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Abstract—We propose a new optimal Location-Based Beam-
forming (LBB) scheme for the wiretap channel, where both the
main channel and the eavesdropper’s channel are subject to
Rician fading. In our LBB scheme the two key inputs are the
location of the legitimate receiver and the location of the potential
eavesdropper. Notably, our scheme does not require any channel
state information of the main channel or the eavesdropper’s
channel being available at the transmitter. This makes our
scheme easy to deploy in a host of application settings in
which the location inputs are known. Our beamforming solution
assumes a multiple-antenna transmitter and a multiple-antenna
eavesdropper, and its aim is to maximize the physical layer
security of the channel. To obtain our solution we first derive
the secrecy outage probability of the LBB scheme in an easy-
to-evaluate expression that is valid for arbitrary real values of
the Rician K-factors of the main channel and the eavesdropper’s
channel. Using this expression we then determine the location-
based beamformer solution that minimizes the secrecy outage
probability. To assess the usefulness of our new scheme, and to
quantify the value of the location information to physical layer
security, we compare our scheme to other schemes, some of which
do not utilize any location information. Our new beamformer
solution provides optimal physical layer security for a wide range
of location-based applications.

Index Terms—Physical layer security, Rician fading, location-
based beamforming, secrecy outage probability.

I. INTRODUCTION

Physical layer security guarantees secrecy regardless of an
eavesdropper’s computational capability and does not require
complex key distribution and management [1]. In early studies,
a wiretap channel model was proposed as the fundamental
model for investigating such physical layer security in single-
input single-output systems [2, 3]. In the wiretap channel
an eavesdropper (Eve) overhears the wireless communication
between a transmitter (Alice) and an intended receiver (Bob).
More recently, motivated by multiple-input multiple-output
(MIMO) techniques, physical layer security in MIMO wiretap
channels has gained much interest (e.g., [4–13]). However,
many of the works in MIMO wiretap channels assume the
(instantaneous) channel state information (CSI) of the main
channel (the channel between Alice and Bob) is perfectly
known by Alice (e.g., [4–6]). This assumption is usually very
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difficult to justify in practice. Also, feeding back the CSI
of the main channel from Bob to Alice costs large feedback
overhead. Other assumptions adopted in the literature are that
the statistical CSI of the eavesdropper’s channel (the channel
between Alice and Eve) is known to Alice (e.g., [8, 9, 14]), or
even more unrealistically the full CSI of the eavesdropper’s
channel is known to Alice (e.g., [7]). Such assumptions are
usually made simply for tractable analysis of the problem, but
can rarely be justified in pragmatic systems. In this work we
will not adopt such strong assumptions regarding the nature
of the eavesdropper’s channel.

In practice, there are many circumstances where location
information of Bob and/or Eve could be available. For exam-
ple, in cellular networks a base station can request a legitimate
mobile user to feedback its location information (the mobile
user can obtain its own location through GPS, for example). In
comparison, estimation and feedback of the full CSI of a chan-
nel cost a relatively larger amount of system resources, and
accurate estimation of the CSI may not be achieved in massive
MIMO techniques due to pilot contamination issues [15–18].
Alice can potentially know Eve’s location through some form
of a priori surveillance (e.g., [19, 20]). For instance, in a
military environment enemy locations can be determined via
visual or electronic reconnaissance. Other circumstances in
which Eve’s location is known could be where Bob and Eve
are normal users of the system served by Alice (but still
requiring secret communications on an individual basis), with
their location information being routinely broadcasted as per
the requirements of a specific network protocol. Examples of
such circumstances would be in IEEE 1609.2 for vehicular
networks, or in some location-based social-media applications.
We also note that the application scenarios of interest can be
extended to circumstances where only Bob or Eve’s location
is available at Alice.

Regardless of the application scenario, the main point
we focus on here is that if there is a line-of-sight (LOS)
component in the main channel or the eavesdropper’s channel,
it is possible to utilize location information directly in order
to enhance the physical layer security. More specifically, we
propose and analyze a new Location-Based Beamforming
(LBB) scheme in the wiretap channel, where both the main
channel and the eavesdropper’s channel are subject to Rician
fading. Our scheme does not require the CSI of either the
main channel or the eavesdropper’s channel being available at
Alice - thus making it quite general, as well as pragmatic. The
basic modus operandi of the scheme we propose is that given
the input locations of Bob and/or Eve, we output the optimal
beamformer solution and the security level (the secrecy outage
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probability) associated with this solution. These outputs are
dependent on the locations of Bob and Eve through path loss
(distance) and angle-of-arrival of the incoming wave front, and
thus we refer to our scheme as the LBB scheme. Detailing how
these outputs are determined forms the core of our work. 1

Surprisingly, there has been little previous work in this
area, with the closest works perhaps those of [21] and [22].
In [21], the ergodic secrecy rate was examined for multiple-
antenna wiretap channels with Rician fading. However, in
[21] it was assumed that the CSI of the main channel was
perfectly known by Alice. The work of [22] analyzed the
secrecy performance of orthogonal space-time block codes
when the main channel is assumed to be subject to a special
Rician fading (the Rician K-factor equals one), but with the
eavesdropper’s channel subject to pure Rayleigh fading. That
is, in [22] no LOS component between Alice and Eve exists.
This means Eve’s location information would not be useful in
the design of transmission schemes at Alice. Different from
[22] we consider the scenario where the main channel and the
eavesdropper’s channel are subject to general Rician fading
(the Rician K-factors of the two channels can be arbitrary real
values). In many circumstances the secrecy outage probability
for a Rician-fading eavesdropper’s channel is higher than
the outage probability for a Rayleigh-fading eavesdropper’s
channel (i.e. Eve prefers that a LOS component exists between
her and Alice). We note that in such circumstances it is more
probable that the eavesdropper’s channel is subject to Rician
fading (since Eve would try to select a location that ensures a
LOS component between her and Alice). We also note that
the Rician-fading channel with small values of the Rician
K-factor can be utilized to approximate a Rayleigh-fading
channel. Therefore, our system model is more general than
that considered in [22].

The direction of this paper and our contributions are sum-
marized as follows. (i) We first derive the secrecy outage prob-
ability of the LBB scheme in an easy-to-evaluate expression,
which is valid for arbitrary real values of the Rician K-factors
of the main channel and the eavesdropper’s channel. (ii) We
then determine the optimal location-based beamformer and the
minimum secrecy outage probability for the scheme. (iii) In
order to fully appreciate the gains of the LBB scheme, we
also analyze, for comparison, the secrecy performance of a
Non-Beamforming (NB) scheme. (iv) As a final comparison,
we also consider the effect on the LBB scheme of the full CSI
of Bob being made available to Alice, and the effect of Eve’s
location information becoming untrustworthy.

The rest of this paper is organized as follows. Section II
details our system model; Section III provides our analytical
solutions; Section IV provides numerical simulations; and
Section VI draws concluding remarks. Secrecy performances
of the comparison schemes are provided in Appendices. We
adopt the following notations in this work. Scalar variables are
denoted by italic symbols. Vectors and matrices are denoted
by lower-case and upper-case boldface symbols, respectively.

1Although our scheme works for any input locations. It is possible that the
secrecy outage probability approaches one (e.g., as Bob moves further from
Alice whilst Eve moves closer). We leave it to the system operator to decide
whether the secrecy outage predicted justifies the sending of data.

Fig. 1. Illustration of the Rician wiretap channel of interest with a multiple-
antenna Alice, a single-antenna Bob, and a multiple-antenna Eve.

Given a complex number z, |z| denotes the modulus of z.
Given a complex vector x, ∥x∥ denotes the Euclidean norm,
xT denotes the transpose of x, x† denotes the conjugate
transpose of x, and Re(x) denotes the real part of x. The
L × L identity matrix is referred to as IL and E[·] denotes
expectation.

II. SYSTEM MODEL

Our LBB scheme was examined for the simpler case of
a pure LOS channel in one of our previous works [19].
Here, we expand on that simple scenario by considering more
generic and realistic Rician fading channels. We note that the
Rician fading channel model is more general than the widely
used Rayleigh fading channel model, i.e., the Rayleigh fading
channel is a special case of the Rician fading channel with a
zero Rician K-factor. We assume KB > 0 and KE > 0, where
KB and KE are the Rician K-factors of the main channel
and the eavesdropper’s channel, respectively. In this work, we
consider not only the single-antenna Bob scenario but also the
multiple-antenna Bob scenario. A single-antenna Bob has been
widely adopted in previous investigations of physical layer
security (e.g., [21, 23, 24]), since in some scenarios a low-
complexity receiver structure is more relevant (e.g., low-cost
sensor devices). A multiple-antenna Bob requires additional
hardware and more sophisticated signal processing techniques.
The wiretap channel of interest is illustrated in Fig. 1, where
Alice and Eve are equipped with uniform linear arrays (ULAs)
with NA and NE antenna elements,2 respectively. As we will

2We will assume NE is also known to Alice. This is reasonable in
circumstances where Alice can determine physical constraints on the size of an
eavesdropper’s antenna, knowledge of which, coupled to the known frequency
of transmission, can allow for a reliable upper bound on NE to be set. If an
upper bound on NE is set, then our solutions become bounds (worst case
scenarios). In other circumstances, where Eve is at times a legitimate user,
we can assume NE is known.
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show later, our analysis provided in this work is also valid for
other antenna arrays beyond ULAs at Eve.

As shown in Fig. 1, we adopt the polar coordinate system,
where Alice’s location is selected as the origin, Bob’s location
is denoted as (dB , θB), and Eve’s location is denoted as
(dE , θE). For presentation convenience, without other state-
ments we assume that the coordinate system is set up such
that 0 ≤ θB ≤ π and 0 ≤ θE ≤ π. The orientation of the
ULA at Alice is also shown in this figure. We also assume that
the main channel and the eavesdropper’s channel are subject to
quasi-static Rician fading with equal block length but different
Rician K-factors, and that a K-factor map (K as a function of
locations) is known in the vicinity of Alice via some a priori
measurement campaigns. We further assume that the CSI of
the main channel is unknown to Alice, but that Bob’s location
is known to Alice.3 Additional assumptions are that Eve knows
the CSI of the eavesdropper’s channel and the beamformer
adopted by Alice; that Eve applies Maximum Ratio Combining
(MRC) in order to maximize the probability of successful
eavesdropping [8, 9]; and that Eve’s location is known to
Alice. As we discuss later, our analysis also covers the case
where Eve’s location is unavailable at Alice. We note that the
assumptions that Eve knows the CSI of channel between her
and Alice, and the beamformer adopted by Alice, are widely
adopted in the literature on physical layer security (e.g., [4, 7,
9]). This is due to the fact that we normally investigate security
issues from a conservative point of view, and this assumption
captures the worst-case scenario. Note also, that under the
conservative worst-case scenario, Eve knows everything that
is known by Alice. As such, we will also assume Eve can
determine the optimal beamformer.

As per the aforementioned assumptions, the 1 × NA main
channel vector is given by

h =

√
KB

1 +KB
ho +

√
1

1 +KB
hr, (1)

where ho is the LOS component, and hr is the scattered
component. The entries of hr are independent and identical-
ly distributed (i.i.d) circularly-symmetric complex Gaussian
random variables with zero mean and unit variance, i.e.,
hr ∼ CN (0, INA

). Denoting ρA as the space between two
antenna elements of the ULA at Alice, ho is given by [25]

ho = [1, · · · , exp(j(NA − 1)τA cos θB)] , (2)

where τA = 2πf0ρA/c, f0 is the carrier frequency, and c is
the speed of propagation of the plane wave. The NE × NA
eavesdropper’s channel matrix is given by

G =

√
KE

1 +KE
Go +

√
1

1 +KE
Gr, (3)

where Go is the LOS component, and Gr is the scattered com-
ponent represented by a matrix with i.i.d circularly-symmetric

3We note that using Bob’s location saves feedback overhead relative to
using the CSI of the main channel. This is due to the following two facts: (i)
the CSI varies during different fading blocks and has to be fed back for each
fading block, meanwhile the location information only has to be fed back
once for a static Bob; and (ii) the CSI is an NA-dimension complex vector
(2NA variables embedded), meanwhile Bob’s location is determined by only
two real numbers.

complex Gaussian random variables with zero mean and unit
variance. Although Go is a rank-1 matrix, we highlight that
G is not rank-1 since Gr is full-rank. Given the locations of
Alice and Eve, Go can be written as [26]

Go = rTo go (4)

where ro and go are the array responses at Eve and Alice,
respectively, which are given by

ro = [1, · · · , exp(−j(NE − 1)τE cosϕE)] , (5)
go = [1, · · · , exp(j(NA − 1)τA cos θE)] . (6)

In (5), we have τE = 2πf0ρE/c, where ρE is the space
between two antenna elements of the ULA at Eve, and ϕE is
the direction of arrival from Eve to Alice which is dependent
on the orientation of the ULA at Eve. As we show later, the
signal-to-noise ratio (SNR) of the eavesdropper’s channel is
independent of ϕE when Eve utilizes MRC to combine the
received signals. As such, the secrecy performance of the LBB
scheme does not depend on ϕE and thus Alice does not have
to know ϕE .

The received signal at Bob is given by

y =
√
g(dB)hbx+ nB, (7)

where g(dB) is the path loss component of the main channel
given by g(dB) = (c/4πf0d0)

2
(d0/dB)

ηB (d0 is a reference
distance and ηB is the path loss exponent4 of the main
channel), b is a normalized beamformer (i.e., ∥b∥ = 1), x is
the Gaussian distributed information bearing signal satisfying
E[|x|2] = P (P is the total transmit power of Alice5), and nB
is the additive white Gaussian noise of the main channel with
zero mean and variance σ2

B . Likewise, the received signal at
Eve is given by

z =
√
g(dE)Gbx+ nE , (8)

where g(dE) is the path loss component of the eavesdropper’s
channel given by g(dE) = (c/4πf0d0)

2
(d0/dE)

ηE (ηE is the
path loss exponent of the eavesdropper’s channel), and nE is
the additive white Gaussian noise vector of the eavesdropper’s
channel with zero mean and variance matrix σ2

EINE
, i.e.,

nE ∼ CN (0, σ2
EINE )

Then, the SNR of the main channel is given by

γB =
Pg(dB)|hb|2

σ2
B

= γB |hb|2, (9)

where γB is defined as γB , Pg(dB)/σ
2
B . Assuming Eve

applies MRC to combine the received signals at different
antennas, the SNR of the eavesdropper’s channel is given by

γE =
Pg(dE)∥Gb∥2

σ2
E

= γE∥Gb∥2, (10)

where γE is defined as γE , Pg(dE)/σ
2
E .

4The path loss exponent ηB is dependent on the Rician K-factor KB . For
example, ηB → 2 as KB → ∞. For simplicity, we assume ηB is known
to Alice since KB is known. This declaration also applies to the path loss
exponent of the eavesdropper’s channel ηE and the Rician K-factor KE .

5It is straightforward to prove that the secrecy outage probability is
a monotonically decreasing function of Alice’s transmit power for given
locations of Bob and Eve. As such, we assume that Alice always sets her
transmit power at the maximum value P .
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III. LOCATION-BASED BEAMFORMING SCHEME

In this section we first examine the secrecy performance
of our proposed LBB scheme in terms of the secrecy outage
probability and the probability of non-zero secrecy capacity.
We then determine the optimal location-based beamformer of
the LBB scheme that minimizes the secrecy outage probability.

A. Preliminaries

In order to derive the secrecy performance metrics of our
scheme (e.g., the secrecy outage probability), we first derive
the probability density functions (pdfs) of γB and γE . Without
loss of generality, we derive such pdfs for a general b, which
is independent of hr and Gr. To this end we first determine
the distribution type of |hb|. As per (1), we have

hb =

√
KB

1 +KB
hob︸ ︷︷ ︸

h̃o

+

√
1

1 +KB
hrb︸ ︷︷ ︸

h̃r

. (11)

Since b is independent of hr, h̃r is still a circularly-symmetric
complex Gaussian random variable. Noting that h̃o is deter-
ministic, we conclude that |hb| follows a Rician distribution.
We next determine the parameters of this Rician distribution.
Following (11), we have

|h̃o|2 =
KB

1 +KB
|hob|2 (12)

and

E[|h̃r|2] =
1

1 +KB
E[|hrb|2] =

1

1 +KB
. (13)

We note that |h̃o|2 is the power of the LOS (deterministic)
component and E[|h̃r|2] is the average power of the non-
LOS (random) component. As such, we conclude that

√
γB =√

γB |hb| follows a Rician distribution with K̃B and γ̃B as
the Rician K-factor and total power, respectively, where K̃B

and γ̃B are given by

K̃B , |h̃o|2

E[|h̃r|2]
= |hob|2KB , (14)

γ̃B , E[γB ]=γB
(
|h̃o|2 + E[|h̃r|2]

)
=

(
KB |hob|2 + 1

)
γB

1 +KB
.

(15)

The pdf of a Rician random variable involves the zero-
order modified Bessel function of the first kind, which is not
suitable for further analysis (e.g., deriving the secrecy outage
probability). To make progress, it is convenient to interpret the
Rician fading as a special case of Nakagami fading. As such,
the pdf of γB is approximated as [27]

fγB (γ) =

(
m̃B

γ̃B

)m̃B γm̃B−1

Γ(m̃B)
exp

(
−m̃Bγ

γ̃B

)
, (16)

where m̃B is the Nakagami fading parameter given by m̃B =
(K̃B+1)2/(2K̃B+1) and Γ(µ) =

∫∞
0
e−ttµ−1dt, Re(µ) > 0,

is the Gamma function. As we have numerically verified, the
approximation accuracy of (16) is very high, and this accuracy
increases as KB increases.

Following (10), the SNR of the eavesdropper’s channel can
be rewritten as

γE =

NE∑
i=1

γE,i, (17)

where γE,i = γE |gib|2, gi is the 1 × NA channel vector
between Eve’s i-th antenna and Alice, i.e., gi is the i-th row
of G. As per (3), we have

gi =

√
KE

1 +KE
ϵigo +

√
1

1 +KE
gr,i, (18)

where ϵi = e−j(i−1)τE cosϕE and gr,i is the i-th row of Gr.
For any value of i (i = 1, 2, . . . , NE), we have

|ϵigob| = |gob|. (19)

As such, following a procedure similar to that used in obtain-
ing fγB (γ), the pdf of γE,i can be approximated as

fγE,i
(γ) =

(
m̃E

γ̃E

)m̃E γm̃E−1

Γ(m̃E)
exp

(
−m̃Eγ

γ̃E

)
, (20)

where m̃E is given by m̃E = (K̃E + 1)2/(2K̃E + 1), K̃E is
given by K̃E = |gob|2KE , and γ̃E is given by

γ̃E , E[γE ] =
(
KE |gob|2 + 1

)
γE

1 +KE
. (21)

Since γE,i is independent from each other, following (21) the
pdf of γE can be approximated as

fγE (γ) =

(
m̃E

γ̃E

)NEm̃E γNEm̃E−1

Γ(NEm̃E)
exp

(
−m̃Eγ

γ̃E

)
. (22)

Following (19), we note that γE is independent of ro. This
indicates that the SNR at Eve is independent of ϕE when
Eve adopts MRC to combine the received signals. As such,
we do not need to know the orientation of the ULA at Eve
for our analysis. This also reveals that the SNR at Eve is
independent of the type of antenna array at Eve (e.g., other
antenna arrays beyond ULAs) since different antenna arrays
at Eve only impact ro. As such, our following analysis is also
valid for other antenna arrays at Eve (e.g., non-uniform linear
arrays, circular arrays, rectangle arrays).

B. Secrecy Performance of the LBB Scheme

In the wiretap channel, the secrecy capacity is defined as

Cs =

{
CB − CE , γB > γE
0 , γB ≤ γE ,

(23)

where CB = log2 (1 + γB) is the capacity of the main channel
and CE = log2 (1 + γE) is the capacity of the eavesdropper’s
channel. Since CE is unavailable at Alice, the perfect secrecy
cannot be guaranteed in the wiretap channel of interest. For
this reason we adopt the secrecy outage probability and
the probability of non-zero secrecy capacity as our secrecy
performance metrics. The secrecy outage probability is defined
as the probability of the secrecy capacity Cs being less than
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the target secrecy rate Rs (bits/channel-use), which can be
formulated as [8, 9]6

O (Rs) = Pr (Cs < Rs)

=

∫ ∞

0

fγE (γE)

[∫ 2Rs (1+γE)−1

0

fγB (γB)dγB

]
dγE . (24)

We now derive the secrecy outage probability for the LBB
scheme in the following theorem.

Theorem 1: The secrecy outage probability of the LBB
scheme for a given Rs is

O(Rs) =

m̃m̃B

B m̃NEm̃E

E 2m̃BRs

Γ(NEm̃E)γ̃
−NEm̃E

B γ̃
−m̃B

E

+∞∑
n=0

2nRs exp

(
−m̃B(2Rs−1)

γ̃B

)
m̃−n
B γ̃

n

BΓ(m̃B + n+ 1)
×

+∞∑
l=0

(
m̃B+n
l

) (
2Rs−1

)l (
γ̃B γ̃E

)n−l
ΓG(m̃B+NEm̃E+n−l)

2lRs

(
2Rsm̃B γ̃E + m̃E γ̃B

)m̃B+NEm̃E+n−l
,

(25)

where ΓG(·) is the generalized gamma function (also valid for
negative integers), which is given by [29]

ΓG(α)=

{
(−1)−α

(−α)!

(∑−α
i=1

1
i +α

)
, α is a negative integer,

Γ(α), otherwise.
(26)

Proof: Substituting (16) into (24), O(Rs) is derived as

O(Rs) =

∫ ∞

0

fγE (γE)
γ
(
m̃B,

2Rs (1+γE)−1

m̃−1
B γ̃B

)
Γ(m̃B)

dγE , (27)

where γ (α, µ) =
∫ µ
0
e−ttα−1dt, Re{α} > 0, is the lower

incomplete gamma function. In order to obtain the result in
(27), we have utilized the following identity [30, Eq. (3.381.1)]∫ u

0

tν−1e−µtdt = µ−νγ(ν, µu). (28)

We note that our pdfs of γB and γE given by (16) and (22),
respectively, are valid for arbitrary real values of KB and KE .
In terms of theoretical analysis, this means the power/exponent
parameters (e.g., m̃B − 1, NEm̃E − 1) in these pdfs are
arbitrary real values. The presence of such real numbers results
in considerable challenges in solving the integral given in (27).
This is due to the fact that (27) now involves several types of
functions (e.g., Gamma functions, lower incomplete gamma
functions, and exponential functions). All these issues will lead
to complications in the following derivations.

To make progress, we adopt the following identity to expand
γ (α, µ) [30, Eq. (8.354.1)]

γ (α, µ) =
+∞∑
n=0

Γ(α)µα+ne−µ

Γ(α+ n+ 1)
. (29)

6The secrecy outage probability is the most common metric used in physical
layer security when CSI of the wiretap channel is unavailable at Alice.
However, it is important to note this metric does not distinguish between
reliability and security [28].

As per (29), we have

γ

(
m̃B ,

2Rs(1 + γE)− 1

m̃−1
B γ̃B

)

=
+∞∑
n=0

Γ(m̃B)
(

2Rs (1+γE)−1

m̃−1
B γ̃B

)m̃B+n

exp
(
−2Rs (1+γE)−1

m̃−1
B γ̃B

)
Γ (m̃B + n+ 1)

=
+∞∑
n=0

Γ(m̃B)(2
RsγE)

m̃B+n
(
1 + 2Rs−1

2RsγE

)m̃B+n

(
γ̃B

m̃B

)m̃B+n

exp
(

2Rs (1+γE)−1

m̃−1
B γ̃B

)
Γ(m̃B + n+ 1)

=

+∞∑
n=0

Γ(m̃B) exp
(
−2Rs (1+γE)−1

m̃−1
B γ̃B

)
(2RsγE)

m̃B+n(
γ̃B

m̃B

)m̃B+n

Γ(m̃B + n+ 1)

×
+∞∑
l=0

(
m̃B + n

l

)(
2Rs − 1

2RsγE

)l
, (30)

in which the identity [30, Eq. (1.110)]

(1 + µ)
α
=

+∞∑
l=0

(
α

l

)
µl (31)

is employed. Substituting (22) and (30) into (27), we have

O (Rs) =

∫ ∞

0

(
m̃E

γ̃E

)NEm̃E γNEm̃E−1
E

Γ(NEm̃E)
exp

(
−m̃EγE

γ̃E

)
×

+∞∑
n=0

exp
(
−2Rs (1+γE)−1

m̃−1
B γ̃B

)
(2RsγE)

m̃B+n(
γ̃B

m̃B

)m̃B+n

Γ(m̃B + n+ 1)

×

+∞∑
l=0

(
m̃B + n

l

)(
2Rs − 1

2RsγE

)l
dγE

=
m̃m̃B

B m̃NEm̃E

E 2m̃BRs

Γ(NEm̃E)γ̃
m̃B

B γ̃
NEm̃E

E

+∞∑
n=0

m̃n
B2

nRs exp

(
−m̃B(2Rs−1)

γ̃B

)
γ̃
n

BΓ(m̃B + n+ 1)

+∞∑
l=0

(
m̃B+n
l

) (
2Rs−1

)l
2lRs

∫ ∞

0

γm̃B+NEm̃E+n−l−1
E

exp

(
(2Rsm̃B γ̃E+m̃E γ̃B)γE

γ̃B γ̃E

)dγE .
(32)

We then obtain the desirable result in (25) by solving the
integral in (32) as per the following identity [30, Eq. (3.381.4)]∫ ∞

0

tν−1e−µtdt =
1

µν
ΓG(ν). (33)

We first note the secrecy outage probability derived in (25)
is a function of Bob and Eve’s locations and the beamformer
b, all of which are embedded in the parameters m̃B , m̃E , γ̃B ,
and γ̃E . We also note that (25) is valid for arbitrary real m̃B

and m̃E (m̃B and m̃E can be equal), and thus (25) is valid for
arbitrary real KB and KE . Although (25) is by construction
bounded by 1, it does involve two infinite series. However,
these two series can both be approximated by finite series
accurately. This is due to the fact that (25) is convergent, as
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we now discuss. The two infinite series,
∑+∞
n=0 and

∑+∞
l=0 ,

involved in (25) arise from (29) and (31), respectively. But, we
note that (31) is utilized only to expand individual terms (i.e.,
within each n-th summation term) within (29). Therefore, as
long as (29) is convergent we can conclude (25) is convergent.
As proven elsewhere, (29) is indeed convergent [31]. As
such, we can conclude that (25) is convergent (we have also
numerically confirmed this).

In order to calculate O(Rs) efficiently, we adop-
t Õ(Rs, N, L) as an approximation. This closed-form ap-
proximation to O(Rs) is obtained by truncating its

∑+∞
n=0

and
∑+∞
l=0 series at the N -th and L-th terms, respectively.

We have numerically confirmed Õ(Rs, N, L) offers accurate
approximation even with small values of N and L. Defining
ϵ = |Õ(Rs, N, L) − O(Rs)|/O(Rs) as the relative approx-
imation error (where O(Rs) is the numerically evaluated
result of (27) and the evaluation error of (27) is less than
10−12), our numerical verifications indicate that ϵ is less than
10% even when N = L = 5. Furthermore, ϵ decreases
significantly as N increases. For example, ϵ is around 10−3

for N = 10 and L = 5; and ϵ is around 10−6 for N = 20 and
L = 5. In addition to the computational advantages offered
by a truncated approximation to (25), we also note that this
approximation represents a lower bound to the secrecy outage
probability.

Moreover, we note that we can draw many useful insights
from the derivation of (25), which cannot be obtained by
numerically evaluating (27). For example, following a similar
procedure to derive (25) we can determine the secrecy diversity
order and secrecy coding gain of our LBB scheme. The secrecy
diversity order is an important performance parameter associ-
ated with the secrecy outage probability, which determines the
slope of the curve for the secrecy outage probability (in dB)
versus γB (in dB) as γB → ∞ for finite γE . Mathematically,
the secrecy diversity order for finite γE is defined as

β = lim
γB→∞

log10 O (Rs)

log10(1/γB)
. (34)

The secrecy diversity order of the LBB scheme is presented
in the following corollary.

Corollary 1: The secrecy diversity order of the LBB
scheme at fixed γE is m̃b, i.e. β = m̃b.

Following a procedure similar to that used in deriving
the secrecy diversity order of the antenna selection schemes
presented in [8, 9], we can obtain in a straightforward manner
the secrecy diversity order of the LBB scheme as m̃B . As such,
we omit the proof of the above corollary here. We note that
maximum value of m̃B is (NAKB+1)2/(2NAKB+1) due to
|hob|2 ≤ ∥ho∥2∥b∥2 = NA. The secrecy diversity order given
in (34) is widely utilized in the literature (e.g., [32, 33]), and
to be consistent with other works we will adopt this definition
as well. However, we do note it is only formally defined for
γB → ∞ at fixed γE . It is therefore most useful in special
cases, such as when Bob approaches very close to Alice whilst
Eve remains at a fixed distance further from Alice. Note also,
the secrecy diversity order will be zero if γE → ∞, since
the secrecy outage probability will be zero for γE → ∞ [32].
Following Corollary 1 and the definition of m̃B , we know that

the secrecy diversity order of the LBB scheme is related to the
Rician K-factor of the main channel (i.e., the secrecy diversity
order increases as KB increases). Intuitively, this is due to
the fact that the channel quality increases as KB increases.
Theoretically, this is due to the fact that the pdf of γB given
in (16) involves the term γm̃B−1. In order to derive the secrecy
diversity order, we have to obtain the asymptotic pdf of γB
based on the Taylor series expansion, in which γm̃B−1 remains
in the non-zero term. We note that a similar conclusion was
drawn for Nakagami fading channels in [8], which states that
the secrecy diversity order increases as the Nakagami fading
parameter of the main channel increases.

Then, the probability of non-zero secrecy capacity of the
LBB scheme is presented in the following corollary, which is
defined as the probability that a positive secrecy capacity is
achieved.

Corollary 2: The probability of non-zero secrecy capacity
of the LBB scheme is given by

Pnon = 1−
m̃m̃B

B m̃NEm̃E

E

Γ(NEm̃E)γ̃
−m̃B

E γ̃
−NEm̃E

B

+∞∑
n=0

m̃n
B γ̃

n

E

Γ(m̃B + n+ 1)

× Γ (m̃B +NEm̃E + n)(
m̃B γ̃E + m̃E γ̃B

)m̃B+NEm̃E+n
. (35)

Proof: As per the definition, the probability of non-zero
secrecy capacity can also be formulated as

Pnon = 1−O(Rs = 0). (36)

Substituting Rs = 0 into (25), we obtain the desirable result
in (35).

We note that the expression for the probability of non-zero
secrecy capacity is simpler than that for the secrecy outage
probability and it only involves one infinite series. This infinite
series can also be approximated by truncating it at a finite
number. This approximation is very accurate even when the
truncating number is small (e.g., 10). We now extend our
analysis by considering multiple antennas at Bob. Various
combining techniques can be applied at a multiple-antenna
Bob. Here, we restrict ourselves to the MRC technique and
derive an easy-to-evaluate expression for the secrecy outage
probability. We note that MRC requires the CSI of the main
channel being available at Bob. We also note that in our
following analysis we assume Alice still transmits a single
data stream to Bob.

Following a similar procedure to derive (22), the pdf of
the SNR at Bob, who is equipped with multiple antennas
and applies MRC to combine the received signals, can be
approximated by

fNB
γB (γ) =

(
m̃B

γ̃B

)NBm̃B γNBm̃B−1

Γ(NBm̃B)
exp

(
−m̃Bγ

γ̃B

)
, (37)

where NB denotes the number of antennas at Bob. Then, fol-
lowing a similar procedure as given in the proof of Theorem 1
we derive the secrecy outage probability for the multiple-
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antenna Bob to be

ONB (Rs) =
m̃m̃B

B m̃NEm̃E

E 2NBm̃BRs

Γ(NEm̃E)γ̃
−NEm̃E

B γ̃
−NBm̃B

E

×

+∞∑
n=0

2nRs exp

(
−m̃B(2Rs−1)

γ̃B

)
m̃−n
B γ̃

n

BΓ(NBm̃B + n+ 1)
×

+∞∑
l=0

(
NBm̃B+n

l

) (
2Rs−1

)l
ΓG(NBm̃B+NEm̃E+n−l)

2lRs

(
γ̃B γ̃E

)n−l (
2Rsm̃B γ̃E + m̃E γ̃B

)NBm̃B+NEm̃E+n−l
.

(38)

We note that the expression present in (38) provides a
lower bound for the secrecy outage probability if some other
combining technique other than MRC is utilized at Bob. This
is due to the fact that MRC maximizes the SNR at Bob relative
to other combining techniques. Comparing (37) with (16) we
can see that the NB antennas at Bob increase both m̃B and γ̃B
by a factor of NB . Therefore, multiple antennas result in the
secrecy outage probability given in (38) being lower than that
given in (25). The values of m̃B and γ̃B impact the optimal
location-based beamformer. As such, the optimal location-
based beamformer for a single-antenna Bob is different from
that for a multiple-antenna Bob.

C. Optimal Location-based Beamformer

A location-based beamformer can be written as

b =
1√
NA

[1, · · · , exp(−j(NA − 1)τA cosψ)]
T
, (39)

where ψ (0 ≤ ψ ≤ π) is the beamforming direction. In this
work we define the optimal location-based beamformer, b∗,
as the one that minimizes the secrecy outage probability for a
given Rs. Therefore, defining

ψ∗ = argmin
0≤ψ≤π

O(Rs), (40)

and setting ψ = ψ∗ in (39) completely determine the optimal
beamformer b∗. We note that the value range of ψ is selected
based on the symmetric property of the ULA (e.g., ψ = π/3
and ψ = −π/3 lead to the same beamformer b). We note that
(40) is a one-dimensional optimization problem, which can be
solved through Algorithm 1 given below.

Algorithm 1 Grid Search Algorithm to determine ψ∗

1: Uniformly sample ψi over [0, π] for I times, i.e., ψi =
(i−1)π
I−1 , i = 1, 2, . . . , I .

2: Calculate O(Rs) for each ψi by utilizing (25), and denote
the value of O(Rs) for ψi as Oi(Rs).

3: Find the minimum value among all O(Rs), denoted as
O∗(Rs).

4: Determine the value ψi that achieves O∗(Rs), which is
denoted as ψ∗.

5: Set ψ = ψ∗ in (39) to obtain the optimal beamformer b∗.

We note ψ∗ obtained through Algorithm 1 approaches the
true optimal value of ψ as N , L, and I increase. Using
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Fig. 2. F(Nx, νx) versus Nxνx/π for different values of Nx.

Algorithm 1 we find a solution is obtained well below 1 second
on an average processor for N = 50, L = 50, and I = 1000.
For all intents and purposes this solution is optimal. We would
like to highlight that ψ∗ can be analytically determined in
some special cases as detailed in the following corollary.

Corollary 3: For KE > 0, the (multiple) solution to (40) is
ψ∗ = arccos

(
cos θE + 2nAπ

NAτA

)
, nA = 1, . . . , NA − 1, in the

following cases: (i) when γE → ∞ for finite γB , (ii) when
KB = 0, or (iii) when θB is unavailable at Alice.

Proof: For all the cases in the corollary, γB is of little
impact on the secrecy outage probability or it is out of control
of b. As such, b is to minimize γE for these cases. To this
end, ψ∗ is to minimize |gob|2 due to the expression of γE
given in (17). Denoting νE = τA(cos θE − cosψ), as per (6)
and (39), for νE ̸= 0 we have

gob =
1√
NA

exp (jNtνE)− 1

exp (jνE)− 1

=
1√
NA

−ejNAνE/2
(
−e−jNAνE/2 − ejNAνE/2

)
−ejνE/2

(
−e−jνE/2 − ejνE/2

)
=

1√
NA

sin
(
1
2NAνE

)
sin
(
1
2νE

) ejνE(NA−1)/2. (41)

For νE = 0, we have gob =
√
NA. Then, following (41) we

have

|gob|2 = F(NA, νE), (42)

where F(·, ·) is defined as

F(Nx, νx) =


Nx, νx = 0,

1
Nx

(
sin( 1

2Nxνx)
sin( 1

2νx)

)2

, 0 ≤ νx < 2π.
(43)

It can be proved that the minimum value of F(Nx, νx) is
achieved when νx = 2nxπ for nx = 1, . . . , Nx − 1, which
is also confirmed by Fig. 2. As such, |gob|2 is minimized
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Fig. 3. Secrecy outage probabilities under Nakagami channels versus
different values of γB , where mB = 1.35,mE = 1.33, λ0 = 0.85, NA =
3, NE = 2, and Rs = 1.

when νE = 2nAπ for nA = 1, . . . , NA − 1, and thus we
obtain Corollary 3.

Intuitively, the solution to (40) is ψ∗ = θB for KB > 0 in
the following cases: (i) when γB → ∞ for finite γE , (ii) when
KE = 0, or (iii) when θE is unavailable at Alice. This is due
to the fact that the best Alice can do is to enhance the main
channel quality when γE of little impact on the secrecy outage
probability or out of control of b. We note that for ψ∗ = θB
we have b∗ = h†

o/
√
NA and |hob|2 = NA. As such, we have

K̃B = NAKB and γ̃B = (NAKB + 1)γB/(1 +KB).

IV. NUMERICAL RESULTS

In this section we present numerical simulations to verify
our secrecy performance analysis of the LBB scheme, and
examine the impact of different system parameters (e.g., KB ,
KE , γB , and γE) on the LBB scheme. To better illustrate
the gains obtained by our LBB scheme, we will also present
simulations of the secrecy performances of the NB (non-
beamforming) scheme and the full-CSI scheme. The NB
scheme represents the case when an isotropic beamforming
pattern is produced by Alice (see Appendix A for an analytical
analysis of this scheme). The full-CSI scheme represents the
case when the maximum ratio transmission based on the CSI
of the main channel is adopted by Alice (see Appendix B for
an analytical analysis of this scheme). To conduct simulations,
we deploy Bob and Eve at specific locations and then map
such locations into γB and γE , respectively. Such a mapping
is based on Alice’s transmit power (i.e., P ) and path loss expo-
nents of the main channel and the eavesdropper’s channel (i.e.,
ηB and ηE). For presentation convenience, we only specify the
values of γB and γE adopted in our following simulations.
We note that in the following figures we use “Theo” and
“Simu” as the abbreviations of “Theoretic” and “Simulated”,
respectively. We also note that only the following Fig. 3 (in
which we pick an arbitrary beamformer b) is generated under
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Fig. 4. Secrecy outage probabilities under Rician channels versus different
values of γB , where NA = 3, NE = 2,KB = 10 dB,KE = 5 dB, θB =
π/3, θE = π/4, and Rs = 1.

Nakagami fading channels. This is done simply to verify our
theoretical analysis provided in Theorem 1. As such, Fig. 3
will not be used to draw any insights on the performance of
different schemes. All other figures are generated under Rician
fading channels.

In Fig. 3 we first verify our derived secrecy outage probabil-
ities for Nakagami fading channels. To this end, we generate
channel realizations as per the Nakagami fading channel,
where we have set m̃B = 2mB , m̃E = mE , γ̃B = 3γB ,
and γ̃E = γE , where mB = (KB + 1)2/(2KB + 1) and
mE = (KE + 1)2/(2KE + 1). The theoretic secrecy outage
probability of the LBB scheme, O(Rs), the secrecy outage
probability of the NB scheme, denoted as ONB(Rs), and the
secrecy outage probability of the full-CSI scheme, denoted as
OCSI(Rs), are obtained through (25), (49), (50), respectively,
where relevant infinite series are truncated approximately at
30. In this figure, we observe that the theoretic O(Rs),
ONB(Rs), and OCSI(Rs) precisely match the simulated
O(Rs), ONB(Rs), and OCSI(Rs), respectively. This confirms
the correctness of our derived secrecy outage probabilities.

Recall that for mathematical convenience, our analysis ap-
proximates a Rician channel with a Nakagami channel. To see
the effect of this, in Fig. 4 we plot the secrecy outage prob-
abilities of the LBB, NB, and full-CSI schemes, for specific
Rician fading channels. Note, in the full-CSI scheme Eve’s
location is unknown to Alice. In this figure, we observe that
the simulated minimum secrecy outage probability of the LBB
scheme, O∗(Rs), the secrecy outage probability of the NB
scheme, ONB(Rs), and the secrecy outage probability of the
full-CSI scheme, OCSI(Rs), match well the theoretic O∗(Rs),
ONB(Rs), and OCSI(Rs), respectively, thus confirming the
validity of our channel approximation. We note that we have
set θE close to θB in Fig. 4 (i.e., θB = π/3 and θE = π/4).
The gap between O∗(Rs) and ONB(Rs) can even be larger
when θE is not so close to θB . We also observe that O∗(Rs) is
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Fig. 5. Minimum secrecy outage probability of the LBB scheme versus
different values of θE , where NA = 2, NE = 2,KB = 10 dB,KE =
10 dB, γB = 10 dB, γE = 10 dB, and Rs = 1.

lower than OCSI(Rs), which indicates that the LBB scheme
outperforms the full-CSI scheme. This is related to the fact
that Alice knows Eve’s location in the LBB scheme only (i.e.,
Alice does not know Eve’s location in the NB and full-CSI
scheme). However, we highlight that this comparison result is
only valid for these specific system settings. Perhaps a more
fairer comparison between the LBB and full-CSI schemes is
provided in Fig. 6, where we adopt a modified LBB scheme,
referred to as LBBu, in which Eve’s location is unknown to
Alice.

In Fig. 5, we plot the minimum secrecy outage probability of
the LBB scheme, O∗(Rs), versus different values of θE . Again
we observe that the theoretic O∗(Rs) matches extremely well
the simulated O∗(Rs), which again confirms the validity of
our analysis. Fig. 5 is also useful in that it more visually
represents how the minimum secrecy outage probability of
the LBB scheme depends on the locations of Bob and Eve.
For example, O∗(Rs) is maximized when θB = θE . In
the simulations to obtain Fig. 5, we also observe that the
optimal beamforming direction ψ∗ shifts away from θB as
θE approaches to θB .

In Fig. 6 we examine the secrecy outage probability of the
LBBu scheme relative to the NB and full-CSI schemes. Here,
we assume a uniform distribution of θE , i.e. θE ∼ U [0, 2π],
and we then average the secrecy outage probability for all
θE to obtain the average secrecy outage probability for each
scheme. As expected, we observe that the average secrecy
outage probability of the LBBu scheme is lower than that
of the NB scheme, and higher than that of the full-CSI
scheme. In addition, we observe that the performance gap
between the LBBu scheme and the NB scheme increases as
KB increases, and the performance gap between the LBBu
scheme and the full-CSI scheme decreases as KB increases.
These two observations can be explained by the fact that Bob’s
location provides more information on the main channel as
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Fig. 6. Average secrecy outage probabilities without Eve’s location versus
different values of KB , where NE = 3,KE = 5 dB, γB = 10 dB, γE =
1 dBθB = π/3, and Rs = 1.

KB increases (e.g., as KB → ∞, knowing Bob’s location is
equivalent to knowing the CSI of the main channel). Based on
these observations, we can conclude that the LBBu scheme is
preferable when the Rician K-factor is large.

We note that the performance gain of the full-CSI scheme
relative to the LBBu scheme is achieved at the cost of
high implementation complexities. In comparison, the LBBu
scheme only requires Bob’s location. Taking the feedback
overhead as an example, the full-CSI scheme requires NA
complex numbers to be fed back, while feeding back Bob’s
location only requires two real numbers. As we can see from
Fig. 6, the performance gap between the LBBu scheme and the
full-CSI scheme increases as NA increases. This demonstrates
the tradeoff between the system performance and the system
complexity.

V. DISCUSSIONS

It is worth mentioning how relaxation of some assumptions
we have made impacts our results. Of course, in reality it
will never be the case that all reported locations, all K map
information, and all path loss exponents are known with zero
error. Errors in these quantities are intermingled in the sense
that an error in one leads to an error in another. We have
attempted to encompass such correlated errors in a range of
additional simulations. Our general result is that a percentage
error of 15% in any of these inputs leads to an approximately
10% percentage error in our reported outage probabilities. For
anticipated error inputs, we can therefore say that our analysis
remains reasonably accurate.

We have assumed that Alice, Bob, and Eve are static.
However, we note that our proposed LBB scheme can be
deployed in mobile environments. Our analysis holds in such
environments as long as Bob and Eve are exposed to a
reasonable sample of the possible channel realizations. This
requires the coherence time of the channel to be much shorter
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than the timescale associated with the receiver mobility. This
timescale is set by the spatial distance over which the channel
changes significantly divided by the relative velocity of the
transceivers. This requirement is met for most application
scenarios of wireless communications [34, 35].

We note that in this work we focus on a 3-node scenario,
which serves as the basis of a networking scenario. For
example, in the networking scenario Alice can serve several
Bob’s by utilizing time division multiple access (TDMA)
techniques (e.g., Alice serves one Bob at each time slot),
and thus the networking scenario can be treated as a 3-node
scenario for each time slot. We would also like to highlight
that we consider multiple antennas at Eve while assuming
that Eve applies MRC to combine the received signals at
different antennas. This latter consideration basically captures
a practical networking scenario with multiple cooperating
single-antenna eavesdroppers. A more detailed exploration of
the many-node networking scenario beyond TDMA schemes
could be considered in future works.

Although the adopted Rician fading channel model is more
general than the Rayleigh fading channel model, in practice
real wireless channels may be more complex again than
Rician fading channels. For example, a wireless channel may
consist of multiple deterministic components and scattered
components. As long as these deterministic components are
known, we can incorporate them into ho and Go in (1) and
(3), respectively. Based on our analysis presented in Section
III-A, we know that the pdfs of γB and γE derived in (16)
and (22), respectively, are still valid when we replace the LOS
component with multiple known deterministic components in
the channel model. This is due to the fact that this replacement
only changes the values of the effective Rician K-factor and
average SNR (e.g., K̃B , γ̃B). As such, our derived secrecy
outage probability of the LBB scheme given in (25) is still
valid for such a replacement.

VI. CONCLUSIONS

We proposed and analyzed a novel beamforming scheme
in the wiretap channel where both the main channel and the
eavesdropper’s channel are subject to Rician fading. Our new
LBB scheme solely requires as inputs the location information
of Bob and Eve, and does not require the CSI of the main
channel or the eavesdropper’s channel being available at
Alice. We derived the secrecy outage probability of the LBB
scheme in an easy-to-evaluate expression valid for arbitrary
real values of KB and KE . We then determined the optimal
location-based beamformer that minimizes the secrecy outage
probability. Comparisons with a range of other schemes were
then carried out so as to better understand the performance
gains offered by our location-based solution. The work we
presented will be important for a range of application scenarios
in which Rician channels are expected to be dominant and
where location information of potential users and adversaries
are known.

APPENDIX A
SECRECY PERFORMANCE OF THE NB SCHEME

In the NB scheme, Alice distributes her total transmit power
uniformly among the NA orthogonal independent transmit
directions (i.e., the covariance matrix of bx is P INA

/NA)
[36, 37]. Then, the SNR at Bob is given by [36, 37]

γNB
B =

γB ||h||2

NA
. (44)

Interpreting Rician fading as a special case of Nakagami
fading, the pdf of γNB

B can be approximated by

fγNB
B

(γ) =
mNAmB

B γNAmB−1e
−NAmBγ

γB

Γ(NAmB)(γB/NA)
NAmB

. (45)

We assume that Eve applies MRC to combine the received
signals at different antenna elements. As such, the SNR at
Eve is given by

γNB
E =

γE ||s
†
0G||2

NA
=
γEλ

2
0

NA
, (46)

where s0 is the NE × 1 eigenvector for the largest eigenvalue
λ0 of G. The theoretical expression for the distribution of
λ20 has been derived in [38]. However, this expression is too
complicated to be used for further analysis. To make progress,
we adopt the simple approximation for the pdf of λ20 proposed
in [39]. As such, the pdf of γNB

E can be approximated by

fγNB
E

(γ) =
(NAmE)

NANEmEγNANEmE−1

Γ(NANEmE)(γEλ0)
NANEmE

exp

(
−NAmEγ

γEλ0

)
,

(47)

where λ0 is the mean of the per-branch largest eigenvalue (i.e.,
λ0 = E[λ0]/NANE). The value of λ0 can be approximated
by [39]

λ0 =


KE

KE+1 + 1
KE+1

NA+NE

NANE+1 , KE ≥ 0.5,(
NA+NE

NANE+1

) 4−KE
6

, KE < 0.5.
(48)

We note that we have λ0 = 1 for arbitrary real KE when
NE = 1.

Following a similar procedure to that used in deriving
O(Rs) in Theorem 1, the secrecy outage probability of the
NB scheme is derived as

ONB (Rs)=

∫ ∞

0

fγNB
E

(γE)

[∫ 2Rs (1+γE)−1

0

fγNB
B

(γB)dγB

]
dγE

=
mNAmB

B mNANEmE

E 2NAmBRs

Γ(NANEmE)γ
−NANEmE

B (γEλ0)
−NAmB

×

+∞∑
n=0

mn
B2

nRs exp

(
−NAmB(2Rs−1)

γB

)
γnBΓ(NAmB + n+ 1)

×

+∞∑
l=0

(
NAmB+n

l

) (
2Rs−1

)l
N−l
A 2lRs

×

(
γBγEλ0

)n−l
ΓG(NAmB +NANEmE + n− l)(

2RsmBγEλ0 +mEγB
)NAmB+NANEmE+n−l . (49)



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. X, NO. X, MONTH, YEAR. 11

As per (49), we can see that the secrecy outage probability
of the NB scheme is independent of θB and θE . However,
(49) is a function of γB and γE , which are dependent on dB
and dE , respectively.

APPENDIX B
SECRECY PERFORMANCE OF THE FULL-CSI SCHEME

In the full-CSI scheme Alice knows the CSI of the main
channel, but does not know the CSI or location of Eve. Then,
Alice adopts h†/∥h∥ as the beamformer b to maximize the
SNR of the main channel [37, 40] in order to minimize the
secrecy outage probability.

Following a similar procedure to that used in deriving
O(Rs) in Theorem 1, the secrecy outage probability of the
full-CSI scheme is then derived as

OCSI(Rs)=

∫ ∞

0

fγCSI
E

(γE)

[∫ 2Rs (1+γE)−1

0

fγCSI
B

(γB)dγB

]
dγE

=
mNAmB

B m̈NEm̈E

E 2NAmBRs

Γ(NEm̈E)γ
−NEm̈E

B γ̈
−NAmB

E

×

+∞∑
n=0

2nRs exp

(
−mB(2Rs−1)

γB

)
m−n
B γ̈

−n
E Γ(NAmB + n+ 1)

× (50)

+∞∑
l=0

(
NAmB+n

l

) (
2Rs−1

)l
ΓG(NAmB+NEm̈E+n−l)(

γB γ̈E
)l
2lRs

(
2RsmB γ̈E + m̈EγB

)NAmB+NEm̈E+n−l ,

where m̈E = (K̈E + 1)2/(2K̈E + 1),

K̈E =
KBKE |goh†

o|2

NA(KB +KE + 1)
, (51)

and

γ̈E =
KBKE |goh†

o|2+NA(KB+KE+1)

γ−1
E NA(KB + 1)(KE + 1)

. (52)
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