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A b stract

This thesis re-examines the excess volatility debate by proposing an alternative vari­
ance bounds test based on m ultivariate inequality methodology, using conditioning infor­
m ation based on economic theory. We propose new variance bounds th a t are robust to 
non-stationarity issues of earlier studies. The tests arc applied to annual U.S da ta  over 
the 1871 to 2006 sample period using measures of perfect foresight stock prices, based on 
a geometric random  walk model. We show th a t when stock price series arc appropriately 
adjusted to ensure stationarity, volatility bounds arc not violated. Those results hold both 
unconditionally and conditionally based on variables suggested by economic theory, such 
as dividends, real interest rates and consumption growth.
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C hapter 1

In tro d u c tio n

This thesis examines the excess volatility debate using a novel multivariate hypothesis 

testing methodology and applying it to annual U.S. stockmarket data. The main thrust of 

the literature attempts to answer this basic question: are fluctuations in stock prices jus­

tified by changes in their fundamental determinants? In an efficient market with rational 

investors, stock prices are forward-looking variables that reflect anticipated changes in div­

idends as well as incorporate all relevant information. Hence, their volatility should reflect 

investors' expectations of changes in the determinants of stock prices. Given a model of 

stock prices, market efficiency places restrictions on the relative volatility of stock prices, 

which can be tested to yield insight on the validity of the underlying model. Shillcr (1981) 

and Porter and LeRoy (1981) independently investigate this issue and find overwhelming 

evidence of excess volatility in stock prices.

If investors arc rational, the stock price should equal the present value of the stock’s 

expected dividend stream. By assuming that dividends follow a stationary stochastic 

process, it is possible to derive an upper bound for the variance of that stock price based 

on the subsequent stream of dividends.

The present value model with constant discount rates, as introduced by Miller and 

Modigliani (1961), defines stock prices as the present value of rationally expected future 

dividends:

pi = Y, Et  (dt+r \ h ) 

(1 +  r )T
( 1 . 1)
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where r is the constant discount rate, dt is dividend at time £, where agents base their 

expectations conditional on I t , the unobservable vector of information set a t time t.

The perfect foresight price is the ex-post rational price with perfect information about 

future dividend stream .

r f  = £
d t+ T

ÜT7T ( 1.2)

where dt is the realised dividend at tim e t. The efficient m arkets hypothesis states 

th a t, under the assum ption of rational expectations, the expected dividend stream  should 

be equal to the realised dividend stream:

Pt = E t \p*t \It) , (1.3)

where Et refers to the m athem atical expectation conditional on information available 

at tim e t. A direct implication of the efficient m arkets hypothesis is th a t pt equals p*t 

plus a forecast error term , which is orthogonal to  p*. Otherwise, the forecast would not 

be optim al.

P*t=Pt + u t (1-4)

Hence, they differ by an unpredictable random  error, ut which measures the im pact 

on p* of information not available a t the time th a t the  expectations are formed.

Taking the variance on both  sides of equation (1.4),

Var(p*t ) = V a r  (pt +  u t)

V ar (p* ) = V a r  (pt) + V a r  (ut ) + 2Cov(pt , u t)

Since the error term  is non-systcmatic, E  (iq ) =  0 and given th a t u t and pt arc uncor- 

rclatcd with each other, Cov(pt , u t ) =  0. It then follows tha t, under rational expectations, 

the variance of the sum of two uncorrclatcd random  variables is simply the sum of their 

individual variances:
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Var {pi) = Var (pt) + Var (ut) (1.5)

Var(p*t ) > Var  (pt) . (1.6)

Equation (1.6) therefore places an upper bound on the variance of the observed price 

series, under the assumption that prices arc formed according to equation (1.1). This is 

the best known of the three variance bounds that Shillcr (1981) developed in his paper 

and it forms the basis of most studies in the excess volatility literature.

This simple variance bounds inequality condition can be stated in term of a null hy­

pothesis that involves an inequality constraint of the following form.

Var (p*) — Var (pt) > 0 (1.7)

The extensive literature on variance bounds tests has highlighted that its econometric 

implementation is not as straightforward. In fact, any variance bounds testing approach 

must tackle the following issues:

• The stationarity properties of dividend and stock price series to ensure that the 

variance bounds tests arc robust to the presence of unit roots.

• The computation of p* or an alternative measure of the variance implied by the 

present value model.

• Tests of significance of the results.

This follows from Gilles and LcRoy (1991) and Cochrane (1992) who argue that all 

econometric tests arc a joint test. The rejection of any null hypothesis could be due not 

only of the market efficiency hypothesis or present value model of stock prices, but also 

from a failure of the maintained assumptions underlying the econometric test itself.

Our research suggest that, within a proper statistical inference framework, i.c. the 

multivariate inequality constraints approach, one is able to reject the claim that the lack 

of volatility in the p* is due to the constancy of the discount rate. In fact, under the
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restrictive assumption of constant discount rate, our variance bounds inequality conditions 

arc not rejected by the data, unconditionally and conditionally.

This thesis aims to offer an alternative approach based on multivariate inequality re­

strictions hypothesis testing framework since the null hypothesis of interest is an inequality 

variance condition. In addition, the framework of Boudoukh, Richardson and Smith (1993) 

permits the use of conditioning information in order to restrict the information space un­

der which conditional variance bounds can be tested. It is widely established in the excess 

volatility literature by Marsh and Merton (1986) and Klcidon (1986) that unconditional 

variances are not well defined for unit root processes. In this study, stationarity of the 

stock prices series is achieved by appropriate differencing.

When using conditional information, as dictated by economic theory, the econometric 

results, also support the variance bounds theorems. When conditioned on past dividends, 

the real interest rate and consumption growth, the multivariate inequality tests fail to find 

excess market volatility. It is also found that failing to account for stationarity will lead 

to a rejection of the variance bounds.

Following this introduction, the thesis is divided into four main chapters and a conclu­

sion. Chapter 2 covers the excess volatility literature in terms of the different approaches 

to the econometric issues raised by Shillcr (1981) and LcRoy and Porter (1981). Then, a 

brief overview of the multivariate inequality methodology, as applied to hypothesis testing 

is provided. The main aim is to bring together the two strands of literature in order to 

address the excess volatility debate and develop testable implications for conditional vari­

ance bounds. Chapter 3 develops a new variance bounds inequality condition and applies 

the multivariate inequality methodology to test the validity of conditional and uncondi­

tional variance bounds. Chapter 4 examines the properties of the annual data provided 

by Shillcr, in order to access its suitability for our volatility bounds tests. We also inves­

tigate the suitability of alternative differencing strategies in terms of achieving stationary 

series. Chapter 5 applies the multivariate inequality methodology to annual U.S. data and 

analyzes the results. The results from the study yield unequivocal evidence in favour of 

conditional and unconditional volatility bounds. We find no evidence of excess volatility 

in stock prices, even after accounting for conditioning information. Concluding remarks
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arc presented in C hapter 6.
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C hapter 2

Literature R eview

2.1 O verview

Since the the seminal work by Shillcr (1981) and LcRoy and Porter (1981), variance bounds 

tests have been the focus of controversy in the literature. Both papers, using the present 

value model of stock prices, found that stock prices arc too volatile to be consistent with 

the present value of rationally expected future dividends discounted by a constant rate. 

The violation of Shillcr’s variance inequality condition has been interpreted as rejection of 

the efficient market hypothesis. Cochrane(1991) argues that volatility tests are only tests 

of specific discount rate models and specific dividend models. Other extensive surveys of 

the literature can be found in West (1988b), Gillcs and LcRoy (1991) and Gurkaynak 

(2008).

Studies which favour Shillcr’s conclusion include Mankiw, Römer and Shapiro(1985), 

Campbell and Shillcr (1987, 1988, 1989), Potcrba and Summcrs(1986) and West (1988a). 

Several studies have called into question the validity of Shillcr’s results for a variety of 

reasons, notably Flavin (1983), Kleidon (1986), Marsh and Merton (1985), Hoshi (1987), 

Cochrane(1991), Cuthbertson and Hyde (2002), Heaney (2004) among others. In sum­

mary, after two decades of research, the evidence on the violation of variance bounds rests 

largely on a myriadc of model assumptions and weak statistical tests. Not surprisingly, 

several authors have expressed a perception of futility when reviewing the inconclusive 

state of research in the excess volatility literature Sec West( 1988b), Gillcs and LcRoy
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(1991), LcRoy(2005) and Cochranc(1991) for extensive surveys of the literature.

The first half of this chapter examines the various themes present in studies undertaken 

in the excess volatility literature. The main themes arc:

• The non-stationarity issue of stock market data and how they deal with it.

• Assumptions about the dividends process.

• Different classes of variance bounds theorems - conditional vs unconditional bounds.

• Computation of perfect foresight prices: theoretical and econometric issues.

• non-constant discount rates.

The chapter is organized as follows. Section 2 critically surveys the excess volatility 

literature in terms of the econometric issues raised by previous studies. Section 3 briefly 

introduces the multivariate inequality constraints literature and the subset that allows us 

to test linearity restrictions implied by variance bounds theorems. This thesis adopts two 

unique approaches to assess excess volatility by applying a new econometric methodology 

to test the variance bound inequality conditions typically found in the literature. 1'hc 

study will generate several benefits. Most important is the additional insight into the 

excess volatility debate by examining rolling variances bounds that are robust to unit 

roots.

2.2 T h e E xcess V o la tility  L iterature

2.2.1 T he non -station arity  issue

Despite the intuitive appeal of the variance inequality just stated, empirical implementa­

tion is far from straightforward. An important econometric problem is that if the uncondi­

tional population variances change over time then sample variances, not being consistent 

estimates of the population variances that arc subject to the inequality, are unintcrpretable 

from the viewpoint of the variance-bounds theorems. Sample variances are of interest only 

if some data transformation can be found which ensures that the relevant variables arc 

stationary and which at the same time preserves the variance-bounds theorems.
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Shillcr (1981) and LeRoy and Porter (1981) carried out their studies based on the 

assumption that the prices and dividends series arc trend stationary. Nelson and Kang 

(1984) show that doing so docs not resolve the non-stationarity issue if the data series still 

contain a unit root.

Heaney (2002) describes Shillcr (1981) approach to achieving stationarity in the stock- 

market data as follows. The stock prices and dividends series are detrended by a long-run 

growth factor, Â _/ = (1 + g)l~l , where g is rthc growth rate and T  is the base year of 

the used stock price index, so that at t = T  nominal price equal real growth-adjusted price. 

The growth factor is estimated by regressing the natural log of stock prices on an intercept 

and a time trend, i.c. pt = c + ßt -1- £t and setting A = . This involves dividing equation

(1.1) by Xf~T and multiplying it by j&fr-After defining Aq =   ̂ and 7 — y+f 85 the

discount factor for the detrended data series, the following relation can be derived:

oo oo

Pt =  £ ( A# +1 B‘ W +rlh) = £ ( # +1 Et (dt+T\It)
T=1 T = 1

The growth-adjusted p and d series arc given by

p t _  Pt
(1 + g)t~T

Dt _  Dt
(1 + g)l- T

The growth rate is defined as being less than the discount rate to ensure a finite price. 

The discount rate is calculated as the ratio of the mean growth-adjusted real dividend o 

the mean growth-adjusted real stock price index: f  — E  (d) / E  (p) .

The distributional assumptions of the first generation tests have been questioned by 

many. (Flavin, 1983; Klcidon, 1986, Marsh and Merton, 1986; Durlauf and Phillips, 1988). 

In particular, Shillcr (1981) and Porter and LeRoy (1981) assume that both dividends and 

stock prices are trend stationary and use different detrending techniques before computing 

the point sample variances of the 2 stock prices. Shillcr (1981) divides his data scries by 

a long-term growth rate while LeRoy and Porter (1981) reversed the effect of inflation 

and retained earnings on dividends and stock prices using an algorithm to remove trends.

Pt = 

dt =
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However, when such series have unit roots, sample means and variances do not exist even 

after detrending, and therefore it is not valid to use the computed sample moments as 

a estimates of population moments. Flavin (1983) also argues that the sample variances 

will be biased due towards rejection of the null hypothesis due to the presence of serial 

autocorrelations in the actual stock prices and computed perfect foresight stock prices.

Most studies have undertaken formal tests for unit roots and the second generation 

variance bounds tests allow for non-stationartity of dividends and stock prices. Despite 

this, there has still been conflicting evidence on excess stock price volatility. LeRoy and 

Parke (1992) use price-dividend ratios and assume that the transformed series is stationary. 

However, Balkc and Wohar (2005) apply augmented Dickey-Fuller tests to similar data 

but fail to reject the null hypothesis of a unit root in the log price-dividend ratio.

Following Shillcr (1981) and LeRoy and Porter (1981), Grossman and Shillcr (1981) 

relax the assumption of a constant discount factor and argue that fluctuations in discount 

factors are related to fluctuations in aggregate consumption. They conclude that even 

under perfect foresight, the large fluctuations in stock prices between 1949 and 1979, can 

not be explained by the fluctuations in aggregate consumption and dividends. However, 

if the stock prices series are non-stationary, their attempt to induce volatility in the price 

series is meaningless, as Klcidon (1986) has demonstrated. In LeRoy and Porter (1981), 

their test is essentially a vector autoregression (VAR) based test of the market fundamental 

prices. It is very similar to the approach in Campbell and Shillcr (1987, 1988, 1989). 

Campbell and Shillcr (1987, 1988a,b), using a VAR methodology, investigate a number of 

models of equilibrium returns, including the models considered in this paper, finding that 

the present valuation model of stock prices is rejected when each of the excess returns, 

volatility and consumption models is adopted. In addition, Azar (2004) re-examines the 

cointegrating relationship between real dividends and real stock prices and fails to reject 

the null hypothesis of no-cointcgration.

Marsh and Merton (1986 ) argue that dividend smoothing most likely causes the divi­

dend data to be non-stationary. Ackert and Smith (1993) suggest that focusing entirely on 

dividends omits many other important components of returns such as share repurchases. 

They advocate using a broader definition of cash flows, which seems to mitigate the excess
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volatility problem.

Heaney (2004) applies Shiller’s methodology to the Australian data and finds excess 

volatility. However, using an alternative form of computing the perfect foresight price 

scries, the severity of the violation is lessened.

Campbell and Shfiler (1987), assuming that dividends are characterized by an arith­

metic unit root, remove the linear stochastic trend in prices by using pt — ß(l — ß)~ldt 

in computing their variance bounds. As a critique to Campbell and Shillcr (1987). Yuhn 

(1996) finds evidence of a non-linear cointegration relationship between the prices and 

dividend series. Using an error correction model, he finds that forecast errors in the cur­

rent period arc not transmitted to next period stock prices, implying that current stock 

prices reflect all available information on market fundamentals.

2.2.2 M odeling  o f th e d ividend process

West (1988b) categorizes variance bounds studies based on whether the tests arc asymp­

totically valid with a arithmetic unit root or with a geometric unit root. In the former 

case, following Klcidon (1986), dividends can be assumed to follow the following process1:

dt = padt-1 4- r]at, (2.1)

where r]at is an error term that is independently and identically distributed with a zero 

mean and finite variance cri; . Under the assumption that pt arc set according to equation 

(1.1), this implies that:

pt = PaPt-1 + CLJIat, (2.2)

where a = Therefore, the implicit assumption made about the stationarity

nature of the dividend process has direct implications for the stationarity properties of its 

corresponding stock prices.

An alternative assumption is that the dividend process follows a geometric random

The intercept term has been dropped for mathematical convenience as it does not affect the overall 
idea
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walk process so th a t the logarithm of real dividends can be expressed as:

In dt =  fid +  lnd*_i +  Tjg t , (2.3)

where rigt is an error term that is independently and identically d istributed with a zero 

mean and finite variance . Klcidon (1986) sta tes th a t the implied stock prices is given 

by:

(^) dt, (2.4)

where r is the constant discount ra te  and g is the geometric growth rate  of dividends,

given by (1 + g) = exp Md +  &% (Klcidon (1986)). In order for dividends to converge to 

a finite sum, r  m ust be greater than  g. According to  West (1988b), studies th a t assume an 

arithm etic unit process for dividends include Mankiw et al (1985), Campbell and Shillcr 

(1987) and West (1988a). Conversely, studies th a t conduct variance bounds tests based 

on a geometric random walk in dividends include Klcidon (1986), Campbell and Shillcr 

(1989) and LcRoy and Parke (1992) among others. In this study, we follow Klcidon (1986) 

and assume th a t dividends follow a geometric random  walk in the derivation of our perfect 

foresight price series.

2.2.3 C lasses o f V ariance B ounds T heorem s

This subsection documents some of the alternative variance bounds theorems put forward 

in the literature.

Mankiw, Römer and Shapiro (1985) proposed an alternative unbiased tests of variance 

bounds th a t do not rely on calculating the ex post rational prices, which arc unobservable. 

They come up with the following variance inequalities:

Eo(p*t - p ° t ) 2 > E 0 (p*t - p t)2 (2.5)

Eo (.P*t ~  Pt ) 2 >  E q (pt — p?)2 , (2.6)
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where p is defined as the naive forecast of stock prices based on dividends information 

available to agents at time t Assuming extrapolative and myopic expectations for the 

forecast of dividends, we get

Then, pj is defined as

d>t-{-i — di Vz (2.7)

( 2.8)

West (1988a) derives an inequality that the variances of innovations in actual stock 

prices must be less than or equal to the variance of the innovations in the forecasted 

present value of dividends based on a smaller subset of information available to the market. 

Therefore, even if dividends and stock prices arc integrated of degree one, the innovations 

would have finite variances.

LcRoy and Parke (1992) attempt to resolve the non-stationarity issue by dividing 

dividends into stock prices. Given that current dividend at time t is in the information 

set It, the following variance bounds condition can be derived:

Var (pt/dt) > Var (pt/ d t) (2.9)

A recent paper by Engel (2005) argues that when expressing stock prices in first differences, 

the Shiller inequality condition is reversed. In particular, he shows that:

Var(pt - p t - i ) > V a r  (p*t -  p*t_x) (2.10)

Upon further scrutiny, equation (2.10) contradicts the rational expectations model. To 

illustrate this, consider equation (1.4) which forms the basis of the efficient markets hy­

pothesis that underlying all valid variance bound theorems:

P t = P t + u t (2-11)

If one substract p*_\ from the left hand side and p t-i from the right hand side of cqua-
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tion (2.11) and then takes variances on both sides, then the equality condition in equation 

(2.11) may no longer holds.2 As a result, there is no guarantee that V ar (p* — p*_i) > 

Var (pt — p t - 1) • Indeed, Engel (2005) analytically confirms that this is the case with equa­

tion (2.10). Therefore, Engel’s new variance bounds arc not at odds with the empirical re­

sults provided by Shiller (1981). Klcidon (1986) has warned that comparing Ear(p*|p*_^) 

with Var(pt- \ \pt-j) as it will lead to misleading interpretations.

C on d ition a l variance boun ds

The actual stock price pt at time t depends on the realization from the distribution of the 

error term at time t. Therefore, the variance bound has to hold cross-sectionally, as the 

information available at time t — 1 determines the possible values of the present value of 

dividends. Therefore, the variance bounds relationships must hold in terms of conditional 

variances, i.e.

Var (Pt\It-k) > V a r ( p t\It- k ),

where It is the conditioning information available to agents at time t — k. In West 

(1988a), Ht is defined to be the information set consisting only of current and past divi­

dends. Ht = {dt , dt~l, ...} and Ht C It . Define pt as the price that prevails conditional 

on Ht :

Pt =  Et (p t* |H t )

Assuming that It is at least as informative as Ht , i.e. Ht C I t , the rule of iterated 

expectations implies that:

pt = E t (Pt\Ht),

but the conditional expectation of any random variable is less volatile than the variable 

itself. This implies that:

2It is easy to show that pi —p i - 1 7̂  Pt —  P t- i  whereas pi —pt - \  — Pt ~ P t - i  + ^ t, unless p l - i  = P t- i -
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Var (Pt) > V a r  (pt)

Kleidon (1986) points out that the basic unconditional variance bounds relationship 

holds cross-scctionally since information available at time t — 1 restricts the possible values 

of present value of future dividends in different states of the economies at any given time 

t. In general, this implies the following conditional variance bound relationship for k < oo:

Var(p*t \It_k) = Var{pt \It_k) +  Var{ut\It- k) (2.12)

Var (p*t \It_k) > Var (pt \It_k) , k =  0,...,oc, (2.13)

where It~k G It ,and rational expectations requires that Var (ut \h-k) =  0- Akdeniz 

et al confirm the argument made by Kleidon (1986) that one can not made valid inferences 

from unconditional variance bounds. They generate simulated data based on an economic 

model that is consistent with efficient market hypothesis and apply it to Shiller (1981)’s 

variance test and find it is rejected by the test.

T h e  in fo r m a tio n  s e t

The fundamental concept of market efficiency relies heavily on the what goes into the 

information set. As pointed out by Sentana (1993), the concept of market efficiency is 

information dependent, since different information set will lead to different concept of 

informational efficiency (i.e. asset prices incorporate all relevant information).

In this sense, variance bound test are attempts at testing the weak form of efficiency, 

as described by Fama (1970). Weak efficiency is where the information set contains lagged 

values of the price and dividend scrie,s as well as macroeconomic information such as past 

interest rates.

West (1988a) posits that the conditional variance would be smaller when the informa­

tion set It contains additional variables useful in forecasting dt than when the information 

set only contains past values of dividends.
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2.2.4 C om p u tation  o f unobservable ex  p ost stock price p*t

Another controversial issue in the excess volatility literature is the computation of the 

perfect foresight price scries, which is determined by the present values model of stock 

prices. Following Shillcr (1981) and Flavin (1983), studies that compute an observable 

version of the perfect foresight use the following recursion:

Pt =
P*t+ 1  +  d t+ 1  

1 +  r (2.14)

subject to a terminal condition that the terminal p^ is the last data point pt - The constant

discount rate used is either computed from real data from the real interest rate over the 

whole sample, as in Shillcr (1981, 2003) or incremental values of discount rates of 1 percent 

to 5 per cent arc used (as in Klcidon (1986). In Shillcr (1988) criticizes Klcidon’s use of a 

discount rate that is lower than that observed in the data.

There has been theoretical issues with the direct computation of the perfect foresight 

price, pi by many. Klcidon (1986) points out that, ex-ante, dividends arc uncertain 

and there arc several possible paths they can take. Hence, stock prices change as the 

probabilities of different dividend paths change as new information are known. Ex-post, 

there is no uncertainty and only one path is observed in historical data. By construction, 

P(t)* must be smoother than the actual stock prices.

For instance, the computation of p* involves an infinite sum of future dividends. Since 

any sample is finite, a terminal condition p \  must be used.

Although pi is not observable, it is known that the ex post rational price is the solution 

to the recursive expression:

Pt =  ß  {Pt+i +  dt+l) (2-15)

that satisfies the condition

lim ß lp*t =  0. (2-16)
t—* oo

Simply replace p*t by the solution to (2.15) that satisfies the terminal condition
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This approach has been subject to various criticisms, mainly from Flavin (1983) and 

Klcidon (1986). The latter shows that Shillcr’s use of ex-post dividends to construct p* 

is incorrect since he is assuming that agents know the future dividend stream at the time 

of the stock price valuation. Such dividends depends on different possible states of the 

economy. Therefore, the ex-post dividend scries is only one of many possible realizations.

Shillcr (1981) estimates the dividend process recursively by taking thr average growth 

adjusted real stock price from the full sample as the prevent value of dividends at the end 

of the sample. The price p^ is taken as being the most recent observation and p* is then 

solved recursively back to the first observation using the equation:

P*t =  7 {Pt+i +  dt)

Heaney (2004) argues that stock prices can be expressed as simple perpetuity rather 

than requiring perfect knowledge of the future dividends stream. Under the assumption 

that dividends follow a random walk, this implies that the agents form their expectations 

on the basis of the last dividend payment. This follows that p* can be re-written as:

* _  d t - 1

PRWt -  ~ ~ ~

This version of p* is referred to by Mankiw et al (1985) as a myopic forecast of stock 

prices.

Following Amano and Wirjanto (1998), the perfect foresight price is calculated using 

Hansen’s (1982) generalized method of moments estimate of a non-linear asset-pricing 

equation that allows for time-varying real asset returns. This relaxes the strong assumption 

of constant real asset returns and risk neutrality thathave characterise first generation 

models.

Other papers have attempted to bypass constructing an observable version of the p* 

series altogether. For instance, West (1988a) focus on the variances of innovation implied 

by the present value model whereas Campbell and Shillcr (1987, 1989) adopt the VAR 

methodology.
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2.2.5 N on constant D iscount R ates

From the outset, there has been several attempts to rationalize the evidence of excess 

volatility in earlier studies. One explanation put forward by LcRoy and La Civita (1981) 

and Grossman and Shillcr (1981) is that most of stock prices variability is attributed to 

changes in the discount rate. Therefore, if one uses a present value model with constant 

discount rate, one would fail to adequately capture the variability in the unobserved stock 

prices.

A large proportion of first generation and second generation variance bounds tests 

rely on the crucial assumption of constant discount rates. The unobservable p* series are 

either generated using an estimated value of ß  from the data (for instance, Shillcr (1981)) 

or reasonable values as implied by economic theory (Klcidon (1986)). In both eases, the 

variability in p* is predominantly explained by the variability in the dividends stream, 

ceteris paribus.

It has been pointed out that variance bounds tests depend on an implicit assump­

tion of risk neutrality (LcRoy (2005)). LaCivita and LcRoy (1981), using Lucas (1978) 

model, show that allowing for risk aversion increase the predicted volatility of stock prices. 

Constructing the p* series therefore involves a two-step estimation procedure. Following 

Amano and Wirjanto (1998), one can use GMM estimates of coefficient of risk aversion 

and the rate of time preference. Then, one uses the consumption and dividend series as 

well as a terminal stock price, p r  and recursively derive p*. The relaxation of the constant 

discount rate is likely to induce less smoothness in the p* scries as well as more variability.

Grossman and Shillcr (1981) compute the perfect foresight price based on asset pricing 

model with non-constant discount rate. They use aggregate consumption data to construct 

p* for different values of risk aversion. They show that a relatively high value/degree of 

risk aversion to ensure that the p* series match the p series. They still find evidence of 

excess volatility, primarily due to unsolved issue of non-stationarity in their price series.
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2.2.6 T esting  m eth odology

As documented in West (1988b), there is a wide range of econometric techniques used 

to test the variance bounds theorem in section 2.2.3. Shillcr (1981) make use of simple 

point estimates of variances, whereas LcRoy and Porter use a VAR approach that allow 

them to obtain standard errors of their estimates. West (1988a) also provides standard 

errors of the variances of the innovations of returns. However, none of those tests directly 

test the null hypothesis of the inequality constraints implied by the variance bounds. 

Monte Carlo simulations of statistical and economic models have been used to test the 

variance bounds since Klcidon (1986) demonstrates that the variance bounds should hold 

cross-sectionally across different states of the world. Kleidon (1986) simulates several 

economics where the dividend process follows a geometric random walk and shows that 

across different economies, the variance bounds relationship derived by Shiller (1981) holds 

cross-sectionally. Akdeniz et al (2007) replicates Klcidon’s approach by simulating cross- 

sectional data from a theoretical asset pricing model that satisfies the rational expectations 

assumption. They find that unconditional variance bounds are violating using Shiller’s 

approach but conditional variance bounds arc not rejected by the simulated data. LcRoy 

and Parke (1992) use Monte Carlo experiments to generate perfect foresight prices which 

arc derived from a geometric random walk dividends process. Estimates of variances from 

price-dividend ratios arc then computed from an analytical closed form expression. LcRoy 

and Parke (1992) arc unable to reject the variance bounds condition implied by equation 

(2.9).

2.3 The M ultivariate Inequality Constraints Literature

One recurrent criticism of Shiller’s original work is the absence of test of significance of his 

point variance estimates. Similar criticisms arc applicable to Mankiw etal( 1985), LcRoy 

and Parke (1992) and any empirical studies that have replicated Shillcr’s variance bound 

tests (c.g. Heaney (2004)).
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2.3.1 B ackground

The multivariate inequality restriction methodology seems suited to examine the excess 

volatility debate. The variance bounds theorems described in the previous sections, pro­

vide apriori information about the sign of the variance bounds conditions implied by 

rational expectations and the present value model of stock prices. Therefore, the main 

appeal of the multivariate inequality constraints test is that it provides a statistical test 

of the validity of a priori signs of the parameters where such a priori beliefs point to 

an inequality restriction, rather than an equality restriction (Wolak (1989)). Within the 

multivariate inequality constraints framework, moments conditions are jointly tested so 

that potential correlations among the moment conditions axe taken into account.

This thesis draws upon a branch of the literature on statistical inference in which 

multiple inequality constraints arc been tested as the null hypothesis. 3 In such eases, 

incorporating this a priori information in the hypothesis testing of the parameters of 

interest would yield more relevant inference. To illustrate this, consider the following null 

and alternate hypotheses:

Hq : Rß > r versus H a : ß  € R h ,

where Rß > r is a vector of inequality conditions being tested. The test involves computing 

an unrestricted estimate of ß and a restricted estimate of ß subject to Rß > r.

Using the results provided in Wolak (1989), a Wald test statistic, W, can be derived. 

Such test statistic no longer has an asymptotic \ 2 distribution but is a weighted mixture of 

X2 distributions with different degrees of freedom under the null hypothesis (Gourieroux, 

Holly and Monfort, 1982). To compute the weights of the test statistic, Kudo (1963) 

provides an analytical expression for its special ease. Gourieroux, Holly and Monfort 

(1982) use complex numerical simulation. Wolak (1987) derives closed form expression 

for the weights for dimensions of the inequality constraints tests less than 5. Koddc and 

Palm (1986), however, building on Perlman (1969) propose lower and upper bound critical 

values that correspond to a given level of significance without calculating the weights. For

^Extensive literature surveys arc provided in in Gourieroux and Monfort (1995) and Sen and Silvapullc 
(2002, 2005).
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a given level of significance, the null hypothesis is rejected if W  exceeds the upper bound. 

Conversely, the null can not be rejected if the test statistic is less than the lower bound. 

For values of W  between these bounds, Wolak (1989) develops an approximate numerical 

method of calculating the weights based on a Monte Carlo simulation.4

2.3.2 L iterature developm ents and em pirical app lications

The multivariate inequality testing problem has roots in papers by Bartholomew (1961), 

Kudo (1963) and Perlman (1969). They focus on the multivariate one-sided hypothesis 

testing. Bartholomew (1959) proposes a hypothesis test for ordered alternatives. It was 

was expanded by Kudo (1963). The latter develops a multivariate equivalent of a one­

sided significance test. The null hypothesis is that all parameters are jointly equal to zero 

against the alternative that at least one parameter is strictly positive under the alternative. 

Kudo (1963) applies the methodology to study the impact of development variables on 

birth deformity in Hiroshima and Nagasaki.

Yancey, Judge and Bock (1981) develop hypothesis tests that involve a combination of 

equality and inequality restrictions in a single test and constrast the critical regions with 

the conventional cases of two equality hypotheses. Other notable contribution to the mul­

tivariate inequality literature include Gouricroux, Holly and Monfort (1982) who examine 

multivariate one-sided hypothesis testing and investigate the equivalence and differences 

between the LR test, the Wald test and the Kuhn-Tuckcr tests. Wolak (1987, 1989, 1991) 

generalize the inequality constraints methodology to a wide range of econometric problems 

in economics and finance.

The monotonicity of term premiums was reconsidered by Richardson, Richardson, and 

Smith (1992) relying on recent econometric techniques for testing inequality constraints on 

linear models developed by Koddc and Palm (1986) and Wolak (1989). They combine the 

literature on conditional asset pricing models as well as unconditional multivariate inequal­

ity testing to create a testable framework to examine conditional inequality conditions. 

They replicate Fama (1984) results and can not refute the liquidity preference hypothe­

sis. In Boudoukh, Richardson, and Smith (1993), the methodology has been expanded in

4 A detailed outline of the methodology is provided in Chapter 3.
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order to allow moments to be conditioned on a set of instrumental variables, which arc 

observable and can be used to further restrict the information set. An appealing feature 

of their testing approach is that it does not require a full specification of the infromation. 

In order to preserve the inequality conditions being tested, the information vector has to 

be constrained to be a positive subset of variables. One of their objectives is to identify 

states in which the conditional exante equity premium is negative. Osdick (1998) applies 

Boudoukh et al (1993) methodology to test whether the world exante risk premium is 

positive. Walsh (2006) tests the CAPM implications on the equity risk premium over 

different investment horizons.

2.4 Sum m ary

The empirical implementation of variance bound tests has been more complicated than 

it appears on the surface. The literature is rife with attempts at ironing out several ar­

eas of controversy, both on theoretical grounds and on econometrical grounds. There arc 

a myriad of differences in data modelling assumptions and econometric approaches that 

suggest why some variance bounds tests find excess volatility while others do not. Despite 

more than two decades of research, the jury is still out on the volatility bounds contro­

versy. The principal issue of stationarity can be resolved by appropriate differencing and 

multivariate tests incorporating conditional information can be made by using advances 

in multivariate inequality testing literature to conduct valid volatility bounds tests. This 

is the main purpose of this thesis.
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C hapter 3

M eth o d o lo g y

3.1 O verview

The main purpose of this chapter is to offer an alternative approach to existing tests of 

stock price volatility. Most of the focus in the volatility literature has been on alternative 

modeling of dividend and stock price processes. A novel feature of this thesis is to explicitly 

test the null hypothesis of the variance bound inequalities in an inequality restrictions 

framework. If the market is efficient, then the null hypothesis of the testable moment 

conditions should not be rejected. One potential problem in the existing literature is that 

sample estimates of variances are usually compared and no confidence intervals of the 

estimates arc available. This thesis brings together the variance bounds literature into 

the modern world of multivariate statistical inference.

This chapter is organized as follows. Section 3.2 derive testable implications of uncon­

ditional and conditional variance bounds conditions that axe valid even if stock prices and 

dividends have unit root processes. Section 3.3 describes the multivariate inequality test­

ing methodology that was developed by Boudoukh, Richardson and Smith (1992). Section 

3.4 concludes.

3.2 V ariance B ou n d s C ond ition s

The present value model defines stock price as the present value of rationally expected 

future dividends:
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(3.1)
^ E t (dt+T\It)

Pt = § U i ttt“
where r  is the discount rate, dt is dividend a t tim e t , where agents base their expecta­

tions conditional on I t , the information set a t time t.

The perfect foresight price is the ex-post price with perfect information about future 

dividend stream .

p't =  1C dt+T

Ü+7T (3.2)

where dt is the realised dividend. Under the assum ption of rational expectations, 

expected dividend stream  should be equal to the realised dividend stream:

pt = E\p*t \It\ .  (3.3)

By definition, pt equals p*t plus an error term , which is orthogonal to p*t .

Pt =Pt  + u t (3-4)

Under rational expectations, it m ust be that:

V ar  (p*) > V a r  (pt) . (3.5)

Equation (3.5) therefore places an upper bound on the variance of the observed price 

scries, under the assum ption th a t prices are formed according to equation (3.1). There 

is widespread evidence in the literature th a t equation (3.5) can not be directly tested. 

Therefore, one m ust resort to making suitable d a ta  transform ations to the pt and p* scries 

to induce stationarity.

To derive a variance bounds condition th a t is theoretically consistent with equation 

(2.11), one may substract p t- i  from both sides. This implies:

p*t - p t - \  = Pt - P t - i  +  u t (3.6)
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Taking unconditional variance leads to:

Var  (p* - p t_ i) =  V a r (p t -  pt- i )  +  Var  (ut) (3.7)

Under the assumptions that Var (ut \pt) = 0 and Cov (u t ,u t- 1 ) =  0, we arrive at the 

following unconditional variance bounds condition:

Var  {p* -  p t - i )  > V a r  {pt -  p t - i )  (3.8)

In order obtain valid sample variance estimates from testing equation (3.8), we require 

that both (p* — p t - 1 ) and (pt — Pt-1) to be stationary, even if p* and pt may not be. 

Given that there is overwhelming evidence of the random walk nature of the actual stock 

prices given by p t , we need to formally test that (p* — pt- i )  also satisfies the stationarity 

property. Assume that pt has a unit root in levels1 and is given by:

p t =  p t - 1 +  et, (3.9)

P t - P t - i  =  et (3.10)

where et is i.i.d. (0, er;?). Substituting (3.10) into equation (3.6) yields:

p * - p t - \  = et +  ut . (3.11)

Therefore, on theoretical grounds, one expects the sum of two stationary processes to 

be stationary as well. In Chapter 4, the stationarity properties of the data scries used in 

computing variances will be investigated in more depth.

An alternative specification of rational expectations assumption that defines the rela­

tionship between the actual stock price and the perfect foresight stock price is to express 

equation (3.3) as follows:

Pt = Pte£t■ (3.12)

^ or sake of simplicity, a time trend and/or drift term has been omitted since it does not affect the 
result.
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It is straightforw ard to show th a t taking expectations of equation (3.12) will yield equation 

(3.3).

Taking logs on both sides yields:

\np l  = \npt  +  Eu (3.13)

where e f i . i . d  (0, er^). The log specification indicates a m ultiplicative error structure, com­

pared to an additive error structure as in equation (3.4). To induce stationarity, we sub- 

stract, ln p t_ i from both sides of equation (3.13). This yields:

hip* -  ln p t_ i =  \ n p t -  ln p t_i +  et , (3.14)

Taking variances on both sides gives rise to the following variance inequality condition:

Var  (Inp* -  ln p t_ i) > V a r  (Inpt -  In pt- i )  (3.15)

This can be generalized to conditional variances of the form:

V a r  (Inp* -  ln p t_ i |J t_ i ) >  V a r  (Inp t -  ln p t_ i | / t_ i ) . (3.16)

Klcidon (1986) argues th a t the variance bounds in equation (3.10) has to hold cross- 

scctionally since the information set I t- \  determ ines the possible values of the present 

value of dividends stream. Therefore, the variance bounds inequality should also hold for 

conditional variances:

V ar  (Inp* -  \np t- \ \ I t-k)  >  V a r  ( ln p t -  \npt_k\It_k) . (3.17)

where I t- k denotes the conditional information set a t tim e t — k.

Similarly, using equation (3.8), the theoretical variance bounds can be w ritten in first 

differences as:
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Var (p* - p t - j \ I t-k)  > V a r ( p t - p t - j \ I t - k )
t-3  t - j

Var (p* - p t - i \ I t-k) -  Var (pt -  p t - j \ I t-k)  >  0

(3.18)

(3.19)

The fundamental hypothesis behind the volatility literature is whether this condition 

is ever violated. Secondly if violations take place, what arc the instruments that arc 

responsible? Third, has there been historical episodes where the variance bounds were 

violated? Are there time horizons implications?

Notice in equation (3.19) we subtract pt-j  from both sides of the inequality condition. 

This is necessary to preserve the inequality. If the first differences of p* and pt were used 

instead, it possible, as shown by Engel (2004), that the inequality is reversed. There has 

also been some debate regarding the plausibility of the empirical results using reasonable 

parameter values. Nevertheless, it remains an empirical question as to whether this con­

dition actually occurs. In this section, the testable inequality restrictions implied by the 

variance bounds condition arc deduced.

Due to the nature of the condition (i.c. in order to maintain the initial inequality con­

dition and not reverse the sign in equation (2.8), only instrumental variables, which arc 

non-negative for all t(dcnotcd by z f ) are used. Such instruments can include the level of 

real interest rate, dividends, or past volatilities of stock prices and so forth. These instru­

ments ought to be based on existing economic theory, which provides some information 

about the stock volatility.

The set of instruments, z f , arc non-negative so that multiplying both sides of equation 

(2.9) will not change the sign. Any random variable zt can be separated into two positive 

variables, =  max(0,Zf) and z%t = max (0, —zt) ,which captures all postive states of 

the world. Consistent with Boudoukh, Richardson and Smith (1993), each instrument is 

normalised by dividing through by the expected value of z-t to yield z+ for each instrument.

Therefore, using an instrumental variables approach, it is possible to rewrite equation 

(3.19) as:
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(3.20)E
t - j

Var  (p* -  pt_j)  <g> 2+.J - V a r  (pt -  p t__j) <g> z£_j £ <8> > 0

Rc-arranging (2.9) and applying the law of iterated expectations,

E
t - j

E

[ V a r  {p*t -  p t - j ) - V a r  (pt -  p t- j )}  <g> -  0ez+

I Var (p* -  p t - j )  -  Var  (pt -  p t- j )} ® z ^  -  0£Z+

0 ,

0

(3.21)

(3.22)

where

0ez+ E £  <g> Z +_5 >  o (3.23)

Equation (3.23)2 provides a set of moment conditions for which the vector of parame­

ters, Qez+,  is to be estimated. The various benefits of this approach are as follows. There 

is no need for an explicit model of conditional expectations. The stationary and ergodity 

assumptions are implictly satisfied since we are computing variances of lagged difference 

of the stock prices, not the level of stock prices. There is also an existing literature on the 

determinants of stock price volatility, which would be useful candidates as instrumental 

variables. Here, there is no assumed functional form, sos this is not a potential problem. 

Finally, the multivariate inequality restrictions framework, developed by Wolak and used 

by Boudoukh et  al  (1993) is perfectly suitable to analyse the hypotheses. In particular, the 

inequality restrictions implied by the variance bounds condition can be jointly tested and 

will take into account any correction across the estimators 0e z+.  For example, in evaluating 

the significance of the estimators, the relevant factors are no only the magnitudes of the 

cstimaccs but also whether these magnitudes are consistent with the covariance matrix of

e e z + .

2It is straightforward to show that taking unconditional expectations implies that Var ( X)  =  
E [VarX\$t-j]  +  Var [E (Var(X\<t>t-j)}

=  E [VarX\$t- j]
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3.3 E conom etric  M eth o d o lo g y

In this section, the test statistic for testing inequality restrictions is described. It follows 

closely Boudoukh et al (1993), which draws upon Wolak (1989) and Koddc and Palm

(1986).

Suppose that there arc T observations on the lagged variances Var (pi — Pt-j )  — 

Var (pt — Pt-j )  and a N-vcctor . Assume these random variables arc stationary and cr- 

godic, with finite variances. Let the variance-covariance marix of the sample moment vec-

, be defined as Q. As describedtor, f  Yj= \  {̂ar (Pt ~ Pt-j) - V a r  (pt -  pt- j )} <g> z+_j 

by Wolak (1989), this matrix can take quite general forms and can account for cross- 

section, autocovarianccs or hetcroskcdasticity in the series.

The restrictions given in equations (3.21) and (3.23) can be written as a system of 

N-momcnt conditions:

E
t-j

E
t-j

I P a r (pi -  pt-j) - V a r  (pt -  pt- j ) }

{Var (p*t -  pt-j) -  Var (pt -  pt- j ) }  z%t_5

0 ,

0 ,  V j ,

The null and alternate hypothesis can be expressed as follows:

Ho : 0„+ >0V* = 1,--- ,N. (3.24)
e z t

versus

H a ■ ec, t  €  R n .

With respect to testing the hypothesis in (3.24), the first step is to estimate the sample 

lagged variances of the product of the observable variables. In particular,
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1 T
°ez+= T ^ 2 [ { V a r (Pt - P t - j )  ~ V a r ( P t - P t - j ) }  z£ - j  , Vj, z =  1, • • • , AT. (3.25) 

£=1

There is no restriction on the sign of the difference variances. In other words, they 

may be negative to sampling error or the possible rejection of the null hypothesis. It 

is important to note that the vector 0£z+ is asympotically normal wiht mean 0£Z+ and 

variance-covariance matrix Q. The Q can be estimated using Newey and West (1987) 

lictcroskcdastic-consistcnt techniques.

Under the null hypothesis restriction in (3.24), the parameter estimates must be non- 

negative. Following Perlman (1969) and Wolak (1989), estimates arc derived under the 

restriction by minimising the deviations from the unrestricted model: 

min (e£z+ - e £Z+̂j (&£Z+ - 0 £z^ j

subject to 0£Z+ > 0.

Let Qez be the solution to this quadratic program.

The aim is to test how close the restricted estimates 0£Z+ arc to the unrestricted 

estimates 0£z+. Under the null, the difference should be small. In particular, the test 

statistic is given by:

W  = T  (oez+ -  0CZ+)'  ST1 -  i)ez+)  (3.26)

Wolak(1989) shows that W  docs no longer have an asymptotic chi-squared distribution 

in the presence of inequality restrictions. Instead, the statistic is distributed as a weighted 

sum of chi-squared variables with different degrees of freedom. Specifically, the asymptotic 

distribution of W  is given by:

£ P r [ x i > c ] W ( Ar , . / V- f c , p ) ,  (3.27)
fc=0 V 1 )

where cG R + is the critical value for a given size and the weight w (^N, N  — fc, ^  is 

the probability that 0£Z has exactly N  — k positive elements and Xo is a point mass at the 

origin.
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As discussed in Wolak(1989), calculating the weights for larger sets of restrictions 

and non-zero estim ators covariances become analytically intractable. As an alternative, 

Kodde and Palm(1986) compute upper and lower bound critical values which do not 

require calculation of the weights. They arc given by:

a = ^Pr(x?>c,),

«  =  \Pr (x ^ _ !  >  Cu) +  t  P r (x% > ,

where ci and cu arc the lower and upper bounds respectively for the critical values of the 

test. It is necessary to compute the weights for values between these bounds. Wolak(1989) 

proposes an approxim ate m ethod of M onte Carlo sim ulation to calculate the weights in 

these eases. A m ultivariate normal d istribution with zero mean and c o v a r ia n c e ^ )  is 

sim ulated. We note the realised vector from each replication by 0*z+. The idea is to  find 

the vector 0ez+ which solves the following minimisation problem:

min (0«+ “ 0«+) (?) { K z+ ~  ~°ez+)

subject to  Qez+ >  0.

For each replication, the number elements in the N  vector 0£Z+ th a t arc greater than  

zero is counted. According to Wolak(1989), the approxim ate weight w (iV, N  —k, p )  is 

the fraction of replications in which 0£Z+ has exactly N  — k elements greater than  zero.

3.4 Sum m ary

This chapter has derived new variance bounds theorems and described the m ultivariate in­

equality methodology to derive testable moment conditions for conditional variance bounds 

tests th a t address the econometric issues raised in the literature. Our variance bounds 

tests also allow us to  investigate the statistical significance of the results and provide an 

adequate framework where the im portance of conditional information can be assessed.
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C h a p te r  4

D a ta  A nalysis

4.1 O verview

This chapter investigates the stationarity properties of dividends and stock prices data. 

First, the raw data employed in this study are described.Particular attention is paid to the 

importance of the stationarity properties of the data as they influence the derivation and 

use of conditional variance bound tests to be implemented in Chapter 5. Flavin (1983), 

Marsh and Merton (1983) and Kleidon (1986) among others, were the first to critique 

Shillcr (1981) detrending of his data scries in order to achieve stationarity. Kleidon (1986) 

also showed that in the presence of a random walk, unconditional variance bounds arc 

undefined.

A critique of the excess volatility literature is that some studies directly assume that 

their transformed data is stationary without carrying out formal unit root tests on them. 

Doing so may lead to questions about the validity of their empirical results.

The next section briefly investigates the null hypothesis that the stockmarket data 

contains a unit root. While the sample size may too small to permit a conclusive test, we 

find some evidence consistent with this hypothesis. Then, we conduct a series of unit root 

tests on two alternative data transformations and this will decide which variance bounds 

specifications (described in the previous chapter) that will be used in our empirical study.
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4.2 A look  at th e  data

The stock prices data used in this study consists of annual Standard &; Poor’s composite 

stock price index from 1971 through to 2006. It is compiled by Shillcr and updated on 

his website. The S&P data is extended back to 1871 by using the data in Cowles (1939). 

Nominal stock prices are converted into real terms by deflating the January price of the 

stock index with the annual average of the consumer price index (CPI) at 2000 prices. 

The nominal dividend series, from 1926, is dividends per share adjusted to index for the 

Standard and Poor’s composite index. Prior to 1926, the dividend is also taken from 

Cowles (1939). Real dividends arc similarly calculated by dividing the total dividend per 

share accruing to the stock price index with the CPI.1

Stockmarket data is generally available on an annual and monthly frequency for the 

same length of time. In order t,o avoid dealing with seasonality issues and to enable com­

parison with previous studies, annual data is generally preferred. Moreover, our dataset 

extends further to 2006 compared to most studies in this literature, which were undertaken 

in the 1980s. This longer time scries will allows us to examine whether the worldwide asset, 

price bubble in the 1990s will significantly affect our results.

Table 4.1 Sum m ary D ata  D escr ip tiv e  S ta tis tic s

Pt Pi dt_______ r it  riot_______ C t
M ean 324.04 222.99 10.94 1.03 1.03 9540.52

Std . D e v 323.25 115.73 4.81 0.07 0.06 6729.89
M in 65.67 94.26 4.05 0.85 0.86 2384.12
M ax 1709.49 552.84 24.88 1.25 1.24 26723.87

Skew ness 2.341 1.053 0.555 0.427 0.153 0.942
K u rtosis 8.469 3.222 2.288 4.668 4.704 2.714

Jacq u e-B erra 293.75 25.39581 9.864507 19.88969 16.9826 17.854

Table 4.1: includes the mean, standard deviation (Std. Dev), minimum (Min), maximum (Max), Skew­
ness, Kurtosis and Jacquc-Bcrra statistics for the real stock prices, the perfect foresight stock 
prices, real dividends, 1-year real interest rate, 10-year real interest rate  and real consumption. 
All real values arc converted using the consumer price index.

Table 4.1 presents a summary of descriptive statistics of the annual data used in this 

study. Sample means and standard deviations, minimums and maximums as well as 

'A  detailed description of the da ta  can be found in C hapter 26 of Shillcr (1989).
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Figure 4.1: Real S&P Composite Stock Price Index (solid line P) and perfect foresight Real 
Stock Price (dotted line P*), 1871-2006, as used by Shiller (1981) and updated on his 
website, p* is constructed using the present value of real dividends (which grow at 
the geometric-average historical rate of 1.2 percent) and discounted by the geometric- 
average rate of return of 6.7 percent for the entire sample.

Kurtosis and Jacquc-Bcrra statistics arc reported. The distributional properties of our 

dataset appear non-normal. All the scries appear to be positively skewed. The kurtosis 

is relatively small, indicating the absence of extreme observations. Finally, the Jacquc- 

Bcrra(1981) statistics suggest that the null hypothesis of normal distribution for all series 

can be rejected at conventional levels of significance.

4.3 C om p u tin g  th e  perfect foresight price

As discussed in Section (2.23) The computation of the unobservable perfect foresight stock 

prices has been subject to various criticisms, mainly by Flavin (1983). Here, we com­

pare two approaches proposed by Klcidon (1986) to compute the perfect foresight scries. 

Klcidon (1986) shows that the present valuation model implies the following relationship 

between stock prices, dividend and a constant discount rate.
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(4.1),  _  Pt+i +  i 
Pt — i ,1 + r

where r is defined as the discount rate, which is assumed to be constant over the whole 

sample. Following Shillcr (2003), it is given by the geometric-average real stock return, 

which is estimated to be 6.7 percent for the sample 1871-2006. The estimated value of ß 

is therefore 0.936. The terminal p^ is equated to the terminal price pt where terminal 

year is 2006. The perfect foresight scries p* is then estimated recursively back to the first 

observation (in 1871) using equation (4.1).

An alternative approach used by Klcidon (1986) is to assume that the dividend process 

follows a geometric random walk model and is given by:

In dt = a  -f In dt~\ + Q, (4.2)

where €t is i.i.d. N  (0,of) . Given that stock prices arc generated by equation (1.1), 

the implied price can be expressed as:

(£?)*■ (4.3)

where g is defined as the geometric average real dividend growth and can be given by

(1 + 9) =  exp ÜC+ and r is the geometric average real stock return. In order for the 

discount sum of dividends to be finite, r must be greater than g. To derive p* based on a 

geometric random walk model, we define the terminal perfect foresight price as:

Pt cIt (4.4)

The price scries is then recursively reconstructed using equation (4.1). Both versions 

of the perfect foresight prices arc plotted in Figure 4.2.

A close visual inspection of the graph reveals that there does not seem to be much 

of a difference between the two computer series. Therefore, the second approach, which 

underlies a geometric random walk model will be used in our empirical analysis.
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Figure 4.2: Graph plots of two perfect-foresight prices based on the geometric random walk (left 
graph) and based on recursion defined by (4.1) and terminal condition p^ = Pt  (right 
graph)

4.4  In stru m enta l variables

In addition to the financial data, a number of macro-finance variables have been selected 

as forming part of the information set in the setting of stock prices. In no particular 

order, these arc the short-term (1-year) real interest rate, the real per capita consumption 

for non-durables and services as well as past values of dividends.

4.5 Sam ple au tocorre la tion s

As a preliminary step in conducting variance bounds tests, sample autocorrelation func­

tions for the levels and first differences of the stockmarket data are computed. Autocor­

relation coefficients, up to the fifth order, are computed for stock prices and dividends 

in levels and logarithmic form. For any given random variable x t , pn is the covariance 

between x t and x t-n normalized by the variance of Xt and can be expressed as:

Y . L n + 1  r h i  (x t -  * )  (X t - n  -  * t - n )
Pn = -------- 1 ,-----------1^2-------- - <4-5)

T (Xt X )

where x*_n = Ylt= 1 T^n- Table 4.2 reports the results for the sample autocorrelations. 

There seems to be little difference in the autocorrelation functions of the real stock prices 

and dividends and their logarithm equivalents. The slow decay of the autocorrelations

39



for the data in levels and natural logs suggests that the data may have a unit root. 

First differencing of the four data series yield autocorrelation coefficients consistent with 

a stationary autoregressive process of order one.

4.2: Sam ple A u tocorrela tion s o f  S tock  M arket D a ta  
S tock  M arket D ata .

Series  
In Levels:

p {  1) P( 2) p i  3) P i 4 ) P(5)

P t 0.940 0.864 0.796 0.748 0.685
d t 0.938 0.877 0.832 0.798 0.773

In p t 0.946 0.891 0.846 0.798 0.75
In d t 0.936 0.869 0.819 0.782 0.753

In F irst D ifferences:
A p t 0.327 -0.043 -0.159 -0.146 -0.09
A d t 0.224 -0.145 -0.088 -0.107 -0.11

InA p t 0.05 -0.178 0.084 -0.085 -0.1
In A dt 0.13 -0.144 -0.124 -0.112 -0.09

4.6 U nit Root Tests

Motivated by the autocorrclatiosn results, the data can be formally be tested for the pres­

ence of unit roots. There is some contention in the literature about the non-stationarity 

properties of stock prices. Although the random walk model of stock prices have firm theo­

retical support, some studies have rejected such model. See Poterba and Summers (1988). 

In the excess volatility literature, there is supporting evidence that stock prices follow a 

random walk. See Klcidon (1986), Campbell and Shiller (1988) among others. Shillcr and 

Perron (1985) and Chaudhuri and Wu (2003) argue that conventional unit root tests lack 

power in smaller samples, especially in cases where the data may have a near-unit root 

process. In practice, the test procedures may also be affected by structural breaks (Perron 

(1989) and Byrne and Perman (2006)). As a result, two different unit root tests are used, 

namely the augmented Dickey-Fuller (1979) test and the Kwiatkowski, Phillips, Schmidt 

and Shin (1992) test. The tests are performed on both the levels and the first differences 

of the stock market data. The combined use of the ADF and KPSS tests provide a more 

comprehensive picture of the order of integration of the data.
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4.6 .1  A ugm ented  D ickey- Fuller T ests

The augmented Dickey-Fuller tests arc based on the following auxiliary regressions:

<7

Ax t = ap + ßpXt-i + y^uß jA x t-i  4- £u (4.6)
i—1

Q

Ax t = ap + 6t + ßpXt-i + Y .  ßjXt-j + £2t, (4.7)

where cko and 6 are the intercept and time trend term, q is the number of lagged 

terms and Ax* is the lagged first differences to accommodate serial correlation in the 

errors. Equation (4.6) tests for the null hypothesis of a unit root against a mean stationary 

alternative, whereas equation (4.7) tests the null hypothesis of a unit root against a trend 

stationary alternative. In both cases, the null and alternative hypotheses for a unit root 

in xt arc:

H0 : ß 0 = 0 Hi : ß0 < 0.

The test statistic docs not have an asymptotic standard normal distribution but follows 

a non-standard limiting distribution. If the estimate of ß0 is not significantly different from 

zero, then the null hypothesis of a unit root can not be rejected. But if ß0 < 0, then 

the alternative hypothesis holds. MacKinnon’s (1994) critical values arc used in order 

to determine the significance of the test statistic associated with /?0.The critical values 

at the 10%, 5% and 1% levels arc —2.57, —2.86 and —3.44 for equation (4.6).type tests. 

For equations (4.7) with time trend, the critical values at the at the 10%, 5% and 1% 

significance levels are —3.12, —3.41 and —3.66 respectively. For each scries, the lag length 

i chosen by the minimum values of the Akaikc Information Criterion.

The null hypothesis of a unit root can not be rejected for pt at the conventional 

significance levels, with or without the time trend. Testing for unit root in the first 

diffferenced series, i.e Apt, leads to a rejection of the null at 1% level. It can therefore be 

concluded the real stock prices can be modelled as a random walk. Similar conclusions 

arc drawn for the log of real stock prices.
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Table 4.3: A D F Test S tatistics for Stock M arket D ata

Variable With Constant With Constant and Trend

Panel A: In Levels

Pt -0.683 -2.102
dt 0.072 -3.086
Inpt -0.827 -2.363
Indt -1.468 -4.475***

Panel B: In First Differences

A pt -8.113*** -8.1787***
A dt -8.340*** -8.527***
Alnpt -10.829*** -10.935***
Alndt -8.856*** -8.943***

Table 4.3: presents the results of the ADF tests for the levels, log-levels and the first differences of the 
scries for real stock prices and dividends scries. The KPSS unit root test hypotheses arc Ho- 
unit root, Hi: no unit root (stationary). Test statistics are reported for regression with a 
constant (Panel A) and a constant and time trend (Panel B). */**/*** indicates coefficient (or 
test statistic) is statistically significant at the 10/5/1 percent level of significance respectively.

When examining the ADF test statistic for real dividends with or without a time trend, 

the null hypothesis of a unit root can be comfortably rejected at conventional significance 

levels. However, when transformed into logarithms, the log of real dividends is found to 

be stationary at 1% significance level.

4 .6 .2  K P S S  T ests

Kwiatkowski, Phillips, Schmidt and Shin (1992) introduce a unit root test, which adopts 

stationarity as the null hypothesis. This involves modelling a time scries as a sum of 

deterministic trend, a random walk and a stationary error, and then testing for the random 

walk having zero variance. The KPSS test statistic is derived from the residuals of the X t 

on an exogenous vector Y*.

X t = Y't A + ut (4.8)

For mean trend stationary and time trend stationary scries, this can be written as:
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Xt = QLQ + U t (4.9)

Xt — cuo + öt + Ut (4.10)

The LM statistic is defined as:

(4.11)

where /o is an estimator of the residual spectrum at frequency zero and S (t ) is a 

cumulative residual function defined as

where w (i,l) is the Bartlett kernel, l is the order of serial correlation allowed. The lag 

window suggested by Newey and West (1987) is used to ensure positive semidefiniteness. 

The critical values for the KPSS statistics arc provided in Kwiatkowski et al. (1992).

From Table 4.4, the results of KPSS tests arc consistent with those of the ADF tests. In 

this case, the null hypothesis is that of stationarity. The major result is that, in levels, with 

or without the time trend, all the data appear to reject the null hypothesis of stationarity 

at the 5% significance levels.

4.7  Inducing  sta tio n a r ity  in stock  m arket d ata

The results of unit root tests in the previous section are consistent with findings in the 

literature (c.g. Nelson and Plosscr (1982)). In order to derive variance bounds conditions 

that arc robust to unit roots, we investigate two alternative price adjustments to ensure 

stationarity. The first price adjustment involves substract lagged values of pt~j from 

both the levels of the actual stock prices pt and perfect foresight stock prices, p*t . If the 

transformed stock prices scries arc stationary, then variance bounds inequality conditions

S (t ) = ur where üt = Xt — Y/Ä. /o is also interpreted as a consistent estimate

of the long-run variance and is given by:
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Table 4.4: K P S S  T est S ta tis tic s  o f  S tock  M arket D ata

Variable With Constant With Constant and Trend

Panel A: In Levels

Pt 0.925*** 0.205**
dt 1.324*** 0.204**
in pt 1.181*** 0.161
In dt 1.344*** 0.088

Panel B: In First Differences

Apt 0.246 0.068
A dt 0.186 0.064
Alnpt 0.080 0.050
Alndt 0.061 0.059

Table 4.4: presents the results of the KPSS tests for the levels, log-levels and the first differences of the 
series for real stock prices and dividends scries. The KPSS unit root test hypotheses arc Ho' 
no unit root (stationary), Hi: unit root. Test statistics are reported for regression with a 
constant (Panel A) and a constant and time trend (Panel B). The asymptotic critical values 
for the KPSS LM test statistic at the 0.10, 0.05 and 0.01 levels arc 0.1190, 0.1460 and 0.2160, 
respectively. */**/*** indicates coefficient (or test statistic) is statistically significant at the 
10/5/1 percent level of significance respectively.

from equation (3.19).

Table 4 .5  A D F  T est S ta tis tic s  for sto ck  m arket d ata

Variable With Constant With Constant and Trend

Panel A: Actual Stock Prices

Pt -  P t - 1 -8.11*** -8.18***
Pt ~ P t - 2 -3.93*** -4.07***
Pt Pt—5 -1.70* -1.97
Pt Pt—10 -1.64* -2.56

Panel B: Perfect Foresight Stock Prices

Pt ~ P t - 1 -2.196** -3.38**
Pt ~  Pt- 2 -2.129** -3.38**
Pt ~  Pt—5 -1.483 -2.18
p* -  p t - 10 -0.274* -1.509

Table 4.5: presents the results of the ADF tests for differenced series (p* — pt- j)  and (pt — pt- j)  for 
j  — 1, 2, 5, 10. Test statistics arc reported for regressions with a constant (2nd Column) 
and a constant and time trend (3rd Column). */**/**+ indicates coefficient (or test statistic) 
is statistically significant at the 10/5/1 percent level of significance respectively.

Tabic 4.5 present the Augmented Dickey Fuller test results for j  =  1, 2, 5 a n d  10 for 

transformed stock prices in levels. In Panel A, we find that the lagged differencing achieves 

stationarity in the transformed actual stock price series for j=  1 and 2 at conventional
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levels of significance. At higher levels of lags, the null hypothesis of unit root is barely 

rejected at 10 percent. In Panel B, subtracting pt~\ from the p * scries achieves stationarity 

only for lag j=  1 and 2.

The second price adjustment involves taking natural logs of both the actual stock 

prices and perfect foresight prices and substracting lagged values of the log of actual stock 

prices. 2 If one find enough statistical evidence to fail to accept the null of unit root 

in these transformed price scries, then variance inequality conditions given by equation 

(3.17) will be used.

T able 4 .6  A D F  T est S ta tis tic s  for s to ck  m arket d a ta

Variable No Constant With Constant

Panel A: Actual Stock Prices

\np t- \np t- i -10.83*** -10.94***
\npt-\npt ~ 2 -4.25*** -4.51***
\npt - \np t_5 -2.80*** -2.99**
\npt-\npt-io -2.57** -2.78*

Panel B: Perfect Foresight Stock Prices

\np*t - \n p t- i -1.63* -2.40
\npl~\npt-2 -1.61 -2.47
In/?* —lnpt_5 -1.51 -2.10
lnp£—lnpt_io -1.37 -2.82*

Table 4.6: presents the results of the ADF tests for log differenced series (lnp*t — lnpt~ j ) and (Inpt — 
lnp t- j )  for j  — 1, 2, 5, 10. Test statistics arc reported for regressions without a constant 
(2nd Column) and a constant (3rd Column). */**/*** indicates coefficient (or test statistic) 
is statistically significant at the 10/5/1 percent level of significance respectively.

Table 4.6 present ADF results on (/np* —ln p t- j) and (Inpt — lnpt-j)  for j  = 1, 2, 5, 10 

for ADF regressions with and without a constant. In Panel A, all the lagged differences 

of log stock prices are found to be stationary at 5 percent level of significance. However, 

in Panel B, the null hypothesis of a unit root is barely rejected for the lnp*—lnpt_i series 

at 10 percent significance level. For higher lag levels, one fail to reject the null.

2The log specification indicates a multiplicative error structure (i.e. p* =  pteUt) rather than an additive 
error structure (i.e. p*t — pt + ut)
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4.8 Sum m ary

Using the two unit root tests, we find that the stock price indices are characterized by 

random walk models. This is consistent with Klcidon (1986) and other studies in the excess 

volatility literature. We also find that, it is possible to make appropriate adjustments to 

the data, such as price differencing, to obtain stationary stock price series that can be 

used. Our results suggest that subtracting lagged values of pt from levels of actual and 

perfect foresight price series is most suitable. However, the log specification is better 

suited to analyzing cases where the use of potentially non-stationary data may invalidate 

multivariate inequality constraints tests.
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C hapter 5

E m pirical R esu lts  and  A nalysis

5.1 O verview

This chapter applies the conditional multivariate inequality methodology described in 

Chapter 3 to the dataset in Chapter 4 in order to investigate the testable implications of 

our variance inequality conditions. It is organized as follows. Section 5.2 describes the 

rolling variances approach to computing the unconditional variance series. Unconditional 

variance bounds tests arc presented in Section 5.3. Section 5.3 test the conditional variance 

relationships for different subsets of information. Section 5.4 concludes.

5.2 C om p u tin g  U n con d ition a l V ariance

From Section (3.2), our conditional variance bounds inequality conditions can be written 

in the form of:

Var  (lnp*t -  lnpt- j \h -k )  - V a r  (lnpt -  lnpt- j \ I t-k) > 0 (5.1)

Using transformed data scries of (/np* — lnpt-j)  and (lnpt — lnpt~j) for j  =  1, 2, 5 and 

10 lags, rolling variance estimates over a 10 year window arc computed. For each of the 

forementioned scries, we compute the sample variance for observations 1 to 10, then ob­

servations 2 to 11, then 3 to 12 ... up to (T  — 9) to T, where T  is the final observation 

for the series. Rolling variances are often used in financial studies of stock price volatil-
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ity. (See Officer (1973) and more recently Schwert (2002)). There are several advantages 

to using rolling variances in testing the variance bounds inequality restrictions. First, 

rolling variance approach assumes constant variance over the window. This is a plausible 

assumption particularly in the context of low frequency annual time series. Second, it 

allows us to observe the time-varying changes in observed log stock prices variance and 

the perfect foresight price variance over decades. As an illustration, Figure 5.1 and Figure 

5.2 depict the rolling variances of (lnp*t — ln p t - j ) and (lnpt — ln p t - j ) respectively.

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Figure 5.1: Historical Rolling variances of first differences of Actual Log Real Stock Prices, using 
a 10-year window from 1971 through to 2006. The Y-axis refers to the rolling variance 
estimates and the X-axis are years.

Visual inspection of Figure 5.1 and Figure 5.2 reveals that the rolling unconditional 

variances of actual stock prices and perfect foresight, adjusted for stationarity tend to 

fluctuate a lot. There are periods when both variances are unusually high and periods 

when they arc unusually low. In particular, the plot in Figure 5.1 for the (lnpt — ln p t - 1) 

data series is consistent with early findings by Officer (1973). The latter, using monthly 

index of stock returns on the New York Stock Exchange, finds abnormal level of stock 

price variability in the 1930s.and subsequent reduced volatility in the pre-war and post-war
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1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Figure 5.2: Historical Rolling variances of Stationary log Perfect Foresight Stock Prices, using a 
10-year window from 1971 through to 2006. The Y-axis refers to the rolling variance 
estimates and the X-axis are year's.

period. The plot for the rolling variances of (/np* — Inp t-1) tells a very interesting story. 

In particular, the periods of peaks of the perfect foresight rolling variances correspond 

roughly to important episodes in the U.S. economic history such as the Great Depression 

of the 1930s, the oil crisis in the late 1970s and the dot-com bubble of the late 1990s. 

Finally, the magnitude of the rolling variances estimates for (lnp*t — lnpt-i)  is significant 

higher than those for (lnpt — lnpt~ i ) . Overall, the visual evidence seems to indicate that 

unconditional variances arc not violated. However, as Klcidon (1986) points out when 

comparing the correspondence between the p* and pt plots, this impression can often be 

misleading.

5.3 U n con d ition a l V ariance B ou n d s T ests

Table 5.1 presents the empirical results of inequality constraints tests of the following 

variance inequality conditions for selected values of j  in the first column. Column 2 gives
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the respective estimated average variance differential with standard errors in parentheses. 

Column 3 provides the ^-Statistics and the corresponding p-values. For j  =  1, the 

estimate of unconditional variance differential, denoted by 6 , is positive and statistically 

significant at 1 percent level. Moreover, the W-statistic is almost zero, implying that the 

null hypothesis of the inequality constraint can not be rejected. For j  — 2, the 0 is negative 

but statistically insignificant. However, the W-statistic does not reject the null hypothesis 

that the variance inequality condition is non-negative. For higher lag levels, the estimates 

of the unconditional variance differential become negative and the inequality constraint 

statistic W  becomes highly significant at 1 percent level of significance. Such finding is 

not surprising because as the lag increases, the transformed series get closer to a unit root 

series. In the subsequent section, we will conduct conditional variance bounds tests by

T able 5 .1 :U n con d ition a l V ariance B ou n d  T ests

Inequality Variance Conditions e
(Std. Error)

W  Statistic 
[p-value]

Var(/np* — lnpt- 2 ) — Var  (lnpt — lnpt-2 ) 0.0204 0.000
(0.0059) [1.000]

Var{Inpl — lnpt-2 ) — Var  (lnpt — lnpt-2 ) -0.0089 1.782
(0.0067) [0.124]

Var(fnp* — lnpt-5) — Var  (lnpt — lnpt-5 ) -0.046 12.67***
(0.0136) [0.0004]

Var(/np* -  lnpt- 1 0 ) -  Var  (lnpt -  lnpt- 1 0 ) -0.0549 15.16***
(0.0154) [0.00013]

Table 5.1: presents the estimated unconditional variance differentials (denoted by 6) for j  =  1,2,5,10.
In this case, the statistic VP is a univariate test of the inequality restriction hypothesis which 
is given by the non-negative inequality conditions in the first column. The standard errors 
arc adjusted for conditional hctcroskcdasticity and serial correlation using Ncwey and West 
(1987) method. */**/*** indicate coefficient (or test statistic) is statistically significant at the 
10/5/1 percent level of significance respectively. 2) Figures in the parentheses are standard 
errors, p-values are in brackets.

5.4  C ond ition al V ariance B ou n d s T ests

Klcidon (1986) has shown that conditional variance bounds arc preferred over uncondi­

tional ones since the latter may not be well defined in the presence of a random walk in 

the data scries. In this chapter, the main conditional variance bounds framework follows 

Klcidon (1986):
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Var  ( Inp* — lnpt- j \ I t- i )  > Var( l.np, -  lnpt_ j , (5.2)

where j  refers to the order of lagged in the level of actual stock prices in order to 

achieve stationarity in the data series. From Chapter 4, the main conclusion from our 

unit root tests supports the use of subtract ing the first lagged level of stock prices in order 

to achieve stationarity series for the variances.

5.4.1 T he im portance o f cond ition in g inform ation.

Since Hansen and Singleton (1982) and Gibbons and Ferson (1985), there has been in­

creased recognition of the role of conditioning information in empirical analysis of asset 

pricing models. In basic intertemporal asset pricing models, information accumulates over 

time and investors in asset markets make trades based on such information so that the 

latter becomes embedded in asset prices. As a result, asset prices are not only random 

payoffs but must also satisfy some form of informational constraints. West (1988a) men­

tioned that the larger the information set faced by the investor, the smaller the variance 

of the asset prices would be. Since there is no a priori rationale as to how big the vector 

of our instrumental variables can be, we will experiment with various lags of instruments 

and various subsets of the conditioning information.

The tests of conditional variance inequality conditions are conducted as tests of mul­

tivariate inequality tests and the results are presented in Table 5.2, 5.3, 5.4 and 5.5.

5.4.2 Su b sets o f condition ing inform ation

5.4.3 D iv id en d s

The influence of past dividends on stock price volatility is captured in two ways. First, we 

follow West (1988a) and use lagged values of dividends as instruments. Ht = {dt~j\j =

1.2.3 The specific variance bound inequality conditions tested in Table 5.2 are given by 

the following moment conditions:
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Var (Inpl — lnpt-\\dt-i) — Var (lnpt — lnpt-i\dt-\) > 0

Var (lnp*t -  lnpt- \ \dt-2 ) — Var (lnpt -  lnpt- \ \d t - 2) > 0

Var (Inp* -  lnpt-i\dt- 3) -  Var (lnpt -  lnpt_i\dt- 3) > 0

Table 5.2: Conditional Variance Bounds Tests - Real Dividends
T h e  t a b le  p r e se n ts  th e  e s t im a te d  c o n d it io n a l v a r ia n ce  d iffe r e n tia ls  u s in g  la g g ed  rea l d iv id e n d s  a s  in s tr u m e n ts . T h e  u n c o n d i­
t io n a l  v a r ia n ce  d iffe r e n tia ls  a re  c o m p u te d  over a  te n -y e a r  p e r io d  w in d o w . C o n d it io n a l v a r ia n ce  d iffe r e n tia ls  are c o n d itio n e d  
on in fo r m a tio n  a t  t -k , k =  l -5 .  T h e  s ta t i s t ic  W  is a  jo in t  t e s t  o f  m u lt ip le  in e q u a lity  r e str ic t io n s  c o n d it io n a l  on  (it — 1 , d t  —2 
a n d  d t  — 3 . A ll e s t im a te s  a re  a d ju s te d  for c o n d it io n a l h e te r o s k e d a s t ic ity  a n d  se r ia l c o r re la tio n  u s in g  N e w e y  an d  W est (1 9 8 7 )  
m e th o d .

Conditional
Lagged of 
Dividends k = 1 k = 2 k = 3

W Statistic 
(p-value)

j  = 1 0.206
(0.0633)

0.2047
(0.644)

0.2046
(0.0650)

0.0000
1.000

Table 5.2: */**/*♦* indicate coefficient (or test statistic) is statistically significant at the 10/5/1 percent 
level of significance respectively. 2) Figures in the parentheses are standard errors.

Following West (1988a), wc use the subset of It, i.e. Ht where Ht include past 

values of dividends. In Table 5.2, the set of conditioning variables is defined as z\t 

=(dt- i ,d t -2 ,dt-3 ) ■ In this simplest form, wc compute and test conditional variance bounds 

conditions by varying the time horizon, denoted by j  = 1. The results of inequality tests 

for the first specification are presenting in Table I. The overall result shows that individ­

ual inequality conditions arc all positive, which is consistent with the conditional variance 

bounds In addition, the Wald statistic is zero. Therefore, there is no evidence of ex­

cess volatility for the conditional variance bound conditions, conditional on past values of 

dividends.

5.4.4 T he R eal In terest R ate

Most instrumental approach to conditional asset pricing have used the real interest rate 

in the information set for estimation purposes. In this section, wc use past values of the
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T a b le  5.3: C o n d it io n a l  V a ria n c e  B o u n d s  T e s ts  - R e a l I n te r e s t  R a te
T h e  t a b l e  p r e s e n t s  t h e  e s t im a te d  c o n d i t i o n a l  v a r ia n c e  d i f f e r e n t ia l s  u s in g  la g g e d  r e a l  i n te r e s t  r a t e C o n d i t i o n a l  v a r ia n c e  d i f ­
f e r e n t i a ls  a r e  c o n d i t io n e d  o n  in fo r m a t io n  a t  t - k ,  k = l - 5 .  T h e  s t a t i s t i c  W  is  a  j o in t  t e s t  o f  m u l t ip l e  i n e q u a l i t y  r e s t r i c t i o n s  
c o n d i t i o n a l  o n r  — t  — 1, r  — t  — 2 a n d  r  — t  — 3 . A ll e s t im a te s  a r e  a d ju s t e d  fo r  c o n d i t i o n a l  h e te r o s k e d a s t ic i ty  a n d  s e r ia l  
c o r r e la t io n  u s in g  N e w e y  a n d  W e s t  (1 9 8 7 )  m e th o d .

C o n d itio n a l
Lagged of Real 

Interest rate k =  1 k = 2 k = 3
W Statistic 

(p-value)
3 =  1 0.02079 0.02062 0.02055 0.0000

(0.00626) (0.00619) (0.00613) 1.000

Table 5.3: */+*/*** indicate coefficient (or test statistic) is statistically significant at the 10/5/1 percent 
level of significance respectively. 2) Figures in the parentheses are standard errors.

short term  (1-ycar) real interest rate  as instrum ents, where Z2t r t-2T t - z )  ■ In this

simplest form, we compute and test conditional variance bounds conditions by varying the 

time horizon, denoted by j  =  1. The specific variance bound inequality conditions tested 

in Table 5.2 are given by the following moment conditions:

Var  (lnp*t -  lnpt- i \ r t- i )  -  Var  (lnpt -  lnpt- i \ r t- i )  > 0 

Var(lnp*t - l n p t- \ \ r t- 2) - V a r { l n p t - l n p t - \ \ r t- 2) >  0

V a r  (Inp* -  lnpt- i \ r t_3) -  V  ar (lnpt -  lnpt- i \ r t- 3) >  0

The results of inequality tests for the first specification are presenting in Table 5.3. 

The overall result shows th a t individual inequality conditions arc all positive, which is 

consistent with the conditional variance bounds In addition, the Wold sta tistic  is zero. 

Therefore, there is no evidence of excess volatility for the conditional variance bound 

condition, conditional on past values of the real interest rates.

5 .4 .5  C o n s u m p t io n  G r o w th

In Consum ption-based asset pricing models (see Abel, 1990; Campbell and Cochrane, 

1999 for instance), aggregate consumption plays a crucial role in the determ ination of 

stock prices. LcRoy and LaCivita (1981) highlights the im portance of risk aversion in 

stock price volatility. They argue th a t risk-averse agents, when faced with stock prices 

appropriate to a world of risk neutrality, will a ttem pt to sm ooth their consum ption stream
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over time by trading in assets in good and bad states of the economy. Consequently, stock 

prices will be more volatile than would be the ease if economic agents arc risk neutral. 

The magnitude of the impact of consumption variability is directly correlated with the 

degree of risk aversion. In particular, we use (C t/C t-1) as a measure of the smoothness 

of the consumption scries in order to capture variations that may be attributed to varying 

discount factor. The conditional information is given by z^t = ^ct-2  > cT 3 ’ § T l)  *

The specific variance bound inequality conditions tested in Table 5.2 are given by the 

following moment conditions:

> 0 

> 0 

> 0

The results of inequality tests for the first specification are presenting in Table 5.4. 

The overall result, shows that individual inequality conditions are all positive, which is 

consistent with the conditional variance bounds In addition, the Wold statistic is zero. 

Therefore, there is no evidence of excess volatility for the conditional variance bound 

condition, conditional on past consumption growth.

Var ( lnp*t -  lnpt- il^T“ ^

C t - 2 ,Var ( lnpt — lnpt- \

Var I lnpt — lnpt-i

Ct - 3

C t—4 )

— Var ylnpt — lnpt-i

— Var i^lnpt — lnpt- 1 |

— Var ( lnpt — lnpt-i

1 C t - 1

1 C t - 2

C t - 2 , 

C t - 3

I Ct-2,
' C t - 4

Table 5.4: C on d ition a l V ariance B ou n d s T ests -C o n su m p tio n  G row th
T h e  t a b l e  p r e s e n t s  t h e  e s t i m a t e d  c o n d i t i o n a l  v a r ia n c e  d i f f e r e n t ia l s  u s in g  la g g e d  r e a l  c o n s u m p t io n  a s  i n s t r u m e n t s .  C o n d i t i o n a l  
v a r i a n c e  d i f f e r e n t ia l s  a r e  c o n d i t i o n e d  o n  i n f o r m a t io n  a t  t - k ,  k =  1-5 . T h e  s t a t i s t i c  W  is a  j o in t  t e s t  o f  m u l t ip l e  i n e q u a l i t y  r e ­
s t r i c t i o n s  c o n d i t i o n a l  o n  r ( t - l )  a n d  p ( t - l ) .  A ll e s t im a te s  a r e  a d ju s t e d  fo r c o n d i t i o n a l  h e te r o s k e d a s t ic i ty  a n d  s e r ia l  c o r r e la t io n  
u s in g  N e w e y  a n d  W e s t  (1 9 8 7 )  m e th o d .

C on d ition a l
Lagged of W Statistic
Consumption Growth k = 1 k = 2 k = 3 (p-value)
3 = 1 0.0243 0.0244 0.0243 0 . 0 0 0 0

(0.00683) (0.00682) (0.00680) 1 .0 0 0

Table 5.4: */**/*** indicate coefficient (or test statistic) is statistically significant at the 10/5/1 percent 
level of significance respectively. 2) Figures in the parentheses are standard errors.
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5 .4 .6  U n c o n d itio n a l and  C o n d itio n a l V arian ce b o u n d  te s ts

In this section, we conduct a series of multivariate conditional and unconditional variance 

bounds tests, using the multivariate inequality methodology. As seen in Table 5.5, for 

j  = 1, the multivariate tests all jointly fail to reject the null hypothesis of the inequality 

conditions. When considered jointly, the Wald statistic is quite high and we arc able to 

reject the null hypothesis of non-negativity at the 1% significance level.

Based on our previous results, we compute a different sets of conditional variance 

bounds using 1 year lags of real interest rate and dividends as instruments. The main 

results support the null hypothesis that the conditional variance bound inequality for

j  = 1,2.

Table 5.5: footnotesize */**/*** indicate coefficient (or test statistic) is statistically significant 

at the 10/5/1 percent level of significance respectively. 2) Figures in the parentheses 

are standard errors.

Table 5.5: C onditional and U nconditional Variance Bounds Tests
T h e  t a b l e  p r e s e n t s  t h e  e s t i m a t e d  c o n d i t i o n a l  v a r ia n c e  d i f f e r e n t ia l s  u s in g  la g g e d  r e a l  i n te r e s t  r a t e  a n d  la g g e d  r e a l  d iv id e n d s  as  
i n s t r u m e n t s .  T h e  u n c o n d i t i o n a l  v a r ia n c e  d i f f e r e n t ia l s  a r e  c o m p u te d  o v e r  a  t e n - y e a r  p e r io d .  C o n d i t i o n a l  v a r ia n c e  d i f f e r e n t ia l s  
a r e  c o n d i t i o n e d  o n  in f o r m a t io n  a t  t - 1 .  T h e  s t a t i s t i c  W  is  a  j o in t  t e s t  o f  m u l t ip l e  i n e q u a l i t y  r e s t r i c t i o n s  c o n d i t i o n a l  o n  r ( t - l )  
a n d  p ( t - l ) .  A il e s t i m a t e s  a r e  a d ju s t e d  fo r c o n d i t i o n a l  h e te r o s k e d a s t ic i ty  a n d  s e r ia l  c o r r e la t io n  u s in g  N e w e y  a n d  W e s t  (1 9 8 7 )  
m e th o d .

C onditional
Instruments Unconditional Lagged Real 

Interest Rate
Lagged

Dividends
W Statistic 

(p-value)
J = 1 0.0204 0.0207 0.0448 0.0000

(..00592) (0.00606) (0.0132) (1.000)
j  = 2 -0.00893 -0.00912 -0.0141 1.782*

(0.00669) (0.00697) (0.0412) (0.0998)
j  =  io -0.0549 -0.0563 - 0.111 15.401***

(0.0154) (0.0160) (0.0284) (0.000065)

Bounds Tests

Table 5.5, the set of conditioning variables is defined as z\t =(1, dt-i,  rt- \ ) . In this 

simplest form, we compute and test conditional and unconditional variance bounds con­

ditions by varying the time horizon, denoted by j  = 1. The evidence, similar to Table 5.1, 

suggest that conditional variance inequality conditions, when appropriately adjusted to 

ensure stationarity by subtracting the log price scries with lnp*_i in the first row, will fail 

to reject the null hypothesis of the variance bounds inequality relationships, both condi-
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tionally and unconditionally. However, for j  — 2, the effects of non-stationarity will begin 

to invalidate our variance bounds tests. In row 2, the estimated log variance differentials, 

both unconditionally (sec column 2) and conditionally on last period values of dividends 

and real interest rate, become negative. However, jointly, the W-statist.ic is still signifi­

cant at the 10 percent level. However, when the 10*/( lag of log of stock prices is used, the 

transformed price scries come closer to a unit root, leading to an negative estimates of 

the log variance differentials in all cases and the W-statistic becoming highly significant 

at the 1 percent level of significance.

5.5 Sum m ary

The results in this chapter show that when stock price scries arc appropriately adjusted 

to ensure stationarity, volatility bounds arc not violated. Those results hold both un­

conditionally and conditionally based on variables suggested by economic theory, such 

as dividends, real interest rates and consumption growth. Furthermore, there is com­

pelling evidence that using non-st at ion ary transformed data with the multivariate in­

equality methodology will lead to spurious results and misleading interpretations.
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C hapter 6

C onclusion

The aim of this thesis has been to propose an alternative approach to existing variance 

bounds tests. After more than two decades of research on excess volatility, there arc 

still unsolved issues with non-model based volatility tests. The novel approach is to 

reformulate existing variance bounds theorems into multiple inequality conditions that 

can be jointly tested using the multivariate inequality testing methodology developed by 

Boudoukh, Richardson and Smith (1993) that also allows conditioning information to be 

used as instruments. Based on Shillcr’s long-term annual stockmarkct data and a present 

value model with constant discount rates, we are not able to reject variance inequality 

conditions that explicitly account for non-stationarity issues raised by previous studies. 

This holds much promise for the efficient markets theory.

The methodology is easy to implement and docs not require an explicit formulation of 

conditional expectations. Moreover, the multivariate inequality framework enables us to 

account for heterogeneity in the conditional information vector and provides a test statistic 

and critical values to properly test for variance bounds conditions. Various studies only 

provide point estimates of their respective variance bounds conditions.

Consistent with previous studies, we accept the random walk model as being a proper 

representation of the real stock prices scries and subtract lags of the real stock prices to 

achieve stationarity.

Our results are comparable to Kleidon (1986) who disputes several earlier findings by 

Shillcr and advocates the computation of conditional variance bounds over unconditional
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variance bounds. In particular, when accounting for non-stationarity, we fail to reject the 

variance bounds inequality conditions and thus do not find evidence of excess volatility 

in real stock prices. Further analysis of the da ta  also reveals the crucial im portance of 

correcting for non-stationarity in real stock prices since the inequality tests tend to reject 

the null hypothesis of no excess volatility the closer the transform ed stock prices arc to  a 

unit root process.
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