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Abstract

Despite substantial research, the developmental origins of adult face recognition 

skill remain unclear. At the most general level this thesis is about the contributions of 

innate representations, experience, and the timing of experience, to the development of 

adult face recognition ability. Within this, the specific aims are to contribute to open 

questions concerning: (a) the role of extended experience continuing into adolescence in 

establishing quantitative maturity of core face perception mechanisms (specifically, 

“special” processing for faces compared to objects, face-space, and ability to encode 

novel faces); (b) the retention of flexibility in older children and adults, whereby recent 

experience with certain face subtypes might influence face processing, and; (c) the 

nature and role of an experience-expectant component present at birth, tuned by 

experience with certain stimulus classes and face subtypes in infancy.

Empirical chapters are separated into three independent papers addressing the 

above aims. The first empirical chapter investigated the age of quantitative maturity of 

face-specific perceptual mechanisms in childhood. Historically, the conventional 

understanding has been that, driven by experience, face processing undergoes protracted 

development across childhood and does not reach full maturity until mid-adolescence. 

Here, however, it is argued that the basis of determining the age of maturity of face 

effects -  quantitative comparison across age groups -  is a task made difficult by the 

need to disentangle development in face perception from development in all the other 

cognitive factors that affect task performance. I argue that, in fact, all putative face- 

specific perceptual mechanisms reach both qualitative and quantitative functional 

maturity relatively early in development, by 5-7 years at the latest and possibly earlier. 

This conclusion is based on a comprehensive literature review, plus three new 

experiments testing development of holistic processing (faces versus objects, 

disproportionate inversion effect), ability to encode novel faces (assessed via implicit 

memory) and face-space (own-age bias) in the 5 years to adult age range.

The second empirical chapter investigated whether recent exposure to a certain 

subtype of faces can strengthen holistic processing in children. Here, children (8-13 

years) showed a larger composite effect than adults for child faces, suggesting an own- 

age bias on holistic processing. This finding supports previous findings in adults that 

recent experience with one face subtype can affect holistic processing. Theoretically, 

the origins of own-age biases are discussed in terms of whether experience has a direct 

role in tuning perceptual mechanisms, or an indirect role though social categorisation 

and attention mechanisms.
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The final empirical chapter investigates infancy. Previous research has shown 

that face individuation undergoes perceptual narrowing across infancy, arguing that 

infants are born with an innate face representation which is initially broadly tuned to 

include non-human primate as well as human faces. However, it has implicitly been 

assumed that this is a face representation. Here I consider the possibility that it is even 

broader. Individual level discrimination of whole animals (bay thoroughbred horses, 

shown in side view) was tested in 4-month-olds (an age before any narrowing for faces 

has been observed). Results showed 4-month-olds could discriminate upright horses at 

least as well as upright faces, despite adults showing the expected pattern of poor 

discrimination of upright horses compared to upright faces. Infants could not 

individuate inverted horses. Our findings imply innate individuation is broader than a 

primate face, including at least other mammal heads, and possibly whole bodies of all 

animals.

Taken together, the results of this thesis argue that the developmental origin of 

“special” processing of faces is not experience that extends into adolescence. Instead, I 

argue that adult face recognition ability derives from the combined contributions of: (a) 

an innate representation that starts out very broadly tuned (broad enough to include non­

primate animals, either as heads or whole bodies) and becomes face, species and race 

specific with experience in infancy; and (b) face-specific perceptual mechanisms that 

require at most 5-7 years of face experience to become fully mature (and possibly much 

less). I also conclude that, once the face system is mature, there is ongoing flexibility in 

children and adults in the engagement of this system, based on concentrated recent 

exposure to a subtype of faces.
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CHAPTER 1 -  INTRODUCTION TO THESIS

1.1 Overview of the thesis

Recognising individuals, and discriminating them from each other on the basis 

of facial appearance, is an essential skill for successful human social interaction. It is 

also a skill at which most adults excel. There has long been interest in how this 

important ability develops and the age at which it reaches maturity. Yet, many questions 

remain.

The general intent of this thesis is to contribute to an active debate in the 

literature, which centres on the relative roles of an inborn capacity present at birth, 

experience with faces, and the timing of that experience, in producing adult face 

recognition ability. At the heart of this debate is an apparent conflict in the literature. On 

the one hand, newborns display remarkable adult-like abilities with faces -  including 

the ability to individuate upright faces, cross-view recognition, and inversion effects -  

and there is further evidence of an experience-expectant innate mechanism from the 

existence in infancy of both perceptual narrowing and a sensitive period. This argues for 

strong abilities in face recognition present very early in development. On the other 

hand, performance on all laboratory face tasks -  including tasks assessing both face 

perception and face memory -  undergoes substantial and protracted improvement across 

childhood, not reaching adult levels until well into adolescence. These latter results 

have commonly been interpreted as demonstrating very late maturity of face recognition 

abilities, and have been used to argue that, theoretically, very extended lifetime 

experience (e.g., at least 10 years) is necessary to develop adult levels of face 

recognition ability.

The aim of this thesis is to clarify the developmental origins of face processing 

by a combination of behavioural experiments, literature review, and theoretical critique 

addressing three specific questions. These were: (a) What is the age of quantitative 

maturity of face-specific perceptual mechanisms, and does extended experience 

continuing into adolescence in fact play any role in establishing maturity of these 

mechanisms?; (b) Do the mature face perception mechanisms of children (and adults) 

retain flexibility such that concentrated recent experience with a certain face subtype 

can influence the operation of these mechanisms?; and (c) How broadly tuned is the 

experience-expectant innate component present at birth?
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The present chapter provides a broad overview of the themes and structure of 

this thesis. It assumes the reader has at least moderate expertise in the area of the 

development of face perception. Full definitions of terms, explanations of theories, and 

references are provided in later chapters.

The thesis begins with a theoretical discussion of the types of empirical evidence 

relevant to debate about the relative roles of an experience-expectant innate component 

versus extended experience, and how these types of evidence can logically be used to 

inform this debate (Chapter 2). Chapter 3 then goes on to critically review much of the 

relevant empirical evidence from previous studies.

Regarding an innate component, these chapters argue that three findings strongly 

support the classic claim that there exists some form of innate representation ((although 

this does not take the exact form originally suggested by Morton & Johnson, 1991), but 

also strongly support more recent findings regarding the importance of early experience 

in infancy. These findings are: evidence of remarkable face discrimination abilities in 

newborn human infants and face-experience deprived monkeys; evidence of perceptual 

narrowing for faces during infancy; and the existence of a sensitive period in infancy for 

at least one aspect of face perception. Theoretically, it should be noted that by “innate” I 

mean some basic skill present at birth, presumably of evolutionary origin; but I do not 

mean that face perception is fully mature at birth or unaffected by experience. As with 

all other perceptual or cognitive capacities argued to have an innate component (e.g., 

perception of line orientation, phoneme discrimination, language processing) post-birth 

experience plays an important role in the normal development of that capacity. 

Therefore any use of the term “innate” in this thesis should always be read merely as 

shorthand for an “experience-expectant innate” component.

Regarding the effects of extended experience, Chapters 2 and 3 introduce the 

traditional Carey and Diamond (1977, 1994) theory, which proposed that core face 

perception mechanisms are not present at all, and/or do not fully mature, until very late 

in childhood development (e.g., in adolescence). These chapters then raise a number of 

important theoretical critiques of this idea, including whether the observation of late 

maturity on a task indicates that experience with faces rather than maturation is 

responsible; and whether the fact that face recognition can be affected by recent 

experience with certain face types (even in adulthood; see Chapter 5) necessarily shows 

that basic adult levels of ability are dependent on extended childhood experience and/or 

rule out innate contributions. The chapters also raise key methodological critiques 

which question whether, in fact, face perception per se does show late maturity at all (a

2



discussion continued in Chapter 4). Chapter 3 concludes by highlighting a number of 

critical open questions.

The first of these questions then addressed empirically by the present thesis 

concerns the age of maturity of core face recognition mechanisms. The specific 

mechanisms addressed are: holistic/configural processing for faces, including 

differences between perception of faces and non-face objects (i.e., dogs); face-space; 

and the ability to encode a perceptual representation of a novel face. In this context, the 

thesis first reviews evidence that (in contrast to the very early ideas from the 1970s and 

1980s) all behavioural face recognition effects shown by adults are qualitatively present 

in children and/or infants, in all cases at the youngest ages tested; this review material 

appears primarily in Chapter 3. The thesis then moves on to the more difficult question 

of addressing the general presumption in the field that the capability of the “special” 

mechanisms underlying face processing does not reach full adult levels quantitatively 

until mid-adolescence. Here, I argue that the question of when quantitative maturity is 

reached is a much more difficult question to answer, partly because almost all prior 

experimental techniques confound development in face perception with the effects of 

general cognitive development, and partly because almost all previous studies suffer 

methodological difficulties in making comparisons of the size of effects across age 

groups (e.g., ceiling effects, floor effects, change in baseline performance across age). 

The theoretical ideas and literature review making this point appear in Chapter 4.

I then present three new experiments, also to be found in Chapter 4, which 

empirically separate development of face-specific perceptual mechanisms from 

development in generic cognitive factors. These factors are known to develop across 

childhood, and affect task performance for all stimulus types; they include, for example, 

concentration ability and explicit memory ability. My experiments test the 5 years to 

adult age range. They contrast rates of memory development for face versus non-face 

objects, compare the size of face and object inversion effects across ages, and test the 

development of explicit versus implicit memory for faces. Results demonstrate 

quantitative maturity of face perception mechanisms at the youngest ages tested (5 years 

or 7 years). This conclusion is further supported in Chapter 5, where early maturity of 

holistic/configural processing is demonstrated using the composite effect as an 

additional technique; indeed, results show that, at least under some circumstances, 

children can show stronger holistic processing than adults (in a finding which cannot be 

attributed to methodological problems such as baseline changes across age groups).
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Thus, with respect to the first major question, the thesis concludes that all 

components of face-specific perceptual mechanisms are mature, both qualitatively and 

quantitatively, by 5-7 years. I also argue that there is currently no reason to believe that 

full maturity could not be reached rather earlier in childhood (or even infancy). 

Theoretically, I argue (see Chapter 4) that that these results demonstrate that extended 

lifetime experience is not necessary to produce behaviourally mature face perception 

mechanisms (although of course this does not rule out a crucial role for experience 

earlier in life, for example during a sensitive/critical period in infancy). I also discuss 

the apparent conflict between my behavioural findings, showing early functional 

maturity, and recent ERP and fMRI evidence suggesting much later maturity of 

supporting neural mechanisms (Chapters 3 and 4).

The second question addressed by this thesis concerns the effects of recent face- 

type experience, particularly in older children. Here, I ask: Does the mature face 

processing system of children (and adults) retain flexibility such that concentrated 

experience with a certain face subtype post-infancy can influence the tuning or 

engagement of face-specific perception mechanisms? This was investigated in Chapters 

4 and 5 through the “own-age bias”, where better recognition or stronger face­

processing effects are demonstrated for own-age versus other-age faces, presumably due 

to greater recent experience with the faces of peers. Findings were that children (aged 5- 

13 years) demonstrated an own-age bias on explicit recognition memory (Chapter 4) 

and holistic processing (Chapter 5) but not implicit memory (Chapter 4). Theoretically, 

the origins of own-age biases are discussed in terms of whether experience has a direct 

role in tuning perceptual mechanisms, or an indirect role in switching the mechanisms 

on or off via social categorisation and attention mechanisms.

The final empirical question turns to the role of experience in infancy and 

investigates the nature of the experience-expectant component present at birth. The 

literature review in Chapters 2 and 3 presents recent evidence that argues for an innate 

component to face individuation but also demonstrates the importance of early 

experience in tuning the initial representation. Evidence is presented, based on previous 

studies, that (a) infants are born with an innate representation which supports individual 

level discrimination of faces, (b) this representation is rather broadly tuned, representing 

not only all types of human faces but also other non-human primate faces, and (c) this 

innate representation narrows with experience to become specific to the experienced 

species (e.g., human rather than monkey) and to experienced races within humans (e.g., 

Caucasians rather than Asians). In these previous studies, it has implicitly been
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presumed that the innate representation, while broad, is specifically of a. face. However, 

it remains possible that the representation is in fact even broader, and the literature gives 

some reason to suspect it may be an innate representation of whole animal bodies. I then 

test this issue experimentally in Chapter 6 by assessing individual level discrimination 

of bay thoroughbred horses in 4-month-olds (an age before any narrowing has 

previously been observed). Results show that infants can individuate whole horses at 

least as well as human faces, in contrast to adults, who perform much more poorly with 

horses than faces. These findings demonstrate that infants are bom with a representation 

which supports individual level discrimination of non-primate animals which narrows 

with lack of individuation experience. Findings are discussed in terms of whether this 

innate representation is (1) of whole bodies or animal heads; (2) even broader including 

all objects; and (3) the same representation that eventually narrows to only support own- 

species own-race face.

Following presentation of the core empirical work (Chapters 4-6), the thesis 

contains a short chapter (Chapter 7) describing the method and results of the extensive 

pilot studies required for many of the experiments.

Finally, Chapter 8 provides a General Discussion. The aim of this chapter is 

primarily to highlight what is now -  following the results of the present thesis -  known 

about the developmental course of face recognition, and what still remains unknown. It 

contains suggestions for future research both at the local level (e.g., individual 

experiments arising from the results of the present thesis) and at the more global level of 

the most interesting directions in the field.

1.2 Notes on the structure of the thesis

This thesis consists of two theoretical, literature review chapters (Chapter 2 & 3) 

and three experimental chapters (Chapter 4-6). Each of these chapters has been prepared 

as a standalone paper for publication. Three are published, one is in press and one is to 

be submitted.

The chapters are presented in an order that is both logical and chronological (the 

order in which they were written). Therefore some of the more recent literature is 

missing from the earlier papers but is covered in the later papers. Where necessary, a 

note on, or review of, subsequent literature is included either before (Chapter 2) or after 

(Chapters 3 & 4) the accepted manuscript. A short discussion follows Chapter 5
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drawing together the findings of the two papers (Chapters 4 & 5) investigating the age 

of maturity of standard face effects and the own-age bias in children. Each chapter is 

preceded by: 1) an introductory context statement, which places it within the broader 

theoretical structure of the thesis; 2) its publication status and full reference; and 3) a 

statement of author contributions, as each paper is co-authored.
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CHAPTER 2 -  UNDERSTANDING THE DEVELOPMENTAL ORIGINS OF 

PRIMATE FACE RECOGNITION: THEORETICAL COMMENTARY ON

MARTIN-MALIVEL AND OKADA (2007)

2.1 Context statement

The present chapter provides a general theoretical background to the empirical 

work in this thesis. It was written as an invited commentary on Martin-Malivel and 

Okada (2007) “Human and chimpanzee face recognition in chimpanzees: Role of 

exposure and impact on categorical perception”. Martin-Malivel and Okada (2007) 

compared the performance of chimpanzees with differing levels of exposure to humans 

in recognising human and chimpanzee faces. Their results showed that chimpanzees 

with high exposure to both chimpanzee and human faces discriminated both these face 

types equally well, whereas chimpanzees with greater exposure to human than 

chimpanzee faces showed better discrimination of human faces than chimpanzee faces. 

Martin-Malivel and Okada (2007) discussed their findings in terms of the importance of 

experience over any innate component in the development of face processing.

Our commentary talks broadly about the type of evidence (from both human and 

non-human primates) required to draw such conclusions about the developmental 

origins of face processing, and briefly evaluates the relevant literature available at the 

time. A more detailed literature review follows in Chapters 3 and 4.

2.1.1 Notes on relevant literature published after this paper was accepted

This paper was accepted in September 2007 (and published in December 2007). 

Shortly after this date, two studies appeared which very much strengthened the 

arguments for the presence of an innate component to face perception. These papers 

provided evidence of sophisticated face processing in human neonates (Turati, Bulf, & 

Simion, 2008), sophisticated face processing in face-deprived monkeys (Sugita, 2008), 

and perceptual narrowing for faces in monkeys (Sugita, 2008). These studies are 

reviewed in Chapter 3. Also note that recent evidence of heritable component to face 

recognition is also discussed in that chapter (specifically, a twin study of neural 

activation patterns for faces in humans, Polk, Park, Smith, & Park, 2007; and findings 

that congenital prosopagnosia (that is, an inability to recognise faces) can run in
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families, e.g., Duchaine, Germine, & Nakayama, 2007; Schmalzl, Palermo, & Coltheart, 

2008).

On a different topic, the following article (p 1440) asks whether the specific 

face-processing component of holistic processing can be sensitive to ongoing 

experience post-infancy. Note that more recent publications providing the first tests of 

this question are covered in Chapter 5.

2.2 Publication Status

This chapter is published as:

McKone, E. & Crookes, K. (2007). Understanding the developmental origins of 

primate face recognition: Theoretical commentary on Martin-Malivel and 

Okada (2007). Behavioral Neuroscience, 121(6), 1437-1441.

2.3 Author contributions

2.3.1 Content of Literature review

• Regarding the literature review on human development, Crookes had primary 

responsibility for the content.

• Crookes and McKone jointly researched and read the non-human primate 

literature.

2.3.2 Theory development

• McKone and Crookes worked together to develop the theories presented.

2.3.3 Writing

• McKone wrote the paper.

• Crookes commented on drafts, provided some rewording and proof read the 

final submission.
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COMMENTARIES

Understanding the Developmental Origins of Primate Face Recognition: 
Theoretical Commentary on Martin-Malivel and Okada (2007)

Elinor McKone and Kate Crookes
Australian National University

J. Martin-Malivel and K. Okada (2007, this issue) reported that chimpanzees raised with extensive social 
contact with humans show face discrimination abilities for human faces that exceed those for conspecific 
faces. Martin-Malivel and Okada have placed this finding in the theoretical context of the relative role 
of experience and innate face representations. The present article discusses the logic of the various styles 
of studies relevant to this question— considering primates without prior visual experience, sensitive 
periods, perceptual narrowing, childhood development, other-species effects, other-race effects, social 
quality of experience with nonconspecifics, and perceived social group membership—and also reviews 
the key current data. A case is made that there is still a long way to go in understanding whether there 
is an innate representation of conspecific faces, how tightly tuned any such representation is to 
conspecific morphology, and how experience obtained during different age brackets (e.g.. infancy versus 
adulthood) affects discrimination and interacts with any innate representation.

Keywords: face recognition, conspecifics, other species, innate, experience

Face recognition provides an important means of conspecific 
individuation in primate societies. The developmental origin of 
conspecific face recognition is thus an important topic, with long­
standing interest in the relative roles of experience-expectant in­
nate components, experience during critical periods in infancy, and 
ongoing lifetime experience into adulthood. Several different 
styles of study, and types of evidence, are relevant to this debate. 
These include adult performance and development trends, in hu­
mans and nonhuman primates, for own-species and other-species 
faces, on tasks assessing discrimination ability and other poten­
tially related aspects of performance, such as looking preference 
and holistic processing. In some cases, the logical relationship 
between experimental outcomes and theory is relatively straight­
forward; in other cases, however, it is not. We believe it is useful 
to lay out this logic explicitly.

The Logic of Evaluating Innate and Experience-Based 
Contributions

First, any finding of an ability to do something with faces 
without experience must provide strong evidence for an innate 
representation. For example, if animals with no prior visual expe­
rience of any conspecific faces showed preference for looking at 
conspecific faces over nonconspecific faces, better discrimination
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for conspecifics, or holistic processing for conspecifics but not 
nonconspecifics. then good evidence would be obtained for an 
innate representation of conspecific face morphology. Unfortu­
nately. it seems that no very direct tests of this hypothesis have 
been conducted. We could find no studies that, for example, took 
newborn monkeys without prior experience (social or pictorial) of 
any face types and tested discrimination or preference for conspe­
cifics versus faces of other species.

In humans, the closest relevant findings are that newborns (1-6 
days old) can discriminate a once-seen novel face from another 
similar face (Pascalis & de Schonen. 1994; Turati. Macchi Cassia. 
Simion. & Leo. 2006) and also show inversion effects on this 
discrimination ability (Turati et al.. 2006). These results are sug­
gestive of an innate representation of upright face structure, al­
though an entirely experience-based contribution cannot be ruled 
out. given that faces are likely to have formed the great majority of 
the infant’s in-focus visual experience during the first few days of 
life (Sinha. Balas. & Ostrovsky. 2007). In nonhuman primates. 
Fuji ta (1990. 1993) argued that rhesus and Japanese monkeys have 
an innate representation of rhesus morphology but can also learn 
Japanese morphology on the basis of evidence that, for monkeys 
removed from their mother within the 1st week of life, both rhesus 
and Japanese monkeys preferred rhesus monkey stimuli, and that, 
for infants cross-fostered from 1 day old. rhesus monkeys did not 
show a clear species preference, while a Japanese monkey pre­
ferred rhesus monkey pictures. Also. Sackett (1966) found that 
monkeys reared in social isolation with visual exposure to humans 
for the 1st week of life showed an onset of disturbance responses 
to conspecific threat pictures in comparison with conspecific non­
threat pictures at 2-3 months of age; given that threat and non­
threat pictures had been experienced equally often prior to this age. 
this argues for the maturation of an innate representation able to
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recognize conspecific emotion. An important caveat to the studies 
of Fujita (1990. 1993) and Sacked (1966). however, is that stimuli 
were whole-body images. Thus, the results could suggest an innate 
representation of conspecific body shape and posture rather than of 
faces; note that the adult human brain develops regions selective 
for coding bodies (Taylor. Wiggett. & Downing. 2007) as much as 
it develops regions selective for coding faces.

Second, evidence of either critical/sensitive periods or percep­
tual narrow ing in early infancy is strongly suggestive of an innate 
component. In other domains, such as low-level vision (see Seng- 
piel, 2007. for a review), sensitive periods are normally obtained 
when an inborn neural system decays away or is taken over for 
other purposes if the expected appropriate input beginning soon 
after birth is not obtained. In humans, there is evidence of a 
sensitive period for holistic processing of faces: Hohstic process­
ing does not occur in humans born with dense bilateral cataracts, 
despite many years of exposure to faces after the removal of the 
cataracts at the age of 2-6 months (Le Grand. Mondloch. Maurer. 
& Brent. 2004). Perceptual narrowing occurs when a broad ability 
present at birth narrows with a lack of experience with certain 
subtypes of a stimulus class. The classic example is that newborns 
can discriminate phonemes present in all languages, but by 6-12 
months of age. children can discriminate phonemes only in the 
language or languages to which they have been exposed (Kuhl. 
Tsao. & Liu. 2003). Flumans demonstrate perceptual narrowing for 
faces: Children at the ages of 3 and 6 months can discriminate 
faces of nonexperienced races (Kelly et al.. in press) and nonex- 
perienced monkey species (Pascalis, de Haan. & Nelson. 2002), 
while 9-month-old children and adults have lost these abilities 
(Kelly et al., in press; Pascalis et al., 2002). These results are 
consistent with an innate representation of face structure, which in 
the case of humans is quite broadly tuned (i.e., covering monkey 
faces as well as conspeeifics). Note, however, that the evidence for 
an innate representation would be strengthened if it could also be 
shown that broad perceptual tuning to primate faces was present 
earlier than 3-6 months of age (e.g.. by testing the discrimination 
of monkey faces in newborns) and that the early ability to indi­
viduate members of a stimulus class is limited to faces rather than 
being present for all objects (e.g.. dogs); neither of these types of 
studies has been conducted.

Third, studies of development of face recognition in older hu­
man children and adults are of some relevance in that late onset, a 
gradually increasing ability, or both can indicate a strong role for 
ongoing experience. In other domains (e.g., with dogs [Robbins & 
McKone, 2007] and with greebles [Gauthier & Tarr. 1997]), it is 
clear that extensive training without an innate representation is 
sufficient to support excellent discrimination (albeit not based on 
the same holistic processing mechanism as that used for faces; 
McKone. Kanwisher. & Duchaine. 2007). Is extensive training 
necessary (or sufficient) to produce adult-like processing of faces? 
We believe this is a situation in which current evidence is com­
monly misrepresented. Very early studies suggested that children 
did not show even qualitatively adult-like patterns of face process­
ing until approximately 10 years of age (e.g.. no inversion effect in 
Carey. Diamond. & Woods. 1980; strong distraction by parapher­
nalia in Diamond & Carey. 1977). and these studies are often cited 
without attention to many subsequent studies showing opposite 
results (e.g.. Carey. 1981; Flin, 1985: Lundy, Jackson. & Haaf. 
2001) or to newer evidence of remarkably good face discrimina­

tion. even in newborns (Pascalis & de Schonen. 1994; Turati et al., 
2006), and of holistic processing on all standard tests at 4 years of 
age. the youngest age tested (Carey, 1981: de Heering. Houthuys. 
& Rossion. 2007; McKone & Boyer. 2006; Pellicano. Rhodes. & 
Peters. 2006). There is thus no evidence of late onset of core face 
processing abilities. There is more active debate about whether 
there might be a gradually increasing ability. Again, however, 
there is a tendency to cite studies claiming to show that face 
perception ability increases into adolescence (e.g.. Mondloch. Le 
Grand. & Maurer. 2002) without reference to theoretical argument 
(Want. Pascalis. Coleman. & Blades. 2003) and empirical evi­
dence (Carey. 1981: Gilchrist & McKone, 2003; Lundy et al., 
2001: McKone & Boyer. 2006: Mondloch. Maurer. & Ahola. 
2006). suggesting the overall developments are at least as likely to 
be due to age-related changes in factors such as attention, concen­
tration. and general memory as to changes in face perception per 
se. This is not to say. of course, that face discrimination does not 
receive some degree of experience-based tuning even late in 
life—as is evident in the finding that Koreans adopted to European 
countries in mid-childhood demonstrate a reverse other-race effect 
when tested as adults (Sangrigoli. Pallier. Argenti. Ventureyra. & 
de Schonen. 2005)—neither is it to ignore evidence of age-related 
changes until adolescence in the specific neural regions most 
responsive to faces (see Cohen Kadosh & Johnson. 2007. for a 
review). It is merely to say that there has commonly been an 
overstatement of the effects of postinfancy experience on percep­
tion of conspecific faces in humans.

Finally, we come to the case of other-species effects in mature 
adults. The standard experiment here is of the general type con­
ducted by Martin-Malivel and Okada (2007. this issue), in which 
face discrimination in one species of subjects (e.g.. chimpanzees) 
is compared for conspecific faces (chimpanzees) and other-species 
faces (e.g.. humans, monkeys, other mammals).

Of such studies, many have a confound between whether the 
species is own or other with the lifetime history of experience of 
that species. For example. Dufour. Pascalis, and Petit (2006) 
showed that adult brown capuchin monkeys (Cebus apella) could 
discriminate brown capuchin faces but not white-faced capuchin 
faces (Cebus capucinus) when they had substantial lifetime expo­
sure to brown capuchins and none to white-faced capuchins. Re­
sults of this type cannot help in determining the relative contribu­
tions of innate representations and experience: The own-species 
advantage could arise entirely from an innate representation of 
conspeeifics. entirely from the greater lifetime experience with 
conspeeifics. or from some combination of both, and there is no 
way of distinguishing among these possibilities.

The potentially more interesting case is testing own- versus 
other-species effects when strong experience is present with the 
other species. Several studies have taken this approach of manip­
ulating conspecific status independently of lifetime experience by 
testing nonhuman primates with human faces. Chimpanzee and 
monkey subjects are available that have substantial exposure to 
humans, in a few cases equaling or even exceeding that to their 
own species. How relevant are the results of such experiments to 
understanding the relative roles of innate face representations and 
experience? In fact, we argue that even for such studies, the 
interpretation is far from straightforward.

Pascalis and Bachevalier (1998) tested rhesus monkeys (Ma­
caco mulatto) described as raised with humans including caretak-
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ers. veterinarians, and researchers, and as having daily periods of 
social interactions with peers. Despite the substantial exposure to 
both humans and conspecifics. the monkeys showed spontaneous 
discrimination in a novelty-preference-following-habituation task 
for conspecific faces but not for human faces. Plentiful experience 
with humans failed to lead to discrimination.

Does this imply that the recognition ability evidenced with 
conspecifics must be derived from an innate representation? Well, 
it might. Alternatively, however, it could have something to do 
with quality of exposure. Infants were raised in family groups, 
presumably fed and cared for by a conspecific mother, and still 
lived in conspecific groups as adults. Thus, conspecifics were 
likely to count as more socially meaningful for individuation than 
were humans. Quality of exposure is suspected to play a role in 
cross-race effects in human subjects and so could potentially 
contribute to other-species effects.

Two studies of similar structure to that of Pascalis and Bacheva- 
lier (1998) have obtained opposite results. Neiworth. Hassett. and 
Sylvester (2007) found cotton-top tamarins showed novelty pref­
erence nearly as strong for human faces as for tamarin faces: the 
tamarin subjects were described as having been brought up and 
housed in family groups but exposed to human caretakers through­
out their lives. Martin-Malivel and Okada (2007) obtained a sim­
ilar result in chimpanzees (Pan troglodytes) but have pushed it 
even further. Chimpanzees with fairly plentiful exposure to both 
chimpanzees and humans (Yerkes subjects) were as good at dis­
criminating human faces as they were at discriminating chimpan­
zee faces. Chimpanzees with very extensive, lifelong exposure to 
humans but also with exposure limited to a handful of own-species 
individuals (Language Research Center [LRC] subjects) showed a 
reverse other-species effect in which discrimination was better for 
human (nonconspecific) faces than for chimpanzee (conspecific) 
faces. The LRC subjects also demonstrated categorical perception 
of morphed images between individuals within a species only for 
human faces.

What can we conclude from these latter two studies? Given the 
apparent conflict in results with those of Pascalis and Bachevalier 
(1998). we first need to consider the possibility of methodological 
differences having contributed to one set of results or the other.

We can rule out differential similarity within the conspecific 
versus the human stimulus sets. Martin-Malivel and Okada (2007) 
took the nice approach of using a computational model to ensure 
matched similarity. Other studies have not done this, but Pascalis 
and Bachevalier (1998) showed a full cross-over interaction in 
which monkey subjects discriminated the monkey but not the 
human faces, and human subjects discriminated the human but not 
the monkey faces: this is sufficient to show that the own-species 
advantage in one group cannot be due to the stimuli of that species 
being simply less similar to each other.

Possibly more problematic is the question of prior training in 
discrimination tasks using human faces. Pascalis and Bachevalier 
(1998) criticized early studies showing that monkeys could dis­
criminate human faces on the grounds that the monkey subjects 
had received extensive training with human faces in the match-to- 
sample test task. Their point was that training of this nature could 
potentially encourage subjects to use unusual strategies that would 
not be used in more naturalistic tasks (e.g.. possibly focusing on a 
single local region of the image). Martin-Malivel and Okada 
(2007) used match-to-sample, and subjects had had previous train­

ing in this task using human faces. The tamarins of Neiworth et al. 
(2007). however, had had no experience of match-to-sample; half 
their subjects had had prior experimental exposure to human faces, 
but only in a novelty preference task, which is unlikely to provide 
motivation for developing unusual strategies.

Turning to more interesting theoretical possibilities. Martin- 
Malivel and Okada’s (2007) results may indicate that quality of 
exposure to humans does indeed matter. Within captivity-bred 
animals, chimpanzees are commonly raised with higher levels of 
social interaction with humans than are rhesus monkeys. This is 
particularly true of the LRC subjects, who were raised as part of a 
research project on language training in chimpanzees and who 
were described as having been involved in numerous training 
sessions involving direct interactions with humans as social part­
ners since they were babies. This idea does not obviously explain 
Neiworth et al.’s (2007) finding that tamarins showed good indi­
viduation of humans, but it is possible the tamarins had some 
subtle difference from Pascalis and Bachevalier’s (1998) rhesus 
monkeys in style of human interaction.

Another idea is that social categorization at time of testing could 
influence patterns of discriminability. In human subjects, manip­
ulated outgroup categorization has been shown to reduce discrim­
ination ability in comparison with ingroup categorization, even 
when perceptual expertise is held constant (i.e., all faces are 
own-race members; Bernstein, Young. & Hugenberg. 2007). 
Moreover, there is evidence suggesting a chimpanzee raised in a 
human household can categorize itself as human (Hayes & Nissen, 
1971). Thus, it is possible that nonhuman primates discriminate 
humans poorly when they have categorized humans socially as 
outgroup members and discriminate humans well when either their 
prior lifetime history or some subtlety of the experimental testing 
situation leads them to consider humans to be "ingroup” members 
at the time of testing.

Yet another possibility is that there may be an innate repre­
sentation of conspecifics, and this representation can generalize 
to morphological structures that are broader than just conspe­
cifics (i.e.. it could cover similar species), but it does not 
completely generalize, or it can be expanded slightly through 
experience but not very far. Specifically, it could be that chim­
panzees show good recognition of human faces because human 
faces are quite structurally similar to chimpanzee faces, while 
rhesus monkeys are poor at recognizing humans because human 
faces are not sufficiently similar to conspecific faces. Again, 
this idea does not obviously explain the tamarin data, given that 
tamarin faces are quite different from human faces in structure, 
but we suggest it might be worthwhile exploring the idea in 
future studies.

A final theoretical issue is that, in all other-species studies to 
date, the subjects are adults, and their experience with humans 
includes a mix of exposure during infancy and exposure later in 
life. The findings of Pascalis et al. (2002) and Kelly et al. (in press) 
regarding perceptual narrowing in human infancy strongly suggest 
the need for controlled studies varying the time during develop­
ment that primates receive human experience.

To wrap up this section, we note that other-species articles, such 
as that of Martin-Malivel and Okada (2007), commonly frame 
their theoretical questions in terms of evaluating the relative con­
tributions of innate representations and experience. We have ar-
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gued that current evidence from these studies does not give a clear 
answer to this question.

Other Potentially Relevant Theoretical Factors

Two other important theoretical issues affect the current litera­
ture on face processing in nonhuman primates. First, there appears 
to be a general assumption that any experience-attributable dis­
crimination ability for nonconspecific faces must be arising from 
the same system that drives recognition of conspecifics. This 
assumption might not be warranted. In humans, excellent within- 
class discrimination of nonface objects can be achieved without 
the use of face recognition mechanisms; not only does this exper­
tise not rely on holistic processing (McKone et al.. 2007). but 
functional magnetic resonance imaging reveals that it reflects 
greater neural changes in cortical regions associated with object 
processing than in regions associated with face processing (Moore. 
Cohen. & Ranganath. 2006; Op de Beeck. Baker. DiCarlo. & 
Kanwisher, 2006; Yue. Tjan. & Biederman. 2006). It is thus 
logically possible that, for example, monkeys learn to discriminate 
human faces using general object recognition mechanisms, but a 
different own-species-face system is responsible for discriminating 
conspecific faces. Currently, we do not have data on when an 
other-species face becomes sufficiently dissimilar from a conspe­
cific to be treated as an object rather than as a face. These issues 
could potentially be addressed by functional magnetic resonance 
imaging in monkeys or by recording from face-selective cells, the 
primary question being whether the same regions or cells that 
support conspecific recognition are involved in human face 
discrimination.

A second general presumption is that all aspects of face perfor­
mance— discrimination, preference, and holistic processing— 
must show the same balance of effects of experience versus innate 
factors. Again, this presumption might not be true. It could be. for 
example, that one aspect is driven more by innate contributions 
and another is driven more by experience. In humans, it seems 
possible that there might be a dissociation between discrimination 
and holistic processing. Discrimination is strongly sensitive to 
experience, as evidenced by perceptual narrowing in infancy, 
other-race effects in adults, and reversal of race effects following 
country shifts between childhood and adulthood. Holistic process­
ing for faces, in contrast, seems to be insensitive to ongoing 
experience in many ways. In children, holistic processing is strong 
in the youngest children tested to date (4-year-olds); it is also as 
strong for the relatively rare profile view of faces as for the more 
common frontal view (McKone. in press). Holistic processing 
appears to be sensitive to experience only during a critical period 
in infancy (Le Grand et al.. 2004). Thus, a theoretical possibility 
suggested by human findings is that an innate (but infancy- 
experience-expectant) representation of conspecifics drives holis­
tic processing and also drives good face individuation of all races 
of face in early infancy, but that experience narrows the use of this 
system for discrimination to experienced subtypes of faces. These 
observations suggest that it would be valuable for other-species 
studies to independently assess both holistic processing and dis­
crimination. We note that doing so will also require better mea­
sures of holistic processing than have been used to date: Inversion 
effects are not guaranteed to arise from holistic processing (Val­
entine. 1991), and an attempted implementation of the composite

effect (Parr. Heintz. & Akamagwuna. 2006) bears little similarity 
to the procedure used in humans.

Conclusion

In summary. Little is currently known about the relative roles of 
innate representations and experience in conspecific face recogni­
tion. despite more than 20 years of research relevant to the topic. 
There is evidence indicating some form of innate representation of 
conspecifics in monkeys, but it is not known specifically whether 
this is of faces, nor how tightly tuned it is to conspecifics. Evi­
dence in humans is consistent with an innate face representation, 
although entirely experience-based explanations are also conceiv­
able. Regarding the effects of experience, it is clear that experience 
can tune face discrimination performance both during infancy and 
later in life, but the interaction between experience at different 
stages of life and possible innate mechanisms is not understood. 
There is also little data relevant to experience obtained at different 
developmental periods and to the issue of the relevance or other­
wise of the social quality of that experience.

Given the obvious limitations on testing human subjects, we 
suggest that nonhuman primate studies can contribute crucially to 
resolving these questions. Several types of future studies would be 
of particular value. Innate representation of faces could be tested 
directly by taking newborn monkeys with no prior visual experi­
ence of faces and assessing preference and discrimination for 
conspecific faces in comparison with preference and discrimina­
tion for the faces of other species; single-unit recording could also 
be used to test whether such monkeys have face-selective cells. If 
these studies show processing biases toward conspecifics, the 
tuning of the innate representation could be investigated by as­
sessing faces at various distances from the morphology of conspe­
cifics (e.g., own species of monkey, other species of monkey, 
human, nonprimate mammal). Tuning could also be explored in 
multiple species of subject, following Fujita’s (1987) suggestion 
that different species could have different selection pressures for 
breadth of tuning. Regarding experience effects, these could use­
fully be explored by systematically varying the age at which 
experience (with conspecific faces or other groups such as human 
faces) is obtained and by systematically varying the extent of 
social involvement with nonconspecifics. Finally, there may be 
some mileage in trying social priming experiments, which attempt 
to induce nonhuman primates to categorize humans more as in­
group members or more as outgroup members.
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CHAPTER 3 -  THE COGNITIVE AND NEURAL DEVELOPMENT OF FACE

RECOGNITION IN HUMANS

3.1 Context statement

The previous chapter identified a number of open research questions regarding 

the developmental origins of face perception in both human and non-human primates. 

The empirical work in this thesis (Chapters 4-6) focuses on those questions that could 

be answered by behavioural studies of typical human development. Chapter 3 provides 

a detailed literature review of previous findings relevant to this empirical work -  

specifically, the literature on behavioural development of face recognition in humans, 

covering both infancy and childhood -  and also reviews what is known about the neural 

development of face recognition. Importantly, the focus in the present chapter is on the 

age at which the qualitative presence of standard face recognition and perception effects 

have been demonstrated in children or infants. The review at the beginning of the next 

chapter will deal in more detail with the literature relevant to quantitative development 

in the size of effects.

3.2 Publication Status

This chapter is in press as the following book chapter (to be published October, 2009): 

McKone, E., Crookes, K. & Kanwisher, N. (in press). The cognitive and neural 

development of face recognition in humans. In M. S. Gazzaniga (Ed.), The 

Cognitive Neurosciences (IV ed.). Cambridge, Massachusetts, USA: 

Bradford Books.

The accepted version of the book chapter was finished in June 2008. Discussion 

of four relevant papers published after this date is provided following the accepted 

manuscript.
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3.3 Author contributions

This manuscript covered two main areas: cognitive development, discussing 

behavioural studies (approximately 70% of the chapter;) and neural development (30% 

of the chapter).

3.3.1 Content of literature review

• The content of the literature review for the cognitive development section was 

due 90% to Crookes (and 10% to McKone). Crookes was responsible for: 

ensuring all relevant literature had been identified; reading the papers; 

understanding the methods and results; and summarising the findings and any 

methodological issues in the papers.

• Kanwisher was responsible for the literature review in the neural development 

section

3.3.2 Theory development

• McKone and Crookes worked together to develop the arguments and theories 

presented in the cognitive development section

• Kanwisher was responsible for the theory development in the neural 

development section

3.3.3 Writing

• McKone wrote the cognitive development sections

• Kanwisher wrote the neural development sections

• Crookes commented on drafts, corrected content errors, provided some 

rewording and proof read the final submission

3.4 Abstract

Conventional wisdom has long held that face recognition develops very slowly 

throughout infancy, childhood, and adolescence, with perceptual experience as the 

primary engine of this development. However, striking new findings from just the last 

few years have overturned much of this traditional view by demonstrating genetic 

influences on the face recognition system as well as impressive face discrimination 

abilities present in newborns and in monkeys who were reared without ever seeing a 

face. Nevertheless, experience does play a role, for example in narrowing the range of
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facial subtypes for which discrimination is possible and perhaps also increasing 

discrimination abilities within that range. Here we first describe the cognitive and neural 

characteristics of the adult system for face recognition, and then we chart the 

development of this system over infancy and childhood. This review identifies a 

fascinating new puzzle to be targeted in future research: all qualitative aspects of adult 

face recognition measured behaviorally are present very early in development (by 4 

years of age; all that have been tested are also present in infancy) -  yet fMRI and ERP 

evidence shows very late maturity of face-selective neural responses (with the fusiform 

face area increasing substantially in volume between age 7 and adulthood).

3.5 Introduction

One of the most impressive skills of the human visual system is our ability to 

identify a specific individual from a brief glance at their face, thus distinguishing that 

individual from hundreds of other people we know, despite the wide variations in the 

appearance of each face as it changes in viewpoint, lighting, emotional expression, and 

hairstyle. Though many mysteries remain, important insights have been gleaned over 

the last two decades about the cognitive and neural mechanisms that enable us to 

recognize faces. Here we address an even more difficult and fundamental question: how 

does the machinery of face recognition get wired up during development in the first 

place?

Our review of the available evidence supports a view of the development of face 

recognition dramatically different from that suggested by the first studies in the field. 

Twenty years ago, the standard theory was that core aspects of the ability to 

discriminate faces were not present until 10 years of age, and their emergence and 

eventual maturity were determined primarily by experience (Carey & Diamond, 1977; 

Carey, Diamond, & Woods, 1980). This position has been overturned by recent findings 

demonstrating striking abilities even in neonates, and by mounting evidence of genetic 

contributions.

We organize our review by age group. Throughout, we ask how the available 

data address the following fundamental theoretical questions: (a) what are the inherited 

genetic contributions to the specification of the adult system for processing facial 

identity information; (b) what is derived from experience; and (c) how exactly do genes
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and/or experience work separately or together across the course of development to 

produce the adult system?

3.6 The Perception of Face Identity in Adulthood

We begin with a characterization of the end state of development: the cognitive 

and neural basis of the perception of facial identity in adults. Note that this is a major 

topic in its own right, with much internal theoretical debate. However, to facilitate our 

present interest in the developmental course of face recognition, we focus on empirical 

phenomena, especially those that (a) are well-established in adults, and (b) have 

subsequently been tested in development.

3.6.1 Core Behavioral Properties of Face Identity Perception in Adult Humans

Basic properties of face identification in adults are as follows. Identification is 

more accurate when faces are upright than when they are inverted (i.e., upside down) on 

both memory and perceptual tasks, and the inversion decrement is substantially larger 

for faces than nonface objects (the disproportionate inversion effect’, Yin, 1969; also 

Robbins & McKone, 2007). Generalization from a single image of a novel face in one 

viewpoint to an image in another is relatively poor, albeit better from the three-quarter 

view to front or profile views than between the more distinct profile and front views 

(the three-quarter view advantage; Logie, Baddeley, & Woodhead, 1987). For familiar 

faces, performance in memory tasks relies more strongly on inner face regions than on 

external regions that include hair; for unfamiliar faces, the pattern is reversed (inner vs. 

outer features effects’, Ellis, Sheperd, & Davies 1979). Finally, identification of own- 

race faces is better than identification of other-race faces (the other-race effect;

Meissner & Brigham, 2001). Note that the first two properties (i.e., the disproportionate 

inversion effect and the three-quarter view advantage) derive directly from perceptual 

processing, but the last two are known to derive at least partly from deliberate task 

strategies (e.g., reliance on hair for novel faces if distinctive hair is present, Duchaine & 

Weidenfeld, 2003) or social and attentional factors (other-race effect, Bernstein, Young, 

& Hugenberg, 2007).

Additional experimental findings can be grouped under the heading of 

phenomena that have motivated the concept of holistic/configural processing. 

Holistic/configural processing is defined (e.g., Tanaka & Farah, 1993; Maurer,

LeGrand, & Mondloch, 2002) as (a) a strong integration at the perceptual level of
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information from all regions of the face (so that altering one region leads to changes in 

the percept of other regions), which (b) codes the exact spacing between face features 

(and more controversially exact feature shape as well; Yovel & Duchaine, 2006) and,

(c) is strongly sensitive to face inversion. Relevant phenomena are as follows. Subjects 

find it harder to identify one half of a combination face (e.g., top half of George Bush 

with bottom half of Tony Blair) if the inconsistent other half-face is aligned with the 

target half rather than misaligned (the composite effect; Young, Hellawell, & Hay,

1987). Subjects are also better able to distinguish which of two face parts (e.g., two 

noses) appeared in a previously-shown face when these are presented in the context of 

the whole face than when presented in isolation (the part-whole effect; Tanaka & Farah, 

1993); part-choice is also better in the original whole than in a version of the whole face 

with an alteration in spacing between non-target features (the part-in-spacing-altered- 

whole effect’, Tanaka & Sengco, 1997), a finding consistent with other evidence of 

strong sensitivity to spacing changes (e.g., distance between eyes) in upright faces (e.g., 

Rhodes, Brake, & Atkinson, 1993; McKone, Aitkin, & Edwards, 2005). When an 

upright and inverted version of a face are superimposed in transparency, the upright 

face is perceived more strongly {perceptual bias to upright’, Martini, McKone, & 

Nakayama, 2006). All these holistic effects are specific to upright faces: they are not 

found for inverted or scrambled faces (Young et al., 1987; Tanaka & Sengco, 1997; 

Robbins & McKone, 2003; Martini et al., 2006), and are weak or absent for objects, 

including objects-of-expertise (for review see McKone, Kanwisher, & Duchaine, 2007; 

Robbins & McKone, 2007).

Finally, other behavioral phenomena have been taken to indicate coding within a 

perceptual ‘face-space’, defined as a multidimensional space in which each individual 

face is coded as a point by its value on underlying dimensions describing different 

aspects of facial structure, and for which the ‘average’ face lies at the centre of the 

space (Valentine, 1991). These phenomena include: distinctiveness effects, in which 

performance is better for distinctive faces than typical faces on old-new recognition 

tasks, but the pattern is reversed on face-nonface classification tasks (Valentine &

Bruce, 1986) and adaptation aftereffects, in which, for example, adaptation to expanded 

faces make a physically normal face appear contracted (Webster & Maclin, 1999) and 

adaptation to ‘anti-Bill’ (the physical opposite of Bill in face-space) makes the average 

face appear like Bill (Leopold, O' Toole, Vetter, & Blanz, 2001).
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3.6.2 Neurophysiology and fMRI in Adult Monkeys

Adult monkeys show cortical mechanisms specialized for face perception. 

Strongly face-selective responses from single neurons (“face cells”) are well established 

in the temporal lobes of macaques (Desimone, Albright, Gross, & Bruce, 1984; Foldiak, 

Xiao, Keysers, Edwards, & Perrett, 2004), and face-selective cortical regions have been 

reported in macaques using fMRI (Tsao, Freiwald, Knutsen, Mandeville, & Tootell, 

2003; Pinsk, DeSimone, Moore, Gross, & Kastner, 2005). Tsao, Freiwald, Tootell, and 

Livingstone (2006) demonstrated direct correspondence between face-selective fMRI 

patches and face selectivity of single cells within those patches. Note that the role of 

“face cells” in supporting the behavioural phenomena described in the previous section 

is mostly unexplored, with the exceptions that a preponderance of face-selective cells 

are tuned to upright (Perrett et al., 1988) and that their tuning to facial distortions from 

the ‘average face’ is consistent with a face-space coding of facial identity (Leopold, 

Bondar, & Giese, 2006). In development, only basic face-selectivity has been studied.

3.6.3 fMRI: Cortical Loci of Face Identity Processing in Adult Humans

Brain imaging in humans reveals three face-selective cortical regions (Figure 1), 

of which the “fusiform face area” or FFA (Kanwisher, McDermott, & Chun, 1997) is 

the main one investigated in children. This region, which can be found in essentially 

every normal adult in a short “localizer” scan (Saxe, Brett, & Kanwisher, 2006), 

responds more strongly to faces than to letterstrings and textures (Puce, Allison, Asgari, 

Gore, & McCarthy, 1996), flowers (McCarthy, Luby, Gore, & Goldman-Rakic, 1997), 

and indeed all other nonface stimuli that have been tested to date, including mixed 

everyday objects, houses, hands (Kanwisher et al., 1997), and objects of expertise 

(Kanwisher & Yovel, in press).

fMR-adaptation studies show that neural populations in the FFA can 

discriminate face identity (Rotshtein, Henson, Treves, Driver, & Dolan, 2005), but not 

facial expression (Winston, Vuilleumier, & Dolan, 2003). The FFA is involved in 

individual discrimination of upright but not inverted faces (Yovel & Kanwisher, 2005; 

Mazard, Schütz, & Rossion, 2006), and its inversion effect (i.e., higher response to 

upright than inverted faces) correlates with the behavioral inversion effect (Yovel & 

Kanwisher, 2005). The FFA also demonstrates holistic processing, specifically a 

composite effect (Schütz & Rossion, 2006).
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1
Figure 1. Cortical regions selectively engaged in face perception and the development of one of these 

regions (the FFA) from childhood to adulthood. A. Adults: Face selective activation (faces > objects, p < 

.0001) on an inflated brain of one adult subject, shown from lateral and ventral views of the right and left 

hemispheres. Three face-selective regions are shown: the FFA in the fusiform gyrus along the ventral part 

of the brain, the OFA in the lateral occipital area and the fSTS in the posterior region of the superior 

temporal sulcus. For studies of face identification (rather than expression, etc), the FFA and OFA are of 

greatest interest.

3.6.4 Electrophysiological Signatures in Human Adults

A negative-going ERP response peaking about 170 ms after stimulus onset over 

posterior temporal sites (N170) has been widely replicated to be face-selective 

(Halgren, Raij, Marinkovic, Jousmaki, & Hari, 2000; Liu, Harris, & Kanwisher, 2002). 

This peak is delayed by 10 ms, and is larger in amplitude, for inverted faces relative to 

upright faces (Bentin, Allison, Puce, Perez, & McCarthy, 1996). The N170 also shows 

identity discrimination (lower response for repeated compared to unrepeated faces), 

when the faces are upright but not inverted (Jacques & Rossion, 2006; Jacques, 

d'Arripe, & Rossion, 2007). An important point relevant to the interpretation of 

developmental studies is that the neural source of the N 170 is unknown even in adults, 

and the sources of suggested equivalent components in children and infants could 

possibly be different again.
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3.7 Data from adult subjects relevant to the roles of experience and genetics

Before considering what developmental studies tell us about the roles of 

experience and genetics in face recognition, we describe several findings from adults 

that also bear directly upon these issues.

Clearly, experience in isolation can influence face perception. Adults continue 

to learn new faces throughout life, and this improves perceptual discrimination of these 

faces: matching the correct face photograph to a degraded security-camera video image 

is more accurate if the face is familiar than if it is unfamiliar (Burton, Wilson, Cowan,

& Bruce 1999; also see Bruce, Henderson, Newman & Burton, 2001). Temporary 

aftereffects from adaptation to distorted faces (e.g., Webster & Maclin, 1999) also 

indicate purely experience-based changes in the tuning of perceptual representations of 

faces. Training effects on ability to discriminate trained and novel faces have also been 

demonstrated in an adult prosopagnosic (DeGutis, Bentin, Robertson, & D’Esposito, 

2007). Interestingly, however, there is no evidence that experience alone produces any 

fundamental qualitative change in face processing either neurally or cognitively: for 

example, holistic processing, ‘face-space’ effects, and FFA activation all occur strongly 

for both familiar faces and unfamiliar faces (Young et al., 1987; Kanwisher et al., 1997; 

Webster & Maclin, 1999; Le Grand, Mondloch, Maurer, & Brent, 2004; Carbon et al., 

2007).

Studies of human adults provide two sources of evidence for genetic 

contributions. Inability to recognize faces in the absence of any known brain injury 

(‘developmental prosopagnosia’) often runs in families (Duchaine, Germine, & 

Nakayama, 2007; Grueter et al., 2007; Kennerknecht, Pluempe, & Welling, 2008). And, 

in normal adults, fMRI shows greater similarity in the pattern of activation across the 

ventral visual stream for monozygotic compared to dizygotic twins, but only for 

stimulus classes for which an evolutionary origin of the observed selective cortical 

regions could reasonably be proposed: faces, and places, but not written words or chairs 

(Polk, Park, Smith, & Park, 2007).

In summary, results from adults tell us that experience can fine-tune face 

recognition without changing its qualitative properties, and that genes explain some of 

the variation behaviorally and neurally. Importantly adult studies do not tell us at what 

developmental stage genes have their influence. In particular, they do not necessarily 

demonstrate that a face system is present at birth. Some genetically pre-determined
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processes are present at birth (e.g., sucking reflex), but others affect maturational 

processes later in childhood or adolescence (e.g., puberty).

3.8 Development: Infancy

In exploring genetic and experience-based contributions to face recognition via 

infancy studies, several interrelated questions are relevant. First, which abilities, if any, 

are present at birth? Visual abilities present in neonates (or in monkeys deprived of all 

face input) cannot be derived from experience and so provide the only method of 

revealing genetic influences in isolation from any visual learning. Second, if babies are 

born with a face representation, is its purpose merely to draw attention to faces (cf. 

CONSPEC in Morton & Johnson, 1991) or to support individuation? Third, how 

broadly tuned is any such representation: broad enough to cover any primate face, 

specific to own-species faces, or perhaps even to own-race faces? Finally, which, if any, 

of the types of effects of experience in early infancy that are found in other perceptual 

and cognitive domains occur for faces: Improvements with increasing experience? 

Perceptual narrowing (i.e., destruction of earlier ability)? Critical periods? Studies of 

these topics published within the last few years have dramatically altered our 

understanding of infant face recognition.

In a classic result, newborns (median age 9 minutes) track an upright ‘paddle 

face’ (Figure 2a) further than versions in which the position of the internal blobs is 

scrambled or inverted (Goren, Sarty, & Wu, 1975; Johnson, Dziurawiec, Ellis, & 

Morton, 1991). Although it has been suggested this preference could arise from general 

visual biases (e.g., for stimuli with more elements in the upper visual field; Simion, 

Macchi Cassia, Turati, & Valenza, 2003), preference only for the normal contrast 

polarity of a (Caucasian) face (Farroni et al., 2005) argues for a level of specificity to 

face-like structure. Thus, humans are born with some type of innate preference that, at 

the very least, attracts infants’ attention to faces. Note the innate representation 

supporting face preference may be different from that supporting face individuation in 

adults (Johnson, 2005); indeed, a finding that neonates track faces in the temporal but 

not nasal visual field (Simion, Valenza, Urnlita, & Dalla Barba, 1998) suggests a 

subcortical rather than cortical origin.
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Figure 2. Face perception without experience. (A) Newborn humans (< 1 hour old) track the ‘paddle face’ 

on the left further than the scrambled version (Morton & Johnson, 1991); (B) Newborn humans (< 3 

days) look longer at the novel than habituated face, indicating recognition of face identity even across 

view change (Turati et al., 2008); (C) Japanese macaques raised with no exposure to faces can, on first 

testing, discriminate very subtle differences between individual monkey faces (including differences both 

in shape and in spacing of internal features), and can also do this for human faces (Sugita, 2008).

Our concern in the present chapter is primarily with the development of face 

individuation ability. This can be measured in infants by looking time measures that 

assess preference and dishabituation-to-perceived-novelty. A classic finding is that
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neonates can discriminate their mother from other similar-looking women when less 

than 4 days old (Pascalis, de Schonen, Morton, Deruelle, & Fabre-Grenet, 1995; 

Bushnell, 2001) although mother recognition in the first 24 hours may be partially 

dependent on prenatal familiarity with her voice, (Sai, 2005). More recent data 

demonstrate even more striking abilities. Three-month-olds can recognize the identity of 

novel individuals, with similar-looking faces (same sex, age, race), without hair, and 

across view changes (Pascalis, de Haan, Nelson, & de Schonen, 1998; Kelly et al., 

2007). Indeed, it has very recently been discovered that newborns (< 3 days) can 

perform this task (Turati, Bulf, & Simion, 2008; see Figure 2b). The newborns 

moreover discriminated only front to 3/4 view changes and not 3/4 to profile, in a 

pattern somewhat (although not precisely) similar to the 3/4 view advantage seen in 

adults. Finally, newborns demonstrate an inversion effect on discrimination, with babies 

1-3 days old discriminating same-view faces without hair upright but not inverted 

(Turati, Macchi Cassia, Simion, & Leo, 2006).

The newborn discrimination findings strongly suggest that a face representation, 

tuned to upright and able to support individual-level representation, is present at birth.

It seems unlikely that 3 ‘days’ of experience with faces -  in fact, a maximum of perhaps 

12 hours of visual experience of any kind (newborns sleep 16 hours per day plus have 

their eyes shut during breastfeeding and crying) -  would be sufficient for a purely 

learning-based system to support the level of fine discrimination ability observed.

Even more compelling, however, is a recent behavioral study in monkeys 

(Sugita, 2008). Japanese macaques were raised by human caregivers wearing masks, 

giving them no exposure to faces, but otherwise normal visual experience in a complex 

environment. On their very first experience with faces (aged 6-24 months), the monkeys 

showed a preference to look at static photographs of faces over photographs of objects 

equally novel in their visual environment (e.g., cars, houses), and discriminated very 

subtle differences between individual faces (Figure 2c) in a habituation paradigm.

A variety of other infant findings also either directly argue that a 

representational capacity for differentiating individual face structures is present at birth, 

or at least do not reject this conclusion. Newborns (< 1 week) prefer faces rated by 

adults as attractive over unattractive faces, when they are upright but not inverted 

(Slater, Quinn, Hayes, & Brown, 2000). Regarding holistic processing, Sugita’s (2008) 

monkeys discriminated spacing changes (Figure 2c) with almost no prior experience of 

faces (they had been exposed to faces only during the short face-preference task), and 

five-month-old humans discriminate spacing changes small enough to fall within the
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normal physical range, upright but not inverted (Hayden, Bhatt, Reed, Corbly, &

Joseph, 2007); also babies 6-8 months old show a composite-like effect where the 

combination of the inner features of one old face with the outer features of another old 

face is treated as a new individual, upright but not inverted (Cohen & Cashon, 2001). At 

3 months (although not 1 month), human infants falsely recognise the average of four 

studied faces as ‘old’, a phenomenon also shown by adults (de Haan, Johnson, Maurer, 

& Perrett, 2Q01). Importantly, there are no major behavioral properties of face 

recognition present in adults that are known not to be present in infants; where we have 

not mentioned properties (e.g., adaptation aftereffects), this is because no relevant data 

exist, not because infants have been tested and failed to show effects.

Findings of perceptual narrowing indicate that a representational capacity for 

faces that is present at birth (a) can initially be applied to a wide range of faces but that 

(b) this range gets restricted during the first several months of life to include only the 

kinds of faces (i.e., species or race) that have been seen in this period. Perceptual 

narrowing is best known from the domain of language (e.g., Kuhl, Tsao, & Liu, 2003). 

Infants are born with the ability to discriminate phoneme boundaries from all possible 

languages in the world (e.g., English and Japanese), but over the first 6-12 months of 

life lose the ability to discriminate phonemes from non-experienced languages 

(Japanese for a child from a monolingual English-speaking family), and even extensive 

exposure as an adult is usually insufficient to regain native-speaker levels of 

discrimination and reproduction. For faces, five studies have reported and explored 

properties of perceptual narrowing. In humans, Pascalis, de Haan and Nelson (2002) 

showed that 6-month-old infants could discriminate both human and monkey faces, 

while 9-month-olds and adults could discriminate only human faces. Kelly et al. (2007) 

reported that Caucasian babies from the north of England, with high exposure to 

Caucasians but essentially no exposure to African or Asian faces, could recognize 

individuals (across view change) from all three races at 3 months of age. At 6 months, 

Caucasian babies could no longer individuate African faces; at 9 months they had 

additionally lost the ability to individuate Asians. The Sugita (2008) study described 

earlier reported that, on first exposure to faces, the monkeys could not only discriminate 

individual monkey faces (other macaques), but could also make extremely fine 

discriminations amongst human faces (Figure 2c). Following 1 month of exposure to a 

single face type (either human or monkey, involving live interaction for least 2 hours 

per day), Sugita’s monkeys lost the ability to discriminate individuals of the non- 

experienced species. Re-learning was also difficult: monkeys initially exposed only to
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humans failed to discriminate monkey faces even after subsequently sharing a cage with 

10 other monkeys for 11 months. (Note, however, that there is some evidence of 

flexibility in humans into middle childhood: Korean children adopted to Caucasian 

Francophone countries at age 3-9 years showed, as adults, better recognition memory 

for Caucasian faces than Korean faces; Sangrigoli, Pallier, Argenti, Ventureyra, & de 

Schonen, 2005). During human infancy, perceptual narrowing can be avoided by 

deliberate exposure to face types that the infant would not naturally see, with regular 

exposure to monkey faces beginning at 6 months leading to retained ability to 

discriminate monkey faces at 9 months (Pascalis et al., 2005). Perceptual narrowing for 

faces also has an interesting possible link with narrowing for language. Lewkowicz and 

Ghazanfar (2006) reported that human infants could make cross-modality matches of a 

monkey vocalization to a picture of a monkey face making that particular sound at 4 and 

6 months, but that this ability was lost at 8 and 10 months.

Importantly, the perceptual narrowing effects for faces described above indicate 

only a destructive effect of experience across infancy (i.e., loss of initial ability with 

other-species and other-races). In the domain of language, loss of phonetic 

discrimination ability within nonexperienced languages has been shown to co-occur 

with an improvement of phonetic discriminability within the experienced language 

(Kuhl et al., 2006). Thus, perceptual narrowing for faces might similarly include 

enhanced ability to discriminate experienced face subtypes: that is, discrimination for 

own-species own-race faces might start crude and improve with practice. Potentially 

consistent with this prediction, Humphreys and Johnson (2007) showed the physical 

difference between faces required to produce novelty preference was smaller in 7- 

month-olds than 4-month-olds, indicating that the older babies could either make finer 

perceptual discriminations, or keep these in memory longer across the 1-5 item test 

delay.

Neural systems present at birth are often associated with a critical (or sensitive) 

period (Sengpiel, 2007), requiring environmental input of the appropriate stimulus type 

within a specified period after birth to avoid being taken over for other purposes. In a 

classic example, cats are born with cells tuned to all line orientations, but if raised in an 

environment containing only vertical lines they lose horizontal-responsive cells and a 

corresponding lack of behavioral sensitivity to horizontal lines. For faces, Le Grand and 

colleagues report evidence consistent with a critical period for one important aspect of 

face perception, holistic processing. Congenital cataract patients, specifically people 

born with dense cataracts disrupting all pattern vision who had the cataracts removed at
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2-28 months of age, were tested at ages ranging between 9 years and adulthood. Despite 

their many years of post-cataract exposure to faces, patients who had had early bilateral 

cataracts showed no composite effect for faces (Le Grand et al., 2004). Also, patients 

who had had right-eye-only or bilateral cataracts -  which produce a deficit of input to 

the right hemisphere due to the wiring of the infant visual system -  showed a later 

deficit in processing spacing information in faces, while patients who had had left-eye- 

only cataracts did not (Le Grand, Mondloch, Maurer, & Brent, 2003), a pattern 

consistent with the normal role of the right hemisphere in holistic processing (Rossion 

et al, 2000). Interestingly, there does not appear to be a critical period for the ability to 

discriminate faces per se. Anecdotally, the Canadian cataract patients are not 

functionally prosopagnosic (Daphne Maurer, pers comm), for example reporting even 

being able to recognize other-race students when teaching English in Korea (Rachel 

Robbins, pers comm). Formal testing shows good ability to match novel faces (without 

view change) both in these patients (Geldart, Mondloch, Maurer, de Schonen, & Brent, 

2002) and in an Indian woman whose congenital cataracts were not removed until 12 

years of age (Ostrovsky, Andalman, & Sinha, 2006). Also, lack of visual experience 

with faces for the first 6-24 months in Sugita’s (2008) monkeys did not destroy 

discrimination ability. The reason why a requirement for early visual input exists for 

holistic processing but not face discrimination remains to be resolved. One possibly 

relevant observation is that holistic processing could perhaps have a particular role in 

cross-view recognition (McKone, 2008), and the Canadian cataract patients have a 

specific problem with recognition of once-seen faces across view changes (Geldart et 

al., 2002; note the Indian patient and Sugita’s monkeys were tested on same-view faces 

only).

The behavioral findings reviewed above -  demonstrating abilities present at 

birth, perceptual narrowing and critical periods -  are all consistent with a genetically 

determined “innate” contribution to infant face recognition. In particular, they argue for 

an innate contribution to face individuation.

Neurally, face individuation in adults is associated with cortical rather than 

subcortical function. What is the evidence regarding cortical face-processing function in 

infants? There are few available studies, and none in neonates. Results do, however, 

demonstrate face-selectivity and inversion effects. In infant macaques, Rodman, 

Scalaidhe and Gross (1993) found that the response magnitude of single units in 

inferotemporal cortex was lower overall than in adults, but selectivity for form 

including face selectivity was present at the youngest ages tested, within 2 months of
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birth. In humans, a PET study of 2.5-month-olds is somewhat suggestive of face- 

selective activation in the fusiform gyrus (and other cortical regions), although the 

infants were not neurologically normal, the statistical threshold was extremely lenient (p 

< .05 uncorrected), and the contrast (faces versus blinking diodes) confounds selectivity 

for faces with responses to visual shape information (Tzourio-Mazoyer et al., 2002). 

Using ERPs, human 3-month-olds exhibit an “N290” component that has larger 

amplitude for human compared to monkey faces in the right hemisphere only (Halit, de 

Haan, & Johnson, 2003) although adult N170 shows the opposite pattern. At 12 months 

of age, this N290 was higher in amplitude for inverted than upright faces, only for 

human, not monkey faces (like the adult N170). Although the same study reported that 

this sensitivity to inversion was not found in 3-month-olds, another analysis of the same 

data using a different method (Johnson et al., 2005) did claim to find such inversion 

sensitivity. Further, other ERP components (the P400 and the PI) do show inversion 

effects at 3 months, the youngest age tested (Halit et al., 2003). Similarly, near infrared 

spectroscopy (NIRs) responses in 5-8-month-old infants are stronger for upright than 

inverted faces over the right hemisphere only (Otsuka et al., 2007; note the cortical 

source of this effect was most likely the STS). Overall, the available neural evidence 

from infants is consistent with the existence of cortical machinery for processing faces 

within a few months after birth, and there is no evidence to suggest this is not present 

earlier.

Taking all findings together, we conclude that infants are born with a rich 

capacity to represent the structure of upright faces which supports face discrimination, 

rather than merely drawing attention to faces. Results further show that this 

representation interacts with experience during infancy in particular ways. A probable 

critical period suggests holistic processing is ‘experience-expectant’ (i.e., early 

environmental input is required for its maintenance). Perceptual narrowing shows early 

experience restricts the range of faces that can be accommodated: that is, an initial 

representation of faces is sufficiently broadly tuned to support individuation of all face 

types including those of other primates, and experience with one subtype of face (own- 

species, own-race) removes this initial ability with other face types (other-species, 

other-races), at the same time that it possibly improves perceptual tuning for faces of the 

experienced subtype. Regarding neural origin of face discrimination in infants, there is 

evidence of relevant cortical representation by mid-infancy, but no data are available 

regarding whether the discrimination ability present at birth is supported by cortical as 

opposed to subcortical representations.
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3.9 Development: Four year-olds to adults

In understanding the interaction of genetic inheritance and learning, 

investigation of the developmental trajectory of face processing in childhood through 

adulthood can also be informative. When no change is found in a given behavioral or 

neural measure of face perception in this period, that argues against extended 

maturation or learning as necessary for the construction of the adult system. If instead 

protracted development is observed, this could reflect learning (as often assumed), 

though crucially it could also reflect biological maturation (Carey et al, 1980), or an 

interaction of genetic and experiential factors.

3.9.1 Behavioral Measures of Face Identity Perception

For children 4-5 years and older, it is possible, with care, to adapt adult 

behavioral paradigms directly, and thus to compare child performance with adult 

performance on exactly the same tasks. For each phenomenon established in adults, two 

empirical questions are of interest. First, is there some age below which children simply 

do not show that phenomenon at all? (i.e., is there qualitative change with age?).

Second, regarding any phenomena that are observed, when are full maturity levels 

reached? (i.e., is there quantitative change with age).

We consider qualitative change first. Early behavioral research appeared to 

suggest that core perceptual processes involved in face identification did not emerge at 

all until quite late in development (e.g., 10 years for holistic processing, Carey & 

Diamond, 1977; Carey et al., 1980). Unfortunately, researchers in the face neuroscience 

literature (e.g., Gathers, Bhatt, Corbly, Farley, & Joseph, 2004; Aylward et al., 2005; 

Golarai et al., 2007; Scherf, Behrmann, Humphreys, & Luna, 2007) commonly 

emphasize only these few early findings, which give an inaccurate representation of the 

current state of knowledge. In fact, research in the last 15 years has clearly established 

that all standard adult face recognition effects are present in young children. (Indeed, 

Section 3 showed all phenomena tested -  including inversion effects -  were present in 

infancy.)

In child-age studies using adult tasks, every key adult property of face 

recognition investigated has been obtained at the youngest age tested. With respect to 

holistic processing, these results include the inversion effect on short- and long-term 

recognition memory (3 y.o. Sangrigoli & de Schonen, 2004; 4 y.o. Carey, 1981; 5-6 y.o. 

Brace et al., 2001; 7 y.o. Flin, 1985), the composite effect (4 y.o. de Heering, Houthuys,
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& Rossion, 2007; 6 y.o. Carey & Diamond, 1994; 6 y.o. Mondloch, Pathman, Maurer,

Le Grand, & de Schonen, 2007), the part-whole effect for upright but not inverted faces 

(4 y.o. Pellicano & Rhodes, 2003; 6 y.o. Tanaka, Kay, Grinnell, Stansfield, & Szechter, 

1998), the part-in-spacing-changed-whole effect for upright but not inverted faces (4 

y.o. Pellicano, Rhodes, & Peters, 2006) sensitivity to exact spacing between facial 

features (4 y.o. McKone & Boyer, 2006; 4 y.o. Pellicano et al., 2006), the perceptual 

bias to upright in superimposed faces (8 y.o. Donnelly, Hadwin, Cave, & Stevenage, 

2003) and the internal-over-external features advantage for familiar face identification 

(5-6 y.o. Wilson, Blades, & Pascalis, 2007). Regarding face-space coding, results 

include distinctiveness effects on perception at 4 years (McKone & Boyer, 2006) and on 

memory at 6-7 years (Gilchrist & McKone, 2003), an other-race disadvantage on 

recognition memory at 3 years (Sangrigoli & de Schonen, 2004) and a recent 

conference report of adaptation aftereffects in 4-5 year-olds (Jeffery & Rhodes, 2008). 

Where early studies did not show effects, this has generally been established to have 

arisen from methodological problems, the most common one being floor effects on the 

task in young children (e.g., see Carey et al., 1980 vs. Carey, 1981; or Johnston & Ellis, 

1995 vs. Gilchrist & McKone, 2003). Another case of note is the early suggestion that 

children could not perform face identification at all in the presence of distracting 

paraphernalia (Carey & Diamond, 1977); this finding was overturned (Lundy, Jackson,

& Haaf, 2001), by simply making the faces larger. (Also note that even adults are 

sometimes strongly distracted by paraphernalia, Simons & Levin, 1998). In summary, it 

is clear that there is no qualitative change in face perception beyond 4-5 years of age; 

quite possibly, there is none beyond infancy.

The question of whether quantitative change occurs is more difficult to answer. 

Certainly, performance on just about any experimental task involving faces improves 

very substantially across childhood and well into adolescence (see Figures 3a and 3b). 

The crucial issue is how much of this development reflects development in face 

perception (e.g., in holistic processing, or in the fine tuning of face-space), and how 

much reflects development in other general cognitive factors that are known to improve 

substantially across this age range and would affect task performance whatever the 

stimuli (e.g., explicit memory ability, ability to concentrate on the task to instruction). A 

common bias of face researchers is to assume, given data showing increasing memory 

for faces with age (e.g., Figure 3a), that it is face perception that is changing, and that 

the task type -  explicit memory -  is irrelevant; yet, an implicit memory researcher
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looking at the same set of data would likely conclude ‘explicit memory’ is developing 

and presume the particular stimulus type -  faces -  is irrelevant.

A. Restriction of range in young children: face effects increase with age
Distinctiveness Effect

All plots show age in years 
on x-axis; A = Adult

B. Restriction of range in adults: face effects decrease with age
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Figure 3. Behavioral face recognition effects in the preschooler to adult age range. A basic Finding is of 
overall improvement with age -  higher accuracy or lower reaction time; note that in C, the left and 
middle plots show studies where the researchers deliberately removed this trend by using smaller learning 
set sizes in younger children. Our major point is that apparent developmental trends in the strength of 
core effects (size of inversion effect, size of composite effect, ability to represent recently-seen faces in 
implicit memory, etc) depend on whether, and how, room to show effects is potentially restricted.

Various attempts have been made to overcome the limitations of simply tracking 

age-related improvement in raw performance. To our minds, however, none of these are 

methodologically satisfactory, and none produce a clear conclusion regarding whether 

face perception per se does, or does not, improve between early childhood and 

adulthood. One approach is to compare two conditions across development, for example
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asking whether the size of the difference between upright and inverted (or typical and 

distinctive, etc) changes with age (e.g., Carey et al., 1980; Johnston & Ellis, 1995). The 

results of almost all such studies, however, are confounded with overall ‘baseline’ 

changes across age groups, such that (a) when room to show effects is potentially 

compressed by approaching floor in young children, but is not restricted (i.e., no ceiling 

effect) in adults, results seem to suggest quantitative increases in the effect of interest 

with age (Figure 3a), but that (b) when room to show effects is restricted by 

approaching ceiling in adults, but is not restricted in young children (i.e., no floor 

effects on accuracy, or alternatively use of a reaction time measure), results seem to 

show quantitative decreases with age (Figure 3b). Taking seriously the results of the 

first type of study as showing quantitative development in face perception (as is 

commonly done), requires also taking seriously the results of the second type of study- 

apparently leading to the conclusion that face perception gets consistently worse 

between early childhood and adulthood! A further requirement for valid comparison of 

rates of development for two stimulus types is that performance be equated for the two 

types in one or other end-point age group. This is commonly not done. As one example, 

the Mondloch, Le Grand, & Maurer (2002) finding that sensitivity to feature changes 

reaches adult levels earlier than spacing changes can be attributed (McKone & Boyer, 

2006) simply to the fact that the features changes were easier in adults (that is, 

performance on an easier stimulus set reaches adult levels before performance on a 

more difficult stimulus set). Another general issue in studies comparing faces versus 

objects (e.g., in rate of development, Golarai et al., 2007; or size of inversion effects, 

Carey & Diamond, 1977; Teunisse & de Gelder, 2003; Aylward et al., 2005), is that, in 

addition to producing very mixed results, the object classes tested to date (houses, 

scenes, sculptures, shoes) have not been well matched to faces on basic parameters, 

such as not sharing a first-order configuration (houses, scenes), or not being natural 

objects (sculptures, shoes).

Overall, we conclude that current behavioral evidence demonstrates.qualitatively 

adult-like processing of faces in young children, but does not resolve whether 

processing is quantitatively mature. We note, however, that at least some evidence 

suggests a conclusion likely to be surprising to many readers, namely that even 

quantitative maturity might be reached by early childhood. The three studies that appear 

to have the most suitable methodology -  in which baselines were matched across age 

groups (Carey, 1981; Gilchrist & McKone, 2003), or restriction of range problems were 

otherwise avoided (Mondloch et al., 2007) -  all indicate no change in holistic
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processing (inversion effect, Carey, 1981; composite effect, Mondloch et al., 2007; 

spacing sensitivity, Gilchrist & McKone, 2003; or distinctiveness effects Gilchrist & 

McKone, 2003) between early childhood (4-6 years) and adulthood (Figure 3c).

3.9.2 Neural Measures of Face Identity Processing (FFA and N170)

As with behavioral studies, we discuss results of neuroimaging and ERP studies 

in children with respect to two questions: qualitative development, and quantitative 

development.

Three studies have used fMRI to scan children age 5 to adult on face and object 

tasks, enabling these studies to track the existence and size of face-selective regions of 

cortex. (A fourth study will not be discussed here because it used such liberal criteria to 

define “FFAs” that the regions so identified were clearly not face-selective even in 

adults; see Figure 1 d-f in that study, Gathers et ah, 2004). Considering qualitative 

effects, evidence of a face-selective FFA has been found in most children at the 

youngest ages tested. Although no FFA was revealed in young children by group 

analyses (in which all subjects are aligned in a common space; 5-8 y.o. Scherf et al., 

2007; 8-10 y.o. Aylward et al., 2005), in the two studies reporting individual-subject 

analyses, Scherf et al. found an FFA in 80% of the children in 5-8 year-olds (albeit at a 

very liberal statistical threshold), and Golarai et al. (2007) found an FFA in 85% of 

children in their 7-11 year-old group (using a more standard statistical threshold). One 

study (Passarotti, Smith, DeLano, & Huang, 2007) also reported an inversion effect 

(higher response to inverted than upright faces) in the region of the right (but not left) 

FFA in children 8-11 years of age (and an effect in the opposite direction in adults). 

Regarding ERPs, young children (like infants) show both face-selective responses and 

inversion effects upon these (see Figures 5 and 6; Taylor, Batty, & Itier, 2004). These 

fMRI and ERP findings in children add to the infant data to confirm that at least some 

form of face-specific neural machinery is established early.

Quantitatively, neural machinery involved in face perception demonstrates 

substantial changes in face-selective neural responses continuing late into development. 

In all three fMRI studies, the FFA increases markedly in volume between childhood and 

adulthood (Aylward et al., 2005; Golarai et al., 2007; Scherf et al., 2007), even though 

total brain volume does not change substantially after age 5. These studies clearly show 

that the rFFA is still changing late in life, certainly after age 7 and in some studies much 

later.
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Comparing fMRI data across children and adults is fraught with potential 

pitfalls. Children move more in the scanner, and are less able to maintain attention on a 

task. These or other differences between children and adults could in principle explain 

the change in volume of the rFFA. However, notably, control areas identified in the 

same scanning sessions do not change with age. For example object-responsive regions 

and the scene-selective “parahippocampal place area” in the right hemisphere or rPPA 

(Epstein & Kanwisher, 1998) did not change in volume from childhood to adulthood 

(Golarai et al., 2007; Scherf et ah, 2007) although somewhat surprisingly Golarai et al. 

found that the 1PPA did increase in volume with age. These findings are reassuring that 

the changes in the rFFA with age are not due to across-the-board changes in the ability 

to extract good functional data from young children.

Golarai et al. (2007) asked how changes in the rFFA relate to changes in 

behavioral face recognition over development (Figure 4). Right FFA size was correlated 

(separately in children and adolescents but not in adults) with face recognition memory, 

but not with place or object memory. Conversely, iPPA. size was correlated (in all age 

groups independently) with place memory but not with object or face memory. This 

double dissociation of behavioral correlations clearly associates the rFFA with changes 

in face recognition measured behavioral ly.

A) Left FFA
□  7-11 -y oar-olds
□  12-16-yoar-okls

3.000 ] ■  Adults
□  Matched

2.000 -I

1.000 \
0-I-----

C) Right mid-fusiform gyrus

8,000 

6,000

4.000
2.000

0
E) Face-selective right STS

B) Right FFA

D) Right LOC E)
6.000

E) Right PPA

Figure 4. Developmental data from Golarai et al. (2007): Mean volume across subjects in each age group 
of individually-defined left (A) and right (B) FFA, (C) anatomically-defined right mid-fusiform gyrus,
(D) functionally-defined right LOC, and functionally-defined face-selective right STS (E) and right place- 
selective PPA (F). Red bars indicated values in subsets of subjects matched for BOLD-related confounds.
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ERP findings are consistent with the evidence from fMRI that the cortical 

regions involved in face recognition continue to change well into the teenage years. 

Face-related ERPS show gradual changes in scalp distribution, latency, and amplitude 

into the mid-teen years (Figures 5 and 6). Both the early PI component and the later 

N170 component show gradual decreases in latency from age 4 to adulthood. Regarding 

neural inversion effects, late developmental changes are found with both fMRI and ERP 

(see Figure 5), including a reversal of the direction of the inversion effect between 

children and adults in both methods (Taylor et al., 2004; Passarotti et al., 2007). Future 

research might best approach this question by measuring not just mean responses to 

upright versus inverted faces, but instead using identity-specific adaptation to ask when 

the better discrimination of upright than inverted faces seen in adulthood (Yovel & 

Kanwisher, 2005; Mazard et al., 2006).

A  Study 1: Implicit task ß Study 2 : n-back

___ 4-5  yrs
6 -7  yrs

___ 8—9 yrs
___  10-11 yrs
___ 12-13 yrs
___ 14-15 yrs
___ adults

Figure 5. ERPs from right posterior temporal scalp locations in response to face stimuli, separately for 
each age group, from Taylor e t al. (2004).

N170 latency ' upnght 
-  - -  inverted

C - 5  .  .

4-5yr 6-7yr 8-9yr 10-11 yr 12-13yr 14-15yr adults

N170 amplitude upnght 
-  -  - -inverted

4-5 yr 6-7 yr 8-9 yr 10-11 yr 12-13 yr 14-15 yr adults

Figure 6. Mean N170 latency (left) and amplitude (right) for upright and inverted faces as a function of 
age, from Taylor et al. (2004).
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3.9.3 Comparing Development for Behavioral and Neural Measures

Taking the findings from the 4-to-adult range together with the infant literature, 

we can draw the following conclusions. First, the results regarding qualitatively adult­

like face processing appear to agree well across behavioral and neural measures; that is, 

just as all behavioral face recognition effects have been obtained in the youngest age 

groups tested, face-selective neural machinery as revealed by fMRI, ERPs, NIRs and 

single-cell recording has also been found in the youngest children and infants tested. 

Nonetheless, fMRI data are not available for children younger than 5-8 (pooled 

together), and the ERP studies in infants and children often go in opposite directions 

from adults. For example, and the inversion effect on the N 170 switches polarity 

between childhood and adulthood, as shown in Figure 6, despite maintaining the same 

polarity in behavior.

Second, the evidence for quantitative development is less clear. It may be that 

the improvements with age on behavioral tasks do reflect ongoing development of face 

perception itself and, if so, this could agree neatly with the increasing size of the FFA. 

As we have noted, however, findings such as those shown in Figures 3b and 3c suggest 

that behavioral face perception may be fully mature early, and that ongoing behavioral 

improvements with age reflect changes in other, more general, cognitive factors. This 

view would produce an apparent discrepancy -  behavioral maturity arising well before 

maturity of relevant cortical regions -  that would need to be resolved. If this is the case, 

two ideas might worth exploring. It may be that the measured size of the FFA in 

children is affected by top-down strategic processing which (for some unknown reason) 

affects faces and not objects. Another possibility is that the FFA might play some role 

in the long-term storage of individual faces (e.g., it shows repetition priming, Pourtois, 

Schwartz, Seghier, Lazeyras, & Vuilleumier, 2005; Williams, Berberovic, & 

Mattingley, 2007) and that the increased size of the FFA could arise simply because 

people continue to learn faces across life; this idea would have to propose that the 

number of new faces learned is much greater than the number of new objects.

3.10 Conclusion

For decades, conventional wisdom has held that face recognition arises very 

slowly in development, and that experience is the primary engine of this development.
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The new evidence reviewed here refutes this hypothesis. Impressive face recognition 

abilities are present within a few days of birth, and are present in monkeys who have 

never seen faces before. Some form of inherited genetic influence is also indicated by 

Polk et al’s imaging study of twins, and by the fact that developmental prosopagnosia 

can run in families. Qualitatively, behavioral findings indicate establishment of all 

adult-like face recognition effects by 4 years at the latest, and in infancy wherever 

tested; the striking breadth of this evidence is summarised in Figure 7. The available 

evidence also indicates early initial establishment of face-selective neural machinery at 

the cortical level; again see Figure 7. It is not, however, that experience plays no role in 

development. Perceptual narrowing of the range of facial subtypes for which 

discrimination is possible reveals a destructive role for experience. Further, there is a 

requirement for early-infancy input (consistent with a critical period) for the 

development of holistic face processing but (mysteriously) not face discrimination.

Three major questions remain for future research. First, it will be critical to 

determine whether face perception per se improves quantitatively after age 4, or 

whether instead improvement in performance after this age reflects improvement in 

domain-general mechanisms. Second, if face perception itself does improve 

quantitatively after age 4, what role does experience play in this improvement? A final 

critical challenge will be to understand the relationship between cognitive and neural 

development, especially the substantial increase in the size of the FFA.
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Figure 7, For each property of face processing, we indicate for each age group whether that property is 
qualitatively present (©), debatable (?), not present (X), or not yet tested (grey). Deprived = monkeys 
deprived of face input from birth. Note: All references can be found in text except: Inversion effect on 
spacing sensitivity aged 6 years-adult (Mondloch et al., 2002), Adaptation aftereffect aged 9 years-adult 
(Pellicano, Jeffery, Burr, & Rhodes, 2007).
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3.13 Relevant literature published after this manuscript was accepted

The final version of McKone, Crookes and Kanwisher (in press) was written in 

June 2008. Four additional studies have since appeared which are of relevance to one of 

the primary questions addressed in this chapter, namely the youngest age at which all 

standard adult face recognition effects are present in children. These papers do not 

change the conclusions drawn in our chapter; that is, it is still the case that all adult-like 

behavioural effects have been found at the youngest age tested.

The specific details are as follows. Two of the studies (Macchi Cassia, Kuefner, 

Picozzi, & Vescovo, 2009a; Macchi Cassia, Picozzi, Kuefner, Bricolo, & Turati, 2009b) 

clearly push the age of the presence of holistic processing on adult-like tests back to 3 

years. Previously, the inversion effect for faces had been demonstrated in only one 

study at 3 years (Sangrigoli & de Schonen, 2004), and for other standard holistic 

processing effects (part-whole, composite) the earliest tests were at 4 years. Macchi 

Cassia et al. (2009a) confirmed an inversion effect for faces in 3-year-olds, using a short 

term memory task. Further, Macchi Cassia et al. (2009b) found that 3-year-olds 

demonstrated the adult pattern for the composite effect for faces versus cars: that is, an 

accuracy advantage for misaligned over aligned halves for faces but not for cars.

The other two studies are the first published tests of adaptation aftereffects for 

face attractiveness (Anzures, Mondloch, & Lackner, 2009) and identity (Nishimura, 

Maurer, Jeffery, Pellicano, & Rhodes, 2008) in children as young as 8 years.

Previously, the youngest age at which the identity aftereffect had been tested (and 

demonstrated) was 9 years, and the attractiveness aftereffect had not been tested in 

children at all. Anzures et al. (2009) demonstrated that aftereffects on attractiveness 

ratings of distorted (i.e., “spherized”) faces, following adaptation to a distorted face, 

were qualitatively similar in 8 year-olds and adults. Nishimura et al. (2008) 

demonstrated that identity aftereffects in the Leopold, O’Toole, Vetter & Blanz (2001) 

identity-adaptation procedure were qualitatively similar in 8-year-olds and adults.

Two additional papers have also appeared relevant to the question of neural 

development. Pelphrey, Lopez and Morris (2009) localised the FFA in children aged 7 

to 11 years supporting the qualitative presence of adult-like neural mechanisms. While 

no change in selectivity was observed with age the FFA did appear to increase in 

volume with age although no statistics were reported. In the second paper Kuefner, de 

Heering, Jacques, Palmero-Soler and Rossion (in press) compared the ERP responses 

for faces and cars in 5-16 year-olds. They confirmed the qualitative presence of the
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adult N I70 component in children. Quantitatively no face specific development was 

observed in any aspect of the electrophysiological response.

3.14 Minor corrections to the published paper

It is acknowledged that Haig (1984) demonstrated sensitivity to spacing changes 

before Rhodes et al., (1993) and McKone et al., (2005). The citation on page 19 should 

therefore read: “evidence of strong sensitivity to spacing changes (e.g., distance 

between eyes) in upright faces (e.g., Haig, 1984; Rhodes, Brake, & Atkinson, 1993; 

McKone, Aitkin, & Edwards, 2005)”.

With regards to tests of holistic processing on page 19 it should be noted that in 

studies by Rossion and colleages the composite effect when tested inverted is greatly 

reduced but not absent. Hence the statement should be qualified to: “All these holistic 

effects are specific to upright faces: they are not found or are greatly reduced for 

inverted or scrambled faces (Young et al., 1987; Tanaka & Sengco, 1997; Robbins & 

McKone, 2003; Martini et al., 2006)...”

The statement about the ERP component the N170 on page 21 should have 

included reference to earlier papers. The citation should therefore read: “A negative­

going ERP response peaking about 170 ms after stimulus onset over posterior temporal 

sites (N170) has been widely replicated to be face-selective (e.g., Bentin, Allison, Puce, 

Perez, & McCarthy, 1996; Halgren, Raij, Marinkovic, Jousmaki, & Hari, 2000; Liu, 

Harris, & Kanwisher, 2002).” Similarly the statement about the increase in the N 170 on 

page 21 has an incorrect citation. It should read: “This peak is delayed by 10 ms, and is 

larger in amplitude, for inverted faces relative to upright faces (Rossion et al., 1999).”

It should have been stated that the prosopagnosic in the DeGutis et al., (2007) 

study referred to on page 22 was an adult developmental prosopagnosic.

The statement on page 29 regarding perceptual narrowing that “experience with 

one subtype of face (own-species, own-race) removes this initial ability with other face 

types (other-species, other-races)” fails to acknowledge that there maybe ongoing 

plasticity throughout childhood which leads to greater flexibility. Hence, discrimination 

of other-race faces may be learned if experience is gained within childhood. These 

ideas are discussed in Section 8.4.8 of the general discussion.

The following sentence on page 36 should have included a reference to an ERP 

adaptation study by Jacques, d’Arripe & Rossion (2007): “Future research might best
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approach this question by measuring not just mean responses to upright versus inverted 

faces, but instead using identity-specific adaptation to ask when the better 

discrimination of upright than inverted faces seen in adulthood (Jacques, d’Arripe & 

Rossion, 2007; Yovel & Kanwisher, 2005; Mazard et ah, 2006).”
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CHAPTER 4 -  EARLY MATURITY OF FACE RECOGNITION: NO CHILDHOOD 

DEVELOPMENT OF HOLISTIC PROCESSING, NOVEL FACE ENCODING,

OR FACE-SPACE

4.1 Context statement

The previous chapter concluded with three major questions for future research. 

The present chapter addresses one of these questions: Does functional face perception 

per se improve quantitatively after age 4-5 years, or does improvement in performance 

after this age instead reflect improvement in domain-general mechanisms? This 

question is the key to one of the major aims of this thesis -  to investigate the role of 

extended experience, continuing into adolescence, in establishing quantitative maturity 

of the core face perception abilities. Evidence of quantitative development of face- 

specific mechanisms with age would be predicted by the view that extended experience 

with faces does play a role in this development. In contrast, evidence of no quantitative 

change with age would argue that extended experience with faces is not the origin of the 

“special” processing of faces.

The three new experiments and comprehensive literature review in this chapter 

attempt to disentangle face-specific perceptual development from general cognitive 

development, in order to assess quantitative change across age in three basic abilities: 

the ability to perform holistic processing; the ability to encode perceptual 

representations of novel faces; and the ability to represent faces in face-space.

4.2 Publication status

This chapter comprises a paper accepted for publication in February 2009. It appears in 

print as:

Crookes, K. & McKone, E. (2009). Early maturity of face recognition: No

childhood development of holistic processing, novel face encoding, or 

face-space. Cognition, 111(2), 219-247.

55



The accepted version of this paper was finalised in February 2009. Discussion of 

three relevant papers published since that date is provided following presentation of the 

accepted manuscript.

4.3 Author contributions

4.3.1 Literature review

• Crookes was responsible for the literature review, including literature searches, 

reading papers, understanding methods and results, summarising findings, and 

noting methodological issues.

4.3.2 Conceived and designed the experiment

• All experiments were conceived and designed by Crookes in conjunction with 

McKone.

4.3.3 Programming and Testing

• Crookes programmed all the tasks and created the new stimuli for Experiment 3

• Crookes arranged all the child testing in schools including ethics clearance from 

the education department, contacting principals and liaising with classroom 

teachers

• Crookes collected all the child data and the majority of the new adult data (a 

few adult participants were tested by research assistant Stefan Horarik while 

Crookes was off-site testing in schools).;

4.3.4 Data analysis

• Crookes was responsible for deciding what statistical analysis would be 

performed.

• McKone suggested a few additional analyses.

• Crookes performed all the data analysis.

4.3.5 Theory development

• Crookes and McKone worked together to develop the arguments and theories 

presented

4.3.6 Writing

• Crookes wrote the paper and produced all the tables and figures

• McKone then edited and refined the paper

1 Examiners should note that: (1) as stated in the paper, data for the “performance 
matched adult” group in Experiment 2 were taken from Robbins and McKone (2007) 
and were not collected by me; and (2) 48 of the 64 child participants in Experiment 3B 
were previously included and examined in my Honours thesis (2004).
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Historically, it was believed the perceptual mechanisms involved in individuating faces 
developed only very slowly over the course of childhood, and that adult levels of expertise 
were not reached until well into adolescence. Over the last 10 years, there has been some 
erosion of this view by demonstrations that all adult-like behavioural properties are qual­
itatively present in young children and infants. Determining the age of maturity, however, 
requires quantitative comparison across age groups, a task made difficult by the need to 
disentangle development in face perception from development in all the other cognitive 
factors that affect task performance. Here, we argue that full quantitative maturity is 
reached early, by 5 -7  years at the latest and possibly earlier. This is based on a comprehen­
sive literature review of results in the 5-years-to-adult age range, with particular focus on 
the results of the few previous studies that are methodologically suitable for quantitative 
comparison of face effects across age, plus three new experiments testing development of 
holistic/configural processing (faces versus objects, disproportionate inversion effect), abil­
ity to encode novel faces (assessed via implicit memory) and face-space (own-age bias).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The ability to recognise a person from their facial appear­
ance -  that is, the process of visual discrimination of faces -  
is essential to human social interaction. There has thus been 
longstanding interest in the developmental course of face 
recognition, and particularly the question of when chil­
dren’s perceptual ability matures to adult levels.

Infant studies demonstrate remarkable face recognition 
abilities very early in life. Newborns can recognise their 
mother (Bushnell, 2001; Pascalis, de Schonen, Morton, 
Deruelle, & Fabre-Grenet, 1995), discriminate individual 
identity of novel faces w ith hair (Pascalis & de Schonen, 
1994; Turati, Macchi Cassia, Simion, & Leo, 2006) and w ith ­
out hair (Turati et al., 2006), and recognise identity of novel 
faces across viewpoint changes (Turati, Bulf, & Simion, 
2008; also see Pascalis, de Haan, Nelson, & de Schonen,

* Corresponding author. Tel.: +61 2 61254106; fax: +61 2 61250499. 
E-mail address: Kate.Crookes@anu.edu.au (K. Crookes).

0010-0277/$ - see front matter © 2009 Elsevier B.V. All rights reserved, 
doi: 10.1016/j.cognition.2009.02.004

1998, in 3-month-olds). Infants younger than 6-9 months 
can even individuate faces from races and species with 
which they have no prior experience (Kelly et al., 2007; 
Pascalis, de Haan, & Nelson, 2002).

Despite this early proficiency, all laboratory studies in 
children show dramatic development, continuing through­
out childhood and into adolescence. Children’s recognition 
memory for faces in experimental settings improves 
greatly from approximately 5 years and approaches adult 
levels only in later adolescence (e.g., Blaney & Winograd, 
1978; Carey & Diamond, 1977; Carey, Diamond, & Woods, 
1980; Ellis & Flin, 1990; Flin, 1980, 1985; Johnston & Ellis, 
1995). This is not merely a memory phenomenon. Perfor­
mance on perceptual face discrimination tasks, such as 
same-different decision, also improves strongly between 
5 years and adulthood (e.g., Carey et al., 1980; Mondloch, 
Dobson, Parsons, & Maurer, 2004; Mondloch, Le Grand, & 
Maurer, 2002).

The question we address here is why this protracted 
development in children’s task performance occurs. From

http://www.elsevier.com/locate/COG
mailto:Kate.Crookes@anu.edu.au
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the literature, we identify two general theories. The first is 
a face-specific perceptual development theory, which pro­
poses that an important contributing factor is ongoing 
development of face-specific perceptual mechanisms 
(e.g., holistic processing, tuning of face-space dimensions). 
The second is a general cognitive development theory, which 
proposes that face perception itself is mature in early 
childhood, and that all development of task performance 
thereafter reflects improvements in general cognitive 
mechanisms such as concentration, visual attention, and 
explicit memory ability.

The first of these theories has been historically the most 
popular, but the second has been supported by a number of 
recent findings, leading to controversy and a currently 
open question. Our aim here is to discriminate between 
the two theories, considering primarily the 5 years to adult 
age range, and addressing the fundamental question of 
whether children’s identity-related face perception is, or is 
not, fully mature in early childhood.

Our article is structured as follows. First, we describe 
the two theories. Second, we provide a brief summary of 
the now well-established evidence that there is no qualita­
tive change in face perception between children and adults. 
Third, we review the very extensive literature relevant to 
the question of whether there is quantitative improvement 
in face perception: here, we argue that methodological dif­
ficulties in comparing across age groups are present in al­
most all studies, but note that the handful of studies with 
the most appropriate methodology all favour early percep­
tual maturity. Fourth, we present three new experiments 
focussing on quantitative comparison across ages of two 
very important aspects of face perception -  the strength 
of holistic/configural processing, and the ability to encode 
novel faces -  and also present some data relevant to the 
development of face-space. These studies, using three 
independent techniques, converge with each other and 
with the previous literature to argue that face perception 
is quantitatively mature at 5-7 years.

LI. Face-specific perceptual development theory

Recall the phenomenon we are trying to explain is the 
dramatic improvement in laboratory face task perfor­
mance across childhood and adolescence. The first theory 
of this improvement (e.g., Aylward et al„ 2005; Carey & 
Diamond, 1977; Carey et al„ 1980; Cohen Kadosh & John­
son, 2007; Ellis, 1992; Flumphreys 8i Johnson, 2007; Mond- 
loch et al., 2002; Nishimura, Maurer, Jeffery, Pellicano, & 
Rhodes, 2008; Scherf, Behrmann, Humphreys, 8; Luna, 
2007) we will refer to as the face-specific perceptual devel­
opment theory. Although acknowledging infants’ early pro­
ficiency, this theory argues face perception itself continues 
to develop into late childhood, and that this is due to ex­
tended experience with faces. Ongoing improvements in 
face coding contribute directly to improvements on per­
ceptual tasks such as face discrimination, and are also pre­
sumed to support improvements in memory by, for 
example, allowing more robust encoding of novel faces, 
or more exact comparison to distractors at retrieval.

Regarding the exact nature of any change in face per­
ception, three specific proposals can be identified. One is

that improvements might occur in holistic/configural pro­
cessing (henceforth referred to as holistic processing). The 
exact nature of this ’special’ style of face processing is 
not fully understood, but it is widely agreed to include 
(a) strong perceptual integration of information across 
the whole face, and (b) processing of the “second-order” 
ways in which exact spacing between facial features devi­
ates from the basic shared first-order configuration found 
in all faces (i.e., two eyes, above nose, above mouth). One 
theory proposes perceptual integration and coding of spac­
ing information are independent subcomponents (Maurer, 
Le Grand, & Mondloch, 2002); another proposes a single 
integrated representation of all facial information that in­
cludes spacing information within it (and, indeed, local 
feature shape; McKone, in press; Tanaka & Farah, 1993; Yo- 
vel & Duchaine, 2006). Importantly, both theories agree 
holistic processing is strongly sensitive to stimulus inver­
sion; in the Maurer et al. (2002) theory, this applies to all 
subcomponents.

In adults, holistic processing is associated with several 
standard paradigms. Faces produce disproportionate inver­
sion effects on recognition memory. All objects are remem­
bered more poorly if studied and tested upside-down 
compared to upright, but the inversion effect is much lar­
ger for faces (25% decrement) than for a wide range of 
other object classes (2-10%, Diamond & Carey, 1986; Rob­
bins & McKone, 2007; Scapinello & Yarmey, 1970; Yin, 
1969). The standard assumption is this occurs because 
holistic processing operates only for upright faces, a con­
clusion supported by methods that assess processing style 
directly. In the composite effect (Young, Hellawell, & Hay, 
1987), aligning the top half of one face (e.g., George Bush) 
with the bottom half of another (e.g., Tony Blair) produces 
a percept of a ‘new person’, and it is more difficult to 
name the top half for aligned than misaligned composites. 
In the part-whole effect (Tanaka & Farah, 1993), memory 
for a face part (Bill’s nose) is much poorer in isolation 
(Bill’s nose versus John’s nose) than in the context of the 
original whole face (Bill’s nose in Bill’s face versus John’s 
nose in Bill’s face). In the part-in-spacing-changed-whole 
variant (Tanaka & Sengco, 1997), memory for a face part 
(Bill’s nose) is poorer in a spacing-changed version of 
the whole face (Bill’s nose in Bill’s face with the eyes 
moved further apart) than in the unaltered whole face, 
consistent with much other evidence of excellent sensitiv­
ity to exact spacing between features in upright faces (e.g., 
McKone, Aitkin, & Edwards, 2005; Rhodes, Brake, & Atkin­
son, 1993). These holistic effects occur for upright faces, 
but are absent or substantially reduced for inverted faces, 
scrambled faces, and objects including houses, cars, dogs 
and ‘greebles’, both in novices and experts (for reviews 
see McKone, Kanwisher, 8; Duchaine, 2007; Robbins & 
McKone. 2007).

Turning to children, an early developmental theory ar­
gued holistic processing first emerged at around 10 years 
(Carey et al., 1980). More recently, it has been argued that 
some aspects of holistic processing are mature in young 
children, but other aspects continue to develop into ado­
lescence due to extended experience with faces. Proposals 
about exactly which aspects of holistic processing develop 
include Carey and Diamond’s (1994, p. 270) “mystery
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factor”, and Mondloch et al.’s (2002) proposal of sensitivity 
to spacing between features.

A second version of face-specific perceptual develop­
ment theory is that development could occur in ‘face- 
space’ (Ellis, 1992; Humphreys & Johnson, 2007; Johnston 
& Ellis, 1995; Nishimura et al., 2008; Valentine, 1991), 
namely a multi-dimensional space in which dimensions 
code physical properties differentiating faces, each indi­
vidual is a point, and the centre is the average face. 
Face-space has been used to explain several properties 
of adult face recognition, including typical versus distinc­
tive face effects (Valentine & Bruce, 1986), caricature ef­
fects (Rhodes, Brennan, & Carey, 1987), preference for 
attractive faces (attractive faces are more average; Rhodes, 
Sumich, & Byatt, 1999), and adaptation aftereffects (Leo­
pold, O’Toole, Vetter, & Blanz, 2001). Also, the other-race 
effect -  poorer individuation for other-race individuals 
than own-race individuals -  is often attributed to face- 
space dimensions being tuned to suit the most frequently 
observed face type (own-race faces), leading to tight clus­
tering and confusion errors for other-race faces (Valen­
tine, 1991).

Regarding development, a key assumption of most face- 
space theories is that the dimensions of face-space are 
determined through experience, and tuning continues 
throughout life. Theoretically, it has been proposed chil­
dren might use fewer dimensions than adults, or the same 
dimensions but differently weighted, or might code dis­
criminations along each dimension less finely, or that the 
occupation of children's face-space by fewer familiar 
exemplars might functionally affect face perception 
(Humphreys & Johnson, 2007; Johnston & Ellis, 1995; 
Nishimura et al., 2008). Given that face-space dimensions 
are also argued to respond rapidly to the ‘diet’ of faces to 
which one has been exposed (Rhodes et al., 2005), another 
possible age-related (although not strictly developmental) 
change is that children’s face-space could be better tuned 
for child faces, while adult’s face-space could be better 
tuned for adult faces, presuming there are differences be­
tween age groups in relative rate of recent exposure to 
each face type (Cooper, Geldart, Mondloch, & Maurer, 
2006).

A third version of development in face-specific pro­
cesses is development in the ability to perceptually encode 
a novel face. Carey (1992, p. 95) argued “young children 
do not form representations of newly encountered faces 
as efficiently as do adults". Thus, even if children’s holistic 
processing and face-space coding were adult-like early, 
decrements in young children might show up on the more 
difficult task of encoding the appearance of a once-seen 
face (and/or generalising it across viewpoint change, 
Mondloch, Geldart, Maurer, & Le Grand, 2003).

To summarise, the face-specific perceptual develop­
ment theory argues that the improvement seen on face 
tasks between 5 years and adulthood results substantially 
from changes within the face perception system (although 
of course it does not rule out additional contributions from 
general cognitive development). Possible sources of the 
face perception development could include changes in: as­
pects of holistic processing; face-space; and perceptual 
encoding of novel faces.

1.2. General cognitive development theory

The second theory (Carey, 1981; Gilchrist McKone, 
2003; McKone & Boyer, 2006; Mondloch, Maurer, & Ahola, 
2006; Pellicano, Rhodes, 8i Peters, 2006; Want, Pascalis, 
Coleman, & Blades, 2003) we will refer to as the general 
cognitive development theory. This argues the improvement 
seen on face tasks after some early age - perhaps 4- 
5 years, possibly even earlier -  is due entirely to the devel­
opment of general cognitive factors. Depending on the 
task, such factors might include: memory ability; ability 
to use deliberate task strategies; ability to concentrate on 
the task and avoid distractions; ability to narrow the focus 
of visual attention; ability of early visual processes to make 
fine discrimination in line alignment (vernier acuity); and 
general neural processing speed affecting reaction time 
(e.g., speed of early visual inputs to face recognition areas, 
speed of motor responses). All these factors are known to 
improve substantially across childhood, and most improve 
further into adolescence (Betts, Mckay, Maruff, 8* Ander­
son, 2006; Bjorklund & Douglas, 1997; Flavell, 1985; Kail, 
1991; Pastö & Burack, 1997; Skoczenski & Norcia, 2002).

Importantly, the general cognitive development theory 
argues that perceptual coding of faces is fully mature early. 
All the subsequent development on experimental task per­
formance can be explained by development of other 
factors.

1.3. Evaluating the two theories

There is no doubt that general cognitive factors, other 
than face perception, can contribute to the improvement 
with age seen on experimental tests. Consider the follow­
ing examples. Mondloch and colleagues found weaker 
development (i.e., younger children’s performance was im­
proved) in face discrimination tasks that used simulta­
neous presentation (Mondloch et al., 2004) as compared 
to sequential presentation (Mondloch et al., 2002), sug­
gesting a memory contribution to the development seen 
on the sequential task. Lundy, Jackson, and Haaf (2001) 
found that children’s apparent inability to match identity 
of faces in the presence of distracting paraphernalia (Dia­
mond & Carey, 1977) disappeared when the faces were 
simply made larger; this shows that difficulties with nar­
rowing the focus of visual attention, or poorer visual acu­
ity, can contribute to poor performance in children. 
Finally, sustained attention -  that is, concentration under 
instruction - improves at least until 10 years (Betts et al., 
2006). Thus, even in the best designed and most child 
friendly task, temporary lapses of concentration will al­
most certainly occur more often in young children than 
in adults. Lapses will reduce children’s accuracy by adding 
a noise component, even in the absence of any age-related 
changes in face perception.

The open question is whether, once these general fac­
tors are accounted for, there is any development in face 
perception per se. To address this question, researchers 
need to know first whether there is any qualitative change 
in face perception with age (i.e., whether there is an age 
below which some core aspect of adult face processing 
does not exist at all), and also whether there is any quanti-
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tative change (i.e., whether there is an age below which, 
although an effect is present, it is not yet fully mature in 
strength). The face-specific perceptual development theory 
would be supported by evidence of either qualitative and/ 
or quantitative development of face perception. The gen­
eral cognitive development theory, in contrast, predicts 
no change, either qualitatively or quantitatively.

1.4. Qualitative change?

Twenty-five years of research has clearly established 
there is no qualitative change in face perception in the 
5 years to adult age range. Almost all face effects present 
in adults have been tested in developmental studies. In 
all cases, the relevant effects have been obtained in young 
children or infants.

With respect to holistic processing, results in 4-6  year- 
olds include: inversion effects on recognition memory 
(Brace et al., 2001; Carey, 1981), the composite effect (Car­
ey & Diamond, 1994; de Heering, Houthuys, & Rossion, 
2007; Mondloch, Pathman, Maurer, Le Grand, & de Scho­
nen, 2007), the part-whole effect (Pellicano & Rhodes, 
2003; Tanaka, Kay, Grinnell, Stansfield, & Szechter, 
1998), sensitivity to exact spacing between facial features 
(McKone & Boyer, 2006; Pellicano et al., 2006) and the 
advantage for internal over external features in familiar 
face identification (Wilson, Blades, & Pascalis, 2007). In­
fants demonstrate inversion effects (Turati, Sangrigoli, 
Ruel, & de Schonen, 2004; Turati et al., 2006), a compos­
ite-like effect (Cohen 8) Cashon, 2001) and sensitivity to 
exact spacing between features even within the natural 
range of variability (Hayden, Bhatt, Reed, Corbly, & Joseph, 
2007).

Regarding face-space coding, findings include distinc­
tiveness effects (4 year-olds McKone & Boyer, 2006), 
attractiveness effects for upright but not inverted faces 
(<1-week-old Slater, Quinn, Hayes, & Brown, 2000), carica­
ture effects (4-6 year-olds Ellis, 1992; 6 year-olds Chang, 
Levine, 8; Benson, 2002), the other-race effect (9 month- 
olds Kelly et al., 2007; 3 year-olds Sangrigoli 8s de Schonen, 
2004), and adaptation aftereffects at 8 years (the youngest 
age group tested, Nishimura et al., 2008).

Finally, young children can encode a novel face into 
memory after a single learning trial. They can perform 
above chance on sequential matching of faces for same 
view images (3 year-olds Sangrigoli & de Schonen, 2004) 
and view-changed images (6 year-olds Mondloch et al., 
2003), and also at longer delays (e.g., 4 year-olds Carey, 
1981). Infants tested following several learning exposures 
show coding of novel faces, both within- and across-views, 
even when tested as newborns (Turati et al., 2006, 2008).

1.5. Quantitative change?

Given this evidence that all core adult-like face process­
ing effects are qualitatively present at an early age, to de­
cide between the two theories we therefore need to 
know if there is any quantitative change in face-specific 
processing with age. This is a substantially more difficult 
question to address, and is the topic of the bulk of this 
article.

Five specific approaches relevant to testing for quantita­
tive change can be identified in the literature. The first 
three focus on the ‘special’ aspect of processing faces -  
namely, holistic processing as found for faces and not other 
objects. These approaches include: (a) tracking across age 
the size of holistic processing effects (e.g., inversion, com­
posite); (b) comparing the rate of development of recogni­
tion memory for faces with that for objects; and (c) 
comparing holistic processing for faces versus objects in 
children via the disproportionate inversion effect and 
tracking any changes in the amount of disproportion with 
age. The fourth approach (d) tracks the size of face-space 
effects across age. The final approach (e) tracks the ability 
to perceptually encode faces using implicit rather than ex­
plicit memory tests.

1.5.1. Do standard holistic processing effects increase 
quantitatively with age?

A common approach has been to chart the size of stan­
dard holistic processing effects (inversion effect, composite 
effect, etc) across childhood, the argument being that if 
holistic processing is strengthening with age then effects 
will increase in size. Many studies have found that effects 
do increase significantly with age (e.g., Carey 8; Diamond, 
1977; Carey et al., 1980; Mondloch et al., 2002; Sangrigoli 
& de Schonen, 2004), leading the authors of these papers 
and many other researchers (e.g., Aylward et al., 2005; Co­
hen Kadosh & Johnson, 2007) to support the face-specific 
perceptual development theory. However, almost all rele­
vant studies suffer from a logical problem which arises 
when comparing the size of effects across age groups when 
overall performance levels also change with age, meaning 
effects are being calculated with respect to different 
baselines.

To illustrate the logical issue that arises with baseline 
differences, particularly when floor and ceiling effects are 
present, we present results in Fig. 1 from a wide range of 
studies that contained different patterns of baseline per­
formance changes with age. Note that in these studies, 
the trends apparent regarding size of holistic processing ef­
fect were not always significant (we were unable to restrict 
our review to significant effects because many studies did 
not report the age x condition interaction for the particu­
lar part of their design we have illustrated), and we later 
discuss which actual conclusion should be favoured regard­
ing development of inversion, part-whole, composite and 
so on. For the moment, however, we wish merely to raise 
the methodological issue.

In the most common situation, accuracy in a baseline 
‘comparator’ condition (e.g., upright, in an inversion study) 
improves with age and there are restriction of range prob­
lems in the youngest age group (performance approaches 
floor) but not in the older groups (performance well away 
from ceiling). As illustrated in Fig. 1A, this situation seems 
always to produce results in which the face perception ef­
fect of interest is numerically larger in older participants 
than in younger participants (e.g., inversion effect: Carey 
82 Diamond, 1977; Carey et al., 1980; Sangrigoli & de Scho­
nen, 2004; part-whole effect: Pellicano & Rhodes, 2003; 
Tanaka et al., 1998). Where such changes have been signif­
icant, researchers have then claimed evidence of develop-
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A. Restriction of range in younger children: face effects increase with age
Inversion Effect Part-whole Effect Other-race Effect Distinctiveness Effects

B. Restriction of range in older children & adults: face effects decrease w ith age
Part-in-spacing-change

Composite EffectComposite Effect
Carey <£ Diamond, 

1994
aligned

whole Effect

C. No range restrictions: face effects are stable w ith age
4 5 A

Inversion Effect
Spacing Distinctiveness

* Gilchrist & McKone,
-  2003 (child faces)

KM)-
U -I
21
CM 3

T
6-7 A

Feature Distinctiveness
Gilchrist & 
McKone, 2003

feature change

unaltered

Fig. 1 . Results of previous studies tracking across age the size of face effects related to holistic processing (inversion, composite, part-whole, spacing), face- 
space (distinctiveness, other-race, identity aftereffect), and face encoding (repetition priming). (A) Representative sample of a large number of studies 
which suffer restriction of range in younger age groups, but not older age groups. Superimposed on the overall developmental improvement in task 
performance, these studies find trends in which face effects (e.g., strength of holistic processing) apparently increase with age. (B) Studies with restriction of 
range in older groups but not younger groups. Results show trends in which face effects apparently decrease with age. (C) Complete set of studies where 
range is not restricted in either younger or older groups. Results suggest no quantitative change with age. Notes: (1) We defined potential for restriction of 
range as the average of the two conditions tested falling in the lower or upper quartile of the 50-100% scale range for 2AFC tasks (i.e., approximately <63% 
or > 87%), or d' < .85; for reaction times measures, where maximum and minimum cannot be not known, we rely on the general observation that differences 
between conditions are usually smaller when mean reaction time is faster (note: the two RT studies shown did not report SEMs). (2) The reason why some 
studies in part C show no overall improvement in performance with age is that methods deliberately took out this effect (e.g., by using smaller learning set 
sizes in younger groups). (3) This is an expanded version of a previously published figure (McKone, Crookes, 8i Kanwisher, 2009, Fig. 3).

ment in face perception. However, rather than reflecting 
development of holistic face processing, these results could 
reflect merely less room to show the effect in younger 
children.

This hypothesis is supported by the few published stud­
ies (some of which are illustrated in Fig. IB) where room to 
show effects was restricted in adults rather than in chil­
dren. In the part-whole paradigm, Pellicano et al. (2006)
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found part-whole and part-in-spacing-altered-whole ef­
fects were numerically (but not significantly) larger in 
4-5 year-olds than adults, in a study in which accuracy ap­
proached ceiling for adults. In Carey and Diamond (1994), 
the composite effect (aligned-unaligned difference) was 
larger in 6-year-olds than in adults; this study used reac­
tion time as the response measure and, with reaction 
times, it is commonly found that effects tend to be smaller 
when responses are faster overall (as occurs in adults). De 
Heering et al. (2007) also showed a larger composite effect 
in 4-, 5- and 6-year-olds than in adults; they used an accu­
racy measure with task difficulty designed to suit the chil­
dren, leading to performance for adults being close to 
ceiling. Similarly, Macchi Cassia, Picozzi, Kuefner, Bricolo, 
and Turati (2009) found a composite effect that was larger 
in 5-year-olds than in adults, significantly so on reaction 
times, and approaching significance on accuracy, which 
was very near ceiling in adults. Note that if we followed 
the standard logic commonly applied to developmental 
face studies, these results could be taken to indicate that 
holistic face processing ability consistently declines across 
childhood! This is a conclusion that researchers have been 
rightly hesitant to draw.

One way to avoid these problems of interpretation is to 
equate performance in some comparator condition across 
age groups. Two studies have taken this approach (see 
Fig. 1C). In each case, the measure was recognition mem­
ory accuracy, and comparator condition levels of perfor­
mance were equated across age groups by having 
younger children learn the items in smaller sets than older 
participants. Both studies show the same pattern: the 
inversion effect (Carey, 1981) and the enhancements of 
memory from spacing-change increases in distinctiveness 
(Gilchrist & McKone, 2003) are the same size in young chil­
dren as in adults. There are two further studies in which 
comparator condition performance was not deliberately 
equated but, instead, limits on the potential range of re­
sponse were avoided because scores were simultaneously 
away from floor in children and from ceiling in adults. 
Mondloch et al. (2007) found the size of the composite ef­
fect was the same in 6-year-olds as in adults. Mondloch 
et al. (2002) found the size of the inversion effect (on dis­
crimination of feature changes) was stable between 6 years 
and adulthood.

So, what is the correct conclusion to be drawn from 
these various studies? We suggest results are more consis­
tent with early maturity of holistic processing than with 
ongoing development. Our first point is that, to our knowl­
edge, no studies have shown a significant increase in a 
holistic processing effect (inversion, spacing sensitivity, 
etc) with age except where this can be potentially ac­
counted for by restriction of range in the youngest age 
groups. Second, results of the part-whole procedure 
strongly argue for no age-related change: of three relevant 
studies, two had (mild) range restriction in the youngest 
children and the third had range restriction in adults, 
yet all showed the same results, with no significant change 
in part-whole effect with age (Pellicano & Rhodes, 2003; 
Pellicano et al., 2006; Tanaka et al., 1998). Third, the four 
studies in which baselines were matched (Carey, 1981; Gil­
christ & McKone, 2003), or restriction of range problems

were otherwise avoided (Mondloch et al., 2007; inversion 
effect for feature changes in Mondloch et al., 2002), all ap­
pear to use the most suitable methodology, and all indicate 
no change in holistic processing with age.

A final, rather different, approach to holistic processing 
has compared the development for spacing changes (e.g., 
different distance between the eyes) versus local feature 
changes (e.g., different eyes), based on the (controversial) 
theory that only spacing changes tap holistic processing 
and feature changes do not. Results from three studies 
using this procedure (Freire & Lee, 2001; Mondloch et al., 
2002; Mondloch et al., 2004) obtained slower develop­
ment for detection of spacing changes than for detection 
of feature changes, a finding the authors interpreted as 
evidence of a specific delay in the development of holistic 
processing, independent of task-general limitations. 
Unfortunately, however, in all cases the feature changes 
were not difficulty-matched to the spacing changes. For 
adults, the feature task was easier, leaving the results 
open to the interpretation that performance in an easier 
task simply matured earlier than performance in a more 
difficult task. When McKone and Boyer (2006) equated 
spacing and feature changes for effects on perception in 
adults, 4-5 year-olds were equally sensitive to both 
change types, indicating no specific deficit in spacing 
sensitivity.1

Overall, we suggest current evidence favours the view 
that holistic processing does not develop quantitatively 
with age. Crucially, application of the common logic that 
size of effects can be interpreted directly while ignoring 
baseline changes with age leads to one conclusion -  that 
holistic processing improves with age -  in studies in which 
range of response is restricted in young children, but to the 
opposite conclusion -  that holistic processing can worsen 
with age -  in studies in which range of response is re­
stricted in adults. It is clear, therefore, that such methodol­
ogy cannot be suitable for valid quantitative comparison 
across age groups.

We note, however, that there is still a need for further 
research. Mondloch et al.’s (2007) study stands alone as 
the only test to avoid range-restriction problems while 
both using a task widely accepted by all researchers as 
assessing holistic processing (inversion effects on feature 
changes would be argued by some not to tap holistic pro­
cessing) and using exactly the same procedure for children 
and adults. Carey (1981) and Gilchrist and McKone (2003) 
extend the range of holistic processing measures tested; 
however, the interpretation of these studies as supporting 
early quantitative maturity of holistic processing rests on 
the assumption that altering learning set sizes across age 
groups does not alter the reliance of face encoding on 
holistic processing.2 At present, there is no direct evidence 
this assumption is valid, and it may be that it is not, partic­
ularly if set sizes become extremely small (e.g., focussing on

’ The preschoolers’ performance on spacing changes was relatively poor 
(also see Mondloch & Thomson, 2008) but this finding alone does not 
distinguish between poor holistic processing and poor general cognitive 
abilities.

2 We thank Susan Carey and Daphne Maurer for drawing our attention to 
the fact that set size might be an important variable.
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a single local feature could perhaps become a viable learning 
strategy3).

1.5.2. Does rate of memory development differ for faces and 
objects?

Want et al. (2003) argued that, without a comparison 
object stimulus, it is impossible to know how much of chil­
dren's development in face memory is due to general cog­
nitive development and how much is due to face-specific 
factors. When both faces and objects are tested, our two 
theories -  face-specific perceptual development, or general 
cognitive development -  make opposite predictions. 
Development of ‘special’ holistic processing for faces pre­
dicts memory should improve faster with age for faces 
than for objects. Purely general cognitive development 
would be indicated by equal rates of improvement across 
age.

Only a few studies have compared face and object 
memory development. Carey and Diamond (1977) found 
memory for faces improved between 6 and 10 years, 
whereas memory for houses was stable. Likewise, Golarai 
et al. (2007) found face memory improved between child­
hood (7-11 years) and adolescence (12-16years) and 
again between adolescence and adulthood, while memory 
for places (indoor and outdoor scenes) also improved but 
at a lesser rate, and memory for objects (abstract sculp­
tures) remained stable, suggesting special development 
for faces. In contrast, Aylward et al. (2005) found no change 
in memory performance for faces or houses between youn­
ger children (8-10 years) and older children (12-14 years); 
this suggests no special development for faces.4

Overall, the findings from these studies are mixed, with 
two apparently favouring the face-specific perceptual 
development theory, and one apparently favouring the 
general cognitive development theory. The more impor­
tant problem, however, is that all of these studies suffer 
from a potential problem with their selection of a compar­
ison stimulus. Faces, as a stimulus class, share a first-order 
configuration; that is, features are always arranged the 
same way; two eyes above a nose above a mouth. In con­
trast, houses do not share a first-order configuration, and 
nor do scenes or sculptures. Another difference is that, 
due to their genetic variability, faces vary on a very large 
number of dimensions. Man-made objects, in contrast, 
vary on a smaller number of dimensions which can make 
a strategy based on single features (e.g., focussing on win­
dow shape) very effective. Because deliberate strategy use 
changes with age, development of general cognitive abili­
ties might thus affect faces and man-made object classes 
differently.

We argue that, to meaningfully compare developmental 
trajectories of recognition memory, the object class should 
be matched to faces on key variables. At a minimum, all 
exemplars within the object class should share first-order

3 Although note that this would predict weak inversion and spacing 
effects in young children, which was not the pattern obtained.

4 Two additional studies testing faces versus motorbikes (Kylliäinen, 
Braeutigam, Hietanen, Swithenby, & Bailey, 2006) and shoes (Teunisse & de 
Gelder, 2003) are not discussed here because scores approached ceiling in 
all ages and stimulus classes.

configuration. Ideally, the stimuli should also be natural 
objects, vary genetically, and not be unusually likely to 
encourage strategic, single feature based discrimination 
(e.g., there would be little value in using poodles with 
wildly different haircuts).

1.5.3. Does disproportion in the inversion effect for faces 
versus objects increase with age?

The third approach combines a test of holistic process­
ing with a comparison of faces versus objects. For adults, 
the inversion effect on memory is much larger for faces 
than for objects. While many studies have now shown that 
children display an inversion effect for faces (e.g., Brace 
et al., 2001; Carey, 1981; Flin, 1985; Sangrigoli & de Scho­
nen, 2004) only three studies have compared the size of 
the inversion effect for faces with that for nonface objects. 
Such a comparison is necessary to be able to say if the 
inversion effect for faces is in fact disproportionately large 
(and therefore even qualitatively adult-like).

The three studies demonstrate 9-10 year-olds show the 
qualitatively adult pattern, specifically a larger inversion 
effect for faces than houses (Aylward et al., 2005; Carey & 
Diamond, 1977) and shoes (Teunisse & de Gelder, 2003). 
Only one study also tested younger children (Carey & Dia­
mond, 1977), finding evidence suggesting a disproportion­
ate inversion effect in 8-year-olds but not 6-year-olds.

Turning to quantitative change, the question is whether 
disproportion in the inversion effect for faces (defined as 
inversion effect for faces minus inversion effect for objects) 
increases with age. Carey and Diamond (1977) reported a 
significant increase in disproportion between 6 and 
10 years, suggesting development of holistic processing. 
The two studies that have tested 9-10 year-olds and an 
older group (12-14 year-olds Aylward et al., 2005; adults 
Teunisse & de Gelder, 2003) did not report statistical anal­
yses comparing across the age groups. Aylward et al. 
(2005) appear to find increasing disproportion with age, 
again supporting the face-specific perceptual development 
theory, although this finding was entirely the result of an 
unusual pattern in which reversal of the inversion effect 
for houses (better with inverted than upright houses) is 
present in the older but not younger children. Teunisse 
and de Gelder (2003) appear to find no change in dispro­
portion between 9-10 year-olds and adults, supporting 
the general cognitive development theory, although ceiling 
effects for the objects in both age groups mean this conclu­
sion may be unreliable.

Overall, evidence is again mixed, and in two cases open 
to basic questions regarding its validity. Also, the compar­
ison stimuli (houses and shoes) were not well matched to 
faces. Finally, baseline matching is also an important con­
sideration here. To fairly compare the size of the inversion 
effects for faces and objects across age, performance in a 
comparator condition (e.g., accuracy in the inverted condi­
tion) needs to be matched both across age and across stim­
ulus class. In the only study to test children younger than 
9-10 years, this was not done (Carey & Diamond, 1977).

1.5.4. Do face-space effects increase quantitatively with age?
Quantitative comparison across age groups has been at­

tempted for several face-space phenomena. Interpretation
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of results often suffers from the same issues regarding 
restriction of range as raised with respect to holistic 
processing.

For distinctiveness effects, Johnston and Ellis (1995) 
found the memory advantage for distinctive compared to 
typical faces increased between 5 years and adulthood, 
but range was restricted by proximity to floor in young 
children and not in adults (Fig. 1A). In the same article, 
reaction times in face-nonface decision suggested relative 
restriction of range in adults, and correspondingly a ten­
dency was found towards smaller distinctiveness effects 
in adults than young children. Gilchrist and McKone 
(2003) equated baselines across age groups and found dis­
tinctiveness effects (deriving from both spacing and fea­
ture changes) were as large in 6-7 year-olds as in adults 
(Fig. 1C; although again note this study involved altering 
learning set size across age groups). In a task requiring sub­
jects to choose the most distinctive face of a pair, where 
pairs varied in strength of distinctiveness difference 
(determined from adult ratings), McKone and Boyer 
(2006) found quite a high correlation between the propor­
tion of 4-5 year-olds choosing the higher-rated face for 
particular pairs and the proportion of adults making the 
same choice; this argues ordering of perceived distinctive­
ness of individual faces is similar between children and 
adults.

For the other-race effect, Chance, Turner, and Goldstein 
(1982) found the memory advantage for own-race com­
pared to other-race faces increased between 6-8 years 
and adults; however, performance was poor in the youn­
gest group (Fig. 1A; also see Sangrigoli & de Schonen, 
2004, between 3 and 5 years). When restriction of range 
was less of a problem, Pezdek, Blandon-Gitlin, and Moore 
(2003) found the other-race effect was as large in 5- 
6 year-olds as in adults (Fig. 1C). Corenblum and Meissner 
(2006) also state they found (means and statistics were not 
reported) no age-related change in strength of the other- 
race effect for 9-year-olds versus adults.

For the caricature effect, Chang et al. (2002) found sen­
sitivity to caricatures increased across 6-, 8-, 10-year-olds 
and adults, but accuracy was at chance in 6-year-olds. 
However, a second experiment, testing reaction times to 
name caricatures versus anti-caricatures, found equal­
sized caricature effects in all age groups.

Finally, in the Leopold et al. (2001) identity-adaptation 
procedure, Nishimura et al. (2008) found the adaptation 
aftereffect - the shift in perception of the average face as 
measured by the increase in ‘Dan’ responses on a Dan/ 
Jim decision following adaptation to ‘anti-Dan’ -  to be 
equal in size in 8-year-olds (the youngest age group tested) 
and adults (Fig. 1C). Note that this procedure avoids 
restriction of range problems in that ’% Dan’ scores in the 
baseline unadapted condition are expected to be 50% for 
both children and adults.

Overall, we conclude there is no reliable evidence of 
quantitative development in face-space effects with age. 
All apparent evidence in favour of such development can 
be attributed to restriction of range problems in the youn­
ger age groups. There have been relatively few studies that 
have avoided these problems, but those that do favour the 
general cognitive development theory.

1.5.5. Implicit memory for faces
The fifth approach to the question of quantitative devel­

opment of face-specific processing has been to use implicit 
memory tasks -  repetition priming -  to test the ability to 
perceptually encode faces. Unlike explicit memory tasks 
(e.g., old-new recognition memory), which assess con­
scious recollection, implicit memory is not affected by 
deliberate memory strategies. Disruption of strategy use 
by moderate divisions of attention at encoding affect expli­
cit but not implicit memory (e.g., Murphy, McKone, & Slee, 
2003; Parkin, Reid, & Russo, 19905). Correspondingly, re­
search in other domains has demonstrated that implicit 
measures can reveal strong encoding of material for which 
explicit memory tests would have suggested encoding was 
poor or absent (e.g., in classic amnesia, Cermak, Talbot, 
Chandler, & Wolbarst, 1985; in Attention Deficit/Hyperactiv­
ity Disorder, Aloisi, McKone, & Heubeck, 2004). Thus, poten­
tially, children might reveal levels of face encoding ability 
closer to those of adults when assessed with implicit rather 
than explicit retrieval tests.

Only one previous study has examined development of 
implicit memory for faces. Results do not differentiate be­
tween our theories. Ellis, Ellis, and Hosie (1993) measured 
reaction time in familiar-unfamiliar decision. Priming for 
recently-studied classmate faces compared to unstudied 
classmate faces was largest in 5-year-olds, smaller in 8- 
year-olds and smaller again in 11-year-olds and adults, 
but this apparent decrease in perceptual encoding ability 
for faces with age was superimposed on a strong overall 
change in reaction times with age that produced potential 
restriction of range in older age groups (Fig. IB). It is thus 
impossible to know from this study whether face encoding 
ability decreased with age, remained stable, or even 
whether range restrictions might have masked an increase 
with age. Also note the study tested encoding of familiar 
faces (classmates) only, not ability to encode novel faces.

1.6. Evaluation of previous literature

Regarding quantitative development, our review has 
shown that, although there are a large number of studies 
tracking performance on face tasks in the 5 years to adult 
range, the interpretation of the great majority of findings 
is limited by recurring methodological issues. The few 
studies that do not suffer these problems suggest a conclu­
sion we suspect will be surprising to many readers. This is 
that face perception itself is mature in early childhood, and 
that all subsequent improvements in task performance 
(e.g., as seen in increasing overall accuracy and decreasing 
overall reaction time in Fig. 1A and B) can be attributed to 
general cognitive factors. In supporting this conclusion, we 
have argued that particular attention should be paid to the 
results illustrated in Fig. 1C. Strikingly, all seven findings 
suggest the same conclusion. Whether it is with respect 
to the composite effect, spacing changes, inversion effects, 
distinctiveness effects, the other-race effect, or adaptation 
aftereffects, all studies using methodology suitable for

5 Note even implicit memory can be affected if division of attention is so 
severe that the stimulus cannot be perceived properly (Mulligan, Duke, & 
Cooper, 2007).
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quantitative comparison across age groups suggest no 
change in the size of face perception effects w ith age.

1.7. Three new experiments

So. why does performance on face tasks reach adult lev­
els so late in development? Is it due to late maturity in 
face-specific perceptual processes? Or merely to late matu­
rity of general cognitive factors that affect performance on 
face tasks? We now present three new experiments, de­
signed to more compellingly differentiate between these 
two theories, which avoid the methodological problems 
of previous studies identified in our review.

Between them, our experiments, (a) provide converging 
evidence from three quite different techniques, (b) address 
the validity of two potentially key studies (Carey, 1981, 
and Gilchrist & McKone, 2003) by testing whether chang­
ing learning set size alters reliance on holistic processing, 
(c) assess development of holistic processing, using mea­
sures (inversion effects, and faces versus objects) that com­
bine all putative subtypes of such processing; (d) provide 
the first assessment of childhood development in the per­
ceptual ability to encode novel faces; and (e) provide some 
data relevant to development of face-space aspects of face 
perception. Throughout, the age range of interest is from 
early childhood to adulthood, and the youngest group of 
children tested (5-6 years in two experiments, 7 years in 
the other) was selected because pilot testing revealed 
these were the youngest children who could both reliably 
understand the task instructions and perform sufficiently 
above floor level to avoid restriction of range issues.

The first two experiments address developmental 
change in holistic processing. Experiment 1 compared 
rate of development of recognition memory for faces with 
that for objects. Improvements on previous methodology 
included providing the first test using an object class 
appropriately matched to faces (Labrador dogs), and 
selecting stimuli to match face and dog performance in 
5-6 year-olds, so that developmental trends beyond this 
age could be fairly compared. Experiment 2 examined 
size of inversion effect for faces versus Labradors. This 
experiment provided the first test of whether children 
show a disproportionate inversion effect for faces com­
pared to a well-matched object class, and compared the 
size of the disproportion in 7-year-olds to that in two 
groups of adults: one to whom the children’s overall per­
formance levels had been matched by manipulating 
learning set size; and the other for whom there was no 
variation in set size.

Experiment 3 tested development of implicit versus ex­
plicit memory for faces. This provides the first test of chil­
dren’s perceptual ability to encode once-seen novel faces. 
Our experiment avoided restriction of range problems by 
equating ‘baseline’ performance (i.e., for unstudied faces) 
across age groups; note the method used to do this did 
not alter the encoding phase in any way, but adjusted only 
the difficulty of the task used during the subsequent test 
phase. Experiment 3 also provided data relevant to the 
development of children’s face-space, by including a 
manipulation of the age of the face and testing for own- 
age advantages in explicit versus implicit memory.

2. Experiment 1 -  development of recognition memory 
for faces versus Labrador dogs

In adults, faces receive both holistic and part-based pro­
cessing, while objects are not processed holistically and re­
ceive only part-based processing. The lack of holistic 
processing for objects has been demonstrated specifically 
for the class of Labrador dogs. Robbins and McKone 
(2007) found that Labradors (see example stimuli in 
Fig. 2) produce; much smaller inversion effects than do 
faces on recognition memory; no inversion effect at all 
on simultaneous same-different pair discrimination; and, 
most directly, no composite effect (in a method that pro­
duced a clear composite effect for faces). In adults, the 
holistic processing for faces is widely presumed to contrib­
ute positively to memory for faces, explaining, for example, 
why it is that when face and Labrador stimuli are matched 
for discriminability in the inverted orientation, memory in 
the upright orientation is much better for faces than for 
dogs (Robbins McKone, 2007). The logic underlying 
Experiment 1, therefore, is that if  there is late ongoing 
development in the strength of holistic processing then 
the developmental trend on a memory task should be stee­
per for faces than dogs.

Methodologically, Labradors are a class which, like 
faces, share a first-order configuration (head at one end, 
tail at the other and four legs underneath) and vary genet­
ically on a large number of dimensions. We also pilot 
tested to select stimuli that produced matched perfor­
mance for faces and dogs in the youngest age group tested 
(5-6 year-olds). This allows fair comparison of rates of 
development across the three older groups. Experiment 1 
tested only upright stimuli, so matching was performed 
in the upright orientation.

Predictions were as follows. If holistic processing is 
stronger in adults than in children (i.e., the face-specific 
perceptual development theory), then developmental 
curves should diverge after 5-6 years, w ith a steeper in­
crease across age for faces than for dogs. Importantly, this 
same prediction arises if any putative subcomponent of 
holistic processing -  such as spacing sensitivity (Mondloch 
et al., 2002) or a ‘mystery factor’ (Carey 8; Diamond, 1994) 
-  develops w ith age. Alternatively, if  holistic processing is 
quantitatively mature in young children (i.e., the general 
cognitive development theory), memory for faces should 
improve w ith age at the same rate as memory for dogs. 
Importantly if  this pattern is obtained, it would demon­
strate that no putative subcomponent of holistic process­
ing improves w ith  age.6

2.1. Method

2.1.1. Participants
Eighty-five participants comprised nineteen 5-6 year- 

olds (mean 5.97 years; range 5.0-7.0; 5 male), twenty- 
two 7-8 year-olds (mean 8.42 years; range 7.5-9.0; 10 
male), twenty 9-10 year-olds (mean 9.89 years; range

6 Meaning that it is then not necessary to test each subcomponent 
separately.
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B. Experiment 1
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Fig. 2. (A) Procedure for Experiments 1 and 2. In a given block, participants learned 5 faces (or dogs), and later did a recognition memory test on 5 pairs 
(each showing one old and one new item). (B) Stimulus pairs from a sample block in Experiment 1, where upright memory performance was matched across 
faces and dogs. (C) Stimulus pairs from a sample block in Experiment 2 where, this time, inverted memory performance was matched across faces and dogs. 
Note, to match performance inverted, the physical similarity between the two items of each pair (e.g., lighting, exact stance/outline, and shape of particular 
parts) appears closely matched between faces and dogs. To match performance upright, in contrast, it was necessary to make the faces more physically 
similar (across the block) than in Experiment 2, and the dogs less physically similar (both across the block and within each pair).

9.1-10.8; 7 male); and twenty-four adults (mean 22.96 
years; range 18.5-38.6; 10 male). Children were accessed 
through holiday programs and schools in middle-class dis­
tricts in Canberra. Parental consent was obtained. Adults 
were members of the Australian National University 
(ANU) community paid $3 for the 15 min experiment. All 
participants were Caucasian (the same race as the face 
stimuli).

2.1.2. Design
The task was two alternative forced choice (2AFC) rec­

ognition memory (see Fig. 2). Stimulus class (faces versus 
dogs) was manipulated within-subjects. There were 4 
study-test cycles; 2 of faces, 2 of dogs. In each, the study 
phase presented 5 items, followed by a test phase w ith 5 
pairs. Each test pair comprised one item seen during the 
study phase (old) and one unstudied item (new). Subjects 
chose the old item, guessing if  necessary. The dependent 
measure was accuracy. Chance is 50%.

2.1.3. Materials
Stimuli were canonical-view greyscale photographs of 

faces and yellow Labradors. Specific stimuli were a subset 
of faces and dogs used by Robbins and McKone (2007) 
Experiment 1, presented against a uniform grey back­
ground. Dogs (Fig. 2B) were 20 side-view photographs of 
male and female Labradors. Lack of holistic processing ap­
plies to these particular images (Robbins & McKone, 2007). 
Dogs were 4.9-5.9 cm from nose to tail (average 5.7 cm) by 
3.7-4.4cm from head to paws (average 4.1 cm) corre­
sponding to 9.3° horizontal by 6.7° vertical at the viewing 
distance of 35 cm. Faces (Fig. 2B) were 20 front view pho­
tographs of Caucasian males all from the University of 
Ljubljana CVL and CV, PTER, Velenje database (http;// 
lrv.fri.uni-lj.si/facedb.html). Faces had neutral expression, 
no facial hair or glasses, and any distinguishing features re­
moved (e.g., birthmarks). They excluded hair and ears but 
retained chin and cheeks so each face had a different out­
line shape (like the dogs). Face were 3.1-3.8 cm at the
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widest point (average 3.4 cm) by 4.2-4.6 cm at the tallest 
point (average 4.4 cm), corresponding to 5.6° by 7.3°.

Stimuli were organised into 10 pairs of faces (i.e., en­
ough for two blocks) and 10 pairs of dogs. Within each pair, 
one item was assigned to the studied condition for half the 
participants while the other remained unstudied, counter­
balanced across participants. Processing of all regions of 
the faces/dogs was encouraged by the fact that, with blocks 
comprising 5 study items and 10 test items, no single fea­
ture (e.g., tail position) or photographic feature (e.g., con­
trast) of a particular photograph was unique in the set 
(see Fig. 2B). The particular pairings of old-new items, 
and the pairs included in each block, were selected based 
on pilot testing to give class matching and appropriate 
accuracy (approximately 65%) in 5-6 year-olds.

2.1.4. Procedure
2.1.4.1. General. Stimuli were presented on an iMac com­
puter using PsyScope software (Cohen, MacWhinney, Flatt, 
& Provost, 1993). Participants were tested individually. For 
adults, trials began automatically following completion of 
the previous trial. Adults entered their own responses via 
the keyboard. For children, the experimenter controlled 
stimulus presentation; stimuli were displayed only when 
the child was concentrating. Responses were entered by 
the experimenter, who sat behind the child to avoid bias­
ing responses.

2.1.4.2. Block order. Order of face and dog blocks was face- 
dog-face-dog or vice versa. Assignment of face (dog) sub­
sets to either the first or second block of that stimulus class 
was counterbalanced across participants.

2.1.4.3. Practice phase. There was one practice block using 
the same procedure as the actual task but with very easy 
stimuli comprising brightly coloured cartoon dinosaurs 
differing substantially in colour and shape (e.g., after 
studying a purple stegosaurus, a test pair might comprise 
the same purple stegosaurus and a green pterosaur). This 
explained the task to participants, and screened individu­
als who did not understand the task or showed serious dis­
ruptions of concentration. All children scored 100%; one 
adult was excluded for not achieving 100%, and replaced. 
Feedback and encouragement were provided to child 
participants.

2.1.4.4. Study phases. On each trial, a fixation cross ap­
peared for 1000 ms for adults, or until the experimenter 
judged the child was concentrating for children, followed 
by the stimulus for 5000 ms. Participants were told to 
remember the item and rate “how nice each person/dog 
is” on a three point scale (“nice”, "not nice" or "in the mid­
dle”). Presentation order of items was randomised for each 
participant.

2.1.4.5. Test phases. Test followed study after 15 s. On each 
trial, a fixation cross for 1000 ms for adults, or until con­
centrating for children, was followed by a stimulus pair 
shown simultaneously 13.3 cm (21.5°) apart at the same 
height until response. Adults pressed one key if the left 
item was “old”, another if the right was “old”. Child partic­

ipants pointed to the "old” stimulus. There was no feed­
back. The old item was on the right 50% of the time. 
Presentation order was randomised for each participant.

2.1.4.6. Repeat for remaining blocks. A 30 s break followed 
each test phase. Subjects were given a longer break if re­
quired (e.g., children who appeared distracted). The 
study-test cycle was then repeated for the next block (4 cy­
cles in total).

2.2. Results

Fig. 3 shows recognition memory accuracy as a function 
of age group, for faces and Labrador dogs. Memory accu­
racy was matched for faces and dogs in the youngest age 
group (5-6 year-olds), f <l .  Importantly, this matching 
was obtained in the context of performance in this age 
group being comfortably as well as significantly above 
chance for both stimulus classes; faces M = 64.74%, 
t( l8) = 3.68, p < .005; dogs M = 64.21%, t( 18) = 3.49, 
p < .005.

Turning to the comparison of rates of development for 
faces and dogs, a 4 (age group) x 2 (stimulus class) analysis 
of variance (ANOVA) found a significant main effect of age 
group, F(3,81) = 21.93-, MSE = 217 03, p < .001, but no main 
effect of stimulus class, F< 1, MSE = 155.69, and, most 
importantly, no interaction, F < 1, MSE = 155.69. This indi­
cates that there was no difference between faces and dogs 
in the rate at which memory improved with age. Given 
that ANOVA is not sensitive to the order of the age groups, 
we also confirmed this conclusion with the more powerful 
technique of trend analysis. There was no significant inter­
action between stimulus class and any age trends (linear, 
quadratic, cubic, all ps > .4). Finally, a priori f-tests were 
used to compare faces and dogs at each age group in turn: 
these confirmed no differences between stimulus classes; 
all child group ts < 1, adults t(23) = 1.56, p > .1. The lack 
of difference between faces and dogs in adults could possi­
bly be attributed to a ceiling effect; crucially, however, 
face-specific perceptual development theory also predicts 
faster development for faces than dogs across the5-10 year 
age range (Carey & Diamond, 1977), where there were no 
ceiling or floor problems.

We also plotted, for child participants, a scatterplot of 
exact age versus memory performance for faces (Fig. 4A) 
and dogs (Fig. 4B). The strength of the correlation between 
age-in-months and memory was the same for faces (r = 
.40) and dogs (r=.39). Moreover, the slopes of the lines 
of best fit (i.e., the linear trend across age) were the same 
in both cases (faces = .31 %-accuracy improvement per 
month, dogs = .28%-accuracy improvement per month). 
This provides further support for the conclusion that mem­
ory for dogs develops at the same rate as memory for faces.

2.3. Discussion

Experiment 1 has provided a clear result. There was no 
indication of any difference in the rate of development for 
faces compared to dogs beyond 5-6 years. That is, there 
was no special development for faces. Of the three previous 
studies comparing memory development for faces versus
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Fig. 3. Experiment 1: recognition memory results for faces versus dogs, showing no difference in rate of development with age. Error bars show ±1 SEM.

A Faces B Dogs

c 50-

y = 0.3 lx +43.8 y = 0.28x + 45.4

Age (months)

Fig. 4. Experiment 1: recognition memory plotted against exact age in months for child participants. The formula given on each plot is for the line of best fit.

objects, our results agree with one study (Aylward et al., 
2005), and conflict with two others (Carey & Diamond, 
1977; Golarai et al., 2007), but note ours is the only study 
to use an object class appropriately matched to faces on 
stimulus characteristics, and to match performance (com­
fortably above floor) for faces and objects at the beginning 
of the age range tested.

Results of Experiment 1 argue against the face-specific 
perceptual development theory. If an increase in the 
strength of any  aspect of holistic processing had occurred 
between the ages of 5 years and adulthood, then we would 
have expected memory for faces to improve with age at a 
faster rate than memory for dogs. This did not occur. Re­
sults are, instead, consistent with the general cognitive 
development theory. The identical rates of improvement 
for faces and dogs argue the development observed arises 
from general factors. Given that we used an explicit mem­
ory task, two relevant factors are deliberate memory strat­
egy use at encoding and retrieval, and level of interest in

and attention to the faces at encoding. An additional factor, 
relevant to all tasks, is ability to maintain concentration on 
every trial.7

3. Experiment 2 -  development of the disproportion in 
the inversion effect for faces versus Labrador dogs

Experiment 2 approached the differentiation of the two 
theories by looking at holistic face processing via the dis­
proportionate face inversion effect. The first aim was to 
examine the qualitative pattern in 7-year-olds; that is, 
whether this age group shows the adult pattern of a larger

7 An alternative explanation of the equal rate of increase for faces and 
dogs is that the relatively small learning set size (5 items at a time) 
produced an unusual reliance on part-based processing for faces. This 
possibility, however, is refuted by results of Experiment 2, which show a 
large inversion effect for faces, but not dogs, in young children using the 
same learning procedure.
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inversion effect for faces than for Labrador dogs. No previ­
ous studies have tested for disproportionate inversion ef­
fects in children by comparing faces to a well-matched 
object class.

The second aim was to perform quantitative compari­
sons on the disproportion in the inversion effect between 
children and adults. Specifically, the question was whether 
the amount by which the inversion effect for faces was 
greater than for dogs (disproportion score = inversion ef­
fect for faces -  inversion effect for dogs) was any smaller 
in children than in adults. If holistic processing, or any sub- 
type of holistic processing, strengthens with age (i.e., the 
face-specific perceptual development theory), then the dis­
proportion score should increase with age. For example, if 
inversion effects for dogs were similar in size for children 
and adults, then inversion effects for faces should be larger 
in adults than children. Or, if inversion effects for dogs in­
creased with age (because part-based processing of upright 
dogs improved with increasing exposure to this orienta­
tion, as for dog experts in Robbins & McKone, 2007), then 
the inversion effect for faces should increase faster than 
the inversion effect for dogs. In contrast, if all aspects of 
holistic processing are fully mature in young children 
(i.e., the general cognitive development theory), then (a) 
7-year-old children should show a larger inversion effect 
for faces than dogs, and (b) the size of this disproportion 
should not change with age.

To test these predictions, we compared 7-year-olds to 
two groups of adults. Data for a performance-matched adult 
group were taken from Robbins and McKone (2007): these 
adults had learned the stimulus items in larger sets than 
the children (15-item sets instead of 5-item sets). We also 
tested a new group of procedure-matched adults, under ex­
actly the same circumstances as the children (i.e., 5-item 
sets). This group was included to explore effects of learning 
set size on pattern of inversion effects. We expected this 
group to perform better than children. However, because 
there were no restrictions of range issues, this group pro­
vided a direct test of whether changing learning set size al­
ters reliance on holistic processing. If we obtain the same 
results by comparing children to procedure-matched adults 
as we do by comparing children to performance-matched 
adults, this will substantially strengthen our conclusions. A 
finding of equal disproportion scores in adults with 15-item 
and 5-item sets would further validate comparison across 
age groups in the two prior studies that varied set size be­
tween children and adults (see Fig. 1C), noting that these 
studies used reasonably similar set sizes to the present study 
(10-item for 10-year-olds versus 6-item for 5-year-olds in 
Carey, 1981; 30-item for adults versus 7- or 8-item for 6- 
7 year-olds in Gilchrist & McKone, 2003, upright condition).

3.1. Method

3.1.1. Participants -  children and procedure-matched adults 
The 39 new participants, from pools described in Exper­

iment 1, comprised seventeen 7-year-olds (mean 7.20 
years; range 7.1-7.4; 10 male), and twenty-two adults to 
provide the procedure-matched group (mean 22.91 years; 
range 18.3-30.7; 11 male). Adults received $5 for the 30 
min experiment.

3.1.2. Design - children and procedure-matched adults
Stimulus class (faces, dogs) and orientation (upright, in­

verted) were varied within-subjects. There were 12 study- 
test cycles, 3 each of: faces upright; faces inverted; dogs 
upright; dogs inverted. Study phases showed 5 learning 
items one at a time. Test phases showed 5 pairs. Subjects 
chose the old item, guessing if necessary.

The face and dog sets had previously been matched for 
discriminability in the inverted condition for adult partici­
pants (Robbins 8; McKone, 2007) allowing quantitative 
comparison of the size of the inversion effect across stim­
ulus type.8 Pilot testing was used to select presentation con­
ditions such that 7-year-olds’ memory performance for both 
inverted face and dog sets was matched to that of the adults 
in Robbins and McKone (2007, Experiment 1, data from 
young adult dog-novices).

3.1.3. Materials -  children and procedure-matched adults
The specific items, and pairings of items, were exactly

as used by Robbins and McKone (2007, Experiment 1). 
Faces (Fig. 2C) were 60 front view Caucasian males and fe­
males. Dogs (Fig. 2C) were 60 side view male and female 
yellow Labradors. Here, faces were 3.1-3.8 cm wide (aver­
age 3.4 cm) by 4-4.6 cm high (average 4.4 cm), averaging 
5.6° horizontal by 7.3° vertical at the experimental viewing 
distance of 35 cm. Dogs were 4.9-6.0 cm wide (average 
5.7 cm) by 3.5-4.6 cm high (average 4.2 cm), averaging 
9.3° by 6.9°.

Stimuli were organised into 30 pairs of faces (i.e., en­
ough for three blocks upright and three blocks inverted) 
and 30 pairs of dogs. For each subject, 15 pairs (i.e., three 
blocks of 5 pairs) from each stimulus class were assigned 
to the upright orientation and the other 15 pairs to the in­
verted orientation, counterbalanced across subjects. Partic­
ular pairs were randomly assigned to blocks for each 
participant. Within each pair, one item was assigned to 
the studied condition for half the participants while the 
other remained unstudied, counterbalanced across 
participants.

3.1.4. Procedure -  children and procedure-matched adults
3.1.4.1. General. As in Experiment 1.

3.1.4.2. Condition order. The three blocks of a particular 
condition (e.g., three blocks of upright faces) were com­
pleted consecutively. Four orders of conditions were used: 
(1) faces upright, faces inverted, dogs upright, dogs in­
verted; (2) faces inverted, faces upright, dogs inverted, 
dogs upright; (3) dogs upright, dogs inverted, faces upright, 
faces inverted; (4) dogs inverted, dogs upright, faces in­
verted, faces upright.

8 We chose inverted as the baseline using the logic that matching in this 
orientation was the best way to ensure part-based similarity within sets 
was matched. There is no reason to think results would change if we had 
matched on upright instead. Carey (1981) matched upright faces across 
ages, and results regarding development of face inversion effects were the 
same as revealed here in Experiment 2. Further, in adults, the dispropor­
tionate inversion effect is obtained regardless of whether faces and objects 
are matched inverted (Robbins & McKone, 2007) or upright (e.g., faces 
versus costumes in Yin, 1969).
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3.1.4.3. Practice, study and test phases. As in Experiment 1.

3.1.4.4. Repeat for remaining blocks. Following a break of 
30 s (or longer if required), the study-test cycle was then 
repeated for the next block (12 cycles in total). Children 
were given a long break (at least 20 min) midway through 
the experiment.

3.1.5. Procedure -  performance-matched adults from 
previous study

Procedure for Robbins and McKone (2007) Experiment 
1 was identical to the present except as follows. Each con­
dition (e.g., upright faces) was given as one single block of 
15 study stimuli followed by 15 test pairs. The viewing dis­
tance was slightly longer (45 cm), making faces 4.3° by 5.6° 
and dogs 7.2° by 5.3°. At study participants were simply 
asked to remember the stimuli: there was no encoding 
question. Between study and test, participants did 1 min 
of multiplication problems.

3.2. Results

3.2.1. Disproportionate inversion effects within each age 
group

To validly compare inversion effects across stimulus 
class, it was important to demonstrate matching for face 
and dog accuracy, at levels not influenced by floor effects, 
in the inverted orientation. For the performance-matched 
adults, this had already been done by Robbins and McKone 
(2007). For the 7-year-olds, memory for inverted faces and 
inverted dogs did not differ, t< 1, and was at a level com­
fortably as well as significantly above chance for both 
stimulus classes: inverted faces M = 64.31, t(16) = 4.58, 
p<.001; inverted dogs M = 65.88, t(16) = 5.68, p<.001. 
For the procedure-matched adults, successful matching 
was also achieved: inverted faces M = 72.12, inverted dogs 
M = 70.00, t< 1.

The first major finding was that all three groups show 
a disproportionate inversion effect for faces (Fig. 5). For
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Fig. 5. Experiment 2: (A-C) seven-year-olds show the adult-like pattern of a much larger inversion effect for faces than objects (dogs); moreover, (D) the 
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adults' are from Robbins and McKone (2007, Experiment 1, young-adult dog novices). Error bars in (A-C) are appropriate for the within-subjects 
comparison of upright versus inverted conditions (i.e„ ±1 SEM of the upright -  inverted difference scores). Error bars in (D) show ±1 SEM. p < .005, p < .05, 
ns p > .05. LSS = Learning set size.



K. Crookes, E. McKone/Cognition 111 (2009) 219-247 233

7-year-olds (Fig. 5A), the difference between upright and 
inverted was significant for faces, t(16) = 3.66, p < .005, 
but not dogs t( 16) = 1.21, p > .2. A significant interaction 
between stimulus class and orientation, F(l, 16) = 18.85, 
MSE = 104.89, p < .005, confirmed the inversion effect (up­
right-inverted) was significantly larger for faces (16.08%) 
than dogs (-5.49%).

For the performance-matched adults (Fig. 5B), Robbins 
and McKone (2007) had previously shown the inversion ef­
fect was significantly larger for faces than dogs. For the 
procedure-matched adults (Fig. 5C), stimulus class again 
interacted significantly with orientation, F( 1.21) = 9.05, 
MSE = 103.15, p<.01, with a larger inversion effect for 
faces (22.12%) than dogs (9.09%).

3.2.2. Development: seven-year-olds versus performance- 
matched adult group

Our specific aim in matching child performance to that 
of the Robbins and McKone (2007) adults was to match on 
the inverted stimuli. This was successfully accomplished: 
memory accuracy did not differ for children and adults 
for either inverted faces (child M = 64.31, adult M = 63.33, 
t< 1) or inverted dogs (child M = 65.88, adult M = 66.36, 
t < 1). We also note that an ANOVA comparing the children 
(Fig. 5A) to the Robbins and McKone (2007) adults (Fig. 5B) 
across all conditions found no main effect of age, F(l,37) = 
3.15, MSE = 201.64, p > .05.

Given the successful performance match, we can con­
duct direct quantitative comparison of the size the dispro­
portion in inversion effects. Crucially, the ANOVA showed 
no 3-way interaction between stimulus class, orientation 
and age, F< 1, MSE = 150.93. That is, age did not influence 
the extent to which the face inversion effect was larger 
than the dog inversion effect. This indicates that holistic 
processing was not weaker in children than in adults. In­
deed, the nonsignificant trend was in the reverse direction: 
calculation of the disproportion score (inversion effect for 
faces minus inversion effect for dogs, Fig. 5D) indicated a 
tendency to a larger disproportion in children (21.57%) 
than adults (13.94%).

We also conducted an a priori test of the size of the 
inversion effect for faces. This did not change with age 
(children’s face inversion effect = 16.08%, adult’s face 
inversion effect = 20.91%, t< 1).

3.2.3. Development: seven-year-olds versus procedure- 
matched adult group

Given that ceiling effects did not limit range of scores in 
the procedure-matched adult group (i.e., the average of up­
right and inverted for faces was only 83.18%; Fig. 5C), it 
seemed reasonable to perform quantitative comparison 
of this group to the 7-year-olds. ANOVA again showed no 
3-way interaction between stimulus class, orientation 
and age F(l,37) = 1.68, MSE = 103.90, p > .2, confirming 
there was no change in the size of the disproportion of 
the inversion effect with age (Fig. 5D). Again, the trend 
was in the direction reverse to that predicted by an age-re­
lated increase in holistic processing: children’s dispropor­
tion score = 21.57%, adults’ disproportion score = 13.03%. 
A priori comparison of the size of the inversion effect spe­
cifically for faces also showed no age-related change: chil­

dren’s face inversion effect = 16.08%, adults’ face inversion 
effect = 22.12%, t(37) = 1.22, p > .2.

The ANOVA revealed a significant main effect of age, 
F(l,37) = 21.85, MS£ = 217.02, p<.001, reflecting the fact 
that adults were more accurate overall than children. This 
is as would be expected in a memory task when learning 
set size is the same for both groups.

3.2.4. Effects of changing set size: comparing the two adult 
groups

To assess whether changes in learning set size influ­
enced pattern of inversion effects in adults, the perfor­
mance-matched group (set size = 15) was compared to 
the procedure-matched group (set size = 5). There was no 
3-way interaction between stimulus class, orientation 
and group, F< 1, MSE = 144.58. The disproportion score 
was almost exactly the same for the two groups (13.94% 
performance-matched versus 13.03% procedure-matched). 
So too was the size of the inversion effect for faces (20.91% 
performance-matched versus 22.12% procedure-matched). 
Thus, altering learning set size did not alter the reliance on 
holistic processing.

3.3. Discussion

Results of Experiment 2 again favour the general cogni­
tive development theory of age-related improvement in per­
formance on face tasks. Support for early quantitative 
maturity is both direct -  from our own developmental 
findings - and indirect, regarding the interpretation of 
two key previous studies.

Directly, results comparing children to adults showed 
no evidence of development in the strength of holistic pro­
cessing between 7 years and adulthood. If there had been 
quantitative development in holistic processing -  or, 
importantly, in any proposed subtype of holistic processing 
such as spacing sensitivity (Mondloch et al., 2002) or the 
‘mystery factor’ (Carey 8; Diamond, 1994) -  then we would 
have predicted that inversion effects for faces, relative to 
inversion effects for objects, would be smaller in children 
than in adults. This was not observed. Instead, (a) 7-year- 
olds showed an inversion effect for faces that was substan­
tially larger than that for dogs, (b) the amount of this 
disproportion did not change with age, (c) the basic inver­
sion effect for faces did not change with age, and (d) these 
results held regardless of whether the child group was 
compared to adults with matched levels of performance 
(i.e., who learned items in larger sets), or to adults tested 
with a matched procedure (given there were no restriction 
of range issues). Our results thus provide strong support 
for early perceptual maturity of all aspects of holistic 
processing.

Our results are consistent with one previous study 
(Teunisse & de Gelder, 2003) and in conflict with two oth­
ers (Aylward et al., 2005; Carey & Diamond, 1977). Impor­
tantly, however, ours is the first study to compare 
inversion effects for faces with those for a well matched 
object class (dogs, rather than the man-made classes of 
houses and shoes). Further, all three previous studies were 
affected by one or more additional problems, including 
ceiling effects for the object class, an unexpected reversed
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inversion effect for objects in older but not younger groups, 
lack of statistics comparing across age groups, and/or fail­
ure to match performance in a comparator condition 
simultaneously across both age and stimulus class.

The indirect support for the general cognitive develop­
ment theory comes from set size results. Comparison of 
our two adult groups showed no effect of learning 15 items 
at a time, versus 5 items at a time, on either inversion ef­
fects for faces or the amount by which the inversion effect 
for faces was disproportionately larger than the inversion 
effect for dogs. This shows that changing learning set size, 
at least within a moderate range of set sizes, does not alter 
the reliance of memory on holistic processing. This finding 
has important implications for the interpretation of two 
key previous studies. As shown in Fig. 1C, Carey (1981) 
showed that sensitivity to face inversion did not change 
between 4 years and adulthood, and Gilchrist and McKone 
(2003) showed that sensitivity to spacing changes was as 
strong in 6-7 year-olds as in adults. However, to equate 
performance in a comparator condition (upright, or no- 
spacing-change) across age groups, both studies used 
larger set sizes in adults than in children, and so interpre­
tation of these results as evidence for early quantitative 
maturity of holistic processing relies on the assumption 
that this procedure does not alter the reliance on holistic 
processing. This assumption has now been tested, and 
found to hold. Thus, the results of Carey (1981) and Gil­
christ and McKone (2003) can now be taken to provide 
strong support for the general cognitive development 
theory.

Finally, the qualitative similarity in inversion effects be­
tween children and adults is relevant to the interpretation 
of equal rates of development for faces versus dogs in 
Experiment 1. Present results confirm development does 
not alter processing strategies for either upright faces 
(holistic in both children and adults) or upright dogs 
(part-based in both age groups).

The overall conclusion supported by Experiments 1 and 
2, and the previous literature, is that there is no quantita­
tive development beyond the ages of 5-7 years in the holis­
tic processing aspect of face perception. Results are 
consistent with the idea that the overall improvements in 
task performance for faces reflect late maturity of general 
cognitive abilities which affect task performance regard­
less of stimulus category.

At this stage, however, it still remains possible there 
might be perceptual changes in face-space, or in ability to 
perceptually encode a novel face. These issues are addressed 
in Experiment 3.

4. Experiment 3 -  the development of implicit and 
explicit memory for own- and other-age faces

In common with many previous studies, our Experi­
ments 1 and 2 tested performance on explicit memory 
tasks, namely tasks in which participants are required to 
consciously recollect whether or not they have seen a par­
ticular face before in the experiment. As expected, when all 
age groups were tested using a common procedure, both 
experiments showed substantial age-related increases in

memory for faces. Importantly, however, this finding does 
not necessarily show the ability of the face perception sys­
tem to encode a novel face - that is, to add a new exemplar
- improves with age. Explicit memory tasks have a rich 
range of other sources from which development could de­
rive. They are strongly affected by availability of attention 
to the task, participants’ metamemory skills (e.g., knowl­
edge of how much effort must be applied during learning 
to obtain a suitable test outcome, Flavell 8; Wellman, 
1977), and deliberate top-down strategies during the 
retention phase (‘‘I saw someone who looked like my 
friend Bill, so 1 will rehearse ‘Bill Bill Bill' to help me 
remember”) or at retrieval (“Here's a guy who looks like 
George Bush. 1 remember there was a guy that looked 
George Bush in the study phase. But, that guy had a 
weirdly big nose, and this guy doesn’t, so this one must 
be ‘new’.”). Adults have substantial advantages over young 
children in all these abilities.

A more direct way to test ability to perceptually encode 
faces, independent of general cognitive ability, is to assess 
encoding with implicit memory tests. Such tests measure 
repetition priming, defined as more accurate and/or faster 
responses to items recently studied than to 'baseline' 
unstudied items, on tasks that do not require reference to 
the earlier study phase. For example, repetition priming 
for (familiar) faces can be measured in a famous-nonfa- 
mous decision task as the speed difference between fa­
mous faces seen at study and famous faces not seen at 
study.

As long as researchers avoid “explicit contamination” 
on the task (i.e., subjects finding and using a strategy by 
which they can improve their test responses by deliberate 
reference to information from the study phase; Schacter, 
Bowers, & Booker, 1989), implicit memory measures pro­
vide a very pure method of tapping perceptual encoding. 
Several sources of evidence support this claim. Removing 
resources for deliberate strategic processing by dividing 
attention at study reduces explicit but not implicit mem­
ory (e.g., Parkin et al., 1990). Neuroimaging evidence 
shows repetition priming (reflected as reduced BOLD re­
sponse in fMRI, or decreased bloodfiow in PET) occurs in 
high-level perceptual processing areas relevant to the 
stimulus domain -  such as the Visual Word Form Area 
for written words, or the Fusiform Face Area (FFA) for faces
- without hippocampal contributions as occur for explicit 
memory (Pourtois, Schwartz, Seghier, Lazeyras, & Vuilleu- 
mier, 2005; Schacter, Alpert, Savage, Rauch, & Albert, 
1996). Finally, implicit memory shows patterns of develop­
ment that directly track the state of the underlying percep­
tual system. Where strong perceptual knowledge is 
established in early childhood (spoken words, common ob­
jects), implicit memory is at full adult levels at 5-6 years. 
In contrast, where perceptual knowledge begins and ma­
tures much later (written words), implicit memory contin­
ues to increase into late childhood (Carlesimo, Vicari, 
Albertoni, Turriziani, 8j Caltagirone, 2000; Murphy et al., 
2003).

In Experiment 3, we provide the first investigation of 
development of implicit memory for novel faces. If the 
ability of the face perception system to add a new face 
develops between 5 years and adulthood, repetition prim-
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ing will increase in size with age. (Also note the develop­
mental trend should be less steep for the implicit version 
than for an explicit memory version of the task, given that 
additional factors contribute to explicit memory develop­
ment.) Alternatively, if there is no development of percep­
tual face encoding ability and all age-related improvement 
on the explicit memory version of the task can be attrib­
uted to general cognitive development, then repetition prim­
ing should be as strong in young children as in adults.

We also included a face-age manipulation (child versus 
adult). This allowed us to test for age-related changes in 
face-space coding, by contrasting a possible own-age 
advantage across explicit and implicit memory tasks. In 
everyday life, children see more children's faces than 
adults’ faces (at least at school), while our adults would 
be expected to see many more adults' faces than children's 
faces. If face-space better codes the type of faces seen most 
often (Rhodes et al., 2005), then any own-age advantage 
(e.g., children showing better memory for child faces than 
adult faces) found in explicit memory should also be found 
when perceptual encoding is assessed directly via implicit 
memory. Alternatively, if any own-age advantage on the 
explicit memory task is attributable merely to increased 
social interest in peers leading in turn to greater attention 
(similar to other own-social-group advantages in explicit 
memory, Bernstein, Young, & Hugenberg, 2007), and there 
is no difference in perceptual encoding, then any own-age 
advantage should disappear on the implicit memory task.

Experiment 3 is divided into explicit memory (Experi­
ment 3A) and implicit memory (Experiment 3B). The two 
versions of the experiment were almost identical in the 
learning phase, but differed substantially in the test phase.

5. Experiment 3A -  explicit memory

The aims of Experiment 3A were to (a) provide compar­
ison data on the developmental trend in explicit memory 
for the particular face stimuli to be used in the implicit ver­
sion, and (b) to assess the existence or otherwise of an 
own-age advantage in children and/or adults. In this expli­
cit version of the task, we wished to have full allowance for 
involvement of deliberate memory strategies. We thus em­
ployed a recognition memory task in which participants 
knew before learning there would be a later memory test 
(allowing study and rehearsal strategies to be useful) in 
addition to being tested using explicit retrieval instruc­
tions (allowing retrieval strategies to be useful). Except 
for the use of intentional learning, the study phase of the 
explicit version was identical to the subsequent implicit 
version.

Three points regarding the own-age versus other-age 
manipulation deserve some elaboration. First, it was not 
entirely clear that an own-age advantage would be ob­
tained even in explicit memory. Only two previous studies 
have tested own-age effects in child subjects where there 
was evidence that child and adult face stimulus sets were 
matched for discriminability. Gilchrist and McKone 
(2003) crossed participant age (6-7 years versus adult) 
with face-age (child versus adult), and found no other- 
age effects. However, Anastasi and Rhodes (2005) reported

an own-age advantage in child participants aged 5-8 years 
(i.e., children showed better memory for child faces than 
young-adult faces).

Second, it was theoretically important to test for an 
own-age advantage separately in children and in adults. 
If attentional biases are the origin of explicit memory 
own-age advantages, the effect might be apparent only in 
children. Adults should be good at directing attention 
equally to all faces, consistent with the implied expecta­
tions of the experimenter, while children might either be 
unaware of these expectations or be unable to use top- 
down control to overcome a stronger natural interest in 
peer faces than adult faces. A similar idea can be proposed 
to explain Firestone, Turk-Browne, and Ryan’s (2006) find­
ing that explicit memory showed no own-age bias in 
young adults (who have good attentional control), but 
did show an own-age bias in older adults (who have poorer 
attentional control).

Third, we defined ‘own'-age broadly to simply mean 
child versus adult status, rather than attempting to match 
exact age within children.9 Our face stimuli were first grad­
ers (mostly 6-7 years). Although these stimuli were most 
closely matched in age to the 5-6 year-old participant 
group, both the 5-6 year-old (Kindergarten) and 10- 
11 year-old group (5th grade) have everyday exposure to 
6-7 year-olds at school.

5.1. Method

5.1.1. Participants
The 56 new participants, from pools described in Exper­

iment 1, were twenty 5 -6 year-olds (mean 6.3 years, range 
5.5-6.9; 11 male), sixteen 10-11 year-olds (mean 11.1 
years, range 10.5-11.7; 6 male), and twenty adults (mean 
24.1 years, range 18.5-31.7; 5 male). Adults received $5 
or $6 for the 30 min test.

5.1.2. Design
Procedure was the same for all three age groups. Each 

subject was tested on both child face stimuli and adult face 
stimuli, in two separate study-test blocks. In each block, 
participants studied 15 faces and performed 30 recognition 
trials with faces presented one at a time for "old” or "new” 
decision. All faces were upright.

5.1.3. Materials
5.1.3.1. Face stimuli. Faces were front view greyscale pho­
tographs of novel Caucasian males with neutral expres­
sions and no facial hair or glasses. The 60 child faces (age 
range 6-7 years with a few 5-year-olds) were from a data­
base of photographs taken locally (Gilchrist & McKone, 
2003). The 60 adult faces (approximate age range 18- 
30 years) were from University of Ljubljana CVL and CV, 
PTER, Velenje database (http://lrv.fri.uni-lj.si/facedb.html), 
Harvard Vision Laboratory Face Database (Tong & Nakay- 
ama, 1999) and local photographs (Gilchrist 8j McKone, 
2003). Adobe Photoshop 5.5 was used to remove distin-

9 Partly because we could not obtain local face stimuli precisely 
matching our subject ages (the local education department no longer 
allows photographing of children).

http://lrv.fri.uni-lj.si/facedb.html
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Table 1
Experiment 3A: explicit memory. Mean (& SEM) percent "old" responses.

Participant age Face stimuli Studied normal3 (i.e., hits) Unstudied normal (i.e., false alarms) Corrected recognition ( hits -  false alarms)

5-6  years Child 57.7 (2.9) 40.7 (3.3) 17.0 (4.2)
Adult 54.3 (2.9) 45.7 (3.3) 8.7 (3.9)
All 56.0 (2.3) 43.2 (3.0) 12.8 (3.0)

10-11 years Child 73.3 (4.3) 35.8 (3.3) 37.5 (4.3)
Adult 67.5 (4.2) 39.6 (3.9) 27.9 (4.3)
All 70.4 (3.4) 37.7 (3.2) 32.7 (3.0)

Adults Child 77.0 (3.0) 21.7 (2.8) 55.3 (4.2)
Adult 79.3 (2.6) 23.3 (2.7) 56.0 (4.0)
All 78.2 (2.5) 22.5 (2.0) 55.7 (3.3)

a Experiment 3A used only normal faces; labels “studied normal” and "unstudied normal" are used to allow comparison with Experiment 3B.

guishing features (e.g., birthmarks), crop faces within an 
oval window to exclude hair and ears, and match bright­
ness and contrast within each source set. Viewing distance 
was 40 cm (with chinrest). Adult faces were 6.44° horizon­
tal by 8.58° vertical; child faces 7.15° by 8.58°.

5.1.3.2. Stimulus list construction. The 60 faces were ran­
domly divided into four lists of 15 (Lists A, B, C & D; need 
for four rather than two was driven by requirements of the 
implicit version of the experiment). For any given subject, 
15 faces (e.g., List A) were presented at study. At test par­
ticipants saw the 15 studied plus 15 unstudied faces (e.g., 
List A & B). For half the subjects in each age group, Lists 
A and B were used (studied-unstudied status counterbal­
anced across subjects), while Lists C and D remained un­
used. For the other half, Lists C and D were used.

5.1.4. Procedure
5.1.4.1. General. As in Experiment 1.

5.1.4.2. Study phase. On each trial, a fixation cross for 
1000 ms for adults, or until concentrating for children, 
was followed by the face for 5000 ms. Participants judged 
“how nice each person is”. Adults rated niceness on a 9- 
point scale. Children responded “nice”, “not nice” or “in 
the middle”. Participants were told they would be asked 
to remember the faces later on, and they would therefore 
need to look carefully at each face. Faces were in a different 
random order for each subject.

5.1.4.3. Distractor phase. Study-test delay was approxi­
mately 4 min. Filler task content was adjusted for each age 
group: 5-6 year-olds chose a sticker, did a drawing and 
named their favourite animals and colours; 10-11 year-olds 
did a spoken category exemplar generation task; adults did a 
written category exemplar generation task.

5.1.4.4. Test phase. On each trial, a fixation cross for 
1000 ms for adults, and until concentrating for children, 
was followed by a face presented until response. Partici­
pants responded “old” or “new”. Test faces were in a differ­
ent random order for each participant. There was no 
feedback on response.

5.1.4.5. Repeat for second face-age. A break of at least 5 min 
followed the first test. The second cycle repeated the

study-distractor-test procedure with the stimulus set for 
the remaining face-age (e.g., adult faces if the participant 
had seen child faces first).

5.2. Results

5.2.1. Improvement in explicit memory with age
Table 1 shows percentage “old" responses for studied 

faces (hits) and unstudied faces (false alarms). Explicit 
memory scores were calculated in two ways. The primary 
measure was corrected recognition (hits-false alarms), 
which is directly analogous to the subsequent implicit 
memory measure, repetition priming (studied-unstudied). 
We also calculated discriminability (d') for old versus 
new. Results from the two measures did not differ in any 
way. Only corrected recognition is discussed.

Regarding whether explicit memory develops with age, 
a 3 (age group) x  2 (face-age) ANOVA revealed a significant 
main effect of age group, F(2,53) = 50.30, M5E = 365.28, 
p<.001. Follow-up t-tests revealed significantly better 
performance in 10-11 year-olds than 5-6 year-olds, 
t(34) = 4.64, p < .001, and significantly better performance 
in adults than 10-11 year-olds, t(34) = 5.05, p < .001. Thus, 
as expected, explicit memory for unfamiliar faces im­
proved between 5-6 years and 10-11 years and continued 
to develop between 10-11 years and adulthood (see Fig. 6).

5.2.2. Own-age bias in explicit memory?
Fig. 6 appears to indicate an own-age bias in children; 

that is, the two child groups tended to be better with child 
faces than with adult faces. Collapsing the two child groups 
together to maximise statistical power, children remem­
bered child faces significantly better than adult faces, 
t(35) = 2.21, p < .05, replicating the own-age advantage in 
child participants found by Anastasi and Rhodes (2005).10

Fig. 6 shows no suggestion of any own-age advantage 
for the adult group of participants. Adults showed no dif­
ferences between the two face sets, t< 1.

10 The face-age by participant age interaction was not significant. 
Justification for analysing the own-age effect separately for child and adult 
participants is primarily theoretical. Statistical justification also comes 
from an overall Experiment 3 ANOVA: face-age for children interacted 
significantly with memory type (see Experiment 3B), requiring fully 
exploring the effects of face age in children in explicit memory.
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Fig. 6. Experiment 3A: explicit memory results expressed as corrected 
recognition scores {% “old" responses for studied norma! faces minus X 
"old" responses for unstudied normal faces). Findings show (a) the 
expected developmental increase in explicit memory for both child and 
adult faces and (b) better memory for peers' faces than adults’ faces in 
children. Error bars show ±1 SEM.

5.3. Discussion

Explicit memory for faces increased strongly with age 
from 5-6 years to adulthood. This confirms the standard 
finding, and provides a trend against which implicit mem­
ory development could be compared in Experiment 3B.

We also demonstrated an own-age advantage on expli­
cit memory for our stimuli in child participants. This pro­
vides the basis to test, via implicit memory in 
Experiment 3B, whether this effect derives from social 
attentional factors or from changes in perceptual face- 
space coding deriving from recent experience.

6. Experiment 3B - implicit memory

Experiment 3B assessed children’s ability to perceptu­
ally encode novel faces using an implicit measure of reten­
tion. Predictions were as follows. If the age-related 
increase in explicit memory and/or the own-age bias in 
Experiment 3A are the result of face-specific perceptual 
changes (i.e., the face-specific perceptual development the­
ory) we would expect to find that repetition priming shows 
an increase with age and/or an own-age advantage in chil­
dren (i.e., greater priming for child faces than adult faces). 
If, however, the findings of Experiment 3A are solely the re­
sult of general cognitive development we would expect to 
observe no age-related development and no own-age 
advantage on implicit memory.

Experiment 3B was designed to satisfy several impor­
tant methodological criteria. The first was to minimise 
strategic memory contributions, thus giving the purest 
measure of perceptual encoding. At study, there was no 
instruction to learn for a subsequent memory test. At test, 
the measure was repetition priming, there was no require­
ment to recall from the study phase, and post-test ques­

tionnaire responses were used in adults to exclude 
participants who reported making deliberate reference to 
that phase to support their responses (i.e., showed “explicit 
contamination”).

The second was to develop a test-phase task that as­
sessed priming for novel faces. This is more difficult than 
it might seem. The common familiarity decision task pro­
duces strong priming effects for familiar faces, but no (or 
sometimes reverse) priming effects for novel faces (e.g., 
Young, McWeeny, Hay, & Ellis, 1986), presumably because 
the perceptual advantage arising from repetition is offset 
by the increased decisional difficulty of saying ‘unfamiliar’ 
to a repeated novel face. There appears to be no task that 
both avoids this problem and also makes very explicit ref­
erence to the individual identity of items, a factor impor­
tant in obtaining large priming effects for novel items.11 
Goshen-Gottstein and Ganel (2000) were able to find a small 
but significant priming effect for novel faces in adults on sex 
decision (3.93% reduction in reaction time for studied com­
pared to unstudied items). Here, we tried a task intended to 
require as strong an access to identity-related shape coding 
of the whole face as possible. Faulkner, Rhodes, Palermo, Pel- 
licano, and Ferguson (2002) distorted faces by compressing 
or expanding them, and observed significant semantic prim­
ing from names to familiar faces on a normal-distorted deci­
sion task. We used this task to assess repetition priming for 
novel faces.

Fig. 7 shows the procedure. As for the explicit memory 
version of the task, all faces were normal in format in the 
learning phase. Further, at test, priming was assessed only 
for “normal” (unaltered) faces: that is, the strength of im­
plicit memory was assessed by measuring the advantage 
in decision accuracy for normal faces when they had earlier 
been studied compared to unstudied. Distorted format 
faces were introduced at test only, merely to allow a deci­
sion response on the normal faces.

Our third methodological criterion was that baseline 
accuracy (i.e., for the unstudied normal condition) should 
be equated across age groups, without altering the learning 
or retention phases. Matching baselines allowed fair com­
parison of the size of the repetition priming effect across 
age groups. Doing so by altering only the test-phase en­
sured that (a) all age groups had equal opportunity to en­
code the faces (i.e., same learning time per face, same 
number of faces to learn), and (b) all age groups were equa­
ted for length of time the initial encoding must be retained 
before testing (i.e., same study-test delay). Under these 
conditions, a finding that priming increases with age 
would indicate adults are better than children at making 
a new face familiar; in contrast, stable priming across age 
groups would indicate children can save just as strong a 
trace of a novel face from a single exposure as adults.

Difficulty of test phase decision was equated across 
ages by altering stimulus presentation duration plus dis­
tortion level of the distorted faces (Fig. 7C). For adults, pilot 
testing determined that a relatively mild distortion level 
and very brief presentation (200 ms per face) gave nor-

11 In studies of priming for novel words, large priming effects can be 
achieved by using naming as the task (e.g., McKone, 1995); but, novel faces 
cannot be named.
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A. Study: Learn 15 normal format faces B. Test: Normal-distorted decision (60 faces)

unstudied
normal

studied
normalPriming

studied
normal

distorted
(unstudied)

distorted
(unstudied)

unstudied
normal

C. Test Phase Conditions 5-6 years 10-11 years.
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-70%. +70%. -50%. +50%.
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Adults
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Fig. 7. Experiment 3B: procedure for the implicit memory task. (A) Participants learned 15 normal-format faces at study (the same as for the explicit 
memory task). (B) At test, repetition priming was assessed for normal-format faces in normal-distorted decision. (C) At test, baseline performance for 
unstudied normal-format faces was matched across age groups by adjusting both distortion levels of distorted format faces and presentation durations.

mal-decision accuracy for unstudied faces at the desired 
value (65-70%, i.e., comfortably above floor, but low en­
ough that there was room for studied faces to produce 
higher accuracy without reaching ceiling). Younger age 
groups received higher distortion levels, and longer pre­
sentation durations, than older groups.12

6.1. Method

6.1.1. Participants
The 96 new participants, from pools described in Exper­

iment 1, were thirty-two 5-6 year-olds (mean 5.9 years, 
range 4.8-6.8; 11 male), thirty-two 10-11 year-olds (mean 
10.8 years, range 10.1-11.4; 11 male), and thirty-two 
adults (mean 22.0 years, range 18.0-29.1; 14 male). Pay­
ment was as for Experiment 3A.

6.1.2. Design
As for Experiment 3A, except the test phase added 

unstudied distorted faces to the studied normal and unstud­
ied normal faces (see Fig. 7B). Distorted face data were not 
relevant to memory measures.

12 The need to do this demonstrates that children's task performance on 
normal-distorted decision improves with age. As with all such simple 
improvement findings, this effect could arise from either face perception or 
general cognitive abilities.

6.1.3. Materials
6.1.3.1. Stimuli. Normal-format faces were as in Experi­
ment 3A. A distorted version of each was created using 
the Photoshop ‘‘spherize" tool. To prevent adaptation to 
one direction of distortion (Webster 8j MacLin, 1999), half 
the faces were “positively” distorted (expanded) and half 
“negatively” distorted (contracted). Distortion levels were 
±35% for adults, ±50% for 10-11 year-olds, and ±70% for 
5-6 year-olds (in Photoshop 5.5 for Macintosh).

6.1.3.2. Stimulus list construction. The four lists of 15 faces 
(Lists A, B, C & D) were as in Experiment 3A. A given partic­
ipant saw 15 normal-format faces (e.g., List A) at study. At 
test they saw these 15 faces again in normal format (stud­
ied normal), plus 15 other faces (e.g., List B) in normal for­
mat (unstudied normal) and 30 faces (e.g., Lists C & D) in 
distorted format (unstudied distorted). Lists assigned to 
the different conditions were counterbalanced across 
subjects.

6.1.4. Procedure
6.1.4.1. General. As in Experiment 1.

6.1.4.2. Study phase. As in Experiment 3A, except partici­
pants were not told to remember the faces.

6.1.4.3. Distractor and practice phase. Study-test delay was 
again approximately 4 min. Filler tasks were shorter ver-



K. Crookes, E. McKone/Cognition 111 (2009) 219-247 239

Table 2
Experiment 3B: implicit memory. Mean (& SEM) percent "normal" responses.

Participant age group Face stimuli Studied normal (SN) Unstudied normal (UN) Unstudied distorted (UD) Priming (SN-UN)

5-6 years Child 71.5 (3.1) 65.8 (3.2) 10.7 (1.6) 5.6 (2.7)
Adult 69.6 (2.8) 64.8 (3.5) 10.1 (1.3) 4.8 (3.0)
All 70.5 (2.5) 65.3 (2.8) 10.4 (1.2) 5.2 (1.9)

10-11 years Child 77.3 (2.8) 74.4 (2.7) 14.6 (2.2) 2.9 (2.1)
Adult 72.3 (3.0) 67.5 (3.2) 16.6 (1.9) 4.8 (3.2)
All 74.8 (2.4) 70.9 (2.3) 15.6 (1.8) 3.8 (1.9)

Adults Child 70.6 (2.7) 66.2 (2.9) 28.3 (1.8) 4.4 (2.9)
Adult 69.0 (2.6) 66.2 (3.1) 28.0 (1.9) 2.7 (3.4)
All 69.8 (2.2) 66.2 (2.5) 28.2 (1.5) 3.5 (2.6)

sions of those used in Experiment 3A. The last part of the 
filler period was practice for the test task, using faces not 
on any list. It comprised 10 practice trials with unlimited 
presentation duration, then 10 trials at the experimental 
presentation duration, with feedback.

6.1.4.4. Test phase. On each trial, a fixation cross for 
1000 ms for adults, and until concentrating for children, 
was followed by the face for 200 ms for adults, 500 ms 
for 10-11 year-olds, and 1000 ms for 5-6 year-olds. Partic­
ipants responded "normal” or “distorted”. There was a dif­
ferent random order for each participant, and no feedback.

6.1.4.5. Repeat for second face-age. As in Experiment 3A.

6.1.4.6. Explicit contamination questionnaire. Uninstructed 
use of deliberate memory strategies was assessed after 
the experiment using a standard questionnaire type (McK­
one & Slee, 1997). We excluded and replaced 4 adults who 
reported trying to use remembering a face from the study 
phase as a cue to its normal-distorted status (e.g., “If 1 had 
seen it before I knew it was normal"). The questionnaire 
was not administered to the child groups. We tried a sim­

Child faces

Adult faces-  - o -  -

— o

adults
years years

Age group

plified version for 10-11 year-olds, but they did not have 
the metamemory skills to understand the questions.

6.2. Results

6.2.1. Increase in implicit memory with age?
Table 2 shows percentage "normal" responses. We first 

needed to confirm that baseline performance (unstudied 
normal condition) was matched across age groups. A 3 
(age group) x 2 (face-age) ANOVA found no main effect 
of age group, F(2,93) = 1.43, MSE = 407.57, p > .2, or face- 
age, F(l,93) = 1.55, MSE = 215.34, p > .2, and no significant 
interaction, F(2,93) = 1.02, MSE = 215.34, p > .3. Thus, base­
lines were successfully equated, and analysis of priming 
could proceed.

Implicit memory was calculated as priming = studied 
normal -  unstudied normal. Fig. 8 shows priming for child 
and adult faces separately (Fig. 8A), and collapsed across 
face-age (Fig. 8B). A 3 (age group) x 2 (face-age) ANOVA 
revealed no main effect of age of participant, F<1, 
MSE = 291.99. Thus, there was no increase in implicit 
memory with age. Indeed, the slight trend was, if anything, 
in the opposite direction (Fig. 8). A priori t-tests also

Child & 
adults faces

adults
years years

Age group

Fig. 8. Experiment 3B: implicit memory results expressed as priming scores (% "normal” responses to studied normal faces minus % "normal" responses to 
unstudied normal faces) for: (A) each face-age stimulus set separately and, (B) collapsed across the two face-age sets. Note the lack of increase in implicit 
memory with age. Error bars show (A) ±1 average SEM, (B) +1 SEM for each condition.
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showed no difference in priming scores between 5-6 year- 
olds and 10-11 year-olds, t< 1, or between 10-11 year- 
olds and adults, t< 1. The mean priming score across all 
age groups was 4.20%, which was significantly above zero, 
t(95) = 3.44, p < .002. A priori t-tests also confirmed prim­
ing was significantly above zero in each group of children: 
for 5-6 year-olds, f(31) = 2.77, p<.01; 10-11 year-olds, 
t(31) = 2.06, p < .05. In summary, priming was present in 
young children, and did not increase with age.13

Finally, comparison to results of Experiment 3A re­
vealed the lack of age-related development on implicit 
memory to be a significantly different pattern from the 
age effect on explicit memory (participant age x memory 
type interaction, F(2,138) = 36.62, MSE = 161.42, p < .001).

6.2.2. A different definition of baselines?
Above, we took "matched baselines” to mean matched 

accuracy for unstudied normal faces, because studied items 
were normal faces. On this basis, all age groups showed 
similar priming. However, this analysis ignores the unstud­
ied distorted items and, as shown in Table 2, the adult 
groups were poorer than the child groups in this condition. 
Correspondingly, d! discriminability for unstudied normal- 
distorted decision was better in children (5-6 year- 
olds =1.80, 10-11 year-olds = 1.74) than adults (1.05). If 
d' were chosen as the baseline, only the two child groups 
were well matched. Might this jeopardise our conclusion 
of no development in implicit memory? We argue not. 
Priming did not increase between the 5-6 year-olds and 
the 10-11 year-olds (Fig. 8), despite the fact that these 
two groups, at least, were baseline matched on both 
unstudied normal accuracy and unstudied normal-dis­
torted discrimination, and despite the strong development 
of explicit memory over this age range (Fig. 6).14

6.2.3. Overall differences in priming between face-age sets?
ANOVA revealed no main effect of face-age on prim­

ing, F< 1, MSE = 244.20. Indeed, mean priming was al­
most identical for child faces (4.3%, SEM = 1.5%) and 
adult faces (4.1%, SEM = 1.8%). This is important method­
ologically. If priming had differed between face sets, then 
it could have been suggested that the Experiment 3A 
finding in explicit memory of an own-age advantage 
for child but not adult subjects was due merely to the 
child face stimuli being more perceptually discriminable 
or easier to encode than the adult face stimuli (i.e., 
scores for child faces were artificially pushed up overall 
compared to scores for adult faces). However, the impli­
cit memory results confirm child and adult faces sets 
were well matched.

,3 It has been suggested to us that lack of development might have arisen 
because priming was (as expected) relatively small even in adults. 
However, this criticism is not compelling. Small priming in adults, in the 
context of underlying development, should have made it extremely difficult 
to obtain any priming effect at all in children, yet children showed an effect 
that was, if anything, slightly larger than that in adults.

14 It was not possible to re-run the experiment simultaneously matching 
all age groups on both baseline measures: children had a bias to respond 
"distorted" that we were unable to alter in several attempts, while adults’ 
responses were unbiased.

6.2.4. Own-age advantage in implicit memory for child 
participants?

Fig. 8A shows no suggestion of any own-age advanta­
ges. Most importantly, the own-age advantage in explicit 
memory for child participants (Experiment 3A) disap­
peared in implicit memory. Combining the two child age 
groups to maximise power revealed no difference between 
priming for the child and adult face sets, t < 1. Tests for 5- 
6 year-olds and 10-11 year-olds independently also 
showed no face set difference (both ts < 1). Thus, children 
showed as much priming for adult faces as for child faces. 
The lack of own-age advantage obtained in children for im­
plicit memory also differed significantly from the own-age 
advantage found in Experiment 3A for explicit memory: for 
a combined 5-6 and 10-11 year-old group, there was a 
face-age x memory type interaction, F(l,94) = 3.98, MSE = 
273.86, p< .05.

For completeness, there was no face-age x participant 
age interaction, F< 1, MSE = 244.20. There was also no 
own-age advantage for the adult participants, t< 1.

6.3. Discussion

Encoding novel faces is a very important skill that had 
previously been suggested (Carey, 1981; Carey, 1992) to 
be particularly poorly developed in young children. Exper­
iment 3B has provided the first direct test of encoding 
within children's face perception system, using implicit 
memory to examine this independent of deliberate strate­
gies and attentional factors that contribute strongly to ex­
plicit memory.

The major finding was that there was no change in rep­
etition priming with age. This shows the ability of young 
children's face perception system to describe, and store, a 
novel face - that is, to make an new face familiar -  is as 
good as that in adults. Our finding is particularly strong gi­
ven that the same learning and retention conditions were 
used for all age groups (i.e., all groups had equal learning 
set size, equal presentation time at study, and equal 
study-test delay).

Our second finding was that the own-age advantage for 
child participants in explicit memory (Experiment 3A) dis­
appeared when encoding was tested with implicit retrie­
val. Indeed, children’s priming for adult faces was as 
strong as adults’ priming for adult faces (Fig. 8A). This 
shows that the explicit memory results did not represent 
poor perceptual encoding of adult faces, and that the ex­
plicit own-age bias cannot be interpreted as evidence for 
a perceptual face-space better tuned to the most fre­
quently experienced ages of faces. Instead, a plausible 
explanation of the explicit own-age bias is that children 
aged 5-11 years were more socially interested in peers 
than in adults, and thus paid more attention to child face 
stimuli.

Overall, Experiment 3 has added tests of novel face 
encoding and face-space aspects of face recognition to 
our earlier tests of holistic processing. The conclusion is 
the same as previously, namely that children’s perceptual 
processing of faces is fully quantitatively mature at 5- 
6 years. Further, by contrasting explicit memory for faces 
with implicit memory for faces, Experiment 3 has provided
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a very direct confirmation that the development that oc­
curs in memory for faces after 5 years is due to develop­
ment of memory factors, not development of face 
perception.

7. General discussion

Our results showed: (1) memory for faces and dogs 
improved at the same rate between 5-6 years and adult­
hood: (2) the disproportion in the inversion effect for 
faces versus dogs was just as large in 7-year-olds as in 
adults: (3) reducing the learning set size (from 15 to 5 
faces) did not reduce the strength of holistic processing; 
(4) implicit memory for faces did not change with age 
from 5-6 years to adulthood; and (5) an own-age bias 
in explicit memory for child participants disappeared in 
implicit memory. These findings converge to argue that, 
although there is dramatic improvement in performance 
on laboratory face tasks between early childhood and 
adulthood, this development can be attributed to general 
cognitive development, rather than to face-specific per­
ceptual development.

7.1. Development of holistic processing

Does holistic processing increase in strength between
5 years and adulthood? From our review of the previous 
literature, we concluded that the four studies with the 
most appropriate methodology for addressing this ques­
tion all favoured no developmental change (see 
Fig. 1C), as did studies of the part-whole effect (Pellicano
6 Rhodes, 2003; Pellicano et al„ 2006; Tanaka et al., 
1998). We also argued that other studies were ambigu­
ous as regards interpretation. The field has shown a ten­
dency to selectively cite those results suggesting an 
increase in holistic processing strength with age (e.g., 
Fig. 1A), but we showed that this interpretation is weak 
due to restriction of range to show effects in younger 
children, failure to match conditions for which develop­
mental trends are compared (e.g., feature versus spacing, 
faces versus objects) for difficulty at either end-point age 
group, and failure to compare faces to well-matched ob­
ject classes. We also showed that some findings appar­
ently suggest a decrease in holistic processing strength 
with age (Fig. IB) and argued that, if we accept that this 
can be explained by the obvious methodological limita­
tion in these studies (i.e., restriction of range in some 
age group/s) then the same logic must also be applied 
to invalidate similar studies showing an increase. We 
therefore concluded that no previous studies demon­
strated development in holistic processing, and that in 
contrast there was a moderate amount of evidence sup­
porting early quantitative maturity.

The present study has added considerably to this evi­
dence. Our experiments avoided restriction of range issues, 
and we contrasted faces with a well-matched object class. 
If holistic processing had increased in strength with age, 
then we should have observed (a) face memory diverging 
from dog memory in older age groups in Experiment 1, 
and (b) the amount by which the inversion effect for faces

was larger than dogs increasing with age in Experiment 2. 
Neither of these results was obtained (Figs. 3 and 5).15

Our results have also added to the evidence by clarify­
ing the interpretation of Carey (1981) and Gilchrist and 
McKone (2003). The interpretation of those studies as sup­
porting no developmental change in holistic processing re­
lies on the assumption that decreasing the learning set size 
in young children relative to adults does not reduce the 
reliance of memory on holistic processing. Our Experiment 
2 results validate this assumption, by showing that altering 
learning set size in the approximate range used by Carey 
and by Gilchrist and McKone had no influence on either 
the size of the inversion effect for faces, or the amount 
by which the inversion effect for faces was disproportion­
ate relative to that for dogs.

Taking our results together with the previous studies, 
we therefore conclude there is now strong evidence that 
holistic processing is at adult levels of strength in early 
childhood. This conclusion derives from converging find­
ings from multiple standard measures (inversion effect, 
composite effect, part-whole effect, spacing sensitivity, 
faces versus objects). Crucially, it also applies to all puta­
tive subtypes of holistic/configural processing. In contrast 
to earlier suggestions (Maurer et al., 2002; Mondloch 
et al. 2002), results now favour early maturity even of 
the ‘second-order relational’ aspect of holistic/configural 
processing (i.e., sensitivity to spacing between features). 
Gilchrist and McKone (2003) specifically tested spacing 
sensitivity, and found it was as strong in 6-7 year-olds as 
in adults (Fig. 1C). Three other experiments have used 
methods that combine all putative subcomponents of 
holistic/configural processing (i.e., faces versus objects, up­
right faces versus inverted faces) and where it can there­
fore be concluded that the findings of no overall 
development in holistic/configural processing must reflect 
no development of any subcomponent (present Experi­
ment 1; present Experiment 2; Carey, 1981 ).16

Our overall conclusion is that holistic processing with­
in the face system should be considered fully mature in 
early childhood, at least under relatively unspeeded con­
ditions. By the term fully mature we mean that holistic 
processing is; qualitatively present; quantitatively at 
adult strength; and that these properties apply to all stan­
dard measures and all putative subtypes of holistic/confi­
gural processing.

15 Note again that this is unlikely to be due to mere lack of statistical 
power. Experiment 1 produced small error bars, and the lack of age effect 
on the face-dog difference was obtained in the context of highly significant 
other effects (i.e., overall developmental increase in memory). In Experi­
ment 2, the age-related change in the disproportion score trended in the 
reverse direction to that predicted by an increase in holistic face processing, 
and again this result was obtained in the context of other effects that were 
clearly significant (e.g., inversion x stimulus class interactions).
'6 It thus seems age-related increases on spacing tasks must have generic 

rather than face system sources (e.g., improvements in vernier acuity, 
concentration, explicit memory, and/or strategies relevant to change- 
detection tasks such as focussing attention on face regions most liable to 
change in the stimulus set). Consistent with this interpretation, spacing 
change sensitivity increases between 8 years and adulthood as much for 
monkey faces as for human faces, despite the face system's lack of 
perceptual expertise with monkeys (Mondloch et al., 2006).
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7.2. Development of face-space

The literature on development of face-space is smaller 
than that for holistic processing. Again, however, our re­
view concluded that the studies with the most appropriate 
methodology for making quantitative comparisons across 
age groups all favoured no developmental change (distinc­
tiveness effect, Gilchrist & McKone, 2003; other-race effect, 
Pezdek et al., 2003; adaptation aftereffect, Nishimura et al., 
2008). Results apparently showing quantitative increases 
in face-space effects with age could all be attributed to 
restriction of range problems in younger age groups.

The present study provides some further support for 
early quantitative maturity, via the results concerning 
own- versus other-age effects in Experiment 3. Our impli­
cit memory results showed children’s face systems’ ability 
to encode and store a new adult (i.e., other-age) face is as 
good as that of adult observers, implying that the explicit 
memory own-age advantage in children (also Anastasi & 
Rhodes, 2005) does not represent a perceptual difference 
in face-space between 5-11 year-olds and adults, but in­
stead represents differences in attention and/or interest 
that affect explicit memory task performance. Consistent 
with this idea, children also show no own-age advantage 
on a same-different sequential presentation task (Mond- 
loch et al., 2006), a task that does not require the same 
strategies as long-term explicit memory.

We thus conclude that, at least with the evidence 
available to date, findings favour quantitative maturity of 
face-space at 5-8 years: specifically, there is no evidence 
that young children’s face-space has fewer dimensions 
than adults’, less appropriate weighting of face dimensions, 
or other limitations such as poorer tuning within a dimen­
sion. We note, however, that children’s face-space has 
received relatively little attention, and so the conclusion 
that face-space is fully mature early cannot be drawn 
as strongly as can the conclusion regarding holistic 
processing.

7.3. Development of perceptual encoding of novel faces

So far, we have discussed basic perceptual abilities of 
the face system that can be applied to all faces regardless 
of whether they are familiar or unfamiliar. But, what about 
the process of making a new face familiar? Is this more dif­
ficult for children than for adults?

Carey (1981,1992), Carey et al. (1980) argued that it 
was. In the context of modern findings, however, the evi­
dence originally presented for this idea is weak. Carey 
(1992) cited the strong age-related improvement on the 
Benton and Van Allen clinical test. However, this test is 
strongly affected by strategies unrelated to face recogni­
tion. It falsely diagnoses many adult prosopagnosics as 
normal (Duchaine & Nakayama, 2006), and normal adults 
can perform well purely by matching the eyebrows (with 
all internal facial features ablated, Duchaine & Weidenfeld, 
2003). Thus, the age-related improvement could reflect 
merely developing appreciation of the eyebrow matching 
strategy. The other evidence cited was early findings of fas­
ter development of memory for upright than inverted faces 
(Carey & Diamond, 1977; Carey et al., 1980). We agree with

the logic that such findings, if genuine, would demonstrate 
special development of encoding within the face system. 
The findings, however, were open to the critique of restric­
tion of range (Fig. 1 A).

Our present study has provided important new evi­
dence. Most directly, Experiment 3 used implicit memory 
(repetition priming) to show that perceptual encoding of 
a once-seen novel face, disentangled from explicit memory 
strategies, was as strong in 5-6 year-olds as in adults. We 
also showed that when restriction of range is avoided, 
rates of development of explicit memory are equal for up­
right faces and inverted faces (Experiment 2; also see Car­
ey, 1981 in Fig. 1C), a result which precludes special 
development of face encoding. Our results thus support 
the view that the ability of the face system to describe 
and store the appearance of new faces is quantitatively 
mature in early childhood.

A caveat is that we have tested encoding only with the 
same image used at study and test. Mondloch et al. (2003) 
suggested children are poor at the particular task of per­
ceptually encoding a once-seen image of a new face in such 
a way that it is generalisable across view change. Currently, 
evidence for this idea is not compelling. Certainly, children 
are poorer than adults at cross-view recognition memory 
tasks (Bruce et al., 2000; Mondloch et al., 2003). The diffi­
culty (as usual) is to tease apart any face perception contri­
bution to this pattern from contributions of general 
cognitive development. Mondloch et al. (2003) attempted 
to do this by comparing rate of development on an iden- 
tity-match-across-view-change task with that on several 
other face tasks. Three of the comparison tasks were much 
easier than the identity-match-across-view in adults, and 
so the results, rather than indicating late maturity specifi­
cally for cross-view generalisation, could indicate merely 
late maturity on difficult tasks due to children losing con­
centration faster than adults. The comparison of identity- 
match-across-view-change with identity-match-across- 
expression-change did not suffer from this problem, and 
results showed apparently slower development on the 
across-views task; unfortunately, however, statistics di­
rectly comparing the age trend across the two matched 
tasks were not presented, and also the across-expression 
task produced an atypically small inversion effect in adults 
(suggesting the possibility of unusual strategies on this 
stimulus set).

Overall, we conclude perceptual ability to encode novel 
faces is mature early in childhood when the study and test 
images are the same. More research is needed to see if this 
conclusion of early maturity also holds when different 
viewpoints are used at study and test, or where other im­
age changes are made (e.g., lighting changes).

7.4. A general caveat -  developmental changes in speed?

We have argued that present results converge with pre­
vious findings to favour the view that perceptual face rec­
ognition ability is mature early. Importantly, however, 
both the present experiments and the great majority of 
the articles we have cited have tested face perception un­
der conditions where those mechanisms are operating 
without substantial speed stress. For example, for learning
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trials, typical presentation times across studies are at least 
2-6 s per face (our own three experiments all used 5 s). For 
memory test trials, or for faces presented for naming, stim­
uli typically remain on the screen until response.17

This type of relatively unspeeded face recognition is, we 
suggest, of strong theoretical importance because it corre­
sponds to the situation that occurs most commonly in nat­
ural settings. In everyday life, children (and adults) are not 
often called upon to identify a person’s face from, say, a 
150 ms exposure. Instead, a person approaches the obser­
ver in a room, or along a path, or the observer sees another 
child playing in the school playground. In all these circum­
stances, it probably does not matter very much whether 
the face system takes 150 ms or 500 ms or even 1000 ms 
to identify the face: the primary requirement is that the 
face is recognised accurately.

It should be noted, however, that neither our own re­
sults nor the previous literature rule out the possibility of 
late developmental change in the speed with which face 
perception mechanisms can resolve the identify of faces. 
Studies using event-related potentials (ERPs) show the 
face-selective ‘N170’ over posterior temporal sites peaks 
at 170 ms after stimulus onset in adults, but at progres­
sively later times earlier in development (e.g., 185 ms in 
10-11 year-olds, 270 ms in 4-5 year-olds; Taylor, Batty, & 
Itier, 2004). This implies that in young children either (a) 
inputs to face areas from early visual areas are slower, 
and/or (b) the face system itself is slower to resolve these 
inputs into a representation of the face. Given late develop­
mental changes in processing speed throughout the brain, 
as implied by the gradual shifts of many different ERP 
peaks (Nelson & Monk, 2001), it would seem reasonably 
probable that the face perception system itself does becomes 
faster with age.

7.5. Summary of behavioural face recognition ability 
in the 5-years-and-up age range

In the developmental face recognition literature, it is 
now generally agreed that all qualitative aspects of adult­
like face recognition are present in young children. The 
more controversial question, however, has been the age 
at which face perception reaches quantitative maturity.

We have argued that all methodologically valid results 
available to date support the view that, although there 
may be late ongoing speed changes, quantitative maturity 
of mechanisms related to the accuracy of face recognition 
is reached early (i.e., by 5-7 years at the latest). With re­
spect to the various aspects of face recognition considered, 
we have argued the evidence for early maturity is compel­
ling for holistic processing, reasonably strong for face- 
space (the caveat being there have been relatively few tests 
to date), and strong for encoding of novel faces (with the 
caveat that across-view generalisation needs further test­
ing). Taken together, the results strongly suggest there is 
no development in the accuracy of the processing per­
formed by identity-related face perception mechanisms

'7 Note our Experiment 3 used quite short presentation durations during 
the test phase; but, the topic addressed by that experiment was the ability 
to encode novel faces, and encoding time in the study phase was long (5 s).

after early childhood, and that the substantial improve­
ments on experimental task performance after 5-7 years 
reflect improvements in general cognitive abilities (i.e., 
refuting the face-specific perceptual development theory, 
and supporting the general cognitive development theory).

We suggest that this conclusion from experimental 
studies is consistent with naturalistic observations of chil­
dren’s behaviour. In everyday life, children are perfectly 
capable of learning a large number of new faces, and rec­
ognising these people correctly, at least with natural expo­
sure durations and when attention is motivated by social 
interest in the people to be learned (e.g., classmates at 
school or day-care). Anecdotally, children certainly can 
make mistakes in recognition, and they can also be dis­
tracted by paraphernalia (e.g., failing to recognise a person 
in a new hat). But, these mistakes could easily reflect fail­
ures of attention or social interest rather than failures of 
face perception per se. Also note that there are now strik­
ing demonstrations that even adults’ real world face recog­
nition can be spectacularly bad under conditions of low 
social interest in the person to whom one is speaking 
and/or in the presence of attention-attracting parapherna­
lia (Simons & Levin, 1998).

7.6. Complete developmental course of behaviour, and causal 
origins of adult expertise in face recognition

The research discussed in the present article, focussing 
on the 5-year-and-up age range, forms part of a broader lit­
erature tackling two important topics: first, the description 
of the complete developmental course of face recognition 
from birth through to adulthood; and, second, the investi­
gation of the causal factors present at each stage of devel­
opment and how these contribute to eventual adult ability. 
Our findings have implications for both these topics.

Regarding description of the full developmental course, 
it is important to note that although we have talked about 
adult levels of ability being achieved at approximately 5- 
7 years, this does not rule out maturity being reached 
earlier. We have focussed here on 5-years-and-up because 
4-5 years (or later in some tasks, see Experiment 2) is 
approximately the youngest age at which adult experi­
mental tasks can be adapted for children, thus allowing po­
tential for direct quantitative comparison of children and 
adults on the same task. There are almost no face recogni­
tion studies in the entire age range between 9 months and 
3 years. Given this lack of data, it is quite possible that fa­
cial identity perception is quantitatively mature in infancy. 
Or, it might not be mature until children are 4-5 years old. 
Thus, although we can conclude maturity is achieved 
‘early’, with current methods we cannot tell exactly how 
early.

Regarding the causal mechanisms involved at each 
stage of development, there has been longstanding interest 
in the roles of inherited genetics and experience with faces in 
achieving the adult level of expertise in face recognition. 
Some role for genetics is clearly indicated (heritability of 
developmental prosopagnosia, Duchaine, Germine, 8; 
Nakayama, 2007; twin effects on size and location of 
face-selective cortical areas in fMRI, Polk, Park, Smith, & 
Park, 2007). Recent studies also argue strongly for an
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innate component present at birth, and thus independent 
of face experience. Importantly, innate abilities in newborn 
humans (Turati et al., 2006; Turati et al„ 2008) or in mon­
keys deprived of visual face input from birth (Sugita, 2008) 
include the discrimination of individual faces, not merely the 
attraction of babies’ attention to faces (as has been known 
about for some time, see Johnson, 2005).

Regarding experience, there are important effects in in­
fancy. People deprived of normal patterned visual input 
during infancy via congenital cataracts do not show holis­
tic processing for faces in later life (no composite effect; Le 
Grand, Mondloch, Maurer, & Brent, 2004). Perceptual nar­
rowing for faces occurs across infancy: young human in­
fants and face-input-deprived monkeys can initia lly 
discriminate individuals of all tested species and races, 
but post-birth experience w ith one subtype of faces (e.g., 
own-species, own-race) leads older infants (and adults) 
to lose discrimination for individuals of non-experienced 
subtypes (e.g., other-species or other-race; Kelly et al., 
2007; Pascalis et al., 2002; Sugita 2008). And, the loss of 
discrimination w ith in  non-experienced subtypes co-occurs 
w ith an improvement in discriminability of, or memory 
for, faces of experienced subtypes (Humphreys 8; Johnson, 
2007).18

A highly influential early theory then proposed that 
experience effects continued into adolescence, and that 
the primary cause of adult face recognition expertise was 
10 years or more of practice in within-class discrimination 
(Carey, 1992; Carey et al., 1980; Diamond 8j Carey, 1986). 
However, the present evidence of quantitative maturity 
of the face perception system by age 5-7 years rules out 
any effect of greater experience w ith faces on development 
of the face perception system after early childhood.'* * * * 9 Thus, 
the present article demonstrates that adult ability w ith faces 
is not based on ongoing experience extending into 
adolescence.

Overall, the picture emerging from current findings is 
consistent w ith  a view of face recognition in which the so­
cial importance of discrimination of conspecifics -  which 
in humans is driven primarily by information from the face 
-  has led to the evolution of a system where many abilities 
are present even at birth, and quantitative maturity of abil­
ity occurs early. Experience w ith faces is also important for 
improving face recognition skills in early infancy. However, 
continued experience w ith faces as a class after early child­
hood does not lead to ongoing developmental improve­
ments in the accuracy of face perception.

18 An interesting question concerns how flexible the system remains to
re-learning ability for initially-lost face subtypes in later life. Sangrigoli,
Pallier, Argenti, Ventureyra, and de Schonen (2005) found ethnic Koreans
born in Korea and adopted into Caucasian families in Europe at age 3 -
9 years showed, as adults, a complete reversal of the usual other-race effect, 
suggesting early-to-mid childhood was not too late to relearn Caucasian 
discrimination and lose Asian discrimination. However, at a similar 
developmental age, Sugita (2008) found macaques (1 .5 -3  years) initially 
exposed only to human faces could not relearn to individuate macaque 
faces.
19 This is not to say, of course, there are no experience effects with 

different subtypes of faces (e.g., different races) or different individual faces 
(i.e., familiar versus unfamiliar faces): experience can change face percep­
tion for particular faces even in adulthood.

7.7. Earlier maturity of behaviour than of size of cortical face 
recognition areas

We finish by noting a striking difference between the 
results of behavioural studies -  supporting full maturity 
of face perception ability by early childhood -  and results 
from fMRI, where development in the size of face-selective 
cortical areas continues well into adolescence. The Fusi­
form Face Area (Kanwisher, McDermott, 82 Chun, 1997) 
has received the most attention, being an area known, in 
adults, to be involved in the coding of facial identity 
(Rotshtein, Henson, Treves, Driver, 8; Dolan, 2005), and to 
show repetition priming, holistic processing, and effects 
consistent w ith face-space coding (Loffler, Yourganov, W il­
kinson, & Wilson, 2005; Pourtois et al., 2005; Schütz 8; Ros­
sion, 2006). In children, the FFA is present even in young 
children, but it increases substantially in volume between 
early-to-mid childhood and adulthood (5-8 year-olds 
Scherf et al., 2007; 7-11 year-olds Golarai et al., 2007). This 
late developmental increase argues that the size of the FFA 
is not a direct cause or reflection of an age-group’s behav­
ioural abilities in face recognition.

So, what does the increasing size of the FFA represent? 
One possibility is that larger FFAs support developmental 
increases in speed of recognition of faces, even if  FFA size 
has no causal influence on accuracy. A second possibility 
is that FFA size reflects the number of individuals with 
whom a participant is familiar, and that average FFA size 
increases across development simply because adults have 
met, and stored the appearance of, more people than youn­
ger children. This idea would carry the implication that 
storing more faces in the FFA requires dedication of more 
face-selective neurons; presumably, these might be taken 
over for this purpose from object-general areas of mfero- 
temporal cortex surrounding the FFA. A third idea is that 
measured FFA size might be determined by top-down pro­
cessing as well as by bottom-up face perception. That is, 
stronger self-guidance of attention to faces in the ‘just 
watch’ procedure of Scherf et al. (2007), or stronger imple­
mentation of strategies involved in checking for a repeated 
face in the 1-back task of Golarai et al. (2007) could per­
haps affect the number of voxels containing face-selective 
cells that achieve BOLD responses above statistical 
threshold.

7.8. Conclusion

In the present article, we have argued that modern evi­
dence now supports a complete reversal of early theoreti­
cal opinions regarding the behavioural development of 
face recognition in children. The early view (e.g., Carey, 
1992; Carey et al., 1980) suggested that perceptual pro­
cessing of facial identity matured very late in development 
-  well into adolescence -  and that ongoing experience with 
faces as a class was the causal driver of this development. 
The review and new results we have presented here argue, 
in contrast, that face recognition is fully mature -  quanti­
tatively as well as qualitatively -  in early childhood (and 
possibly earlier). This conclusion is consistent w ith the pic­
ture emerging from recent infant studies, where it has 
been shown that even newborns demonstrate face recogni-
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tion skills that are much better than researchers might pre­
viously have imagined. A challenge for future studies is to 
determine exactly when, in the birth to 5 years age range, 
perceptual processing of facial identity reaches adult 
strength.
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4.4 Relevant literature published after this paper was accepted

Since this paper was accepted for publication (February 2009) three additional 

studies have appeared which might be taken by some readers to be relevant to the 

quantitative development of holistic processing (Macchi Cassia et al., 2009a) and face- 

space (Anzures et al., 2009; de Heering, de Liedekerke, Deboni, & Rossion, in press). 

Results of these papers do not reject the conclusion drawm in Crookes and McKone 

(2009), namely of early quantitative maturity of both holistic processing and face-space.

In Macchi Cassia et al. (2009a), holistic processing was assessed via the 

inversion effect for faces. Results showed that 3-year-olds demonstrated a numerically 

larger inversion effect than the adults. The authors did not perform quantitative 

comparison across age groups, and indeed this would have been invalid due to the fact 

that ceiling effects were present in the adult group. Thus, as with most previous studies 

in the literature, this study allows the valid conclusion of the qualitative presence of 

holistic processing in 3-year-olds, but does not allow comparison of its strength across 

age groups (and nor was it aimed at doing so).

In Anzures et al. (2009), the situation is different in that the authors themselves 

made claims of ongoing perceptual development. Specifically, Anzures et al. (2009) 

found that, to get their attractiveness-rating adaptation aftereffect procedure to work, it 

was necessary to use more extreme distortion (expanded/contracted) levels on the test 

faces for the children (±90%, ±70%, 0%) than for the adults (±60%, ±40%, 0%); this 

was because pilot testing showed that the 8-year-olds did not rate the more mildly 

distorted faces (±40%) as less attractive than the undistorted faces (0%). Anzures et al. 

(2009) interpret this finding as evidence that the children had a less refined face-space 

than adults. I argue, however, that several other interpretations are possible. Firstly, it is 

possible that young children can encode the physical differences in the faces within 

their face-space but can not, or are unwilling to, make fine-scale subjective ratings of 

attractiveness: perhaps an interest in exact degree of people’s attractiveness is 

something that develops only after puberty; or, because the method required participants 

to rate boys faces with regard to how “pretty” they were, the task may have been 

perceived as a socially unacceptable by 8-year-old children (“pretty” is a term usually 

reserved for describing girls). Secondly, the manipulation of attractiveness (expansion 

or contraction via “spherizing” the faces) was not natural, and perhaps children found it 

more difficult than adults to understand the artificial task; thus, the fact that they did not 

make fine discriminations of attractiveness amongst spherized faces does not guarantee
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that they were not able to make fine discriminations amongst attractiveness of natural 

individuals (indeed, even newborn infants can determine which of two natural faces is 

most attractive; Slater, Quinn, Hayes, & Brown, 2000). Thirdly, it may be that the 

children found the 5-point rating response cognitively demanding and that, in 

combination with the cognitive demands of having to make their perception of 

attractiveness explicit, resulted in their suffering more lapses of attention on “difficult” 

(±40%) trials than did adults; thus, it remains possible that children might demonstrate 

ability to make fine-grained distinctions of attractiveness with a simpler response task 

(e.g., choose the most attractive of two alternatives).

In de Heering et al. (in press) the size of the own-race effect on recognition 

memory was assessed in Caucasian children aged 6 to 14 years. Mean performance for 

the group was nicely placed in the middle of the response range for the 2 AFC task 

(68.5% averaged across Caucasian and Asian faces). No correlation was observed 

between the size of the own-race effect and age (in months). This finding supports the 

previous reports of no change in the size of the own-race bias with age when restriction 

of range is avoided.

A caveat was placed on the conclusions in this paper. It was argued that while 

behavioural performance as measured by accuracy is mature by 4-5 years, speed of 

processing may continue to develop. At the time of publication there were no studies 

which had adequately addressed this question. A recent study (Kuefner et al., in press) 

argues that there is no face-specific development in speed of processing between 5 and 

16 years. Kuefner et al (in press) investigated ERPs for faces and cars and found no 

face-specific age related changes in any aspect of the response including latency. This 

provides further support for the early maturity of all aspects of face identity perception.

In sum, I argue that the Crookes and McKone (2009) conclusion of early 

quantitative maturity is not challenged by the results of these recent papers. Also note 

that regarding a different topic discussed briefly in Crookes and McKone (2009) -  the 

question of whether there is an own-age bias in adults -  there are also three new studies 

available (de Heering & Rossion, 2008; Kuefner, Macchi Cassia, Picozzi, & Bricolo, 

2008; Kuefner, Macchi Cassia, Vescovo, & Picozzi, in press), which are reviewed in 

Chapter 5.
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CHAPTER 5 -  THE COMPOSITE TASK REVEALS STRONGER HOLISTIC 

PROCESSING IN CHILDREN THAN ADULTS FOR CHILD FACES

5.1 Context statement

There were two aims to the study in this chapter, both of which follow directly 

from the previous chapter. The first aim was to investigate quantitative development in 

the size of the composite effect across age. The previous chapter concluded that holistic 

processing was quantitatively mature early in development based on evidence from 

several of the standard effects (including inversion and part-whole). However, the 

composite effect is a core holistic processing measure, and previous developmental 

studies of this effect have not allowed valid quantitative comparison of its size across 

age groups. The present chapter provides the first test of the size of the composite effect 

in children versus adults where baseline performance has been matched across the age 

groups. Thus, this study offers the opportunity to confirm or reject the conclusion of 

Crookes and McKone (2009) regarding early quantitative maturity of holistic 

processing, and again relates to the broader aim of this thesis of testing whether 

extended experience into adolescence is, or is not, needed for core face processing 

mechanisms to reach full maturity.

The second aim was to further investigate the origins of the own-age bias on 

recognition memory in children (Chapter 4, Experiment 3 A) with regard to the broader 

aim of this thesis of investigating flexibility in the mature system. The fact that 

experience can affect recognition memory performance for certain face types (e.g., 

own-race bias) has often been used as evidence of the importance of lifetime experience 

over innate components in the developmental face processing literature. But, as argued 

in Chapter 2, this logic is flawed and often fails to separate the effects of maturation, 

lifetime experience, and experience during a sensitive period early in life. Given the 

arguments for early maturity of face processing presented so far in this thesis, evidence 

of an own-age effect in children and adults instead suggests that the face system is 

mature but that even a mature system retains some flexibility such that recent exposure 

to a face subtype can influence face recognition. The present chapter thus further 

addresses whether children aged 8-13 years -  that is, older than the age of maturity 

found in Crookes and McKone (2009) -  show continuing flexibility of face recognition,
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in this case by extending my earlier examination of own-age effects in implicit and 

explicit memory to an examination of own-age effects on holistic processing.

5.2 Publication status

This chapter was accepted for publication in June 2009 and appears as:

Susilo, T., Crookes, K., McKone, E. & Turner, H. (2009), The composite task 

reveals stronger holistic processing in children than adults for child faces. 

PLoS One, 4(1), e6460

5.3 Author contributions (agreed to by all authors 18/6/09)

5.3.1 Conceived and designed the experiment

• This paper on an own-age bias in the composite effect was a side-line finding of 

a project originally asking a quite different theoretical question (heritability of 

the strength of the composite effect, as assessed via a twin study).

• Susilo (another PhD student in McKone’s lab) came up with the idea for the 

original twin project, and made contact and arrangements for testing with the 

Australian Twin Registry.

• Susilo and McKone conceived the general design of the twin experiment.

• Crookes helped refine the design of the experiment providing feedback on pilot 

versions of the task and suggesting improvements.

• Crookes ensured that the task was suitable for the age range of participants to be 

tested.

• McKone came up with the idea of this particular paper, when data revealed a 

larger composite effect for child faces in children than in adults. Crookes’ 

review of the literature confirmed this was a novel finding.

5.3.2 Stimuli

• Stimuli for this experiment were previously used in an unpublished honours 

project conducted by Turner and were all created by her.

• Crookes suggested their use in the present experiment.

• Susilo selected the subset of the faces used in the present experiment, and 

resized some of the stimuli.
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5.3.3 Programming and Testing

• Susilo and Crookes designed the program for the task, Susilo wrote the 

program, and Crookes helped solve coding problems.

• Susilo tested pilot participants.

• Susilo and Crookes organised the testing materials, travelled to Sydney, set up 

the testing booth and tested the participants (half each).

5.3.4 Data analysis

• Susilo performed all data analysis and produced all graphs and tables.

• McKone suggested some additional analyses.

5.3.5 Literature review

• Much of the theory behind this paper and the review of the literature arose from 

Crookes’ previous PhD work.

• Crookes directed Susilo to the relevant literature and references, and provided 

verbal summaries of the current state of the literature.

• Susilo came up with the general structure and ‘story’ for the introduction.

5.3.6 Writing

• Susilo wrote the first draft, and came up with points in the discussion.

• Susilo and Crookes then revised the manuscript together, and came up with the 

second draft.

• McKone then edited and refined the paper and produced the final draft, and 

made some extra points in the discussion.

• Following peer review McKone came up with the main rebuttal point.

• Crookes came up with summarised data from previous studies, which were 

included in the revision and the reply to reviewers.

• Susilo wrote the first drafts of the response to reviewers and revised manuscript.

• Susilo and Crookes together made revisions to both documents, and came up 

with the second drafts.

• McKone revised both came up with the final drafts.
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Introduction

Several studies have suggested that own-age faces are better 
recognised than other-age faces, a phenomenon usually termed the 
other-age effect or own-age bias [1-3]. As with the more established 
other-race effect — better recognition memory for own-race relative to 
other-race faces (for review, see [4]) — the own-age effect suggests 
that the sensitivity of the human visual system in recognising 
individual faces is related in some way to the frequency with which 
that type of face is encountered in the everyday environment.

Exactly what lies behind these recognition memory biases, 
however, is less understood. One plausible candidate is holistic/ 
conjigural processing, a special mechanism reserved for perceiving 
upright faces that integrates information (including spacing 
between features) from across the entire face at a perceptual level 
[5-8], In the other-race effect literature, it has been demonstrated 
that holistic processing is indeed stronger for own-race than other- 
race faces, at least for Caucasian participants [9,10].

Two recent studies have found an own-age bias on holistic 
processing in adult participants: specifically, for adults with no 
special recent experience with children, holistic processing was 
stronger for adult faces than child faces [11,12]. In children, 
however, previous studies have failed to find an own-age bias on 
holistic processing [13,14], despite other demonstrations of an 
own-age bias on recognition memory [1,15].

It is notable that behind the apparently conflicting results are 
different experimental paradigms. The studies which found the

own-age bias [11,12] used Young et al’s composite face task [8], 
whereas the studies which found no own-age bias [13,14] used 
Tanaka and Farah’s part-whole task [7] and Tanaka and Sengco’s 
part-in-spacing-changed-whole task [16]. Here we aimed to 
contribute to the question of whether an own-age bias can be 
found in children by using the composite face task, and comparing 
the size of the composite effect in children and adults for child face 
stimuli. It is well established that children show a composite effect 
with adult faces [17-19], and also with familiar child faces [17], 
but to our knowledge there have been no previous tests of the 
composite effect for children with unfamiliar child faces, and no 
comparisons of the size of the composite effect for child faces 
(familiar or unfamiliar) between children and adults.

In the present study, if children show stronger holistic 
processing for own-age faces, then we predict a larger composite 
effect for children relative to adults. We measured the strength of 
the composite illusion using the standard same-different procedure 
(see Figure 1); this is the version of the task used in one of the 
studies that previously demonstrated an own-age bias on holistic 
processing in adults [11].

M ethods

Participants
The 48 participants comprised 20 children (age range 8-13 

years, M — 10 years, 9 female) and 28 adults (age range 22-65 
years, M — 44 years, 26 female). Participants were twins attending
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Figure 1. Examples pairs of our composite face stimuli. (A) same-aligned (SA), (B) different-aligned (DA), (C) same-misaligned (SM), and (D) 
different-misaligned (DM). The composite effect can be seen by comparing (A) with (C): in both cases, the two top half faces are physically identical, 
but, while this is easy to see in the misaligned version, it is difficult to see in the aligned version because perceptual integration of the whole face 
makes the top half appear different depending on which bottom half it is combined with. To tap the strength of this illusion, the composite effect is 
measured as the reduction in accuracy for "same" decisions in (A) as compared to (C). 
doi:10.1371/journal.pone.0006460.g001

the 2009 Australian Twins Plus Festival in Sydney. (We were not 
interested here in twins per se\ the present data was a serendipitous 
finding from a larger ongoing twin project). All were volunteers (no 
payment), naive to the purpose of the study, had normal or 
corrected-to-normal vision, and were Caucasian (the same race as 
the face stimuli). Adults were a random sample of professions (i.e., 
as a group, they were not selected to be school teachers [11,12] or 
otherwise to have any specific expertise with children).

Stimuli
The original faces (i.e., from w'hich composites were construct­

ed) were from a database of photographs taken in Australia [20]. 
They were front view greyscale photographs of 48 unfamiliar 
Caucasian male children, with neutral expression, mostly aged 6-7 
years with a few 5 year-olds. Importantly, while the specific age of 
the face stimuli was not matched to the age of our child 
participants, (a) primary school in Australia covers the age range of 
5 to 12 years and so most of our child participants would see 
multiple 6-7 year-olds every' day at school; and (b) an own-age bias 
on recognition memory for these particular faces has been previously 
demonstrated for children, in w'hich the own-age advantage was as 
strong in older children (10-11 year-olds) as in a closely age- 
matched group (5—6 year-olds) [15]. A black ski-cap and w'hite 
turtleneck collar were pasted onto each face to remove hair and 
clothing identity cues.

Figure 1 shows composite face examples. Each original face was 
divided horizontally below the eyes. The composite faces w'ere 
created by joining the top half of one individual with the bottom 
half of a different individual. The top halves w'ere ahvays kept 
physically identical to the original; the size of the bottom halves 
was adjusted where necessary (to fit the corresponding top half). 
Misaligned faces were created by offsetting the top and bottom

halves by half a face width. Half of the misaligned faces were offset 
to the left, the other half to the right. Aligned faces subtended a 
viewing angle of 6.3° horizontal by 9.7“ vertical, and misaligned 
faces 8.6“ horizontal by 9.7“ vertical. Faces were presented against 
a grey background. All manipulations were done using Adobe 
Photoshop 5.5.

The composite faces were paired either as “same” or 
“different” ; “same” pairs always had identical top-halves, 
“different” pairs ahvays had different top-halves. The bottom 
halves for all pairs were always different. The result was four kinds 
of composite pairs: same-aligned (SA), same-misaligned (SM), 
different-aligned (DA), and different-misaligned (DM).

There were 30 different bottom halves and 30 different top 
halves. In the SA condition each top half was used once and each 
bottom half was used twice (because two different bottom halves 
were required for each pair of same top halves). The exact same 
composite combinations were used in the SM condition. In the 
DA condition each top half was shown once, 14 of the bottom 
halves were shown twice and two were shown once. The same 
composite combinations were used in the DM condition.

There were 90 composite face pairs in total, comprising 30 SA, 
30 SM, 15 DA, and 15 DM pairs. The greater number of “same” 
pairs were intended to increase the proportion of trials relevant to 
the final analysis (a procedure used previously, [9,18]), because the 
composite score was defined in the standard w'ay, namely as the 
accuracy difference between the same-aligned (SA) and same- 
misaligned (SM) trials [9,18,21-23]. Only “same” trials contribute 
to the measure of the composite effect because, while holistic 
processing makes a clear prediction that “same” responses should 
be more difficult for aligned than misaligned trials (Figure 1), it 
makes no prediction of the direction of the alignment effect for 
“different” trials (the direction will depend on the similarity of to-
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be-ignored bottom halves, (see [23]), with the result that analysis of 
“different” accuracy and d’ are meaningless (for further discussion, 
see [24]).

Procedure
Each participant was tested using a CRT-screen iMac computer 

in an open function room with several other activities occurring 
around. They were seated at a distance of approximately 40 cm 
from the computer screen without any chin rest.

Participants were instructed to focus on the two top-halves of 
the sequentially presented pairs of faces and respond as to whether 
they were the same or different via a keyboard. It was emphasized 
that they were to ignore the bottom half of the face.

The 90 trials (30 SA, 30 SM, 15 DA, 15 DM) were displayed in 
random order. Each trial started with the presentation of the first 
face for 500 ms, followed by a blank screen for 400 ms and the 
second face for 500 ms. Each face appeared randomly in one of 
four different positions on the screen (up left, up right, down left 
and down right at 5° of eccentricity from the center of the screen). 
Following a blank screen of 400 ms, the question “Were the two 
top-halves same or different?” appeared until response. The next 
trial followed after 400 ms. Five practice trials were given.

The task was designed to measure accuracy. There were no 
instructions to respond quickly (and indeed we observed that some 
participants took their time, meaning that no analysis of reaction 
times was possible). We did not aim to measure reaction times 
because (a) it is inappropriate to measure reaction times when 
accuracy is set to be well below ceiling, and (b) baseline reaction 
times will inevitably vary substantially across ages from 8 to 65 
years, affecting validity of comparison of the size of the composite 
effect across age [15].

Results
Results are shown in Figure 2 (also see Table 1). We analysed 

the 30 same-aligned and 30 same-misaligned trials only. The 
composite score was calculated as accuracy for misaligned trials 
minus accuracy for aligned trials.

Considering results for the full sample (Figure 2A), statistical 
analysis showed greater variability in composite scores for children 
than adults (Levene’s test for equality of variances, F— 10.32, 
/>=.002). Thus, in comparing the mean composite effect across 
groups, degrees of freedom were adjusted appropriately (using 
Welch-Satterthwaite equation via the “equal variances not 
assumed” output in SPSS). The composite effect was significandy 
larger in children (25.9%) than in adults (12.5%), <(27.21) = 2.22, 
p < .05, indicating stronger holistic processing for children than 
adults when looking at child faces.

We then conducted several analyses to confirm that this result 
could not be attributed to spurious confounds with other variables. 
First, we noted that the accuracy in the “baseline” misaligned 
condition was higher for adults than children, <(46) = 3.32, /><.01. 
Although there Ls no indication in Figure 2A that aligned- 
misaligned differences were affected by proximity to ceiling (or 
floor), we have argued elsewhere that much caution needs to be 
used when effects are compared across age groups in the presence 
of baseline differences [15]. Thus, we also analysed results from a 
baseline-matched subset (Figure 2B), created by removing the data of 
the 5 children with the lowest and 5 adults with the highest 
misaligned scores. Misaligned scores for the two groups were 
successfully matched (86.3% vs. 88.3%), « 1 ,  but children’s mean 
composite score (32.3%) was still larger than adults’ (10.5%), 
<(19.77) = 3.31, p< .01 (Levene’s test for equality of variances, 
F=6.84, p — .013). This analysis demonstrates that our finding of

stronger holistic processing for own-age faces in children is not due 
to mismatched baseline performance of the two groups.

Second, it is possible that the age-group difference could be 
attributed to the fact that our adult sample included a very wide 
range of ages. If there were a reduction in holistic processing with 
aging (e.g., after, say, 50 years of age), or if holistic processing for 
child faces continued to reduce in strength the longer the time 
since the participant had been a child, the comparison of the 
composite effect in children with that in the adult group could be 
affected. However, Figure 2C provides a scatterplot of exact age 
against the composite effect score (for the full sample), and shows 
that there was no decline across the adult age range. Statistical 
analysis confirmed that, within adults, there was no correlation 
between age and composite score, r(28) = .17,/)= .398.

Third, because our participants were twins, their performance 
might not have been totally independent from one another (as we 
have assumed above in conducting independent-samples t-tests). 
We therefore conducted a 2x2 ANOVA with twin pairs as a 
repeated measure factor and age group as a between-subject 
factor. The main effect of age group was again found to be 
significant, 7^1,22)= 37.82, /><.01, confirming a larger composite 
effect in children than in adults.

Finally, before turning to theoretical interpretation, it is 
necessary to dispose of one last potential limitation in our study. 
This is the unequal distribution of gender across age. In the child 
group, 45% of participants (9 out of 20) were female, whereas in 
the adult group, 93% (26 out of 28) were female. This raises the 
possibility that the weaker holistic processing observed in adults 
may have something to do with being female. However, the 
literature suggests that it is females who have better recognition 
memory with faces in general [25], More relevant to our study, 
females’ superior recognition ability extends to child faces [26], 
and this sex difference is also present in children [27]. Therefore, if 
anything, the prediction of our study would have been stronger 
holistic processing for adult participants, where there was a higher 
proportion of females. Yet our findings were the opposite, in that it 
was the child participants who showed stronger holistic processing.

Discussion

O ur results are novel in several ways. First, they provide the 
first demonstration that children show a composite effect for 
unfamiliar child faces. Second, they provide the first comparison 
of the size of the composite effect for child faces across child and 
adult participants, and thus provide the first evidence that the 
composite effect is larger in the former case. Finally, they provide 
the first comparison of the composite effect across participant 
age, for any age of face, that avoids problems associated with 
restriction of range due to ceiling effects in adults (see next section 
for details).

An own-age bias or a larger composite effect in children 
for faces of all ages?

We have shown that children have a larger composite effect 
than adults for child faces. Our preferred interpretation is that this 
arises from an own-age bias on holistic processing in child 
participants, and thus complements earlier demonstrations of own- 
age biases on holistic processing in adult participants [11,12].

However, given that we did not test an adult face set, there is an 
alternative possible interpretation, namely that children might 
show a larger composite effect that adults for all face ages. Previous 
data [18,19] do seem to show, at first glance, that children have a 
stronger composite effect than adults even when tested with adult 
faces: the size of the composite effect in de Heering et al [18] was
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Figure 2. Results. (A) Accuracy (% correct matches) for same-aligned and same-misaligned trials in the full sample, showing a larger composite 
effect in children than adults. Error bars show ± 1 SEM of the composite effect score, as appropriate for the within-subject comparison of aligned and 
misaligned. (B) The same result holds for a subset of participants for whom "baseline" performance in the control misaligned condition was matched 
across age groups. (C) Scatterplot of age versus composite score, with best linear fit for the adults, showing no age-related decline in holistic 
processing in older adults. 
doi:10.1371/journal.pone.0006460.g002
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Table 1. Mean accuracies for same and different trials.

D a t a  S e t G r o u p N A l ig n e d  A c c u r a c y  (% ) M is a l ig n e d  A c c u r a c y  {% ) C o m p o s i t e  S c o r e  (% ) ( M is a l ig n e d  A c c u r a c y  - A l ig n e d  A c c u r a c y )

Full Children 20 54.6 (5.2) 80.5 (3) 25.9 (5.6)

Adults 28 78.1 (2.6) 90.6 (1.5) 12.5 (2.6)

Baseline-matched Children 15 54 (6.8) 86.3 (2) 32.3 (6.2)

Adults 23 78.1 (2.9) 88.3 (1.5) 10.5 (2.8)

(A) Mean accuracies (% correct matches) for aligned and misaligned conditions in the full and baseline-matched datasets of the same trials. (B) Mean accuracies for 
aligned and misaligned conditions of the different trials. SEM in brackets. 
doi:10.1371/journal.pone.0006460.t001

19% for children (aged 4—6 years) and 7% for adults; and in 
Macchi Cassia et al [19], with a slightly different way of creating 
the composites, it was 11% for children (aged 3-5 years) and 5% 
for adults. In both studies, however, there was a methodological 
issue that prevents valid comparison of the size of the composite 
effect across age groups. Specifically, there was a substantial 
difference in overall performance between age groups such that 
adult participants performed close to ceiling (the average of same- 
aligned and same-misaligned was 92% [18] and 93% [19]) while 
children’s performance was placed nicely in the middle of the 
2AFC 50-100 range (82% [18] and 77% [19]). This means that, 
while both studies [18,19] provide compelling and theoretically 
important evidence that young children show strong composite 
effects, the claim of a stronger composite effect in children than 
adults could be due simply to a restriction-of-range problem in 
adults. This interpretation is direcdy supported by two studies with 
adult participants [28,29], taken from the same laboratory as the 
de Heering et al [18] study. These studies used composite stimuli 
constructed in the same way as in de Heering et al [18] (i.e., with a 
small vertical gap between the top and bottom halves) but set task 
difficulty so as to avoid ceiling effects in adults (2AFC task with 
average of aligned and misaligned performance 86% [28] and 
78% [29]). Under these circumstances, the size of the composite 
effect for adults was 15% [28] and 22% [29]; this is very 
comparable in size to that found for children in de Heering et al 
(19%) [18],

In addition to this evidence, there is a second reason to think 
that there should be no differences between the size of the 
composite effect between children and adults for adult faces. The 
composite effect is a measure of holistic processing. The 
disproportionate inversion effect (the amount by which the 
inversion-reduction in memory for faces exceeds the inversion- 
reduction in memory for objects) is another measure of holistic 
processing. For adult faces, Crookes and McKone [15] found 
that the disproportionate inversion effect was the same size in 
children and adults. Also, again using adult faces, both Crookes 
and McKone [15] and Carey [30] found the size of the inversion 
effect for faces itself was the same size in children and adults. 
Crucially, both studies matched baseline performance across age 
groups. These inversion results therefore make a strong case that 
holistic processing is not larger in children than adults for adult 
faces.

Taking all findings together, we believe the most probable 
interpretation of the present result is that it represents an own-age 
bias in children for children’s faces. We acknowledge, however, 
that to date there have been no studies that allow direct valid 
comparison of the size of the composite effect across children and 
adults for adult faces, and thus it remains possible (although we 
believe unlikely) that future studies could demonstrate that 
children show larger composite effects for all face types.

Comparison with part-whole studies in children
Our composite effect results are in conflict with the two previous 

part-whole studies [13,14], both of which tested child faces and did 
not find that holistic processing was stronger in children than 
adults. What is the origin of this conflict? We see two possibilities.

First, it may be (again) due to the presence of baseline 
differences between age groups in the earlier studies, which placed 
scores sufficiently close to ceiling (in adults) or floor (in children) so 
that range to show the holistic processing effect tested might have 
been restricted in one or other age group. In Pellicano and Rhodes 
[13], the average of the two conditions compared to calculate 
holistic processing (part and whole) was nicely in the middle of the 
2AFC accuracy scale for adults (80%), but was low enough to 
perhaps produce a restriction-of-range problem in children (63%). 
Correspondingly, children showed a nonsignificant trend towards 
less holistic processing than adults (i.e., the reverse direction to the 
present study). In Pellicano et al [14], there was the opposite 
problem of potential restriction-of-range in adults (average across 
whole and part-in-spacing-changed-whole conditions = 90%), but 
not children (average = 71 %); and, correspondingly, children 
showed a nonsignificant trend towards more holistic processing 
than adults (i.e., the same direction as the present study). Thus, in 
failing to equate baselines, the methodology of [13] and [14] may 
have masked any own-age bias.

The second possibility is that task itself matters (part-whole [13] 
and part-in-spacing-changed-whole [14]) versus the composite effect 
(present study). That is, while the part-whole and composite effects 
are both widely accepted as good measures of holistic processing, 
there may be some poorly understood difference between them that 
could produce genuine differences in results for child faces between 
the two tasks. In the absence of part-whole studies that have equated 
baseline performance across age groups, however, it would 
premature to draw any such conclusion at this stage.

Origins of an own-age bias on holistic processing
Overall, we suggest that our results in children complement 

those of previous papers in adults to make a strong case that 
holistic processing can be influenced by own-age effects, just as it is 
influenced by own-race effects. This implies that differences in 
holistic processing for different face types may be an important 
variable driving corresponding differences in recognition memory 
for own-age as well as own-race faces.

We next consider the possible cause of an own-age bias on holistic 
processing. Presumably, this relates in some way to the amount of 
(recent) visual experience participants have with different face types: 
two recent studies have found that preschool teachers showed 
stronger holistic processing for child faces than did ordinary (“child- 
face-novice”) adults [11,12]. (Another intriguing aspect of both 
studies is that while preschool teachers showed stronger holistic
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processing for child faces, they also showed weaker holistic 
processing for adult faces than the novice group. On a speculative 
note, this seems to indicate some kind of trade-off between the use of 
holistic processing for own-age and other-age faces. Perhaps holistic 
face processing capacity is limited such that it is automatically 
deployed more for the most commonly encountered or socially 
important face type. Our present data are silent with respect to this 
issue, since we did not test our child participants with adult faces. 
This speculation predicts that, in future studies, children with more 
visual experience of, or social interest toward, adult faces would 
show stronger holistic processing with adult faces than child faces.) 
Similarly, our own child participants (most of whom saw 6-7 year 
old faces at school every day) would have had greater recent 
experience with children’s faces than did our adult participants (who 
were unselected for profession).

It remains an open question, however, as to whether the 
relationship of holistic processing to experience is direct or 
indirect. There may be a direct effect on the tuning of perceptual 
processing mechanisms. By analogy, dimensions of face-space are 
commonly argued to be tuned by recent exposure to match the 
“face diet” to which one has been exposed (e.g., when explaining 
adaptation aftereffects for faces; [31]).

Alternatively, it may be that there is no direct causal effect of 
experience on holistic processing, but that the relationship may 
arise indirectly via the correlation between experience and social 
categorisation, social interest, and/or attention given to difference 
face types. Face memory has been shown to be reduced by social 
outgroup categorisation [32] and, in the race field, it has been 
shown that strength of holistic processing can be altered merely by 
changing the perceived race group of an ambiguous-race face 
stimulus (an Asian-Caucasian morph; [33]). It may be that similar 
social effects contribute to other-age effects. In explaining previous 
findings in adults, it may be that people who choose to become 
preschool teachers are likely to be socially interested in children 
(and to not spontaneously categorise them as social outgroup 
members;. Similarly, in our own study, the children may well have 
treated child faces as ingroup members more so than did the
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adults. Indeed, if the 8-13 year old children differed amongst 
themselves in how strongly they categorised 5-7 year old face stimuli 
as ingroup members, this could explain why our child group 
showed not only a greater mean composite score but also higher 
variance in composite scores than our adult group.

O f course, these two proposals (direct and indirect influences) 
are not necessarily mutually exclusive. It could be that the own-age 
bias on holistic processing is caused by some interaction between 
the amount, quality, and recency of visual experience with a face 
type, tuning of perceptual mechanisms, and social categorization.

Development of the "special'' aspect of face recognition
Finally, our results have theoretical implications for a topic quite 

different than own-age bias, namely the development of the 
“special” aspect of face recognition across childhood. It is now 
widely agreed that holistic processing is qualitatively present in 
very young children (i.e., all the standard phenomena have been 
demonstrated at 4-5 years, including composite, part-whole, 
inversion, sensitivity to spacing between facial features 
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findings of increases in holistic processing effects with age are 
unreliable due to substantial baseline changes across age groups. 
Our present study joins an emerging literature arguing that holistic 
processing Is in fact quantitatively mature earlier rather than later 
(for review see [15]). In fact, our findings show that it is possible for 
children’s holistic processing to be stronger than adults’.
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5.4 Susilo, Crookes, McKone & Turner (2009) -  addendum

The final published version of this paper was missing section B of Table 1. 

Below is the full table as originally intended.

Table 1.
Mean accuracies for same and different trials

Aligned Misaligned Composite Score (%)
Data bet Group N Accuracy (o/0) Accuracy (%) (Misaligned Accuracy - Aligned Accuracy)

Children 20 54.6 (5.2) 80.5 (3) 25.9 (5.6)
Ful1______Adults 28 78 1 (2.6)______ 90.6(1.5)__________________ 12.5 (2.6)_______________
Baseline- Children 15 54 (6.8) 86.3 (2) 32.3 (6.2)
matched Adults 23 78.1 (2.9) 88.3(1.5) 10.5(2.8)

B
Aligned Misaligned

rouP______ Accuracy (%) Accuracy (%)
Children 20 79.6 (3.7) 69 4 (3.9)
Adults 28 85.9 (2.3) 71.2 (4.2)

(A) Mean accuracies (% correct matches) for aligned and misaligned conditions in the 
full and baseline-matched datasets of the same trials. (B) Mean accuracies for the 
aligned and misaligned conditions of the different trials. SEM in brackets.

5.5 Discussion -  Own-age bias findings in this thesis

In the context of the thesis, recall that the first aim of the present chapter was to 

investigate quantitative development in the size of the composite effect across age.

Here, results are clear. Findings were in agreement with the conclusions of Chapter 4 

(Crookes & McKone, 2009), in showing that holistic processing was quantitatively 

mature in children (i.e., not quantitatively weaker in children than in adults).

The second aim of the chapter, with regard to the broader thesis aim of 

investigating flexibility in the mature system, was to further investigate own-age bias 

effects. To summarise the findings of the present thesis, results showed an own-age bias 

in children for recognition memory (Chapter 4, Experiment 3 A) and strength of holistic 

processing (Chapter 5) but not in implicit memory (Chapter 4, Experiment 3B). These 

findings argue that the mature face processing system does retain some flexibility such 

that recent experience with a face subtype not only affects recognition but also 

perception. But note this flexibility is not necessarily in the face system itself.

In Chapter 4 the finding of an own-age bias for explicit memory in children was 

argued to be the result of attentional and/or social factors rather than direct perceptual 

factors as no equivalent bias was found on implicit memory. Does our finding of an
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own-age bias on holistic processing (a perceptual measure) contradict this 

interpretation? I argue not: perception itself may also be affected by these top-down 

influences. Several authors have argued that social categorisation of a face as an 

outgroup member can have the effect of switching off the normal perceptual 

individuation mechanisms that are automatically engaged for ingroup members (e.g., 

Bernstein, Young, & Hugenberg, 2007; Simons & Levin, 1998). Under this view, lack 

of holistic processing (or of other perceptual mechanisms involved in individuation) for 

other-group faces would not necessarily reflect an inability of the perceptual system to 

encode the physical form of the stimulus face in a normal manner, but instead merely a 

lack o f engagement of that perceptual system. This effect has been shown directly in the 

other-race literature. Michel, Corneille and Rossion (2007) reported that the composite 

effect for morphed ambiguous-race faces was modulated by categorisation as own- or 

other-race. The fact that holistic processing for ambiguous-race faces was strong in one 

perceived-race condition demonstrates that the weak holistic processing for exactly the 

same stimuli in the other perceived-race condition cannot be due to a lack of ability to 

perceptually encode the stimulus faces; instead, it must reflect a lack of engagement of 

the relevant perceptual system. Thus, in the present thesis, the holistic processing and 

explicit/implicit memory results are compatible if it is presumed that perceiving a face 

as not own-age may partially switch off normal holistic face processing mechanisms 

(either via lack of attention, or via some effect of social outgroup categorisation).

This interpretation then poses an additional question: Why do we observe an 

own-age bias on the composite effect but not on implicit memory for children in 

overlapping age groups, when both are argued to be measures that tap face perception? 

This remains an open question. One possible answer is that the composite effect taps 

conscious face perception, while implicit memory taps the unconscious influences of 

perceptual encoding. It is known that conscious and unconscious perception can be 

dissociated, including for faces. For example, there are cases of acquired prosopagnosia 

in which the subject demonstrates implicit knowledge of a person’s appearance without 

any apparent ability to access this knowledge explicitly (e.g., de Haan, Young, & 

Newcombe, 1987). This raises the novel idea that perhaps the social factors affecting 

face processing do not actually disrupt the engagement of the perceptual measures per 

se, but instead disrupt conscious access to the output of these mechanisms.

A final topic to which the own-age results are relevant is the question of when in 

life experience affects face recognition. Chapter 2 noted that findings that differential 

exposure to face subtypes (e.g., more experience with own-race face than other-race
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faces, or with human faces than with chimpanzee faces) influence face processing has 

been used to support arguments that lifetime experience with faces is the origin of adult 

abilities with faces (e.g., Martin-Malivel & Okada, 2007), reflecting the classic Carey 

and Diamond (1994) idea that total lifetime experience is the key factor because 

increased experience produces greater expertise in individuating faces. As previously 

discussed, a core role for total lifetime experience is rejected empirically by findings of 

expertise without face experience (in newborns and face-deprived monkeys) and also by 

the evidence of early quantitative maturity in Chapter 4 (Crookes & McKone, 2009). It 

is further rejected by the results of Chapter 5: while the own-age bias on holistic 

processing certainly argues that experience can affect face recognition, it refutes the 

idea that total lifetime experience is the relevant factor. Total lifetime experience would 

have predicted holistic processing could never be stronger in children than in adults, 

because the adult participants were once children and so have had at least as much total 

lifetime experience with 5-7 year-old faces as have the 8-13 year-old participants.

The results of Chapter 5 thus allow us to tease apart the effects of total lifetime 

experience versus recent experience. The findings clearly support the view that it is 

recent experience that modulates face processing: child participants have stronger 

recent exposure to 5-7 year-old faces than typical adults, corresponding to our finding 

of stronger holistic processing in children than in adult participants. This idea can also 

explain the results of two recent studies examining own-age bias effects on holistic 

processing in adults with different levels of experience with children (de Heering & 

Rossion, 2008; Kuefner et al., in press). These studies found that adults with strong 

recent experience with children (preschool teachers) showed stronger holistic 

processing for child faces, relative to adult faces, than did typical adults with no special 

recent experience with children.

In conclusion, our results argue that, although children’s face perception system 

is mature early, this mature system retains flexibility such that concentrated recent 

exposure to a face subtype can influence the operation of this system (or perhaps 

conscious access to its outputs), including at a perceptual level. The exact mechanism 

via which experience produces this influence has not yet been established. It appears 

unlikely that the mechanism is direct changes to tuning of the perceptual mechanisms 

themselves (e.g., better ability in holistic processing, better tuning of face-space 

dimensions), and presumably arises through indirect effects of social or attentional 

factors.
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CHAPTER 6 -  EXPERTISE WITHOUT EXPERIENCE: 4-MONTH-OLD INFANTS

INDIVIDUATE UPRIGHT HORSES

6.1 Context statement

The previous two chapters established that face perception is mature early in 

childhood and that adult expertise with faces is not based on ongoing experience with 

faces into adolescence. This finding resolves a longstanding inconsistency between the 

remarkable face discrimination abilities displayed by neonates and the protracted 

development seen on face tasks into adolescence. Instead it appears, based on evidence 

of remarkable early abilities, perceptual narrowing and critical/sensitive period for 

faces, that adult expertise for faces results from a combination of an experience- 

expectant innate representation and early experience with the faces of conspecifics.

This chapter turns to infancy and addresses the third main aim of this thesis: to 

investigate the nature of the experience-expectant component present at birth. 

Specifically, this chapter investigates two questions raised in Chapter 2: (1) Is the innate 

component which supports face discrimination specifically a face representation or is it 

broader?; and (2) How tightly tuned is the representation to conspecifics (for humans, 

does it include non-human primates, for example, but not all mammals)?

6.2 Publication status

This chapter has been written as a paper for submission, in a format suitable for 

Developmental Science. It will be submitted as:

Crookes, K. & McKone, E. Expertise without experience: 4-month-old humans 

individuate upright horses.
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6.3 Author contributions

6.3.1 Literature review

• Crookes was responsible for the literature review, including literature searches, 

reading papers, understanding methods and results, summarising findings, and 

noting methodological issues.

6.3.2 Conceived and designed the experiment

• All experiments were conceived and designed by Crookes in conjunction with 

McKone.

6.3.3 Designed and built baby lab

• Crookes researched and designed the baby lab and oversaw construction

• Crookes was responsible for procuring appropriate software and equipment

6.3.4 Programming and Testing

• Crookes programmed all the tasks and created the stimuli

• Crookes arranged all the infant testing including ethics clearance from the 

health department and the university, establishing contact and liaising with 

paediatricians, nurses and department of health officials to advertise the study

• Crookes collected all the infant and adult data

6.3.5 Data analysis

• Crookes was responsible for deciding what statistical analysis would be 

performed.

• McKone suggested additional analyses.

• Crookes performed all the data analysis.

6.3.6 Theory development

• Crookes and McKone worked together to develop the arguments and theories 

presented

6.3.7 Writing

• Crookes wrote the paper and produced all the tables and figures

• McKone then edited and refined the paper
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6.4 Abstract

Face individuation undergoes perceptual narrowing across infancy, arguing for a 

broadly tuned innate representation. Previous studies have shown this representation 

encompasses monkey as well as human faces, but it has implicitly been assumed that it 

is of a face. Here, we consider the possibility that it is even broader. We tested 

individual level discrimination of whole animals (bay thoroughbred horses, shown in 

side view), in 4-month-olds (before any narrowing for faces has been observed). Horses 

and human faces were equated for visual similarity as demonstrated by matched 

performance in adults for the inverted orientation. Results then showed that infants 

could discriminate upright horses at least as well as upright faces, despite adults 

showing the expected pattern of poor discrimination of upright horses relative to upright 

faces. Infants did not discriminate inverted horse stimuli. Our findings imply innate 

individuation is broader than a primate face, encompassing at least other mammal heads 

(in profile view), and perhaps full bodies of all animals.

6.5 Introduction

Accurate face recognition early in life is socially important and has the potential 

to confer an evolutionary advantage. Correspondingly, there has long been speculation 

that there may be some component to face recognition skill that is present at birth.

Early studies showed that newborn infants track a face-like pattern of blobs 

further than an inverted or scrambled pattern, indicating that faces are special very early 

in life, and that face preference is unlikely to be explained by experience only (Goren, 

Sarty, & Wu, 1975; Johnson, Dziurawiec, Ellis, & Morton, 1991). One influential early 

theory arguing for an innate representation was proposed by Morton and Johnson 

(1991), who argued that infants are born with a face-specific subcortical system which 

orients attention to faces (Conspec), with individual level discrimination then 

developing later (around 3 months) and performed by a second system (Conlern). 

Others have argued that the infant preference for faces might arise not from a specific 

face bias, but rather from a number of non-specific biases in the infant visual system 

(e.g., preference for stimuli with more elements in the upper half of the visual field) 

which coincidentally occur in faces (for review see Simion, Macchi Cassia, Turati, & 

Valenza, 2003). In this way, there would be no innate “face” component, but rather a
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preference for looking at stimuli which share certain characteristics most commonly 

found in faces.

More recently, however, three lines of evidence have emerged which argue 

strongly that an “experience expectant” innate2 capacity, first proposed by Nelson 

(Nelson, 2001), is capable of much more than simple orienting to faces. Human 

neonates can discriminate their mother from other similar looking females at less than 5 

days old (Bushnell, 2001; Pascalis, de Schonen, Morton, Deruelle, & Fabre-Grenet, 

1995), although there is some evidence that this maybe reliant on prenatal experience 

with their mother’s voice (Sai, 2005). At 1-3 days old, neonates can also discriminate 

previously unfamiliar female faces without hair: that is, following habituation to one 

individual infants will look longer at a “new” identity face compared to the “old” 

habituated face (Turati, Macchi Cassia, Simion, & Leo, 2006). Turati et al. (2006) 

further found that infants can perform this discrimination when the faces are upright but 

not inverted, in a pattern similar to the standard “inversion effect” in adults (i.e., more 

accurate recognition of upright than upside-down faces; Yin, 1969). At the same age, 

infants can even recognise a previously unfamiliar individual across a view change. 

Turati, Bulf and Simion (2008) found that, for example, infants habituated to a three- 

quarter profile view of a face, then tested with front view stimuli will look longer at a 

“new” face than the “old” face identity. However, this generalisation across views had 

limits, in that infants could only perform the discrimination from front to three-quarter 

view (and vice versa), but not from three-quarter view to profile.

These studies demonstrate advanced face processing skills in human neonates, 

which include individual-level discrimination, not merely orienting. Further evidence 

that early face discrimination ability does not require experience comes from a study of 

monkeys raised without face input from birth. Sugita (2008) found that 6-24 month-old 

face-deprived monkeys, upon first exposure to faces, demonstrated not only a 

preference for photographs of faces over other novel objects, but were also able to make 

fine discriminations between very similar individual faces (e.g., differing only in the 

spacing between the eyes and between eyes and mouth).

A second source of evidence that innate contributions to face recognition are 

more complex than simply an orienting device comes from the effects of lack of face 

experience during a critical or sensitive period in infancy. Critical/sensitive periods are

9 • • •Throughout this article, the term “innate” should be read as shorthand for “experience- 
expectant innate”: we make no claims that face processing is fully mature at birth and in 
fact argue for the importance of early experience.
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found where, in the absence of expected appropriate input, an inborn neural system is 

taken over for another purpose (see Sengpiel, 2007 for review). Infants born with dense 

bilateral cataracts preventing all pattern visual input until the cataracts were removed at 

approximately 2-19 months of age show deficits later in life, even with more than 9 

years of post-operative experience with faces, in both holistic face processing (e.g., 

composite effect, Le Grand, Mondloch, Maurer, & Brent, 2004; spacing sensitivity, Le 

Grand, Mondloch, Maurer, & Brent, 2001) and cross-view face recognition (Geldart, 

Mondloch, Maurer, de Schonen, & Brent, 2002).

Final evidence for advanced innate face recognition abilities comes from 

findings supporting an inborn ability to discriminate individuals not only of one’s own 

species of primate, but individuals of another species which the infant has had no prior 

experience. Perceptual narrowing refers to the situation in which an initially broadly 

tuned inborn system becomes more specific when experience is limited to a subset of a 

stimulus class. For instance, in the language domain, infants are born with the ability to 

discriminate all phonemes from all languages. By 6-12 months of age, phoneme 

discrimination is limited to those present in the language(s) to which the infant has been 

exposed (Kuhl, Tsao, & Liu, 2003).

In the face domain, evidence argues that the representation supporting face 

individuation starts out broadly tuned -  encompassing nonhuman primate faces and 

faces of all human races -  and becomes own-species and own-race specific with 

experience. Six-month-old human infants demonstrate individual level discrimination of 

both human faces and monkey faces, but 9-month-olds and adults show discrimination 

ability limited to human faces (Pascalis, de Haan, & Nelson, 2002). Narrowing is not 

observed if the infants received experience with monkey faces between 6 and 9 months 

(Pascalis et al., 2005), and this is dependent on the quality of experience: individual 

level naming experience maintains discrimination ability whereas categorisation as 

“monkey” or simple exposure still results in narrowing (Scott & Monesson, 2009). 

Similarly, the face-deprived monkeys of Sugita (2008) could initially perform 

discrimination of both monkey and human faces but following 1 month of exposure to a 

single face type (either monkey or human) discrimination had become limited to the 

species experienced. In the case of the monkeys exposed to human faces, discrimination 

of monkey faces was not relearned despite later receiving 11 months of experience 

sharing a cage with other monkeys.

Narrowing for race-of-face has also been observed in human infants. Kelly et al. 

(2007) found that 3-month-old Caucasian infants with little or no experience with Asian
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or African faces could discriminate faces from all three races across a view change. At 

6-months the ability to discriminate African faces had been lost, and by 9-months 

infants could only discriminate Caucasian faces.

Taken together all these studies demonstrate that, for upright but not inverted 

faces, babies demonstrate expertise without experience in individual-level 

discrimination. Results argue that infants are born with a representation that starts out 

broadly tuned, supporting discrimination of other-primate-species and other-race faces 

at 3-6 months. The representation then narrows with experience, to be human face and 

own-race specific by 9 months.

Throughout these previous studies it has been presumed that the innate 

representation, while broadly tuned at birth, is specifically a face representation. It is 

possible, however, that the innate representation is in fact broader that is an innate 

individuation ability. In the present study, we investigate the possibility that whole 

animal bodies are a candidate for inclusion in an innate individual-level identification 

system.

There are at least two reasons to consider whole animals. First, a study using the 

change-blindness procedure of Rensink, O’Regan & Clark (1997), in adults, found that 

participants were less blind to changes in a natural scene where these changes involved 

an animal (e.g., addition of a lion to a savannah scene), than other types of objects (e.g., 

trees, vehicles, buildings; New, Cosmides, & Tooby, 2007). Thus, although typical 

adults have poor ability to individuate animals (e.g., dogs of a given breed, Diamond & 

Carey, 1986; Robbins & McKone, 2007), it seems that animals retain some special 

status in terms of attracting attention. Second, in infants, there is evidence of at least 

some type of innate whole-animal representation. Specifically, Simion, Regolin & Bulf 

(2008) demonstrated that human newborns (1-5 days old) prefer upright biological 

motion (point light motion) of walking chickens to inverted or scrambled chicken 

motion. An open question is whether this innate animal representation can support 

individual level discrimination.

There are a number of previous studies of infants viewing photographs of 

individual animals of a given species. None, however, have addressed the question of 

whether infants can tell apart the identity of those individual animals. Previous studies 

of whole animal recognition have focussed on categorisation at a species level (e.g., 

showing that 3-4 month-olds can deduce the categories ‘cat’ versus ‘dog’; Quinn & 

Eimas, 1996, 1998). Where within class discrimination has been tested (e.g., Siamese 

cat 1 vs. Siamese cat 2), stance has varied substantially between the images (e.g., sitting
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vs. standing), meaning that results could reflect discrimination of pose rather than 

identity (6-month-olds; Quinn, 2004).

The aim of the present study was to investigate the breadth of the innate 

representation driving adult face-specificity for individuation. Identity discrimination 

within a class of whole animal bodies was tested at an age (4 months) before any 

narrowing for faces has been observed, to examine whether the representation is 

restricted to faces-only (but broad enough to include primate faces) or includes whole 

animals.

Our animal category was bay thoroughbred horses, photographed in side view. 

These were selected because a large range of high quality colour photographs is 

available from sire websites, all of which present the horse in a highly standard stance, 

thus minimising low-level image differences between individual exemplars. Our task 

was a particularly demanding (in the infant context) discrimination task, requiring the 

recognition of three different horse identities: infants habituated to an alternating 

sequence of two different horses, after which we tested whether the infant could 

discriminate a third new horse (i.e., looked longer at the new horse than at a randomly- 

chosen one of the two old horses). This procedure has previously been used with faces, 

where it has been shown that 7-month-olds can discriminate the identity of the three 

different faces (Cohen & Cashon, 2001).

6.6 Experiment 1 -  disproportionate inversion effect for faces versus horses in

adults

Our infant experiments measured both discrimination of horses and 

discrimination of faces. To ensure any difference in discrimination performance for 

upright horses and upright faces was not due to differences between stimulus sets in 

physical similarity (i.e., the face set being intrinsically more discriminable than the 

horse set, or vice versa), we first ran an adult experiment demonstrating matched 

performance for face and horse sets in the inverted orientation.

A standard finding in adults is that, while all objects with a natural upright are 

individuated slightly better upright than upside-down, this upright advantage is much 

larger for faces than for other object classes (e.g., Yin, 1969) including whole animal 

bodies (dogs, Diamond & Carey, 1986; Robbins & McKone, 2007). This finding is 

attributed to the special holistic/configural processing that has been shown to operate
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for upright faces, but not for inverted faces, or for objects in either orientation (e.g., 

Robbins & McKone, 2007; Tanaka & Farah, 1993; Young, Hellawell, & Hay, 1987).

Our rationale for matching our horse and face sets for inverted recognition accuracy was 

therefore to assess perceptual similarity of the two stimulus sets while avoiding the 

effects of special processing mechanisms that would differ between the two stimulus 

classes.

If our stimuli are shown in Experiment 1 to produce matched performance for 

inverted faces and inverted horses in adults, then we will be able to argue that any 

finding of good (or poor) discrimination of horses in our infant experiments is not an 

artefact of stimulus selection. In addition, in the context of matched inverted 

performance, if we show the expected result that adults discriminate the upright horses 

more poorly that the upright faces, this will mean that a finding of good upright horse 

discrimination in infants would indicate perceptual narrowing by adulthood.

6.6.1 Method

6.6.1.1 Participants

Participants were 20 adults (mean age 22.05 years; 8 males) from the Australian 

National University community. All were Caucasian (the same race as the face stimuli), 

and were paid $5 for the 30 min experiment.

6.6.1.2 Design

The task was designed to logically match the task the infants would be 

performing, except for the use of a direct recognition memory task rather than looking 

time to assess discrimination. Participants were presented with 2 faces (or horses) 

sequentially, followed by a third face (or horse). They were asked to respond if the third 

face (horse) was “old” (one of the previous two) or “new” (not one of the previous two). 

Stimulus class (faces, horses) and orientation (upright, inverted) were varied within- 

subjects. Participants completed one block of upright and one block of inverted trials 

with order counterbalanced across participants. Within each block face and horse trials 

were intermixed. The same stimuli were used upright and inverted. Dependent measures 

were Hits, False Alarms, and a corrected recognition memory score (% hits - % false 

alarms).
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6.6.1.3 Materials

Stimuli were colour photographs of 12 faces and 12 horses presented against a 

uniform grey background (see Figure 1). Faces were front view photographs of 

Caucasian females with neutral expressions and no glasses or make-up, from the 

Australian National University face database. Faces were cropped at the neck and 

retained ears and cheek and chin shape. The same grey headband was pasted on each 

face to remove hair cues to identity. Distinguishing features such as birthmarks, 

blemishes and earrings were removed. Faces were sized 20cm vertical (top of headband 

to bottom of the visible neck) by 14.4-16.5cm (average 15.2cm) horizontal (ear to ear), 

corresponding to 22.6° to 17.3° at the viewing distance of 50cm.

Horses were side view photographs of bay thoroughbred stallions pictured in the 

same stance. Photographs were from www.stallions.com.au, an online sire database. 

Horses were cropped to exclude background. Extraneous identifying features such as 

brands were removed. Where grass obscured the hoofs, new hoofs were pasted on. All 

horses were wearing a bridle. Horses were 20cm horizontal (nose to tail) by 14.5- 

16.7cm (average 15.6) vertical (tip of ears to hoofs), corresponding to 22.6° by 17.7°.

Inverted stimuli were created by rotating the photographs 180°. Adobe 

Photoshop 7.0 was used for all manipulations.

Stimuli were organised into sets of three (see Figure 1). There were 4 triplets of 

faces (A, B, C & D) and 4 triplets of horses of similar exact shades of bay (A, B, C & 

D). The final items included in the stimulus set, and the combinations these items into 

specific triplets, were the result of extensive pilot testing to match discrimination 

performance for faces and horses inverted.
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1 )

Figure 7. (1) Face and (2) horse triplets A-D.
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6.6.1.4 Procedure

Stimuli were presented on a CRT screen eMac computer using Psyscope X 

software (Cohen, MacWhinney, Flatt, & Provost, 1993; http://psy.ck.sissa.it/). 

Participants were tested individually in a quiet room. During a practice block (16 trials) 

using brightly coloured cartoon dinosaurs as stimuli, feedback on incorrect responses 

was provided.

Each trial began with a black fixation cross in the centre of the screen for 

1000ms. The first stimulus was then presented for 400ms, followed by 800ms of blank 

screen and the second stimulus for 400ms. A red fixation cross then appeared in the 

centre of the screen for 1000ms followed by the third stimulus which was presented 

until response. Participants were instructed to respond as to whether the third stimulus 

of each trial was “old” (in the first two stimuli) or “new” via keyboard buttons. There 

was no feedback during experimental trials.

A 1 minute break followed the first block. Participants then completed the 

remaining block (e.g., inverted if upright was presented first).

In each block there were 96 trials (48 face and 48 horse trials, intermixed and in 

different random order for each subject). The third stimulus was “old” on 50% of trials. 

There were 12 trials for each triplet shown in Figure 1. Each individual face or horse 

was presented four times as the first stimulus of the trial, four times as the second 

stimulus and four times as the third stimulus (twice as “new” and twice as “old”).

6.6.2 Results

The aim in creating the stimuli was to match performance for the inverted 

condition across stimulus class. Given the nature of the task, this required matching hits, 

false alarms and corrected recognition scores. This was achieved (Table 1).

Performance for inverted faces and inverted horses did not differ on all three measures: 

hits t( 19) = 1.08, p > .2; false alarms t < 1; corrected recognition t < 1.
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Table 1. Results of Experiment 1: Adult data showing discrimination (recognition 

memory for the third item in the triplet) for the face and horse stimulus sets.

% old to old 
item (hits)

% old to new item 
(false alarms)

Corrected recognition 
(hits -  false alarms)

Inverted Horses M 76.7 22.9 53.8
SEM 2.3 2.5 2.9

Inverted Faces M 79.8 24.2 55.6
SEM 2.9 3.5 3.7

Upright Horses M 78.5 19.4 59.2
SEM 2.7 3.1 3.8

Upright Faces M 85.4 13.1 72.3
SEM 2.8 2.3 4.0

Turning to the upright orientation, as expected adults then showed significantly 

poorer discriminability of upright horses than of upright faces (Figure 2), /(19) = 3.11, p 

= .006. The advantage to upright over inverted was significant for faces, /(19) = 3.79, p 

= .001, but not for horses, /(19) = 1.67,p >.l. A significant interaction between stimulus 

class and orientation, F(l,19) = 5.15, p < .04, confirmed the upright advantage (upright 

minus inverted) was significantly larger for faces (16.7%) than horses (5.4%).

90 -i

D Horses 

I  Faces

Inverted Upright

Figure 2. Results of Experiment 1, showing discrimination of faces and horses in adults. 

Error bars are as appropriate for the within-subjects comparison of faces and horses 

(i.e., ±1 SEM of the face minus horse difference scores). *** p  = .006
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6.6.3 Discussion

Experiment 1 confirmed that the inverted faces and horses produced matched 

performance in adults. This evidence of matched physical similarity indicates that our 

stimuli are suitable for investigating discrimination ability in the upright orientation in 

infants. Moreover, because adults showed the expected pattern of poor discrimination of 

horses compared to faces in the upright orientation, evidence of face-level 

discrimination ability for upright horses in infants would imply that perceptual 

narrowing has occurred in adults.

6.7 Experiments 2-4: Identity discrimination of faces and horses in 4-month-oids

The aim of the following set of three experiments was to investigate the breadth 

of the innate representation underlying adult upright face specialisation demonstrated in 

Experiment 1. The ability of 4-month-olds to perform individual level discrimination of 

upright horses (Experiment 2), upright faces (Experiment 3) and inverted horses 

(Experiment 4) was assessed. The 4-month age group was selected because this age is 

before any perceptual narrowing has occurred in previous studies. If the innate 

representation supporting discrimination is specific to primate faces, we would expect 

discrimination of the face stimuli only. However, if the innate representation is more 

broadly tuned, we would expect discrimination of both upright faces and upright horses 

but not inverted horses.

6.7.1 Method

6.7.1.1 Participants

Infants aged 3.5 months -  4.5 months, from the Canberra, Australia region were 

recruited through advertisements in newspapers, on radio, at maternity wards, at 

maternal and child health clinics, and through word of mouth. All infants were full term 

and Caucasian (i.e., both parents were Caucasian), the same race as the face stimuli. 

Parents reported that no infant had any identified visual problems. Parents received $12 

reimbursement.

Each infant was tested on up to two Experiments, where feasible (i.e., if after 

completing the first, they were still attentive for the second). For a total of 22 infants, 

the Experiments used were (a) horses upright (Experiment 2) and (b) faces upright

117



(Experiment 3), conducted in counterbalanced order across infants. For a total of 17 

infants, the Experiments used were (a) horses inverted (Experiment 4) and (b) faces 

upright (Experiment 3), conducted in counterbalanced order.

For the horses upright experiment (Experiment 2), 22 infants began testing 

(mean age = 122 days, range = 110-133 days; 16 male). For the discrimination test, 16 

infants remained in the sample (mean age =121 days, range 110-130 days; 11 male) 

following exclusion for crying (2) or failure to habituate (4).

For the faces upright experiment (Experiment 3), 39 infants began testing (mean 

age = 124 days, range = 110-138 days; 25 male). For the discrimination test, 19 infants 

remained (mean age = 122 days, range 115-133 days; 16 male) following exclusion for 

crying (6) or failure to habituate (14).

For the horses inverted experiment (Experiment 4), 17 infants began testing 

(mean age = 126 days, range = 117-138 days; 11 male). For the discrimination test, 6 

infants remained (mean age = 127 days, range 121-134 days; 3 male) following 

exclusion for crying (2) or failure to habituate (9).

6.7.1.2 Design

An infant controlled habituation procedure was used. Infants were presented 

with one stimulus at a time. During the habituation phase, the stimulus alternated in 

identity between two stimulus items of a triplet. At test, infants saw an “old” habituated 

item and a “new” item (see Figure 3). Looking time to each stimulus item was recorded. 

Discrimination was indicated by dishabituation (longer looking time) for the new 

compared to old item at test.
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A. Habituation B. Test

■ ■ ■

(repeat until criterion reached)

Figure 3. Procedure for Experiment 2 (upright horses in infants), showing (A) 
habituation trials and (B) discrimination test trials.

6.7.1.3 Stimuli

The stimulus items and organisation into “triplets” were the same as in 

Experiment 1 (see Figure 1). An Experiment presented an infant with one of the triplets 

(e.g., an upright horse triplet in Experiment 2). The triplet used (A, B, C or D), and 

which items were used as habituation items versus the novel test item within the triplet, 

were counterbalanced across participants. The viewing distance was approximately 50 

cm, making stimulus visual angles as given for Experiment 1.

6.7.1.4 Procedure

Stimuli were presented on a Compaq PI220 22-inch CRT monitor using Habit X 

1.0 (Cohen, Atkinson, & Chaput, 2004) software running on a MacBook. A Sony DSR- 

PDX10P Digital Camcorder was positioned above the centre of the monitor to allow a 

view of the infant’s eyes on a television in front of the experimenter.

Infants were tested in a quiet, darkened room. The experimenter, the equipment, 

and the room were screened off from the infant by placing the infant and parent inside a 

cubicle with black walls and roof. The cubicle was open to the room behind the parent’s 

seat, and had cutout openings at the front for the monitor and video camera. Infants 

were positioned comfortably on their parent’s lap. The parent was seated on a height 

adjustable chair. The parent wore an eye mask throughout the experiment to prevent 

their own response to the stimuli affecting the infant’s response. The experimenter 

could not see the stimuli being presented, and was blind as to which stimulus was being
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presented at any given time and to when the habituation phase was completed and the 

test trials began.

An “attention getter” was presented before each stimulus. This consisted of an 

expanding and contracting green circle on a black background presented at the centre of 

the screen, accompanied by a bell sound presented through two speakers mounted on 

top of the monitor. The stimulus was only presented when the infant was looking at the 

screen.

The experimenter monitored the infant’s eyes on the television and pressed a 

key on the keyboard when the infant looked at the stimulus and stopped pressing when 

the infant looked away. The maximum trial duration was 20 seconds. A trial ended 

when the infant looked away for 1 second. If the infant failed to meet a minimum 

looking time of 1 second the trial was aborted after 10 seconds of no looking, and rerun. 

During the habituation phase, the two habituation stimuli were alternated. For the 

computer-controlled presentation, the infant was considered to have habituated when 

the mean looking time of 4 consecutive trials dropped to 50% of the mean of the 

looking time for the first 4 trials. The maximum number of habituation trials was 16. 

Following the habituation phase two test trials (one “old” habituated stimulus, one 

“new”) were presented. Order of old and new was counterbalanced across participants.

Prior to analysis, a more detailed examination of habituation patterns was 

conducted. Thomas and Gilmore (2004) have shown that the standard 50%-of-initial- 

looking-time criterion can sometimes lead to erroneous decisions regarding whether or 

not the infant has habituated: this includes both false positives, where the habituation 

criterion has apparently been reached by chance (i.e., further repetition of an old 

stimulus in the discrimination test phase produces much longer looking times than at the 

end of the habituation phase); and false negatives, where infants show consistently 

decreasing looking times that eventually flatten out at a low value but low internal 

variability means that the final value never reaches 50% of the first four trials. We 

therefore visually examined the full habituation curve for each infant individually.

Based on the agreement of two judges, who had no information available as to the 

recorded looking time for the new test trial, we reversed the classification of the 

standard 50% criterion in 7 cases (10.3% of all cases), 3 false positives, and 4 false 

negatives.

The procedure for each Experiment was identical, except for the nature of the 

stimulus class (upright horses, inverted horses, or upright faces).
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6.7.2 Results

The results in Figure 4A demonstrate that infants discriminated individual horse 

identity in the upright orientation. Importantly, discrimination was at least as strong for 

upright horses as it was for upright faces. At test, infants dishabituated to the “new” 

horse; that is, they looked significantly longer at the “new” compared to the “old” horse, 

t{ 15) = 2.73, p  = .015. Dishabituation for upright faces was marginally significant, /(18) 

= 2.02, p = .058.

We also examined the proportion of infants who habituated, taking the presence 

of habituation as at least partially reflective of stimulus encoding ability (Colombo & 

Mitchell, 2009). Results further support the idea that encoding of upright horse identity 

was at least as good as encoding of upright face identity. As shown in Figure 4B, 80% 

of non-crying infants reached the habituation criterion for upright horses, a larger 

proportion than the 57% who reached habituation criterion for faces.

A. Discrimination B. Habituation
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Upright
Horses
n=16

Upright
Faces
n=19

Inverted
Horses

n=6

(16/20)

(19/33)

Upright Upright Inverted
Horses Faces Horses

Figure 4. Results of Experiments 2-4 in four-month-old infants. A. Mean looking time 
during discrimination test trials. Error bars are ±1 SEM. B. Percentage of non-crying 
infants who reached habituation for each stimulus type. * p < . 05

Turning to the inverted orientation, there was no evidence that infants 

individuated inverted horses. In test trials, there was no suggestion of any difference in 

looking times to old and new stimuli: Figure 4A, /(5) < 1. Further, the small sample size 

(n=6) for the discrimination task is a reflection of the difficulty encountered in
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habituating infants to inverted horses: only 40% of non-crying infants reached the 

habituation criterion. Both the discrimination and the habituation findings thus argue 

that 4-month-olds did not encode the identity of inverted horses.

* *

_L

Upright
Faces

Upright
Horses

Inverted
Horses

(n=38) (n=22) (n=17)

Figure 5. Mean looking time to the first two habituation trials. Sample includes all 
infants who completed the first two habituation trials for the given condition. Error bars 
are ±1 SEM. ** p  = .01

One final observation was that, despite infants discriminating upright horses at 

least as well as upright faces, 4-month-olds found faces as a class more interesting than 

horses. Figure 5 plots looking times for the first two habituation trials (that is, to the 

first presentation of each habituation stimulus). Results show that infants looked longer 

at upright faces than upright horses. Statistical evaluation of this difference was 

complicated by the fact that there was partial overlap in samples between infants tested 

in the upright face and upright horse experiments (all 22 infants in the upright horse 

experiment were also tested in the face experiment, but the face experiment included a 

further 16 infants who were not tested on upright horses), meaning that neither standard 

independent-samples nor dependent-samples t-tests were appropriate. To deal with this 

issue, we conducted an independent samples t-test by randomly assigning half of the 

infants who completed both tasks to inclusion in only one experiment (i.e., we ignored 

their data from the other experiment), and repeated this procedure for 20 different
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random allocations. Results showed a significant difference in initial looking time to 

faces and horses (across the 20 iterations, mean /(27.25) = 3.19, meanp  = .01), 

reflecting a preference for upright faces over upright horses. Finally, we compared 

preference across the two horse experiments; looking times to upright versus inverted 

horses did not differ significantly, t(31) = 1.21,/? > .2, (Figure 5).

6.7.3 Discussion

The primary results of Experiments 2-4 were that 4-month-olds successfully 

discriminated upright horses at the individual level. Indeed, they were able to 

discriminate and remember identity information for three horses (a more demanding test 

than the more usual two-item discrimination tasks). This discrimination ability was at 

least as good as that for faces; if anything, the trend was for better horse discrimination 

than face discrimination. Horse discrimination ability was also apparently limited to the 

upright orientation: there was no evidence of discrimination of the horse stimuli when 

these were shown inverted.

A secondary observation was that there was evidence that infants did recognise 

the social importance of faces, finding them more interesting than horses. Consistent 

with a social interest interpretation of the looking-time data, the experimenter observed 

that many infants smiled or laughed at the faces. This behaviour was not observed for 

the horses in either orientation.

6.8 General Discussion

The finding of Experiment 2, that infants can discriminate individual horses, is 

the first demonstration of individuation beyond primate faces in young infants. 

Moreover, the pattern of results observed for infants differed from that seen for adults in 

Experiment 1, although comparison is made difficult by the unavoidable differences in 

procedure between the age groups. Infants demonstrated discrimination of upright 

horses that was at least as good as their discrimination of upright faces, in contrast to 

the pattern in adults in which faces were discriminated significantly better than horses. 

Infants also demonstrated discrimination ability only for upright horses and not inverted 

horses, in contrast to the adult pattern in which horse discrimination was equally poor 

for both orientations. These results argue that there exists a broadly tuned representation
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supporting upright horse discrimination in infancy, and that perceptual narrowing 

occurs such that good discrimination is retained only for human faces in adults.

At what age does this narrowing occur? From the present study, we cannot say. 

However, we note that the previous studies of perceptual narrowing for face types 

(those of other primates, or other human races) find narrowing has occurred by 9 

months of age, making it plausible that the same age would apply to animal 

individuation. Certainly, we have good reason to think that the adult pattern of animal 

discrimination is attained by 7 years of age at the very latest. Using side views of 

Labrador dogs, equated to human faces for physical similarity using inverted orientation 

performance, normal adults show the same pattern observed in the present study -  that 

is, good discrimination only of upright faces (Robbins & McKone, 2007; see Diamond 

& Carey, 1986, for similar findings). Using the same stimulus sets, we have previously 

reported that 7-year-olds show the same pattern (Crookes & McKone, 2009).

We now discuss three possible critiques of our results. First, is it problematic 

that infants’ discrimination of faces was not quite statistically significant? We argue not. 

The previous studies demonstrating face discrimination in our age group (e.g., Kelly et 

al., 2007; Pascalis, de Haan, Nelson, & de Schonen, 1998) have used the standard 

procedure in which infants are required to discriminate only two identities (i.e., 

habituate to one item, one new item at test). Here, in contrast, we used a more difficult 

procedure, requiring discrimination of three different faces. Although it has been shown 

that the 3-item task demonstrates significant face discrimination in older infants (7- 

month-olds, Cohen & Cashon, 2001), it has never before been tested in infants aged 4 

months. Thus, our results are not in direct contrast to any previous findings. Also, of 

course, it seems quite likely that a larger sample size in the present study would show 

face discrimination to be properly significant. But the core point is that, even if lack of 

discrimination of faces was the true result for 4-month-olds in the 3-item task, this is not 

fatal to our conclusion about horses: discrimination of three horses was clearly 

significant in our study.

Second, could it be that our infants’ successful discrimination of horses relied 

merely on some easy local cue, such as a difference in exact shade of bay, or the 

presence of a small high-contrast white sock above the hoof? Again, we argue not. The 

crucial point is that these cues are available in the inverted orientation just as much as in 

the upright orientation, and yet infants demonstrated discrimination only of upright 

horses. More generally, our 3-item task was designed to minimise the influence of any 

single local cues (e.g., if a new item differed from one of the old items in presence of a
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sock, it did not differ from the other old item in this way), and the inverted results for 

adults also argue that local cues were no easier to use in the horse stimulus set than in 

the face stimulus set.

Third, it could be that infants are less sensitive to information in the bottom-half 

of the visual field. Both faces and horses have more information in their top-halves. 

Thus if infants are more sensitive to information in the top-half than the bottom-half of 

the visual field this may account for the inversion effect seen for horses. However 

infants were not limited in the time allowed to explore the stimulus (up to 20 seconds) 

and they were able to move their heads and eyes to concentrate on a region of interest or 

importance.

We thus conclude that our results reflect innately-driven expertise in upright 

horse individuation. The evidence that the discrimination ability must be innately-driven 

is that 4-month-old infants typically have no experience with horses. It is extremely 

unlikely that our results could reflect development of expertise through post-birth 

exposure to horses. No parents were horse owners or enthusiasts, and infants were 

recruited in a city rather than from country areas. Infants’ exposure to horses prior to the 

experimental testing is therefore likely to have been limited to between zero and one 

schematic horses in storybooks and between zero and one real horse (e.g., one mother 

commented “he saw his first horse yesterday”). Moreover, any exposure to horses 

would almost certainly have been at the basic level of categorisation as a horse (e.g., 

“Look, there’s a horse”), rather than involving the individual level labelling which has 

been shown to be critical for the maintenance of discrimination ability for non-human 

primate faces in older infants (Scott & Monesson, 2009). Finally, even if infants had 

seen one or two horses, it is undoubtedly the case that by the age of 4 months they 

would have had dramatically more experience with faces than with horses; yet, 

discrimination ability with horses was as least as good as for faces. The primary 

theoretical question in the present article was how broad is the broadly tuned innate 

representation that supports individuation. Previous studies have shown it is as least as 

broad as a primate face: that is, before narrowing takes place, humans can discriminate 

both human faces and monkey faces (Pascalis et al., 2002), and monkeys can 

discriminate both monkey faces and human faces (Sugita, 2008). The major theoretical 

implication of the present study is that the innate representation is broader than that of a 

primate face, and extends at least to other mammals.

This is a novel finding. It is consistent with evidence that human infants show 

attractiveness preference within non-primate faces (front-view faces of tigers and
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domestic cats in 3-4 month-olds; Quinn, Kelly, Lee, Pascalis, & Slater, 2008).

However, our finding goes beyond this in arguing that human infants have full 

individuation ability for non-primates. That is, it is unlikely that our infants based their 

discrimination solely on attractiveness of the individual horses. All stimuli were 

successful racehorses that had been selectively bred to show the same physical traits. 

Also, horses within each Set in Figure 1 do not appear to differ noticeably in 

attractiveness (except possibly in coat shine, a cue also available in the inverted 

orientation, where it was not used by infants). Finally, even if there were small 

attractiveness differences between the horses, our 3-item procedure means that, 

although the new horse in a trial might differ in attractiveness from one of the old 

horses, it was very unlikely to differ noticeably in attractiveness from the mean of both 

old horses (and even if it did, we note that Quinn et al. found novelty preference only in 

one direction of attractiveness change: infants showed novelty preference for an 

attractive tiger face following familiarisation with an unattractive one, but not vice 

versa).

Having concluded that the representation supporting individuation is broader 

than a primate face, can we conclude that it is even broader again and represents non­

primate whole bodies? This is one possible interpretation of our present findings. A 

whole-animal conclusion would be consistent with the evidence that newborns have 

body-motion representation for upright chickens (Simion et al., 2008), but would go 

beyond these findings to argue that an innate body representation is able to support 

individual-level discrimination, not merely recognition of the presence of upright body 

structure.

The alternative interpretation is that, given that our horse stimuli all included 

heads, the discrimination ability we have observed is based not on the information 

contained in the body, but rather the information in the profile view of the horses’ faces. 

This possibility is also potentially consistent with a number of previous findings. In 

previous studies using whole-animal stimuli (i.e., bodies-plus-heads), tracking of eye 

movements has shown that infants oversample the face: that is, although they look at 

the body approximately 50% of the time (suggesting they may well gain some useful 

information from this region), they spend 50% of the time looking at the head despite 

this making up only 18% of the total animal image size (6-7 month-olds, Quinn, Doran, 

Reiss, & Hoffman, 2009). The plausibility of humans having an innate representation of 

faces that covers all mammals is also suggested by findings that, like humans and other 

primates, even sheep show face-selective neurons (Kendrick & Baldwin, 1987) and
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human-like behavioural patterns for faces (e.g., an upright advantage for faces and not 

for buckets, Kendrick, Atkins, Hinton, Heavens, & Keverne, 1996). These results 

suggest that face representations are very old in evolutionary terms. (Although of course 

they do not rule out the possibility of evolutionarily-old body representations as well.)

Two other observations, however, tend to argue against the face as the likely 

source of the infants’ discrimination. First, our horse heads were profile views. Adults 

find profiles much more difficult to discriminate than front or three-quarter views (e.g., 

McKone, 2008). In infants, we could locate only one study testing discrimination of 

face profiles (i.e., where all images were profile view). Fagan (1979) found 5-month- 

olds showed chance performance in discrimination of profiles (while successfully 

discriminating 3/4 view faces), even though these were highly dissimilar men with hair. 

Even by 7 months, discrimination of profiles was found only for highly dissimilar faces- 

and-hair, and not for similar faces-and-hair. Further evidence of weak representation of 

profiles is that newborns fail to generalise identity across view change from or to a 

profile view (despite being able to generalise identity information between 3/4 and front 

views; Turati et al., 2008).

Second, our horse heads were small. Typically, infant discrimination studies 

using human faces present the faces at sizes of 20-25° of vertical visual angle, 

corresponding to a real human head viewed at distances at which a infant would 

typically see its parents’ faces. The smallest size we are aware of in 3-4 month-olds is 

14° (Kelly et ah, 2007). In contrast, our present stimuli presented horse heads at 

approximately 5.6° vertical (including the peaked ears) by 4.0° horizontal. Thus, if our 

present results reflect head discrimination, this would imply that young infants should 

also show good discrimination of small human faces in profile view.

Overall, our results are consistent with an innate representation of either face or 

body structure. However, the face interpretation would seem viable only if it can be 

shown in future studies that young infants can discriminate human faces in profile view. 

Note that our present study did not attempt to tease apart face and body contributions to 

horse discrimination by testing a headless body condition. The reason for this is that 

removing the head creates a bizarre image; thus, failure to discriminate the body in a 

headless-body condition would not, to our minds, show that infants had not been not 

using body information for our normal-format whole horse images. Indeed, even adults 

show an upright advantage in individuation of human bodies only when the whole is 

present (i.e., bodies with heads but not without heads; Minnebusch, Suchan, & Daum,
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2009; also see Yovel, Pelc, & Lubetzky, in press, for a similar result involving body 

pose).

Might the innate representation be even broader than animals? Might researchers 

eventually find that young infants can discrimination any real object class (e.g., cars, 

houses) at the individual level? Our finding that infants could not discriminate inverted 

horses argues against this. If the innate discrimination ability were infinitely broad, then 

we should have found discrimination of inverted horses, but there was no evidence of 

this. Instead, the results reported here support the idea that the innate representation is 

limited to certain structural forms. Our findings are consistent with many other infant 

studies -  involving human faces, monkey faces, feline faces, and chicken bodies -  in 

showing innate ability to represent only the upright versions of biological stimuli. These 

findings suggest innate representation of object structure is most likely restricted to 

circumstances where the processes of evolution have had the opportunity to “learn” the 

structure of a very general class (e.g., terrestrial vertebrate bodies) in the upright 

orientation. This applies to faces, and to bodies, but not to cars.

A final theoretical question is whether we can be sure that the innate 

representation that supports horse individuation is the same one that eventually narrows 

to only support own-species own-race face individuation in older infants and adults. 

Until now, we have been talking about the innate representation, as if there is only one. 

A single innate representation is perhaps the most parsimonious explanation. However, 

we cannot rule out an alternative idea, namely that there exist two separate innate 

representations: one of faces, and one of bodies. Each of these would be initially tuned 

to a wide variety of animals, and each would eventually narrow down with lack of 

individuation experience. For the innate face representation, this narrowing process 

would result in good individuation remaining only for own-species own-race faces. For 

bodies, it would drop out altogether for individuation. In either single- or double­

representation scenarios, however, some vestige of the innate representation of whole 

animals may remain in the form of an attentional bias towards animals in adults (New et 

al., 2007). .

6.9 Conclusion

Our study showed that 4-month-old infants can individuate a set of three very 

similar horses, when upright but not inverted. This indicates expertise without
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experience in horse individuation. This discrimination could plausibly rely on the whole 

body shape or, somewhat less plausibly, on the profile face region alone. We conclude 

that innate representation/s capable of supporting individuation of upright biological 

stimuli are extremely broad in form, encompassing at least all mammals.
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CHAPTER 7 -  PILOT STUDIES

7.1 Introduction

A number of pilot experiments and additional data that would normally have 

been reported in a conventional thesis have been omitted from the final papers presented 

in the previous chapters, due to constraints of the journal format. In total, these 

represent a substantial amount of work, including testing 112 participants (82 adults and 

30 children). The aims, methods and results of these studies are summarised in the 

present chapter.

I have reported only the ways in which the methods for the pilot experiments 

differ from those of the final experiments reported in the previous chapters. In all other 

respects they are identical.

7.2 Pilot studies for Chapter 4 -  Experiment 1

7.2.1 Matching memory performance for upright faces and dogs

The aim in developing the stimuli for this experiment was to match memory 

performance for upright faces and upright dogs. On tests of recognition memory, 

similarity between items affects performance such that memory performance is better 

for more-different items than more-similar items. I started with the stimuli used by 

Robbins and McKone (2007), which were originally matched for memory performance 

in the inverted orientation. Due to the special processing mechanisms available for 

upright faces, these stimuli then, as expected, did not produce matched performance 

when presented upright (i.e., the faces were remembered much more accurately than 

dogs). As stated in Chapter 4 (p. 228 of the paper) to match performance in the upright 

condition, the physical similarity of the faces was increased across each block and the 

similarity of the dogs was decreased both across each block and within each pair.

Two different versions of the stimuli were pilot tested in adults. As shown in 

Table 7.1 neither produced the desired matching of memory performance across object 

class, but both served as steps along the way to eventually achieving this aim. Pilot 

Study 1 included male and female faces from two different databases. The pairing of 

individual stimuli was as in Robbins and McKone (2007). The dogs were re-paired to
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maximise the physically dissimilarity (as judged by me) across blocks and within pairs. 

Pilot Study 2 included only male faces from a single database (all photos taken under 

the same lighting conditions, University of Ljubljana CVL and CV, PTER, Velenje 

database, http://lrv.fri.uni-lj.si/facedb.html); the dogs were as in Pilot Study 1. The final 

stimuli used in Experiment 1 included the same faces as Pilot Study 2, but the dogs 

included a few new stimuli and different combinations across the blocks and within 

pairs.

Table 7.1.
Adult pilot studies for Experiment 1 Crookes & McKone (2009) -  matching memory
performance for faces and dogs._______________________

% correct: 2AFC recognition memory
____________ N faces____________ dogs____________
Pilot study 1. 4 92.5 85.0
Pilot study 2 6 85.0_____________ 80.0____________

7.3 Pilot studies for Chapter 4 -  Experiment 2

7.3.1 Matching memory performance for inverted faces (and dogs) across age groups

The design of this experiment required comparing the size of inversion effects 

on memory between 6-7 year-olds and adults, which required matching baseline 

performance (in this case inverted) across the two age groups. The aim in adapting 

Robbins and McKone’s (2007) inversion task for children was to adjust the procedure 

to match the children’s memory performance for inverted stimuli to that of the Robbins 

and McKone adults. This required making the task easier for children, which was 

attempted by reducing the learning set size from 15 to 5 (i.e., 3 blocks of 5 learning 

items, instead of 1 block of 15 learning items).

The procedure for Pilot Study 3 was the same as the experiment described in the 

chapter with two exceptions: it did not include the encoding question (i.e., children were 

simply told to look carefully at the face/dog because they would be asked to remember 

it later on; they were not asked to rate “how nice this person/dog is”); and it included a 

30 s study-test delay (instead of minimal study-test delay). As shown in Table 7.2 

performance on this task was well below that of the adults, especially for the dog 

stimuli.

Pilot Study 4 also had no encoding question but, to make the task easier, the 

study-test delay was minimised (approx 15 s). The children’s performance was again
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poor compared to adults (see Table 7.2). In the final version of the task an encoding 

question (“how nice is this person/dog?”) was included, the study-test delay minimised, 

and only 7-year-olds were tested; this produced well matched performance across both 

stimulus type and age group (see Chapter 4).

Table 7.2.
Child pilot studies for Experiment 2 Crookes & McKone (2009) -  matching memory 
performance for inverted faces and dogs to adults from Robbins & McKone (2007)3.

Age N
% correct: 2AFC recognition memory 
Inverted faces Inverted dogs

Robbins & McKone (2007) Adults 22 63.3 66.3
Pilot Study 3 6-7 yrs 6 61.1 43.3
Pilot Study 4 6-7 yrs 12 55.6 58.3

7.3.2 Additional age group

The final Crookes and McKone (2009) article only included data from 7-year- 

olds and adults. A group of 6-year-olds was also tested on the final task. They were 

excluded from the paper as they performed close to floor for the dogs (Table 7.3): the 

average of the upright and inverted dog conditions was 59.2%. This meets our criterion 

for potential restriction of range (average of the two conditions tested < 63%; caption 

Fig 1, p. 223). In fact the average of all four conditions was only 63.9. This poor 

performance suggests 6-year-olds were too young to cope with the memory demands of 

the task.

Table 7.3.
Results for younger age group age group not included in Experiment 2 Crookes & 
McKone (2009)._________________________________________

% correct: 2AFC recognition memory (& SEM)
N Upright 

faces
Inverted
faces

Upright
dogs

Inverted
dogs

6 y.o. 12 70.55 66.67 64.44 53.89
(3.97) (4.34) (4.73) (1.73)

7.4 Pilot studies for Chapter 4 -  Experiment 3A

7.4.1 Designing an appropriate explicit memory task

The aim in Experiment 3 A was to match the procedure for the explicit memory 

task as closely as possible to that for the implicit memory task. In practice, however,

3 Pilot participants also completed the upright conditions for both faces and dogs. 
Results are not reported due to lack of matching for inverted stimuli.
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some changes were necessary. Firstly, as noted in the procedure for Experiment 3A, the 

study phase included an explicit encoding instruction which was not present in the 

implicit task. This was required to keep the encoding conditions the same across the two 

face-age blocks: that is, having completed the first block, participants may have learnt 

to use encoding strategies on the subsequent block, and this would change the explicit 

memory task from incidental learning on the first face-age tested to intentional learning 

on the second face-age tested.

Secondly, pilot testing with adults revealed changes also needed to be made to 

the test phase to avoid floor effects on conscious recollection (explicit memory). Pilot 

Study 5 included 60 faces at test, comprised of 15 studied and 15 unstudied normal 

format faces plus 30 unstudied distorted format faces (i.e., the same faces that appeared 

in the test phase of the implicit memory task), and faces were presented for 200ms. As 

shown in Table 7.4 accuracy, as measured by corrected recognition, was very poor. 

Participants also reported being confused by the presence of the distorted faces and, as 

shown in Table 7.4, incorrectly answered “old” for more than half the distorted faces. In 

an effort to make the task clearer, the distorted faces were removed from the test phase 

for Pilot Study 6 (making the task much more similar to any standard explicit memory 

face tasks in the literature), but the limited presentation was retained. Again 

performance was poor (see Table 7.4). The final task included only the normal format 

faces presented until response.

Table 7.4
Adult pilot studies for Crookes and McKone (2009) Experiment 3 A. Mean percent 
“old” responses.__________________________________________________________

N Studied
normal
(hits)

Unstudied 
normal 
(false alarms)

Corrected
recognition
(hits -  false alarms)

Unstudied
distorted

Pilot Study 5 3 75.56 37.78 37.78 51.11
Pilot Study 6 12 68.89 34.44 34.44 -

7.5 Pilot studies for Chapter 4 -  Experiment 3B

7.5.1 Matching unstudied performance across age groups

Experiment 3B is an extension of my Honours project (Crookes & McKone, 

2004). In that study, the aim of matching across age groups on unstudied normal 

accuracy was not achieved -  adult accuracy was well below that of the child groups (see 

Table 7.5). Performance levels were adjusted across the groups by, at test, changing the
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“spherize” level of the distorted faces and the presentation duration. In my PhD 

research, the first change to the adult experiment was to shorten the presentation 

duration from 300 ms to 200 ms. The aim was to get a relatively pure measure of face 

processing and shortening the presentation duration helped this by minimising the 

possibility of participants using “non-face” strategies to solve the task (e.g., focusing on 

a single photographic feature rather than the face as a whole). The task was then made 

easier by increasing the “spherize” level. In my Honours project a level of ± 25% was 

used. Pilot Study 7 used ± 30% which, as shown in Table 7.5, was still too difficult. 

Pilot study 8 used ± 40% which was too easy (see Table 7.5). The level used in the final 

task was ±35%.

Table 7.5
Adult pilot studies for Crookes and McKone (2009) Experiment 3B -  matching baseline 
unstudied performance to child groups. Mean percent “normal” responses.___________

Age
group

N Distortion Presentation
duration

Unstudied
normal

Unstudied
distorted

Crookes & 
McKone (2009)

5-6 yrs 32 ± 70% 1000 ms 65.3 10.4

Crookes & 
McKone (2009)

10-11 yrs 32 ± 50% 500 ms 70.9 15.6

Crookes & 
McKone (2004)a

Adults 24 ± 25% 300 ms 59.0 32.5

Pilot Study 7 Adults 5 ± 30% 200 ms 64.7 32.0

Pilot Study 8 Adults 4 ± 40% 200 ms 76.7 27.1

a Data previously included and examined as part of my Honours thesis. It is therefore 
not eligible for examination here but is included for comparison to the present pilot 
studies.

As noted in Chapter 4 it was not possible to simultaneously match child and 

adult participants on both unstudied normal and unstudied distorted performance (Table 

7.5). Children were biased to respond “distorted”, and this could not be replicated in 

adults despite changes to both presentation duration and distortion level.

7.6 Pilot studies for Chapter 6

7.6.1 Matching faces and horses for discriminabilitv when inverted in adults

The aim in producing the stimuli for this task was to match discriminability of 

the faces and horses in the inverted orientation, such that any advantage for faces over
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horses when presented upright could be attributed to the special processing of upright 

faces. Given the design of the task, this meant matching both “hits” and “false alarms”. 

The pilot studies were run using the same procedure as the final adult task but with 

inverted stimuli only. Three different versions of the stimuli were pilot tested (Pilot 

Studies 9-11). As shown in Table 7.6, the horse stimuli in Pilot Study 9 produced a 

higher false alarm rate than did the face stimuli. The particular horse triplets producing 

this effect were identified, and a different combination of horse stimuli was used in 

Pilot Study 10. Again the false alarm rate was higher for horses than faces. A third 

combination of horse stimuli was used in Pilot Study 11, and this produced nicely 

matched performance for faces and horses in both hits and false alarms. The stimuli 

from Pilot Study 11 were those used in the final task.

I had some concern that using the same stimuli for habituation and test was not 

ideal and that using different images might provide stronger evidence of individual level 

encoding. Thus, given that we were unable to obtain multiple images of the individual 

horses, Pilot Study 12 used the same combination of stimuli as Pilot Study 11 but with 

brightness and contrast altered versions of the study images at test. As shown in Table 

7.6 this increased the false alarm rate for horses but not faces and this manipulation was 

abandoned.

Table 7.6.
Adult pilot studies for Crookes and McKone (in preparation) -  matching accuracy for 
inverted faces and inverted horses. Mean percent “present” responses.__________

N
Faces Horses

Present
(hits)

Absent 
(false alarms)

Present
(hits)

Absent 
(false alarms)

Pilot Study 9 11 71.59 25.00 72.73 34.09
Pilot Study 10 16 75.00 22.92 72.92 28.39
Pilot Study 11 12 69.10 24.65 73.26 22.57
Pilot Study 12 9 71.76 23.15 68.52 36.57
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CHAPTER 8 -  GENERAL DISCUSSION

This chapter serves as the General Discussion for the thesis. As each empirical 

chapter was written as a standalone paper each contained a detailed discussion of its 

own. This chapter will not repeat those discussions but rather summarise the findings of 

the thesis as a whole, and place them back within the broader context of the literature. 

This chapter begins with a summary of the novel empirical finding in this thesis. This is 

followed by a discussion contrasting historical ideas about the developmental course of 

behavioural face recognition with a more current model based on the findings of this 

thesis and other recent discoveries. I then conclude with a number of important open 

questions and directions for future research.

8.1 Summary of the new empirical findings

The new empirical findings from this thesis fall into three categories reflecting 

the general aims set out in Chapter 1. Ordering these now by stage of development, 

these involve: (1) the breadth of innate discrimination ability in infancy; (2) the 

childhood development and age of maturity of face-specific processing mechanisms; 

and (3) retained flexibility in the mature perceptual system as reflected in the own-age 

bias on face recognition in older children.

Beginning with infancy, Chapter 6 investigated the breadth of the experience- 

expectant innate discrimination ability which has been previously shown to extend 

beyond human faces to include non-human primate faces. Here we found that 4-month- 

olds could discriminate upright side-view photographs of whole horses, at least as well 

as upright human faces, but did not discriminate inverted horses. This pattern contrasts 

with that in adults who, as expected, showed much better discrimination of upright 

faces than upright horses. These findings argue that innate individuation ability is 

initially very broadly tuned, including at least profile views of other mammal heads, and 

possibly whole bodies of mammals or indeed all animals.

Turning next to childhood, the core finding was that all behavioural aspects of 

face perception (except possibly speed) reached full quantitative maturity in early 

childhood, specifically by 5-7 years of age. My research on this topic placed particular 

emphasis on theoretical and methodological improvements over most previous studies. 

Theoretically, these improvements included separating face-specific development from
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development in general cognitive factors which affect task performance. 

Methodologically, we were also careful to avoid differences in proximity to floor or 

ceiling across age groups, such that no group’s performance would be affected by 

restrictions in range. This approach allowed for fair quantitative comparisons across age 

groups. New empirical results then found no evidence of face-specific development 

across childhood. First, recognition memory for faces and Labrador dogs improved at 

the same rate across childhood and into adulthood (5 years+ Chapter 4, Experiment 1), 

arguing for development of task-general rather than face-specific factors. Second, 

holistic processing was as strong in children as in adults, as illustrated by the 

disproportionate inversion effect for faces versus dogs (7-year-olds; Chapter 4, 

Experiment 2) and also by the composite effect for faces (8-13 years; Chapter 5). Third, 

a lack of own-age bias on implicit memory suggested no change in perceptual 

representations in face-space with age (Chapter 4, Experiment 3). And finally, no 

development was observed for implicit memory between 5-6 years, 10-11 years and 

adults (Chapter 4, Experiment 3), arguing that ability to perceptually encode a novel 

face does not change with age; instead, the observed strong development on explicit 

memory must reflect improvement in other cognitive processes (e.g., deliberate memory 

strategies, ability to concentrate upon instruction). Together with the comprehensive 

literature review in Chapter 4, these experimental findings argue that there is no 

evidence that young children are poorer than adults in any of the core face perception 

abilities: holistic processing; face-space; and ability to perceptually encode novel faces 

from a single exposure.

Turning finally to the mature face recognition system (i.e., 5-7 years of age and 

older), our own-age bias results argued that the engagement of the mature face 

processing system retains some flexibility to recent experience. This is consistent with 

findings of previous studies in adults, but goes beyond them. Specifically, it was argued 

that recent concentrated experience with a face subtype not only affects recognition but 

also perception (or perhaps merely conscious access to the outputs of perception), and 

also that these effects reflected attentional or social interest factors switching face 

mechanisms on and off, rather than deriving from structural changes within those 

mechanisms such as better tuning within face-space. The results supporting these 

conclusions were that the own-age bias in children (5-13 years) was observed for 

explicit memory (Chapter 4, Experiment 3) and holistic processing (composite effect, 

Chapter 5), but not for implicit memory (Chapter 4, Experiment 3).
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8.2 The developmental course of face recognition: An about-face

The standard understanding of the developmental course of face recognition, and 

thus the causal origins of adult expertise with faces, has changed dramatically in the last 

10-15 years. Here I outline the historic understanding (“Then”), and then detail a more 

current version based on the findings of this thesis and other recent literature (“Now”).

8.2.1 Then (1970s to early 2000s)

It has long been known that faces are special to babies, even from the moment of 

birth (e.g., Goren, Sarty & Wu, 1975). The influential Conspec/Conlern theory (Morton 

& Johnson, 1991) argued that young infants preferentially orient to faces over other 

objects/patterns from birth, and that face discrimination ability emerges at 

approximately 3 months. Despite this early ability, the standard view was that 

development in face-specific perception was ongoing across childhood and did not 

reach maturity until early-mid adolescence (Carey, Diamond, & Woods, 1980). Up until 

the mid-1990s, an extreme version of this late maturity view was dominant, namely the 

encoding switch hypothesis (Carey & Diamond, 1977), which proposed that core face 

recognition phenomena were not even qualitatively present in children until 10 years of 

age (i.e., that children shifted from a reliance on part-based coding to holistic coding at 

age 10 years). From the mid-1990s on, new evidence that many aspects of face 

processing (e.g., part-whole, composite effect, distinctiveness effects) were qualitatively 

present at younger ages (e.g., 6-year-olds; Carey & Diamond, 1994; Johnston & Ellis, 

1995; Tanaka, Kay, Grinnell, Stansfield, & Szechter, 1998) forced a modification of the 

late maturity view, with theoreticians proposing only late quantitative maturity of a 

subset of aspects of face perception (e.g., sensitivity to spacing between features; 

Mondloch, Le Grand, & Maurer, 2002).

With regard to the causal mechanism driving adult face expertise there was 

some conflict between researchers studying infants and those studying older children. In 

the infant literature, an innate orienting system (Conspec) was argued to provide the 

drive for the development of discrimination ability (Conlern) in older infants 

(approximately 3 months; Morton & Johnson, 1991). However, in the childhood 

literature, extended lifetime experience with faces was argued to drive the development 

of face-specific mechanisms (Carey & Diamond, 1994). This latter view was taken as 

consistent with claimed evidence that, with enough experience making within class 

discriminations (e.g., 10 years), other object classes (e.g., dogs) could become “special”

143



and processed like faces (Diamond & Carey, 1986; but see Robbins & McKone, 2007, 

and McKone, Kanwisher, & Duchaine, 2007). Thus while there was evidence of face 

discrimination in infancy it was argued that this face discrimination ability did not 

mature until early adolescence, and that the driver for this maturity was extended 

lifetime experience: that is, 10 years or more of practice.

8.2.2 Now (2009)

The past decade has produced much new research relevant to understanding the 

developmental course of face perception and the causal origins of adult expertise with 

faces. The findings of this thesis allow a degree of reconciliation between the somewhat 

separate literatures on infant development and child development.

With regard to abilities with faces, we now know that newborns are capable of 

much more than simple orientation towards faces, and can in fact perform orientation- 

specific individuation. In the first few days of life (and, in the case of Sugita’s monkeys, 

upon first exposure to faces) infants display prodigious face recognition abilities (Turati 

et al., 2008; Turati, Macchi Cassia, Simion, & Leo, 2006). In fact, infant discrimination 

abilities are broader than those of adults, extending beyond human faces to include 

monkey faces (6 months; Pascalis, de Haan, & Nelson, 2002; Scott & Monesson, 2009) 

and heads/bodies of other mammals (4 months, Chapter 6). It is only infant exposure to 

a limited subtype of faces that limits this discrimination ability in older infants and 

adults to the exposed species and race of face (Kelly et ah, 2007; Pascalis et ah, 2002; 

Scott & Monesson, 2009). Further evidence of the importance of exposure in infancy is 

the evidence of a critical/sensitive period for at least some aspects of face perception: 

without pattern visual input in the first few months of life, holistic processing, 

sensitivity to spacing between features, and across view recognition fail to develop in 

patients born with dense bilateral cataracts (Geldart, Mondloch, Maurer, de Schonen, & 

Brent, 2002; Le Grand, Mondloch, Maurer, & Brent, 2001, 2003).

Together, these findings argue that infants have remarkable face (and possibly 

body) recognition skills that are present at birth, and require no prior experience (e.g., 

as for monkey faces or horses). These innate skills are also experience-expectant in the 

sense that they show both perceptual narrowing and some form of sensitive/critical 

period.

Regarding older babies and toddlers, little is known. The toddler age group is 

notoriously difficult to test -  they will not sit still for habituation studies, and do not 

have the verbal or general intellectual skills to complete adult-like tasks -  and
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correspondingly there exist essentially no studies of face perception from the ages of 10 

months to 3 years. Also note that there is almost no evidence available regarding the 

question of whether infants, in addition to showing loss of ability for non-experienced 

face types, simultaneously show any improvement in perceptual discrimination of 

experienced subtypes (see Section 8.4.4: Open Questions). Finally, current data do not 

allow quantitative comparison of levels of performance across infants and adults: that is, 

we cannot know whether infants’ discrimination ability with faces, as revealed by 

novelty preference in looking times, is as good as, poorer than, (or even better than), 

adults’ ability, as measured via old-new recognition memory.

The question of the age at which adult-like levels of face perceptual skill is first 

achieved (i.e., quantitative maturity) has thus been addressed only in children aged 

approximately 4 years and older. Here, my own research (together with that of Gilchrist 

& McKone, 2003; McKone & Boyer, 2006; Pellicano & Rhodes, 2003; Pellicano, 

Rhodes, & Peters, 2006) has been instrumental in making the case that ongoing late 

development seen on face recognition tasks is not driven by improvement in face 

perception but rather by general cognitive development, and that functional perceptual 

maturity of face recognition is established by 5-7 years at the latest. That is, all standard 

face effects are quantitatively mature by 5-7 years (see Chapter 4). These results clearly 

argue that extended lifetime experience (e.g., 10+ years of practice) is not the origin of 

adult expertise in face recognition.

In conclusion, the modern findings support almost a complete reversal of the 

early view of the developmental course of face recognition. The data no longer support 

a view in which the only face representation present at birth is a mere orienting device, 

and good discrimination of upright (but not inverted) faces takes many years of practice 

to achieve. Rather, it appears that adult expertise for faces results from a combination 

of: (a) a broadly tuned experience-expectant innate component which narrows with 

experience in early infancy; and (b) face-specific perceptual mechanisms that require at 

most 5 or so years of face experience to become fully mature (and possibly much less). 

Also note that, despite this early maturity the system retains some degree of flexibility 

such that recent concentrated experience with a face subtype in both children and adults 

can affect both recognition and holistic processing (e.g., Chapter4, Experiment 3A; 

Chapter 5; Anastasi & Rhodes, 2005; de Heering & Rossion, 2008; Harrison & Hole, 

2009; Kuefner et al., in press).
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8.3 Implications for other literatures

This thesis has focused on the development of behavioural face perception and 

recognition in typically-developing children. However, the findings here have 

implications for a number of other literatures, which I outline briefly here.

8.3.1 Developmental neuropsychology and developmental neuroimaging

There has been much recent interest in the developmental course of face-specific 

neural responses in typical children (e.g., with fMRI, Golarai et al., 2007), and also in 

behavioural processes in developmental disorders that produce atypical face recognition 

such as Autism Spectrum Disorder (ASD; e.g., Pellicano, Jeffery, Burr, & Rhodes, 

2007) and Developmental Prosopagnosia (DP; e.g., Schmalzl, Palermo, Green, 

Brunsdon, & Coltheart, 2008). The most general point here is that, the fields of 

cognitive development, developmental neuropsychology and developmental 

neuroimaging, inform each other. Understanding the pattern of behavioural 

development in typical children is important in understanding the pattern of neural 

development and atypical development.

With respect to these types of research, a first implication of the present thesis 

derives from the conclusion that quantitative maturity of functional face recognition is 

reached early in typical development. This means that if researchers in developmental 

fMRI, or autism, or developmental prosopagnosia, start out by accepting the traditional 

view of very late quantitative maturity (or even the older view of late qualitative 

maturity), then the theoretical conclusions reached may well be invalid. For example, in 

the developmental neuroimaging literature the observed increase with age across 

childhood in the size of the FFA has been interpreted as being straightforwardly 

consistent with the behavioural findings: that is, both are claimed to show late maturity 

of face perception mechanisms (e.g., Aylward et al., 2005; Cohen Kadosh & Johnson, 

2007). It is only in the light of the new conclusion that behaviourally face perception is 

mature early, that it becomes apparent that there is a prima facie conflict between the 

behavioural and fMRI findings which may be theoretically complex to resolve (see 

Section 8.4.7: Open Questions).

A second implication of the present findings concerns the large role of general 

cognitive factors on face task performance in children. This is of relevance, for 

example, to understanding the course of face processing in Autism Spectrum Disorder. 

ASD is a syndrome which has been argued to include a face recognition deficit (see
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Golarai, Grill-Spector, & Reiss, 2006; Jemel, Mottron & Dawson, 2006, for review) but 

is characterised by a range of behavioural, social and communicative impairments 

(DSM IV, American Psychiatric Association, 1994). Thus, in order to conclude that 

there is a problem with face perception -  for example, in a given age group of children 

with ASD -  tasks must be carefully designed to tap the face system specifically. This 

might require, for example, testing of non-face objects, carefully matched to the faces 

on the variables discussed in Chapter 4, on the same tasks as the faces, to test for the 

possibility that poor performance for faces reflects a deficit in general cognitive or 

visual capacity.

8.3.2 Object expertise (and implications for face disorders)

The findings of this thesis also have implications for a major theory in object 

recognition -  the “expertise hypothesis” (Diamond & Carey, 1986). This theory holds 

that any object class that shares a first-order configuration can become processed like 

faces if enough experience is gained (e.g., 10 years) in making within class 

discriminations. Here, I concluded based on both infant and child studies that face 

expertise is not the result of extended experience with faces, a conclusion in agreement 

with recent findings that objects of expertise are not processed like faces (e.g., no 

composite effect, small part-whole effect; for review see McKone et al., 2007 and 

McKone & Robbins, in press; although see Rossion & Curran, in press, for alternative 

view). This is not to say that expertise in subordinate or individual level discrimination 

cannot be gained with other objects (e.g., car experts are undoubtedly better at 

recognising cars than novices) it is just that they never become processed like faces. In 

this way faces are special to the visual system and face and object processing 

mechanisms are separate (for review see McKone & Robbins, in press; although see 

Gauthier, Skudlarski, Gore, & Anderson, 2000, for alternative view).

The conclusion of separate mechanisms supporting object and face expertise 

also allows speculation regarding face processing in certain disorders. In particular, it 

raises the question of whether a person could ever become an expert in individual-level 

discrimination of faces not through the usual innate-with-early-maturity face system 

mechanisms, but instead through the generic many-years-of-practice mechanism 

available within object systems. Cataract patients do not receive appropriate input to 

visual cortex in a critical period, and fail to develop key aspects of face perception, but, 

anecdotally, do not fail to recognise faces. In contrast, developmental prosopagnosics 

have a lifelong deficit in face recognition, despite having every opportunity to receive
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normal face input. What could explain these patterns? One speculative idea is that the 

performance of cataract patients might rely on treating faces like objects. That is, due to 

lack of appropriate early input, cataract patients lose their innate face system and cannot 

regain this system later in life; however, in the context of being born with a typical 

brain, object recognition systems are able to take over and perform the task of face 

recognition (i.e., cataract patients become object experts for faces). In developmental 

prosopagnosia, in contrast, the situation is different. DPs receive appropriate visual 

input, but are presumably born with an atypical brain. At least in adult studies, these 

brain abnormalities are not generally so gross as to result in a total lack of a face- 

selective brain regions (e.g., most possess an FFA, Avidan, Hasson, Malach, & 

Behrmann, 2005), but instead result in failure of normal operation of regions (e.g., 

failure of FFA to perform individual-level discrimination, Williams, Berberovic, & 

Mattingley, 2007) and/or weak white matter connections between regions (Thomas et 

ah, 2008). Therefore, one possibility is that the appropriate early visual input of faces in 

DPs activates the innate face recognition system sufficiently well to prevent the critical- 

period loss that occurs in cataract patients; however, this faulty face recognition 

circuitry then continues to “grab” faces and to thus switch off generic object processing 

systems, preventing DPs from learning recognition ability via generic object 

mechanism.

8.4 Open questions

In the context of the modern understanding of the development of face 

recognition, I now describe what I consider some of the most important open questions 

in the field as a whole. These are ordered by stage of development. Most topics require 

only fairly brief discussion, although a final section on retained post-narrowing 

plasticity in children and adults is longer.

8.4.1 The innate representation supporting discrimination: How broad is it and how 

much is shared across species?

This thesis has concluded that humans are born with a representation of the 

structure of upright biological forms which supports individual-level discrimination 

within a broad range of species. Many questions remain regarding the breadth and 

evolutionary history of this representation.
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Firstly, we are currently unable to say whether the innate representation is of 

whole animal bodies or just animal heads. As noted in Chapter 6, this question could be 

addressed indirectly via further tests of whether young infants can discriminate human 

faces in profile view: a conclusion that neonates or 3-month-olds cannot discriminate 

human profiles would argue that the discrimination of whole horses in side-view 

(Chapter 6) did not derive from the head; in contrast, a finding that infants can 

discriminate human profiles would keep a “head” interpretation of the horse findings 

alive. The question could also perhaps be tested more directly. For example, one could 

test 4-month-old’s discrimination of different horse bodies where the identity of the 

head is kept constant: having habituated to one head-body combination, dishabituation 

to the habituated-head combined with a different-body would indicate that body 

discrimination is possible.

Secondly, we currently cannot say what range of species is covered by the innate 

representation. The results of Chapter 6 show that it is at least as broad as mammals, but 

we do not know whether it might be even broader than this. Perhaps it is limited to 

mammals? Or, perhaps terrestrial vertebrates are supported but not invertebrates? The 

chicken motion study of Simion, Regolin & Bulf (2008) suggests it may include birds, 

so it is possible that it extends further back in evolutionary past than humans’ shared 

ancestor with other mammals. More generally, it would be interesting to know the 

evolutionary history of this representation. Is the same representation shared across all 

species? Perhaps the representation has evolved as a generic mechanism for conspecific 

recognition in any species.

8.4.2 Are the innate orienting system and the innate discrimination system one and the

same?

There is clear evidence that infants have an innate orienting preference for faces 

(e.g., newborns track faces further than other objects or patterns; Goren, Sarty, & Wu, 

1975; Johnson, Dziurawiec, Ellis, & Morton, 1991). Equally clearly, infants have an 

innate discrimination ability which supports individuation of faces (Turati et al., 2008; 

Turati et ah, 2006). An open question is whether these two innate abilities are supported 

by one common mechanism or two separate ones. Johnson (2005) has argued that face 

orienting has a subcortical origin; for example, in humans, the finding that neonates 

track faces in the temporal but not nasal visual field (Simion, Valenza, Umilta, & Dalla 

Barba, 1998) suggests a subcortical origin. Currently, there is no evidence regarding 

whether the innate discrimination ability has subcortical or cortical origin, although it
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could be noted that detailed discrimination is the type of ability usually associated with 

cortical rather than subcortical visual processing in humans. If the innate discrimination 

is cortical while the innate orienting is subcortical, then this would indicate two separate 

mechanisms.

8.4.3 Do infants show all the same qualitative face effects as adults?

An open question is whether young infants perform all aspects of face 

processing in qualitatively the same manner as adults. As mentioned earlier, comparison 

between infants and adults is difficult even qualitatively. To date, it has been 

demonstrated that infants show some adult-like face effects (e.g., inversion effects, 

attractiveness effects). However, other basic qualitative effects remain untested. 

Particularly, there is a need for infant studies to test two standard holistic processing 

effects, namely the composite effect and the part whole effect. There is also a need to 

test standard effects associated with the concept of face-space, including distinctiveness 

effects (if these can be distinguished from attractiveness effects) and adaptation 

aftereffects for faces (based on figural distortions, identity distortions, gender morphs, 

race morphs, etc).

8.4.4 Are all the effects of experience in infancy destructive?

This thesis has highlighted the destructive effects of experience in infancy, that 

is, the loss of initial discrimination ability with selective exposure to faces of a single 

species and specific race. It is important to note that in the language domain, loss of 

nonexperienced phonemes is associated with improved phoneme discrimination for the 

experienced language (Kuhl et al., 2006). Thus, it may be that infants’ ability to 

discriminate own-species and own-race faces improves with experience in the 

narrowing period.

Currently there is no solid evidence to support this. Humphreys and Johnson 

(2007) found that 7-month-olds required smaller physical differences between faces 

than 4-month-olds to demonstrate a novelty preference, and argued that this showed that 

the older infants were capable of making finer discriminations between faces. However, 

their post-habituation test task was a somewhat unusual one in that it required the infant 

to hold the habituated face in memory across 1-5 test trials (i.e., across up to 4 

intervening faces). It is thus possible that, rather than reflecting improved perceptual 

discrimination with age, it may be that it was either face memory or general memory 

that improved in the older infants. Thus, there is a need for experiments to test whether
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older infants make finer face discriminations than younger infants with a standard two- 

stimulus dishabituation test.

8.4.5 What is the nature of the critical period for faces?

The evidence from cataract patients that lack of pattern visual input from birth 

leads to deficits in some aspects of face perception argues for a critical period. However 

many questions remain about the exact nature of the critical period. Here I stress that 

much of this research cannot ethically be conducted on humans but may be possible in 

nonhuman primates.

Firstly, a key aspect of the definition of a critical period is that deprivation will 

only lead to loss of function if it occurs in a specific time window (Sengpiel, 2007). For 

example, if the critical period is birth to 2 months of age, then the same amount of 

deprivation (2 months’ duration) beginning at 6 months of age will not produce a 

deficit. While it has been demonstrated that lack of pattern visual input between birth 

and 2-19 months produces a deficit in some aspects of face perception (Geldart et al., 

2002; Le Grand et ah, 2001; Le Grand, Mondloch, Maurer, & Brent, 2004) it is not 

known whether the same amount of deprivation beginning later in infancy would 

produce the same deficit.

Secondly, further research is required into the type of visual input necessary for 

typical development of face systems. Cataract patients, deprived of all pattern vision, 

show deficits relative to controls on spacing change detection (as well as on the 

composite effect and cross-view generalisation). In apparent contrast, the Sugita (2008) 

monkeys, who received normal visual input except for being deprived of faces, 

successfully performed spacing change detection task (note holistic processing and 

cross-view generalisation were not tested). It would thus be of value to know whether, 

as adults, Sugita’s face-deprived monkeys perform as accurately on the spacing change 

task as control monkeys with no visual deprivation. More generally, it currently remains 

unclear why deprivation of all visual input produces damage to the face system (or at 

least some aspects of it), while deprivation of only face visual input apparently leaves 

the face system intact.

8.4.6 What is the age of quantitative maturity of face-specific perceptual mechanisms?

I have argued (Chapters 4 and 5) that, functionally, behavioural face-specific 

perceptual mechanisms are mature by 5-7 years at the latest. Save for a few exceptions 

(e.g., aspects of adaptation aftereffects typically associated with face-space,
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generalisation of identity recognition across viewpoint) which have yet to be adequately 

tested, all key face effects have been found to be quantitatively mature by this age. The 

question that remains is then: At what agq younger than 5-7 years do these effects reach 

maturity?

I have noted that 4-5 years is approximately the youngest age for which standard 

adult tasks can be made suitable for children, and thus this is the youngest age for which 

there is the potential for direct quantitative comparison with older children and adults. 

Below this age, with the techniques currently available, even qualitative comparison is 

difficult and quantitative comparison impossible. The present thesis thus leaves open 

the possibility that face identity perception might be functionally mature much earlier 

than 5-7 years of age, perhaps even in the first year of life. The exact age cannot yet be 

determined. That is, we do not know if face recognition is functionally mature once 

perceptual narrowing has occurred (9 months) or whether, like language, it continues to 

show important ongoing development until post-toddler ages.

Also, again I highlight the caveat raised in the discussion to Chapter 4 that here I 

have been discussing maturity of behavioural aspects as measured by performance 

accuracy. In that chapter the possibility that the speed of face-specific processing shows 

late maturity, increasing later into childhood and/or into adolescence was raised. An 

electrophysiological study comparing the timing of processing of faces and an 

appropriate comparison stimulus class (meeting the criteria set out in Chapter 4) stood 

out as a potentially fruitful method for testing this possibility. Such a study was 

recently reported comparing ERP responses to faces and cars across the 5 to 16 years 

age range. Kuefner, de Heering, Jacques, Palmero-Soler & Rossion (in press) found 

that none of the previously reported age-related changes in the electrophysiological 

response, including latency, were face specific. This argues for no special development 

of face-specific mechanisms beyond 5 years in speed of processing.

8.4.7 Why does neural processing of faces show late maturity?

Developmental neuroimaging of face perception is a burgeoning field with at 

least six studies (Aylward et al., 2005; Golarai et al., 2007; Passarotti et al., 2003; 

Passarotti, Smith, DeLano, & Huang, 2007; Scherf, Behrmann, Humphreys, & Luna, 

2007) and one review paper (Cohen Kadosh & Johnson, 2007) published since 2003. As 

previously reviewed (Chapter 3) evidence shows there is substantial quantitative change 

in the face-selective neural response in the FFA continuing into adolescence. In these 

papers there is a tendency to interpret the findings of late developmental change in the
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neural representation of faces as supporting the supposed behavioural evidence that 

face-processing skills mature late in development.

However, in the light of the findings of Chapter 4 and 5, a new question arises:

If, as argued in this thesis, behavioural face processing is functionally mature very early 

in life, what is the cause (and/or effect) of the late neural changes observed? Three 

possible suggestions for the increase in the size of the FFA with age were proposed in 

the discussion of Chapter 4. These were: (1) the perceptual function of increased FFA 

size is to improve speed of processing (although the recent findings of Kuefner et al., in 

press, would argue against an increase in the speed of processing); (2) the FFA acts as a 

storehouse of faces, and so the more faces a participant has seen during the course of 

their lifetime the bigger it is; and (3) increase in size of FFA reflects greater top-down 

activation and thus, rather than FFA size providing a pure measure of perceptual 

processing, it would be, like behaviour, influenced by other cognitive processes. 

Presently, any of these alternatives remain possible, and the general question of 

resolving the apparent conflict between the behavioural and FFA findings remains open.

8.4.8 Are children’s face processing systems more flexible than adults?

In the domain of language, an early period of perceptual narrowing is followed 

by some ability to regain “narrowed-ouf ’ languages, but importantly this flexibility is 

greater during early childhood, as compared to adolescence and particularly adulthood. 

For example, an English-only-speaking child who moves to France as a 5-year-old will 

easily learn French with a perfect accent and perfect grammar. In contrast, an English- 

only-speaking adult who moves to France will never develop a perfect accent, and will 

often have ongoing difficulties with some aspects of grammar, even after 20 years of 

living in the new country.

An important question is whether face processing is similar to language 

processing in this respect. One influential finding has led to speculation that the face 

processing systems of children may be more flexible than those of adults. Sangrigoli, 

Pallier, Argenti, Ventureyra & de Schonen (2005) investigated the own-race bias in 

Korean children adopted to majority Caucasian countries in Western Europe between 

the ages of 3 and 9 years. When tested as adults the adoptees demonstrated the 

Caucasian pattern of race effects (i.e., better recognition of Caucasian than Asian faces), 

whereas Korean adults visiting France, as expected, were more accurate with Asian 

faces. This led to the conclusion that the face system is more flexible in childhood such 

that childhood experience can reverse the other-race effect.
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Recently de Heering et al. (in press) attempted to replicate and improve upon 

this study with a similar group of adoptees, this time tested as children. De Heering et 

al. (in press) did not observe a full reversal of the own-race effect. Adoptees were just 

as accurate for Asian as Caucasian faces whereas Caucasian children did demonstrate 

an own-race bias (for a stimulus set previously demonstrated to produce an own-race 

effect in both Asian and Caucasian adults). There were many methodological 

differences between the two studies (i.e., delayed matched to sample vs. recognition 

memory; small set of faces vs. larger set; small sample size vs. larger sample size) 

which caution against reading too much into the differences in the results.

Both studies argue that the own-race effect, which is first observed at 6 months 

of age (Kelly et al., 2007), can be modulated by childhood experience. However, 

interpretation in terms other than greater plasticity or flexibility in childhood is possible.

In these two studies, it remains possible that it was not the timing of the 

experience that was important (i.e., experience in childhood as opposed to adulthood), 

but rather the total amount of experience. The children of the de Heering et al. (in press) 

study differed from the adults of the Sangrigoli et al. (2005) study in the length of time 

spent in Caucasian surroundings (5-14 years vs. mean of 23 years). It is therefore 

possible that a full reversal was not observed in de Heering et al. (in press) because less 

total experience had been gained with Caucasian faces. Consistent with this 

interpretation, de Heering and Rossion (2008) found a significant correlation between 

number of years experience as a preschool teacher and the strength of the composite 

effect for child relative to adult faces; indeed, it was only after approximately 8-10 years 

of experience that preschool teachers showed a larger composite effect for child than 

adult faces.

Importantly, in both the Sangrigoli et al. (2005) and the de Heering et al. (in 

press) study the Asian adoptee group -  whose experience with Caucasians faces had 

begun as children -  was never compared to a group of Asian adults who had equivalent 

length of experience with Caucasian faces but whose experience began as adults. 

Logically, this type of comparison is required to know whether flexibility with other- 

race faces (i.e., the ability to relearn a face type that was “narrowed out” during infancy) 

is greater in children than in adults.

Is there any other data available which can cast light on these issues? One 

finding is in fact strikingly different from both the Sangrigoli et al. (2005) and the de 

Heering et al. (in press) results, in reporting no retained plasticity even during 

childhood. This is Sugita’s (2008) monkey study. Recall that Sugita found macaque
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monkeys (Macacafuscata) could initially perform discrimination of both macaque and 

human faces. For monkeys exposed for 1 month only to human faces, discrimination 

then became limited to human faces. The crucial findings in the present context are then 

that (a) these human-exposed monkeys failed to relearn the ability to discriminate 

macaque faces despite subsequently receiving 11 months of experience sharing a cage 

with other macaques, and (b) the exposure to macaque faces began at 7-25 months of 

age, well before Macaca fuscata reach adulthood at 4 years (female) or 5 years (male; 

Wolfe, 1978). This suggests that flexibility is impossible after the initial narrowing 

period. Caveats, however, are that it is difficult to convert age-in-months to stage of 

development across humans and monkeys (because monkeys mature faster than 

humans), and it is also then difficult to know whether 11 months of experience in an 

immature monkey should be “enough” experience (i.e., it is hard to know how to 

convert this to any particular length of experience in an immature human). It is possible 

that Sugita’s monkeys could have relearned macaque faces with greater duration of 

experience. Another possibility is that the difference between the Sugita results and the 

Asian-adoptee studies arises from the fact that the former tested relearning of a 

narrowed-out species (i.e., very different in appearance from the experienced faces), 

while the latter tested only a narrowed-out race (i.e., less different in appearance from 

the experienced faces). Thus, it is possible that the degree of plasticity for relearning 

post-infancy is related to how physically different the stimulus faces are from the types 

of faces to which the subject was exposed during infancy.

One final finding is also of relevance to retained flexibility. Macchi Cassia et al. 

(2009a) demonstrated an ability for adults to reactive childhood experience (note I 

mean childhood experience here, not infant experience). They found that 3-year-olds 

with younger siblings (who had therefore been exposed to infant faces) demonstrated 

inversion effects for both adult and infant faces, whereas 3-year-old children without 

younger siblings showed inversion effects only for adult faces. Interestingly, adults with 

recent infant face experience (first time mothers) showed inversion effects for infant 

faces, but only if they also had had younger siblings when they themselves were 

children (i.e., they had received both early childhood and adult experience with infant 

faces). Further, young women who had had younger siblings, but who were not mothers 

(i.e., they had received only early childhood experience with infant faces) did not show 

inversion effects for infant faces. This study argues that experience with a face subtype 

in early childhood can lie dormant until reactivated by further experience in adulthood.
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The Macchi Cassia et al. (2009a) findings have implications for the 

interpretation of several other studies. First, Sangrigoli et al. (2005) found that Asian- 

adoptees-to-Europe were poorer at Asian faces than were Asian participants raised in 

Asia; the Macchi Cassia et al. (2009a) findings then suggest that this decrement for 

Asian faces could be easily reversed in the adoptees by a short time spent living in Asia. 

Second, regarding own-age effects, the Macchi Cassia et al. (2009a) findings suggest 

the fact that all typical adults were exposed to child faces as children (i.e., at school), 

may be an important factor in the flexibility observed in recent preschool teacher 

studies. These studies have found that preschool teachers show better recognition 

memory and holistic processing for child faces, as compared to adults without 

concentrated recent exposure to children (de Heering & Rossion, 2008; Harrison &

Hole, 2009; Kuefner et al., 2008; Kuefner et al., in press). Rather than reflecting the 

effects of recent exposure during adulthood, these findings may reflect the combined 

influences of exposure to child faces during both childhood and adulthood.

In summary, the topic of plasticity for face types, and the extent to which 

plasticity differs between experience obtained in childhood and experience gained in 

adulthood, is of strong theoretical interest and is ripe for further investigation. It would 

be valuable, for example, to know the answers to any of the following questions: Can 

human children (e.g., 5-year-olds) relearn to discriminate the faces of other-species, in 

addition to their ability to relearn other-race faces? Is this same relearnability possible 

or impossible in human adults? Is relearnability, in either children or adults, related to 

the degree of physical difference between the infancy-experienced face type (e.g., Asian 

humans, in Asian observers) and the stimulus face type (e.g., Caucasian human faces vs. 

chimpanzee faces vs. macaque faces, vs. horse faces)? In addressing these questions, 

training studies may be of some value, given the inherent difficulties of matching 

amount of “relearning” experience in naturalistic settings.

8.5 Conclusion

The broad aim of this thesis was to contribute to the active debate in the 

literature which centres on the relative roles of an inborn capacity present at birth, 

experience with faces, and the timing of that experience, in producing adult face 

recognition abilities. The major conclusion from the thesis is that all face-specific 

perception mechanisms are mature by 5-7 years (and perhaps much earlier), and that
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development is not driven by ongoing experience with faces into adolescence but rather 

by the combination of (a) an experience-expectant innate component, (b) early 

experience in the first year of life, and (c) possible further effects of experience up to 

preschool ages. This thesis has also confirmed that the mature face system retains 

flexibility, but has suggested that this may be limited by factors such as a necessity to 

have had previous experience with a face type during childhood, if it was not available 

during infancy.
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