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Abstract

The Mertens conjecture on the order of growth of the summatory function of the

Möbius function has long been known to be false. We formulate an analogue

of this conjecture in the setting of global function fields, and investigate the

plausibility of this conjecture. First we give certain conditions, in terms of the

zeroes of the associated zeta functions, for this conjecture to be true. We then

show that in a certain family of function fields of low genus, the average proportion

of curves satisfying the Mertens conjecture is zero, and we hypothesise that this

is true for any genus. Finally, we also formulate a function field version of Pólya’s

conjecture, and prove similar results.
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Chapter 1

The Mertens Conjecture in

Function Fields

1.1 The Mertens Conjecture

Let µ(n) denote the Möbius function, so that for a positive integer n,

µ(n) =


1 if n = 1,

(−1)t if n is the product of t distinct primes,

0 if n is divisible by a perfect square.

The Mertens conjecture states that the summatory function of the Möbius func-

tion,

M(x) =
∑
n≤x

µ(n),

satisfies the inequality

|M(x)| ≤
√
x (1.1)

for all x ≥ 1. This conjecture stems from the work of Mertens [17], who in 1897

calculated M(x) from x = 1 up to x = 10 000 and arrived at the conjecture

(1.1). Notably, this conjecture implies that all of the nontrivial zeroes of the

Riemann zeta function ζ(s) lie on the line <(s) = 1/2 (that is, that the Riemann

hypothesis is true), and also that all such zeroes are simple. However, Ingham

[12] later showed that the Mertens conjecture implies that the imaginary parts

of the zeroes of ζ(s) in the upper half-plane must be linearly dependent over

the rational numbers, a relation that seems unlikely; while there is yet to be

found strong theoretical evidence for the falsity of such a linear dependence,
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2 The Mertens Conjecture in Function Fields

some limited numerical calculations have failed to find any such linear relations

[1]. Using methods closely related to the work of Ingham, Odlyzko and te Riele

[22] disproved the Mertens conjecture, and in fact showed that

lim sup
x→∞

M(x)√
x

> 1.06,

lim inf
x→∞

M(x)√
x

< −1.009.

These bounds have since been improved to 1.218 and −1.229 respectively [15].

Despite this disproof, a single counterexample to the Mertens conjecture has

yet to be found. Indeed, numerical calculations of Amir Akbary and Nathan Ng

(personal communication), based on the paper [21] of Ng, suggest that the set

of counterexamples to the Mertens conjecture is sparsely distributed in [1,∞).

More precisely, under the assumption of several strong yet plausible conjectures,

they have shown that the logarithmic density

δ (Pµ) = lim
X→∞

1

logX

∫
Pµ∩[1,X]

dx

x

of the set Pµ = {x ∈ [1,∞) : |M(x)| ≤
√
x} is extremely close to 1 but strictly

less than 1, satisfying the bounds

0.99999927 < δ (Pµ) < 1. (1.2)

So although the Mertens conjecture is false, the inequality |M(x)| ≤
√
x nev-

ertheless seems to hold for “most” x ≥ 1; on the other hand, the set of x for

which this inequality fails to hold is nevertheless nontrivial, in the sense that it

has strictly positive, albeit extremely small, logarithmic density. The reason for

this stems from the following explicit expression for M(x) in terms of a sum over

the nontrivial zeroes ρ of the Riemann zeta function.

Proposition 1.1 (Ng [21]). Assume the Riemann hypothesis and the simplicity

of the zeroes of ζ(s). Then there exists a sequence {Tv}∞v=1 with v ≤ Tv ≤ v + 1

such that for each positive integer v, for all ε > 0, and for x a positive noninteger,

M(x) =
∑
|γ|<Tv

1

ζ ′(ρ)

xρ

ρ
+Oε

(
1 +

x log x

Tv
+

x

T 1−ε
v log x

)
,

where the sum is over the positive nontrivial zeroes ρ = 1/2 + iγ of ζ(s) with

|γ| < Tv.
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So we see that for x a noninteger,

M(x)√
x

=
∑
ρ

1

ζ ′(ρ)

xiγ

ρ
+O

(
1√
x

)
, (1.3)

where the sum
∑

ρ is interpreted in the sense limv→∞
∑
|γ|<Tv . Now the coefficients

of xiγ = eiγ log x are generally quite small (in particular, much smaller than 1),

so this sum is usually quite small. On the other hand, the coefficients are not

insignificant, as the sum ∑
ρ

1

|ρζ ′(ρ)|

diverges, which suggests that if the collection of angles {γ log x} are equidis-

tributed in [0, 2π] as x tends to infinity, then we can find values of x for which the

right-hand side of (1.3) is larger than 1. However, this does not occur for “most”

x in the sense of logarithmic density, and hence the inequality |M(x)| ≤
√
x holds

“most” of the time.

1.2 Mertens Conjectures in Function Fields

A natural variant of this problem is to formulate a function field analogue of the

Mertens conjecture and determine how often this conjecture holds. The advantage

of this function field setting, as opposed to the classical case, is that we may

prove unconditional results about the behaviour of the summatory function of the

Möbius function function. In the function field setting, the Riemann hypothesis

is proved, and the hypothesis that the imaginary parts of the zeroes of the zeta

function of a function field are linearly independent over the rational numbers

— that is to say, the Linear Independence hypothesis — is, at the very least,

true in an averaged sense; see Theorem 4.4 for the precise formulation of this

result. Throughout this thesis, the function fields we work with will be global

function fields, that is, of transcendence degree one over a finite constant field;

equivalently, these are the function field of a nonsingular projective curve over a

finite field.

We define the Möbius function of a function field as follows. Let q = pm be

an odd prime power, and let Fq be a finite field with q elements. Let C be a

nonsingular projective curve over Fq of genus g; we write C/Fq for the function

field of C over Fq. Then for an effective divisor D of C, the Möbius function of
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C/Fq is given by

µC/Fq(D) =


1 if D is the zero divisor,

(−1)t if D is the sum of t distinct prime divisors,

0 if a prime divisor divides D with order at least 2.

We are interested in the summatory function of the Möbius function of C/Fq:

MC/Fq(X) =
X−1∑
N=0

∑
deg(D)=N

µC/Fq(D),

where X is a positive integer. We wish to determine the validity of the following

conjecture.

The Mertens Conjecture in Function Fields. Let C be a nonsingular pro-

jective curve over Fq of genus g, and let MC/Fq(X) be the summatory function of

the Möbius function of C/Fq. Then

lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2
≤ 1.

The presence of qX/2 in the denominator, as opposed to
√
x in the classical

case, is due to the fact that we are summing over divisors D with deg(D) ≤ X−1,

whose absolute norms ND are qdeg(D), as opposed to the classical case where we

sum over all positive integers n ≤ x, whose norm in each case is simply n itself.

Several natural questions arise from formulating this conjecture. We may first

ask “local” questions: given a curve, how do we determine whether the Mertens

conjecture for the function field of this curve holds?

Question 1.2. For which curves does the Mertens conjecture hold?

An further local problem is to consider the Mertens conjecture for each positive

integer X.

Question 1.3. Given a function field C/Fq, how frequently does the inequality∣∣MC/Fq(X)
∣∣ ≤ qX/2 (1.4)

hold?

As there are many function fields of a given genus g over a finite field q, we

may also consider a “global” question on the Mertens conjecture.
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Question 1.4. On average, in either the q or the g aspect, how often does the

Mertens conjecture hold?

We treat the local questions in Chapter 2. There we find that the major

difference to the classical case is that Question 1.2 is non-trivial: there do exist

curves for which the Mertens conjecture is true. In Section 2.1, we formulate

certain conditions on the zeroes of ZC/Fq(u), the zeta function of C/Fq, to ensure

that the Mertens conjecture for C/Fq is true, while in Section 2.2 we discuss when

we can confirm that the Mertens conjecture for C/Fq is false. The results of these

two sections combine to prove the following theorem.

Theorem 1.5. Let C be a nonsingular projective curve over Fq of genus g ≥ 1.

Then the Mertens conjecture for C/Fq is false if the associated zeta function

ZC/Fq(u) has zeroes of multiple order. If ZC/Fq(u) has only simple zeroes, then

the Mertens conjecture for C/Fq is true provided∑
γ

∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣ ≤ 1, (1.5)

where the sum is over the inverse zeroes γ of ZC/Fq(u). Furthermore, if C satisfies

the Linear Independence hypothesis, then the converse is also true: the Mertens

conjecture for C/Fq is true only when (1.5) holds.

We remark that this does not entirely answer Question 1.2; it is possible that

C/Fq is such that (1.5) does not hold but that the Mertens conjecture for C/Fq
is true; in order for this to happen, ZC/Fq(u) must only has simple zeroes but C

must fail to satisfy the Linear Independence hypothesis. In Section 3.2, we give

an example of a family of curves of genus one for which this occurs.

Question 1.3 is the function field analogue of the problem of determining

the logarithmic density of the set where the Mertens conjecture holds, as we

discussed in Section 1.1. Section 2.3 deals with this question, where we are

instead able to determine the natural density of the set of positive integers X for

which (1.4) holds, under the proviso that the underlying curve satisfies the Linear

Independence hypothesis; unlike the classical case, where this is conjectured to

be true, this hypothesis can be violated for certain curves.

Theorem 1.6. Let C be a nonsingular projective curve over Fq of genus g ≥ 1,

and suppose that C satisfies the Linear Independence hypothesis. The natural

density

d
(
PC/Fq ;µ

)
= lim

Y→∞

1

Y
#
{

1 ≤ X ≤ Y :
∣∣MC/Fq(X)

∣∣ ≤ qX/2
}
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exists and satisfies d
(
PC/Fq ;µ

)
> 0, with d

(
PC/Fq ;µ

)
= 1 if and only if

∑
γ

∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣ ≤ 1.

We in fact describe this density d
(
PC/Fq ;µ

)
in terms of the Lebesgue measure

of the pullback of a certain function of C/Fq, which allows us to determine this

density exactly should we know the zeta function of the function field.

In Chapter 3 we analyse Questions 1.2 and 1.3 in the low genus case g = 1,

so that C/Fq is the function field of an elliptic curve over a finite field. We give

an explicit classification of all elliptic curves satisfying the Mertens conjecture

in terms of the order q of the finite field q and of the trace a of the Frobenius

endomorphism acting on the elliptic curve C, in the form of the following theorem.

Theorem 1.7. Let C be an elliptic curve over a finite field Fq of characteristic

p. Then the Mertens conjecture is true for C/Fq if and only if the order of the

finite field q and the trace a of the Frobenius endomorphism acting on C over Fq
satisfy precisely one of the following conditions:

(1) q = pm with a = 2, where either m is arbitrary and p 6= 2, or m = 1 and

p = 2,

(2) q = pm with a =
√
q, where m is even and p 6≡ 1 (mod 3),

(3) q = pm with a = 0, where either m is even and p 6≡ 1 (mod 4), or n is odd.

In all these cases, we have that

lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2
= 1.

Furthermore, the natural density

d
(
PC/Fq ;µ

)
= lim

Y→∞

1

Y
#
{

1 ≤ X ≤ Y :
∣∣MC/Fq(X)

∣∣ ≤ qX/2
}

exists, and this density is equal to 1 if and only if q and a satisfy one of conditions

(1)—(3).

Finally, for Question 1.4, we study in Chapter 4 the average proportion of

curves in a certain family satisfying the Mertens conjecture as the finite field Fq
grows larger. This allows us to use Deligne’s equidistribution theorem, a powerful

result that links the average properties of curves to the Haar measure on certain



1.2 Mertens Conjectures in Function Fields 7

groups of random matrices. We choose to average over a certain family of curves,

namely a family of hyperelliptic curves H2g+1,qn , for which most curves satisfy

the Linear Independence hypothesis, where the notion of most curves satisfying

a certain property is defined in Definition 4.3. Together with our resolution

of Question 1.2, this allows us to relate the average proportion of hyperelliptic

curves satisfying the Mertens conjecture to the Haar measure of the pullback of

the region where a certain function of random matrices is at most 1. For low

values of g, we may then calculate this Haar measure explicitly. Remarkably, we

find that most curves in this family do not satisfy the Mertens conjecture.

Theorem 1.8. Fix 1 ≤ g ≤ 2, and suppose that the characteristic of Fq is odd.

Then as n tends to infinity, most hyperelliptic curves C ∈ H2g+1,qn do not satisfy

the Mertens conjecture for C/Fqn.

The proof involves checking that a certain function in g variables on [0, π]g

is bounded below by 1: for large g, this becomes very difficult. Nevertheless, it

seems likely that this inequality holds for all g ≥ 1, as we indicate in Section 4.2,

thereby leading us to formulate the following conjecture.

Conjecture 1.9. Fix g ≥ 1, and suppose that the characteristic of Fq is odd.

Then as n tends to infinity, most hyperelliptic curves C ∈ H2g+1,qn do not satisfy

the Mertens conjecture for C/Fqn.

We end Chapter 4 by discussing two variations of Question 1.4 and showing

how minor modifications of the proof of Theorem 1.8 lead to proofs of these new

questions.

These results build upon the work of Cha [5], who studies the closely related

problem of determining the average size of

lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2

over H2g+1,qn . Cha is able to show that a truncated form of this average converges

to a certain integral over a particular space of random matrices, and by analysing

this integral, Cha is led to conjecture the limiting behaviour of this average as

the genus g tends to infinity. The purpose of this result is to formulate a function

field analogue of a conjecture of Gonek (unpublished), which is studied by Ng in

[21], stating that

0 < lim sup
x→∞

M(x)
√
x (log log log x)5/4

= − lim inf
x→∞

M(x)
√
x (log log log x)5/4

<∞. (1.6)
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While Cha’s results deviate in a different direction to the main results in this

thesis, much of the groundwork is identical. We reproduce the proofs of many

of these necessary results throughout this thesis, with attribution to Cha and

identification of the location of the original proof in Cha’s paper [5].



Chapter 2

Local Mertens Conjectures

2.1 An Explicit Expression for MC/Fq(X)

In order to study the summatory function of the Möbius function of a function

field C/Fq, we must first introduce the associated zeta function ζC/Fq(s). Given

a curve C over Fq of genus g, the zeta function ζC/Fq(s) is defined initially for

<(s) > 1 by the absolutely convergent Dirichlet series

ζC/Fq(s) =
∑
D≥0

1

NDs ,

where the sum is over all effective divisors D of C, and ND = qdeg(D) is the

absolute norm of D. Note that q−s, and hence ζC/Fq(s), is periodic with period

2πi/ log q. We also observe that much like the Riemann zeta function, ζC/Fq(s)

has an Euler product for <(s) > 1,

ζC/Fq(s) =
∏
P

1

1−NP−s
,

with the product over all prime divisors P of C. This in turn implies that ζC/Fq(s)

is nonvanishing in the open half-plane <(s) > 1. More than this is true, however;

ζC/Fq(s) extends meromorphically to the entire complex plane.

Theorem 2.1 ([24, Theorem 5.9]). Given a nonsingular projective curve C over

Fq of genus g, there exists a polynomial PC/Fq(u) with integer coefficients of degree

2g such that for <(s) > 1,

ζC/Fq(s) =
PC/Fq (q−s)

(1− q−s) (1− q1−s)
.

9
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This yields a meromorphic extension of ζC/Fq(s) to the whole complex plane, with

simple poles at s = 2πik/ log q and s = 1+2πik/ log q for all k ∈ Z. Furthermore,

ζC/Fq(s) satisfies the functional equation

q(g−1)sζC/Fq(s) = q(g−1)(1−s)ζC/Fq(1− s).

The constant term of the polynomial PC/Fq(u) is 1, and the coefficient of u2g is

qg. Finally, the value PC/Fq(1) is hC/Fq , the class number of C/Fq.

The polynomial PC/Fq(u) factorises over C as

PC/Fq (u) =

2g∏
j=1

(1− γju)

for some complex numbers γj, which we call the inverse zeroes of ζC/Fq(s). By

the nonvanishing of ζC/Fq(s) outside of 0 ≤ <(s) ≤ 1 and the functional equation

for ζC/Fq(s), we must have that 1 ≤ |γj| ≤ q. Moreover, the structure of the

meromorphic continuation of ζC/Fq(s) to the entire complex plane shows that

ζC/Fq(s) = ζC/Fq(s). By this, we may conclude that the inverse zeroes γj must

occur in reciprocal pairs; that is, we can order the inverse zeroes γj so that

γj+g = qγ−1j for all 1 ≤ j ≤ g. Much more about the inverse zeroes is known; it

has been proven that they all have absolute value
√
q.

Theorem 2.2 (Riemann Hypothesis for Function Fields [24, Theorem 5.10]).

Each inverse zero γj of ζC/Fq(s) has absolute value
√
q. Equivalently, all of the

zeroes of ζC/Fq(s) lie along the line <(s) = 1/2.

Consequently, we may write the inverse zeroes in the form γj =
√
qeiθ(γj) with

0 ≤ θ(γj) ≤ π and γj+g = γj =
√
qe−iθ(γj) for 1 ≤ j ≤ g. Note in particular that

the orders of the inverse zeroes γ = ±√q of ζC/Fq(s) must be even.

Observe that ζC/Fq(s) is in fact a function of q−s. This allows us to define the

zeta function ZC/Fq(u) via the identification u = q−s, so that

ZC/Fq(u) = ζC/Fq(s) =
PC/Fq(u)

(1− u)(1− qu)
, (2.1)

and hence ZC/Fq(u) satisfies the functional equation

ZC/Fq(u) = qg−1u2(g−1)ZC/Fq

(
1

qu

)
. (2.2)
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Returning to the summatory function of the Möbius function of a function

field, we now approach the problem of obtaining an explicit description of this

function by studying the Dirichlet series∑
D≥0

µC/Fq(D)

NDs .

As µC/Fq(D) is multiplicative and satisfies µC/Fq(P ) = −1 and µC/Fq (P t) = 0,

t ≥ 2, for a prime divisor P of C, this Dirichlet series has the Euler product

expansion ∑
D≥0

µC/Fq(D)

NDs =
∏
P

(
1−NP−s

)
for <(s) > 1, which upon comparing Euler products leads us to the identity∑

D≥0

µC/Fq(D)

NDs =
1

ζC/Fq(s)
, (2.3)

which is valid for all <(s) > 1. On the other hand, note that for <(s) > 1, we

may rearrange this Dirichlet series instead to be of the form∑
D≥0

µC/Fq(D)

NDs =
∑
D≥0

µC/Fq(D)

qdeg(D)s
=

∞∑
N=0

1

qNs

∑
deg(D)=N

µC/Fq(D), (2.4)

and so if we can determine an expression for the coefficients of the Dirichlet se-

ries for 1/ζC/Fq(s) using the known factorisation (2.1) of ζC/Fq(s), then upon

comparing coefficients, we will be able to construct an accurate formula for

MC/Fq(X) =
∑X−1

N=0

∑
deg(D)=N µC/Fq(D).

This is particularly simple to do when g = 0, so that C is the projective line

P1, and hence the function field C/Fq is simply Fq(t). In this case, we have that

∞∑
N=0

uN
∑

deg(D)=N

µC/Fq(D) =
1

ZC/Fq(u)
= (1− u)(1− qu),

and so by equating coefficients, we obtain the following result.

Proposition 2.3. Let g = 0. Then

MC/Fq(X) =


1 if X = 1,

−q if X = 2,

0 if X ≥ 3.

In particular, the Mertens conjecture for C/Fq holds.
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For g ≥ 1, our method for determining an expression for these coefficients is

via Cauchy’s residue theorem. We will deal only with the case where all of the

zeroes of ZC/Fq(u) are simple, though it is nevertheless possible to determine an

explicit expression for MC/Fq(X) when ZC/Fq(u) has zeroes of multiple order [5,

Proposition 2.2].

Proposition 2.4 (Cha [5, Proposition 2.2, Corollary 2.3]). Let g ≥ 1, and sup-

pose that the zeroes of ZC/Fq(u) are all simple. Then as X tends to infinity,

MC/Fq(X)

qX/2
= −

∑
γ

1

ZC/Fq
′ (γ−1)

γ

γ − 1
eiXθ(γ) +Oq,g

(
1

qX/2

)
. (2.5)

In particular, the quantity

B(C/Fq) = lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2

satisfies

B(C/Fq) ≤
∑
γ

∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣. (2.6)

It is useful to compare the explicit expression (2.5) to that for the classical

case, (1.3). One can immediately see the similarities, with the chief difference

being the replacement of x in the classical setting by qX for the function field

case.

Proof. This is proved by Cha in [5, Proposition 2.2]; we include the details of the

proof for later comparison. Let CT = {z ∈ C : |z| = qT} for T > 0, and consider

the contour integral
1

2πi

∮
CT

1

uN+1

1

ZC/Fq(u)
du.

We can write 1/ZC/Fq(u) in two ways; via (2.3) and (2.1), and via (2.4), yielding

the identities

1

ZC/Fq(u)
= (1− u)(1− qu)

2g∏
j=1

1

1− γju
, (2.7)

1

ZC/Fq(u)
=

∞∑
N=0

uN
∑

deg(D)=N

µC/Fq(D), (2.8)

where the first identity is valid for all u ∈ C \ {γ−11 , . . . , γ−12g }, and the second

identity is valid for all |u| < q−1. So the singularities of the integrand inside CT
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occur at u = 0 and at u = γ−1 for each zero γ−1 of ZC/Fq(u). At the singularity

u = 0, we have by (2.8) that

Res
u=0

1

uN+1

1

ZC/Fq(u)
=

∑
deg(D)=N

µC/Fq(D).

As ZC/Fq(u) has a simple zero at each γ−1, we obtain from (2.7) that

Res
u=γ−1

1

uN+1

1

ZC/Fq(u)
= lim

u→γ−1

1

uN+1

u− γ−1

ZC/Fq(u)
=

1

ZC/Fq
′ (γ−1)

γN+1.

So by Cauchy’s residue theorem,

1

2πi

∮
CT

1

uN+1

1

ZC/Fq(u)
du =

∑
γ

1

ZC/Fq
′ (γ−1)

γN+1 +
∑

deg(D)=N

µC/Fq(D). (2.9)

Summing over all 0 ≤ N ≤ X − 1 and evaluating the resulting geometric series,

we find that

MC/Fq(X) = −
∑
γ

1

ZC/Fq
′ (γ−1)

γ

γ − 1
γX +RX(q, g, T ), (2.10)

where the error term RX(q, g, T ) is

RX(q, g, T ) =
∑
γ

1

ZC/Fq
′ (γ−1)

γ

γ − 1
+

X−1∑
N=0

1

2πi

∮
CT

1

uN+1

1

ZC/Fq(u)
du. (2.11)

Now (2.7) and the fact that |u| = qT and |γj| =
√
q imply that∣∣∣∣ 1

2πi

∮
CT

1

uN+1

1

ZC/Fq(u)
du

∣∣∣∣ ≤ 1

2π

∮
CT

∣∣∣∣ 1

uN+1

1

ZC/Fq(u)

∣∣∣∣ |du|
≤
(
qT + 1

) (
q1+T + 1

)
(q1/2+T − 1)

2g q−NT .

As the right-hand side of (2.9) is independent of T , we may take the limit as

T tends to infinity in order to find that the contour integral above is zero if

N ≥ 3 − 2g and at most q1−g in absolute value if N = 2(1 − g). As g ≥ 1 and

N ≥ 0, this implies that for all X ≥ 1, the second term in RX(q, g, T ) vanishes

if g ≥ 2, and is a constant of absolute value at most 1 if g = 1. Thus RX(q, g, T )

is constant, and hence bounded as X tends to infinity. Upon dividing through

(2.10) by qX/2 and using the fact that γ =
√
qeiθ(γ), we obtain the result.
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As there are precisely 2g zeroes of ZC/Fq(u), the sum in (2.6) is finite, and

hence MC/Fq(X)/qX/2 is bounded. Furthermore, (2.6) proves part of Theorem 1.5

in showing that if ZC/Fq(u) has simple zeroes, then the inequality (1.5) holding

implies that the Mertens conjecture for C/Fq is true.

We next show that the bound (2.6) is sharp if the zeroes of ZC/Fq(u) are

particularly well-behaved.

Definition 2.5. We say that C satisfies the Linear Independence hypothesis,

which we abbreviate to LI, if the collection

π, θ(γ1), . . . , θ(γg)

is linearly independent over the rational numbers.

Notably, if C satisfies LI, then all of the zeroes of ZC/Fq(u) are simple.

Theorem 2.6 (Cha [5, Theorem 2.5]). Suppose that C satisfies LI. Then

B(C/Fq) =
∑
γ

∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣.
Consequently, if C satisfies LI, then the Mertens conjecture for C/Fq is true if

and only if the inequality (1.5) holds.

The proof follows from a direct application of the Kronecker–Weyl theorem,

which we prove in Appendix A in the following form.

Lemma 2.7 (Kronecker–Weyl Theorem). Let t1, . . . , tg be real numbers, and let

H be the topological closure in the g-torus

Tg = {(z1, . . . , zg) ∈ Cg : |zj| = 1 for all 1 ≤ j ≤ g}.

of the subgroup

H̃ =
{(
e2πiXt1 , . . . , e2πiXtg

)
∈ Tg : X ∈ Z

}
.

Then H is a closed subgroup of Tg. In particular, when the collection 1, t1, . . . , tg

is linearly independent over the rational numbers, H is precisely Tg. Furthermore,

for arbitrary t1, . . . , tg and for any continuous function h : Tg → C, we have that

lim
Y→∞

1

Y

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
=

∫
H

h(z) dµH(z),

where µH is the normalised Haar measure on H.
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Proof of Theorem 2.6. As γj+g = γj for each 1 ≤ j ≤ g and as ZC/Fq (u) =

ZC/Fq(u),∑
γ

1

ZC/Fq
′ (γ−1)

γ

γ − 1
eiXθ(γ)

=

g∑
j=1

(
1

ZC/Fq
′ (γ−1j ) γj

γj − 1
eiXθ(γj) +

1

ZC/Fq
′ (γj

−1)

γj
γj − 1

e−iXθ(γj)

)

=

g∑
j=1

(
1

ZC/Fq
′ (γ−1j ) γj

γj − 1
eiXθ(γj) +

1

ZC/Fq
′ (γ−1j ) γj

γj − 1
eiXθ(γj)

)

= 2<

(
g∑
j=1

1

ZC/Fq
′ (γ−1j ) γj

γj − 1
eiXθ(γj)

)
.

Thus we may write MC/Fq(X)/qX/2 as

MC/Fq(X)

qX/2
= −2<

(
g∑
j=1

1

ZC/Fq
′ (γ−1j ) γj

γj − 1
eiXθ(γj)

)
+Oq,g

(
1

qX/2

)
.

The assumption that C satisfies LI then allows us to apply the Kronecker–Weyl

theorem with tj = θ(γj)/2π for 1 ≤ j ≤ g, which tells us that the set{(
eiXθ(γ1), . . . , eiXθ(γg)

)
∈ Tg : X ∈ N

}
is dense (in fact, equidistributed) in Tg. This implies the existence of a subse-

quence (Xm) of N such that

lim
m→∞

(
eiXmθ(γ1), . . . , eiXmθ(γg)

)
=
(
e−iω(γ1), . . . , e−iω(γg)

)
,

where for 1 ≤ j ≤ g,

ω(γj) = arg

(
− 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

)
.

Together with (2.6), this implies that

lim sup
X→∞

MC/Fq(X)

qX/2
= 2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣.
An analogous argument shows that

lim inf
X→∞

MC/Fq(X)

qX/2
= −2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣.
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2.2 MC/Fq(X) and Zeroes of Multiple Order

To complete the proof of Theorem 1.5, it remains to consider the case where

ZC/Fq(u) has zeroes of multiple order; we will show that in this situation, the

Mertens conjecture can never hold. We first require the following trivial bound

on MC/Fq(X).

Lemma 2.8. For any nonsingular curve C over Fq of genus g ≥ 1, we have that

MC/Fq(X) = Oq,g

(
qX
)
. (2.12)

Proof. By taking absolute values, we trivially have that

∣∣MC/Fq(X)
∣∣ ≤ X−1∑

N=0

bC/Fq(N),

where bC/Fq(N) is the number of effective divisors of degree N . From [24, Lemma

5.8], there exists a constant c dependent on C/Fq such that

bC/Fq(N) ∼ cqN

for all N > 2g − 2, while bC/Fq(N) is finite for 0 ≤ N ≤ 2g − 2. Summing over

all 0 ≤ N ≤ X − 1 yields the result.

Corollary 2.9. For |u| < q−1,

1

ZC/Fq(u)
= (1− u)

∞∑
X=1

MC/Fq(X)uX−1. (2.13)

Proof. Via partial summation, we have that for |u| < q−1 and for Y ≥ 1 that

Y−1∑
N=0

uN
∑

deg(D)=N

µC/Fq(D) = MC/Fq(Y )uY−1 −
Y−1∑
X=1

MC/Fq(X)
(
uX − uX−1

)
.

By taking the limit as Y tends to infinity and using (2.3) and (2.12), we obtain

the result.

The key result that we make use of is the following.

Lemma 2.10 (Landau’s Theorem). Let A(X) be real-valued sequence, and sup-

pose that there exists a positive integer X0 such that A(X) is of constant sign
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for all X ≥ X0. Furthermore, suppose that the supremum vc of the set of points

v ∈ [0,∞) for which the sum

∞∑
X=X0

A(X)vX−1

converges satisfies vc ≤ 1. Then the function

F (u) =
∞∑
X=1

A(X)uX−1

is holomorphic in the disc |u| < vc with a singularity at the point vc.

Proof. By making the change of variables v = e−σ, we have that

∞∑
X=X0

A(X)vX−1 = − σeσ

1− e−σ

∫ ∞
X0

A (bXc) e−Xσ dX

= − σeσ

1− e−σ

∫ ∞
eX0

A (blog xc)
xσ

dx

x
,

where bXc denotes the integer part of X, and the second equality follows from

the substitution x = eX . Similarly, letting u = e−s for <(s) > vc, we have that

∞∑
X=1

A(X)uX−1 = − ses

1− e−s

∫ ∞
e

A (blog xc)
xs

dx

x
.

The result now follows directly from [19, Lemma 15.1].

Finally, we also require the following combinatorial identity.

Lemma 2.11. Let |u| < 1, and let r be a positive integer. Then

∞∑
X=1

Xr−1uX =
1

(1− u)r

r−1∑
k=0

A(r − 1, k)uk+1, (2.14)

where the coefficients

A(r − 1, k) =
k∑
j=0

(
r

j

)
(−1)j(k + 1− j)r−1

are Eulerian numbers, which satisfy the identity

r−1∑
k=0

A(r − 1, k) = r!.
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We first deal with the case where
√
q is an inverse zero of ZC/Fq(u).

Proposition 2.12. Let g ≥ 1, and suppose that γ =
√
q is an inverse zero of

ZC/Fq(u). Then γ has order r ≥ 2, and

lim sup
X→∞

∣∣MC/Fq(X)
∣∣

Xr−1qX/2
> 0.

In particular, the Mertens conjecture for the function field C/Fq is false.

Proof. If u =
√
q is an inverse zero of ZC/Fq(u), then this zero must be of order

r ≥ 2 due to the functional equation for ZC/Fq(u). In this case,

lim
u→q−1/2

(
u− q−1/2

)r
ZC/Fq(u)

=
r!

ZC/Fq
(r) (q−1/2)

,

and this is nonzero and real as ZC/Fq(v) is real for all real v, so all derivatives of

any order of ZC/Fq(v) at real values v must be real.

Now if (−1)r/ZC/Fq
(r)
(
q−1/2

)
is negative, then we suppose that there exists

some c ≥ 0 and a positive integer X0 such that MC/Fq(X) > −cXr−1qX/2 for all

X ≥ X0; we will show that for this to be the case, we must have that c ≥ c0 for

a certain c0 > 0, and hence that

lim inf
X→∞

MC/Fq(X)

Xr−1qX/2
≤ −c0 < 0.

Indeed, if MC/Fq(X) > −cXr−1qX/2 for all X ≥ X0, then by (2.13) and (2.14),

∞∑
X=1

(
MC/Fq(X) + cXr−1qX/2

)
uX−1

=
1

(1− u)ZC/Fq(u)
+

c

u
(
1−√qu

)r r−1∑
k=0

A(r − 1, k)q(k+1)/2uk+1. (2.15)

The right-hand side of (2.15) is holomorphic for |u| < q−1/2 and has a singularity

at u = q−1/2, so Landau’s theorem implies that the sum on the left-hand side of

(2.15) converges for all |u| < q−1/2 and defines a holomorphic function F (u) on

this open half-plane. We then multiply both sides of (2.15) by
(
1−√qu

)r
and

consider the limit as u tends to q−1/2 from the left through real values; from the

right-hand side of (2.15), we find that this limit exists and is equal to

(−1)rqr/2r!

(1− q−1/2)ZC/Fq (r) (q−1/2)
+ c
√
qr!.
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Now if this were negative, then the left-hand side of (2.15) would tend to negative

infinity as u approaches q−1/2 from the left. This, however, is impossible, as we

can split up this sum into two parts: a sum from X = 1 to X0 − 1, and a sum

from X = X0 to infinity, and the former sum is uniformly bounded as u tends to

q−1/2, while the coefficients of the latter sum are nonnegative. Consequently, we

conclude that the inequality MC/Fq(X) > −cXr−1qX/2 for all X ≥ X0 can only

hold provided

c ≥ (−1)r+1qr/2(√
q − 1

)
ZC/Fq

(r) (q−1/2)
> 0.

If (−1)r/ζC/Fq
(r)(1/2) is positive, on the other hand, we instead suppose that

the inequality MC/Fq(X) < cXr−1qX/2 holds for all X ≥ X0, in which case an

analogous argument applied to the equation

∞∑
X=1

(
MC/Fq(X)− cXr−1qX/2

)
uX−1

=
1

(1− u)ZC/Fq(u)
− c

u
(
1−√qu

)r r−1∑
k=0

A(r − 1, k)q(k+1)/2uk+1

shows that

lim sup
X→∞

MC/Fq(X)

Xr−1qX/2
≥ (−1)rqr/2(√

q − 1
)
ZC/Fq

(r) (q−1/2)
> 0.

The case when ZC/Fq
(
q−1/2

)
6= 0 but ZC/Fq(u) nevertheless has a zero of

multiple order follows by a similar but slightly more complicated argument.

Proposition 2.13. Let g ≥ 1, and suppose that ZC/Fq(u) has an inverse zero

γ =
√
qeiθ(γ) of order r ≥ 2, but that the order of the inverse zero at

√
q is of

order strictly less than r. Then

lim sup
X→∞

∣∣MC/Fq(X)
∣∣

Xr−1qX/2
> 0.

In particular, the Mertens conjecture for the function field C/Fq is false.

Proof. Suppose there exists some c ≥ 0 and a positive integer X0 such that

MC/Fq(X) > −cXr−1qX/2 for all X ≥ X0. Once again, Landau’s theorem shows

that the equation

∞∑
X=1

(
MC/Fq(X) + cXr−1qX/2

)
uX−1

=
1

(1− u)ZC/Fq(u)
+

c

u
(
1−√qu

)r r−1∑
k=0

A(r − 1, k)q(k+1)/2uk+1.



20 Local Mertens Conjectures

is valid for |u| < q−1/2 and defines a holomorphic function F (u) in this disc. Then

for |u| < q−1/2,

∞∑
X=1

(
MC/Fq(X) + cqX/2Xr−1) (1 + cos (φ(γ)− (X − 1)θ(γ)))uX−1

= F (u) +
eiφ(γ)

2

1− ue−iθ(γ)

1− u
F
(
ue−iθ(γ)

)
+
e−iφ(γ)

2

1− ueiθ(γ)

1− u
F
(
ueiθ(γ)

)
, (2.16)

where we let

φ(γ) = π − arg

(
(−1)rγr

ZC/Fq
(r) (γ−1)

)
.

Upon multiplying both sides of (2.16) by
(
1−√qu

)r
, we find via the right-hand

side of (2.16) that as u tends to q−1/2 from the left through real values, this

quantity converges to

c
√
qr!− qr/2r!

(1− q−1/2)
∣∣∣ZC/Fq (r) (γ−1)

∣∣∣ ,
which must be nonnegative: otherwise, the left-hand side of (2.16) would tend

to negative infinity as u approaches q−1/2 from the left, a contradiction given the

uniform boundedness of the sum from X = 0 to X0 as u tends to q−1/2 and the

fact that the sum from X = X0 to infinity is nonnegative. Thus

c ≥ qr/2(√
q − 1

) ∣∣∣ZC/Fq (r) (γ−1)
∣∣∣ > 0,

and so

lim inf
X→∞

MC/Fq(X)

Xr−1qX/2
≤ − qr/2(√

q − 1
) ∣∣∣ZC/Fq (r) (γ−1)

∣∣∣ < 0.

An analogous argument shows that we also have that

lim sup
X→∞

MC/Fq(X)

Xr−1qX/2
≥ qr/2(√

q − 1
) ∣∣∣ZC/Fq (r) (γ−1)

∣∣∣ > 0.

2.3 The Limiting Distribution of MC/Fq(X)/qX/2

Let m denote the Lebesgue measure on [0, 1]g. For a Borel set B ⊂ R and a

Borel-measurable function f : [0, 1]g → R, we write m(f(θ1, . . . , θg) ∈ B) for

m ({(θ1, . . . , θg) ∈ [0, 1]g : f(θ1, . . . , θg) ∈ B}) .
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Our main result for this section is the following expression for the natural density

of the set of positive integers X for which
∣∣MC/Fq(X)

∣∣ ≤ qX/2, the proof of which

is similar to that of the key result of Cha in [4] on Chebyshev’s bias in function

fields, which in turn is based on the seminal work of Rubinstein and Sarnak in

[25].

Proposition 2.14. Let C be a nonsingular projective curve over Fq of genus

g ≥ 1, and suppose that C satisfies LI. The natural density

d
(
PC/Fq ;µ

)
= lim

Y→∞

1

Y
#
{

1 ≤ X ≤ Y :
∣∣MC/Fq(X)

∣∣ ≤ qX/2
}

exists and is equal to

d
(
PC/Fq ;µ

)
= m

(
−1 ≤ 2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣ cos(2πθj) ≤ 1

)
. (2.17)

From this, the proof of Theorem 1.6 follows quite easily: it is clear that this

density is strictly positive, as there exists an open neighbourhood of the point

(1/4, . . . , 1/4) ∈ [0, 1]g such that

−1 ≤ 2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣ cos(2πθj) ≤ 1

inside this neighbourhood, while it is immediate that d
(
PC/Fq ;µ

)
= 1 when

∑
γ

∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣ ≤ 1.

If the inequality above does not hold, however, then d
(
PC/Fq ;µ

)
< 1, for then

there exists an open neighbourhood of (0, . . . , 0) ∈ [0, 1]g such that

2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣ cos(2πθj) > 1

inside this neighbourhood.

In fact, we prove something slightly more general than Proposition 2.14: we

show that MC/Fq(X)/qX/2 has a limiting distribution as X tends to infinity, the

construction of which is based off the Kronecker–Weyl theorem. For any nonsin-

gular projective curve C over Fq of genus g ≥ 1, (2.5) allows us to write

MC/Fq(X)

qX/2
= EC/Fq ;µ(X) + εC/Fq ;µ(X),
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where

EC/Fq ;µ(X) = −
∑
γ

1

ZC/Fq
′ (γ−1)

γ

γ − 1
eiXθ(γ),

εC/Fq ;µ(X) = Oq,g

(
1

qX/2

)
,

provided that all of the zeroes γ−1 of ZC/Fq(u) are simple. We begin by first

constructing the limiting distribution of EC/Fq ;µ(X).

Lemma 2.15. Let C be a nonsingular projective curve over Fq of genus g ≥ 1,

and suppose that all of the zeroes γ−1 of ZC/Fq(u) are simple. There exists a

probability measure νC/Fq ;µ on R that satisfies

lim
Y→∞

1

Y

Y∑
X=1

f
(
EC/Fq ;µ(X)

)
=

∫
R
f(x) dνC/Fq ;µ(x)

for all continuous functions f on R.

Proof. By the Kronecker–Weyl theorem with tj = θ(γj)/2π for 1 ≤ j ≤ g, there

exists a subtorus H ⊂ Tg satisfying

lim
Y→∞

1

Y

Y∑
X=1

h
(
eiXθ(γ1), . . . , eiXθ(γg)

)
=

∫
H

h(z) dµH(z)

for every continuous function h on Tg, where µH is the normalised Haar measure

on H. We now define the probability measure νC/Fq ;µ on R by

νC/Fq ;µ(B) = µH(B̃)

for each Borel set B ⊂ R, where

B̃ =

{
(z1, . . . , zg) ∈ H : −2<

(
g∑
j=1

1

ZC/Fq
′ (γ−1j ) γj

γj − 1
zj

)
∈ B

}
.

The function

−2<

(
g∑
j=1

1

ZC/Fq
′ (γ−1j ) γj

γj − 1
zj

)
is continuous on H, so B̃ is a Borel set in H, and νC/Fq ;µ is a probability measure

as µH is the normalised Haar measure on H. So for a bounded continuous function

f on R, we define the function h(z1, . . . , zg) on the g-torus Tg by

h(z1, . . . , zg) = f

(
−2<

(
g∑
j=1

1

ZC/Fq
′ (γ−1j ) γj

γj − 1
zj

))
,
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so that h is continuous on Tg with

f
(
EC/Fq ;µ(X)

)
= h

(
eiXθ(γ1), . . . , eiXθ(γg)

)
.

Hence by the Kronecker–Weyl theorem,∫
R
f(x) dνC/Fq ;µ(x) =

∫
H

h(z1, . . . , zg) dµH(z1, . . . , zg)

= lim
Y→∞

1

Y

Y∑
X=1

h
(
eiXθ(γ1), . . . , eiXθ(γg)

)
= lim

Y→∞

1

Y

Y∑
X=1

f
(
EC/Fq ;µ(X)

)
.

Next, we show using this construction that MC/Fq(X)/qX/2 has a limiting

distribution on R. The key tool is the following result that allows us to show that

a sequence of measures is weakly convergent.

Lemma 2.16 (Portmanteau Theorem [2, Theorem 2.1]). Let {νY }∞Y=1, ν be prob-

ability measures on a metric space X . Then the following are equivalent:

(1) The sequence of measures νY converges weakly to ν; that is,

lim
Y→∞

∫
X
f(x) dνY (x) =

∫
X
f(x) dν(x).

for every bounded continuous function f : X → R.

(2) For every Borel set B ⊂ X whose boundary has ν-measure zero,

lim
Y→∞

νY (B) = ν(B).

(3) For every bounded Lipschitz continuous function f : X → R,

lim
Y→∞

∫
X
f(x) dνY (x) =

∫
X
f(x) dν(x).

We also require the following lemma to show the existence of a weak limit of

measures. This relies on the notion of tightness of a sequence of measures: we

say that a family of probability measures {νY } on a metric space X is tight if for

every ε > 0 there exists a compact set K ⊂ X such that νY (K) > 1− ε for all Y .

Lemma 2.17 (Prohorov’s Theorem [2, Theorem 5.1]). Let {νY }∞Y=1 be probability

measures on a metric space X . If {νY }∞Y=1 is tight, then every subsequence of

{νY }∞Y=1 has a weakly convergent subsubsequence.
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Proposition 2.18. Let C be a nonsingular projective curve over Fq of genus

g ≥ 1, and suppose that all of the zeroes γ−1 of ZC/Fq(u) are simple. The function

MC/Fq(X)/qX/2 has a limiting distribution νC/Fq ;µ on R. That is, there exists a

probability measure νC/Fq ;µ on R such that

lim
Y→∞

1

Y

Y∑
X=1

f

(
MC/Fq(X)

qX/2

)
=

∫
R
f(x) dνC/Fq ;µ(x)

for all bounded continuous functions f on R.

Proof. For each positive integer Y , let νY,µ be the probability measure on R given

by

νY,µ(B) =
1

Y
#

{
1 ≤ X ≤ Y :

MC/Fq(X)

qX/2
∈ B

}
for any Borel set B ⊂ R, so that for any continuous function f on R,∫

R
f(x) dνY,µ(x) =

1

Y

Y∑
X=1

f

(
MC/Fq(X)

qX/2

)
.

As MC/Fq(X)/qX/2 is bounded, the probability measures {νY,µ} are tight, so by

Prohorov’s Theorem, for every subsequence {Yk} there exists a subsubsequence

{Yk`} and a probability measure ν̃C/Fq ;µ such that νYk` ;µ converges weakly to

ν̃C/Fq ;µ. We will show that ν̃C/Fq ;µ = νC/Fq ;µ for every such subsequence, which

will imply that the probability measures {νY,µ} converge weakly to νC/Fq ;µ, as

required.

So if νYk` ;µ converges weakly to ν̃C/Fq ;µ, then by the Portmanteau theorem,

lim
`→∞

1

Yk`

Yk∑̀
X=1

f

(
MC/Fq(X)

qX/2

)
= lim

`→∞

∫
R
f(x) dνYk` ;µ(x) =

∫
R
f(x) dν̃C/Fq ;µ(x)

for every bounded Lipschitz continuous function f : R → R, that is, for every

function f for which there exists a constant cf ≥ 0 such that

sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|

= cf <∞.

The Lipschitz condition implies that

1

Yk`

Yk∑̀
X=1

f

(
MC/Fq(X)

qX/2

)
≥ 1

Yk`

Yk∑̀
X=1

f
(
EC/Fq ;µ(X)

)
− cf
Yk`

Yk∑̀
X=1

|εC/Fq ;µ(X)|.
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As ` tends to infinity, the left-hand side converges to
∫
R f(x) dν̃C/Fq ;µ(x) by as-

sumption. On the right-hand side, the first term converges to
∫
R f(x) dνC/Fq ;µ(x)

by Lemma 2.15, while the second term tends to zero as εC/Fq ;µ(X) = O(q−X/2).

Thus ∫
R
f(x) dν̃C/Fq ;µ(x) ≥

∫
R
f(x) dνC/Fq ;µ(x).

Furthermore, the Lipschitz condition also implies that

1

Yk`

Yk∑̀
X=1

f

(
MC/Fq(X)

qX/2

)
≤ 1

Yk`

Yk∑̀
X=1

f
(
EC/Fq ;µ(X)

)
+

cf
Yk`

Yk∑̀
X=1

|εC/Fq ;µ(X)|,

and hence ∫
R
f(x) dν̃C/Fq ;µ(x) ≤

∫
R
f(x) dνC/Fq ;µ(x).

Combining both inequalities shows that νYk` ;µ converges weakly to νC/Fq ;µ. By

the uniqueness of weak limits of measures, we conclude that ν̃C/Fq ;µ = νC/Fq ;µ.

Proof of Proposition 2.14. The Portmanteau Theorem together with Proposition

2.18 implies that

lim
Y→∞

1

Y
#

{
1 ≤ X ≤ Y :

MC/Fq(X)

qX/2
∈ B

}
= νC/Fq ;µ(B)

for every Borel set B ⊂ R whose boundary has νC/Fq ;µ-measure zero. From

this, we can show that d
(
PC/Fq ;µ

)
exists and is equal to νC/Fq ;µ([−1, 1]) provided

νC/Fq ;µ({−1, 1}) = 0. To prove this last point, we observe that the assumption

that C satisfies LI implies that the topological closure of

H̃ =
{(
eiθ(γ1)X , . . . , eiθ(γg)X

)
∈ Tg : X ∈ Z

}
in Tg is H = Tg. So the normalised Haar measure on H is the Lebesgue measure

on the g-torus, and consequently for a Borel set B ⊂ R,

νC/Fq ;µ(B) = m

(
−2<

(
g∑
j=1

1

ZC/Fq
′ (γ−1j ) γj

γj − 1
e2πiθj

)
∈ B

)

= m

(
2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣ cos(2πθj) ∈ B

)

by the translation invariance of the Lebesgue measure. Note that

2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣ cos(2πθj)
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is real analytic on [0, 1]g and not uniformly constant. As the zero set of a non-

uniformly zero real analytic function has Lebesgue measure zero, we determine

that

m

(
2

g∑
j=1

∣∣∣∣∣ 1

ZC/Fq
′ (γ−1j ) γj

γj − 1

∣∣∣∣∣ cos(2πθj) = c

)
= 0

for any c ∈ R. Thus νC/Fq ;µ is atomless, and hence d
(
PC/Fq ;µ

)
is equal to

νC/Fq ;µ([−1, 1]).



Chapter 3

Examples in Low Genus

3.1 Elliptic Curves over Finite Fields

In this chapter, we study local Mertens conjectures in the simplest nontrivial case,

namely g = 1, where we suppose that C/Fq is the function field of an elliptic curve

over a finite field. That is, we suppose that C is a nonsingular projective algebraic

curve of genus one over Fq with a given point defined over Fq. Then ZC/Fq(u) is

of the form

ZC/Fq(u) =
(1− γu)(1− γu)

(1− u)(1− qu)
=

1− au+ qu2

(1− u)(1− qu)

for some γ =
√
qeiθ(γ) with 0 ≤ θ(γ) ≤ π, so that the integer a satisfies

a = 2<(γ) = 2
√
q cos θ(γ).

Equivalently, γ can be defined in terms of the integer a via

θ(γ) = arccos

(
a

2
√
q

)
.

Geometrically, the integer a is the trace of the Frobenius endomorphism acting

on the elliptic curve C over Fq. Notably, there are several restrictions on the

possible values that a may take. The following lemma fully characterises the

possible values of a.

Lemma 3.1 (Waterhouse [29, Theorem 4.1]). Let a be an integer. Then a is

the trace of the Frobenius endomorphism acting on some elliptic curve C over a

finite field Fq of characteristic p if and only if one of the following conditions is

satisfied:

27



28 Examples in Low Genus

(1) a 6≡ 0 (mod p) and |a| < 2
√
q; for such an integer a, the corresponding

angle θ(γ) is such that θ(γ)/π is irrational,

(2) (i) q = pm with a = 2
√
q, where m is even, so that θ(γ) = 0,

(2) (ii) q = pm with a = −2
√
q, where m is even, so that θ(γ) = π,

(3) (i) q = pm with a =
√
q, where m is even and p 6≡ 1 (mod 3), so that

θ(γ) = π/3,

(3) (ii) q = pm with a = −√q, where m is even and p 6≡ 1 (mod 3), so that

θ(γ) = 2π/3,

(4) (i) q = 2m with a =
√

2q, where m is odd, so that θ(γ) = π/4,

(4) (ii) q = 2m with a = −
√

2q, where m is odd, so that θ(γ) = 3π/4,

(4) (iii) q = 3m with a =
√

3q, where m is odd, so that θ(γ) = π/6,

(4) (iv) q = 3m with a = −
√

3q, where m is odd, so that θ(γ) = 5π/6,

(5) q = pm with a = 0, where either m is even and p 6≡ 1 (mod 4), or m

is odd, so that θ(γ) = π/2.

From the second part of this lemma, we may completely determine which

elliptic curves satisfy LI.

Corollary 3.2. Let C be an elliptic curve over a finite field Fq of characteristic

p, so that a and q satisfying one of conditions (1)—(5) of Lemma 3.1. Then C

satisfies LI if and only if condition (1) is satisfied, ZC/Fq(u) has zeroes of multiple

order if and only if condition (2) is satisfied, and C fails to satisfy LI but ZC/Fq(u)

has only simple zeroes if and only if one of conditions (3)—(5) is satisfied.

Next, we determine an explicit expression for MC/Fq(X)/qX/2 using Propo-

sition 2.4; remarkably, we may eliminate any error term for this expression.

We must consider two cases: when ZC/Fq(u) has only simple zeroes, and when

ZC/Fq(u) has a zero of order 2. For the first case, we have the following result.

Proposition 3.3. Let C be an elliptic curve over Fq, and suppose that ZC/Fq(u)
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has only simple zeroes. Then

MC/Fq(X)

qX/2
= 2

√
q + 1− a
4q − a2

cos (ω +Xθ) , (3.1)

where a is the trace of the Frobenius endomorphism, and ω ∈ (−π/2, π/2), θ ∈
[0, π] are given by

ω = arctan

(
a− 2

2
√

4q − a2

)
, (3.2)

θ = arccos

(
a

2
√
q

)
. (3.3)

We remark that (3.1) is equivalent to

MC/Fq(X)

qX/2
= cos(Xθ)− a− 2√

4q − a2
sin(Xθ). (3.4)

Proof. The fact that ZC/Fq(u) has only simple zeroes is equivalent to γ 6= γ. Now

using the fact that

ZC/Fq
′ (γ−1) = − γ(1− γγ−1)

(1− γ−1)(1− qγ−1)
= − γ

γ − 1

γ − γ
γ − 1

,

we find from (2.10) that

MC/Fq(X)

qX/2
=
γ − 1

γ − γ
eiXθ(γ) +

γ − 1

γ − γ
e−iXθ(γ) +

1

qX/2
RX(q, 1, T )

= 2<
(
γ − 1

γ − γ
eiXθ(γ)

)
+

1

qX/2
RX(q, 1, T ),

with RX(q, 1, T ) as in (2.11). As γ =
√
qeiθ(γ), we see that

γ − 1

γ − γ
=

√
q cos θ(γ)− 1− i√q sin θ(γ)

−2i
√
q sin θ(γ)

=

√
q + 1− 2

√
q cos θ(γ)

2
√
q sin θ(γ)

eiω(γ),

where

ω(γ) = arctan

(√
q cos θ(γ)− 1
√
q sin θ(γ)

)
,

and consequently

MC/Fq(X)

qX/2
=

√
q + 1− 2

√
q cos θ(γ)

√
q sin θ(γ)

cos (ω(γ) +Xθ(γ)) +
1

qX/2
RX(q, 1, T )

= cos(Xθ(γ))−
√
q cos θ(γ)− 1
√
q sin θ(γ)

sin(Xθ(γ)) +
1

qX/2
RX(q, 1, T ),

(3.5)
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where the second equality follows from the cosine angle-sum formula. Now the

proof of Proposition 2.4 shows that RX(q, g, T ) is constant for X ≥ 3 − 2g, and

hence for all X ≥ 1 when g = 1. We can therefore determine the value of

RX(q, 1, T ) simply by taking X = 1 in (3.5), so that

MC/Fq(1) = 1 +R1(q, 1, T ).

On the other hand,

MC/Fq(1) =
∑

deg(D)=0

µC/Fq(D) = 1

as the only divisor of degree zero is the zero divisor, and so RX(q, 1, T ) = 0. We

complete the proof by noting that a = 2
√
q cos θ(γ) with 0 ≤ θ(γ) ≤ π, so that

2
√
q sin θ(γ) =

√
4q − a2.

The analogous result in the case where ZC/Fq(u) has a zero of multiple order

is the following.

Proposition 3.4. Let C be an elliptic curve over a finite field Fq of characteristic

p, and suppose that ZC/Fq(u) has zeroes of multiple order, so that q = pm with

a = ±2
√
q, where m is even. Then

MC/Fq(X)

qX/2
= −(±1)X

(
1∓ 1
√
q

)
X + (±1)X . (3.6)

Proof. If a = ±2
√
q, then γ = γ = ±√q. From the proof of Proposition 2.4, we

have that for N ≥ 0,∑
deg(D)=N

µC/Fq(D) = − Res
u=±q−1/2

1

uN+1

1

ZC/Fq(u)
+

1

2πi

∮
CT

1

uN+1

1

ZC/Fq(u)
du,

with the last term equal to zero for N ≥ 1. Now

Res
u=±q−1/2

1

uN+1

1

ZC/Fq(u)
= lim

u→±q−1/2

d

du

(
u∓ q−1/2

)2
uN+1

(1− u)(1− qu)(
1∓√qu

)2
= (±1)N+1 (

√
q ∓ 1)2Nq(N−1)/2.

This vanishes when N = 0, whereas
∑

deg(D)=0 µC/Fq(D) = 1, and so

1

2πi

∮
CT

1

u

1

ZC/Fq(u)
du = 1.
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Consequently,

∑
deg(D)=N

µC/Fq(D) = −(±1)N+1 (
√
q ∓ 1)2Nq(N−1)/2 +

1 if N = 0,

0 otherwise,

which leads to the result upon summing over all 0 ≤ N ≤ X−1 and then dividing

through by qX/2.

These two results can now be used to find the values

B(C/Fq) = lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2
,

d
(
PC/Fq ;µ

)
= lim

Y→∞

1

Y
#
{

1 ≤ X ≤ Y :
∣∣MC/Fq(X)

∣∣ ≤ qX/2
}

for each elliptic curve C over a given finite field Fq. In the following section, we

determine these two values for each possible combination of values for q and a as

determined in Lemma 3.1, culminating in a proof of Theorem 1.7.

3.2 Proof of Theorem 1.7

We must determine B(C/Fq) and d
(
PC/Fq ;µ

)
for the restricted values of q and a

found in conditions (1)—(5) of Lemma 3.1.

(1) If q = pm with a 6≡ 0 (mod p) and |a| < 2
√
q, then θ/π is irrational,

with θ as in (3.3). The Kronecker–Weyl theorem then shows that Xθ is

equidistributed modulo π as X tends to infinity, and so from (3.1),

B(C/Fq) = 2

√
q + 1− a
4q − a2

,

d
(
PC/Fq ;µ

)
= 1− 1

π
arccos

(
1

2

√
4q − a2
q + 1− a

)
.

The Mertens conjecture for C/Fq therefore holds precisely when

2

√
q + 1− a
4q − a2

≤ 1.

Upon squaring both sides and simplifying, we arrive at the inequality

(a− 2)2 ≤ 0,
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which has only the solution a = 2, provided p 6= 2. Similarly, d
(
PC/Fq ;µ

)
= 1

if and only if

arccos

(
1

2

√
4q − a2
q + 1− a

)
= 0,

which again holds only when a = 2 and p 6= 2.

(2) If q = pm with a = ±2
√
q, where m is even, then from (3.6),

B(C/Fq) =∞,
d
(
PC/Fq ;µ

)
= 0.

For conditions (3)—(5), we find that MC/Fq(X)/qX/2 takes only finitely many

values, so that the limiting distribution of MC/Fq(X)/qX/2 is simply a finite sum

of point masses. The natural density d
(
PC/Fq ;µ

)
in each case is therefore given

by the proportion of values taken by MC/Fq(X)/qX/2 that lie between −1 and 1.

(3) (i) If q = pm with a =
√
q, where m is even and p 6≡ 1 (mod 3), we have

from (3.4) that

MC/Fq(X)

qX/2
= cos

(
πX

3

)
−
√

3

3

(
1− 2
√
q

)
sin

(
πX

3

)
.

We calculate the 6 cases of X (mod 6):

X (mod 6) MC/Fq(X)/qX/2

0 1

1 1/
√
q

2 −1 + 1/
√
q

3 −1

4 −1/
√
q

5 1− 1/
√
q

So

B(C/Fq) = 1,

d
(
PC/Fq ;µ

)
= 1.

(3) (ii) Similarly, if q = pm with a = −√q, where m is even and p 6≡ 1 (mod 3),

MC/Fq(X)

qX/2
= cos

(
2πX

3

)
+

√
3

3

(
1 +

2
√
q

)
sin

(
2πX

3

)
.

The 3 cases of X (mod 3) are
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X (mod 3) MC/Fq(X)/qX/2

0 1

1 1/
√
q

2 −1− 1/
√
q

This shows that

B(C/Fq) = 1 +
1
√
q
,

d
(
PC/Fq ;µ

)
=

2

3
.

(4) (i) If q = 2m with a =
√

2q, where m is odd, then

MC/F2m
(X)

2mX/2
= cos

(
πX

4

)
−
(

1− 1

2(m−1)/2

)
sin

(
πX

4

)
.

We analyse the 8 cases of X (mod 8):

X (mod 8) MC/F2m
(X)/2mX/2

0 1

1 2−m/2

2 −1 + 2−(m−1)/2

3 −
√

2 + 2−m/2

4 −1

5 −2−m/2

6 1− 2−(m−1)/2

7
√

2− 2−m/2

So

B(C/F2m) =

1 if m = 1,
√

2− 1

2m/2
if m ≥ 3,

d
(
PC/F2m ;µ

)
=

1 if m = 1,

3/4 if m ≥ 3.

(4) (ii) Likewise, if q = 2m with a = −
√

2q, where m is odd, then

MC/F2m
(X)

2mX/2
= cos

(
3πX

4

)
+

(
1 +

1

2(m−1)/2

)
sin

(
3πX

4

)
.

The table of values of X (mod 8) is
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X (mod 8) MC/F2m
(X)/2mX/2

0 1

1 2−m/2

2 1 + 2−(m−1)/2

3
√

2 + 2−m/2

4 −1

5 −2−m/2

6 −1− 2−(m−1)/2

7 −
√

2− 2−m/2

Thus

B(C/F2m) =
√

2 +
1

2m/2
,

d
(
PC/F2m ;µ

)
=

1

2
.

(4) (iii) If q = 3m with a =
√

3q, where m is odd, then

MC/F3m
(X)

3mX/2
= cos

(
πX

6

)
−
(

1− 2

3m/2

)
sin

(
πX

6

)
.

The 12 cases of X (mod 12) are

X (mod 12) MC/F3m
(X)/3mX/2

0 1

1 (
√

3− 1)/2 + 3−m/2

2 −(
√

3− 1)/2 + 3−(m−1)/2

3 −1 + 2× 3−m/2

4 −(
√

3 + 1)/2− 3−(m−1)/2

5 −(
√

3 + 1)/2 + 3−m/2

6 −1

7 −(
√

3− 1)/2− 3−m/2

8 (
√

3− 1)/2− 3−(m−1)/2

9 1− 2× 3−m/2

10 (
√

3 + 1)/2 + 3−(m−1)/2

11 (
√

3 + 1)/2− 3−m/2

Consequently,

B(C/F3m) =

√
3 + 1

2
+

1

3(m−1)/2 ,

d
(
PC/F3m ;µ

)
=

2

3
.
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(4) (iv) Next, if q = 3m with a = −
√

3q, where m is odd, then

MC/F3m
(X)

3mX/2
= cos

(
5πX

6

)
+

(
1 +

2

3m/2

)
sin

(
5πX

6

)
.

Now

X (mod 12) MC/F3m
(X)/3mX/2

0 1

1 −(
√

3− 1)/2 + 3−m/2

2 −(
√

3− 1)/2− 3−(m−1)/2

3 1 + 2× 3−m/2

4 −(
√

3 + 1)/2− 3−(m−1)/2

5 (
√

3 + 1)/2− 3−m/2

6 −1

7 (
√

3− 1)/2− 3−m/2

8 (
√

3− 1)/2 + 3−(m−1)/2

9 −1− 2× 3−m/2

10 (
√

3 + 1)/2 + 3−(m−1)/2

11 −(
√

3 + 1)/2 + 3−m/2

So we have that

B(C/F3m) =

√
3 + 1

2
+

1

3(m−1)/2 ,

d
(
PC/F3m ;µ

)
=

1

2
.

(5) Finally, if q = pm with a = 0, where either m is even and p 6≡ 1

(mod 4), or m is odd, then

MC/Fq(X)

qX/2
= cos

(
πX

2

)
+

1
√
q

sin

(
πX

2

)
.

The 4 cases of X (mod 4) are

X (mod 4) MC/Fq(X)/qX/2

0 1

1 1/
√
q

2 −1

3 −1/
√
q
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Thus

B(C/Fq) = 1,

d
(
PC/Fq ;µ

)
= 1.



Chapter 4

Global Mertens Conjectures

4.1 Averages over Families of Curves

In this section, we find a matrix theoretic expression for the average proportion

of curves in a certain family for which the Mertens conjecture is true as the finite

field Fq grows larger. This involves expressing the quantity

B(C/Fq) = lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2

in the language of unitary symplectic matrices. The space of unitary symplectic

matrices USp2g(C) consists of 2g× 2g matrices U with complex entries satisfying

U †U = I and UTJU = J , where J =
(

0 Ig
−Ig 0

)
. The eigenvalues of U lie on

the unit circle and come in complex conjugate pairs, so that we may order the

eigenvalues eiθ1 , . . . , eiθ2g such that θj+g = −θj with 0 ≤ θj ≤ π for 1 ≤ j ≤ g.

Conversely, given (θ1, . . . , θg) ∈ [0, π]g, the diagonal matrix with diagonal entries

eiθ1 , . . . , eiθg , e−iθ1 , . . . , e−iθg lies in USp2g(C). Thus the set of conjugacy classes

USp2g(C)# of USp2g(C) corresponds to [0, π]g.

Definition 4.1. For each U ∈ USp2g(C), we define the characteristic polynomial

ZU(θ) for real θ by

ZU(θ) = det
(
I − Ue−iθ

)
.

Equivalently,

ZU(θ) =

2g∏
j=1

(
1− ei(θj−θ)

)
= 2g

g∏
j=1

eiθ (cos θ − cos θj). (4.1)

37
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For a nonsingular projective curve C over Fq of genus g ≥ 1, there exists a

conjugacy class ϑ(C/Fq) in USp2g(C)#, called the unitarised Frobenius conjugacy

class attached to C/Fq, satisfying

Zϑ(C/Fq)(θ) = PC/Fq

(
e−iθ
√
q

)
=

2g∏
j=1

(
1− ei(θ(γj)−θ)

)
. (4.2)

That is, the eigenangles (θ1, . . . , θg) corresponding to the unitarised Frobenius

conjugacy class ϑ(C/Fq) are precisely (θ(γ1), . . . , θ(γg)).

We shall find an expression for B(C/Fq) in terms of Zϑ(C/Fq)(θ) in the large q

limit. For U ∈ USp2g(C), we define the function ϕ(U) by

ϕ(U) =

2g∑
j=1

1

|ZU ′(θj)|
,

where eiθ1 , . . . , eiθ2g are the eigenvalues of U . We observe that ϕ depends only on

the conjugacy class (θ1, . . . , θg) of U , and that ϕ is always nonnegative, though it

blows up if U has a repeated eigenvalue. Note, however, that the set of matrices

in USp2g(C) with repeated eigenvalues has measure zero with respect to the

normalised Haar measure on USp2g(C).

Lemma 4.2 (Cha [5, Equation (26)]). Suppose that C satisfies LI. Then we have

that

B(C/Fq) = ϕ (ϑ(C/Fq)) +Og

(
1
√
q
ϕ (ϑ(C/Fq))

)
in the large q limit.

Proof. As C satisfies LI, we have from Theorem 2.6 that

B(C/Fq) =
∑
γ

∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣.
Now by (2.1),

1

ZC/Fq
′ (γ−1)

γ

γ − 1
=

1− γ
PC/Fq

′ (γ−1)
,

whereas differentiating (4.2) shows that

Zϑ(C/Fq)′(θ) = −ie
−iθ
√
q
PC/Fq

′
(
e−iθ
√
q

)
, (4.3)

and so by taking θ = θ(γ), so that e−iθ(γ)/
√
q = γ−1, we find that

1

ZC/Fq
′ (γ−1)

γ

γ − 1
=

ie−2iθ(γ)

Zϑ(C/Fq)′(θ(γ))
− 1
√
q

ie−iθ(γ)

Zϑ(C/Fq)′(θ(γ))
.
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This yields the asymptotic∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣ =
1

|Zϑ(C/Fq)′(θ(γ))|
+Og

(
1
√
q

1

|Zϑ(C/Fq)′(θ(γ))|

)
,

so by summing over all inverse zeroes γ, we obtain the desired identity.

We wish to determine the proportion of a family of curves that satisfy the

Mertens conjecture. While we would like to choose this family to be as general as

possible, it is imperative that we ensure that most curves in such a family satisfy

LI, for otherwise it becomes significantly more difficult to analyse the behaviour

of B(C/Fq). For this reason, we choose a family of hyperelliptic curves, as we

shall show that we are then assured that LI holds for most such curves, with

the added bonus of a framework for certain equidistribution results to hold. Via

Theorem 2.6, the former property yields yield a precise formula for B(C/Fq),
while the latter allows us to use random matrix theory to compute averages in

terms of integrals over USp2g(C).

Let q = pm be a prime power with p > 2, n ≥ 1, and let Fqn be a finite

field with qn elements. For g ≥ 1, let f be a monic polynomial of degree 2g + 1

with coefficients in Fqn whose discriminant is nonzero; equivalently, let f be a

squarefree monic polynomials in Fqn [x] of degree 2g+ 1. Each such polynomial f

thereby defines a hyperelliptic curve Cf of genus g over Fqn via the affine model

y2 = f(x). So we let H2g+1,qn denote the set of these hyperelliptic curves C = Cf

over Fqn . We are interested in properties of such curves C shared by “most”

C ∈ H2g+1,qn .

Definition 4.3. We say that most hyperelliptic curves C ∈ H2g+1,qn , have the

property D = {Dn}∞n=1 as n tends to infinity if

lim
n→∞

# {C ∈ H2g+1,qn : C satisfies Dn}
#H2g+1,qn

= 1.

Theorem 4.4 (Chavdarov [6], Kowalski [16]; see [5, Theorem 3.1]). For fixed q

and g ≥ 1,

lim
n→∞

# {C ∈ H2g+1,qn : C satisfies LI}
#H2g+1,qn

= 1.

That is, as n tends to infinity, most hyperelliptic curves C ∈ H2g+1,qn, satisfy LI.

For brevity’s sake, we write C ∈ H2g+1,qn ∩LI if C satisfies LI, and conversely

if C does not satisfy LI, we write C ∈ H2g+1,qn ∩ LIc.
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Proposition 4.5 (Deligne’s Equidistribution Theorem [13, Theorem 10.8.2]). Let

f be a continuous function on USp2g(C) that is central, so that f is dependent

only on the conjugacy class (θ1, . . . , θg) of each matrix U ∈ USp2g(C). Then for

g ≥ 1,

lim
n→∞

1

#H2g+1,qn

∑
C∈H2g+1,qn

f (ϑ (C/Fqn)) =

∫
USp2g(C)

f(U) dµHaar(U),

where µHaar is the normalised Haar measure on USp2g(C).

Equivalently, consider the sequence of probability measures

µn =
1

#H2g+1,qn

∑
C∈H2g+1,qn

δϑ(C/Fqn)

on USp2g(C), where δU# is a point mass at a conjugacy class U# ∈ USp2g(C)#.

Then Deligne’s equidistribution theorem merely states that the sequence of mea-

sures µn converges weakly to µHaar as n tends to infinity. As USp2g(C) is a

connected Lie group, and hence metrisable, we may apply the Portmanteau the-

orem to the sequence of probability measures µn in order to obtain an equivalent

reformulation of Deligne’s equidistribution theorem.

Corollary 4.6. For g ≥ 1,

lim
n→∞

# {C ∈ H2g+1,qn : ϑ (C/Fqn) ∈ B}
#H2g+1,qn

= µHaar(B)

for any Borel set B ⊂ USp2g(C) whose boundary has Haar measure zero.

One can calculate this Haar measure precisely by using the following formula

to convert it into an integral over [0, π]g.

Proposition 4.7 (Weyl Integration Formula [13, §5.0.4]). Let f be a bounded,

Borel-measurable complex-valued central function on USp2g(C). Then∫
USp2g(C)

f(U) dµHaar(U) =

∫ π

0

· · ·
∫ π

0

f(θ1, . . . , θg) dµUSp(θ1, . . . , θg), (4.4)

where

dµUSp(θ1, . . . , θg) =
2g

2

g!πg

∏
1≤m<n≤g

(cos θn − cos θm)2
g∏
`=1

sin2 θ` dθ1 · · · dθg. (4.5)
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Lemma 4.8. Let B be an interval in R. Then the boundary of the set{
U ∈ USp2g(C) : ϕ(U) ∈ B

}
has Haar measure zero.

Proof. By differentiating (4.1), we have that

ϕ(U) = ϕ(θ1, . . . , θg) =
1

2g−1

g∑
j=1

cosec θj

g∏
k=1
k 6=j

1

|cos θk − cos θj|
. (4.6)

So by the Weyl integration formula, we must show that for any interval B, the

boundary of the set

{(θ1, . . . , θg) ∈ [0, π]g : ϕ(θ1, . . . , θg) ∈ B}

has µUSp-measure zero. Observe that µUSp is absolutely continuous with respect

to the Lebesgue measure on [0, π]g, and hence the sets

{(θ1, . . . , θg) ∈ [0, π]g : θj = θk for some 1 ≤ j < k ≤ g} ,
{(θ1, . . . , θg) ∈ [0, π]g : θj ∈ {0, π} for some 1 ≤ j ≤ g}

have µUSp-measure zero; furthermore, the function ϕ is continuous on{
(θ1, . . . , θg) ∈ [0, π]g : 0 < θσ(1) < . . . < θσ(g) < π

}
for each permutation σ of the set {1, . . . , g}. It therefore suffices to show that for

each c ∈ R and for each permutation σ of {1, . . . , g}, the set{
(θ1, . . . , θg) ∈ [0, π]g : ϕ(θ1, . . . , θg) = c, 0 < θσ(1) < . . . < θσ(g) < π

}
has µUSp-measure zero. But in the region where 0 < θσ(1) < . . . < θσ(g) < π, the

function ϕ(θ1, . . . , θg) is not only continuous but real analytic and non-uniformly

constant. As the zero set of a non-uniformly zero real analytic function has

Lebesgue measure zero, and µUSp is absolutely continuous with respect to the

Lebesgue measure, we obtain the result.

Lemma 4.9. For all g ≥ 1, the function ϕ on USp2g(C) is integrable and satisfies

the bounds

0 ≤
∫
USp2g(C)

ϕ(U) dµHaar(U) ≤ 22g

π
.
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This result follows from the following lemma in conjunction with the bound

0 ≤ |ZU(θ)| ≤ 22(g−1) for all U ∈ USp2(g−1)(C) and θ ∈ [0, π], which is found by

applying the triangle inequality to (4.1).

Lemma 4.10 (Cha [5, §4]). For g = 1, we have that

∫
USp2(C)

ϕ(U) dµHaar(U) =
4

π
,

while for g ≥ 2, we have the identity∫
USp2g(C)

ϕ(U) dµHaar(U) =
2

π

∫ π

0

sin θ

∫
USp2(g−1)(C)

|ZU(θ)| dµHaar(U) dθ.

Proof. This is proved by Cha in [5, §4]; we include the details of the proof for

later comparison. The g = 1 case is trivial, as in this case ϕ(U) = cosec θ, and

hence by the Weyl integration formula,∫
USp2(C)

ϕ(U) dµHaar(U) =
2

π

∫ π

0

sin θ dθ =
4

π
.

We note that, strictly speaking, we require ϕ(U) to be bounded to use the Weyl

integration formula, but we may replace ϕ(U) by ϕT (U) = min{ϕ(U), T} and

then apply the monotone convergence theorem to obtain the above identity. For

g ≥ 2, the Weyl integration formula together with the expression (4.6) for ϕ(U)

gives

∫
USp2g(C)

2g∑
j=1

1

|ZU ′(θj)|
dµHaar(U)

=
2g

2

g!πg

∫ π

0

· · ·
∫ π

0

 1

2g−1

g∑
j=1

cosec θj

g∏
k=1
k 6=j

1

|cos θk − cos θj|


×

∏
1≤m<n≤g

(cos θn − cos θm)2
g∏
`=1

sin2 θ` dθ1 · · · dθg.

Now the expression in the brackets above is symmetric in the θn variables, so the

summation on j may be replaced by g times a single summand, which we take to
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be θg. This allows us to rewrite the right-hand side as

2g
2−g+1

g!πg
g

∫ π

0

· · ·
∫ π

0

cosec θg

g−1∏
k=1

1

|cos θk − cos θg|

×
∏

1≤m<n≤g

(cos θn − cos θm)2
g∏
`=1

sin2 θ` dθ1 · · · dθg

=
2

π

∫ π

0

sin θg

(
2(g−1)2

(g − 1)!πg−1

∫ π

0

· · ·
∫ π

0

2g−1
g−1∏
k=1

|cos θk − cos θg|

×
∏

1≤m<n≤g−1

(cos θn − cos θm)2
g−1∏
`=1

sin2 θ` dθ1 · · · dθg−1

)
dθg.

From (4.1), we have that

2g−1
g−1∏
k=1

|cos θk − cos θg| = |ZU (θg)| ,

where U is an element of USp2(g−1)(C) in the conjugacy class (θ1, . . . , θg−1). We

therefore have by the Weyl integration formula that∫
USp2g(C)

ϕ(U) dµHaar(U) =
2

π

∫ π

0

sin θg

∫
USp2(g−1)(C)

|ZU (θg)| dµHaar(U) dθg.

We have now developed the necessary machinery needed in order to study the

limit as n tends to infinity of the average

# {C ∈ H2g+1,qn : C satisfies the Mertens conjecture}
#H2g+1,qn

,

which may be thought of as a geometric average of the number of hyperelliptic

curves in H2g+1,qn satisfying the Mertens conjecture. For brevity’s sake, we write

this average as
# {C ∈ H2g+1,qn ∩Mertens}

#H2g+1,qn
.

Proposition 4.11. We have that

lim
n→∞

# {C ∈ H2g+1,qn ∩Mertens}
#H2g+1,qn

= µHaar

({
U ∈ USp2g(C) : ϕ(U) ≤ 1

})
.

Proof. For any ε > 0, we may write

# {C ∈ H2g+1,qn ∩Mertens} = A1 + A2 + A3 + A4 + A5 + A6 + A7,
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where

A1 = # {C ∈ H2g+1,qn : ϕ (ϑ (C/Fqn)) ≤ 1} ,
A2 = −# {C ∈ H2g+1,qn ∩ LIc : ϕ (ϑ (C/Fqn)) ≤ 1} ,
A3 = # {C ∈ H2g+1,qn ∩Mertens ∩ LIc} ,
A4 = # {C ∈ H2g+1,qn ∩ LI : B (C/Fqn) ≤ 1, 1 < ϕ (ϑ (C/Fqn)) ≤ 1 + ε} ,
A5 = −# {C ∈ H2g+1,qn ∩ LI : B (C/Fqn) > 1, 1− ε ≤ ϕ (ϑ (C/Fqn)) ≤ 1} ,
A6 = # {C ∈ H2g+1,qn ∩ LI : B (C/Fqn) ≤ 1, ϕ (ϑ (C/Fqn)) > 1 + ε} ,
A7 = −# {C ∈ H2g+1,qn ∩ LI : B (C/Fqn) > 1, ϕ (ϑ (C/Fqn)) < 1− ε} ,

By Deligne’s equidistribution theorem,

lim
n→∞

A1

#H2g+1,qn
= µHaar(ϕ(U) ≤ 1),

while Theorem 4.4 implies that

lim
n→∞

A2

#H2g+1,qn
= lim

n→∞

A3

#H2g+1,qn
= 0.

Next, we note that

|A4|+ |A5| ≤ # {C ∈ H2g+1,qn : 1− ε ≤ ϕ (ϑ (C/Fqn)) ≤ 1 + ε} ,

and hence

lim sup
n→∞

|A4|+ |A5|
#H2g+1,qn

≤ µHaar(1− ε ≤ ϕ(U) ≤ 1 + ε).

by Deligne’s equidistribution theorem. Finally, Lemma 4.2 implies the existence

of a constant c(g) > 0 such that

|A6|+ |A7| ≤ #
{
C ∈ H2g+1,qn : ϕ (ϑ (C/Fqn)) ≥ εc(g)qn/2

}
.

Lemma 4.10 shows that ϕ(U) is integrable, which implies that for any ε′ > 0

there exists some T0 > 0 such that µHaar (ϕ(U) ≥ T ) ≤ ε′ for all T ≥ T0. Thus

for any ε′ > 0, we have by Deligne’s equidistribution theorem that

lim sup
n→∞

|A6|+ |A7|
#H2g+1,qn

≤ lim sup
n→∞

#
{
C ∈ H2g+1,qn : ϕ (ϑ (C/Fqn)) ≥ εc(g)qn/2

}
#H2g+1,qn

≤ lim
n→∞

# {C ∈ H2g+1,qn : ϕ (ϑ (C/Fqn)) ≥ T}
#H2g+1,qn

= µHaar (ϕ(U) ≥ T )

≤ ε′.
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As ε′ > 0 was arbitrary,

lim
n→∞

A6

#H2g+1,qn
= lim

n→∞

A7

#H2g+1,qn
= 0.

So we have shown that for any ε > 0,∣∣∣∣ lim
n→∞

# {C ∈ H2g+1,qn ∩Mertens}
#H2g+1,qn

− µHaar (ϕ(U) ≤ 1)

∣∣∣∣
≤ µHaar (1− ε ≤ ϕ(U) ≤ 1 + ε) .

As ε > 0 was arbitrary, and

lim
ε→0

µHaar (1− ε ≤ ϕ(U) ≤ 1 + ε) = µHaar (ϕ(U) = 1) = 0,

we obtain the result.

So in order to prove Theorem 1.8, we must show that µHaar (ϕ(U) ≤ 1) = 0

for 1 ≤ g ≤ 2. Here the minimum of ϕ can be determined explicitly, and in

particular it can be shown that the set

{(θ1, . . . , θg) ∈ [0, π]g : ϕ (θ1, . . . , θg) ≤ 1}

is finite; this then implies the result via the Weyl integration formula, together

with the fact that the measure µUSp is atomless, with µUSp as in (4.5). More

precisely, for each permutation σ of the set {1, . . . , g}, there is precisely one

global minimum of ϕ in the region{
(θ1, . . . , θg) ∈ [0, π]g : 0 < θσ(1) < . . . < θσ(g) < π

}
,

with this minimum occurring at the critical point
(
θ̃σ(1), . . . , θ̃σ(g)

)
, where(

θ̃1, . . . , θ̃g

)
=

(
π

2g
,
3π

2g
, . . . ,

(2g − 1)π

2g

)
. (4.7)

One can interpret this result via a geometric argument. If z1, . . . , zg are g

points on the unit circle in the complex plane, then we may consider the product

of the chord lengths of chords from a single point zj to the other g−1 points and

also to the complex conjugate of zj. We can then think of ϕ as the sum over the

inverse of this product for each starting point zj. Intuitively, we would expect the

product of chord lengths to be largest when averaged over the starting points when

the g-tuple of points on the unit circle are evenly spaced while simultaneously

being as far as possible from the points ±1; consequently, we would expect ϕ to

be smallest at this same g-tuple.
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Proof of Theorem 1.8. For g = 1, we have from (4.6) that

ϕ (θ1) = cosec θ1,

which is always at least 1, and is exactly 1 only at the point θ1 = π/2.

For g = 2,

ϕ (θ1, θ2) =
1

2

1

|cos θ1 − cos θ2|
(cosec θ1 + cosec θ2)

so for this to be at most 1, we must have that

f (θ1, θ2) = 2 |cos θ1 − cos θ2| − cosec θ1 − cosec θ2 ≥ 0.

Now when 0 < θ1 < θ2 < π, we have that

∂f

∂θ1
= −2 sin θ1 + cosec θ1 cot θ1,

∂f

∂θ2
= 2 sin θ2 + cosec θ2 cot θ2.

We set both of these to zero, multiply through by sin3 θ (with θ = θ1 for the

former and θ2 for the latter), subtract cos θ, and then square both sides, finding

that in both cases,

4x6 + x2 − 1 =
(
2x2 − 1

) (
2x4 + x2 + 1

)
= 0,

where x = sin θ. As 0 < θ < π, this has only the solution x = 1/
√

2, or

equivalently θ ∈ {π/4, 3π/4}. So the only critical point of f in the region 0 <

θ1 < θ2 < π occurs at (θ1, θ2) = (π/4, 3π/4); we may easily confirm that ∂f/∂θ1 =

∂f/∂θ2 = 0 at this point, and also determine that f (π/4, 3π/4) = 0. So it remains

to show that this is a local maximum of f . Indeed,

∂2f

∂θ21
= −2 cos θ1 − cosec θ1 cot2 θ1 − cosec3 θ1,

∂f

∂θ2
= 2 cos θ2 − cosec θ2 cot2 θ2 − cosec3 θ2,

∂2f

∂θ1∂θ2
=

∂2f

∂θ2∂θ1
= 0,

and in particular, the Hessian matrix of second partial derivatives of f evaluated

at (π/4, 3π/4) is (
−4
√

2 0

0 −2
√

2

)
,
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which is negative definite. So (π/4, 3π/4) is a local maximum of f , and as f tends

to negative infinity as either θ1 or θ2 tends to 0 or π, and f (θ1, θ1) = −2 cosec θ1 <

0, the point (π/4, 3π/4) is the unique global maximum of f on the set where

0 < θ1 < θ2 < π. The same argument shows that the unique global maximum of

f when 0 < θ2 < θ1 < π occurs at the point (3π/4, π/4), with f (3π/4, π/4) = 0.

Consequently, these are the only two points where ϕ (θ1, θ2) ≤ 1.

While we we can prove this result for 1 ≤ g ≤ 2, we are in fact able to show

that the critical point (4.7) is a local minimum of ϕ for every positive integer g;

however, we are yet to be able to prove that this is also a global minimum. The

proof is long, and so we dedicate the entirety of the next section to showing this

result.

4.2 The Critical Point

We first demonstrate that ϕ(θ1, . . . , θg) = 1 at the critical point.

Lemma 4.12. Let
(
θ̃1, . . . , θ̃g

)
be as in (4.7). Then for each permutation σ of

{1, . . . , g}, we have that

ϕ
(
θ̃σ(1), . . . , θ̃σ(g)

)
= 1.

Proof. It suffices to prove this when σ is the identity, as ϕ is invariant under

permutations of the variables. So by differentiating (4.1), we have that

ϕ (θ1, . . . , θg) = 2

g∑
j=1

1

|ZU ′(θj)|
= 2

g∑
j=1

ϕj (θ1, . . . , θg),

where for each 1 ≤ j ≤ g,

ϕj (θ1, . . . , θg) =
1

|1− e2iθj |

g∏
k=1
k 6=j

1∣∣1− ei(θj−θk)∣∣ ∣∣1− ei(θj+θk)∣∣
=

1

2g
cosec θj

g∏
k=1
k 6=j

1

|cos θk − cos θj|
,

(4.8)

so that

ϕj

(
θ̃1, . . . , θ̃g

)
=

1

|1− e2πi(2j−1)/(2g)|

g∏
k=1
k 6=j

1

|1− e2πi(j−k)/(2g)| |1− e2πi(j+k−1)/(2g)|

=

2g−1∏
k=1

1

|1− e2πik/(2g)|
,
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as for each j, the set {2j−1, j−k, j+k−1 : 1 ≤ k ≤ g, k 6= j} forms a complete

set of residues modulo 2g but for an element 0 modulo 2g. Taking x = 1 in the

identity
2g−1∑
j=0

xj =

2g−1∏
k=1

(
x− e2πik/(2g)

)
,

we find that for each 1 ≤ j ≤ g,

ϕj

(
θ̃1, . . . , θ̃g

)
=

1

2g
, (4.9)

which yields the result.

To confirm that the point
(
θ̃1, . . . , θ̃g

)
is indeed correctly identified as a critical

point, we must next show that the derivative of ϕ vanishes at
(
θ̃1, . . . , θ̃g

)
.

Lemma 4.13. Let
(
θ̃1, . . . , θ̃g

)
be as in (4.7). Then for each permutation σ of

{1, . . . , g}, the derivative of ϕ vanishes at the point
(
θ̃σ(1), . . . , θ̃σ(g)

)
.

Proof. Again, we need only prove this when σ is the identity. Upon differentiating

(4.8), we have that for 1 ≤ j,m ≤ g with j 6= m,

∂ϕj
∂θm

=
sin θm

cos θm − cos θj
ϕj

= −1

2

(
cot

(
θm − θj

2

)
+ cot

(
θm + θj

2

))
ϕj, (4.10)

with ϕj = ϕj (θ1, . . . , θg) as in (4.8); here the second equality follows from the

sine angle-sum and cosine sum-to-product formulæ. If j = m, then

∂ϕm
∂θm

= −1

2

g∑
j=1
j 6=m

(
cot

(
θm − θj

2

)
+ cot

(
θm + θj

2

))
ϕm − cot θmϕm. (4.11)

Letting θk = θ̃k = (2k − 1)π/(2g) for 1 ≤ k ≤ g and using (4.9), we find that for

j 6= m,

∂ϕj
∂θm

(
θ̃1, . . . , θ̃g

)
= − 1

4g

(
cot

(
(m− j)π

2g

)
+ cot

(
(m+ j − 1)π

2g

))
, (4.12)

while when j = m,

∂ϕm
∂θm

(
θ̃1, . . . , θ̃g

)
= − 1

4g

g∑
j=1
j 6=m

(
cot

(
(m− j)π

2g

)
+ cot

(
(m+ j − 1)π

2g

))
− 1

2g
cot

(
(2m− 1)π

2g

)
.
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Now the cotangent function has period π and is odd about the origin, and con-

sequently

g∑
j=1
j 6=m

(
cot

(
(m− j)π

2g

)
+ cot

(
(m+ j − 1)π

2g

))
=

2g−1∑
j=1

j 6=2m−1

cot

(
jπ

2g

)

= − cot

(
(2m− 1)π

2g

)
.

(4.13)

So
∂ϕm
∂θm

(
θ̃1, . . . , θ̃g

)
= − 1

4g
cot

(
(2m− 1)π

2g

)
, (4.14)

while
g∑
j=1
j 6=m

∂ϕj
∂θm

(
θ̃1, . . . , θ̃g

)
=

1

4g
cot

(
(2m− 1)π

2g

)
.

We therefore find that for each 1 ≤ m ≤ g,

∂ϕ

∂θm

(
θ̃1, . . . , θ̃g

)
= 2

g∑
j=1

∂ϕj
∂θm

(
θ̃1, . . . , θ̃g

)
= 0,

as required.

Next, we show that
(
θ̃1, . . . , θ̃g

)
is a local minimum of ϕ, by calculating the

Hessian matrix of ϕ at
(
θ̃1, . . . , θ̃g

)
and proving it to be positive definite.

Lemma 4.14. Let
(
θ̃1, . . . , θ̃g

)
be as in (4.7). Then for each permutation σ of

{1, . . . , g}, the point
(
θ̃σ(1), . . . , θ̃σ(g)

)
is a local minimum of ϕ.

Proof. Again, we need only take σ to be the identity. We first determine the

mixed partial derivatives of ϕ. When 1 ≤ j,m, n ≤ g with j,m, n distinct, we

differentiate (4.10) to find that

∂2ϕj
∂θn∂θm

=
∂2ϕj
∂θm∂θn

= −1

2

(
cot

(
θm − θj

2

)
+ cot

(
θm + θj

2

))
∂ϕj
∂θn

,

while when m 6= n, differentiating (4.11) yields

∂2ϕm
∂θn∂θm

=
∂2ϕm
∂θm∂θn

= −1

2

(
cot

(
θn − θm

2

)
+ cot

(
θn + θm

2

))
∂ϕm
∂θm

− 1

4

(
cosec2

(
θn − θm

2

)
− cosec2

(
θn + θm

2

))
ϕm.
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So taking θk = θ̃k = (2k − 1)π/(2g) for 1 ≤ k ≤ g, we have by (4.12) that

∂2ϕj
∂θn∂θm

(
θ̃1, . . . , θ̃g

)
=

1

8g

(
cot

(
(m− j)π

2g

)
+ cot

(
(m+ j − 1)π

2g

))
×
(

cot

(
(n− j)π

2g

)
+ cot

(
(n+ j − 1)π

2g

))
.

By expanding this product and using the cosine and sine angle-sum formulæ on

each term, as well as the fact that the cotangent function is odd about the origin,

we find that this is identical to

1

8g

(
cot

(
(m− n)π

2g

)
+ cot

(
(m+ n− 1)π

2g

))
×
(

cot

(
(n− j)π

2g

)
+ cot

(
(n+ j − 1)π

2g

))
+

1

8g

(
cot

(
(n−m)π

2g

)
+ cot

(
(n+m− 1)π

2g

))
×
(

cot

(
(m− j)π

2g

)
+ cot

(
(m+ j − 1)π

2g

))
.

Also, (4.14) and (4.9) show that

∂2ϕm
∂θn∂θm

(
θ̃1, . . . , θ̃g

)
=

1

8g

(
cot

(
(n−m)π

2g

)
+ cot

(
(n+m− 1)π

2g

))
cot

(
(2m− 1)π

2g

)
− 1

8g

(
cosec2

(
(n−m)π

2g

)
− cosec2

(
(n+m− 1)π

2g

))
.

We therefore find that for 1 ≤ m,n ≤ g with m 6= n,

∂2ϕ

∂θn∂θm

(
θ̃1, . . . , θ̃g

)
= 2

g∑
j=1

∂2ϕj
∂θn∂θm

(
θ̃1, . . . , θ̃g

)
=

1

2g

(
cot2

(
(n−m)π

2g

)
− cot2

(
(n+m− 1)π

2g

))
− 1

2g

(
cosec2

(
(n−m)π

2g

)
− cosec2

(
(n+m− 1)π

2g

))
= 0,

where we have used (4.13), the fact that the cotangent function is odd about the

origin, and the Pythagorean trigonometric identity cosec2 θ − cot2 θ = 1.
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When 1 ≤ j,m ≤ g with j 6= m, we also have by differentiating (4.10) that

∂2ϕj
∂θ2m

= −1

2

(
cot

(
θm − θj

2

)
+ cot

(
θm + θj

2

))
∂ϕj
∂θm

+
1

4

(
cosec2

(
θm − θj

2

)
+ cosec2

(
θm + θj

2

))
ϕj,

while differentiating (4.11) shows that when j = m,

∂2ϕm
∂θ2m

= −1

2

g∑
j=1
j 6=m

(
cot

(
θm − θj

2

)
+ cot

(
θm + θj

2

))
∂ϕm
∂θm

+
1

4

g∑
j=1
j 6=m

(
cosec2

(
θm − θj

2

)
+ cosec2

(
θm + θj

2

))
ϕm

− cot θm
∂ϕm
∂θm

+ cosec2 θmϕm.

So when θk = θ̃k = (2k − 1)π/(2g) for 1 ≤ k ≤ g, we have by (4.12) and (4.9)

that

∂2ϕj
∂θ2m

(
θ̃1, . . . , θ̃g

)
=

1

8g

(
cot

(
(m− j)π

2g

)
+ cot

(
(m+ j − 1)π

2g

))2

+
1

8g

(
cosec2

(
(m− j)π

2g

)
+ cosec2

(
(m+ j − 1)π

2g

))
,

while (4.14), (4.13), and (4.9) imply that

∂2ϕm
∂θ2m

(
θ̃1, . . . , θ̃g

)
=

1

8g

g∑
j=1
j 6=m

(
cosec2

(
(m− j)π

2g

)
+ cosec2

(
(m+ j − 1)π

2g

))

+
1

8g
cot2

(
(2m− 1)π

2g

)
+

1

2g
cosec2

(
(2m− 1)π

2g

)
.

Thus

∂2ϕ

∂θ2m

(
θ̃1, . . . , θ̃g

)
= 2

g∑
j=1

∂2ϕj
∂θ2m

(
θ̃1, . . . , θ̃g

)
=

1

4g

2g−1∑
j=1

cot2
(
jπ

2g

)
+

1

2g

2g−1∑
j=1

cosec2
(
jπ

2g

)

+
1

2g

g∑
j=1
j 6=m

cot

(
(m− j)π

2g

)
cot

(
(m+ j − 1)π

2g

)

+
1

2g
cosec2

(
(2m− 1)π

2g

)
,
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where we have used the fact that cot2 θ and cosec2 θ have period π. Now using

the cosine and sine angle-sum formulæ, as well as (4.13), we determine that

1

2g

g∑
j=1
j 6=m

cot

(
(m− j)π

2g

)
cot

(
(m+ j − 1)π

2g

)
=

1

2
− 1

2g
− 1

2g
cot2

(
(2m− 1)π

2g

)
,

so our previous calculations simplify to

∂2ϕ

∂θ2m

(
θ̃1, . . . , θ̃g

)
=

1

4g

2g−1∑
j=1

cot2
(
jπ

2g

)
+

1

2g

2g−1∑
j=1

cosec2
(
jπ

2g

)
+

1

2
,

where we have once again used the Pythagorean trigonometric identity.

So we have shown that the Hessian matrix of second partial derivatives of

ϕ evaluated at
(
θ̃1, . . . , θ̃g

)
is diagonal, and furthermore each diagonal entry is

strictly positive. Thus this matrix is positive definite, and so
(
θ̃1, . . . , θ̃g

)
is a

local minimum of ϕ.

This result does not preclude the possibility of the existence of other, possible

smaller, local minima of ϕ. Brendan Harding (personal communication) has

performed numerical calculations for small values of g to find other possible local

minima of ϕ. Via the gradient descent method, he has searched for local minima

of ϕ for each 1 ≤ g ≤ 50; his results have so far only indicated the existence of

a local minimum at the critical point
(
θ̃1, . . . , θ̃g

)
as in (4.7). Nevertheless, this

does not eliminate the possibility of other such local minima, though it does seem

extremely unlikely.

We must also mention that despite these results being formulated only for

unitary symplectic matrices, they can easily be extended to hold for unitary

matrices. Indeed, if U is an N × N unitary matrix, so that U has eigenvalues

eiθ1 , . . . , eiθN with −π ≤ θj ≤ π for all 1 ≤ j ≤ N , then for real θ,

ZU(θ) = det
(
I − Ue−iθ

)
=

N∏
j=1

(
1− ei(θj−θ)

)
,

so that

ϕ(U) =
N∑
j=1

1

|ZU ′(θj)|
=

N∑
j=1

N∏
k=1
k 6=j

1∣∣1− ei(θk−θj)∣∣ .
Then the same methods as in Lemmata 4.12, 4.13, and 4.14 show that any per-

mutation σ and any one-dimensional translation φ modulo 2π of the critical point(
θ̃1, . . . , θ̃N

)
=

(
−(N − 1)π

N
,−(N − 3)π

N
, . . . ,

(N − 1)π

N

)
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is a local minimum of ϕ, with

ϕ
(
θ̃σ(1) + φ, . . . , θ̃σ(N) + φ

)
= 1.

Furthermore, we are led to conjecture that these points are precisely the global

minima of ϕ. We recover our conjecture for unitary symplectic matrices by letting

N = 2g and restricting ourselves to the subgroup of matrices for which θj+g = −θj
with 0 ≤ θj ≤ π for 1 ≤ j ≤ g.

4.3 Variants of the Mertens Conjecture

It is worth noting that there are variants of MC/Fq(X) that can be studied. One

can consider certain weights involved in the summatory function of the Möbius

function. In the classical case, we may instead look at the properties of the

weighted sum

Mα(x) =
∑
n≤x

µ(n)

nα

for α ∈ R. The function field analogue is

MC/Fq ,α(X) =
X−1∑
N=0

1

qα(N+1)

∑
deg(D)=N

µC/Fq(D),

and we may well ask whether the α-Mertens conjecture,

lim sup
X→∞

∣∣MC/Fq ,α(X)
∣∣

q(1/2−α)X
≤ 1, (4.15)

holds for the function field C/Fq. For α > 1, this is easily resolved; (2.3) and

(2.4) show that MC/Fq ,α(X) converges to the infinite series

1

qα

∞∑
N=0

1

qαN

∑
deg(D)=N

µC/Fq(D) =
1

qαZC/Fq (q−α)
. (4.16)

Though this series is only absolutely convergent for |u| < q−1, one can show

that it is also conditionally convergent for |u| < q−1/2 due to the lack of poles of

1/ZC/Fq(u) inside this disc, and so MC/Fq ,α(X) also converges to the quantity in

(4.16) for 1/2 < α ≤ 1. For α < 1/2, on the other hand, a minor modification of

the proof of Proposition 2.4, essentially involving dividing (2.9) by qα(N+1) and

summing over all 0 ≤ N ≤ X − 1, shows that

MC/Fq ,α(X)

q(1/2−α)X
= −

∑
γ

1

ZC/Fq
′ (γ−1)

γ

γ − qα
eiθ(γ)X +Oq,g

(
1

q(1/2−α)X

)
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provided ZC/Fq(u) has only simple zeroes. A similarly simple modification of the

proof of Lemma 4.2 then shows that if C satisfies LI, the quantity

Bα(C/Fq) = lim sup
X→∞

∣∣MC/Fq ,α(X)
∣∣

q(1/2−α)X

satisfies the asymptotic

Bα(C/Fq) = ϕ (ϑ(C/Fq)) +Og,α

(
1

q1/2−α
ϕ (ϑ(C/Fq))

)
as q tends to infinity. So for α < 1/2, the proof of Theorem 1.8 can be adapted

essentially unchanged with the Mertens conjecture for the function field C/Fq re-

placed by (4.15). Thus for α < 1/2, while any formulation of a local Mertens con-

jecture for MC/Fq ,α(X) may differ to those involving MC/Fq(X), a global Mertens

conjecture would not.

For α = 1/2, it is more prudent to analyse the the properties of the Möbius

function more locally by merely studying the behaviour of

1

q(N+1)/2

∑
deg(D)=N

µC/Fq(D)

for each N ≥ 0, rather than MC/Fq ,1/2(X), its average over 0 ≤ N ≤ X−1. While

this is not useful in the classical case, where this would simply be ascertaining

µ(n) for each n ≥ 1, the function field case is quite practical. From the proof of

Proposition 2.4,

1

q(N+1)/2

∑
deg(D)=N

µC/Fq(D) = −
∑
γ

1

ZC/Fq
′ (γ−1)

eiθ(γ)(N+1) +Oq,g

(
1

qN/2

)
,

and then a minor modification of the proof of Lemma 4.2 shows that the quantity

B1/2(C/Fq) = lim sup
N→∞

1

q(N+1)/2

∣∣∣∣∣∣
∑

deg(D)=N

µC/Fq(D)

∣∣∣∣∣∣
satisfies

B1/2(C/Fq) = ϕ (ϑ(C/Fq)) +Og

(
1
√
q
ϕ (ϑ(C/Fq))

)
as q tends to infinity, just as B(C/Fq) does so, and hence that Theorem 1.8 re-

mains true with the Mertens conjecture for the function field C/Fq being replaced

by the modified Mertens conjecture

lim sup
N→∞

1

q(N+1)/2

∣∣∣∣∣∣
∑

deg(D)=N

µC/Fq(D)

∣∣∣∣∣∣ ≤ 1.
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A further variant follows from noting that while the classical Mertens conjec-

ture states that the inequality

|M(x)|√
x
≤ 1 (4.17)

holds for all x ≥ 1, the value 1 on the right-hand side above is, in some sense,

not particularly special. Indeed, Stieltjes [27] claimed to have a proof that

M(x) = O
(√

x
)

without specifying an explicit constant, before later rescinding his claim, though

he did postulate that (4.17) was true. Similarly, von Sterneck [26] conjectured

that the stronger inequality
|M(x)|√

x
≤ 1

2

holds for all x ≥ 200, based on calculations of M(x) up to 5 000 000. In spite of

these näıve conjectures, however, it seems most likely that

lim sup
x→∞

M(x)√
x

=∞,

lim inf
x→∞

M(x)√
x

= −∞.

It is not difficult to prove this to be true should the Riemann hypothesis prove

to be false, while Ingham [12] showed that this result also follows if one as-

sumes the Riemann hypothesis and the Linear Independence hypothesis for the

Riemann zeta function. Furthermore, the work of Ng [21] does not merely con-

ditionally show that the set of counterexamples to the Mertens conjecture has

strictly positive logarithmic density: the same can actually be said for the set

{x ∈ [1,∞) : |M(x)| > β
√
x} for any β > 0.

One may very well then ask if the value 1 on the right-hand side of the Mertens

conjecture in function fields,

lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2
≤ 1,

is crucial in our analysis so far. We may instead consider the following general-

isation of the Mertens conjecture in function fields: for β > 0, we say that the

function field of a curve C over a finite field Fq satisfies the β-Mertens conjecture

if

lim sup
X→∞

∣∣MC/Fq(X)
∣∣

qX/2
≤ β.
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We can then study the average

# {C ∈ H2g+1,qn : C satisfies the β-Mertens conjecture}
#H2g+1,qn

,

which we abbreviate to

# {C ∈ H2g+1,qn ∩ β-Mertens}
#H2g+1,qn

.

Theorem 4.15. If 0 < β ≤ 1, and if 1 ≤ g ≤ 2 is fixed, most hyperelliptic curves

C ∈ H2g+1,qn of genus g do not satisfy the β-Mertens conjecture for C/Fqn. If

β > 1, then for any fixed g ≥ 1,

0 < lim
n→∞

# {C ∈ H2g+1,qn ∩ β-Mertens}
#H2g+1,qn

< 1. (4.18)

Proof. A simple modification of the proof of Proposition 4.11 shows that

lim
n→∞

# {C ∈ H2g+1,qn ∩ β-Mertens}
#H2g+1,qn

= µHaar

({
U ∈ USp2g(C) : ϕ(U) ≤ β

})
.

It is clear that this is nondecreasing in β, and so the proof of Theorem 1.8 implies

that this is equal to zero for 0 < β ≤ 1 and 1 ≤ g ≤ 2. To prove the inequalities

(4.18) for β > 1, we recall from Lemma 4.12 that the equality ϕ (θ1, . . . , θg) = 1

is attained in the region 0 < θ1 < . . . < θg < 1, and ϕ is real analytic and not

uniformly constant in this region, and hence there exists an open neighbourhood

of the point in this region where 1 ≤ ϕ (θ1, . . . , θg) ≤ β. This open neighbourhood

must have positive µUSp-measure, as dµUSp (θ1, . . . , θg) does not vanish on open

subsets of [0, π]g. Consequently, µHaar (ϕ(U) ≤ β) > 0. On the other hand, we

must also have that µHaar (ϕ(U) ≤ β) < 1, as ϕ blows up when θj = θk for any

j 6= k, and so for any such point there exists some open neighbourhood with

ϕ (θ1, . . . , θg) > β in this neighbourhood.

The situation in function fields is therefore markedly different to the classical

case. The work of Ng shows that in the classical case, the set of “local” coun-

terexamples x ∈ [1,∞) to the β-Mertens conjecture |M(x)| ≤ β
√
x has positive

logarithmic density for all β > 0. In the function field case, where we instead

“globally” consider the proportion of curves for which the β-Mertens conjecture

is true, the value β = 1 truly is the optimal value of β, in the sense that it is

the largest such β for which most hyperelliptic curves C ∈ H2g+1,qn , of genus

1 ≤ g ≤ 2 do not satisfy the β-Mertens conjecture.



Chapter 5

Pólya’s Conjecture in Function

Fields

5.1 Pólya’s Conjecture

The Liouville function λ(n) is the arithmetic function that counts, modulo 2, the

number of prime numbers dividing a positive integer, counting multiplicity. That

is,

λ(n) =


1 if n = 1,

−1 if n has an odd number of prime factors, counting multiplicity,

1 if n has an even number of prime factors, counting multiplicity.

In particular, the Liouville function agrees with the Möbius function on the

squarefree positive integers. In 1919, Pólya [23] conjectured that the summa-

tory function of the Liouville function,

L(x) =
∑
n≤x

λ(n),

satisfies the inequality

L(x) ≤ 0 (5.1)

for all x ≥ 2; Pólya remarked in [23] that he had checked the validity of his

conjecture up to x = 1500. Much like the Mertens conjecture, this conjecture

implies that the Riemann hypothesis is true and that the Riemann zeta func-

tion has only simple zeroes. Pólya’s conjecture also shared the same fate as the

Mertens conjecture, in that it was proven to be false; it was disproved by Hasel-

grove [9] in 1958 using methods closely related to the work of Ingham [12]. The

57
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first counterexample was later shown to occur at x = 906 150 257 [28], and it is

now known [3] that

lim sup
x→∞

L(x)√
x
> 0.062,

lim inf
x→∞

L(x)√
x
< −1.389.

It seems likely that

lim sup
x→∞

L(x)√
x

=∞,

lim inf
x→∞

L(x)√
x

= −∞,

and this is known to follow from the assumption of the Linear Independence

hypothesis for the Riemann zeta function [12].

In spite of these results, numerical evidence [3] suggests that regions for which

the conjectured inequality (5.1) fails are distributed rather sparsely amongst the

positive integers. Analogously to the Mertens conjecture, this can be explained

heuristically through the following explicit expression for L(x) in terms of a sum

over the nontrivial zeroes ρ of the Riemann zeta function.

Proposition 5.1 (Fawaz [8], Humphries [11, Theorem 4.5]; cf. Proposition 1.1).

Assume the Riemann hypothesis and the simplicity of the zeroes of ζ(s). Then

there exists a sequence {Tv}∞v=1 with v ≤ Tv ≤ v + 1 such that for each positive

integer v, for all ε > 0, and for x a positive noninteger,

L(x) =

√
x

ζ(1/2)
+
∑
|γ|<Tv

ζ(2ρ)

ζ ′(ρ)

xρ

ρ
+ 1 +Oε

(
1√
x

+
x log x

Tv
+

x

T 1−ε
v log x

)
.

In particular, for x a positive noninteger,

L(x)√
x

=
1

ζ(1/2)
+
∑
ρ

ζ(2ρ)

ζ ′(ρ)

xiγ

ρ
+

1√
x

+O

(
1

x

)
, (5.2)

where the sum
∑

ρ is interpreted in the sense limv→∞
∑
|γ|<Tv . The leading term

here is 1/ζ(1/2) ≈ −0.685, which ought to lead to a negative bias of L(x), but

the sum over the zeroes of ζ(s) can be large enough for certain values of x to

overcome this bias. However, for “most” x, this does not occur, and hence the

inequality L(x) ≤ 0 holds “most” of the time.

Once again, we can make this notion of “most” more rigorous by studying the

logarithmic density δ (Pλ) of the set Pλ = {x ∈ [1,∞) : L(x) ≤ 0} of values where
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Pólya’s conjecture holds. We can guarantee the existence of this logarithmic

density, and more, if in addition to the Riemann hypothesis we assume the Linear

Independence hypothesis as well as a certain conjecture on the growth rate of ζ ′(ρ)

for each nontrivial zero ρ of ζ(s); that is, we assume that
∑
|γ|<T |ζ ′(ρ)|−2 � T as

T tends to infinity. We note that random matrix models suggest a more precise

bound, namely that
∑
|γ|<T |ζ ′(ρ)|−2 ∼ 6T/π3; see [10].

Theorem 5.2 (Humphries [11, Theorem 5.1]; cf. [21], [25]). Assume the Riemann

hypothesis, the Linear Independence hypothesis, and that
∑
|γ|<T |ζ ′(ρ)|−2 � T .

Then the function L(x)/
√
x has a limiting logarithmic distribution. That is, there

exists a probability measure νλ such that

lim
X→∞

1

logX

∫
{x∈[1,X]:L(x)/

√
x∈B}

dx

x
= νλ(B)

for every Borel set B ⊂ R whose boundary has Lebesgue measure zero. Further-

more, the median of νλ is 1/ζ(1/2).

The last point here yields an upper bound on the logarithmic density of Pλ,
while a method of Montgomery [18] also yields a lower bound.

Corollary 5.3 (Humphries [11, Theorem 1.5]). Under the same assumptions as

Theorem 5.2, we have the bounds

1/2 ≤ δ (Pλ) < 1.

Richard Brent (personal communication) has subsequently performed calcu-

lations that suggest that the true value of this logarithmic density is

δ (Pλ) ≈ 0.99988,

In any case, we may say that conditionally L(x) does indeed have a bias towards

being nonpositive, but that the set of counterexamples to Pólya’s conjecture is

not insignificant, in that it has positive, although very small, logarithmic density.

5.2 Pólya Conjectures in Function Fields

Here we formulate several function field analogues of Pólya’s conjecture. We first

define the Liouville function of a function field. For C a nonsingular projective
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curve over Fq of genus g and D an effective divisor of C, the Liouville function

of C/Fq is given by

λC/Fq(D) =


1 if D is the zero divisor,

−1 if the sum of the orders of the prime divisors of D is odd,

1 if the sum of the orders of the prime divisors of D is even.

We then study the summatory function of the Liouville function of C/Fq,

LC/Fq(X) =
X−1∑
N=0

∑
deg(D)=N

λC/Fq(D).

We wish to know whether there are biases in the behaviour of LC/Fq(X). Like the

classical case, we find that LC/Fq(X) may have a bias towards being nonpositive.

Pólya’s Conjecture in Function Fields. Let C be a nonsingular projective

curve over Fq of genus g, and let LC/Fq(X) be the summatory function of the

Liouville function of C/Fq. Then

lim sup
X→∞

LC/Fq(X) ≤ 0.

As with the Mertens conjecture, we may consider both local and global ques-

tions pertaining to Pólya’s conjecture in function fields.

Question 5.4. For which curves does Pólya’s conjecture hold?

Question 5.5. Given a function field of a curve C over a finite field Fq, how

frequently does the inequality

LC/Fq(X) ≤ 0 (5.3)

hold?

Question 5.6. On average, in either the q or the g aspect, how often does Pólya’s

conjecture hold?

The local questions are addressed in Chapter 6. In Section 6.1, we formulate

certain conditions on the zeroes of ZC/Fq(u) to ensure that Pólya’s conjecture for

C/Fq is true.
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Theorem 5.7 (cf. Theorem 1.5). Let C be a nonsingular projective curve over

Fq of genus g ≥ 1. If ZC/Fq(u) has only simple zeroes, then Pólya’s conjecture for

C/Fq is true provided

− 1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

+
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

≤ −
∑
γ

∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣,
(5.4)

where hC/Fq is the class number of the function field C/Fq. Furthermore, if C

satisfies LI, then the converse is also true: Pólya’s conjecture for C/Fq is true

only when (5.4) holds.

This does not entirely answer Question 5.4; it is possible that C/Fq is such

that (5.4) does not hold but that Pólya’s conjecture for C/Fq is true; in order for

this to happen, ZC/Fq(u) must only has simple zeroes but C must fail to satisfy

LI.

We deal with Question 5.5 in Section 6.3, where we determine the natural

density of the set of positive integers X for which (5.3) holds, provided that C

satisfies LI.

Theorem 5.8 (cf. Theorem 1.6). Let C be a nonsingular projective curve over

Fq of genus g ≥ 1, and suppose that C satisfies LI. The natural density

d(PC/Fq ;λ) = lim
Y→∞

1

Y
#
{

1 ≤ X ≤ Y : LC/Fq(X) ≤ 0
}

exists and satisfies

d(PC/Fq ;λ) = 1/2 if −φ1(C/Fq) + φ2(C/Fq) ≥ φ3(C/Fq),

1/2 < d(PC/Fq ;λ) < 1 if −φ3(C/Fq) < −φ1(C/Fq) + φ2(C/Fq) < φ3(C/Fq),

d(PC/Fq ;λ) = 1 if −φ1(C/Fq) + φ2(C/Fq) ≤ −φ3(C/Fq),

where

φ1(C/Fq) =
1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

,

φ2(C/Fq) =
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

,

φ3(C/Fq) =
∑
γ

∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣.
(5.5)

For Question 5.6, we study in Chapter 7 the average proportion of hyperelliptic

curves C ∈ H2g+1,qn satisfying Pólya’s conjecture as the finite field Fq grows larger.
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Much as we do with the Mertens conjecture, we are able to relate this average

proportion to the Haar measure of the pullback of the region where a certain

function of random matrices is nonnegative, which we are then able to calculate

explicitly for low values of g. We find that most curves in this family do not

satisfy Pólya’s conjecture.

Theorem 5.9 (cf. Theorem 1.8). Fix 1 ≤ g ≤ 2, and suppose that the char-

acteristic of Fq is odd. Then as n tends to infinity, most hyperelliptic curves

C ∈ H2g+1,qn do not satisfy Pólya’s conjecture for C/Fqn.



Chapter 6

Local Pólya Conjectures

6.1 An Explicit Expression for LC/Fq(X)

We obtain an explicit description for the summatory function of the Liouville

function in function fields by studying the Dirichlet series∑
D≥0

λC/Fq(D)

NDs ,

which converges absolutely for <(s) > 1. As λC/Fq(D) is completely multiplicative

and satisfies λ(P ) = −1 for a prime divisor P of C, this has the Euler product

expansion ∑
D≥0

λC/Fq(D)

NDs =
∏
P

1

1 +NP−s

for <(s) > 1, which upon comparing Euler products leads us to the identity∑
D≥0

λC/Fq(D)

NDs =
ζC/Fq(2s)

ζC/Fq(s)
, (6.1)

which is valid for all <(s) > 1. On the other hand, note that for <(s) > 1, we

may rearrange this Dirichlet series instead to be of the form

∑
D≥0

λC/Fq(D)

NDs =
∑
D≥0

λC/Fq(D)

qdeg(D)s
=

∞∑
N=0

1

qNs

∑
deg(D)=N

λC/Fq(D). (6.2)

We will determine an expression for the coefficients of the Dirichlet series for

ζC/Fq(2s)/ζC/Fq(s) using (2.1) and compare coefficients in order to find a formula

for LC/Fq(X) =
∑X−1

N=0

∑
deg(D)=N λC/Fq(D). Along the way, we will require the

following lemma.
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Lemma 6.1 ([24, Proposition 8.16]). Let Fq2 be the quadratic field extension of

Fq, which is unique up to isomorphism, and let

ZC/Fq2 (u) =
PC/Fq2 (u)

(1− u)(1− q2u)

be the zeta function of C/Fq2. Then for all u ∈ C,

PC/Fq2
(
u2
)

= PC/Fq(u)PC/Fq(−u).

Consequently,

PC/Fq(−1) =
hC/Fq2

hC/Fq
,

where hC/Fq = PC/Fq(1) is the class number of the function field C/Fq.

Proposition 6.2 (cf. Proposition 2.4). Let C be a nonsingular projective curve

over Fq of genus g ≥ 0, and suppose that all of the zeroes γ−1 of ZC/Fq(u) are

simple. Then for each N ≥ 0,∑
deg(D)=N

λC/Fq(D)

= −1

2

√
q − 1
√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

q(N+1)/2 − (−1)N+11

2

√
q + 1
√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

q(N+1)/2

−
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γN+1 + (−1)N+1 q + 1

q − 1

hC/Fq
2

hC/Fq2
+R(N, q, g, T ), (6.3)

where the sum is over the inverse zeroes of ZC/Fq(u), T > 0 is sufficiently small,

and the error term R(N, q, g, T ) satisfies R(N, q, g, T ) = 0 if N ≥ max{2g−1, 0}.

Proof. We let CT = {z ∈ C : |z| = qT} for T > 0, and we study the contour

integral
1

2πi

∮
CT

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
du.

There are two different identities for ZC/Fq (u2) /ZC/Fq(u), obtainable from (6.1)

and (2.1) and from (6.2), which give the identities

ZC/Fq (u2)

ZC/Fq(u)
=

1− qu(
1−√qu

) (
1 +
√
qu
)

(1 + u)

2g∏
j=1

1− γju2

1− γju
, (6.4)

ZC/Fq (u2)

ZC/Fq(u)
=

∞∑
N=0

uN
∑

deg(D)=N

λC/Fq(D), (6.5)
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with the first identity valid for all u ∈ C \ {±q−1/2,−1, γ−11 , . . . , γ−12g }, and the

second identity valid for all |u| < q−1. If ZC/Fq
(
±q−1/2

)
6= 0, the singularities

of the integrand inside CT occur at u = 0, u = −1, u = ±q−1/2, and u = γ−1

for each zero γ−1 of ZC/Fq(u); note that the assumption of the simplicity of the

zeroes of ZC/Fq(u) means that none of these zeroes can occur at u = ±q−1/2. At

the singularity u = 0, we have by (6.5) that

Res
u=0

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
=

∑
deg(D)=N

λC/Fq(D).

At the singularity u = −1, (6.4) and Lemma 6.1 show that

Res
u=−1

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
= (−1)N

q + 1

q − 1

PC/Fq(1)

PC/Fq(−1)
= (−1)N

q + 1

q − 1

hC/Fq
2

hC/Fq2
.

At the singularities u = ±q−1/2,

Res
u=±q−1/2

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)

= lim
u→±q−1/2

(
u∓ 1
√
q

)
1

uN+1

1− qu(
1−√qu

) (
1 +
√
qu
)

(1 + u)

PC/Fq (u2)

PC/Fq(u)

= (±1)N+11

2

√
q ∓ 1
√
q ± 1

q−ghC/Fq
PC/Fq (±q−1/2)

q(N+1)/2,

where we have used the fact that

PC/Fq

(
1

q

)
= q−gPC/Fq(1) = q−ghC/Fq ,

which follows from the functional equation (2.2) for ZC/Fq(u). Finally, as ZC/Fq(u)

has a simple zero at each γ−1,

Res
u=γ−1

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
=
ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γN+1.

So by Cauchy’s residue theorem,

1

2πi

∮
CT

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
du

=
1

2

√
q − 1
√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

q(N+1)/2 + (−1)N+11

2

√
q + 1
√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

q(N+1)/2

+
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γN+1 − (−1)N+1 q + 1

q − 1

hC/Fq
2

hC/Fq2
+

∑
deg(D)=N

λC/Fq(D), (6.6)
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which yields (6.3), with

R(N, q, g, T ) =
1

2πi

∮
CT

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
du.

By (6.4) and the fact that |u| = qT and |γj| =
√
q,

|R(N, q, g, T )| ≤ 1

2π

∮
CT

∣∣∣∣ 1

uN+1

ZC/Fq (u2)

ZC/Fq(u)

∣∣∣∣ |du|
≤

(
q1+T + 1

) (
q1/2+2T + 1

)2g
(qT − 1) (q1+2T − 1) (q1/2+T − 1)

2g q
−NT . (6.7)

If g ≥ 1 and N = 2(g − 1), then the right-hand side tends to one as T tends to

infinity, while for all g ≥ 0 and for all N ≥ max{2g − 1, 0}, the right-hand side

tends to zero as T tends to infinity. As the right-hand side of (6.6) is independent

of T , we may take the limit as T tends to infinity on both sides, which implies

that the left-hand side of (6.6) has absolute value at most than one if g ≥ 1 and

N = 2(g − 1), while for N ≥ max{2g − 1, 0} the left-hand side of (6.6) is equal

to zero.

We obtain an explicit expression for LC/Fq(X) by summing (6.3) over all

0 ≤ N ≤ X − 1 and evaluating the resulting geometric progressions, which yields

LC/Fq(X) = −1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

qX/2 − (−1)X
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

qX/2

−
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1
γX +RX(q, g, T ), (6.8)

where

RX(q, g, T ) =
q

q − 1

q−ghC/Fq
PC/Fq (q−1/2)

+
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

+
(−1)X − 1

2

q + 1

q − 1

hC/Fq
2

hC/Fq2
+

X−1∑
N=0

R(N, q, g, T ). (6.9)

In particular, after fixing T > 0 we have that RX(q, g, T ) = Oq,g(1) as X tends to

infinity. The expression (6.8) suggests that LC/Fq(X) grows at a rate comparable

to qX/2. Indeed, by using the fact that each simple inverse zero can be written

in the form γ =
√
qeiθ(γ) with −π < θ(γ) < π, we can convert (6.8) into an

asymptotic equation for LC/Fq(X)/qX/2.
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Corollary 6.3. Let C be a nonsingular projective curve over Fq of genus g ≥ 0,

and suppose that all of the zeroes γ−1 of ZC/Fq(u) are simple. Then as X tends

to infinity,

LC/Fq(X)

qX/2
= −1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

− (−1)X
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

−
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1
eiXθ(γ) +Oq,g

(
1

qX/2

)
. (6.10)

Recalling that ZC/Fq(u) = ζC/Fq(s) with u = q−s, we see that we can rewrite

(6.10) as

LC/Fq(X)

qX/2

=
1

2

q
(√

q + 1
)

(q − 1)2
q−ghC/Fq
ζC/Fq(1/2)

− (−1)X
1

2

q
(√

q − 1
)

(q − 1)2
q−ghC/Fq

ζC/Fq (1/2 + πi/ log q)

+ log q
∑
ρ

ζC/Fq(2ρ)

ζC/Fq
′(ρ)

qiX=(ρ)

qρ − 1
+Oq,g

(
1

qX/2

)
,

where the sum is over the 2g zeroes ρ = 1/2 + i=(ρ) of ζC/Fq(s) that lie in the

range −π/ log q < =(ρ) < π/ log q. On the other hand, we have the explicit

expression (5.2) for L(x)/
√
x:

L(x)√
x

=
1

ζ(1/2)
+
∑
ρ

ζ(2ρ)

ζ ′(ρ)

xi=(ρ)

ρ
+O

(
1√
x

)
.

We see many similarities between our explicit expressions (5.2) for L(x)/
√
x and

(6.10) for LC/Fq(X)/qX/2, though several new features appear in the function

field case, most notably additional leading terms. In the number field case, this

is merely the reciprocal of the zeta function evaluated at the critical point s =

1/2. In the function field case, the leading term is no longer constant: here we

have an additional critical point at s = 1/2 + πi/ log q, halfway up the critical

line (recalling that ζC/Fq(s) is periodic with period 2πi/ log q), which leads to

oscillations of LC/Fq(X)/qX/2 according to whether X is even or odd. Finally, the

coefficients of these leading terms are heavily dependent on the genus of C and

on the size q of the finite field Fq over which C is defined.

We are interested in using the explicit expression (6.10) to study sign changes,

or lack thereof, of LC/Fq(X). To understand the behaviour of LC/Fq(X) when the

genus of the curve C is greater than zero, we must first determine the signs of

three important quantities that appear in (6.3): the class number hC/Fq and the

values PC/Fq
(
±q−1/2

)
.
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Lemma 6.4 ([24, Proposition 5.11]). For the class number hC/Fq of the function

field C/Fq, we have the bounds

(
√
q − 1)2g ≤ hC/Fq ≤ (

√
q + 1)2g .

In particular, q−ghC/Fq is always positive, and we have the asymptotic

q−ghC/Fq = 1 +Og

(
1
√
q

)
(6.11)

as q tends to infinity.

Next, we observe we can write PC/Fq
(
±q−1/2

)
explicitly in terms of the inverse

zeroes γ =
√
qeiθ(γ) of ZC/Fq(u). Using the fact that the 2g inverse zeroes γ satisfy

γj+g = qγ−1j for 1 ≤ j ≤ g, we see that

PC/Fq

(
± 1
√
q

)
=

g∏
j=1

(
1∓ γj√

q

)(
1∓
√
q

γj

)
=

g∏
j=1

(
1∓ eiθ(γj)

) (
1∓ e−iθ(γj)

)
.

From this, standard trigonometric identities allow us to show the following.

Lemma 6.5. We have that

PC/Fq

(
1
√
q

)
= 2g

g∏
j=1

(1− cos θ(γj)),

PC/Fq

(
− 1
√
q

)
= 2g

g∏
j=1

(1 + cos θ(γj)).

In particular, PC/Fq
(
±q−1/2

)
are both always nonnegative, and are strictly positive

when ZC/Fq
(
±q−1/2

)
6= 0: that is, when ±√q are not inverse zeroes of ZC/Fq(u).

So by using the triangle inequality on (6.10), we obtain the following bounds

for LC/Fq(X)/qX/2; in particular, we prove part of Theorem 5.7 in showing that

if ZC/Fq(u) has simple zeroes, then Pólya’s conjecture for C/Fq is true when the

inequality (5.4) holds.

Corollary 6.6. Let C be a nonsingular projective curve over Fq of genus g ≥ 1,

and suppose that all of the zeroes γ−1 of ZC/Fq(u) are simple. Let

B+(C/Fq) = lim sup
X→∞

LC/Fq(X)

qX/2
,

B−(C/Fq) = lim inf
X→∞

LC/Fq(X)

qX/2
.
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Then we have the bounds

B+(C/Fq) ≤ −
1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

+
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

+
∑
γ

∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣,

B−(C/Fq) ≥ −
1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

− 1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

−
∑
γ

∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣.
The assumption that all of the zeroes γ−1 of ZC/Fq(u) are simple implies that

the bounds above are finite, that is, that LC/Fq(X)/qX/2 is bounded. This high-

lights a notable difference in the behaviour of LC/Fq(X)/qX/2 to that of L(x)/
√
x.

While the former is bounded as X tends to infinity, the latter is conjectured to

grow unboundedly in both the positive and negative directions as x tends to in-

finity. The key difference here is that the explicit expression (5.2) for L(x)/
√
x

involves an infinite sum over the zeroes of ζ(s), while for LC/Fq(X)/qX/2 the anal-

ogous sum has only finitely many terms, as there only finitely many zeroes of

ZC/Fq(u).

Next, we show that the bounds in Corollary 6.6 are strict when C satisfies

LI, from which it follows that when C satisfies LI, Pólya’s conjecture for C/Fq is

true if and only if the inequality (5.4) holds.

Theorem 6.7 (cf. Theorem 2.6). Suppose that C satisfies LI. Then

B+(C/Fq) = −1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

+
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

+
∑
γ

∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣,

B−(C/Fq) = −1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

− 1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

−
∑
γ

∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣.
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Proof. We have that

∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1
eiXθ(γ) = 2<

(
g∑
j=1

ZC/Fq
(
γ−2j
)

ZC/Fq
′ (γ−1j ) γj

γj − 1
eiXθ(γj)

)
,

so that

LC/Fq(X)

qX/2
= −1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

− (−1)X
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

− 2<

(
g∑
j=1

ZC/Fq
(
γ−2j
)

ZC/Fq
′ (γ−1j ) γj

γj − 1
eiXθ(γj)

)
+Oq,g

(
1

qX/2

)
.

The assumption that C satisfies LI along with the Kronecker–Weyl theorem in-

form us that the set{(
eπiX , eiXθ(γ1), . . . , eiXθ(γg)

)
∈ Tg+1 : X ∈ N

}
is equidistributed in {±1}×Tg. This implies the existence of a subsequence (Xm)

of N such that

lim
m→∞

LC/Fq(Xm)

qXm/2
= −1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

+
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

+
∑
γ

∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣,
and hence the upper bound for B+(C/Fq) is sharp. Similarly, a subsequence

exists that ensures that the lower bound for B−(C/Fq) is also sharp.

We remark that we may also study the behaviour of LC/Fq(X) when ZC/Fq(u)

has multiple zeroes, but that the situation is not so easily resolved as with

MC/Fq(X), as analysed in Section 2.2. The key difference is the behaviour of

LC/Fq(X) when ZC/Fq(u) has a zero of multiple order at u = q−1/2. If there is

a zero elsewhere of higher order than the zero at q−1/2, however, then one can

mimic the proofs of Propositions 2.12 and 2.13 to show that LC/Fq(X) changes

sign infinitely often; we omit the details.

6.2 Examples in Low Genus

When g = 0, so that C = P1 and hence that C/Fq = Fq(t), it is particularly

easy to determine the limiting behaviour of LC/Fq(X) via (6.8) and (6.9), as

hC/Fq , PC/Fq
(
±q−1/2

)
are all equal to 1 and there are no inverse zeroes γ.
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Proposition 6.8 (cf. Proposition 2.3). Let g = 0. Then

LC/Fq(X) =


q(X+1)/2 − 1

q − 1
if X is odd,

−q
X/2+1 − q
q − 1

if X is even.

(6.12)

Consequently, LC/Fq(X) changes sign infinitely often, and

B+(C/Fq) =

√
q

q − 1
,

B−(C/Fq) = − q

q − 1
.

In particular, Pólya’s conjecture for C/Fq is false.

Alternatively, one can prove the identity (6.12) by noting that from (6.4) and

(6.5), we have that for |u| < q−1,

∞∑
N=0

uN
∑

deg(D)=N

λC/Fq(D) =
(1− qu)

(1 + u)(1− qu2)

= (1− qu)
∞∑
A=0

(−1)AuA
∞∑
B=0

qBu2B

=
∞∑
N=0

uN

 ∑
A+B=N
B even

(−1)AqB/2 −
∑

A+B=N−1
B even

(−1)AqB/2+1

.
Equating coefficients of uN , we find that

∑
deg(D)=0 λC/Fq(D) = 1, while forN ≥ 1,

∑
deg(D)=N

λC/Fq(D) =


2qN/2+1 − q − 1

q − 1
if N is even,

−q
(N+3)/2 + q(N+1)/2 − q − 1

q − 1
if N is odd.

Summing over all 0 ≤ N ≤ X − 1 yields (6.12).

Similar results can be determined when g = 1, so that C is an elliptic curve

over a finite field Fq. When C satisfies LI, we have the following result.

Proposition 6.9. Let C be an elliptic curve over Fq, and suppose that C satisfies

LI. Then

B+(C/Fq) = −
√
q

q − 1

q + 1− a
4q − a2

(a− 2) +
2

4q − a2

√
q + 1− a
q + 1 + a

√
q2 + q + 3aq − a3,

B−(C/Fq) = −
√
q

q − 1

q + 1− a
4q − a2

(2q − a)− 2

4q − a2

√
q + 1− a
q + 1 + a

√
q2 + q + 3aq − a3,

where a is the trace of the Frobenius endomorphism.
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Proof. Using the fact that PC/Fq(u) = 1−au+ qu2, so that hC/Fq = q+ 1−a and

PC/Fq
(
±q−1/2

)
= 2∓ aq−1/2, we have that

−1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

+
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

= −
√
q

q − 1

q + 1− a
4q − a2

(a− 2),

−1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

− 1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

= −
√
q

q − 1

q + 1− a
4q − a2

(2q − a).

Next, the fact that γ =
√
qeiθ(γ) implies that

ZC/Fq
(
γ−2
)

=
(1− γ−1) (1− γγ−2)
(1− γ−2) (1− qγ−2)

=
γ2 − γ

(γ − γ) (γ + 1)

=
q cos 2θ(γ)−√q cos θ(γ) + iq sin 2θ(γ) + i

√
q sin θ(γ)

2i
√
q sin θ(γ)

(√
q cos θ(γ) + 1 + i

√
q sin θ(γ)

) .

So by the Pythagorean trigonometric identity and the cosine angle-difference and

triple-angle formulæ,

∣∣ZC/Fq (γ−2)∣∣ =
1

2
√
q sin θ(γ)

√
q2 + q + 6q3/2 cos θ(γ)− 8q3/2 cos3 θ(γ)

q + 1 + 2
√
q cos θ(γ)

=

√
q2 + q + 3aq − a3

(4q − a2) (q + 1 + a)
,

as

2
√
q cos θ(γ) = a,

2
√
q sin θ(γ) =

√
4q − a2.

Finally, the proof of Proposition 3.3 shows that

2

∣∣∣∣ 1

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣ = 2

√
q + 1− a
4q − a2

,

and the result now follows from Theorem 6.7.

Via Mathematica, we have found that for q a prime power and a an integer

satisfying |a| < 2
√
q, the function

−
√
q

q − 1

q + 1− a
4q − a2

(a− 2) +
2

4q − a2

√
q + 1− a
q + 1 + a

√
q2 + q + 3aq − a3
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is always positive; consequently, Pólya’s conjecture is always false for C/Fq when

the elliptic curve C satisfies LI.

In spite of this, when q is a perfect square, we are ensured an elliptic curve

C over Fq for which Pólya’s conjecture holds, via the curve whose trace of the

Frobenius a is equal to 2
√
q, so that ZC/Fq(u) has a zero of order two at u = q−1/2.

Proposition 6.10. Let C be an elliptic curve over a finite field Fq of character-

istic p, and suppose that ZC/Fq(u) has a zero of multiple order at u = q−1/2, so

that q = pm with a = ±2
√
q, where m is even. Then

LC/Fq(X)

qX/2
= − 1

4
√
q

(√
q − 1

)2
√
q + 1

X2 +Oq(X).

In particular, Pólya’s conjecture holds for C/Fq.

Proof. When a = 2
√
q, we have that γ = γ =

√
q, and so the proof of Proposition

6.2 shows that for N ≥ 0,

∑
deg(D)=N

λC/Fq(D) = − Res
u=q−1/2

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
+ (−1)N

q − 1

8q
q(N+1)/2

− (−1)N
q + 1

q − 1

(√
q − 1
√
q + 1

)2

+
1

2πi

∮
CT

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
du,

with the last term equal to zero for N ≥ 1. Now by the binomial theorem,

1

uN+1
= q(N+1)/2

∞∑
k=0

(−1)k
(
N + k

k

)
qk/2

(
u− 1
√
q

)k
,

whereas

ZC/Fq (u2)

ZC/Fq(u)
=

(1− qu)
(
1−√qu2

)2
(1 + u)

(
1 +
√
qu
) (

1−√qu
)3

=
1

2q2

(√
q − 1

)3
√
q + 1

(
u− 1
√
q

)−3
+Oq

((
u− 1
√
q

)−2)

in a neighbourhood of u = q−1/2, and as for fixed k,(
N + k

k

)
=
Nk

k!
+O

(
Nk−1)

in the large N limit, we find via Laurent series about u = q−1/2 that

Res
u=q−1/2

1

uN+1

ZC/Fq (u2)

ZC/Fq(u)
=

1

4q

(√
q − 1

)3
√
q + 1

N2q(N+1)/2 +Oq

(
Nq(N+1)/2

)
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as N grows large. Thus

∑
deg(D)=N

λC/Fq(D) = − 1

4q

(√
q − 1

)3
√
q + 1

N2q(N+1)/2 +Oq

(
Nq(N+1)/2

)
,

and summing over all 0 ≤ N ≤ X − 1 and then dividing through by qX/2 yields

the result.

6.3 The Limiting Distribution of LC/Fq(X)/qX/2

This section mimics Section 2.3 in determining the natural density of the set of

natural numbers for which LC/Fq(X) ≤ 0. From Corollary 6.3, for any nonsingular

projective curve C over Fq of genus g ≥ 1 we may write

LC/Fq(X)

qX/2
= EC/Fq ;λ(X) + εC/Fq ;λ(X),

where

EC/Fq ;λ(X) = −1

2

√
q

√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

− (−1)X
1

2

√
q

√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

−
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1
eiXθ(γ),

εC/Fq ;λ(X) = Oq,g

(
1

qX/2

)
,

provided that all of the zeroes γ−1 of ZC/Fq(u) are simple. Using this, we may

prove the existence of a limiting distribution of LC/Fq(X)/qX/2 by first construct-

ing the limiting distribution of EC/Fq ;λ(X).

Lemma 6.11 (cf. Lemma 2.15). Let C be a nonsingular projective curve over

Fq of genus g ≥ 1, and suppose that all of the zeroes γ−1 of ZC/Fq(u) are simple.

There exists a probability measure νC/Fq ;λ on R that satisfies

lim
Y→∞

1

Y

Y∑
X=1

f
(
EC/Fq ;λ(X)

)
=

∫
R
f(x) dνC/Fq ;λ(x)

for all continuous functions f on R.

Proof. The proof is essentially the same as that of Lemma 2.15, though notably

the subtorus H is different. This time, we apply the Kronecker–Weyl theorem
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with t0 = π/2, tj = θ(γj)/2π for 1 ≤ j ≤ g, in order to deduce the existence of a

subtorus H ⊂ Tg+1 satisfying

lim
Y→∞

1

Y

Y∑
X=1

h
(
eπiX , eiXθ(γ1), . . . , eiXθ(γg)

)
=

∫
H

h(z) dµH(z)

for every continuous function h on Tg+1. We then define the probability measure

νC/Fq ;λ on R by

νC/Fq ;λ(B) = µH(B̃)

for each Borel set B ⊂ R, where

B̃ =

{
(z0, z1, . . . , zg) ∈ H : −φ1 − φ2z0 − 2<

(
g∑
j=1

φj3zj

)
∈ B

}
.

Here for brevity’s sake φ1 = φ1(C/Fq) and φ2 = φ2(C/Fq) are as in (5.5), while

for 1 ≤ j ≤ g,

φj3 = φj3(C/Fq) =
ZC/Fq(γ

−2
j )

ZC/Fq
′(γ−1j )

γje
iθ(γj)

γj − 1
, (6.13)

so that

φ3 = φ3(C/Fq) = 2

g∑
j=1

∣∣φj3∣∣.
For f a bounded continuous function on R, h(z0, z1, . . . , zg) on Tg+1 is defined by

h(z0, z1, . . . , zg) = f

(
−φ1 − φ2z0 − 2<

(
g∑
j=1

φj3zj

))
,

so that h is continuous on Tg+1, and consequently∫
R
f(x) dνC/Fq ;λ(x) =

∫
H

h(z0, z1, . . . , zg) dµH(z0, z1, . . . , zg)

= lim
Y→∞

1

Y

Y∑
X=1

h
(
eπiX , eiXθ(γ1), . . . , eiXθ(γg)

)
= lim

Y→∞

1

Y

Y∑
X=1

f
(
EC/Fq ;λ(X)

)
.

The proof of the next result is essentially unchanged from the proof of Propo-

sition 2.18.

Proposition 6.12 (cf. Proposition 2.18). Let C be a nonsingular projective curve

over Fq of genus g ≥ 1, and suppose that all of the zeroes γ−1 of ZC/Fq(u) are
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simple. The function LC/Fq(X)/qX/2 has a limiting distribution νC/Fq ;λ on R.

That is, there exists a probability measure νC/Fq ;λ on R such that

lim
Y→∞

1

Y

Y∑
X=1

f

(
LC/Fq(X)

qX/2

)
=

∫
R
f(x) dνC/Fq ;λ(x)

for all bounded continuous functions f on R.

We are now able to prove Theorem 5.8.

Proof of Theorem 5.8. The Portmanteau Theorem in conjunction with Proposi-

tion 6.12 implies that

lim
Y→∞

1

Y
#

{
1 ≤ X ≤ Y :

LC/Fq(X)

qX/2
∈ B

}
= νC/Fq ;λ(B)

for every Borel set B ⊂ R whose boundary has νC/Fq ;λ-measure zero, and hence

d(PC/Fq ;λ) exists and is equal to νC/Fq ;λ((−∞, 0]) if νC/Fq ;λ({0}) = 0. This follows

as the assumption that C satisfies LI implies that H = {±1} × Tg, that is, that

H is the union of two disjoint subtori, and hence the normalised Haar measure

on H is half the Lebesgue measure on each subtorus. Thus for a Borel set B ⊂ R,

νC/Fq ;λ(B) =
1

2
m

(
−φ1 − φ2 − 2<

(
g∑
j=1

φj3e
2πiθj

)
∈ B

)

+
1

2
m

(
−φ1 + φ2 − 2<

(
g∑
j=1

φj3e
2πiθj

)
∈ B

)

=
1

2
m

(
−φ1 − φ2 − 2

g∑
j=1

∣∣φj3∣∣ cos(2πθj) ∈ B

)

+
1

2
m

(
−φ1 + φ2 − 2

g∑
j=1

∣∣φj3∣∣ cos(2πθj) ∈ B

)
.

The function
∑g

j=1

∣∣φj3∣∣ cos(2πθj) is real analytic on [0, 1]g and not uniformly

constant, so m
(∑g

j=1

∣∣φj3∣∣ cos(2πθj) = c
)

= 0 for all c ∈ R, from which it follows

that νC/Fq ;λ is atomless.

Finally, the fact that

m

(
g∑
j=1

∣∣φj3∣∣ cos(2πθj) ≥ c

)
= m

(
g∑
j=1

∣∣φj3∣∣ cos(2πθj) ≤ −c

)
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for any c ∈ R implies that

d(PC/Fq ;λ) =
1

2
+

1

2
m

(
−φ1 − φ2 ≤ 2

g∑
j=1

∣∣φj3∣∣ cos(2πθj) ≤ φ1 − φ2

)

= 1− 1

2
m

(
2

g∑
j=1

∣∣φj3∣∣ cos(2πθj) < −φ1 − φ2

)

− 1

2
m

(
2

g∑
j=1

∣∣φj3∣∣ cos(2πθj) < −φ1 + φ2

)
.

From this, it is clear that

d(PC/Fq ;λ) =

1/2 if −φ1(C/Fq) + φ2(C/Fq) ≥ φ3(C/Fq),

1 if −φ1(C/Fq) + φ2(C/Fq) ≤ −φ3(C/Fq).

If −φ3 < −φ1 +φ2 < φ3, then there exists an open neighbourhood of (0, . . . , 0) ∈
[0, 1]g such that for all (θ1, . . . , θg) in this neighbourhood,

|−φ1 + φ2| ≤ 2

g∑
j=1

∣∣φj3∣∣ cos(2πθj) ≤ φ1 + φ2

and consequently 1/2 < d(PC/Fq ;λ) < 1.
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Chapter 7

Global Pólya Conjectures

7.1 Averages over Families of Curves

We wish to find the average, as the finite field Fq grows larger, of the number of

curves for which Pólya’s conjecture is true. Our first step is determine expressions

for φk(C/Fq), 1 ≤ k ≤ 3, in terms of Zϑ(C/Fqn )(θ), the characteristic polynomial

of ϑ(C/Fqn) ∈ USp2g(C)#, in the large q limit. The resulting expressions involve

particular functions related to ZU(θ); these are the functions

ψ1(U) =
1

2

1

ZU(0)
,

ψ2(U) =
1

2

1

ZU(π)
,

ψ3(U) =
1

2

2g∑
j=1

| cosec θj|
|ZU ′(θj)|

.

We also define the functions

ψ±(U) = −ψ1(U)± ψ2(U)± ψ3(U).

Note that ψ1, ψ2, ψ3 are always nonnegative, but that they can be infinite: ψ1(U)

blows up if U has an eigenvalue equal to 1 (which is necessarily a repeated eigen-

value), while ψ2(U) blows up when U has an eigenvalue equal to −1 (which must

also be a repeated eigenvalue), and ψ3(U) blows up whenever U has a repeated

eigenvalue. Recall, however, that the set of matrices in USp2g(C) with repeated

eigenvalues has measure zero with respect to the normalised Haar measure on

USp2g(C).

79
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Lemma 7.1 (cf. Lemma 4.2). Suppose that all of the zeroes γ−1 of ZC/Fq(u) are

simple. Then for 1 ≤ k ≤ 3,

φk(C/Fq) = ψk (ϑ(C/Fq)) +Og

(
1
√
q
ψk (ϑ(C/Fq))

)
.

Consequently,

B+(C/Fq) = ψ+ (ϑ(C/Fq)) +Og

(
− 1
√
q
ψ− (ϑ(C/Fq))

)
.

Proof. From the definitions of φ1(C/Fq) and φ2(C/Fq) and from (4.2), we have

that

φ1(C/Fq) =
1

2

√
q

√
q + 1

q−ghC/Fq
Zϑ(C/Fq)(0)

,

φ2(C/Fq) =
1

2

√
q

√
q − 1

q−ghC/Fq
Zϑ(C/Fq)(π)

.

The desired identities for φ1(C/Fq) and φ2(C/Fq) then follow from the asymptotic

(6.11). For φ3(C/Fq), we have by (2.1), (4.2), and (4.3) that

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1
=
PC/Fq (γ−2)

PC/Fq
′ (γ−1)

γ − 1

γ2 − 1

γ3

γ − γ

=
PC/Fq (γ−2)

Zϑ(C/Fq)′(θ(γ))

γ − 1

γ2 − 1

iγ2

γ − γ
.

As γj =
√
qeiθ(γj) for each 1 ≤ j ≤ 2g, we may rewrite this as

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

=

∏2g
j=1

(
1− q−1/2ei(θ(γj)−2θ(γ))

)
Zϑ(C/Fq)′(θ(γ))

√
qe−iθ(γ) − 1

qe2iθ(γ) − 1

iqe2iθ(γ)
√
qeiθ(γ) −√qe−iθ(γ)

=
1

2

e−iθ(γ) cosec θ(γ)

Zϑ(C/Fq)′(θ(γ))
+

c
√
q

e−iθ(γ) cosec θ(γ)

Zϑ(C/Fq)′(θ(γ))

for some coefficient c ∈ C dependent on q, g, θ(γ), θ(γ1), . . . , θ(γg) and uniformly

bounded in q, θ(γ), θ(γ1), . . . , θ(γg). This yields the asymptotic∣∣∣∣ ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − 1

∣∣∣∣ =
1

2

| cosec θ(γ)|
|Zϑ(C/Fq)′(θ(γ))|

+Og

(
1
√
q

| cosec θ(γ)|
|Zϑ(C/Fq)′(θ(γ))|

)
,

and by summing over all inverse zeroes γ, we obtain the desired identity for

φ3(C/Fq).
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Lemma 7.2 (cf. Lemma 4.8). Let B be an interval in R. Then the boundaries

of the sets {
U ∈ USp2g(C) : ψ±(U) ∈ B

}
have Haar measure zero.

Proof. By (4.1), we have that

ψ±(θ1, . . . , θg) = − 1

2g+1

g∏
j=1

1

(1− cos θj)
± 1

2g+1

g∏
j=1

1

(1 + cos θj)

± 1

2g

g∑
j=1

cosec2 θj

g∏
k=1
k 6=j

1

|cos θk − cos θj|
.

It suffices to show that for each permutation σ of {1, . . . , g} and for each c ∈ R,

the sets{
(θσ(1), . . . , θσ(g)) ∈ [0, π]g : ψ±(θσ(1), . . . , θσ(g)) = c, 0 < θ< . . . < θg < π

}
have Lebesgue measure zero, and this is true as when 0 < θ1 < . . . < θg < π, the

functions ψ±(θσ(1), . . . , θσ(g)) are real analytic and non-uniformly constant.

Lemma 7.3 (cf. Lemma 4.9). For all g ≥ 1, the function ψ− on USp2g(C) is

integrable and satisfies the bounds

−1− 22(g−1) ≤
∫
USp2g(C)

ψ−(U) dµHaar(U) ≤ −1.

The proof of this result follows from the following two lemmata, together with

the bound 0 ≤ |ZU(θ)| ≤ 22(g−1) for all U ∈ USp2(g−1)(C) and θ ∈ [0, π].

Lemma 7.4 (Keating–Snaith [14]). We have the identities∫
USp2g(C)

ψ1(U) dµHaar(U) =

∫
USp2g(C)

ψ2(U) dµHaar(U) =
1

2
.

Proof. Keating and Snaith show that [14, §2.1 Equation (10)]∫
USp2g(C)

1

ZU(0)
dµHaar(U) = 1.

The Haar measure is invariant under left multiplication by matrices V ∈ USp2g(C),

so by taking V = −I, so that ZV U(0) = det(I + U) = ZU(π), we find that∫
USp2g(C)

1

ZU(π)
dµHaar(U) =

∫
USp2g(C)

1

ZU(0)
dµHaar(U) = 1.
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Lemma 7.5 (cf. Lemma 4.10). For g = 1, we have that∫
USp2(C)

ψ3(U) dµHaar(U) = 1,

while for g ≥ 2, we have the identity∫
USp2g(C)

ψ3(U) dµHaar(U) =
1

π

∫ π

0

∫
USp2(g−1)(C)

|ZU(θ)| dµHaar(U) dθ.

Proof. The g = 1 case is trivial. For g ≥ 2, we differentiate (4.1) in order to find

that
1

2

2g∑
j=1

| cosec θj|
|ZU ′(θj)|

=
1

2g

g∑
j=1

cosec2 θj

g∏
k=1
k 6=j

1

|cos θk − cos θj|
.

By the Weyl integration formula,

1

2

∫
USp2g(C)

2g∑
j=1

| cosec θj|
|ZU ′(θj)|

dµHaar(U)

=
2g

2

g!πg

∫ π

0

· · ·
∫ π

0

 1

2g

g∑
j=1

cosec2 θj

g∏
k=1
k 6=j

1

|cos θk − cos θj|


×

∏
1≤m<n≤g

(cos θn − cos θm)2
g∏
`=1

sin2 θ` dθ1 · · · dθg,

and by the symmetry in the θj variables, this is the same as

2g(g−1)

g!πg
g

∫ π

0

· · ·
∫ π

0

cosec2 θg

g−1∏
k=1

1

|cos θk − cos θg|

×
∏

1≤m<n≤g

(cos θn − cos θm)2
g∏
`=1

sin2 θ` dθ1 · · · dθg

=
1

π

∫ π

0

(
2(g−1)2

(g − 1)!πg−1

∫ π

0

· · ·
∫ π

0

2g−1
g−1∏
k=1

|cos θk − cos θg|

×
∏

1≤m<n≤g−1

(cos θn − cos θm)2
g−1∏
`=1

sin2 θ` dθ1 · · · dθg−1

)
dθg.

The result then follows via the Weyl integration formula

We now study the limit as n tends to infinity of the average

# {C ∈ H2g+1,qn : C satisfies Pólya’s Conjecture}
#H2g+1,qn

,
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which we write as
# {C ∈ H2g+1,qn ∩ Pólya}

#H2g+1,qn
.

Proposition 7.6 (cf. Proposition 4.11). We have that

lim
n→∞

# {C ∈ H2g+1,qn ∩ Pólya}
#H2g+1,qn

= µHaar (ψ+(U) ≤ 0) .

Proof. For any ε > 0, we may write

# {C ∈ H2g+1,qn ∩ Pólya} = A1 + A2 + A3 + A4 + A5 + A6 + A7,

where

A1 = # {C ∈ H2g+1,qn : ψ+ (ϑ (C/Fqn)) ≤ 0} ,
A2 = −# {C ∈ H2g+1,qn \ LI : ψ+ (ϑ (C/Fqn)) ≤ 0} ,
A3 = # {C ∈ H2g+1,qn ∩ Pólya \ LI} ,
A4 = #

{
C ∈ H2g+1,qn ∩ LI : B+ (C/Fqn) ≤ 0, 0 < ψ+ (ϑ (C/Fqn)) ≤ ε

}
,

A5 = −#
{
C ∈ H2g+1,qn ∩ LI : B+ (C/Fqn) > 0,−ε ≤ ψ+ (ϑ (C/Fqn)) ≤ 0

}
,

A6 = #
{
C ∈ H2g+1,qn ∩ LI : B+ (C/Fqn) ≤ 0, ψ+ (ϑ (C/Fqn)) > ε

}
,

A7 = −#
{
C ∈ H2g+1,qn ∩ LI : B+ (C/Fqn) > 0, ψ+ (ϑ (C/Fqn)) < −ε

}
.

Then we have that

lim
n→∞

A1

#H2g+1,qn
= µHaar(ψ+(U) ≤ 0),

lim
n→∞

A2

#H2g+1,qn
= lim

n→∞

A3

#H2g+1,qn
= 0.

Furthermore,

lim sup
n→∞

|A4|+ |A5|
#H2g+1,qn

≤ lim
n→∞

# {C ∈ H2g+1,qn : −ε ≤ ψ+ (ϑ (C/Fqn)) ≤ ε}
#H2g+1,qn

= µHaar(−ε ≤ ψ+(U) ≤ ε).

Finally, Lemma 7.1 implies the existence of a constant c(g) > 0 such that

|A6|+ |A7| ≤ #
{
C ∈ H2g+1,qn : −ψ− (ϑ (C/Fqn)) ≥ εc(g)qn/2

}
.

As ψ− is integrable by Lemma 7.3, for any ε′ > 0 there exists some T0 > 0 such

that µHaar (−ψ−(U) ≥ T ) ≤ ε′ for all T > T0, and hence

lim sup
n→∞

|A6|+ |A7|
#H2g+1,qn

≤ lim
n→∞

# {C ∈ H2g+1,qn : −ψ− (ϑ (C/Fqn)) ≥ T}
#H2g+1,qn

= µHaar (−ψ−(U) ≥ T )

≤ ε′.
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As ε′ > 0 was arbitrary,

lim
n→∞

A6

#H2g+1,qn
= lim

n→∞

A7

#H2g+1,qn
= 0.

Thus for any ε > 0,∣∣∣∣ lim
n→∞

# {C ∈ H2g+1,qn ∩ Pólya}
#H2g+1,qn

− µHaar (ψ+(U) ≤ 0)

∣∣∣∣
≤ µHaar (−ε ≤ ψ+(U) ≤ ε) ,

which yields the result because

lim
ε→0

µHaar (−ε ≤ ψ+(U) ≤ ε) = µHaar (ψ+(U) = 0) = 0.

Proof of Theorem 5.9. We must show that µHaar (ψ+(U) ≤ 0) = 0. By making

the change of variables cos θj 7→ xj, this is equivalent to showing that the set of

(x1, . . . , xg) ∈ [−1, 1]g for which the function

ψ̃+(x1, . . . , xg)

= − 1

2g+1

g∏
j=1

1

(1− xj)
+

1

2g+1

g∏
j=1

1

(1 + xj)
+

1

2g

g∑
j=1

1

1− x2j

g∏
k=1
k 6=j

1

|xk − xj|

is nonpositive has measure zero with respect to the measure

dµ̃USp(x1, . . . , xg) =
2g

2

g!πg

∏
1≤j<k≤g

(xk − xj)2
g∏
`=1

√
1− x2` dx1 · · · dxg

on [−1, 1]g. Now we may write ψ̃+ = f/h, with

f(x1, . . . , xg) = −
g∏
j=1

(1− xj)
∏

1≤k<`≤g

|x` − xk|+
g∏
j=1

(1 + xj)
∏

1≤k<`≤g

|x` − xk|

+ 2

g∑
j=1

g∏
k=1
k 6=j

(1− x2k)
∏

1≤`<m≤g
`,m 6=j

|xm − x`|,

h(x1, . . . , xg) = 2g+1

g∏
j=1

(1− x2j)
∏

1≤k<`≤g

|x` − xk|.

Note that h is positive on [−1, 1]g outside the µ̃USp-measure zero subset of [−1, 1]g

where either xj = ±1 for some 1 ≤ j ≤ g or x` = xk for some 1 ≤ k < ` ≤ g. So

it suffices to show that the set

{(x1, . . . , xg) ∈ [−1, 1]g : f(x1, . . . , xg) ≤ 0}
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has µ̃USp-measure zero. As f(x1, . . . , xg) is invariant under a permutation σ of

{1, . . . , g}, we will be done if we can show that for each such permutation σ, the

function f(x1, . . . , xg) is always positive on the set{
(x1, . . . , xg) ∈ [−1, 1]g : −1 < xσ(1) < . . . < xσ(g) < 1

}
.

For g = 1, this is elementary, as

f(x1) = 2 (1− x1) ,

which is always positive for −1 < x1 < 1. In fact, one can show that

lim
x1→1

ψ̃+(x1) =
1

4
,

and that this is the global minimum of ψ̃+(x1).

For g = 2,

f(x1, x2) =

4
(
1− x22

)
when −1 < x1 < x2 < 1,

4
(
1− x21

)
when −1 < x2 < x1 < 1,

and in particular is always positive when x1, x2 6= ±1. Furthermore, it can be

shown that

lim
x1→1

ψ̃+

(
x1,−

x1
3

)
=

27

64
,

and that this is the global minimum of ψ̃+(x1, x2).

Already when g = 3, the calculations become extremely complicated. How-

ever, numerical calculations suggest that the global minimum of ψ+ is approxi-

mately 0.530915.

7.2 Variants of Pólya’s Conjecture

Just as we discussed the α- and β-variants of the Mertens conjecture, we may do

the same for Pólya’s conjecture. Here the properties of the weighted sum

Lα(x) =
∑
n≤x

λ(n)

nα

for α ∈ R have recently been studied by Mossinghoff and Trudgian [20]; they

ask whether for fixed α such sums are of constant sign for sufficiently large x.



86 Global Pólya Conjectures

For α > 1, the inequality Lα(x) > 0 will always hold for sufficiently large x, and

indeed, Lα(x) converges to the absolutely convergent infinite series

∞∑
n=1

λ(n)

nα
=
ζ(2α)

ζ(α)
,

which is strictly positive. Under the assumption of the Riemann hypothesis, this

infinite series is conditionally convergent for 1/2 < α < 1, and as ζ(2α)/ζ(α) is

negative in this range, we would expect the inequality Lα(x) < 0 to hold for all

sufficiently large x. For 0 ≤ α < 1/2 and α = 1, the eventual constancy of sign

of Lα(x) implies the Riemann hypothesis and the simplicity of the zeroes of the

Riemann zeta function. However, Mossinghoff and Trudgian modify a result of

Ingham [12] to show that the Linear Independence hypothesis for the Riemann

zeta function implies that Lα(x) changes sign infinitely often for these values of

α; consequently, we would expect Lα(x) to change sign infinitely often for α in

this range.

Finally, for α = 1/2, Mossinghoff and Trudgian mimic the proof of Proposition

5.1 in order to show that

L1/2(x) =
log x

2ζ(1/2)
+

γ0
ζ(1/2)

− ζ ′(1/2)

2ζ(1/2)2
+
∑
|γ|<Tv

ζ(2ρ)

ζ ′(ρ)

xiγ

iγ
+R1/2(x, Tv)

under the assumption of the Riemann hypothesis and that all of the zeroes of ζ(s)

are simple. Here γ0 is the Euler–Mascheroni constant and R1/2(x, Tv) is a small

error term, similar to that in Proposition 5.1. Heuristically, one would expect the

leading term log x/(2ζ(1/2)) in this explicit expression for L1/2(x) to dominate

the other terms as x grows large; this is in accordance with the conjecture (1.6)

of Gonek on the maximal order of growth of M(x). As ζ(1/2) < 0, this leads to

the following conjecture of Mossinghoff and Trudgian, which has has been verified

computationally up to x = 1012 [20, Figure 2].

Conjecture 7.7 (The α = 1/2 Conjecture [20, Problem 3]). For all x ≥ 17,

L1/2(x) =
∑
n≤x

λ(n)√
n
≤ 0.

Here we study the function field analogue of this problem, namely for which

α ∈ R the weighted sum

LC/Fq ,α(X) =
X−1∑
N=0

1

qα(N+1)

∑
deg(D)=N

λC/Fq(D)
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is of constant sign. For α > 1/2, the weighted sum LC/Fq ,α(X) converges to the

infinite series

1

qα

∞∑
N=0

1

qαN

∑
deg(D)=N

µC/Fq(D) =
ZC/Fq (q−2α)

qαZC/Fq (q−α)
.

Thus for α > 1, LC/Fq ,α(X) is eventually positive, while LC/Fq ,α(X) is eventually

negative in the range 1/2 < α < 1; however, LC/Fq ,1(X) converges to zero, as

ZC/Fq(u) has a pole at u = q−1, so further analysis is necessary to determine sign

changes for this particular weighted sum. For α < 1/2, we divide (6.3) by qα(N+1)

and sum over all 0 ≤ N ≤ X − 1, showing that when ZC/Fq(u) has only simple

zeroes,

LC/Fq ,α(X)

q(1/2−α)X

= −1

2

√
q

√
q − qα

√
q − 1
√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

− (−1)X
1

2

√
q

√
q + qα

√
q + 1
√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

−
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

γ

γ − qα
+Oq,g

(
1

q(1/2−α)X

)
.

The proof of Lemma 7.1 can then be modified to show that as q tends to infinity,

the quantity

B+
α (C/Fq) = lim sup

X→∞

LC/Fq ,α(X)

q(1/2−α)X

satisfies the asymptotic

B+
α (C/Fq) = ϕ+ (ϑ(C/Fq)) +Og,α

(
− 1

q1/2−α
ϕ− (ϑ(C/Fq))

)
when C satisfies LI, and consequently the proof of Theorem 5.9 is still true with

Pólya’s conjecture for the function field C/Fq replaced by the conjecture that for

fixed α < 1/2,

lim sup
X→∞

LC/Fq ,α(X) ≤ 0.

It remains to study the function field version of the α = 1/2 conjecture. By

dividing (6.3) by q(N+1)/2 and summing over all 0 ≤ N ≤ X − 1, we are able

to determine the following expression for LC/Fq ,1/2(X) when ZC/Fq(u) has only

simple zeroes.

Proposition 7.8. Let C be a nonsingular projective curve over Fq of genus g ≥ 0,

and suppose that all of the zeroes γ−1 of ZC/Fq(u) are simple. Then for each
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X ≥ 1,

LC/Fq ,1/2(X) = −1

2

√
q − 1
√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

X − (−1)X − 1

4

√
q + 1
√
q − 1

q−ghC/Fq
PC/Fq (−q−1/2)

−
∑
γ

ZC/Fq (γ−2)

ZC/Fq
′ (γ−1)

sin (Xθ(γ)/2)

sin (θ(γ)/2)
ei(X+1)θ(γ)/2

+
(−1)Xq−X/2 − 1
√
q + 1

q + 1

q − 1

hC/Fq
2

hC/Fq2
+RX,1/2(q, g, T ), (7.1)

where the sum is over the inverse zeroes of ZC/Fq(u), T > 0 is sufficiently small,

and the error term RX,1/2(q, g, T ) is constant for X ≥ max{2g − 3, 1}.

The notable difference here to the number field case is that there are only

finitely many zeroes of ZC/Fq(u), and hence the sum over the inverse zeroes is

bounded. Consequently, we have that

LC/Fq ,1/2(X) = −1

2

√
q − 1
√
q + 1

q−ghC/Fq
PC/Fq (q−1/2)

X +Oq,g(1)

as X tends to infinity, which resolves the function field analogue of the α = 1/2

conjecture.

Theorem 7.9 (The α = 1/2 Conjecture in Function Fields). Let C be a nonsin-

gular projective curve over Fq of genus g ≥ 0, and suppose that all of the zeroes

γ−1 of ZC/Fq(u) are simple. Then for all sufficiently large X, the inequality

LC/Fq ,1/2(X) =
X−1∑
N=0

1

q(N+1)/2

∑
deg(D)=N

λC/Fq(D) < 0 (7.2)

holds.



Appendix A

Proof of the Kronecker–Weyl

Theorem

In this appendix, we prove the following lemma.

Lemma 2.7 (Kronecker–Weyl Theorem). Let t1, . . . , tg be real numbers, and let

H be the topological closure in Tg of the subgroup

H̃ =
{(
e2πiXt1 , . . . , e2πiXtg

)
∈ Tg : X ∈ Z

}
.

Then H is a closed subgroup of Tg. In particular, when the collection 1, t1, . . . , tg

is linearly independent over the rational numbers, H is precisely Tg. Furthermore,

for arbitrary t1, . . . , tg and for any continuous function h : Tg → C, we have that

lim
Y→∞

1

Y

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
=

∫
H

h(z) dµH(z),

where µH is the normalised Haar measure on H.

The proof of this result makes use of several notable properties of Tg; namely

that it is an abelian group that is also compact as a topological space. It is no

surprise then that the method of proof uses abstract harmonic analysis. We must

therefore first recall some definitions and results from this field.

Lemma A.1 ([7, Lemma 1.1.3]). Let H̃ be a subgroup of a locally compact abelian

group G. Then its topological closure H in G is also a subgroup of G.

Corollary A.2. Let t1, . . . , tg be arbitrary real numbers, and let H be the topo-

logical closure in Tg of

H̃ =
{(
e2πiXt1 , . . . , e2πiXtg

)
∈ Tg+1 : X ∈ Z

}
.

Then H is a closed subgroup of Tg.

89
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Proof. Indeed, H̃ is the image of the group homomorphism φ : Z → Tg given

by φ(X) =
(
e2πiXt1 , . . . , e2πiXtg

)
, and so H̃ is a subgroup of Tg. The result then

follows by Lemma A.1.

Definition A.3. Let G be a locally compact abelian group. A character on G

is a continuous group homomorphism χ : G→ T, where T = {z ∈ C : |z| = 1} is

the circle group. The set of all characters on G is called the dual group of G and

is denoted Ĝ.

Proposition A.4 ([7, Theorem 3.2.1]). Let G be a locally compact abelian group.

Then the dual group Ĝ of G is also a locally compact abelian group.

Theorem A.5 (Pontryagin Duality [7, Theorem 3.5.5]). Let G be a locally com-

pact abelian group. Then the dual group
̂̂
G of Ĝ is canonically isomorphic to G

via the isomorphism x 7→ δx, where δx(χ) = χ(x) for each χ ∈ Ĝ.

The importance of showing earlier that H is a closed subgroup of Tg becomes

evident through certain results involving the annihilator of H.

Definition A.6. Let H be a closed subgroup of a locally compact abelian group

G. The annihilator H⊥ of H is the set of all characters χ ∈ Ĝ satisfying χ|H = 1.

Proposition A.7 ([7, Lemma 3.6.1]). Let G be a locally compact abelian group,

and H a closed subgroup of G. Then H⊥ is isomorphic to Ĝ/H via the isomor-

phism χ 7→ χ̃, where χ̃(xH) = χ(x) for all xH ∈ G/H, and Ĝ/H⊥ is isomorphic

to Ĥ via the isomorphism χH⊥ 7→ χ|H .

Finally, we must determine exactly the characters of Tg and its dual group.

Lemma A.8. Let Tg be the g-torus. Then a character χ : Tg → T is of the form

χ(z1, . . . , zg) = zk11 · · · zkgg

for some (k1, . . . , kg) ∈ Zg. Conversely, for any (k1, . . . , kg) ∈ Zg, χ is a character

of Tg. In particular, the dual group of Tg is isomorphic to Zg.

Of course, an analogous result holds for Zg.

Corollary A.9. A character χ : Zg → T is of the form

χ(k1, . . . , kg) = zk11 · · · zkgg

for some (z1, . . . , zg) ∈ Tg. Conversely, for any (z1, . . . , zg) ∈ Tg, χ is a character

of Zg. In particular, the dual group of Zg is isomorphic to Tg.
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We now have the framework necessary to determine H⊥ for H the topological

closure in Tg of the set H̃ =
{(
e2πiXt1 , . . . , e2πiXtg

)
∈ Tg : X ∈ Z

}
.

Lemma A.10. Let t1, . . . , tg be arbitrary real numbers, and let H be the topo-

logical closure of H̃ =
{(
e2πiXt1 , . . . , e2πiXtg

)
∈ Tg : X ∈ Z

}
in Tg. Then H⊥

is isomorphic to {k ∈ Zg : t1k1 + · · ·+ tgkg ∈ Z}. In particular, if the collection

1, t1, . . . , kg is linearly independent over the rational numbers, then H = Tg.

Proof. Each character χ ∈ H⊥ is of the form χ(z1, . . . , zg) = zk11 · · · z
kg
g for some

(k1, . . . , kg) ∈ Zg with the property that for all X ∈ Z,

1 = χ
(
e2πiXt1 , . . . , e2πiXtg

)
= e2πi(t1k1+···+tgkg)X ,

and hence t1k1 + · · · + tnkn ∈ Z. Conversely, if t1k1 + · · · + tnkn ∈ Z, then the

homomorphism χ(z1, . . . , zg) = zk11 · · · z
kg
g satisfies χ|H = 1.

Now the set

{k ∈ Zg : t1k1 + · · ·+ tgkg ∈ Z}

is isomorphic to {
k ∈ Zg+1 : k0 + t1k1 + · · ·+ tgkg = 0

}
,

and if 1, t1, . . . , kg forms a linearly independent collection over the rational num-

bers, then this is equal to the set {k = 0}. Thus H⊥ ∼= {0}, and hence

H = Tg.

Next, we show that for any trigonometric polynomial h on Tg,

lim
Y→∞

1

Y

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
=

∫
H

h(z) dµH(z).

The proof again makes use of the properties of the annihilator of H, this time via

the Poisson summation formula.

Definition A.11. Let G be a locally compact abelian group, and let h : G→ C
be a continuous compactly supported function. The Fourier transform of h with

respect to a Haar measure µG on G is the function ĥ on Ĝ given by

ĥ(χ) =

∫
G

h(x)χ(x) dµG(x).
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Proposition A.12 (Poisson Summation Formula [7, Theorem 3.6.3]). Let H be

a closed subgroup of a locally compact abelian group G, and let h : G → C be a

continuous compactly supported function. Then we have that∫
H

h(z) dµH(z) =

∫
H⊥

ĥ(χ) dµH⊥(χ),

where µH is a Haar measure on H and µH⊥ is the induced Haar measure on H⊥.

Lemma A.13. Let t1, . . . , tg be arbitrary real numbers, and let h : Tg → C be a

trigonometric polynomial; that is, a function of the form

h(z) =
∑
k∈Zg

ckz
k1
1 · · · zkgg

for z = (z1, . . . , zg) ∈ Tg, where all but finitely many of the coefficients ck ∈ C
are zero. Then we have that

lim
Y→∞

1

Y

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
=

∫
H

h(z) dµH(z),

where µH is the normalised Haar measure on H.

Proof. Let χ : Tg → T be a character corresponding to k̃ ∈ Zg. Then

ĥ(χ) =

∫
Tg
h(z)χ(z) dz =

∫
T
· · ·
∫
T

∑
k∈Zg

ckz
k1
1 · · · zkgg z

k̃1
1 · · · z

k̃g
g dz1 · · · dzg.

We may interchange the order of summation and integration as there are only

finitely many nonzero members in this sum. Thus

ĥ(χ) =
∑
k∈Zg

ck

g∏
j=1

∫
T
z
kj−k̃j
j dzj

=
∑
k∈Zg

ck

g∏
j=1

∫ 1

0

e2πi(kj−k̃j)θ dθ

=
∑
k∈Zg

ck

g∏
j=1

1 if kj = k̃j,

0 otherwise,

= ck̃.

Recalling that H⊥ is isomorphic to {k ∈ Zg : t1k1 + · · ·+ tgkg ∈ Z}, so that the

Haar measure µH⊥ on H⊥ is simply the counting measure, we therefore obtain

by the Poisson summation formula that∫
H

h(z) dµH(z) =

∫
H⊥

ĥ(χ) dµH⊥(χ) =
∑
k∈Zg

t1k1+···+tgkg∈Z

ck.
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On the other hand,

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
=
∑
k∈Zg

ck

Y∑
X=1

e2πi(t1k1+···+tgkg)X

=
∑
k∈Zg

t1k1+···+tgkg∈Z

ckY +
∑
k∈Zg

t1k1+···+tgkg /∈Z

ck
(
e2πi(t1k1+···+tgkg)Y − 1

)
1− e−2πi(t1k1+···+tgkg)

.

Thus

lim
Y→∞

1

Y

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
=

∑
k∈Zg

t1k1+···+tgkg∈Z

ck =

∫
H

h(z) dµH(z).

From this, we may easily obtain the result in the general case where h is

merely a continuous function. Indeed, this follows simply from the density of the

trigonometric polynomials in the space of continuous complex-valued functions

on Tg with regards to the supremum norm, that is to say, the Stone–Weierstrass

theorem.

Lemma A.14. For any continuous function h : Tg → C, we have that

lim
Y→∞

1

Y

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
=

∫
H

h(z) dµH(z).

Proof. Given a continuous function h : Tn → C and a fixed ε > 0, the Stone–

Weierstrass theorem shows the existence of a trigonometric polynomial

h̃(z) =
∑
k∈Zg

ckz
k1
1 · · · zkgg ,

where all but finitely many of the coefficients ck ∈ C are zero, such that

max
z∈Tg

∣∣∣h(z)− h̃(z)
∣∣∣ < ε/2.

Then

lim
Y→∞

1

Y

Y∑
X=1

∣∣∣h (e2πiXt1 , . . . , e2πiXtg)− h̃ (e2πiXt1 , . . . , e2πiXtg)∣∣∣ < ε

2
,

and similarly ∫
H

∣∣∣h(z)− h̃(z)
∣∣∣ dµH(z) <

ε

2
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as µH(H) = 1, and consequently∣∣∣∣∣ lim
Y→∞

1

Y

Y∑
X=1

h
(
e2πiXt1 , . . . , e2πiXtg

)
−
∫
H

h(z) dµH(z)

∣∣∣∣∣ < ε.

As ε > 0 was arbitrary, we obtain the result.

This completes the proof of the Kronecker–Weyl theorem.



Bibliography

[1] P. T. Bateman, J. W. Brown, R. S. Hall, K. E. Kloss, and Rosemarie M.

Stemmler, “Linear Relations Connecting the Imaginary Parts of the Zeros of

the Zeta Function”, in Computers in Number Theory, editors A. O. L. Atkin

and B. J. Birch, Academic Press, London, 1971, 11–19.

[2] Patrick Billingsley, Convergence of Probability Measures, 2nd Edition, John

Wiley and Sons, New York, 1999.

[3] Peter Borwein, Ron Ferguson, and Michael J. Mossinghoff, “Sign Changes

in Sums of the Liouville Function”, Mathematics of Computation 77 (2008),

no. 263, 1681–1694.

[4] Byungchul Cha, “Chebyshev’s Bias in Function Fields”, Compositio Mathe-

matica 144 (2008), no. 6, 1351–1374.

[5] Byungchul Cha, “The Summatory Function of the Möbius Function in Func-
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