.6.2 and 9.6.3) provide the following results: 

In both budget seasons: either erosion rate, deposition rate or net surface level 

change was significantly dependent upon soil type for the original data as well as 

the adjusted data. 

In the 99-00 season: net surface level change and erosion rate were significantly 

dependent upon crop type for the original and adjusted data 

For the calculation of surface level change rates in water furrows, data records for 

each profile are first adjusted for sediment size (see Chapter 10). Next the records in 

each profile are averaged, assuming that the data records from a profile can be 

considered a random sample and that their distribution is near normal. From the 

profile averages, erosion rate, deposition rate and net surface level change are then 

estimated in four different ways. In the same way as for the drains and headland the 

average and median values are compared. In addition to these, rates are estimated 

using separate median values for soil type, weighted by percentage area of each soil 

type. For the 99-00 data a fourth method is applied, which uses the different medians 

for crop types, weighted, by the area of each type. The results of the different 

estimates are listed in Table 9 .5. 

167 



Drains and water furrows 

Table 9.5: Different estimates of erosion and deposition rates and net surface level change in water 

furrows in the Ripple Comer Catchment. 

Rates in mm Average 
-1 y : 

Erosion 

P~P9.~~!~9.~ ... 
Net surface 
level change 

Erosion 

P~P9.~}!~9.P: 
Net surface 
level change 

-1.2 

1.8 
.............................. 

-1.3 

Median 

-1.1 

1.5 
-0.4 

Different Different 

-1.5 

2.7 
1.9 

Because of the relatively large number of furrow samples, which have a near normal 

distribution for all studied variables (see Appendix J), the average and median results 

for the 99-00 season are comparable. However, when some of the spatial variation, 

as a result of differences in soil type or crop type, are taken into account, variation in 

the estimates is larger. It is not known which estimate is best, but the average 

estimate will be used in the budget calculation, because it lies mid-way between the 

extreme results. 

All three estimates of surface level change in the 00-01 season show substantial 

variation, because of the small sample numbers. An estimate based on crop type is 

not available, because no profiles were measured in furrows on plant cane fields. As 

a result of the limited data, the following problems arise: 

Of the 9 furrow samples from the 00-01 season three samples show relatively high 

erosion rates (4-13 mm i 1 compared to <2 mm i 1
, see boxplots in Figure 9.9). 

These three samples were all taken from the same furrow in clay soil. Profiles in the 

same water furrow during the 99-00 season also show relatively high erosion rates 

(see Appendix H). Because of the three outliers in the erosion rate data, there is a big 

difference between the average and median erosion rate (see Table 9.5). The average 

erosion rate is higher than the average deposition rate, resulting in net erosion. On 

the contrary the median erosion rate is lower than the median deposition rate, 

indicating net deposition. However the median value of the net surface level change 

results in net erosion, and thus contradicts the median erosion and deposition values. 
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This problem is caused by the different distributions for erosion and deposition rates 

due to outliers in the erosion rate data. 

When erosion and deposition rates for the water furrows are calculated, using 

medians per soil type, the 00-01 data are very different from either the average or the 

median. The estimate for deposition rate is particularly rather high. This is the result 

of the high deposition rates measured in the furrow in silty clay. Silty clay covers 

most of the budget area. The high deposition rates therefore dominate the calculation. 

In the case of the 00-01 water furrow data it is clear that the sample method has 

too much influence on the results. The variation between the different estimates will 

have significant effect on the sediment budget, and will be evaluated in chapter 10. 

9 .8 Additional observations 

The Integrated Drainage Survey suggested that steeper drain banks in particular, 

which occur in Ripple Drain and other major drains, are susceptible to bank erosion. 

Profiles across these drains confirmed that considerable amounts of soil material can 

erode from the banks of this type of drain. Clear example are the left bank of Ripple 

Drain in profile 19 (99-00), and the left bank in profiles 8 (99-00) and 9 (99-00), 

which are profiles through a major drain near Palmas' site. With the large amounts of 

soil that erode quickly, considerable amounts of sediment are added to the runoff. 

The profile study also indicated various possibilities for sediment storage within the 

drain profiles. Even the steep banks of Ripple Drain store considerable amounts of 

sediment. An example of this is the deposition recorded on the banks of profile 25 

(00-01). The deposits trapped in clumps of vegetation growing on the banks were 

clearly noticed during the measurements. The most striking deposition processes 

were observed on the bed of Ripple Drain. In the month of March, between the 

March and May measurements, up to 25 cm thick, sandy deposits occurred in Ripple 

Drain. The sand appeared to be supplied by Post Creek and thus originates from the 

forested upland (see also Section 10.2). Similar sandy deposits were recorded in 

profile 31 in Prosser Drain. This drain is also directly connected with an upland 

creek. 

It is has to be stressed that the sandy deposits on the drain beds only provide 

short-term storage. This was shown by profiles 1-4 through Ripple Drain. The 

supports of these profiles were not removed during the dry season between the 99-00 
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and 00-01 budget seasons. They therefore provide a longer data record and show 

how in the 00-01 season much of the deposition on the bed of Ripple Drain profiles 

was removed (profile 20) or partly rearranged into a bar on one side of the profile 

(profile 19). The profiles across Ripple Drain further downstream (24-26) show less 

movement of material in this season. 

In smaller amounts, sediment also accumulates in the well-vegetated spoon shaped 

drains. Drain profiles 18-20 in the 00-01 season are examples of this. Because of the 

grass cover in these drains, the sediment is thought to be stored for longer than the 

material on the bed of Ripple Drain. This is confirmed by the fact that all minor 

drains show net deposition during both budget seasons. For individual drains the 

evidence is however not obvious. Profiles 18-20, for example, showed net erosion 

during the previous season. 

9 .9 Other factors influencing erosion and deposition rates 

The observations described in the section above indicated the effect of vegetation on 

sediment export and storage in drains. The deposition in vegetation on the relatively 

steep banks of Ripple Drain is a surprising example. The presence of a vegetation 

cover in most of the minor drains might also be the reason why these drains show net 

deposition, while water furrows, which have a similar shape, show net erosion. The 

vegetation factor was not considered in the design of the study, so its effect has not 

been quantified. It is however thought to be important. For management purposes the 

observations can be useful. 

Another factor that is likely to have a significant effect on erosion and deposition 

processes in drains as well as water furrows is maintenance. In the case of water 

furrows, maintenance practices will mainly result in removal of vegetation and 

disturbance of the soil. Disturbance of the soil means that fresh soil becomes 

available for transportation by runoff. On the other hand it also increases micro­

topography of the furrow or drain surface, which promotes re-deposition. 

Flow velocity or stream power will have an important effect. This factor was not 

monitored separately, but is indirectly included in the drain type classes 

Finally the process of swelling and shrinking, which was discussed for headlands, 

could have affected the profile measurements. The influence of this process was 

minimized by taking all measurements under similar soil moisture conditions. 
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Practically this was not always possible. The process might explain the high erosion 

rates that were observed in the water furrows on clay soils. Unfortunately the profile 

meter did not provide a measure to check whether swelling and shrinking occurred. 

9.10 Conclusion 

Various factors influence the erosion and deposition processes in the drains of the 

Ripple Comer Catchment. The present study showed that drain type is an important 

factor that causes a significant difference in erosion and deposition rates among the 

drains. Ripple Drain in particular showed relatively high erosion and deposition 

rates. 

Most drain types appear to both generate and store sediment. The magnitude of 

erosion and deposition rates varies between seasons. It also depends on the 

calculation method used, which indicates that there is considerable uncertainty in the 

results of the present study. Only minor drains were net sediment sinks for both 

budget seasons, regardless of the method used. 

The estimates for surface level change in water furrows indicate that this 

landscape element is a net sediment source. Only one estimate for the 00-01 season, 

based on data stratified by soil type, resulted in positive surface level change. This 

result illustrates the consequences of insufficient representation of spatial variation 
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Chapter 10 

Budget Calculation 

10.1 Introduction 

In Chapters 5 to 9, erosion and deposition processes in the landscape elements of 

low-lying sugarcane land have been quantified. With this information a sediment 

budget can be composed. However, to obtain comparable budget components the 

data need further adjustment. Part of the data have thus far not been adjusted for 

particle size; part of the data have to be adjusted for soil bulk density; and all data 

have to be extrapolated across the budget area. 

10.2 Particle size 

Early in this research project, it was believed that most sediment moving through the 

catchment was in suspension. Bedload was not expected to move far in the low 

gradient catchment. The sediment budget therefore only includes material likely to 

move in suspension. The size class of material moving in suspension was assumed to 

be particles smaller than 20 µm. 

Contrary to these early assumptions several observations indicated the importance 

of bedload, with implications for the sediment budget. Firstly considerable transport 

of coarse material was observed in some drains. These observations were confirmed 

by measurements of high deposition rates on the drain beds during a single season, 

especially in Ripple Drain (see Section 9.6). Secondly some material covering the 

washers of the erosion pins on the headlands, predominantly along Ripple Drain, 

consisted of mainly coarse material. Such deposits were often very thick (up to 

several centimetres) and occurred amongst tall grass, so they were not thought to 

originate from splash erosion processes. Finally sediment size analysis of the local 

soils by Wood (1984) showed that the size fraction >20 µmin the local soils varies 

from 73% in sandy soils to 44% in clay soils (see Table 10.2). 
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The sandy deposits on the drain beds were observed in Ripple Drain and the major 

drains directly fed by upland creeks. Several times after heavy rainfall in the 99-00 

season, input of sandy bedload from Post creek into Ripple Drain was 

unambiguously observed. At the point were the creek joins Ripple Drain the creek 

bed was elevated more than 5 cm above the drain bed, as a result of bedload supply 

from the creek into the drain. These observations suggest that much of the coarse 

material originates from the forested upland. The bed material appeared to move in 

pulses through the drainage system. 

The sandy material observed in the drain bed and on the headlands was recorded 

in the drain profiles and on the headland pinplots. In contrast, only the particle 

fraction finer than 20 µm was included in the sediment load calculations at the 

catchment outlet. An internally consistent sediment budget must be based upon the 

same sediment size range for each component. The soil erosion and deposition 

measurements are therefore adjusted to the same particle size, using the procedures 

described in the next section. 

Although the observations suggest the movement of considerable amounts of 

bedload, insufficient time was available in the current project for the composition of 

an additional budget for bedload. Furthermore, proper estimation of bedload is 

proven very difficult (Gomez et al., 1990; Thomas and Lewis, 1993; Gomez and 

Troutman, 1997). 

10.2.1 Sediment size adjustment methods 

The erosion and deposition rates measured in the drains and on headlands could be 

adjusted directly, using the particle size data that are available for soils in the region 

from Wood (1984). These data are listed in Table 10.2. However, the observations of 

the sandy deposits in the drains and on the headlands suggested that some of the 

thickest deposits were well sorted and consisted of coarse material. It is therefore 

unlikely that an adjustment based on the soil particle size distribution will be 

sufficient. 

To support the observations, soil samples were taken from the headland surface 

and fields as well as from the beds of several drains. Samples were taken with 10 cm 

soil cores and analysed for sediment size composition using the sieve and pipette 

method. Figure 10.1 to 10.3 show the results of the analysis grouped by landscape 
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element. The total number of samples taken and analysed was rather small. This will 

affect the accuracy of the sediment size adjustments based on these data. 

Size adjustment headlands 

Figure 10.1 shows the particle size distributions of surface soil samples taken from 

headlands. Three of the samples were taken along Ripple Drain, two along minor 

drains, and one along a major drain. Sample RDHl was taken at approximately 0.5 m 

from the edge of Ripple Drain, where a thick sandy deposit had been recorded in an 

erosion pin plot. Sample RDH2 was taken at the same location midway between the 

drain edge and the cane field. 

The particle size distribution of the RDHl sample shows enrichment of very fine 

to fine sand ( <j)2 - 4 ). This material is likely to be a sorted deposit derived from 

overbank flow of the drain. The particle size fraction <20 µm of the deposit is 36%. 

The other headland surface samples have around 50% fine material, with the 

exception of sample HMin 1, which contains more than 70% of particles <20 µm. 

This sample was taken from a headland in silty clay. Hence, variation in the particle 

size distribution of the headland surface samples is not clearly related to the soil type 

of the headlands. 
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Figure 10.1: Particle size distribution of soil surface samples (<10 cm) taken from headlands along 

Ripple Drain (HRD), major drains (HMaj) and minor drains (HMin). 

The median of all headland samples is equal to the silty clay topsoil value in the 

Wood data set (Table 10.2). Because most of the headland surface in the budget area 
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is silty clay, using the Wood data to adjust the surface level change measurement will 

not be significantly different, from using the sample median (52.6% ). Thus, the 

headland net surface level change, erosion and deposition rates that were presented in 

Table 8.3 are multiplied by 0.526. The resulting surface level change rates are listed 

in Table 10.1. 

The headland sample median is higher than the field sample median. This is 

surprising; the headland median was expected to be lower as a result of sorting 

processes on the headland surface. The sample size is however too small to draw 

firm conclusions. 

Table 10.1: Different estimates of erosion and deposition rates and net surface level change on 

headlands in the Ripple Comer Catchment. Values adjusted for bedload fraction. Best estimate is 

shaded. 

Rates in mm Average 

Erosion 

R~P<?~t!~9.~ . . . 
Net surface 
level chan e 

Erosion 

_}?~P<?.~~!~<?~ .. 
Net surface 
level change 

Log 
transformed 

*Calculated from insignificant regression equation 

**Estimated using 99-00 cover survey data 

Median 

0.4 
-0.1 

Particle size adjustment for drains and water furrows 

Cover based 

*0.9 

**0.4 

The surface level changes in the water furrows are adjusted using the topsoil particle 

size information from the Wood data set (Table 10.2). The median percentage 

particles <20 µm for the field samples from each soil type (Table 10.3) lie within 

10% of the values documented by Wood. Because of the small number of samples 

the field data are expected to be less reliable than the Wood data. 

Surface level changes in minor drains are adjusted in the same way as those in 

water furrows. However, profiles in Ripple Drain and major drains are separated into 

bed and bank segments so each can be adjusted for a different percentage of fine 

material. Figure 10.3 shows the particle size distributions of samples taken from the 

beds of Ripple Drain and Prosser Drain. The distributions indicate that the bed 
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material contains little fine material. If this is not taken into account in the 

calculation of erosion and deposition rates from the profile data, it could significantly 

overestimate input and storage of suspended solids in this landscape element. 
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Figure 10.2: Sediment size distribution of soil surface samples (<10 cm) from fields (FG = grey sand, 

FS = silty clay, FC = clay) 

Table 10.2: Particle size distribution for soils in the Ripple Comer Catchment (Wood, 1984). 

Soil Type % Coarse % Fine % Silt % Clay % <20 µm 
(Top and sand Sand (=%Silt+ 
Sub Soil) % Clay) 
Silty Clay 14.1 33.3 27.3 25.3 i 52.6 

13.7 29.2 24.0 33.1 57.1 
Clay 12.0 21.9 32.2 33.9 66.1 

12.4 19.6 28.0 40.0 68.0 
················ 

Grey Sand 46.5 26.6 12.0 14.8 26.8 
48.0 

' 
24.9 10.9 16.2 27.1 

Red Sand 44.7 
i 

27.1 12.6 15.6 28.2 
45.3 23.5 10.9 20.3 31.2 

Data records from the bed segment of a drain profile are adjusted by assuming 

2.2% of the particles are finer than 20 µm for Ripple Drains and 8.6% for major 

drains. These adjustments are based on the medians of the drain bed sediment 

samples (Table 10.3). Data records that represent the bank segments of the profiles 

were adjusted, using the percentage of particles <20 µm for the sub soil of the 

appropriate soil type as documented by Wood (Table 10.2). 

The load estimates for drains and water furrows presented in Chapter 9 had 

already been calculated from adjusted profile measurement data. Therefore, the 
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information from Table 9 .4 and 9 .5 can be used directly in further sediment budget 

calculations. 

-2 0 2 

-~-11- DRD1 
··--·iM -~·-- DRD2 
······*'······ ·· DRD3 
---...-DRD4 
---oMajS 
-x-DMaj6 
-+- DMaj6 (top sand) 

4 
Phi size 

6 8 10 

Figure 10.3: Particle size distribution of soil surface samples (<10 cm) taken from the beds of Ripple 

Drain (DRD) and major drains (DMaj). Sandy top layer ( <5 cm) at site DMaj6 is analysed separately. 

Table 10.3: Median particle size of soil surface samples (<10 cm) taken from the Ripple Comer 

Catchment. 

% < 20 µm Median 
Headland 52.6 

••--------•---w~•.•.--- •.ss• wss• ••.w•-- •• -•,-• ••s-w••--••••••••,• ~••• ~- • ••••••••••,y •••• • •••• • •• •• --•-•.•••·-•·-••• •• ••-• •-•-•••Y • • • ••~--•--~•• , .. 

All Fields 45.1 
······················· 

Fields in grey sand 3 7. 0 

Count 

• 

: 

6 
8 
3 
5 .Fields insiltyclay··-· ---···· .. 45.5 ········~· ··• ·· ······· ·'······--················· . . ... .. ................ ·· ········ ········ ··--····· 

Fields.in clay ....... ····-••'-• 60.6 1 

~~9 Bjpp!~ P.~~iP.: f ···············································2···········2··················································,·················································2·······················································1 

Bed Major Drain 8.6 2 

10.3 Soil bulk density 

To calculate the mass of the sediment load that has been estimated using erosion pins 

and profiles, information on the soil bulk density is required. Bulk density was not 

measured during this study, but data are available from literature. Table 10.4 lists the 

bulk densities as documented by Wilson and Baker ( 1990) for the Hamleigh soil 

type, which is the most prominent in the Ripple Comer Catchment. Wilson and 

Baker (1990) gives different values for the A-horizon of row and inter-row areas on 

(cane) fields, which indicates variation in compaction. The compaction of the 

headlands is probably similar to the inter-row area of a field. For erosion and 
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deposition in the drain profiles the bulk density observations from the deeper 

horizons are more appropriate. There is however no information on the spatial 

variation of any of the properties. It has been decided to use a value of 1.5 g cm-3 to 

transform all volumetric measurements. The effect of variation in bulk density on the 

sediment budget results is evaluated in Chapter 11. 

Table 10.4: Bulk densities (g cm-3
) of the Hamleigh soil in the Ripple Creek catchment (Wilson and 

Baker, 1990). 

Soil Horizon Bulk density 
type/Location (g cm-3

) 

Hamleigh ARow 1.36 
(Wilson and AIR 1.52 

............................... ····•• ···· 

Baker, 1990) B2 1.58 
DI 1.52 
D2 1.87 

10.4 Surface area 

In order to obtain a closed sediment budget, erosion and deposition rates for each 

landscape element are multiplied by the surface area that each occupies in the 

catchment. The surface areas of the landscape elements are listed as percentages of 

the total catchment area without forested upland, in Table 10.5. 

The total surface area of the Ripple Comer Catchment is 536 km2
. The cultivated 

lowland covers 320 km2
, and the remaining 216 km2 consist of forested upland. The 

boundary of the catchment is described in Section 4.2 and shown in Figure 4.1. The 

upstream boundary is defined in Arclnfo from a 20 m DEM (Queensland Department 

of Natural Resources & Mines, 1980). The lowland boundary is derived from a 1 m 

DEM and the drainage directions of the fields as they were documented for the 

Integrated Drainage Survey (see Section 9.2). 

The surface area covered by drains is calculated from the drain dimensions that 

were measured for the Integrated Drainage Survey. The area coverage is calculated 

separately for each of the drain type. The results are listed in Table 10.5. 

Headland surface area is estimated by adding a 3.5 m wide strip of land on each 

side of a drain section. The average headland width of 3.5 mis estimated from the 

headland erosion survey (see Section 8.7.2). This results in a headlands cover of 

6.9% of the total lowland surface area. 
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Field boundaries in the Ripple Creek Catchment have been surveyed for the 

Integrated Drainage Survey. , From this survey an accurate estimate can be made of 

the total surface area of fields. Each budget season the crop cover of the fields in the 

Ripple Comer Catchment was mapped for this project, allowing the calculation of 

relative percentages of plant cane, ratoon and fallow. 

Table 10.5: Percentage area of cultivated lowland (= total catchment - forested upland) covered by 

each landscape element. 

Landscape element % cultivated % cultivated 
lowland 99-00 low land 00-01 

~~~~~~g 0.2 0.2 
···················•······· ··················· .......... .............. ···············-···········"··· ....... ............. ·•·•····•··•··············••··•· 

Ripple .. Drain. 0.7 0.7 
Maj or drains 1.1 • 1.1 
Minor drains 0.7 0.7 
Water furrow 6.4 7.7 
Fallow 9.4 9.9 
Formed roads 1.0 1.0 

···················· ................ ······································ 

Headland 6.9 6.9 
Melon 2.2 

• 

-
········· ··•·•······ ........ 

Other 1.2 
• 

2.8 
Plant cane 34.1 • 19.6 
Ratoon 36.4 48.9 
Total* 103 102 

*Total can become more than >100% due to rounding errors. 

During the 00-01 crop cover survey also the presence of water furrows in fields 

was mapped. Of the total surface area covered by fields that contain water furrows, 

the furrows occupy 12.5%. This percentage is based on the surface area covered by a 

water furrow of 2.5 m in a I -hectare field section of 20 x 500 m. The total water 

furrow cover of the cultivated lowland is 6.4%. The percentage of water furrows can 

change each year depending on the percentage fallow fields and the application of 

laser-levelling for field drainage rather than water furrows. In subsequent years the 

differences are not expected to be very big, therefore the 00-01 percentage is also 

used for the 99-00 season, for which information on exact water furrow coverage is 

not available. 

The surface area covered by the remaining landscape components, roads and built 

environment, is estimated from aerial photos. 

Summation of the surface areas of all landscape components leaves part of the 

catchment area undefined. This area mainly consists of spaces between fields , spaces 
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along roads and irregular spaces between cane land and forested upland. These 

spaces are collected under the heading 'Other'. In total they take up 1.2% of the 

cultivated lowland. Roads, built environment and other area are not included in the 

budget calculation. The consequences of this will be discussed in Section 10.6. 

10.5 Budget calculations and budget differences 

The best estimates of the erosion and deposition rates and net surface level change in 

each landscape element for both budget seasons for particles <20 µm are listed in 

Table 10.6. Both the volumetric (mm f 1
) rates and the rates per unit surface area (t 

ha-1 f 1
) are shown. The table also lists the total loads for the catchment surface area. 

For the 99-00 season the methods on which the best estimates are based, are 

indicated. For the 00-01 season all best estimates are based on medians. Net input for 

the sediment budget from each landscape element can be obtained by subtracting the 

erosion and deposition loads. Alternatively it can be calculated directly from the net 

surface level change rates. The measurement methods used to quantify the budget 

input from fields and the forested upland did not provide separate information on 

erosion and deposition rates. 

According to the sediment budget equation (Equation 3.1), the sum of the net 

sediment input from each landscape element (I - S) should equal the output from the 

catchment (0). The sum of the net sediment inputs for the 99-00 season is 1015 

tonnes. The catchment output for this season, which was quantified in Chapter 5, is 

1580 tonnes. Evaluation of the budget equation, at the bottom of Table 10.6, shows 

that the output from the catchment (1580 t) is larger than the net input from sediment 

sources (945 t). This results in a budget difference of 635 tonnes for the 99-00 

season. For the 00-01 season the budget output is also higher (1120 t) than the net 

input (634 t), resulting in a budget difference of 486 tonnes. 

For several landscape elements the difference between erosion and deposition loads 

is different from the net budget input, calculated from the net surface level change, 

despite being based on the same original data. This is caused by the use of the 

median of data. The median value is strongly influenced by the skewed distribution 

of the erosion and deposition rate data. Subtraction of the two medians is therefore 

likely to result in a different value than the median directly calculated from the net 

surface level change data. The budget evaluation in Table 10.6 is based on the results 
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from the net surface level change data. A summary of the budget calculated from the 

erosion and deposition rates is listed in Table 10.8. 

Table 10.6: Sediment budgets for 99-00 and 00-01 budget seasons for particles <20 µm based on best 

estimate' results. 

Values 1999-2000 season Values 2000-2001 season 
Source mm It ha- 1 it mm It ha- 1 t 
Headlands erosion 3 0.2 3 70 0.6 9 192 l·····"····-·•'-·······•···•·······'-•"····--·"•·····•-'·"--····--····•·'-••·······"·~··-···--·······, ······-•--·V·············I· ·•·· ·······••-'••····,..-.......... ,,,., •.....•. ,, •.. , .. ,, .... -, .... . 

Headlands deposition 1 1.3 19 419 0.4 6 140 ····································································, ··································· ··········· ·····•• :••······ 

Headlands net - 0.9 13 > 1. 29.7' -0.1 -2 ! ........ /-35: 

Ripple Drain erosion 1 5.3 •· 791 174 3.9 59 128 Ri ppl~-Drai~·~iep~siti;n· r··r 7 .4 I . 110 i . . 24 2 l--··----············-··· ···'··3········.·· .. o··"· >··-·-···--···············"···4·······5···· •··"··············"······· ···•······9······-8•W••I 
Rlrri~.n~a~n~i 1 ······················ · ····················· i41 35 lt•·•·.. 1j .2·•··························_···0· .9 -14 ·•·•·•·· ... · -3 .. o 

Minor drain erosion 1 1.6 24 51 0.7 10 21 
·+ ·························· .. ........................................ , 

Minor drain deposition 1 2.7 40 85 4.9 73 155 
Minoi·a~ainn~i 1 

· 1.5 22 ? ) .. ii~ 4.5 67 •····. < 1 .2 
Ratoon -1.4 .. · ; fr'.5 > -2.1 6 -6 

········· ........................ ;. ................................................................. · ::-:- '. :: ti@it••i;iN!lliiliI/1 ····································'························· ··· ················· 

Plant -5.9 •••·•••••••••••••••••••••··J ~~ ! ...... -1.7 ., .. r11Q'J• 
Up land -1.1 r. ••·• ·····•·••·•· /Zkfj , -0. 9 l f t.'.:189 

I :, 

( 

Total (Input - Storage) ! -634 

Ripple Drain Output 

Difference 
Methods used to obtain best estimate for 99-00 season: 1 Median; L Average; jLog transformed. All 

00-01 season data based on medians. 

For a number of landscape elements (headlands, drains and water furrows, Chapter 8 

and 9) the budget input based on medians has been compared with budget input 

based on data averages. Table 10.7 lists the results for all budget components based 

on data averages. The I - S components are 1210 t for the 99-00 season and 714 t for 

the 00-01 season, which results in budget differences smaller than those for the best 

estimates: 370 and 407 tonnes respectively. The calculation method for I - S, either 

by directly using surface level change or by using erosion and deposition separately, 

does not affect the results of these budgets. The remaining difference between the 
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calculations is the result of rounding errors. The results of these budget calculations 

are also summarized in Table' 10.8. 

Table 10.7: Sediment budgets for 99-00 and 00-01 budget seasons for particles <20 µm based on 

averages. 

Values 1999-2000 season Values 2000-2001 season 
Source mm It ha-1 It mm it ha-1 t 
Headlands erosion 0.9 13 297 0.7 11 244 
~--· ·u,ss.v • .-..···w.-.·.,··•....-.•• .. •·•;.•·•••"'•·••••w;.·.·•••..-."•·····v.·, ..-.,, .--,, ............... . 

Headlands deposition 1-································1········7·····+···· 26 576 0.5 7 • 157 
Headlands net 0.9 13 297 -0.3 -4 <""87 
Water furrows erosion 2.4 36 738 3.21 48 1181 
W~t~;}t1rrows_.deposition .... w, ,,., 1.2 18 369 ,w .. ¼¼•mw, 1.8 ). ____ ,¼,•·~--·-·-·,~2.[ ''""···''~-~~-
Water furrows net -1.2 -18 69 -1.3 1 -201 7180 

Major drain erosion 5.6 84 289 2.4 36 124 
Majo!~!ain deposition .. 1.9 29 98 5 75 258 
Major drain net -3.7 , -56 -191 2.6 39 .. [ t3:4:. 

~~~i~~d~~~iii;onHI ;~J ~! ~:! !~I 1!; 
Minor drain net 1.1 1 · i7I 35. 3.5 53 [ 112 
Ratoon i -1.4 -157 -0.7 • ... _. ·•-:J14 
Plant 1 -5 .9 > -644 -1. 7 I_fu} 
Upland -1.l l -243 -0.91 · ~189 

:-\f {?" 

Total (Input - Stora~e) -1210 .;;7:14 
• 

...... 

Ripple Drain Output I 1580 1120 

Difference ! 370 •·· 406 
Methods used to obtain best estimate: 1 Median; 1 Average; jLog transformed 

Table 10.8: Summary of all budget calculations (as shown in Figure 10.4). Best budget estimate 

shaded. 

99-00 99_;00 .... ··•···•· 99-00 99-00 00-01 00-01 00-01 00-01 
best best averages averages best estimate best averages averages 
estimate estimate estimate 
I - S net I - S 

surface 
net I - S net I - S net 
surface surface surface 

level level level level 
change change change change 

1518 l Input (I) 2181 
1 

T< ·•··• 2603 Storage ·csf · '············1···· 2·····0······6·············f, ... •.•······•········ .... ,. ..... , ......... .., ... : •............ 1 .... 3·····7·····5···············t······························································.-····.-···:···:·························· .. ·· 
······•········••····· ..... ·························1 • ·······························t·····•··•···· .. ··""···--•·•······· .. ····•················:···: ···:.-···········!-···········:···=···:···=·································-;:·;_··-::.:-···················t······ 

i 

1180 i 
I- S (or net) 975 5 1228 1210 
output co5 -· · is-so · """:_:" · ,o · 15 s6 ·· ,. 
Budget 605 565 
difference l 

352 

• 

1580 
370 

338 
; 

... ... · j 1120 
782 I 

' ! 

. 

634 
....... _-... , _ _._. ___ -,_-_. __ ... . ... -·····- ···- ..... _.... ··-· 

1120 1120 1120 
486 369 406 
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The relative differences between the budget component values for the vanous 

calculation methods and the- resulting budget differences are illustrated in Figure 

10.4. 

2000 ........................ ...... .. ...................................................................................................... ·,------------------~ 
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Figure 10.4: Comparison of (Input - Storage) with catchment Output, showing budget difference, for 

each budget calculation method. 

10.6 Discussion 

10.6.1 Best budget estimates 

All budget calculations, which are summarized in Table 10.8, result in differences 

between net input and catchment output, varying from 25 % to more than 50% of the 

sediment output from the catchment. For both seasons the differences for budgets 

based on median data values are bigger than for those based on data averages. It is 

however incorrect to assume that the average data better represent the erosion and 

deposition rates in the landscape. It is likely that the uncertainty in the output 

estimate is so large that the difference with the I - S component falls within error 

ranges. 

The budgets calculated from the 'best estimates' of surface level change rates are 

still expected to provide the best approximation of actual erosion, deposition and 

sediment transport processes in the catchment. Among the budget calculations with 

best estimate data, budgets calculated from net surf ace level change data are 

expected to be most reliable. Splitting plot and profile data into erosion and 

deposition rates has caused 'artificial' distributions. If these distributions are not 
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symmetrical, their median values will not add up to the median of the original data. 

However, the separate erosion and deposition rates are needed to understand 

processes within the landscape elements. 

10.6.2 Discussion of individual landscape elements_ 

Figure 10.5, 10.6 and 10.7 give an overview of the input and storage values for all 

landscape elements in different seasons and for different calculation methods. The 

error ranges for the input and storage estimates of individual landscape elements will 

be considerable. However, if the data are assumed to be representative of the 

processes in the catchment, the following comments can be made about the budget 

results: 

Highest erosion rates are measured in Ripple Drain (see Table 10.6 and 10.7). 

However, water furrows generate most sediment input in both seasons, because 

they cover a larger surface area. Fields cover most surface area, but their (net) 

input is variable. 

The highest net input of sediment was generated from plant cane fields in the 99-

00 season. However, the input for the subsequent season is relatively small. The 

different measurement methods that were used in the different seasons might be 

(partly) responsible for the different results. 

The combination of high erosion and high deposition rates 1n water furrows 

indicates that much soil is moving through this landscape element. Their 

connectivity with the drainage system is however low. Much of the eroded 

material redeposits within the furrows, which reduces the input in the sediment 

budget. 

Headlands appeared to be the most effective sediment store during the first 

budget season. This could be related to a high frequency of overbank flow events 

during this season. 

Both input and storage are relatively low in drains. Only minor drains are a net 

sediment sink in both seasons. 

Although the estimated contribution of upland input to the total sediment load is 

higher than was expected from the field observations of clear creek water, there 
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is reason to believe that the actual contribution is even higher. The estimated 

input was reduced, because the high runoff coefficient did not seem realistic (see 

Chapter 6). That reduction is based on extrapolated rainfall data, and could 

therefore be incorrect. If the unadjusted data from the Post Creek is extrapolated 

over the total upland, the budget input becomes 500 t for the 99-00 season and 

390 t for the 00-01 season, which reduces the budget difference. 

Figure 10.5 to Figure 10.7 also clarify some of the differences between budget 

calculation methods. For the 99-00 budget the higher budget difference in the best 

estimate' budget, compared to the average budget is mainly caused by a decrease of 

erosion from headlands and 2nd order drains. Both of these components have some 

outliers in the erosion rates, which are likely to 'underestimate' the actual surface 

level change. 

The relatively large difference between the best estimate' and average budget for 

00-01 is caused by the water furrow component. The average value probably 

'overestimates' the actual erosion rate. As a result of the high furrow input, the input 

from the ratoon fields decreases; since the measured ratoon field input includes 

material from the water furrow, which has to be subtracted to obtain input 

exclusively from the field. 
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Figure 10.5: Input of sediment from individual landscape elements for each year's budget. 
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Figure 10.6: Storage of sediment in individual landscape elements for each year's budget. 
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Figure 10.7: Net input of sediment from individual landscape elements. Positive values indicated net 

sediment storage, negative values net erosion. 

10.6.3 Landscape elements not represented in the sediment budget 

Several landscape elements have not been included in the sediment budget 

calculation. These elements are listed below with a discussion on their potential share 

in the catchment sediment budget. 
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Fallow and melon fields 

No erosion and deposition data were collected from fallow fields. The cover survey 

each year indicated that 9-10% of the cultivated lowland consists of fallow. Field 

observations suggested that fallow fields will not generate as much sediment as plant 

cane fields, because the coarse aggregates/soil lumps of the recently ploughed 

surface do not appear as erodible as the much finer plant cane aggregates. 

Aggregates with diameters of up to 30cm are common on the fallow fields while the 

average size of the plant cane aggregates is only in the order of a few centimetres. 

The stability has not been tested. Erosion from fallow fields might be higher than 

from ratoon fields, because the surface cover is lacking. However, the coarse micro­

topography due to the aggregates will also trap a lot of sediment. 

2.2% of the catchment surface area in the 99-00 season consisted of fields with 

melon crop. Because of their small area in the catchment no measurements were 

carried out on these fields. Erosion rates are expected to be less than from plant cane 

field, because the vegetation cover is higher, but there is no surface cover. 

To estimate the amount of sediment that might be missing from the budget 

equation, because export from fallow and melon fields was not included, it is 

assumed that the sediment export from both types of field in tonnes ha-1 lies 

approximately mid-way between export from ratoon and plant cane fields. This 

results in 140 t more input for the 99-00 season and 7 5 t for the 00-01 season. This 

increases the I - S component of the budgets for both seasons, but considerable 

budget differences remain. 

Roads, tracks, built environment, and other sources 

Roads and tracks have been shown elsewhere to be significant sources of sediment 

(Croke et al., 1999; Croke and Mockler, 2001). In the Ripple Comer Catchment 

signs of erosion were observed on the roads especially after large flood events. The 

total input of sediment from roads is, however, thought to be relatively small. There 

are no high input' processes such as bank erosion or rilling, and the input will mainly 

be in the form of coarse sediment (gravel). 

No major input is expected from the built environment. Overall input and storage 

will be insignificant due to the small area of buildings and few connections with 

major sediment sources. 
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The remaining catchment surface area, classified as 'other', mostly consists of 

uncultivated grassland. It is not likely to generate a significant amount of sediment, 

because it is well vegetated, and probably acts as sediment sink. 
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Uncertainty analysis 

11.1 Introduction 

Error is introduced in sediment budgets during measurements and because of 

problems in both temporal and spatial representation of rates of erosion and 

deposition (see Chapter 3). These errors will be propagated when data are 

extrapolated to times and locations not adequately estimated, and can produce large 

uncertainties around the final budget numbers. Although both sides of the budget 

equation for the Ripple Comer Catchment appear to balance, self-cancelling of large 

errors in individual budget inputs could be masked (Kondolf and Matthews, 1991). 

To draw valid conclusions from the budget results, and use these for resource 

management purposes, a good understanding of the uncertainty related to the results 

1s necessary. 

Uncertainty analysis methods 

Uncertainty analysis in empirical erosion studies as well as erosion modelling studies 

is not common. There is no standard method for such an analysis; various approaches 

are possible, but each has specific limitations (Bardossy and Fodor, 2001; Lall et al., 

2002). A number of methods were considered for the assessment of the reliability of 

the Ripple Creek budget and are discussed below. 

A conventional method for uncertainty analysis is first-order variance propagation 

(Taylor, 1982). This method has the limitations that it only applies to uncertainties 

with a coefficient of variation of less than 10 - 20% and requires knowledge of the 

probability distribution of the error. These assumptions are not met in the data 

available for the sediment budget. For many of the uncertainties in the budget study 

the coefficients of variation are higher, and there is not sufficient data to estimate 

their probability distribution without making unverifiable assumptions. When the 

large uncertainties are propagated through repeated addition and multiplication in the 
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budget calculation, this method will also result in very large total uncertainty for the 

budget numbers, which may be unrealistic. 

A very simple approach is the 'worst case analysis' approach (Morgan et al., 

1990), which only uses the upper and lower bounds of data or model parameter 

distributions. This method also has the disadvantage that it produces hyper­

conservative results and will therefore not greatly help with the interpretation of the 

sediment budget results. It is known beforehand that the results represent the worst 

case scenario and that more confidence in the results is warranted. The method is, 

however, very simple. It can give a quick indication of the maximum effect of error 

and variation in the budget data, and the contribution from various sources of error 

and variability can be shown separately. 

The probabilistic Monte Carlo simulation method provides a more flexible 

alternative to the above-mentioned methods, which might produce a less extreme 

budget uncertainty. It allows the combination of more and less clearly defined 

uncertainty in the data, so optimal use can be made of available information. In the 

process of simulation the sensitivity of the output to various uncertainties can be 

tested. Because of these advantages and its relative simplicity, this method is often 

used for uncertainty analysis in modelling, environmental decision-making and risk 

analysis. Guidelines of good practice have been developed for the application of the 

method (US Environmental Protection Agency, 1999; Intergovernmental Panel on 

Climate Change, 2000; Lall et al., 2002). 

There are several other uncertainty analysis methods besides those described 

above, such as Fuzzy and Bayesian techniques (Burrough, 1998; Freissinet et al., 

1999; Bardossy and Fodor, 2001). They have been considered, but will not be further 

discussed, because the methods were not thought to provide additional insight into 

the uncertainty compared to any of the above methods. 

In this study mainly the 'worst case analysis' will be applied, to analyse the 

uncertainty in the sediment budget, because of the nature of the available data. 

However, where possible the Monte Carlo method will also be applied to see if this 

method provides smaller uncertainties. 

Because of the advantages of the Monte Carlo method it was thought to be 

particularly useful to evaluate the budget results from the Ripple Comer Catchment. 

The application of the method should however conform to certain conditions as 
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noted above. In this analysis these conditions were not always met. Therefore the 

analysis will be restricted to the following very general aim: to obtain an indication 

of the reliability of the budget values and the relative magnitude of uncertainty on 

each side of the budget equation, and to compare these results with those from the 

'worst case' analysis. 

11.2 Monte Carlo simulation of the budget uncertainty 

Simulation procedures 

Budget variables from each landscape element are simulated 1000 times using 

random samples (with replacement) from ranges of values (e.g. surface level change, 

bulk density, measurement error). 1000 simulations were assumed plentiful to obtain 

a stable output, considering the simple structure of the budget calculation. 

From each set of simulations for all landscape elements, the I - S component of 

the budget equation is calculated. The resulting 1000 realisations of I - S can be 

plotted as a cumulative frequency distribution, which gives an indication of the 

likelihood of occurrence of different total sediment loads from sediment sources in 

the Ripple Comer Catchment. In the same way a cumulative frequency distribution is 

created from 1000 simulations of the sediment load at the catchment outlet, based on 

the uncertainty in the input data. 

Uncertainty distribution functions 

Monte Carlo simulation assumes complete representation of the population 

distribution of data or model parameters. Population distributions are usually 

presented as a probability density function (PDF). For each simulation parameter or 

data, values are randomly sampled from their probability density function. For many 

uncertainties in the budget calculation an exact probability distribution is however 

not known, and in many cases only an estimate of the maximum and minimum value 

is available. Because Monte Carlo simulation can handle distributions of any shape, 

several authors suggest that, for situations where the probability distribution is 

unknown, either a uniform distribution between a minimum and maximum value or a 

triangular distribution based on a minimum, maximum and the most likely 

value should be assumed. The triangular distribution is applied when it is 

believed that values close to the most likely value will occur more often than values 
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near the extreme ends of the range (Hession, 1996; Hession et al. , 1996; Hession and 

Storm, 2000; Lall et al., 2002). 

Another alternative for fitting or assuming a PDF is the empirical distribution 

function (EDF), which is obtained from the cumulative frequency of available data. 

The EDF method completely describes the data values and their probability of being 

encountered, while no assumptions have to be made about their distribution. Using 

this alternative includes the risk that the EDF poorly represents population variability 

and percentiles. A well-chosen PDF can reduce that risk, but its choice requires some 

theory and professional judgment, and the result may be incorrect (US 

Environmental Protection Agency, 1999). An empirical distribution function can be 

used in Monte Carlo simulations by resampling (with replacement) the original data. 

In this study, uniform and triangular as well as empirical distribution functions 

have been used. In most cases there were few alternatives, because insufficient data 

were available to obtain PDFs without making unverifiable assumptions. 

The following sections describe in detail the sources of error in the budget input 

estimates for the example of headlands and the outlet drains. The same methods have 

been used for all other budget components. Some comments on these analyses are 

included in Section 11.5. A detailed analysis is only done for the 99-00 data. Possible 

differences for the 00-01 data will be commented on in Section 11. 7. 

11.3 Headlands 

11.3.1 Overview 

The sediment budget value for headlands was obtained from erosion pin plots across 

the headlands in the budget area (Chapter 8). From the measurements of each 

separate pin in the field, until the final appearance of the data in the budget equation, 

the following factors add uncertainty: 

1. Erosion pin measurement error 

2. Error in the estimate of total headland surface area 

3. Error in the length of observation period 

4. Interpolation of pin values within a pinplot 

5. Extrapolation of plot values across the headland surface area 

6. Error in the headland soil bulk density 
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7. Error in the soil particle size distribution 

Numbers I to 3 are knowledge uncertainties (Morgan and Henrion., 1990), which 

could be reduced by improved measurement of the system. Uncertainty from sources 

4 to 7 is the result of spatial variability, the quantification of which is limited by both 

adequacy of the measurement methods used and the current level of understanding of 

soil processes. In the Monte Carlo simulation of the budget components, all types of 

uncertainty will be combined to obtain total uncertainty for the budget results. 

The sources of uncertainty in the estimates of net input for the budget from drains 

and water furrows are similar to those of the headland input calculation. Only the 

value ranges for some variables in the load calculation are different. 

11.3.2 Measurement error 

During the measurement of erosion pins, positioning of the callipers on the washers 

varied slightly with each measurement resulting in random measurement error. 

Calibration errors or malfunctioning of the callipers could have caused systematic 

errors. The systematic errors are ignored in the uncertainty analysis, because they are 

expected to be insignificant compared to other sources of error. To estimate the 

random measurement error, four pinplot measurements were repeated after short time 

intervals. In the final measurement session of the 99-00 season, the measurements of 

three plots were repeated after a two-week interval. No rainfall or flooding was 

recorded over this period, so the true soil surface change was thought to be 

insignificant. During the final 00-0 I measurement session one plot was repeated 

immediately after the first measurement. The average of the (absolute) differences 

between repeated measurements of all the pins in a plot is used to represent the 

uncertainty due to measurement error in this measurement method. This is assumed 

to be comparable to using the standard deviation of repeated measurements as an 

estimate of uncertainty as described by Taylor (1982). 

Table 11.1: The average, minimum and maximum value of the (absolute) difference between two 

subsequent measurements of all pins in an erosion pinplot. 

Average (mm) I Minimum (mm) Maximum (mm) 
Plot G 99-00 1.4 I -2.2 6.2 

....... ····--···-----····-••--.-_.._ . ., ..•.... --------····•·•·· ·---·~·---····-·-·-·--····--·····~------·~----- ·•---·-·-·-·······-·--······--· ___ ._._ 

Plot 0 99-00 I.I i -9.2 2.1 
-------···----------··•--·-···-·----·-·------ ___________ _. ________ 

------····· ····---····· ··--·-··-·····-- ------· ...... ........... . ... ., - -- --~ ------ --·· .. .. 

Plot p 99-00 1.5 
• 

-6.5 13.7 
·······························•··········· 

Plot G 00-01 0.8 
• 

-3.7 1.6 
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Table 11.1 shows the uncertainties estimated from repeated pinplot measurements. 

The deviations of the 99-00 plot measurements are slightly higher than the deviation 

of the 00-01 plot measurements. Because of the rather long time period between the 

99-00 repeated measurement, the 00-01 value is thought to be more reliable and will 

be used in the remainder of the uncertainty analysis. 

In the Monte Carlo simulation of the sediment load from headlands, uncertainty 

through measurement error is included by sampling from the empirical distribution 

function of the deviation estimates of plot G. This means that the simulation input is 

randomly sampled from the original data, which was not clearly normally distributed. 

The Kolmogorov-Smimov and Shapiro-Wilk test of normality (Chakravarti et al., 

(1967); Shapiro and Wilk, 1965) showed only low significance for the K-S and W 

test statistics (P = 0.1 and 0.02). Figure 11.1 shows the histogram of the deviation 

data. 
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Figure 11.1: Histogram of the absolute differences (deviations) between repeated measurements of 

erosion pins in pin plot G in the 00-01 season. 

11.3.3 Interpolation methods 

Uncertainty from sources 4 and 5, as mentioned in the overview in Section 11.3 .1, is 

the result of the spatial variation of the headland surface level change values. In 

Section 8.7.3 the representation of the headland surface level changes by the pinplot 

data was discussed. It was concluded that the sample average best represented the net 

surface level change. The variance of the data is assumed to represent the spatial 

variability and thus the uncertainty around the net surface level change estimate. The 

validity of this assumption can however be questioned, because 'spatial variation of 
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any continuous attribute is often too irregular to be modelled by a simple smooth 

mathematical function' (Burrough, 1998). This means that the uncertainty in the 

headland load value due to spatial variation might not be sufficiently quantified. The 

consequences of this depend on the contribution of this source for the total 

uncertainty, and will be discussed in Section 11.6. 

Both the Kolmogorov-Smimov and Shapiro-Wilk tests indicate that the data are 

normally distributed (P = 0.2 and 0.56). The sample number is however rather small 

(n = 13), which reduces the reliability of the test results. For this source of 

uncertainty the difference will be tested between the use of a normal distribution as 

well as random sampling from the original data. 

Extrapolating the average pin plot data across the catchment area ignores the 

variability within the plots. The variability within some plots is as high or higher than 

variability between plots. The clustering of pin measurements by plot and assuming 

the plot value is representative for a particular headland area therefore reduces the 

variance of the data (Table 11.2). The variance within pinplots is not taken into 

consideration in the error propagation. Relying on field observations it is assumed 

that the · grid size was sufficiently dense to obtain an accurate interpolation of the 

surface by simple averaging of the data. The spatial variation of surface level change 

at this scale is not thought to cause uncertainty in the sediment budget results. 

Table 11.2: Reduction of variance for the distribution of plot surface level change averages compared 

to average surface level change for all individual pins. 

Plot averages Individual pins 
n 13 279 
... ................ 

AY~t~g~ 1.7 1.7 
Standard error 2.6 11 
·························· 

Variance 6.6 112 

11.3.4 Time and Space 

Uncertainty sources 2 and 3 result from inaccuracy in the total length of the time and 

the area over which surface level change on headlands is estimated. The pinplots 

were not all measured at the same date, so the results will cover different lengths of 

time. This error is assumed to be insignificant, because installation and measurement 

of the plots were performed under dry conditions over a relatively short time period, 

so no significant change would have occurred. 
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Area data could be a significant source of error, particularly for headlands, 

because their surface area was not properly mapped. The method for estimation of 

total headland surface area is presented in Section 10.4. The uncertainty in this 

estimate is different for headland length and width. Uncertainty for width is 

estimated from the observed frequency of headland widths (Figure 11.2). This 

information is included in the Monte Carlo budget equation simulation as an 

empirical distribution function. Total headland length is thought to be equal to total 

drain length. Total drain length is known from the Integrated Drainage Survey. 

Although these data are thought to be accurate, a 5 % error in the estimate is not 

unlikely. This assumption is included in the simulation as a uniform distribution 

around the best estimate of total headland length. 
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Figure 11.2: Histogram of headland widths measured in the Ripple Comer Catchment. 

Soil properties 

For both bulk density and the particle size fraction <20 µm, a single value was used 

in the headland budget input calculation. In reality these properties vary throughout 

the budget area, for example with changes in soil type or with varying degrees of 

compaction. 

The particle size distribution used to calculate the suspended solid fraction from 

the total sediment input for headlands is estimated from 6 headland samples as 

described in Section 10.2.1. The :fraction of particles <20 µm in these samples ranges 

from 36% for a sandy headland deposition and 70% for a sample taken from silty 

clay soil, with a median of 53%. Both extreme values in the measured range are 

expected to represent the maximum and minimum possible values and the median, to 
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represent the best estimate. Therefore, a triangular distribution represents the 

uncertainty due to particle 'Size adjustment in the Monte Carlo simulation. A 

histogram obtained from 1000 random samples from the triangular distribution is 

presented Figure 11.3. 
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Figure 11.3: Histogram of 1000 samples taken from a triangular distribution for % particles <20 µm 

in headland surface soil. 

Table 10.4 in Section 10.3 showed the bulk density values for the dominant 

soiltype in the Ripple Creek Catchment. The topsoil and upper subsoil bulk densities 

varied between 1.36 and 1.58 g cm-3
• In the budget calculation a bulk density of 1.5 g 

cm-3 is applied for all landscape elements. Nothing is known about the spatial 

variation of this property. The minimum expected value is 1.4 and the maximum 1.6 

g cm-3
, with a most likely value of 1.5 g cm-3

. This information is also represented 

with a triangular distribution in the Monte Carlo simulation. 

11.3.5 Total uncertainty in the budget input from headlands 

In the calculation of the sediment load from headlands, the uncertainties are 

combined as follows: 

Uncertainty headland load estimate= (Spatial variability+ Measurement error) 

* Uncertainty bulk density* Uncertainty particle size* Error headland length* 

Error headland width 

From the 1000 realizations of the simulation of net sediment input from headlands, 

cumulative frequency distribution curves can be plotted. Figure 11.4 shows the 

different curves obtained from simulations by re-sampling the original net surface 
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level change data and by sampling from a normal distribution. There is a maximum 

difference of approximately 150 t between the curves. 

With the currently available data and information, 95% of the realizations of 

sediment load from headlands (estimated from the EDF) have a value between - 750 t 

and 1400 t; 68 % of the realizations ( comparable with one standard deviation) have a 

value between -25 t and 750 t. The former range indicates a variation of +300% 

around the average estimate, and the latter a variation of+ 100%. 
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Figure 11.4: Cumulative frequency distribution curves obtained from 1000 simulations of headland 

sediment load, by re-sampling the original surface level change data ( dark) and sampling from a 

normal distribution (light). Load estimates based on average and median surface level change data 

indicated with dots. 

The worst case analysis is performed by calculating a highest and lowest headland 

sediment input. The highest input calculation uses plus one standard deviation of the 

net surface level change, headland width, and measurement error distributions 

(assuming normal data distributions), and the maximum likely value for bulk density 

and particle size (as described above). The lowest input calculation uses minus one 

standard deviation and minimum likely values. This results in a maximum likely 

range for the headland input, shown in Figure 11.5 and Table 11.3. The Figure also 

shows the relative contribution of the individual uncertainties, using best estimate 

values for the other variables. 
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The total range is considerably larger than the 68 % range from the Monte Carlo 

simulation. The spatial variation in net surface level change causes most uncertainty. 

The effect of the measurement error appears to be small, contrary to expectations. 

Total range 

Net SLC headland 

Surface area headland 

Measurement error headland 

Particle size 

Bulk density 

-200 0 200 400 600 800 1000 1200 1400 1600 1800 

Sediment load (t) 

Figure 11.5: Worst case uncertainty estimates for headland sediment load calculations. 'Total range' 

shows the effect of assuming minimum and maximum values for all uncertainties. The separate effect 

of uncertainty in surface level change (SLC), surface area, measurement error, particle size and bulk 

density is also shown. 

Table 11.3: Worst case estimates of headland sediment load in tonnes and as percentage difference of 

best estimate based on all input uncertainty (Total) and on individual input uncertainties. 

Maximum Minimum Difference from best 
load (t) load (t) estimate (%) 

Total uncertainty -65 • 1525 ' -118 327 
• 

Net surface level -96 
• 

810 • -127 127 
change ___ _ ·----------- -··-·•····~ . ---···--- ·-····--- . 

• 

~ ....• .,..._ . ·-·- ····-· ., ........ ._._ ,..,.,,., --·····-,., ,,. ···--t•-•s,• ----·---._.,., ······-~- ., .. _ _.,. ... _.,_ ..... 

Surface area 182 
• 

558 -49 56 
Measurement 293 • 422 -18 18 
error 

' 
Particle size 306 

• 

374 -14 5 
···-········--·-••.-.. -·-· ·····--··-· -••.•.•··- ----·-•·---········-- ., .... ............ ·•·· ..•..•. .,, ········--····--·· , .. ., .. _.,. .... , .........•. ,_ ...•.. ,. .. , ..... ---- . ,.. I··-••.• ..... . .,,. ___ ----- ············----· -~ 
Bulk density 333 381 -7 7 

11.4 Outlet drain gauging data 

11.4.1 overview 

The budget values obtained from gauging data (i.e. forested upland, ratoon fields and 

catchment output) have different sources of uncertainty than the plot scale erosion 

and deposition measurements. In summary the following sources of error can be 

identified: 

1. Error in flow depth estimates 

2. Error in flow cross-section estimates 
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3. Error in flow velocity estimates 

4. Error resulting from the use of rating curves 

5. Error in SSC estimates 

6. Error due to temporal resolution of measurements 

7. Error in catchment boundary definition 

8. Missing data 

This section discusses the uncertainty in the catchment output in detail. Procedures 

for the other gauged variables (upland input and ratoon fields) are very similar and 

will only be commented on in Section 11.5. 

The total load at the catchment outlet is estimated from continuous sediment 

discharge measured over the budget period. Each sediment discharge record is 

obtained from depth, SSC, and velocity data records, which all contain errors. The 

uncertainty in the output will never be larger than the sum of the fractional 

uncertainties whether or not they are independent and whether or not they are 

normally distributed (Taylor, 1982), as follows: 

8SD < d SD 8d + d SD 8v + 
dd . av 

dSD 8SSC 
assc 

in which 8SD is the uncertainty in the sediment discharge; dSD/dd is the partial 

derivative of sediment discharge with respect to depth; v is velocity; and SSC is 

suspended solid concentration. Uncertainty is estimated for each sediment discharge 

record, and added for all data records in the season, which results in the total 

uncertainty around the final output value. The contribution from individual variables 

is also estimated in this manner, assuming zero uncertainty for other variables. The 

resulting error for the total output is assumed to be the standard deviation of a normal 

distribution around the best estimate value. 

For further error propagation in the I - S estimate, values will be randomly 

sampled from the uncertainty distributions for upland input and fields. To compare 

the uncertainty range in the catchment output component with the I - S component, a 

cumulative frequency curve is obtained from the catchment output uncertainty 

distribution by taking 1000 random samples. 
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11.4.2 Flow depth and cross-section 

Discharge in the outlet drain is estimated using the change in the flow cross-sectional 

area over time. The cross sectional area is estimated from continuous depth data 

recorded by a pressure transducer. The pressure transducers installed at the gauging 

sites are expected to record depth so accurately that their (random) measurement 

error can be ignored in the presence of other errors in the discharge calculation. 

However significant uncertainty arises when relating the sensor records to actual 

drain depths. The 'calibration' measurements used for this purpose showed 

considerable variation. The uncertainty introduced in the output data this way is 

calculated from the 'calibration' data presented earlier in Figure 5 .4, using the 

following equation (Taylor, 1982): 

2 1 f 2 
CTY =--Lt(Yi -A-Bx) 

N -2 i=I 

in which A and Bare the parameters obtained from the linear regression between the 

manual samples and the transducer records. The uncertainty in the depth 

measurements calculated this way is 7 cm. 

The calculation of cross-sectional area from depth includes errors from the initial 

cross-section estimate. A repeated measurement of the Ripple Drain cross section 

showed on average a 0.1 m difference in the width on each side of the profile. This 

estimate is based on only four data points, but is used in the error propagation 

assuming it is normally distributed. The models used to represent change in profile 

cross-section with depth have an exact fit (R2 = 1). Because the data are not 

extrapolated, the model error is thought to be insignificant. 

11.4.3 Flow velocity 

In Section 5.7 the velocity measurements in the outlet drain are described. There is 

continuous noise in the data with a width of approximately 1 m s-1
. Results from the 

automatic Starflow velocity device are compared with a manual velocity meter. Up 

to 0.3 m s-1 difference is observed between measurements from each device in the 

deepest part of the drain. Nothing is known about the accuracy of each, and variation 

within the drain profile has not been taken into account. In the propagation, the error 

is assumed to be normally distributed with a standard deviation of+ 1 m- 1
. 
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11.4.4 Suspended solid concentration 

The turbidity - SSC calcu1ations are based on two subsequent regressions. 

Transformation from Greenspan to Grabsample turbidity includes a + 15 NTU error 

for the outlet data and a +4 NTU for the upland input. Transformation of NTU to 
-

SSC includes a +64 mg r 1 error for all data. There could be an additional error 

because of the method used to measure the total sediment fraction <20 µm (sieve 

mesh, balance error, etc.). This was not tested, but the error is expected to be 

relatively small, adding insignificant uncertainty. 

11.4.5 Time and space 

Because the temporal resolution of all gauging data is better than 15 minutes, errors 

through interpolation between data records will be insignificant. Errors in the 

definition of catchment area (6) could be more problematic. The total load measured 

at the outlet can only be equal to the load from individual landscape components if 

all are based on the same catchment and if the catchment boundaries are clear. The 

boundaries of the total catchment are estimated from the topography in the upland 

area and from drainage directions, as identified in the Integrated Drainage Survey 

(see Section 9.2), in the low-lying areas. It is uncertain if these assumed boundaries 

are correct. Subsurface flow paths of water in the uplands might be different from the 

surface topography and the accuracy of the topographic map is not known. In the 

lowlands, drainage directions might change under storm flow conditions. This effect 

was observed at the Ripple Drain gauging site. 

The inputs estimated from the gauging data of the flumes and the upland creek 

have an increased uncertainty, because the output per unit area, estimated from an 

area with inaccurate boundaries, is extrapolated over an area with similar inaccurate 

boundaries. 

With the current knowledge of the area it is impossible to make accurate estimates 

of the additional uncertainty in the sediment budget as a result of the uncertainties in 

the catchment, sub-catchment and field area boundaries. 

11.4.6 Missing data 

For the periods that velocity data were missing and parts of the discharge curve have 

been estimated from a depth - discharge relationship, uncertainty is assumed to lie in 

the depth data plus uncertainty in the estimate from the relationship. Error included 
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in this relationship through discharge estimates is ignored. No uncertainty is included 

for the linear interpolation of the missing turbidity data. The effect of this on the total 

output value was already shown in Section 5.10.1. 

11.4. 7 Total uncertainty in the budget input from gauging data 

The best estimate for the catchment output plus or minus the total uncertainty 

obtained by propagating the above errors through the flow data, gives the 'worst case' 

range of uncertainty. The range indicates +82% variation around the best estimate 

(see Figure 11.6 and Table 11.4). 

The contribution of uncertainty from the suspended solid concentration estimates 

is slightly higher than the total uncertainty from discharge estimates (which consists 

of uncertainty in velocity, cross-section and rating curve estimates). 

Total range 

SSC 

Cross-section 

Velocity 

Rating curve 

-3500 -3000 -2500 -2000 -1500 -1000 -500 0 

Catchment output (t) 

Figure 11.6: Worst case uncertainty estimates for catchment output calculations. 'Total range' shows 

the effect of assuming minimum and maximum values for all uncertainties. The separate effect of 

uncertainty in SSC, cross-section, velocity and rating curve. 

Table 11.4: Worst case estimates of catchment output in tonnes and as percentage difference of best 

estimate based on all input uncertainty (Total) and on individual input uncertainties. 

Maximum Minimum Deviation from best 
load (t) load (t) estimate (%) 

Total range -282 
• 

-2890 -82 82 
······························· 

SSC -827 -2345 -48 48 
··-·-----------·-····------------··----·--····----------····--·-·- ·· ··--······••.•• ........... ............ .... ··· ····---·· -----· 
Cross-section -1366 -1806 -14 14 
•••••••••••••••••n•••••••••••••••• • 

• Velocity -1423 
• 

-1749 -10 10 
Rating curve -1424 -1748 -10 10 
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11.5 Comments on the uncertainty estimates for the remaining 

budget components 

Drains, water furrows, fields and upland input have been analysed in a similar way as 

described for headlands and catchment output. Some _differences and unresolved 

difficulties that were encountered are commented on below: 

- The uncertainty around the plant cane input was included in the Monte Carlo 

simulation by resampling the water sample data. Uncertainty in the monthly 

runoff coefficients, used to calculate a total sediment load for the season, has 

been ignored. There was not sufficient information to make an estimate of 

uncertainty in this part of the calculation. 

- As a result of large uncertainty in the suspended sediment concentration data the 

distribution of the upland sediment load data contains negative sediment loads. 

This results in an obvious overestimate of uncertainty. 

- Velocity for the Post creek was calculated directly from the water depth with a 

rating curve. The uncertainty related to the rating curve is 0.2 m3 s- 1
. However, it 

is suspected that much more uncertainty has been included in the estimate by the 

use of the velocity profiles and the drain cross section. This uncertainty has been 

ignored, because there were no means to quantify it. 

11.6 The total uncertainty 

11.6.1 Worst case estimate 

The effect that uncertainty in each budget variable has on the total budget result is 

shown in Figure 11. 7. The light bars show the uncertainty ranges obtained by 

calculating a budget result from the minimum and maximum uncertainty value for 

each budget variable, while assuming best estimate values for all other variables. The 

dark bars show the combined effect of the minimum and maximum uncertainty 

values for all budget variables. The upper bar shows the range for the catchment 

output component and the lower bar for the Input- Storage component. 

The total uncertainty range is highest for the Input - Storage components of the 

budget. The bar indicates an uncertainty of around +300% of the best estimate. The 
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total uncertainty range for the catchment output is only +80% of the best estimate 

value. 

Most uncertainty is introduced through the estimate for the sediment load from 

plant cane fields. This was expected, because the grab sample~ on which the estimate 

is based had very low spatial and temporal coverage. The uncertainty range indicated 

here is not even complete. After uncertainty in the plant cane estimate, the variability 

in net surface level change for water furrows, headlands, and major drains causes 

most uncertainty in the budget calculation. Because the method that was used to 

estimate these uncertainties is questionable, it is not clear how representative these 

ranges are. 

11.6.2 Cumulative frequency distribution curves 

With the uncertainty ranges for all budget variables as defined in the first part of this 

chapter, Monte Carlo simulation is performed to obtain cumulative distribution 

functions for the budget components. The resulting curves are shown in Figure 11.8. 

The simulations for the catchment output (0) cover a wider range of values than the 

simulations of the I-S budget components. Contrary to the worst case scenario 

results, this suggests that the I-S components are more reliable. However for both the 

I-S and O component, 68 % of the realizations ( comparable with one standard 

deviation) lie within a range of +80% of the best estimate. Also, the curves should be 

interpreted with caution. There are several reasons to believe that the cumulative 

distribution curves are not representative for the uncertainty in the sediment budget, 

for several reasons. 

Firstly, it is likely that the tails of the I-S distribution are not as strongly 

represented as those of the catchment output curve. The empirical distribution 

functions that were used for the I-S curve exclude the simulation of values outside 

the range available data, which reduces the tails. 

Secondly, the method used to estimate the uncertainty in the catchment output (0) 

is only valid for small uncertainties (Taylor, 1982). The uncertainties in the outlet 

data are likely to be too large for the method to be appropriate. It also is the worst 

case scenario, because no other method was found that could deal with it otherwise. 

The distribution for catchment output is therefore likely to be relatively wide. 
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Figure 11.7: Worst case uncertainty estimates for the 99-00 sediment budget. 'Total range' (dark bars) 

shows the effect of assuming minimum and maximum values for all uncertainties. Light bars show 

separate effect on total sediment load of uncertainty in surface level change (SLC), surface area, 

measurement error, particle size and bulk density. 

Finally, Hession et al. (1 996) describe a Monte Carlo uncertainty analysis for an 

application of the Universal Soil Loss Equation. They show how discretization of the 

modelled area causes a reduction in the variance of the simulated erosion rates, if 

independence of the sub-areas is assumed. The variance of the simulation results 

when the model is applied to a whole field, is higher than the total variance of 

separate simulations for parts of the field. The authors show that this is a 

mathematical artefact. 
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The I - S value for the budget area is also composed of separate sub-areas; it is 

the sum of the values for individual landscape elements. Simulation of this addition 

might therefore reduce the total uncertainty in the results for the same reason as 

described by Hession et al. (1996). 

-Cumulati\€ frequency ,~ _____ _,___, 
distribution (I - S) 

- Cumulati\€ frequency 
distribution (0) 

® Best estimate I - S 

® Best estimate 0 

0 

0 

0 

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 

Sediment load (t/y) 

Figure 11.8: Cumulative frequency distribution curves obtained from 1000 simulations of the 

sediment budget components I-S (dark) and O (light). Best estimate values for each component are 

indicated with dots. 

11.6.3 Error correlation 

Correlation between variables in the budget calculation should be included in the 

Monte Carlo simulation, because it can have an effect on the total variation in the 

budget output. Several of the variables used in the composition of the budget 

calculation are correlated. The surface area of each landscape element is an example 

of this. If the area of one landscape element increases, another area has to decrease. 

The total surface area always has to add up to 100%. Other correlations are less well 

known, but likely to exist. Field observations, for example, showed that headland 

surf ace level change was influenced by runoff from the field, and that field runoff 

was on the other hand related to drain discharge. 

Because of the complex interactions between budget variables, a sufficient study 

of correlations is beyond the scope of this thesis and not included in the simulation of 

the budget results. Disregarding correlation is, however, likely to be a cause of the 

relatively small range of uncertainty resulting from the Monte Carlo simulation of 
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the I - S budget component. Hession et al. (1996) show how the reduction of 

variance as a result of discretization of the modelled surface area becomes smaller 

with increasing correlation across sub-areas. The same is likely to occur when 

correlation between budget variables in the various landscape elements is taken into 

account. 

11.7 Conclusion 

All methods presented to quantify the uncertainty in both sides of the sediment 

budget equation for low-lying sugarcane land indicate that there is a range of at least 

80% uncertainty around the best estimates. This means that the budget difference lies 

within the error ranges of the estimates for both sides of the equation, and could 

therefore be the result of an error in the estimates of each of the components. 

Because of the large error ranges, it is not possible to say whether the budget 

equation was complete and whether all potential sources and sinks in the budget area 

were included. However, field observations show that all components have been 

included. 

Two different ways to determine the uncertainty in the I-S component of the 

budget resulted in rather different uncertainty ranges. A large uncertainty, as shown 

by the 'worst case' estimate, was expected because of the plot scale methods that 

were used to quantify this budget component. Applying the Monte Carlo method 

resulted in a remarkably smaller uncertainty range. It is however likely that it is not 

wholly appropriate to use this method in the present situation. There are several 

unresolved problems, such as correlation in the data and the significance of reduced 

variation as a result of area discretization. 

When a similar uncertainty analysis is performed with the 00-01 budget data, 

uncertainty ranges will become wider. Most of the budget input will be based on less 

data and less reliable data. Only the input from plant cane fields has been quantified 

more accurately during this season, but this will not significantly reduce the total 

uncertainty. 
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PART III 

FLOODPLAIN EROSION AND THE CASE OF 

THE LOWER HERBERT RIVER 

OUTLINE 

An important result of Part II of this thesis is the observation that the Ripple Comer 
Catchment is a net source of sediment. This observation confirmed the idea, 
presented in Chapter 1, that sugarcane land can be a source of the sediment in North 
Queensland rivers that drain into the Great Barrier Reef. From the sediment budget 
study for the Ripple Comer Catchment it is now known how much sediment comes 
from sugarcane land. It is however not known how representative the findings are for 
all areas of low-lying cane land. 

The observation of a floodplain as a sediment source contradicts the general 
understanding that floodplains are areas of sediment storage within river catchments 
(Schumm, 1977; Alexander and Marriott, 1999). Erosion on floodplains is usually 
insignificant compared to sediment deposition, which makes them sediment sinks. 
This raises the questions why the study area acts as a net sediment source and if the 
sediment budget observation is representative for processes in larger parts of the 
Herbert River Catchment. 

In the following Chapter (Chapter 12) literature on the geomorphology and 
hydrology of river floodplains is reviewed. The review focuses particularly on 
processes of floodplain erosion. With this insight into floodplain erosion processes 
and additional material from local reports, the possibility of erosion of the Herbert 
River floodplain in the Ripple Creek Catchment is considered in the light of human 
modifications to the floodplain surface characteristics and hydrology. This leads to 
the development of a number of qualitative scenarios that describe how different 
(flood) flow conditions in the Herbert River Catchment can result in local 
degradation of the floodplain surface (Chapter 13). It will also provide an indication 
of the representativeness of the observed degradation rates for the whole floodplain 
of this tropical catchment. 
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Chapter 12 

Floodplain processes 

12.1 Floodplain definition 

There is no exact definition of a floodplain. The main reason for this is that there are 

various ways in which the boundaries of a floodplain can be defined. Differences 

surround the inclusion of river channels and tidal areas, and the minimum frequency 

of inundation, so that the landform can still be called a floodplain. In their 

description of floodplains, Alexander and Marriott (1999) cite a number of studies 

that apply various definitions. Most of these include the following general 

characteristics: 

Floodplains are rather flat landscape elements adjacent to a river. 

Floodplains are built up from unconsolidated alluvial material deposited by the 

nver. 

Floodplains serve as a store for water and sediment when the regular river 

channel can not handle the supply from upstream and overtops its banks. 

Alexander and Marriott (1999) use these general characteristics, limited to those 

areas periodically inundated at least every 100-200 years, to define active floodplain 

systems. Their definition does not only include yearly-inundated wetlands close to 

the river channel, but also areas which are defined on the basis of flood risk and 

therefore can not always be clearly delineated. The definition used by Alexander and 

Marriott (1999) will apply to the floodplains discussed in this review. Also, using 

this definition, most of the alluvial plain in the Lower Herbert River Catchment is a 

floodplain. 
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12.2 Floodplain formation 

12.2.1 Formation processes 

Nanson and Young (1981) studied the floodplains of small coastal streams in the 

Illawarra region in New South Wales, Australia. At tlieir downstream ends these 

rivers have formed floodplains as gently sloping coastal plains. The floodplains are 

built entirely by deposition of layers fine sediment, derived from overbank flow 

during flood events. The river channels maintain a stable position within this 

cohesive sediment. By contrast, the floodplain of the Watts Branch in Maryland, 

USA, studied by Wolman and Leopold (1957) shows a different type of formation. 

This lowland floodplain was built by the continuous lateral movement of a 

meandering river, through deposition of point-bars at convex meander banks and 

consumption of earlier deposits by erosion of the concave banks. 

The different appearance and sedimentary composition of these two examples of 

floodplains are typical results of two different dominant floodplain formation 

processes: formation through vertical accretion by overbank deposition in the 

Australian case, and formation through point-bar accretion and lateral movement of 

the river channel in the USA case. Many floodplains are formed by a combination of 

these two processes. The existence of both processes has long been identified, but 

lateral migration was often seen as most important for the building of floodplains 

(Wolman and Leopold, 1957). Only recently, more situations have been studied in 

which vertical accretion appears to be the major floodplain building process (Nanson 

and Young, 1981; Nanson, 1986; Lambert and Walling, 1987; Gomez et al., 1998). 

Researchers have become aware that each floodplain type is the result of a different 

combination of factors such as stream power, transport capacity, sediment texture 

and channel resistance. Nanson and Croke (1992) distinguished a wide range of types 

and classified them based on the energy environments in which they were formed. 

They proposed a primary classification by three classes of specific stream power: 

high (>300 wm-2
), medium (10-300 wm-2

) and low (<10 wm-2
). The three classes 

can occur within reaches of a single river, from an upstream high-energy 

environment in a steep bedrock channel to a downstream low-energy environment on 

a low-gradient coastal plain. Different environmental conditions will cause 
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differences in energy levels between streams. Likewise a change in environmental 

conditions can change energy levels and thus the types of floodplain formation 

within a stream. 

A decrease in specific stream power in the classification of Nanson and Croke 

(1992) implies a decrease in particle size of the transported sediment, which 

determines the composition of the floodplain. The floodplain composition will in 

tum determine the extent of lateral movement of the river through resistance of the 

stream banks. The Illawarra rivers in the introductory example are, due to their low 

stream power, only able to transport fine material. This has resulted in cohesive 

floodplains. Because of the cohesiveness and the low stream power the river is not 

able to move laterally. The higher stream power of the Watts Branch allows transport 

of coarser sediment and has resulted in a less cohesive composition of the floodplain. 

In this environment the river does move laterally. 

12.2.2 Floodplain accretion rates 

Through trapping and accretion of sediment during their formation, floodplains 

become zones of sediment storage in a river system (Schumm, 1977). In this process 

a large part of the sediment generated upstream is captured, before it can reach the 

catchment outlet. The capacity of a floodplain to serve as a sediment store can 

become especially clear when the sediment load in a catchment suddenly increases, 

for example due to severe erosion of upland hillslopes after logging of the forest 

cover. In the Coon Creek catchment in Maryland (USA), Trimble (1981, 1999) 

documented an increased sediment load from hillslope soil erosion. The increased 

load did not reach the catchment outlet. Instead accelerated floodplain accretion was 

observed, indicating that most sediment was trapped before reaching the outlet. 

Many estimates have been made of the efficiency of floodplains to trap sediment 

generated elsewhere in a catchment. These estimates vary widely, but usually 

comprise a considerable part of the total sediment load. For the River Waal in The 

Netherlands, Middelkoop and Asselman (1998) calculated floodplain deposition as 

19% of the total suspended load for one year. Lambert and Walling (1987) estimated 

that 28% of the sediment load from the River Culm in Devon (UK), remained in 

floodplain deposits. For the Ganges-Brahmaputra catchment, Allison et al. (1998) 

estimated that up to 71 % of the sediment load is stored on the floodplains. A low 

value has been estimated for the Waipaoa River floodplain in New Zealand. Gomez 
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et al. (1999) observed that most of the sediment load for this river is transported 

during flow below bank:fuU stage. The amount of material deposited on the 

floodplain during overbank flows is only 5 % of the total load. 

The thickness of deposition on the floodplain surface depends on several factors 

such as the sediment concentration of the floodwater, the-width of the floodplain and 

the frequency and duration of flood events (Dietrich et al., 1999; Gomez et al., 

1999). Mertes, (1994) gives values for central Amazonian rivers in the order of 

centimetres per day, which equals annual amounts of metres. Gomez et al. (1999) 

estimate average vertical accretion of 4-6 cm per year for the Waipaoa River. In 

contrast Lambert and Walling (1987) measured yearly thicknesses of less than a 

millimetre for a British lowland river. 

12.3 Floodplain development 

12.3.1 Development processes 

When some tectonic, climatic, or human (e.g. massive re-vegetation) change alters 

the (flow or sediment) regimen of a river, a floodplain surface can be transformed 

into a terrace by entrenching itself below its established bed and associated 

floodplain (Wolman and Leopold, 1957). Without interruption by such major 

environmental change, a river channel could gradually become deeper as the 

alluvium it deposits gets thicker during repeated overbank flows. In the case of 

laterally migrating rivers this does not occur, because, in a time period that can range 

from a few hundreds to more than a thousand years (Leopold et al., 1964; Walling et 

al., 1996), the moving river channel will remobilize earlier floodplain deposits. This 

way the floodplain system remains in equilibrium with its channel (Leopold et al., 

1964). 

Floodplains that are predominantly formed by vertical accretion can respond to 

continued sediment supply in different ways. Gomez et al. (1999) suggest two types 

of development for rivers that build floodplains by vertical accretion. For the 

Waipaoa River in New Zealand they demonstrate how the progressive accretion of 

the floodplain surface is complemented by channel aggradation. The channel 

capacity of this river remained constant, while the bankfull channel width was 

reduced and the depth increased (Gomez et al., 1998). Alternatively the authors 

213 



Floodplain processes 

suggest that increasing bank height could increase the channel capacity of a river. 

This will reduce the flood frequency and thus lead to reduction of the floodplain 

accretion rate. For both types of development, however, sediment deposition on the 

floodplain continues, which means that the system establishes a quasi-equilibrium. 

Leopold et al. (1964) suggest a third option, which is vertical floodplain 

degradation, as opposed to vertical floodplain aggradation. He argues that this could 

occur due to irregular distribution of floodwater flow over the floodplain surface. 

The turbulent water flow could erode the surface by scouring. 

12.3.2 Floodplain degradation 

Degradation of floodplains by lateral migrating channels is seen as most important 

(Dunne et al., 1998) and is usually studied in combination with lateral accretion 

processes. Studies of vertical floodplain degradation are less common and very few 

estimates are made of the net effect of degradation and accumulation. 

For a floodplain in a high-energy stream environment, Nanson (1986) describes a 

case of catastrophic vertical floodplain degradation. He found that clusters of major 

floods caused erosion of enormous volumes of floodplain alluvium along the 

Manning River in Australia. The laterally stable channel of this river continuously 

builds its floodplain by vertical accretion. This increases the channel capacity and 

reduces the frequency of overbank flow. High magnitude flow events subsequently 

cause catastrophic erosion of the steep gradient floodplains. Variation in the growth 

rate of the floodplain and the intensity of floods along the river reach cause different 

flood events to affect different parts of the floodplain. 

Ferguson and Brierley (1999) describe similar stripping of the floodplain surface 

for the lower Tuross River in New South Wales. They noticed that this type of 

floodplain erosion occurred especially in the sandier floodplain surfaces that are 

affected by floods of relatively high streampower (+300 Wm-2
). The same factors 

appeared to be important reasons for the occurrence of severe floodplain destruction 

by channel widening along a semiarid river in Kansas (Schumm and Lichty, 1963). 

Systematic vertical floodplain degradation in the medium and low energy 

environments of the classification by Nanson and Croke (1992), with cohesive 

floodplain surfaces and lower stream power, has not been described in the 
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geomorphological literature. The only form of vertical floodplain degradation, 

documented for this type of floodplain, is scouring as suggested by Leopold et al. 

(1964). Examples of floodplain scouring are mostly the result of high magnitude 

flood events, and the extent of destruction is often restricted. Kochel (1988) and 

Miller (1990) list a number of authors that describe floodplain erosion as a result of 

high-magnitude events. 

The factors that affect the extent of floodplain destruction through scouring by 

major floods are not well understood. In some cases the resistance of the floodplain 

surface is considered as the reason for the insignificant impact. Gomez et al. (1995) 

observe that certain parts of the Upper Mississippi River valley did not show 

considerable floodplain erosion after a rare high magnitude event, while other areas 

were severely affected. They argue that the locally higher resistance of the floodplain 

material is an important factor, which should be taken into account when evaluating 

the sensitivity of floodplains to rare high-magnitude events. Schumm and Lichty 

(1963) provide a similar example where dense cohesive alluvium may have offered 

considerable resistance to floodplain destruction. 

Vegetation cover can also provide resistance to a floodplain surface. In various 

studies vegetation is mentioned as a factor that influences the selective preservation 

of floodplain deposits. Gupta and Fox (1974) describe the erosive effects of four 

catastrophic floods on the floodplains of the temperate Patuxent River in Maryland, 

USA. They observed that the only significant scouring on the silty clay floodplain 

particularly occurred in areas with sparse vegetation. Similar effects were mentioned 

by Baker (1988), Prosser et al. (1994) and Ferguson and Brierley (1999). 

Apart from surface resistance, other factors might be of equal importance. Miller 

(1990), for example, shows how erosion features are not the simple result of the unit 

stream power in a river, and how they are associated with specific configuration of 

channel and valley form, and flow patterns. 

12.4 The role of various floodwater sources 

Nanson and Croke (1992) show how the sediment size of material transported by a 

river determined the composition and consequently also the type of floodplain. They 

assume that floodwater on the floodplain is the water that is derived from the main 

river channel by overbank flow, as do most of the floodplain studies cited in the 

previous sections. However, across a floodplain surface, different types of floodwater 
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can occur. The composition and distribution of the types may be factors that 

influence the geomorphic development of a floodplain. Variations in floodwater have 

received attention only recently, especially because of their influence on the ecology 

of floodplain environments (Amoros and Bomette, 2002; Mertes, 2002). Less is 

known about their geomorphic importance. 

12.4.1 Sources of floodwater 

Mertes (1997) shows, for a number of large river systems across the world, that 

floodplain inundation can be composed of water from different input sources. Apart 

from overbank flow from the main channel he distinguishes floodwater from: 

Catchment scale tributaries 

Local tributaries at the scale of the floodplain 

Groundwater 

Direct precipitation 

Slopes draining directly onto the floodplain 

Before water from the main channel overflows onto the floodplain, these other 

sources could have already inundated parts or even most of the floodplain surface. 

This can result in mixing of the river water with the already present local floodwater. 

The extent of the mixing depends strongly on the morphology of the floodplain 

surface. Mertes et al. (1995) demonstrate this in a study of three reaches of the 

Amazon River. When floodwater from the river enters the floodplain as diffuse 

overbank flow it readily mixes with the already present locally derived floodwater. 

Entrance of the river water onto the floodplain via tributary channels on the other 

hand reduces the opportunities for mixing with local floodwater. In some cases the 

local water can completely prevent overbank water from entering the floodplain , and 

the local water might even enter the river channel (Dietrich et al. , 1999). Mertes 

(1997) calls the mixing zone of river and local floodwater the "perirheic zone" 

meaning the zone surrounding ("peri") the flowing river water ("rheo"). 

The distribution and temporal variation of rainfall in a catchment will have great 

influence on the hydrologic variability of the perirheic zone (Mertes, 1997; 

Alexander et al. , 1999; Dietrich et al. , 1999; Stewart et al. , 1999). These factors 
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control the amount of water that is available from different sources, and the relative 

arrival time of each on the floodplain surface. 

12.4.2 Floodwater sources and floodplain formation 

The various types of floodwater that can inundate a floodplain will have different 

sediment and nutrient compositions, depending on their origin. Using remotely 

sensed optical infrared-images, Mertes (1994, 1997) showed differences in sediment 

concentration of floodwater on floodplains. Mertes (1997) suggested that the 

differences in the sediment composition of floodwater and its distribution across the 

floodplain could affect the floodplain geomorphology. The following observations 

by Dietrich et al. (1999) and Alexander et al. (1999) confirm her suggestion. 

Through qualitative analysis of remote sensing data for the Fly River in Papua 

New Guinea, Dietrich et al. (1999) distinguished three types of processes that deliver 

sediment to the floodplain: advection through overbank flow; diffusive transport due 

to a sediment concentration gradient between the river source and floodplain sink; 

and transport upstream in tie channels and tributaries. For only for one month of the 

year water from the main river rather than local runoff seemed to contribute 

significantly to the storage of water on the floodplain. Dietrich et al. (1999) assume 

that this causes the low overbank deposition rates estimated for the floodplain. 

Continuously high water levels on the floodplain prevent the development of 

pressure gradients from the main channel to the floodplain and therefore inhibit 

sediment deposition. 

For much drier conditions 1n the semi-arid to sub-humid tropical Burdekin 

catchment in Australia, Alexander et al. (1999) document the inundation of channel 

margins and floodplains solely as a result of intense local rainfall. The authors 

suggest that some of the finer deposits on the floodplain might come from local 

runoff as a result of the intense rainfall. However, such finer sediments are not 

common. The short duration of the flood waves in the Burdekin River and the high 

flow velocities of the floodwater, supply coarse (up to gravel size) overbank 

deposits. The floods that transport this coarse sediment might erode some of the fine 

sediments of local origin. 
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12.4.3 Floodwater composition and floodplain degradation 

For the Fly River Dietrich et al. (1999) suggested that restricted mixing of sediment 

rich and sediment-deficient floodwater was reflected in the low rates of floodplain 

accretion. Leopold et al. (1964) identified erosive sediment-deficient floodwater as 

one of the mechanisms that can counteract the depositional tendency of floodplains. 

A few floodplain studies show how low sediment concentrations in the floodwater 

can even have an erosive effect: Graf et al. (1991) and Burkham (1981, in Graf et al., 

1991) noticed the increased ability of sediment-deficient floodwater to erode the 

channel banks. Baker (1988) mentions how this water can also be erosive when it 

moves onto a floodplain surface. 

Two additional noteworthy examples of sediment-deficient floodwater types 

counteracting floodplain accretion are given by Mertes (1997) and Bomette et al. 

(1994). Mertes (1997) points out how scouring during extreme floods may never be 

repaired in areas on the floodplain side of the perirheic zone, due to a lack of 

sediment. Bomette et al. ( 1994) showed how water supplied by groundwater seepage 

in a floodplain can remove fine sediment and might reduce the overall tendency 

towards infilling of certain floodplain areas. 

12.5 Summary and implications 

Laterally migrating river systems continuously rework their floodplains. The erosion 

is however offset by simultaneous deposition, and the net change in floodplain 

volume and height is small. Other rivers form their floodplains mainly through 

vertical aggradation. If continuing deposition makes a system unstable, erosion 

follows on these floodplains. In high-energy environments, this has been shown to 

happen by several authors. For low-energy environments the development of such 

floodplains is however not well known. Only localized degradation by severe floods 

is reported. 

The extent of floodplain degradation appears to depend on different factors such 

as the stream power of the floodwater and the resistance of the floodplain surface 

both through its sedimentary composition and the vegetation cover. 

A factor that is rarely considered in floodplain formation studies is the source of 

the floodwater, and, related to this, the variation in distribution of water with 

different sediment composition across the floodplain. This has an effect on 
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floodplain accretion, and it might even directly affect degradation The examples are 

most striking for tropical situations, where local runoff is significant as a result of 

high intensity rainfall. 

For all cases in which deposition is followed by erosion,-floodplains only provide a 

temporary store for sediments. The storage time depends on the rate of floodplain 

development. 

Remobilization of floodplain sediment can in certain situations cause 

environmental problems. Marron (1992) gives a clear example of this from the Belle 

Fourche River in South Dakota, USA. Goldmining introduced 100 million tonnes of 

arsenic contaminated sediment into this river system. Marron found more than one 

third of these mine tailings in floodplain deposits along the river. Although the 

mining ceased in 1978 contaminants are still being released into the environment 

through the migration of the river channel, and this is expected to continue for many 

more centuries. These problems have also been pointed out by Walling et al. (1996), 

Knighton (1998), and Owens (2001). The processes of floodplain development and 

especially the role of floodplain degradation deserve more attention for this reason 

alone. 
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Chapter 13 

Scenarios of erosion and deposition on a floodplain 

in the Lower Herbert River Catchment 

13.1 The case of the Lower Herbert: a cultivated floodplain 

The Lower Herbert River has a mixed channel pattern: from low sinuosity to 

meandering with evidence of avulsion. As a result of the lateral movement of the 

channel, the riverbanks are locally eroding. There is no evidence that the meander 

bends are widening, or that the channel is doing so. Sediment export from bank 

erosion is offset by sediment deposition on other banks. Certain human activities 

might have increased the erosion rate, for example, by reduction of npanan 

vegetation or boating on the river (Herbert River Improvement Trust, 1993). 

The sediment input into the Herbert River that is specifically derived from the 

areas of sugarcane cultivation is however generated on the floodplain surface. Under 

the conditions studied in thesis, parts of the cultivated floodplain are a net source of 

sediment. This type of erosion is not related to meandering processes and could 

the ref ore be described as a form of vertical erosion, distinct from lateral erosion of 

the floodplain. 

From the review of floodplain processes in Chapter 12 it became clear that there is 

little known about the processes and magnitude of vertical floodplain erosion. Also, 

the effect of cultivation on the geomorphic development of floodplains is hardly ever 

discussed in the literature, so processes in the Herbert River can not be compared 

with similar cases. There are however a number of reasons to believe that human 

activity on the floodplain has modified the processes of floodplain erosion and 

deposition in the Lower Herbert River Catchment and specifically Ripple Creek. 
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13.2 Floodplain modification for land use 

Since European settlement in the Herbert River Catchment, the floodplain has been 

altered in several ways. Gutterige, Haskins and Davey (1976, in Cameron 

McNamara, 1980) describe some of the alterations in a drainage study for the North 

Queensland sugar industry: 

Development of farming activities has altered the general environment, increasing the rate of 

runoff and encouraging erosion and siltation. Much of the original natural drainage network and 

channels have been altered as the areas have been progressively developed for cane fields. 

Drainage lines have been levelled to provide farm lands, and small creeks have been filled in and 

diverted without adequate thought having been given to the consequences, or action having been 

taken to provide alternative watercourses. 

More recently drainage has been improved through further development of the 

drainage network (Cameron McNamara, 1980): 

Improved drainage also results in less infiltration of water and flow volumes are greater than they 

were prior to development. 

Before cultivation of the floodplain started, Herbert River water would flow 

'upstream' into Ripple Creek during minor floods. Cameron McNamara (1984) 

described this as follows: 

... The outflow capacity of Ripple Creek is also affected by the water level of the Herbert River 

adjacent to the mouth of Ripple Creek ... as Herbert River rises, the backwater effect up Ripple 

Creek firstly reduces outflow and ultimately reverses the flow. Ripple Creek has greater capacity 

in reverse flow than it does in its natural flow direction ... 

In the case of extreme floods, when the Herbert River level rises above the height of 

the levee banks, reverse flow through the Ripple Creek outlet is not large enough to 

divert all excess river water. Instead the river overtops its banks. 

To improve drainage and prevent Herbert River water from entering the 

floodplain, floodgates have been installed at the outlet of Ripple Creek. The 

floodgates hold back Herbert River floods with a recurrence interval of up to three 

years. The heavy tropical rainfall and large amounts of runoff from local uplands, 

however, still causes a large amount of water directly onto the Ripple Creek 

floodplain. This water now gets ponded against the floodgates and causes inundation 

during minor floods. During major floods the Herbert River still overtops it banks 

and floodwater enters the floodplain. 
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13.3 Potential impact 

The modifications of the surface characteristics and the flooding patterns of the 

Herbert River will affect the geomorphic development of the floodplain. In the light 

of the review in Chapter 12, in which floodplain degradation processes and the 

factors that appear to influence them were discussed, the modifications could have 

the fallowing effects: 

Erosion resistance 

Several studies have shown how a vegetation cover can protect a floodplain surface 

against scouring (Gupta and Fox, 1974; Baker, 1988; Prosser et al. , 1994; Ferguson 

and Brierley, 1999). Cultivation of the Herbert River floodplain has generally 

lowered the erosion resistance of the floodplain, and has made the surface more 

prone to erosion and scouring by flowing water from any source. 

Drainage efficiency 

Artificial drainage systems and surface levelling have increased drainage volumes 

and flow velocities. This has increased the possibility of erosion and scouring of both 

the drainage system and the floodplain surface, and it has increased the possibilities 

of sediment export from the floodplain , while the likelihood of settling of mobilized 

sediment through ponding has decreased. 

Flood regulation 

Installation of floodgates in the Ripple Creek Catchment prevents entry of Herbert 

River water onto the floodplain during minor flood events. Under these conditions 

inundation of parts of the floodplain occurs, but the floodwater consists only of local 

runoff. This indicates that there are distinct types of floodwater similar to those 

observed by Mertes (1997) and Dietrich et al. (1999). Differences in the composition 

of the floodwater types could affect floodplain development in different ways, as was 

shown in Section 12.4. 

13.4 Scenarios of flooding, erosion and deposition in the Ripple 

Creek Catchment 

In the Ripple Creek Catchment, reduced resistance of the floodplain surface as a 

result of cultivation and the altered drainage and flooding patterns have a combined 
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effect on floodplain erosion and deposition rates. Observations made during the 

sediment budget study in part ,II of this thesis combined with information from local 

sources described in Section 13.2, have led to a set of four qualitative scenarios for 

erosion and deposition in the Ripple Creek Catchment under different flow 

conditions. Each scenario is described below and all scenarios are illustrated 

schematically in Figure 13.1. 

Scenario 1: local inundation 

At the onset of a tropical rainstorm, local runoff from the steep forested hillslopes (E) 

and high intensity rainfall directly onto the floodplain is directed through the 

artificial drainage system (D) via Ripple Creek (E) into the Herbert River (A). High 

intensity rainfall on the floodplain surface generates considerable runoff, which 

causes sheet erosion on bare fields and scouring in water furrows and drains (C+D). 

The eroded material is removed from the floodplain into the Herbert River, via 

Ripple Creek. This situation continues until the floodgates close with rising water 

levels in the Herbert River, and it recommences when the gates reopen as the Herbert 

River falls below the Ripple Creek outflow level. 

Scenario 2: reverse flow from the Herbert River 

Before installation of floodgates at the Ripple Creek outlet, Scenario 1 would 

continue until the water level of the Herbert River rose above the outflow from the 

Ripple Creek; usually as a result of high rainfall input from elsewhere in the Herbert 

River Catchment. This would cause reverse flow of Herbert River water via the 

outlet of Ripple Creek as described by Cameron McNamara (1984). In this situation, 

Herbert River water mixes with locally derived floodwater. The drainage system can 

not contain the large volumes of flow, and excess water spreads onto the floodplain. 

When the Herbert floodwater spreads out, its flow velocity is reduced and the 

sediment it contains can settle. Local floodwater will be blocked by the inflow from 

Herbert River water and will also deposit part of the sediment it contains. 

Scenario 3: blocking of floodwater by floodgates 

The installation of floodgates caused a modification of Scenario 2. When the 

floodgates are closed, Herbert River water can not enter the floodplain via the Ripple 

Creek outlet. At the same time export of local runoff into the Herbert is impeded and 
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water ponds behind the floodgates. Ponding reduces both flow velocities in the drains 

and, at high water levels, runoff from the fields. The erosive power of runoff is 

reduced and locally eroded sediment is redeposited. This situation was observed 

several times during the sediment budget study. With lowering of the Herbert River 

levels and reopening of the floodgates, scenario 1 recommences until the floodplain 

is completely drained. 

Scenario 4: the Herbert River overtops its banks 

Under extreme flood conditions in the Herbert River the river water level rises above 

the levee banks and spills onto the floodplain. Cameron McNamara (1984) reports 

cases of severe scouring near levee banks due to spillage. The power and quantity of 

the floodwater might also cause major scouring in the artificial drainage system and 

on unprotected surfaces of the floodplain (particularly at falling stage of the flood). 

The flow velocities are however low compared to the river water and sediment 

derived from upstream in the Herbert River Catchment settles out. Any effect of 

locally derived floodwater is thought to be insignificant under these conditions, 

because the volume of local floodwater will be much smaller. 

Observed flow conditions 

Only the flow conditions of Scenario 1 and 3 were observed during the sediment 

budget study. Scenario 1 occurs frequently as a result of the regular heavy rainfall. 

Scenario 3 occurs several times each wet season, with persistent heavy rainfall, when 

minor flooding occurs. Scenario 2 no longer occurs since installation of the 

floodgates, but is included to illustrate change. Scenario 4 was not observed. This 

condition is less common, occurring during major flood events, for example during 

the 1977 flood, the extent of which is shown in Figure 2.4. The flow condition of 

Scenario 4 has a return period of less than 25 years, but probably greater than 3 

years, which is the flood size for which the floodgates have been designed. 
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Figure 13.1: Scenarios of eros10n and deposition processes under four different (flood) flow 

conditions on the Ripple Creek floodplain. 
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13.5 Additional observations 

During the various field visits in the wet season, distinct differences were observed 

in the turbidity of the drain water. At times of peak flow the water appeared 

generally less turbid than during lower flow conditions. At various locations in the 

catchment water samples were taken. The suspended solid concentrations of samples 

from four locations are shown in Figure 13.2 and the data are presented in Table 

13.1. Sample location DG3 and DG6 were in minor drains, location DG 17 was in a 

major drain, and DG21 was in Ripple Drain at the outlet of the Ripple Comer 

Catchment (see map in Appendix A). 
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Figure 13.2: SSC (mg r1
) in water samples from four locations in the Ripple Comer Catchment (99-

00 season). Dark bars indicate peak flow (backwater) conditions; Bright bars indicate free flow 

conditions. 

Table 13.1: SSC (mg r1
) in water samples from four locations in the Ripple Comer Catchment and 

Ripple Drain, and discharge at time of sampling. 

SSC DG3 SSCDG6 SSC DG17 SSC DG21 Ripple Drain 
Minor Minor Major Ripple discharge at 
drain drain drain Drain time of 
(mg r1

) (mg r1
) (mg r1

) (mg r1
) sampling 

(m3 s-1) 

7/02/00 81 • 109 j 138 I 99 I 7.5 
···················· 

10/02/00 903 • 145 318 143 I 0.5 _____ _. ____________ --· 
,-------

16/02/00 677 230 • 688 210 1 0.7 
··-···························-·······-··········--···· 

18/02/00 938 188 430 166 0.7 
---------.. ----~----·-····-·····-··---·· -------·-· ... ----------------------· ., .. ,, -----·-- ,,_,, 

25/02/00 102 114 143 104 6.2 
--------------------- ------ - . ---------- ······--····-··-··- ------ ... -- -- ------------------ -~- ·-· 

17/03/00 106 102 114 96 7.0 
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On February 7, 25, and March 17 samples were taken under peak flow conditions 

when backwater occurred in the drains, as described by Scenario 3. Discharge in 

Ripple Drain at the moment of sampling was high (see Table 13.1). Sediment 

concentrations in all drains were relatively low. Figure 13.3 shows a fragment of the 

Ripple drain depth, velocity and SSC curves, in which the sampling time of the 

February 7 and February 10 samples is indicated. The curves show how under peak 

flow conditions, flow velocity in Ripple Drain stops increasing due to backwater 

effects at the outlet of Ripple Drain. 

On February 10, 16 and 18, samples were taken under lower flow conditions (see 

February 10 example in Figure 13.3), when the tributary drains could freely 

discharge into Ripple Drain. In some tributary drains, sediment concentrations under 

these conditions are up to ten times higher than under backwater conditions. The 

high sediment input into Ripple Drain is however not strongly reflected in the Ripple 

Drain sediment concentrations. They are only up to two times higher than under the 

high flow conditions, while discharge is many times lower. 
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Figure 13.3: Water depth (m), flow velocity (m s-1
) and SSC (mg r1

) for a peak flow event in the 

Ripple Drain. Backwater effects cause reduction in flow velocity at greatest water depths. Dashed 

lines indicate times when water samples were taken (7 and 10 February 2000). 

At the time the water samples were taken, water depth and flow velocity were also 

recorded. From these data, water and sediment discharge for the sampling points at 
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the time of sampling have been estimated. The water and sediment discharges of four 

sample locations are presented in Figure 13.4. The bright bars represent samples 

taken under peak flow (backwater) conditions; dark bars show samples under low 

flow conditions. Despite backwater in the drains, discharges are relatively high in 

most drains under peak flow conditions, compared to low flow conditions. Only 

outflow from major drain DG 17 is considerably reduced. Sediment discharges 

however show less difference between peak flow events and lower flow conditions, 

due to the much higher sediment concentrations. The sediment discharge in the major 

drain at location DG 17 is even higher under the lower flow conditions. 

Although sediment input from tributary drains can be considerable under the 

lower flow conditions , the output through Ripple Drain (DG21) remains much lower 

than under peak flow conditions. 
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Figure 13.4: Water and sediment discharge estimates for 6 sample dates on four locations in the 

Ripple Comer Catchment. Dark bars indicate peak flow (backwater) conditions; Bright bars indicate 

free flow conditions. 

The flow event shown in Figure 13.3 has a clockwise sediment concentration 

hysteresis curve. This type of curve indicates depletion of available sediment before 

discharge has peaked. This can be due to a small sediment supply or a long-lasting 

and/or intense flood (Williams, 1989). In the case of the Ripple Creek Catchment 

there are (at least) two other factors that cause the clockwise sediment hysteresis. 

Firstly the high intensity tropical rainfall will detach a lot of soil material and will 

thus provide a large amount of sediment at the start of a rainstorm. Secondly the 

quick rise in water level under the peak flow conditions will cause backwater effects 

in the tributary drains, which is likely to reduce their flow velocity and thus their 

sediment transport capacity and sediment supply to Ripple Drain. 
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Figure 13.5: Clockwise hysteresis in the discharge - SSC relationship for the peak flow event 

between February 4 and 12. Three minor flow events after the main event are also included. 
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13.6 Discussion: representativeness of the sediment budget results 

The observations during rainfall events in the Ripple Creek Catchment, presented in 

the previous section, indicate that sediment discharge in the Ripple Drain is highest 

under Scenario 3 (Figure 13.1), despite backwater effect in the drainage system. The 
-

observations of relatively high sediment concentrations under unimpeded flow 

conditions (Scenario 1) and the strong hysteresis effect in the discharge - SSC 

relationship of Ripple Drain, suggests that backwater effects to a certain extent 

reduces the sediment export from the catchment. 

The high sediment concentrations in the drains during the 'free flow' events might 

not be very important compared to sediment export during the peak flow events. 

However, sediment export during 'free flow' is likely to be a result of decreased 

resistance and increased erodibility of the floodplain surface. The sediment budget 

results show the importance of the unprotected plant cane field surface as sediment 

source. Furthermore the mobilized sediment has an increased opportunity to leave 

the catchment, because of the efficient system of water furrows and drains. 

No research on erosion and deposition rates in the catchment was done before the 

floodgates were installed. The extent of floodwater that may have been introduced by 

reverse flow from the Herbert River, as described by Scenario 2, is not known. 

Neither is the amount of sediment that might have been left on the floodplain by this 

water. 

Sediment deposition on the floodplain surface as a result of large floods, when the 

Herbert overtops its banks, has not been quantified. However sediment supply from 

upstream parts of the Herbert River Catchment is thought to be high, so deposition 

under overbank conditions is expected to be important. The artificial drainage system 

will have an effect on the time of floodwater storage on the floodplain and therefore 

the amount of deposition. Large amounts of Herbert River floodwater can, on the 

other hand, also cause severe scouring. Rates of scouring might have been increased 

due to lower surface resistance of the floodplain as a result of cultivation. 

The relative importance of each type of event can only be determined when more 

information is available about the effect of the large floods. The sediment budget 

values will thus not represent the long-term development of the floodplain surface. 
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Spatial variation 

The area of the sediment budget study is at the 'upstream' end of the Ripple Creek 

floodplain. The budget results therefore might not be representative for the entire 

floodplain surface in the Ripple Creek Catchment. Under the ponding conditions of 

Scenario 3, the area will experience relatively more -erosion and less deposition 

compared to areas further downstream on the floodplain. Downstream areas will 

remain inundated for longer periods of time and receive more sediment from 

upstream parts of the floodplain. It is likely that the downstream areas are sediment 

sinks. 

The Scenarios only focus on flow conditions in the Ripple Creek Catchment. 

Little is known about the representativeness of these conditions for other parts of the 

Herbert River floodplain. However, the effects of more efficient drainage and 

decreased surface resistance as a result of cultivation of the floodplain surface will be 

similar throughout the catchment. 
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Chapter 14 

Conclusions and recommendations 

14.1 Sediment export from low-lying sugarcane land on a tropical 

floodplain 

In the study described in this thesis a sediment budget was developed for sugarcane 

land in tropical North Queensland, Australia, as a contribution to efforts to identify 

the principal sources of sediment reaching the Great Barrier Reef, as well as to 

design soil conservation strategies for the cane lands. Sugarcane cultivation is 

predominantly practiced on the floodplains of the North Queensland river 

catchments. The original floodplain landscape in these areas has been substantially 

modified to make it suitable for cultivation of sugarcane. The floodplains now 

comprise a number of specific elements that all have the potential to be a source of 

sediment, as well as a store. The sediment budget approach provides an appropriate 

technique to assess sediment transport and storage among these landscape elements. 

Data were collected during two wet seasons and resulted in two sediment 

budgets. The budgets indicate that the 536 ha study area is a net source of sediment. 

In the 99-00 season 1580 tonnes of sediment left the study area. The contribution 

from the 320 ha area of cultivated lowland was 4.9 t ha-1
. In the 00-01 season the 

total output from the area was 1120 tonnes, or 3.5 t ha-1 from sugarcane land. 

14.2 Sediment sources and sinks 

Figure 14.1 presents a diagram of the 99-00 sediment budget, which illustrates the 

magnitude of input and storage components in the studied cane land area. It indicates 

the relative importance of each landscape element as sediment source or sink and the 

difference between sediment input minus storage and sediment output from the 

catchment. It is difficult to create a similar figure for the 00-01 season, because 

estimates of erosion and deposition rates based on median values, result in different 

net input values (I - S) to those based directly on net surface level change (see 
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Section 10.5). This highlights one of the notable challenges of this type of budget. 

Whereas most budgets tend to directly measure net surface level change in terms of 

either erosion or deposition, for this budget there was no a priori knowledge of which 

component was source or sink. There for both had to be estimated for each 

component. 

Input (I) 2181 t 
forested upland 243 t 

plant cane 644 t 

ratoon 157 t 

water furrows 738 t 

Ripple Drain 174 t 

major drains 104 t 
minor drains 51 t 
headlands 70 t 

Storage (S) 1206 t 

water furrows 369 t 

Budget Ripple Drain 242 t 

difference 635 t 
major drains 92 t 
minor drains 85 t 
headlands 419 t 

Output (0) At outlet drain 1580 t 

Figure 14.1: Sediment budget diagram for the 1999-2000 wet season in the Ripple Comer Catchment. 

The sediment budget study identified the following sediment sources and sinks: 

Plant cane fields were the most important net source of sediment in the first 

budget season (99-00). During the second season the contribution from this 

landscape element was however considerably less. The difference between the 

seasons can be largely attributed to the application of different measurement 

methods. 
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Water furrows were the second most important source of sediment during the 99-

00 season. The results fn~m the 00-01 season are strongly affected by uncertainty 

in the data. 

Headlands were the most important sediment sink during the 99-00 season. 

During the 00-01 season however, they became a minor source of sediment. The 

data for this season is however less reliable. 

Minor drains were the only landscape element that acted as sediment sink during 

both budget seasons. 

Contrary to expectation drains with steep banks, such as Ripple Drain and the 

major drains, were not major sources of sediment (c.f. Walling and Woodward, 

1992; Wallbrink et al., 1998; Laubel et al., 1999). They even showed net 

deposition 

Ratoon fields appear to be a considerable source of sediment despite their 

protective trash cover, although the estimate of the contribution by the field 

surface is dependent on the estimate made for water furrows and therefore 

becomes less reliable. 

14.3 Accuracy of the budget 

The estimated output (0) from the study area and the erosion from the different 

landscape elements (D minus the storage (S) within each element show a discrepancy 

in both seasons. In the 99-00 season O is 635 t higher than I - S. In the 00-01 season 

this difference is 486 t. The discrepancy could indicate that an important source of 

sediment has been overlooked and not included in the I - S components. However, it 

could also be the result of errors in the estimates of the budget components, which is 

a common problem in the development of sediment budgets. 

An estimate of the uncertainty in the budget components shows that the potential 

variation in the output estimate is around +80%. The total uncertainty in the 

estimates of input and storage is almost +300%. The difference between the two 

sides of the sediment budget equation and between seasons falls within these 

uncertainty ranges and is therefore most likely to be the result of budget error. All 

significant processes of sediment transport and deposition have been measured. 
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Although the error ranges are large, two different ways of calculating net 

sediment export from cane land obtained very similar results for two measurement 

seasons. The net sediment export estimates vary between 2.0 t ha-I for the I - S 

component of the 00-01 budget and 4.9 t ha-I for the output component of the 99-00 

budget. Some of the variation between the two seasons has been caused by 

differences in rainfall regimes between the seasons. 

Thus, despite the uncertainty, the order of magnitude of the budget components is 

strongly confirmed, and is believed to be useful for the purpose of the thesis and the 

uses of the results. 

14.4 Floodplain erosion on a tropical floodplain 

The observation of a floodplain as net source of sediment contradicts the general 

understanding that floodplains store sediment. Under specific conditions however 

erosion can occur on floodplains. The tropical rainfall/flood conditions on the Ripple 

Creek floodplain and the modification of the floodplain surface for the cultivation of 

sugarcane provide such conditions. 

From literature and local reports, four different qualitative scenarios of erosion 

and deposition have been developed that describe the development of the floodplain 

surface under different flood conditions, and the role of human influences on the 

floodplain. Two of these scenarios were experienced during the budget study, 

involving runoff from local hillslopes and heavy rainfall, which caused floodplain 

erosion (Scenario 1 and 3). In the longer term larger flood events, involving 

floodwater from the Herbert River, may lead to different erosion and deposition 

processes (Scenario 4 ). 

Measurement during events described Scenario 4 will be necessary to construct 

budgets representative of longer term processes. With increased input of sediment 

from elsewhere in the catchment, the floodplain may become a sediment sink. Also, 

the observations from the budget study do not necessarily represent processes in 

other areas of the Herbert River Catchment. 
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14.5 Future research 

14.5.1 Soil conservation practices 

To reduce the potential threat to the environment of excess runoff of sediment, 

nutrients, and pesticides, future research on sediment sources in low-lying sugarcane 

land should firstly focus on further improvement of cane land management practices. 

This research can now be focussed on the important sources, and make use of the 

knowledge gained in this thesis on erosion and deposition processes. 

Since plant cane fields and water furrows are the major sources of sediment it is 

recommended that conservation practices that reduce sediment export from these 

sources are developed. An already widely applied alternative for the water furrows is 

laser levelling of field surfaces. However, to obtain sufficient drainage, laser levelled 

fields might require an increase in slope. On plant cane fields in particular this could 

considerably increase sediment export and potentially offset the reduction achieved 

by eliminating the water furrows. Several other practical problems are encountered 

when fields are laser levelled, mainly related to field drainage efficiency, for which 

solutions have to be found (Roth, 2001). 

Research should also focus on ways to exploit the sediment trapping capacity of 

headlands and minor drains. This could, for example, follow along the lines of 

research by Karssies and Prosser (1999) and Mufioz-Carpena et al. (1999), which 

has looked into sediment storage capacity of grass buffer strips. 

14.5.2 Bed.load quantity and origin 

Bedload has not been included in the present study. The budget consisted only of 

particles <20 µm. This means that the total erosion rates are higher, as is the total 

sediment export from sugarcane land. 

Much of the observed bedload appeared to originate from the densely forested 

upland, which is counter intuitive. It was expected that most coarse sediment would 

be derived from bank erosion in the lower sandy colluvial slopes. The exact origin 

however invites further study, as does the relative contribution of the uplands 

compared to the input from lowland sources. The percentage coarse particles in the 

floodplain soils suggest that, considering the amount of suspended material exported, 

at least 2 t ha-1 of coarse material should also leave the catchment, and has the 

potential to cause harm to freshwater ecosystems (Campbell and Doeg, 1989). 
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14.5.3 Floodplain development 

The observation of erosion of floodplains is interesting. The next thing that needs to 

be explored is how representative this observation is for the sediment yield of the 

whole Herbert River Catchment. 

Extremely high sediment concentrations were only observed under flow 

conditions of Scenario 1. Water samples taken during the budget study showed that 

the highest sediment concentrations occurred during runoff events caused by 

frequent local severe rainstorms. Despite these high concentrations, sediment 

discharge at the outlet of the budget area is however highest during in·egular peak 

flow events. The relative importance of each type of event for the yearly sediment 

load from the area needs further study. 

No quantitative information exists on the sediment export from sugarcane land 

under major flood conditions (Scenario 4). Because this information is not available, 

it is not possible to say whether the floodplain is a source of sediment in the longer 

term. Also, the observations from the budget study may not represent processes in 

other areas of the Herbert River Catchment. More hydrological observations and 

modelling is required to test the hypothesis on the spatial and temporal variation of 

erosion and deposition processes presented in this thesis. 

14.5.4 Upland versus lowland input 

Although recent studies have shown a significant increase of both sediment and 

nutrients in streams draining sugarcane land (Bramley and Roth, 2002), several 

studies have shown the relative importance of the uplands when it comes to sediment 

export from the catchment. To shed more light on the relative importance between 

upland and lowland input a sediment budget should be created for the whole Herbert 

River catchment. 

14.5.5 A budget based on direct measurement methods 

Considerable measurement difficulties were encountered during this study, for 

example, with gauging equipment. Careful analysis of data has been necessary to 

properly identify such problems, which can otherwise lead to significant errors in the 

results. This problem becomes less important with increasing size of the gauged 

watercourse, when a few centimetres variation in water depth becomes negligible. 
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All too often researchers suffice with single plot studies to represent highly 

variable processes as erosion and deposition. It would be beneficial if such studies 

could be accompanied by a proper estimate of uncertainty involved. Despite the 

problems with the plot measurements, the method provided valuable insight into the 

erosion and deposition processes that occur in the sugarcane landscape. 

14.6 In conclusion 

In conclusion, this study provides the first estimates of sediment export from low­

gradient sugarcane land as well as from tropical floodplain environments in general. 

It shows how modification of these tropical, high rainfall environments for 

cultivation, makes them susceptible to soil erosion. Bare fields and water furrows 

are/have in particular become important sources of sediment. 

The results obtained from the sediment budget confirm the concern that sugarcane 

land on the floodplains of the Herbert River is eroding and therefore possibly 

contributes to negative impacts of sediment off-site, for example on the ecosystems 

of the Great Barrier Reef World Heritage Area. However, the budget observations 

only represent a snapshot in time. 

Because of the likely temporal and spatial variability, the obtained budget results 

can not simply be extrapolated to all low-lying cane land and over longer time 

periods. More, longer term studies are needed. Possible impacts of the frequent high 

sediment concentrations (and slightly elevated concentrations in the major drains) 

under the conditions observed during the budget study, have to be sought in local 

aquatic environments. Although the rates might not be high compared to rates 

observed on sloping cane fields, they can not be ignored. Particularly not, because 

the soils used for sugarcane cultivation have stores of fertilizer and pesticide residues 

that are released together with the sediment. 
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Appendix A 

APPENDIX A Water sample locations in the Ripple Corner Catchment. 
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Appendix B 

APPENDIX B (1) Locations of erosion pin plots and drain surface profiles in 

the Ripple Corner Catchment during the 99-00 budget 

season. 
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Appendix B 

APPENDIX B (2) Locations of erosion pin plots and drain surface profiles in 

the Ripple Corner Catchment during the 00-01 budget 
' 

season. 
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Appendix D and E 

APPENDIXD Water sample analysis procedure for suspended solid 

concen~ration (SSC) and turbidity (including sub-sampling 

for future chemical analysis): 

1. Wash 50 ml glass beakers and put in oven at 105 C0 overnight. 
2. Put beakers in desiccator for two hours. 
3. Shake sample for 1 minutes. 
4. Split samples in two parts (2 x 250 ml). Leave one part in original bottle. 
5. Sieve sub-samples in original bottle through 20 µm sieve (use beaker). 
6. Weigh 50 ml beakers. 
7. Shake sample bottle for 2 minutes. 
8. Rinse turbidity-sample-tube and 50ml pipette with sample. 
9. Shake bottle for 0.5 minutes. 
10. Fill turbidity sample tube and put in turbidity meter. 
11. Take 50 ml sample with pipette 
12. Put pipetted sample in beaker and dry at 105 C0 for two nights. 
13. Weigh beakers with dry sample after two hours in desiccator. 

APPENDIXE Data of flow velocity measurements in Post Creek 'wet 

cross-section' at gauging site. 

Date Creek Creek Creek Flow Adjusted Total wet Average Flux 
depth width (m) depth velocity Dataflow Creek velocity (m3 s-1) 

Dataflow manual (m s-1
) depth (m) cross- (ms- 1

) 

(m) (m) section 
(m2) 

8/03/00 n/a 0.29 0.48 0.16 0.08 
3.00 0.07 0.08 
3.30 0.07 0.00 
3.60 0.15 0.09 
3.90 0.21 0.36 
4.20 0.17 0.32 
4.50 0.16 0.23 
4.80 0.06 0.07 

18/02/00 0.17 0.41 0.09 0.65 0.55 
l 7 /03/00 0.28 0.52 1.44 0.42 0.60 

2.90 n/a 0.16 
3.40 n/a 0.62 
3.90 n/a 0.52 
4.40 n/a 0.50 
4.90 n/a 0.31 

3/01/01 0.17 0.17 0.29 0.20 0.06 
4.05 n/a 0.06 
3.55 n/a 0.19 
3.05 0.24 0.34 
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APPENDIX F (1) 

Rainfall 
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Appendix F 

Depth (Dataflow and Starflow), Velocity and SSC 

(calculated from turbidity) recordings at Ripple Drain 

gauging station, 99-00 season. 
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APPENDIX F (2) 
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Appendix F 

Depth, Velocity and SSC (calculated fro1n turbidity) 

recordings at Ripple Drain gauging station , 00-01 season. 
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APPENDIX F (3) 
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Appendix F 

Depth and Velocity recordings at Prosser Drain gauging 

station, 99-00 season. 
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APPENDIX F (4) 
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Appendix F 

Depth and SSC (calculated from turbidity) recordings at 

Pros&er Drain gauging station, 99-00 season. 
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APPENDIX F (5) 
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Depth and Velocity recordings at Prosser Drain gauging 
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APPENDIX F (6) 
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Appendix F 

Depth and SSC (calculated from turbidity) recordings at 

Pros&er Drain gauging station , 00-01 season. 
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APPENDIX F (7) 
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Depth and SSC (calculated from turbidity) recordings at 

Post Creek gauging station 99-00 season. 
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Appendix F 

Depth and SSC (calculated from turbidity) recordings at 

Post Creek gauging station, 00-01 season. 
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APPENDIX F (9) 
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Appendix F 

Depth and Velocity recordings at South Flume gauging 

station, 99-00 season, and SSC values measured from 

fu_Ime wateasamples. o 
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Appendix F 

APPENDIX F (10) Depth recordings at South Flume gauging station , 00-01 

season, and SSC values measured from flume water 
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Appendix F 

APPENDIX F (11) Depth and Velocity recordings at Plant Flume gauging 

station, 00-01 season, and SSC values 1neasured from 
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APPENDIXG 

a) Pinplots 1999-2000 
Dec-Mar 

C -0.3 

D 1.1 
F 4.4 
G 6.2 
H 1.8 
I 1.0 
J -4.1 

K -0.5 

L 1.1 
M 1.8 
N 1.3 
0 1.8 
p 1.6 

Mean: 1.1 
Median: 1.3 

b) Pinplots 2000-2001 

Dec-Mar 

F -0.4 

G -0.5 

H 1.8 
I 2.7 

J -1.7 

M -2.4 
p -0.1 

Mean: 0.3 

Median: -0.2 

APPENDIXH 

RD = Ripple Drain 
Maj = major drain 
Min = minor drain 
f = water furrow 

Appendix G and H 

Average net surface level change (1nm) and surface 

vegetation cover (%) on pin plots in the Ripple Corner 

Catchment over two periods (December to March and March 

to May) in the 99-00 (a) and 00-01 (b) season. Negative 

values indicate net soil loss. 

Mar-May total (mm) Cover(%) 

-1.6 -1.9 75 
0.5 1.6 98 
1.3 5.7 70 
1.1 7.3 70 
0.6 2.4 90 
2.2 3.2 100 
0.6 -3.6 20 
0.8 0.0 65 
0.4 1.0 90 
0.0 2.0 95 
0.5 2.1 90 
0.5 2.1 80 
0.7 2.2 70 

0.3 1.4 
0.6 2.1 

Mar-May total (mm) Cover(%) 

-1.3 -1.7 45 
0.2 -0.3 65 
-1.2 0.7 85 
-1.6 1.1 75 

-0.6 -2.4 30 
-1.4 -3.8 99 
0.0 -0.1 65 

-0.8 -0.5 

-0 .9 -0.2 

(next pages) Average net surface level change (mm) , erosion, 

and deposition rate (mm) for drain and water furrow surface 

profiles in the Ripple Corner Catchment, over two periods 

(December to March and March to May) in the 99-00 (a) and 

00-01 (b) season . 

g = grey sand 
s = silty clay 
C = clay 

r = ratoon 
p = plant cane 
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tv 
----.1 
0\ 

a) Profile data 99-00 (unadjusted) 
Profile Drain Soil Crop Deposition 

type type type rate (mm) 
Dec-Mar 

1 f s r 0.7 
2 f s r 1.3 
3 f s r 1.3 

10 f s r 0.9 
11 f s r 
14 f s r 5.1 
15 f s r 6.2 
16 f s r 4.0 
25 f g r 

26 f g r 

27 f g r 

32 f g p 4.1 
33 f g p 9.6 
34 f g p 0.9 
35 f g p 0.5 
36 f C p 
37 f C p 
38 f C p 
39 f C p 
40 f C r 
41 f C r 

42 f C r 

43 f C r 
44 f g r 2.5 
45 f g r 3.4 
46 f g r 0.4 
47 f g r 0.8 
18 RD s 34.8 
19 RD s 37.6 

Erosion rate Net surface 
(mm) change (mm) 

-5.3 -4.5 
-2.9 -1.6 
-5.0 -3.8 
-2.5 -1.6 

-1.2 3.9 
-0.5 5.7 
-6.9 -2.8 

-2.2 1.9 
-7.6 2.0 
-6.6 -5.7 

-16.7 -16.2 

-6.4 -4.0 
-2.0 1.4 
-3.7 -3.3 
-4.3 -3.5 

-16.3 18.5 
-30.9 6.7 

Deposition Erosion rate Net surface Deposition 
rate (mm) (mm) change (mm) rate (mm) 
Mar-May Dec-May 

2.2 -2.0 0.3 1.7 
2.2 -1.0 1.2 2.9 
1.7 -2.0 -0.3 0.4 
1.4 -1.7 -0.3 1.0 

2.1 
0.9 -1.8 -1.0 4.4 
1.8 -1.7 0.1 6.7 
5.0 -2.0 3.1 3.8 

2.7 
5.8 
4.4 

1.3 -8.1 -6.7 2.3 
2.7 -12.2 -9.5 2.2 
0.3 -3.6 -3.3 0.6 
2.7 -2.2 0.4 1.7 

1.5 
4.1 
2.1 
4.8 
2.5 
0.7 
1.5 
2.6 

2.5 -7.6 -5.1 3.1 
0.6 -9.7 -9.1 0.3 
1.4 -5.4 -4.0 0.3 
1.8 -2.4 -0.6 1.7 

84.5 -1.4 83.0 114.7 
86.8 -3.6 83.2 110.1 

Erosion rate 
(mm) 

5.9 
3.3 
4.5 
2.9 
3.2 
1.5 
0.8 
3.5 
4.3 
3.6 
3.6 
7.1 
9.7 
9.5 

17.5 
7.7 
6.2 
6.7 
4.9 
3.6 
4.4 
2.5 
2.8 

12.2 
8.0 
7.6 
5.8 

13.2 
20.2 

Net surface 
change (mm) 

-4.3 
-0.4 
-4. l 
-2.0 
-1. 1 
2.9 
5.9 
'0.3 
-1.6 
2.2 
0.8 

-4.8 
-7.4 
-9.0 

-15.8 
-6.2 
-2.0 
-4.5 
0.0 

-1.0 
-3 .7 
-1.0 
-0.2 
-9.1 
-7.7 
-7.3 
-4.1 

101.5 
89.9 
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a) Profile data 99-00 (unadjusted, continued) 
Profile Drain Soil Crop Deposition Erosion rate Total surface Deposition Erosion rate Total surface Deposition Erosion rate Total surface 

type type type rate (mm) (mm) change (mm) rate (mm) (mm) change (mm) rate (mm) (mm) change(mm) 

Dec - Mar Mar - May Dec-May 

20 RD s 42.5 -4.1 38.4 63.0 -2.2 60.8 102.6 3.4 99.2 
21 RD s 61.7 7.6 54.l 
7 Maj s 4.0 -29.2 -25.2 10.0 -1.3 8.7 4.3 20.2 -15.9 
8 Maj s 3.0 -23.8 -20.8 1.7 -2.7 -1.0 3.1 25.0 -21.8 
9 Maj s 2.7 -55.8 -53. l 7.8 -9.3 -1.5 4.8 59.4 -54.6 

17 Maj s 2.5 -11.6 -9. l 2.2 -3.4 -1.2 2.1 12.4 -10.3 
28 Maj g 13.9 -2.4 11.5 4.2 -7.6 -3.3 12.9 4.8 8.2 
29 Maj g 10.7 -3.6 7 .1 2.0 -4.1 -2.1 I 0.3 5.3 '5.1 
30 Maj g 10.9 -9.5 1.4 10.9 9.5 1.4 
31 Maj g 19.5 -2.8 16.7 19.5 2.8 16.7 
48 Maj g 4.6 -16.9 -12.3 4.3 -3.8 0.5 6.6 18.4 -11.8 
49 Maj g 4.0 -2.5 1.5 3.1 -3.1 0.0 5.0 3.5 1.5 
so Maj g 5.0 -4.5 0.5 1.4 -4.0 -2.6 4.0 6.1 -2.1 
4 Min s 3.3 -3.0 0.4 2.0 -2.0 0.0 4.0 3.6 0.4 
5 Min s 5.6 0.1 5.5 
6 Min s 5.3 I.I 4.3 

51 Min s 2.5 -3.5 -1.1 0.7 -2.4 -1.7 1.5 4.3 -2.8 
52 Min s 2.6 -2.0 0.7 1.4 -1.3 0.2 2.9 ;2.0 0.8 
53 Min s 2.4 -5.5 -3.1 1.4 -1.9 -0.5 2.5 6.1 -3.6 
54 Min C 5.7 -2.5 3.1 2.9 -1.9 1.0 7.7 3.6 4.1 
56 Min C 6.4 -0.5 5.9 1.5 -2. l -0.6 6.3 0.9 5.4 

a) Profile data 99-00 (adjusted) 
Profile Drain Soil Crop Deposition Erosion rate Total surface Deposition Erosion rate Total surface Deposition Erosion rate Total surface 

type type type rate (mm) (mm) change (mm) rate (mm) (mm) change (mm) rate (mm) (mm) change (mm) 
Dec-Mar Mar - May Dec - May 

I fs r 0.4 -3.0 -2.6 1.3 -1.1 0.1 0.9 3.4 -2.4 i 
~ 

t0 
---l 
-....) 

2 f s r 0.7 -1.7 -1.0 1.3 -0.6 0.7 1.6 1.9 -0.2 
3 fs r 0.7 -2.9 -2.2 1.0 -1.1 -0.2 0.2 2.6 -2.3 

""' ~ ~-
~ 
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a) Profile data 99-00 (adjusted, continued) 
Drain Soil Crop Deposition 

Profile type type type rate (mm) 
Dec - Mar 

10 fs r 0.5 
11 f s r 
14 fs r 2.9 
15 fs r 3.6 
16 fs r 2.3 
25 fg r 
26 fg r 

27 fg r 

32 fg p I. I 
33 fg p 2.6 
34 fg p 0.2 
35 fg p 0.1 
36 fc p 
37 fc p 
38 fc p 
39 fc p 
40 fc r 
41 fc r 

42 fc r 
43 fc r 
44 fg r 0.7 
45 fg r 0.9 
46 fg r 0.1 
47 fg r 0.2 
18 RD s 7.2 
19 RD s 4.1 
20 RD s 2.5 
21 RD s 
7 Maj s 2.3 

Erosion rate Total surface Deposition 
(mm) change (mm) rate (mm) 

Mar-May 

-1.4 -0.9 0.8 

-0.7 2.2 0.5 
-0.3 3.3 1.0 
-3.9 - l.6 2.9 

-0.6 0.5 0.4 
-2.1 0.6 0.7 
-1.8 -1.5 0.1 
-4.5 -4.4 0.7 

-1.7 - I. I 0.7 
-0.6 0.4 0.2 
-1.0 -0.9 0.4 
-1.2 -0.9 0.5 
-6.9 0.2 5.1 
-9.2 -5. 1 4.4 
-2.3 0.1 5.9 

-11.2 -8.9 3.5 

Erosion rate Total surface Deposition 
(mm) change (mm) rate (mm) 

Dec-May 

-1.0 -0.2 0.5 
1.2 

-1.0 -0.5 2.5 
-l.0 0.1 3.8 
-l.l 1.8 2.2 

0.7 
1.6 
1.2 

-2.2 -1.8 0.6 
-3.3 -2.6 0.6 
-1.0 -0.9 0.2 
-0.6 0.1 0.5 

l.0 
2.8 
1.4 
3.3 
1.7 
0.4 
1.0 
1.8 

-2.1 -l.4 0.8 
-2.6 -2.5 0.1 
-1.5 - I. I 0.1 
-0.7 -0.2 0.5 
-0.8 4.3 11.8 
-1.1 3.3 8.0 
-1.2 4.7 6.7 

3.5 
-0.7 2.7 2.3 

Erosion rate 
(mm) 

1.7 
1.8 
0.9 
0.4 
2.0 
J.2 
1.0 
1.0 
1.9 
2.6 
2.6 
4.7 
5.2 
4.2 
4.5 
3.3 
2.4 
,3.0 
1.7 
1.9 
3.3 
2.2 
2.1 
1.6 
7.3 
9.8 
1.9 
3.2 
8.3 

Total surface 
change (mm) 

-1.1 
-0.6 
1.7 
3.4 
0.1 

-0.4 
0.6 
'0.2 
-1.3 
-2.0 
-2.4 
-4.3 
-4.2 
-1.4 
-3.1 
0.0 

-0.7 
-2.5 
-0.7 
-0.1 
-2.5 
-2.1 
-2.0 
- I. I 
4.5 

-1.8 
4.8 
0.2 

-5.9 
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a) Profile data 99-00 (adjusted, continued) 
Drain Soil Crop Deposition 

Profile type type type rate (mm) 
Dec-Mar 

8 Maj s 1.7 
9 Maj s 0.6 

17 Maj s 1.4 
28 Maj g 3.5 
29 Maj g 2.7 
30 Maj g 1.6 
31 Maj g 2.6 
48 Maj g 1.3 
49 Maj g 0.8 
50 Maj g 1.1 
4 Mins 1.9 
5 Mins 
6 Mins 

51 Mins 1.4 
52 Mins 1.5 
53 Mins 1.4 
54 Min c 3.9 
56 Min c 4.4 

b) Profile data 00-01 ( unadjusted) 
Profile Drain Soil Crop Deposi tion 

type type type rate (mm) 
Dec-Mar 

9 f C r 7.0 
10 f C r 1.4 
II f C r 2.8 
12 f g r 2.8 
13 f g r 1.9 

Erosion rate Total surface 
(mm) change (mm) 

-11.9 -10.1 
-24.5 -23.9 

-3.5 -2.1 
-0.7 2.9 
-0.8 1.9 
-2.3 -0.8 
-0.7 1.9 
-2.0 -0.7 
-0.6 0.2 
-1.2 -0.1 
-1.7 0.2 

-2.0 -0.6 
-1.1 0.4 
-3.2 -1 .8 
-1.7 2.1 
-0.4 4.0 

Erosion rate Net surface 
(mm) change (mm) 

-4.3 2.7 
-6.7 -5.3 

-10.2 -7.4 
-0.9 1.8 
-2.2 -0.3 

Deposition Erosion rate Total surface Deposition 
rate (mm) (mm) change (mm) rate (mm) 

Mar-May Dec-May 

0.7 -1.4 -0.7 1.8 
3.0 -4.9 -2.0 1.0 
0.7 -1.7 -0.9 1.2 
1.2 -1.5 -0.4 3.5 
0.5 -1.0 -0.4 2.6 

1.6 
2.6 

1.1 -0.6 0.5 1.8 
0.8 -0.7 0.1 1.2 
0.4 -0.7 -0.3 1.0 
1.2 -1.2 0.0 2.3 

3.2 
3.1 

0.4 -1.4 -1.0 0.9 
0.8 -0.7 0.1 1.6 
0.8 -1.1 -0.3 1.4 
2.0 -1.3 0.7 5.2 
1.0 -1.4 -0.4 4.3 

Deposition Erosion rate Net surface Deposition 
rate (mm) (mm) change (mm) rate (mm) 
Mar-May Dec-May 

3.5 -10.7 -7.2 5.0 
7.0 -2.3 4.7 5.0 
1.6 -12.5 -10.9 1.3 
1.0 -3.4 -2.4 1.8 
2.0 -3.4 -1 .4 2.2 

Erosion rate 
(mm) 

12.6 
26.9 

4.2 
0.9 
1.1 
2.3 
0.7 
2.0 
0.9 
1.5 
2.0 
0.1 
0.6 
2.5 
1.2 
3.5 
2.4 
,0.6 

Erosion rate 
(mm) 

-9.5 
-5.5 

-I 9.5 
-2.3 
-4.0 

Total surface 
change (mm) 

-10.8 
-25.9 

-3.0 
2.5 
1.4 

-0.8 
1.9 

~0.2 
0.3 

-0.4 
0.2 
3. 1 
2.4 

-1.6 
0.5 

-2.1 
2.8 
3.6 

Net surface 
change(mm) 

-4.5 
-0.6 

-18 .3 
-0.5 
-1.7 
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b) Profile data 00-01 (unadjusted, continued) 

Profile Drain Soil Crop Deposition 
type type type rate (mm) 

Dec-Mar 

14 f g r 3.0 

27 f s r 1.8 
28 f s r 3.8 
29 f s r 5.8 

3 RD s 40.9 
4 RD s 9.4 

24 RD s 27.1 
25 RD s 3.1 
26 RD s 6.7 
5 Maj s 7.6 
6 Maj s 4.2 
7 Maj s 17.8 

16 Maj g 
17 Maj g 6.0 
18 Min s 3.8 
19 Min s 6.6 
20 Min s 5.3 
22 Min C 8.3 
23 Min C 10.8 
30 Min s 1.6 
31 Min s 2.0 
32 Min s 1.9 

Erosion rate Net surface Deposition 
(mm) change (mm) rate (mm) 

Mar-May 

-3.3 -0.3 1.0 

-1.0 0 .8 2.8 
-0.5 3.3 2.4 
-0.8 5.0 3.7 

-45.9 -5.0 17.5 
-91.5 -82.1 7.2 
-11 .6 15.4 42.3 
-58.2 -55.1 39.8 
-27.9 -21.2 28.5 

-3.0 4.6 5.7 
-6.1 -1.9 16.1 
-7.0 10.7 

-4.3 1.8 4.3 
-1.9 1.9 7.2 
-0.7 6.0 5.5 
-0.6 4.8 4.8 
-0.3 8.0 2.4 
-0.2 10.7 7.1 
-2.4 -0.8 4.4 
-2.7 -0.7 2.7 
-2.4 -0.5 2.1 

Erosion rate Net surface Deposition 
(mm) change (mm) rate (mm) 

Dec-May 

-5.8 -4.7 1.7 

-1.9 0.9 2.6 

-1.3 l. 1 5.7 
-4.5 -0.7 4.9 

-22.0 -4.5 51.6 
-11.3 -4.1 12.5 

-1.7 40.6 59.2 

-1.5 38.3 10.5 

-2.3 26.2 16.8 

-8.3 -2 .6 7.9 

-10.0 6.0 11. J 
17.7 
9.2 

-3.4 1.0 6.1 

-1.0 6.2 8.7 
-2.5 3.0 10.4 

-2.0 2.8 8.5 
-3 .3 -1.0 7.2 

-0.8 6.3 17.0 

-3.5 0.9 3.9 

-4.0 -1.4 2.1 
-3.4 -1.3 l.8 

Erosion rate 
(mm) 

-6.7 

-1.0 
-1.2 
-0.6 

-6 l. l 
-98.8 

-3 .1 
-28.1 
-12.3 

-6.0 
-7.0 
-2.7 

-12.3 
-3.4 
-0.6 
-1.4 
-0.9 
-0.2 
0.0 

-3.9 
-4.2 
-3.6 

Net surface 
change(mm) 

-5.0 

1.7 
4.5 
4.3 

-9.5 
-86.3 
56.l 

- 17 .6 
4.5 
2.0 
4.2 

15.0 
-3. J 

2.7 
8.1 
8.9 
7.6 
7.0 

17.0 
0.0 

-2.1 
- 1.8 

~ 
:g 
~ 
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b) Profile data 00-01 (adjusted) 
Profile Drain Soil Crop 

type type type 

9 f C r 

IO f C r 

11 f C r 

12 f g r 

13 f g r 

14 f g r 

27 f s r 

28 f s r 

29 f s r 

3 RD s 

4 RD s 

24 RD s 

25 RD s 

26 RD s 

5 Maj s 

6 Maj s 

7 Maj s 

16 Maj g 

17 Maj g 

18 Min s 

19 Min s 

20 Min s 

22 Min C 

23 Min C 

30 Min s 
31 Min s 
32 Min s 

Deposition Erosion rate Net surface 
rate (mm) (mm) change (mm) 

Dec - Mar 

4.7 -2.9 1.8 
0.9 -4.6 -3.6 
1.9 -6.9 -5.0 
0.7 -0.2 0.5 
0.5 -0.6 -0. 1 
0.8 -0.9 -0. 1 
1.0 -0.6 0.4 
2.2 -0.3 1.9 
3.3 -0.5 2.9 
2.3 -3.3 -1.0 
0.5 -12.7 -12.2 

14.3 -2.5 11.9 
1.8 -13.2 - I 1.4 
1.4 -0.7 0.7 
4.3 -1.7 2.6 
2.4 -3.5 -I.I 

10.2 -4.0 6.1 

1.6 -0.6 1.0 
2.2 -l.l I. I 
3.8 -0.4 3.4 
3.0 -0.3 2.7 
5.7 -0.2 5.4 
7.4 -0.1 7.2 
0.9 -1.4 -0.5 
1.1 -1 .5 -0.4 
I. I -1.4 -0.3 

Deposition Erosion rate Net surface Deposition 

rate (mm) (mm) change (mm) rate (mm) 

Mar - May Dec-May 

2.4 -7.2 -4.9 3.4 
4.8 -1.6 3.2 3.4 
I. I -8.5 -7.4 0.9 
0.3 -0.9 -0.6 0.5 
0.5 -0.9 -0.4 0.6 
0.3 -1.6 -1.3 0.5 
1.6 - I. I 0.5 1.5 
1.4 -0.7 0.6 3.2 
2. 1 -2.6 -0.4 2.8 
1.5 -1.4 0.1 3.0 
0.8 -4.2 -3.4 0.4 

10.5 -0.7 9.8 22.0 
8.6 -0.8 7.7 4.3 
1.5 -0.5 1.0 1.8 
3.2 -4.7 -1.5 4.5 
9.2 -5.7 3.5 6.4 

10.1 
2.5 

1.0 -0.7 0.3 l.6 
4.1 -0.6 3.5 5.0 
3. 1 -1.4 1.7 5.9 
2.7 -l.l 1.6 4.8 
1.6 -2.3 -0.7 4.9 
4.8 -0.5 4.3 11.6 
2.5 -2.0 0.5 2.2 
1.5 -2.3 -0.8 1.2 
1.2 -2.0 -0.8 1.0 

Erosion rate 
(mm) 

-6.4 
-3.8 

-13.3 
-0.6 
- I. I 
-1.8 
-0.5 
-0.7 
-0.3 
-3 .9 

-16.0 
-0.3 
-8.3 
-0.5 
-3.4 
-4.0 
-1.6 
'-2.7 
-0.4 
-0.4 
-0.8 
-0.5 
-0.1 
0.0 

-2.2 
-2.4 
-2.1 

Net surface 
change (mm) 

-3.1 
-0.4 

-12.4 
-0.1 
-0.5 
-1.4 
0.9 

, 

2.6 
2.4 

-0.9 
-15.6 
21.6 
-4.0 

1.3 
I. I 
2.4 
8.5 

-0.2 
1.3 
4.6 
5.1 
4.3 
4.8 

11.6 
0.0 

-1.2 
-1.0 
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Appendix I 

APPENDIX I Examples of graphs from both budget seasons, showing 

changes in the surface profile (distance relative to profiler 

datum, in mm) of drains and water furrows in the Ripple 

Corner Catchment. 

Profiles 1-9, 11, 14: Season 99-00 

Profile 1 

0 0.5 

Profile width (m) 
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Profile 2 Profile width (m) 
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3)() +-------_L__------'--------'-------~----------i 

.... 
Q) 4CX) 
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Profile 3 Profile width (m) 

0 0.5 ·1 15 2 25 

3)() +----------'-----------'-------_L_-----~----~ 

.... 
Q) 4CX) -0 ... 
a.. E<X) 
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... E 
-- ECO Q) 
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C: 
C'O _, 
en 700 

B 

--+- 14-Dec-00 

--+- 7-Mar-00 

--+- 3-May-00 
8X) ..L__ ____________________________ _ 
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Appendix J 
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Profiles 18- 21, 25-27: Season 99-00 

Prof ile 18 
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Appendix J 

45 
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Profiles: 24-26, 31 Season 00-01 
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Appendix J 

APPENDIXJ Histograms for surface profile data (adjusted) from the 99-00 
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