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Abstract—This paper studies the design and secrecy perfor-
mance of linear multihop networks, in the presence of randomly
distributed eavesdroppers in a large-scale two-dimensional space.
Depending on whether there is feedback from the receiver
to the transmitter, we study two transmission schemes: on-off
transmission (OFT) and non-on-off transmission (NOFT). In
the OFT scheme, transmission is suspended if the instantaneous
received signal-to-noise ratio (SNR) falls below a given threshold,
whereas there is no suspension of transmission in the NOFT
scheme. We investigate the optimal design of the linear multiple
network in terms of the optimal rate parameters of the wiretap
code as well as the optimal number of hops. These design
parameters are highly interrelated since more hops reduces the
distance of per-hop communication which completely changes the
optimal design of the wiretap coding rates. Despite the analytical
difficulty, we are able to characterize the optimal designs and
the resulting secure transmission throughput in mathematically
tractable forms in the high SNR regime. Our numerical results
demonstrate that our analytical results obtained in the high SNR
regime are accurate at practical SNR values. Hence, these results
provide useful guidelines for designing linear multihop networks
with targeted physical layer security performance.

Index Terms—Physical layer security, linear multihop net-
work, homogeneous Poisson point process (PPP), randomize-and-
forward (RaF) relaying.

I. INTRODUCTION

A. Background and Motivation

With the rise of the Internet of Things (IoT), the need
for wireless networks that offer a wide variety of quality-of-
service (QoS) features is fast growing. It becomes clear that
guaranteeing reliable and secure transmission are two major
issues. Due to wireless signal attenuation with transmission
distance, cooperative relaying has been considered as an ef-
fective method to increase the range and reliability of wireless
networks. Several relaying strategies have been adopted in ma-
jor wireless standards. At the same time, due to the broadcast
nature of wireless channels, wireless communication is subject
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to a wide range of security threats. Traditionally, security
risks have been addressed at the upper layers of the wireless
network protocol stack. More recently, physical layer security
is emerged as a new and complementary security solution that
exploits the physical characteristics of the wireless channel
from an information-theoretic point of view.

For two-hop wireless networks, there exists abundant re-
search publications considering the physical layer security
for wireless networks, e.g., [1–4]. Early studies, such as [1],
investigated how to achieve physical layer security with the
conventional relaying schemes like decode and forward (DF)
and amplify and forward (AF). New cooperation strategies
like cooperative jamming (CJ) were also introduced as secrecy
enhancements. When designing the two-hop network, the pow-
er allocation and rate adaptation were important parameters
to optimize. Relay selection was also an effective way of
improving the secrecy performance when multiple potential
relays are available. The modeling of the node locations, e.g.,
for a network having multiple potential relays and multiple
eavesdroppers, were done either deterministically or statisti-
cally using stochastic geometry tools.

While the aforementioned works focused on two-hop relay-
ing systems, it is worth investigating the secure communication
in more elaborate networks, which take more than two hops.
However, extending the analysis from two-hop networks to
multihop networks is non-trivial, because more hops means
that more nodes are involved in the transmission as well
as more chances for eavesdropping. In addition, the number
of hops becomes a design parameter affecting the end-to-
end delay and hence throughput. In this work, we study
the interesting but challenging scenario of multihop relaying
networks.

B. Related Work and Novelty of Our Study

Only a few studies have addressed the physical layer secu-
rity in multihop relaying systems [5–12]. Among these works,
the majority of them addresses the secure routing design with
various considerations. For example, the authors in [5] pro-
posed a tree-formation game to choose secure paths in uplink
multihop cellular networks. The authors in [6, 7] considered
minimum energy routing in the presence of either multiple
malicious jammers or eavesdroppers, to guarantee certain end-
to-end performance. The authors in [8, 9] considered the
problem of how to communicate securely with the help of
untrusted relays and full-duplex jamming relays, respectively.
The authors in [10] addressed the secure routing problem
in multihop wireless networks with half-duplex DF relaying,
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where the locations of the eavesdroppers were modeled as a
homogeneous Poisson point process (PPP).

By reviewing the existing studies on multihop wireless
networks, we see that there is some knowledge gap at a
fundamental level. Questions like what is the optimal number
of hops for a given pair of source and destination is largely an
open problem. Although the prior studies on secure routing
have somewhat addressed this problem for given network
configurations, the focus there was to find the best route
for given locations of intermediate nodes, instead of directly
analyzing the optimal number of hops when the network
allows one to deploy the relays or to select relays from a
large pool of available nodes. In addition, it is unclear how the
optimal design of secure transmission at each hop is affected
by the number of hops.

To the best of our knowledge, only one recently published
work in [13] directly addressed the knowledge gap identified
above. Specifically, this work considered a linear multihop
network in the presence of randomly distributed eavesdroppers
and addressed the question of the optimal number of hop-
s. Deviating from the most common physical-layer-security
approach of using wiretap code, the work in [13] adopted
ordinary code that does not provide any level of information-
theoretic secrecy. Without wiretap code, the legitimate users
have a significantly reduced level of control over the secrecy
performance when designing their transmission strategy. In
contrast, we consider the use of wiretap code and define
secrecy performance from an information-theoretic viewpoint
as commonly done in the literature of physical layer security.
In this way, the design of the wiretap coding rates has direct
impact on both the throughput performance and the secrecy
performance. Therefore, the novel contribution of our work
is the obtained design guideline on the transmission strategy
and number of hops in securing a multihop relaying network
with wiretap code protection. As will be discussed, the design
guidelines obtained with wiretap code (i.e., this work) and
without wiretap code (i.e., [13]) are very different.

C. Our Approach and Contribution

In this paper, we study the problem of secure transmission
design in a linear multihop wireless network in the presence
of randomly distributed eavesdroppers whose locations are
modeled using a homogeneous PPP. The relays adopt the
randomize-and-forward (RaF) relaying protocol where each
relay generates the transmitted codeword independently so that
secrecy of individual hops guarantees the secrecy of the entire
path [14]. The celebrated wiretap code is used to provide
the desired physical layer security. We attempt to answer a
fundamental question: If the network allows one to deploy
equally-spaced relays or to select equally-spaced relays from
a large pool of available nodes in a dense network, what is
the optimal number of hops and what is the corresponding
optimal design of the coding rates for achieving the best
physical layer security performance? To answer this question,
we formulate a throughput maximization problem with an
end-to-end secrecy outage probability constraint. Solving the
problem is a non-trivial task because the design parameters

are highly interrelated. Having more hops reduces the per-hop
communication distance, meaning that a higher rate can be
used. On the down side, more hops not only increases the
total time for communication but also gives the eavesdroppers
more chance to intercept the message. Clearly the encoding
rates of the wiretap code need to be carefully designed to
achieve the best tradeoff between throughput performance and
secrecy performance.

The main contributions of this paper are summarized as
follows:

• Using a stochastic geometry model for the eavesdroppers’
locations, we derive an analytical expression for the
end-to-end secrecy outage probability, which is used to
measure the secrecy performance of the multihop wireless
network.

• Depending on whether there is feedback from the receiver
to the transmitter, we consider two transmission schemes:
on-off transmission (OFT) and non-on-off transmission
(NOFT). For both schemes, we solve the throughput max-
imization problem under a given secrecy outage probabil-
ity constraint. In particular, the optimal rate parameters of
the wiretap code are obtained in mathematically tractable
forms.

• We obtain further analytical insights on the optimal
design parameters and the achievable throughput in
the asymptotic high signal-to-noise ratio (SNR) regime.
These high SNR results are actually found to be accurate
at practical SNR values as verified by numerical results.
Regarding the optimal number of hops, our results show
that the optimal value is insensitive to the change in
operating SNR. On the other hand, the optimal number of
hops increases as the density of eavesdroppers increases.

It is necessary to compare our results with the ones in [13]
which considered the same network scenario (but with the
addition of randomly distributed interferers) and addressed the
same question of the optimal number of hops. As described
before, the work in [13] did not consider the use of wiretap
code which is a key technique in physical layer security. Under
such a framework, the main conclusions in [13] were (i) a
greater number of hops are preferable to a smaller number
of hops in any situation; and (ii) imposing a (more stringent)
secrecy constraint does not change the maximum achievable
throughput. In contrast to [13], our framework adopts wiretap
code. Consequently, the achievable throughput is clearly a
function of the required secrecy constraint. Regarding the
optimal number of hops, our finding is certainly not “the
more the merrier”. For example, the optimal number of hops
reduces as the eavesdropper’s density reduces. To sum up, our
definition of secrecy and the considered secure transmission
schemes are fundamentally different from [13], which leads to
very different conclusions on the optimal system design and
the resulting performance. The work in [13] and our work
complement each other and give different design guidelines
depending on whether wiretap code is used or not.

The remainder of this paper is organized as follows. In
Section II, the system model and performance metric are
described. In Section III, the secrecy performance and secure
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TABLE I
LIST OF NOTATION

α Path loss exponent (2 ≤ α ≤ 6)
Φne Poisson point process of eavesdroppers’ location
λe Density of Φne

p Transmit power
N Number of hops
L S-D distance
Dn Transmission distance of nth hop
Hn Channel fading gain of nth hop
Sne Distance of the eavesdropping channel of nth hop
Xne Channel fading gain of eavesdropping channel of nth hop
Rt Rate of the transmitted codewords
Rs Rate of the confidential information
Re Rate loss for securing the messages against eavesdropping
P′
t Transmission probability over a single hop

P′
c Connection probability over a single hop

Pc End-to-end connection probability over the path
P′

so Secrecy outage probability over a single hop
Pso End-to-end secrecy outage probability over the path
ϵ Constraint on Pso
βt SNR threshold for decoding the message correctly
βe SNR threshold for secrecy outage
Cmax

ne Maximum capacity of eavesdropping channels of nth hop
SNRmax

ne Maximum received SNR at eavesdroppers of nth hop
U Secure transmission throughput
P (·) Probability operator
E (·) Expectation operator
Γ (·) Gamma function
W0 (·) Principal branch of Lambert W function

transmission design for a multihop path are investigated. In
Section IV, the numerical results are presented. Finally, the
conclusion is drawn in Section V. Table I summarizes the list
of notation used in this paper.

II. SYSTEM MODEL AND PERFORMANCE METRIC

A. System Model

We consider a linear N -hop wireless relay network of length
L as shown in Fig. 1, consisting of a source node A1, a destina-
tion node AN+1 and N −1 relay nodes ({Ai}, i = 2, . . . , N),
which is exposed to a set of randomly deployed eavesdroppers
over a large two-dimensional area. We model the locations of
the eavesdroppers in each hop as an independent homogeneous
PPP with intensity λe denoted by Φne (n = 1, . . . , N). The
eavesdroppers are non-cooperative, so they must decode the
messages individually. All nodes are equipped with one omni-
directional antenna and, hence, cannot transmit and receive
signals simultaneously which is referred to as “half duplex”.
Furthermore, the transmission is performed via time-division
which guarantees that there is no interference between the
different hops. Node An+1 only receives the signal transmitted
by its adjacent node An.

In this paper, we assumed that the relays are equidistant
with each other as in [15–17]. Such a model is mathematically
tractable to investigate the impact of the number of hops and
hence, is well-adopted in the literature in studying multihop
network. It can be used to approximate the performance of a
dense network, where we can pick approximately equidistant
nodes as relays. We can also find it in practical, e.g., the
communication between the electrical equipments in smart
grid, or the communication between road-side units placed
along the road and railway.

...

Legitimate node Eavesdropper

1
A 1N

A

Fig. 1. An illustration of a linear multihop relaying network surrounded
by several eavesdroppers. The confidential message is transmitted from
the source node A1 to the destination AN+1 with the help of relays
({Ai}, i = 2, . . . , N), and at the same time the eavesdroppers attempt to
intercept the transmitted message.

All the channels are modeled by large-scale attenuation with
path loss exponent α along with small-scale Rayleigh fading.
We consider the non-singular (bounded) path loss model

1
1+rα , where r denotes the communication distance [18–22].
The corresponding channel power gains are independent and
exponentially distributed with unit mean. The noise at each
node is assumed to be complex additive white Gaussian with
zero mean and variance one. The instantaneous received SNR
at the legitimate node An+1 and eavesdropper (at position) e
in Φne can be respectively given as

SNRn , pHn

|Dn|α + 1
, (1)

SNRne ,
pSne

|Xne|α + 1
, (2)

where p denotes the transmit power at the legitimate node
An assumed the same in each hop; Hn and |Dn| are the
channel power fading gain and the distance between the nth
link AnAn+1, respectively; Sne and |Xne| are the channel
power fading gain and the distance between the legitimate
node An and eavesdropper e, respectively. Since the distance
for each hop is the same between the legitimate nodes, the
statistics of SNRn is the same for all n. Note that we have
normalized the receiver noise power to be one, which means
that the parameter p in fact represents the transmitter-side SNR
instead of the actual transmit power.

We assume non-cooperative eavesdroppers. Then the max-
imum received SNR, SNRmax

ne , at eavesdroppers from the le-
gitimate node An is equivalent to max

e∈Φne

{SNRne}, where the

maximization operation means the selection of the eavesdrop-
per which has the strongest received signal.

B. Transmission Schemes

We consider the well-known Wyner’s encoding scheme
[23]. The transmitters encode the message using two rate
parameters, namely, the rate of the transmitted codewords
Rt and the rate of the confidential information Rs. The
rate difference Re , Rt − Rs represents the rate loss
for transmitting the message securely against eavesdropping



4

which reflects the ability of securing the message transmission
against eavesdropping [24]. We assume that the intermediate
relay nodes use the RaF relaying protocol which is specifically
designed from the viewpoint of physical layer security. RaF
relaying deviates from the widely-used DF relaying in the way
that the relays use independent codewords to add independent
randomization in each hop when re-encoding the received
signal [14]. We consider fixed-rate transmission, hence Rt

and Rs are designed offline. This is a commonly-adopted
practical assumption as its implementation is based on long-
term channel statistics and does not require instantaneous
feedback of the full channel state information (CSI) for every
hop. For reducing the risk of eavesdropping, we assume that
there is no retransmission in each hop. Depending on whether
there is feedback from the receiver to the transmitter, we can
have the following two transmission schemes: OFT and NOFT,
as described below.

For a given transmission rate Rt, the receiver is able to
decode the transmission if the instantaneous received SNR
exceeds a threshold βt, where βt = 2Rt − 1. Assuming the
receiver has perfect channel knowledge (e.g., obtained from
pilot transmissions), it is possible for the receiver to feed back
to the transmitter some information about its channel status. In
the OFT scheme [24], we assume that the receiver uses a one-
bit feedback (as opposed to full CSI feedback) to inform the
transmitter whether the instantaneous received SNR exceeds
βt or not. Transmission is suspended if the received SNR falls
below βt. Then, the transmission probability of the nth hop
can be defined as

P
′

t , P (SNRn > βt) . (3)

Since the statistics of SNRn is the same for all n, P ′

t is
the same for all hops. Although the transmission suspension
causes delay as reflected in the transmission probability, it
guarantees successful connection/decoding for each hop when-
ever transmission happens.

If there is no feedback, i.e., in the NOFT scheme, there
is no suspension of transmission, and hence, the transmission
probability is P ′

t = 1. However, the receiver may not be able
to decode. Specifically, the connection probability (i.e., the
probability that the receiver is able to decode the message) of
the nth hop is defined as

P
′

c , P (SNRn > βt) . (4)

Hence, the end-to-end connection probability of the path in
the NOFT scheme is given by

Pc , P
(

min
n=1,...,N

{SNRn} > βt

)
. (5)

For any given Rt and Rs, the secrecy outage probability of
the nth hop is defined as [24]

P
′

so = P (Cmax
ne > Rt −Rs) = P (SNRmax

ne > βe) , (6)

where Cmax
ne is the maximum capacity of the eavesdroppers’

channels in the nth hop and βe = 2Re − 1.
Because the relays apply the RaF protocol, the source and

relays use different codewords to transmit the secret message.
According to [14], the message is secure when every hop

in the path is secure. Hence, the end-to-end secrecy outage
probability of the path can be expressed as

Pso , P
(

max
n=1,...,N

{SNRmax
ne } > βe

)
. (7)

Furthermore, we assume that the point processes
Φne (n = 1, . . . , N) representing the eavesdroppers’ locations
in different hops are independent, which is a worse case from
the view of security compared to the scenario where the
eavesdroppers’ locations are fixed during all hops. In the next
section, we will prove that the secrecy outage probability
under the independent point-processes assumption is strictly
higher than the secrecy outage probability under the fixed
eavesdropper-locations assumption. Because the legitimate
nodes have little knowledge on the eavesdroppers’ locations
or their mobility, it is best to consider a worse case scenario
from the security point of view.

Since the statistics of the legitimate link is the same and
the fading gains are independent in each hop, the end-to-end
connection probability in the NOFT scheme defined in (5) is
equivalent to

Pc =
(
P

′

c

)N
. (8)

Clearly the end-to-end connection probability in the OFT
scheme is 1, but this is at the price of the reduced transmission
probability as described in (3).

For both NOFT and OFT schemes, the end-to-end secrecy
outage probability defined in (7) is equivalent to

Pso = 1−
(
1−P

′

so

)N
. (9)

C. Secure Transmission Throughput

Secure transmission throughput characterizes the spectral
efficiency of secure communication in a given multihop path
for a source-destination pair of nodes which is defined as the
average end-to-end rate of the transmission of confidential
messages that can be sustained reliably, normalized by the
total transmission time:

U =
P ′

tPcRs

N
, (10)

where N
P′

t

is the total expected transmission time (in slots) for
transmitting a confidential message from source to destination
which includes the transmission time and waiting time along
the path; Pc represents the probability that a confidential
message is transmitted correctly from the source to the desti-
nation over the path. Secure transmission throughput shows
the dependence of the network spectral efficiency on the
key system parameters, e.g., the transmission rate parameters,
the number of hops, the transmit power, and the density of
eavesdroppers.

As explained before, in the NOFT scheme, the transmission
probability of a single hop P ′

t = 1 and the total expected
transmission time is N . Then, secure transmission throughput
can be rewritten as U = PcRs

N , which is the same as the
definition of secure transmission throughput in [25–27]. On
the other hand, in the OFT scheme, the connection probability
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of the path Pc = 1 and the total expected transmission time
is N

P′
t

. Then, secure transmission throughput can be rewritten

as U =
P

′
tRs

N , which is the same as the definition of secure
transmission throughput in [24]. Hence, our throughput metric
is consistent with existing work in this area. We will use
the secure transmission throughput as the main performance
metric in this paper. Note that the throughput definition in
(10) alone does not directly describe the secrecy performance
in terms of the secrecy outage probability. We use the end-to-
end secrecy outage probability in (7) to directly quantify the
level of security for the multihop communication.

III. SECURE TRANSMISSION DESIGN IN A MULTIHOP
PATH

In this section, we analytically study the secrecy outage
performance of a given multihop path of a source-destination
pair of nodes. Then, for both OFT and NOFT schemes, we
consider the secure transmission design to maximize secure
transmission throughput under the secrecy outage constraint.

A. Secrecy Performance and Throughput Maximization Prob-
lem

In this subsection, we derive an explicit expression of the
end-to-end secrecy outage probability. Then, we formulate the
throughput maximization problem by the joint design of the
number of hops, the rate of the transmitted codewords and the
rate of the confidential information.

Theorem 1: The end-to-end secrecy outage probability of
the path for both NOFT and OFT schemes is given by

Pso = 1− exp

[
−NK1

(
βe

p

)− 2
α

exp

[
−βe

p

]]
, (11)

where K1 = πλeΓ
(
2
α + 1

)
and Γ(·) is the gamma function.

Proof: See Appendix A.

Now we revisit the assumption on the eavesdroppers’ loca-
tion made in Section II-A and provide a justification for it.
In particular, we have assumed that the eavesdroppers’ loca-
tions change independently from hop to hop. Of course, this
assumption does not accurately reflect the realistic locations
of eavesdroppers, unless they have extremely high mobility.
Without any knowledge of the eavesdroppers’ locations and
mobility, however, we have to make some assumption in order
to assess the network performance. In the following corollary,
we show that the assumption adopted in this work is more
robust than assuming that the eavesdropper locations are fixed
over all hops (i.e., stationary eavesdroppers).

Corollary 1: The secrecy outage probability under the in-
dependent point-processes assumption is strictly higher than
the secrecy outage probability under the fixed eavesdropper-
locations assumption.

Proof: See Appendix B.

The result in Corollary 1 agrees with intuition because
that the eavesdroppers under the independent point-processes

assumption have more degrees of freedom than the eaves-
droppers under the fixed locations assumption, that is, more
variation in the locations gives eavesdroppers more chance to
cause secrecy problem to at least one of the hops. Hence,
when not knowing the exact locations or mobility of the
eavesdroppers, it is more appropriate for the designers of the
legitimate network to consider a worse-case scenario, i.e., the
independent point-processes assumption adopted in this work.

With the end-to-end secrecy outage probability derived in
Theorem 1 to quantify the secrecy performance, we now
formulate a network design problem of maximizing the secure
transmission throughput subject to a given secrecy requiremen-
t:

max
Rt,Rs,N

U =
P ′

tPcRs

N
, s.t. Pso ≤ ϵ,

where ϵ ∈ [0, 1] represents the minimum security requirement.
The controllable design parameters are the rate of the trans-
mitted codewords Rt, the rate of the confidential information
Rs, and the number of hops N of the path.

B. On-Off Transmission Scheme

We first consider the OFT scheme, i.e., transmission occurs
whenever the received SNR at the legitimate node exceeds
the SNR threshold βt. Hence, for any transmitted message,
the legitimate receiver is able to decode correctly, i.e., the
end-to-end connection probability of the path Pc = 1.

According to (1) and (3), the transmission probability can
be computed as

P
′

t = P

(
pHn(

L
N

)α
+ 1

> βt

)
= exp

−βt

[(
L
N

)α
+ 1
]

p

 .

(12)

Now, we consider the design problem of maximizing secure
transmission throughput by the joint design of Rt, Rs and N ,
expressed as

P1 : max
Rt,Rs,N

U =
P ′

t (Rt, N)Rs

N
, (13a)

s.t. Pso (Rt, Rs, N) ≤ ϵ, (13b)
Rt ≥ Rs > 0, (13c)
N ≥ 1, (13d)

where we have explicitly shown the dependence of Pso and
P ′

t on Rt, Rs and N .
1) The Optimal Rate Parameters Rt and Rs for Fixed

Hop-Count N : To solve the above optimization problem P1,
we first consider the sub-problem that we get the optimal
rate parameters Rt and Rs for fixed hop-count N . This sub-
problem has its important physical meaning: how to optimally
design the encoding rates for a given network setting.

Since the constraint (13b) is satisfied only when the con-
straint (13c) is satisfied, the constraint (13c) can be simplified
as Rs > 0. Since P ′

t is independent of Rs and Pso is an
increasing function of Rs, it is optimal to maximize Pso in
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order to maximize Rs in U. Hence, we can obtain the optimal
Pso as

Pso (Rt, Rs, N) = ϵ. (14)

The value of βe that satisfies the above equality is given as

βe =
2p

α
W0

α

2

[
ln 1

1−ϵ

NK1

]−α
2

 , (15)

where W0 (·) is the principal branch of Lambert W function.
Then, from (15), we can derive

Re = Rt −Rs = log2

2p
α
W0

α

2

[
ln 1

1−ϵ

NK1

]−α
2

+ 1

 .

(16)

Under this condition, we can reformulate the optimization
problem as

P1′ : max
Rt

U =
(Rt −Re)exp

[
−K2

(
2Rt − 1

)]
N

, (17a)

s.t. Rt > Re, (17b)

where K2 =
[( L

N )
α
+1]

p ; Re is a function of N , whose explicit
expression can be found in (16).

Theorem 2: Secure transmission throughput U is a quasi-
concave function of the rate of the transmitted codewords Rt.
Then, the optimal value of Rt and Rs to maximize U are given
as

R∗
t = Re +

1

ln 2
W0

(
2−Re

K2

)
, (18)

and

R∗
s =

1

ln 2
W0

(
2−Re

K2

)
. (19)

Proof: See Appendix C.

Corollary 2: The optimal rate of the transmitted codewords
R∗

t is an increasing function of the number of hop N . And
when N goes to infinity, the optimal rate of the confidential
information R∗

s approaches 0.
Proof: See Appendix D.

The result in Corollary 2 clearly says that a network with
too many hops will lead to no secure throughput, since
the drawback of causing more chances for eavesdropping
outweighs the benefit of allowing more randomness in the
code, i.e. R∗

s goes to 0. Hence, we definitely expect that the
optimal number of hops to be finite.

Corollary 3: As p grows to infinity, the optimal value of Rt

goes to infinity and the optimal values of Rs and U converge
to constants, given as

R∗
s =

1

ln 2
W0

(
1

K3

)
, (20)

and

U∗ =
1

N ln 2
W0

(
1

K3

)
exp

[
−K3 exp

[
W0

(
1

K3

)]]
,

(21)

where K3 = 2
α

[(
L
N

)α
+ 1
]
W0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
.

Proof: See Appendix E.

If there is no secrecy requirement for the system, increas-
ing the transmit power can always increase the throughput.
However, for the system with secrecy requirement, the im-
provement of the throughput tends to zero as the transmit
power grows to infinity since increasing power benefits both
the legitimate and eavesdropping channels.

2) The Optimal Hop-Count N : With the obtained explicit
expressions of R∗

t and R∗
s , in the following, we study how to

design the number of hops N of the path. Replacing Rt with
(18), then the optimization problem P1′ can be rewritten as:

P1′′ : max
N

U =
W0

(
2−Re

K2

)
N ln 2

× exp

[
−K2

(
2
Re+

1
ln 2W0

(
2−Re
K2

)
− 1

)]
,

(22a)
s.t. N ≥ 1, (22b)

where Re and K2 are functions of N , whose explicit ex-
pressions can be found earlier. We can see that the objective
function is a complicated function of the argument N , which
makes the optimization problem P1′′ difficult to be solved. We
cannot obtain an explicit expression of the optimal value of
N , however, this problem can be solved numerically. Note that
N is an integer and the feasible range of N is typically small
in practical networks. Therefore, it is of minimal complexity
to numerically optimize N . We will present numerical results
on the optimal N in Section IV.

C. Non-On-Off Transmission Scheme

We now consider the NOFT scheme. Since there is no
feedback of the instantaneous SNR from the receiver to the
transmitter, there is no suspension of transmission. Hence,
each hop transmits the message instantly without waiting, i.e.,
the transmission probability of the nth hop P ′

t = 1.
According to (1) and (4), the connection probability can be

computed as

P
′

c = P

(
pHn(

L
N

)α
+ 1

> βt

)
= exp

−βt

[(
L
N

)α
+ 1
]

p

 .

(23)

Replacing P ′

c with (23) into (8), the end-to-end connection
probability of the path can be computed as

Pc = exp

−Nβt

[(
L
N

)α
+ 1
]

p

 . (24)

Now, we consider the design problem of maximizing secure
transmission throughput by the joint design of Rt, Rs and N ,
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expressed as

P2 : max
Rt,Rs,N

U =
Pc (Rt, N)Rs

N
, (25a)

s.t. Pso (Rt, Rs, N) ≤ ϵ, (25b)
Rt ≥ Rs > 0, (25c)
N ≥ 1, (25d)

where we have explicitly shown the dependence of Pso and
Pc on Rt, Rs and N .

1) The Optimal Rate Parameters Rt and Rs for Fixed Hop-
Count N : To solve the above optimization problem P2, we
first consider the sub-problem that we get the optimal rate
parameters Rt and Rs for fixed hop-count N . As explained
before, this sub-problem has its important physical meaning:
how to optimally design the encoding rates for a given network
setting.

Similar to the OFT case, the optimal design needs to satisfy
(14). Then, the optimal values of Rt and Rs should satisfy
(16).

Under this condition, we can reformulate the optimization
problem P2 as

P2′ : max
Rt

U =
(Rt −Re)exp

[
−K4

(
2Rt − 1

)]
N

, (26a)

s.t. Rt > Re, (26b)

where K4 =
N[( L

N )
α
+1]

p ; Re is a function of N , whose
explicit expression can be found in (16).

Theorem 3: Secure transmission throughput U is a quasi-
concave function of the rate of the transmitted codewords Rt.
Then, the optimal value of Rt and Rs to maximize U are given
as

R∗
t = Re +

1

ln 2
W0

(
2−Re

K4

)
, (27)

and

R∗
s =

1

ln 2
W0

(
2−Re

K4

)
. (28)

Proof: See Appendix F.

Comparing with the optimal coding rate parameters for the
OFT scheme in Theorem 2, we see that the expressions of
R∗

t and R∗
s are very similar between the OFT scheme and the

OFT scheme. The only but important difference is between
the parameter K2 and K4. Specifically, K4 = NK2.

Corollary 4: As p grows to infinity, the optimal value of Rt

goes to infinity and the optimal values of Rs and U converge
to constants, given as

R∗
s =

1

ln 2
W0

(
1

K5

)
, (29)

and

U∗ =
1

N ln 2
W0

(
1

K5

)
exp

[
−K5 exp

[
W0

(
1

K5

)]]
,

(30)

where K5 = 2N
α

[(
L
N

)α
+ 1
]
W0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
.

Proof: See Appendix G.

Again, we see that the throughput improvement from in-
creasing the transmit power vanishes as the transmit power
goes large.

2) The Optimal Hop-Count N : With the obtained explicit
expressions of R∗

t and R∗
s , in the following, we study how to

design the number of hops N of the path. Replacing Rt with
(27), then the optimization problem P2′ can be rewritten as:

P2′′ : max
N

U =
W0

(
2−Re

K4

)
N ln 2

× exp

[
−K4

(
2
Re+

1
ln 2W0

(
2−Re
K4

)
− 1

)]
,

(31a)
s.t. N ≥ 1, (31b)

where Re and K4 are functions of N , whose explicit expres-
sions can be found earlier. Again, this problem is difficult to be
solved analytically. Nevertheless, it is of minimal complexity
to numerically find the optimal N as explained before.

IV. NUMERICAL RESULTS

In this section, we present numerical results on secure
transmission throughput and evaluate how different system
parameters impact the secure transmission design. We consider
a multihop wireless network in which legitimate nodes are
placed uniformly on a line in the center of the network. The
source node is placed at the origin and the destination is
located at (50m, 0). The eavesdroppers are randomly distribut-
ed according to a uniform distribution in the entire network
of size 2000m × 2000m. The eavesdroppers’ distribution is
independent from hop to hop. Unless otherwise stated, we
use the following settings to obtain the numerical results:
L = 50m, ϵ = 0.05, λe = 10−5, α = 3, p = 100dB
(which corresponds to a practical (sensor-like device) scenario
with transmit power of 0dBm and a receiver noise power of
-100dBm). Note that although p is said to denote the transmit
power, it actually presents the transmitter-side SNR due to the
normalization in the receiver noise power.

A. Performance of Secure Transmission

We first show the impact of different system parameters
on the design of the encoding rates as well as the secure
transmission throughput.

Fig. 2 presents the secrecy performance of the system
under fixed hop-count N versus the transmit power p for the
case of OFT scheme. As p increases, the received power at
eavesdroppers increases as well. To maintain the same level of
secrecy, the legitimate nodes need to increase the randomness
in the wiretap code, i.e., Re, which indirectly requires an
increase in Rt. This explains the trend seen in the two sub-
figures on the left. Also, we see that the slopes of Rt and Re

are the same as p increases above 70dB, which explains why
Rs = Rt−Re is a constant for p above 70dB, hence a constant
throughput U , which validates our analysis in Proposition 3.
Comparing the throughput with different number of hops, we
see that the network with 5 hops performs best among the
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Fig. 2. Performance of secure transmission under fixed hop-count N versus
the transmit power p for the case of OFT scheme. The system parameters are
L = 50m, ϵ = 0.05, α = 3, λe = 10−5.

three different choices of hop-count, indicating that there is
an optimal number of hops.

Fig. 3 presents the secrecy performance of the system under
fixed hop-count N versus the transmit power p for the case of
NOFT scheme. Similar trends are observed as in Fig. 2, hence
the results validate Proposition 4. Looking at the throughput
sub-figure, we see that the network with a single hop, i.e.,
direct transmission, performs very well in this case.

Fig. 4 compares the secure transmission throughput between
the OFT and NOFT schemes. As expected, the OFT scheme
outperforms the NOFT scheme to a large extent. This high-
lights the importance of implementing the one-bit feedback for
the receiver to inform the transmitter about the current channel
condition. By focusing on a single curve in the figure, we can
find the optimal hop-count in each scheme: the optimal N
for the OFT scheme is 5 while the optimal N for the NOFT
scheme is 2.

B. Optimal Number of Hops

We now explicitly study the optimal hop-count and the
resulting secure transmission throughput.

Fig. 5 presents the optimal hop-count versus the transmit
power p. As shown in figure, the hop-count of both the OFT
and NOFT schemes decrease as the transmission power p
increases. This is somewhat intuitive because more transmit
power means less hops needed for the end-to-end communi-
cation. In addition, more transmit power means better received
signal quality at the eavesdroppers for each hop. To avoid the
degradation in secrecy, less number of hop (i.e., less number
of transmissions) is desired. It is also important to note that the
optimal hop-count quickly reaches a constant as p increases.
For example, the optimal N reaches and stays at 5 when
p = 50dB for the OFT scheme and it reaches and stays at 2
when p = 55dB for the NOFT scheme. It is worth mentioning
that the practical range of p is orders of magnitude higher than
50dB. For example, p = 100dB is a practical value for sensor-
like device with a transmit power of 0dBm and a receiver

10 40 70 100 130
0

10

20

30

40

p(dB)

R
t

 

 

N=1

N=5

N=10

10 40 70 100 130
0

0.5

1

1.5

p(dB)

R
s

 

 

N=1

N=5

N=10

10 40 70 100 130
0

10

20

30

40

p(dB)

R
e

 

 

N=1

N=5

N=10

10 40 70 100 130
0

0.02

0.04

0.06

p(dB)

U

 

 

N=1

N=5

N=10

Fig. 3. Performance of secure transmission under fixed hop-count N versus
the transmit power p for the case of NOFT scheme. The system parameters
are L = 50m, ϵ = 0.05, α = 3, λe = 10−5.
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Fig. 4. The secure transmission throughput of both the OFT and NOFT
schemes versus hop-count N . The system parameters are L = 50m, ϵ = 0.05,
α = 3, p = 100dB, λe = 10−5.

noise power of -100dBm. Therefore, for practical purposes,
we expect that the optimal number of hops are very stable and
insensitive to the change in the transmit power. Fig. 6 presents
the secure transmission throughput achieved using the optimal
hop-count. Again, we see that the throughput is constant for
practical ranges of p. The secrecy performance of OFT scheme
is always better than that of the NOFT scheme.

Fig. 7 presents the optimal hop-count N versus the density
of the eavesdropper λe. As the density of the eavesdropper λe

increases, the optimal number of hops increases. This is not
intuitive to understand because more hops means more chances
for eavesdropping. The reason why having more hops does not
degrade secrecy is due to the fact that more hops reduces the
distance of communication among the legitimate nodes which
in turn allows a much larger randomness to be added into the
wiretap code to fight against eavesdropping while still achiev-
ing the same level of communication performance. In short, the
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Fig. 5. The optimal hop-count N versus the transmit power p. The system
parameters are L = 50m, ϵ = 0.05, α = 3, λe = 10−5.
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Fig. 6. The optimal secure transmission throughput U versus the transmit
power p. The system parameters are L = 50m, ϵ = 0.05, α = 3, λe = 10−5.
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Fig. 7. The optimal hop-count N versus the density of the eavesdropper λe.
The system parameters are L = 50m, ϵ = 0.05, α = 3, p = 100dB.

benefit of allowing more randomness in the code outweighs the
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Fig. 8. The optimal secure transmission throughput U versus the density of
the eavesdropper λe. The system parameters are L = 50m, ϵ = 0.05, α = 3,
p = 100dB.

drawback of causing more chances for eavesdropping. Fig. 8
presents the secure transmission throughput achieved by using
the optimal hop-count versus the density of the eavesdropper.
When the density of eavesdroppers is very low, the NOFT
scheme performs as good as the OFT scheme. When more
eavesdroppers are present, the performance of NOFT quickly
degrades and becomes much worse than the OFT scheme.

V. CONCLUSION

In this paper, we investigated the secure transmission prob-
lem in a linear multihop network with the help of the relays
using randomize-and-forward (RaF) relaying strategy in the
presence of randomly distributed eavesdroppers. Under an end-
to-end secrecy outage probability constraint, we formulated the
design problem of maximizing secure transmission throughput
by the joint design of the number of hops and the rate
parameters of the wiretap code. Both an on-off transmission
(OFT) scheme and a non-on-off transmission (NOFT) scheme
were studied. Our results give insights into the impact of the
system parameters on the secure transmission throughput. For
practical ranges of SNR, we observed that the optimal number
of hops as well as the secure transmission throughput remains
constant and does not change if more transmit power is used.
Our results provide design guidelines for determining the best
transmission strategy and the best network configuration in a
linear multihop network.

APPENDIX A
PROOF OF THEOREM 1

According to (2) and (6), the secrecy outage probability of
the nth hop for both NOFT and OFT schemes can be computed
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as

P
′

so = P (SNRmax
ne > βe)

= P
(
max
e∈Φne

{
pSne

|Xne|α + 1

}
> βe

)
= 1− EΦne

[ ∏
e∈Φne

{
1− exp

[
−βe(|Xne|α + 1)

p

]}]
.

(32)

According to [28], the probability generating functional
(PGFL) for a homogeneous PPP is given as

EΦe

[ ∏
e∈Φe

f (e)

]
= exp

[
−λe

∫
R2

1− f (e) de
]
. (33)

Using (33), (32) can be rewritten as

P
′

so = 1− exp

[
−λe

∫
R2

exp

[
−βe(|Xne|α + 1)

p

]
de
]
. (34)

Changing to polar coordinates, (34) can be turned to

P
′

so = 1− exp

[
−2πλe

∫ +∞

0

exp

[
−βe(re

α + 1)

p

]
re dre

]
.

(35)

Then, (35) can be computed as

P
′

so = 1− exp

[
−K1

(
βe

p

)− 2
α

exp

[
−βe

p

]]
. (36)

Replacing P ′

so with (36) into (9), the end-to-end secrecy outage
probability of the path can be computed as

Pso = 1− exp

[
−NK1

(
βe

p

)− 2
α

exp

[
−βe

p

]]
. (37)

This completes the proof.

APPENDIX B
PROOF OF COROLLARY 1

We denote the locations of the eavesdroppers in the fixed
eavesdroppers case by Φe. Then, the end-to-end secrecy outage
probability of the path can be expressed as

Pso fixed =P
(
max
e∈Φe

{
max

n=1,...,N
{SNRne}

}
> βe

)
=1− P

(
max
e∈Φe

{
max

n=1,...,N
{SNRne}

}
< βe

)
=1− EΦe

[ ∏
e∈Φe

N∏
n=1

{
1− exp

[
−|Xne|α + 1

p/βe

]}]
.

(38)

Using PGFL (33), (38) can be rewritten as

Pso fixed = 1− exp

[

−λe

∫
R2

1−
N∏

n=1

(
1− exp

[
−βe(|Xne|α + 1)

p

])
de

]
.

(39)

Lemma 1: Let 0 < ak (k = 1, 2, . . . , n) < 1 be arbitrary
positive constants. For an arbitrary positive integer n,

n∏
k=1

(1− ak) ≥ 1−
n∑

k=1

ak. (40)

Proof: We assume fn =
n∏

k=1

(1− ak) and gn = 1 −
n∑

k=1

ak. Then, when n = 1, f1 = g1 = 1 − a1. When n = 2,

f2 − g2 = a1a2 > 0.
We assume fj−gj > 0 when n = j. Then, when n = j+1,

we have

fj+1 =

j+1∏
k=1

(1− ak)

> gj(1− aj+1)

= gj+1 + aj+1

j∑
k=1

ak

> gj+1. (41)

So we can conclude that fn is greater than gn for an
arbitrary positive n ≥ 1.

Applying Lemma 1, we can obtain an upper bound of (39)
given as

Pso fixed ≤ 1− exp

[
−λe

∫
R2

N∑
n=1

exp

[
−|Xne|α + 1

p/βe

]
de

]

= 1− exp

[
−NK1

(
βe

p

)− 2
α

exp

[
−βe

p

]]
= Pso.

(42)

This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

The first derivative of U w.r.t. Rt is computed as:

dU
dRt

=

[
1− ln 2 K2 2Rt (Rt −Re)

]
exp

[
−K2

(
2Rt − 1

)]
N

.

(43)

Let the first derivative equal to zero, i.e.,

1− ln 2 K2 2Rt (Rt −Re) = 0. (44)

The value of Rt that satisfies the above equality is given as

Rt = Re +
1

ln 2
W0

(
2−Re

K2

)
. (45)

Also, the second derivative of U w.r.t. Rt is computed as:

d2U
dRt

2 =
ln 2 K2 2Rt

N
exp

[
−K2

(
2Rt − 1

)]
×
[
−2− ln 2 (Rt −Re)

(
2RtK2 − 1

)]
. (46)
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Replacing Rt with (45), (46) can be rewritten as

d2U
dRt

2 =
ln 2 K2 2

Re+
1

ln 2W0

(
2−Re
K2

)
N

× exp

[
−K2

(
2
Re+

1
ln 2W0

(
2−Re
K2

)
− 1

)]
×
(
−1−W0

(
2−Re

K2

))
< 0. (47)

Thus U is quasi-concave in Rt. Since 1
ln 2W0

(
2−Re

K2

)
> 0

is satisfied, we can easily obtain that the constraint (17b) is
also satisfied. Hence, the obtained value of Rt is optimal to
maximize U.

Also, combining (16) and (45), the optimal value of Rs to
maximize U can be computed as

Rs =
1

ln 2
W0

(
2−Re

K2

)
. (48)

This completes the proof.

APPENDIX D
PROOF OF COROLLARY 2

From the explicit expression of R∗
t , it is not so intuitive to

derive the conclusion. In the following, we show the detail
procedure of the proof.

Since W0 (x) is an increasing function of x when x > 0,
we can easily derive that Re is also an increasing function of
N from the explicit expression of Re (16).

Lemma 2: Let 0 < C be an arbitrary positive constant.
Then Y = W0

(
1

C∗z
)
+ ln (z) is an increasing function of

z when z > 0.
Proof: The first derivative of Y w.r.t. z is computed as:

dY
dz

=
1

z + z ∗W0

(
1

C∗z
) > 0. (49)

So Y is an increasing function of z when z > 0.

Applying Lemma 2, we can obtain that R∗
t is an increasing

function of Re by replacing z = 2Re and C = K2 in Y.
Since K2 is an decreasing function of N , then we can

conclude that Rt is an increasing function of N .
When N → +∞, Re → +∞ and K2 = 1

p . Then

R∗
s = R∗

t −Re =
1

ln 2
W0 (0) = 0. (50)

This completes the proof.

APPENDIX E
PROOF OF COROLLARY 3

Replacing Re and K2, (19) can be rewritten as

R∗
s =

1

ln 2
W0

 p[(
L
N

)α
+ 1
] [

p 2
αW0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
+ 1

]
 .

(51)

As p → +∞, (51) can be simplified as

R∗
s =

1

ln 2
W0

 1

2
α

[(
L
N

)α
+ 1
]
W0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
 ,

(52)

which is a constant. With this result, it is easy to see that
R∗

t → +∞ as p → +∞ because Re → +∞ as p → +∞.
Also, the transmission probability P ′

t can be rewritten as

P
′

t = exp
[
−K22

R∗
s+Re −K2

]
. (53)

When p → +∞,

K22
Re =

[(
L
N

)α
+ 1
] [

p 2
αW0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
+ 1

]
p

=
2

α

[(
L

N

)α

+ 1

]
W0

α

2

[
ln 1

1−ϵ

NK1

]−α
2

 , (54)

K2 =

(
L
N

)α
+ 1

p
= 0. (55)

Then, (53) can be simplified as

P
′

t = exp

[
− 2

α

[(
L

N

)α

+ 1

]
W0

α

2

[
ln 1

1−ϵ

NK1

]−α
2


× exp

[
W0

(
1

2
α

[(
L
N

)α
+ 1
]
W0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

))]].
(56)

Hence, throughput U∗ can be expressed as

U∗ =
1

N ln 2
W0

 1

2
α

[(
L
N

)α
+ 1
]
W0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)


× exp

[
− 2

α

[(
L

N

)α

+ 1

]
W0

α

2

[
ln 1

1−ϵ

NK1

]−α
2


× exp

[
W0

(
1

2
α

[(
L
N

)α
+ 1
]
W0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

))]].
(57)

This completes the proof.

APPENDIX F
PROOF OF THEOREM 3

According to Theorem 2, we can derive that secure trans-
mission throughput U is a quasi-concave function of the rate
of the transmitted codewords Rt by replacing K2 with K4.
Then, the optimal value of Rt and Rs to maximize U are
given as

R∗
t = Re +

1

ln 2
W0

(
2−Re

K4

)
, (58)
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and

R∗
s =

1

ln 2
W0

(
2−Re

K4

)
. (59)

This completes the proof.

APPENDIX G
PROOF OF COROLLARY 4

Replacing Re and K4, (28) can be rewritten as

R∗
s =

1

ln 2
W0

 p

N
[(

L
N

)α
+ 1
] [

p 2
αW0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
+ 1

]
 .

(60)

As p → +∞, (60) can be simplified as

R∗
s =

1

ln 2
W0

 1

2N
α

[(
L
N

)α
+ 1
]
W0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
 ,

(61)

which is a constant. With this result, it is easy to see that
R∗

t → +∞ as p → +∞ because Re → +∞ as p → +∞.
Also, the transmission probability P ′

t can be rewritten as

P
′

t = exp
[
−K42

R∗
s+Re −K4

]
. (62)

When p → +∞,

K42
Re =

N
[(

L
N

)α
+ 1
] [

p 2
αW0

(
α
2

[
ln 1

1−ϵ

NK1

]−α
2

)
+ 1

]
p

=
2N

α

[(
L

N

)α

+ 1

]
W0

α

2

[
ln 1

1−ϵ

NK1

]−α
2

 , (63)

K4 =
N
[(

L
N

)α
+ 1
]

p
= 0. (64)

Then, (62) can be simplified as

P
′

t = exp

[
− 2N

α

[(
L

N

)α

+ 1

]
W0
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Hence, throughput U∗ can be expressed as
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(66)

This completes the proof.
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