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Abstract—A covert communication system under block fading
channels is considered, where users experience uncertainty about
their channel knowledge. The transmitter seeks to hide the
covert communication to a private user by exploiting a legitimate
public communication link, while the warden tries to detect
this covert communication by using a radiometer. We derive
the exact expression for the radiometer’s optimal threshold,
which determines the performance limit of the warden’s detector.
Furthermore, for given transmission outage constraints, the
achievable rates for legitimate and covert users are analyzed,
while maintaining a specific level of covertness. Our numerical
results illustrate how the achievable performance is affected by
the channel uncertainty and required level of covertness.

I. INTRODUCTION

Owing to the broadcast nature of wireless communications,
their security is of paramount significance, especially when the
transmitted information is important and private. Traditional
ways of ensuring secure transmission over the wireless channel
incorporate a multitude of encryption techniques, making sure
that even after falling in the wrong hands, the integrity of
transmitted information remains intact. Physical layer security,
on the other hand, minimizes the information obtained by
the eavesdroppers by exploiting the varying characteristics of
the wireless channel [1]. However, circumstances exist where
it is of vital interest that rather than protecting the content
of the transmitted message, the communication itself stays
undetectable. Such communication requires some form of
covertness to make sure that they are undetected by a warden.

There has been a recent interest in the information theoretic
aspects of undetectable communication, although some prac-
tical aspects of such communication have been long studied
by the spread spectrum community [2, 3]. Recently, a square
root law has been derived, showing that covert and reliable
communication is achievable, given that no more than O(

√
n)

bits are transmitted in n channel uses [4]. Further work in
this regard has considered the extension of this work to binary
symmetric channels (BSCs) [5], discrete memoryless channels
(DMCs) [6, 7] and multiple access channels (MACs) [8]. The
study in [9] has shown covert communication with a positive
rate considering the distribution of noise uncertainty, instead
of the worst-case detection performance a Willie.

In the realm of covert communication, majority of the
recent work characterizes the achievable covert throughput
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Fig. 1. Illustration of the Covert Communication Scenario

in the form of a scaling law, but the exact achievable rates
have not been quantified. We focus on this aspect in this
work. Specifically, we consider hiding the communication to
a covert user, using the communication to a legitimate user
as a cover. This scenario has not been studied before in the
context of wireless networks, though it is very much in line
with standard covert operations, where a public action is used
to provide cover for a secret action. Our main contributions
are as follows:
• We exploit the uncertainty in channel knowledge under

block fading channels to achieve covertness.
• We derive the exact expression for the optimal threshold

of warden’s detector (radiometer).
• Under the constraints required for gaining covertness, we

analyze the feasible rates for given transmission outage
constraints of the legitimate and the covert user.

This paper is organized as follows: Section II details our
system model, assumptions and the notation used throughout
the paper. Section III discusses the warden’s approach to detec-
tion of covert communication, while Section IV quantifies the
achievable performance of our covert communication system.
We present numerical results in Section V, and finally the paper
is concluded in Section VI.

II. SYSTEM MODEL

We consider a scenario, as shown in Fig. 1, where the
transmitter (Alice) openly transmits to the legitimate user
(Carol), all the time. Alice also wants to transmit to the
covert user (Bob), but she wants to hide this communication
from the warden (Willie), using the transmission to Carol
as her cover. Willie, being passive, silently observes the
communication environment, and tries to detect whether Alice
is also transmitting to Bob. It is assumed that Willie knows
the transmit power used by Alice, and adopts a radiometer
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(power detector) as his detector. The distances from Alice-to-
Carol, Alice-to-Bob, and Alice-to-Willie are denoted by dac,
dab and daw, respectively, and each user is equipped with a
single antenna.

When Alice communicates with Carol or Bob, she trans-
mits her message by mapping it to the sequence xc =
[x1
c , x

2
c , . . . , x

n
c ] or xb = [x1

b , x
2
b , . . . , x

n
b ], respectively, where

n is the number of channel uses. The average power per
symbol in xc and xb is normalized to 1. Alice employs zero
mean Gaussian signalling with variances (i.e., transmit powers)
Pac and Pab for Carol and Bob’s transmission, respectively. It
should be noted here that Alice uses a constant transmit power
to Carol, as Carol is unaware of any covert transmission from
Alice, and expects a known power at her receiving terminal.

A. Channel Model
The effect of fading between Alice and user k is modelled

by a fading coefficient hak, where k is either b (Bob), c
(Carol) or w (Willie). Here hak follows a circularly symmetric
complex Gaussian (CSCG) distribution with zero mean and
unit variance, i.e., hak ∼ CN (0, 1). We consider block fading
channels, hence the fading coefficients remain constant in one
block and change independently from one block to another.
We adopt a commonly-used assumption that transmission of a
message is completed within one block, i.e., quasi-static fading
channels are considered, and the block boundaries are synchro-
nized among all the users. Due to the independent change of
fading coefficients among blocks, we focus our analysis on
one given block, as the knowledge of previous blocks does
not help Willie in improving his detection performance.

While transmitting continuously to Carol, Alice potentially
transmits to Bob in a given block. Alice and Bob have a pre-
shared secret which enables Bob to know beforehand the block
chosen by Alice. Analyzing his observations for a given block,
Willie has to decide whether Alice also covertly transmitted
to Bob. The null hypothesis (H0) states that Alice did not talk
to Bob, while the alternative hypothesis (H1) states that Alice
did talk to Bob. The signal vector received at user k is

yk =


hak
√
Pacxc

d
α/2
ak

+ hak
√
Pabxb

d
α/2
ak

+ vk, if H1 is true
hak
√
Pacxc

d
α/2
ak

+ vk, if H0 is true
(1)

where α is the path-loss exponent, vk ∼ CN (0, σ2
kIn)

represents the user k’s receiver noise vector, the elements
of which follow a CSCG distribution with zero mean and
variance σ2

k. Here, In represents an n× n identity matrix.
Considering channel uncertainty, the channel coefficient hak

is given by [10, 11]

hak = ĥak + h̃ak, (2)

where ĥak and h̃ak represent the known part and the uncertain
part of hak at the corresponding receiver, respectively, and
they are zero-mean, independent, CSCG random variables.
The variance of the channel uncertainty for user k is denoted
by βk = E[|h̃ak|2], 0 ≤ βk ≤ 1, and provides a measure of
channel uncertainty at user k. Accordingly, the variance of ĥak
is 1− βk, since the variance of hak is 1.

B. Willie’s Detection and Covert Requirement

Based on his observation vector, yw, for one block, Willie
has to decide between the hypotheses, H0 and H1, regarding
Alice’s communication to Bob. Willie knows the complete
statistics of its observations under both hypotheses and uses
classical hypothesis testing, where the a priori probability of
either hypothesis being true is 0.5 [12]. Willie’s decision in
favor of H1, when H0 is true, is a False Alarm (or type I
error), and its probability is denoted by PFA. Similarly, if
Willie decides on H0, while H1 is true, then it is a Missed
Detection (or type II error), with the probability denoted by
PMD. We consider Alice achieving covert communication
if, for any ε > 0, a communication scheme exists so that
PFA + PMD ≥ 1 − ε, as n → ∞ [12]. Here ε signifies the
covert requirement, since a sufficiently small ε renders any
detector employed at Willie to be ineffective [4].

III. DETECTION STRATEGY AT WILLIE

From the independent and identically distributed (i.i.d.)
nature of Willie’s received vector yw, given in (1), each
element (symbol) of yw i.e., yiw has a distribution given by{

CN (0, |ĥaw|2ζ1 + |h̃aw|2ζ1 + σ2
w), if H1 is true

CN (0, |ĥaw|2ζ0 + |h̃aw|2ζ0 + σ2
w), if H0 is true

(3)

where ζ0 ,
Pac
dαaw

and ζ1 ,
Pac+Pab
dαaw

. By application of the
Neyman-Pearson criterion, the optimal approach for Willie to
minimize his detection error is to use the following likelihood
ratio test [13],

Λ(yw) =
fyw|ĥaw,H1

(yw|ĥaw, H1)

fyw|ĥaw,H0
(yw|ĥaw, H0)

D1

≷
D0

Υ, (4)

where Υ = 1 due to the assumption of equal a priori
probabilities of each hypothesis. Here, D1 and D0 corre-
spond to a decision in favor of hypothesis H1 and H0,
and fyw|ĥaw,H1

(yw|ĥaw, H1) and fyw|ĥaw,H0
(yw|ĥaw, H0)

are the likelihood functions of Willie’s observation vectors for
the considered block, under hypothesis H1 and H0, respec-
tively. It should be noted here that the ambiguity at Willie
under the two hypotheses comes from two factors, namely,
the receiver noise, and the channel uncertainty.

A. Detection using a Radiometer

We first substantiate that radiometer is indeed the optimal
detector for Willie in our system model. We then derive
the optimal threshold of the radiometer that minimizes the
detection error at Willie.

Lemma 1. Under the considered system model, the optimal
decision rule that minimizes the detection error at Willie is

Pw
n

D1

≷
D0

λ, (5)

which corresponds to a threshold test on Pw, where Pw =∑n
i=1 |yiw|2 is the total power received by Willie in a given

block. Here, λ is the chosen threshold, and n is the number
of channel uses in a block.



Proof. The proof follows along the same lines as the proof of
Lemma 2 in [12], where it has been shown using the concepts
of stochastic ordering [14] that a radiometer is optimal for
Willie under block fading channels. �

B. Optimal Threshold for Willie’s Radiometer
After establishing the fact that the optimal strategy for

Willie is to employ a radiometer, we next evaluate the optimal
setting of his radiometer’s threshold.

Theorem 1. Using a radiometer for detecting Alice-Bob
covert transmission, the optimal value of threshold for Willie’s
detector is

λ∗ =

{
λ†, if |ĥaw|2 < λ†−σ2

w

ζ1

|ĥaw|2ζ1 + σ2
w, otherwise

(6)

where λ† = ζ1ζ0βw
ζ1−ζ0 log

[
ζ1
ζ0

exp
(

(ζ1−ζ0)σ2
w

ζ1ζ0βw

)]
, and ĥaw is

Willie’s known part of his channel from Alice.

Proof. To find the optimal threshold, we consider the opti-
mization problem

min
λ

PFA + PMD. (7)

From Lemma 1, the decision at Willie’s detector regarding
Alice’s transmission to Bob is given by (5), where Pw is a
sufficient statistic for Willie’s detector test. The probabilities
of detection error at Willie are given by

PFA = P [Pw/n > λ |H0]

= P
[
(σ2
w + |ĥaw|2ζ0 + |h̃aw|2ζ0)

χ2
2n

n
> λ

]
,

(8)

and
PMD = P [Pw/n < λ |H1]

= P
[
(σ2
w + |ĥaw|2ζ1 + |h̃aw|2ζ1)

χ2
2n

n
< λ

]
,

(9)

where χ2
2n represents a chi-squared random variable with 2n

degrees of freedom. From the Strong Law of Large Numbers,
we know that χ2

2n/n converges to 1, almost surely. The
Lebesgue’s Dominated Convergence Theorem [15] allows us
to directly replace χ2

2n/n by 1, as n →∞. Thus for a given
realization of ĥaw, PFA and PMD can be written as

PFA = P
[
(σ2
w + |ĥaw|2ζ0 + |h̃aw|2ζ0) > λ

]
= P

[
|h̃aw|2 >

λ− σ2
w − |ĥaw|2ζ0
ζ0

]

=

{
exp

(
|ĥaw|2ζ0+σ2

w−λ
ζ0βw

)
, if λ−σ2

w−|ĥaw|
2ζ0

ζ0
≥ 0

1, otherwise

(10)

and

PMD = P
[
(σ2
w + |ĥaw|2ζ1 + |h̃aw|2ζ1) < λ

]
= P

[
|h̃aw|2 <

λ− σ2
w − |ĥaw|2ζ1
ζ1

]

=

{
1− exp

(
|ĥaw|2ζ1+σ2

w−λ
ζ1βw

)
, if λ−σ2

w−|ĥaw|
2ζ1

ζ1
≥ 0

0, otherwise.
(11)

Following (10) and (11), we have

PFA + PMD =


1, if λ < |ĥaw|2ζ0 + σ2

w

κ0, if |ĥaw|2ζ0 + σ2
w ≤ λ ≤ |ĥaw|2ζ1 + σ2

w

κ, if λ > |ĥaw|2ζ1 + σ2
w

(12)
where κ = 1 − κ1 + κ0, κ0 , exp

(
|ĥaw|2ζ0+σ2

w−λ
ζ0βw

)
and

κ1 , exp
(
|ĥaw|2ζ1+σ2

w−λ
ζ1βw

)
. We next analyze the three possi-

ble cases in (12) separately, and find the optimal value of λ
that minimizes PFA + PMD.

Case I : λ < |ĥaw|2ζ0 + σ2
w

As long as λ < |ĥaw|2ζ0 + σ2
w, PFA + PMD = 1, and

cannot be minimized.

Case II : |ĥaw|2ζ0 + σ2
w ≤ λ ≤ |ĥaw|2ζ1 + σ2

w

Here, PFA + PMD is a decreasing function of λ, hence
Willie chooses the highest possible value of λ, which is
|ĥaw|2ζ1+σ2

w, leading to PFA+PMD = exp
(
|ĥaw|2(ζ0−ζ1)

ζ0βw

)
.

Case III : λ > |ĥaw|2ζ1 + σ2
w

In order to determine the optimal value of λ in this case, we
set the first derivative of PFA + PMD w.r.t. λ equal to zero,
which results in

∂(PFA + PMD)

∂λ
=

1

ζ1βw
exp

(
|ĥaw|2ζ1 + σ2

w − λ
ζ1βw

)

− 1

ζ0βw
exp

(
|ĥaw|2ζ0 + σ2

w − λ
ζ0βw

)
= 0.

(13)
After a few simple manipulations, the optimal value of λ in
this case is given by

λ† ,
ζ1ζ0βw
ζ1 − ζ0

log

[
ζ1
ζ0

exp

(
(ζ1 − ζ0)σ2

w

ζ1ζ0βw

)]
. (14)

We note that λ† is independent of the channel realization ĥaw,
and represents the inflection point of PFA + PMD. It can be
verified through simple calculations that ∂(PFA+PMD)

∂λ > 0

for λ > λ†, and ∂(PFA+PMD)
∂λ < 0 for λ < λ†. The second

derivative of PFA + PMD w.r.t λ is

∂2(PFA + PMD)

∂λ2
=− 1

ζ2
1β

2
w

exp

(
|ĥaw|2ζ1 + σ2

w − λ
ζ1βw

)

+
1

ζ2
0β

2
w

exp

(
|ĥaw|2ζ0 + σ2

w − λ
ζ0βw

)
,

(15)
which is strictly positive as long as the chosen λ† satisfies

λ† <
ζ1ζ0βw
ζ1 − ζ0

log

[
ζ2
1

ζ2
0

exp

(
(ζ1 − ζ0)σ2

w

ζ1ζ0βw

)]
, (16)

where the requirement in (16) follows by simply consider-
ing the fact that ζ1 > ζ0. Thus λ† represents the optimal
threshold value for Willie, as long as it satisfies the condition
λ† > |ĥaw|2ζ1 +σ2

w. If λ† does not satisfy this, then using the
monotonic increase in PFA +PMD for λ > λ†, the minimum
value of λ is chosen that satisfies λ ≥ |ĥaw|2ζ1 + σ2

w. �



IV. PERFORMANCE OF COVERT COMMUNICATION

Knowing the best detection at Willie, we now consider
the overall performance of the covert communication system.
We first derive Willie’s average detection error probability
from Alice’s perspective, which will be used to quantify
the covertness. Next, we derive the communication outage
probabilities at Carol and Bob, which are used to determine
the feasible regime of the transmission rates.

A. Average Detection Error Probability

Using the optimal value of λ from (6), we have

PFA + PMD =

{
1− κ†1 + κ†0, if |ĥaw|2 < λ†−σ2

w

ζ1

κ†, otherwise
(17)

where κ† , exp
(
|ĥaw|2(ζ0−ζ1)

ζ0βw

)
, κ†1 , exp

(
|ĥaw|2ζ1+σ2

w−λ
†

ζ1βw

)
and κ†0 , exp

(
|ĥaw|2ζ0+σ2

w−λ
†

ζ0βw

)
. Since ĥaw is unknown to

Alice, she has to rely on the average measure of Willie’s
performance to assess the possible covertness. We use PwE to
denote the average PFA + PMD over all realizations of ĥaw.

Proposition 1. The average detection error probability at
Willie is

PwE =

[
1− exp

(
σ2
w − λ†

(1− βw)ζ1

)]
[
1− βw

2βw − 1
exp

(
σ2
w − λ†

βwζ1

)
+

βw
2βw − 1

exp

(
σ2
w − λ†

βwζ0

)]
+ exp

(
σ2
w − λ†

(1− βw)ζ1

)[
ζ0βw

(1− βw)ζ1 + (2βw − 1)ζ0

]
.

(18)

Proof. From the law of total expectation, we have

PwE =E|ĥaw|2 [PFA + PMD]

=E|ĥaw|2
[
PFA + PMD | |ĥaw|2 <

λ† − σ2
w

ζ1

]
P
[
|ĥaw|2 <

λ† − σ2
w

ζ1

]
+ E|ĥaw|2

[
PFA + PMD | |ĥaw|2 ≥

λ† − σ2
w

ζ1

]
P
[
|ĥaw|2 ≥

λ† − σ2
w

ζ1

]
,

(19)

and evaluating this expression completes the proof. �

To achieve covertness, Alice chooses her transmit power
levels to Carol and Bob such that.

PwE ≥ 1− ε. (20)

B. Outage Probabilities at Carol and Bob
Proposition 2. Under hypothesis H1, the outage probability
at Carol for a rate Rc is

δc(H1) = 1−
P βc∆c

βc∆c(Pac + Pab) + P βc∆c

exp

(
−∆cd

α
acσ

2
c

P βc∆c

)
, (21)

where P βc∆c
, (1− βc) [Pac − Pab∆c], and ∆c , 2Rc − 1.

Proof. Under H1, the signal vector received at Carol is

yc = ĥac

√
Pacxc

d
α/2
ac

+ h̃ac

√
Pacxc

d
α/2
ac

+ ĥac

√
Pabxb

d
α/2
ac

+ h̃ac

√
Pabxb

d
α/2
ac

+ vc,

(22)

and the signal-to-noise ratio (SNR) is

SNRcH1
=

|ĥac|2Pac
|ĥac|2Pab + |h̃ac|2(Pac + Pab) + dαacσ

2
c

. (23)

The outage probability at Carol is

δc(H1) = P
[
log2(1 + SNRcH1

) < Rc
]

= P

[
|ĥac|2Pac

|ĥac|2Pab + |h̃ac|2(Pac + Pab) + dαacσ
2
c

< ∆c

]

= P

|ĥac|2 < ∆c

[
|h̃ac|2(Pac + Pab) + dαacσ

2
c

]
Pac − Pab∆c

 ,
(24)

where ∆c , 2Rc−1. Since ĥac and h̃ac are independent, thus

δc(H1) =

∫ ∞
0

1− exp

−∆c

[
|h̃ac|2(Pac + Pab) + dαacσ

2
c

]
(1− βc)(Pac − Pab∆c)


· f|h̃ac|2(|h̃ac|2)d|h̃ac|2,

(25)
and the solution of this integration gives the desired result. �

It is important to note here that under H0, the outage
probability at Carol is

δc(H0) = 1− (1− βc)
βc∆c + (1− βc)

exp

(
− ∆cd

α
acσ

2
c

(1− βc)Pac

)
, (26)

which has a value lower than δc(H1) in (21), due to no interfer-
ence from Alice-Bob transmission. Thus Carol’s performance
deteriorates under hypothesis H1.

Proposition 3. Under hypothesis H1. the outage probability
at Bob for a rate Rb is

δb(H1) = 1−
P
βb
∆b

βb∆b(Pab + Pac) + P
βb
∆b

exp

(
−∆bd

α
abσ

2
b

P
βb
∆b

)
(27)

where P βb∆b
, (1− βb) [Pab − Pac∆b], and ∆b , 2Rb − 1.

Proof. The proof follows along the same lines as the proof of
Proposition 2. �

For given outage constraints, e.g. δc ≤ 0.1 and δb ≤ 0.1,
the achievable rates for Carol and Bob, under H1, can be
numerically calculated using (21) and (27). For Carol, any
achievable rate that satisfies the outage constraint under H1

will naturally satisfy the outage constraint under H0. Hence
the focus is on the performance of Carol and Bob under H1.
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Fig. 2. The achievable rate region for Carol and Bob under the effect of
varying channel uncertainty, β. Other parameters are ε = 0.2, α = 3 and
daw = dac = dab = 5.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present the numerical results to show the
effect of covertness requirement (ε) and channel uncertainty
(β) on the achievable rate region for Carol and Bob. The noise
variance of all the users is assumed to be normalized to 1,
and a total transmit power constraint of 30dB is considered at
Alice. For these numerical results, we have considered βw =
βc = βb , β, while the outage probability constraints at Carol
and Bob are δc ≤ 0.1 and δb ≤ 0.1, respectively.

Fig. 2 shows the achievable rate region for Carol and Bob,
under the effect of changing β, for a fixed ε = 0.2. The solid
lines, indicated by arrows with varying values of β, determine
the rate region without any covert requirement. It can be
observed from the figure that increasing the value of β allows
Alice to use more power, Pab, for transmission to Bob, hence
there is an increase in Bob’s achievable rate. This increase
in feasible Pab is due to the increased channel uncertainty
at Willie, causing his detection performance to deteriorate.
On the other hand , there is an adverse effect on the overall
rate region for Carol and Bob, since the increase in channel
uncertainty variance affects their decoding performance. Thus
for a fixed covert requirement, increasing the value of β in a
reasonable range incurs a rate loss for Carol, but increases the
achievable rate for Bob.1

Fig. 3 shows the achievable rates for Carol and Bob, under
the effect of changing ε, for a fixed β = 0.2. For a fixed
channel uncertainty, relaxing ε from 0.1 to 0.3 shows an
increase in the feasible rate region. Since relaxing ε allows a
direct increase in feasible Pab for a given Pac, we can clearly
see an expansion in the achievable rate region, in favor of Bob.

VI. CONCLUSION

In this work, we examined how to achieve covert com-
munication in a public and legitimate communication link

1It should be noted here that a value of β = 0.3 or ε = 0.3 is quite
large from the practical perspective. We consider such values in our numerical
results to illustrate the effect of these parameters on the achievable rate region.
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Fig. 3. The achievable rate region for Carol and Bob under the effect of
varying covertness requirement, ε. Other parameters are β = 0.2, α = 3 and
daw = dac = dab = 5.

when users have uncertainty about their channels. We first
derived a closed-form expression for the optimal threshold of
of Willies optimal detector. Next, we quantified the achievable
outage rate region for Carol and Bob. Our results showed that
the presence of channel uncertainty at Willie allows Alice to
achieve a certain amount of covertness, while this channel
uncertainty also affects the achievable rates for Carol and Bob.
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