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A b strac t

Graphics Processing Units (GPUs) offer orders of magnitude more floating-point 
performance than conventional processors. Traditionally, however, accessing this 
performance for general purpose programming has required the user to cast their 
problem into a graphical framework of nodes and vertices. In 2007 this situation 
changed dramatically when NVIDIA released its CUDA programming model for 
GPUs.

The objective of this thesis is to assess the viability of using an NVIDIA 
GeForce 8800 GTX GPU and the CUDA programming model for statistical ma-
chine learning (SML) applications.

At the heart of the SML method is the iterative solution of a set of equations. 
Each iteration involves two matrix-vector products, where the matrix is generally 
sparse and does not change between iterations. Key issues considered in this 
work are what fraction of the SML application should be migrated to the GPU, 
the cost of moving data to and from the GPU, the efficient implementation of 
Sparse Matrix-Vector products (SpMV) on the GPU, and the relative merits of 
using sparse versus dense matrix routines.

In implementing the SpMV routine on the GPU a range of different CUDA 
options were considered, including the type of memory used to store different 
data quantities, the use of float, float2 and float4 data types, the number of 
threads per block, the use of coalesced memory reads etc. Following a preliminary 
performance characterisation of the 8800 GTX, 335 different SpMV implementa-
tions were constructed and their performance tested using 735 matrices from the 
Florida sparse matrix collection. From this a small number of best performing 
implementations were identified and an attem pt made to create a blackbox im-
plementation that would correctly select the optimal implementation for a given 
sparse matrix type.

The blackbox SpMV routine along with dense matrix counterparts were then 
integrated with the SML application. The times to complete a variety of problems



were compared when using the CPU only or CPU and GPU, and a detailed 
breakdown of the various parts of the computation given.
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Chapter 1 

Introduction

For the past few years, the demand for more realistic games in an ever growing 
market has led GPU manufacturers to produce high end graphics cards that are 
able to render complex scenes at very fast frame rates. As graphics problems are 
highly parallel in nature, GPUs have been designed as massively parallel archi-
tectures. Furthermore, to deal with the developments in graphics programming 
and the increasingly complex processing, GPUs have gradually made a transition 
from fixed-function pipeline devices that are only able to perform fixed opera-
tions, to general purpose processors with some special graphics oriented units. 
The large commodity GPU market and ruthless competition have realised rel-
atively low cost devices with very high Floating-Point Operations per Second 
(FLOP/s) ratings.

GPUs use Single Instruction Multiple Data (SIMD) architectures to minimise 
control logic and power requirements, providing a greater number of FLOP/s per 
watt than CPUs. CPUs attem pt to mask memory latencies with large amounts of 
cache comprising a significant portion of the CPU die space [25, 30]. In contrast, 
GPUs have minimal amounts of cache, relying on the ability to execute thousands 
of threads in parallel, masking memory latencies by switching between the large 
number of threads [42]. The die space saved by these methods can be invested 
in Arithmetic Logic Units (ALUs). The overall result is a less versatile general 
purpose processor that has a much lower cost per FLOP (both in terms of price 
and power requirements) and a much higher peak FLO P/s rating. For the past 
few years, the gap between CPUs and GPUs has been growing in this regard [46].

Throughout the evolution of GPUs, the difficulty of programming these de-
vices has deterred wide adoption by the scientific community. Until recently, 
GPUs only supported domain specific, graphics oriented languages. Describing
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2 CHAPTER 1. INTRODUCTION

scientific problems in terms of graphics primitives is a daunting task that requires 
a strong understanding of graphics programming. Higher level but still domain 
specific languages were designed to make programming GPUs easier [35, 27, 47]. 
Yet, while General Purpose computation on GPUs (GPGPU) became easier, the 
hardware itself hampered GPGPU by not supporting many of the features used in 
general purpose programming such as scatter operations, thread synchronisation 
and shared memory [13].

ATI and NVIDIA (two of the largest GPU manufacturers) eventually released 
GPUs with completely programmable processors [45]. The new unified architec-
tures also provided the missing hardware features (scatter operations, shared 
memory, synchronisation) that were required for GPGPU. To facilitate GPGPU 
programming for these GPUs, ATI AND NVIDIA released programming toolkits 
for them [42, 4]. However while ATI released an assembly like language, NVIDIA 
released a C /C + +  syntax compatible language named CUDA, which allowed the 
programmer to mix CPU and GPU code in the same module. NVIDIA and 
to a lesser extent ATI, finally presented the scientific community with easy to 
program, massively parallel multi-threaded devices with many of the hardware 
capabilities needed to efficiently execute scientific applications.

In 2007, GPU hardware lacked double-precision floating-point support which 
held back its adoption by many within the scientific community [23]. Current 
GPUs from both manufacturers offer double-precision but with lower FLO P/s 
the for single precision. ECC memory has not been announced for any upcoming 
products by either of the manufacturers.

For many scientific applications, the lack of ECC memory and double-precision 
are not important. The application can be robust enough to deal with bit flips 
and not all applications require double-precision. For many other applications, 
numerical methods can be used to produce high precision results [44] and still 
perform better on the GPU than the CPU [23].

Machine learning (ML) is a branch of artificial intelligence, that attempts to 
develop algorithms that will allow applications to modify themselves based on 
some analysis of data. The term “statistical” in Statistical Machine Learning 
(SML) reflects the emphasis on statistical analysis and methodology, which is a 
widely used approach in modern machine learning. Applications for SML include 
natural language processing [3], syntactic pattern recognition, search engines [51], 
medical diagnosis [2], bioinformatics [16], stock market analysis [26], classifying 
DNA sequences [58], speech and handwriting recognition [5], object recognition 
in computer vision [32, 34], game playing and robot locomotion [29].
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Internet searching is a high profile SML application. Companies like Google, 
Yahoo and Microsoft all spend enormous amounts of money on server hardware 
and power costs of running the servers. Solutions that lower the cost of com-
putations either by increasing the throughput of systems with the same power 
requirements or decreasing the power requirements of a system that maintains 
the same throughput are of huge benefit in terms of running costs. GPUs offer 
potential solutions in this area.

The Bundle Methods for Regularised Risk Minimisation (BMRM) application 
is an open source, modular and scalable convex solver for many machine learning 
problems [54]. A portion of these problems are not affected by the use of single 
precision. This SML application’s computation is dominated by matrix-vector 
products which depending on the nature of the datasets can be either dense and 
sparse. Dense matrix-vector products are easily parallelised and have been shown 
to perform well on GPUs [21, 33, 31]. Sparse matrix-vector products on GPUs 
have not been as successful as their dense counterparts, but the new unified ar-
chitectures are potentially flexible enough to provide performance improvements 
for Sparse Matrix-Vector products (SpMV) on the GPU. SpMV on GPUs will be 
discussed in more detail in the next chapter.

CUDA provides a Basic Linear Algebra Subprograms (BLAS) library 
(CUBLAS [40]) that is utilised to evaluate matrix-vector products on the GPU. 
NVIDIA did not provide SpMV routines at the start of this work and so SpMV 
routines were developed and evaluated on the GPU as part of this work. This 
work is based on the GeForce 8800 GTX as it was the best performing product 
from NVIDIA at the start of this work.

Chapter 2 presents background material on GPGPU, CUDA, hardware spec-
ification of the GeForce 8800 GTX GPU, statistical machine learning and sparse 
matrices. The bandwidth between the GPU and host along with the internal 
GPU memory bandwidth were measured and are presented in chapter 3. Chap-
ter 3 also presents a detailed investigation of dense matrix-vector products on 
the GPU. Chapter 4 outlines the design process of the SpMV implementations 
and provides detailed analysis of various SpMV implementations. An attempt 
to select the best implementation based on matrix characteristics is also investi-
gated. Chapter 5 presents the results from integrating GPU code with the BMRM 
application and finally chapter 6 presents conclusions and future directions.



Chapter 2 

Background

This section presents background information on General-Purpose computation 
on GPUs (GPGPU), details of the GeForce 8800 GTX GPU and the CUDA 
programming environment used in this work. This section also discusses sparse 
matrices and provides more details on the SML algorithm used in the BMRM 
application.

2.1 P rogram m in g G P U s

GPUs were first introduced as non-programmable, fixed-function pipelines with 
specific functions. The GPU starts with a scene defined by a list of coordinates 
call vertices. Each vertex undergoes a series of transformations with the end 
being a “pixel” that will then be displayed on the screen. Vertices that will not 
end up on the screen (they could be hidden by other vertices for example) are 
ignored. Each pixel is then given a color based on attributes such as texture and 
lighting and the the end result is a frame to be displayed on the screen.

Later, products were released [46] that contained embedded programmable 
components. The series of transformations applied to the vertices as well as the 
pixel colouring could be programmed in the form an assembly language. These 
programs are referred to as vertex shaders and pixel or fragment shaders.

As the instructions sets of these embedded components grew, so did the com-
plexity and length of the shader programs. It soon became unrealistic to write 
shaders in the assembly level languages provided by the vendors. This gave rise 
to higher level languages that varied in their specification yet all attempted to 
make shader programming easier [45].

Higher level languages made GPGPU a lot easier, but they were still de-
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signed from a graphics perspective so were not easily accessible to scientists with 
a non-graphics background. Indeed GPGPU with these languages required a 
considerable amount of graphics knowledge in order to map a general problem 
into a graphics problem solvable with graphics APIs. To simplify the process of 
writing general purpose code for GPUs, GPGPU languages came into existence. 
The following subsections consider some of the languages that are available for 
GPGPU.

A much wider survey of available options for programming GPUs has been 
published by Owens et al. [46] in 2007. This survey summarises and analyses the 
latest research in GPGPU.

2.1.1 Shader Languages

This class of languages facilitates the writing of shaders but with added portability 
and programmer productivity. A separate shader program must be written for 
each of the vertex and fragment processors. These languages also differ in many 
aspects that will be illustrated in the relevant sections.

Cg

Cg (or C for graphics) [35] differs from the other languages in this section in 
that it has a clear separation between code meant to run on the CPU and code 
intended for the GPU. Cg attempts to find a balance between providing the whole 
feature set of C and providing a maximum shader feature set. For example it 
omits many high level shader-specific facilities yet provides the same operators 
as C (but ones that accept and return vectors as well as scalars). Cg is compiled 
into an assembly level language for either OpenGL [53] or Direct3D [11].

O penG L  S hading  Language

OpenGL, an open standards group, released the OpenGL Shading Language 
(GLSL) [27] also know as GLslang as part of the OpenGL 2.0 Specification. This 
language enables direct compilation of C-like programs to graphics hardware ma-
chine code. Unlike Cg and HLSL, there is no assembly level language involved. 
The compiler is embedded into the graphics driver. OpenGL is supported on a 
wide spectrum of operating systems and graphics cards and is therefore a more 
open and compatible language than either Cg or HLSL [27].
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The D irect 3D High-Level Shading Language

The Direct 3D High-Level Shading Language (HLSL) [47] was developed in close 
partnership with NVIDIA and is similar in many aspects to Cg. As part of 
Direct3DX, it only compiles to Direct3D and is only supported on Microsoft 
operating systems [47].

2.1.2 Languages for G eneral Purpose C om puting

These languages differ from the previous languages in that they are more suited 
to general purpose computing. However they offer the programmer less control 
over the graphics pipeline.

Shader M etaprogram m ing Language

Sh is both a shading language and a runtime API to use the Sh shaders [37]. It 
is embedded in C + +  as a domain specific language and defines special tuple and 
matrix types that are used extensively in shader code. Sh can be used to write 
vertex or fragment shaders for a GPU in C /C + + . The code is then compiled at 
runtime to the target device [37]. Sh can also treat shaders as first class objects 
and by combining connection and combination features in Sh allow the creating 
of complex stream programs for GPGPU computing [36]. In Sh there is no clear 
distinction between GPU and CPU code, nor is there any explicit mechanism to 
move data to and from the GPU memory.

Brook and B rookG PU

Brook is an extension of standard ANSI C and is designed to incorporate the ideas 
of data parallel computing and arithmetic intensity into a familiar and efficient 
language. BrookGPU, a GPU targeted version of Brook was developed by Buck 
et al. [15] based on the idea that a GPU can be viewed as a stream processor.

Brook differs from all previous languages in that separate shaders for the 
vertex and fragment processor are not needed. Instead a kernel is written that 
operates on every element in a stream. BrookGPU provides a level of abstraction 
that eliminates the need to view computations on the GPU in terms of graphics 
operations.BrookGPU also virtualises two aspects which are critical to stream 
computing, the number of kernel outputs and stream dimensions and size. If 
the shader program requires more outputs than what the hardware supports 
for example, BrookGPU will compile the program into several smaller programs
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that run in turn on the GPU to accommodate the extra outputs needed. This 
virtualisation can also be used to provide complex data types not supported by 
the hardware [15].

C for CUDA

CUD A is an architecture and programming model for parallel computing devel-
oped by NVIDIA. NVIDIA provides a C like API called C for CUDA. The CUDA 
architecture, programming model and development environment are expanded 
upon in section 2.2.

2.2 T arget H ardw are, L anguage, E xecu tion  and  

P rogram m in g  M od el

The GeForce 8 Series GPUs were the first NVIDIA GPUs to be based on the new 
“unified architecture” . Figure 2.1 illustrates the architecture of the GeForce 8800 
GTX used in this work. At the heart of the device lies the Streaming Processor Ar-
ray (SPA) consisting of eight Texture Processor Cluster (TPC) units. Each TPC 
contains two Streaming Multiprocessor (SM) units and a texture unit. The SM in 
turn consists of eight Stream Processors (SP), a special function unit, a 8192 wide 
register file and 16KB of shared memory. When running CUDA applications each 
SP (clocked at a default of 1.35 GHz) is able to issue one multiply-add (MAD) in-
struction per cycle. This gives each SM a peak performance of 1.359 x 8 x 2-f230 =  
20.1 GFLOP/s, and the GeForce 8800 GTX with 16 SMs an aggregate perfor-
mance of 321.6 GFLOP/s. The GeForce 8800 GTX has 768 MB of global, frame 
buffer memory tha t can be read from or written to by the host CPU as well as the 
GPU. The 768MB of GDDR3 memory is clocked at 900MHz and is accessed via 
a 384-bit (48 byte) wide interface in 128-bit wide words. This gives a theoretical 
peak bandwidth of (48 bytes x 900 x 106 M H z  x 2 (DDR)) -y 230 =  80 GB/s.

NVIDIA provides CUDA, a software programming model and a programming 
environment that enables the creation of parallel applications for these new uni-
fied GPUs. The CUDA runtime library exposes parts of the GPU and hides 
others, with the overall result of presenting a massively parallel co-processor to 
the programmer. The CUDA toolkit provides the programmer with methods 
to manage memory transfers between the GPU and the host, synchronisation 
barriers and methods to control the invocation of code on the GPU. Provided 
with CUDA are Basic Linear Algebra Subprograms (BLAS) and Fast Fourier
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Figure 2.1: GeForce 8800 GTX architecture

Transform (FFT) implementations [40, 41] . The programming model, memory 
hierarchy and execution model defined by CUBA are expanded upon in the next 
sections.

2.2.1 The C U D A  Program m ing M odel

Writing applications for CUDA enabled GPUs involves copying data from the 
host to the GPU memory, invoking the GPU code (in the form of one or more 
kernels) and copying the results of the computation back to the host. CUDA 
provides methods to allocate memory on the GPU as well as methods to copy 
data between GPU memory and host memory. CUDA also provides functions 
to allocate page-locked memory. Bandwidth to and from page-locked memory is 
faster, as DMA transfers must be done from page-locked memory and having the 
data in page-locked memory saves the driver from having to copy it to page-locked 
memory before initiating the DMA transfer.

CUDA also provides the mechanisms to execute a kernel on the device. A 
kernel is a function call that is executed by all the threads launched on the GPU. 
Thousand of threads can be launched on the device. Threads are clustered into
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blocks of between 1 and 512 threads. The GeForce 8800 GTX can accommodate 
up to 64K x 64K blocks in what CUDA labels a grid.

Threads are automatically assigned an index so that different threads can 
fetch data from different memory locations. Each thread is then able to retrieve 
the dimensions of the grid and block as well as its thread index within its block 
and its block index within the grid. As an aid to the programmer, CUDA offers 
1, 2 or 3 dimensional indexing of the blocks if it would better suit the data. Only 
1 or 2 dimensional indexing of the grid is supported.

Listing 2.1: Example kernel and host invocation methods with use of 2D indexing
_ _ g l o b a l __v o i d  m a t  Ad d  ( f l o a t  A [ N ] [ N ] ,  f l o a t  B [ N ] [ N ] ,  f l o a t  C [ N ] [ N ]  )
{

i n t  i =  b l o c k l d x . x  * b l o c k D i m . x  +  t h r e a d l d x . x ;  
i n t  j =  b l o c k l d x . y  * b l o c k D i m . y  +  t h r e a d l d x . y ;  
i f  ( i <  N && j <  N)

C [ i ] [ j ]  =  A [ i ] [ j ] +  B [ i  ] [ j  ] ;
}

i n t  m a i n ( )
{

/ *  s e t  t h e  b l o c k s  t o  c o n t a i n  1 6 x 1 6  t h r e a d s  * /
d i m 3  d i m B l o c k ( 1 6 ,  1 6 ) ;
/ *  t o t a l  n u m b e r  o f  b l o c k s  d e p e n d s  N * /
d i m 3  d i m G r i d ( ( N  +  d i m B l o c k . x  — 1) /  d i m B l o c k . x ,  (N +  d i m B l o c k . y  — 1) /  d i m B l o c k . y ) ;
/  * K e r n e l  i n v o c a t i o n  » /
m a t A d d  « <  d i m G r i d ,  d i m B l o c k  > » ( A ,  B,  C ) ;

}____________

Listing 2.1 shows an example of a kernel using 2 dimensional indexing along 
with the code to invoke the kernel. Each block is executed on a single Streaming 
Multiprocessor (SM). Within the SM each thread executes on an SP. The large 
register file allows the SM to create more threads than available SPs. The number 
of threads that can be resident on the SM depends on the threads resource usage in 
terms of registers and shared memory. In fact an SM can accommodate multiple 
blocks if there exists enough resources for all the threads in the multiple blocks.

2.2.2 GeForce 8800 G T X  M em ory Hierarchy

The GeForce 8800 GTX offers many different memory types, each with its ad-
vantages and disadvantages. These memories are summarised in table 2.1.

Each SM has 8192 on-chip registers that are shared between the multiple 
threads running on the SM. If the number of registers needed is not enough to 
support all the threads within a block, variables are stored in local memory which 
despite its name is off-chip. Local memory is local in scope only. Variables that 
spill out into local memory are physically stored in global memory (discussed 
in the next paragraph). In addition to the registers, each SM has 16KB of on-
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Table 2.1: Different Memory types available on the GeForce 8800 GTX GPU.

M em ory L o ca tio n C ach ed H o st A ccess G P U  A ccess Scope Lifetim e

R eg iste r O n-ch ip N /A N /A R /W O ne th re a d T h read

L ocal O ff-chip No N /A R /W O ne th re a d T h re a d

S h ared O n-ch ip N /A N /A R /W All th re a d s  in  a  block Block

G lobal O ff-chip No R /W R /W A ll th re a d s  +  h o st A p p lica tio n

C o n s ta n t O ff-chip Yes R /W R A ll th re a d s  +  h o st A p p lica tio n

T e x tu re O ff-chip Yes R /W R A ll th re a d s  +  h o s t A p p lica tio n

chip shared memory divided into 16 banks such tha t successive 32-bit words are 
assigned to successive banks. Bank conflicts will incur performance hits. In 
the absence of conflicts shared memory reads are as fast as register reads [42]. 
Registers and local and shared memory are accessible from the GPU only.

Global memory is the main memory type of the GPU. It is the largest memory 
space and provides read and write access from both the host via DMA and the 
SMs. Global memory is not cached, relying instead on the thousands of threads 
running on the GPU to mask latency. Global memory has a latency of 400 - 600 
cycles while a floating-point arithmetic instruction (ADD, MUL, SUB) has an 
issue latency of 4 cycles and a throughput of 8 operations per cycle [42]. The 
CUDA programming guide [39] states that in order to achieve optimal memory 
bandwidth, memory reads must be coalesced. This occurs when all 16 threads 
read from aligned, consecutive, memory addresses, and the hardware is able to 
transform the individual memory accesses into a number of 64-byte memory trans-
actions. Coalesced 32-bit reads result in one 64-byte transaction, coalesced 64-bit 
reads result in a single 128-byte transaction and coalesced 128-bit reads result in 
two 128-byte transactions. Non-coalesced 32-bit reads are an order of magnitude 
slower than coalesced 32-bit reads. The coalescing rules described here are for the 
8800 GTX GPU architecture. Latest generation GPUs have different (less strin-
gent) rules. More information can be found in the CUDA programming manual, 
which has an extensive section on memory coalescing [42].

Another available memory type is texture memory. Texture memory is not 
physically separate from global memory. However CUDA allows global memory 
to be accessed via the texture units in the SM. This enables the texture cache, a 
read-only cache shared by all SPs in the SM. The use of the texture cache speeds 
up reads to memory. On the other hand the texture cache is not kept coherent so
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changes to the memory after it has been cached are not reflected in the cache. This 
restricts the texture memory to a read only memory from the GPUs view-point. 
Texture cache is optimised for 2D spatial locality so accessing memory references 
that are closer together will result in better performance. Texture cache locality 
applies to accesses across threads first (since threads run in parallel), and accesses 
within the same thread last. With texture references a cache hit will lower the 
pressure on DRAM but will not lower fetch latency. The cache working set is 
between 6KB - 8KB per SM.

The GeForce 8800 GTX has 64KB of cached, constant memory. The cache of 
the constant memory is optimised for many threads accessing the same memory 
location. If all the threads executing concurrently on the SM (ie. within a half-
warp) read the same memory location, the cost after the original fetch is that of 
a register access.

Figure 2.2 illustrates the memory hierarchy described above. More details of 
the NVIDIA hardware can be found in [39].

Tread (0,0)

Shared Memory

Local ; lo ca l  
Memory

Block (0.0)

Constant Memory

Figure 2.2: CUDA memory model
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2.2.3 T h e  C U D A  E x ecu tio n  M odel

When a kernel is launched on the device, the number of threads, blocks and grids 
are all specified at launch time. These values may be calculated based on the 
problem size, passed as parameters at run time or set as constant values. The 
thread scheduler will schedule blocks to available SMs. Each SM may be allocated 
multiple blocks depending on the resource usage of the block. As previously 
indicated, SMs can accommodate more threads than SPs. The SM will then 
execute all the threads in batches of 32 threads. These 32 threads are called a 
warp. Each warp is free to diverge from the others with no penalty. The warp is 
actually executed in two sets of 16 threads each. The SM will continue to execute 
all threads until they have all terminated at which time any remaining blocks can 
be scheduled to it. There are no guarantees on the order in which threads are 
executed or which blocks are scheduled before others. The CUDA programming 
guide recommends launching a large number of blocks on the device to ensure 
that memory latencies can be masked.

Threads in the same block can synchronise or shared data via the on-chip 
shared memory. However, this is not possible between threads of different blocks 
as only threads within the same block can be guaranteed to be resident on the 
SM at the same time.

2.3 S ta tis tica l M achine L earning

One of the key objectives in Machine Learning (ML) is classification: given some 
patterns such as pictures of apples and oranges, and corresponding labels 
Ui, such as the information whether is an apple or an orange, to find some 
function /  which allows us to estimate y from x  automatically. Statistical Machine 
learning (SML) attempts to solve such problems with statistical methods. In this 
quest, convex optimisation 1 is a key enabling technology for many problems. For 
instance, Teo et al. [54] proposed a scalable convex solver for such problems. It 
is an iterative algorithm that involves guessing a solution vector te, using this to 
evaluate a loss function l(x,y, w) (that calculates a penalty based on the amount 
of error in the solution) and its derivative g = dwl(x,y ,w) ,  and then updating 
w accordingly. This process is repeated until a desired level of convergence is 
achieved (see Fig. 2.3). The majority of time is spent evaluating the matrix-

1A convex function has a single minima. Convex optimisation attempts to minimise a convex 
function.
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vector products, and the elements of matrix (X) do not change between iterations. 
This characteristic makes this application a good candidate for computing on the 
GPU as the cost of moving the matrix to the GPU can be amortised by successive 
matrix-vector products.

Initial guess w

Return w Test for 1 Iterative solver U ___________|
convergence updates w

Test for 
convergence

Iterative solver 
updates w

Figure 2.3: Iterative solver algorithm. The black boxes refer to matrix-vector 
operations which are likely to speed up the application the most if accelerated by 
a GPU

Many ML datasets are very sparse, as shown in Table 2.2. Exploiting the 
sparsity decreases the memory footprint of the matrix as well as the number of 
floating-point operations required for the matrix-vector product. Unfortunately 
it also introduces random memory access patterns and indirect addressing, which 
is likely to result in less efficient utilisation of a GPU’s hardware.

Table 2.2: Statistics for some typical ML datasets

Dom ain D a tase t Rows C olum ns N onzero E lem ents D ensity

Intrusion  D etection K D D C up99 3,398,431 127 55,503,855 12.86%
R anking N etF lix 480,189 17,770 100,480,507 1.17%

Text C ategorization R eu ters C l l 804,414 47,236 60,795,680 0.16%
Text C ategoriza tion A rxiv astro -ph 62,369 99,757 4,977,395 0.08%

2.4 Sparse M atrices

A matrix is considered to be sparse if many of its coefficients are zero and there 
exists an advantage to exploiting its zero coefficients. Whether exploiting the 
zero coefficients would lead to an advantage or not, is dependent on the number 
of zeros, their patterns and the underlying architecture of the machine used [19]. 
Many applications involve the use of sparse matrices. Conjugate gradient and
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multigrid solvers are often based on sparse matrix-vector products when used in 
fields such as computational fluid dynamics and mechanical engineering. Sparse 
matrices are also used in graph theory.

The exploitation of sparsity is achieved by discarding zero elements from the 
sparse matrix. By doing so the memory requirements and number of arithmetic 
operations needed for the matrix-vector product are greatly reduced. However, 
indirect random memory references are introduced as the index of each element 
must be explicitly stored in the sparse data structure and the memory reads from 
the vector will no longer be consecutive. Many different formats for storing these 
matrices have been designed to take advantage of the structure of the sparse 
matrix or the specificity of the problem from which they arise [50].

The Compressed Sparse Row (CSR) format is the most widely used of these 
formats [50, 10, 19]. The CSR format (also named Compressed Row Storage) 
stores non-zero elements in a dense vector va l. For each value in va l, its column 
index from the original matrix is stored in a dense vector of the same size ind at 
the same offset. A third array (p tr) carries the offset of the first element in every 
row. This is illustrated by figure 2.4. A Sparse Matrix-Vector products (SpMV) 
with a matrix in the CSR format is straightforward as shown by figure. 2.5.

• •

•

▼ T
val • 1*

! 1

• • ind 0 2 4 0 2  0 3  1

• •
ptr 0 2 3 5 | 7

Figure 2.4: CSR format

fo r  each row i  do
fo r  l= p t r [ i ]  to  p t r [ i + l ] - l  do

r e s f i ]  = re s  [i] + v a l [1] * v e c f in d f l] ]

Figure 2.5: pseudo-code for Sparse Matrix-Vector product (SpMV).

The most extensive evaluation of SpMV on current architectures is the work 
by Williams et al. [60], which examined the performance of SpMV kernels across
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a broad range of multicore architectures including a dual core AMD Opteron 
2214, a quad core Intel Clovertown processor as well as a dual socket STI Cell 
Blade system and the 8 core Sun Niagara2 processor. The work evaluated a 
range of optimisations for each of the architectures and analysed the performance 
bottlenecks for all the architectures showing that the memory bandwidth is the 
common limiting factor in SpMV performance. Only 14 datasets were evaluated 
and results showed a median performance of 2 GFLOP/s for both the AMD and 
Intel CPUs, a median performance of 3 GFLOP/s for the Niagara2 processor and 
6 GFLOP/s for the Cell Blade system.

2.5 Sparse M atrices on G P U s: P rev iou s W ork

SpMV has not been a popular candidate for implementation on GPUs. This is 
due to the irregular nature of the problem, characterised by indirect addressing 
(array 1 [array2[index]]) [56]. Two GPU implementations of SpMV were published 
at SIGGRAPH’03. Bolz et al. [13] defined sparse matrices in the Modified Sparse 
Row (MSR) format and were able to perform 120 SpMV operations per sec-
ond with a matrix containing 37k nonzero elements on a 500MHz GeForce FX 
GPU. That is equal to roughly 9 MFLOP/s. The second implementation was 
by Krüger et al. [31] targeting banded matrices and achieving a performance of 
about 110 M FLOP/s on an ATI Radeon 9800 GPU. In 2005 Ujaldon et al. [56] 
published SpMV results on a GeForce 6800. They achieved 222 MFLOP/s with 
the BCSSTK30 matrix (1036208 nonzero elements, stored in CSR format) from 
the Harwell-Boeing collection [20]. The Harwell-Boeing Sparse Matrix Collection 
is a set of standard test matrices arising from problems in linear systems, least 
squares, and eigenvalue calculations from a wide variety of scientific and engi-
neering disciplines. The majority of the matrices are less than 1000 x 1000 and 
the collection contains 292 matrices.

More recently in Graphics Hardware 2007, Sengupta et al. [52] published 
SpMV results based on an efficient segmented scan using CUDA. This work is 
most relevant to the present work as the authors used the same hardware and 
programming language. Sengupta et al. [52] reported SpMV performance of 215 
MFLOP/s for a 294,267 nonzero element matrix. These results are comparable 
to those published by Ujaldon et al. [56] almost 2 years prior. They are also just 
below that of CPU implementations at the time [52, 24].

Square matrices of size n x n  and e nonzero elements in CSR format (figure 2.4)
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were used for the experiments performed by Sengupta et al. [52]. The algorithm 
used requires additional f la g  and product temporary data structures with e 
entries each to be created. Matrix multiplication then proceeds in four steps.

1. The first kernel runs over all entries. For each entry, it sets the correspond-
ing f la g  to 0 and performs a multiplication on each entry: product[i] =  
val[i] * vec[ind[i]] .

2. The next kernel runs over all elements in p t r  and sets the head flag to 1 
for each f la g  [p tr [i]] through a scatter. This creates one segment per row.

3. A backward segmented inclusive sum scan is then performed on the e ele-
ments in product with head flags in flag .

4. To finish, a final kernel is run over all rows, adding the gathered value from 
product[i] to the result array.

While the implementation provided by Sengupta et al. [52] is very efficient in 
that it doesn’t waste any instructions on zero elements and is not dependent on 
matrix structure, it has a large overhead in terms of extra memory operations. 
Since the SpMV is a memory bound operation it suggests that optimising for less 
arithmetic operations by introducing more memory operations would not achieve 
favourable results. One memory fetch is the equivalent of 100 to 150 floating-
point adds or multiplies. In addition, the extra work that results from operating 
on zero elements might be an issue for lockstep SIMD architectures but is less 
relevant to the GeForce 8800 GTX since the warp architecture limits the effect 
of one warp on the other in terms of divergence.

An interesting question not considered in the paper is: If non-coalesced 32- 
bit memory reads are an order of magnitude slower than coalesced 32-bit and 
4 times slower than non-coalesced 128-bit reads, what are acceptable software 
designs that while increasing the number of memory references, still show a better 
overall memory bandwidth performance? 2

To the end of this thesis, two notable contributions in the area of sparse 
matrix-vector products on CUDA enabled GPUs were published. The first by 
Bell and Garland [9] investigated a variety of sparse matrix formats. Each of 
these formats requires an SpMV kernel and in the case of CSR format both a 
sequential and coalesced CSR implementation were created. The authors also

2We are grateful to the examiner for bringing to our attention, work by Satish et al published 
in “Designing efficient sorting algorithms for manycore GPUs”, IPDPS 2009
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investigated the use of texture memory and found a performance gain through its 
use. Both structured and unstructured matrices were considered. The structured 
matrices were composed of standard discretizations of Laplacian operations in 
1, 2 and 3 dimensions. The Unstructured matrices were represented by a set 
of 14 matrices taken from previous work by Williams et al [60]. In comparison, 
the work presented here is focused on a single sparse matrix format type (CSR), 
exhaustively studies the performance of all possible implementation options, uses 
a significantly larger number of sparse matrices, and makes an attempt to map 
directly from matrix attribute to optimal implementation. A more detailed com-
parison between this thesis and the work of Bell and Garland is presented in 
section 4.7.

The second contribution by Baskaran and Bordawekar [8] focuses solely on the 
CSR storage format. They identify four optimisations, i) exploiting synchronisa-
tion free parallelism, ii) optimised thread mapping, iii) optimised off-chip memory 
access, iv) exploiting data reuse. They evaluate their implementation using 19 
sparse matrices taken from the Florida sparse matrix collection [17]. They com-
pare their performance with that of Bell and Garland [9] and the NVIDIA CUDPP 
library [1] which has an SpMV implementation based on the segmented scan ap-
proach of Sengupta et al. [52]. Although more similar to the work presented here 
in that they focus exclusively on CSR format, it represents a more traditional ap-
proach to program optimisation that is less amenable to automation, has many 
fewer implementations, and uses many fewer test matrices.



Chapter 3

D ense M atrix-Vector 
Performance

At the heart of an SML application is a matrix representation of the learning 
datasets where each row of the matrix represents the values of all the attributes 
for a particular dataset. This matrix remains constant throughout the lifetime of 
the application. Each iteration of the application involves a normal and transpose 
product of the matrix (see fig. 2.3).

The objective is to offload the matrix-vector products to the GPU. The matrix 
will first be transferred to the GPU at the start of the application. Each matrix- 
vector computation will then consist of:

1. Copying the vector to the GPU.

2. Computing the matrix-vector product on the GPU.

3. Copying the result back to the host.

The above discussion, suggests two targets for our evaluations. The first is 
to measure and evaluate bandwidth between GPU and host as this will quantify 
the cost of copying the matrix to the GPU as well as the cost of copying the 
vector and result between the GPU and host for each iteration. The second is 
to measure and evaluate the performance of matrix-vector products, normal and 
transpose for both dense and sparse formats. The evaluation of the matrix-vector 
products will involve comparisons with the performance on the host to determine 
first if the GPU offers performance advantages and if so, what are the character-
istics of the matrices where such advantages are observed. Likewise, sparse and 
dense products on the GPU are compared to identify what matrix characteristics 
identify performance advantages in using sparse over dense products.

19
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Measuring the bandwidth between the GPU and CPU is achieved by measur-
ing the time to copy different sized data blocks in each direction. Measuring the 
performance of the matrix-vector products is more complex. There are several 
parameters that could affect the performance of matrix-vector products, such as 
the size and the shape (ratio of rows to columns) of the matrices. This chapter 
will only analyse the performance of dense matrix-vector products. Chapter 4 
will detail the implementation and performance of sparse matrix-vector products 
on the GPU.

3.1 H ardw are and Softw are Setup

Benchmarks were performed on two systems. The first system, that also hosts the 
GeForce 8800 GTX GPU, is an AMD system containing a 2GHz dual core AMD 
Athlon64 3800+ processor with 2GB of PC3200 DDR memory. The processor 
has 128KB of LI cache, 1 MB of L2 cache and a theoretical peak performance 
of 8 GFLOP/s. The GPU is installed in a PCIe 1.0 slot with a peak theoretical 
bandwidth of 4GB/s.

While the processor in this system was acceptable at the start of this work, 
processors have improved markedly in the last 18 months. A new Intel system 
was added for comparison. This system is a Sun Ultra™  24 Workstation with a 
Q6600 2.4 GHz Core2 Quad CPU (4 core, 8MB L2 cache, 1066MHz FSB) and 4 
GB of DDR2-66T memory. Table 3.1 provides a comparison between the hardware 
of the two systems as well as the maximum memory bandwidth and single and 
double-precision FLOP/s achieved on both CPUs using matrix multiply routines.

Memory bandwidth evaluations between the host and the GPU were per-
formed with host-side functions provided by the CUD A toolkit version 2.0. Dense 
matrix-vector products on the GPU were performed with the CUDA BLAS library 
version 2.0 (CUBLAS). ATLAS1 [59] version 3.6.0 and 3.8.2 in addition to Intel’s 
Math Kernel Library (MKL) version 10.0.1.014 were used for the dense matrix- 
vector products on the two CPUs. Both systems were dedicated for benchmarking 
and the wall clock time was used to measure the time for all the benchmarks. 
All benchmarks were run 100 times and results were averaged. FLO P/s were 
calculated as ((2 x M  x TV) +  time) where M  and N  are the dimensions of the 
matrix.

1 Automatically Tuned Linear Algebra Software, http://math-atlas.sourceforge.net
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Table 3.1: Hardware Comparison between the two systems with results from 
benchmarking memory bandwidth and matrix multiply performance.

System AMD System Intel System
Processor AMD Athlon 64 X2 3800+ Intel Core2 Quad Q6600
Clock Rate 2.0 GHz 2.4 GHz
Cores 2 4
LI Cache Size 128 KB per core 64KB per core
L2 Cache Size 512 KB shared 8MB (4MB shared/2 cores)
Memory 2x 1GB DDR-400 4x 1GB DDR2-667
lmbench* benchmark (1 copy) 3402 MB/s 5278 MB/s
lmbench* benchmark (2 copies) 5087 MB/s 5863 MB/s
lmbench* benchmark (3 copies) N/A 4953 MB/s
lrnbench* benchmark (4 copies) N/A 6238 MB/s
SGEMMO (GFLOP/s, single core) 6.8 atlas: 13.3, mkl: 18.1
SGEMMO (GFLOP/s, all cores) 11.9 atlas: 44.9, mkl: 66.1
DGEMM<> (GFLOP/s, single core) 3.5 atlas: 7.6, mkl: 9.0
DGEMMO (GFLOP/s, all cores) 6.5 atlas: 26.8, mkl: 31.3
* lmbench was compiled with gcc on both platforms. The Intel compiler on the Q6600 gave 
similar results.
<0> Using ATLAS on the AMD system and MKL on the Intel system with 2 square matrices 
with dimensions of 2000 x 2000.
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3.2 Bandwidth between the Host and G PU

GPU memory bandwidth benchmarks were performed on the AMD system that 
hosts the GPU. Table 3.2 shows the results for the bandwidth benchmarks be-
tween the host and the GPU with pageable and page-locked memory (see sec-
tion 2.2.1) as well as the internal GPU memory bandwidth. Latency reported is 
the time to copy 1 byte.

Table 3.2: Host initiated memory transfer rates (GB/s)

Benchmark
Latency Bandwidth in GB/s

in /is 1KB 1MB 100MB
Main Memory (pageable) to GPU 22 0.03 0.80 1.10
GPU to Main Memory (pageable) 18 0.04 0.40 0.50
Main Memory (page-locked) to GPU 18 0.04 2.70 3.10
GPU to Main Memory (page-locked) 15 0.05 2.80 3.00
GPU Memory to GPU Memory* 12 0.25 53.95 65.12
* Host initiated memory copies. GPU initiated memory copies would have 
lower latency.

Latency measurements show that when using pageable memory, the latencies 
of copying data to and from the GPU are 22/is and 18ßs respectively. When 
using page-locked memory latencies are 18/is and 15fis. Internal GPU memory 
transfers have a latency of 12fis. This is due to the fact that the GPU to GPU 
memory copies in table 3.2 are initiated from the host. The GPU memory fetch 
time is 400-600 cycles and memory transfers initiated from the GPU would have 
a smaller latency.

Moving to the bandwidth results from pageable memory, host to GPU trans-
fers of 1KB perform poorly at 30MB/s. Bandwidth increases dramatically to 
800 MB/s for 1MB transfers and reaches a maximum of 1.1 GB/s for 100MB 
transfers. GPU to host results are very similar at 40MB/s for 1KB transfers. 
They are however about 2x slower for transfers of 1MB and 100MB. When using 
page-locked memory, there is not a large difference in bandwidth for transfers of 
1KB, however transfers of 1MB and 100MB perform about 3x and 6x faster for 
transfers to and from the GPU respectively. Internal GPU to GPU memory trans-
fers performed poorly with 1KB transfers. Transfers of 1MB showed improved
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bandwidth and a maximum of 65GB/s was achieved with 100MB transfers; this 
is about 81% of peak theoretical performance.

Results from table 3.2 suggest that the page-locked memory should be used for 
faster memory transfers. When using page-lock memory, data was able to move 
at a maximum rate of 3GB/s between the host and the GPU with more than 85% 
of this bandwidth being achieved with only 1MB transfers. This is about half the 
bandwidth of main memory as presented in table 3.1. This limitation is a result 
of the PCIe bus which has a theoretical limit of 4GB/s in each direction. All 
newer GPUs support the newer PCIe 2.0 bus with a theoretical limit of 8GB/s in 
each direction and the bandwidth between the GPU and host would be expected 
to double. The low bandwidth between the GPU and host clarifies the large cost 
of moving data to the GPU. In terms of the SML application, it indicates that 
many iterations of matrix-vector products will be needed to offset the cost of the 
initial matrix transfer. The cost of copying the vector and result between the 
GPU and host for each matrix-vector product will need to be identified as well. 
The large internal GPU bandwidth is about 31 x the internal bandwidth of the 
host. This indicates an advantage for the GPU in memory bound computations 
such as matrix-vector products.

Having quantified the cost of memory transfers between the host and the GPU, 
the performance of dense matrix-vector products on the GPU are evaluated.

3.3 D en se  M atrix -V ector P erform ance

This section, will discuss the results from evaluating the performance of single 
precision, dense matrix-vector products using both dedicated matrix-vector rou-
tines (SGEMV) and matrix matrix routines (SGEMM) on the AMD and Intel 
CPUs as well as the GPU. Both the SGEMV and SGEMM routines are used to 
calculate the product of a NxM matrix with a Mxl vector.

Given a matrix of dimensions MxN, listing 3.1, illustrates a simple algorithm 
for computing the matrix-vector products.

Listing 3.1: Structure of Dense Matrix-Vector Products
f o r  ( i = 0 ; i < M ; i + + )

f o r  ( j  = 0 ; j < N ;  j + + )
r e s [ i ] + =  A [ i ] [ j ] * v e c [ j ) ;

Listing 3.1 shows that the multiplication has a cost of 0 (N  x M) and both the 
matrix and vector are streamed into the processor with a unit stride. Accessing 
memory with unit stride maximises the performance benefits of cache and is the
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optimal access method for both the GPU and CPU systems. On both AMD and 
Intel CPUs, the matrix-vector products would be able to perform two operations 
per one element of the matrix. This would allow us to achieve a peak performance 
of (bandwidth + 4 bytes) x 2 operations in GFLOP/s. From table 3.1, memory 
bandwidth is seen to reach 6GB/s on both CPU systems. It is interesting to 
see that both these processors, while generations apart give the same predictable 
amount of performance for dense matrix-vector products due the similar memory 
bandwidth performance.

The SML application includes a normal matrix-vector multiplication as well 
as a transpose matrix-vector multiplication and therefore, both normal (N) and 
transpose (T) options in the matrix-vector routines are evaluated. The evalua-
tions cover a range of different sizes and ratios between rows and columns.

In the performance analysis of matrix-vector products, the effect of the size 
of the matrix on performance is observed as well as the shape of the matrix (ie. 
the ratio of rows to columns). To observe the effect of these parameters, two 
experiments are performed. In the first, matrix-vector products are evaluated 
with square matrices of ascending sizes and in the second, the size of a matrix is 
kept constant and the ratio between the number of rows to the number of columns 
is modified. In addition, to factor in the per iteration overheads of data transfers 
between host and GPU, the results for the GPU include the time required to 
transfer the vector to the GPU and the resulting product vector back to the host.

Performance for SGEMM and SGEMV calls performing matrix-vector prod-
ucts will be given for the CPUs and the GPU. A range of matrix sizes from 1024 
to 10240 with increments of 128 are tested. The results are provided for both 
normal and transpose multiplications. ATLAS and MKL permit the matrix to be 
stored in either row or column major format, while CUDA only supports matri-
ces in column major format. All evaluations are therefore conducted on matrices 
stored in columns major format.

3.3.1 Effect o f Size on D ense M atrix-V ector Perform ance

The first set of performance results for SGEMM and SGEMV are for the AMD 
CPU and are presented in figure 3.1 and partially replicated in table 3.3. A 
variety of matrix sizes from 1024 to 10240 with increments of 128 are shown. 
Since ATLAS 3.6.0 performed best on the AMD system, only those results are 
presented.

The first observation from figure 3.1 is that the results from the use of one
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Figure 3.1: Performance (GFLOP/s) for square matrix-vector products on the 
AMD System using ATLAS 3.6.0.

core are essentially the same as those resulting from the use of 2 cores. This 
is due to the fact that a single core of the AMD CPU is able to saturate the 
memory bandwidth. Given that the limiting factor of matrix-vector products 
is the memory bandwidth, the addition of a core doesn’t provide an advantage. 
While the memory benchmark results in table 3.1 show low bandwidth for a single 
core, the memory controller in the AMD CPU is shared between the two cores 
and there is no reason why a single core cannot achieve the same bandwidth 
achieved by two cores [48, 61]. The SGEMM/V results were further validated by 
disabling one of the 2 cores and re-running the benchmarks, producing the same 
results.

The second observation is that the SGEMV routines perform better than 
SGEMM routines for matrix-vector products as would be expected. SGEMV 
routines performed at about 1.2 GFLOP/s for normal products and about 2.5 
GFLOP/s for transpose products. SGEMM routines performed at about 0.4 
GFLOP/s for both normal and transpose products.

The third observation is that for the SGEMV routine, the transpose products 
outperformed the normal products by more than a GFLOP. This is due to the 
fact that the matrix is stored in column major format and when performing the 
transpose product, the matrix is accessed in unit stride while a normal product 
would access the matrix in strides of M where M is the numbers of rows in the 
matrix. (Results of benchmarking SGEMV routines with the matrix stored in
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row major format produced the the same results only with the normal products 
performing in the 2.5 GFLOP/s range and the transpose products performing in 
the 1.2 GFLOP/s range.)

The final observation is that the performance of ATLAS routines are very 
consistent across a variety of different sized matrices.

Table 3.3: Performance in GFLOP/s for square matrix-vector products on the 
AMD System using ATLAS v3.6.0 (see figure 3.1).

Performance in GFLOP/s

Dimension
1 Thread 2 threads

SGEMM SGEMV SGEMM SGEMV
N T N T N T N T

1024 0.47 0.58 1.13 2.28 0.46 0.54 1.12 2.27
2048 0.33 0.43 1.18 2.80 0.36 0.41 1.18 2.80
3072 0.32 0.40 1.19 2.82 0.36 0.42 1.20 2.84
4096 0.31 0.39 1.15 2.86 0.35 0.42 1.18 2.85
5120 0.30 0.39 1.20 2.86 0.35 0.42 1.20 2.84
6144 0.29 0.38 1.20 2.52 0.35 0.41 1.17 2.52
7168 0.29 0.37 1.21 2.56 0.35 0.41 1.20 2.57
8192 0.27 0.37 0.43 2.57 0.34 0.40 0.43 2.61
9216 0.28 0.38 1.18 2.60 0.34 0.41 1.17 2.59
10240 0.28 0.37 1.16 2.56 0.34 0.41 1.17 2.61

The next set of results provided are for the Intel system, where the same 
experiments conducted on the AMD system are repeated. The Intel MKL library 
performed best on this system so only the MKL results are shown. The Intel 
system has four cores and so results are provided from the utilisation of one, two 
and four cores.

The first observation in figure 3.2 is that again, there is no noticeable per-
formance increase due to the involvement of multiple cores in the matrix-vector 
product. For the Intel system, this was indicated by the memory benchmark 
results in table 3.1 where the results for one core were over 80% of what was 
achieved with four cores.

The second observation is that unlike the results for the AMD system the per-
formance grows gradually until matrix sizes of 5000 x 5000, where the performance 
start to stabilise.
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Figure 3.2: Performance (GFLOP/s) for square matrix-vector products on the 
Intel System using MKL 10.0.1.014.

The third observation is that the normal and transpose performance are essen-
tially identical in performance. The fourth and final observation is that SGEMV 
and SGEMM routines are very close in performance and virtually identical for 
matrix sizes over 5000 x 5000. As before, some of the results presented in figure 3.2 
have been replicated in table 3.4 for added clarity.

The final set of results from the evaluation of how size affects performance are 
from the GPU and are presented in figure 3.3.

Looking at figure 3.3, it is observed that the performance of the SGEMV rou-
tines both normal and transpose is better than the SGEMM routines as was the 
case for both AMD and Intel results. The performance of the SGEMV routines 
for normal products gradually increases until matrix sizes of 8192, where the per-
formances drops dramatically. This behaviour is most likely due to the internal 
blocking mechanisms and their affect on the Translation Lookaside Buffer (TLB).

The SGEMV normal multiply performs generally much better than the trans-
pose multiplies. The transpose multiply does however perform better in the case 
of matrices smaller than 2000 x 2000. The performance of the transpose products 
was erratic. Again some of the GPU matrix-vector results have been replicated 
in part in table 3.5.

Figure 3.4, plots the best performing SGEMV results from both of the CPU 
as well as the GPU. The GPU achieves between 2x to 10 x better than the 
host depending on the size of the matrix and whether the product is normal or
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Table 3.4: Performance (GFLOP/s) for square matrix-vector products on the 
Intel System using MKL vlO.0.1.014 (see figure 3.2).

P erfo rm an ce  in  G F L O P /s

D im ension
1 T h re a d 2 th re a d s 4 th re a d s

SG E M M S G E M V SG E M M S G E M V SG E M M SG E M V

N T N T N T N T N T N T

1024 1.10 1.13 1.28 1.32 1.13 1.13 1.28 1.27 1.09 1.14 1.32 1.31

2048 1.74 1.72 1.83 1.83 1.74 1.73 1.84 1.84 1.75 1.73 1.85 1.84

3072 2.09 2.06 2.15 2.14 2.09 2.06 2.15 2.15 2.09 2.06 2.15 1.97

4096 2.23 2.15 2.26 2.22 2.21 2.20 2.27 2.25 2.27 2.19 2.32 2.28

5120 2.25 2.27 2.33 2.31 2.31 2.28 2.35 2.33 2.33 2.29 2.35 2.33

6144 2.38 2.32 2.39 2.37 2.39 2.34 2.40 2.38 2.41 2.36 2.41 2.39

7168 2.26 2.30 2.37 2.36 2.37 2.31 2.37 2.36 2.37 2.32 2.39 2.36

8192 2.28 2.21 2.29 2.25 2.30 2.22 2.28 2.25 2.31 2.20 2.28 2.24

9216 2.36 2.32 2.35 2.35 2.38 2.32 2.38 2.36 2.39 2.33 2.39 2.37

10240 2.53 2.48 2.54 2.51 2.56 2.48 2.56 2.52 2.56 2.53 2.59 2.57

GPU SGEMM Normal GPU SGEMV Normal *
GPU SGEMM Transpose GPU SGEMV Transpose o

5000 6000 71
Dimension of Square Matrix

10000

Figure 3.3: Performance (GFLOP/s) for square matrix-vector products on the 
GPU with CUBLAS 2.0.



3.3. DENSE MATRIX-VECTOR PERFORMANCE 29

Table 3.5: Performance (GFLOP/s) for square matrix-vector products on the 
GPU with CUBLAS 2.0 (see figure 3.3).

Dimension
Performance in GFLOP/s

SGEMM SGEMV
N T N T

1024 7.23 6.39 4.54 7.71
2048 6.88 6.30 7.26 5.75
3072 7.01 7.11 10.92 8.85
4096 7.11 7.20 14.54 5.77
5120 7.13 7.23 17.94 9.78
6144 7.12 7.32 21.31 6.19
7168 7.17 7.73 24.34 9.80
8192 7.17 6.33 27.32 5.44
9216 7.16 7.45 16.24 9.28
10240 7.20 7.84 18.00 6.05

transpose.
Many programs and architectures favour specific problem sizes due to archi-

tecture or coding design. To investigate the presence of any such issues in the 
BLAS libraries used or the systems evaluated, experiments were repeated on ma-
trices of sizes 4160 x 4160 to 4224 x 4224 in increments of one. The results of 
these evaluations are presented in figure 3.5.

Figure 3.5 shows that the SGEMV routines from the CUBLAS library are the 
most affected by the problem size. Performance for normal products increased 
4x when the dimensions of the matrix were a multiple of 16 while the transpose 
product performance increased 2x for the same cases. This is due to the fact 
that the matrices are stored in column major format and the numbers of rows 
must be multiples of 16 for the memory to be aligned properly for the hardware 
to coalesce memory reads (see section 2.2.2). ATLAS SGEMV routines on the 
AMD system show an improvement of 15% to 50% when the dimension of the 
matrix is a multiple of two. The performance of the MKL SGEMV routines on 
the Intel system remained consistent regardless of the matrix dimensions.

Matrix-vector products have an algorithmic complexity of 0 ( N x M ) where N  
= number of rows and M = number of columns of the matrix. The CUBLAS li-
brary implementation of SGEMV launches 8,192 threads (64 blocks, 128 threads)
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Figure 3.4: CPU vs GPU (ascending sizes).
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Figure 3.5: Evaluating matrices of unit increments exposes the preference of 
programs and hardware for specific problem sizes.
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each looping over as many rows as needed to compute all rows. For given M  we 
would expect the performance of the SGEMV routine to peak when N  is a mul-
tiple of 8,192 due to maximum utilisation of all threads. The performance should 
increase linearly as N  approaches a multiple of 8,192. Figure 3.3 shows that the 
performance of the SGEMV routine does indeed scale linearly with respect to N  
and peaks at N  = 8,192. The performance drops drastically after that due to 
poor utilisation as a total of 16,384 threads would have been created but only 
8,193 of them would contribute work. As N  increases, the performance starts to 
ascend linearly to another maximum (expected) at N = 16,384.

3.3.2 Effect o f Shape on Perform ance

The effect of matrix shape on performance of the SGEMV routines from the 
ATLAS, MKL and CUBLAS libraries, was evaluated using a matrix containing 
26,214,400 elements (approximately 100MB in size). Keeping the number of 
elements of the matrix constant, the number of rows and columns are varied 
from a 128 x 204800 matrix to 204800 x 128. Figure 3.6 presents the results of 
the evaluations of the two CPUs. Only results for the the SGEMV routines are 
presented for both CPUs as they consistently outperform the SGEMM routines. 
Figure 3.7 presents the results of both SGEMV and SGEMM GPU routines as 
neither of them consistently outperforms the other. Results are also partially 
replicated in table 3.6 for further clarification.

MKL 4 CORE INTEL SGEMV Normal ATLAS 2 CORE AMD SGEMV Normal *
MKL 4 CORE INTEL SGEMV T ranspose ATLAS 2 CORE AMD SGEMV T ranspose

2 1-5

100000.0001
Rows/Colum ns

Figure 3.6: Performance (GFLOP/s) as function of shape for matrix-vector prod-
ucts on the CPU.
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Starting with the results of the MKL SGEMV routine on the Intel system 
presented in figure 3.6, both normal and transpose products showed a small drop 
in performance when the number of rows or columns dropped to 128. The normal 
products saw an increase in performance form small number of columns, while the 
transpose products saw an increase for small number of rows. The ATLAS normal 
SGEMV results lagged the transpose SGEMV results by almost 1.5 GFLOP/s 
for most of the test cases. A small decrease in performance is observed for small 
number of rows and a much higher drop of 50% is observed at matrices of sizes 
8192 x 3200, 16384 x 1600 and 204800 x 128. The ATLAS transpose SGEMV 
results were not affected by a small number of rows but show a significant drop 
in performance for a small number of columns.

Generally the results indicate that the performance of the MKL implemen-
tation on the Intel CPU is more stable than the ATLAS results on the AMD 
CPU. However, the ATLAS SGEMV results on the AMD CPU produce better 
performance than the MKL implementation on the Intel CPU when the matrix is 
read in unit stride (row major + normal products or column major 4- transpose 
products ) and much worse than the MKL implementation on the Intel CPU 
when they are not.

GPU SGEMM Normal GPU SGEMV Normal *
GPU SGEMM Transpose GPU SGEMV Transpose

.. . m j b j j k * * # * * - '*  :S------ t

0.0001 10000
Rows/Columns

Figure 3.7: Performance (GFLOP/s) as function of shape for matrix-vector prod-
uct on the GPU.

The SGEMM results on the GPU shown in figure 3.7 show the normal and 
transpose products producing similar results. Performance of the SGEMM rou-
tines are quite stable but decline in performance for very small number of rows.
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The SGEMV transpose results are not as stable with a drop of 50% in perfor-
mance showing for some matrices. The SGEMV transpose products also drops 
in performance for small number of rows. The SGEMV normal product performs 
much worse than the others for number of rows under 2048 after which perfor-
mance increases rapidly. There is a sharp drop in performance for the matrix of 
size 10240 x 2560 but performance levels out as the number of rows continues 
to grow. An important observation is that for small number of rows, the use of 
SGEMM routines will perform better than SGEMV routines.

Table 3.6: Performance (GFLOP/s) as function of shape for matrix-vector prod-
ucts on the CPU (see figures 3.6 and 3.7).

Rows Columns

AMD Intel GPU
SGEMV SGEMV SGEMM SGEMV
N T N T N T N T

128 204800 0.99 2.59 1.67 1.87 1.70 1.95 0.65 1.29
512 51200 1.22 2.58 2.13 2.24 6.97 7.06 2.23 5.11
1024 25600 1.28 2.58 2.60 2.23 7.13 7.49 3.76 9.77
1600 16384 1.24 2.55 2.62 2.23 5.60 4.93 7.18 4.44
2048 12800 1.23 2.48 2.55 2.40 7.16 7.79 7.54 9.66
2560 10240 1.18 2.62 2.56 2.26 7.15 7.23 10.65 5.79
3200 8192 1.19 2.60 2.50 2.24 6.43 5.41 13.48 5.61
4096 6400 1.16 2.51 2.32 2.43 7.14 7.75 14.64 9.33
5120 5120 1.20 2.88 2.33 2.31 7.13 7.20 17.94 9.78
6400 4096 1.15 2.60 2.43 2.34 6.87 7.18 23.14 5.57
8192 3200 0.44 2.84 2.23 2.50 7.12 7.73 26.75 9.40
10240 2560 1.17 2.83 2.24 2.58 7.13 7.51 17.71 9.71
12800 2048 1.11 2.54 2.35 2.55 7.15 7.25 21.99 6.03
16384 1600 0.46 2.74 2.20 2.61 7.09 7.87 26.60 9.68
25600 1024 1.15 2.57 2.26 2.64 7.25 7.74 21.37 9.75
51200 512 1.19 2.37 2.24 2.13 7.14 7.68 23.74 9.71
204800 128 0.46 1.55 1.70 1.68 6.51 6.72 22.70 9.09

Finally, figure 3.8 combines SGEMV performance results for the AMD and 
Intel CPU with the results from the GPU.

Figure 3.8 shows that matrices must have a minimum of 1000 rows to achieve 
perform gains on the GPU. When the number of rows are below 2560, the
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MKL 4 CORE INTEL SGEMV Normal ATLAS 2 CORE AMD SGEMV T ranspose
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Figure 3.8: CPU vs GPU (Changing Shapes).

SGEMM routines provide better performance then the SGEMV routines.

3.3.3 Conclusion

Figure 3.4 showed that for square matrices, the GPU was at least 2x as fast as 
the CPUs. Figure 3.8 showed that a minimum of 1000 rows was needed to achieve 
even the slightest performance gain.

The main decision that needs to be made at this point is when to use the GPU 
over the CPU for a matrix-vector product. The results in this chapter indicate 
that the benefits of performing matrix-vector products on GPUs are realised for 
larger matrices with at least 2048 rows. The exact performance gains will depend 
on the number of matrix-vector products conducted.



C h a p te r  4

SpM V  C o n stru c tio n  and  
E valuation

As noted in chapter 2, exploiting the sparsity of a matrix can decrease the number 
of instructions needed to compute a matrix-vector product as well as the memory 
footprint of the matrix. This exploitation also introduces a slightly more complex 
data structure and random memory accesses. The point at which the sparsity 
of a matrix becomes large enough to benefit from its exploitation is system and 
implementation dependent. This chapter presents a range of implementation 
options on the NVIDIA GPU system, assesses their performance as a function 
of matrix attributes, and by doing so establishes a set of implementations such 
that for any matrix the best performing implementation is part of that set. This 
chapter also presents efforts to identify the level of sparsity that warrants the use 
of sparse matrix-vector products on the GPU over their dense counterparts.

There are many storage formats for sparse matrices as discussed in section 2.4. 
This work is based on the Compressed Sparse Row (CSR) format as it is widely 
used in the scientific community [52, 56, 13].

________Listing 4.1: Structure of CSR Sparse matrix-vector products_______
f o r  ( i = 0 ; i < M ; i + + )

f o r  ( j = p t r  [ i ] ; j < p t r  [ i + 1 ) ;  j + + )
r e s [ i ]  + =  v a l [ j ]  » v e c [ i n d [ j ] ]  ;

Listing 4.1 shows the kernel of a Sparse Matrix-Vector (SpMV) product when 
using the CSR format. In comparison to the dense matrix-vector product shown 
in listing 3.1, the number of iterations of the second loop is not constant, but can 
vary for each iteration of the outer loop. In addition the vec array is referenced 
indirectly, not in unit stride as is the case for dense matrix-vector products. As a 
consequence, predicting the access pattern of the vec array is not possible, causing

35
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the performance of the SpMV products to be closely related to the structure of 
the sparse matrix. In short, the SpMV performance achievable on both the CPU 
and GPU is not as clear as in the case of dense matrix-vector products.

Parallelisation of the code in listing 4.1 can proceed by assigning different 
iterations of the outer i loop to different execution units. Each iteration of the 
second loop then involves fetching 3 elements from memory and performing two 
floating-point instructions. The low FLOP to byte ratio indicates that memory 
bandwidth is critical for SpMV performance.

Both GPU and CPU systems require high arithmetic intensity (ratio of 
floating-point operations to memory loads) to reach peak performance. Con-
sider single precision SpMV on the GPU which has a theoretical peak memory 
bandwidth of 80GB/s or 20 x 230 32-bit f lo a t  elements per second and a peak 
performance of 321.6 GFLOP/s. For a kernel to achieve peak performance, each 
32-bit f lo a t  element read from memory must contribute to 321.6 -r 20 ~  16 
floating-point instructions. SpMV products fall short of such ratios, performing 
only two floating-point operations per three 32-bit f lo a t  elements and therefore 
SpMV implementations are better evaluated by memory bandwidth efficiency 
than by FLOP/s.

However, while the efficiency of the implementation can indeed be evaluated 
by percentage of maximum bandwidth achieved, evaluation of the work as whole 
will involve a broader context such as the comparative performance of sparse 
matrix-vector products on the CPU and dense products on the GPU.

In table 3.2, the GPU memory bandwidth was measured to be 65 GB/s. This 
was achieved by the use of a high level CUD A function, which raises the following 
questions:

• How do different configurations of threads per block and blocks per grid 
affect performance?

• W hat is the effect of using texture memory instead of global memory? 1

• W hat is the difference (in terms of bandwidth) between coalesced and non- 
coalesced access?

• How does using f lo a t ,  f lo a t  2 and f lo a t  4 vector data types affect memory 
bandwidth?

Constant memory and shared memory are not evaluated as they are small, specific memories 
not suitable for general usage.
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In order to design an efficient SpMV implementation for the GPU, a more 
thorough understanding is needed of how the internal GPU memory bandwidth 
is affected by the above factors.

The beginning of this chapter will elaborate on the needed memory bandwidth 
analysis for the GPU and present the results from the more thorough investiga-
tion. The rest of the chapter will focus on the SpMV implementations on the 
GPU. This will start by discussing the methodology used for evaluation of the im-
plementations followed by a detailed view of the various implementation options 
available. Evaluations of the various options will follow. The final section of this 
chapter deals with the selection of one or more of the resulting implementations 
based on the matrix attributes to produce the best performance.

4.1 M em ory  B an d w id th  A n alysis

As discussed above, memory bandwidth is critical to the overall performance 
of SpMV products. In section 3.2, it was shown that internal GPU memory 
transfer had a maximum bandwidth of 65 GB/s. This was achieved with the 
cudaMemcpy routine for large (100MB) data transfers. In this section bandwidth 
is measured in a loop similar to listing 4.1. Two memory bandwidth benchmark 
frameworks were written to explore coalesced and sequential access methods from 
global and texture memory, the use of f lo a t , f lo a t  2 and f  loa t4  data types and 
the effect of the number of threads per block and the number of blocks per grid 
on performance is considered.

Coalesced and sequential methods of reading in elements from memory are 
illustrated in figure 4.1. Data is organised in m  rows, each row containing n 
elements. Figure 4.1(a) illustrates how the benchmarks would access memory 
using coalesced reads. Specifically, each row is assigned to a separate block, and 
within that block each thread reads in consecutive elements (see section 2.2.1 for 
a further details of coalesced reads). Figure 4.1(b) illustrates how the sequential 
benchmark would read the elements from memory. In this case each row is 
assigned to a separate thread and each thread reads in the entire row.

The benchmarks read a predefined number of f lo a t  elements from memory. 
The kernel is launched on the GPU with a predefined number of threads per block 
and blocks per grid. The total number of elements to be read from memory is 
divided amongst all the threads on the GPU so that all threads have an equal 
workload to read from memory. In the coalesced benchmark, the total workload
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(a) Coalesced reads of m  rows us-
ing m  blocks. In each block, k 
threads cooperate in reading 1 
row of n elements.

(b) Sequential reads of m  rows. 
Each thread reads in 1 row of 
n  elements.

Figure 4.1: Coalesced and sequential memory reads.

for the block is coalesced. In the sequential benchmark, each thread reads its 
prescribed workload independently from any other thread. The coalesced and 
sequential memory benchmarks have the same memory access pattern that a 
coalesced or sequential SpMV implementation would have for the v a l and ind 
arrays if every row of the hypothetical matrix had an equal number of nonzero 
elements per row.

Three different values for the total amount of data read from memory were 
considered (1.5MB, 55MB, 390MB), but as there was minimal variance between 
them, only results from the medium (55MB) data size will be shown here (the 
full set of results are available in appendix A). The benchmarks were conducted 
with 16, 32, 64, 128, 256 and 512 threads per block, and with f lo a t ,  f lo a t2  and 
f lo a t4  data types. Each benchmark was run three times with a selected number 
of blocks so the resulting workloads would be 20, 100 and 1000 float elements 
per thread. Both coalesced and sequential memory benchmarks were applied to 
global and texture memory.

It is important to note tha t while the following sections compare between 
“coalesced” memory reads from global and texture memory, the hardware does
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not coalesce texture memory reads. W hat is meant here is that threads in a 
block perform texture reads from consecutive memory locations in the exact same 
manner that is used for coalescing global memory reads.

4.1.1 C oalesced M em ory Benchm ark R esu lts

In the case of the coalesced benchmark (see figure 4.1(a)), each block of threads 
cooperate in reading a single row. The number of elements in the row of the 
hypothetical matrix is the product of the number of threads multiplied by the 
workload size. To illustrate this, a configuration of 32 threads and a workload of 
20, relates to a row with 32 x 20 =  640 elements. A configuration of 128 threads 
and a workload of 100, relates to a row with 128 x 100 =  12800 elements.

Table 4.1 presents coalesced memory bandwidth for reading 55MB from both 
texture and global memory. Rows are grouped according to workload (the number 
of f lo a t  elements each thread will read from memory). Results for 32, 64 and 
128 threads per block are presented as they were always found to give the highest 
bandwidth. For each row in the table the results of reads from global memory 
with f lo a t ,  f lo a t2  and f lo a t4  units are given first, followed by similar results 
from texture memory.

Focusing on the results (table 4.1) from global memory and starting with a 
workload of 20 f lo a t  elements*, at 32 threads per block the bandwidth almost 
doubles when moving from f lo a t  to f lo a t2  data types, but decreases slightly on 
moving to f lo a t4 . With 64 threads per block and the same workload a similar 
trend is observed, although the increase from f lo a t  to f l o a t 2 is less and the drop 
from f lo a t2  to f lo a t4  is larger. For f lo a t  and f l o a t 2 data types 64 threads 
is much better than 32, but for f  lo a t4  the results are almost identical. For 128 
threads the results of f lo a t  and f lo a t2  are comparable and greater than the 
results for 32 or 64 threads, while the result for f lo a t4  remains consistent with 
the results from 32 and 64 threads.

If the workload is increased from 20 to 100 f lo a t  elements very similar results 
are found, both in terms of trends and absolute values. Increasing the workload 
to 1000 f lo a t  elements results in a considerable drop in bandwidth for f lo a t  
and f  lo a t2  data types and essentially identical results for f  lo a t4 .

Overall, from the global memory results given in table 4.1, f lo a t2  types 
consistently performed better in all scenarios except for a workload of 100 f lo a t  
elements and a block size of 128, where they are outperformed by f lo a t  data 
types by a small margin of 5%.
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Table 4.1: Benchmark results in GB/s for reading 55MB of data from global or 
texture memory via coalesced reads for f lo a t ,  f l o a t 2 and f lo a t4  data types.

Threads

/Block
Blocks

Bandwidth in GB/s
Global Memory Texture Memory

float float 2 float4 float float 2 float4
Workload of 20 floats per thread

32 22400 25 40 36 24 36 44
64 11200 46 58 37 36 45 48
128 5600 62 63 37 43 50 52

Workload of 100 floats per thread
32 4480 27 44 38 25 39 50
64 2240 46 61 37 40 50 52
128 1120 64 61 37 45 52 54

Workload of 1000 floats per thread
32 448 26 42 38 24 39 51
64 224 39 55 38 38 51 53
128 112 48 54 37 36 45 51

For texture memory and with a workload of 20 f lo a t  elements and using 
32 threads per block memory bandwidth increases when moving from f lo a t  to 
f l o a t 2 to f lo a t4  data types. The same trend, but with a slight increase in 
magnitude is observed when the number of threads per block is 64 or 128. There 
is not much variation in texture memory performance when moving to different 
workload sizes. Performance of texture memory tends to drop somewhat at work-
loads of 1000 f lo a t  elements. Overall, f l o a t 4 consistently outperforms f lo a t  
and f l o a t 2 data types.

Comparing texture and global memory bandwidth at 32 threads per block; 
texture memory with f lo a t4  units outperforms global memory with f lo a t2  units 
by 10%, 13% and 21% for workloads of 20, 100 and 1000 respectively. At 64 and 
128 threads per block, global memory reads with f lo a t2  units provides better 
performance than texture memory. From these benchmarks it appears that the 
best performance is achieved for coalesced reads from global memory by using 
f lo a t2  data types with 64 or 128 threads per block. At 32 threads per block, 
coalesced reads from texture memory with f  lo a t4  data types is the best option.
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4.1.2 Sequential M em ory Benchm ark R esu lts

In contrast to the coalesced benchmark, the sequential benchmark assigns each 
row to a separate thread (see figure 4.1(b)). As a consequence the workload 
size directly corresponds to the number of non zero elements in the hypothetical 
sparse matrix. Results for sequential benchmarks are presented in table 4.2. 
Best performance was found between 16 and 64 threads per block, thus results 
are given for those thread per block sizes rather than 32, 64 and 128 threads per 
block, as was used in the coalesced memory read benchmarks.

Table 4.2: Benchmark results in GB/s for reading 55MB of data from global or 
texture memory via sequential reads for f lo a t ,  f lo a t2  and f lo a t4  data types.

Threads

/Block
Blocks

Bandwidth in GB/s
Global Memory Texture Memory

float float 2 float4 float float 2 float4
Workload of 20 floats per thread

16 44800 9 16 19 6 12 25
32 22400 9 17 19 8 14 25
64 11200 9 17 19 8 16 29

Workload of 100 floats per thread
16 8960 8 16 19 5 10 18
32 4480 8 17 19 5 11 20
64 2240 8 15 20 10 11 20

Workload of 1000 floats per thread
16 896 2 4 8 2 4 8
32 448 <1 1 2 <1 1 2
64 224 <1 1 2 <1 1 1

At small workloads of 20 f lo a t  elements per threads, the bandwidth achieved 
while reading from global memory increases as the width of the data type is 
increased. The results are essentially identical for all three configurations of 
threads per block, with 9GB/s for f lo a t  data types rising to 19GB/s for f loat4 .

Increasing the workloads from 20 to 100 f lo a t  elements has negligible effect. 
At workloads of 1000 f lo a t  elements bandwidth is however, much lower than 
previous workloads, often only lG B/s. This large drop in performance at 1000 
elements is most likely cause by TLB thrashing as the stride between blocks (for 
f lo a t  types) becomes 1000x4bytes = 4K B  across each SM or 4 K B x  16 =  64K B
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across the whole GPU.
Texture memory results follow the trends of global memory for all workloads 

with the highest bandwidth resulting from use of f lo a t4  data types. Workloads 
of 20 f lo a t  elements result in better performance than larger workloads.

In summary, both global and texture memory benchmarks performed best 
with the use of f lo a t4  data types. Comparing f lo a t4  performance of global 
and texture memory types show very similar results except for workloads of 20 
f lo a t  elements, where texture memory shows a slight advantage. For workloads 
of 20 or 100 f lo a t  elements 64 threads per block offers best performance, while 
workloads of 1000 f lo a t  elements performed best with 16 threads per block.

4.1.3 C oalesced vs Sequential M em ory for SpM V

As noted in section 4.1 the workloads in the coalesced and sequential benchmarks 
correspond to a different number of elements in the hypothetical sparse matrix. 
To determine when it is best to use coalesced or sequential reads for a sparse 
matrix it is necessary to normalise the results. The normalisation is presented in 
figure 4.2, where the best performing data types and memory configurations are 
used from each benchmark. Specifically, f  lo a t2  results from global memory were 
used for the coalesced reads, while f  lo a t4  results from texture memory were used 
for the sequential reads. Due to the use of f l o a t 2, the minimal number of f lo a t  
elements that can be read in with coalesced reads is 2 x 16 =  32 f lo a t  elements. 
Effective bandwidth for smaller numbers of elements per row is calculated as 
(bandwidth -r- 32) x elements per row. The same method is used to calculate the 
effective bandwidth from sequential reads when the number of elements is less 
than four.

The results presented in figure 4.2 show that for small numbers of elements 
per row sequential reads provide better effective bandwidth than coalesced reads. 
This changes when the number of elements per row grows larger than 64. This 
result indicates that both coalesced and sequential implementations of SpMV 
should be considered.

4.2 SpM V Im plem entations

The results from the previous section suggest that SpMV implementation that 
utilise coalesced and sequential memory reads must be evaluated and that the 
number of nonzero elements per row will determine at which point one imple-



4.2. SPMV IMPLEMENTATIONS 43
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Figure 4.2: Normalisation of memory benchmark results for coalesced and se-
quential benchmarks.

mentation will outperform the other. From this point on, the term ” coalesced 
implementation” refers to an implementation where the matrix data is read with 
coalesced memory reads while the term ” sequential implementation” refers to an 
implementation where the matrix data is read with sequential memory reads. 
The benchmarks were conducted under the assumption that the average number 
of nonzero elements per rows is representative of the matrix as a whole.

The SpMV routine use five different arrays. The matrix is represented by 
three arrays (val, ind and p tr )  while the vector and result are stored in two 
other arrays (vec and res). Both coalesced and sequential implementations have 
a number of implementation options in terms of which memory to use for each of 
these five arrays. As described in in section 2.2.1, the GPU offers three different 
memory storage options. These are global, texture and constant memory.

Global and texture memory both utilise the 768MB of physical memory. Con-
stant memory is limited to 65,536 bytes (16,384 floats/ints or 8,192 doubles) and 
is therefore not a realistic candidate for storage of large arrays. Constant mem-
ory could however, still be utilised for the p t r  or vec arrays, though they would 
restrict the size of the matrix to 16,384 rows or 16,384 columns respectively 
(even less if used jointly). The use of constant memory for either of those arrays 
would be desirable if it offered a large performance gain over other memory types. 
Shared memory can also be used to cache memory fetches from global memory if
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that data can be used by many threads.
The v a l and ind arrays are the largest arrays in the SpMV operation. These 

arrays are both accessed in unit stride and are the only arrays that should be 
accessed via wide data types (f loa t4 , in t2 , ... ect) as they have logically con-
secutive elements. As such, the memory bandwidth analysis in section 4.1 can be 
applied directly to the va l and ind arrays.

The p tr array is accessed twice per row with consecutive elements. Optimis-
ing ptr access will be important when the number of elements per row is low. The 
use of memory with cache should also be beneficial. Sequential implementations 
could coalesce p tr elements to shared memory, then access them at fast speeds 
from shared memory. The use of shared memory for caching will introduce syn-
chronisation overheads and so will be benchmarked to identify whether it would 
perform better than texture or constant memory.

The res  array has only one available storage option as only global memory is 
writeable from the GPU. In addition there is no need to explicitly coalesce writes 
to the res array in global memory as the results from consecutive executing units 
are consecutive elements in the res array.

Table 4.3: Memory options for the different arrays.

A rray
G lobal M em ory T ex tu re  M em ory C o n stan t

M em ory
Shared

M em ory
W ide D a ta  

Typescoalesced sequential coalesced sequential

v a l y / y y X X /
in d y / y y X X y
p t r X / X y y y X

vec X y X y y X X

r e s y y X X X X X

Table 4.3 summarises the different options available for each array and indi-
cates that large number of implementations can be constructed based upon the 
memory options for these arrays.

This section analyses the different implementation options and identifies the 
best performing implementations to be constructed and benchmarked. Each im-
plementation, is named as follows:

[coa/seq]-  [ f 1 , f 2 ,f4 ]_ [v a l, ind storage]- [ptr storage]- [vector storage] 
To illustrate, coa-f2_memm-cnst-text indicates a coalesced implementation us-
ing f l o a t 2 units in global memory for the v a l and ind arrays, constant memory
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for the p t r  array and texture memory for the vec array, seq -f 4_memm-shrm-cnst 
indicates a sequential implementation using f lo a t4  units for the v a l and ind 
arrays, shared memory for the p t r  array and constant memory for the vec array.

Table 4.4 summarises the options available to the arrays involved in the SpMV 
operation and the factors that affect the read performance of each array.

For each attem pt to evaluate a storage option, both coalesced and sequential 
implementations will be benchmarked to make sure that the results from the 
evaluation of a storage option is consistent across both implementations.

4.3 P erform ance E valu ation  M eth o d o lo g y

This section describes the hardware setup used for the evaluations and provides 
details on how each storage option is evaluated.

4.3.1 Evaluation P latform

The hardware use to perform the following evaluations has been previously de-
scribed in section 3.1 but is briefly summarised here. It contains a 2 GHz dual 
core AMD Athlon64 3800+ processor with 2GB of PC3200 DDR memory. The 
processor has 128KB of LI cache and 1 MB L2 cache and a theoretical peak per-
formance of 8 GFLOP/s. The GeForce 8800 GTX GPU was installed in a PCIe 
1.0 slot that has a peak theoretical transfer rate of 4GB/s.

4.3.2 Test M atrices

In order to evaluate the SpMV implementations, test datasets needed to be ob-
tained. The small number of test matrices used in previous works [60, 14] mo-
tivated the search for large amounts of real world test cases and so the Florida 
Sparse Matrix Collection was used to obtain many real world examples. Datasets 
that were used by Teo et al [54] for evaluation of the original application code were 
also used. However in order to observe a specific aspect of the implementations 
performance, it was desirable to be able to generate matrices with specific prop-
erties. A simple sparse matrix generator was therefore written. This generator 
allows the specification of the dimensions of the matrix, the sparsity and a tech-
nique that determines the placement of non zero elements. Figure 4.3 illustrates 
the three techniques used for matrix generation.
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Table 4.4: Possible optimal implementations as deduced from previous bench-
marks and analysis.

A rray S torage O ptions F acto rs  A ffecting Perform ance

v a l  & in d

•  A coalesced im plem enta tion  

using f l o a t 2  d a ta  types in 

global memory.

•  A sequential im plem enta tion  

using f l o a t 4  d a ta  types in 

te x tu re  m em ory

1. T h e  num ber of elem ents per 

row.

2. T he  w id th  of th e  d a ta  types.

p t r

•  G lobal memory.

•  T ex tu re  m em ory.

•  C o n stan t memory.

•  G lobal m em ory w ith  shared 

m em ory  caching.

1. T h e  nu m b er of rows of th e  m a-

tr ix  as th e  p t r  a rray  is ac-

cessed tw ice p e r row.

2. T h e  average num ber of ele-

m en ts  per row. T he  im por-

ta n ce  of op tim ising  p t r  access 

is em phasised  w hen th e  num -

ber of e lem ents per row is low.

vec

•  G lobal m em ory.

•  T ex tu re  m em ory.

•  C o n s ta n t memory.

1. T h e  size of th e  v ec  array. T h is 

re la tes  to  th e  size of th e  m atrix  

colum ns.

2. T h e  num b er of m em ory fetches 

to  th e  vec to r array. T h is  re-

la tes to  th e  sparsity  of th e  m a-

trix . T h e  m ore sparse  th e  m a-

trix , th e  less fetches to  th e  v ec  

array.

3. T h e  p a tte rn  of m em ory access. 

T h is  re la tes  to  th e  fill ty p e  

of th e  m a trix . T hese  are  th e  

w hole, row an d  block fill types.



4.3. PERFORMANCE EVALUATION METHODOLOGY 47

(a) Random (b) Constant Row (c) Structured

Figure 4.3: Different techniques to generate test matrices.

Random

This technique makes use of a uniform random number generator to determine the 
nonzero elements in the matrix. For each (row,column) combination, a random 
number is produced ranging from 1 to 100. If that number is larger than the 
required sparsity that location is assigned a value, else it is set to zero. The 
minimum number of elements in a row is set to one. This results in a very 
unstructured matrix where the number of elements per row can vary greatly 
between consecutive rows. Figure 4.3(a) illustrates the result of this technique.

Constant Row

This technique imposes more structure than the Random technique. The number 
of elements per row is set to (the number o f columns x the required density) for 
all rows in the matrix. The positions of the elements for each row are randomly 
generated with a uniform random generator. Comparing results from using this 
matrix with the Random matrix allows us to assess any overhead associated with 
variances between the number of elements in consecutive rows. Figure 4.3(b) 
illustrates this matrix structure.

Structured

This technique is similar to the Constant Row technique in that the number of 
elements per rows is consistent for all rows in the matrix. It differs in that all 
the rows have the same column distribution. Using this matrix in benchmarks 
results in the same elements of the vec array being read for each row of the 
matrix, maximising the effects of cache in the read performance of the vec array. 
Figure 4.3(c) illustrates the result of this generation technique.
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4.3.3 Perform ance M easurem ents

When taking into consideration the nature of the application discussed in sec-
tion 2.3, it can only be a significant comparison if the GPU’s FLOP/s results 
take into consideration all overheads resulting from the use of the GPU indica-
tion conversion from double to f lo a t and copying data between host and GPU 
memories. Therefore the time used in calculating FLOP/s for both sparse and 
dense matrix-vector products include the time taken to:

1. Convert the vector from double to float.

2. Copy the vector from main memory to the GPU.

3. Perform the matrix-vector product.

4. Copy the result from the GPU to main memory.

There exists a one time cost of converting and copying the matrix to the 
GPU. This is not included in the FLOP/s calculation. FLOP/s were calculated 
as (2 x number o f nonzero elements -r total time). Each evaluation was run 100 
times on a dedicated machine with the average wall clock time used to calculating 
a performance result.

4.4  Sp M V  Im p lem en ta tio n  A ssessm en t

In section 4.2 numerous implementation options for an SpMV implementation on 
the GPU were discussed. The memory bandwidth benchmark results in tables 4.1 
and 4.2 suggest that the implementation options for the val and ind arrays can 
be realistically limited to:

1. Coalesced reads using floa t2  units (coa-f2_memm-memm-memin).

2. Sequential reads using floa t4  units (seq-f4_text-memm-memm).

This section outlines an attempt to select the best options for the p tr  and vec 
arrays. In evaluating the various implementation options, only those parameters 
that are readily associated with the matrix itself were considered, namely:

• The number of rows in the matrix.

• The number of columns in the matrix. This is equal to the number of 
elements in the vector.



4.4. SPMV IMPLEMENTATION ASSESSMENT 49

• The number of non zero elements in the matrix.

The benchmarks in this section were all performed with 32 threads per block 
as this is the size of a warp on the GPU. While the results from the benchmarks in 
tables 4.1 and 4.2 indicate that 64 threads per block results in best performance 
overall, this is not necessarily the optimal value for the SpMV implementation 
as a whole. There could exist different optimal values for accessing the vector 
and p t r  array. In addition, each implementation will have overheads that may 
respond differently to different number of threads, such as the need to reduce 
elements in the coalesced implementation or tha t for sequential implementations 
each group of 32 threads execute the same number of instructions dependent on 
the largest number of elements in the group of rows assigned to them. The issue 
of threads per block will be in section 4.5.1.

Results are presented as a series of graphs. It is important to note that when 
analysing the graphs, any point along the x-axis represents both the size of the 
vector and the number of average nonzero elements per row. For example, in a 
graph of showing products of matrices at 90% sparsity, a characteristic observed 
at point 5000 on the x-axis could be due to the size of the vector reaching 5000 
elements, or could equally be the result of the number of elements in the rows of 
the matrix reaching 5000 x 0.1 =  500 elements. For the purpose of this work, it is 
imperative to correctly relate performance characteristics of the implementation 
to either of these two attributes. In addition, for purposes of disambiguation, 
the term “elements” will refer to 32-bit data types throughout this chapter, even 
when discussing implementations that make use of wide data types (ie. in t4 , 
f l o a t 2 , . . .  etc ). The terms “coalesced implementation” and “sequential im-
plementation” will refer to “coalesced memory implementation” and “sequential 
memory implementation” respectively.

The first set of options that will be evaluated are the storage options for the 
vec array followed by the storage options of p t r  array.

4.4.1 Evaluating vec Storage O ptions

Based on the above discussion, the following implementations were created and
evaluated:
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•  Coalesced Implementations: • Sequential Implementations:

C3. coa-f2jnemm-menun-text

Cl. coa-f2_memm-mennn-menmi

C2. coa-f2_memm-memm-cnst

51. seq-f4_text-memm-memm

52. seq-f4_text-memm-cnst

53. seq-f4_text-memni-text

Matrices of fixed number of rows and varying number of columns from 100 to 
10,000 in 100 columns increments were used for the evaluations. Four different 
levels of sparsity were considered. All matrices were generated with the Random 
technique discussed in section 4.3.2 and the number of threads per block for all 
implementations was set at 32 threads per block.

Figure 4.4 presents the results for the coalesced implementations while fig-
ure 4.5 presents the results for the sequential implementations.

Looking at the results of coalesced implementations, figure 4.4(a) shows that 
at 80% sparsity texture memory offers the best performance. The performance of 
constant memory is on par with texture memory until the x-axis reaches about 
2000. However as constant and global memory results never outperform texture 
memory, they can be ignored for this sparsity. The same results are seen at 
90% sparsity in figure 4.4(b) indicating that the size of vec has more effect on 
performance than the average number of nonzero elements per row.

Figure 4.4(c) shows results for 99% sparsity. While texture memory outper-
forms other options for vec storage for the majority of vector sizes, constant 
memory outperforms texture memory between 1000 and 2500. Global memory 
can be safely ignored. As these characteristics are repeated at 99.9% sparsity in 
figure 4.4(d), this again leads to the conclusion that performance is dependent on 
the size of vec rather than the number of elements per row in the sparse matrix.

These results indicate the size of vec is key to determining its best storage 
location. As a result texture and constant memory will both be further evaluated 
as storage options for the vec array depending on the size of the vec array.

The results for the sequential implementations at 80% sparsity are presented 
in figure 4.5(a). These show that constant memory offers the best performance 
followed by texture memory with global memory offering the worst performance. 
It is also observed that the performance of all implementations start to drastically 
decline at a vec size of about 1700 until they all perform equally poorly at about 
2400. The vec size of 1700 corresponds to an average of 1700 x 0.2 =  340 
nonzero elements per row, while a value of 2400 corresponds to an average of
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(c) 99% Sparsity (d) 99.9% Sparsity

Figure 4.4: Evaluating different storage options of the vector for coalesced imple-
mentations at different levels of sparsity using Random matrices and 32 threads 
per block.
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Figure 4.5: Evaluating different storage options of the vector for sequential im-
plementations at different levels of sparsity.
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2500 x 0.2 =  500 nonzero elements per row.
At 90% sparsity the sequential SpMV results shown in figure 4.5(b) are very 

similar to the results at 80% sparsity, except that they appear to be scaled in the 
direction of the x-axis by a power of 2. This might be expected given that the 
average number of elements per row at 80% sparsity is double that at 90% sparsity 
and so suggest that the observed drop in performance is a result of the average 
number of elements per row reaching 340. Notice the decline in performance at 
90% sparsity starts at a vec size of about 3400, which also corresponds to an 
average of 340 x 0.1 =  340 non zero elements per row.

At 99% sparsity the sequential SpMV results in figure 4.5(c) do not show the 
drastic drop in performance that was observed in the previous graphs. This is due 
to the fact that at 99% sparsity the largest matrix benchmarked (10,000 x 10,000) 
contains only 100 elements per row, on average. There is also a new character-
istic that presents itself, which is that the performance of constant memory is 
outperformed by texture memory at point 5000 along the x-axis.

At 99.9% sparsity, the sequential SpMV results in figure 4.5(d) are almost 
identical to the results at 99% sparsity in figure 4.5(c). The lack of difference 
between the two sparsities would suggest that in the absence of sufficient nonzero 
elements per row, the size of the vec array is dominant in terms of the effect it 
has on performance.

In summary, the optimal storage option for the vec array are for coalesced 
implementations:

• Constant memory if the average number of elements per row is below 2400.

• Texture memory if the average number of elements per row is above 2400. 

and for sequential implementations:

• Constant memory if the size of the vector is below 5000.

• Texture memory if the size of the vector is above 5000.

4.4 .2  Evaluating ptr Storage O ptions

The significance of which storage option is selected for the p t r  array is expected 
to be highly dependent on the elements per row of the sparse matrix since it 
affects how often it will be accessed. To highlight the difference in performance 
resulting from available p t r  storage options, the average number of elements per
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row is set as a constant, small value to increase the ratio of ptr to ind, val and 
vec accesses. The sparsity or matrix structure have no effect on the number of 
ptr reads and a minimal effect on the pattern of reads, and are therefore not 
varied within the evaluations.

The previous sections have argued that the most promising storage options for 
the vec array in terms of performance are constant and texture memory depend-
ing on the matrix characteristics. Adding the analyses for the available options 
for the ptr array enumerated in table 4.4, the following list of implementations 
are created and evaluated with results presented in figure 4.6.

Coalecsed Implementations:

Cl. coa-f 2_memm-cnst-cnst C4. coa-f 2_memm-cnst-t ext

C2. coa-f 2_memm-memm-cnst C5. c o a -f 2_memm-meinin-1 ex t

C3. coa-f 2_memm-text-cnst C6. c o a -f 2 _memm-1 ext - 1 ex t

Sequential Implementations:

SI. seq -f4 _ tex t-cn st-cn st S5. seq -f4 _ tex t-cn st-tex t

S2. seq -f 4_text-memm-cnst S6. se q -f4_text-memm-1ext

S3. seq -f4_text-sh rd -cn st S7. seq -f4_text-sh rd -text

S4. seq -f4 _ tex t-tex t-cn st S8. seq -f4 _ te x t-tex t-te x t

Figure 4.6(a) shows the results from coalesced implementations with the vector 
stored in constant memory. These results show texture and constant memory 
preforming equally well as storage options for the ptr array, while global memory 
is far behind. Repeating the benchmarks with the vec stored in texture memory 
gives the results presented in figure 4.6(b); these show the same characteristics 
as functions of the ptr storage type. The poor performance of the coalesced 
implementations in these two graphs is a result of the low number of elements 
per row (10 in this case).

Figure 4.6(c) presents sequential results where the vec array is stored in con-
stant memory. These results show all implementations performing almost identi-
cally with the implementation storing the ptr array in texture memory offering 
a slight advantage in terms of performance. This slight advantage is not evident 
however, when the vec array is stored in texture memory (figure 4.6(d)).

In summary, global memory is not a suitable candidate for ptr storage. The
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(a) Coalesced implementation, vec stored 
in constant memory.

(b) Coalesced implementation, vec stored 
in texture memory.
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(c) Sequential implementation. vec 
stored in constant memory.

(d) Sequential implementation. vec 
stored in texture memory.

Figure 4.6: Evaluating different storage options of the p tr  array. Matrices are 
99% sparse and the number of columns are kept constant at 1000.
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use of constant, texture and shared memory for ptr storage all resulted in essen-
tially the same performance. There was a small advantage for texture memory 
over the other storage options in figure 4.6(c) for large number of rows. Texture 
memory is therefore selected as the optimal storage option for the ptr array.

4.4.3 C oalesced v Sequential SpM V  Im plem entations

The objective now is to create a set of heuristics that given parameters such as 
number of elements per row, sparsity and vector size, will produce the implemen-
tation that will deliver the highest performance. Having evaluated the storage 
options for the various arrays, the remaining decision to be made is when to 
use the coalesced implementation over the sequential implementation. The re-
sults in the previous sections suggest that this will be dependent on the number 
of elements per row. The coa-f 2_memm-text-text, coa-f 2unemm-text-cnst, 
seq -f4 _ te x t-tex t-te x t and seq -f4 _ tex t-tex t-cn st implementations will be 
benchmarked together to identify the overlap point between these implementa-
tions and determine the matrix characteristics that determine which implemen-
tation results in the best performance. Random matrices of the same type and 
dimensions used in the analysis of storage options for the vec array, are used here 
(rows set at 3000, varying columns).

The results are shown in figure 4.7 for a variety of sparsities. Changing the 
sparsity of a matrix has two effects. This first is that the number of elements per 
row decreases at any given column size. The second is that the ratio of accessed 
elements to total size of the vec array is reduced. This reduction affects the use 
of texture and constant memory cache.

The first set of results at 80% sparsity (figure 4.7(a)) shows the 
coa-f 2_memm-text-text implementation performing best for all vec sizes larger 
than 500. For vec sizes smaller than 500, the coa-f 2unemm-text-text implemen-
tation is slightly outperformed by the seq -f4 _ tex t-tex t-cn st implementation. 
The same observation are made in figure 4.7(b) where the results at 85% sparsity 
are presented.

Figures 4.7(c) and 4.7(d) present results at 90% and 95% sparsity respectively. 
Both set of results are similar to the previous (80% and 85% sparsity) results in 
that smaller vec size perform best with the seq -f4 _ tex t-tex t-cn st implemen-
tation, while larger vec sizes perform better with the coa-f2_meinm-text-text 
implementation. The difference is the point at which one implementation outper-
forms the other. At 80% and 85% sparsity the coa-f 2unemm-text-text outper-
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Figure 4.7: The four most promising implementations at various levels of sparsity.
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formed the seq -f4 _ tex t-tex t-cn st implementation when the vec array reached 
500 elements, while at 90% sparsity it was at a vec size of 1800 and at 95% spar-
sity a vec size of 3600.

Results at 99% and 99.9% sparsity are essentially identical. Both figures 4.7(e) 
and 4.7(f) show the seq -f 4 _ tex t-tex t-cn st implementation performing best for 
vec sizes of under 5000, the seq -f4 _ te x t-tex t-te x t implementation perform-
ing best between vec sizes of 5000 and 8500, and the coa-f2_memm-text-text 
implementation performing best for vec sizes larger than 8500.

Observing all six graphs in figure 4.7, only three implementations per-
formed best in any of the evaluations. These are the coa-f2_memm-text-text, 
seq -f4 _ tex t-tex t-cn st and seq -f4 _ te x t-tex t-te x t implementations.

The coa-f2_memm-text-text implementation in all of the graphs shows a 
sharp drop in performance after the number of columns reaches 1000 elements, 
after which performance gradually increases until at 2000 columns it reaches the 
same level of performance as it did at 1000 columns. The fact that this occurs 
at the same vec size in all of the graphs indicates that this is related to the 
size of the vec array rather than the average number of elements per row of the 
sparse matrix. In other words, the coa-f 2_memm-text-text has two performance 
curves; one for vector sizes of less than 1000 elements and another for vector sizes 
greater than 1000 elements.

The first performance curve of the coa-f 2_memm-text—text implementation 
(below 1000 columns) crosses with that of the seq -f4 _ tex t-tex t-cn st imple-
mentation in figure 4.7(a) just after 500 columns and in figure 4.7(b) just after 
700 columns. These number of columns both correspond to about 100 elements 
per row of the sparse matrix.

The second performance curve of the coa-f 2_memm-text-text im-
plementation (over 1000 columns) consistently surpasses that of the 
seq -f4 _ tex t-tex t-cn st implementation when the number of elements is about 
180 elements. This can be observed in figure 4.7(b) at 1200 columns (1200x0.15 =  
180 elements), in figure 4.7(c) at 1800 columns (1800 x 0.10 = 180 elements) and 
in figure 4.7(d) at 3600 columns (3600 x 0.05 =  180 elements).

In the absence of large numbers of nonzeros per rows, the size of the vec array 
dominates as the indicator of the best performing implementation as is shown in 
figures 4.7(e) and 4.7(f) for 99% and 99.9% sparsity.

In summary, the above analysis of the results indicates that the following 
three implementations make most efficient use of the GPU’s capabilities, with 
each performing best for a different set of matrix characteristics.
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1. coa-f2_memm-text-text

2. seq -f4 _ tex t-tex t-cn st

3. seq -f4 _ te x t-tex t-te x t

4.4 .4  M ultip le Row Im plem entations

The implementations discussed in the previous sections all process a maximum 
of one row per thread or block (depending on whether the implementation is 
coalesced or sequential). In order to evaluate the effect of processing multiple rows 
each thread or block (depending on the implementation) was assigned multiple 
rows. Rows can be assigned in a block or cyclic pattern. A block pattern would 
assign consecutive rows to each thread or block while a cyclic pattern would assign 
consecutive rows to different threads or blocks. To account for multiple rows, the 
names of the implementations were modified to:
[coa/seq] - [sr,mr_c,mr_b]-[f 1 ,f2,f4]_[val,ind storage] - [ptr storage] - [vector storage]

where sr represents a single row implementation, mr_c represents a cyclic, multi-
row implementation and mr_b represents a blocked, multi-row implementation.

Both blocked and cyclic options were implemented and evaluated for the 
c o a -f2_meram-text-text and seq -f4 _ te x t-te x t-te x t  implementations. The 
coalesced implementation was evaluated with 60,000 x 2,000 matrices at 95% 
sparsity resulting in an average of 100 elements per row. The sequential imple-
mentation was evaluated with 60,000 x 500 matrices at 95% sparsity resulting 
in an average of 25 elements per row. All three generation methods described in 
section 4.3.2 were used with 2, 5, 10 and 20 rows per thread or block .

Coalesced Im plem entation R esults

Table 4.5 presents the results for the blocked (coa-mr_b-f 2jnemm-text-text) and 
cyclic (coa-mr_c-f2jnemm-text-text) coalesced multi-row implementations.

When only one row is assigned per block, both blocked and cyclic implemen-
tations perform at 4.8 GFLOP/s regardless of the matrix structure. Increasing 
the assigned number of rows per block results in an increase in performance for 
both implementations with a slight advantage to the blocked implementation. 
As a result, the blocked option is identified as the better option for the coalesced 
implementations.
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Table 4.5: Comparison between performance (in GFLOP/s) of consecutive and 
strided multiple row coalesced memory implementations. Evaluation matrix is 
60,000x2,000 @ 95% sparsity.____________________________________

fill Implementation
Rows/Block

1 2 5 10 20

Random
cyclic 4.8 5.0 5.0 5.1 5.1

blocked 4.8 5.0 5.1 5.3 5.3

Constant row
cyclic 4.8 5.0 5.1 5.1 5.2

blocked 4.8 4.9 5.2 5.3 5.3

Structured
cyclic 4.8 5.0 5.1 5.2 5.2

blocked 4.8 5.0 5.3 5.3 5.3

Sequential Im plem entation R esults

Table 4.6 presents the results for the blocked (seq-mr_b-f 4_text-text-text) and 
cyclic (seq-mr_c-f4_text-text-text) sequential multi-row implementations.

Table 4.6: Comparison between performance (in GFLOP/s) of consecutive and 
strided multiple row sequential memory implementations. Evaluation matrix is 
60,000 x 500 © 95% sparsity._____________________________________

fill Implementation
Rows/Thread

1 2 5 10 20

Random
cyclic 3.8 3.8 3.9 3.8 3.8

blocked 3.9 3.6 2.9 2.0 0.8

Constant row
cyclic 3.9 3.9 4.0 4.0 4.0

blocked 4.0 3.6 2.9 1.7 0.8

Structured
cyclic 3.7 3.7 3.7 3.7 3.8

blocked 3.8 3.4 2.8 1.6 0.8

When assigning one row per thread, both cyclic and blocked sequential imple-
mentations result in similar levels of performance. As the number of assigned rows 
per thread increases the cyclic implementation results in negligible variances in 
performance, while the blocked implementation shows drastic performance degra-
dation. This is true regardless of matrix structure. As a result the cyclic option 
is identified as the best option for sequential multi-row implementations.
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4.4 .5  E v a lu a tio n  of S elected  Im p lem en ta tio n s

The previous analysis attempted to realise a set of implementations S so that for 
any given matrix, the best performing SpMV implementation would belong to S. 
For simplicity, this set will be referred to as the Best Performing Set (BPS). The 
implementations that were chosen from the series of synthetic matrix benchmarks 
are:

• coa-mr_b-f 2jnemm-text-text

• seq -m r_c-f4_text-text-text

• seq-mr_c-f 4_ tex t-tex t-cn st

To evaluate this BPS, a large number of other implementations were created 
and compared against. To create the large pool of implementations all options 
outlined in section 4.2 were implemented and tested, with the exception of the 
use of shared memory for the p tr  array as the previous results did not show any 
performance gain resulting from its use (see figure 4.6). This results in a total of 
335 implementations (including single and multi-row implementations).

Rather than evaluating these implementations with synthetically generated 
random matrices, the Florida sparse matrix collection [17] was used as it pro-
vides real world matrices from various scientific fields. When this evaluation was 
undertaken (November 2008), the Florida collection contained over 2200 matri-
ces, however only matrices containing 105 to 107 nonzero elements were selected 
as candidates for computing on the GPU (< 105 elements were considered too 
small). This resulted in 747 matrices which were further reduced to 735 matri-
ces by removing the matrices that would not fit on the GPU after padding the 
matrix to accommodate the coa-mr_c-f4_memin-text-text implementation as it 
requires the largest amount of padding.

The BPS presented above was then be evaluated by comparing the difference 
between the performance of the optimal implementation (from all of the 335 
implementations) and the best performing implementation in the BPS. This was 
repeated for each matrix in the set of 735 selected matrices. For any given BPS 
this is an ideal performance result since it assumes that ever sparse matrix can 
be correctly mapped to the best implementation in the BPS.

Table 4.7 presents the results of that evaluation in the form of the average dif-
ference in performance along with the standard deviation, median and maximum 
difference in MFLOP/s.
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Table 4.7: Difference in performance (in MFLOP/s) between the set of selected 
implementations from the previous analysis and the optimal implementations.

Set of Implementations
Difference n Performance

average stdev. median maximum
original set 61 130 19 1383

The average difference between the performance of the optimal implementa-
tion and the BPS over all the 735 datasets is 61 MFLOP/s, with a median of 19 
MFLOP/s, a standard deviation of 130 M FLOP/s and a maximum difference of 
1383 MFLOP/s.

It is important to recognise that while the results in table 4.7 are for a specific 
BPS of size 3, it says nothing about whether this selection is better or worse 
than any other set of three implementations. It is possible that an other selection 
of three implementations have better performance characteristics than the three 
implementations listed above. This issue is addressed in table 4.8 and elaborated 
below.

The maximum possible performance for a set of three implementations can 
be obtained by creating all the combinations of size 3 from the pool of implemen-
tations mentioned above. The full set of 335 implementations cannot be used to 
create these combinations, as the resulting combinations will quickly become too 
numerous, with a BPS of three giving (335) =  6, 209, 895 possible combinations. 
To reduce this size a smaller pool of possible implementations for the combina-
tions was created. This pool contains all the implementations that were optimal 
for any dataset at least twice. From this list, all single row implementations are 
removed and substituted with the two complementing multi-row implementations 
(see section 4.4.4). This results in a list of 34 implementations, which for a BPS of 
three gives (34) =  5, 984 combinations. All the generated sets are then evaluated 
in the same manner as the original selection. The average, standard deviation, 
median and maximum difference between the performance of the optimal imple-
mentation and the best performing implementation in the set are calculated. The 
best preforming combination where then defined as that which either has:

1. The smallest average, or

2. The smallest maximum.
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To avoid confusion the process of selecting the optimal implementation on 
the basis of the smallest average difference in performance will be referred to as 
the “first criteria” , while the process of selecting the optimal implementation on 
the basis of the smallest maximum difference will be referred to as the “second 
criteria” .

This approach was then extended to include the BPS from sets of size one to 
seven with the results given in table 4.8. As before, the optimal performance for 
each set is presented in the form of the average, standard deviation, median and 
maximum difference in the performance between the optimal implementation in 
the set, and the overall optimal implementation. Table 4.8 presents results using 
both criteria. Also included as row one are the results of evaluating the original 
proposed BPS with the same values repeated for both criteria.

Table 4.8: Difference in performance (in M FLOP/s) between each BPS from sets 
of sizes one to seven and the optimal implementations.

N u m b er C riter ia

o f “first criter ia” “seco n d  criter ia”

Im p le m e n ta tio n s average std ev . m ed ia n m a x im u m average std ev . m ed ian m a x im u m

orig in a l se lec tio n 61 130 19 1383 61 130 19 1383

1 630 1397 384 10103 1603 1106 401 5649

2 163 307 22 1498 163 307 22 1498

3 53 126 15 1383 136 256 22 1240

4 43 122 10 1383 44 84 15 725

5 34 77 10 725 42 78 15 615

6 31 77 5 725 32 70 9 615

7 28 74 5 725 29 67 9 615

When selecting the best implementation on the basis of the “first 
criteria” , the implementation that produces the best results is the 
seq-mr_c-f 4_text-memm-text implementation with an average performance dif-
ference of 630 MFLOP/s, a standard deviation of 1397 MFLOP/s, a median of 384 
M FLOP/s and a maximum difference of 10,103 MFLOP/s. The results of adding 
a single implementation (limiting the set to two implementation) is an average 
performance difference of 163 M FLOP/s, a standard deviation of 307 MFLOP/s, 
a median of 22 M FLOP/s and a maximum difference of 1,498 MFLOP/s. As the 
numbers of implementations in a set increases the difference in performance be-
tween the implementations in the set and the optimal implementations continues 
to decrease. The decrease in average, median and maximum are very noticeable
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when moving from one to three implementations per set. The move from three 
to four implementations creates a less noticeable decrease in average and median 
and the maximum remains constant. Increasing the number of implementations 
from four to five shows another large decrease in maximum, although the average 
doesn’t change much. Increasing the size of the sets from six upwards results in 
minimal small changes.

Selecting the BPS on the basis of the “second criteria” shows similar trends 
in that the difference in performance decreases as the number of implementations 
increase. The best single implementation is the coa-mr_b-f l_memm-text-text 
implementation with an average performance difference of 1,603 MFLOP/s, a 
standard deviation of 1,106 MFLOP/s, a median of 401 MFLOP/s and a max-
imum difference of 5,649 MFLOP/s. Increasing the number of implementations 
from one to two results in a drastic reduction in the difference between the BPS 
and optimal implementations. Further increasing the number of implementations 
continues to produce noticeable reductions up until four implementations where 
the magnitude of the difference stabilises to an extent. Sets of four implementa-
tions or more are not affected much by the addition of an extra implementation.

Comparing the two selection criteria shows the difference decreases as the 
number of implementations increase. As expected the first criteria results in 
smaller average differences but with much larger maximum differences.

When comparing the original selection of three implementations to the BPS 
of three implementations (resulting from selecting the lowest average) in table 4.8 
show the results of the original selection to be very similar. Table 4.9 highlights 
the difference in the implementations used in the original selection and the im-
plementations in the optimal set of three implementations.

Table 4.9: Comparison between original selection and optimal set of size 3.
Original selection BPS of size 3 comment

coa-mr_b-f 2jnemm-t ex t-tex t 
seq-m r_c-f4_text-text-text 
seq-m r_c-f4_text-text-cnst

coa-mr_c-f 2jnemm-text-text 
seq-mr_b-f 4_ tex t-tex t-tex t 
seq-mr_c-f 4_text-tex t-cnst

different
different
identical

Both sets in table 4.9 contain one coalesced implementation and two sequential 
implementations. Comparing the implementations in the two sets show that they 
are identical in their basic structure, the only difference being the preference 
for cyclic or blocked multirow distribution patterns. The small differences in



4.5. MAPPING MATRICES TO THEIR OPTIMAL IMPLEMENTATION 65

performance between the two sets are most likely due to the results of the wide 
range of matrix structures used in the evaluations. The difference between these 
two sets are only eight M FLOP/s in average performance difference.

When comparing the best possible set of three implementations to sets of 
other sizes, it is important to note that each added implementation will increase 
the challenge of mapping matrix attributes to the best performing implementa-
tion. Given that the performance difference decreases very slowly when increasing 
the number of implementation beyond four, suggests that four implementations 
provides a balance between performance and number of implementations.

4,5 M apping M atrices to  th e ir  O ptim al Im ple-

m en tation

From the above analysis, the optimal set of four implementations was:

• coa-mr_b-f 2_memm-cnst-cnst

• coa-mr_c-f 2_memm-text-text

• seq-mr_c-f4_text-text-cnst

• seq-mr_c-f4_text-text-text

The objective is now to create a decision tree that identifies which imple-
mentation to use based on the matrix attributes (rows, columns and number of 
nonzero elements). Weka [22], a collection of machine learning algorithms for 
data mining tasks containing tools for data classification was evaluated to build a 
variety of possible decision trees. Random Forests and Fast decision tree learners 
were applied to the data resulting from benchmarking the 335 to create decision 
trees. The problem with these trees was that they were over fitted with up to 
100 levels and up to 1000 leaves. Limiting the number of implementations to 
the 34 implementation previously discussed, still resulted in over fitted trees with 
10 levels and up to 300 leaves. Conversely, limiting the number of levels in the 
tree resulted in trees with low percentages of correctly classified instances. In 
addition, the software only considers whether the classification was correct or not 
and therefore considers a classification resulting in a difference of 10 MFLOP/s 
to be equal to an incorrect decision resulting in a difference of 1000 MFLOP/s.
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For these reasons a simpler decision tree based on empirical analysis was 
attempted that took into consideration the magnitude of difference rather than 
the number of correct classifications.

The analysis conducted in section 4.2, showed that certain matrix attributes 
affected different implementation options in terms of which performed best for a 
matrix. The analysis identified the average number of nonzeros per row as the 
parameter that distinguishes whether to use coalesced or sequential implementa-
tions. The number of columns was shown to have direct effect on which memory 
type to use for the vec array. The p t r  array was shown to perform equally well 
for texture and constant memory. Building upon this knowledge a simple tree 
was created. This tree is presented in figure 4.8.

Avg.
number of 

nonzeros/row

Number 
of columns

Number 
of columns

SequentialCoalesced

735 matrices

seq-m r_c-f4_text-text-cnst

seq-rar_c-f4_text-text-textcoa-mr_c-f2meinm-t ex t- tex t

coa-mr_b-f2_ i-cnst-cnst

Figure 4.8: A simple decision tree to distinguish the best performing implemen-
tations based on the matrix parameters.

The tree includes parameters to determine whether to go down a potential 
branch but doesn’t state the actual values. A search for the best values for these 
attributes can be done by comprehensively searching all the possible combinations 
of these attributes and selecting the combination that offers the best overall per-
formance. A comprehensive search is possible since the use of constant memory 
imposes an upper limit of 16000 elements on the size of the vec array.
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Rather the blindly search all possible values, the performance of these im-
plementations are analysed to find likely starting values or ranges. Figure 4.9 
presents plots of all the 735 matrices used in the evaluation of the implemen-
tations. Each matrix is plotted by its attributes with different shaped points 
representing whether the best performing implementation within the BPS is co-
alesced or sequential. Both graphs (figure 4.9) indicate that the value for the 
average number of nonzeros per row should be between 30 and 100.
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Figure 4.9: Looking for patterns to distinguish between the coalesced and se-
quential implementations in the BPS of size 4.
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Figure 4.10: Looking for patterns to distinguish between the different coalesced 
implementations in the BPS of size 4.
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Figure 4.10 attempts to distinguish between the two coalesced implementa-
tions. Figure 4.10(a) doesn’t indicate any statistical significance for the number of 
rows in this decision. Figure 4.10(b) indicates that the number of columns plays 
a more significant role. The number of columns at where one implementation 
outperforms the other is somewhere between 2000 and 6000 columns.

seq-mr_c-f4_text-text-text
seq-mr_c-f4_text-text-cnst

seq-mr_c-f4_text-text-text
seq-mr_c-f4_text-text-cnst

10000010000 1e+06
Number of Rows

1000

100 1000 10000 100000 1e+06 1e+07
Number of Columns

(a) Rows X Avg. nonzers/row. (b) Columns X Avg. nonzers/row.

Figure 4.11: Looking for patterns to distinguish between the different sequential 
implementations in the BPS of size 4.

Finally, figure 4.11 investigates the patterns that differentiate between the two 
sequential implementations. Figure 4.11(a) shows a weak relation between the 
number of rows and the better implementation. This weak relation is most likely 
a result of the fact that most matrices used for evaluation are square, rather than 
there being any real link between the attribute and the implementations. The dis-
tinction between the two implementations is some what clearer in figure 4.11(b). 
The number of columns where one sequential implementation outperforms the 
other lies between 10,000 and 11,000 columns.

From the previous analysis each combination of these values were then used in 
an evaluation process and the combination tha t results in the best performance 
was chosen and used to create the final decision tree given in figure 4.12.

Using this decision tree the actual performance results are collected and pre-
sented in table 4.10 along with the ideal performance if all matrices were perfectly 
mapped to the best implementation in the BPS.

Table 4.10 shows that the results achieved with the decision tree are quite far 
from the ideal case. The average difference and standard deviation are 3x the 
ideal case, while the median and maximum difference are 2x the ideal case.
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Avg.
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nonzeros/row
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.of columns^
Number 

of columns^

735 matrices

C oalesced Sequential

coa-mr_c-f2_meinm-text-text seq-m r_c-f4_text-text-text
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Figure 4.12: Final decision tree.

Table 4.10: Difference in performance (in MFLOP/s) the ideal BPS of size four 
and the result of using the decision tree.____________ ___________

Context Average Stdev. Median Maximum
Ideal 44 84 15 725

From Tree 119 242 28 1664
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While there must exist other sets, attribute values (such as the median and 
standard deviation of the number of nonzero elements per row) and decision trees 
or other machine learning methods that would have produced better results, the 
realisation of such optimal cases is beyond the scope of this work.

In 2008, Ryoo et al published results from using pareto-optimisation tech-
niques to search the optimisation space for four kernels based on efficiency and 
utilisation metrics [49]. The optimisation space include the number of threads per 
block, tiling sizes, loop unrolling and many other aspects. While the approach 
used by Ryoo et al is quite different to that taken here, there is similarity in the 
task being solved. 2

4.5.1 Selecting th e N um ber o f Threads per Block

The previous sections identified the optimal memory options and access methods 
for the SpMV implementations. The best size for the BPS and the implementa-
tions to use for it were also identified. In the previous section a blackbox im-
plementation was created tha t would select an implementation based on matrix 
attributes using a decision tree. The remaining implementation option identified 
in section 4.4 that has not been evaluated is the number of threads per block 
which were set to 32 for all previous benchmarks.

To select the best number of threads per block for each of the four implemen-
tation that make up the blackbox implementation, it is evaluated with the set of 
735 sparse matrices with the number of threads per block set at 16, 32, 64, 128, 
256 and 512. For each dataset the internal implementation selected by the black-
box implementation was noted. This data was compiled into table 4.11 where 
for each of the internal implementations, the number of datasets that performed 
best with a particular number of threads per block is noted.

Table 4.11 shows tha t the coa-mr_b-f2_memm-cnst-cnst was selected 7 
out of 735 times. Of these half performed best with 32 threads per block 
while the other half performed best with 64 threads per blocks. The 
coa-mr_c-f2jnemm-text-text was chosen 95 times with 32 and 64 also being 
the number of threads th a t performed best the majority of the time. The 
seq-mr_c-f 4 _ tex t-tex t-cn st implementation was selected 101 times and the 
majority of cases saw either 64 or 128 threads per block as the optimal value. 
Finally the seq -m r_c-f4_text-text-text implementation performed best 532 
times with the best results appearing at 256 threads per block followed closely

2We are grateful to the examiner for bring this work to our attention.
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Table 4.11: Evaluating the 4 implementation as to the effect of using different 
numbers of threads per block. Each cell contains the number of matrices that 
performed best with the specified number of threads per row.___________

Implementation
Times selected

total
number of threads per block
16 32 64 128 256 512

coa-mr_b-f 2_memm-cnst-cnst 7 0 4 3 0 0 0
coa-mr_c-f 2_memm-text-text 95 3 48 30 10 3 1
seq-m r_c-f4_text-text-cnst 101 7 9 34 32 10 9
seq-m r_c-f4_text-text-text 532 13 89 91 124 140 75

by 128 threads per block. However a large number of cases perform best at 32 
and 64 threads per block.

Searching through the results for the combination of settings that produced 
the best average performance, determines the optimal number of threads to use 
for each of the four implementations. It was found that all the implementa-
tions should use 64 threads per row except the seq-m r_c-f4_text-text-cnst 
implementation which should use 128 threads per block. Overall, while the per-
formance of individual datasets are affected quite substantially by varying the 
number of threads per block, the overall performance is not greatly affected.

4.6 C P U  v  blackbox P erform ance

The minimal, maximum, median and average overall effective performance 
achieved with the CPU and blackbox implementation across all the 735 matrices 
used for evaluations are presented in table 4.12. The CPU results were obtained 
with PETSc 3 [6, 7], the same library that is used by the BMRM application to 
compute matrix-vector products. (PETSc is further expanded upon in the next 
chapter.) The standalone performance of the internal implementations that make 
up the blackbox implementation are also presented.

The results from table 4.12 show the blackbox implementation performing on 
average 7.85x the CPU and at maximum of about 20x the CPU. The structure 
of matrices that resulted in the poor performance in table 4.12 had huge varia-
tions in the number of nonzero elements in each row. An example of this is the

3Portable, Extensible Toolkit for Scientific Computation
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Table 4.12: Minimal, maximum, median and average performance of the GPU 
blackbox SpMV implementation in GFLOP/s.

Implementation Minimum Maximum Median Average
CPU 0.04 0.43 0.18 0.2
blackbox implementation 0.06 8.59 1.24 1.57
coa-mr_b-f 2jnemm-cnst-cnst* 0.67 7.03 1.26 1.69
coa-mr_c-f 2_memm-text-text 0.07 8.59 0.62 1.09
seq -m r_ c-f4 _ tex t-tex t-cn st* 0.06 4.37 1.93 1.92
seq-mr_c-f 4 _ te x t- te x t- te x t 0.06 3.85 1.04 1.23
*These figures are calculated from the smaller subset of datasets that satisfy 
the constraints of constant memory for the vec array.

ASIC_320k matrix where 2 rows contain about 200,000 elements, yet the average 
number of nonzero elements per row is only 8. Table 4.13 presents a sample of 
4 matrices where the maximum number of elements per row are about 40,000x 
the average number of nonzeros per row. These are followed by 4 matrices where 
the maximum is between 2x to 25 x the average number of nonzeros per row.

Table 4.13: The performance of pathological matrices compared to the perfor-
mance of of matrices where the difference between the maximum and average 
number of elements per row is not as great.____________________________

Dataset Nonzeros per Row Performance
name rows columns min. max. avg. (GFLOP/s)

lpl 534388 534388 2 249643 3 0.06
ASIC_680k 682862 682862 1 395259 6 0.06

raj at 2 9 643994 643994 1 454521 8 0.96
rajat30 643994 643994 1 454746 10 0.11
inline_l 503712 503712 18 843 73 2.99

ramage02 16830 16830 45 270 170 4.71
psmigr_2 3140 3140 3 2293 172 2.51
gupta3 16783 16783 33 14672 556 8.56

These results show that the structure of the matrix is critical to the per-
formance of the SpMV product on the GPU. This is mainly since each row is 
assigned to either a block or thread on the GPU. Large number of elements per
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row lead to a single thread or block executing for large amounts of time while 
all the other threads/blocks are idle. Performance of such matrices could be 
improved by investing in customised matrix formats and implementations.

4.7 Recent Related Work

Very recently, Bell and Garland [9] published their efforts to design efficient SpMV 
kernels for the GPU. The GPU used was an NVIDIA GeForce GTX 280 GPU. 
This system is compared to the GeForce 8800 GTX used in the work in table 4.14.

Table 4.14: Comparison between the theoretical peak attributes of the GeForce
8800 GTX and the GTX 280 GPUs.

GPU Performance* Internal Bandwidth Number of SPs
GeForce 8800 GTX 321 GFLOP/s 80 GB/s 128
GeForce GTX 280 581 GFLOP/s 131 GB/s 240

Improvement 181% 164% 188%
* This number does not take into consideration texture related 

capabilities as they are rarely used in general purpose programs.

From the comparison in table 4.14, the newer GTX 280 is capable of roughly 
180% of the performance of a 8800 GTX in terms of FLO P/s and 164% in terms 
of the internal memory bandwidth. In addition to the raw performance figures, 
the GTX 280 also contains many other improvements. For example NVIDIA have 
increased the number of registers in the SMs and the maximum number of threads 
that can reside on the SMs. They have also reduced the penalty for unaligned 
memory accesses. We would expect the blackbox implementation on the GTX 
280 to achieve roughly 160% increase in performance over the 8800 GTX.

Bell and Garland [9] investigated a variety of sparse matrix formats. These 
include the diagonal format, the ELLPACK format, the coordinate format, the 
packet format, the compressed sparse row format, and a hybrid format between 
the coordinate and ELLPACK formats. Each of these formats requires a SpMV 
kernel and in the case of the CSR format, both a sequential and coalesced CSR 
implementation were created. The authors also investigated the use of texture 
memory for the vector in the SpMV products and identified a performance gain 
through its use.

The authors investigated the single precision performance of structured and
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unstructured sparse matrices separately. For the structured sparse matrices, the 
test cases were composed of standard discretisation of Laplacian operations in 
1, 2 and 3 dimensions. These sparse matrices were all comprised of a number 
of diagonals. Storing these matrices in the diagonal format reduces the memory 
footprint of the matrix by a factor of 2. As memory bandwidth is the bottleneck 
for SpMV products, the reduction in the memory foot-print translates into an in-
crease in performance. Bell and Garland [9] reported a maximum of 36 GFLOP/s 
for these structured matrices with the diagonal implementation.

Unstructured matrices were represented by the set of 14 matrices that were 
used by Williams et al. [60] in their paper. The attributes of these datasets 
are presented in table 4.15. For 12 of these matrices the best performance was 
achieved with the hybrid implementation, while the remaining two performed best 
with the coalesced CSR implementation. The hybrid implementation achieved a 
maximum of 22.3 GFLOP/s, while the CSR implementation achieved a maximum 
of 16 GFLOP/s.

Table 4.15: Datasets used by Williams et al. as well as Bell and Garland.
Dataset Rows Columns Avg. Nonzeros/Row
Dense 2,000 2,000 2000

Protein 36,417 36,417 119
FEM-Sphr 83,334 83,334 72
F EM-Cant 62,451 62,451 64

Tunnel 217,918 217,918 53
FEM-Har 46,835 46,835 50

QCD 49,152 49,152 39
FEM-Ship 140,874 140,874 55
Econom 206,500 206,500 6
Epidem 525,825 525,825 4

FEM-Accel 121,192 121,192 22
Circuit 170,998 170,998 6

webbase 1,000,005 1,000,005 3
LP 4,284 1,092,610 2633

In addition Bell and Garland [9] also evaluated double-precision SpMV prod-
ucts on the GTX 280 GPU and achieved 16 GFLOP/s for the structured, diagonal 
matrices and a maximum of 13.9 GFLOP/s and 14.2 GFLOP/s for the hybrid and
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CSR implementations respectively. These results compare favourably with the 
results published by Williams et al. [60] and shows the median GPU performance 
to be about 10 x the leading CPU performance.

While the work by Bell and Garland [9] does compare the performance of 
multiple storage formations (or the implementation for these formats) and the 
effect of utilising texture memory for the vector of these SpMV products it does 
not investigate many of the other implementation options that CUDA provides.

For example, this work investigated the use of multiple data types, the use of 
texture and constant memory for not only the vector but the three arrays that 
make up the CSR matrix. A large amount of analysis was provided as to how 
the performance of the SpMV products if affected when the various data types 
and memory options are used for each of these arrays. The effect changing the 
number of threads per block was also investigated in this work. These issues were 
not discussed in the work by Bell and Garland [9].

The work by Bell and Garland [9] created two CSR implementations while 
this work implemented 335 different implementations. The evaluation of these 
implementations was performed with not 14 but 735 implementations across a 
much wider spectrum of applications.

The cost of copying the matrix and vector to and from the GPU is only 
important if the bulk of the application runs on the GPU and only the matrix- 
vector products are performed on the GPU. In any case Bell and Garland [9] 
do not provide the cost of these operations which should be roughly half the 
equivalent cost presented in this work as the GTX 280 GPU used by Bell and 
Garland [9] utilises a PCIe 2.0 bus which has 2x the performance of the PCIe 1.0 
bus utilised by the 8800 GTX GPU. This work also provides a large amount of 
analysis to identify how multiple CSR implementations can be used together to 
create a single blackbox implementation which selects the correct implementation 
based on the matrix attributes.

In terms of performance, figure 4.13 provides the kernel performance (for com-
parison with the work by Bell and Garland [9] as well as the effective performance.

One of the key differences in the CSR results in this work and the results by 
Bell and Garland [9] is that while the SpMV results are based on the nonzero 
elements in the unmodified matrices, the matrices were padded with zeros to 
a multiple dependent on the implementation. On the 8800 GTX GPU this is 
essential to achieve coalesced memory performance. The results produced by by 
Bell and Garland [9] as this is not required with the GTX 280 GPU.

Much of the future work identified by Bell and Garland [9] is consistent with
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Effective SpMV Performance ^  
Kernel Performance tmmm

Figure 4.13: The GPU Performance for the 14 datasets used by Williams et al. 
For each dataset the time for the SpMV kernel as well as the effective performance 
is provided.

our vision. The use of multiple formats for some of the matrices that performance 
badly on the GPU, the use of blocked formats and the results of multiplying the 
sparse matrix by multiple vectors at the same time are all of interest.

4.8 S u m m a ry  a n d  C o n c lu s io n

SpMV results on the GPU show an average speedup of 7.85 x and a maximum 
speedup of about 20 x over the CPU when factoring in the overheads associated 
with the use of the GPU. Applications that are completely ported to the GPU 
would not incur these penalties and would therefore see an speedup of around 
15.85x (maximum speedup would be about 31.24x) and would be expected to 
double if performed on a 2009 model GPU like the GeForce GTX 285. SpMV 
products can also be computed jointly between the GPU and the CPU which 
would result in even better overall performance. Offloading SpMV products to 
the GPU can be a very viable option depending on the structure of the sparse 
matrix and the number of SpMV iterations.

The results presented in this chapter compare favourably with the results 
presented by Bell and Garland [9] on a GTX 280 GPU and Williams et al. [60] 
on high end CPUs and other novel architectures. Even if the GPU and CPU 
performed equally well in terms of SpMV performance, the cost of adding three
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GPUs for example to a system is much less then the cost of 3 new systems.

4.9 Results on a GTX 295 G PU

W ithout changing or updating any of the code, the complete set of benchmarks 
were applied to a newer GTX 295 GPU. Table 4.16 shows the difference between 
the 8800 GTX and GTX 295 in terms of theoretical performance. The GTX 295 
actually consists of 2 GPUs on a single PCIe card. The numbers given are for a 
single GPU of the GTX 295 rather then the aggregate theoretical performance of 
the entire card.

Table 4.16: Comparison between the theoretical peak attributes of the GeForce 
8800 GTX and a single GPU of the GTX 295.

G P U Perform ance In terna l B andw id th N um ber of SPs

G eForce 8800 G T X 321 G F L O P /s 80 G B /s 128

G eForce G T X  295 (single G PU ) 555 G F L O P /s 104 G B /s 240

Im provem ent 173% 130% 188%

Table 4.17: Improvement of the GTX 295 over the 8800 GTX in terms of the 
blackbox SpMV implementation performance. The numbers here can be compared 
to the hardware specification to deduce the scalability of the blackbox implemen-
tation

Implementation Maximum Average
blackbox implementation on the 8800 GTX 8.59 1.24
blackbox implementation on the GTX 295 (single GPU) 11.0 2.3
Improvement 128% 150%

The results for the maximum and average performance achieved on both the 
8800 GTX and the GTX 295 (using a single GPU) are presented in table 4.17. 
Since the CSR SpMV algorithm is bandwidth bound the fact that an increase 
in internal memory bandwidth of the GPU of 130% leads to a 128% increase 
in the maximum performance in not surprising. The increase in the average 
performance of 150% (a 20% increase over memory bandwidth improvement) is
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most likely due to the improvement in the coalescing capabilities of the newer 
card. Based on these results the same code would be expected to scale to future 
GPUs relative to the increase in internal bandwidth.

Taking into account the 164% bandwidth improvement (as reported in ta -
ble 4.14) the GTX 280 used by Bell and Garland has over the 8800 GTX GPU 
and these new results, the performance of the CSR SpMV blackbox implementa-
tion can safely be predicted to increase by at least 160%. This suggests that the 
blackbox implementation presented in this thesis would outperform the CSR im-
plementation presented by Bell and Garland [9]. However further benchmarking 
on the same hardware would be needed for a completely fair comparison.



Chapter 5

SML Application

The Bundle Methods for Regularised Risk Minimisation (BMRM) application 
described in section 2.3 is an open source, modular and scalable convex solver for 
many machine learning problems cast in the form of regularised risk minimisation 
problem [54]. BMRM utilises PETSc [7] for the matrix-vector operations.

The current objective is to only perform the matrix-vector products on the 
GPU and perform all other computations on the host. The PETSc objects are 
therefore intercepted and copied to the GPU. The matrix-vector products are 
then performed on the GPU and the result copied back to the CPU and packed 
into a PETSc object.

As previously noted, each iteration of the computation requires both a nor-
mal and transpose matrix-vector product. For dense matrix-vector products, the 
transpose only alters the order of reading the matrix (see section 3.3.1). In the 
case of sparse formats, generation of the transpose matrix is a non-trivial opera-
tion so it is pre-formed and stored on the GPU along with the original matrix.

The steps taken to perform the first matrix-vector product are as follows:

1. Step 1: Copy the matrix to the GPU.

(a) Convert matrix elements from double to float.

(b) Pad the nonzero elements of each row in the matrix to a multiple of a 
given number depending on the implementation.

(c) copy the matrix to GPU memory.

2. Step 2: Copy the vector to the GPU.

(a) convert the vector elements from double to floa t.

79
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(b) copy the vector to GPU memory.

3. Step 3: Perform the matrix-vector product.

4. Step 4: Copy the result to main memory.

(a) copy the result from GPU memory to main memory.

(b) convert the result elements from flo a t to double.

Steps 2 to 4 are then repeated for each matrix-vector product utilising the same 
matrix.

The blackbox SpMV implementation discussed in section 4.5 was integrated 
into the SML application along with the CUBLAS library for dense matrix-vector 
products. Table 5.1 presents the datasets that were used by Teo et al. in his 
evaluation of the BMRM algorithm [54].

Table 5.1: Datasets used in the evaluation of the BMRM application.
Dataset Rows Columns Sparsity Avg. Nonzeros/Row
adult9 32,561 123 88.72% 14

astro-ph 62,369 99,757 99.92% 77
aut-avn 56,862 20,707 99.75% 51

covertype 522,911 54 77.78% 12
kdd99 4,898,431 127 87.14% 16
news20 15,960 1,355,181 99.97% 455
real-sim 57,763 20,958 99.76% 51

reuters-cll 781,265 47,236 99.84% 76
reuters-ccat 781,265 47,236 99.84% 76

web8 45,546 300 95.76% 13

The datasets vary greatly in terms of numbers of rows, number of columns and 
sparsity. However 70% of the datasets are over 99.7% sparse with the remaining 
30% over 75% sparse. The average number of elements per row for these datasets 
vary between 12 and 455 nonzeros per row.

The SML application was benchmarked three times. Once running the original 
unmodified code, once utilising the blackbox implementation for the matrix-vector 
products, and once forcing the use of dense formats.

The application determines the stopping criteria based upon the regularisation 
constant (A) and the termination criteria (e). These parameters were set to
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A = 10~5 and e = 10~4 for all the benchmarks. The results of these benchmarks 
are presented in table 5.2. The table presents the number of iterations and total 
run time for each of the three runs. In the case where the amount of memory on 
the GPU was insufficient to accommodate either the matrix and its transpose in 
the case of the sparse products, or the dense matrix in the case of dense products, 
a N/A is indicated.

Table 5.2: The iterations to convergence along with the total run time (in seconds) 
for the unmodified application and the GPU with both sparse and dense. The 
number of iterations reflect the effect of precision the application.

Dataset CPU GPU Sparse GPU Dense
iterations run time iterations run time iterations run time

adult9 2057 215.99 2112 184.07 2086 216.83
astro-ph 129 46.92 130 33.57 N/A N/A
aut-avn 134 26.29 134 17.55 N/A N/A

covertype 296 89.24 285 41.50 310 78.99
kdd99 159 595.21 N/A N/A N/A N/A
news20 284 485.45 286 377.68 N/A N/A
real-sim 135 26.44 137 17.48 N/A N/A

reuters-cll 145 21.36 163 16.45 N/A N/A
reuters-ccat 214 29.35 206 19.82 N/A N/A

web8 549 14.90 580 8.14 979 29.30

From the ten datasets that were used to evaluate the SML application, only 
the “kdd99” dataset was too large for evaluation on the GPU. While the “kdd99” 
dataset can fit on the GPU alone, the added size of the transpose is beyond the 
capabilities of the GeForce 8800 GTX. Forcing the sparse matrices to use dense 
formats increases the memory footprint drastically. Dense representations of these 
matrices are so large that only three of the ten datasets could fit into the 768MB 
of GPU memory.

The number of iterations taken for the solution to satisfy the termination 
criteria is roughly equivalent among the CPU and SpMV GPU versions of the 
BMRM application. The only exception is the “web8” dataset when using dense 
matrix-vector products on the GPU where the number of iterations were double 
the values for CPU or SpMV on the GPU. The difference in the number of iter-
ations is expected as the CPU and GPU are utilising different levels of precision
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and finite precision floating-point arithmetic is not associative causing the order 
in which the operations are conducted affect the result.

Computing the SpMV products on the GPU resulted in a minimum speedup of 
1.17x, a maximum of 2.15x and an average speedup of 1.5x over the CPU. These 
values are far below the speedups achieved for the standalone SpMV products 
presented in table 4.12. To determine the cause of this performance difference 
and therefore the total application time is broken down into its components in 
figure 5.1.

loading dataset ■■■■ 
create transpose wmmm 

copy matrix ■■■■

copy transpose 
other

Figure 5.1: Time breakdown total application runtime.

Figure 5.1 shows that loading the dataset from file into memory is a large 
bottleneck, dominating the total application time for four of the nine runs. Three 
of the nine runs spent between 25% to 50% of the total time loading the dataset 
and only two of the runs spent less than 10% of the execution time loading the 
dataset. Creating the transpose consumes between 1% and 10% the total run 
time. The copying of both normal and transpose sparse matrices to the GPU 
accounts for just 1% to 2% of the total execution time.

The large amount of time spent in loading the datasets, suggest that large 
reductions in total runtime could be achieved by optimising the dataset storage 
format. For example utilising binary formats for the dataset representation rather 
than Matrix Market text format [12] would decrease the total execution time.

In Section 4.3.3, the performance results were noted to contain the time penal-
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ties inured in converting double elements to f lo a t and copying the vec and res 
arrays between the host and GPU. Figure 5.2 presents the percentage of total 
time that these operations represent, both for the process of copying the original 
matrix to the GPU and the SpMV product.

Figure 5.2(a) details the percentage of time spent in allocating non-pagable 
memory, converting the elements of the matrix from double to f lo a t, padding 
the matrix and copying the matrix to the GPU memory. This shows that the 
cost of allocating pinned memory is significant. There is an extra cost of about 
40 milliseconds for initialising pinned memory allocation that is inured for the 
first pinned memory allocation. This overhead is negated by all the speedups in 
memory data transfer for the SpMV products. Other than the pinned memory 
initialisation, the cost of converting the matrix dominates the total time for all 
of the datasets. The conversion process consumes between 40% to 50% of the 
total time. The cost of padding the matrix is the second largest cost, consuming 
between 5% to 30% of total time. The actual copying of data only consumes 
between 5% to 20 % of the total time taken for the matrix to reach GPU memory.

In is important to realise that while the time for matrix initialisation on 
the GPU is dominated by the overheads of allocating memory, converting from 
double to f lo a t and padding the matrix, the whole process of initialisation 
for both normal and transpose matrices account for only about 2% of the total 
application runtime.

Figure 5.2(b) details the percentage of time spent converting the vector and 
result from double to f lo a t and f lo a t to double respectively, the time taken to 
copy the vector and the result, and the time taken to execute the SpMV kernel on 
the GPU. The time taken to allocate non-pagable memory for vector and result 
is not included as they are both allocated only once and used repeatedly for each 
iteration. The cost is therefore amortised and not relevant.

The results of the SpMV operation breakdown in figure 5.2(b) indicates that 
for the majority of datasets the actual SpMV kernel time is the dominate sub 
operation. The collective conversion time for both vector and result consumes 
between 10% to 60% of the total time. The combined copying time for both 
vector and result consumes between 2% to 20% of the total time.
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initilize pinned memory 
allocate pinned memmory 

pad matrix

convert matrix i h h b  
copy matrix to GPU

(a) Time breakdown of the process of copying a matrix from host to GPU 
memory.

convert vector m m m  
copy vector to GPU ta m m  

SpMV kernel time ■■■■

copy result to host 
convert result

(b) Time breakdown of a single SpMV product.

Figure 5.2: The penalties of conversion and transfers on the matrix copy process 
and the SpMV product.
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5.1 Conclusion

These results show between 1.2 x to 2.15x improvement in total runtime of the 
BMRM application. This improvement is very small in comparison to the capa-
bilities of the GPU. There exists a large overhead in converting between f lo a t  
and double data types in addition to the overhead of moving data back and forth 
between the GPU and host. Part of this overhead could be eliminated by modi-
fying the application to utilise f lo a t  data type. The use of newer GPUs which 
support PCIe 2.0 would reduce the cost of transfers between the host and GPU 
by 50%.

The use of newer GPUs would also provide the ability to perform double-
precision SpMV products. This would also remove the conversion overhead and 
at the same time increase the number of applications that would benefit from the 
use of the GPU. The use of double-precision would increase the footprint of the 
sparse matrix by about 30% and double the memory foot-print of both the vec 
and a rray s. The increased memory footprint of all data is counterbalanced by 
the fact that newer GPUs have about 2x the bandwidth available on the 8800 
GTX for both host-GPU transfers and internal GPU bandwidth. Using newer 
GPUs are expected to result in double the performance of single precision with 
a performance hit of about 30% for using double-precision due to the increased 
memory foot-print of the sparse matrix.

The above paragraphs discuss SpMV optimisations, however, the further opti-
misation of the SpMV product will not result in large reductions in total execution 
time as the total runtime is often dominated by the time to load the dataset to 
memory rather then the SpMV product. This reduces the impact of accelerating 
the SpMV operations. Removing the time to load each dataset into memory from 
the results presented in table 5.2 allows the comparison between the computation 
time spent by the CPU and SpMV GPU versions of the application. The SpMV 
GPU application is a minimum of 1.17x and maximum of 5.29x faster then the 
CPU in this computation.

In summary, the GeForce 8800 GTX offers benefits for the matrix-vector 
products performed in this SML application and newer GPUs will enhance this. 
Whether this performance difference is enough given improvements in CPU tech-
nology is not clear. More fundamentally the runtime performance of this ap-
plication is dominated by non-computational tasks that need to be addressed 
first.
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Chapter 6

Conclusions and Future Work

The main objective of this work was the evaluation of the GPUs in general and 
specifically the GeForce 8800 GTX for SML applications. Performing the SpMV 
products on the GPU only resulted in 1.2 x to 2.15x improvement in total run-
time. This is largely due to the amount of time taken to load the dataset into 
memory, and if this is ignored, the GPU computes the SML task 1.17x to 5.29x 
faster then the CPU. Based on the limited number of dataset tested with the 
BMRM application, SpMV on the GPU results in minor advantages to SML ap-
plications. However a wider survey of SML applications and datasets should be 
made to identify if this is the case across all SML applications or not.

The bulk of this work focused on the implementation and evaluation of SpMV 
routines for the 8800 GTX GPU as presented in chapter 4. SpMV products on the 
GPU achieve an average improvement of 7.85 x the CPU performance of PETSc. 
This includes penalties resulting from the time taken to convert the vec array 
from double to f lo a t  elements and the time to transfer results to and from the 
GPU, which is substantial as shown in figure 5.2(b). A much larger improvement 
in performance will be seen when the whole application is ported to the GPU, 
limiting the need for transfers between the GPU and host. Reductions of these 
overheads have already been realised with newer GPUs that use PCIe 2.0 to 
double the bandwidth between the host and GPU.

At the beginning of this work, the CSR sparse matrix format was identified 
as the preferred format as it was widely used in the scientific community and it 
was considered the most robust format. The recent work by Bell and Garland [9] 
showed that performance can be increased by utilising other different formats. 
This is not surprising as research has been published articulating the benefits of 
optimising the storage format for sparse matrices on the CPU [18]. The develop-
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ment of an auto-tuning library for SpMV on the GPU would be beneficial.
While optimising for the CPU is reasonably well understood, GPU optimisa-

tion techniques are not as well established [45]. In table 3.5 the SGEMV perfor-
mance on the GPU of a 2048 x 2048 square matrix is listed as 7.26 GFLOP/s, 
while in figure 4.13 the SpMV performance on the GPU for a 2000 x 2000 dense 
matrix is shown to be 10.5 GFLOP/s. The large performance gain in the SpMV 
product is the results of the use of texture memory to store the vec array in 
the case of the SpMV product, and the under utilisation of the GPU in the case 
of the dense product. This example highlights two of the most important opti-
misations in GPU programming, and the extent such optimisations can have on 
performance; Specifically sufficient utilisation of the GPU execution units and 
exploration of the various memory options. Volkov and Demmel [57] showed how 
detailed analysis of the GPU memory system can be used to optimise matrix- 
matrix multiplies and produce significant performance gains. Memory evaluation 
and benchmarking is especially important for memory bound GPU applications.

It is important to realise that GPUs are rapidly evolving and these issues could 
change in the next generation. Owens et al. [45] points to the Sony Playstation 3 
and the Microsoft XBox 360 gaming consoles, both of which support host to GPU 
connections that offer much higher bandwidth than the PCIe bus. The Fusion 
project by AMD is also highlighted as it attempts to place both CPU and GPU 
on the same die removing large bottlenecks in GPU-CPU communication. As 
the bandwidth between the GPU and host increases the number of applications 
that would benefit from the use of a GPU as a coprocessor and indeed magnitude 
of improvement would increase. Newer Generation GPUs allow asynchronous 
memory transfers between the Host and GPU. This allows the GPU to overlap 
computation with host to GPU memory transfers which will further reduce the 
overhead of moving data to and from the GPU.

Another obstacle that prevents wide adoption of GPGPU is the different lan-
guages for the different GPUs. The work presented in this thesis utilised CUDA 
for the GPU. This prevents the code written from being used for other GPUs 
and therefore, applications written in CUDA suffer from vendor lock-in. The 
Open Computing Language (OpenCL) attempts to provide a solution for this 
problem. OpenCL is a multi-vendor open standard for general-purpose parallel 
programming of heterogeneous systems that include CPUs, GPUs and other pro-
cessors [28]. OpenCL provides a uniform programming environment for software 
developers to write applications that will run not only on multiple GPUs but on 
any architecture that implements OpenCL for their system [28]. The OpenCL
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1.0 specification [38] was released in February 2009 and both NVIDA and ATI 
have announced support for it [55, 43].

The use of OpenCL will allow rapid evaluations of multiple GPUs as they 
would use the same code. However, taking into consideration the large amount 
of optimisations that are implemented for the different architectures, it is not 
clear if the advantage of a single language would be mitigated by the need for 
separate code paths for each architecture in order to apply architecture specific 
optimisations.

For that reason, rewriting the implementations in OpenCL and attempting 
the same process of creating a blackbox implementation on other hardware is 
part of the future work envisioned. Other plans include the use of multiple GPUs 
to perform matrix vector products. The CSR format and the implementations 
described in this thesis are all easily split across multiple processing units. Indeed, 
proof-of-concept code has already been written.

Other areas for more study include the use of greedy algorithms rather then 
exhaustive search in the selection of the BPS of a given size; Doing this would re-
duce the complexity of the selection process from 0 ( N M) to 0 ( N  x M). Pruning 
the number of implementations to a subset tha t have realistic chances in perform-
ing best, in addition to the greedy selection approach, will reduce the time for the 
whole blackbox creation process dramatically. By reducing the time, automating 
the process becomes achievable.

Finally, it would be desirable to integrate our sparse matrix-vector implemen-
tation into a widely used library such as PETSc. Application that use PETSc to 
perform SpMV products could then easily utilise a GPU enabled version of the 
library to investigate the possibility of performance benefits without the need to 
rewrite or even recompile their application.
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92 APPENDIX A. MEMORY BANDWIDTH BENCHMARKS

Table A.l: Bandwidth of various memory access methods for both Texture and
Global Memory.

Coalesced Access S equential Access

Size W L th read s Blocks G lobal M em ory T ex tu re  References G lobal M em ory T ex tu re  References

/b locks float float2 float4 float float.2 float4 float float2 float4 float float2 float4

16 6400 12 17 23 12 19 26 8 14 21 14 18 25

32 3200 21 31 32 22 31 41 8 16 32 18 29 40

64 1600 36 46 28 32 42 48 8 15 28 18 31 47

128 800 44 46 29 36 44 46 8 14 30 17 30 46

256 400 42 44 27 35 41 45 8 14 28 17 30 45

512 200 37 39 24 30 35 42 8 14 23 16 27. 40

16 1280 13 23 31 14 24 35 9 16 18 6 12 22

32 640 25 39 33 24 36 45 9 17 18 7 14 26

1.5 MB
64 320 40 50 33 33 43 46 9 17 18 8 15 28

20
128 160 55 52 33 40 44 45 9 16 18 8 15 27

256 80 55 51 31 40 43 45 8 16 18 8 15 26

512 40 46 47 28 34 41 45 8 16 17 8 14 26

16 256 13 23 32 14 24 38 8 15 18 5 9 18

32 128 19 32 32 24 38 48 8 15 18 5 10 19

100
64 64 35 55 33 26 46 49 8 15 19 6 11 19

128 32 36 55 32 26 41 48 8 15 19 6 11 20
256 16 35 54 31 26 41 48 8 15 19 6 11 20

512 8 33 52 29 25 38 45 8 15 18 6 11 20

16 44800 14 22 30 14 22 30 9 16 19 6 12 25
32 22400 25 40 36 24 36 44 9 17 19 8 14 25
64 11200 46 58 37 36 45 48 9 17 19 8 16 29

128 5600 62 63 37 43 50 52 9 17 19 8 16 29

256 2800 61 59 34 45 52 55 9 17 19 8 15 28

512 1400 52 54 30 41 51 53 9 17 19 8 15 28
16 8960 14 25 34 15 25 38 8 16 19 5 10 18

32 4480 27 44 38 25 39 50 8 17 19 5 11 20

55 M B 100
64 2240 46 61 37 40 50 52 8 15 20 10 11 20

128 1120 64 61 37 45 52 54 7 14 20 5 11 20

256 560 63 59 35 45 52 54 7 14 19 6 11 20

512 280 54 56 33 41 51 54 7 14 19 6 11 20

16 896 13 24 34 15 26 40 2 4 8 2 4 8

32 448 26 42 38 24 39 51 0 1 2 0 1 2

1000
64 224 39 55 38 38 51 53 0 1 2 0 1 1

128 112 48 54 37 36 45 51 0 1 2 0 1 2

256 56 47 52 36 35 44 50 0 1 2 0 1 2

512 28 51 56 32 38 48 49 0 1 1 0 1 1

16 64000 14 25 34 15 25 38 8 16 19 5 10 18

32 32000 27 43 39 25 39 51 8 17 19 5 11 20

100
64 16000 47 62 38 41 51 53 7 15 20 6 11 20

128 8000 65 62 37 46 52 54 7 14 20 5 11 20

256 4000 63 60 35 46 53 55 10 14 20 6 11 20

390 MB
512 2000 54 57 34 40 51 54 7 14 20 6 11 20

16 6400 14 25 35 15 26 41 2 4 8 2 4 10

32 3200 27 43 39 27 42 54 0 1 1 0 1 1

1000
64 1600 47 62 39 41 52 54 0 1 1 0 1 1

128 800 63 61 38 45 52 55 0 1 1 0 1 1

256 400 62 60 37 45 52 55 0 1 1 0 1 1

512 200 55 59 35 42 52 55 0 1 1 0 1 1
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