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Abstract

Over the past decade, studies in our laboratory have established that i) compared to
systemic route of delivery, mucosal delivery of recombinant fowlpox virus (rFPV)
prime can induce excellent high avidity mucosal/systemic HIV-specific CD8" T cell
immunity, ii) this was associated with IL-4/IL-13 cytokine milieu and iii) transient
inhibition of IL-13 at the vaccination site can recruit unique lung dendritic cell (DC)
subsets, responsible for the induction of high quality CD8" T cell immunity. Therefore,
to understand which cells at the vaccination site was the predominant source of IL-13
was assessed by evaluating the different cells at the vaccination site, specifically innate
lymphoid cells (ILC) following rFPV vaccination with and without transient inhibition
of IL-13. These studies for the first time revealed that ILC2 were the main source of IL-
13 at the vaccination site (24 h post vaccination) responsible for inducing high quality T
and B cells immune responses reported previously. Intranasal vaccination induced
ST2/IL-33R* ILC2 in lung, whilst intramuscular vaccination exclusively induced IL-
25R™ ILC2 in muscle. Moreover, adjuvants that transiently inhibited IL-13 at the
vaccination site significantly influenced the IFN-y expression by ILC1/ILC3 indicating
that ILC2-derived IL-13 at the vaccination site also modulated ILC1/ILC3

function/activity.

As intranasal and intramuscular vaccinations induced different ILC2 subsets, two rFPV
vaccines co-expressing adjuvants that transiently sequestered 1L-25 and IL-33 at the
vaccination site (rFPV-IL-12BP and rFPV-IL-33BP) were used to further evaluate ILC
development following vaccination. Unlike IL-13 inhibitor vaccination conditions,
intranasal delivery of 1L-25BP adjuvanted vaccine induced not only ST2/IL-33R* ILC2

but also IL-25R* and TSLPR™ ILC2 subsets that were able to express IL-13. Moreover
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TSLPR* ILC2 subset was also able to express IL-4. Interestingly, intranasal delivery of
IL-25BP also induced significantly elevated number of NKp46* ILC1/ILC3 expressing
IL-17A compared to IFN-y, unlike the unadjuvanted or IL-13 inhibitor conditions.
Taken together, these inhibitor studies indicated that IL-25 play a fundamental role in
early ILC development than IL-33, suggesting that there is a hierarchical regulation of

ILC development, where IL-25 is most likely the master regulator of ILC.

Data also revealed that ILC and their cytokine expression profiles were vastly different
during permanent verses transient blockage of 1L-13, and STATG6 at the vaccination site.
STAT6” mice given the FPV-HIV vaccine showed elevated ST2/IL-33R* ILC2-driven
IL-13 expression whilst reduced IFN-y expression by both NKp46*" ILC1/ILC3, unlike
transient blockage of STAT6 which showed the opposing effect. When IL-137 mice
were vaccinated with FPV-HIV significantly elevated lung lineage” ST2/IL-33R™ ILC2s
were detected compared to BALB/c mice given the FPV-HIV-IL-13Ra2 adjuvanted
vaccine (transient inhibition of IL-13), and their NKp46*" ILC1/ILC3-driven IFN-y
expression was significantly lower compared to transient inhibition of STAT®6. In
previous studies when IL-13 was inhibited, no or low antibody differentiation has been
reported, unlike STATG6 inhibition. Thus, current data further corroborated that ST2/IL-
33R* ILC2-derived IL-13 play a crucial role in modulating downstream B cell immune
outcomes. Specifically, co-regulation of ST2/IL-33R* ILC2-derived IL-13 and NKp46*"
ILC1/ILC3-derived IFN-y may play an important role in modulating antibody

differentiation process in a STATG6 independent manner via the IL-13Ra2 pathway.

When trying to understand the molecular mechanism involved in this process, data
revealed that the expression of IL-13Ra2, type | and Il IL-4Rs on ST2/IL-33R* ILC2

and NKp46™ ILC1/ILC3 were co-regulated 24 h post intranasal rFPV vaccination.
X



Inhibition of STAT6 signalling significantly impacted the IL-13Ra2 expression on both
ST2/IL-33R*" ILC2 and NKp46™ ILC1/ILC3, unlike IL-13 inhibition, suggesting that
under STAT6 inhibition conditions, IL-13 could signal via IL-13Ra2 pathway. As
elevated number of ST2/IL-33R™ ILC2 expressing IL-13Ra2 were detected in BALB/c
mice given the FPV-HIV-IL-4R antagonist vaccine, this also indicated an autocrine
regulation of IL-13 at the ILC2 via IL-13Ra2. The 11-4/IL-13 receptor expression
profile on NKp46* ILC1/ILC3 and NKp46~ ILC1/ILC3 were vastly different, suggesting

that these cells may play different roles in downstream immune outcomes.

Collectively, findings in this thesis demonstrated that i) ILC activity is significantly
modulated by route of vaccine delivery and vaccine adjuvants early as 24 h post
vaccination, ii) When designing vaccines against chronic pathogens, understanding the
fundamental roles of ILC at the vaccination site may help design better vaccines in the
future, iii) IL-25 regulated initial development/differentiation of all ILCs and IL-33
most likely only play a role in ILC2 homing to the lung mucosae, iv) Post viral vector
vaccination ILC-derived IL-13 and IFN—y balance was crucial for shaping the
downstream immune outcomes, v) The IL-13 regulation at the ILC level occurred via an
STATG6 independent pathway, most likely IL-13Ra2 (due to low IL-13 conditions). In
conclusion, this work has provided unique insights into ILC function and activity during
viral vector vaccination, that could be used to tailor vaccine vectors to induce effective

Immune outcomes against target pathogens (for example TB verses an HIV vaccine).
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Chapter 1.

General Introduction.






1.1 The immune system overview diary.

Humans and animals are continually exposed to microbes and harmful substances that
are inhaled, swallowed, or inhabit the skin and mucous membranes. Whether these
microbes and substances threaten normal homeostasis depends on their pathogenicity
and the host defence mechanisms, which forms the immune system. The immune
system is divided into two compartments determined by the speed and specificity of the
responses. The innate immune system induces responses that are rapid but non-specific
whilst the adaptive immune system is slow and induce pathogen-specific responses!

(Fig. 1.1).

1.1.1 Innate immune system.

The physical, chemical, and microbiological barriers are the crucial first line of defence
against pathogen invasion? (Fig 1.2). For example, the skin, gastrointestinal, respiratory,
and urogenital tracts contain epithelial cells which are joined by tight junctions and
form an effective seal against the external environment. The internal epithelia are also
known as mucosal epithelia because of their ability to secrete mucus® 4, comprised of
antimicrobial peptides, fatty acids, enzymes (specifically, lysozymes), a-defensins and
B-defensins. Moreover, healthy epithelial surfaces also contain a large number of non-
pathogenic bacteria, known as the microbiota® . Microbiota also helps strengthen the
barrier functions of the epithelia by producing antimicrobial substances, such as lactic
acid. There are also cells in the innate immune compartment, which express different
sensing receptors, such as macrophages that express Toll-Like Receptors (TLRs). TLRs
can recognise pathogens by binding their Pathogen Associated Molecular Patterns
(PAMPs)’ to initiate defence against microbial pathogens. Moreover, antiviral activity
induced by type | interferons (IFN) also play a crucial role in the innate immune

system® 910,
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The innate immune system is comprised of a large number of cellular and humoral
elements (Table 1.1). Most of these elements in the innate system are present before the
onset of an infection, however these protective mechanisms are not pathogen specific.
Key cells that are involved in this process include mast cells, macrophages, natural
Killer cells (NK cells), dendritic cells, monocytes, granulocytes, and also the newly
discovered cytokine producing lineage negative cells known as innate lymphoid cells
(ILC)- 12131415 (Fig, 1.3). Macrophages are activated by a variety of stimuli such as
LPS, peptidoglycans and cytokines. Once they are activated, macrophages exhibit
greater phagocytic activity and present antigen to Tx cells which makes macrophages an
important connection between the innate immune system and the adaptive immune
system. NK cells contain special proteins such as perforin and serine proteases known
as granzymes that have the ability to destroy the pathogen. The NK cells play a
significant role in defence against viruses and also produce two anti-viral cytokines
IFN-y and TNF-a.. Dendritic cells are the major antigen presenting cells in the innate
compartment. According to the immune compartment (skin, lung and digestive tract,)
resident DC subsets can be vastly different, upon activation these DCs migrate to lymph
nodes, and present antigens to T cells and initiate the adaptive immune cascade. The
cytokines produced in the innate compartment by different immune cells play an
important role at the first line of defense®® activating the DC and macrophages shaping

the downstream adaptive immune outcomes (Fig 1.4).

1.1.2 Adaptive immune system.

The vast variability of antigenic structures and their ability to mutate to avoid host
defence mechanisms have driven the evolution of the adaptive immune system'’. Unlike
the recognition receptors of the innate immune system, which are invariant, and

germline encoded, the adaptive immune responses rely on receptors that are generated

6
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by random somatic gene segment rearrangement®® 19 2021, 22,23 - After jnitial pathogen
encounter, cells expressing these receptors can persist in the host for life, providing

immunologic memory and capacity for rapid response in the event of re-exposure®.

Cells of the adaptive immune system include the effectors of cellular immune responses,
the T lymphocytes, which mature in the thymus, and antibody-producing cells, the B
lymphocytes, which arise in the bone marrow?® 26, These T and B lymphocytes use their
antigen-specific receptors to drive targeted effector responses in two stages (Fig. 1.5).
First, the antigen is presented to T or B cells by APC, and then T and B cells begin to
prime, activate, and differentiate. This stage usually occurs in specialised environment
of lymphoid tissues. Second, the effector response takes place, where activated T cells
leave the lymphoid tissue and home to the site of infection, and similarly the activated B

cells start to produce antibodies which can be found in blood and tissue fluidst: 24 25 26.

27,28

1.2 The mucosal immune system.

The mucosal immune system is the first line of defence in humans and higher animals.
It consists of a single-layer epithelium covered by mucus and antimicrobial secretes and
fortified by both innate and adaptive components of host defence?® (Fig. 1.6). Mucosal
epithelium acts as a physical, chemical and a protective barrier, sensing and eliminating
harmful pathogens (Fig. 1.6). The mucus secreted by goblet cells, forms a dense
protective layer covering of the entire mucosal epithelium®. The paneth cells are able to
produce anti-microbial peptides or a-defensins, and epithelial cells produce 3-defensins
for host protection®" 32, A network known as the mucosa-associated lymphoid tissue
(MALT), plays an important role in initiating mucosal adaptive immune outcomes®,
According to the anatomical location, the MALT is divided into gut-

10
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associated lymphoid tissue (GALT), nasopharynx-associated lymphoid tissue (NALT),
bronchus-associated lymphoid tissue (BALT) and urogenital associate lymphoid tissue

(Fig. 1.7).

GALT, is comprised of several lymphoid nodules; Peyer’s patches, isolated lymphoid
follicles, cryptopatches, and lymphoglandular complexes®. Peyer’s patches are
extremely important for the initiation of immune responses in the gut, which contain
large number of B cell zones and also small number of T cell zones*. The subepithelial
dome areas of Peyer’s patches are rich in dendritic cells, T cells, and B cells. The
isolated lymphoid follicles, located on the antimesenteric border of the small intestine
are very similar to Peyer’s patches and contain B cell follicles and an overlying follicle-
associated epithelium containing microfold cells (M cells), and also scattered dendritic
cells with few macrophages® 3. The M cells are unique to the mucosal compartment,
which have a folded luminal surface and do not secret digestive enzymes or mucus and
lack microvilli unlike other mucosal epithelial cells (Fig. 1.8). M cells are directly
exposed to micro-organisms and particles within the gut lumen and help antigen enter

the Peyer’s patches (Fig. 1.8)%.

The NALT is composed of paired lymphoid aggregates in the caudoventral portion of
the left and right nasal passages at the entrance to the nasopharyngeal duct®*. Compared
to gut Peyer’s patches, there are fewer intraepithelial lymphocytes in NALT, and the
relative T and B cell zones areas are roughly equal in the NALT, unlike in the GALT
where number of T cell zones are lower than B cell zones*. Similar to GALT, the
lymphoepithelium of NALT also contains M cells®. BALT and urogenital associated

lymphoid tissue also contain M cells. These M cells are known to uptake and present

13
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antigens to mucosal dendritic cells, which in turn present antigens to T cells and initiate

T cell homing®,

1.3 Current state of HIV vaccines.

Since the first characterisation of Human Immunodeficiency Virus (HIV) and Acquired
Immune Deficiency Syndrome (AIDS) in 1981%, more than 25 million people have
died of the disease®’. Currently according to WHO there are 36.7 million people living
with HIV and 1.2 million have died in 2016 (UNAIDS global report 2017). Although
effective anti-retroviral therapy is currently available, to effectively combat HIV, a
vaccine with high efficacy is urgently needed, which is the only cost-effective solution,
specifically in the developing countries. It is now well established that HIV is a mucosal
infection as the transmission mainly occurs via the genito-rectal mucosae*. HIV infects
CD4" T cells, and the first CD4* T cells depletion occurs in the gut*!. Interestingly,
despite HIV being a mucosal infection, not many mucosal vaccine strategies have been
tested in the clinic. The main difficulties of HIV vaccine development have been
associated to i) the diversity of HIV, the virus having different clades and makes it
difficult to design a universal vaccine; ii) inability to induce effective neutralising
antibodies; iii) viral latency, due to viral integration to the host genome; and iv) inability
to design an effective vaccine that target both the mucosal and the systemic

compartments 4243, 44,45,

Over the past three decades, all human HIV clinical vaccine trials have used systemic
route of delivery, and all these vaccines have yielded poor outcomes in humans (Table
1.2). Early clinical trials of HIV vaccines attempted to use recombinant subunits or
synthetic peptide fragments to elicit neutralising antibodies against viral antigens, such
as Env proteins gp120 and gp41. These vaccines although induced strong antibody

16



Koeorgge ON 11 sn $00 XVA !
Koroyge oN 111 pue[rey €00 XVA !
Kovoyggs ON qI vSd €0S NLAH E
J[SL1 UONORJUI JUDIsUE) *KOBOLJA ON qIr sn 70S NLAH E

Ajres paddogs “‘Aoeoryye oN qIl sn S0S NLAH SPV-VNA

Korowge %1€ I pue[reyL byl AY ur)oxd-x04

*S[ELI) JUIIIBA ATH uewiny [ pue II dseyd pajodpas Jo sojdwexy *7°1 dqelL



binding showed no neutralising ability, or CD8" T cell immunity*® 4. Following the
VAX 004 trial using a recombinant HIV envelope glycoprotein subunit (rgp120) and a
second envelope in alum adjuvant also showed no differences in protective efficacy
among 3598 vaccines and 1805 placebo recipients* 4% 5%, WVAX 003 trial which used a
similar approach also showed no protective efficacy® ®2. DNA and adenovirus vector-
based vaccines although successful in the animal models have yielded poor outcomes in
humans® %4, The Thai phase RV144 trial which used recombinant canarypox prime
followed by several gp120 Env boosters, has been the only trial that has shown any
protective efficacy in humans (31%)%. In this trail, the partial protection was mainly
associated with Env-specific 1gG antibodies not IgA, or CD8* T cell responses®® °’,
Thus, it is now established that a vaccine strategy that can induce both high quality
mucosal/systemic T cells and B cell immunity may be needed to induce full protection

against HIV.

1.4 Mucosal HIV vaccines.

It is now well established that to induce effective, long-lasting mucosal immunity, a
vaccine needs to be delivered to the mucosae, for example: intranasal, oral, rectal or
intravaginal routes of delivery®® ° (Fig. 1.9a), and systemic vaccination is unable to
induce effective sustained immunity at the mucosae®® . Studies have now clearly
established that following vaccination the adaptive immune responses can be
significantly manipulated by the route of delivery, vaccine adjuvants/vectors, and the

cytokine milieu at the vaccination site®!: 62 63,64,

1.4.1 Vaccine vectors and routes of vaccine delivery.

Even though recombinant DNA vaccine strategies have shown to induce good immune

responses against HIV in animal models® % 87 they have not been effective in clinical
18



trials, mainly due to their poor up-take. Specifically, mucosal delivery of DNA vaccines
has not been effective in both animals and humans® . These complexities lead to the
development of a range of live recombinant viral vector-based vaccines to deliver
vaccine antigens against many chronic pathogens (for example malaria, HIV and TB)®%
69.70. 71,72 'For example, in the context of HIV, the Thailand RV 144 trial which showed
partial protective efficacy (31.2%) used recombinant canarypox vector-based vaccine
prime followed by several recombinant gp120 subunit vaccine booster vaccines. Also,
in this trial, heterologous prime-boost vaccination was proven to be more effective than

the use of recombinant HIV vaccine vector alone.

It is now well established that the route of delivery can significantly modulate the
adaptive immune outcomes®® ®: 52, Specifically, although nasal vaccination can induce
immunity in the upper respiratory tract, gut and the genito-rectal mucosae; oral
vaccination has shown to induce poor or no immunity in the genito-rectal mucosae.
Similarly, rectal immunisation can induce immunity in the rectum and larger intestine,
whilst vaginal vaccination only can induce immunity in the vagina® (Fig. 1.9b).
Interestingly, systemic vaccination (for example intramuscular deliver), has shown to
induce effective systemic immunity with transient immunity in the mucosae® > 7,
Thus, given that most instances HIV initially encounters the host via the mucosae, when
designing HIV vaccines, it is now established that a strategy that can induce strong
sustained immunity in the mucosae, such as intranasal or intra rectal delivery would be

of importance.

Our laboratory has performed extensive studies over a decade to understand different

immune outcomes following different routes of prime-boost vaccination (systemic vs

19
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mucosal) and the different vector combinations (for example recombinant DNA (rDNA),
recombinant fowlpox (rFPV), Modified Vaccinia Ankara (MVVA) and recombinant

vaccinia virus (rVV) in mouse and non-human primate models®® * 7®. These studies
have shown that i) rFPV is an excellent mucosal delivery vector compared to rDNA,
rMVA or rVV® 7. ii) Intramuscular (i.m.) rDNA/intranasal (i.n.) rFPV prime-boost
vaccine strategy can induce elevated HIV-specific systemic as well as mucosal T cell
responses and 1gG1, 1gG2a and mucosal 1gG, SIgA responses in mouse and macaque
models®® %; iii) However, unlike rDNA prime-boost strategy, i.n. rFPV/i.m. rvV
strategy can induce strong sustained HIV-specific CD8" T cells with higher avidity and
better protective efficacy®® 7, iv) When designing viral vector-based vaccines vector
combination plays an important role, where rFPV prime/rVV booster or influenza
booster induce high avidity T cells whilst rVV or influenza prime induce low avidity T
cell immunity’® and v) The route of vaccine delivery plays a crucial role in modulating
avidity and magnitude of T cell responses™ where systemic delivery (intramuscular)
induce low avidity HIV-specific CD8 T cells whereas, mucosal delivery (intranasal) can
induce high avidity HIV-specific CD8" T cells and this was associated with the level of

IL-4 and IL-13 expressed by CD8 T cells™"’.

1.4.2 Cytokine cell milieu.

Ranasinghe et al for the first time demonstrated that pure systemic route (intramuscular
- i.m.) of vaccination can generate lower avidity of HIV-specific CD8" T cells with
higher levels of I1L-4 and IL-13 production compared to pure mucosal (intranasal — i.n.)
or mucosal/systemic routes (i.n./i.m.) of vaccination’’. Using IL-4 gene knock-out (IL-
47 and IL-13 gene knock-out mice (IL-13"), studies have shown that IL-4"- and 1L-13
" mice are able to generate CD8* T cells with higher avidity compared to WT mice

given the same vaccination (i.n. FPV-HIV/i.m. VV-HIV)"’. Furthermore, these studies

22



showed that IL-4 and IL-13 can significantly dampen CD8a expression on anti-viral
CD8* T cells, and reduce poly-functionality of these T cells (ability to produce a range
of anti-viral cytokines- which is a hallmark of protective immunity)’®. Furthermore,
these studies also established that following viral infection down regulation of IL-4
receptors o (IL-4Ra) is associated with the induction of higher avidity CD8" T cells.
These studies clearly demonstrated that route of vaccination and I1L-4/IL-13 levels play

a detrimental role in modulating the quality of CD8" T cells.

1.5 IL-4 and IL-13 signalling pathway.

IL-4 and IL-13 are two cytokines at the centre of type-2 inflammation, and since their
discovery have been linked to allergy, asthma and atopic diseases 8 . IL-4 and IL-13
are secreted by CD4"* T cells®> 83 CD8" T cells® 88 mast cells and basophils®” 8889,
In the last decade, the newly identified innate immune cell type 2 (ILC2) has also

shown to express IL-13 and also IL-4 under certain conditions®® .

IL-4 and IL-13 signal via a complex receptor system® (Fig. 1.10). The type | IL-4
receptor complex consists of the IL-4 receptor a (IL-4Ra) and common gamma chain
(yC). The type Il 1L-4 receptor complex contains IL-4Ra and 1L-13 receptor ol (IL-
13Ra1)®. 1L-4 can signal via both type | and type 1l receptor complex by binding IL-
4Ro with very high affinity and then resulting in the recruitment of either yC or IL-
13Ra1%* %, followed by the initialization of Janus Kinase/Signal Transducer and
Activator of Transcription 6 (JAK/STAT6) signalling® °" ® (Fig. 1.10). It is also
thought that under certain conditions IL-4 can also signal via the Insulin Receptor
Substrate-1/2 (IRS-1/2) pathway®" 9% 100 101 102" followed by the activation of

Phosphoinositide 3-kinase (P13-K)?!03: 104,105,

23
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Protein kinase B (also known as AKT)6: 107, 108, 109 and NF-xB-driven gene
transcriptiont!® 11 1L-13Ral is not only a subunit of the type Il IL-4 receptor complex,
but also the ligand binding subunit for IL-13. 1L-13

binds IL-13Ral with low affinity leading to recruitment of the IL-4Ra subunit and the

activation of JAK/STATG signalling pathway®.

IL-13 can also bind to IL-13 receptor a2 (IL-13Ra2) with high affinity (pM
conditions)!*2, The IL-13Ra2 is considered as a decoy receptor for IL-13 in mice (not in
humans) due to the lack of cytoplasmic tail signalling motifs'!2. However, recent studies
in our laboratory have shown that this may not be a decoy receptor even in mice!3, In
mice, IL-13Ra2 is found as a cell surface form and a soluble form!* 15 put only the
cell surface form is found in human'®. Studies have shown that IL-13Ra:2 can bind to
IL-4Ra. and inhibit IL-4/1L-13 signalling via the IL-13Ral/IL-4Ra. type Il complex and
JAK/STAT6 pathway!!” & 119 120 Also jn  cancer studies IL-13Ra2
activation/signalling has been associated with TGF- production in the absence of

functional IL-4Ra/*?L.

1.6 IL-4R antagonist and IL-13Ra2 adjuvanted mucosal HIV vaccines.
Knowing that low IL-4 and IL-13 can induce high avidity HIV-specific CD8* T cells
and this is vaccine route dependent™ 7, |in order to manipulate I1L-4/IL-13 levels at the
vaccination site, two pox viral vector-based vaccines were designed in our laboratory, i)
IL-4R antagonist vaccine and ii) IL-13Ra2 adjuvanted vaccine. Both these vaccines
were able to transiently inhibit IL-4 and/or 1L-13 activity at the vaccination site!'® 122
(Fig. 1.11). The IL-13Ra2 adjuvanted vaccine co-expressed HIV antigens together with
soluble IL-13Ra2, which could sequester 1L-13 at the vaccination site, when given to

26



wild type BALB/c mice were able to behave very similar to an IL-13 knockout
animal*?? (Fig. 1.11a). The IL-4R antagonist adjuvanted vaccine that co-expressed HIV
antigens together with C-terminal deletion mutant of the mouse IL-4 (which is the
essential tyrosine required for signalling), was able to bind to both type I and type Il IL-
4 receptor complex with high affinity, and transiently block both IL-4 and IL-13

signalling via the STAT6 pathway!*® (Fig. 1.11b).

Using an intranasal/intramuscular prime-boost immunisation strategy, the IL-13Ra2
adjuvanted vaccine was shown to induce enhanced systemic HIV-specific CD8" T cells
with high avidity, broader cytokine and chemokine profiles and greater protective
immunity*?2. This vaccine was also shown to induce excellent poly-functional mucosal
CD8" T cell responses in lung, genito-rectal nodes and Peyer’s patch??. Interestingly,
the IL-4R antagonist adjuvanted vaccine was not only able to induce enhanced
mucosal/systemic HIV-specific poly-functional CD8* T cells with high avidity, but also
induce robust HIV gag-specific IgG1 and 1gG2a antibody responses, unlike IL-13Ra2
adjuvanted vaccine where low antibody differentiation was detected!®. Later studies in
the laboratory showed that IL-4 and IL-13 levels at the vaccination site significantly
modulate dendritic cell function. Specifically, using IL-13 and/or IL-4 inhibitor
vaccines and 1L-13" mice, Trivedi et al. have demonstrated that low level of 1L-13
and/or IL-4 induced elevated numbers of CD11b" CD103" conventional dendritic cells
(cDC) at the lung mucosae!?® associated with the induction of high avidity, poly-
functional HIV-specific CD8* T cells!??2, While high level of IL-13 and/or IL-4
associated with rVV and rMVA vaccination induced reduced numbers of CD11b*
CD103" dendritic cells, but elevated recruitment of cross presenting CD11b- CD103*
dendritic cells which were directly linked to induction of poor quality HIV-specific
CD8* T cells!®,
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It is now established that HIV elite controllers, small number of individuals who
naturally control HIV infection, possess high avidity HIV-specific CD8" T cells as well

as gag-specific antibodies with excellent ability to antibody differentiate!?* 12° 126 The
immune outcomes of observed specifically with IL-4R antagonist adjuvanted vaccine,
in murine and macaque models (Khanna, Ranasinghe et al in preparation) indicate that
this vaccine strategy may have high potential to be a successful HIV vaccine in the
future. This lead to the important question, “what cells at the vaccination site produces
IL-13 24 h post vaccination which are responsible for shaping the downstream immune

outcomes?”” which forms the basis of this thesis.

1.7 Innate lymphoid cells (ILCs).

ILCs are a newly identified heterogeneous population of cells with diverse activity in
the immune system??’. 128. 129, 130 (Fjq  1.12). However, these cells neither express
lymphoid differentiation lineage markers which means they are lineage- nor antigen
receptors which make them different from T cells and B cells?® 131, 132,133, 134,135, 136, 137
ILCs are classified as innate cells because they do not require the recombination
activating genes RAG1 or RAG2 expression for their development, but since they are
derived from the common lymphoid progenitor (CLP), they are considered as lymphoid
cells!®, and were named as innate lymphoid cells. The ILC population is generally
divided into three distinct groups ILC1, ILC2, and ILC3 on the basis of similarity in

their cytokine production, development requirements and phenotypic markerst32 139,140

141

1.7.11LC2.

ILC2 are classified based on their ability to produce T helper 2 (Th2) cell associated

cytokines including IL-5, 1L-9, 1L-13 and 1L-4*%2 142 and respond to 1L-25, I1L-33 and
32
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thymic stromal lymphopoietin (TSLP)?" 128, 129, 134,135,143, 144, 145 Cyrrently, ILC2 are
divided into three subsets according to receptors they express, IL-33R/ST2*, IL-25R",

or TSLPR". ILC2 are known to express of CD127, IL-33R (ST2), ICOS, Sca-1, and
lack other lineage markers!#6:147:148 The transcription factor GATAZS is often used as an
intracellular marker to define 1LC24°, ILC2 are thought to be tissue resident, and large
populations are found in the intestine and lung®®" 142 146, 150, 151 "Dye to their Th2
cytokine production, specifically IL-5, IL-9, IL-13, and IL-4; ILC2 have been well

studies in type 2 inflammation, helminth infections and allergic asthma /inflammation

134, 135, 136, 146, 147, 152 (Fjy 1.13).

1.7.2 ILC1 and ILC3.

ILC1 are defined based on their capacity to produce type 1 cytokines especially IFN-y'32
142 Some studies have also considered the conventional nature killer (NK) cells to be
one subset of ILC1 28153 |n fact, despite ILC1 and NK cells have the ability to produce
IFN-y and surface marker NKp46 (NKp44 in humans), they have several distinct
features. Notably, NK cells are lineage* cytotoxicity cells® while ILC1 are lineage-
non-cytotoxicity IFN-y producing cells!4? 155 16 Secondly, NK cells are present in
numerous sites as they recirculate between the blood and tissues, whereas ILC1 are
thought to be tissue resident 40 150, 156, 157, 158, 159, 160, 161,162 1] C1 have been associated
with the induction of immunity against intracellular bacteria and parasites 40 155 156,163

(Fig. 1.14).

ILC3 were initially described in human tissues as mucosal-associated lymphoid cells
that express NKp44 and produce 1L-22%4. Currently, three ILC3 subsets have been
discovered based on the expression of various markers and cytokines, i) lymphoid tissue

inducer (LTi) cells, ii) NKp46~ ILC3 and iii) NKp46* ILC3'?8 165166 || C3 can respond
35
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to IL-1p and IL-23 and produce IL-17A, IL-22 and also IFN-y, and these cells have
been shown to play important roles in antibacterial immunity, chronic inflammation and
tissue repairi®+ 167. 168, 169, 170 (Ejg 1 15). Interestingly, according to the stimuli they

encounter ILC3 have shown to be highly plastic!63 165 166,

1.7.3 ILC development.

ILCs derive from bone marrow lymphoid progenitors (CLP)40: 174 172,173, 174, 175, 176, 177
Downstream of the CLP is the common innate lymphoid progenitor (CILP) which gives
rise to all the different ILC subtypes and conventional NK cells but not T or B cells!‘®
173,178,119 "The transcriptional regulator inhibitor of DNA binding 2 (1d2) is essential for
the CILPs to develop into common helper innate lymphoid cell progenitors (CHILP)
(Fig. 1.16)13+ 178180 and I1d2 is expressed in high amounts in all ILC lineages'*® 18!, The
CHILP consists of both promyeloid leukaemia zinc finger (PLZF)* and PLZF
progenitors**® 182 and they give rise to all ILC subsets including the LTi cells**® but not
conventional NK cells!*°, Further development and differentiation of ILC is driven by
the activation of different transcription factors including GATAS3, retinoic acid receptor-

related receptor-o. (RORa), T-bet, and RORyt40: 141,149,183, 184, 185, 186, 187 (Fjg 1 16).

1.7.4 ILC in inflammation and asthma.

Since the discovery of ILC, these cells have been intensively studied in inflammation
and asthma. Specifically, due to the expression of Th2 cytokines, ILC2 have been
widely studied in inflammation 2> 132, |[LC2 have been shown to respond to cytokines
IL-25, IL-33, and TSLP and play an important role in type 2 inflammation by producing
IL-5, IL-9, IL-13 and IL-4188 189 1%, 191,192,133 |n the |esions of atopic dermatitis
patients, TSLP has been shown to expand ILC2s'® 1%, |Interestingly, studies have

shown that ILC2 can also cooperate with dendritic cells and CD4* T cells at mucosal
38
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sites to regulate T cell responses in allergic airway inflammation condition®® %7, 1LC1
and IFN-y producing ILC3 have also been reported to have the ability to induce

inflammation in mice®®® 79 Also, IFN-y producing ILCs and I1L-17A producing ILC3
have been shown play a significant role in inflammatory bowel disease for example;
Crohn’s disease!®™ 156 170. 198 gpecifically, IL-22 producing ILC3 have been shown to

promote tissue repair and regeneration of inflamed intestine!®.

1.7.5 ILC in parasitic and helminth infections.

ILC have also been shown to play an important role in immune responses against
parasite and helminth infections. Specifically, I1L-13 produced by ILC2 have been
associated with inflammatory responses against extracellular helminth and parasitic
infections? 132290 For example, following infection with Nippostrongylus brasiliensis
parasite in mice ILC2 have shown to be the dominant source of IL-13 apart from T
cells!®. In the context of cerebral malaria infection, exogenous IL-33 was shown to
promote expansion of ILC2 that produced type-2 cytokines (IL-4, IL-5 and IL-13) and
prevented the development of experimental cerebral malaria in mice with down
regulation of inflammatory mediators such as IFN-y, IL-12 and TNF-a?%l. Moreover,
ILC2 have also been shown to play an important role in controlling filarial infection and
related humoral responses?®? 203, In the context of parasite and helminth infections,
ILC1 are thought to be the main producers of protective IFN-y and TNF-a at the early

stage of infection (eg; Toxoplasma gondii infection)?*,

1.7.6 ILC in viral infection.

Although ILC have been studied intensively in inflammation and asthma conditions, not

much attention has been given to ILC activation/function following viral infection.
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Studies of influenza virus!® 1° and rhinovirus infection?® have shown that ILC2 play
an important role in exacerbating asthma responses and tissue repair following viral
infection4® 295 Interestingly, ILC also have been shown to play a role in HIV-1
infection. For example, a recent study has shown that all ILC subsets were depleted
during both acute and chronic HIV-1 infection and it was associated with epithelial gut
breakdown?®. Moreover, depletion of ILC3 in the GALT was also detected during
acute SIV infection in macaques®”’. These findings suggest that ILC most likely play an
important role in HIV-1 infection/pathology. Interestingly, how the different ILC
derived cytokines profiles are modulated during viral infection/vaccination is poorly

understood.

1.7.7 Plasticity of ILCs.

Recent studies into ILC, indicate that there is high plasticity between the different ILC
subsets (Fig. 1.17), making it difficult to classify the different ILC subsets under
different conditions. The first observations of high plasticity of ILC were observed
between ILC1/ILC3, and ILC1/ILC3 can differentiate to each other under certain
conditions?®® 208 209 Stydies have shown that under IL-12 and IL-23 stimulation
conditions subset of RORyt" ILC3 can down regulate RORyt and increase T-bet and
IFN-y expression!63 166, 208,209, 210 ' Noreover, Bernink et al have shown that CD127*
ILC1 can differentiate to ILC3 in the presence of I1L-2, IL-23, and IL-18%%. Similarly,
high plasticity of ILC2 has also been reported and ILC2 can differentiate to both ILC1
and ILC3. For example, ILC2s isolated form human blood, when cultured in the
presence of IL-1p were shown to express IL-12 receptor. Interestingly, when IL-12 was
then added into the culture condition, these ILC2 were shown to express IFN-y, and

down regulate IL-5 and IL-13 expression?!!, In another study following influenza virus
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infection, upon stimulation with 1L-12 and IL-18, ILC2 were shown to down regulate
GATAS3 expression and convert to ILC1 and express IFN-y?*2, Moreover, another study
has shown that under IL-6 and transforming growth factor-f§ (TGF-f3) culture condition,

ILC2 can become ILC3-like cells and produce IL-17A%'3 (Fig. 1.17).

These recent studies clearly indicate that the current understanding of ILC is limited,
and the ILC regulation following inflammation and vaccination/infection could be
vastly different. Specifically, ILC plasticity/regulation most likely is dependent on

different stimulation conditions, which forms the basis of this thesis.

1.8 Scope of this PhD thesis.

Viral vector-based vaccine studies in our laboratory for the last decade have shown that
IL-13 plays a crucial role in modulating the efficacy of a vaccine in a route dependent
manner, where mucosal vaccination was shown to induce high avidity CD8 T cells with
better protective efficacy by inducing lower IL-13, compare to systemic vaccination.
Recent studies in the laboratory have shown that IL-13Ra2 and IL-4R antagonist
adjuvanted viral vector-based vaccines that transiently inhibited IL-4/IL-13 activity at
the vaccination site, induced excellent high avidity T cells with better protective
efficacy, including excellent differentiated Gag-specific antibodies in mice and also in
non-human primates. Thus, the main purpose of this study was to dissect the
mechanisms of how IL-13 modulated T and B cell activity at the innate immune cell

level, specifically at the ILC following pox viral vector-based vaccination.

Hypotheses:

1. ILC2s are the main source of IL-13 at the vaccination site 24h post vaccination,
and route of vaccination and different adjuvants can significantly modulate ILC
function at the vaccination site.

2. 1L-25 plays a more predominant role in modulating ILC2 function following
viral vector vaccination compared to IL-33.
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3. ILC2-derived IL-13 and ILC1/ILC3-driven IFN-y regulate the ILC balance at

the vaccination site.

1. Identify which cells are the predominant source of IL-13 at the vaccination site
and how FPV-HIV unadjuvanted vaccine, FPV-HIV-IL-4R antagonist and FPV-
HIV-IL-13Ra2 adjuvanted vaccines that transiently inhibit IL-4 and/or 1L-13,
manipulate the different ILC subsets at the vaccination site. (Hypothesis 1)

2. Evaluate the different ILC subsets recruited to lung and muscle following
intranasal (mucosal) verses intramuscular (systemic) viral vector vaccination.
(Hypothesis 1)

3. Evaluate how FPV-IL-33BP and FPV-IL-25BP adjuvanted vaccines, that
transiently block IL-25 and IL-33 respectively, modulate ILC activity at the
vaccination site. (Hypothesis 2)

4. Evaluate ILCs at the vaccination site in IL-13, IL-4 and STAT6 knockout mice
following intranasal rFPV vaccination. (Hypothesis 3)

5. Evaluate the expression of IL-4/IL-13 receptors (yC, IL-4Ra, IL-13Ral, and
IL-13Ra2) on ILC subsets and assess how they regulate IL-13 and IFN-y at the

vaccination site. (Hypothesis 3)

Chapter 3 studies: Studies in our laboratory have found that IL-13 plays an important
role in modulating anti-viral CD8" T cells avidity, but it is still unclear which cells are
the predominant source of IL-13 at the vaccination site. Also, since few studies have
been focused on ILC in viral infection conditions, how different ILC subsets are
modulated during this progress is still poorly understood. Thus, in Chapter 3, these

questions were answered by evaluating ILC subsets following i.n./i.m. rFPV, IL-4R
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antagonist and IL-13Ra2 adjuvanted vaccination (which block IL-4/IL-13 at the
vaccination site) of BALB/c mice and evaluating the different ILC subsets at 0-7 days

post vaccination.

Chapter 4 studies: According to the current knowledge, ILC2 can be stimulated by IL-
33, IL-25 and TSLP. The surface receptors found on ILC2 can be different according to
the tissue/mucosal compartment. For example: ST2/IL-33R* ILC has been associated
with lung, whereas TSLPR* ILC2 in skin. However, the development of ILC2 and also
ILC1/ILC3 following viral vaccination is poorly understood. Notably, whether there is a
hierarchy in the expression of these different cytokines (specifically 1L-25 vs IL-33) is
not yet characterised. Thus, in this chapter rFPV co-expressing HIV antigen together
with IL-25R binding protein (FPV-HIV-IL-25BP), or IL-33 binding protein (FPV-HIV-
IL-33BP), which can transiently sequester IL-25 or IL-33 at the vaccination site
respectively were constructed. BALB/c mice were vaccinated intranasally with the
adjuvanted vaccines or the unadjuvanted control vaccine (FPV-HIV), and the lung ILC

profiles were evaluated 24 h post vaccination.

Chapter 5 Studies: In this chapter, ILC function was further evaluated in IL-13", IL-4"
- and STAT6” mice (permanent blockage of these cytokines) following i.n. rFPV
vaccination and 24h post vaccination the lung ILC subsets and their cytokine expression
were evaluated. In this chapter, transient verses permanent blockage of IL-4, IL-13 and
STATS6 signalling and the potential role of IL-13 and IFN-y in the context of antibody

differentiation was assessed.

Chapter 6 studies: IL-4 and IL-13 signalling via a common receptor system, however,
the role of IL-13Ra2 is still well characterised. In this chapter the expression receptors
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associated with IL-4 and IL-13 (yC, IL-4Ra, IL-13Ral, and IL-13Ra2) on different
ILC subsets were assessed in i) WT BALB/c mice following FPV-HIV unadjuvanted or
IL-4R antagonist and IL-13Ra2 adjuvanted vaccines, and ii) IL-137, IL-47, and
STAT6” mice, following FPV-HIV unadjuvanted vaccination using multicolour flow
cytometry to understand how ILC2-derived 1L-13 and ILC1/ILC3-derived IFN-y are
regulated, and test whether IL-13Ra.2 is involved in this process. This was performed
specifically, given that i) level of IL-13 expressed by ILC2 are known to be much lower
than T cells and ii) in chapter 3 & 4 studies it was established that ILC2-driven IL-13
modulated ILC1/ILC3 function. Thus, taken together IL-13Ra2 being the high affinity
receptor for IL-13 (pM affinity) compared to IL-13Ral (nM affinity), it was

hypothesised that IL-13Ra2 may be involved in ILC2-driven IL-13 regulation.
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Chapter 2.

General Materials and Methods.

49



50



2.1 Materials.

Table 2.1 Medium.

Name Component Source Catalogue number
RPMI-1640 medium (500 ml) Sigma R8758
HI-FCS (35 ml) GIBCO | 10099-133
Complete 1 M HEPES (10 ml) GIBCO | 15630-080
RPMI medium | 100 mM sodium pyruvate (10 ml) | GIBCO | 11360-070
Pen-Strep (0.5 ml) JCSMR | N/A
-mercaptoethanol (4 pl) Sigma M6250
RPMI-1640 medium (500 ml) Sigma R8758
RPMI medium
1 M HEPES (10 ml) GIBCO | 15630-080
Minimum
MEM Sigma M4655
Essential Medium
5% (v/v) HI-FCS GIBCO | 10099-133
Eagle (MEM)
Table 2.2 Buffers and solutions.
Name Component Source Catalogue number
1 mg/ml Collagenase Sigma C2139
Lung tissue | 1.2 mg/ml Dispase GIBCO 17105-041
digestion buffer | 5 Units/ml DNase Calbiochem | 26095
Complete RPMI medium Sigma R8758
0.5 mg/ml Collagenase Sigma C2139
Quadriceps
2.4 mg/ml Dispase GIBCO 17105-041
muscle
5 Units/ml DNase Calbiochem | 26095
digestion buffer
Complete RPMI medium Sigma R8758
Red blood cell | 0.16 mM NH4CI Sigma A-0171

51




lysis buffer 0.17 M Tris HCI (pH 7.65) MERCK 108382
Brefeldin A 1:1000 working dilution in
eBioscience | 00-4506-51
(BFA) complete RPMI medium
1X PBS JCSMR N/A
FACS buffer
2% FCS GIBCO 10099-133
IC-FIX buffer 1IX IC-FIX BioLegend 420801
IC-PERM 10% 10X IC-PERM eBioscience | 00-8333-56
buffer 90% dH20 JCSMR N/A
PFA 2% (w/v) PFA in PBS Sigma P-6148
PBS 1X PBS Sigma D8537
TrypLE TrypLE EXPRESS GIBCO 1813304
Table 2.3 Antibodies.
Working
Antibody Fluorochrome Clone Source
dilution
CD3 FITC 17A2 BioLegend 1:200
CD19 | FITC 6D5 BioLegend 1:100
Lineage | CD11b | FITC M1/70 PharMingen | 1:200
cocktail | CD11c | FITC N418 BiolLegend 1:100
CD49b | FITC HMaoa2 BiolLegend 1:200
FceRIl | FITC MAR1 BioLegend 1:100
CD45 APC/Cy7 30-F11 BioLegend 1:200
ST2 PE DIH9 BioLegend 1:100
ST2 PerCP/Cy5.5 DIH9 BioLegend 1:100
Sca-1 APC D7 BioLegend 1:100
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IL-25R APC 9B10 BiolLegend 1:100
Brilliant ~ Violet

CD127 A7R34 BioLegend 1:100
605
Brilliant ~ Violet

NKp46 29A1.4 BioLegend 1:100
421

TSLPR APC FAB5461A R&D 1:100

GATA3 PerCP/Cy5.5 16E10A23 BioLegend 1:200

IL-13 PE-eFlour 610 EBiol3A eBioscience | 1:100
Brilliant  Violet

IL-4 11B11 BioLegend 1:100
421

IL-17A Alexa Flour 700 | TC11-18H10.2 | BioLegend 1:100
Brilliant ~ Violet

IFN-y XMG1.2 BioLegend 1:100
510

IL-22 APC Poly5164 BioLegend 1:100

Granzyme B PE 16G6 eBioscience | 1:200

IL-4Ra PE 1015F8 BioLegend 1:200

IL-13Ral PE 13MOKA eBioscience | 1:200

y-C chain PE 554457 PharMingen | 1:200

IL-13Ra2 Biotin BAF539 R&D 1:50

Streptavidin PE N/A BioLegend 1:200

Isotype control PE EBi0o299Arm | eBioscience | 1:200

FC block N/A 2.4G2 PharMingen | 1:200
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Table 2.4 Mice and vaccine strategies.

Chapter Mice Vaccination strategies
BALB/c i.n. FPV-HIV
BALB/c .n. FPV-HIV-IL-4R antagonist
BALB/c i.n. FPV-HIV-IL-13Ra2
3
BALB/c i.m. FPV-HIV
BALB/c i.m. FPV-HIV-IL-4R antagonist
BALB/c i.m. FPV-HIV-IL-13Ra2
BALB/c i.n. FPV-HIV
4
BALB/c i.n. FPV-HIV-IL-25BP
BALB/c i.n. FPV-HIV
IL-137 i.n. FPV-HIV
5
(Part 1)
IL-47 i.n. FPV-HIV
STAT6™ i.n. FPV-HIV
BALB/c i.n. FPV-HIV
BALB/c .n. FPV-HIV-IL-4R antagonist
5 BALB/c I.n. FPV-HIV-IL-13R02
(Partl) |y qg in. FPV-HIV
IL-47" i.n. FPV-HIV
STAT6™ i.n. FPV-HIV

i.n. = intranasal, i.m. = intramuscular, 1L-137" = IL-13 knockout mice, IL-47 = IL-4

knockout mice, STAT6” = STAT6 knockout mice, FPV = Fowlpox virus
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2.2 Methods.

2.2.1 Mice.

5-6 weeks old specific-pathogen free female WT BALB/c, IL-137, IL-47 and STAT6™
mice were obtained from the Australian Phenomics Facility, the Australian National
University. Gene knockout mice (GKO) were from BALB/c background. All animals
were maintained, and experiments were performed in accordance with the Australian
NHMRC guidelines within the Australian Code of Practice for the Care and Use of
Animals for Scientific Purposes and in accordance with guidelines approved by the
Australian National University Animal Experimentation and Ethics Committee (AEEC).
Work in this thesis was conducted under the AEEC approved protocol numbers

A2011/018, A2014/14, and A2017/15.

2.2.2 Primary chicken embryo skin culture.

All recombinant viruses used in this thesis were grown in primary chicken embryo skin
cells (CES) which were stored in liquid nitrogen. Frozen CES were thawed rapidly and
transferred to a 50 ml Falcon tube containing 30 ml MEM (as per described in Table
2.1) at room temperature. Cells were centrifuged for 5 min at 1200 RPM (335xg) using
a Beckman ALLEGRA X-12R centrifuge. The supernatant was discarded, 8 ml MEM
was added, cells were transferred to T25 flask (Thermo Nunc EasYFlask) and cultured
for 5 days at 37°C with 5% CO2 in a Forma Scientific water-jacketed incubator. Next
CES cells were split into four T175 flasks. Specifically, medium was firstly removed,
cells were washed once with 1xPBS. Thenl.5 ml TrypLE (as per described in Table
2.2) was added and incubated for 5 min. Next 4.5 ml fresh MEM was added mixed
thoroughly, and 1.5 ml cells were transferred to each T175 flask, followed by 30 ml

fresh MEM. Cells were cultured for 5 days at 37°C with 5% CO2 in a Forma Scientific
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water-jacketed incubator. CES cells were split every 5 days and maintained for no more

than 8-9 splits.

2.2.3 Recombinant virus stock preparation.

To grow the recombinant fowl pox vector-based vaccine virus stocks used in this study
(Table 2.4), CES cells were firstly cultured for 5 days as per described in 2.2.2, infected
with rFPV at a rate of 0.5 multiplicity of infection for 1.5 h, and 20 ml fresh MEM was
added and cultured for 4-5 days at 37°C with 5% CO2. To harvest virus, the infected
cells were scraped from flasks and centrifuged for 10 min at 2300 rpm (1200xg) at 4°C
using a Beckman ALLEGRA X-12R centrifuge. Then the cells were resuspended in 1
ml sterile PBS and sonicated 3 times 15s on ice at 50 outputs using a Branson Sonifier
450 until cell clumps were no longer visible. Then the virus stock was aliquoted and

stored at -80°C.

2.2.4 Recombinant virus titration.

CES cells were subculture at 1x10° cells per well in a 6-well tissue culture plates
(Costar Corning CellBIND Surface), incubated overnight at 37°C with 5% CO2. The
rFPV stock was serially diluted (10 fold, from 10 to 10). 100 ul of each dilution was
added to CES cells in 6-well plates respectively. Plates were incubated for 1.5 h at 37°C
with 5% CO2 and gently shaken to make sure virus was evenly distributed in each well.
Then 2 ml of fresh MEM was added to each well and cells were cultured for a further 4-

5 days. Next, media was removed, and cells were stained with 0.5 ml crystal violet (0.1%
(w/v) in 20% ethanol) for 5 min to visualize plaques. Plaques were then counted, and
the following equation was used to calculate the plaque forming unit (PFU)/ml:

Average # plagues
PFU /ml = gerpad

dilution factor X volume of diluted virus added
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2.2.5 Immunization.

For both intranasal and intramuscular vaccination, 1x10” PFU of each vaccine was
given to mice under mild isoflurane anaesthesia. The i.n. vaccines were given in 10-15
pl per nostril (total 25-30ul volume) and i.m. vaccines 50 ul per quadriceps muscle. All
vaccines were diluted in sterile PBS and sonicated 3 times 15s on ice at 50 outputs

using a Branson Sonifier 450 prior to use.

2.2.6 Preparation of lung lymphocytes.

The mice were euthanised using cervical dislocation according to the approved AEEC
guidelines. Lung tissues were removed and kept in complete RPMI medium on ice until
processing. Single cell suspensions of lung tissues were prepared as described
previously® 122 123 Specifically, the lung tissues were first cut into small pieces, and
then enzymatically digested in 1 ml of lung digestion buffer containing 1 mg/ml
collagenase (Sigma-Aldrich, St Louis, MO), 1.2 mg/ml Dispase (Gibco, Auckland, NZ),
5 Units/ml DNase (Calbiochem, La Jolla, CA) in complete RPMI as indicated in Table
2.2. During digestion, samples were vortexed every 10 min and incubated in a 37°C
water bath for 45 min. The digested lung tissues were mashed and passed through a 100
pum Falcon cell strainer. The strainer was then washed with complete RPMI medium
and the resulting lung cell suspensions were centrifuged for 15 min at 1500 RPM
(524xq) at 4°C using a Beckman ALLEGRA X-12R centrifuge. Next, the supernatants
were removed, and cells were resuspended in 5 ml red blood cell lysis buffer containing
0.16 mM NH4Cl and 0.17 M Tris HCI (pH 7.65) at room temperature for 3 min, then 30
ml with RPMI medium was added to each sample and centrifuged at 1500 RPM (524xq)
for 5 min at 4°C. It is noteworthy that to ensure maximum RBC lysis efficiency, the
RBC lysis buffer was aliquoted and equilibrated to room temperature before use. The

resulting supernatant was removed, washed once more and cells were resuspended in
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RPMI medium and passed through sterile gauze to remove any remaining debris. Then
the cells were washed twice using RPMI medium, and cell pellets were resuspended in
0.5 ml complete RPMI medium. Lung cells from each sample were counted using a
hemocytometer (Tiefe Depth Profondeur 0.100 mm). Next 2 x 10° cells per sample
were plated in U-bottomed 96-well plates (Falcon) and were rested overnight (16 h) at
37°C with 5% COz2 in a Forma Scientific water-jacketed incubator to allow the recovery

of cell surface markers before performing the surface and intracellular staining?.

2.2.7 Preparation of muscle lymphocytes.

The mice were euthanised using cervical dislocation according to the approved AEEC
guidelines. Quadriceps muscle was removed from both rear legs and kept in complete
RPMI medium on ice until processing. To prepare quadriceps muscle single cell
suspensions, muscle tissues were cut into small pieces and digested in buffer containing
0.5 mg/ml Collagenase (Sigma-Aldrich, St Louis, MO), 2.4 mg/ml Dispase (Gibco,
Auckland, NZ), and 5 Units/ml DNase (Calbiochem, La Jolla, CA) in complete RPMI
as indicated in Table 2.2. 0.5 — 1 ml of digestion buffer was used to digest each muscle.
During digestion, samples were gently vortexed every 10 min and incubated in a 37°C
water bath for 45 min. The digested muscle tissues were gently passed through a 100
pum Falcon cell strainer without mashing too much to avoid creating smaller debris. The
strainer was then washed with RPMI medium and the resulting muscle cell suspensions
were centrifuged for 15 min at 1500 RPM (524xg) at 4°C using a Beckman ALLEGRA
X-12R centrifuge. The muscle cells were resuspended in RPMI medium and passed
through sterile gauze similar to lung to further remove debris and then was washed
twice with RPMI medium (Note that muscle tissues were not treated with RBC lysis
buffer). Cell pellets were resuspended in 0.5 ml complete RPMI medium. Muscle cells

for each sample were counted using a hemocytometer (Tiefe Depth Profondeur 0.100
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mm). 3.5x10° cells per sample were plated into U-bottomed 96-well plates (Falcon) and
were rested overnight (16 h) at 37°C with 5% CO: in a Forma Scientific water-jacketed

Incubator as per the lung samples.

2.2.8 Surface and intracellular staining of ILC.

Prior to staining, 1 x Brefeldin A (BFA) was added to each sample and incubated at
37°C with 5% COz2 for 5 h to prevent cytokine release. Surface and intracellular staining
were performed according to protocols established in our laboratory'?2. Specifically,
cells were first centrifuged at 1300 RPM (524xg) for 2 min at 4°C using a Sigma 3K1S
centrifuge and the supernatant was discarded, cells were washed twice with FACS
buffer (Table 2.2). Next, Fc block antibodies were added, and cells were incubated on
ice in the dark for 20 min. The cells were washed with FACS buffer and supernatant
was discarded. Next, surface staining antibodies (dilution in Table 2.3) were added to
each sample in a total volume of 40 pl and cells were incubated on ice in the dark for 40
min. After surface staining, all cells were washed three times with FACS buffer and
then resuspended in 100 pl IC-FIX buffer and incubated on ice in the dark for 10 min.
After fixation, cells were washed with FACS buffer and permeabilised using IC-PERM
buffer at room temperature in the dark for 10 min. Then the cells were centrifuged under
the same condition and supernatant was discarded. The intracellular antibodies (dilution
in Table 2.3) were diluted in IC-PERM buffer and were added to each sample in a total
volume of 25 pl, cells were incubated on ice in the dark for 40 min and then washed
twice with FACS buffer. The resulting cell pellets were resuspended in 100 pl 0.5%
PFA and then transferred to cluster tubes and run on a BD LSR Fortessa on the same
day of staining. From each lung sample 1400000 events were acquired, and 200000
events were acquired for each quadriceps muscle sample. Data were analysed using

Tree Star FlowJo software version 10.0.7 for Windows.
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2.2.9 General ILC gating strategy.

2.2.9.1 Fluorescence minus one (FMO) and single colour controls.

In this thesis to assess the different ILC populations and cytokine expression (Fig. 2.1
and 2.2) single colour controls and fluorescent minus one (FMO) controls were used to

setup the gates. The red boxes indicate the positive populations.

2.2.9.2 Lung ILC gating strategy.

Lung samples from each experiment were stained as described in 2.2.6. The ILC were
gated as indicated in Fig. 2.3. Firstly, CD45" cells were gated from total lung cells, and
then from CD45* cells lymphocytes were gated as FSC'®" SSC'®" cells. Next within the
lymphocyte gate, lineage® cells were gated out using the FITC-conjugated lineage
cocktail (as indicated in Table 2.3 and Table 2.5). In the lineage  population, ILC2
were identified as lineage” ST2/IL-33R" cells. In this study Sca-1 and CD127 (IL-7R)

expression profiles were also evaluated on lineage™ cells.

2.2.9.3 Quadriceps muscle ILC gating strategy.

After muscle tissues were digested and stained as per described in 2.2.7 and 2.2.8,
CD45" cells and lymphocytes were gated from total muscle cells. Next, within the
lymphocyte gate, ILC2 were identified as Lineage™ IL-25R" cells (as no ST2/IL-33R" or
TSLPR* cells were detected in muscle). Then the lineage” ST2/IL-33R" cells (ILC1&

ILC3) were stained with NKp46 (Fig. 2.4).
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2.2.10 Calculation of cell numbers.

The ILC subsets were characterized using the gating strategies described in section 2.2.8.
In this study, the cell numbers were back calculated to CD45" gate as there was no
significant differences in the total CD45" cells among different mice groups or vaccines
groups tested. This was performed by back-calculating cell numbers of each ILC
subsets to CD45" population and then normalizing to 1x10° cells. The following

equation was used to calculate the cell numbers:

X
Cell ber = x 1x 10°
et number CD45* cell number

X = the absolute cell numbers in the specific gate.

2.2.11 Statistical analysis.

Data in this thesis, n = 3 to 6 mice per group were used and all experiments were
repeated at least three times, and 24h experiments were repeated six times. Data are
represented as the mean and standard deviation (s.d.). Statistical analysis was performed
using GraphPad Prism software (version 6.05 for Windows). One-way ANOVA using
Tukey’s multiple comparisons test and unpaired T-test were used. The P-values are

denoted as: ns - p>0.05, * - p<0.05, ** - p<0.01. *** - p<0.001, **** - p<0.0001.
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Chapter 3.

Vaccination route can significantly alter the innate lymphoid

cell subsets: A feedback between IL-13 and IFN-y.
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3.1 Abstract.

This study demonstrates that the efficacy of a vaccine is influenced by the cytokines
produced by the innate lymphoid cells (ILC) recruited to the vaccination site and is
vaccine route and adjuvant dependent. Intranasal virus vaccination induced ST2/IL-
33R"ILC2 in lung, while intramuscular vaccination induced exclusively IL-25R* ILC2
in muscle. Interestingly, a larger proportion of IL-13" ILC2s were detected in muscle
following i.m. viral vector vaccination compared to lung post i.n. delivery. These
observations revealed that, ILC2 were the main source of IL-13 at the vaccination site
(24h post vaccination) responsible for inducing T cells of varying avidities. Moreover,
recombinant fowlpox viral vector-based vaccines expressing adjuvants that transiently
block IL-13 signalling at the vaccination site using different mechanisms (IL-4R
antagonist or IL-13Ra2 adjuvants), revealed that the level of IL-13 present in the milieu
also significantly influenced IFN-y, IL-22 or IL-17A expression by ILC1/ILC3.
Specifically, an early IL-13 and IFN-y co-dependency at the ILC level may also be
associated with shaping the downstream antibody responses, supporting the notion that
differentially regulating IL-13 signalling via STATG6 or IL-13Ra.2 pathways can modify
ILC function and the resulting adaptive T and B cell immune outcomes reported
previously. Moreover, unlike chronic inflammatory or experimentally induced
conditions, viral vector vaccination induced uniquely different ILC profiles (i.e.
expression of CD127 only on ILC2 not ILC1/ILC3; expression of IFN-y in both
NKP46* and NKp46™ ILCs). Collectively, data highlight that, tailoring a vaccine
vector/adjuvant to modulate the ILC cytokine profile according to the target pathogen,

may help design more efficacious vaccines in the future.
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3.2 Introduction.

Innate lymphoid cells (ILCs) are a recently identified class of immune cells which do
not express antigen receptors nor surface markers characteristic of other immune cells,
i.e. lineage negative?!4. ILCs are known to play a multi-factorial role at the mucosae'®,
for example, in tissue remodelling?®, allergy and inflammation4¢: 215 Crohn’s disease®**,
and immunity towards helminth and intracellular parasitic infections4® 21> 216 || Cs are
thought to develop from a common lymphoid progenitor?# 217, and according to the
transcription factors and cytokines they express, ILC have been broadly classified into
three main categories. ILC1 respond to IL-12, IL-18 and IL-15 and express transcription
factor T-bet, interferon (IFN)-y and tumour necrosis factor (TNF)-a. ILC2 subsets are
characterised by surface receptors IL-33R* (ST2"), IL-25R* (IL-17RB*) or TSLPR* and
can be stimulated by IL-33, IL-25 (IL-17E) or thymic stromal lymphopoietin (TSLP),
respectively. Activated ILC2 express GATA3, 1L-13, IL-5, IL-9 or IL-4. In contrast,
ILC3 respond to IL-1B and IL-23 and express RORyt, IL-22 and IL-17A%: 214 217,
However, recent studies indicate strong plasticity between ILC2, ILC1 and ILC3

subsets according to the tissue environment and the external stimuli they encounter?®

218,219

Studies have shown that influenza virus'*® ! and rhinovirus infection stimulate 1LC2
IL-13 expression and exacerbate asthma responses®®, and HIV infection causes an
irreversible loss of ILC function during acute infection?®®, However, how different ILC
subsets are modulated during viral infection or vaccination and influence vaccine-
specific immunity is poorly understood. A range of recombinant viruses, including
Avipoxviruses (canarypox and fowlpox viruses) used in the HIV RV144 Thai trial??,
Modified Vaccinia Ankara (MVVA) and Adenovirus-5 are being developed as vectors to

deliver vaccines for human diseases, However, the mechanisms by which these different
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vaccine vectors modulate innate immunity is not fully understood. MVA is known to
stimulate TLR2, TLR6 and NALP3 inflammasome pathways, with vigorous IFN-B and
IL-1B expression by macrophages??2. While ILC2 IL-13 expression licences CD11b*
CD103" conventional dendritic cells to stimulate CD4* T helper 2 (Th2) responses®%,
However, the influence of ILC interacting with professional antigen presenting cells in
stimulating of antiviral Thl immunity is not known. Thus, understanding how these
vaccine vectors interact with the innate immune response and influence resulting
adaptive immunity is paramount for developing efficacious vaccine technologies in the

future.

Our previous studies, have revealed that i) recombinant poxvirus HIV-1 antigen
vaccines delivered via the mucosa induce high avidity, poly-functional HIV-specific
CD8" T cells with reduced IL-4 and IL-13 expression’’, ii) IL-13Ro2 and IL-4R
antagonist adjuvanted vaccines transiently blocking IL-13 and/or IL-4 signalling at the
vaccination site induce higher avidity/multi-functional HIV specific effector/memory
CD8* T cells with improved CD8" T cell mediated protective efficacy!? 122 and iii) IL-
4R antagonist adjuvant vaccine also induces HIV gag-specific 1gG1l and 1gG2a
antibodies*®. (The IL-13Ra2 adjuvanted vaccine co-expresses HIV antigens together
with soluble IL-13Ra2 and can block IL-13 activity at the vaccination site. Whereas the
IL-4R antagonist adjuvanted vaccine co-expresses HIV antigens and C-terminal
deletion mutant of the mouse IL-4 without the essential tyrosine required for signalling,
which can bind to both type I and type Il IL-4 receptor complexes with high affinity,
and transiently block both IL-4 and 1L-13 signalling at the vaccination site)'%,
Interestingly, the responses observed with the adjuvanted vaccines in mice were similar
to what has been reported for elite controllers who naturally control HIV infection and

do not progress to clinical AIDS!? 224225 \While we have gained some understanding of
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how IL-4/1L-13 regulates CD8* T cell avidity at the adaptive immune level™ 7% 22 jt is
still unclear which cells in the innate immune compartment are involved in 1L-4, IL-13
and IFN-y expression and/or regulation at the vaccination site, responsible for the

downstream T and B cell outcomes.

3.3 Materials and Methods.

3.3.1 Mice and immunisation.

5-6 weeks old pathogen free female WT BALB/c mice were obtained from the
Australian Phenomics Facility, the Australian National University, and were maintained
and handled under protocols indicated in 2.2.1. 1x10” PFU unadjuvanted FPV-HIV,
FPV-HIV-IL-4R antagonist adjuvanted, and FPV-HIV-IL-13Ra2 adjuvanted vaccines
were administered to WT BALB/c mice (n = 3 to 6 per group) intranasally or
intramuscularly, under mild isoflurane anaesthesia as per described in 2.2.5. Lungs were
harvested in 2 ml of complete RPMI at 24 h, 3 days, and 7 days post immunisation, and
single cell suspension was prepared as per described in 2.2.6. Quadriceps muscles were
harvested in 2 ml of complete RPMI at 24 h post immunisation, and single cell

suspension was prepared as per described in 2.2.7.

3.3.2 Surface and intracellular staining.

Surface and intracellular staining were performed as per described in 2.2.8 using
antibodies listed in Table 2.3. Specifically,

ILC2 staining: APC/Cy7-conjugated anti-mouse CD45, and FITC-conjugated lineage

cocktail were used to identify lineage  cells. PE-conjugated anti-mouse ST2/IL-33R,
APC-conjugated anti-mouse IL-25R, APC-conjugated anti-mouse TSLPR were used to

identify the different ILC2 subsets. APC-conjugated anti-mouse Sca-1, Brilliant Violet

76



605-conjugated anti-mouse CD127, and PerCP/Cy5.5-conjugated anti-mouse GATAS3
(stained intracellularly) were used to further confirm that the CD45" lineage™ ST2/IL-
33R* cells were true ILC2s. Brilliant Violet 421-conjugated anti-mouse IL-4 and PE-
eFlour 610-conjugated anti-mouse IL-13 were used to evaluate intracellular expression

of these cytokines in ILC2s.

ILC1/3 staining: APC/Cy7-conjugated anti-mouse CD45, and FITC-conjugated lineage

cocktail were used to identify lineage cells. PE-conjugated anti-mouse ST2/IL-33R,
Brilliant Violet 421-conjugated anti-mouse CD335 (NKp46), and Brilliant Violet 605-
conjugated anti-mouse CD127 were used to identify ILC1/3 populations. Brilliant
Violet 510-conjugated anti-mouse IFN-y, APC-conjugated anti-mouse L-22, and Alexa
Fluor 700-conjugated anti-mouse IL-17A were used to evaluate intracellular expression
of these cytokines in ILC1 and ILC3. PerCP/Cy5.5-conjugated anti-mouse GATAS3 was

also used to make sure ILC1/3 subsets did not contain any ILC2.

Granzyme B staining: In this thesis, ILC1 and ILC3 were divided into lineage” ST2/IL-

33R" NKp46* or lineage ST2/IL-33R" NKp46™ cells, since NKp46 is also a common
marker of conventional NK cells. Thus, to confirm that lineage” ST2/IL-33R" NKp46*
population did not contain any conventional NK cell contamination, a Granzyme B
staining was performed (Note that Granzyme B is expressed in conventional NK cells,
but are not expressed in ILC). In NK cell staining, APC/Cy7-conjugated anti-mouse
CD45, and FITC-conjugated lineage cocktail were used to identify lineage*" cells.
Brilliant Violet 421-conjugated anti-mouse CD335 (NKp46) and PE-conjugated anti-

mouse Granzyme B were used to identify conventional NK cells.
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All ILC subsets were gated as per described in 2.2.9. Granzyme B expression in
conventional NK cells and lineage” NKp46*- cells was assessed using gating strategies

described in the results section.

3.4 Results.

3.4.1 Intranasal vaccination induces lineager ST2/IL-33R* ILC2s
expressing IL-13 at the lung mucosae and IL-4R antagonist/IL-13Ra2

adjuvanted vaccines inhibit this activity.

Previous studies in our laboratory have shown that 24 h post intranasal IL-4R antagonist
and IL-13Ro2 adjuvanted vaccination can alter 1L-4/IL-13 signalling at the vaccination
site?? and this directly influences the activity of antigen presenting cells (APC) at the
lung mucosae resulting in high avidity CD8* T cell mediated immunity?3, In this study,
we have embarked upon understanding how the expression of 1L-4 and/or IL-13 by ILC
at the lung mucosae can modulate adaptive immune outcomes following intranasal
vaccination using i) FPV-HIV unadjuvanted, ii) FPV-HIV-IL-4R antagonist and iii)
FPV-HIV-IL-13Ra2 adjuvanted vaccines. Firstly, 12h to 7 days post i.n. vaccination the
lung ILC2 were evaluated as described in 2.2.6.1 (Fig. 3.1a). ILC2 were gated as

CD45* FSC'*, SSC'*% lineage™ and ST2/IL-33R* cells (Fig. 2.1).

At 12 h although no differences in the ST2/IL-33R* ILC2 percentages were detected,
significant differences were detected 24 h post vaccination (Fig. 3.1b). Interestingly,
compared to the control unadjuvanted vaccine, the IL-13Ro2 adjuvanted vaccine
sequestering IL-13 in the cell milieu, showed significant suppression of ILC2 at the
lung mucosae 24 h to 7 days post vaccination, suggesting a requirement for free I1L-13

in maintaining ILC2 cells. In contrast, IL-4R antagonist vaccine which blocked both IL-
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4 and IL-13 cell-signalling via IL-4R/STAT6 pathway showed significantly elevated
percentages of ST2/IL-33R* ILC2, 24 h post vaccination compared to the other two
vaccines tested (Fig. 3.1b). It is noteworthy that very low ILC2 were detected in naive

mice lung, average 0.074% (Fig. 3.2) vs unadjuvanted vaccinated 0.29%.

When IL-13 expression was evaluated in the lung lineage” ST2/IL-33R* ILC2, higher
IL-13 expression was detected in mice that received the unadjuvanted vaccine compared
to the IL-4R antagonist or IL-13Ra2 vaccines (p< 0.0001) (Fig. 3.1c). Interestingly,
although IL-4R antagonist and IL-13Ro2 vaccines activated different overall
percentages of ST2/IL-33R™ ILC2 at the lung mucosae, both vaccines significantly
inhibited IL-13 expression by ST2/IL-33R" ILC2, at 24 h to 7 days post vaccination
compared to the control unadjuvanted FPV-HIV vaccine (Fig. 3.1d). It is noteworthy
that the trend of ST2/IL-33R* IL-13" cells observed overtime presented as percentage or
total cell number were similar (Fig. 3.1d). In all three vaccinated groups, lineage
ST2/I1L-33R* ILC2 did not express IL-4 at any of the time points tested. Furthermore,
lineage- ST2/IL-33R™ ILC2 obtained from unimmunised controls (Fig. 3.2) and
importantly the lineage® ST2/IL-33R* cells obtained from vaccinated and non-
vaccinated groups (Fig. 3.3) also did not show any expression of IL-4 or IL-13. This
was further confirmed by staining each lineage marker separately for 1L-4 and IL-13
(Fig. 3.4), and data clearly indicated that the lineage” ST2/IL-33R* cells did not contain

any contaminating mast cells or basophils.

Stem cell marker Sca-1 expression??’” was found to be inversely related to the

percentage of CD45" lineage” ST2/IL-33R* ILC2 over time regardless of adjuvant

treatment (Fig. 3.1e & 3.1f). Few Sca-1" ILC2 were detected at 12 h in all three vaccine
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groups tested, however by 24 h post vaccination CD45* lineage” ST2/IL-33R* ILC2s
following IL-4R antagonist adjuvanted vaccine showed significantly elevated Sca-1
expression compared to the other two vaccines. Although Sca-1" subset did not express
IL-13, the Sca-1" ST2/IL-33R* ILC2 subset was positive for IL-13 in the unadjuvanted
vaccine, while the IL-4R antagonist and IL-13Ra2 adjuvanted vaccines showed
complete inhibition of 1L-13 expression (Fig. 3.1h & 3.1g). These results indicated that
Sca-1 is a general activation marker for ST2/IL-33R™ ILC2, and not necessary

dependent on IL-13 expression.

3.4.2 Expression of IFN-y and IL-22 by NKp46® ILC subset is
differentially regulated following FPV-HIV-IL-13Ra2 and FPV-HIV-

IL-4R antagonist vaccination at the lung mucosae.

According to the micro environment/cell milieu, high plasticity of ILC1 and ILC3 has
been observed and classifying ILC1 and ILC3 according to their cell surface marker
expression has been a difficult task'#> 228 229 230 Thys, in this viral vector-based
vaccination study, for better clarity the ILC subsets (ILC1 and ILC3) were identified as
lineagem NKp46* ILC and lineage” NKp46™ ILC and assessed according to their
cytokines production. Unlike the lineage™ ST2/IL-33R" cells that were CD127* and
GATAS3", 99.7% of the lineage” ST2/IL-33R" cells were found to be CD127 and
GATAS3 (Fig. 2.1). Furthermore, to confirm that the ILCs were not conventional NK
cells, granzyme B expression was evaluated on the lineage* NKp46* and lineage
NKp46* subsets (Fig. 3.5b & d), as expected in the lineage™ population, no granzyme B
was detected (Fig. 3.5b), whereas in the lineage® NKp46™ population, both IFN-y and

granzyme B were detected (Fig. 3.5e). These data clearly confirmed that no
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conventional NK cells were present in the lineage™ population. Interestingly, 24 h post
vaccination, the IL-4R antagonist vaccinated group showed elevated IFN-y expression

by the lineage™ NKp46™* (conventional NK cells) subset (~22%) compared to the control
unadjuvanted (~15%) or IL-13Ro2 adjuvanted vaccine groups tested (~7%) (Fig. 3.6).
Interestingly, very low NKp46* ILC were detected in naive mice lung, average 0.21%

(Fig. 3.2) vs unadjuvanted vaccinated 3.95%.

Lineage  ST2/IL-33R" NKp46* ILC were detected in all three vaccine groups tested 24 h
post vaccination (Fig. 3.7b) but the highest percentage was detected in the IL-4R
antagonist vaccinated group (p < 0.0001) (Fig. 3.7b). In the context of IFN-y expression
by NKp46™ ILC, control unadjuvanted and IL-4R antagonist vaccinated groups showed
similar IFN-y expression profile compared to the lower IL-13Ra2 adjuvanted vaccine
group, although only control unadjuvanted showed statistical significance to IL-13Ra2
adjuvanted vaccine (p < 0.01) (Fig. 3.7c-d). Unlike IFN-y, the IL-22 production by
NKp46™ ILCs was significantly reduced in both IL-4R antagonist and IL-13Ra2 vaccine
groups compared to the control at 24 h (p < 0.0001) (Fig. 3.7e). However, at all time
points tested the level of IL-22 was much lower in animals that received FPV-HIV-IL-

13R02 vaccine (Fig. 3.71).

3.4.3 FPV-HIV-IL-4R antagonist vaccine significantly increases IFN-y

production by NKp46™ ILC at the lung mucosae.

When the lineage™ ILCs were assessed post i.n. delivery, most of the cells were found to
be ST2/IL-33R" NKp46™ ILCs (Fig. 3.8a). There was no significant difference in the
percentages of NKp46~ ILC numbers between the vaccine groups tested, except for 24 h

time point (Fig. 3.8b). Next when cytokine expression was evaluated in ST2/IL-33R"
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NKp46~ ILCs, significantly elevated IFN-y expression was detected in FPV-HIV-IL-4R
antagonist group compared to the control unadjuvanted group and FPV-HIV-IL-13Ra2
group from 24 h to 7 days post vaccination (p < 0.0001 — 0.01) (Fig. 3.8c, d). At 24 h
post vaccination, similar to the ST2/IL-33R" NKp46* ILC, IL-22 production by ST2/IL-
33R" NKp46~ ILC was significantly lower in both FPV-HIV-IL-4R antagonist and FPV-
HIV-IL-13Ra2 adjuvanted vaccine groups compared to the control unadjuvanted group

(Fig. 3.8e, 1).

3.4.4 Intramuscular vaccination induces exclusive lineage™ IL-25R*

ILC2 subset at the vaccination site.

Next when BALB/c mice were immunised intramuscularly (i.m.) and ILC2s were
evaluated, no IL-33R" ILC2s were detected in muscle and only IL-25R* ILC2 were
observed (Fig. 3.9a&b). ST2/IL-33R™ ILC2s were only found in the lung following
intranasal vaccination (Fig. 3.10). However, no IL-25R* or IL-33R"™ ILC2s were
detected in naive quadriceps muscle of BALB/c mice (Fig. 3.11). More interestingly,
compared to the other two vaccines FPV-HIV-IL-4R antagonist vaccine significantly
suppressed the IL-25R* ILC2s while FPV-HIV-IL-13Ra2 adjuvanted vaccine
significantly increased the IL-25R™ ILC2 number (Fig. 3.9c). When IL-13 expression by
lineage™ ST2/IL-33R" IL-25R™ ILC2 subset was assessed, significantly higher IL-13
expression was detected in control unadjuvanted vaccines compared to the FPV-HIV-
IL-4R antagonist and FPV-HIV-IL-13Ra2 adjuvanted vaccines (p < 0.0001) (Fig. 3.9d).
Interestingly, although FPV-HIV-IL-4R antagonist and FPV-HIV-IL-13Ra2 adjuvanted
vaccines activated different overall percentages of IL-25R™ ILC2 numbers, both
vaccines were able to significantly down-regulate the 1L-13 production by IL-25R*
ILC2 compared to control unadjuvanted FPV-HIV vaccine (Fig. 3.9e). In all vaccine

groups tested, no IL-4 production was detected in IL-25R* ILC2.
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3.4.5 Intramuscular vaccination induces uniquely different lineage

NKp46 and NKp46* ILC subsets at the vaccination site.

When lineage™ IL-25R" (also ST2/IL-33R") NKp46* and NKp46~ ILC subsets were
evaluated 24 h post vaccination, the FPV-HIV-IL-4R antagonist vaccinated group
showed very low NKp46™ ILC and elevated percentage of NKp46™ ILC compared to the
control unadjuvanted and FPV-HIV-IL-13Ra2 vaccines (Fig. 3.12a). Interestingly, in
naive mice very low NKp46* ILC were detected compared to unadjuvanted vaccinated,
average 2.65% (Fig. 3.11) vs 86.4%. When cytokine profiles were evaluated in these
two subsets, significantly elevated IFN-y and 1L-22 expression was detected in NKp46*
ILC obtained from FPV-HIV-IL-13Ra2 adjuvanted vaccinated group compared to the
IL-4R antagonist vaccine group (p < 0.05- 0.0001) (Fig. 3.12b & Fig. 3.13). Also, the
percentage of IL-25R" NKp46* ILC that expressed IFN-y (p < 0.001) and IL-17A (p <
0.01) was significantly higher in FPV-HIV-IL-13R02 adjuvanted group compared to the
control (Fig. 3.12b & Fig. 3.13a). Overall, the HIV-IL-13R0a2 vaccinated group showed
elevated percentage of lineage™ IL-25R™ NKp46™ ILC expressing IFN-y, IL-22 and IL-

17A compared to the other two groups tested.

Unlike IL-22 and IL-17A that was detected in both lineage” IL-25R~ NKp46* and
NKp46~ ILC subsets, no IFN-y expression was detected IL-25R" NKp46™ ILC. Although
there was no significant difference in 1L-22 and IL-17A production by NKp46™ ILC
subsets between control unadjuvanted and FPV-HIV-IL-4R antagonist vaccinated
groups, FPV-HIV-IL-13Ra2 adjuvanted vaccinated group showed significantly reduced
percentage of NKp46~ ILC expressing IL-17A compared to the other two vaccine
groups tested (p < 0.001 — 0.0001) (Fig. 3.14). No NKp46™ or NKp46™ ILC subsets were

positive for both 1L-22 and IL-17A.
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3.5 Discussion.

In this study, our approach of characterising lineage™ ILC subsets based principally upon
cytokine expression without preconceived expectations of cell surface markers have
shown that ILC induced following viral vector vaccination are uniquely different to
what has been reported under experimentally induced or chronic inflammation
conditions. Following rFPV vaccination although ILC2 were found to express CD127,
NKp46* and NKp46~ ILC1 and ILC3 populations did not express CD127. This was not
entirely surprising as a recent study had shown that CD127 was not strictly required for
the development of any ILC subsets?®l. These observations highlight the caveats of
using conventional flow cytometry analysis that relies only on surface marker
expression (i.e. Sca-1, CD127 or NKp46) to study ILCs under different conditions (i.e.

vaccination or acute infection), especially given the high plasticity of ILC subsets 142 20%

218, 219, 228, 229, 230

Different ILC2 subsets arise from a common progenitor cell and under different
cytokine conditions/ anatomical location differentiate into ILC2 that are 1L-33R", IL-
25R* or TSLPR*?*2, Here we have for the first time demonstrated that route of
vaccination can alter the ILC recruitment profile at the vaccination site. Following i.n.
rFPV vaccination only ST2/IL-33R* ILC2 (lung resident “natural” ILC) were detected
in lung, while exclusively IL-25R* ILC2s were detected in muscle following i.m. rFPV
vaccination. IL-25R* ILC2 in muscle were most likely circulatory “inflammatory”
ILC22%3 as naive muscle did not show any significant 1LC2 subsets (Fig. 3.11). Both
lung IL-33R*" ILC2s and muscle IL-25R* ILC2s although expressed IL-13, did not
express IL-4. As lineage™ cells did not express any IL-13 at 12 h or 24 h post
vaccination, ILC2 were the only or major source of IL-13 at the vaccination site at these
specific timepoints. Interestingly, a larger proportion of IL-13* ILC2s were detected in
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muscle following i.m. FPV-HIV vaccination compared to lung post i.n. delivery. These
observations revealed that, what is observed at the ILC level could be directly translated
into T cells level, where intramuscular poxviral vaccination has shown to induce
elevated IL-13 expression by CTL responsible for low avidity T cells compared to

mucosal delivery™.

Moreover, IL-13Ro2 and IL-4R antagonist adjuvanted vaccines that induced high
avidity CTL!3 122 showed significant inhibition of IL-13 expression by lung I1L-33R*
ILC2 compared to control non-adjuvant vaccination. Taken together the ability of IL-13
to modulate dendritic cell recruitment to the vaccination site 24 h post vaccination’,
current findings clearly propose that level of IL-13 expressed by ILC2, could directly
modulate dendritic cell recruitment to the vaccination site, responsible for the
generation of uniquely different T cell immune outcomes (i.e. under low IL-13
condition recruitment of CD11b* CD103" conventional DC responsible for induction
high avidity CTLs’"). Interestingly, under allergic lung inflammation conditions I1L-13
but not IL-4 expressed by ILC2s have shown to promote migration of activated lung
dendritic cells into the draining lymph nodes responsible for CD4* T helper 2 cell
activation'’. Halim et al. have further demonstrated that IL-13* ILC2 licence CD11b*
CD103 conventional DC to express CCL17 and promotes Th2 responses®?, and our
studies showed that blocking IL-13 activity likely inhibit this process and forces
stronger Th1 mediated immunity*?®. In summary, these findings indicate that the ILC2
bias (IL-25R" or IL-33R™) observed at the different vaccination sites and the amount of
IL-13 produced by these ILC2, play a critical role in defining the efficacy of a vaccine.
This may also explain how and why mucosal vaccination (which induce low IL-13
expression by ILC2) induce high avidity CTL with better protective efficacy against

mucosal pathogens compared to systemic vaccination® " 5,
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IL-13 and IL-4 share a common receptor system comprised of IL-4Ro/IL-13Ral, Type
Il 1L-4 receptor complex?3 234 while IL-4 can also signal via Type | IL-4 receptor
complex comprised of the common-y chain and IL-4Ra?®. Both these receptor
complexes activate STAT6 signalling. IL-13Ra2 and IL-4R antagonist adjuvanted
vaccines inhibited IL-13 expression by ILC2s compared to the control non-adjuvanted
vaccine. Sequestering IL-13 (IL-13Ra2 adjuvanted vaccination) also reduced the overall
percentage of ST2/IL-33R* ILC2 suggesting an IL-13 autocrine role in maintaining
ILC2 function. Surprisingly, sequestering IL-13 from the milieu verses blocking
conventional IL-4Ro/IL-13Ral/STAT6 signalling using IL-4R antagonist vaccines
resulted in differing ILC1/ILC2 responses. These observations indicate that IL-13
signalling via an alternative pathway, most likely IL-13Ra2 may possibly be
responsible for the responses observed with the latter vaccination strategy. This can be
further corroborated by the findings that under certain conditions, a physical interaction
between cytoplasmic domains of IL-13Ra2 and IL-4Ra regulating IL-4Ro/IL-13Ral
receptor function®®, and also IL-13 signalling via the not well defined high-affinity 1L-

13Ra2 pathway has been reported®®’.

Furthermore, IL-13R02 adjuvanted vaccination was associated with lower IFN-y
expression by both NKp46*" ILC and conventional NK cell (Fig. 3.6) compared to the
other two vaccines tested. Interestingly, a recent study has demonstrated that IL-1p, IL-
12 and 1L-18 drive the plasticity between ILC2 and IFN-y* ILC1 populations?®. Thus,
the very low starting population of ILC2 induced under IL-13Ra2 adjuvanted vaccine
may account for the reduced IFN-y* NKp46* ILC populations. However, whether this
would directly affect the IFN-y expression by conventional NK cell is not yet known

(Fig. 3.6). In contrast, our study demonstrated that IFN-y expression by lung NKp46
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ILC was elevated up to the day 7 experimental period, while IFN-y expression by “ex-
ILC3” NKp46™ cells was largely unaffected following IL-4R antagonist adjuvant
vaccination. It is accepted that IL-4/IL-13/STATG6 signalling is antagonistic to IFN-y
expression?®. Thus, it is not entirely surprising that blocking the conventional IL-
4Ra/IL-13Ral pathway resulted in elevated IFN-y expression by both NKp46™ILC and
conventional NK cells. We have previously shown that vaccination using the IL-4R
antagonist vaccine resulted in robust 1IgG1 and IgG2a antibody responses, whereas the
IL-13R02 adjuvanted vaccine resulted in reduced IgG2a antibodies!'®. Interestingly, one
major difference between the two adjuvanted vaccines were the level of IFN-y
expression by NKp46™ ILC and NK cells suggesting this may ultimately influence APC
activation and CD4" T helper cells required for antibody isotype class switching.
Blocking autocrine signalling via the IL-4R/IL-13Ral (blocking STAT6 signalling)
may account for reduced ILC2 IL-13" cell number, it has also been shown that ILC1
IFN-y expression can suppress I1L-13 expression by tissue-resident natural ILC2 cells®*°,
IFN-y has shown to significantly inhibit IL-13 production by 1LC2240 241242 while also
up-regulating extracellular expression of IL-13Ra2%°. The above and our current
findings indicate a complex interaction between IFN-y and IL-13 signalling at the
vaccination site, and the early IL-13 and IFN-y co-dependency at the ILC level most

likely playing an important role in shaping the downstream antibody immunity.

Previous inflammation and asthma mouse models indicate NKp46™ ILC1 express IFN-y,
NKp46™ ILC3 express IL-17A and NKp46* ILC3 express 1L-22167:168.243 Interestingly,
in this study, following intranasal viral vaccination both NKp46* and NKp46™ ILC1 and

ILC3 were found to express IFN-y and IL-22, but not IL-17A. In contrast, following

intramuscular vaccination NKp46* ILC1 and ILC3 were found to express IFN-y, I1L-22
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and IL-17A, while NKp46™ ILCs only expressed IL-22 and IL-17A, not IFN-y. These
findings clearly indicate the ILC1/ILC3 and ILC2 populations induced are uniquely
different depending upon the route of vaccination. Furthermore, the adjuvanted vaccine
studies demonstrated that unlike i.n. delivery, the NKp46® and NKp46™ ILC1/ILC3
subsets induced following i.m. vaccination have significantly different responsiveness
to IL-13. For example: unadjuvanted and the IL-4R adjuvant vaccines showed
significantly elevated IL-22 and IL-17A expression by NKp46~ ILC1/ILC3 compared to
IL-13Ra2 adjuvanted vaccine. Also, a larger proportion of 1L-13* ILC2s were detected
following i.m. FPV-HIV vaccination compared to i.n. delivery. Taken together our
previous studies on CD8" T cells, where IL-13 has shown to modulate IL-17A

activity??

, We postulate that IL-17A expression in ILC1 and ILC3 is tightly regulated
by IL-13-driven ILC2. In summary, these observations evoke the possibility that the
NKp46* or NKp46™ ILC1 and ILC3 plasticity at vaccination site is co-dependent on the

amount of 1L-13 produced by different ILC2 subsets (IL-25R* vs IL-33R™).

Collectively, results indicate that within the first 24 h post-vaccination, according to the
route of delivery and adjuvants used, different types of IL-13-driven ILC2 and IFN-y
/IL-17A/IL-22 expressing NKp46™ or NKp46™ (ILC1 and ILC3) are recruited to the
vaccination site. The IL-13 and IFN-y/IL-17A balance induced by these ILCs, play a
crucial role in shaping the resulting APC recruitment/activation and B and T cell
immunity. Our data suggest that altering the functions of these different ILC subsets at
the vaccination site, by regulating IL-13 signalling to induce the desired protective
immune outcome needed according to the target pathogen (bacteria, viruses or parasites),

may give rise to more efficacious vaccines in the future.
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Chapter 4.

Transient inhibition of IL-25 at the lung mucosae can

significantly modulate 1L C2 development and function.
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4.1 Abstract.

Intranasal immunisation with recombinant fowlpox viral vector-based vaccine co-
expressing an adjuvant that transiently sequesters IL-25 (FPV-HIV-IL-25BP) at the
vaccination site was shown to induce ST2/IL-33R", IL-25R*, and TSLPR" ILC2 subsets
in lung unlike unadjuvanted vaccine which only induced ST2/IL-33R* ILC2. At 24 h
post vaccination, all these lung ILC2 subsets expressed significantly different levels of
IL-13, and the TSLPR™ ILC2 subset also expressed IL-4. Surprisingly, sequestration of
IL-33 did not have any impact on lung ILC function, although the major ILC2 subset in
lung following i.n. vaccination was ST2/IL-33R* (Chapter 3), thus the current data
suggest that during early lung ILC2 development cytokine IL-33 may not play an
important role as IL-25. Interestingly, FPV-HIV-IL-25BP adjuvanted vaccination also
induced elevated IL-17A and IFN-y expression by ILC1/ILC3 in lung, suggesting that
the level of ILC2-derived IL-13 in the milieu, can regulate ILC1/ILC3. Moreover,
sequestration of IL-25 induced a uniquely different lineage- ST2/11-33R™ IL-25R"
TSLPR™ ILC2 population that expressed elevated IL-13 and IL-4. Taken together with
previous findings, where elevated IL-4/IL-13 has been associated with induction of low
avidity T cells following viral vector vaccination, current observations suggest that
intranasal IL-25BP adjuvant delivery may promote the development of low avidity T
cells. Collectively, these inhibitor studies indicate that IL-25 plays a more predominant
role in early ILC development than IL-33, suggesting that IL-25 may be the master

regulator of ILC at the lung mucosae.

4.2 Introduction.

The discovery of ILC2s began with the identification of a new subset of cells in RAG-
deficient mice (lacking B cells and T cells) that produced IL-5 and IL-13 in response to

IL-25%%, After a decade of research, in 2010, a group of type 2 cytokine-producing cells
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which have the ability to produce IL-5 and IL-13 in response to IL-25 and IL-33 were
identified and named as ILC213* 135 136 | ater studies characterised these ILC2s into
three different subsets (IL-33R/ST2", IL-25R", and TSLPR®) depending on their
receptor expression in response to cytokines 1L-33, 1L-25, and TSLPI3> 195 245, 246, 247
Interestingly, large number of studies have now shown that IL-33, IL-25, and TSLP
differentially modulate ILC2 activity. Specifically, in the context of tissue remodelling,

allergy, and inflammation, 34 135 144,145,149, 194, 248

Chapter 3, studies established that intranasal vaccination with rFPV induced IL-
33R/ST2" ILC2 in the lung, whereas intramuscular rFPV vaccination induced IL-25R*
ILC2 in muscle. In naive BALB/c lung only IL-33R/ST2" ILC2 were detected, however
neither IL-33R/ST2" nor IL-25R™* ILC2 subsets were detected in naive BALB/c muscle.
These results indicated that 1L-33R/ST2" ILC2 are resident ILC in the lung mucosae,
while IL-25R* ILC2 are more likely ‘inflammatory’ ILC2 that migrate to muscle from
blood?!3, The inflammatory ILC2 are characterized by their high expression of the
maturation marker KLRG1 and the IL-25R but not 1L-33R/ST2%5, In addition, these
inflammatory ILC2 have not only shown to play an important role in mediating anti-
helminth immunity, they also have shown to express RORyt and produce IL-17 in
Candida albicans infection?® which has indicated that there is high plasticity between
ILC2 and ILC3. Interestingly, the IL-33R/ST2" IL-25R* inflammatory ILC2s have also
shown to develop into IL-33R/ST2* ILC2s both in vivo and in vitro under certain
conditions?®3, Taken together these observations, we postulate that IL-25R* ILC may be
the precursor ILC that differentiate into ILC1, ILC2, and ILC3 under different

stimulatory conditions.
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Therefore, to further understand the role of IL-33 and IL-25 in ILC development
specifically in the context of intranasal vaccination, in this study two novel rFPV
vaccines were constructed to transiently inhibit IL-33 and IL-25 activity at the
vaccination site, the lung mucosae. i) FPV-HIV-IL-33BP vaccine that co-expressed
HIV antigen together with an IL-33 binding protein, that can sequester IL-33
temporarily at the vaccination site, and ii) FPV-HIV-IL-25BP vaccine that co-expressed
HIV antigen together with an IL-25 binding protein, that can sequester IL-25
temporarily at the vaccination site (Fig 4.1). Knowing that 1L-33R/ST2" ILC2s were
only detected in lung and IL-25R* ILC2s were only observed in muscle following
vaccination (Chapter 3), when WT BALB/c mice were intranasally vaccinated with
FPV-HIV-IL-33BP, no differences in ILC recruitment or cytokine expression were
observed in lung. However, when mice were vaccinated intramuscularly with FPV-
HIV-IL-25BP adjuvanted vaccine, significantly different ILC and cytokine profiles
were detected (Jackson and Ranasinghe unpublished observations). These findings
indicated that IL-25 most likely play a more important role in modulating ILC
development and function than IL-33. Therefore, to understand this process further,
specifically to establish how IL-25 cytokine impact development of lung and muscle
ILC development, in this study, rFPV vaccine co-expressing the IL-25R (FPV-HIV-IL-
25RBP), was delivered intranasally and ILC and their cytokine expression profiles were
evaluated 24 h post vaccination (This time point was chosen as in Chapter 3, data
clearly established that ILC were significantly modulated at 24 h post viral vector

vaccination).
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Fig. 4.1 IL-17 signaling pathway.

The IL-17 family consists of six members IL-17A-F, while the IL-17
receptor family consists of five members IL-17RA to IL-17RE. IL-
17RA is a common receptor that forms heterodimeric complexes
with IL-17RB, IL-17RC, and IL-17RE. IL-17A and IL-17F signals
through the IL-17RA-RC complex, triggering TRAF6-dependent
target gene transcription. IL-17E (IL-25) signaling through the IL-
17RA-RB receptor complex induces Th2 responses by activating

MAPK and NF-«xB pathways.
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4.3 Materials and Methods.

4.3.1 Mice and immunisation.

5-6 weeks old pathogen free female WT BALB/c mice were obtained from the
Australian Phenomics Facility, the Australian National University, and were maintained
and handled under protocols indicated in 2.2.1. 1x10” PFU unadjuvanted FPV-HIV, and
FPV-HIV-IL-25BP adjuvanted vaccines prepared as per described in 2.2.3 and 2.2.4
were administered to WT BALB/c mice (n = 6 per group) intranasally, under mild
isoflurane anaesthesia as per described in 2.2.5. Lungs were harvested in 2 ml of
complete RPMI 24 h post immunisation, and single cell suspension was prepared as per

described in 2.2.6.

4.3.2 Surface and intracellular staining.

Surface and intracellular staining were performed as per described in 2.2.8, using
antibodies details in Table 2.3. Specifically,

ST2/1L-33R* and IL-25R* ILC2 staining: APC/Cy7-conjugated anti-mouse CDA45,

and FITC-conjugated lineage cocktail were used to identify the lineage™ cells. PE-
conjugated anti-mouse ST2/IL-33R, and APC-conjugated anti-mouse IL-25R were used
to identify the different ILC2 subsets. Brilliant Violet 421-conjugated anti-mouse 1L-4
and PE-eFlour 610-conjugated anti-mouse IL-13 were used to evaluate intracellular
expression of theses cytokines in ILC2. The gating strategy indicated in Fig. 2.3 was

used to identify the different ILC2 subsets and their cytokine expression.

ST2/1L-33R* & TSLPR* ILC2 staining: APC/Cy7-conjugated anti-mouse CD45, and

FITC-conjugated lineage cocktail were used to identify the lineage™ cells as per before.
PerCP/Cy5.5-conjugated anti-mouse ST2/IL-33R, and APC-conjugated anti-mouse

TSLPR were used to identify different ILC2 subsets. (In this staining cocktail, since the
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TSLPR antibody was found to interact with PE-conjugated anti-mouse ST2/IL-33R
antibody, PerCP/Cy5.5-conjugated anti-mouse ST2/IL-33R was used). To avoid
spectral overlap, Brilliant Violet 421-conjugated anti-mouse IL-4 and PE-conjugated

anti-mouse IL-13 were used to evaluate the intracellular cytokine expression in ILC2.

ILC1 and ILC3 staining: APC/Cy7-conjugated anti-mouse CDA45, and FITC-

conjugated lineage cocktail were used to identify lineage cells. PE-conjugated anti-
mouse ST2/IL-33R, and Brilliant Violet 421-conjugated anti-mouse CD335 (NKp46)
were used to identify the ILC1 and ILC3 populations. Brilliant Violet 510-conjugated
anti-mouse IFN-y, APC-conjugated anti-mouse IL-22, and Alexa Fluor 700-conjugated
anti-mouse IL-17A were used to evaluate the intracellular cytokine expression in ILC1

and ILC3 subsets.

Staining strateqy of the novel ST2/IL-33R" I1L-25R" TSLPR- ILC2 subset:

1x108 lung cells were stained in four different wells using range of fluorochromes as per
indicated in the flow chat 4.1. Specifically, IL-25R and TSLPR were stained separately
to avoid spectral overlap using PE-conjugated ST2/IL-33R and PerCP/Cy5.5-
conjugated ST2/IL-33R respectively. (In this staining cocktail, as the TSLPR antibody
was found to interact with PE-conjugated anti-mouse ST2/IL-33R antibody,
PerCP/Cy5.5-conjugated anti-mouse ST2/IL-33R was used). IL-13 and IL-4 expression
in all known ILC2 subsets (ST2/IL-33R*, IL-25R", and TSLPR™), including the lineage
ST2/IL-33R" IL-25R™ TSLPR" population were evaluated. NKp46, IFN-y, and IL-17A

were also stained to established that ILC1 and ILC3 cells did not express IL-4 or IL-13
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Flowchart 4.1: ST2/IL-33R" IL-25R" TSLPR" ILC2 staining strategy.

Lung cells

l l l |

| |
Lineage cocktail (FITC conjugated)

| 1

1 |

ST2/IL-33R (PE) & IL-25R (APC) ST2/IL-33R (PerCP/Cy5.5) & TSLPR (APC)
NKp46 (BV421) NKp46 (BV421)
IL-13 (PE-eF610) IL-13 (PE)
IFN-y (BV510) IFN-y (BV510)
IL-4 (BV421) IL-4 (BV421)
IL-17A (AF700) IL-17A (AF700)
4.4 Results.

4.4.1 Following i.n. FPV-IL-25BP vaccination lineage™ IL-33R/ST2 IL-
25R" and lineage™ I1L-33R/ST2  TSLPR™ ILC2 subsets were recruited to

the lung mucosae.

WT BALB/c mice were vaccinated intranasally with the unadjuvanted FPV-HIV
vaccine or the FPV-HIV IL-25BP adjuvanted vaccine (which sequestered IL-25 at the
vaccination site). As ILC subsets were shown to be manipulated mainly at 24 h post
vaccination (Chapter 3), in this study, different ILC subsets and their cytokines
expression were evaluated only at 24 h post vaccination. Data indicated that while the
unadjuvanted vaccine only induced lineage IL-33R/ST2* ILC2 in lung (Fig. 4.2a), the
FPV IL-25BP adjuvanted vaccine not only induced lineage™ IL-33R/ST2* ILC2s but
also induced lineage” IL-33R/ST2" IL-25R* and lineage™ IL-33R/ST2" TSLPR* ILC2
subsets in the lung mucosae (Fig. 4.2a). Although no significant differences in the
lineage™ IL-33R/ST2" ILC2 cell numbers were observed between unadjuvanted control
and IL-25BP adjuvanted vaccination (Fig. 4.2b), significantly elevated numbers of

lineage™ IL-33R/ST2 IL-25R* ILC2 (p=0.0004) (Fig. 4.2c) and
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lineage™ IL-33R/ST2 TSLPR™ ILC2 (p<0.0001) (Fig. 4.2d) were observed in FPV-IL-

25BP vaccinated group compared to the unadjuvanted control.

4.4.2 Following FPV-IL-25BP vaccination distinctive I1L-13 and IL-4

expression profiles were detected in the different lung I1LC2 subsets.

Next when IL-13 expression in ILC2 subsets was evaluated, post intranasal FPV-HIV-
IL-25BP vaccination, all three ILC2 subsets (IL-33R/ST2" ILC2, IL-25R* ILC2 and
TSLPR* ILC2) were shown to express IL-13 (Fig. 4.3a). Specifically, compared to the
unadjuvanted vaccine group, FPV-HIV-IL-25BP adjuvanted group showed significantly
reduced IL-13 expression by IL-33R/ST2* ILC2s (p<0.0001) (Fig. 4.3b), In contrast,
IL-13 expression in IL-33R/ST2" IL-25R* and IL-33R/ST2" TSLPR* ILC2 subsets
(which were not observed following unadjuvanted vaccination) were significantly
elevated (Fig. 4.3b). Interestingly, in mice given FPV-HIV-IL-25BP vaccination, IL-
33R/ST2 TSLPR* ILC2s showed significantly elevated I1L-13 expression compare to

IL-33R/ST2* ILC2 subset (p = 0.0126) (Fig. 4.3b).

All vaccines tested in Chapter 3 (specifically vaccine that transient inhibited I1L-4/1L-13)
did not show any IL-4 expression by IL-33R/ST2" ILC2s. However interestingly,
following intranasal FPV-HIV-IL-25BP adjuvanted vaccination, elevated IL-4
expression was detected in lineage™ IL-33R/ST2  TSLPR* ILC2, but not the other two
ILC2 subsets (Fig. 4.3c & d). The IL-33R/ST2 TSLPR* ILC2 subset that expressed IL-

13 were not positive for IL-4 (Fig. 4.3c).
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4.4.3 Following FPV-HIV-IL-25BP vaccination lineage™ I1L-33R/ST2
NKp46*" ILCs were found to express IFN-y and IL-17A.

When lineage™ IL-33R/ST2" NKp46* ILCs in lung were assessed 24 h post intranasal
FPV-HIV-IL-25BP adjuvanted vaccination, significantly elevated numbers of lineage
IL-33R/ST2 NKp46™ ILCs were observed compared to the unadjuvanted vaccine (Fig.
4.4a). The lineage IL-33R/ST2  NKp46™ ILCs obtained from the IL-25BP adjuvanted
vaccinated group expressed elevated IFN-y compared to unadjuvanted vaccine group,
p<0.0001) (Fig. 4.4b), and more interestingly, were also found to express elevated IL-
17A (Fig. 4.4c). Unlike IFN-y and IL-17A, in the context of IL-22 expression, FPV-
HIV-IL-25BP adjuvanted vaccine showed significantly reduced IL-22 expression by
lineage  IL-33R/ST2° NKp46* ILC compared to the unadjuvanted vaccine (p<0.001)

(Fig. 4.4d).

Next when the lineage  IL-33R/ST2" NKp46™ ILCs were assessed following intranasal
FPV-HIV-IL-25BP vaccination, most of the lineage™ IL-33R/ST2 cells were found to be
NKp46~ (Fig. 4.5a). However, unlike the lineage IL-33R/ST2 NKp46™ cells, there were
no significant differences in the lineage™ IL-33R/ST2"NKp46™ ILCs cell numbers (Fig.
4.5a) and their IFN-y expression between the adjuvanted and unadjuvanted groups (Fig.
4.5b). Interestingly, similar to the lineage™ IL-33R/ST2 NKp46™ cells, elevated IL-17A
expression was detected in the lineage™ IL-33R/ST2 NKp46™ ILCs following FPV-HIV-
IL-25BP vaccination (Fig. 4.5c). In contrast, significantly reduced IL-22 expression

(p<0.0001) was detected in lineage™ IL-33R/ST2 NKp46™ ILCs (Fig. 4.5d).
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445 Following intranasal FPV-HIV-1L-25BP vaccination a novel
lineage” IL-33R/ST2 IL-25R™ TSLPR™ ILC2 cell subset expressing IL-

13 and IL-4 was discovered.

FPV-HIV-IL-25BP adjuvanted vaccination induced all three known ILC2 subsets
(lineage” IL-33R/ST2", lineage” IL-33R/ST2  IL-25R* and lineage" IL-33R/ST2
TSLPR*), and they were found to express IL-13 and the TSLPR* subset also expressed
IL-4. As expected, these ILC2 subsets did not express IL-17A or IFN-y (Fig. 4.6a-c).
Surprisingly, in the lineage™ IL-25R" IL-33R/ST2 TSLPR" cell population, group of cells
were found not only to express IL-13 but also IL-4. In this subset, the IL-4/IL-13
expression was much greater than the other three ILC2 subsets (p<0.0001) (Fig. 4.6d-f).
A small subset was also found to be double positive for both IL-13 and IL-4 (Fig. 4.6d).
These observations suggested that lineage™ IL-25R™ IL-33R/ST2" TSLPR" population
could contain a not yet defined ILC2 subset. In this analysis the lineage™ IL-33R/ST2
TSLPR™ NKp46* and NKp46™ cells that produced IL-17A and IFN-y were most likely
classic ILC1 and ILC3, not ILC2 as none of the known ILC2s express these two

cytokines (Fig. 4.6d).
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4.5 Discussion.

Following intranasal FPV-HIV-IL-25BP vaccination, where IL-25 was temporarily
sequestered from the vaccination site, significant impact on ILC development/function
in lung mucosae were observed, similar to that of muscle following intramuscular
vaccination. Specifically, in relation to lung ILC2, not only ST2/IL-33" ILC2, but also
IL-25R", TSLPR* ILC2 and also a unique lineage™ IL-33R/ST2" IL-25R" TSLPR" ILC2
subsets that expressed IL-13 or IL-4 were detected 24 h post vaccination, unlike mice
given the unadjuvanted FPV-HIV vaccination. Interestingly, knowing that sequestration
of IL-33 (FPV-HIV-IL-33BP adjuvanted vaccine) had no impact on ILC2
development/function in lung, although the major ILC2 subset in lung following i.n.
vaccination was ST2/IL-33R* (Chapter 3), these unexpected finding suggested a

hierarchical role of IL-25 in ILC2 development compared to IL-33.

Different ILC2 subsets arise from a common progenitor cell and under different
cytokine conditions/anatomical location differentiate into ILC2 that are IL-33R", IL-
25R* or TSLPR*%32249 Chapter 3 studies have shown that in naive mice, IL-33R/ST2*
ILC2 are the resident ILC population in lung, while IL-25R™ ILC2 (which are known as
the “inflammatory” ILC?%) were recruited to the muscle only following i.m. vaccination.
Current study demonstrated that transient inhibition of IL-25 at the vaccination site can
promote some ILC2s at the lung mucosae to express both IL-13 as well as IL-4.
Interestingly, the IL-4 expressing ILC2s induced by FPV-HIV-IL-25BP adjuvanted
vaccination did not express IL-13, suggesting that these were two distinct ILC2
populations. Recent studies have also shown that addition of IL-25 and IL-33 can
promote differential cytokine expression by lung IL-33R/ST2" ILC2. For example,
when lung IL-33R/ST2" ILC2 were cultured in the presence of IL-25 in vitro, these
cells were shown to produce elevated IL-13 but reduced IL-5 whereas the inverse was
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reported when cells were cultured in the presence of 1L-33%% 2%, Furthermore, Chen et
al using IL-13-GFP reporter mice have also shown that compared to IL-33, intranasal
administration of recombinant IL-25 can induce elevated IL-13 expression by lung
ILC2%%, Interestingly, the current study demonstrated that removal of 1L-25 from the
cell milieu can have a much profound impact on ILC2 differentiation (induction of
range of ILC2 subsets) including IL-13/IL-4 expression by these ILC2s, unlike
overexpression of IL-25. These observations further support the notion that 1L-25 may

play a more important role in ILC2 development in lung than IL-33.

Our previous studies have shown that mucosal vaccination induced high avidity CD8" T
cells and this was associated with low level of IL-13 expressed by T cells’’. In contrast,
systemic vaccination induced low avidity CD8" T cells associated with elevated level of
IL-1377. Transient inhibition of IL-4 and IL-13 at the vaccination site has shown to
induce i) T cells of high avidity and ii) unlike IL-13Ra2 adjuvanted vaccination IL-4R
antagonist vaccination has also shown to induce excellent antibody differentiation'® 122,
suggesting 1L-13 plays an important role in modulating both T and B cell immunity’® ™,
These studies also showed that level of IL-4/IL-13 at the vaccination site can
significantly alter the activity of antigen presenting cells'?®. When trying to dissect
which cells at the vaccination site produced IL-13, Chapter 3 studies have clearly
established that ILC2 are the major source of IL-13 at the vaccination site 24 h post
viral vector vaccination. Interestingly, low IL-4/IL-13 levels were associated with
recruitment of CD11b* CD103" conventional DCs, and induction of high avidity HIV-
specific CD8" T cells'?®. Intranasal FPV-HIV-IL-25BP adjuvanted vaccination was
shown to induce significantly elevated level of both IL-4 and IL-13 by ILC2 at the lung
mucosae 24 h post vaccination. Taken together our previous findings and the elevated

IL-13 observed following intranasal FPV-HIV-IL-25BP adjuvanted vaccination, data
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suggest that sequestration of IL-25 at the lung mucosae may be detrimental for the
induction of high avidity T cells. However, intramuscular FPV-HIV-IL-25BP
vaccination significantly inhibited both IL-4 and IL-13 expression by ILC2 in muscle
(Jackson and Ranasinghe unpublished data), suggesting that IL-25BP could be a highly

efficacious intramuscular but not an intranasal adjuvant.

Interestingly, FPV-HIV-IL-25BP adjuvanted vaccination not only manipulated the ILC2
differentiation/function but also ILC1 and ILC3 at the vaccination site. This was highly
unexpected as cytokine IL-25 was thought to be an activator of ILC2 but not
ILC1/ILC3%¥, Surprisingly, compared to the unadjuvanted rFPV vaccination, transient
removal of IL-25 at the lung mucosae was induced elevated expression of IL-17A by
lineage 1L-33R/ST2'NKp46*" ILC1 and ILC3. Ravichandran et al. have previously
demonstrated that IL-4 and IL-13 can differentially regulate IL-17A in antigen-specific
CD8* T cells?®, As FPV-HIV-IL-25BP vaccination also significantly manipulated IL-4
and IL-13 expression by the different ILC2 subsets (IL-33R/ST2*, IL-25R*, TSLPR",
and the unique lineage™ IL-33R/ST2" IL-25R" TSLPR" ILC2 subsets), we postulate that
the significant changes in IL-17A production in ILC1/ILC3 could be associated with the
high level of IL-4/IL-13 expressed by the different ILC2 subsets, including the novel
lineage™ IL-33R/ST2 IL-25R™ TSLPR" ILC2 subset. Moreover, IL-25 (IL-17E), signals
via the IL-25 receptor complex IL-17RA/IL-17RB, and IL-17RA/ IL-17RC is the major
receptor complex for 1L-17A signaling®? 253(Fig. 4.1). Therefore, following 1L-25BP
vaccination the elevated IL-17A expressed by ILC1/ILC3 could also be associated with
the balance of IL-17A and IL-25 signalling. For example; sequestration of IL-25
initiating the 1L-17A signalling via NF-xB, Activator Protein 1 (AP-1) and CCAAT-
enhancer-binding-protein (C/EBP) pathways (Fig 4.1). This could be similar to what

has been observed during transient inhibition of IL-13, in which IL-4 signalling via the
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STATG6 pathway was initiated!™ 1?2(Chapter 3). The level of 1L-13 expressed by ILC2
was also shown to alter the expression of IFN-y by ILC1 and ILC3 (Chapter 3).
Specifically, transient blockage of IL-4/IL-13 signalling via STAT6 pathway, compared
to transient inhibition of IL-13 at the vaccination site differentially regulated IL-13
expression by ILC2 and IFN-y expression by ILC1/ILC3. These findings support the
notion that in the context of viral vector vaccination, 1L-13 produced by ILC2 could be
the master regulator of ILC1 and ILC3 activity, specifically the IFN-y, IL-17 and also

IL-22 expression by these cells 24 h post vaccination.

This study clearly established that manipulating IL-25 at the lung mucosae can have not
only dramatic impact on ILC2 and their IL-13/IL-4 expression, but also have significant
effects on ILC1/ILC3 cells and their IFN-y/IL-22/1L-17A production. Several studies,
including ours have shown that IL-25 and IL-33 may have different impacts on ILC
development and function4’: 194 254 Stier et al. have shown that 1L-33 plays a crucial
role in promoting ILC2 egress from the bone marrow?*®, Hence, we propose that 1L-33
may be critical for ILC homing and trafficking to tissue®®, whereas IL-25 may be
important for initial ILC development and function. Following IL-25 sequestration, the
lineage™ IL-33R/ST2" IL-25R" TSLPR™ ILC2 population observed, could be an
undifferentiated ILC2 subset (i.e. similar to CD4  CD8 T cell development) or a not yet
defined ILC2 subset. However, in context given the expression of IL-4 and IL-13 by
these cells, the latter explanation appears to be may be more valid. In conclusion,
current findings further substantiate that the adjuvants used and the route of delivery
play an important role in modulating ILC-driven cytokine expression at the vaccinations
site, and these early events need to be seriously taken into consideration when designing
effective vaccines against chronic pathogens. Following IL-25 sequestration, as

TSLPR™ ILC2 were found to express IL-4 and 1L-13, it would also be of interest to
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study the impact of inhibition or sequestration TSLP at the vaccination site, and this

warrants further investigation.
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Chapter 5.

Evaluation of ILC subsets in IL-4, IL-13 and STAT6

knockout mice following intranasal rFPV vaccination.
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5.1 Abstract.

This study demonstrated that ILC and their cytokine expression profiles (IL-13, IFN-y
and 1L-22) were vastly different during permanent (gene knockout) verses transient
blockage of 1L-13, IL-4, and STAT6 at the vaccination site. STAT6” mice given the
FPV-HIV vaccine showed elevated ST2/IL-33R* ILC2-driven IL-13 expression whilst
reduced IFN-y expression by both NKp46*" ILC1/ILC3 24 h post intranasal vaccination.
In contrast, when STAT®6 signalling was transiently blocked in BALB/c mice using
FPV-HIV-IL-4R antagonist vaccination, the opposing effect was observed, eliciting
high IFN-y expression. When IL-13" mice were vaccinated with FPV-HIV significantly
elevated lung lineage” ST2/IL-33R* ILC2s were detected compared to BALB/c mice
given the FPV-HIV-IL-13Ra2 adjuvanted vaccine (transient inhibition of IL-13), and
their NKp46*"- ILC1/ILC3-driven IFN-y expression was significantly lower compared to
transient inhibition of STAT6. In previous studies when IL-13 was inhibited, no or low
HIV gag specific IgG1 and 1gG2a antibody differentiation has been reported, unlike
STAT6 inhibition. Thus, current data further corroborate that ST2/IL-33R* ILC2-
derived IL-13 plays a crucial role in modulating downstream B cell immune outcomes.
Specifically, co-regulation of ST2/IL-33R* ILC2-derived 1L-13 and NKp46*"
ILC1/ILC3-derived IFN-y may play an important role in modulating IgG1 to 1gG2a
antibody differentiation process in a STAT6 independent manner via the IL-13Ra2

pathway.

5.2 Introduction.

Cytokines IL-13 and IL-4 have been well studied in models which are related to Th2

immunity such as allergy, asthma, parasitic and helminth infections®: 81 82 256,257 Thg
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roles of these two cytokines have been characterised as the regulators of Thl and Th2
immune responses®® 8% 258,

The two poxviral vector based HIV vaccines, IL-13Ra2 adjuvanted and IL-4R
antagonist adjuvanted vaccines described in Chapter 3, that can temporarily manipulate
IL-13 and IL-4 activity at the vaccination site, have shown to induce higher
avidity/multi-functional HIV specific effector/memory CD8 T cells with improved CD8
T cell mediated protective efficacy'?2. Moreover, in the context of antibody immunity,
the FPV-HIV-IL-4R antagonist adjuvant vaccine has also shown to induce HIV gag-
specific 1gG1l and 1gG2a antibody differentiation, but not the FPV-HIV-IL-13Ra2
adjuvanted vaccine'*3. To further understand the role of 1L-13 in 19gG1/IgG2a antibody
differentiation, 1L-13", IL-4", and STAT6”" mice were vaccinated with FPV-HIV/VV-
HIV (unadjuvanted) prime-boost strategy. Although IL-47" and STAT6” animals
showed enhanced 1gG2a antibody responses, 1L-13"- showed very low IgG2a antibodies
(Hamid et al EJI accepted). More interestingly, when STAT67 mice were given the
FPV-HIV-IL-13Ra2 adjuvanted vaccine, which sequestered IL-13 at the vaccination
site, elevated IgG1 but low 1gG2a antibody responses were detected similar to the IL-
137 mice (Hamid et al EJI accepted). These observations clearly indicated that i) unlike
T cell immunity, presence of IL-13 was critical for B cell differentiation, and ii) taken
together the STAT6-" and IL-4R antagonist data indicated that signalling via IL-13Ra.2
pathway may be involved in this process (Hamid et al EJI accepted). Knowing that IFN-
y plays an important role in antibody differentiation?>® 260. 261 262, 263 ' anq chapter 3
showing that ILC2 are the major source of IL-13 at the vaccination site and IL-13Ra.2
adjuvanted vaccine and IL-4R antagonist vaccines, differentially regulated IFN-y at the
vaccination site, we postulate that balance between ILC2-driven IL-13 and ILC1/ILC3-
driven IFN-y at the vaccination site most likely play a critical role in shaping the

downstream B cell immune responses.
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IL-13 and IFN-y have shown to regulate each other under different conditions264: 265 266,
267,268 "Under inflammation condition, IFN-y has shown to inhibit ILC2 aviation and IL-
5 production?®®, however, the relationship between IL-13 and IFN-y at the ILC level
under viral vector vaccination is still poorly understood. Thus, in this study we have
used IL-13, IL-4, and STATG6 gene knockout mice (permanent verses transient blockage
-Chapter 3) to further understand the roles of these different ILC subsets following
rFPV viral vector vaccination and to gain better understanding of how the balance of
ILC2-driven IL-13 and ILC1/3-driven IFN-y at the vaccination site modulate B cell

activation.

5.3 Materials and Methods.

5.3.1 Mice and immunisation.

5-6 weeks old pathogen free female WT BALB/c, IL-13", IL-4", STAT6” mice were
obtained from the Australian Phenomics Facility, the Australian National University,
and were maintained and handled under protocols indicated in 2.2.1. 1x107 PFU
unadjuvanted FPV-HIV vaccine was administered to each mice group (n = 3 - 6 per
group) intranasally under mild isoflurane anaesthesia as per described in 2.2.5. Lungs
were harvested in 2 ml of complete RPMI at 24 h, 3 and 7 days post immunisation,
single cell lung suspensions were prepared, stained and analysed as per described in

2.2.6and 2.2.8.

5.3.2 Surface and intracellular staining.

Surface and intracellular staining were performed as per described in 2.2.8 using

antibodies listed in Table 2.3. Specifically,
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ILC2? staining: APC/Cy7-conjugated anti-mouse CD45, and FITC-conjugated lineage

cocktail were used to identify lineage™ cells. PE-conjugated anti-mouse ST2/IL-33R,
APC-conjugated anti-mouse Sca-1 were used to identify the ILC2. Brilliant Violet 421-
conjugated anti-mouse IL-4 and PE-eFlour 610-conjugated anti-mouse 1L-13 were used

to evaluate intracellular expression of these cytokines in ILC2s.

ILC1/3 staining: APC/Cy7-conjugated anti-mouse CD45, and FITC-conjugated lineage

cocktail were used to identify lineage™ cells. PE-conjugated anti-mouse ST2/IL-33R,
and Brilliant Violet 421-conjugated anti-mouse CD335 (NKp46) were used to identify
ILC1/3 populations. Brilliant Violet 510-conjugated anti-mouse IFN-y, APC-conjugated
anti-mouse IL-22, and Alexa Fluor 700-conjugated anti-mouse IL-17A were used to

evaluate intracellular expression of these ILC1/3 cytokines in ILC1 and ILC3.

All ILC subsets were gated and analysed as per described in 2.2.9.

5.4 Results.

5.4.1 Following i.n. rFPV vaccination lung lineage™ IL-33R/ST2" ILC2
in 1L-47, 1L-13" and STAT6” mice were significantly different
compared to WT BALB/c mice.

In this study, WT BALB/c, IL-13", IL-4", and STAT6”" mice (each group n = 3 - 6)
were vaccinated intranasally with the unadjuvanted FPV-HIV vaccine and lung lineage
IL-33R/ST2* ILC2 were evaluated 24 h, 3 and 7 days post vaccination, using
multicolour flow cytometry as described in Materials and Methods. Data revealed that

compared to WT BALB/c mice, all knockout animals showed significantly elevated

lung lineage” IL-33R/ST2* ILC2 24 h post vaccination (WT BALB/c vs IL-137,
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p<0.0001; WT BALB/c vs IL-47, p=0.0013; WT BALB/c vs STAT6” p<0.0001).
However, interestingly, at day 3 post vaccination, lineage™ IL-33R/ST2" ILC2 numbers
in lung decreased significantly in knockout mice compared to the control WT BALB/c
(Fig. 5.1a & 1b). Consistent with what was observed in the previous chapter, at 7 days
post vaccination very low numbers of lung lineage IL-33R/ST2" ILC2 were detected in

all groups tested.

Unlike transient inhibition of IL-13 at the vaccination site with IL-13Ra2 adjuvanted
vaccine described in Chapter 3, 1L-13" mice showed significantly elevated numbers of
lung lineage IL-33R/ST2" ILC2 24 h post vaccination (p<0.0001) (Fig 5.1c). Similarly,
STAT6” mice (where no IL-13 and IL-4 signalling occur via STAT6 pathway), showed
significantly higher lung lineage  IL-33R/ST2" ILC2 24 h post vaccination compared to
IL-4 ", 1L-137 and WT BALB/c mice (Fig. 5.1b). Interestingly, out of the three
knockout mice groups tested the lowest number of lung lineage IL-33R/ST2" ILC2s

were detected in IL-47 24 h post vaccination.

5.4.2 In KO mice the Sca-1 regulation on lung lineage™ IL-33R/ST2"

ILC2 was mainly observed at 24 h post vaccination.

Next when stem cell marker Sca-1 expression was evaluated on lineage™ IL-33R/ST2*
ILC2, unlike WT BALB/c mice where an increase in Sca-1" ILC were detected over
time, in gene knock-out mice differences in Sca-1* ILC were only observed at 24 h post
vaccination (Fig. 5.2a). Furthermore, compared to the other two knockout mice groups,
relatively low Sca-1 expression was detected in 1L-47" lineage™ IL-33R/ST2* ILC2 (Fig.
5.2b). In contrast, elevated numbers of Sca-1* lineage  IL-33R/ST2" ILC2 were detected
in both 1L-13" mice and STAT6”" mice at 24 h post vaccination (Fig. 5.2b & c). In

general, the trend of Sca-1 expression 24 h to 7 days post immunisation was
149
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significantly different in IL-13, IL-4 and STAT6 gene knock-out mice compared to the

WT control BALB/c mice.

5.4.3 WT BALB/c and STAT6" mice showed elevated numbers of lung

lineage 1L-33R/ST2* ILC2 expressing IL-13 compared to I1L-47 mice.

Next when IL-13 expression was evaluated in lung lineage  IL-33R/ST2* ILC2, all time
points tested significantly lower IL-13 levels were detected in IL-47" mice compared to
WT BALB/c and STAT6” mice (Fig. 5.3a & b). Although the IL-13 expression in
STAT6™" lineage IL-33R/ST2* lung ILC2 was significantly higher than WT BALB/c at
24 h post vaccination (Fig. 5.3a & b), no IL-13 expression was detected 3 days post
vaccination (Fig. 5.3b). Moreover, no IL-4 expression was detected in any of the lung
lineage™ IL-33R/ST2* ILC2 obtained from knockout mice or WT control BALBI/c,

including IL-137 mice.

5.4.4 Lung lineage I1L-33R/ST2° NKp46™ ILC1/ILC3 numbers were

regulated differently in IL-137, IL-4", and STAT6"" mice.

When lineage IL-33R/ST2" NKp46* lung ILC (ILC1 /ILC3) were assessed following
i.n. rFPV vaccination in gene knockout mice, significantly reduced numbers were
observed compared to WT BALB/c mice (Fig. 5.4a). This reduction was more
pronounced 3 to 7 days post vaccination (Fig. 5.4b). Although there was no significant
difference in the lung lineage™ IL-33R/ST2 NKp46* ILC numbers in all three KO mice
groups at day 3 post vaccination, at 24 h, these ILC numbers were significantly elevated
in the 1L-4"" group, compared to 1L-13" group these (Fig. 5.4b). Moreover, 7 days post
vaccination, lung lineage™ 1L-33R/ST2" NKp46* ILC numbers in STAT6” mice were

slightly elevated compared to 1L-47 mice (Fig. 5.4b).
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Unlike lung lineage 1L-33R/ST2° NKp46* ILCs, when lung lineage  IL-33R/ST2
NKp46™ ILC in KO mice were assessed, significant differences were observed between

the four mice groups at all time points tested (Fig. 5.4c). Specifically, whilst lineage
IL-33R/ST2" NKp46™ ILC numbers in WT BALB/c mice and IL-13"" mice showed
similar trends overtime, IL-47- mice showed no significant changes at 24 h, 3 and 7 days
post intranasal vaccination (Fig. 5.4d). Compared to all KO mice tested, IL-4" mice
showed the lowest number of NKp46™ ILC at 24 h post vaccination. Interestingly,
elevated numbers of lineage™ IL-33R/ST2" NKp46™ ILC were detected in IL-137 mice
and STAT6” compared to both control WT BALB/c and IL-4" mice at 24h post
vaccination (Fig. 5.4d). However, the STAT6 mice showed significantly reduced
NKp46™ ILC at 3 and 7 days post vaccination compared to both WT BALB/c and 1L-13
" mice. The profiles at 3 and 7 days post vaccination in IL-47" mice were similar to

STAT6” mice (Fig. 5.4d).

5.45 Following intranasal vaccination, STAT6” mice showed
extremely low lung lineage IL-33R/ST2° NKp46* ILC1/ILC3

expressing IFN-y and IL-22.

Although IFN-y and IL-22 expression in lung lineage  IL-33R/ST2" NKp46* ILC were
significantly lower in KO mice compared to WT BALB/c mice, STAT6” mice showed
the lowest expression of both cytokines at all time points tested (Fig. 5.5a - d). The low
IFN-y and 1L-22 expression by lineage™ IL-33R/ST2" NKp46* ILC at 3 to 7 days post
vaccination (Fig. 5.5b & d), was reflective of the overall low numbers of lineage™ IL-
33R/ST2  NKp46™ ILC in KO mice at these time points (Fig. 5.4). Unlike IFN-y, in the
context of IL-22 expression, I1L-47" mice shows much elevated levels compared to IL-
13" (Fig. 5.5d). In all groups tested, none of the NKp46* ILC were found to express IL-
17A.
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When IFN-y, IL-22 and IL-17A cytokines expression was evaluated in lineage™ IL-
33R/ST2  NKp46° ILC, extremely low IFN-y expression was detected in STAT6” mice
at all time points tested (Fig. 5.6a & b). In IL-13" mice, although significantly reduced
IFN-y expression was detected at 24 h post vaccination (Fig. 5.6a & b), elevated levels
were detected after 3 days post vaccination (Fig. 5.6b). No significant difference in
IFN-y expression by lineage  1L-33R/ST2" NKp46™ ILC were detected in IL-4" mice
and WT BALB/c mice at 24 h post vaccination (Fig. 5.6a & b), and rapid reduction in
IFN-y expression was observed 3 days post vaccination, unlike I1L-137 mice (Fig. 5.6b).
In the context of 1L-22 expression by lineage™ IL-33R/ST2° NKp46™ ILC, I1L-13" mice
and STAT6” mice showed significantly reduced IL-22 expression at all time points
tested (Fig. 5.6c & d). IL-47 mice showed significantly elevated level of IL-22
expression by NKp46™ ILC compared to IL-137 and STAT6” mice at 24 h post
vaccination (Fig. 5.6d). Similar to lineage” IL-33R/ST2" NKp46* ILC, none of the

lineage™ IL-33R/ST2  NKp46™ ILC were found to express IL-17A.

5.4.6 Following viral vector vaccination, ILC2-driven IL-13 and
ILC1/ILC3-driven IFN-y expression were inversely correlated.

Next, the IL-13 expression profile of lung IL-33R/ST2" ILC2, and IFN-y expression by
both NKp46*~ ILC1/ILC3 obtained from BALB/c mice given the FPV-HIV-IL-4R
antagonist and 1L-137, FPV-HIV-IL-13Ra2 adjuvanted vaccines were compared with
IL-137, STAT67, and IL-4" mice given the control unadjuvanted vaccine (Fig. 5.7a).
STAT6” and IL-47 mice showed elevated IL-13 expression by ILC2 compared to the
BALB/c mice given the adjuvanted vaccines (Fig. 5.7a). However, ILC2-driven IL-13
expression was significantly higher in STAT6” mice compared to IL-47 mice (Fig.

5.7a). When IFN-y expression by both NKp46*" ILC1/ILC3 were evaluated, the FPV-
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HIV-IL-4R antagonist vaccine group showed elevated IFN-y expression by both
NKp46*~ ILCs, whilst STAT67 mice vaccinated with unadjuvanted vaccine showed
very low expression of IFN-y (Fig. 5.7b & c). In contrast, compared to the FPV-HIV-
IL-13Ra2 adjuvanted vaccine group, the IL-137" mice given the unadjuvanted vaccine
showed higher level of IFN-y expression by both NKp46*- ILC1/ILC3 (Fig. 5.7b & c).
Moreover, expression of 1L-22 by both NKp46*~ ILC1/I1LC3s was significantly lower in
FPV-HIV-IL-13Ra2 group compared to IL-137 mice given FPV-HIV vaccine (Fig.
5.7d & e). Although there was no significant difference in NKp46™ ILCI/ILC3-driven
IL-22, significantly elevated 1L-22 expression by NKp46* ILC1/ILC3 were observed in
FPV-HIV-IL-4R antagonist vaccinated group compared to STAT6” mice given FPV-
HIV (Fig. 5.7d & e). Interestingly, in each vaccine group tested the expression profile
of NKp46* ILCI/ILC3-driven IL-22 and IFN-y were very similar, unlikeNKp46*
ILCI/ILCS3, suggesting that NKp46™ and NKp46™ subsets most likely are differentially

regulated (Fig 5.7b & d).

5.5 Discussion.

This study revealed that ILC and their cytokine expression profile (IL-13, IFN-y, and
IL-22) at the vaccination site is vastly different in the scenario of transient sequestration
verses permanent blockage of in IL-13, IL-4, and STAT6. Moreover, IL-17A was not
detected in lung NKp46™ ILC at any time points tested, unlike when 1L-25 was
transiently sequestered at vaccination site (Chapter 4). Data further supported the notion
that the balance of ILC-2 driven IL-13 and ILC1/ILC3-driven IFN-y play an important
role in shaping downstream immune outcomes. Specifically, at 24 h post vaccination
when 1L-13 was permanently blocked (I1L-13"), significantly elevated number of lung

lineage  ST2/IL-33R* ILC2s were detected at the vaccination, compared to transiently
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inhibition of IL-13 in BALB/c mice (FPV-HIV-IL-13Ra2 adjuvanted vaccine) which
showed the opposing effect. Interestingly, when STAT6”- mice were given FPV-HIV,
where IL-13 was unable to signal via the JAK/STAT6 pathway, and transient inhibition
of STATG signalling in BALB/c mice (FPV-HIV-IL-4R antagonist adjuvanted vaccine)
both showed elevated ST2/IL-33R* ILC2s compared to WT control. These data clearly
indicated that in the knockout scenario, different compensatory mechanism may be
involved in modulating the ST2/IL-33R* ILC2 at the vaccination site. For example,
under STATG inhibitory condition, IL-13 may signal via the not well-defined IL-13Ra2
pathway described by Hamid et al 2018 (Hamid et al EJI accepted). In this scenario, it
is plausible that IL-13Ra2 may have the potential to complex with IL-13Ral to

promote STAT3 signalling?™.

STAT6” mice given the FPV-HIV vaccine showed elevated ST2/IL-33R* ILC2-driven
IL-13 expression whilst reduced IFN-y expression by both NKp46* ILC1/ILC3.
However, when STATG6 signalling was transiently blocked in BALB/c mice using FPV-
HIV-IL-4R antagonist vaccination, the opposing effect was observed. Interestingly, IL-
137" mice given the FPV-HIV showed elevated expression of IFN-y by NKp46*"
ILC1/ILC3, whereas BALB/c mice given the FPV-HIV-IL-13Ra2 adjuvanted vaccine
showed low ST2/IL-33R* ILC2-driven IL-13 expression and low NKp46*" ILC1/ILC3-
driven IFN-y. It is now established that IL-13 can modulate IFN-y expression?®: 268,
These findings indicate that the balance between ST2/IL-33R* ILC2-driven IL-13 and
NKp46*~ ILC1/ILC3-driven IFN-y at vaccination site is differentially modulated under

IL-13 and STAT6 permanent verses transient inhibitory conditions.

Our previous studies have demonstrated that the FPV-HIV-IL-4R/VV-HIV-IL-4R

antagonist adjuvanted prime-boost vaccination can induce the HIV gag-specific 1gG1 to
168



IgG2a antibody differentiation. unlike FPV-HIV-IL-13Ra/VV-HIV-13Ra adjuvanted
vaccine strategy'®. Similarly, 1L-4", STAT6” given FPV-HIV/VV-HIV was shown to
induce elevated gag-specific 1gG2a unlike 1L-137" mice (Hamid et al EJI accepted),
indicating that IL-13 signalling was detrimental for IgG1/IgG2a antibody differentiation
(Fig.5.8a & b). When STAT®6 signalling pathway was interrupted by FPV-HIV-IL-4R
antagonist vaccine, elevated IFN-y expression by both NKp46* ILC1/ILC3 were
observed (Fig. 5.9a). It is now established that i) IFN-y is required for antibody
differentiation?>® 260. 261,262,263 and 1.-13 plays an important role in this process (Hamid
et al EJI accepted), ii) IL-13Ra.2 can act as an inhibitor of IL-4Ra chain and STAT6
signalling®®, and iii) also IL-4Ra. and STATS6 signalling can inhibit IFN-y expression
by CD4* T cells?’t. Moreover, 1L-13 signalling via IL-13Ra.2 pathway is involved in
induction of TGF-B production®’® 27 and TGF-B is known to be a key regulator for
IgG2a antibody induction?’* 27 276 Thus, we postulate that in IL-4R antagonist
inhibitor scenario, 1L-13 may act on NKp46*" ILC1/ILC3 to regulate IFN-y expression.
Specifically, via the IL-13Ra2 pathway and modulate 1gG1l/IgG2a antibody
differentiation process. In STAT6”" mice given the unadjuvanted vaccine scenario (Fig.
5.9b), where low NKp46*" ILC1/ILC3-driven IFN-y expression and high ST2/IL-33R*
ILC2-driven IL-13 expression was observed, the 1gG1/IgG2a antibody differentiation
process is likely regulated by the balance of IL-13 and IFN-y at the vaccination site, still

via the IL-13Ra2 pathway.

Interestingly, in 1L-47 mice given the unadjuvanted vaccine (Fig. 5.10), lower ST2/IL-

33R* ILC2-derived 1L-13 expression was observed compared to STAT6” mice or WT

BALB/c. This is not surprising as studies have shown that IL-47- lymphocytes express
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low 1L-1377:277:278 Thus, knowing that IL-13Ra2 is the high affinity receptor for IL-13,
we postulate that in IL-47" condition, 1L-13 may act on NKp46*" ILC1/ILC3 via the

IL-13Ra2 to regulate IFN-y expression and promote 1gG1/1gG2a antibody
differentiation. The lower 1gG2a observed in IL-13" could be associated with
redundancies in the knockout system, where compensatory mechanisms induce
1gG1/IgG2a antibody differentiation, which is completely different to a transient
inhibition of 1L-13 (Fig 5.8a & b). In contrast, in WT BALB/c mice this could be
associated with IL-4Ra/STATG signalling pathway competing with IL-13Ra2, knowing

that IL-4Ra prevents 1L-13Ra.2 interaction with type 11 complex?”®.

Taking together the previous findings in our laboratory, current data indicated that if no
ST2/1L-33R*" ILC2-derived IL-13 was detected at the vaccination site, no 1gG2a
antibody differentiation was observed regardless of the presence or absence of NKp46*"
ILC1/ILC3-derived IFN-y (Table 5.1). These findings support the notion that i) ILC2-
derived IL-13 is a master regulator of the initial 1gG1/IgG2a antibody differentiation
process, likely associated with IL-13 signalling via STAT6 independent IL-13Ra2
pathway and ii) co-regulation of ST2/IL-33R* ILC2-derived IL-13 and NKp46*"
ILC1/ILC3-derived IFN-y (specifically NKp46~ ILC) play an important role in this
process (Table 5.1). The mechanisms at the ILC level, involved in these processes

warrant further investigation.
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Chapter 6.

Evaluation of IL-13Ra2, type | and Il IL-4 receptor
complexes on different ILC subsets following rFPV

vaccination.
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6.1 Abstract.

This study demonstrated that the expression of IL-13Ra2, type | and Il 1L-4 receptor
complexes on ST2/IL-33R* ILC2 and NKp46™ ILC1/ILC3 were co-regulated, 24 h post
intranasal rFPV vaccination. Inhibition of STATG6 signalling significantly impacted the
IL-13Ra.2 expressions on both ST2/IL-33R* ILC2 and NKp46™ ILC1/ILC3, unlike IL-
13 inhibition, suggesting that under STAT®6 inhibition conditions, IL-13 could signal via
IL-13Ra2 pathway. As elevated number of ST2/IL-33R" ILC2 expressing IL-13Ra2
were detected in BALB/c mice given the FPV-HIV-IL-4R antagonist vaccine also
indicated an autocrine regulation of IL-13 at the ILC2 via IL-13Ra2. The I1L-4/I1L-13
receptor expression profile on NKp46™ ILC1/ILC3 and NKp46~ ILC1/ILC3 were vastly
different, suggesting that these cells may play different roles in downstream immune

outcomes.

6.2 Introduction.

Data in previous chapters have demonstrated that ILC2-driven 1L-13 can significantly
modulate ILC1/ILC3 function (specifically, IFN-y expression) and is a master regulator
of the initial T and B cell activation in a STAT6 independent manner. However, the

molecular mechanism by which ILC2-derived IL-13 regulating ILC1/ILC3 activity is

not well understood.

IL-4 and IL-13 signal via a complex receptor system®. The type | and type Il 1L-4
receptor complexes consist of the yC/IL-4Ra and IL-4Ra/IL-13Ral respectively® (Fig.
1.10). IL-4 can signal via both type | and type Il receptor complex by binding IL-4Ra**
% signalling via the JAK/STAT6 pathway®® °7 %, |L-13 can also bind to IL-13Ral

(type 11 IL-4 receptor complex) with low affinity (nM concentrations) and signal via the
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JAK/STAT6 pathway®. Furthermore, under low IL-13 conditions (pM concentrations),
it is also thought that IL-13 can signal via IL-13Ra2 pathway!!? using a not yet
characterised mechanism. Studies have shown that IL-13Ra2 can bind to IL-4Ra and
inhibit IL-4/IL-13 signalling via the IL-13Ral/IL-4Ra type 11 complex and
JAK/STAT6 pathway!!” & 118 120 Also  in cancer studies IL-13Ra2
activation/signalling has been associated with TGF- production in the absence of
functional 1L-4Ra!?. The dis-regulation of IL-13Rai2 in cancers?®0. 281 282, 283 g ggest

that maintaining the optimal balance of IL-13 may be crucial for cell homeostasis and

immune regulation.

Given that i) IL-13Ra2 being the high affinity receptor for IL-13 compared to IL-
13Ral, and ii) recent studies in the laboratory including Chapter 5 studies indicating
that IL-13Ra2 could be involved in ILC2-driven IL-13 and ILC1/ILC3-driven IFN-y
regulation (specifically in the context of antibody differentiation), in this chapter, the
possible mechanisms involved in this processes were assessed 24 h post vaccination.
Specifically, by evaluating the IL-4/IL-13 receptors (IL-13Ra2, IL-13Ral, IL-4Ra, and
vC) on ILC subsets in i) WT BALB/c mice following FPV-HIV unadjuvanted or IL-4R
antagonist and IL-13Ra2 adjuvanted vaccines, and ii) 1L-137 and STAT6” mice
following FPV-HIV unadjuvanted vaccination. (Note that in this study 24 h time point
was chosen as Chapters 3-5 studies clearly demonstrated that ILC were mainly

regulated at this timepoint).
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6.3 Materials and Methods.

6.3.1 Mice and immunisation.

5-6 weeks old pathogen free female WT BALB/c, IL-13", and STAT6” mice were
obtained from the Australian Phenomics Facility, the Australian National University,
and were maintained and handled under protocols indicated in 2.2.1. 1x10’ PFU
unadjuvanted FPV-HIV, FPV-HIV-IL-4R antagonist, or FPV-HIV-IL-13Ra2
adjuvanted vaccines were administered to BALB/c mice (n = 4 per group) intranasally
under mild isoflurane anaesthesia as per described in 2.2.5. IL-13" and STAT6” mice
(n = 4 per group) were intranasally vaccinated with 1x10” PFU unadjuvanted FPV-HIV
vaccine. Lungs were harvested in 2 ml of complete RPMI 24 h post vaccination, single
cell lung suspensions were prepared, stained and analysed as per described in 2.2.6 and

2.2.8.

6.3.2 Surface staining.

Surface staining was performed as per described in 2.2.8 using antibodies listed in
Table 2.3. Specifically,

ILC staining: APC/Cy7-conjugated anti-mouse CD45, and FITC-conjugated lineage
cocktail were used to identify lineage  cells. PerCP/Cy5.5-conjugated anti-mouse
ST2/IL-33R was used to identify the ILC2. Brilliant Violet 421-conjugated anti-mouse

CD335 (NKp46) were used to identify ILC1/3 populations.

IL-13Ra2, IL-13Ral, IL-4Ra, and yC staining: PE-conjugated anti-mouse yC

(CD132), PE-conjugated anti-mouse IL-4Ra (CD124), PE-conjugated anti-mouse IL-
13Ral, and Biotin-conjugated anti-mouse IL-13Ra.2 were used to evaluated type | (yC

and IL-4Ra) and type Il (IL-4Ra and IL-13Ral) IL-4 receptor complex and IL-13Ra2
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expression on different ILC subsets. PE-conjugated streptavidin was used as secondary
antibody to detect the Biotin-conjugated IL-13Ra2 antibody. All receptors antibodies
were stained separately to avoid spectral overlap as indicated in the Flowchart 6.1.
Specifically, yC (PE), IL-4Ra (PE), IL-13Ral (PE) and IL-13Ra2 (Biotin) were
stained with ILC master mix antibodies. Then yC, IL-4Ra, and IL-13Ral stained
samples were directly fixed with 0.5% PFA as per described in 2.2.8. The IL-13Ra2
stained samples were washed once with FACS buffer and then stained with PE-
conjugated Streptavidin for 15 min on ice in the dark, followed by washing and fixing
with 0.5% PFA. All samples were analysed using a BD LSR Fortessa as per described
in 2.2.8. All ILC subsets and their yC, IL-4Ra, IL-13Ral, and IL-13Ra2 expression

were analysed based on the FMO controls as per described in Fig. 6.1.

Flowchart 6.1. ILC yC, IL-4Ra, IL-13Ral, and IL-13Ra2 staining strategy.
Lung cells

¥ ¥ Y ¥
T T

T
Lineage cocktail (FITC conjugated)

| I |
ST2/IL-33R (PerCP/Cy5.5) & NKp46 (Brilliant Violet 421)

IL-13Ra2 (Biotin)

vC (PE) IL-4Ra (PE) IL-13Ral (PE)
Streptavidin (PE)
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6.4 Results.
6.4.1 Elevated number of ST2/IL-33R™ ILC2 and NKp46™ ILC1/ILC3
were found to express IL-13Ra2 following FPV-HIV-IL-4R antagonist

vaccination.

To examine type | and type Il IL-4 receptor complexes and IL-13Ra2 expression
profiles on different ILC subsets, WT BALB/c mice were vaccinated intranasally with
the unadjuvanted and adjuvanted vaccines and ILC subsets were evaluated using
multicolour flow cytometry as per described in Materials and Methods. Data revealed
that at 24 h post rFPV vaccination, IL-13Ra2, IL-13Ral, IL-4Ra, and yC were

expressed on both ST2/IL-33R* ILC2 and NKp46*"~ ILC1/ILC3 (Fig. 6.2a-d).

When transient verses permanent inhibition of STAT6 (FPV-HIV-IL-4R antagonist vs
STAT6™"), elevated number of ST2/IL-33R* ILC2 were found to express IL-13Ra2
following IL-4R antagonist adjuvanted vaccination compared to BALB/c mice given
the unadjuvanted FPV-HIV vaccination (p<0.05) (Fig. 6.3a). In contrast, no ST2/IL-
33R* ILC2 obtained from STAT6” mice given the unadjuvanted vaccine were found to
express IL-13Ra2 (Fig. 6.3a). However, no significant difference in ST2/IL-33R™ ILC2
IL-13Ral expression was observed in any of the groups tested (Fig. 6.3b). Although no
differences in yC and IL-4Ra expression were detected in BALB/c mice vaccinated
with IL-4R antagonist adjuvanted and unadjuvanted vaccines, significantly lower
number of ST2/IL-33R* ILC2 from STAT6” mice given unadjuvanted FPV-HIV

vaccine expressed these two receptors (Fig. 6.3¢c & d).

When the densities of the different receptors on ILC subsets were accessed, no

significant differences in IL-13Ra2 and I1L-13Ral were detected on ST2/IL-33R*
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Fig. 6.2. Evaluation of type I (yC chain and IL-4Ro) and type 11
(IL-4Ra. and IL-13Ral) IL-4 receptor complexes and IL-13Ra2

expression on ILC following intranasal rFPV vaccination.

WT BALB/c mice (each group n = 4) were immunized intranasally
with unadjuvanted FPV-HIV vaccine. Using the flow cytometry gating
strategy indicated in materials and methods, ILC2s were defined as
CD45% FSClow SSClov lineage™ IL-33R/ST2" cells, ILC1/ILC3 were
identified as CD45" FSClow SSClow lineage  IL-33R/ST2- NKp46*-
ILCs. The histogram FACS plots indicate the expression of [L-13Ra2
(a), IL-13Ral (b), IL-4Ra (c), and yC chain (d) on different ILC
subsets in unimmunized WT BALB/c mice (black line) and 24 h post
intranasal unadjuvanted rFPV vaccinated WT BALB/c mice (blue

line) compared to isotype control.
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ILC2s (Fig. 6.4a & b). However, IL-4Ro densities on ST2/IL-33R* ILC2 obtained
from STAT6” mice given the unadjuvanted vaccine were significantly down-regulated
compared to BALB/c mice given the adjuvanted or the unadjuvanted vaccines
(p<0.0001 and p<0.001 respectively) (Fig. 6.4c). Similarly, down regulation of yC on
ST2/1L-33R* ILC2 was also observed in STAT6” mice compared to BALB/c given the

unadjuvanted vaccine (Fig. 6.4d).

Following rFPV vaccination, similar to ST2/IL-33R™ ILC2, elevated number of NKp46
ILC1/ILC3 were found to express IL-13Ra2 in FPV-HIV-IL-4R antagonist adjuvanted
vaccine group compared to both BALB/c and STAT6” mice given unadjuvanted FPV-
HIV vaccination (p<0.01) (Fig. 6.5a). Interestingly, STAT6” mice given unadjuvanted
FPV-HIV vaccine showed down-regulation of the IL-13Ral on NKp46™ ILC1/ILC3
compared to both BALB/c mice given unadjuvanted FPV-HIV or FPV-HIV-IL-4R
antagonist adjuvanted vaccines (Fig. 6.5b). Moreover, transient inhibition of STAT6
signalling (FPV-HIV-IL-4R antagonist) down-regulated the expression of IL-4Ra. on
NKp46™ ILC1/ILC3s (Fig. 6.5c). Similarly, yC was also down-regulated on FPV-HIV-
IL-4R antagonist vaccinated NKp46~ ILC1/ILC3s compared to unadjuvanted
vaccination (p<0.05) (Fig. 6.5d). In the context of IL-4/IL-13 receptor densities,
STAT6” mice given the unadjuvanted vaccine showed significant down-regulation of
IL-13Ra2 on NKp46™ ILC1/ILC3 compared to the other vaccine groups tested (Fig.
6.6a). Interestingly, IL-13Ral or IL-4Ra was not modulated on NKp46™ ILC1/ILC3
(Fig. 6.6b & c), although STATG6 inhibition resulted in down-regulation of yC

expression on these cells (Fig. 6.6d).
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6.4.2 Following FPV-HIV-IL-13Ra2 adjuvanted vaccination, IL-13Ra2

was not regulated on ST2/IL-33R" ILC2 or NKp46™ ILC1/ILC3.

Next when IL-4/IL-13 receptor expression on ST2/IL-33R" ILC2 were examined under
transient verses permanent inhibition of IL-13 (FPV-HIV-IL-13Ra2 vs 1L-137),
although expression of IL-13Ra2 on ST2/IL-33R* ILC2 was not modulated, IL-13Ral
expression was significantly down regulated on IL-13"" mice given the unadjuvanted
vaccine (p<0.05) (Fig. 6.7a & b). Interestingly, in this scenario, elevated number of
ST2/IL-33R* ILC2 were found to express both yC and IL-4Ra. following FPV-HIV-IL-
13Ra2 adjuvanted vaccination, unlike IL-13" mice given unadjuvanted FPV-HIV
vaccine (p<0.001 and p<0.0001 respectively) (Fig. 6.7¢c & d). Furthermore, compare to
the BALB/c mice given the unadjuvanted vaccine, mice that received FPV-HIV-IL-
13Ra2 adjuvanted vaccine showed significant regulation of type 1| IL-4 receptor
complex on ST2/IL-33R* ILC2 (Fig. 6.7c &d). In the context of IL-4/IL-13 receptor
densities on ST2/IL-33R* ILC2, the IL-13"7 mice given the unadjuvanted vaccine
showed significantly lower IL-4Ra/yC expression (Fig. 6.8c & d). Interestingly, IL-

13Ral and IL-13Ra.2 were not regulated in any of the groups tested (Fig. 6.8a & b).

Under different IL-13 inhibition conditions, the IL-4/I1L-13 receptor expression profiles
were vastly different between ST2/IL-33R* ILC2 and NKp46~ ILC1/ILC3. Significantly
elevated number of NKp46~ ILC1/1LC3 were found to express IL-13Ra2 in the 1L-13"
mice given the unadjuvanted vaccine (Fig. 6.9a). However surprisingly, transient
inhibition of 1L-13 showed elevated number of NKp46™ ILC1/ILC3 expressing IL-
13Ral compared to both BALB/c and IL-137 mice given the unadjuvanted vaccine
(Fig. 6.9b). Elevated number of NKp46™ ILC1/ILC3 were found to express IL-4Ra (Fig.

6.9¢), but not yC (Fig. 6.9d) obtained from IL-13"" mice given unadjuvanted FPV-HIV
195
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vaccine. In the transient verses permanent IL-13 inhibitory conditions, IL-13Ra2, IL-
4Ra, yC, but not IL-13Ral densities were differentially regulated on NKp46

ILC1/ILC3 (Fig. 6.10).

6.4.3 Following transient or permanent inhibition of IL-4/1L-13, IL-
13Ra2 were not regulated on NKp46* ILC1/ILC3 unlike NKp46

ILC1/ILCS.

When IL-4/1L-13 receptors on NKp46* ILC1/ILC3 were accessed under transient verses
permanent inhibition vaccine conditions, surprisingly there were no significant
differences in the number of NKp46™ ILC1/ILC3 expressing IL-13Ra2 in all vaccine
groups tested (Fig. 6.11a). In contrast, the number of NKp46* ILC1/ILC3 expressing yC,
IL-4Ra, and IL-13Ral (Fig. 6.11b - c) were found to be significantly lower under
permanent STAT6 or IL-13 inhibition (KO mice) compared to transient inhibition.
Interestingly, both transient blockage of STAT6 (FPV-HIV-IL-4R antagonist) and IL-
13 (FPV-HIV-IL-13Ra.2) showed significantly elevated number of NKp46* ILC1/ILC3
expressing yC, IL-4Ra, and IL-13Ral compared to BALB/c mice given the
unadjuvanted FPV-HIV vaccine (Fig. 6.11b - c). Under permanent blockage of STAT6
and 1L-13 (KO mice), significant down-regulation of not only yC/IL-4Ra but also IL-
13Ra2 densities were detected on NKp46* ILC1/ILC3 following vaccination, but not

IL-13Ral (Fig. 6.12).
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6.5 Discussion

This study demonstrated that the expression of type I (yC/IL-4Ra) and type Il (IL-
4Ro/IL-13Ral) IL-4 receptor complexes and IL-13Ra2 on ILC subsets were
differentially regulated 24 h post intranasal rFPV vaccination, specifically under
permanent and transient inhibition of cytokine IL-13 and STAT6 signalling. Data
revealed that although there was a correlation between the IL-4/1L-13 receptor
regulation between ST2/IL-33R* ILC2 and NKp46™ ILC1/ILC3, the receptor regulation
on NKp46" ILC1/ILC3 were vastly different. Specifically, disruption of STAT6
signalling significantly impacted the IL-13Ra2 expression on both ST2/IL-33R" ILC2
and NKp46™ ILC1/ILC3, unlike IL-13 inhibition, indicating that STAT6 independent
IL-13 signalling can activate IL-13Ra.2 signalling. Hamid et al have recently reported
the activation of this pathway under STATG6 inhibition in the context of B cell

differentiation?8.

Specifically, FPV-HIV-IL-4R antagonist vaccination has shown to induce reduced
expression of IL-13 by ST2/IL-33R* ILC2 (Chapter 3). Interestingly, in this current
study, elevated number of ST2/IL-33R* ILC2 were found to express IL-13Ra2. The
FPV-HIV-IL-4R antagonist vaccination has shown to induce 1gG1 and IgG2a antibody
differentiation most likely associated with IL-13 signalling via the not well-defined IL-
13Ra2 pathway?®*. Moreover, dendritic cells studies in our laboratory have further
established that following viral vector-based vaccination (specifically rFPV), low 1L-13
in the milieu (pM conditions) can promote IL-13Ra.2 signalling (Roy et al, Liu et al
manuscript in preparation). Therefore, up-regulation of IL-13Ra2 on ST2/IL-33R*
ILC2 may suggest that under FPV-HIV-IL-4R antagonist vaccination condition (low

IL-13), IL-13 may signal via IL-13Ra2 pathway. In contrast, in STAT6 KO mice given
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the unadjuvanted vaccine elevated I1L-13 expression by ST2/IL-33R* ILC2 was detected
(Chapter 5), and no expression of IL-13Ra2 was observed (Table 6.1). Roy, Liu et al
have recently shown that IL-13Ra2 gets activated on DC under low (pM) IL-13
concentrations, following viral vector vaccination (Roy, Liu et al in preparation).
Collectively, these findings may explain the vastly different ILC2 IL-13Ra.2 expression
profiles observed under low (FPV-HIV-IL-4R antagonist adjuvanted vaccination) vs
high (STAT6 KO FPV-HIV vaccination) IL-13 conditions. Findings may suggest an
autocrine regulation of ILC2-derived-I1L-13 via the IL-13Ra2 under certain conditions

(FPV-HIV-IL-4R antagonist adjuvanted vaccination).

In the context of FPV-HIV-IL-4R antagonist vaccination, elevated expression of IFN-y
by NKp46™ ILC1/ILC3 was observed (Chapter 3). Interestingly, in this study, elevated
expression of IL-13Ra2 was detected on these cells. In contrast, STAT6” mice given
the unadjuvanted vaccination showed reduced IFN-y expression by NKp46™ ILC1/ILC3
(Chapter 5) and reduce expression of IL-13Ra2 on these cells compared to FPV-HIV-
IL-4R antagonist vaccination. Recent studies in our laboratory have shown that ST2/IL-
33R* ILC2 also express elevated IFN-yR (Jaeson et al in preparation). Taken together
the i) ILC2-driven IL-13 and NKp46~ ILC1/ILC3-driven IFN-y expression profiles, and
ii) the expression profile of IL-13Ra2 on ST2/IL-33R™ ILC2 and NKp46~ ILC1/ILC3
under STATG6 inhibitory conditions, plus iii) the ability of ILC2 to express elevated
IFN-yR following vaccination (Jaeson et al in preparation), data support the notion that
there is a co-regulation of ST2/IL-33R* ILC2 and NKp46™ ILC1/ILC3, and the balance

of IL-13 and IFN-y at the vaccination site plays an important role in this process.
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Unlike IL-13, no IL-4 expression by ST2/IL-33R™ ILC2 was detected in any vaccine
groups tested. Thus, the down-regulation of the type | receptor complex on STAT6™
lung ST2/IL-33R" ILC2 following the unadjuvanted vaccination compared to BLAB/c
mice given the FPV-HIV-IL-4R antagonist or the unadjuvanted vaccines could be an
inherent mechanism by which STAT6” mice regulate these receptors on ILC2 to
regulate cytokine balance. Furthermore, reduced number of NKp46™ ILC1/ILC3 were
found to express both yC and IL-4Ra. in FPV-HIV-IL-4R antagonist scenario. Knowing
that IL-13Ra2 acts as an inhibitor of IL-4Ra!'® and yC pairs with IL-4Ra to form type |
complex®®, the down-regulation of these two receptors on NKp46™ ILC1/ILC3 could be
associated with the elevated expression of IL-13Ra2 inhibiting type | (yC/IL-4Ra)

complex formation, and IL-13 signalling via this pathway.

The regulation of IL-4/IL-13 receptor expression on ILC were significantly different
under STAT6 compared to IL-13 inhibition conditions. Following FPV-HIV-IL-13Ra2
adjuvanted and unadjuvanted vaccination, both IL-13Ral and IL-13Ra2 on ST2/IL-
33R* ILC2 were not regulated, unlike the type | (yC/IL-4Ra) IL-4 receptor complex.
No expression IL-13Ra2 and low expression of type | (yC/IL-4Ra) or type Il (IL-
4ARa/IL-13Ral) receptor complexes were detected on IL-137 ST2/IL-33R* ILC2
following unadjuvanted vaccination. In this scenario, although IL-4 expression by
ST2/IL-33R* ILC2 was not observed 24 h post vaccination, other cells in the milieu
have high potential to express IL-4 to compensate for IL-13. Thus, the down-regulation
of type | IL-4 receptor complex on IL-137 ILC2 could be an inherent mechanism by
which ILC2 regulated IL-4 function. Furthermore, FPV-HIV-IL-13Ra2 induce low
IFN-y expression by NKp46™ ILC1/ILC3 compared to BALB/c and IL-13" mice given

unadjuvanted vaccine. (The hierarchy of this IFN-y expression was, BALB/c
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unadjuvanted > IL-13" unadjuvanted > BALB/c IL-13Ra2 adjuvanted (Table 6.1)).
IFN-y was significantly down-regulated and differentially regulated when IL-13 was
sequestered from the vaccination site in WT BALB/c mice. The above findings further
corroborate our notion that IL-13 is the master regulator of ILC2 and NKp46

ILC1/ILC3 activity/function.

The IL-13Ra2, IL-13Ral, IL-4Ro and yC receptor expression profiles on NKp46*
ILC1/ILC3 were found to be regulated in a vastly different manner compared to the
other two ILC subsets. This suggested that this subset could have a different role in
immune regulation following vaccination. Interestingly, no regulation of IL-13Ra2 on
NKp46* ILC1/ILC3 were detected under any of the IL-13 or STAT6 inhibitory
conditions including BALB/C mice given the unadjuvanted vaccine. However
interestingly, expression of yC, IL-4Ra, and IL-13Ral on NKp46* ILC1/ILC3 were
elevated following FPV-HIV-IL-4R antagonist and FPV-HIV-IL-13Ra2 adjuvanted
vaccination scenarios unlike STAT6™ or IL-13"" mice given the unadjuvanted FPV-HIV
vaccine. The expression of type | (yC/IL-4Ra) and type Il (IL-4Ro/IL-13Ra2) IL-4
receptor complexes on NKp46* ILC1/ILC3 not IL-13Ra2, suggested that these cells
most likely are not responsive to ILC2-driven IL-13. Furthermore, the low IFN-y
expression by these cells following vaccination, and no regulation of IL-13Ra.2 on these
cells, suggest that NKp46™ ILC1/ILC3 most likely may not be involved in the regulation

of ILC2 balance during viral vector vaccination.

Collectively, our findings indicated an autocrine regulation of IL-13 at the ILC2 level
via IL-13Ra2 signalling, and co-regulation of ILC2-driven IL-13 and NKp46

ILC1/ILC3-driven by IFN-yR and IL-13Ra2 receptors respectively, 24 h post viral
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vector vaccination. IL-13 is the master regulator of both ILC2 and NKp46™ ILC1/ILC3
(not NKp46* ILC1/ILC3) responsible for shaping the downstream adaptive outcomes
following viral vector vaccination. Specifically, this IFN-yR and IL-13Ra2 receptor

regulation process at the ILC level may play an important role in regulation of B cell

immunity.
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Chapter 7.

General discussion.
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7.1 General discussion.

This thesis for the first time demonstrated that 24 h following viral vector vaccination
(rFPV) ILC activity were significantly modulated in a route dependent manner and
ILC2-derived IL-13 at the vaccination site was a master regulator of the downstream T
and B cell immune outcomes observed previously in the laboratory™ > 77 113,122,123 gy
dissecting the cytokine expression profiles and regulation of IL-4/IL-13 receptor
complexes on ILC under permanent (gene knockout) verses transient inhibition of IL-
13/IL-4, and STAT6, data revealed that ILC2-derived IL-13 at the vaccination site was
most likely regulated by IL-13 signalling via the IL-13Ra2 pathway (under low IL-13
conditions), following viral vector vaccination. At the ILC2 level there was an autocrine
regulation of IL-13, and it also regulated ILC1/ILC3-driven IFN-y via a STAT6
independent mechanism, most likely IL-13Ra2 pathway (Chapter 5 & 6). Jaeson et al.
have recently found elevated expression of IFN-yR on ILC2 24 h post viral vector
vaccination (Jaeson et al in preparation). These findings proposed the exciting notion
that the balance of ILC2-driven IL-13 and ILC1/ILC3-driven IFN-y are co-regulated
(Fig. 7.1) and this STAT6 independent regulation is associated with maintaining the
balance of IL-13 and IFN-y at the vaccinations site, shaping the downstream antibody

immunity?®,

Intranasal verses intramuscular vaccination induced different ILC2 phenotypes (IL-
33R* vs IL-25R*) associated with different NKp46*~ ILC1/ILC3 profiles, suggesting
IL-13 and IFN-y played different roles in ILC development in muscle and lung.
Interestingly, the disruption of IL-25 at the lung mucosae, unlike IL-33 led to the
generation of lineage” ST2/IL-33R" IL-25R", lineage” ST2/IL-33R" TSLPR* ILC2, and a
unique lineage” ST2/IL-33R" IL-25R™ TSLPR™ ILC2 with vastly different IL-4/1L-13

expression profiles, suggesting that IL-25 could be a key regulator of ILC2. Moreover,
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sequestration of IL-25 also induced elevated expression of IL-17A and altered the IFN-y
expression by NKp46* ILC1/ILC3. Furthermore, knowing that i.m. IL-25BP
vaccination also yielded vastly different outcomes, and i.m. IL-33BP vaccination also
did not alter ILC development or activity (Ranasinghe et al in preparation) compared to
intranasal vaccination, these findings clearly indicated that IL-25 regulated not only
ILC2 but also ILC1/ILC3 differentiation, suggesting that IL-25 could be the master
regulator of ILC development (at the precursor cell level). In contrast, IL-33 may play a
role in ILC2 homing?® to the lung mucosae. Taken together the findings in this thesis,
data support the notion that at the ILC level there is a hierarchy of cytokines IL-25
compared to IL-13, where former regulates the fundamental development of all ILCs
and the latter is involved in maintaining the balance of ILC2-driven IL-13 and
ILC1/ILC3-driven IFN-y and the resulting downstream immune outcomes. Knowing the
high plasticity of 1LC109 163 166,208,209, 210,211 (gjg 1 17), this is not entirely surprising as
at the precursor level all ILC could be IL-25R* and under different stimulation
conditions, they could develop into different ILC phenotypes. Moreover, as TSLPR*
ILC2 were found to express IL-4 and IL-13 following i.n. FPV-HIV-IL-25BP
vaccination, it would also be of interest to study the impact of inhibition or

sequestration of TSLP at the vaccination site, and this warrants further investigation.

Unlike chronic inflammatory conditions, viral vector vaccination induced uniquely
different ILC subsets, indicating that ILCs are highly sensitive to different
environmental conditions and they most likely are the gatekeepers of the immune
system. Specifically, data revealed that under different infection conditions ILC-derived
cytokines are differentially regulated most likely to prevent overdrive of the resulting
immune outcomes, which was also substantiated by the data observed with permanent
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vs transient inhibition of IL-13, IL-25 and STAT®6 signalling. The various compensatory
mechanisms in gene knockout animal models, highlight the caveats of using KO models
in infection studies. Compensatory and/or redundancy mechanisms have been reported
previously in the context of certain genetic diseases (gene mutations or deletions)?> 2
287" Thus, in the context of understanding the functional differences of ILC following
viral vector vaccination, studies using reporter mice would also be of more benefit?® 28
2% The current findings once again stress the importance of understanding the
molecular mechanisms associated with i) route of vaccine delivery, ii) cytokine milieu
and iii) vaccine vectors/adjuvants, when designing vaccines against chronic pathogens,
as all these factors can significantly alter the ILC function/activity, resulting in vastly

different adaptive immune outcomes.

In conclusion, findings in this thesis demonstrated that different routes of vaccine
delivery and different adjuvants can significantly modulate ILC function/activity at the
vaccination site, as early as 24h post vaccination. ILC2-derived IL-13 and NKp46
ILC1/ILC3-derived IFN-y balance, plays an important role in this process and is likely
regulated via IL-13Ra2 in a STATG6 independent manner. Specifically, now knowing
that the cytokine environment induced by ILC can significantly alter the DC recruitment
and the downstream adaptive immune responses*® 122 123 (Fig. 7.2), when designing
vaccines against chronic pathogens, clear understanding of the ILC induced, could help
design better vaccines in the future. Collectively, the data suggest that, ILC most likely
are the gatekeepers of the immune system following viral vector vaccination, and the
level of ILC2-derived IL-13 and NKp46~ ILC1/ILC3-derived IFN-y balance induced
could be used as a predictor of the resulting downstream adaptive immune outcomes in

the future.
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7.2 Future directions.

222

Current data demonstrated that ILC subsets and their functions were
significantly manipulated following different routes of rFPV vaccination (i.n. vs
i.m.). Therefore, it would be of great interest to evaluate ILC function/activity i)
following different routes of vaccine delivery, specifically intradermal,
intrarectal and intravaginal vaccination and also ii) following different viral
vector-based vaccination (for example recombinant MVA, VV Adenovirus

vectors, including DNA-based vaccines).

This study for the first time demonstrated that ILC2 are the predominant source
of IL-13 at the vaccination site and IL-13 is the master regulator of both ILC2
and NKp46~ ILC1/ILC3 responsible for shaping the downstream adaptive
immune outcomes following viral vector vaccination. Also knowing that
permanent vs transient inhibition of cytokines induced uniquely different
immune outcomes, it would be of interest to transfer ILC2 from WT BALB/c
mice into 1L-137 mice (adaptive transfer studies), vaccinate mice with different
routes and viral vectors and evaluate the innate and adaptive immune responses

to further understand the role of IL-13 in ILC activity.

Also, using the different reporter mice systems associated with ILC may also
help in gaining a better understanding of ILC activity. For example, IL-13
reporter mice have been used intensively in ILC studies®3® 291 292293 Thysg jt
would be of interest to use BALB/c background IL-13 reporter mice during
vaccination to track ILC2 activation. Moreover, 1d2 and PLZF are two crucial
genes involved in ILC development?88 289, 294,295,2% reporter mice of these two

genes could also be used together with transcription factor fluorescence staining



to obtain better understanding of ILC development and activation process during
IL-13Ra2, IL-4R antagonist and IL-25BP adjuvanted vs unadjuvanted

vaccination.

To better understand the role of ILC development, following sequestration of
IL-25 (IL-17E) compared to unadjuvanted vaccine conditions, evaluation of the
IL-17/IL-25 receptor complexes may be of benefit. Furthermore, similar to
recent studies in the laboratory (Jaeson et al in preparation), following IL-25BP
and IL-33BP vaccination analyzing range of IL-17, IL-25 and also IL-13 related
bio-markers (cytokines, receptors, transcription factors) on ILC at a single cell
level using Fluidigm 48:48 arrays may help gain more knowledge of ILC

development, specifically following viral vector vaccination.

Chapter 6 data suggested an autocrine regulation of IL-13 at the ILC2 level and
ILC2-driven IL-13 regulating NKp46~ ILC1/ILC3-driven IFN-y via IL-13Ra2
signalling. As we postulate a co-regulation of 1L-13 and IFN-y at the ILC level
(Fig. 7.1), it would be of interest to assess i) the IFN-yR expression on ILC2 and
NKp46™ ILC1/ILC3 24 h post vaccination using FACS analysis and ii) also the

role of NKp46™ ILC1/ILC3 during vaccination.

Moreover, data in this thesis have shown that IL-13Ra.2 play an important role
in the co-regulation of ILC2-driven IL-13 and ILC1/ILC3-driven IFN-y.
However, the exact mechanism by which this signalling occurs is still unclear.
Therefore, evaluating the IL-13Ra2 signalling pathway and the possible

downstream regulation would be of significant importance.
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