
Use of Graphics Processing Units for
Sparse Matrix-Vector Products in

Statistical Machine Learning
Applications

Ahmed H. El Zein

April 2009

A thesis submitted for the degree of Master of Philosophy
at the Australian National University

? p \ k^>3) Jiill lii Ji*l jtjjt

A il\ (i?;jJI d-i i3] ju j i : (IJill

D ecla ra tio n

The work in this thesis is my own except where otherwise stated.

Ahmed H. El Zein

Parts of the work presented in this thesis were published at the International
Conference on Computational Science (ICCS) in 2008 under the title: “Perfor-
mance evaluation of the NVIDIA GeForce 8800 GTX GPU for machine learning.”
and presented as a poster at Super Computing (SC) in 2007 with the title “The
sony playstation 3 and the NVIDIA 8800 GPU: Performance and programmabil-
ity evaluation for machine learning.”

A cknow ledgem ents

I am indebted to many people without whom I would have not completed this
project. At the top of the list is my supervisor, Alistair Rendell. I would not
have been able to achieve anything without his mentoring, support and obvious
care for my well-being. For all this, I am deeply grateful.

I would like to thank Alex Smola for his help and support. My thanks also
go out to Muhammad Atif and Danny Robson for making coffee breaks fun,
to Jin Wong for putting up with me in a single office for two years, to Warren
Armstrong and Josh Milthorpe for proof reading my thesis and to Peter Strazdins,
Eric McCreath, Pete Janes, Jie Cai, Arrin Daley and Joseph Anthony who make
up the rest of the HPC research group for being my friends.

To Bob Edwards, Deanne Drummond, Suzanne Van Haeften and Julie Arnold,
thank you for making my journey as smooth as possible.

I would also like to thank my wife, Eman who put up with long nights at Uni,
my daughter, Mariam who went to sleep many nights calling out “Daddy kiss!”
without getting her good-night kiss, my sister who kept my wife company while
I was writing this, my mother and father who made me what I am, and the rest
of my family, thousands of miles away whose support I depend on.

Thank you all.

vii

A b strac t

Graphics Processing Units (GPUs) offer orders of magnitude more floating-point
performance than conventional processors. Traditionally, however, accessing this
performance for general purpose programming has required the user to cast their
problem into a graphical framework of nodes and vertices. In 2007 this situation
changed dramatically when NVIDIA released its CUDA programming model for
GPUs.

The objective of this thesis is to assess the viability of using an NVIDIA
GeForce 8800 GTX GPU and the CUDA programming model for statistical ma-
chine learning (SML) applications.

At the heart of the SML method is the iterative solution of a set of equations.
Each iteration involves two matrix-vector products, where the matrix is generally
sparse and does not change between iterations. Key issues considered in this
work are what fraction of the SML application should be migrated to the GPU,
the cost of moving data to and from the GPU, the efficient implementation of
Sparse Matrix-Vector products (SpMV) on the GPU, and the relative merits of
using sparse versus dense matrix routines.

In implementing the SpMV routine on the GPU a range of different CUDA
options were considered, including the type of memory used to store different
data quantities, the use of float, float2 and float4 data types, the number of
threads per block, the use of coalesced memory reads etc. Following a preliminary
performance characterisation of the 8800 GTX, 335 different SpMV implementa-
tions were constructed and their performance tested using 735 matrices from the
Florida sparse matrix collection. From this a small number of best performing
implementations were identified and an attem pt made to create a blackbox im-
plementation that would correctly select the optimal implementation for a given
sparse matrix type.

The blackbox SpMV routine along with dense matrix counterparts were then
integrated with the SML application. The times to complete a variety of problems

were compared when using the CPU only or CPU and GPU, and a detailed
breakdown of the various parts of the computation given.

Contents

Acknowledgem ents vii

A bstract ix

1 Introduction 1

2 Background 5
2.1 Programming GPUs ... 5

2.1.1 Shader Languages... 6
2.1.2 Languages for General Purpose C om puting.......................... 7

2.2 Target H a rd w a re .. 8
2.2.1 The CUDA Programming Model .. 9
2.2.2 GeForce 8800 GTX Memory H ie ra rch y 10
2.2.3 The CUDA Execution Model .. 13

2.3 Statistical Machine Learn ing ... 13
2.4 Sparse M atrice s ... 14
2.5 Sparse Matrices on GPUs: Previous W o r k 16

3 D ense M atrix-Vector Perform ance 19
3.1 Hardware and Software S e t u p ... 20
3.2 Bandwidth between the Host and G P U ... 22
3.3 Dense Matrix-Vector Perform ance... 23

3.3.1 Effect of Size on Dense Matrix-Vector Performance 24
3.3.2 Effect of Shape on P erfo rm ance ... 31
3.3.3 Conclusion.. 34

4 SpM V C onstruction and Evaluation 35
4.1 Memory Bandwidth Analysis ... 37

4.1.1 Coalesced Memory Benchmark R e s u l ts 39

xi

CONTENTSxii

4.1.2 Sequential Memory Benchmark R esu lts 41
4.1.3 Coalesced vs Sequential Memory for SpM V 42

4.2 SpMV Implementations ... 42
4.3 Performance Evaluation M ethodology.. 45

4.3.1 Evaluation P la t f o r m .. 45
4.3.2 Test M a tr ic e s ... 45
4.3.3 Performance Measurements ... 48

4.4 SpMV Implementation A ssessm en t... 48
4.4.1 Evaluating vec Storage O p tio n s ... 49
4.4.2 Evaluating ptr Storage O p tio n s ... 53
4.4.3 Coalesced v Sequential SpMV Im p lem en ta tio n s 56
4.4.4 Multiple Row Implementations ... 59
4.4.5 Evaluation of Selected Im plem entations................................ 61

4.5 Mapping Matrices to their Optimal Im plem entation...................... 65
4.5.1 Selecting the Number of Threads per Block 70

4.6 CPU v blackbox Perform ance... 71
4.7 Recent Related W o rk ... 73
4.8 Summary and Conclusion .. 76
4.9 Results on a GTX 295 G P U .. 77

5 SML A pplication 79
5.1 Conclusion.. 85

6 Conclusions and Future Work 87

A M em ory B andw idth Benchm arks 91

Bibliography 93

Chapter 1

Introduction

For the past few years, the demand for more realistic games in an ever growing
market has led GPU manufacturers to produce high end graphics cards that are
able to render complex scenes at very fast frame rates. As graphics problems are
highly parallel in nature, GPUs have been designed as massively parallel archi-
tectures. Furthermore, to deal with the developments in graphics programming
and the increasingly complex processing, GPUs have gradually made a transition
from fixed-function pipeline devices that are only able to perform fixed opera-
tions, to general purpose processors with some special graphics oriented units.
The large commodity GPU market and ruthless competition have realised rel-
atively low cost devices with very high Floating-Point Operations per Second
(FLOP/s) ratings.

GPUs use Single Instruction Multiple Data (SIMD) architectures to minimise
control logic and power requirements, providing a greater number of FLOP/s per
watt than CPUs. CPUs attem pt to mask memory latencies with large amounts of
cache comprising a significant portion of the CPU die space [25, 30]. In contrast,
GPUs have minimal amounts of cache, relying on the ability to execute thousands
of threads in parallel, masking memory latencies by switching between the large
number of threads [42]. The die space saved by these methods can be invested
in Arithmetic Logic Units (ALUs). The overall result is a less versatile general
purpose processor that has a much lower cost per FLOP (both in terms of price
and power requirements) and a much higher peak FLO P/s rating. For the past
few years, the gap between CPUs and GPUs has been growing in this regard [46].

Throughout the evolution of GPUs, the difficulty of programming these de-
vices has deterred wide adoption by the scientific community. Until recently,
GPUs only supported domain specific, graphics oriented languages. Describing

1

2 CHAPTER 1. INTRODUCTION

scientific problems in terms of graphics primitives is a daunting task that requires
a strong understanding of graphics programming. Higher level but still domain
specific languages were designed to make programming GPUs easier [35, 27, 47].
Yet, while General Purpose computation on GPUs (GPGPU) became easier, the
hardware itself hampered GPGPU by not supporting many of the features used in
general purpose programming such as scatter operations, thread synchronisation
and shared memory [13].

ATI and NVIDIA (two of the largest GPU manufacturers) eventually released
GPUs with completely programmable processors [45]. The new unified architec-
tures also provided the missing hardware features (scatter operations, shared
memory, synchronisation) that were required for GPGPU. To facilitate GPGPU
programming for these GPUs, ATI AND NVIDIA released programming toolkits
for them [42, 4]. However while ATI released an assembly like language, NVIDIA
released a C /C + + syntax compatible language named CUDA, which allowed the
programmer to mix CPU and GPU code in the same module. NVIDIA and
to a lesser extent ATI, finally presented the scientific community with easy to
program, massively parallel multi-threaded devices with many of the hardware
capabilities needed to efficiently execute scientific applications.

In 2007, GPU hardware lacked double-precision floating-point support which
held back its adoption by many within the scientific community [23]. Current
GPUs from both manufacturers offer double-precision but with lower FLO P/s
the for single precision. ECC memory has not been announced for any upcoming
products by either of the manufacturers.

For many scientific applications, the lack of ECC memory and double-precision
are not important. The application can be robust enough to deal with bit flips
and not all applications require double-precision. For many other applications,
numerical methods can be used to produce high precision results [44] and still
perform better on the GPU than the CPU [23].

Machine learning (ML) is a branch of artificial intelligence, that attempts to
develop algorithms that will allow applications to modify themselves based on
some analysis of data. The term “statistical” in Statistical Machine Learning
(SML) reflects the emphasis on statistical analysis and methodology, which is a
widely used approach in modern machine learning. Applications for SML include
natural language processing [3], syntactic pattern recognition, search engines [51],
medical diagnosis [2], bioinformatics [16], stock market analysis [26], classifying
DNA sequences [58], speech and handwriting recognition [5], object recognition
in computer vision [32, 34], game playing and robot locomotion [29].

3

Internet searching is a high profile SML application. Companies like Google,
Yahoo and Microsoft all spend enormous amounts of money on server hardware
and power costs of running the servers. Solutions that lower the cost of com-
putations either by increasing the throughput of systems with the same power
requirements or decreasing the power requirements of a system that maintains
the same throughput are of huge benefit in terms of running costs. GPUs offer
potential solutions in this area.

The Bundle Methods for Regularised Risk Minimisation (BMRM) application
is an open source, modular and scalable convex solver for many machine learning
problems [54]. A portion of these problems are not affected by the use of single
precision. This SML application’s computation is dominated by matrix-vector
products which depending on the nature of the datasets can be either dense and
sparse. Dense matrix-vector products are easily parallelised and have been shown
to perform well on GPUs [21, 33, 31]. Sparse matrix-vector products on GPUs
have not been as successful as their dense counterparts, but the new unified ar-
chitectures are potentially flexible enough to provide performance improvements
for Sparse Matrix-Vector products (SpMV) on the GPU. SpMV on GPUs will be
discussed in more detail in the next chapter.

CUDA provides a Basic Linear Algebra Subprograms (BLAS) library
(CUBLAS [40]) that is utilised to evaluate matrix-vector products on the GPU.
NVIDIA did not provide SpMV routines at the start of this work and so SpMV
routines were developed and evaluated on the GPU as part of this work. This
work is based on the GeForce 8800 GTX as it was the best performing product
from NVIDIA at the start of this work.

Chapter 2 presents background material on GPGPU, CUDA, hardware spec-
ification of the GeForce 8800 GTX GPU, statistical machine learning and sparse
matrices. The bandwidth between the GPU and host along with the internal
GPU memory bandwidth were measured and are presented in chapter 3. Chap-
ter 3 also presents a detailed investigation of dense matrix-vector products on
the GPU. Chapter 4 outlines the design process of the SpMV implementations
and provides detailed analysis of various SpMV implementations. An attempt
to select the best implementation based on matrix characteristics is also investi-
gated. Chapter 5 presents the results from integrating GPU code with the BMRM
application and finally chapter 6 presents conclusions and future directions.

Chapter 2

Background

This section presents background information on General-Purpose computation
on GPUs (GPGPU), details of the GeForce 8800 GTX GPU and the CUDA
programming environment used in this work. This section also discusses sparse
matrices and provides more details on the SML algorithm used in the BMRM
application.

2.1 P rogram m in g G P U s

GPUs were first introduced as non-programmable, fixed-function pipelines with
specific functions. The GPU starts with a scene defined by a list of coordinates
call vertices. Each vertex undergoes a series of transformations with the end
being a “pixel” that will then be displayed on the screen. Vertices that will not
end up on the screen (they could be hidden by other vertices for example) are
ignored. Each pixel is then given a color based on attributes such as texture and
lighting and the the end result is a frame to be displayed on the screen.

Later, products were released [46] that contained embedded programmable
components. The series of transformations applied to the vertices as well as the
pixel colouring could be programmed in the form an assembly language. These
programs are referred to as vertex shaders and pixel or fragment shaders.

As the instructions sets of these embedded components grew, so did the com-
plexity and length of the shader programs. It soon became unrealistic to write
shaders in the assembly level languages provided by the vendors. This gave rise
to higher level languages that varied in their specification yet all attempted to
make shader programming easier [45].

Higher level languages made GPGPU a lot easier, but they were still de-

5

6 CHAPTER 2. BACKGROUND

signed from a graphics perspective so were not easily accessible to scientists with
a non-graphics background. Indeed GPGPU with these languages required a
considerable amount of graphics knowledge in order to map a general problem
into a graphics problem solvable with graphics APIs. To simplify the process of
writing general purpose code for GPUs, GPGPU languages came into existence.
The following subsections consider some of the languages that are available for
GPGPU.

A much wider survey of available options for programming GPUs has been
published by Owens et al. [46] in 2007. This survey summarises and analyses the
latest research in GPGPU.

2.1.1 Shader Languages

This class of languages facilitates the writing of shaders but with added portability
and programmer productivity. A separate shader program must be written for
each of the vertex and fragment processors. These languages also differ in many
aspects that will be illustrated in the relevant sections.

Cg

Cg (or C for graphics) [35] differs from the other languages in this section in
that it has a clear separation between code meant to run on the CPU and code
intended for the GPU. Cg attempts to find a balance between providing the whole
feature set of C and providing a maximum shader feature set. For example it
omits many high level shader-specific facilities yet provides the same operators
as C (but ones that accept and return vectors as well as scalars). Cg is compiled
into an assembly level language for either OpenGL [53] or Direct3D [11].

O penG L S hading Language

OpenGL, an open standards group, released the OpenGL Shading Language
(GLSL) [27] also know as GLslang as part of the OpenGL 2.0 Specification. This
language enables direct compilation of C-like programs to graphics hardware ma-
chine code. Unlike Cg and HLSL, there is no assembly level language involved.
The compiler is embedded into the graphics driver. OpenGL is supported on a
wide spectrum of operating systems and graphics cards and is therefore a more
open and compatible language than either Cg or HLSL [27].

2.1. PROGRAMMING GPUS 7

The D irect 3D High-Level Shading Language

The Direct 3D High-Level Shading Language (HLSL) [47] was developed in close
partnership with NVIDIA and is similar in many aspects to Cg. As part of
Direct3DX, it only compiles to Direct3D and is only supported on Microsoft
operating systems [47].

2.1.2 Languages for G eneral Purpose C om puting

These languages differ from the previous languages in that they are more suited
to general purpose computing. However they offer the programmer less control
over the graphics pipeline.

Shader M etaprogram m ing Language

Sh is both a shading language and a runtime API to use the Sh shaders [37]. It
is embedded in C + + as a domain specific language and defines special tuple and
matrix types that are used extensively in shader code. Sh can be used to write
vertex or fragment shaders for a GPU in C /C + + . The code is then compiled at
runtime to the target device [37]. Sh can also treat shaders as first class objects
and by combining connection and combination features in Sh allow the creating
of complex stream programs for GPGPU computing [36]. In Sh there is no clear
distinction between GPU and CPU code, nor is there any explicit mechanism to
move data to and from the GPU memory.

Brook and B rookG PU

Brook is an extension of standard ANSI C and is designed to incorporate the ideas
of data parallel computing and arithmetic intensity into a familiar and efficient
language. BrookGPU, a GPU targeted version of Brook was developed by Buck
et al. [15] based on the idea that a GPU can be viewed as a stream processor.

Brook differs from all previous languages in that separate shaders for the
vertex and fragment processor are not needed. Instead a kernel is written that
operates on every element in a stream. BrookGPU provides a level of abstraction
that eliminates the need to view computations on the GPU in terms of graphics
operations.BrookGPU also virtualises two aspects which are critical to stream
computing, the number of kernel outputs and stream dimensions and size. If
the shader program requires more outputs than what the hardware supports
for example, BrookGPU will compile the program into several smaller programs

8 CHAPTER 2. BACKGROUND

that run in turn on the GPU to accommodate the extra outputs needed. This
virtualisation can also be used to provide complex data types not supported by
the hardware [15].

C for CUDA

CUD A is an architecture and programming model for parallel computing devel-
oped by NVIDIA. NVIDIA provides a C like API called C for CUDA. The CUDA
architecture, programming model and development environment are expanded
upon in section 2.2.

2.2 T arget H ardw are, L anguage, E xecu tion and

P rogram m in g M od el

The GeForce 8 Series GPUs were the first NVIDIA GPUs to be based on the new
“unified architecture” . Figure 2.1 illustrates the architecture of the GeForce 8800
GTX used in this work. At the heart of the device lies the Streaming Processor Ar-
ray (SPA) consisting of eight Texture Processor Cluster (TPC) units. Each TPC
contains two Streaming Multiprocessor (SM) units and a texture unit. The SM in
turn consists of eight Stream Processors (SP), a special function unit, a 8192 wide
register file and 16KB of shared memory. When running CUDA applications each
SP (clocked at a default of 1.35 GHz) is able to issue one multiply-add (MAD) in-
struction per cycle. This gives each SM a peak performance of 1.359 x 8 x 2-f230 =
20.1 GFLOP/s, and the GeForce 8800 GTX with 16 SMs an aggregate perfor-
mance of 321.6 GFLOP/s. The GeForce 8800 GTX has 768 MB of global, frame
buffer memory tha t can be read from or written to by the host CPU as well as the
GPU. The 768MB of GDDR3 memory is clocked at 900MHz and is accessed via
a 384-bit (48 byte) wide interface in 128-bit wide words. This gives a theoretical
peak bandwidth of (48 bytes x 900 x 106 M H z x 2 (DDR)) -y 230 = 80 GB/s.

NVIDIA provides CUDA, a software programming model and a programming
environment that enables the creation of parallel applications for these new uni-
fied GPUs. The CUDA runtime library exposes parts of the GPU and hides
others, with the overall result of presenting a massively parallel co-processor to
the programmer. The CUDA toolkit provides the programmer with methods
to manage memory transfers between the GPU and the host, synchronisation
barriers and methods to control the invocation of code on the GPU. Provided
with CUDA are Basic Linear Algebra Subprograms (BLAS) and Fast Fourier

2.2. TARGET HARDWARE 9

/ i l

Streoming Processor Array
Y y \(

‘ 1 1 —F—T—F—F- F ^
X i ^ I

Memory

Texture Processor
C tust er

/
Streaming Multiprocessor

Instruction LI D ata LI

SM SM

Texture Unit

Instruction Fetctr/Dlspalch

ShoreO Memory

Streaming Processor \ j f L
ADO, 5UB. MUL MAD. etcx [

Super Function Unit !_ .
i SIN, PSORT. EXP. e t c j T-N

SP
SFU

C D
[_ SP j
C & J

SFU

L 31 j
\

Figure 2.1: GeForce 8800 GTX architecture

Transform (FFT) implementations [40, 41] . The programming model, memory
hierarchy and execution model defined by CUBA are expanded upon in the next
sections.

2.2.1 The C U D A Program m ing M odel

Writing applications for CUDA enabled GPUs involves copying data from the
host to the GPU memory, invoking the GPU code (in the form of one or more
kernels) and copying the results of the computation back to the host. CUDA
provides methods to allocate memory on the GPU as well as methods to copy
data between GPU memory and host memory. CUDA also provides functions
to allocate page-locked memory. Bandwidth to and from page-locked memory is
faster, as DMA transfers must be done from page-locked memory and having the
data in page-locked memory saves the driver from having to copy it to page-locked
memory before initiating the DMA transfer.

CUDA also provides the mechanisms to execute a kernel on the device. A
kernel is a function call that is executed by all the threads launched on the GPU.
Thousand of threads can be launched on the device. Threads are clustered into

10 CHAPTER 2. BACKGROUND

blocks of between 1 and 512 threads. The GeForce 8800 GTX can accommodate
up to 64K x 64K blocks in what CUDA labels a grid.

Threads are automatically assigned an index so that different threads can
fetch data from different memory locations. Each thread is then able to retrieve
the dimensions of the grid and block as well as its thread index within its block
and its block index within the grid. As an aid to the programmer, CUDA offers
1, 2 or 3 dimensional indexing of the blocks if it would better suit the data. Only
1 or 2 dimensional indexing of the grid is supported.

Listing 2.1: Example kernel and host invocation methods with use of 2D indexing
_ _ g l o b a l __v o i d m a t Ad d (f l o a t A [N] [N] , f l o a t B [N] [N] , f l o a t C [N] [N])
{

i n t i = b l o c k l d x . x * b l o c k D i m . x + t h r e a d l d x . x ;
i n t j = b l o c k l d x . y * b l o c k D i m . y + t h r e a d l d x . y ;
i f (i < N && j < N)

C [i] [j] = A [i] [j] + B [i] [j] ;
}

i n t m a i n ()
{

/ * s e t t h e b l o c k s t o c o n t a i n 1 6 x 1 6 t h r e a d s * /
d i m 3 d i m B l o c k (1 6 , 1 6) ;
/ * t o t a l n u m b e r o f b l o c k s d e p e n d s N * /
d i m 3 d i m G r i d ((N + d i m B l o c k . x — 1) / d i m B l o c k . x , (N + d i m B l o c k . y — 1) / d i m B l o c k . y) ;
/ * K e r n e l i n v o c a t i o n » /
m a t A d d « < d i m G r i d , d i m B l o c k > » (A , B, C) ;

}____________

Listing 2.1 shows an example of a kernel using 2 dimensional indexing along
with the code to invoke the kernel. Each block is executed on a single Streaming
Multiprocessor (SM). Within the SM each thread executes on an SP. The large
register file allows the SM to create more threads than available SPs. The number
of threads that can be resident on the SM depends on the threads resource usage in
terms of registers and shared memory. In fact an SM can accommodate multiple
blocks if there exists enough resources for all the threads in the multiple blocks.

2.2.2 GeForce 8800 G T X M em ory Hierarchy

The GeForce 8800 GTX offers many different memory types, each with its ad-
vantages and disadvantages. These memories are summarised in table 2.1.

Each SM has 8192 on-chip registers that are shared between the multiple
threads running on the SM. If the number of registers needed is not enough to
support all the threads within a block, variables are stored in local memory which
despite its name is off-chip. Local memory is local in scope only. Variables that
spill out into local memory are physically stored in global memory (discussed
in the next paragraph). In addition to the registers, each SM has 16KB of on-

2.2. TARGET HARDWARE 11

Table 2.1: Different Memory types available on the GeForce 8800 GTX GPU.

M em ory L o ca tio n C ach ed H o st A ccess G P U A ccess Scope Lifetim e

R eg iste r O n-ch ip N /A N /A R /W O ne th re a d T h read

L ocal O ff-chip No N /A R /W O ne th re a d T h re a d

S h ared O n-ch ip N /A N /A R /W All th re a d s in a block Block

G lobal O ff-chip No R /W R /W A ll th re a d s + h o st A p p lica tio n

C o n s ta n t O ff-chip Yes R /W R A ll th re a d s + h o st A p p lica tio n

T e x tu re O ff-chip Yes R /W R A ll th re a d s + h o s t A p p lica tio n

chip shared memory divided into 16 banks such tha t successive 32-bit words are
assigned to successive banks. Bank conflicts will incur performance hits. In
the absence of conflicts shared memory reads are as fast as register reads [42].
Registers and local and shared memory are accessible from the GPU only.

Global memory is the main memory type of the GPU. It is the largest memory
space and provides read and write access from both the host via DMA and the
SMs. Global memory is not cached, relying instead on the thousands of threads
running on the GPU to mask latency. Global memory has a latency of 400 - 600
cycles while a floating-point arithmetic instruction (ADD, MUL, SUB) has an
issue latency of 4 cycles and a throughput of 8 operations per cycle [42]. The
CUDA programming guide [39] states that in order to achieve optimal memory
bandwidth, memory reads must be coalesced. This occurs when all 16 threads
read from aligned, consecutive, memory addresses, and the hardware is able to
transform the individual memory accesses into a number of 64-byte memory trans-
actions. Coalesced 32-bit reads result in one 64-byte transaction, coalesced 64-bit
reads result in a single 128-byte transaction and coalesced 128-bit reads result in
two 128-byte transactions. Non-coalesced 32-bit reads are an order of magnitude
slower than coalesced 32-bit reads. The coalescing rules described here are for the
8800 GTX GPU architecture. Latest generation GPUs have different (less strin-
gent) rules. More information can be found in the CUDA programming manual,
which has an extensive section on memory coalescing [42].

Another available memory type is texture memory. Texture memory is not
physically separate from global memory. However CUDA allows global memory
to be accessed via the texture units in the SM. This enables the texture cache, a
read-only cache shared by all SPs in the SM. The use of the texture cache speeds
up reads to memory. On the other hand the texture cache is not kept coherent so

12 CHAPTER 2. BACKGROUND

changes to the memory after it has been cached are not reflected in the cache. This
restricts the texture memory to a read only memory from the GPUs view-point.
Texture cache is optimised for 2D spatial locality so accessing memory references
that are closer together will result in better performance. Texture cache locality
applies to accesses across threads first (since threads run in parallel), and accesses
within the same thread last. With texture references a cache hit will lower the
pressure on DRAM but will not lower fetch latency. The cache working set is
between 6KB - 8KB per SM.

The GeForce 8800 GTX has 64KB of cached, constant memory. The cache of
the constant memory is optimised for many threads accessing the same memory
location. If all the threads executing concurrently on the SM (ie. within a half-
warp) read the same memory location, the cost after the original fetch is that of
a register access.

Figure 2.2 illustrates the memory hierarchy described above. More details of
the NVIDIA hardware can be found in [39].

Tread (0,0)

Shared Memory

Local ; lo ca l
Memory

Block (0.0)

Constant Memory

Figure 2.2: CUDA memory model

2.3. STATISTICAL MACHINE LEARNING 13

2.2.3 T h e C U D A E x ecu tio n M odel

When a kernel is launched on the device, the number of threads, blocks and grids
are all specified at launch time. These values may be calculated based on the
problem size, passed as parameters at run time or set as constant values. The
thread scheduler will schedule blocks to available SMs. Each SM may be allocated
multiple blocks depending on the resource usage of the block. As previously
indicated, SMs can accommodate more threads than SPs. The SM will then
execute all the threads in batches of 32 threads. These 32 threads are called a
warp. Each warp is free to diverge from the others with no penalty. The warp is
actually executed in two sets of 16 threads each. The SM will continue to execute
all threads until they have all terminated at which time any remaining blocks can
be scheduled to it. There are no guarantees on the order in which threads are
executed or which blocks are scheduled before others. The CUDA programming
guide recommends launching a large number of blocks on the device to ensure
that memory latencies can be masked.

Threads in the same block can synchronise or shared data via the on-chip
shared memory. However, this is not possible between threads of different blocks
as only threads within the same block can be guaranteed to be resident on the
SM at the same time.

2.3 S ta tis tica l M achine L earning

One of the key objectives in Machine Learning (ML) is classification: given some
patterns such as pictures of apples and oranges, and corresponding labels
Ui, such as the information whether is an apple or an orange, to find some
function / which allows us to estimate y from x automatically. Statistical Machine
learning (SML) attempts to solve such problems with statistical methods. In this
quest, convex optimisation 1 is a key enabling technology for many problems. For
instance, Teo et al. [54] proposed a scalable convex solver for such problems. It
is an iterative algorithm that involves guessing a solution vector te, using this to
evaluate a loss function l(x,y, w) (that calculates a penalty based on the amount
of error in the solution) and its derivative g = dwl(x,y ,w) , and then updating
w accordingly. This process is repeated until a desired level of convergence is
achieved (see Fig. 2.3). The majority of time is spent evaluating the matrix-

1A convex function has a single minima. Convex optimisation attempts to minimise a convex
function.

14 CHAPTER 2. BACKGROUND

vector products, and the elements of matrix (X) do not change between iterations.
This characteristic makes this application a good candidate for computing on the
GPU as the cost of moving the matrix to the GPU can be amortised by successive
matrix-vector products.

Initial guess w

Return w Test for 1 Iterative solver U ___________|
convergence updates w

Test for
convergence

Iterative solver
updates w

Figure 2.3: Iterative solver algorithm. The black boxes refer to matrix-vector
operations which are likely to speed up the application the most if accelerated by
a GPU

Many ML datasets are very sparse, as shown in Table 2.2. Exploiting the
sparsity decreases the memory footprint of the matrix as well as the number of
floating-point operations required for the matrix-vector product. Unfortunately
it also introduces random memory access patterns and indirect addressing, which
is likely to result in less efficient utilisation of a GPU’s hardware.

Table 2.2: Statistics for some typical ML datasets

Dom ain D a tase t Rows C olum ns N onzero E lem ents D ensity

Intrusion D etection K D D C up99 3,398,431 127 55,503,855 12.86%
R anking N etF lix 480,189 17,770 100,480,507 1.17%

Text C ategorization R eu ters C l l 804,414 47,236 60,795,680 0.16%
Text C ategoriza tion A rxiv astro -ph 62,369 99,757 4,977,395 0.08%

2.4 Sparse M atrices

A matrix is considered to be sparse if many of its coefficients are zero and there
exists an advantage to exploiting its zero coefficients. Whether exploiting the
zero coefficients would lead to an advantage or not, is dependent on the number
of zeros, their patterns and the underlying architecture of the machine used [19].
Many applications involve the use of sparse matrices. Conjugate gradient and

2.4. SPARSE MATRICES 15

multigrid solvers are often based on sparse matrix-vector products when used in
fields such as computational fluid dynamics and mechanical engineering. Sparse
matrices are also used in graph theory.

The exploitation of sparsity is achieved by discarding zero elements from the
sparse matrix. By doing so the memory requirements and number of arithmetic
operations needed for the matrix-vector product are greatly reduced. However,
indirect random memory references are introduced as the index of each element
must be explicitly stored in the sparse data structure and the memory reads from
the vector will no longer be consecutive. Many different formats for storing these
matrices have been designed to take advantage of the structure of the sparse
matrix or the specificity of the problem from which they arise [50].

The Compressed Sparse Row (CSR) format is the most widely used of these
formats [50, 10, 19]. The CSR format (also named Compressed Row Storage)
stores non-zero elements in a dense vector va l. For each value in va l, its column
index from the original matrix is stored in a dense vector of the same size ind at
the same offset. A third array (p tr) carries the offset of the first element in every
row. This is illustrated by figure 2.4. A Sparse Matrix-Vector products (SpMV)
with a matrix in the CSR format is straightforward as shown by figure. 2.5.

• •

•

▼ T
val • 1*

! 1

• • ind 0 2 4 0 2 0 3 1

• •
ptr 0 2 3 5 | 7

Figure 2.4: CSR format

fo r each row i do
fo r l= p t r [i] to p t r [i + l] - l do

r e s f i] = re s [i] + v a l [1] * v e c f in d f l]]

Figure 2.5: pseudo-code for Sparse Matrix-Vector product (SpMV).

The most extensive evaluation of SpMV on current architectures is the work
by Williams et al. [60], which examined the performance of SpMV kernels across

16 CHAPTER 2. BACKGROUND

a broad range of multicore architectures including a dual core AMD Opteron
2214, a quad core Intel Clovertown processor as well as a dual socket STI Cell
Blade system and the 8 core Sun Niagara2 processor. The work evaluated a
range of optimisations for each of the architectures and analysed the performance
bottlenecks for all the architectures showing that the memory bandwidth is the
common limiting factor in SpMV performance. Only 14 datasets were evaluated
and results showed a median performance of 2 GFLOP/s for both the AMD and
Intel CPUs, a median performance of 3 GFLOP/s for the Niagara2 processor and
6 GFLOP/s for the Cell Blade system.

2.5 Sparse M atrices on G P U s: P rev iou s W ork

SpMV has not been a popular candidate for implementation on GPUs. This is
due to the irregular nature of the problem, characterised by indirect addressing
(array 1 [array2[index]]) [56]. Two GPU implementations of SpMV were published
at SIGGRAPH’03. Bolz et al. [13] defined sparse matrices in the Modified Sparse
Row (MSR) format and were able to perform 120 SpMV operations per sec-
ond with a matrix containing 37k nonzero elements on a 500MHz GeForce FX
GPU. That is equal to roughly 9 MFLOP/s. The second implementation was
by Krüger et al. [31] targeting banded matrices and achieving a performance of
about 110 M FLOP/s on an ATI Radeon 9800 GPU. In 2005 Ujaldon et al. [56]
published SpMV results on a GeForce 6800. They achieved 222 MFLOP/s with
the BCSSTK30 matrix (1036208 nonzero elements, stored in CSR format) from
the Harwell-Boeing collection [20]. The Harwell-Boeing Sparse Matrix Collection
is a set of standard test matrices arising from problems in linear systems, least
squares, and eigenvalue calculations from a wide variety of scientific and engi-
neering disciplines. The majority of the matrices are less than 1000 x 1000 and
the collection contains 292 matrices.

More recently in Graphics Hardware 2007, Sengupta et al. [52] published
SpMV results based on an efficient segmented scan using CUDA. This work is
most relevant to the present work as the authors used the same hardware and
programming language. Sengupta et al. [52] reported SpMV performance of 215
MFLOP/s for a 294,267 nonzero element matrix. These results are comparable
to those published by Ujaldon et al. [56] almost 2 years prior. They are also just
below that of CPU implementations at the time [52, 24].

Square matrices of size n x n and e nonzero elements in CSR format (figure 2.4)

2.5. SPARSE MATRICES ON GPUS: PREVIOUS WORK 17

were used for the experiments performed by Sengupta et al. [52]. The algorithm
used requires additional f la g and product temporary data structures with e
entries each to be created. Matrix multiplication then proceeds in four steps.

1. The first kernel runs over all entries. For each entry, it sets the correspond-
ing f la g to 0 and performs a multiplication on each entry: product[i] =
val[i] * vec[ind[i]] .

2. The next kernel runs over all elements in p t r and sets the head flag to 1
for each f la g [p tr [i]] through a scatter. This creates one segment per row.

3. A backward segmented inclusive sum scan is then performed on the e ele-
ments in product with head flags in flag .

4. To finish, a final kernel is run over all rows, adding the gathered value from
product[i] to the result array.

While the implementation provided by Sengupta et al. [52] is very efficient in
that it doesn’t waste any instructions on zero elements and is not dependent on
matrix structure, it has a large overhead in terms of extra memory operations.
Since the SpMV is a memory bound operation it suggests that optimising for less
arithmetic operations by introducing more memory operations would not achieve
favourable results. One memory fetch is the equivalent of 100 to 150 floating-
point adds or multiplies. In addition, the extra work that results from operating
on zero elements might be an issue for lockstep SIMD architectures but is less
relevant to the GeForce 8800 GTX since the warp architecture limits the effect
of one warp on the other in terms of divergence.

An interesting question not considered in the paper is: If non-coalesced 32-
bit memory reads are an order of magnitude slower than coalesced 32-bit and
4 times slower than non-coalesced 128-bit reads, what are acceptable software
designs that while increasing the number of memory references, still show a better
overall memory bandwidth performance? 2

To the end of this thesis, two notable contributions in the area of sparse
matrix-vector products on CUDA enabled GPUs were published. The first by
Bell and Garland [9] investigated a variety of sparse matrix formats. Each of
these formats requires an SpMV kernel and in the case of CSR format both a
sequential and coalesced CSR implementation were created. The authors also

2We are grateful to the examiner for bringing to our attention, work by Satish et al published
in “Designing efficient sorting algorithms for manycore GPUs”, IPDPS 2009

18 CHAPTER 2. BACKGROUND

investigated the use of texture memory and found a performance gain through its
use. Both structured and unstructured matrices were considered. The structured
matrices were composed of standard discretizations of Laplacian operations in
1, 2 and 3 dimensions. The Unstructured matrices were represented by a set
of 14 matrices taken from previous work by Williams et al [60]. In comparison,
the work presented here is focused on a single sparse matrix format type (CSR),
exhaustively studies the performance of all possible implementation options, uses
a significantly larger number of sparse matrices, and makes an attempt to map
directly from matrix attribute to optimal implementation. A more detailed com-
parison between this thesis and the work of Bell and Garland is presented in
section 4.7.

The second contribution by Baskaran and Bordawekar [8] focuses solely on the
CSR storage format. They identify four optimisations, i) exploiting synchronisa-
tion free parallelism, ii) optimised thread mapping, iii) optimised off-chip memory
access, iv) exploiting data reuse. They evaluate their implementation using 19
sparse matrices taken from the Florida sparse matrix collection [17]. They com-
pare their performance with that of Bell and Garland [9] and the NVIDIA CUDPP
library [1] which has an SpMV implementation based on the segmented scan ap-
proach of Sengupta et al. [52]. Although more similar to the work presented here
in that they focus exclusively on CSR format, it represents a more traditional ap-
proach to program optimisation that is less amenable to automation, has many
fewer implementations, and uses many fewer test matrices.

Chapter 3

D ense M atrix-Vector
Performance

At the heart of an SML application is a matrix representation of the learning
datasets where each row of the matrix represents the values of all the attributes
for a particular dataset. This matrix remains constant throughout the lifetime of
the application. Each iteration of the application involves a normal and transpose
product of the matrix (see fig. 2.3).

The objective is to offload the matrix-vector products to the GPU. The matrix
will first be transferred to the GPU at the start of the application. Each matrix-
vector computation will then consist of:

1. Copying the vector to the GPU.

2. Computing the matrix-vector product on the GPU.

3. Copying the result back to the host.

The above discussion, suggests two targets for our evaluations. The first is
to measure and evaluate bandwidth between GPU and host as this will quantify
the cost of copying the matrix to the GPU as well as the cost of copying the
vector and result between the GPU and host for each iteration. The second is
to measure and evaluate the performance of matrix-vector products, normal and
transpose for both dense and sparse formats. The evaluation of the matrix-vector
products will involve comparisons with the performance on the host to determine
first if the GPU offers performance advantages and if so, what are the character-
istics of the matrices where such advantages are observed. Likewise, sparse and
dense products on the GPU are compared to identify what matrix characteristics
identify performance advantages in using sparse over dense products.

19

20 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

Measuring the bandwidth between the GPU and CPU is achieved by measur-
ing the time to copy different sized data blocks in each direction. Measuring the
performance of the matrix-vector products is more complex. There are several
parameters that could affect the performance of matrix-vector products, such as
the size and the shape (ratio of rows to columns) of the matrices. This chapter
will only analyse the performance of dense matrix-vector products. Chapter 4
will detail the implementation and performance of sparse matrix-vector products
on the GPU.

3.1 H ardw are and Softw are Setup

Benchmarks were performed on two systems. The first system, that also hosts the
GeForce 8800 GTX GPU, is an AMD system containing a 2GHz dual core AMD
Athlon64 3800+ processor with 2GB of PC3200 DDR memory. The processor
has 128KB of LI cache, 1 MB of L2 cache and a theoretical peak performance
of 8 GFLOP/s. The GPU is installed in a PCIe 1.0 slot with a peak theoretical
bandwidth of 4GB/s.

While the processor in this system was acceptable at the start of this work,
processors have improved markedly in the last 18 months. A new Intel system
was added for comparison. This system is a Sun Ultra™ 24 Workstation with a
Q6600 2.4 GHz Core2 Quad CPU (4 core, 8MB L2 cache, 1066MHz FSB) and 4
GB of DDR2-66T memory. Table 3.1 provides a comparison between the hardware
of the two systems as well as the maximum memory bandwidth and single and
double-precision FLOP/s achieved on both CPUs using matrix multiply routines.

Memory bandwidth evaluations between the host and the GPU were per-
formed with host-side functions provided by the CUD A toolkit version 2.0. Dense
matrix-vector products on the GPU were performed with the CUDA BLAS library
version 2.0 (CUBLAS). ATLAS1 [59] version 3.6.0 and 3.8.2 in addition to Intel’s
Math Kernel Library (MKL) version 10.0.1.014 were used for the dense matrix-
vector products on the two CPUs. Both systems were dedicated for benchmarking
and the wall clock time was used to measure the time for all the benchmarks.
All benchmarks were run 100 times and results were averaged. FLO P/s were
calculated as ((2 x M x TV) + time) where M and N are the dimensions of the
matrix.

1 Automatically Tuned Linear Algebra Software, http://math-atlas.sourceforge.net

3.1. HARDWARE AND SOFTWARE SETUP 21

Table 3.1: Hardware Comparison between the two systems with results from
benchmarking memory bandwidth and matrix multiply performance.

System AMD System Intel System
Processor AMD Athlon 64 X2 3800+ Intel Core2 Quad Q6600
Clock Rate 2.0 GHz 2.4 GHz
Cores 2 4
LI Cache Size 128 KB per core 64KB per core
L2 Cache Size 512 KB shared 8MB (4MB shared/2 cores)
Memory 2x 1GB DDR-400 4x 1GB DDR2-667
lmbench* benchmark (1 copy) 3402 MB/s 5278 MB/s
lmbench* benchmark (2 copies) 5087 MB/s 5863 MB/s
lmbench* benchmark (3 copies) N/A 4953 MB/s
lrnbench* benchmark (4 copies) N/A 6238 MB/s
SGEMMO (GFLOP/s, single core) 6.8 atlas: 13.3, mkl: 18.1
SGEMMO (GFLOP/s, all cores) 11.9 atlas: 44.9, mkl: 66.1
DGEMM<> (GFLOP/s, single core) 3.5 atlas: 7.6, mkl: 9.0
DGEMMO (GFLOP/s, all cores) 6.5 atlas: 26.8, mkl: 31.3
* lmbench was compiled with gcc on both platforms. The Intel compiler on the Q6600 gave
similar results.
<0> Using ATLAS on the AMD system and MKL on the Intel system with 2 square matrices
with dimensions of 2000 x 2000.

22 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

3.2 Bandwidth between the Host and G PU

GPU memory bandwidth benchmarks were performed on the AMD system that
hosts the GPU. Table 3.2 shows the results for the bandwidth benchmarks be-
tween the host and the GPU with pageable and page-locked memory (see sec-
tion 2.2.1) as well as the internal GPU memory bandwidth. Latency reported is
the time to copy 1 byte.

Table 3.2: Host initiated memory transfer rates (GB/s)

Benchmark
Latency Bandwidth in GB/s

in /is 1KB 1MB 100MB
Main Memory (pageable) to GPU 22 0.03 0.80 1.10
GPU to Main Memory (pageable) 18 0.04 0.40 0.50
Main Memory (page-locked) to GPU 18 0.04 2.70 3.10
GPU to Main Memory (page-locked) 15 0.05 2.80 3.00
GPU Memory to GPU Memory* 12 0.25 53.95 65.12
* Host initiated memory copies. GPU initiated memory copies would have
lower latency.

Latency measurements show that when using pageable memory, the latencies
of copying data to and from the GPU are 22/is and 18ßs respectively. When
using page-locked memory latencies are 18/is and 15fis. Internal GPU memory
transfers have a latency of 12fis. This is due to the fact that the GPU to GPU
memory copies in table 3.2 are initiated from the host. The GPU memory fetch
time is 400-600 cycles and memory transfers initiated from the GPU would have
a smaller latency.

Moving to the bandwidth results from pageable memory, host to GPU trans-
fers of 1KB perform poorly at 30MB/s. Bandwidth increases dramatically to
800 MB/s for 1MB transfers and reaches a maximum of 1.1 GB/s for 100MB
transfers. GPU to host results are very similar at 40MB/s for 1KB transfers.
They are however about 2x slower for transfers of 1MB and 100MB. When using
page-locked memory, there is not a large difference in bandwidth for transfers of
1KB, however transfers of 1MB and 100MB perform about 3x and 6x faster for
transfers to and from the GPU respectively. Internal GPU to GPU memory trans-
fers performed poorly with 1KB transfers. Transfers of 1MB showed improved

3.3. DENSE MATRIX-VECTOR PERFORMANCE 23

bandwidth and a maximum of 65GB/s was achieved with 100MB transfers; this
is about 81% of peak theoretical performance.

Results from table 3.2 suggest that the page-locked memory should be used for
faster memory transfers. When using page-lock memory, data was able to move
at a maximum rate of 3GB/s between the host and the GPU with more than 85%
of this bandwidth being achieved with only 1MB transfers. This is about half the
bandwidth of main memory as presented in table 3.1. This limitation is a result
of the PCIe bus which has a theoretical limit of 4GB/s in each direction. All
newer GPUs support the newer PCIe 2.0 bus with a theoretical limit of 8GB/s in
each direction and the bandwidth between the GPU and host would be expected
to double. The low bandwidth between the GPU and host clarifies the large cost
of moving data to the GPU. In terms of the SML application, it indicates that
many iterations of matrix-vector products will be needed to offset the cost of the
initial matrix transfer. The cost of copying the vector and result between the
GPU and host for each matrix-vector product will need to be identified as well.
The large internal GPU bandwidth is about 31 x the internal bandwidth of the
host. This indicates an advantage for the GPU in memory bound computations
such as matrix-vector products.

Having quantified the cost of memory transfers between the host and the GPU,
the performance of dense matrix-vector products on the GPU are evaluated.

3.3 D en se M atrix -V ector P erform ance

This section, will discuss the results from evaluating the performance of single
precision, dense matrix-vector products using both dedicated matrix-vector rou-
tines (SGEMV) and matrix matrix routines (SGEMM) on the AMD and Intel
CPUs as well as the GPU. Both the SGEMV and SGEMM routines are used to
calculate the product of a NxM matrix with a Mxl vector.

Given a matrix of dimensions MxN, listing 3.1, illustrates a simple algorithm
for computing the matrix-vector products.

Listing 3.1: Structure of Dense Matrix-Vector Products
f o r (i = 0 ; i < M ; i + +)

f o r (j = 0 ; j < N ; j + +)
r e s [i] + = A [i] [j] * v e c [j) ;

Listing 3.1 shows that the multiplication has a cost of 0 (N x M) and both the
matrix and vector are streamed into the processor with a unit stride. Accessing
memory with unit stride maximises the performance benefits of cache and is the

24 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

optimal access method for both the GPU and CPU systems. On both AMD and
Intel CPUs, the matrix-vector products would be able to perform two operations
per one element of the matrix. This would allow us to achieve a peak performance
of (bandwidth + 4 bytes) x 2 operations in GFLOP/s. From table 3.1, memory
bandwidth is seen to reach 6GB/s on both CPU systems. It is interesting to
see that both these processors, while generations apart give the same predictable
amount of performance for dense matrix-vector products due the similar memory
bandwidth performance.

The SML application includes a normal matrix-vector multiplication as well
as a transpose matrix-vector multiplication and therefore, both normal (N) and
transpose (T) options in the matrix-vector routines are evaluated. The evalua-
tions cover a range of different sizes and ratios between rows and columns.

In the performance analysis of matrix-vector products, the effect of the size
of the matrix on performance is observed as well as the shape of the matrix (ie.
the ratio of rows to columns). To observe the effect of these parameters, two
experiments are performed. In the first, matrix-vector products are evaluated
with square matrices of ascending sizes and in the second, the size of a matrix is
kept constant and the ratio between the number of rows to the number of columns
is modified. In addition, to factor in the per iteration overheads of data transfers
between host and GPU, the results for the GPU include the time required to
transfer the vector to the GPU and the resulting product vector back to the host.

Performance for SGEMM and SGEMV calls performing matrix-vector prod-
ucts will be given for the CPUs and the GPU. A range of matrix sizes from 1024
to 10240 with increments of 128 are tested. The results are provided for both
normal and transpose multiplications. ATLAS and MKL permit the matrix to be
stored in either row or column major format, while CUDA only supports matri-
ces in column major format. All evaluations are therefore conducted on matrices
stored in columns major format.

3.3.1 Effect o f Size on D ense M atrix-V ector Perform ance

The first set of performance results for SGEMM and SGEMV are for the AMD
CPU and are presented in figure 3.1 and partially replicated in table 3.3. A
variety of matrix sizes from 1024 to 10240 with increments of 128 are shown.
Since ATLAS 3.6.0 performed best on the AMD system, only those results are
presented.

The first observation from figure 3.1 is that the results from the use of one

3.3. DENSE MATRIX-VECTOR PERFORMANCE 25

ATLAS 1 CORE SGEMM Normal ATLAS 2 CORE SGEMM Normal •
ATLAS 1 CORE SGEMM Transpose ATLAS 2 CORE SGEMM Transpose -©•-

ATLAS 1 CORE SGEMV Normal * ATLAS 2 CORE SGEMV Normal •
ATLAS 1 CORE SGEMV Transpose ATLAS 2 CORE SGEMV Transpose

•»** , i , » * * M H " , * i* t* ;* » * * , ** , *, « j * i t ' , t ‘ * ‘ i* * '» * « » M * » » * •$ « , *»»*««»*• I

5000 6000 7000
Dimension of Square Matrix

10000

Figure 3.1: Performance (GFLOP/s) for square matrix-vector products on the
AMD System using ATLAS 3.6.0.

core are essentially the same as those resulting from the use of 2 cores. This
is due to the fact that a single core of the AMD CPU is able to saturate the
memory bandwidth. Given that the limiting factor of matrix-vector products
is the memory bandwidth, the addition of a core doesn’t provide an advantage.
While the memory benchmark results in table 3.1 show low bandwidth for a single
core, the memory controller in the AMD CPU is shared between the two cores
and there is no reason why a single core cannot achieve the same bandwidth
achieved by two cores [48, 61]. The SGEMM/V results were further validated by
disabling one of the 2 cores and re-running the benchmarks, producing the same
results.

The second observation is that the SGEMV routines perform better than
SGEMM routines for matrix-vector products as would be expected. SGEMV
routines performed at about 1.2 GFLOP/s for normal products and about 2.5
GFLOP/s for transpose products. SGEMM routines performed at about 0.4
GFLOP/s for both normal and transpose products.

The third observation is that for the SGEMV routine, the transpose products
outperformed the normal products by more than a GFLOP. This is due to the
fact that the matrix is stored in column major format and when performing the
transpose product, the matrix is accessed in unit stride while a normal product
would access the matrix in strides of M where M is the numbers of rows in the
matrix. (Results of benchmarking SGEMV routines with the matrix stored in

26 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

row major format produced the the same results only with the normal products
performing in the 2.5 GFLOP/s range and the transpose products performing in
the 1.2 GFLOP/s range.)

The final observation is that the performance of ATLAS routines are very
consistent across a variety of different sized matrices.

Table 3.3: Performance in GFLOP/s for square matrix-vector products on the
AMD System using ATLAS v3.6.0 (see figure 3.1).

Performance in GFLOP/s

Dimension
1 Thread 2 threads

SGEMM SGEMV SGEMM SGEMV
N T N T N T N T

1024 0.47 0.58 1.13 2.28 0.46 0.54 1.12 2.27
2048 0.33 0.43 1.18 2.80 0.36 0.41 1.18 2.80
3072 0.32 0.40 1.19 2.82 0.36 0.42 1.20 2.84
4096 0.31 0.39 1.15 2.86 0.35 0.42 1.18 2.85
5120 0.30 0.39 1.20 2.86 0.35 0.42 1.20 2.84
6144 0.29 0.38 1.20 2.52 0.35 0.41 1.17 2.52
7168 0.29 0.37 1.21 2.56 0.35 0.41 1.20 2.57
8192 0.27 0.37 0.43 2.57 0.34 0.40 0.43 2.61
9216 0.28 0.38 1.18 2.60 0.34 0.41 1.17 2.59
10240 0.28 0.37 1.16 2.56 0.34 0.41 1.17 2.61

The next set of results provided are for the Intel system, where the same
experiments conducted on the AMD system are repeated. The Intel MKL library
performed best on this system so only the MKL results are shown. The Intel
system has four cores and so results are provided from the utilisation of one, two
and four cores.

The first observation in figure 3.2 is that again, there is no noticeable per-
formance increase due to the involvement of multiple cores in the matrix-vector
product. For the Intel system, this was indicated by the memory benchmark
results in table 3.1 where the results for one core were over 80% of what was
achieved with four cores.

The second observation is that unlike the results for the AMD system the per-
formance grows gradually until matrix sizes of 5000 x 5000, where the performance
start to stabilise.

3.3. DENSE MATRIX-VECTOR PERFORMANCE 27

MKL 1 CORE SGEMM Normal
MKL 1 CORE SGEMM Transpose

MKL 1 CORE SGEMV Normal *
MKL 1 CORE SGEMV Transpose

MKL 2 CORE SGEMM Normal •
MKL 2 CORE SGEMM Transpose o

MKL 2 CORE SGEMV Normal •
MKL 2 CORE SGEMV Transpose *

MKL 4 CORE SGEMM Normal
MKL 4 CORE SGEMM Transpose

MKL 4 CORE SGEMV Normal r
MKL 4 CORE SGEMV Transpose «

5000 6000 7C
Dimension of Square Matrix

10000

Figure 3.2: Performance (GFLOP/s) for square matrix-vector products on the
Intel System using MKL 10.0.1.014.

The third observation is that the normal and transpose performance are essen-
tially identical in performance. The fourth and final observation is that SGEMV
and SGEMM routines are very close in performance and virtually identical for
matrix sizes over 5000 x 5000. As before, some of the results presented in figure 3.2
have been replicated in table 3.4 for added clarity.

The final set of results from the evaluation of how size affects performance are
from the GPU and are presented in figure 3.3.

Looking at figure 3.3, it is observed that the performance of the SGEMV rou-
tines both normal and transpose is better than the SGEMM routines as was the
case for both AMD and Intel results. The performance of the SGEMV routines
for normal products gradually increases until matrix sizes of 8192, where the per-
formances drops dramatically. This behaviour is most likely due to the internal
blocking mechanisms and their affect on the Translation Lookaside Buffer (TLB).

The SGEMV normal multiply performs generally much better than the trans-
pose multiplies. The transpose multiply does however perform better in the case
of matrices smaller than 2000 x 2000. The performance of the transpose products
was erratic. Again some of the GPU matrix-vector results have been replicated
in part in table 3.5.

Figure 3.4, plots the best performing SGEMV results from both of the CPU
as well as the GPU. The GPU achieves between 2x to 10 x better than the
host depending on the size of the matrix and whether the product is normal or

28 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

Table 3.4: Performance (GFLOP/s) for square matrix-vector products on the
Intel System using MKL vlO.0.1.014 (see figure 3.2).

P erfo rm an ce in G F L O P /s

D im ension
1 T h re a d 2 th re a d s 4 th re a d s

SG E M M S G E M V SG E M M S G E M V SG E M M SG E M V

N T N T N T N T N T N T

1024 1.10 1.13 1.28 1.32 1.13 1.13 1.28 1.27 1.09 1.14 1.32 1.31

2048 1.74 1.72 1.83 1.83 1.74 1.73 1.84 1.84 1.75 1.73 1.85 1.84

3072 2.09 2.06 2.15 2.14 2.09 2.06 2.15 2.15 2.09 2.06 2.15 1.97

4096 2.23 2.15 2.26 2.22 2.21 2.20 2.27 2.25 2.27 2.19 2.32 2.28

5120 2.25 2.27 2.33 2.31 2.31 2.28 2.35 2.33 2.33 2.29 2.35 2.33

6144 2.38 2.32 2.39 2.37 2.39 2.34 2.40 2.38 2.41 2.36 2.41 2.39

7168 2.26 2.30 2.37 2.36 2.37 2.31 2.37 2.36 2.37 2.32 2.39 2.36

8192 2.28 2.21 2.29 2.25 2.30 2.22 2.28 2.25 2.31 2.20 2.28 2.24

9216 2.36 2.32 2.35 2.35 2.38 2.32 2.38 2.36 2.39 2.33 2.39 2.37

10240 2.53 2.48 2.54 2.51 2.56 2.48 2.56 2.52 2.56 2.53 2.59 2.57

GPU SGEMM Normal GPU SGEMV Normal *
GPU SGEMM Transpose GPU SGEMV Transpose o

5000 6000 71
Dimension of Square Matrix

10000

Figure 3.3: Performance (GFLOP/s) for square matrix-vector products on the
GPU with CUBLAS 2.0.

3.3. DENSE MATRIX-VECTOR PERFORMANCE 29

Table 3.5: Performance (GFLOP/s) for square matrix-vector products on the
GPU with CUBLAS 2.0 (see figure 3.3).

Dimension
Performance in GFLOP/s

SGEMM SGEMV
N T N T

1024 7.23 6.39 4.54 7.71
2048 6.88 6.30 7.26 5.75
3072 7.01 7.11 10.92 8.85
4096 7.11 7.20 14.54 5.77
5120 7.13 7.23 17.94 9.78
6144 7.12 7.32 21.31 6.19
7168 7.17 7.73 24.34 9.80
8192 7.17 6.33 27.32 5.44
9216 7.16 7.45 16.24 9.28
10240 7.20 7.84 18.00 6.05

transpose.
Many programs and architectures favour specific problem sizes due to archi-

tecture or coding design. To investigate the presence of any such issues in the
BLAS libraries used or the systems evaluated, experiments were repeated on ma-
trices of sizes 4160 x 4160 to 4224 x 4224 in increments of one. The results of
these evaluations are presented in figure 3.5.

Figure 3.5 shows that the SGEMV routines from the CUBLAS library are the
most affected by the problem size. Performance for normal products increased
4x when the dimensions of the matrix were a multiple of 16 while the transpose
product performance increased 2x for the same cases. This is due to the fact
that the matrices are stored in column major format and the numbers of rows
must be multiples of 16 for the memory to be aligned properly for the hardware
to coalesce memory reads (see section 2.2.2). ATLAS SGEMV routines on the
AMD system show an improvement of 15% to 50% when the dimension of the
matrix is a multiple of two. The performance of the MKL SGEMV routines on
the Intel system remained consistent regardless of the matrix dimensions.

Matrix-vector products have an algorithmic complexity of 0 (N x M) where N
= number of rows and M = number of columns of the matrix. The CUBLAS li-
brary implementation of SGEMV launches 8,192 threads (64 blocks, 128 threads)

30 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

MKL ON INTEL 4 CORE SGEMV Normal
MKL ON INTEL 4 CORE SGEMV Transpose

ATLAS ON AMD 2 CORE SGEMV Normal *
ATLAS ON AMD 2 CORE SGEMV Transpose

GPU SGEMV Normal •
GPU SGEMV Transpose -©•-

_ ii jo m o < M B e e B B G p e g s ia s g v B B y e 'i ! a r t a y i ^ aB iB a a B irg lffiBg,B Ma B B a B a ia a f l ia B e B B BIi1̂ Bg i i i ir .B i!.» i

5000 6000 7(
Dimension of Square Matrix

10000

Figure 3.4: CPU vs GPU (ascending sizes).

MKL 4 CORE INTEL SGEMV Normal ATLAS 2 CORE AMD SGEMV Transpose
MKL 4 CORE INTEL SGEMV Transpose GPU SGEMV Normal •

ATLAS 2 CORE AMD SGEMV Normal « GPU SGEMV Transpose o-

\ m ° ? i : f> \ O ;

■£Öö Q5so S ® 5 '\°8 8 *I 'Q£&8 8 % Q8*8 8^5a 6&3 q*^ q ‘ g S'
8 g 8

1 ******** h******-*-*-*-*-̂ **-*-*-**-*-*-*-***********)**-*-*-*-*-*-***».,, ***** * ****

4170 4190 4200
Dimension of Square Matrix

Figure 3.5: Evaluating matrices of unit increments exposes the preference of
programs and hardware for specific problem sizes.

3.3. DENSE MATRIX-VECTOR PERFORMANCE 31

each looping over as many rows as needed to compute all rows. For given M we
would expect the performance of the SGEMV routine to peak when N is a mul-
tiple of 8,192 due to maximum utilisation of all threads. The performance should
increase linearly as N approaches a multiple of 8,192. Figure 3.3 shows that the
performance of the SGEMV routine does indeed scale linearly with respect to N
and peaks at N = 8,192. The performance drops drastically after that due to
poor utilisation as a total of 16,384 threads would have been created but only
8,193 of them would contribute work. As N increases, the performance starts to
ascend linearly to another maximum (expected) at N = 16,384.

3.3.2 Effect o f Shape on Perform ance

The effect of matrix shape on performance of the SGEMV routines from the
ATLAS, MKL and CUBLAS libraries, was evaluated using a matrix containing
26,214,400 elements (approximately 100MB in size). Keeping the number of
elements of the matrix constant, the number of rows and columns are varied
from a 128 x 204800 matrix to 204800 x 128. Figure 3.6 presents the results of
the evaluations of the two CPUs. Only results for the the SGEMV routines are
presented for both CPUs as they consistently outperform the SGEMM routines.
Figure 3.7 presents the results of both SGEMV and SGEMM GPU routines as
neither of them consistently outperforms the other. Results are also partially
replicated in table 3.6 for further clarification.

MKL 4 CORE INTEL SGEMV Normal ATLAS 2 CORE AMD SGEMV Normal *
MKL 4 CORE INTEL SGEMV T ranspose ATLAS 2 CORE AMD SGEMV T ranspose

2 1-5

100000.0001
Rows/Colum ns

Figure 3.6: Performance (GFLOP/s) as function of shape for matrix-vector prod-
ucts on the CPU.

32 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

Starting with the results of the MKL SGEMV routine on the Intel system
presented in figure 3.6, both normal and transpose products showed a small drop
in performance when the number of rows or columns dropped to 128. The normal
products saw an increase in performance form small number of columns, while the
transpose products saw an increase for small number of rows. The ATLAS normal
SGEMV results lagged the transpose SGEMV results by almost 1.5 GFLOP/s
for most of the test cases. A small decrease in performance is observed for small
number of rows and a much higher drop of 50% is observed at matrices of sizes
8192 x 3200, 16384 x 1600 and 204800 x 128. The ATLAS transpose SGEMV
results were not affected by a small number of rows but show a significant drop
in performance for a small number of columns.

Generally the results indicate that the performance of the MKL implemen-
tation on the Intel CPU is more stable than the ATLAS results on the AMD
CPU. However, the ATLAS SGEMV results on the AMD CPU produce better
performance than the MKL implementation on the Intel CPU when the matrix is
read in unit stride (row major + normal products or column major 4- transpose
products) and much worse than the MKL implementation on the Intel CPU
when they are not.

GPU SGEMM Normal GPU SGEMV Normal *
GPU SGEMM Transpose GPU SGEMV Transpose

.. . m j b j j k * * # * * - '* :S------ t

0.0001 10000
Rows/Columns

Figure 3.7: Performance (GFLOP/s) as function of shape for matrix-vector prod-
uct on the GPU.

The SGEMM results on the GPU shown in figure 3.7 show the normal and
transpose products producing similar results. Performance of the SGEMM rou-
tines are quite stable but decline in performance for very small number of rows.

3.3. DENSE MATRIX-VECTOR PERFORMANCE 33

The SGEMV transpose results are not as stable with a drop of 50% in perfor-
mance showing for some matrices. The SGEMV transpose products also drops
in performance for small number of rows. The SGEMV normal product performs
much worse than the others for number of rows under 2048 after which perfor-
mance increases rapidly. There is a sharp drop in performance for the matrix of
size 10240 x 2560 but performance levels out as the number of rows continues
to grow. An important observation is that for small number of rows, the use of
SGEMM routines will perform better than SGEMV routines.

Table 3.6: Performance (GFLOP/s) as function of shape for matrix-vector prod-
ucts on the CPU (see figures 3.6 and 3.7).

Rows Columns

AMD Intel GPU
SGEMV SGEMV SGEMM SGEMV
N T N T N T N T

128 204800 0.99 2.59 1.67 1.87 1.70 1.95 0.65 1.29
512 51200 1.22 2.58 2.13 2.24 6.97 7.06 2.23 5.11
1024 25600 1.28 2.58 2.60 2.23 7.13 7.49 3.76 9.77
1600 16384 1.24 2.55 2.62 2.23 5.60 4.93 7.18 4.44
2048 12800 1.23 2.48 2.55 2.40 7.16 7.79 7.54 9.66
2560 10240 1.18 2.62 2.56 2.26 7.15 7.23 10.65 5.79
3200 8192 1.19 2.60 2.50 2.24 6.43 5.41 13.48 5.61
4096 6400 1.16 2.51 2.32 2.43 7.14 7.75 14.64 9.33
5120 5120 1.20 2.88 2.33 2.31 7.13 7.20 17.94 9.78
6400 4096 1.15 2.60 2.43 2.34 6.87 7.18 23.14 5.57
8192 3200 0.44 2.84 2.23 2.50 7.12 7.73 26.75 9.40
10240 2560 1.17 2.83 2.24 2.58 7.13 7.51 17.71 9.71
12800 2048 1.11 2.54 2.35 2.55 7.15 7.25 21.99 6.03
16384 1600 0.46 2.74 2.20 2.61 7.09 7.87 26.60 9.68
25600 1024 1.15 2.57 2.26 2.64 7.25 7.74 21.37 9.75
51200 512 1.19 2.37 2.24 2.13 7.14 7.68 23.74 9.71
204800 128 0.46 1.55 1.70 1.68 6.51 6.72 22.70 9.09

Finally, figure 3.8 combines SGEMV performance results for the AMD and
Intel CPU with the results from the GPU.

Figure 3.8 shows that matrices must have a minimum of 1000 rows to achieve
perform gains on the GPU. When the number of rows are below 2560, the

34 CHAPTER 3. DENSE MATRIX-VECTOR PERFORMANCE

MKL 4 CORE INTEL SGEMV Normal ATLAS 2 CORE AMD SGEMV T ranspose
MKL 4 CORE INTEL SGEMV T ranspose GPU SGEMV Normal •

ATLAS 2 CORE AMD SGEMV Normal * GPU SGEMV T ranspose o

-9 ----- P-D S' g 'd ? -9 f t

0.0001 10000
Rows/Columns

Figure 3.8: CPU vs GPU (Changing Shapes).

SGEMM routines provide better performance then the SGEMV routines.

3.3.3 Conclusion

Figure 3.4 showed that for square matrices, the GPU was at least 2x as fast as
the CPUs. Figure 3.8 showed that a minimum of 1000 rows was needed to achieve
even the slightest performance gain.

The main decision that needs to be made at this point is when to use the GPU
over the CPU for a matrix-vector product. The results in this chapter indicate
that the benefits of performing matrix-vector products on GPUs are realised for
larger matrices with at least 2048 rows. The exact performance gains will depend
on the number of matrix-vector products conducted.

C h a p te r 4

SpM V C o n stru c tio n and
E valuation

As noted in chapter 2, exploiting the sparsity of a matrix can decrease the number
of instructions needed to compute a matrix-vector product as well as the memory
footprint of the matrix. This exploitation also introduces a slightly more complex
data structure and random memory accesses. The point at which the sparsity
of a matrix becomes large enough to benefit from its exploitation is system and
implementation dependent. This chapter presents a range of implementation
options on the NVIDIA GPU system, assesses their performance as a function
of matrix attributes, and by doing so establishes a set of implementations such
that for any matrix the best performing implementation is part of that set. This
chapter also presents efforts to identify the level of sparsity that warrants the use
of sparse matrix-vector products on the GPU over their dense counterparts.

There are many storage formats for sparse matrices as discussed in section 2.4.
This work is based on the Compressed Sparse Row (CSR) format as it is widely
used in the scientific community [52, 56, 13].

________Listing 4.1: Structure of CSR Sparse matrix-vector products_______
f o r (i = 0 ; i < M ; i + +)

f o r (j = p t r [i] ; j < p t r [i + 1) ; j + +)
r e s [i] + = v a l [j] » v e c [i n d [j]] ;

Listing 4.1 shows the kernel of a Sparse Matrix-Vector (SpMV) product when
using the CSR format. In comparison to the dense matrix-vector product shown
in listing 3.1, the number of iterations of the second loop is not constant, but can
vary for each iteration of the outer loop. In addition the vec array is referenced
indirectly, not in unit stride as is the case for dense matrix-vector products. As a
consequence, predicting the access pattern of the vec array is not possible, causing

35

36 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

the performance of the SpMV products to be closely related to the structure of
the sparse matrix. In short, the SpMV performance achievable on both the CPU
and GPU is not as clear as in the case of dense matrix-vector products.

Parallelisation of the code in listing 4.1 can proceed by assigning different
iterations of the outer i loop to different execution units. Each iteration of the
second loop then involves fetching 3 elements from memory and performing two
floating-point instructions. The low FLOP to byte ratio indicates that memory
bandwidth is critical for SpMV performance.

Both GPU and CPU systems require high arithmetic intensity (ratio of
floating-point operations to memory loads) to reach peak performance. Con-
sider single precision SpMV on the GPU which has a theoretical peak memory
bandwidth of 80GB/s or 20 x 230 32-bit f lo a t elements per second and a peak
performance of 321.6 GFLOP/s. For a kernel to achieve peak performance, each
32-bit f lo a t element read from memory must contribute to 321.6 -r 20 ~ 16
floating-point instructions. SpMV products fall short of such ratios, performing
only two floating-point operations per three 32-bit f lo a t elements and therefore
SpMV implementations are better evaluated by memory bandwidth efficiency
than by FLOP/s.

However, while the efficiency of the implementation can indeed be evaluated
by percentage of maximum bandwidth achieved, evaluation of the work as whole
will involve a broader context such as the comparative performance of sparse
matrix-vector products on the CPU and dense products on the GPU.

In table 3.2, the GPU memory bandwidth was measured to be 65 GB/s. This
was achieved by the use of a high level CUD A function, which raises the following
questions:

• How do different configurations of threads per block and blocks per grid
affect performance?

• W hat is the effect of using texture memory instead of global memory? 1

• W hat is the difference (in terms of bandwidth) between coalesced and non-
coalesced access?

• How does using f lo a t , f lo a t 2 and f lo a t 4 vector data types affect memory
bandwidth?

Constant memory and shared memory are not evaluated as they are small, specific memories
not suitable for general usage.

4.1. MEMORY BANDWIDTH ANALYSIS 37

In order to design an efficient SpMV implementation for the GPU, a more
thorough understanding is needed of how the internal GPU memory bandwidth
is affected by the above factors.

The beginning of this chapter will elaborate on the needed memory bandwidth
analysis for the GPU and present the results from the more thorough investiga-
tion. The rest of the chapter will focus on the SpMV implementations on the
GPU. This will start by discussing the methodology used for evaluation of the im-
plementations followed by a detailed view of the various implementation options
available. Evaluations of the various options will follow. The final section of this
chapter deals with the selection of one or more of the resulting implementations
based on the matrix attributes to produce the best performance.

4.1 M em ory B an d w id th A n alysis

As discussed above, memory bandwidth is critical to the overall performance
of SpMV products. In section 3.2, it was shown that internal GPU memory
transfer had a maximum bandwidth of 65 GB/s. This was achieved with the
cudaMemcpy routine for large (100MB) data transfers. In this section bandwidth
is measured in a loop similar to listing 4.1. Two memory bandwidth benchmark
frameworks were written to explore coalesced and sequential access methods from
global and texture memory, the use of f lo a t , f lo a t 2 and f loa t4 data types and
the effect of the number of threads per block and the number of blocks per grid
on performance is considered.

Coalesced and sequential methods of reading in elements from memory are
illustrated in figure 4.1. Data is organised in m rows, each row containing n
elements. Figure 4.1(a) illustrates how the benchmarks would access memory
using coalesced reads. Specifically, each row is assigned to a separate block, and
within that block each thread reads in consecutive elements (see section 2.2.1 for
a further details of coalesced reads). Figure 4.1(b) illustrates how the sequential
benchmark would read the elements from memory. In this case each row is
assigned to a separate thread and each thread reads in the entire row.

The benchmarks read a predefined number of f lo a t elements from memory.
The kernel is launched on the GPU with a predefined number of threads per block
and blocks per grid. The total number of elements to be read from memory is
divided amongst all the threads on the GPU so that all threads have an equal
workload to read from memory. In the coalesced benchmark, the total workload

38 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

(a) Coalesced reads of m rows us-
ing m blocks. In each block, k
threads cooperate in reading 1
row of n elements.

(b) Sequential reads of m rows.
Each thread reads in 1 row of
n elements.

Figure 4.1: Coalesced and sequential memory reads.

for the block is coalesced. In the sequential benchmark, each thread reads its
prescribed workload independently from any other thread. The coalesced and
sequential memory benchmarks have the same memory access pattern that a
coalesced or sequential SpMV implementation would have for the v a l and ind
arrays if every row of the hypothetical matrix had an equal number of nonzero
elements per row.

Three different values for the total amount of data read from memory were
considered (1.5MB, 55MB, 390MB), but as there was minimal variance between
them, only results from the medium (55MB) data size will be shown here (the
full set of results are available in appendix A). The benchmarks were conducted
with 16, 32, 64, 128, 256 and 512 threads per block, and with f lo a t , f lo a t2 and
f lo a t4 data types. Each benchmark was run three times with a selected number
of blocks so the resulting workloads would be 20, 100 and 1000 float elements
per thread. Both coalesced and sequential memory benchmarks were applied to
global and texture memory.

It is important to note tha t while the following sections compare between
“coalesced” memory reads from global and texture memory, the hardware does

4.1. MEMORY BANDWIDTH ANALYSIS 39

not coalesce texture memory reads. W hat is meant here is that threads in a
block perform texture reads from consecutive memory locations in the exact same
manner that is used for coalescing global memory reads.

4.1.1 C oalesced M em ory Benchm ark R esu lts

In the case of the coalesced benchmark (see figure 4.1(a)), each block of threads
cooperate in reading a single row. The number of elements in the row of the
hypothetical matrix is the product of the number of threads multiplied by the
workload size. To illustrate this, a configuration of 32 threads and a workload of
20, relates to a row with 32 x 20 = 640 elements. A configuration of 128 threads
and a workload of 100, relates to a row with 128 x 100 = 12800 elements.

Table 4.1 presents coalesced memory bandwidth for reading 55MB from both
texture and global memory. Rows are grouped according to workload (the number
of f lo a t elements each thread will read from memory). Results for 32, 64 and
128 threads per block are presented as they were always found to give the highest
bandwidth. For each row in the table the results of reads from global memory
with f lo a t , f lo a t2 and f lo a t4 units are given first, followed by similar results
from texture memory.

Focusing on the results (table 4.1) from global memory and starting with a
workload of 20 f lo a t elements*, at 32 threads per block the bandwidth almost
doubles when moving from f lo a t to f lo a t2 data types, but decreases slightly on
moving to f lo a t4 . With 64 threads per block and the same workload a similar
trend is observed, although the increase from f lo a t to f l o a t 2 is less and the drop
from f lo a t2 to f lo a t4 is larger. For f lo a t and f l o a t 2 data types 64 threads
is much better than 32, but for f lo a t4 the results are almost identical. For 128
threads the results of f lo a t and f lo a t2 are comparable and greater than the
results for 32 or 64 threads, while the result for f lo a t4 remains consistent with
the results from 32 and 64 threads.

If the workload is increased from 20 to 100 f lo a t elements very similar results
are found, both in terms of trends and absolute values. Increasing the workload
to 1000 f lo a t elements results in a considerable drop in bandwidth for f lo a t
and f lo a t2 data types and essentially identical results for f lo a t4 .

Overall, from the global memory results given in table 4.1, f lo a t2 types
consistently performed better in all scenarios except for a workload of 100 f lo a t
elements and a block size of 128, where they are outperformed by f lo a t data
types by a small margin of 5%.

40 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

Table 4.1: Benchmark results in GB/s for reading 55MB of data from global or
texture memory via coalesced reads for f lo a t , f l o a t 2 and f lo a t4 data types.

Threads

/Block
Blocks

Bandwidth in GB/s
Global Memory Texture Memory

float float 2 float4 float float 2 float4
Workload of 20 floats per thread

32 22400 25 40 36 24 36 44
64 11200 46 58 37 36 45 48
128 5600 62 63 37 43 50 52

Workload of 100 floats per thread
32 4480 27 44 38 25 39 50
64 2240 46 61 37 40 50 52
128 1120 64 61 37 45 52 54

Workload of 1000 floats per thread
32 448 26 42 38 24 39 51
64 224 39 55 38 38 51 53
128 112 48 54 37 36 45 51

For texture memory and with a workload of 20 f lo a t elements and using
32 threads per block memory bandwidth increases when moving from f lo a t to
f l o a t 2 to f lo a t4 data types. The same trend, but with a slight increase in
magnitude is observed when the number of threads per block is 64 or 128. There
is not much variation in texture memory performance when moving to different
workload sizes. Performance of texture memory tends to drop somewhat at work-
loads of 1000 f lo a t elements. Overall, f l o a t 4 consistently outperforms f lo a t
and f l o a t 2 data types.

Comparing texture and global memory bandwidth at 32 threads per block;
texture memory with f lo a t4 units outperforms global memory with f lo a t2 units
by 10%, 13% and 21% for workloads of 20, 100 and 1000 respectively. At 64 and
128 threads per block, global memory reads with f lo a t2 units provides better
performance than texture memory. From these benchmarks it appears that the
best performance is achieved for coalesced reads from global memory by using
f lo a t2 data types with 64 or 128 threads per block. At 32 threads per block,
coalesced reads from texture memory with f lo a t4 data types is the best option.

4.1. MEMORY BANDWIDTH ANALYSIS 41

4.1.2 Sequential M em ory Benchm ark R esu lts

In contrast to the coalesced benchmark, the sequential benchmark assigns each
row to a separate thread (see figure 4.1(b)). As a consequence the workload
size directly corresponds to the number of non zero elements in the hypothetical
sparse matrix. Results for sequential benchmarks are presented in table 4.2.
Best performance was found between 16 and 64 threads per block, thus results
are given for those thread per block sizes rather than 32, 64 and 128 threads per
block, as was used in the coalesced memory read benchmarks.

Table 4.2: Benchmark results in GB/s for reading 55MB of data from global or
texture memory via sequential reads for f lo a t , f lo a t2 and f lo a t4 data types.

Threads

/Block
Blocks

Bandwidth in GB/s
Global Memory Texture Memory

float float 2 float4 float float 2 float4
Workload of 20 floats per thread

16 44800 9 16 19 6 12 25
32 22400 9 17 19 8 14 25
64 11200 9 17 19 8 16 29

Workload of 100 floats per thread
16 8960 8 16 19 5 10 18
32 4480 8 17 19 5 11 20
64 2240 8 15 20 10 11 20

Workload of 1000 floats per thread
16 896 2 4 8 2 4 8
32 448 <1 1 2 <1 1 2
64 224 <1 1 2 <1 1 1

At small workloads of 20 f lo a t elements per threads, the bandwidth achieved
while reading from global memory increases as the width of the data type is
increased. The results are essentially identical for all three configurations of
threads per block, with 9GB/s for f lo a t data types rising to 19GB/s for f loat4 .

Increasing the workloads from 20 to 100 f lo a t elements has negligible effect.
At workloads of 1000 f lo a t elements bandwidth is however, much lower than
previous workloads, often only lG B/s. This large drop in performance at 1000
elements is most likely cause by TLB thrashing as the stride between blocks (for
f lo a t types) becomes 1000x4bytes = 4K B across each SM or 4 K B x 16 = 64K B

42 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

across the whole GPU.
Texture memory results follow the trends of global memory for all workloads

with the highest bandwidth resulting from use of f lo a t4 data types. Workloads
of 20 f lo a t elements result in better performance than larger workloads.

In summary, both global and texture memory benchmarks performed best
with the use of f lo a t4 data types. Comparing f lo a t4 performance of global
and texture memory types show very similar results except for workloads of 20
f lo a t elements, where texture memory shows a slight advantage. For workloads
of 20 or 100 f lo a t elements 64 threads per block offers best performance, while
workloads of 1000 f lo a t elements performed best with 16 threads per block.

4.1.3 C oalesced vs Sequential M em ory for SpM V

As noted in section 4.1 the workloads in the coalesced and sequential benchmarks
correspond to a different number of elements in the hypothetical sparse matrix.
To determine when it is best to use coalesced or sequential reads for a sparse
matrix it is necessary to normalise the results. The normalisation is presented in
figure 4.2, where the best performing data types and memory configurations are
used from each benchmark. Specifically, f lo a t2 results from global memory were
used for the coalesced reads, while f lo a t4 results from texture memory were used
for the sequential reads. Due to the use of f l o a t 2, the minimal number of f lo a t
elements that can be read in with coalesced reads is 2 x 16 = 32 f lo a t elements.
Effective bandwidth for smaller numbers of elements per row is calculated as
(bandwidth -r- 32) x elements per row. The same method is used to calculate the
effective bandwidth from sequential reads when the number of elements is less
than four.

The results presented in figure 4.2 show that for small numbers of elements
per row sequential reads provide better effective bandwidth than coalesced reads.
This changes when the number of elements per row grows larger than 64. This
result indicates that both coalesced and sequential implementations of SpMV
should be considered.

4.2 SpM V Im plem entations

The results from the previous section suggest that SpMV implementation that
utilise coalesced and sequential memory reads must be evaluated and that the
number of nonzero elements per row will determine at which point one imple-

4.2. SPMV IMPLEMENTATIONS 43

coalesced sequential

% ^ % % %
Number of Nonzero Elements per Row

Figure 4.2: Normalisation of memory benchmark results for coalesced and se-
quential benchmarks.

mentation will outperform the other. From this point on, the term ” coalesced
implementation” refers to an implementation where the matrix data is read with
coalesced memory reads while the term ” sequential implementation” refers to an
implementation where the matrix data is read with sequential memory reads.
The benchmarks were conducted under the assumption that the average number
of nonzero elements per rows is representative of the matrix as a whole.

The SpMV routine use five different arrays. The matrix is represented by
three arrays (val, ind and p tr) while the vector and result are stored in two
other arrays (vec and res). Both coalesced and sequential implementations have
a number of implementation options in terms of which memory to use for each of
these five arrays. As described in in section 2.2.1, the GPU offers three different
memory storage options. These are global, texture and constant memory.

Global and texture memory both utilise the 768MB of physical memory. Con-
stant memory is limited to 65,536 bytes (16,384 floats/ints or 8,192 doubles) and
is therefore not a realistic candidate for storage of large arrays. Constant mem-
ory could however, still be utilised for the p t r or vec arrays, though they would
restrict the size of the matrix to 16,384 rows or 16,384 columns respectively
(even less if used jointly). The use of constant memory for either of those arrays
would be desirable if it offered a large performance gain over other memory types.
Shared memory can also be used to cache memory fetches from global memory if

44 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

that data can be used by many threads.
The v a l and ind arrays are the largest arrays in the SpMV operation. These

arrays are both accessed in unit stride and are the only arrays that should be
accessed via wide data types (f loa t4 , in t2 , ... ect) as they have logically con-
secutive elements. As such, the memory bandwidth analysis in section 4.1 can be
applied directly to the va l and ind arrays.

The p tr array is accessed twice per row with consecutive elements. Optimis-
ing ptr access will be important when the number of elements per row is low. The
use of memory with cache should also be beneficial. Sequential implementations
could coalesce p tr elements to shared memory, then access them at fast speeds
from shared memory. The use of shared memory for caching will introduce syn-
chronisation overheads and so will be benchmarked to identify whether it would
perform better than texture or constant memory.

The res array has only one available storage option as only global memory is
writeable from the GPU. In addition there is no need to explicitly coalesce writes
to the res array in global memory as the results from consecutive executing units
are consecutive elements in the res array.

Table 4.3: Memory options for the different arrays.

A rray
G lobal M em ory T ex tu re M em ory C o n stan t

M em ory
Shared

M em ory
W ide D a ta

Typescoalesced sequential coalesced sequential

v a l y / y y X X /
in d y / y y X X y
p t r X / X y y y X

vec X y X y y X X

r e s y y X X X X X

Table 4.3 summarises the different options available for each array and indi-
cates that large number of implementations can be constructed based upon the
memory options for these arrays.

This section analyses the different implementation options and identifies the
best performing implementations to be constructed and benchmarked. Each im-
plementation, is named as follows:

[coa/seq]- [f 1 , f 2 ,f4]_ [v a l, ind storage]- [ptr storage]- [vector storage]
To illustrate, coa-f2_memm-cnst-text indicates a coalesced implementation us-
ing f l o a t 2 units in global memory for the v a l and ind arrays, constant memory

4.3. PERFORMANCE EVALUATION METHODOLOGY 45

for the p t r array and texture memory for the vec array, seq -f 4_memm-shrm-cnst
indicates a sequential implementation using f lo a t4 units for the v a l and ind
arrays, shared memory for the p t r array and constant memory for the vec array.

Table 4.4 summarises the options available to the arrays involved in the SpMV
operation and the factors that affect the read performance of each array.

For each attem pt to evaluate a storage option, both coalesced and sequential
implementations will be benchmarked to make sure that the results from the
evaluation of a storage option is consistent across both implementations.

4.3 P erform ance E valu ation M eth o d o lo g y

This section describes the hardware setup used for the evaluations and provides
details on how each storage option is evaluated.

4.3.1 Evaluation P latform

The hardware use to perform the following evaluations has been previously de-
scribed in section 3.1 but is briefly summarised here. It contains a 2 GHz dual
core AMD Athlon64 3800+ processor with 2GB of PC3200 DDR memory. The
processor has 128KB of LI cache and 1 MB L2 cache and a theoretical peak per-
formance of 8 GFLOP/s. The GeForce 8800 GTX GPU was installed in a PCIe
1.0 slot that has a peak theoretical transfer rate of 4GB/s.

4.3.2 Test M atrices

In order to evaluate the SpMV implementations, test datasets needed to be ob-
tained. The small number of test matrices used in previous works [60, 14] mo-
tivated the search for large amounts of real world test cases and so the Florida
Sparse Matrix Collection was used to obtain many real world examples. Datasets
that were used by Teo et al [54] for evaluation of the original application code were
also used. However in order to observe a specific aspect of the implementations
performance, it was desirable to be able to generate matrices with specific prop-
erties. A simple sparse matrix generator was therefore written. This generator
allows the specification of the dimensions of the matrix, the sparsity and a tech-
nique that determines the placement of non zero elements. Figure 4.3 illustrates
the three techniques used for matrix generation.

46 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

Table 4.4: Possible optimal implementations as deduced from previous bench-
marks and analysis.

A rray S torage O ptions F acto rs A ffecting Perform ance

v a l & in d

• A coalesced im plem enta tion

using f l o a t 2 d a ta types in

global memory.

• A sequential im plem enta tion

using f l o a t 4 d a ta types in

te x tu re m em ory

1. T h e num ber of elem ents per

row.

2. T he w id th of th e d a ta types.

p t r

• G lobal memory.

• T ex tu re m em ory.

• C o n stan t memory.

• G lobal m em ory w ith shared

m em ory caching.

1. T h e nu m b er of rows of th e m a-

tr ix as th e p t r a rray is ac-

cessed tw ice p e r row.

2. T h e average num ber of ele-

m en ts per row. T he im por-

ta n ce of op tim ising p t r access

is em phasised w hen th e num -

ber of e lem ents per row is low.

vec

• G lobal m em ory.

• T ex tu re m em ory.

• C o n s ta n t memory.

1. T h e size of th e v ec array. T h is

re la tes to th e size of th e m atrix

colum ns.

2. T h e num b er of m em ory fetches

to th e vec to r array. T h is re-

la tes to th e sparsity of th e m a-

trix . T h e m ore sparse th e m a-

trix , th e less fetches to th e v ec

array.

3. T h e p a tte rn of m em ory access.

T h is re la tes to th e fill ty p e

of th e m a trix . T hese are th e

w hole, row an d block fill types.

4.3. PERFORMANCE EVALUATION METHODOLOGY 47

(a) Random (b) Constant Row (c) Structured

Figure 4.3: Different techniques to generate test matrices.

Random

This technique makes use of a uniform random number generator to determine the
nonzero elements in the matrix. For each (row,column) combination, a random
number is produced ranging from 1 to 100. If that number is larger than the
required sparsity that location is assigned a value, else it is set to zero. The
minimum number of elements in a row is set to one. This results in a very
unstructured matrix where the number of elements per row can vary greatly
between consecutive rows. Figure 4.3(a) illustrates the result of this technique.

Constant Row

This technique imposes more structure than the Random technique. The number
of elements per row is set to (the number o f columns x the required density) for
all rows in the matrix. The positions of the elements for each row are randomly
generated with a uniform random generator. Comparing results from using this
matrix with the Random matrix allows us to assess any overhead associated with
variances between the number of elements in consecutive rows. Figure 4.3(b)
illustrates this matrix structure.

Structured

This technique is similar to the Constant Row technique in that the number of
elements per rows is consistent for all rows in the matrix. It differs in that all
the rows have the same column distribution. Using this matrix in benchmarks
results in the same elements of the vec array being read for each row of the
matrix, maximising the effects of cache in the read performance of the vec array.
Figure 4.3(c) illustrates the result of this generation technique.

48 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

4.3.3 Perform ance M easurem ents

When taking into consideration the nature of the application discussed in sec-
tion 2.3, it can only be a significant comparison if the GPU’s FLOP/s results
take into consideration all overheads resulting from the use of the GPU indica-
tion conversion from double to f lo a t and copying data between host and GPU
memories. Therefore the time used in calculating FLOP/s for both sparse and
dense matrix-vector products include the time taken to:

1. Convert the vector from double to float.

2. Copy the vector from main memory to the GPU.

3. Perform the matrix-vector product.

4. Copy the result from the GPU to main memory.

There exists a one time cost of converting and copying the matrix to the
GPU. This is not included in the FLOP/s calculation. FLOP/s were calculated
as (2 x number o f nonzero elements -r total time). Each evaluation was run 100
times on a dedicated machine with the average wall clock time used to calculating
a performance result.

4.4 Sp M V Im p lem en ta tio n A ssessm en t

In section 4.2 numerous implementation options for an SpMV implementation on
the GPU were discussed. The memory bandwidth benchmark results in tables 4.1
and 4.2 suggest that the implementation options for the val and ind arrays can
be realistically limited to:

1. Coalesced reads using floa t2 units (coa-f2_memm-memm-memin).

2. Sequential reads using floa t4 units (seq-f4_text-memm-memm).

This section outlines an attempt to select the best options for the p tr and vec
arrays. In evaluating the various implementation options, only those parameters
that are readily associated with the matrix itself were considered, namely:

• The number of rows in the matrix.

• The number of columns in the matrix. This is equal to the number of
elements in the vector.

4.4. SPMV IMPLEMENTATION ASSESSMENT 49

• The number of non zero elements in the matrix.

The benchmarks in this section were all performed with 32 threads per block
as this is the size of a warp on the GPU. While the results from the benchmarks in
tables 4.1 and 4.2 indicate that 64 threads per block results in best performance
overall, this is not necessarily the optimal value for the SpMV implementation
as a whole. There could exist different optimal values for accessing the vector
and p t r array. In addition, each implementation will have overheads that may
respond differently to different number of threads, such as the need to reduce
elements in the coalesced implementation or tha t for sequential implementations
each group of 32 threads execute the same number of instructions dependent on
the largest number of elements in the group of rows assigned to them. The issue
of threads per block will be in section 4.5.1.

Results are presented as a series of graphs. It is important to note that when
analysing the graphs, any point along the x-axis represents both the size of the
vector and the number of average nonzero elements per row. For example, in a
graph of showing products of matrices at 90% sparsity, a characteristic observed
at point 5000 on the x-axis could be due to the size of the vector reaching 5000
elements, or could equally be the result of the number of elements in the rows of
the matrix reaching 5000 x 0.1 = 500 elements. For the purpose of this work, it is
imperative to correctly relate performance characteristics of the implementation
to either of these two attributes. In addition, for purposes of disambiguation,
the term “elements” will refer to 32-bit data types throughout this chapter, even
when discussing implementations that make use of wide data types (ie. in t4 ,
f l o a t 2 , . . . etc). The terms “coalesced implementation” and “sequential im-
plementation” will refer to “coalesced memory implementation” and “sequential
memory implementation” respectively.

The first set of options that will be evaluated are the storage options for the
vec array followed by the storage options of p t r array.

4.4.1 Evaluating vec Storage O ptions

Based on the above discussion, the following implementations were created and
evaluated:

50 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

• Coalesced Implementations: • Sequential Implementations:

C3. coa-f2jnemm-menun-text

Cl. coa-f2_memm-mennn-menmi

C2. coa-f2_memm-memm-cnst

51. seq-f4_text-memm-memm

52. seq-f4_text-memm-cnst

53. seq-f4_text-memni-text

Matrices of fixed number of rows and varying number of columns from 100 to
10,000 in 100 columns increments were used for the evaluations. Four different
levels of sparsity were considered. All matrices were generated with the Random
technique discussed in section 4.3.2 and the number of threads per block for all
implementations was set at 32 threads per block.

Figure 4.4 presents the results for the coalesced implementations while fig-
ure 4.5 presents the results for the sequential implementations.

Looking at the results of coalesced implementations, figure 4.4(a) shows that
at 80% sparsity texture memory offers the best performance. The performance of
constant memory is on par with texture memory until the x-axis reaches about
2000. However as constant and global memory results never outperform texture
memory, they can be ignored for this sparsity. The same results are seen at
90% sparsity in figure 4.4(b) indicating that the size of vec has more effect on
performance than the average number of nonzero elements per row.

Figure 4.4(c) shows results for 99% sparsity. While texture memory outper-
forms other options for vec storage for the majority of vector sizes, constant
memory outperforms texture memory between 1000 and 2500. Global memory
can be safely ignored. As these characteristics are repeated at 99.9% sparsity in
figure 4.4(d), this again leads to the conclusion that performance is dependent on
the size of vec rather than the number of elements per row in the sparse matrix.

These results indicate the size of vec is key to determining its best storage
location. As a result texture and constant memory will both be further evaluated
as storage options for the vec array depending on the size of the vec array.

The results for the sequential implementations at 80% sparsity are presented
in figure 4.5(a). These show that constant memory offers the best performance
followed by texture memory with global memory offering the worst performance.
It is also observed that the performance of all implementations start to drastically
decline at a vec size of about 1700 until they all perform equally poorly at about
2400. The vec size of 1700 corresponds to an average of 1700 x 0.2 = 340
nonzero elements per row, while a value of 2400 corresponds to an average of

4.4. SPMV IMPLEMENTATION ASSESSMENT 51

coa-f2_mem-memm-cnst
coa-f2_mem-memm-memm

coa-f2_mem-memm-text coa-f2_mem-memm-text

J r

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of vec/Number of Columns

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of vec/Number of Columns

(a) 80% Sparsity (b) 90% Sparsity

coa-f2_mem-mem m-text coa-f2_mem-memm-cnst coa-f2_mem-memm-text
coa-f2_mem-memm-cnst

£ 0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of vec/Number of Columns Size of vec/Number of Columns

(c) 99% Sparsity (d) 99.9% Sparsity

Figure 4.4: Evaluating different storage options of the vector for coalesced imple-
mentations at different levels of sparsity using Random matrices and 32 threads
per block.

52 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

seq-f4_text-memm-cnst
seq-f4_text-memm-memm

seq-f4_text-memm-text seq-f4_text-memm-cnst
seq-f4_text-memm-memm

seq-f4_text-memm-text

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of vec/Number of Columns Size of vec/Number of Columns

(a) 80% Sparsity (b) 90% Sparsity

seq-f4_text-memm-cnst seq-f4_text-memm-text
seq-f4_text-memm-memm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of vec/Number of Columns

seq-f4_text-memm-cnst seq-f4_text-memm-text
seq-f4_text-memm-memm

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of vec/Number of Columns

(c) 99% Sparsity (d) 99.9% Sparsity

Figure 4.5: Evaluating different storage options of the vector for sequential im-
plementations at different levels of sparsity.

4.4. SPMV IMPLEMENTATION ASSESSMENT 53

2500 x 0.2 = 500 nonzero elements per row.
At 90% sparsity the sequential SpMV results shown in figure 4.5(b) are very

similar to the results at 80% sparsity, except that they appear to be scaled in the
direction of the x-axis by a power of 2. This might be expected given that the
average number of elements per row at 80% sparsity is double that at 90% sparsity
and so suggest that the observed drop in performance is a result of the average
number of elements per row reaching 340. Notice the decline in performance at
90% sparsity starts at a vec size of about 3400, which also corresponds to an
average of 340 x 0.1 = 340 non zero elements per row.

At 99% sparsity the sequential SpMV results in figure 4.5(c) do not show the
drastic drop in performance that was observed in the previous graphs. This is due
to the fact that at 99% sparsity the largest matrix benchmarked (10,000 x 10,000)
contains only 100 elements per row, on average. There is also a new character-
istic that presents itself, which is that the performance of constant memory is
outperformed by texture memory at point 5000 along the x-axis.

At 99.9% sparsity, the sequential SpMV results in figure 4.5(d) are almost
identical to the results at 99% sparsity in figure 4.5(c). The lack of difference
between the two sparsities would suggest that in the absence of sufficient nonzero
elements per row, the size of the vec array is dominant in terms of the effect it
has on performance.

In summary, the optimal storage option for the vec array are for coalesced
implementations:

• Constant memory if the average number of elements per row is below 2400.

• Texture memory if the average number of elements per row is above 2400.

and for sequential implementations:

• Constant memory if the size of the vector is below 5000.

• Texture memory if the size of the vector is above 5000.

4.4 .2 Evaluating ptr Storage O ptions

The significance of which storage option is selected for the p t r array is expected
to be highly dependent on the elements per row of the sparse matrix since it
affects how often it will be accessed. To highlight the difference in performance
resulting from available p t r storage options, the average number of elements per

54 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

row is set as a constant, small value to increase the ratio of ptr to ind, val and
vec accesses. The sparsity or matrix structure have no effect on the number of
ptr reads and a minimal effect on the pattern of reads, and are therefore not
varied within the evaluations.

The previous sections have argued that the most promising storage options for
the vec array in terms of performance are constant and texture memory depend-
ing on the matrix characteristics. Adding the analyses for the available options
for the ptr array enumerated in table 4.4, the following list of implementations
are created and evaluated with results presented in figure 4.6.

Coalecsed Implementations:

Cl. coa-f 2_memm-cnst-cnst C4. coa-f 2_memm-cnst-t ext

C2. coa-f 2_memm-memm-cnst C5. c o a -f 2_memm-meinin-1 ex t

C3. coa-f 2_memm-text-cnst C6. c o a -f 2 _memm-1 ext - 1 ex t

Sequential Implementations:

SI. seq -f4 _ tex t-cn st-cn st S5. seq -f4 _ tex t-cn st-tex t

S2. seq -f 4_text-memm-cnst S6. se q -f4_text-memm-1ext

S3. seq -f4_text-sh rd -cn st S7. seq -f4_text-sh rd -text

S4. seq -f4 _ tex t-tex t-cn st S8. seq -f4 _ te x t-tex t-te x t

Figure 4.6(a) shows the results from coalesced implementations with the vector
stored in constant memory. These results show texture and constant memory
preforming equally well as storage options for the ptr array, while global memory
is far behind. Repeating the benchmarks with the vec stored in texture memory
gives the results presented in figure 4.6(b); these show the same characteristics
as functions of the ptr storage type. The poor performance of the coalesced
implementations in these two graphs is a result of the low number of elements
per row (10 in this case).

Figure 4.6(c) presents sequential results where the vec array is stored in con-
stant memory. These results show all implementations performing almost identi-
cally with the implementation storing the ptr array in texture memory offering
a slight advantage in terms of performance. This slight advantage is not evident
however, when the vec array is stored in texture memory (figure 4.6(d)).

In summary, global memory is not a suitable candidate for ptr storage. The

4.4. SPMV IMPLEMENTATION ASSESSMENT 55

coa-f2_memm-text-cnst coa-f2_memm-text-text

2 0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Rows

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Rows

(a) Coalesced implementation, vec stored
in constant memory.

(b) Coalesced implementation, vec stored
in texture memory.

seq-f4_text-cnst-cnst
seq-f4_text-memm-cnst

seq-f4 lext-shrd-cnst
seq-f4^_text-text-cnst

seq-f4_text-cnst-text seq-f4_text-shrd-text
seq-f4_text-memm-text seq-f4_text-text-text

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Rows Number of Rows

(c) Sequential implementation. vec
stored in constant memory.

(d) Sequential implementation. vec
stored in texture memory.

Figure 4.6: Evaluating different storage options of the p tr array. Matrices are
99% sparse and the number of columns are kept constant at 1000.

56 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

use of constant, texture and shared memory for ptr storage all resulted in essen-
tially the same performance. There was a small advantage for texture memory
over the other storage options in figure 4.6(c) for large number of rows. Texture
memory is therefore selected as the optimal storage option for the ptr array.

4.4.3 C oalesced v Sequential SpM V Im plem entations

The objective now is to create a set of heuristics that given parameters such as
number of elements per row, sparsity and vector size, will produce the implemen-
tation that will deliver the highest performance. Having evaluated the storage
options for the various arrays, the remaining decision to be made is when to
use the coalesced implementation over the sequential implementation. The re-
sults in the previous sections suggest that this will be dependent on the number
of elements per row. The coa-f 2_memm-text-text, coa-f 2unemm-text-cnst,
seq -f4 _ te x t-tex t-te x t and seq -f4 _ tex t-tex t-cn st implementations will be
benchmarked together to identify the overlap point between these implementa-
tions and determine the matrix characteristics that determine which implemen-
tation results in the best performance. Random matrices of the same type and
dimensions used in the analysis of storage options for the vec array, are used here
(rows set at 3000, varying columns).

The results are shown in figure 4.7 for a variety of sparsities. Changing the
sparsity of a matrix has two effects. This first is that the number of elements per
row decreases at any given column size. The second is that the ratio of accessed
elements to total size of the vec array is reduced. This reduction affects the use
of texture and constant memory cache.

The first set of results at 80% sparsity (figure 4.7(a)) shows the
coa-f 2_memm-text-text implementation performing best for all vec sizes larger
than 500. For vec sizes smaller than 500, the coa-f 2unemm-text-text implemen-
tation is slightly outperformed by the seq -f4 _ tex t-tex t-cn st implementation.
The same observation are made in figure 4.7(b) where the results at 85% sparsity
are presented.

Figures 4.7(c) and 4.7(d) present results at 90% and 95% sparsity respectively.
Both set of results are similar to the previous (80% and 85% sparsity) results in
that smaller vec size perform best with the seq -f4 _ tex t-tex t-cn st implemen-
tation, while larger vec sizes perform better with the coa-f2_meinm-text-text
implementation. The difference is the point at which one implementation outper-
forms the other. At 80% and 85% sparsity the coa-f 2unemm-text-text outper-

4.4. SPMV IMPLEMENTATION ASSESSMENT 57

coa-f2_memm-text-cnst
coa-f2_memm-text-text

seq-f4_text-text-cnst
seq-f4_text-text-text

coa-f2_memm-text- cnst
coa-f2_memnvtext-text

seq-f4_text-text-cnst
seq-f4jext-text-text

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size of vec/Number of Columns Size of vec/Number of Columns

(a) 80% sparse. (b) 85% sparse.

coa-f2 memm-text-cnst
coa-f2^memm-text-text

seq-f4_text-text-cnst
seq-f4_text-text-text

coa-f2_memm-text-cnst
coa-f2_memm-text-text

seq-f4_text-text-cn st
seq-f4_text-text-text

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Size erf vec/UumtoeT erf Columns Size o1 vec/Number ot Columns

(c) 90% sparse. (d) 95% sparse.

Size of vec/Number of Columns Size of vec/Number of Columns

(e) 99% sparse. (f) 99.9% sparse.

Figure 4.7: The four most promising implementations at various levels of sparsity.

58 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

formed the seq -f4 _ tex t-tex t-cn st implementation when the vec array reached
500 elements, while at 90% sparsity it was at a vec size of 1800 and at 95% spar-
sity a vec size of 3600.

Results at 99% and 99.9% sparsity are essentially identical. Both figures 4.7(e)
and 4.7(f) show the seq -f 4 _ tex t-tex t-cn st implementation performing best for
vec sizes of under 5000, the seq -f4 _ te x t-tex t-te x t implementation perform-
ing best between vec sizes of 5000 and 8500, and the coa-f2_memm-text-text
implementation performing best for vec sizes larger than 8500.

Observing all six graphs in figure 4.7, only three implementations per-
formed best in any of the evaluations. These are the coa-f2_memm-text-text,
seq -f4 _ tex t-tex t-cn st and seq -f4 _ te x t-tex t-te x t implementations.

The coa-f2_memm-text-text implementation in all of the graphs shows a
sharp drop in performance after the number of columns reaches 1000 elements,
after which performance gradually increases until at 2000 columns it reaches the
same level of performance as it did at 1000 columns. The fact that this occurs
at the same vec size in all of the graphs indicates that this is related to the
size of the vec array rather than the average number of elements per row of the
sparse matrix. In other words, the coa-f 2_memm-text-text has two performance
curves; one for vector sizes of less than 1000 elements and another for vector sizes
greater than 1000 elements.

The first performance curve of the coa-f 2_memm-text—text implementation
(below 1000 columns) crosses with that of the seq -f4 _ tex t-tex t-cn st imple-
mentation in figure 4.7(a) just after 500 columns and in figure 4.7(b) just after
700 columns. These number of columns both correspond to about 100 elements
per row of the sparse matrix.

The second performance curve of the coa-f 2_memm-text-text im-
plementation (over 1000 columns) consistently surpasses that of the
seq -f4 _ tex t-tex t-cn st implementation when the number of elements is about
180 elements. This can be observed in figure 4.7(b) at 1200 columns (1200x0.15 =
180 elements), in figure 4.7(c) at 1800 columns (1800 x 0.10 = 180 elements) and
in figure 4.7(d) at 3600 columns (3600 x 0.05 = 180 elements).

In the absence of large numbers of nonzeros per rows, the size of the vec array
dominates as the indicator of the best performing implementation as is shown in
figures 4.7(e) and 4.7(f) for 99% and 99.9% sparsity.

In summary, the above analysis of the results indicates that the following
three implementations make most efficient use of the GPU’s capabilities, with
each performing best for a different set of matrix characteristics.

4.4. SPMV IMPLEMENTATION ASSESSMENT 59

1. coa-f2_memm-text-text

2. seq -f4 _ tex t-tex t-cn st

3. seq -f4 _ te x t-tex t-te x t

4.4 .4 M ultip le Row Im plem entations

The implementations discussed in the previous sections all process a maximum
of one row per thread or block (depending on whether the implementation is
coalesced or sequential). In order to evaluate the effect of processing multiple rows
each thread or block (depending on the implementation) was assigned multiple
rows. Rows can be assigned in a block or cyclic pattern. A block pattern would
assign consecutive rows to each thread or block while a cyclic pattern would assign
consecutive rows to different threads or blocks. To account for multiple rows, the
names of the implementations were modified to:
[coa/seq] - [sr,mr_c,mr_b]-[f 1 ,f2,f4]_[val,ind storage] - [ptr storage] - [vector storage]

where sr represents a single row implementation, mr_c represents a cyclic, multi-
row implementation and mr_b represents a blocked, multi-row implementation.

Both blocked and cyclic options were implemented and evaluated for the
c o a -f2_meram-text-text and seq -f4 _ te x t-te x t-te x t implementations. The
coalesced implementation was evaluated with 60,000 x 2,000 matrices at 95%
sparsity resulting in an average of 100 elements per row. The sequential imple-
mentation was evaluated with 60,000 x 500 matrices at 95% sparsity resulting
in an average of 25 elements per row. All three generation methods described in
section 4.3.2 were used with 2, 5, 10 and 20 rows per thread or block .

Coalesced Im plem entation R esults

Table 4.5 presents the results for the blocked (coa-mr_b-f 2jnemm-text-text) and
cyclic (coa-mr_c-f2jnemm-text-text) coalesced multi-row implementations.

When only one row is assigned per block, both blocked and cyclic implemen-
tations perform at 4.8 GFLOP/s regardless of the matrix structure. Increasing
the assigned number of rows per block results in an increase in performance for
both implementations with a slight advantage to the blocked implementation.
As a result, the blocked option is identified as the better option for the coalesced
implementations.

60 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

Table 4.5: Comparison between performance (in GFLOP/s) of consecutive and
strided multiple row coalesced memory implementations. Evaluation matrix is
60,000x2,000 @ 95% sparsity.____________________________________

fill Implementation
Rows/Block

1 2 5 10 20

Random
cyclic 4.8 5.0 5.0 5.1 5.1

blocked 4.8 5.0 5.1 5.3 5.3

Constant row
cyclic 4.8 5.0 5.1 5.1 5.2

blocked 4.8 4.9 5.2 5.3 5.3

Structured
cyclic 4.8 5.0 5.1 5.2 5.2

blocked 4.8 5.0 5.3 5.3 5.3

Sequential Im plem entation R esults

Table 4.6 presents the results for the blocked (seq-mr_b-f 4_text-text-text) and
cyclic (seq-mr_c-f4_text-text-text) sequential multi-row implementations.

Table 4.6: Comparison between performance (in GFLOP/s) of consecutive and
strided multiple row sequential memory implementations. Evaluation matrix is
60,000 x 500 © 95% sparsity._____________________________________

fill Implementation
Rows/Thread

1 2 5 10 20

Random
cyclic 3.8 3.8 3.9 3.8 3.8

blocked 3.9 3.6 2.9 2.0 0.8

Constant row
cyclic 3.9 3.9 4.0 4.0 4.0

blocked 4.0 3.6 2.9 1.7 0.8

Structured
cyclic 3.7 3.7 3.7 3.7 3.8

blocked 3.8 3.4 2.8 1.6 0.8

When assigning one row per thread, both cyclic and blocked sequential imple-
mentations result in similar levels of performance. As the number of assigned rows
per thread increases the cyclic implementation results in negligible variances in
performance, while the blocked implementation shows drastic performance degra-
dation. This is true regardless of matrix structure. As a result the cyclic option
is identified as the best option for sequential multi-row implementations.

4.4. SPMV IMPLEMENTATION ASSESSMENT 61

4.4 .5 E v a lu a tio n of S elected Im p lem en ta tio n s

The previous analysis attempted to realise a set of implementations S so that for
any given matrix, the best performing SpMV implementation would belong to S.
For simplicity, this set will be referred to as the Best Performing Set (BPS). The
implementations that were chosen from the series of synthetic matrix benchmarks
are:

• coa-mr_b-f 2jnemm-text-text

• seq -m r_c-f4_text-text-text

• seq-mr_c-f 4_ tex t-tex t-cn st

To evaluate this BPS, a large number of other implementations were created
and compared against. To create the large pool of implementations all options
outlined in section 4.2 were implemented and tested, with the exception of the
use of shared memory for the p tr array as the previous results did not show any
performance gain resulting from its use (see figure 4.6). This results in a total of
335 implementations (including single and multi-row implementations).

Rather than evaluating these implementations with synthetically generated
random matrices, the Florida sparse matrix collection [17] was used as it pro-
vides real world matrices from various scientific fields. When this evaluation was
undertaken (November 2008), the Florida collection contained over 2200 matri-
ces, however only matrices containing 105 to 107 nonzero elements were selected
as candidates for computing on the GPU (< 105 elements were considered too
small). This resulted in 747 matrices which were further reduced to 735 matri-
ces by removing the matrices that would not fit on the GPU after padding the
matrix to accommodate the coa-mr_c-f4_memin-text-text implementation as it
requires the largest amount of padding.

The BPS presented above was then be evaluated by comparing the difference
between the performance of the optimal implementation (from all of the 335
implementations) and the best performing implementation in the BPS. This was
repeated for each matrix in the set of 735 selected matrices. For any given BPS
this is an ideal performance result since it assumes that ever sparse matrix can
be correctly mapped to the best implementation in the BPS.

Table 4.7 presents the results of that evaluation in the form of the average dif-
ference in performance along with the standard deviation, median and maximum
difference in MFLOP/s.

62 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

Table 4.7: Difference in performance (in MFLOP/s) between the set of selected
implementations from the previous analysis and the optimal implementations.

Set of Implementations
Difference n Performance

average stdev. median maximum
original set 61 130 19 1383

The average difference between the performance of the optimal implementa-
tion and the BPS over all the 735 datasets is 61 MFLOP/s, with a median of 19
MFLOP/s, a standard deviation of 130 M FLOP/s and a maximum difference of
1383 MFLOP/s.

It is important to recognise that while the results in table 4.7 are for a specific
BPS of size 3, it says nothing about whether this selection is better or worse
than any other set of three implementations. It is possible that an other selection
of three implementations have better performance characteristics than the three
implementations listed above. This issue is addressed in table 4.8 and elaborated
below.

The maximum possible performance for a set of three implementations can
be obtained by creating all the combinations of size 3 from the pool of implemen-
tations mentioned above. The full set of 335 implementations cannot be used to
create these combinations, as the resulting combinations will quickly become too
numerous, with a BPS of three giving (335) = 6, 209, 895 possible combinations.
To reduce this size a smaller pool of possible implementations for the combina-
tions was created. This pool contains all the implementations that were optimal
for any dataset at least twice. From this list, all single row implementations are
removed and substituted with the two complementing multi-row implementations
(see section 4.4.4). This results in a list of 34 implementations, which for a BPS of
three gives (34) = 5, 984 combinations. All the generated sets are then evaluated
in the same manner as the original selection. The average, standard deviation,
median and maximum difference between the performance of the optimal imple-
mentation and the best performing implementation in the set are calculated. The
best preforming combination where then defined as that which either has:

1. The smallest average, or

2. The smallest maximum.

4.4. SPMV IMPLEMENTATION ASSESSMENT 63

To avoid confusion the process of selecting the optimal implementation on
the basis of the smallest average difference in performance will be referred to as
the “first criteria” , while the process of selecting the optimal implementation on
the basis of the smallest maximum difference will be referred to as the “second
criteria” .

This approach was then extended to include the BPS from sets of size one to
seven with the results given in table 4.8. As before, the optimal performance for
each set is presented in the form of the average, standard deviation, median and
maximum difference in the performance between the optimal implementation in
the set, and the overall optimal implementation. Table 4.8 presents results using
both criteria. Also included as row one are the results of evaluating the original
proposed BPS with the same values repeated for both criteria.

Table 4.8: Difference in performance (in M FLOP/s) between each BPS from sets
of sizes one to seven and the optimal implementations.

N u m b er C riter ia

o f “first criter ia” “seco n d criter ia”

Im p le m e n ta tio n s average std ev . m ed ia n m a x im u m average std ev . m ed ian m a x im u m

orig in a l se lec tio n 61 130 19 1383 61 130 19 1383

1 630 1397 384 10103 1603 1106 401 5649

2 163 307 22 1498 163 307 22 1498

3 53 126 15 1383 136 256 22 1240

4 43 122 10 1383 44 84 15 725

5 34 77 10 725 42 78 15 615

6 31 77 5 725 32 70 9 615

7 28 74 5 725 29 67 9 615

When selecting the best implementation on the basis of the “first
criteria” , the implementation that produces the best results is the
seq-mr_c-f 4_text-memm-text implementation with an average performance dif-
ference of 630 MFLOP/s, a standard deviation of 1397 MFLOP/s, a median of 384
M FLOP/s and a maximum difference of 10,103 MFLOP/s. The results of adding
a single implementation (limiting the set to two implementation) is an average
performance difference of 163 M FLOP/s, a standard deviation of 307 MFLOP/s,
a median of 22 M FLOP/s and a maximum difference of 1,498 MFLOP/s. As the
numbers of implementations in a set increases the difference in performance be-
tween the implementations in the set and the optimal implementations continues
to decrease. The decrease in average, median and maximum are very noticeable

64 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

when moving from one to three implementations per set. The move from three
to four implementations creates a less noticeable decrease in average and median
and the maximum remains constant. Increasing the number of implementations
from four to five shows another large decrease in maximum, although the average
doesn’t change much. Increasing the size of the sets from six upwards results in
minimal small changes.

Selecting the BPS on the basis of the “second criteria” shows similar trends
in that the difference in performance decreases as the number of implementations
increase. The best single implementation is the coa-mr_b-f l_memm-text-text
implementation with an average performance difference of 1,603 MFLOP/s, a
standard deviation of 1,106 MFLOP/s, a median of 401 MFLOP/s and a max-
imum difference of 5,649 MFLOP/s. Increasing the number of implementations
from one to two results in a drastic reduction in the difference between the BPS
and optimal implementations. Further increasing the number of implementations
continues to produce noticeable reductions up until four implementations where
the magnitude of the difference stabilises to an extent. Sets of four implementa-
tions or more are not affected much by the addition of an extra implementation.

Comparing the two selection criteria shows the difference decreases as the
number of implementations increase. As expected the first criteria results in
smaller average differences but with much larger maximum differences.

When comparing the original selection of three implementations to the BPS
of three implementations (resulting from selecting the lowest average) in table 4.8
show the results of the original selection to be very similar. Table 4.9 highlights
the difference in the implementations used in the original selection and the im-
plementations in the optimal set of three implementations.

Table 4.9: Comparison between original selection and optimal set of size 3.
Original selection BPS of size 3 comment

coa-mr_b-f 2jnemm-t ex t-tex t
seq-m r_c-f4_text-text-text
seq-m r_c-f4_text-text-cnst

coa-mr_c-f 2jnemm-text-text
seq-mr_b-f 4_ tex t-tex t-tex t
seq-mr_c-f 4_text-tex t-cnst

different
different
identical

Both sets in table 4.9 contain one coalesced implementation and two sequential
implementations. Comparing the implementations in the two sets show that they
are identical in their basic structure, the only difference being the preference
for cyclic or blocked multirow distribution patterns. The small differences in

4.5. MAPPING MATRICES TO THEIR OPTIMAL IMPLEMENTATION 65

performance between the two sets are most likely due to the results of the wide
range of matrix structures used in the evaluations. The difference between these
two sets are only eight M FLOP/s in average performance difference.

When comparing the best possible set of three implementations to sets of
other sizes, it is important to note that each added implementation will increase
the challenge of mapping matrix attributes to the best performing implementa-
tion. Given that the performance difference decreases very slowly when increasing
the number of implementation beyond four, suggests that four implementations
provides a balance between performance and number of implementations.

4,5 M apping M atrices to th e ir O ptim al Im ple-

m en tation

From the above analysis, the optimal set of four implementations was:

• coa-mr_b-f 2_memm-cnst-cnst

• coa-mr_c-f 2_memm-text-text

• seq-mr_c-f4_text-text-cnst

• seq-mr_c-f4_text-text-text

The objective is now to create a decision tree that identifies which imple-
mentation to use based on the matrix attributes (rows, columns and number of
nonzero elements). Weka [22], a collection of machine learning algorithms for
data mining tasks containing tools for data classification was evaluated to build a
variety of possible decision trees. Random Forests and Fast decision tree learners
were applied to the data resulting from benchmarking the 335 to create decision
trees. The problem with these trees was that they were over fitted with up to
100 levels and up to 1000 leaves. Limiting the number of implementations to
the 34 implementation previously discussed, still resulted in over fitted trees with
10 levels and up to 300 leaves. Conversely, limiting the number of levels in the
tree resulted in trees with low percentages of correctly classified instances. In
addition, the software only considers whether the classification was correct or not
and therefore considers a classification resulting in a difference of 10 MFLOP/s
to be equal to an incorrect decision resulting in a difference of 1000 MFLOP/s.

66 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

For these reasons a simpler decision tree based on empirical analysis was
attempted that took into consideration the magnitude of difference rather than
the number of correct classifications.

The analysis conducted in section 4.2, showed that certain matrix attributes
affected different implementation options in terms of which performed best for a
matrix. The analysis identified the average number of nonzeros per row as the
parameter that distinguishes whether to use coalesced or sequential implementa-
tions. The number of columns was shown to have direct effect on which memory
type to use for the vec array. The p t r array was shown to perform equally well
for texture and constant memory. Building upon this knowledge a simple tree
was created. This tree is presented in figure 4.8.

Avg.
number of

nonzeros/row

Number
of columns

Number
of columns

SequentialCoalesced

735 matrices

seq-m r_c-f4_text-text-cnst

seq-rar_c-f4_text-text-textcoa-mr_c-f2meinm-t ex t- tex t

coa-mr_b-f2_ i-cnst-cnst

Figure 4.8: A simple decision tree to distinguish the best performing implemen-
tations based on the matrix parameters.

The tree includes parameters to determine whether to go down a potential
branch but doesn’t state the actual values. A search for the best values for these
attributes can be done by comprehensively searching all the possible combinations
of these attributes and selecting the combination that offers the best overall per-
formance. A comprehensive search is possible since the use of constant memory
imposes an upper limit of 16000 elements on the size of the vec array.

4.5. MAPPING MATRICES TO THEIR OPTIMAL IMPLEMENTATION 67

Rather the blindly search all possible values, the performance of these im-
plementations are analysed to find likely starting values or ranges. Figure 4.9
presents plots of all the 735 matrices used in the evaluation of the implemen-
tations. Each matrix is plotted by its attributes with different shaped points
representing whether the best performing implementation within the BPS is co-
alesced or sequential. Both graphs (figure 4.9) indicate that the value for the
average number of nonzeros per row should be between 30 and 100.

coalsced sequential

1 — *— ‘- iJ — *— ,- tJ— 1— L- ,J— *— — 1—
10 100 1000 10000 100000 1e+06

Number of Rows

(a) Rows X Avg. nonzers/row.

coalsced sequential

<

100000

10000

1000

100

10

1
100 1000 10000 100000 1e+06 1e+07

Number of Columns

(b) Columns X Avg. nonzers/row.

Figure 4.9: Looking for patterns to distinguish between the coalesced and se-
quential implementations in the BPS of size 4.

coa-mr_b-f2_memm-cnst-cnst
coa-mr_c-f2_memm-text-text

100000

10000 r

. 1000

1000 10000 100000 1e+06
Number of Rows

(a) Rows X Avg. nonzers/row.

coa-mr_b-f2_memm-cnst-cnst
coa-mr_c-f2_memm-text-text

<

100000
..................... 1 1 x 1:

10000
■

X X

x

>

X X

1000
♦ * x •

100
+ % *

10

c

X
X

«r
*

x
*

1
1000 10000 100000 1e+06 1e+07

Number of Columns

(b) Columns X Avg. nonzers/row.

Figure 4.10: Looking for patterns to distinguish between the different coalesced
implementations in the BPS of size 4.

68 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

Figure 4.10 attempts to distinguish between the two coalesced implementa-
tions. Figure 4.10(a) doesn’t indicate any statistical significance for the number of
rows in this decision. Figure 4.10(b) indicates that the number of columns plays
a more significant role. The number of columns at where one implementation
outperforms the other is somewhere between 2000 and 6000 columns.

seq-mr_c-f4_text-text-text
seq-mr_c-f4_text-text-cnst

seq-mr_c-f4_text-text-text
seq-mr_c-f4_text-text-cnst

10000010000 1e+06
Number of Rows

1000

100 1000 10000 100000 1e+06 1e+07
Number of Columns

(a) Rows X Avg. nonzers/row. (b) Columns X Avg. nonzers/row.

Figure 4.11: Looking for patterns to distinguish between the different sequential
implementations in the BPS of size 4.

Finally, figure 4.11 investigates the patterns that differentiate between the two
sequential implementations. Figure 4.11(a) shows a weak relation between the
number of rows and the better implementation. This weak relation is most likely
a result of the fact that most matrices used for evaluation are square, rather than
there being any real link between the attribute and the implementations. The dis-
tinction between the two implementations is some what clearer in figure 4.11(b).
The number of columns where one sequential implementation outperforms the
other lies between 10,000 and 11,000 columns.

From the previous analysis each combination of these values were then used in
an evaluation process and the combination tha t results in the best performance
was chosen and used to create the final decision tree given in figure 4.12.

Using this decision tree the actual performance results are collected and pre-
sented in table 4.10 along with the ideal performance if all matrices were perfectly
mapped to the best implementation in the BPS.

Table 4.10 shows that the results achieved with the decision tree are quite far
from the ideal case. The average difference and standard deviation are 3x the
ideal case, while the median and maximum difference are 2x the ideal case.

4.5. MAPPING MATRICES TO THEIR OPTIMAL IMPLEMENTATION 69

Avg.
number of

nonzeros/row

>2919 <=2919 > 10974 <=10974
Number

.of columns^
Number

of columns^

735 matrices

C oalesced Sequential

coa-mr_c-f2_meinm-text-text seq-m r_c-f4_text-text-text

seq-m r_c-f4_text-text-cnstcoa-mr_b-f2_meimn-cnst-cnst

Figure 4.12: Final decision tree.

Table 4.10: Difference in performance (in MFLOP/s) the ideal BPS of size four
and the result of using the decision tree.____________ ___________

Context Average Stdev. Median Maximum
Ideal 44 84 15 725

From Tree 119 242 28 1664

70 CHAPTER 4. SPM V CONSTRUCTION AND EVALUATION

While there must exist other sets, attribute values (such as the median and
standard deviation of the number of nonzero elements per row) and decision trees
or other machine learning methods that would have produced better results, the
realisation of such optimal cases is beyond the scope of this work.

In 2008, Ryoo et al published results from using pareto-optimisation tech-
niques to search the optimisation space for four kernels based on efficiency and
utilisation metrics [49]. The optimisation space include the number of threads per
block, tiling sizes, loop unrolling and many other aspects. While the approach
used by Ryoo et al is quite different to that taken here, there is similarity in the
task being solved. 2

4.5.1 Selecting th e N um ber o f Threads per Block

The previous sections identified the optimal memory options and access methods
for the SpMV implementations. The best size for the BPS and the implementa-
tions to use for it were also identified. In the previous section a blackbox im-
plementation was created tha t would select an implementation based on matrix
attributes using a decision tree. The remaining implementation option identified
in section 4.4 that has not been evaluated is the number of threads per block
which were set to 32 for all previous benchmarks.

To select the best number of threads per block for each of the four implemen-
tation that make up the blackbox implementation, it is evaluated with the set of
735 sparse matrices with the number of threads per block set at 16, 32, 64, 128,
256 and 512. For each dataset the internal implementation selected by the black-
box implementation was noted. This data was compiled into table 4.11 where
for each of the internal implementations, the number of datasets that performed
best with a particular number of threads per block is noted.

Table 4.11 shows tha t the coa-mr_b-f2_memm-cnst-cnst was selected 7
out of 735 times. Of these half performed best with 32 threads per block
while the other half performed best with 64 threads per blocks. The
coa-mr_c-f2jnemm-text-text was chosen 95 times with 32 and 64 also being
the number of threads th a t performed best the majority of the time. The
seq-mr_c-f 4 _ tex t-tex t-cn st implementation was selected 101 times and the
majority of cases saw either 64 or 128 threads per block as the optimal value.
Finally the seq -m r_c-f4_text-text-text implementation performed best 532
times with the best results appearing at 256 threads per block followed closely

2We are grateful to the examiner for bring this work to our attention.

4.6. CPU V BLACKBOX PERFORMANCE 71

Table 4.11: Evaluating the 4 implementation as to the effect of using different
numbers of threads per block. Each cell contains the number of matrices that
performed best with the specified number of threads per row.___________

Implementation
Times selected

total
number of threads per block
16 32 64 128 256 512

coa-mr_b-f 2_memm-cnst-cnst 7 0 4 3 0 0 0
coa-mr_c-f 2_memm-text-text 95 3 48 30 10 3 1
seq-m r_c-f4_text-text-cnst 101 7 9 34 32 10 9
seq-m r_c-f4_text-text-text 532 13 89 91 124 140 75

by 128 threads per block. However a large number of cases perform best at 32
and 64 threads per block.

Searching through the results for the combination of settings that produced
the best average performance, determines the optimal number of threads to use
for each of the four implementations. It was found that all the implementa-
tions should use 64 threads per row except the seq-m r_c-f4_text-text-cnst
implementation which should use 128 threads per block. Overall, while the per-
formance of individual datasets are affected quite substantially by varying the
number of threads per block, the overall performance is not greatly affected.

4.6 C P U v blackbox P erform ance

The minimal, maximum, median and average overall effective performance
achieved with the CPU and blackbox implementation across all the 735 matrices
used for evaluations are presented in table 4.12. The CPU results were obtained
with PETSc 3 [6, 7], the same library that is used by the BMRM application to
compute matrix-vector products. (PETSc is further expanded upon in the next
chapter.) The standalone performance of the internal implementations that make
up the blackbox implementation are also presented.

The results from table 4.12 show the blackbox implementation performing on
average 7.85x the CPU and at maximum of about 20x the CPU. The structure
of matrices that resulted in the poor performance in table 4.12 had huge varia-
tions in the number of nonzero elements in each row. An example of this is the

3Portable, Extensible Toolkit for Scientific Computation

72 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

Table 4.12: Minimal, maximum, median and average performance of the GPU
blackbox SpMV implementation in GFLOP/s.

Implementation Minimum Maximum Median Average
CPU 0.04 0.43 0.18 0.2
blackbox implementation 0.06 8.59 1.24 1.57
coa-mr_b-f 2jnemm-cnst-cnst* 0.67 7.03 1.26 1.69
coa-mr_c-f 2_memm-text-text 0.07 8.59 0.62 1.09
seq -m r_ c-f4 _ tex t-tex t-cn st* 0.06 4.37 1.93 1.92
seq-mr_c-f 4 _ te x t- te x t- te x t 0.06 3.85 1.04 1.23
*These figures are calculated from the smaller subset of datasets that satisfy
the constraints of constant memory for the vec array.

ASIC_320k matrix where 2 rows contain about 200,000 elements, yet the average
number of nonzero elements per row is only 8. Table 4.13 presents a sample of
4 matrices where the maximum number of elements per row are about 40,000x
the average number of nonzeros per row. These are followed by 4 matrices where
the maximum is between 2x to 25 x the average number of nonzeros per row.

Table 4.13: The performance of pathological matrices compared to the perfor-
mance of of matrices where the difference between the maximum and average
number of elements per row is not as great.____________________________

Dataset Nonzeros per Row Performance
name rows columns min. max. avg. (GFLOP/s)

lpl 534388 534388 2 249643 3 0.06
ASIC_680k 682862 682862 1 395259 6 0.06

raj at 2 9 643994 643994 1 454521 8 0.96
rajat30 643994 643994 1 454746 10 0.11
inline_l 503712 503712 18 843 73 2.99

ramage02 16830 16830 45 270 170 4.71
psmigr_2 3140 3140 3 2293 172 2.51
gupta3 16783 16783 33 14672 556 8.56

These results show that the structure of the matrix is critical to the per-
formance of the SpMV product on the GPU. This is mainly since each row is
assigned to either a block or thread on the GPU. Large number of elements per

4.7. REC EN T RELATED WORK 73

row lead to a single thread or block executing for large amounts of time while
all the other threads/blocks are idle. Performance of such matrices could be
improved by investing in customised matrix formats and implementations.

4.7 Recent Related Work

Very recently, Bell and Garland [9] published their efforts to design efficient SpMV
kernels for the GPU. The GPU used was an NVIDIA GeForce GTX 280 GPU.
This system is compared to the GeForce 8800 GTX used in the work in table 4.14.

Table 4.14: Comparison between the theoretical peak attributes of the GeForce
8800 GTX and the GTX 280 GPUs.

GPU Performance* Internal Bandwidth Number of SPs
GeForce 8800 GTX 321 GFLOP/s 80 GB/s 128
GeForce GTX 280 581 GFLOP/s 131 GB/s 240

Improvement 181% 164% 188%
* This number does not take into consideration texture related

capabilities as they are rarely used in general purpose programs.

From the comparison in table 4.14, the newer GTX 280 is capable of roughly
180% of the performance of a 8800 GTX in terms of FLO P/s and 164% in terms
of the internal memory bandwidth. In addition to the raw performance figures,
the GTX 280 also contains many other improvements. For example NVIDIA have
increased the number of registers in the SMs and the maximum number of threads
that can reside on the SMs. They have also reduced the penalty for unaligned
memory accesses. We would expect the blackbox implementation on the GTX
280 to achieve roughly 160% increase in performance over the 8800 GTX.

Bell and Garland [9] investigated a variety of sparse matrix formats. These
include the diagonal format, the ELLPACK format, the coordinate format, the
packet format, the compressed sparse row format, and a hybrid format between
the coordinate and ELLPACK formats. Each of these formats requires a SpMV
kernel and in the case of the CSR format, both a sequential and coalesced CSR
implementation were created. The authors also investigated the use of texture
memory for the vector in the SpMV products and identified a performance gain
through its use.

The authors investigated the single precision performance of structured and

74 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

unstructured sparse matrices separately. For the structured sparse matrices, the
test cases were composed of standard discretisation of Laplacian operations in
1, 2 and 3 dimensions. These sparse matrices were all comprised of a number
of diagonals. Storing these matrices in the diagonal format reduces the memory
footprint of the matrix by a factor of 2. As memory bandwidth is the bottleneck
for SpMV products, the reduction in the memory foot-print translates into an in-
crease in performance. Bell and Garland [9] reported a maximum of 36 GFLOP/s
for these structured matrices with the diagonal implementation.

Unstructured matrices were represented by the set of 14 matrices that were
used by Williams et al. [60] in their paper. The attributes of these datasets
are presented in table 4.15. For 12 of these matrices the best performance was
achieved with the hybrid implementation, while the remaining two performed best
with the coalesced CSR implementation. The hybrid implementation achieved a
maximum of 22.3 GFLOP/s, while the CSR implementation achieved a maximum
of 16 GFLOP/s.

Table 4.15: Datasets used by Williams et al. as well as Bell and Garland.
Dataset Rows Columns Avg. Nonzeros/Row
Dense 2,000 2,000 2000

Protein 36,417 36,417 119
FEM-Sphr 83,334 83,334 72
F EM-Cant 62,451 62,451 64

Tunnel 217,918 217,918 53
FEM-Har 46,835 46,835 50

QCD 49,152 49,152 39
FEM-Ship 140,874 140,874 55
Econom 206,500 206,500 6
Epidem 525,825 525,825 4

FEM-Accel 121,192 121,192 22
Circuit 170,998 170,998 6

webbase 1,000,005 1,000,005 3
LP 4,284 1,092,610 2633

In addition Bell and Garland [9] also evaluated double-precision SpMV prod-
ucts on the GTX 280 GPU and achieved 16 GFLOP/s for the structured, diagonal
matrices and a maximum of 13.9 GFLOP/s and 14.2 GFLOP/s for the hybrid and

4.7. RECENT RELATED W ORK 75

CSR implementations respectively. These results compare favourably with the
results published by Williams et al. [60] and shows the median GPU performance
to be about 10 x the leading CPU performance.

While the work by Bell and Garland [9] does compare the performance of
multiple storage formations (or the implementation for these formats) and the
effect of utilising texture memory for the vector of these SpMV products it does
not investigate many of the other implementation options that CUDA provides.

For example, this work investigated the use of multiple data types, the use of
texture and constant memory for not only the vector but the three arrays that
make up the CSR matrix. A large amount of analysis was provided as to how
the performance of the SpMV products if affected when the various data types
and memory options are used for each of these arrays. The effect changing the
number of threads per block was also investigated in this work. These issues were
not discussed in the work by Bell and Garland [9].

The work by Bell and Garland [9] created two CSR implementations while
this work implemented 335 different implementations. The evaluation of these
implementations was performed with not 14 but 735 implementations across a
much wider spectrum of applications.

The cost of copying the matrix and vector to and from the GPU is only
important if the bulk of the application runs on the GPU and only the matrix-
vector products are performed on the GPU. In any case Bell and Garland [9]
do not provide the cost of these operations which should be roughly half the
equivalent cost presented in this work as the GTX 280 GPU used by Bell and
Garland [9] utilises a PCIe 2.0 bus which has 2x the performance of the PCIe 1.0
bus utilised by the 8800 GTX GPU. This work also provides a large amount of
analysis to identify how multiple CSR implementations can be used together to
create a single blackbox implementation which selects the correct implementation
based on the matrix attributes.

In terms of performance, figure 4.13 provides the kernel performance (for com-
parison with the work by Bell and Garland [9] as well as the effective performance.

One of the key differences in the CSR results in this work and the results by
Bell and Garland [9] is that while the SpMV results are based on the nonzero
elements in the unmodified matrices, the matrices were padded with zeros to
a multiple dependent on the implementation. On the 8800 GTX GPU this is
essential to achieve coalesced memory performance. The results produced by by
Bell and Garland [9] as this is not required with the GTX 280 GPU.

Much of the future work identified by Bell and Garland [9] is consistent with

76 CHAPTER 4. SPMV CONSTRUCTION AND EVALUATION

Effective SpMV Performance ^
Kernel Performance tmmm

Figure 4.13: The GPU Performance for the 14 datasets used by Williams et al.
For each dataset the time for the SpMV kernel as well as the effective performance
is provided.

our vision. The use of multiple formats for some of the matrices that performance
badly on the GPU, the use of blocked formats and the results of multiplying the
sparse matrix by multiple vectors at the same time are all of interest.

4.8 S u m m a ry a n d C o n c lu s io n

SpMV results on the GPU show an average speedup of 7.85 x and a maximum
speedup of about 20 x over the CPU when factoring in the overheads associated
with the use of the GPU. Applications that are completely ported to the GPU
would not incur these penalties and would therefore see an speedup of around
15.85x (maximum speedup would be about 31.24x) and would be expected to
double if performed on a 2009 model GPU like the GeForce GTX 285. SpMV
products can also be computed jointly between the GPU and the CPU which
would result in even better overall performance. Offloading SpMV products to
the GPU can be a very viable option depending on the structure of the sparse
matrix and the number of SpMV iterations.

The results presented in this chapter compare favourably with the results
presented by Bell and Garland [9] on a GTX 280 GPU and Williams et al. [60]
on high end CPUs and other novel architectures. Even if the GPU and CPU
performed equally well in terms of SpMV performance, the cost of adding three

4.9. RESULTS ON A G TX 295 GPU 77

GPUs for example to a system is much less then the cost of 3 new systems.

4.9 Results on a GTX 295 G PU

W ithout changing or updating any of the code, the complete set of benchmarks
were applied to a newer GTX 295 GPU. Table 4.16 shows the difference between
the 8800 GTX and GTX 295 in terms of theoretical performance. The GTX 295
actually consists of 2 GPUs on a single PCIe card. The numbers given are for a
single GPU of the GTX 295 rather then the aggregate theoretical performance of
the entire card.

Table 4.16: Comparison between the theoretical peak attributes of the GeForce
8800 GTX and a single GPU of the GTX 295.

G P U Perform ance In terna l B andw id th N um ber of SPs

G eForce 8800 G T X 321 G F L O P /s 80 G B /s 128

G eForce G T X 295 (single G PU) 555 G F L O P /s 104 G B /s 240

Im provem ent 173% 130% 188%

Table 4.17: Improvement of the GTX 295 over the 8800 GTX in terms of the
blackbox SpMV implementation performance. The numbers here can be compared
to the hardware specification to deduce the scalability of the blackbox implemen-
tation

Implementation Maximum Average
blackbox implementation on the 8800 GTX 8.59 1.24
blackbox implementation on the GTX 295 (single GPU) 11.0 2.3
Improvement 128% 150%

The results for the maximum and average performance achieved on both the
8800 GTX and the GTX 295 (using a single GPU) are presented in table 4.17.
Since the CSR SpMV algorithm is bandwidth bound the fact that an increase
in internal memory bandwidth of the GPU of 130% leads to a 128% increase
in the maximum performance in not surprising. The increase in the average
performance of 150% (a 20% increase over memory bandwidth improvement) is

78 CHAPTER 4. SPM V CONSTRUCTION AND EVALUATION

most likely due to the improvement in the coalescing capabilities of the newer
card. Based on these results the same code would be expected to scale to future
GPUs relative to the increase in internal bandwidth.

Taking into account the 164% bandwidth improvement (as reported in ta -
ble 4.14) the GTX 280 used by Bell and Garland has over the 8800 GTX GPU
and these new results, the performance of the CSR SpMV blackbox implementa-
tion can safely be predicted to increase by at least 160%. This suggests that the
blackbox implementation presented in this thesis would outperform the CSR im-
plementation presented by Bell and Garland [9]. However further benchmarking
on the same hardware would be needed for a completely fair comparison.

Chapter 5

SML Application

The Bundle Methods for Regularised Risk Minimisation (BMRM) application
described in section 2.3 is an open source, modular and scalable convex solver for
many machine learning problems cast in the form of regularised risk minimisation
problem [54]. BMRM utilises PETSc [7] for the matrix-vector operations.

The current objective is to only perform the matrix-vector products on the
GPU and perform all other computations on the host. The PETSc objects are
therefore intercepted and copied to the GPU. The matrix-vector products are
then performed on the GPU and the result copied back to the CPU and packed
into a PETSc object.

As previously noted, each iteration of the computation requires both a nor-
mal and transpose matrix-vector product. For dense matrix-vector products, the
transpose only alters the order of reading the matrix (see section 3.3.1). In the
case of sparse formats, generation of the transpose matrix is a non-trivial opera-
tion so it is pre-formed and stored on the GPU along with the original matrix.

The steps taken to perform the first matrix-vector product are as follows:

1. Step 1: Copy the matrix to the GPU.

(a) Convert matrix elements from double to float.

(b) Pad the nonzero elements of each row in the matrix to a multiple of a
given number depending on the implementation.

(c) copy the matrix to GPU memory.

2. Step 2: Copy the vector to the GPU.

(a) convert the vector elements from double to floa t.

79

80 CHAPTER 5. SML APPLICATION

(b) copy the vector to GPU memory.

3. Step 3: Perform the matrix-vector product.

4. Step 4: Copy the result to main memory.

(a) copy the result from GPU memory to main memory.

(b) convert the result elements from flo a t to double.

Steps 2 to 4 are then repeated for each matrix-vector product utilising the same
matrix.

The blackbox SpMV implementation discussed in section 4.5 was integrated
into the SML application along with the CUBLAS library for dense matrix-vector
products. Table 5.1 presents the datasets that were used by Teo et al. in his
evaluation of the BMRM algorithm [54].

Table 5.1: Datasets used in the evaluation of the BMRM application.
Dataset Rows Columns Sparsity Avg. Nonzeros/Row
adult9 32,561 123 88.72% 14

astro-ph 62,369 99,757 99.92% 77
aut-avn 56,862 20,707 99.75% 51

covertype 522,911 54 77.78% 12
kdd99 4,898,431 127 87.14% 16
news20 15,960 1,355,181 99.97% 455
real-sim 57,763 20,958 99.76% 51

reuters-cll 781,265 47,236 99.84% 76
reuters-ccat 781,265 47,236 99.84% 76

web8 45,546 300 95.76% 13

The datasets vary greatly in terms of numbers of rows, number of columns and
sparsity. However 70% of the datasets are over 99.7% sparse with the remaining
30% over 75% sparse. The average number of elements per row for these datasets
vary between 12 and 455 nonzeros per row.

The SML application was benchmarked three times. Once running the original
unmodified code, once utilising the blackbox implementation for the matrix-vector
products, and once forcing the use of dense formats.

The application determines the stopping criteria based upon the regularisation
constant (A) and the termination criteria (e). These parameters were set to

81

A = 10~5 and e = 10~4 for all the benchmarks. The results of these benchmarks
are presented in table 5.2. The table presents the number of iterations and total
run time for each of the three runs. In the case where the amount of memory on
the GPU was insufficient to accommodate either the matrix and its transpose in
the case of the sparse products, or the dense matrix in the case of dense products,
a N/A is indicated.

Table 5.2: The iterations to convergence along with the total run time (in seconds)
for the unmodified application and the GPU with both sparse and dense. The
number of iterations reflect the effect of precision the application.

Dataset CPU GPU Sparse GPU Dense
iterations run time iterations run time iterations run time

adult9 2057 215.99 2112 184.07 2086 216.83
astro-ph 129 46.92 130 33.57 N/A N/A
aut-avn 134 26.29 134 17.55 N/A N/A

covertype 296 89.24 285 41.50 310 78.99
kdd99 159 595.21 N/A N/A N/A N/A
news20 284 485.45 286 377.68 N/A N/A
real-sim 135 26.44 137 17.48 N/A N/A

reuters-cll 145 21.36 163 16.45 N/A N/A
reuters-ccat 214 29.35 206 19.82 N/A N/A

web8 549 14.90 580 8.14 979 29.30

From the ten datasets that were used to evaluate the SML application, only
the “kdd99” dataset was too large for evaluation on the GPU. While the “kdd99”
dataset can fit on the GPU alone, the added size of the transpose is beyond the
capabilities of the GeForce 8800 GTX. Forcing the sparse matrices to use dense
formats increases the memory footprint drastically. Dense representations of these
matrices are so large that only three of the ten datasets could fit into the 768MB
of GPU memory.

The number of iterations taken for the solution to satisfy the termination
criteria is roughly equivalent among the CPU and SpMV GPU versions of the
BMRM application. The only exception is the “web8” dataset when using dense
matrix-vector products on the GPU where the number of iterations were double
the values for CPU or SpMV on the GPU. The difference in the number of iter-
ations is expected as the CPU and GPU are utilising different levels of precision

82 CHAPTER 5. SML APPLICATION

and finite precision floating-point arithmetic is not associative causing the order
in which the operations are conducted affect the result.

Computing the SpMV products on the GPU resulted in a minimum speedup of
1.17x, a maximum of 2.15x and an average speedup of 1.5x over the CPU. These
values are far below the speedups achieved for the standalone SpMV products
presented in table 4.12. To determine the cause of this performance difference
and therefore the total application time is broken down into its components in
figure 5.1.

loading dataset ■■■■
create transpose wmmm

copy matrix ■■■■

copy transpose
other

Figure 5.1: Time breakdown total application runtime.

Figure 5.1 shows that loading the dataset from file into memory is a large
bottleneck, dominating the total application time for four of the nine runs. Three
of the nine runs spent between 25% to 50% of the total time loading the dataset
and only two of the runs spent less than 10% of the execution time loading the
dataset. Creating the transpose consumes between 1% and 10% the total run
time. The copying of both normal and transpose sparse matrices to the GPU
accounts for just 1% to 2% of the total execution time.

The large amount of time spent in loading the datasets, suggest that large
reductions in total runtime could be achieved by optimising the dataset storage
format. For example utilising binary formats for the dataset representation rather
than Matrix Market text format [12] would decrease the total execution time.

In Section 4.3.3, the performance results were noted to contain the time penal-

83

ties inured in converting double elements to f lo a t and copying the vec and res
arrays between the host and GPU. Figure 5.2 presents the percentage of total
time that these operations represent, both for the process of copying the original
matrix to the GPU and the SpMV product.

Figure 5.2(a) details the percentage of time spent in allocating non-pagable
memory, converting the elements of the matrix from double to f lo a t, padding
the matrix and copying the matrix to the GPU memory. This shows that the
cost of allocating pinned memory is significant. There is an extra cost of about
40 milliseconds for initialising pinned memory allocation that is inured for the
first pinned memory allocation. This overhead is negated by all the speedups in
memory data transfer for the SpMV products. Other than the pinned memory
initialisation, the cost of converting the matrix dominates the total time for all
of the datasets. The conversion process consumes between 40% to 50% of the
total time. The cost of padding the matrix is the second largest cost, consuming
between 5% to 30% of total time. The actual copying of data only consumes
between 5% to 20 % of the total time taken for the matrix to reach GPU memory.

In is important to realise that while the time for matrix initialisation on
the GPU is dominated by the overheads of allocating memory, converting from
double to f lo a t and padding the matrix, the whole process of initialisation
for both normal and transpose matrices account for only about 2% of the total
application runtime.

Figure 5.2(b) details the percentage of time spent converting the vector and
result from double to f lo a t and f lo a t to double respectively, the time taken to
copy the vector and the result, and the time taken to execute the SpMV kernel on
the GPU. The time taken to allocate non-pagable memory for vector and result
is not included as they are both allocated only once and used repeatedly for each
iteration. The cost is therefore amortised and not relevant.

The results of the SpMV operation breakdown in figure 5.2(b) indicates that
for the majority of datasets the actual SpMV kernel time is the dominate sub
operation. The collective conversion time for both vector and result consumes
between 10% to 60% of the total time. The combined copying time for both
vector and result consumes between 2% to 20% of the total time.

84 CHAPTER 5. SML APPLICATION

initilize pinned memory
allocate pinned memmory

pad matrix

convert matrix i h h b
copy matrix to GPU

(a) Time breakdown of the process of copying a matrix from host to GPU
memory.

convert vector m m m
copy vector to GPU ta m m

SpMV kernel time ■■■■

copy result to host
convert result

(b) Time breakdown of a single SpMV product.

Figure 5.2: The penalties of conversion and transfers on the matrix copy process
and the SpMV product.

5.1. CONCLUSION 85

5.1 Conclusion

These results show between 1.2 x to 2.15x improvement in total runtime of the
BMRM application. This improvement is very small in comparison to the capa-
bilities of the GPU. There exists a large overhead in converting between f lo a t
and double data types in addition to the overhead of moving data back and forth
between the GPU and host. Part of this overhead could be eliminated by modi-
fying the application to utilise f lo a t data type. The use of newer GPUs which
support PCIe 2.0 would reduce the cost of transfers between the host and GPU
by 50%.

The use of newer GPUs would also provide the ability to perform double-
precision SpMV products. This would also remove the conversion overhead and
at the same time increase the number of applications that would benefit from the
use of the GPU. The use of double-precision would increase the footprint of the
sparse matrix by about 30% and double the memory foot-print of both the vec
and a rray s. The increased memory footprint of all data is counterbalanced by
the fact that newer GPUs have about 2x the bandwidth available on the 8800
GTX for both host-GPU transfers and internal GPU bandwidth. Using newer
GPUs are expected to result in double the performance of single precision with
a performance hit of about 30% for using double-precision due to the increased
memory foot-print of the sparse matrix.

The above paragraphs discuss SpMV optimisations, however, the further opti-
misation of the SpMV product will not result in large reductions in total execution
time as the total runtime is often dominated by the time to load the dataset to
memory rather then the SpMV product. This reduces the impact of accelerating
the SpMV operations. Removing the time to load each dataset into memory from
the results presented in table 5.2 allows the comparison between the computation
time spent by the CPU and SpMV GPU versions of the application. The SpMV
GPU application is a minimum of 1.17x and maximum of 5.29x faster then the
CPU in this computation.

In summary, the GeForce 8800 GTX offers benefits for the matrix-vector
products performed in this SML application and newer GPUs will enhance this.
Whether this performance difference is enough given improvements in CPU tech-
nology is not clear. More fundamentally the runtime performance of this ap-
plication is dominated by non-computational tasks that need to be addressed
first.

CHAPTER 5. SML APPLICATION

Chapter 6

Conclusions and Future Work

The main objective of this work was the evaluation of the GPUs in general and
specifically the GeForce 8800 GTX for SML applications. Performing the SpMV
products on the GPU only resulted in 1.2 x to 2.15x improvement in total run-
time. This is largely due to the amount of time taken to load the dataset into
memory, and if this is ignored, the GPU computes the SML task 1.17x to 5.29x
faster then the CPU. Based on the limited number of dataset tested with the
BMRM application, SpMV on the GPU results in minor advantages to SML ap-
plications. However a wider survey of SML applications and datasets should be
made to identify if this is the case across all SML applications or not.

The bulk of this work focused on the implementation and evaluation of SpMV
routines for the 8800 GTX GPU as presented in chapter 4. SpMV products on the
GPU achieve an average improvement of 7.85 x the CPU performance of PETSc.
This includes penalties resulting from the time taken to convert the vec array
from double to f lo a t elements and the time to transfer results to and from the
GPU, which is substantial as shown in figure 5.2(b). A much larger improvement
in performance will be seen when the whole application is ported to the GPU,
limiting the need for transfers between the GPU and host. Reductions of these
overheads have already been realised with newer GPUs that use PCIe 2.0 to
double the bandwidth between the host and GPU.

At the beginning of this work, the CSR sparse matrix format was identified
as the preferred format as it was widely used in the scientific community and it
was considered the most robust format. The recent work by Bell and Garland [9]
showed that performance can be increased by utilising other different formats.
This is not surprising as research has been published articulating the benefits of
optimising the storage format for sparse matrices on the CPU [18]. The develop-

87

88 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

ment of an auto-tuning library for SpMV on the GPU would be beneficial.
While optimising for the CPU is reasonably well understood, GPU optimisa-

tion techniques are not as well established [45]. In table 3.5 the SGEMV perfor-
mance on the GPU of a 2048 x 2048 square matrix is listed as 7.26 GFLOP/s,
while in figure 4.13 the SpMV performance on the GPU for a 2000 x 2000 dense
matrix is shown to be 10.5 GFLOP/s. The large performance gain in the SpMV
product is the results of the use of texture memory to store the vec array in
the case of the SpMV product, and the under utilisation of the GPU in the case
of the dense product. This example highlights two of the most important opti-
misations in GPU programming, and the extent such optimisations can have on
performance; Specifically sufficient utilisation of the GPU execution units and
exploration of the various memory options. Volkov and Demmel [57] showed how
detailed analysis of the GPU memory system can be used to optimise matrix-
matrix multiplies and produce significant performance gains. Memory evaluation
and benchmarking is especially important for memory bound GPU applications.

It is important to realise that GPUs are rapidly evolving and these issues could
change in the next generation. Owens et al. [45] points to the Sony Playstation 3
and the Microsoft XBox 360 gaming consoles, both of which support host to GPU
connections that offer much higher bandwidth than the PCIe bus. The Fusion
project by AMD is also highlighted as it attempts to place both CPU and GPU
on the same die removing large bottlenecks in GPU-CPU communication. As
the bandwidth between the GPU and host increases the number of applications
that would benefit from the use of a GPU as a coprocessor and indeed magnitude
of improvement would increase. Newer Generation GPUs allow asynchronous
memory transfers between the Host and GPU. This allows the GPU to overlap
computation with host to GPU memory transfers which will further reduce the
overhead of moving data to and from the GPU.

Another obstacle that prevents wide adoption of GPGPU is the different lan-
guages for the different GPUs. The work presented in this thesis utilised CUDA
for the GPU. This prevents the code written from being used for other GPUs
and therefore, applications written in CUDA suffer from vendor lock-in. The
Open Computing Language (OpenCL) attempts to provide a solution for this
problem. OpenCL is a multi-vendor open standard for general-purpose parallel
programming of heterogeneous systems that include CPUs, GPUs and other pro-
cessors [28]. OpenCL provides a uniform programming environment for software
developers to write applications that will run not only on multiple GPUs but on
any architecture that implements OpenCL for their system [28]. The OpenCL

89

1.0 specification [38] was released in February 2009 and both NVIDA and ATI
have announced support for it [55, 43].

The use of OpenCL will allow rapid evaluations of multiple GPUs as they
would use the same code. However, taking into consideration the large amount
of optimisations that are implemented for the different architectures, it is not
clear if the advantage of a single language would be mitigated by the need for
separate code paths for each architecture in order to apply architecture specific
optimisations.

For that reason, rewriting the implementations in OpenCL and attempting
the same process of creating a blackbox implementation on other hardware is
part of the future work envisioned. Other plans include the use of multiple GPUs
to perform matrix vector products. The CSR format and the implementations
described in this thesis are all easily split across multiple processing units. Indeed,
proof-of-concept code has already been written.

Other areas for more study include the use of greedy algorithms rather then
exhaustive search in the selection of the BPS of a given size; Doing this would re-
duce the complexity of the selection process from 0 (N M) to 0 (N x M). Pruning
the number of implementations to a subset tha t have realistic chances in perform-
ing best, in addition to the greedy selection approach, will reduce the time for the
whole blackbox creation process dramatically. By reducing the time, automating
the process becomes achievable.

Finally, it would be desirable to integrate our sparse matrix-vector implemen-
tation into a widely used library such as PETSc. Application that use PETSc to
perform SpMV products could then easily utilise a GPU enabled version of the
library to investigate the possibility of performance benefits without the need to
rewrite or even recompile their application.

90 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

A ppend ix A

M em ory B an d w id th B enchm arks

92 APPENDIX A. MEMORY BANDWIDTH BENCHMARKS

Table A.l: Bandwidth of various memory access methods for both Texture and
Global Memory.

Coalesced Access S equential Access

Size W L th read s Blocks G lobal M em ory T ex tu re References G lobal M em ory T ex tu re References

/b locks float float2 float4 float float.2 float4 float float2 float4 float float2 float4

16 6400 12 17 23 12 19 26 8 14 21 14 18 25

32 3200 21 31 32 22 31 41 8 16 32 18 29 40

64 1600 36 46 28 32 42 48 8 15 28 18 31 47

128 800 44 46 29 36 44 46 8 14 30 17 30 46

256 400 42 44 27 35 41 45 8 14 28 17 30 45

512 200 37 39 24 30 35 42 8 14 23 16 27. 40

16 1280 13 23 31 14 24 35 9 16 18 6 12 22

32 640 25 39 33 24 36 45 9 17 18 7 14 26

1.5 MB
64 320 40 50 33 33 43 46 9 17 18 8 15 28

20
128 160 55 52 33 40 44 45 9 16 18 8 15 27

256 80 55 51 31 40 43 45 8 16 18 8 15 26

512 40 46 47 28 34 41 45 8 16 17 8 14 26

16 256 13 23 32 14 24 38 8 15 18 5 9 18

32 128 19 32 32 24 38 48 8 15 18 5 10 19

100
64 64 35 55 33 26 46 49 8 15 19 6 11 19

128 32 36 55 32 26 41 48 8 15 19 6 11 20
256 16 35 54 31 26 41 48 8 15 19 6 11 20

512 8 33 52 29 25 38 45 8 15 18 6 11 20

16 44800 14 22 30 14 22 30 9 16 19 6 12 25
32 22400 25 40 36 24 36 44 9 17 19 8 14 25
64 11200 46 58 37 36 45 48 9 17 19 8 16 29

128 5600 62 63 37 43 50 52 9 17 19 8 16 29

256 2800 61 59 34 45 52 55 9 17 19 8 15 28

512 1400 52 54 30 41 51 53 9 17 19 8 15 28
16 8960 14 25 34 15 25 38 8 16 19 5 10 18

32 4480 27 44 38 25 39 50 8 17 19 5 11 20

55 M B 100
64 2240 46 61 37 40 50 52 8 15 20 10 11 20

128 1120 64 61 37 45 52 54 7 14 20 5 11 20

256 560 63 59 35 45 52 54 7 14 19 6 11 20

512 280 54 56 33 41 51 54 7 14 19 6 11 20

16 896 13 24 34 15 26 40 2 4 8 2 4 8

32 448 26 42 38 24 39 51 0 1 2 0 1 2

1000
64 224 39 55 38 38 51 53 0 1 2 0 1 1

128 112 48 54 37 36 45 51 0 1 2 0 1 2

256 56 47 52 36 35 44 50 0 1 2 0 1 2

512 28 51 56 32 38 48 49 0 1 1 0 1 1

16 64000 14 25 34 15 25 38 8 16 19 5 10 18

32 32000 27 43 39 25 39 51 8 17 19 5 11 20

100
64 16000 47 62 38 41 51 53 7 15 20 6 11 20

128 8000 65 62 37 46 52 54 7 14 20 5 11 20

256 4000 63 60 35 46 53 55 10 14 20 6 11 20

390 MB
512 2000 54 57 34 40 51 54 7 14 20 6 11 20

16 6400 14 25 35 15 26 41 2 4 8 2 4 10

32 3200 27 43 39 27 42 54 0 1 1 0 1 1

1000
64 1600 47 62 39 41 52 54 0 1 1 0 1 1

128 800 63 61 38 45 52 55 0 1 1 0 1 1

256 400 62 60 37 45 52 55 0 1 1 0 1 1

512 200 55 59 35 42 52 55 0 1 1 0 1 1

B ibliography

[1] CUDPP: CUDA Data Parallel Primitives library,
http / / www. gpgpu. org/developer / cudpp /.

[2] E. Alexopoulos, G. D. Dounias, K. Vemmos, and E. Alexopoulos. Medical
diagnosis of stroke using inductive machine learning. In In Proceedings of
Workshop on Machine Learning in Medical Applications, Advance Course in
Artificial Intelligence-AC A199, pages 91-101, 1999.

[3] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector
machines, 2003.

[4] ATI. A T I Stream Computing User Guide, 1.4.0 edition, March 2009.
http://developer.amd.com/gpu/ATIStreamSDK/Pages/default.aspx.

[5] E. Atwell. Machine learning from corpus resources for speech and hand-
writing recognition. In In J. Thomas & M. Short (Eds.) Using Corpora for
Language Research: Studies in the Honour of Geoffrey Leech, pages 151-166.
Longman, 1996.

[6] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley,
L. C. Mclnnes, B. F. Smith, and H. Zhang. PETSc Web page, 2001.
http://www.mcs.anl.gov/petsc.

[7] S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith. Efficient man-
agement of parallelism in object oriented numerical software libraries. In
E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software
Tools in Scientific Computing, pages 163-202. Birkhäuser Press, 1997.

[8] M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector mul-
tiplication on gpus. IBM Research Report, RC24704, 2009.

93

94 BIBLIOGRAPHY

[9] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on
CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation,
Dec. 2008.

[10] G. E. Bielloch, M. A. Heroux, and M. Zagha. Segmented Operations for
Sparse Matrix Computation on Vector Multiprocessors. Technical Report
CMU-CS-93-173, Aug 1993.

[11] D. Blythe. The direct3D 10 system. ACM Trans. Graph., 25(3):724-734,
2006.

[12] R. F. Boisvert, R. Pozo, and K. Remington. The Matrix Market exchange
formats: Initial design. Technical Report NISTIR 5935, National Institute
of Standards and Technology, Gaithersburg, MD, USA, Dec. 1996.

[13] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix solvers on
the GPU: conjugate gradients and multigrid. ACM Trans. Graph., 22(3):917-
924, 2003.

[14] L. Buatois, G. Caumon, and B. Lvy. Concurrent number cruncher: An
efficient sparse linear solver on the GPU. In High Performance Computation
Conference (HPCC), Springer Lecture Notes in Computer Science, 2007.

[15] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike, and H. Pat. Brook for
GPUs: Stream computing on graphics hardware, 2004.

[16] J. Cheng and P. Baldi. A machine learning information retrieval approach
to protein fold recognition. Bioinformatics, 22(12): 1456-1463, 2006.

[17] T. A. Davis. University of florida sparse matrix collection. NA Digest, 92,
1994.

[18] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding Com-
munication in Sparse Matrix Computations. In IEEE International Parallel
and Distributed Processing Symposium, April 2008.

[19] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Ma-
trices. Oxford University Press, 1986.

[20] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-
Boeing sparse matrix collection (Release I). Technical Report RAL 92-086,
Chilton, Oxon, England, 1992.

BIBLIO GRAPHY 95

[21] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the efficiency
of GPU algorithms for matrix-matrix multiplication. In HW W S ’04: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, pages 133-137, New York, NY, USA, 2004. ACM.

[22] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, and B. Pfahringer. WEKA - A
machine learning workbench for data mining. In O. Maimon and L. Rokach,
editors, The Data Mining and Knowledge Discovery Handbook, pages 1305-
1314. Springer, 2005.

[23] D. Göddeke, R. Strzodka, and S. Turek. Accelerating double precision FEM
simulations with GPUs. In F. Hülsemann, M. K. Ulrich, and Rüde, editors,
18th Symposium Simulationstechnique, volume Frontiers in Simulation, pages
139-144, 2005.

[24] J. D. Hormozd Gahvari, Mark Hoemmen and K. Yelick. Benchmarking sparse
matrix-vector multiply in five minutes. SPEC Benchmark Workshop 2007,
January 2007.

[25] L. Hsu, R. Iyer, S. Makineni, S. Reinhardt, and D. Newell. Exploring the
cache design space for large scale cmps. SIGARCH Comput. Archit. News,
33(4):24-33, 2005.

[26] W. Huang, Y. Nakamori, and S.-Y. Wang. Forecasting stock market move-
ment direction with support vector machine. Computers & Operations Re-
search, 32(10):2513 - 2522, 2005. Applications of Neural Networks.

[27] D. B. John Kessenich and R. Rost. The OpenGL Shading Language. 3Dlabs,
1.10 edition, April 2004.

[28] Khronos Group. OpenCL, 2009. http://www.khronos.org/opencl/.

[29] N. Kohl and P. Stone. Machine learning for fast quadrupedal locomotion.
In in The Nineteenth National Conference on Artificial Intelligence, pages
611-616, 2004.

[30] C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic,
N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas,
N. Treuhaft, and K. Yelick. Scalable processors in the billion-transistor era:
Iram. Computer, 30(9):75-78, Sep 1997.

96 BIBLIOGRAPHY

[31] J. Krüger and R. Westermann. Linear algebra operators for GPU implemen-
tation of numerical algorithms. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, pages 908-916, New York, NY, USA, 2003. ACM.

[32] M. Kubat, R. C. Holte, and S. Matwin. Machine learning for the detection
of oil spills in satellite radar images. Mach. Learn., 30(2-3): 195—215, 1998.

[33] E. S. Larsen and D. McAllister. Fast matrix multiplies using graphics hard-
ware. In Supercomputing ’01: Proceedings of the 2001 AC M /IEEE confer-
ence on Supercomputing (CDROM), pages 55-55, New York, NY, USA, 2001.
ACM.

[34] M. A. Maloof, P. Langley, T. O. Binford, R. Nevatia, and S. Sage. Improved
rooftop detection in aerial images with machine learning. Mach. Learn.,
53(1-2): 157—191, 2003.

[35] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: a system for
programming graphics hardware in a c-like language. In SIGGRAPH ’03:
ACM SIGGRAPH 2003 Papers, pages 896-907, New York, NY, USA, 2003.
ACM.

[36] M. McCool, S. Du Toit, T. Popa, B. Chan, and K. Moule. Shader algebra.
In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 787-795, New
York, NY, USA, 2004. ACM Press.

[37] M. D. McCool, Z. Qin, and T. S. Popa. Shader metaprogramming. In HW W S
’02: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference
on Graphics hardware, pages 57-68, Aire-la-Ville, Switzerland, Switzerland,
2002. Eurographics Association.

[38] A. Munshi. OpenCL 1.0 specification, February 2009.

[39] NVIDIA. NVIDIA GeForce 8800 GPU Architecture Overview, November
2006.

[40] NVIDIA. CUBA CUBLAS Library, 2.0 edition, March 2008.

[41] NVIDIA. CUBA CUFFT Library, 2.0 edition, March 2008.

[42] NVIDIA. NVIDIA CUBA Programming Guide, 2.0 edition, July 2008.

BIBLIO G RAPH Y 97

[43] NVIDIA. OpenCL for NVIDIA, 2009.
http: / / www.nvidia.com / object / cuda_opencl.html.

[44] T. Ogita, S. M. Rump, and S. Oishi. Accurate sum and dot product with
applications. In IEEE, editor, Proceedings of the 2004 IEEE International
Symposium on Computer Aided Control Systems Design, Taipei, Taiwan,
2004, pages 152-155, pub-IEEE:adr, 2004. IEEE Computer Society Press.

[45] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. GPU computing. Proceedings of the IEEE , 96(5):879—899, May
2008.

[46] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. E. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1):80—113, 2007.

[47] C. Peeper and J. L. Mitchell. Introduction to the DirectX 0 High Level
Shading Language.

[48] L. Peng, J.-K. Peir, T. Prakash, Y.-K. Chen, and D. Koppelman. Memory
performance and scalability of intel’s and am d’s dual-core processors: A case
study, pages 55-64, April 2007.

[49] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A.
Stratton, and W.-m. W. Hwu. Program optimization space pruning for a
multithreaded gpu. In CGO ’08: Proceedings of the sixth annual IEEE/ACM
international symposium on Code generation and optimization, pages 195-
204, New York, NY, USA, 2008. ACM.

[50] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Tech-
nical Report 90-20, NASA Ames Research Center, Moffett Field, CA, 1990.

[51] F. Sebastiani. Machine learning in automated text categorization. ACM
Comput. Surv., 34(1): 1-47, 2002.

[52] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for
GPU computing. In Graphics Hardware 2007, pages 97-106. ACM, Aug.
2007.

[53] SGI. OpenGL - reference manual, the official reference documantation for
openGL, release 1. Addison Wesley, ISBN 0-201-63276-4, 1992.

98 BIBLIO GRAPHY

[54] C. H. Teo, A. Smola, S. V. Vishwanathan, and Q. V. Le. A scalable modular
convex solver for regularized risk minimization. In KDD ’07: Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 727-736, New York, NY, USA, 2007. ACM.

[55] The Inquirer. AMD also comes out in support of OpenCL,
2009. http://www.theinquirer.net/inquirer/news/964/1049964/amd-also-
comes-out-in-support-of-opencl.

[56] M. Ujaldon and J. Saltz. The gpu on irregular computing: Performance
issues and contributions. In CAD-CG ’05: Proceedings of the Ninth In-
ternational Conference on Computer Aided Design and Computer Graphics
(CAD-CG’05), pages 442-450, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[57] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense linear
algebra. In SC ’08: Proceedings of the 2008 ACM /IEEE conference on Su-
percomputing, pages 1-11, Piscataway, NJ, USA, 2008. IEEE Press.

[58] J. T.-L. Wang, S. Rozen, B. A. Shapiro, D. Shasha, Z. Wang, and M. Yin.
New techniques for DNA sequence classification. Journal of Computational
Biology, 6(2):209-218, 1999.

[59] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra soft-
ware. In Supercomputing ’98: Proceedings of the 1998 ACM /IEEE con-
ference on Supercomputing (CDROM), pages 1-27, Washington, DC, USA,
1998. IEEE Computer Society.

[60] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Opti-
mization of sparse matrix-vector multiplication on emerging multicore plat-
forms. In SC ’07: Proceedings of the 2007 AC M /IEEE conference on Super-
computing^ pages 1-12, New York, NY, USA, 2007. ACM.

[61] D. Ye, J. Ray, C. Harle, and D. Kaeli. Performance characterization of SPEC
CPU2006 integer benchmarks on x86-64 architecture, pages 120-127, Oct.
2006.

 HistoryList_V1
 qi2base

