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Abstract 

This thesis is motivated by the need to explore more effective ways of maintaining a 

telecommunications network. Specifically we study a predictive maintenance approach 

that predicts which network problems customers will report in the future. To determine 

the operating conditions required to successfully operate a predictive maintenance 

scheme Telstrá s customer access network (CAN) maintenance system has been 

analysed and modelled as a stochastic discrete event queuing network. 

An analysis of fault marked (FM) and fault blocked (FB) data to determine its 

suitability for predictive maintenance is presented. This analysis determines the 

percentage of FM/FB lines that correctly predict future customer trouble reports (TRs) 

(denoted the predictive power) and examines the ability of certain FM/FB 

characteristics to increase predictive power. The percentage of the mean daily TR 

volume that is predicted, and could possibly be prevented, is calculated along with the 

distributions of the delay between a FM/FB arrival and the arrival of the TR it predicts. 

In an attempt to explain the low predictive power of FB lines an analysis into the 

consistency of FB lines is conducted. We also examine the relationship between the 

number of times a line is FB and its predictive power. 

Telstrá s CAN maintenance system model is simulated to determine the requirements of 

FM/FB data such that a predictive maintenance scheme could be used to improve the 

system's performance. System performance is evaluated by four performance measures: 

i) customer trouble report (TR) volume; ii) mean TR system time; iii) maintenance 

workload; and iv) number of TRs that miss a predefined system time cut -off. These 

measures are used to compare the performance of the model under different operating 

conditions. 

It is shown that if Telstra is unable to identify which TRs are predicted by which 

FM/FBs a minimum mean of two TRs must result from a single FM /FB before all 

performance measures are reduced below their current levels. When the mean number 

of TRs per FM /FB is two, a FM/FB maintenance priority scheme is the best priority 

scheme reducing all performance measures with a minimum predictive power of 58 %. 
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If Telstra is able to identify the TRs that are predicted by each FM/FB, when a mean of 

two TRs result from a single FM/FB, a No Priority maintenance scheme reduces all 

performance measures with a minimum predictive power of 51 %. 

To reduce the mean TR system time and to reduce the number of times Telstra miss a 

customer service guarantee (CSG) repair time an Estimated Time to Fix (ETF) Priority 

scheme is introduced. We show that with a system cut -off time of 16 hours the ETF 

Priority scheme is able to reduce all performance measures with a minimum predictive 

power of 50 %. It is shown that this scheme is able to reduce the number of TRs that 

have a system time greater than 16 hours by approximately 87 %. We also investigate 

the sensitivity of system performance to variations in the cut -off time and discover that 

it is insensitive for predictive powers greater than 60 %. At predictive powers below 

60% the preferred system time cut -off will be a compromise between a small system 

time cut -off and reducing the number of TRs that miss a cut -off. 
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Glossary of terms 

ACE Alarm Correlation Engine. 

Developed by GTE and discussed in [24]. 

AI Artificial Intelligence. 

ANSS 

APCAMS 

AXE 

BT 

C &C 

CAN 

Access Network Support System. 

Used by British Telecom and discussed in [17]. 

Automatic Pressurised Cable Monitoring System. 

Used by Telstra and discussed in [9]. 

Exchanges produced by Ericsson that report Fault Marked and 

Fault Blocked data. 

British Telecom. 

Commercial and Consumer. A division of Telstra that are 

responsible for the customer access network (CAN). 

Customer Access Network. The part of the network between 

an exchange and a customer's premises. 

CANES Customer Access Network Evaluation Scheme. 

Used by Telstra and discussed in [11]. 

CLIQ Test Customer Line Insulation Quality Test. 

CPE Customer Premises Equipment. 

CSG Customer Service Guarantee. 

DES Discrete Event System. 

DIRECTOR System which automates the programming and despatch of 

work to the field staff. 

ETF Estimated Time to Fix. A type of maintenance priority 

scheme based on the estimated time to fix UTR faults. 

FB Fault BIocked. A customer line that has an insulation 

resistance equal to or less than 20 kS2. 
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FieIdMATE Field Mobile Access Terminal Equipment. 

FIFO First In First Out. A type of queuing priority scheme. 

FM Fault Marked. A customer line that has an insulation 

resistance greater than 20 kS2 but equal to or less than 50 kQ2. 

FM /FB Both Fault Marked and Fault Blocked. 

GAs Genetic Algorithms. 

GTE General Telephone and Electric. A global telecommunications 

company. 

LEN Inter Exchange Network. The cable that connects Telstra's 

exchanges. 

INE Intelligent Network Element. Discussed by Pierce in [ 14]. 

LIFO Last In First Out. A type of queuing priority scheme. 

MDF Main Distribution Frame. The boundary point between an 

exchange and the customer acces.:network (CAN). 

NBP Network Boundary Point. The boundary between the CAN 

and the customer premises equipment (CPE). Usually defined 

as the first telephone socket on a customer's premises. 

NTG 

PTR 

QoS 

TADS 

ToW 

TR 

Network and Technology Group. A division of Telstra that is 

responsible for the maintenance of exchanges and the inter 

exchange network. 

Predictable Trouble Report. A TR that has been predicted by 

FM/FB data. 

Quality of Service. 

Testing And Diagnosis Server. Contains the database that 

stores FM/FB data once it has been downloaded from AXE 

exchanges. 

Ticket of Work. 

Trouble Report. A customer reported fault. 
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UTR Unpredictable Trouble Report. A TR that had not been 

predicted by FM/FB data. 
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Notation and Definitions 

#FM/FB 

#PTR 

#TOTAL 

#UTR 

ß 

The mean number of FM/FBs generated per unit time. 

The mean number of PTRs generated per unit time. 

The mean number of TRs generated per unit time. 

The mean number of UTRs generated per unit time. 

The mean number of common cause TRs predicted per correct 

FM/FB. 

p The overall mean time that faults are fixed by the maintenance 

system. 

The mean inter -arrival time of FM/FB faults. 

The mean time that worker i takes to fix a fault. 

The mean inter -arrival time of unpredictable trouble reports. 

Denotes the arrival of the ith fault. 

Denotes the departure of the ith fault. 

Number of workers in the model. 

BFM/FB 

Ft 

BUTR 

a; 

di 

n 

PP 

QLength 

Predictive power. The percentage of FM/FB lines that are seen as 

TRs within 3 weeks of becoming FM/FB. 

The current length of the queue. If a fault is arriving it is the 

current length of the queue without the arriving fault. 
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Chapter 1 

The role of fault prediction in a telecommunications 
maintenance system 
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As we reach the beginning of a new century of technological advances, deregulation of 

the telecommunications industry and customer expectations are rapidly changing the 

way that many telecommunications companies do business. Australia's Telstra is one 

such company investigating ways to improve its position in the market by using 

advanced technologies to upgrade services to customers. Telstra is Australia's largest 

telecommunications company. It has a customer base of 6.9 million residential lines and 

2.7 million business lines and its network carries around 15 billion calls a year [21]. A 

key area in which Telstra is significantly able to improve service is network 

maintenance. 

A traditional network maintenance approach, one that is still used by Telstra today, is to 

rely on customers to detect and report network problems. We call this a reactive 

maintenance scheme as companies 'react' to customer reported problems. It is 

hypothesised that Telstra's reactive maintenance approach is a legacy from days when it 

monopolised Australia's telecommunications market and basic network monitoring 

equipment was very primitive and expensive. The greatest advantage of a reactive 

maintenance scheme is that only customer affecting faults are attended. This means that 

resources are not wasted correcting problems that customers will not detect. Another 

advantage is that network monitoring and testing equipment does not need to be 

purchased, operated and maintained. 

However, relying on customers to detect and report faults is no longer an efficient 

method of network management. Firstly, technological advances in all aspects of daily 

life have meant that Australian customers are less tolerant of faults and poor service. 

Different customers will have different expectations of the telephone service they 

receive. When some customers detect a problem with their phone they may not be too 

inconvenienced. If Telstra is able to quickly and effectively repair that problem that 

customer may be left feeling very satisfied. However, other customers may be 

immediately dissatisfied with Telstra when they detect a problem with their phone. This 

dissatisfaction may come from the inconvenience of being without a phone or it may 

come from an unrealistic expectation that their phone should never be faulty. Having to 

find a phone to report the fault and having to wait to have their service restored only 

increases their dissatisfaction. Secondly, relying on customers to detect and report faults 

can lead to higher maintenance costs as maintenance can not be planned. By operating a 
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reactive maintenance system telecommunications companies are rarely able to identify 

faults that are related by a common cause. Often a number of faults will result from a 

single common fault as can be seen in Figure 1.1. 

Figure Id: An example of how a fault at a shared network element may affect multiple 

customers. 

If there is a fault at node 'A' then the three customers on the left of Figure 1.1 will all 

experience problems. When they detect these problems they will each individually call 

their telecommunications provider to report a fault with their service. By having a 

reactive maintenance scheme, the company only becomes aware of faults when each 

customer reports them. These customer reports may not be made at the same time; they 

may be made over the course of several days. Therefore when the company receives the 

first call it will send a worker to fix that fault. It will then receive a second call and 

another worker will be sent to fix that fault, and similarly with the third fault. This 

example demonstrates how costly a reactive maintenance scheme can be as three 

workers are sent to fix a fault that could have been fixed by a single worker. 

If the telecommunications company itself were able to detect network faults it may have 

been able to correlate the three faults as a single fault at the common node. As a result 

only one worker would be sent to fix the common fault resulting in a large saving in 

time and money. If the company were able to quickly repair the common cause fault 

then the three customers may never realise that there was a problem and so have no 

cause to question service quality. Even if a customer did detect a problem then the 

company could tell them that it was aware of that problem and that measures had 
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already been taken to rectify it. This would increase customer confidence, and also 

reduce waiting time for service restoration. 

A common method that tries to prevent network faults from occurring is proactive 

maintenance. To be proactive is to perform a task before it is required. In a 

telecommunications environment, proactive maintenance means fixing network 

problems before they become network problems. In other words, ensuring that faults do 

not arise in the network. Proactive maintenance usually involves regular servicing of 

network elements and replacing or upgrading parts of the network that have a high 

likelihood of failing. An advantage of proactive maintenance is that it prevents many 

faults from occurring, which results in fewer dissatisfied customers and reduces the 

costs of reactively repairing faults. However proactive maintenance can be relatively 

costly as network elements are replaced or serviced when they are not faulty. Another 

problem is that tampering with a telecommunications network often increases the 

likelihood of a fault occurring. This is because telecommunications networks are a 

complex web of electrical components and while servicing one part of the network a 

worker may inadvertently affect another part. Also wñen a customer affecting fault does 

occur in the network proactive maintenance does not prevent that customer from 

reporting the fault. 

An alternative maintenance approach, one that is the basis for this thesis, is predictive 

maintenance. In a telecommunications environment a predictive maintenance scheme 

monitors a network and identifies problems. It then predicts which of these problems 

customers will report in the future. One advantage of predictive maintenance is that 

there is time to fix faults that you predict customers will report before customers detect 

and report them. These customers will never realise there was a problem and would 

have no cause to be dissatisfied with the service provided. Another advantage is that 

maintenance can be planned so that common cause faults are identified. This could 

greatly reduce the maintenance workload as a worker fixing a single fault would fix 

many potential customer trouble reports (TRs). A disadvantage of predictive 

maintenance is when future TRs are incorrectly predicted. These incorrect predictions, 

which are called false alarms, can result in an increase in work as field staff fix faults 

that would not be reported by customers. These faults would not be fixed in a reactive 

maintenance scheme. False alarms also impact on customers as fixing false alarms 
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occupies resources that could be used to fix genuine faults reported by customers, thus 

increasing customer waiting time. Predictive maintenance should not be confused with 

proactive maintenance. Predictive maintenance does not prevent faults from occurring. 

It simply predicts which faults customers will report and attempts to correct these faults 

before customers detect the problem. 

In this thesis the performance of three predictive maintenance schemes is compared 

against the performance of a reactive maintenance scheme. These three schemes use 

prioritisation rules so that different fault types are prioritised under different conditions. 

The performance of each scheme is measured by three performance measures: 1) the TR 

volume, which is the number of customer TRs received over a period of time; 2) the 

maintenance workload, which is the number of faults that the field staff must fix; and 3) 

the mean TR system time, which is the average time a customer TR must wait between 

being reported and being fixed. 

If all three performance measures can be reduced, a continuous cycle of operation may 

be achieved. A reduction in TR volume may reduce the maintenance workload; this 

depends on the percentage of false alarms and the number of common cause faults. If 

this occurs then a reduction in TR volume and maintenance workload may also lead to a 

reduced TR system time. When all three performance measures are reduced field 

workers have more time for predictive maintenance and the cycle starts again. This 

cycle of operation is a desired outcome from a predictive maintenance scheme and it is 

illustrated in Figure 1.2. 
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Reduced 
TR volume 

\J 

Predictive \ 
maintenance 

Reduced 
maintenance 
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Reduced TR 
system time 

Figure 1.2: A desired cycle of operation that could be produced by predictive 

maintenance. 

The primary goal of this thesis is to identify operating conditions under which the cycle 

shown in Figure 1.2 can be achieved. This is done using computer simulation to 

estimate the performance of each maintenance prioritisation scheme under different 

operating conditions. By operating in this cycle telecommunications companies will be 

able to significantly reduce their maintenance costs and their number of dissatisfied 

customers. In today's highly competitive telecommunications market, both of these 

characteristics are highly sought after. 

The first step toward achieving the stated goal is to develop an understanding of 

relevant work done by other people. The work performed in this thesis can be classified 

into four areas: system modelling and simulation, fault identification and correlation, 

predictive maintenance and network management. Chapter two provides a literature 

survey of work that has been done in each of these areas. In the literature survey we 

look at the contributions of various authors and discuss the relevance of their work to 

the work presented in this thesis. 

Before we are able to model and simulate Telstra's fault management system we must 

first develop an understanding of its current operation. Chapter three examines the 
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current operation of Telstra's fault management system. The chapter begins with a 

description of a general fault management system, highlighting the implications of 

customer detected faults. Then Telstra's Customer Access Network (CAN), which is the 

part of the network with which this work is concerned, is described. This is followed by 

a comparison of two methods of fault detection, one reactive and the other predictive, 

currently available to Telstra. The reactive method of fault detection relies on customers 

to report faults while the predictive method uses Fault Marked (FM) and Fault Blocked 

(FB) data available from some of Telstra's exchanges. FM and FB are classifications 

given to a customer's line according to its insulation resistance. The cut -off insulation 

resistances for FMs and FBs are variable but Telstra's current rules are: if a line has an 

insulation resistance equal to or less than 20 kS2 then it is FB; if a line has an insulation 

resistance equal to or less than 50 k52 but greater than 20 kn it is FM. Advantages and 

disadvantages of each method are discussed. Finally, an explanation of the process that 

is used to assign field workers to fix the faults and how the faults are cleared from 

Telstra's records is given. 

Before Telstra can implement a predictive maintenance scheme using FM /FB data it 

must first understand the dynamics and limitations of this data. Chapter four analyses 

historical FM/FB and TR data to develop an understanding of how FM/FB data may 

best be used in a predictive maintenance scheme. An essential element of predictive 

maintenance is knowing the accuracy of the TR predictions. We call the percentage of 

FM /FBs that accurately predict future TRs the predictive power. By analysing historic 

FM/FB and TR data we calculate the predictive power of FB lines and FM lines to be 

11.8% and 7.7% respectively. To increase these values we analyse FM/FB lines to 

identify the characteristics of lines that are most likely to predict future customer TRs. 

We also determine what percentage of the daily TR volume can be predicted, and 

possibly prevented, by a predictive maintenance scheme using FM /FB data. The time 

between when a line is first FM/FB and when it is reported by customers is critical as it 

is the time that Telstra have to fix FM /FB lines if it wants to prevent future customer 

TRs. This delay time is examined and distributions of the delay are separately calculated 

for FM and FB lines. In an attempt to explain the low predictive power of FB lines we 

examine the consistency of FB lines to determine if they are mostly intermittent faults 

that randomly appear and disappear. Finally we evaluate the relationship between the 



number of times a line is FB and its predictive power and we discuss why this result can 

not be practically used by Telstra. 

To achieve the cycle of operation shown in Figure 1.2 we must model Telstra's CAN 

maintenance system and define the maintenance priority schemes that we will use. Both 

of these are achieved in chapter five. We model Telstra's CAN maintenance system as a 

stochastic discrete event queuing network. A system model of Telstra's CAN 

maintenance system is presented and the implications of modelling the system in this 

way are discussed. The system model that we have created demonstrates a relationship 

between FM/FB and TR data that has not been understood before now. This relationship 

takes into account predictive power, mean number of common cause faults and the 

delay between the arrival of a FM /FB and the arrival of the TR(s) it predicts. The 

performance measures that are used in the simulation analysis are presented along with 

the maintenance priority schemes. Finally we discuss why simulation is used to evaluate 

the performance of our model and how this is achieved. 

In chapter six we present the simulation analysis, which is divided into three separate 

experiments. The first experiment does not clear predicted TRs from the queue when the 

FM/FB that predicts them is fixed. This is analogous to Telstra not being able to 

identify which TRs have been predicted by which FM/FBs. This was done to initially 

keep the simulation simple so that the results may be interpreted and understood. In this 

experiment we determine the maintenance priority scheme, predictive power and mean 

number of common cause faults that reduce the TR volume, the maintenance workload 

and the mean TR system time with the lowest predictive power. The second experiment 

does match FM/FBs with the TRs they predict. The results from this analysis are 

compared with the results from experiment one and the implications of clearing 

predicted TRs with the FM /FBs that predict them are highlighted. The final experiment 

analyses the performance of an Estimated Time to Fix (ETF) Priority scheme. This 

experiment is designed to minimise the number of times Telstra do not meet a Customer 

Service Guarantee (CSG), as well as to help reduce the mean TR system time. Again we 

determine the maintenance priority scheme that reduces the TR volume, the 

maintenance workload and the mean TR system time with the lowest predictive power. 

We also investigate the sensitivity of results to variations in the system time cut -off. 
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Chapter 2 

Literature Survey 
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The areas of study in this project can be divided into four key areas: system modelling 

and simulation, fault identification and correlation, predictive maintenance, and network 

management. The following literature survey presents the contributions of various 

authors to these areas and discusses the relevance of this thesis in light of their work. 

2.1 System modelling and simulation 

System modelling is a valuable engineering tool that has been used to help understand 

and solve real world problems for many years. Waller, Triscari and Owens [23] explain 

how modelling can be utilised in large engineering projects. The authors demonstrate a 

use for modelling in the various stages of a project life -cycle such as risk reduction, 

design, technical performance measurement, verification and validation, test, evaluation 

and acceptance, technical transfer and research and development. In terms of our 

project, our model is used in the risk reduction process, the design process, and the 

research and development process. 

In discrete event system (DES) modelling there are two common methods for 

determining system performance: analytical equations and computer simulation. 

Analytical models are discussed by both Cassandras [4] and Buzacott and Shanthikumar 

[3]. Cassandras looks at modelling DES using both Markov chain theory and general 

queuing theory while Buzacott and Shanthikumar use queuing theory to analyse specific 

manufacturing systems. Cassandras explains the importance and applications of DES in 

more detail than Buzacott and Shanthikumar who primarily solve many different 

stochastic manufacturing models. In our project we do not use analytical models as they 

are restrictive in the types of systems and problems they can solve. We can not define a 

set of analytical equations that accurately describe our system's behaviour as our 

analysis requires us to monitor and make decisions upon specific random events. For 

example when a FM/FB fault is fixed we need to know which TRs have a common 

cause so that they can be fixed along with the FM/FB. Therefore, we use computer 

simulation to evaluate the performance of our model. Cassandras introduces the reader 

to DES simulation and discusses simulation of queuing systems. Cassandras and 

Brately, Fox and Schrage [2] discuss the analysis of simulation outputs, specifically for 

finite -horizon simulation, which we have used. 
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2.2 Fault identification and correlation 

Communications networks are very complex systems composed of thousands of 

interconnected nodes from various manufacturers. Therefore when network failures 

occur it is possible that a very large number of alarm messages are generated. These 

alarms can be used to establish the location and cause of the fault but at the same time 

the high volume can make this extremely difficult. As a result fault identification and 

correlation based on network alarms has become a high priority for many 

telecommunications companies. 

Fault identification consists of three phases: fault detection, fault localisation and fault 

testing. Bouloutas, Calo and Finkel [1] and Katzela and Schwartz [10] are primarily 

concerned with fault localisation. Both present a dependency graph based approach that 

utilises algorithms to solve the alarm correlation and fault identification problem. Meira 

and Nogueira [12] propose a general model for a telecommunication network so that 

they can study network management applications, specifically in the development of 

models for alarm correlation. 

Another approach to fault correlation is to utilise artificial intelligence (AI) techniques. 

AI techniques such as neural networks can be effectively used in the alarm correlation 

domain. They are adaptive systems with a parallel architecture that can learn and 

generalise from input data. One advantage is that neural networks can often recognise 

patterns even when the input data is noisy, corrupted or has a lot of variation. The 

disadvantage is that they require intensive training before being able to associate an 

output pattern with a given input pattern. This is not always convenient in a 

telecommunications environment where all the alarm signatures of fault occurrences 

may not be known. The work performed by Wu, Bhatnagar, Epshtein, Bhandaru and Shi 

[24] describes a system called the alarm correlation engine (ACE) that is used by GTE 

in its US local exchange networks. ACE aids network management by correlating 

alarms on the basis of common cause. It also has the capability to carry out prescribed 

responses, which greatly improves response time and increases productivity. ACE uses 

a domain specific correlation language that GTE believe makes it very efficient as well 

as flexible. Gardner and Harle [5] also use a purpose designed language to specify alarm 

patterns and then use the results in a real -time correlation engine. Gardner and Harle 

specify the correlation framework they used as well as give a thorough description of 
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the correlation language and how it is constructed. All of the fault identification and 

correlation approaches mentioned so far differ from our study of alarm correlation as we 

only receive fault alarms (FM /FB data) from a single point in the network (Telstrá s 

Ericsson supplied AXE exchanges). We also do not receive different fault alarms 

according to different types of faults. We only obtain alarms (FM/FB) based on a line's 

insulation resistance. Our fault correlation is more like that used by Telstra in the early 

1990's with its pressurised cable alarm monitoring system. Kashmirian and Robinson 

[9] describe Telstrás automatic pressurised cable monitoring system (APCAMS) which 

monitors the pressurised cables in Telstra's network. The major types of alarms 

generated by APCAMS are for low pressure, noisy transmission, no response, high 

pressure and any pressure changes outside of 10 kPa. Due to the dynamic nature of the 

network, cable pressures are constantly varying and as a result there is a continuous 

stream of information and alarms. The network operators were receiving too much 

information and as a result many poor operating decisions were being made. This led to 

the development of the alarm evaluation system that filters the alarms that are 

forwarded onto the network operators. The filtering of alarms in this case is very rule 

based, ie certain alarm types are only transmitted if there are more than three such 

alarms on the same cable pair within a specified short period of time. This type of 

correlation is similar to the way in which we are correlating our faults. For example 

when we are looking for common cause faults we only count FM/FB alarms if there are 

two or more FM /FB lines closely situated in the network. 

2.3 Predictive maintenance 

The ability to predict future events has long been a desirable talent. From tea leaves to 

tarot cards, it was always believed that predicting future events required either luck or 

psychic powers. However, technological advances mean that this situation may be 

rapidly changing. Grayson [7] writes that Computer Associates are developing software 

that uses neural network technology to predict the future. Called Neugents, the 

technology makes its predictions by analysing vast amounts of data. Based on historical 

information and present conditions, it makes predictions about what will happen in a 

given situation in the future. One of the earliest applications for Neugents has been to 

predict when a server or other device on a network is going to fail. Armed with such 

knowledge network administrators can take preventative steps before the failure occurs. 

This is a form of proactive maintenance that, as was mentioned in chapter 1, is different 
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to predictive maintenance. Predictive maintenance doesn't try to predict when devices 

are going to fail. Predictive maintenance is only concerned with predicting faults that 

customers will report. 

Telstra has trialed predictive maintenance schemes in the past as described by McIntyre 

[11]. This scheme was the customer access network evaluation system (CANES) that 

was used by Telstra in the early 1990's for predictive maintenance. McIntyre states that 

studies have shown that services that have an insulation resistance between 50 k12 and 

500 kS2 are very likely to incur "service affecting" faults within twelve months. CANES 

utilised an expert system that applied a set of rules to line insulation quality data, 

network configuration data, ' fault history and customer fault reports. The 

recommendations of the expert system were used for long term management of network 

upgrade programs and to assist despatch of fault repair staff. The CANES analysis was 

based on a combination of connectionist and rule based reasoning that was driven by the 

actual network configuration. This resulted in a robust system that could diagnose and 

assist in the location of faults even when the knowledge base was incomplete. The 

CANES system was never fully implemented as the network configuration database was 

never completed. Both our project and CANES use line insulation quality to predict 

future customer reports. However our project utilises FM/FB data obtained from AXE 

switches while CANES used customer line insulation quality (CLIQ) tests. CLIQ tests 

are prohibitive in the number of lines that can be tested as they are usually only 

performed at night due to the occupation of a customer line for the test. Also CANES is 

more of a proactive maintenance scheme, detecting trouble lines that are degrading and 

that may be problems within the next 12 months..Our project has a much shorter time 

frame than that, mostly trying to predict customer TRs that will arrive in the next 3 

weeks. 

Other telecommunications companies such as British Telecom (BT) and GTE have also 

implemented predictive maintenance schemes. Potts [17] describes British Telecom's 

(BT's) access network support system (ANSS). Previous BT support systems were 

designed to support a purely copper based network. The main aim of ANSS is to 

enhance and supplement these systems to support similar processes using fibre and 

radio, as well as enhanced copper technology. New technology, which has the in built 

capability to monitor its own ability to support service correctly, will mean that network 
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status reports are produced automatically. In order to reduce the number of customer 

reported faults, ANSS will automatically take appropriate action upon receiving fault 

alarms from network elements. ANSS will also analyse all the fault alarms they receive 

with the aim of correlating alarms and identifying a single point of failure in the 

network. Silver, Qian, Moghe, Eichen, Doleac, Bhatnagar and Friedman [20] discuss 

TCAF, an expert system that performs 24 -hour monitoring and surveillance of the 

customer access facilities in GTE's telephone network. The aim of the system is to 

identify and fix developing faults before a customer detects a problem. The key idea is 

to use alarms from a digital switch to trigger testing. This allows the test to be 

performed near the time of a failure (and hence more likely to detect intermittent faults) 

and also focuses the testing effort in areas of likely trouble. Results have shown that 

TCAF has reduced the number of customer reported faults by approximately 85 %. 

TCAF has also been approximately 90% accurate in detecting faults that can not be 

predicted such as cable cuts. Early detection of unpredictable faults allows GTE to get 

repair crews in place quickly, before a large number of customers become aware of the 

problem. The work at both BT and GTE is similar to our project as we are both 

attempting to reduce the number of customer reports received by fixing faults before a 

customer detects them. They also try to identify common cause faults. However, 

neither of the systems mention the effects of fixing future TR predictions that do not 

result in a customer reported fault. In these instances workers and resources are used 

while customers wait to have their faults repaired. Our project investigates the effect of 

fixing false alarms and we establish operating conditions that ensure more effective 

utilisation of the field staff. 

Schmersal [19] and Pierce [1 6] both recognise the importance of predictive maintenance 

to improve a customer's perception of network reliability. Schmersal discusses its 

importance when describing the role of a performance monitoring system. Pierce 

describes how predictive maintenance is only a small part of an overall approach he 

calls total service assurance. He states that implementation of total service assurance is 

vital for a telecommunications company to differentiate itself in the market place. 

Assurance is the process for maintaining and improving the ongoing quality of service 

(QoS). It requires a full implementation of four processes: service quality management 

and customer QoS management, which are proactive in nature; and problem handling 

and service problem resolution, which are traditional and reactive assurance processes. 
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Service quality management uses the information provided by modern intelligent 

network elements (INEs) to detect trouble early. Our project is primarily concerned with 

what Pierce calls service quality management. The INEs in our network are AXE 

exchanges that provide FM/FB data. 

2.4 Network management 

To attain high levels of customer satisfaction and to assist with network maintenance, 

many companies are searching for ways in which to improve the management of their 

networks. 

In the mid 1990's BT undertook numerous activities aimed at improving the 

performance of its telecommunications network. However, in order to improve network 

performance it is important to be able to measure how well it is currently working. 

Rogers and Hand [18] discuss how BT has changed the way in which it measures 

network performance. Traditionally BT has used test calls to evaluate the state of its 

network. Test calls were performed by a system that was able to initiate and answer 

calls automatically. If any problems were observed during the call setup and call shut 

down then these were recorded. Approximately 2 million test calls were made a month 

and from these performance reported, black spots identified and remedial action taken. 

Despite the success of these test calls, BT decided to replace them with live call 

sampling. The strength of live call sampling is that it measures calls going anywhere, 

needs no far -end answering equipment, and measures continuously 24 hours a day, 

every day. Most modern exchange systems have a live -call sampling facility as part of 

their management statistics package. All calls originating, terminating or passing 

through digital exchanges are eligible to be sampled. This approach to network 

measurement is analogous to the way we are attempting to use FM /NB data for 

predictive maintenance purposes. The old method of running batches of CLIQ tests to 

obtain insulation quality data can be compared to BT's test calls. While using AXE 

exchanges to test lines can be compared to BT's live -call sampling. 

Guido, Roberto, Di Tria and Bisio [8] describe how Telecom Italia has developed 

workforce management techniques and environments to improve the level of service 

that it provides customers. The authors discuss many issues such as the analysis of 
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network maintenance and operations, the evaluation of new processes, the 

improvements gained through automatic fault dispatch and mobile technicians. Relevant 

to our work is their use of simulation to analyse the present mode of operation and to 

help evaluate and develop future modes of operation. This is what we are aiming to 

achieve with our simulation. We have a benchmark level, which is the present mode of 

operation, and through simulation we are investigating new operating modes that may 

perform better than the present mode. Another relevant activity that the authors discuss, 

and is also discussed by Montana, Bidwell and Moore [13], is resource allocation. The 

resource allocation algorithm used by Telecom Italia takes into account several different 

factors such as organisational, legal, technical, human behaviour and contractual 

constraints. They also have several metrics that need to be optimised including; (i) 

Activities waiting time: the queue time for the activities. (ii) Correct repair percentage: 

the percentage of correct trouble repair. (iii) Intervention time: the total time taken to 

complete each activity. (iv) Medium repair time: the intervention time minus the time 

spent for travelling, getting equipment etc. (v) Medium trouble time: the time from 

when the trouble arose to when the trouble was repaired. Montana, Bidwell and Moore 

discuss the work that has been done by GTE to use genetic algorithms (GAs) for real 

time scheduling. Real time scheduling can be very difficult due to large search spaces, 

dynamically changing problems and a variety of constraints. Genetic algorithms are 

suitable to solve these problems as they can search large, multimodal spaces effectively 

to find nearly global optima. GAs are also flexible as to the optimisation problems they 

can solve and have been shown empirically to scale well with problem size. The 

implementation of a field service schedular for one of the largest field service 

organisations in the world has shown resource efficiency improvements of 60 to 100% 

when measured as the number of service calls closed per day by each service 

representative. Our resource allocation is comparably simple as we only consider 

different prioritisation schemes according to the type of fault. We do not try to match 

jobs with field workers by taking into account any constraints on the field workers such 

as skills and distance from the next job etc. We assume that all field workers are equally 

able to repair each fault. The advantage of our approach is that it is relatively simple to 

model and simulate, yet is still very effective. As soon as you try to match workers with 

jobs, a complete search of all possible matches becomes computationally unfeasible and 

more advanced search techniques such as those used by Montana, Bidwell and Moore 

are required. 
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Chapter 3 

Telstra's current network maintenance system 
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Before we can begin to investigate how predictive maintenance can be used in Telstra's 

maintenance system we must first understand its current operation. The aim of this 

chapter is to familiarise the reader with Telstra's fault management system. Specifically 

we look at how faults arrive in Telstra's system, how these faults are accepted and tested 

and then how they are despatched to field staff to be repaired. The chapter concludes 

with an explanation of the network data that Telstra hope to use for predictive 

maintenance. 

3.1 A general description of fault management systems 

Fault management systems are found in any organisation or industry that supplies a 

product or service to a customer. Typically there is a supplier and a customer as well as 

a medium across which the product or service is supplied. If the product or service 

cannot be supplied according to a specified level of performance, or to the customers 

expectation, then a fault exists that needs to be rectified. 

Fault detection can come from either the customer or the supplier. When a customer 

detects a fault the supplier must provide resources to enable that customer to report the 

fault. The supplier must then quickly find and rectify the fault in order to minimise that 

customer's dissatisfaction with the supplier. The provision of customer fault reporting 

facilities can be very costly to the supplier, not to mention the costs a dissatisfied 

customer may bring. However, if the supplier can detect and correct faults before a 

customer realises the problem they do not have to provide customer fault reporting 

facilities. Also the management of faults becomes less expensive and customers are not 

dissatisfied. This can be seen graphically in Figure 3.1. 
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Figure 3.1: Effects of customer and supplier fault detection. 

Once detected, a supplier must arrange to fix the fault. All fault management systems 

will have some form of despatch system that assigns resources to fix faults. Often these 

resources are trained personnel with specialised fault fixing equipment. Allocation of 

faults to workers may be based on different criteria such as the skills of workers 

available, the location of a fault and the time available to fix a fault. Rules for 

despatching faults will vary for different companies, industries and situations. 

Telstra provides many products and services to its customers. However, this work is 

only concerned with the supply of a telephone service that performs to the expectations 

of customers. 
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3.2 The Customer Access Network (CAN) 

The maintenance of any physical network in Australia will encounter problems because 

of the large distances it must cover and the harsh climates it will inevitably be exposed 

to. Telstra's telecommunications network is no different. In order to maintain and 

support such a large network Telstra have divided its components into three sections: 

the Exchange and Inter Exchange Network, the Customer Access Network (CAN) and 

the Customer Premises Equipment (CPE). These three areas can be seen in a typical 

representation of Telstra's network in Figure 3.2. 
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Figure 3.2: A typical representation of Telstra's Customer Access Network. 

These three distinctions are made as the technologies and processes used in each area 

are vastly different.. The Exchange and Inter Exchange Network is maintained by 

Telstra's Network and Technology Group (NTG). The CAN is defined as all the 

network from the Main Distribution Frame (MDF) at an exchange up to the Network 

Boundary Point (NBP) at a customer's premises. The part of the network to the right of 

the NBP is called the Customer Premises Equipment (CPE). The NBP is usually the 

first telephone socket in a customer's premises. Therefore the CPE is usually the 
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telephone, modem or fax that a customer has connected. While some CPE may be 

rented from Telstra, it is not the responsibility of Telstra to maintain this equipment. 

This study is only concerned with faults that are located in the CAN. The CAN is the 

responsibility of Telstra s Commercial and Consumer (C &C) Service business group. A 

typical representation of Telstra's CAN can be seen in Figure 3.2. It should be noted that 

the components used between an exchange and CPE will vary from customer to 

customer and not all components are shown in Figure 3.2. Some customers may be 

connected directly to the exchange requiring no pillars or joints while others may have 

other components such as cabinets along their line. Pillars and joints are typically used 

to distribute the network from an exchange to a customer's premises. A pillar can 

distribute up to 900 lines, while a joint is a connection between two parts of cable. 

While a joint connects two parts of cable it is also used to distribute lines to a customers 

premises. In a residential area a single joint can distribute lines to up to 8 houses. If a 

house is situated at the end of a distribution line its line may pass through many joints. 

An example of how pillars and joints are used can be seen in Figure 3.3 
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Figure 3.3: The distribution of the CAN through pillars and joints. 

3.3 What methods of fault detection are used? 

It can be difficult for telecommunications companies to detect network faults as it is 

hard to clearly define what constitutes a fault. Telecommunications companies can only 

detect faults by measuring physical characteristics of a customer's line. If that line does 

not have adequate measurements then there may be a fault with that line. However, it 

may be the case that the line is still operating, for whatever reason, and the customer is 

perfectly happy. Sending field staff to correct this fault is a waste of valuable resources. 

There may be another customer that also has a phone line that has poor electrical 

measurements. However this customer's phone may be noisy and not very clear. As the 

phone may still be working the customer will not report the problem as they believe it 

will go away. In this case a customer's telephone line is not performing to their 

expectations and as a result they are dissatisfied with their telecommunications 
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provider. Waiting for a customer to report a fault is not an adequate means of fault 

detection in this situation. 

It can be seen that it is not acceptable to wait for customers to report problems and it 

may be unnecessary to send field workers to fix every line that has poor electrical 

measurements. Ideally Telstra needs a flexible fault detection system that is able to use 

both customer reported faults as well as physically measured faults. We are 

investigating how Telstra may be able to use physically measured line performance to 

predict future customer trouble reports (TRs). 

3.3.1 Customer reported faults 

A customer will report a fault when they become so unhappy with the quality of their 

phone service that they have to report it. Currently, most of the faults in Telstra s CAN 

are detected and reported by customers who have noticed a decrease in the performance 

of their service. When a customer detects a fault with their service they will call a 

Telstra Call Center to report the fault and to arrange for a field worker to fix the fault. 

This process is shown in Figure 3.4. 

Customer Telstra 
Call Center 

Tester 

Despatch 

I 

Field 

Figure 3.4: Processing customer TRs. From reporting a fault to despatching to the 

field. 

Telstra has consultants in its Call Centers who answer incoming customer TRs. The 

consultants are trained to ask customers specific questions to determine the type of 

problems they are experiencing. Some problems, such as no dial tone on a customer's 

phone, can be tested and identified by the consultant. While other types of customer 

problems need to be sent to a tester who can conduct more rigorous tests on the line. 
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Once the fault type has been identified the details are entered into Service Plus which is 

a management database that is used by Telstra. Service Plus sends the fault to Telstra's 

despatch system, which allocates it to the next available field worker. 

There are both advantages and disadvantages of relying on customers to report network 

faults. The advantage of using customers to detect faults is that maintenance is 

performed only when it is necessary. Resources are not wasted fixing problems that are 

not customer affecting. A disadvantage is that the ability to plan network maintenance is 

lost. Telstra is forced to react quickly to customer reported faults as it is under a legal 

obligation to fix faults within time frames that are set out in Telstra's Customer Service 

Guarantee (CSG) [22]. Having to react so quickly means that Telstra often miss 

opportunities to identify groups of faults that have a common cause. When this occurs 

Telstra sends many field workers to fix a number of faults that could be fixed by a 

single worker. Sending a field worker to fix a fault is very expensive. Therefore Telstra 

wants to minimise the number of times it sends workers to fix faults. Another 

disadvantage is the cost of customer dissatisfaction. Deregulation of the 

telecommunications industry has led to an increase in competition, which means that 

customer satisfaction is a high priority for every telecommunications company [16]. 

Quantifying customer unhappiness in terms of dollars is almost impossible. Some 

customers will be unhappy, but they may be loyal customers or they may not know they 

can change their telecommunications company. However another customer may be so 

unhappy that not only do they switch to another company, they also talk their friends 

into doing the same. Another effect may be that now Telstra is a listed company on the 

Australian Stock Exchange consumer confidence becomes an important factor. If the 

general feeling is that a company's operations are smart and efficient then confidence is 

high and share prices usually rise. However, if confidence in a company is low then 

people will not want to invest their money in this company and its share prices may fall. 

3.3.2 Data used to predict future customer TRs 

Fault data can be used to predict future customer TRs. The data Telstra is investigating 

to use for TR predictions is called Fault Marked (FM) and Fault Blocked (FB) data. 

This data comes from physically measuring the insulation resistance of a customer line. 

It is obtained from Telstra's Ericsson supplied AXE exchanges, which currently make 
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up approximately 65% of Telstrás network. The other 35% consist of Alcatel supplied 

System 12 exchanges which do not have FM/FB reporting capabilities. 

Telstra's AXE exchanges perform regular insulation resistance tests on lines that they 

connect. A line is tested every time a customer hangs up after receiving a call or after 

three days if a customer has not received a call in that time. If a line is found to have an 

insulation resistance of 20 k0 or less then it becomes FB. A FB line is disconnected 

from the network by an exchange and its details are stored in a memory buffer in the 

exchange. FB lines are disconnected as the low resistance causes the exchange 

processors to go into a loop of sending the line dial tone, then removing the dial tone. 

This renders the line unusable by a customer. Once FB a line is re- tested every 10 

minutes. If the insulation resistance changes so that it is greater than 20 k52 the line is 

reconnected and its details are removed from the storage buffer. 

A line becomes FM if it has an insulation resistance equal to or less than 50 k52 but 

greater than 20 kS2. FM lines are not disconnected, they are still operable and the user 

may or may not notice a difference in the quality of their service. Details of FM lines 

are stored in the same buffer as FB lines. FM lines are re- tested every three hours after 

becoming FM. If the insulation resistance changes so that it is greater than 50 k52 the 

line details are removed from the storage buffer. 

The automatic testing capability of AXE exchanges is ideal for a predictive maintenance 

scheme. However, two questions that relate to it are; 1) Is it testing the most useful 

measure (insulation resistance)? and 2) Is it testing customer lines that are actively 

being used? At this stage it is not clear if insulation resistance alone is a line 

characteristic that greatly influences customer TRs. As FM lines are still operating, does 

an insulation resistance reading between 20 k52 and 50 k52 reduce line performance to a 

point that is noticeable to a customer? This is a question that requires further 

investigation. As FB lines are disconnected, FB data can definitely identify lines that 

customers will detect a problem with if they try to use that line. However, if a customer 

does not try to use that line they will never detect and report the problem. Therefore, for 

predictive maintenance the FM/FB testing procedure needs to be modified to ensure 

only lines that are actively being used by customers are tested. 
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The testing process that an AXE exchange follows is given in Figure 3.5. It should be 

noted there is no end to the process as it continues indefinitely. 

Has the line 
received a 
call in the 

last 3 days? 

The 
customer 
hangs up 

after 
receiving 

a call 

Test the 
line's 

insulation 
resistance 

(IR) 

Store 
details 
in the 
buffer 

Disconnect 
the line 

(FB) 

Wait 10 
minutes 

Reconnect 
the line 

Store Wait 
FM details 3 
line - in the 

buffer 

1 hours 

Remove 
details 

from the 
buffer 

Figure 3.5: The FM /FB testing procedure. 

Details of FM /FB lines in the storage buffer are electronically accessed 3 times per day 

(approximately morning, noon and night) and the contents of the buffer at that time are 
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downloaded and stored in Telstra's Testing and Diagnosis Server (TADS) database. 

Andrew Wild of Telstra's NTG stated that "accessing the FM/FB buffers of all of AXE 

exchanges takes approximately half an hour. If an exchange is under a heavy switching 

load it may reject the request to access its buffers and no FM/FB data will be available" 

[14]. This makes FM/FB data very unreliable as it is hard to know if a line has ceased 

being FM/FB or if no data was accessed from that switch. This is a problem that must 

be addressed if Telstra is to use FM/FB data for predictive maintenance. It is believed 

the frequency at which FM/FB buffers are accessed can be changed, although this has 

not been officially confirmed. This is also important as Telstra may need to detect when 

a line is disconnected (FB) closer to real time so that it can fix the problem before a 

customer becomes aware of the problem. 

Currently, the predictive capabilities and dynamics of FM/FB data are not very well 

understood by Telstra. Telstra realise that FM /FB data can potentially be used to predict 

future TRs. However it is unclear which FM/FB faults will become future customer 

TRs, and it is also unclear how often faults enter and exit the FM/FB buffer. Chapter 4 

of this thesis develops an understanding of the dynamics of FM/FB data and how it can 

potentially be used by Telstra to achieve the goals of this thesis. Chapters 5 and 6 use 

modelling and simulation to establish criteria that FM/FB data must satisfy if Telstra 

could potentially achieve the stated goals. 

3.4 Scheduling and fixing faults 

Faults are currently despatched to field workers by a computerised system called 

DIRECTOR. DIRECTOR is an automated process that despatches installation and 

repair work to the nearest available field worker that has the necessary skills to 

complete the job. Each field worker has a portable computer called a FieIdMATE, 

which they use to electronically receive and clear jobs. At the start of each day field 

workers remotely connect to DIRECTOR through their FieIdMATE on Telstra's mobile 

data network. DIRECTOR allocates that worker the first job in the queue that they are 

geographically closest to. The field worker is given the customer's details as well as 

what the testers believe to be the fault type. The field worker then has to find the 

customer's premises, test the line and isolate the fault. Once they have fixed the fault 

they notify the customer, explaining what they have done. They also clear the fault from 

DIRECTOR by entering the correct clear code in their FieIdMATE. The clear code 
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describes the type of fault found as well as the actions taken to repair it. DIRECTOR 

will then assign the field worker a new job. 

DIRECTOR is an important part of Telstrá s current fault management system as it 

decides which faults are assigned to which field workers. In a predictive maintenance 

scheme DIRECTOR would be required to prioritise faults so that certain faults are fixed 

before others. The prioritisation rules that we investigate are discussed in section 5.6.1 

when we introduce three prioritisation schemes for predictive maintenance. 

3.5 Predictive maintenance and Telstra's current system 

Before it could implement a predictive maintenance scheme Telstra would need to 

modify its current fault management system. Modifications that would need to be made 

are: 

Not all lines connected to an AXE exchange should be tested. Only the lines of 

active customers. Non -active customer lines will never be reported as faulty by 

customers so they should not be tested for predictive maintenance purposes. 

Current FM/FB data is not adequate for predictive maintenance as data can be 

missing when an AXE exchange rejects a request to access its buffer. This needs to 

be addressed so that FM/FB data is always available. If not always available it is 

impossible to know if a line is no longer FM/FB or if that line has not been accessed 

from the buffer. 

The frequency that FM/FB buffers are accessed needs to be increased. If Telstra are 

to fix a fault before a customer detects the problem it must respond to FM/FB data 

as quickly as possible. 

DIRECTOR needs to be modified to assign faults based on prioritisation rules that 

are discussed in section 5.6.1. 

28 



Chapter 4 

Analysis of fault mark (FM) and fault block (FB) data 
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Before a predictive maintenance scheme can be implemented Telstra must have the 

ability to accurately predict which faults customers will report in the future. In this 

chapter we analyse Telstra's FM/FB data and examine its potential to be used in a 

predictive maintenance scheme. Specifically we will be trying to answer the following 

questions: How accurately does FM/FB data predict future TRs? How can the ability of 

FM/FB data to predict future TRs be improved? What percentage of TRs can be 

predicted? How quickly do customer TRs arrive after a line has first become FM/FB? 

How consistently do FB lines appear over a 48 hour period? And is there a relationship 

between the number of times a line is FB and the ability to predict future TRs? 

4.1 The "predictive power" of FM /FB data 

If Telstra is to use FM/FB data for predictive maintenance it needs to know how 

accurately it can predict future TRs. We have called the percentage of FM/FBs that 

correctly predict future customer TRs the predictive power. Predictive power is defined 

to be the percentage of FM/FB lines that customers report within 3 weeks of first 

observing a FM/FB. As an example, if there are 20 different FM/FB lines and customers 

report 15 of these lines as faults some time in the next 3 weeks then the predictive 

power is 75 %. The specification of 3 weeks is assigned on the basis that the probability 

of a predicted TR arriving after 3 weeks is less than 2 %1. 

If using FM/FB data for predictive maintenance, a high predictive power means that 

there is a greater chance a FM/FB line will predict a future customer TR. If FM/FB lines 

can be fixed quickly enough, then a high predictive power means there is a greater 

chance a customer fault will be fixed before that customer detects and reports it. In 

terms of the aims of this thesis, this will help to reduce TR volume, although it may or 

may not increase the maintenance workload. In order for Telstra to get the greatest 

benefit from using FM/FB data for predictive maintenance it must have predictive 

power as high as possible. 

4.1.1 Identifying characteristics to improve predictive power 

In June 1998 Telstra received an average of 6119 FM/FB lines per day. Of these only 

556 correctly predicted a customer TR, giving a predictive power of 9.1 %. In order to 

improve the predictive power of FM/FB data the lines that are most likely to predict a 

Refer to section 4.3 for details on this analysis. 
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customer TR need to be identified. This can be done by querying FM/FB data to 

identify characteristics of lines that are most likely to predict future TRs. 

During a meeting with Telstrás David Aitken, Ross Bird and Murray Blackwell [15], 

nine distinct characteristics were chosen for investigation. These characteristics are 

summarised in Figure 4.1. Starting with a combined FM/FB data set three groups can be 

created: the original Combined FM/FB group, a FM group and a FB group. Each of 

these groups are queried to identify lines that are domestic customers. The domestic 

customers in each group are queried to identify lines that are within a range of 30 o- 

pairs of each other. An o -pair number is the number assigned to a customer line at a 

pillar. Therefore lines that are within a 30 o -pair range are likely to be located close to 

each other. If there is a fault on two or more lines that are within a 30 o -pair range, 

Telstra believes it is likely these faults are caused by a common problem and can 

possibly be fixed by a single field worker. 

Combined FM /FB 

Domestic 
Customers 

Within 30 
o -pairs of 
a FM or 
FB line 

FM J 

IL 
Domestic 

Customer 

Within 30 
o -pairs of a 

FM line 

B. 
FB J 
0- 

Domestic 
Customers 

JI 
Within 30 

o -pairs of a 
FB line 

Figure 4.1: The separation of FM/FB data into groups with specific characteristics. 

For this analysis a selection of FM/FB and TR data was taken from 1/6/98 to 3/7/98 and 

1/6/98 to 30/7/98 respectively. After querying the FM/FB data to obtain groups with the 

31 



desired characteristics each group is compared with the TR data to determine that 

groups predictive power. The results are shown in Figure 4.2. 

40 

- 30 

o 
ÿ 20 

v 10 

All customers 

Domestic customers 

Domestic customers within a 30 o -pair range 

Combined FM /FB FM FB 

Figure 4.2: The predictive power of different characteristics of FM /FB data. On the x- 

axis are the three groups of data. On the y -axis is predictive power. The characteristics 

are given in the legend. 

When all customer lines in each group are compared it can be seen that the FB group 

has the highest predictive power of 11.8%. This is followed by the Combined FM/FB 

group with a predictive power of 8.5% and then the FM group with a predictive power 

of 7.7 %. Qualitatively this is as we might expect as FB lines are disconnected and are 

definitely not working where as FM lines are still connected. However, quantitatively it 

is surprising how low the predictive power is for FB lines. This result tells us that out of 

100 disconnected customers only 11 report their disconnected line in the next 3 weeks. 

This leads to the question of why aren't the other 89 customers reporting their 

problems? One possibility is that the 89 customers haven't tried to use their lines and are 

unaware that there is a problem. This would suggest that Telstra are FM/FB testing 

customer lines that aren't actively used by customers. 

Identifying the domestic customers in each group improves predictive power to 11.6 %, 

9.4% and 21.5% for Combined FM/FB, FM and FB respectively. However, identifying 

domestic customers in each group that are within a 30 o -pair range produces mixed 

results. For Combined FM/FB, and FM this results in a reduced predictive power of 

9.4% and 5.9% respectively. However, in the case of FB lines the predictive power 
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increases to 25.3%. It is not clear why the individual FB and FM data sets perform so 

differently to the application of this characteristic. 

From this analysis it can be seen that the best combination of characteristics is FB lines 

that are domestic customers and within a 30 o -pair range of each other. 

We have used a 30 o -pair range characteristic, as Telstra believes it may help to identify 

common cause faults. As an example, if there are five FM /FB faults within a 30 o -pair 

range it is likely these five faults have been caused by a common problem. When this 

occurs it may be possible for one field worker to fix all five faults by correcting the 

common cause. In this case the five FM /FBs can be grouped into one ticket of work 

(ToW). A ToW is a job assignment that field workers receive from DIRECTOR2. We 

make the assumption that two or more FM or FB domestic lines that are within 30 o- 

pair of each other can be grouped to create one ToW. 

One advantage of grouping FM and FB lines to a single ToW is that one worker can fix 

a single problem that may be a common cause to many faults. If one or more FM/FB 

lines that make up a ToW correctly predict a future TR then we say the ToW has 

correctly predicted a TR. Therefore, the predictive power of ToWs can be calculated by 

counting the percentage of ToWs that predict at least one customer TR. The predictive 

power of ToWs is calculated and can be seen in Figure 4.3. 

Figure 4.3: Predictive power of the tickets of work (ToWs) for each group. Each group 

is on the x -axis and predictive power is on the y -axis. 

33 



It can be seen in Figure 4.3 that FB ToWs have the highest predictive power of 50.7 %. 

The Combined FM/FB ToWs have the next highest predictive power of 19.9% and the 

FM ToWs perform the worst with a predictive power of 14.3 %. 

Counting domestic FBs that are within a 30 o -pair range as a single ToW has doubled 

the predictive power of this group. The reason is that we are no longer directly matching 

individual FBs with TRs. We are now matching a group of FBs with TRs, which means 

that a group of two or more FBs can predict a single TR. 

From the analysis so far it could be assumed that based on predictive power alone, FB 

ToWs are the best to use for predictive maintenance. FB ToWs are more than twice as 

likely to prevent a future TR from occurring than Combined FM /FB ToWs and more 

than three times as likely to prevent a future TR than FM ToWs. 

4.2 What percentage of the daily TR volume can be predicted? 

An important question to ask before implementing a predictive maintenance scheme is 

what percentage of existing TRs can be predicted and possibly prevented? One of the 

performance measures used in this thesis is TR volume. Therefore we want to find the 

potential reduction in TR volume that may be attained by using FM/FB data for 

predictive maintenance. We will look at ToWs as well as each group without any 

characteristics to determine the percentage of daily TRs they predict. The data used in 

this study had a daily average of approximately 3000 customer TRs. The results can be 

seen in Figure 4.4. 

Z Telstrás automated fault despatch system. 
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Figure 4.4: Percentage of daily TR volume predicted by each group. The groups are on 

the x -axis and the percentage of daily TR volume predicted is on the y-axis. The 

characteristics of the groups are given in the legend. 

It can be seen in Figure 4.4 that the ToW characteristic results in 2.7 %, 1.4% and 1 % of 

daily TRs predicted by the Combined FM/FB, FM and FB group respectively. When all 

customers in each group are counted the percentages rise to 6.9 %, 3.3% and 3.6% 

respectively. Therefore if Telstra's primary goal is to reduce TR volume it may choose 

to use all customers in the Combined FM/FB data group as it has the greatest potential 

to reduce the TR volume, even though it has a poor predictive power of 8.5 %. On the 

other hand Telstra may wish to be selective with its maintenance and use FB ToWs as 

they have the greatest predictive power, but the least capacity to reduce the daily TR 

volume. 

4.3 Analysis of the delay between the arrival of a FM /FB and the arrival 

of the predicted TR 

The purpose of this analysis is to determine the time that elapses between a line 

becoming FM or FB and the predicted TR arriving. For proactive maintenance purposes 

this time is important, as it is the time that maintenance crews have to fix a FM or FB 

line if they want to beat a customer to a fault, and therefore prevent a TR from arriving. 

This analysis uses FM/FB data from the 1/6/99 to the 10/7/99 as well as TR data from 

the 1/6/99 to the 31/7/99. The analysis has been divided into two groups, FM lines and 

FB lines. The reason for this is that as FB lines are disconnected it is intuitive to think 
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they will be reported quicker than a FM line that is still connected. The results can be 

seen in Figure 4.5 and Figure 4.6. 
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Figure 4.5: The percentage of predicted TRs that arrive each day after they are first 

predicted by FB data. On the x -axis is the day in which the predicted TR arrives after 

the line becomes FB and on the y -axis is the percentage of the predicted TRs that arrive 

each day. 

From Figure 4.5 it can be seen that 64% of predicted TRs arrive within 24 hours of the 

FB and 81% will arrive within 48 hours. Therefore, if Telstra is to use FB data to 

predict future customer TRs it must react very quickly to FB alarms. In order to react 

quicker to FB alarms the current practise of obtaining FB data three times per day needs 

to be changed so that FB data is received as close to real time as possible. 

However, a point to consider is that as FB data arrives closer to real time it is possible 

that Telstra will end up reacting to intermittent faults (lines going in and out of FB 

status). Another consequence might be that Telstra would be back operating in a 

reactive mode. It has already been mentioned that this is undesirable as maintenance 

becomes unplanned and many common cause faults are not detected resulting in poor 

utilisation of the workforce. Clearly a balance needs to be found so that FB lines can be 
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fixed as quickly as possible while still maintaining a planned and effective maintenance 

system that is able to detect common cause faults. 
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Figure 4.6: The percentage of predicted TRs that arrive each day after they are first 

predicted by FM data. On the x -axis is the day in which the predicted TR arrives after 

the line becomes FM and on the y -axis is the percentage of the predicted TRs that arrive 

each day. 

From Figure 4.6 it can be seen that 26% of predicted TRs arrive within 24 hours of the 

FM and 42% will arrive within 48 hours. Comparing Figure 4.5 with Figure 4.6 it can 

be seen that FM data provides the best chance to fix faults before customers report 

them, even though FMs have a lower predictive power. This also gives Telstra more 

time to wait for other FM lines so it can possibly detect common cause faults. 

4.4 Analysis of the consistency of FB lines 

A question that has developed during this study is how come the number of FB lines is 

so high (an average of 1509 distinct lines per day) yet the number of TRs relating to 

them is so small? One possible answer could be that FB lines are not remaining FB for 

an extended period of time. For example there may be intermittent FB lines that appear 
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one day and disappear the next. This section aims to determine the percentage of FBs 

that appear more than once over a 48 hour period. 

It is important to note that a line may not be FB in every sample of data observed over a 

48 hour period. Only lines that appear at least once in the previous or next 48 hours are 

counted. A 48 hour period is chosen as after this time it is likely that a FB line may have 

been repaired. The FB data used in this analysis is from the 1/6/98 to the 11/6/98. The 

results can be seen in Table 4.1. 

Table 4.1: 

Analysis to determine the consistency of FB lines 

Percentage of FBs that have Percentage of FBs that will 

been FB in previous 48 hours be FB again in next 48 hours 

87.1% 87.1% 

From Table 4.1 it can be seen that an average of 87.1% of FB lines had been FB in the 

previous 48 hours. It can also be seen that 86.7% of FB lines were FB in the next 48 

hours. From this we may conclude that the stability of the FB data is good. This tells us 

that there are very few FB lines that appear once in a 48 hour period. The implication is 

that Telstra can be confident that if it responds to an initial FB, it will not be fixing an 

intermittent fault that may quickly disappear. 

4.5 Analysis of the relationship between the number of times a line is 

FB and the predictive power 

This analysis is undertaken to determine if the number of times a line is FB is related to 

the probability of it becoming a TR. We have taken 13 consecutive FB data collections 

from 1/6/98 to the 5/6/98 inclusive. The FB lines are categorised according to the 

number of times each line appears as FB. The predictive power of each group is 

calculated and the results can be seen in Figure 4.7 and Figure 4.8. 
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Figure 4.7: The percentage of FB lines found in each category. On the x -axis is the 

number of times a line is FB (maximum 13). On the y -axis is the percentage of FBs that 

are in each group. 
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Figure 4.8: Predictive power of each group. On the x -axis is the number of times a line 

is FB (maximum 13). On the y -axis is the predictive power of each group. 

Figure 4.7 shows that approximately 30% of FB faults that appear over 13 consecutive 

collections of data appear only once. This is not consistent with the results in Table 4.1, 

which indicate that approximately 13% of FBs should appear only once. Immediately 

this raises questions about the validity of the data we have used in this chapter. Before 

Telstra could implement a predictive maintenance scheme based on FM /FB data it 
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would need to conduct further analysis to determine the causes of the inconsistencies we 

are seeing. 

A possible explanation for part of the increase in FBs that appear once is that any FBs 

appearing for the first time in the 13`t' collection will be counted only once, even though 

they may appear again some time in the future. A better method would be to track 

individual FB lines and count the number of times they appear FB. This was not done in 

this analysis as it is not always clear if a line is not FB because it is no longer FB or if 

the exchange has refused permission to access its FM/FB buffer. In this analysis we 

have chosen 13 consecutive collections of FB data that we know have been collected. 

Therefore, if a FB does not appear in this collection we know that it was not FB when 

that collection was taken. 

It can be seen in Figure 4.8 that predictive power is the greatest at approximately 27% 

when a line is FB 6 times. While this is an interesting observation and it provides a 

better understanding of the dynamics of FB data it is not practically useful. It is shown 

in section 4.3 that the longer Telstra wait after observing a FB line, the less chance it 

has of beating a customer to a fault. Therefore Telstra cannot afford to wait to see if a 

line is going to be FB six times or twelve times before it decides to fix it. 

Figure 4.8 also exhibits a bell shaped distribution. This demonstrates a greater 

likelihood of a FB line being reported by a customer if that line is observed in more than 

one collection of FB data. However, as the number of times a line is FB increases above 

six the likelihood of a corresponding TR decreases. This may suggest that there are 

many lines that are not actively used by customers. These lines are constantly tested and 

reported as FB. Testing and storing these lines in buffers is a waste of resources and can 

affect the predictive power of FB data. For example, if there are 20 FB lines and 5 are 

reported as TRs then predictive power is 25 %. However if 5 of the 20 FB lines are 

disconnected and not used by customers then they should be discarded from predictive 

power calculations. Discarding these lines leaves 15 FB lines and 5 TRs, which 

increases predictive power to 33%. 
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4.6 Summary of FM /FB data analysis 

The analysis conducted in this chapter reveals that before Telstra could implement a 

predictive maintenance scheme with FM/FB data it needs to resolve a number of 

problems. These are: 

The results in section 4.1.1 show that the predictive power, when counting all FB 

lines, is 11.8 %. This suggests that Telstra is FM/FB testing lines that are not actively 

used by customers. As FB lines are disconnected from the network any customer 

trying to use a FB line will definitely be aware of the problem. As they cannot use 

their phone they will most likely report this problem. Testing FM/FB lines that are 

not actively used by customers is a waste of system resources. Such lines occupy 

space in the FM/FB buffer and require periodical testing. To rectify this Telstra 

needs to be able to specify which lines are FM/FB tested by AXE exchanges. 

In light of the idea that Telstra is possibly testing lines that are not actively used by 

customers it is hard to draw a conclusion as to the effectiveness of FM data. As FM 

lines are still connected Telstra needs to identify the physical properties of lines that 

will be reported as faulty by customers. Further investigation is required to 

determine if insulation resistance alone is adequate or if Telstra needs to apply other 

tests to more accurately predict lines that will be reported by customers in the future. 

Further research could also be conducted into optimal FM and FB insulation 

resistance settings. Currently these are set by Telstra at 50kS2 and 20kS2 respectively 

however it is not clear what impact changing these settings would have. 

Throughout this analysis we were hampered by the fact that FM/FB data is very 

inconsistent in its appearance. As AXE exchanges can reject the request to 

download the contents of their FM/FB buffers it is impossible to determine if a line 

is intermittently going in and out of FM or FB status or if it is just not being 

collected. Until this can be resolved Telstra s understanding of FM/FB dynamics 

will be limited and its potential for predictive maintenance not realised. 

Another area for further investigation is why do lines leave FM or FB status. 

Presuming that the FM/FB buffer in an AXE exchange could be accessed, we do not 
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know why lines go in and out of FM or FB status. Is Telstra fixing these lines or are 

the lines somehow correcting themselves? If they are correcting themselves what is 

causing this? 

Finally, an alternative for Telstra could be to find or develop new predictive 

technology. It may be possible for Telstrá s switches to perform other tests that may 

improve the results we have seen so far. 
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Chapter 5 

Modelling Telstra's CAN Maintenance System 
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After analysing the existing system, we need to experiment with it to determine 

operating conditions that satisfy the goals of this study. One method of doing this is to 

establish a system model. A system model enables the analyst to observe the 

performance of the system under different operating conditions. This chapter discusses 

the method that we have used to establish a model of Telstra's CAN maintenance 

system that we will use in chapter 6 to evaluate system performance. The performance 

measures that are used in the simulation analysis are presented along with the 

maintenance priority schemes. Finally we discuss why simulation is used to evaluate the 

performance of our model and how this is achieved. 

5.1 System modelling - the first step 

"System modelling is the first step toward understanding how an existing system 

actually works" [4]. A system model provides a means of approximating the true 

behaviour of a real system. If a model is accurate, then its approximation of behaviour is 

very close to true behaviour. As we strive to understand a system of interest we often 

want to study the system under different conditions, for example, different parameter 

values or different input functions. Using a system model is often cheaper and less time 

consuming than changing and studying a real system. System models may be 

mathematical equations, laboratory reproductions of a real system or computer 

simulation. The type of model used will depend upon the aims of the analysis and the 

experience of the modeller. 

There are many ways of classifying systems such as static or dynamic, time -varying or 

time -invariant, linear or non- Iinear, continuous -state or discrete state, time -driven or 

event driven, deterministic or stochastic and discrete time or continuous time. The 

reader is referred to [4] for further reading on each of these system classifications. 

5.2 Classifying a model of Telstra's CAN maintenance system 

Depending on the aims of the analysis a system may be modelled in many different 

ways. In this work we want to identify the operating conditions that reduce the TR 

volume, maintenance workload and mean TR system time when using a predictive 

maintenance scheme. Telstra's CAN maintenance system can be thought of as a queuing 

system where faults (FM/FBs and TRs) arrive in the system and wait in a queue until a 

worker is available to fix them. Using a queuing system we are able to count the number 
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of TRs that arrive in the system (TR volume) as well as the number of FM /FBs and TRs 

that need to be fixed (maintenance workload). If we record the time when a TR enters 

and exits the system then we are also able to calculate the mean TR system time. As a 

result we have chosen to model Telstra's CAN maintenance system as a discrete event 

queuing network. Queuing systems are often found in our daily lives when, in order to 

use certain resources, we have to wait. A simple one server queuing system can be seen 

in Figure 5.1. 

Item 
Arrivals 

QUEUE SERVER 

Item 
Departures 

Figure 5.1: A single server queuing system 

In terms of Telstra's CAN maintenance system, each arriving item is a fault (FM/FB or 

TR) that needs to be fixed. The server is a field worker who will fix faults enabling 

them to depart from the system. A queuing system is used because it effectively 

represents the main procedures that occur in Telstra's CAN maintenance system. For 

example, faults arrive in the system when they are reported by customers, the faults 

have to wait in a queue until a field worker is available to fix them and then once fixed 

they exit the system. Another reason for modelling Telstra's CAN maintenance system 

as a queuing system is that the rate of customer TR arrivals can easily be determined as 

well as the rate at which field workers fix faults. These parameters are essential inputs 

for a queuing system. Other information required to classify a queuing system is the 

queue type and its capacity. These are discussed in section 5.6. 

The state of a queuing system is often defined to be the length of the queue. Therefore, a 

change in a system's state occurs when an item arrives or departs from the queue. This is 

called a state transition. If we denote a, to be the arrival of the ith fault and d, to be the 

departure of the ith fault then an example of how Telstra's CAN maintenance system 

changes state can be seen in Figure 5.2. 
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Figure 5.2: State transitions in a fault management system. 

As the state can only take discrete integer values it is said to be a discrete -state system. 

Also, as the state is changed by asynchronously occurring instantaneous events such as 

fault arrivals or fault departures it is said to be an event driven model. Randomness in 

nature is something that affects all real life systems. In Telstrá s CAN maintenance 

system this means the rate at which faults occur and the rate at which customers report 

them is non -deterministic. It also means the performance of field staff will vary from 

person to person, as well as from job to job. As a result the state of the system can only 

be described probabilistically, and the system is called a stochastic system. Combining 

these characteristics, our model of Telstra's CAN maintenance system falls into the 

classification of a stochastic discrete event system. 

This thesis aims to determine operating conditions that reduce the TR volume, reduce 

the maintenance workload and reduce the mean TR system time when a predictive 

maintenance scheme is used. Therefore we need to model the arrival of FM/FB data in 

Telstrá s CAN maintenance system. There is a connection between FM/FBs and TRs as 

some FM/FBs predict future TRs. Quickly fixing these FM/FBs can prevent the 

predicted TRs from arriving. To model this characteristic we have decided to use two 

types of TR classifications, Predictable TRs (PTRs) and Unpredictable TRs (UTRs). 

UTRs can not be prevented and are independent of FM/FB data. They represent 

instantaneous faults such as cut cables, or network outages. PTRs can be prevented from 
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arriving if the FM/FB that predicts them is fixed before a customer detects the problem. 

Therefore PTRs are dependent on FM /FB data and the timing of when FM/FBs are 

fixed. 

A diagram of Telstrá s CAN maintenance system modelled as a stochastic discrete event 

queuing network can be seen in Figure 5.3. 

FAULT QUEUE 
ARRIVALS 

UTR 

FM/FB 

FAULT 
FIXING 

worker 1 

worker 2 

worker n 

Figure 5.3: System model of Telstra's CAN maintenance system. The broken arrow 

between FM /FB and PTR does not represent the flow of faults. The broken line 

indicates that a correct FM /FB will trigger the generation of PTRs. 

5.3 Modelling the field staff and the fault fixing process 

It is a natural phenomenon that some people work faster than others and some jobs take 

longer than others. In order to model these influences we have decided to assign each of 

the five workers in our model Erlang -k distributed service times. The process of fixing a 

fault is composed of many phases such as driving to the customer's house, setting up 

testing equipment, locating the fault and fixing the fault. We are not concerned with the 

actual steps involved in each task, only that each task takes some length of time. 

Considering the time to complete each task to be exponentially distributed enables us to 

use an Erlang -k distribution to model the overall time to fix the fault. Each worker, i = 
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1, 2, ... n, has a mean time to fix a fault ,u and a number of phases k. The shape of an 

Erlang -k distribution demonstrates the property that some jobs may take less than the 

mean time, but never less than zero, while some jobs may take considerably longer than 

the mean. 

We have decided to set n = 5. This number is chosen to keep the model at a manageable 

size. If a model has too many workers it requires more calculations and takes longer to 

evaluate system performance. On the other hand if a model has only one worker then it 

is too simplistic and is not representative of the true behaviour of the real system. 

Through trial and error we found that when n equals five each simulation run takes a 

manageable length of time. 

5.4 Defining model parameters 

The arrival of FM/FBs has been modelled as an exponentially distributed process with a 

mean inter -arrival time denoted &FM /FB. Exponential distributions are commonly used to 

model an arrival process. It should be noted that modelling FM/FB arrivals in this way 

does not accurately reflect Telstra's current FM/FB arrival process. The current process 

collects FM/FB data three times a day. It has already been stated in 3.3.2 that this 

method is not very practical as it is both unreliable and slow. The implication of our 

modelling decision is that we are modelling the arrival of FM/FB alarms as soon as they 

occur which is what we would want in a desired system. We are not modelling Telstrá s 

current FM/FB arrival process as we are not trying to analyse the performance of 

Telstrá s current system. We are trying to determine operating conditions that reduce the 

performance measures of interest using a predictive maintenance scheme. 

The arrival of customer TRs has also been modelled as an exponentially distributed 

process. In the case of UTRs, an exponentially distributed inter -arrival time with a mean 

denoted euTR is used. As these TRs are unpredictable their arrival process is 

independent of any other processes. However PTRs by their definition are dependent 

upon FM/FBs. 

We define three parameters that can be used to describe the relationship between 

FM/FBs and PTRs. The first parameter we call the predictive power and we denote it 

PP. The second parameter relates to the ability of FM /FB data to detect faults that are 
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caused by a common problem. Typically a mean number of TRs from different 

customers will arrive relating to a single common problem. We call this parameter the 

mean number of common cause TRs per correct FM/FB and we denote it S. In this work 

we have used integer exponential distributions with means of /3 = 1, 2, 3 and 43. These 

values for /3 were arbitrarily chosen for simplicity, however an analysis of FM/FB and 

TR data could possibly find means and distributions that accurately reflect the 

behaviour of the real system. We do not use a single distribution obtained from Telstra s 

real system as we do not want to determine the performance of Telstra's current system. 

We use four different distributions so that we can observe and understand the effects 

that variations in ß have. The third parameter is the time between the arrival of a FM/FB 

and the arrival of the PTR that it predicts. The distribution we have used can be seen in 

Appendix B. 

5.4.1 Calculating the mean UTR inter -arrival time 

We have modelled our system by firstly specifying the number of workers in the model. 

We denote the overall mean time that faults are fixed by the maintenance system (the 

five workers) as O. If we denote ,u; as the mean time that worker i takes to fix a fault 

then we can calculate the overall mean time to fix a fault as 

Where, 

0= 

n = the number of workers in the model. 

(5.1) 

So that we can specify the mean UTR inter -arrival time we make the assumption that 

without any predictive maintenance the mean number of TRs that arrive each day is 

equal to the mean number of faults that are fixed by the system each day. This helps to 

simplify our model as we are not able to change the number of workers in the model. 

If we denote #TOTAL as the mean number of TRs generated per unit time, #urR as the 

mean number of UTRs generated per unit time, #PTR as the mean number of PTRs 

a Refer to Appendix A for the distributions of the /3 values. 
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generated per unit time and #FM /FB as the mean number of FM /FBs generated per unit 

time then we can write 

Now 

Where, 

#UTR = TOTAL - #PTR 

#PTR = #FM/FB.PP.ß 

PP = the predictive power 

ß = the mean number of common cause TRs per correct FM/FB 

(5.2) 

(5.3) 

Therefore we can write 

#UTR = #TOTAL - ( #FM /FB PP )3 (5.4) 

Converting the notation to units of time we have 

Or 

Where, 

1 1 PP.ß 

BUTE ® BFM l FB 

(O'BFMIFB) 
BUTR 

(BFMIFB PP' )3) 

BFM /,B >O PP ß 

(5.5) 

Equation (5.5) is the defining equation of this model, and it is a unique contribution of 

our work as we have established a relationship between FM/FB data and TRs that has 

not been understood up until this stage. From equation (5.5) there are four operating 

regions that the modelled system can take. These are listed below and can be seen in 

Figure 5.4. 

Region 1: PP =0 BUTR = O. 

In this case no FM/FBs predict future TRs. Therefore, all TRs are UTRs. 
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Region 2: BFM/FB = O . PP . ß OUTS = 

This state can not be practically reached as there cannot be an infinite 

amount of time between UTR arrivals. However in reality this means that 

there are no UTRs and all TRs are predicted by FM/FB data. In this 

region it is possible to prevent all of the TRs if the FM/FB faults are 

fixed before customers detect the faults. 

Region 3: 

Region 4: 

OFM /FB < O PP . ß :. BUTR < O. 

A negative mean inter -arrival time is physically impossible. This case 

corresponds to FM /FB data predicting more TRs than would normally 

appear. This is an impossible state for our model to take. 

OFM,FB>O.PP.ß .. O <BUTR< 

This is the operating region that we will be operating in. It extends from 

region 1 to region 2. 

Figure 5.4: Different operating regions of equation (5.5) 

5.5 Modelling the relationship between FM /FB and PTR 

Unlike UTRs and FM/FBs, the arrival process of PTRs does not have a specified 

distribution and mean inter -arrival time as the arrival of PTRs is dependent upon the 

arrival of FM/FBs and whether or not the FM/FB that predicts them has been fixed. As 
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a result no closed form representation of the PTR arrival process exists. The PTR 

generation process is the sequence of decisions and events that are required to generate 

PTRs when a FM/FB arrives. This process can be seen in Figure 5.5. 

FM/FB arrives at 
the queue 

Does the 
FM /FB correctly 

predict TRs? 
(PP) 

A false alarm, 
no PTRs are 
generated. 

Determine the 
number of 
PTRs that the 
FM /FB predicts 
(ß) 

For each PTR, 
assign a future 
arrival time 
based on the 
delay 
distribution. 

CEND ) 

Figure 5.5: PTR generation process 

Once generated, a PTR will arrive in the system if the FM/FB that predicts it is not 

fixed before the PTRs future arrival time. 

5.6 Modelling the queue and fault despatch system 

In our model the queue performs the role of Telstra s automated fault despatch system 

DIRECTOR. When faults arrive in the system they are stored in the queue until a 

worker is available to fix them. In queuing theory there are many different types of 

queuing classifications according to which items get served first. The most common 

type of queue is a First In First Out (FIFO) queue. Other queue types are Last In First 

Out (LIFO) and priority queues. Priority queues operate on the premise that there are 

two or more types of items that arrive, each type with an assigned a priority level. When 

an item arrives at the queue its priority determines where it is placed in the queue. Items 

with the highest priority will be placed at the front of the queue and items with the 
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lowest priority get placed at the back. For our work we use both FIFO and priority 

queues. However, unless it is explicitly stated it should be assumed that the queue is 

FIFO. We also assign the queue an infinite capacity, which means that the queue will 

never be full. In Telstra's maintenance system the queue length is limited by the 

capacity of the memory of DIRECTOR. We assume this is large enough to consider the 

queue as having infinite capacity. 

5.6.1 Different prioritisation schemes 

In order to reduce the three performance measures below their current levels the system 

must be controllable. This control can come from changing parameter values such as the 

predictive power or the mean FM/FB inter -arrival time, however in reality these 

parameters are not likely to be controllable. Another way of controlling the system is 

through the use of a maintenance priority scheme. We have mentioned already in 

section 5.6 that the queue may have a priority characteristic that allows certain types of 

faults to receive service before other types. We are going to use this priority 

characteristic to study system performance. By simulating our model using different 

priority schemes we aim to identify points at whit} different priority schemes achieve 

the aim of reducing all performance measures below their current values. The 

maintenance priority schemes that we will use are: No Priority, Fault -Type Priority, and 

Estimated Time to Fix (ETF) Priority. 

The No Priority maintenance scheme is a simple FIFO queue. The first fault that arrives 

in the queue will be the first fault fixed. The FIFO queue does not identify different 

types of faults. 

The Fault -Type Priority operating scheme assigns a level of priority to each fault type. 

In our model we have two types of faults, TRs and FM /FBs. Therefore, if we assign TR 

priority then any TR that arrives will go to the front of the queue ahead of any FM/FB 

faults. However if there are already other TRs in the queue it will be the last TR in the 

queue. This is illustrated in Figure 5.6. 
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FM/FB 

FM/FB FM/FB 
TR, 

FM/FB TR, TR, 
TR, 

STEP 1: STEP 2: STEP 4: STEP 3: 

STEP 1: FM/FB, arrives at the queue, as there are no TRs in the queue 
FM/FB I goes to the front. 

STEP 2: TRI arrives at the queue, as TRs have priority it goes to the front of 
the queue. 

STEP 3: TR2 arrives at the queue. It gets placed ahead of FM/FBI, but behind 
the first TR. 

STEP 4: TR! exits the queue so now TR2 is at the front of the queue and 
FM/FB I is still behind it. 

Figure 5.6: Example of a TR priority queue 

The ETF Priority scheme prioritises faults based on whether the system time of a 

customer TR is likely to be greater than a predefined cut -off time. This scheme is 

motivated by the fact that although the mean time to fix TRs may be low, there may be 

many TRs that have a system time greater than an acceptable value. It is also motivated 

by the fact that Telstra has a legal obligation, as set out in its Customer Service 

Guarantee (CSG) [22] to fix a customer TR within a specified time. This time varies 

from metropolitan to remote areas. However if Telstra does not meet the CSG then it 

must compensate that customer. Gilchrist [6] reports that Telstrá s annual CSG 

compensation bill could be as high as $70 million in 2000. 

It is decided to prioritise only UTR faults in the ETF Priority scheme. It will be shown 

in section 6.2 that PTRs can be fixed when the FM /FB that predicts them is fixed. This 
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means that PTRs have a relatively small system time and it is not required to prioritise 

them. 

When a UTR arrives at the queue its position in the queue is the current queue length, 

QLength, plus one. Therefore the mean time that a UTR waits in the queue is given by 

Mean time in queue = O ( Qlength +1) (5.7) 

The estimated time to fix (ETF) is given by the mean time in the queue plus the mean 

time to be fixed by a worker. We make the assumption that all workers have the same 

mean time to fix a fault, µ. Therefore we can write 

ETF = O (QLength +1)+ /t (5.8) 

Once the ETF of an arriving UTR is calculated the queue position that the UTR will 

take needs to be determined. The position will depend upon whether or not the ETF is 

less than the cut -off time and also whether there are any FM/FB or PTR faults with 

ETFs less than the cut -off time. It can be seen in Figure 5.7 that every queue will have a 

certain number of positions that will have an ETF less than the cut -off time and the rest 

will be greater or equal to the cut -off time. 

Figure 5.7: Illustrating the cut -off point in every queue. All faults in the light grey area 

will have ETFs less than the cut -off time. All faults in the dark grey area will have ETFs 

greater than or equal to the cut -off time. 
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If upon arrival a UTR has an ETF less than the cut -off time, it will not be prioritised and 

will be placed at the back of the queue. This means that all items in the queue will meet 

the cut -off and no prioritisation is required. However, if the arriving UTR has an ETF 

greater than or equal to the cut -off then its position in the queue will depend on the 

types of faults that are ahead of it in the queue. The decision process we use to decide 

on the placement of an arriving UTR is illustrated in Figure 5.8. 
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CSTART 

Is there a 
FM/FB or PTR 
that will make 

the cut -off? 

Is the last 
fault that will 

make the cut -off 
a FM/FB or 

PTR? 

Put arriving UTR in 
the last position that 
will make the cut -off 
and push the FM/FB or 
PTR back one place. 

Put arriving UTR 
after the last UTR 
in the queue. 

Put the arriving 
UTR after the last 
fault that makes 
the cut -off. 

Remove the last 
FM/FB or PTR 
that will make 
the cut -off. 

Put this FM/FB 
or PTR after the 
arriving UTR. 

END 

Figure 5.8: Decision process to prioritise an arriving UTR with an ETF greater than or 

equal to the cut -off 

This decision process is explained graphically by the example given in Figure 5.9. 
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UTR, PTR, 

UTR, UTR, UTRZ 

PTR, PTR, UTR, 

FM/FB, FM/FB2 FM/FB2 

FM/FB, FM/FB, FM/FB, 

STEP 1: STEP 2: STEP 3: 
Initial Before After 
Queue Prioritisation Prioritisation 

STEP 1: Initial Queue With all places up until the ETF cut -off filled. 

STEP 2: Before Prioritisation UTR2 arrives and its ETF is greater 
than or equal to the cut -off. Therefore it will get a priority 
placement in the queue. 

STEP 3: After Prioritisation The queue once UTR2 receives a 
priority placement. 

Figure 5.9: Example of the prioritisation of UTRs when their ETF is greater than the 

cut -off. 

It should be noted that Figure 5.9 highlights that there is no relative sorting within the 

cut -off zone. This is because once a UTR is within the ETF < cut -off zone, the time 

until it is fixed isn't critical. On the other hand the time that a FM/FB waits in the queue 

is critical as it is desired to fix FM/FBs as quickly as possible so that future PTRs may 

be prevented. A FM/FB fault will only be moved out of the ETF < cut -off zone if it is 

the last (closest to the back of the queue) FM/FB in the ETF < cut -off zone and there is 

a UTR arriving that will miss the cut -off. 

5.7 Model assumptions 

In order to evaluate the model's performance under different operating conditions 

various assumptions about its behaviour need to be made. The assumptions used 

throughout this study are given in Table 5.1. 

58 



Table 5.1: 

Model Assumptions 

Assumption 

Number Description 

A I No distinction between FM and FB has been made. 

A2 A FM/FB takes the same time to fix as a customer TR. 

A3 A FM/FB that predicts many common cause TRs takes the same time to 

fix as a customer TR. 

A4 The time delay between the arrival of a FM /FB and the arrival of the TR 

it predicts is randomly generated according to a predefined distribution. 

This distribution is given in Appendix B. 

A5 The rate at which unpredictable and predictable TRs arrive in the model 

is not fixed. They are both dependent on the predictive power and the 

number of common cause TRs per correct FM/FB. 

A6 All five workers have the same mean time to fix a fault, ,u, and same k 

value. 

In our model we treat a FM fault the same as a FB fault (Al). This assumption is made 

to keep the model simple so that only one predictive power and one mean number of 

common cause TRs per correct FM/FB are required. This is not a limitation of the 

model and it can be changed so that two distinct classes of prediction data are generated. 

The assumptions that a FM/FB takes the same time to fix as a customer TR, whether it 

predicts multiple common cause TRs or not (A2 and A3), are also made to simplify the 

modelling and simulation. It is not known whether these assumptions are correct as 

Telstra does not currently fix FM/FB faults. However when a FB is reported by a 

customer, the time taken to fix that TR could reasonably be assumed to be the same as 

the time taken to fix the FB. 
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Assumption A4 means that the delay distribution is fixed and does not change 

throughout this study. It should be noted that the distribution used was not obtained 

from the analysis in section 4.3 as the analysis was not completed at the time the 

simulation analysis began. The distribution we use was obtained from a preliminary 

analysis of the delay between FM/FB and the TRs they predict. Although the 

distribution we use is not identical to either of those obtained in section 4.3, it is similar 

to the delay between FMs and the TRs they predict shown in Figure 4.6. 

The assumption that the rate at which PTRs and UTRs arrive in the model is not fixed is 

an important one. It is believed that in Telstra's network there is an underlying level of 

UTRs that arrive which cannot be predicted. These faults are such things as cable cuts 

or accidents that disrupt the supply of Telstra's service. However in our model we are 

not constrained by such things. Depending on the predictive power and the mean 

number of common cause TRs per correct FM /FB, it may be possible to predict all 

customer TRs. 

The assumption that all five workers have the same mean time to fix a fault, At, and 

same k value (A6) is made to simplify the analysis. This is a reasonable assumption 

which means we measure the mean service time per worker, not the mean service time 

of each worker. 

5.8 Performance measures 

The performance of any system will be measured differently according to the aims of 

the analysis. For example a Telstra customer may measure the performance of Telstra's 

CAN maintenance system as the average time they must wait to have their fault fixed 

once the fault has been reported. However Telstra shareholders may not be concerned 

with such a measure and are more likely to measure the performance as the overall cost 

of CAN maintenance. 

In either case a key performance indicator, or performance measure, is required so that 

each group can quantitatively calculate the system's performance. Performance 

measures provide a way of comparing the performance of different systems or 

comparing the performance of the same system under different conditions. For example 

the performance of a maintenance system with 4 workers and a FIFO queue may be 
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compared to the performance of a maintenance system with 5 workers and a LIFO 

queue. Based on the respective performances a decision can be made as to which system 

performs better. 

It is important to carefully choose what is measured as performance measures usually 

drive system behaviour. For example if field worker performance is measured only by 

the number of faults fixed per day then we may find that field staff are only concerned 

with fixing faults as quickly as possible. This may result in the field staff neglecting to 

follow standard procedures, which results in rework of the same fault at a later time. 

The performance of a queuing system can be measured by the mean waiting time of 

items, the mean system time of items or the mean queue length. Mean waiting time is 

the mean time an item spends waiting to be served in the queue. Mean system time is 

the mean time an item spends waiting in the queue plus the time it takes for that item to 

be served. The mean queue length explains itself. It is desirable to have all of these 

measures as small as possible. Other queuing system performance measures that are 

desirable to have as large as possible are the utilisation of the servers and the 

throughput. Utilisation is the fraction of time a server is busy. A high utilisation means 

that the servers are used efficiently. Throughput is the number of items served over a 

defined period of time. It is usually desirable to serve as many items as possible so that 

throughput is maximised. 

One of the motivations of predictive maintenance is to increase customer satisfaction. 

Customer satisfaction is very hard to measure, however it can be related to two things. 

Firstly a customer will be dissatisfied if they detect a fault with their service. Secondly, 

once they have detected the fault and reported it their dissatisfaction will increase with 

the length of time they must wait to have their service fixed. Therefore, customer 

dissatisfaction can be measured by the number of TRs that Telstra receive, or the TR 

volume, and the mean system time of customer TRs, or the mean TR system time. 

Predictive maintenance involves fixing both customer TRs as well as FM/FB faults. As 

a result we need to measure the workload of the field staff to ensure that predictive 

maintenance does not create more work than they currently have. Therefore the third 

performance measure is defined to be the maintenance workload, which is the number 

of faults, both FM/FB and TRs that arrive in the system which have to be fixed by field 

staff. 
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It will be shown that the performance measures are related to each other as changing the 

performance of one can affect the performance of the others. For example if the TR 

volume is reduced it may be the case that this also reduces the maintenance workload as 

well as the mean TR system time. However, it will be shown that this will not always be 

the case. The actual variation in the performance of the other measures is a function of 

the predictive power, the mean number of TRs predicted by a correct FM/FB and the 

maintenance priority scheme used. 

A fourth measure that will be used in section 6.3 is the number of TRs that have a 

system time greater than a predefined cut -off time. This measure is designed to count 

the number of times Telstra misses a CSG obligation. 

5.9 Simulating the model of Telstra's CAN Maintenance System 

Real world systems do not always yield a set of equations that, when solved, accurately 

describe a system's behaviour. Often random influences make a model too complex to 

solve analytically. In such cases model performance may be estimated numerically by 

computer simulation. Computer simulation is analogous to a laboratory experiment with 

computer software capturing all of the physical interactions. The randomness, or noise, 

that is found in real systems is incorporated into computer simulation via software 

called a random number generator. Computer simulation is a popular tool as it is often 

unrealistic to build a real system in a laboratory and too risky to invest time and money 

into constructing a real world system based on a "gut feeling ". As a result systems such 

as manufacturing systems, telecommunication networks and commuter traffic networks 

are all commonly modelled and analysed using computer simulation. However, 

simulation is not the real thing and any results are only estimates of true system 

behaviour. 

We simulate our model using a commercially available simulation package called 

ExtendTM. There are many simulation packages available however ExtendTM was chosen 

for a number of reasons. Firstly it is user friendly and available for both PC and 

Macintosh computers. Another feature is the accessibility of its software code that 

enables the user to modify the code of the model. Also, compared to similar simulation 

packages ExtendTM was relatively cheap which also contributes to our decision to use it. 
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An example of Telstra's CAN maintenance system modelled in ExtendTM is shown in 

Figure 5.10. 

TELSTRA FIELD WORKERS 

Figure 5.10: Telstra's CAN maintenance system modelled in Extend TM 

ExtendTM models flow from left to right. Therefore, faults are generated randomly in the 

Fault Generator block and immediately go to the Queue where they wait until a Telstra 

field worker is available to fix them. Finally the faults exit the system at the Exit block. 

The block in the top left hand corner, called the Executive block, is required in all 

discrete event models in ExtendTM. The Executive block keeps track of the overall 

system time, so that events occur in the correct sequences, and the simulation ends at 

the specified time or event. The Queue block is a priority queue in which the user can 

specify the capacity. For our purposes we want the queue to have infinite capacity so we 

set the capacity at 1,000,000. As this capacity is never reached it is effectively an 

infinite capacity queue. The Exit block (far right) is used to remove faults from the 

system once a Telstra field worker has fixed them. 

The Fault Generator block and the Telstra field workers are called hierarchical blocks 

in ExtendTM. They are composed of smaller blocks whose functionality combine to 

achieve the task of the larger block. It can be seen in Figure 5.11 that the modelled 
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Telstra field workers consist of a server and a random number generator. The length of 

time that the server takes to complete a job before passing it to the Exit block is 

determined by the random number generator. In our model the random number 

generator uses an Erlang -k distribution with the mean service time g and parameter k 

input by the user. 

TELSTRA FIELD 
WORKER 

SERVER 

n ra 

RANDOM NUMBER 
GENERATOR 

Figure 5.11: Composition of the Telstra field worker block. The thick dark lines pass 

faults into and out of the server. The thin line passes the service time from the random 

number generator block to the server. 

It can also be seen in Figure 5.12 that the Fault Generator block is made up of four 

smaller blocks: a UTR Generator, a FM /FB & PTR Generator, a Fault Rate Calculator 

and a Combine block. These blocks have been specifically coded for this project and are 

not standard ExtendTM blocks that are built into the package. 
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Figure 5.12: Composition of the Fault Generator block. The thick dark lines pass faults 

from the UTR generator and the FM /FB & PTR generator blocks. The thin lines pass 

values for PP, ß, OFM /FB, and eUTR 

Values for predictive power, PP, the mean number of common cause TRs per correct 

FM/FB, ß, and the mean inter -arrival time of FM/FB faults, 0FM /FB, are input in the 

FM/FB & PTR Generator block. These values are passed to the Fault Rate Calculator 

through the `a', `b' and `#fm/fb' connectors respectively. The value of the overall mean 

time that faults are fixed, O, is input in the Fault Rate Calculator block. Using O, along 

with PP, ß and OFM /FB, the mean UTR inter -arrival time, OUTR, is calculated using 

equation (5.5) and input to the UTR Generator through the `r' connector. 

The length of time that a simulation runs depends on the type of output analysis 

performed. There are two kinds of output analysis: steady state and finite -horizon. 

Steady state analysis estimates parameters of various stationary probability distributions 

(ie distributions that maintain their dynamic behaviour invariant to time shifts). In 

steady state analysis there is no obvious point to end the simulation as it is desired to 

observe the system's behaviour as t - 00. However, a finite -horizon simulation is one 

whose length is defined by a time or a state of the system. In steady state simulations 
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the critical question is: How long should a simulation run before it is at steady state? 

This is not an issue for finite- horizon simulation. Instead, every simulation defines a 

"sample" and performance estimates are obtained by repeating the simulation under the 

same initial conditions so that several such samples are obtained. We use a finite - 

horizon approach with the simulation length defined to be I working year. We assume 

that workers work 8 hours per day, 6 days a week for 52 weeks a year. Therefore one 

working year is equivalent to 2,496 hours. We do not attempt to analyse the system in 

steady state as for some parameter settings the performance measures do not have 

stationary probability distributions. For example when the predictive power is 0 %, the 

system receives both TR and FM/FB data. The combination of these inputs means that 

faults are arriving in the system faster than they can be fixed. As a result the queue 

length and the mean TR system time increase as the simulation continues. Therefore the 

probability distribution of the mean TR system time is not invariant to time shifts which 

is a requirement for stationary probability distributions. In such cases a finite -horizon 

analysis still enables a comparison of system performance. 
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5.10 Summary of modelling Telstra's CAN maintenance system 

In this chapter we have modelled Telstra's CAN maintenance system as a stochastic 

discrete event queuing network. A comprehensive illustration of this model is given in 

Figure 5.13. 

FAULT 
ARRIVALS 

6UTR 

Equation (5.5) 

OFM/FB 

r 

PP 

1 

PTRs 

QUEUE 
FAULT 
FIXING 

worker 1 

worker 2 

worker 3 

worker 4 

o- 
worker 5 

Figure 5.13: A comprehensive model of Telstra's CAN maintenance system. The broken 

line connecting PP and PTRs does not represent the flow of FM /FB faults. The broken 

line indicates that a correct FM /FB will trigger the generation of PTRs, the number of 

which depends on P. 
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We have established a unique relationship between FM/FBs and TRs that is captured by 

equation (5.5). This equation allows us to calculate the mean UTR inter -arrival time, 

BuTR, when given values for PP, ß, OFM/FB and µ. 

Using the assumptions given in Table 5.1 we are able to evaluate system performance 

using the No Priority, Fault -Type Priority and ETF Priority schemes. This will be done 

in chapter 6 when, for each prioritisation scheme, we will determine the minimum 

values for PP and ß that will reduce the performance measures below their current 

levels. 
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Chapter 6 

Identification of operating conditions that improve 

system performance 

69 



In this chapter we use simulation to examine ways in which Telstra can improve the 

performance of its CAN maintenance system. Specifically we determine operating 

criteria that achieve the cycle of operation shown in Figure 1.2, which was one of the 

aims of this thesis. We do this by conducting 3 sets of experiments. The first examines 

the performance of Telstra's CAN maintenance system if Telstra does not identify 

which TRs are predicted by which FM/FBs. When this happens PTRs are not cleared 

with the FM/FBs that predict them. The second experiment studies the effect of clearing 

PTRs with the FM/FBs that predict them. In both of these experiments the maintenance 

priority scheme, predictive power and ß that result in the best system performance are 

identified. The importance of understanding the sensitivity of performance to variations 

in predictive power is examined when we show that a 3% decrease in predictive power 

may result in a 38 hour (4.75 day) increase in mean TR system time. The third 

experiment demonstrates how an Estimated Time to Fix (ETF) Priority scheme can be 

used to reduce mean TR system time as well as reduce the number of TRs that have a 

system time greater than a predefined value. We show that it is possible for Telstra to 

reduce the number of times it violates a customer service guarantee (CSG) repair time 

by up to 96 %. 

In each experiment the predictive power is incremented in steps of 10 %. Therefore, 

results are obtained for predictive powers of 0 %, 10 %, 20 %, ..., 100 %. For each value 

of predictive power the model is simulated ten times and the mean performance is 

calculated. The curves shown in the results are linear interpolations between these 

points. 

6.1 Experiment 1: System performance when PTRs are not cleared with 

the FM /FBs that predict them 

This experiment has the characteristic that it does not clear PTRs that have arrived when 

the FM/FB that predicts them is fixed. As this is the first experiment, the decision not to 

match FM/FBs with the PTRs they predict was made to keep the initial analysis simple. 

In a real system this is analogous to Telstra using FM/FB data without understanding 

the ability of FM/FB data to identify common cause faults. Therefore when a PTR and 

FM/FB have a common cause, the commonality is not recognised and the PTR and 

FM/FB are individually fixed. In this case the only benefit of predictive maintenance 
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comes from preventing future TRs by fixing FM/FBs before customers detect a 

problem. 

The parameter values used in this experiment can be seen in Table 6.1. 

Table 6.1: 

Parameter Values 

Parameter Description Value 

p The mean time that all faults (both 0.4 hours 

FM/FBs and TRs) are fixed by the (20 faults per day) 

whole system (5 workers). 

The mean time a worker takes to fix 2 hours 

a fault. 

ß The mean number of common cause 1, 2, 3 or 4 

TRs per correct FM /FB. 

OEM/FE The mean inter -arrival time between 0.8 hours 

FM/FB faults. (10 FM/FBs per day) 

Burg The mean inter- arrival time between Determined by 

UTR faults. equation (5.5) 

k The number of phases in an Erlang-k 7 

distribution. 

PP Predictive power. 0, 10, 20, ... 100% 

6.1.1 Reducing TR volume 

The first performance measure that we want to reduce is TR volume. An estimate of the 

current TR volume, 6240 TRs per year, is obtained by multiplying 20 TRs per day (the 

number of TRs fixed per day without FM /FB data) by 6 days a week, 52 weeks of the 
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year. Initially the model is run with a No Priority maintenance scheme. In Telstra's 

current system this scheme is equivalent to fixing TRs and FM /FBs on a First In First 

Out (FIFO) basis. We have set /3 equal to 2 which means that each correct FM/FB 

predicts two TRs. The results can be seen in Figure 6.1. 
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Figure 6.1: Predictive power required to reduce TR volume. On the x -axis is predictive 

power and on the y -axis is the number of TRs received per year. A No Priority 

maintenance scheme is used with a /3 of 2. 

In Figure 6.1 the TR volume is reduced for all values of predictive power. For 

predictive powers between 0% and 60% the reduction in TR volume is quite small as 

there are many false alarms in the queue that do not predict future customer TRs. While 

these false alarms occupy system resources to get fixed, FM/FBs that correctly predict 

future TRs have to wait longer in the queue. By the time these correct predictions get 

fixed customers have already reported the faults (PTRs). 

For predictive powers greater than 60% the TR volume drops significantly as more 

FM/FBs correctly predict future TRs. These correct FM/FBs are fixed sooner, before 

customers detect and report them as PTRs. This reduces the number of PTRs in the 

queue, which means that more FM/FBs are fixed sooner and fewer customers are 

reporting faults. 
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6.1.2 Reducing maintenance workload 

Although TR volume is reduced for all predictive powers above 0 %, we do not know 

what effect predictive maintenance has on maintenance workload. Figure 6.2 shows the 

maintenance workload for predictive powers between 0% and 100% when a No Priority 

scheme is used and ß equals 2. 
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Figure 6.2: Predictive power required to reduce maintenance workload. On the x -axis 

is predictive power and on the y -axis is the number of faults to be fixed per year. A No 

Priority scheme is used with a /3 of 2. 

It can be seen in Figure 6.2 that maintenance workload consists of customer TRs (both 

UTR and PTR) and FM/FB faults (including false alarms). In this experiment 

maintenance workload takes the same shape as the TR volume curve but is shifted 

vertically by the yearly FM/FB volume (10 FM /FB per day, or 3120 FM/FB per year). 

This is because we are not matching FM/FBs with the PTRs they predict. We are not 

identifying common cause faults that can be cleared by a single worker so all faults 

(FM/FBs, PTRs and UTRs) that arrive must be individually fixed. 

The only advantage of operating such a scheme is observed when TRs are prevented by 

fixing the FM/FBs that predict them before customers detect the problems. In such 

cases it won't be until the TR volume is reduced by an amount greater than the FM/FB 
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volume that maintenance workload will fall below its current level. It can be seen that 

this occurs when predictive power is 72 %. 

6.1.3 Reducing mean TR system time 

Results so far indicate the performance of Telstra's CAN maintenance system can be 

improved through the use of predictive maintenance when there is a minimum 

predictive power of 72 %. However, we haven't observed system performance with 

respect to the third performance measure: mean TR system time. TR system time is the 

time a customer TR spends waiting in the queue plus the time it takes to be fixed 

(service time). Figure 6.3 shows the minimum predictive power required to reduce 

mean TR system time below its current estimate. The current estimate of mean TR 

system time, 12 hours, was obtained by simulating the system without any FM /FB data. 

The log scale on the y -axis should be noted. 
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Figure 6.3: Predictive power required to reduce mean TR system time. On the x -axis is 

predictive power and on the y -axis is the mean TR system time in hours. A No Priority 

maintenance scheme is used with a /3 of 2. 

Figure 6.3 shows that it isn't until a predictive power of 82% that mean TR system time 

falls below the current estimate. As with the TR volume and maintenance workload, it 

isn't until the predictive power is greater than 60% that the mean TR system time curve 
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begins to fall significantly. Again the reason is that after 60% more FM/FB faults are 

correctly predicting future TRs and these FM/FBs are fixed sooner which prevents 

PTRs arriving. 

At predictive powers of 90% and 100% the mean TR system time is constant at 

approximately 2.4 hours. The mean service time to fix a fault is 2 hours so we can 

conclude that at these predictive powers the queue is predominantly empty and most 

arriving TRs are immediately sent to a field worker to be fixed. 

For predictive powers between 60% and 90% the mean TR system time falls very 

sharply. This indicates that mean TR time is very sensitive to variations in predictive 

power over this range. As a result a small variation in predictive power could result in a 

large variation in mean TR system time. With respect to Telstra's maintenance system 

this is a very important observation. Telstra can not know the predictive power of its 

system exactly, it will only know the mean predictive power. Therefore when operating 

with predictive powers between 60% and 90% it must be aware that any variations away 

from the mean value will result in large variations in mean TR system time. 

6.1.4 The effect of varying ß 

Until now we have observed system performance when /3 equals 2. We will now 

investigate how changing /3 effects model performance. In results so far mean TR 

system time requires the greatest minimum predictive power. Therefore, we will 

investigate how the value of /3 effects the predictive power required to reduce mean TR 

system time. The results can be seen in Figure 6.4. The log scale on the y -axis should be 

noted. 
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Figure 6.4: Predictive power required to reduce mean TR system time for different P. 

On the x -axis is predictive power and on the y -axis is the mean TR system time in hours. 

A No Priority maintenance scheme is used and each curve has been labeled with its l3 

value. 

From Figure 6.4, the mean TR system time when /3 equals one does not fall below the 

current estimate; in fact it barely changes. This is because even at high predictive 

powers, if Telstra does beat a customer to a fault, only one PTR is prevented. Saving 

one TR is not enough to significantly reduce the queue length, which means that TRs 

are waiting longer in the queue to be fixed. As this experiment does not clear PTRs with 

the FM/FBs that predict them, if we don't fix a correct FM/FB before a customer reports 

it there are two faults to fix, the PTR and the FM/FB. Hence the workload has doubled. 

This result highlights how important it is that Telstra can clear PTRs with the FM/FBs 

that predict them. If it can't do this then it could potentially be doubling its maintenance 

workload when /3 equals one. 

When /3 equals two, three and four the mean TR system time falls below the current 

estimate at 82 %, 49% and 37% respectively. In these cases many common cause TRs 

are prevented from arriving by fixing correct FM/FB predictions. When this happens the 

queue length is significantly reduced and TRs do not wait as long in the queue. The 
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shorter queue also means that correct FM/FBs get fixed sooner so there is a greater 

chance that future PTRs are prevented. 

This demonstrates that even if Telstra is not able to recognise the commonality between 

FM/FBs and the PTRs they predict it is still able to significantly improve system 

performance. However, it should be noted that when ¡3 equals two, three and four the 

curves are very steep signifying that a small variation in predictive power could result in 

a large variation in mean TR system time. For example when /3 equals three and 

predictive power is between 40% and 50% a deviation in predictive power of two or 

three percent could increase mean TR system time by approximately 25 hours, or 3 

days. As a result Telstra will need to be very careful if it wants to operate in these 

regions as it may not be possible to calculate predictive power with a degree of accuracy 

that eliminates such variations. 

The curves for /3 equals three and four do not reach predictive powers of 100 %. In fact 

they finish at 60% and 50% respectively. This is because at these values all of the TRs 

are predicted. For predictive powers greater than these values BuTR becomes negative 

which means the system is operating in region 3 as discussed in section 5.4.1. 

6.1.5 Different maintenance priority schemes 

So far all results have been obtained using a No Priority maintenance scheme which 

fixes faults on a FIFO basis. We will now investigate what effect a FM/FB Priority 

scheme and a TR Priority scheme have on system performance. Both FM/FB and TR 

Priority schemes are from the Fault -Type Priority scheme discussed in section 5.6.1. 

Figure 6.5 shows the predictive power required to reduce maintenance workload for 

different priority schemes when /3 is two. 
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Figure 6.5: Predictive power required to reduce maintenance workload for each 

maintenance priority scheme. The x -axis is predictive power and the y -axis is the 

number of faults to be fixed per year. The different priority schemes are shown in the 

legend and /3 equals 2. 

Figure 6.5 shows that the FM/FB Priority scheme is the best performing priority 

scheme, reducing maintenance workload below the current estimate at approximately 

55 %. The reason the FM/FB Priority curve is linear is that as FM/FBs are given priority, 

almost all correct FM/FBs are fixed before customers report the faults (ie before the 

PTRs arrive). Therefore maintenance workload consists of UTRs, FM/FBs and a small 

percentage of PTRs. The small percentage of PTRs that will always be present is 

discussed in section 6.2.1. 

In Figure 6.5 No Priority is the second best scheme falling below the current estimate at 

72 %. The TR Priority is the worst performing scheme not falling below the current 

estimate until a predictive power of 81 %. With a TR Priority scheme FM/FBs are 

waiting longer in the queue and aren't being fixed before customers report the problems. 

Also as we aren't matching FM/FBs with the PTRs they predict the PTRs that arrive 

have to be individually fixed which increases the maintenance workload. 
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Based on the results in Figure 6.5 it could be concluded that if Telstrá s FM/FB data has 

a predictive power of 55 %, with a ß of 2, then a FM /FB Priority scheme would be the 

best operating strategy. However mean TR system time must also be taken into 

consideration before any operating decisions are made. The mean TR system time for 

each priority scheme can be seen in Figure 6.6. The log scale on the y -axis should be 

noted. 
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Figure 6.6: Predictive power required to reduce mean TR system time for each 

maintenance priority scheme. On the x -axis is predictive power and the y -axis is the 

mean TR system time in hours. The different priority schemes are shown in the legend 

and ß equals 2. 

Although a FM/FB Priority scheme will reduce the maintenance workload when 

predictive power is 55% it can be seen in Figure 6.6 that it would result in a mean TR 

system time of approximately 50 hours, or a little over 6 days. This is more than four 

times the current estimate of 12 hours. It isn't until predictive power is approximately 

58% that mean TR system time falls below the current estimate. A very rapid decrease 

in mean TR system time occurs for a FM /FB Priority scheme with predictive powers 

between 40% and 60 %. This shows that mean TR system time is very sensitive to a 

small change in predictive power over this range. As a result it would not be wise for 
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Telstra to operate in this range as a decrease in predictive power of 3% may result in an 

increase in mean TR system time of 38 hours. 

This result demonstrates the importance of observing all system performance measures. 

It also raises the question of what is more important, dissatisfied customers or 

maintenance costs? For example, if Telstra has a predictive power of 55% then it has to 

choose its operating scheme. If it uses an FM/FB Priority scheme the TR volume and 

maintenance workload will reduce but mean TR system time will greatly increase. As a 

result there will be fewer dissatisfied customers, but those that do have a fault will be 

very unhappy as it will take approximately 6 days to fix their fault. On the other hand 

Telstra can use a TR Priority scheme which will ensure that all reported faults are fixed 

quickly but the maintenance workload will increase by approximately 3000 faults per 

year. 

Figure 6.6 shows that for predictive powers between 0% and 57% the TR Priority 

scheme has the lowest mean TR system time. This is because TRs are fixed first and 

they are not waiting as long in the queue. However, the TR Priority scheme does not fall 

below the current estimate until a predictive power of approximately 74 %. This is 

because FM/FBs wait too long to be fixed and customers report the problems as PTRs. 

At a predictive power of 90% a TR Priority scheme has a slightly lower mean TR 

system time than the No Priority and FM/FB Priority schemes. The difference between 

the schemes here is approximately 1 hour. It is believed this is due to random noise in 

the results and is not significant. It should also be noted that at 90% all priority schemes 

have a mean TR system time of approximately 2 hours. This is the mean time to fix a 

fault, which implies that most TRs do not have to wait in the queue. 

6.1.6 Experiment one conclusions 

It was shown that the TR volume is reduced below its current estimate for all predictive 

powers greater than 0 %. Intuitively this is what would be expected as predictive 

maintenance can only maintain or reduce TR volume, not increase it. 
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A summary of the predictive powers required to reduce the maintenance workload and 

mean TR system time below estimates of their current values when /3 equals 2 is shown 

in Figure 6.7. 
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Figure 6.7: The minimum predictive power required to reduce each performance 

measure when /3 equals 2. On the x -axis is each performance measure and on the y -axis 

is the minimum predictive power that reduces the performance measure below the 

estimate of its current performance. The priority schemes are given in the legend. 

From Figure 6.7 we can conclude that when /3 equals 2, a FM/FB Priority scheme will 

reduce all performance measures with the lowest predictive power of 58 %. 

The analysis conducted in this section has lead to the following conclusions: 

If Telstra is not able to identify which TRs are predicted by which FM/FBs the 

maintenance workload and mean TR system time increase as individual PTRs must 

be fixed. 

Telstra must be able to detect multiple TRs with FM /FB data. If it can not do this 

then it will be unable to implement a predictive maintenance scheme. It was shown 

that when /3 equals 2, 3 and 4 the mean TR system time was reduced at predictive 
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powers of 82 %, 49% and 37% respectively. Therefore significant performance 

improvements can be made if Telstra could target its maintenance to those FM/FBs 

that predict the most TRs. 

Telstra must be aware of the sensitivity of the performance measures to variations in 

predictive power. As predictive power can only be calculated as a mean value 

Telstra must take great care that any variations do not result in significant decreases 

in performance. 

6.2 Experiment 2: System performance when PTRs are cleared with the 

FM /FBs that predict them 

This experiment differs from the first in that we do clear PTRs that are in the queue 

when the FM/FBs that predict them are fixed. This is equivalent to Telstra being able to 

identify which TRs have been predicted by which FM/FBs. Therefore when Telstra 

sends a worker to fix a FM/FB, that worker is able to clear the TRs that are related to it. 

From the results in section 6.I we expect that this experiment will reduce maintenance 

workload (as PTRs do not have to be individually fixed) and it should also reduce mean 

TR system time as PTRs will not have to wait until they are at the front of the queue to 

be fixed. Clearing PTRs with the FM/FBs that predict them will result in much shorter 

queues, which means that FM/FBs will be fixed sooner and fewer PTRs will arrive. 

However, we do not know how many PTRs can be prevented or to what extent mean 

TR system time will be reduced. 

Diagrammatically the model is still identical to the one in Figure 5.3, however we have 

changed the way faults are cleared from the queue. Now when a FM/FB is sent to a 

field worker, aII PTRs in the queue that were predicted by that FM/FB are cleared when 

that FM/FB is fixed. In the case when TRs have priority, PTRs may be fixed before the 

FM/FBs that predict them. In this case we decided that when a PTR is fixed, the FM/FB 

that predicted it is cleared from the system. However any other PTRs that were 

predicted by that FM/FB aren't cleared with the first PTR, they remain in the system and 

have to be individually cleared. This is consistent with current practises when no 

FM/FB data is used and all TRs are individually cleared. 
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6.2.1 Reducing TR volume 

The performance measures used in experiment one are also used in this experiment. 

Therefore, we firstly look at the predictive power required to reduce TR volume. This 

can be seen in Figure 6.8. 
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Figure 6.8: Predictive power required to reduce TR Volume when matching FM /FBs 

with the PTRs they predict. On the x -axis is predictive power and on the y -axis is the 

number of TRs received per year. A No Priority maintenance scheme is used and /3 

equals 2. 

Comparing Figure 6.8 with Figure 6.1 it can be seen that in the first experiment the TR 

volume did not significantly change until a predictive power of 60 %. However, 

matching FM/FBs with the PTRs they predict results in the TR volume significantly 

changing at a predictive power of 40 %. This is because matching FM/FBs with the 

PTRs they predict effectively reduces the number of faults that need to be cleared. As a 

result the queue is shorter and more FM/FB faults are fixed sooner which means fewer 

PTRs arrive. It can be seen that if Telstra was operating a No Priority scheme with a 

predictive power of 60% and ß equal to 2 it could reduce its TR volume by 48% just by 

having the ability to identify the TRs that are predicted by each FM/FB. 
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An interesting observation when clearing PTRs with the FM/FBs that predict them 

occurs when a FM/FB Priority scheme is used. Figure 6.9 shows the TR volume and 

PTR volume for each predictive power when a FM/FB Priority scheme is used and ß 

equals 2. 
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Figure 6.9: Predictive power required to reduce TR Volume when matching FM /FBs 

with the PTRs they predict. On the x -axis is predictive power and on the y -axis is the 

number of TRs received per year. A FM /FB Priority scheme is used and ß equals 2. 

It can be seen in Figure 6.9 that the All TRs curve for a FM/FB Priority scheme is 

approximately linear. When a FM/FB Priority scheme is used FM/FBs are fixed first 

and most of the PTRs never arrive. However there is a small number of PTRs that will 

always arrive which is also plotted in Figure 6.9. It can be seen that the PTR volume 

curve rises approximately linearly as predictive power increases. This is because there is 

always a constant percentage of PTRs that arrive before FM/FBs are fixed. As the 

predictive power increases, so too does the number of PTRs generated and hence so too 

does the number of PTRs that arrive before the FM/FBs are fixed. It can be seen that 

when predictive power is 100% approximately 410 PTRs arrive per year. This 

corresponds to approximately 6.5% of all PTRs. This percentage will vary for different 

distributions of the delay between a FM/FB arrival and the arrival of the PTRs it 

predicts. This is significant as it demonstrates that when using a FM/FB Priority scheme 
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there will always be a percentage of PTRs that can be predicted, but not prevented. 

Therefore, if Telstra uses a predictive maintenance scheme to reduce the number of TRs 

it receives each year it must be aware that there will always be a percentage of TRs that 

can be predicted, but not prevented. 

6.2.2 Reducing maintenance workload 

The predictive power required to reduce maintenance workload when /3 is 2, and a No 

Priority scheme is used, can be seen in Figure 6.10. 
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Figure 6.10: Predictive power required to reduce maintenance workload when 

matching FM /FBs with the PTRs they predict. On the x -axis is predictive power and on 

the y -axis is the number of faults to be fixed per year. A No Priority scheme is used and 

/3 equals 2. 

Comparing Figure 6.10 with Figure 6.2 a significant change can be observed. The most 

striking feature of Figure 6.10 is the linear behaviour of the new maintenance workload 

curve. In experiment one the maintenance workload consisted of three types of faults: 

FM/FBs, UTRs, and PTRs. However, when clearing PTRs with the FM/FB that predicts 

them, maintenance workload consists of only FM/FBs and UTRs. The PTRs predicted 

by FM/FBs are cleared when the FM/FB is cleared and therefore are not included in the 
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maintenance workload. Equations (5.2) and (5.3) are used to calculate the mean number 

of UTRs and mean number of PTRs that arrive per day. They are repeated again below. 

#UTR #TOTAL # PTR 

#PTR -#FM I FB'PP.ß 

(5.2) 

(5.3) 

Recalling fròm Table 6.1 that without predictive maintenance the initial number of TRs 

is 20 per day and the number of FM /FBs is 10 per day, we can calculate the number of 

UTRs and hence the new maintenance workload for any combination of predictive 

power and ß. 

As an example, the results in Figure 6.10 are for a ß of 2, therefore when predictive 

power equals 30% we have, 

Mean number of PTRs per day, #PTR = #FM /FB PP . ß 

10 x 0.3 x 2 

=6 

Mean number of UTRs per day, #UTR = #TOTAL - #PTR 

= 20 - 6 

= 14. 

Therefore, over a year (6 days a week, 52 weeks of the year) there are 3120 FM/FBs 

and 4368 UTRs and the new maintenance workload is approximately 7488 faults per 

year. It can be seen in Figure 6.10 that this is correct. 

When clearing PTRs from the queue with the FM/FB that predicts them, which is the 

case with the FM/FB Priority and No Priority schemes, the predictive power required to 

reduce maintenance workload can be calculated for any given ß. As the current estimate 

of maintenance workload is equal to #TOTAL (the TR volume) we can write for each 

maintenance workload: 
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Therefore, 

Current estimate = FM/FB or No Priority scheme 

#TOTAL = #FM /FB + #UTR 

_ #FM /FB + ( #TOTAL - #PTR) 

= #FM /FB + ( #TOTAL - #FM /FB PP . ß) 

#FM /FB PP ß = #FM /FB 

PP = 1 

ß 
(6.1) 

Using equation (6.1) we can calculate that for )3 equal to 2, 3 and 4 the predictive power 

required to reduce the maintenance workload is 50 %, 33% and 25 %. This result is 

intuitively correct. For example when ß equals 4, all jobs can be cleared by fixing 25% 

of the original load. Therefore to maintain the original workload, 75% of false alarms 

must be added. It can be seen in Figure 6.11 that simulation results support these 

calculations. 
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Figure 6.11: Predictive power required to reduce maintenance workload for different ß 

when matching FM /FBs with the PTRs they predict. On the x -axis is predictive power 

and on the y -axis is the maintenance workload in faults per year. A No Priority scheme 

is used and each curve has been labeled with its ß value. 
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The significance of this is that for a FM/FB or No Priority scheme maintenance 

workload is no longer an unknown quantity obtainable only through simulation. If 

Telstra is able to identify which TRs are predicted by which FM/FBs it will be able to 

directly calculate the mean maintenance workload for any given predictive power and ß. 

This is not the case when a TR Priority scheme is used. This case will be discussed in 

section 6.2.5. 

6.2.3 Reducing mean TR system time 

The minimum predictive power required to reduce mean TR system time when 

matching FM/FBs with the PTRs they predict can be seen in Figure 6.12. The log scale 

on the y -axis should be noted. 
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Figure 6.12: Predictive power required to reduce mean TR system time when matching 

FM /FBs with the PTRs they predict. On the x -axis is predictive power and on the y -axis 

is the mean TR system time in hours. A No Priority scheme is used and 13 equals 2. 

In experiment one the required predictive power to reduce mean TR system time was 

82 %. It can be seen in Figure 6.12 that matching FM/FBs with the PTRs they predict 

reduces the required predictive power to 51 %. This drop is a result of two factors. 

Firstly PTRs are fixed sooner as they are cleared when the FM /FB that predicts them is 

cleared. Secondly, as PTRs are cleared with the FM/FBs that predict them, the queue is 
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shorter and any UTRs in the queue are also fixed sooner. Again this result demonstrates 

how important it is that Telstra is able to identify which TRs are predicted by which 

FM/FB s. 

6.2.4 The effect of varying ß 

We have already seen that matching FM/FBs with the PTRs they predict allows the 

minimum predictive power to be calculated using equation (6.1). Therefore, we will 

now investigate the effect that varying /3 has on the mean TR system time. The 

predictive power required to reduce mean TR system time for different /3 can be seen in 

Figure 6.13. The log scale on the y -axis should be noted. 
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Figure 6.13: Predictive power required to reduce mean TR system time for different ß 

when FM /FBs are matched with the PTRs they predict. On the x -axis is predictive 

power and on the y -axis is the mean TR system time in hours. A No Priority scheme is 

used and each curve has been labeled with its ß value. 

Comparing Figure 6.13 with its experiment one equivalent, Figure 6.4, several 

important observations can be made. Firstly when matching FM/FBs with the PTRs 

they predict the mean TR system time is still not reduced when ß equals 1. When ß 

equals 2, 3 and 4 the respective minimum predictive powers are reduced from 81 %, 

46 %, and 34% in experiment one to 51 %, 38% and 29 %. Therefore it can be seen that 
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matching FM/FB with the PTRs they predict results in a larger benefit when /3 equals 2 

than when /3 equals 4. This is an important result. If Telstra is able to predict a mean of 

4 TRs per correct FM/FB then it is not as important if Telstra is unable to identify which 

TRs are related to which FM/FBs. On the other hand if Telstra is only able to predict a 

mean of 2 TRs per correct FM /FB then it is very important that it can identify which 

TRs are related to each FM /FB. 

6.2.5 Different maintenance priority schemes 

The effect that different maintenance priority schemes have on the maintenance 

workload when FM/FBs are matched with the PTRs they predict can be seen in Figure 

6.14. 
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Figure 6.14: Predictive power required to reduce maintenance workload for each 

maintenance priority scheme when matching FM /FBs with the PTRs they predict. On 

the x -axis is predictive power and on the y -axis is the number of faults to be fixed per 

year. The priority schemes are given in the legend and /3 equals 2. 

It can be seen that, when matching FM/FBs with the PTRs they predict, the maintenance 

workload for the FM/FB and No Priority schemes is the same. This is because in both 

schemes FM/FBs are fixed before PTRs and maintenance workload consists of only 

UTRs and FM/FBs. 
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However when TRs have priority PTRs are often fixed before the FM/FBs that predict 

them. When this happens the FM/FB is fixed with the first PTR, however any other 

PTRs predicted by that FM/FB are not cleared. This assumption is consistent with the 

current practice within many telecommunications maintenance systems. Often TRs that 

are related by a common cause are not cleared when one of the TRs is fixed. This is can 

be one of the advantages of using FM /FB data. As a result the workload when a TR 

Priority scheme is used consists of UTRs, PTRs, false alarm FM/FBs, and correct 

FM /FBs whose PTRs have not yet arrived. 

How different maintenance priority schemes affect mean TR system time when FM/FBs 

are matched with the PTRs they predict can be seen in Figure 6.15. The log scale on the 

y -axis should be noted. 
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Figure 6.15: Predictive power required to reduce mean TR system time for each 

maintenance priority scheme when FM /FBs are matched with the PTRs they predict. On 

the x -axis is predictive power and on the y -axis is the mean TR system time in hours. 

The priority schemes are shown in the legend and ß equals 2. 

By comparing Figure 6.15 with Figure 6.6 we can see there are significant differences 

that result from matching FM /FBs with the PTRs they predict. In experiment one 
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FM/FB Priority required the lowest predictive power of 58 %. In this experiment the 

required predictive power for FM /FB Priority dropped slightly to 56 %. However, a No 

Priority scheme requires the lowest predictive power of 51%, down from 82% in 

experiment one. To understand why No Priority performs better than FM/FB Priority 

we need to study the PTRs and UTRs separately. 

At a predictive power of 50% the TR volume is lower for FM /FB Priority than No 

Priority as there are fewer PTRs arriving. This can be seen in Figure 6.16. 
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Figure 6.16: A break down of the TR volume for FM /FB Priority and No Priority 

schemes. The priority schemes are on the x -axis and the number of TRs per year is on 

the y -axis. The TR classification is given in the legend, predictive power equals 50% 

and l3 equals 2. 

As TR volume consists of mostly UTRs, the mean UTR system time will have a 

significant impact on mean TR system time. The mean PTR system time will be kept 

relatively small as PTRs are cleared when the FM/FB that predicts them is cleared. In a 

FM/FB Priority scheme UTRs must wait longer than any other scheme as they do not 

have priority and are not fixed on a FIFO basis. This is the reason why FM/FB Priority 

has a higher mean TR system time than No Priority, even though there are less TRs in 

the system. This can be seen in Figure 6.17. 
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Figure 6.17: A break down of the mean TR system time for the FM /FB Priority and No 

Priority schemes. The priority schemes are on the x -axis and mean system time in hours 

is on the y -axis. The TR classification is given in the legend, predictive power equals 

50% and ß equals 2. 

6.2.6 Experiment two conclusions 

In terms of Telstra s CAN maintenance system, matching FM/FBs with the PTRs they 

predict is the same as having the ability to identify which TRs are related to which 

FM /FBs. Therefore when a worker fixes a FM /FB they can also clear any related TRs 

from the queue. The results from experiment two suggest that significant performance 

improvements can be made by having this ability. These performance improvements 

and their implications are summarised below: 

When ß equals 2 and a No Priority scheme is used, TR volume begins to 

significantly reduce at a predictive power of 40% compared to 60% in experiment 1. 

If Telstra is operating a No Priority scheme with a predictive power of 60% and ß 

equal to 2 it can reduce its TR volume by 48% just by having the ability to identify 

the TRs that are related to each FM/FB. 
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 As ß increases the importance of identifying which TRs relate to which FM/FBs 

diminishes. It was shown that when ß equals 2, the predictive power required to 

reduce mean TR system time is reduced by 37% as opposed to a reduction of 21% 

when ß equals 4. Therefore if Telstra is unable to predict a large number of TRs 

with each correct FM/FB, the ability to identify which TRs are predicted by which 

FM /FBs becomes more important. 

Mean maintenance workload can be directly calculated when FM/FB Priority and 

No Priority are used. As FM/FBs are fixed before PTRs the ability to clear PTRs 

with FM/FBs means that maintenance workload consists of only FM/FBs and 

UTRs. In this study the mean number of FM/FBs per day is a constant, given in 

Table 6.1, and the mean number of UTRs can be calculated using equations (5.2) 

and (5.3). The advantage of this is that Telstra will be able to calculate its mean 

daily workload4 in advance and can use this for scheduling field staff. 

When matching FM/FBs with the PTRs they predict the minimum predictive power 

required to reduce maintenance workload was found to be (ßy for FM /FB Priority 

and No Priority. If Telstra is able to determine the )3 of its FM/FB data it will be able 

to quickly determine the minimum predictive power required to reduce maintenance 

workload. If Telstra had a TR Priority scheme, or if it could not identify which TRs 

are related to which FM /IBs, it would need simulation to determine this value. 

It can be seen in Figure 6.18 that No Priority is the scheme that reduces the 

performance measures with the lowest predictive power of 51%. Therefore if Telstra 

could identify the TRs that are related to each FM/FB it would not need any 

maintenance priority scheme at all. The best performance is obtained when faults 

are fixed on a FIFO basis. 

4 Only valid for FM/FB Priority or No Priority. 
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Figure 6.18: The minimum predictive power required to reduce maintenance workload 

and mean TR system time when ß equals 2. On the x -axis is each performance measure 

and on the y -axis is the minimum predictive power that reduces the performance 

measure below the estimate of its current performance. The priority schemes are given 

in the legend. 

It was shown that even though a FM /FB Priority scheme results in fewer TRs, it has a 

higher mean TR system time as UTRs must wait longer to be fixed. The implication is 

that a priority scheme is required that gives UTRs priority when their system time is 

going to exceed a predefined value. Such a scheme is the Estimated Time to Fix (ETF) 

Priority scheme and its performance is examined in experiment three. 

6.3 Experiment 3: Analysis of Estimated Time to Fix (ETF) Priority 

scheme 

Experiment three: Analysis of Estimated Time to Fix (ETF) Priority scheme, is the 

same as experiment two except it aims to improve system performance through the use 

of an ETF Priority scheme. This scheme was introduced in section 5.6.1. 

This experiment is motivated by results from experiment two which show that even 

when mean TR system time is relatively small, there is a large number of TRs 

(predominantly UTRs) that have high system times. By using an ETF Priority scheme it 
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is hoped to reduce the number of UTRs that have a system time above a predefined cut- 

off time. 

Until now we have considered only TR volume, maintenance workload and mean TR 

system time as performance measures. However, as shown in Figure 6.17 the mean TR 

system time performance measure may be hiding the poor performance of UTRs. 

Another measure of considerable importance to telecommunications companies is the 

number of TRs that have a system time that exceed a predefined cut -off time. We will 

be using this as a fourth performance measure in this experiment. 

Telstra's CSG repair time is the equivalent of the predefined system cut -off time. 

Therefore demonstrating a reduction in the number of TRs that have a system time 

greater than a predefined cut -off is the same as reducing the number of times Telstra 

misses a CSG repair time. Telstra is legally bound under its CSG to fix a customer 

reported fault within a specified time. If this time is exceeded then the affected customer 

is entitled to compensation. Gilchrist [6] reports that Telstra's annual CSG 

compensation bill could be as high as $70 million in 2000. 

6.3.1 Reducing TR volume 

In the first part of this experiment we arbitrarily set the ETF cut -off time to 16 hours 

and examine system performance. In section 6.3.5 the sensitivity of performance to 

variations in this cut -off time is investigated. However, to begin our analysis we look at 

the TR volume for each priority scheme. This can be seen in Figure 6.19. 
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Figure 6.19: Predictive power required to reduce TR volume. Predictive power is on 

the x -axis and the number of TRs received per year is on the y -axis. The priority 

schemes are shown in the legend and f3 equals 2. 

It can be seen in Figure 6.19 that the ETF Priority scheme performs similar to the TR 

Priority scheme for predictive powers between 0% and 30% and similar to the No 

Priority scheme for predictive powers between 40% and 100 %. This is because at 

predictive powers between 0% and 30% the UTR volume is high and the workload is 

high. This means there are many UTRs that are going to miss the cut -off time and the 

ETF Priority scheme operates similar to the TR Priority scheme. However, as predictive 

power increases there are fewer UTRs and also fewer faults as more FM /FBs are 

preventing PTRs. This means there are less UTRs that are going to miss the cut -off and 

the ETF Priority scheme operates more like a No Priority maintenance scheme. 

6.3.2 Reducing maintenance workload 

Maintenance workload for the ETF Priority scheme is the same as that for the FM/FB 

and No Priority schemes as the ETF Priority scheme doesn't prioritise PTRs. This 

means that all PTRs are cleared with the FM/FBs that predict them and the maintenance 

workload consists of FM/FBs and UTRs. This can be seen in Figure 6.20. 
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Figure 6.20: Predictive power required to reduce maintenance workload. Predictive 

power is on the x -axis and the number of faults received is on the y -axis. The priority 

schemes are shown in the legend and l3 equals 2. 

6.3.3 Reducing mean TR system time 

The third performance measure is the mean TR system time. The results are shown in 

Figure 6.21. The log scale on the y -axis should be noted. 
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Figure 6.21: Predictive power required to reduce mean TR system time. Predictive 

power is on the x -axis and the mean TR system time in hours is on the y -axis. The 

priority schemes are shown in the legend and ¡3 equals 2. 

It can be seen that the ETF Priority scheme with a cut off of 16 hours reduces mean TR 

system time below the current estimate at the lowest predictive power of 47 %. It can be 

seen that for predictive powers greater than 60% the ETF Priority scheme is almost 

identical to the No Priority scheme. Again this is because there are fewer UTRs failing 

to make the cut -off and the ETF Priority scheme operates the same as the No Priority 

scheme. For predictive powers below approximately 42% a TR Priority scheme 

performs the best as all TRs are given priority. 

Figure 6.22 shows an analysis of the mean TR system time when predictive power is 

50% and /3 equals 2. It can be seen that the ETF Priority scheme lowers the mean UTR 

system time, which helps to reduce the mean TR system time. This demonstrates that 

the ETF Priority scheme is able to rectify the problem encountered in experiment two 

when the mean UTR system time was much higher than the mean PTR system time. 
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Figure 6.22: A break down of the mean TR system time for the FM /FB Priority, No 

Priority and ETF Priority schemes. The priority schemes are on the x -axis and mean 

system time in hours is on the y -axis. The TR classification is given in the legend, 

predictive power equals 50% and ß equals 2. 

6.3.4 Reduce the number of TRs that have a system time greater than a 

predefined time. 

One of the motivations for the introduction of the ETF Priority scheme was to reduce 

the number of TRs that have a system time greater than a predefined time. The results 

when counting the number of TRs that have a system time greater than 16 hours can be 

seen in Figure 6.23. 
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Figure 6.23: Number of TRs that have a system time greater than 16 hours. Predictive 

power is on the x -axis and the number of TRs that have a system time greater than 16 

hours is on the y -axis. The priority schemes are shown in the legend and ß equals 2. 

It can be seen in Figure 6.23 that the ETF Priority scheme is the best performing scheme 

for predictive powers between 7% and 60 %. Initially, at a predictive power of 0 %, the 

number of TRs that miss a 16 hour cut -off for the ETF Priority scheme is the highest at 

approximately 1900. This number then falls to around 500 at a predictive power of 20% 

before it begins to rise again at a predictive power of 30 %. The rising and falling of the 

number of TRs- that miss a 16 hour cut -off is due to the combination of PTR and UTR 

faults which can be seen in Figure 6.24 and Figure 6.25. 

101 



a) 

E 

E 
N y 
co = 
y 

2000 

1600 

m 1200 
L 
3 = m 
y 

íL-1 Q t 800 
a t 

v 
rn 

a 

E z z 

--FM /FB Priority 

-+ -TR Priority 

No Priority 

4- -ETF Priority (16 hrs) 

400 H 

0 10 20 30 40 50 60 70 80 90 100 

Predictive Power ( %) 

Figure 6.24: Number of PTRs that have a system time greater than 16 hours. Predictive 

power is on the x -axis and the number of PTRs that have a system time greater than 16 

hours is on the y -axis. The priority schemes are shown in the legend and /3 equals 2. 
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Figure 6.25: Number of UTRs that have a system time greater than 16 hours. The 

predictive power is on the x -axis and the number of UTRs that have a system time 

greater than 16 hours is on the y -axis. The priority schemes are shown in the legend 

and /3 equals 2. 
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It can be seen in Figure 6.25 that as the predictive power increases the number of UTRs 

that miss a 16 hour cut -off quickly falls to zero. This is because the number of UTRs in 

the system reduces and the UTRs that are going to miss a 16 hour cut -off are getting 

priority. Looking at Figure 6.24, as the predictive power rises to 40% the number of 

PTRs that miss a 16 hour cut -off also rises. Over this period there are more UTRs than 

PTRs and UTRs that are going to miss a 16 hour cut -off are given priority. Therefore 

FM /FBs are waiting longer in the queue so more PTRs arrive and they are waiting 

longer in the system. For a predictive power greater than 30% the ETF Priority scheme 

is the same as the No Priority scheme. 

6.3.5 Sensitivity of ETF Priority scheme to the system time cut -off 

In the ETF Priority results presented so far a UTR system time cut -off of 16 hours has 

been used. In this section we will investigate the effect of variations in this time. As the 

cut -off for UTR system time increases fewer UTRs will miss the cut -off and the ETF 

Priority scheme will act predominantly the same as the No Priority scheme. However as 

the cut -off is reduced more UTRs will miss the cut -off time and more UTRs will be 

prioritised. Therefore we have decided to investigate system performance with UTR 

cut -off times of 20, 16, 12 and 8 hours. The results of the mean TR system time can be 

seen in Figure 6.26. It should be noted that this mean TR system time figure does not 

use a log -scale on the y -axis. This was done to highlight the differences in performance 

at predictive powers below 40 %. 

103 



50 

40 

10 

0 

-+- ETF Priority (20 hrs) 

ETF Priority (16 hrs) 

ETF Priority (12 hrs) 

-- ETF Priority (8 hrs) 

Current Estimate 

0 10 20 30 40 50 60 70 80 90 100 

Predictive Power (%) 

Figure 6.26: Sensitivity of mean TR system time to variations in UTR system time cut- 

off. On the x -axis is the predictive power and on the y -axis is mean TR system time in 

hours. ¡3 equals 2 and the cut -off times of each ETF Priority scheme are given in the 

legend. 

From Figure 6.26 it can be seen that at predictive powers of 40% or greater the UTR 

system time cut -off does not really effect mean TR system time. However for predictive 

powers below 40% it can be seen that an 8 hour cut -off results in the lowest mean TR 

system times even though these mean TR system times are greater than the current 

estimate. 

If Telstra implemented an ETF Priority scheme it could not operate with a predictive 

power less than 50% as this is the minimum predictive power that reduces maintenance 

workload. It can be seen that at predictive powers of 50% and greater the cut -off time 

chosen does not significantly effect the mean TR system time. It can also be seen that 

the minimum predictive power that reduces maintenance workload is approximately the 

same for each cut -off time. The implication of this is that Telstra could use a small cut- 

off time in their CSG to help distinguish themselves from their competitors. For 

example if Telstra guarantee customers that any reported faults will be fixed within 8 

hours and a competitor guarantees to fix faults within 16 hours Telstra have a distinct 

sales advantage. 
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We have seen that varying the cut -off time does not have a significant effect on mean 

TR system time for predictive powers greater than 40%. However, we have not 

investigated the effect that varying cut -off time has on the number of TRs that have a 

system time greater than the cut -off time. This can be seen in Figure 6.27. 
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Figure 6.27: The sensitivity of the number of TRs with a system time greater than the 

cut -off to variations in cut -off time. On the x -axis is the predictive power and on the y- 

axis is the number of TRs with a system time greater than the cut -off. /3 equals 2 and the 

cut -off times of each ETF Priority scheme are given in the legend 

In Figure 6.27 it can be seen that when predictive power is below 60% a system time 

cut -off of 8 hours results in the most TRs missing a system time cut -off. At predictive 

powers of 60% or more, all system cut -off times result in the same number of TRs that 

miss a cut -off, approximately zero. At a predictive power of 50 %, an 8 hour system 

time cut -off results in the most TRs missing a cut -off. However, Figure 6.27 does not 

tell us by what percentage the current estimate has been reduced. Figure 6.28 shows the 

percentage by which the current estimate is reduced when predictive power is 50% and 

ß equals 2. 
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Figure 6.28: The reduction in the number of TRs that miss a system time cut -off. On the 

x -axis are the system cut -off times and the percent reduction of the current estimate is 

on the y -axis. 13 equals 2 and predictive power is 50%. 

Comparing Figure 6.28 with Figure 6.27 it can be seen that although an 8 hour cut -off 

results in the most TRs missing a cut -off, it still reduces the current estimate by 

approximately 78 %. It can be seen that a 20 hour system time cut -off reduces the 

current estimate by approximately 96 %. However most customers would not be happy 

with a CSG of 20 hours. 

If Telstrás predictive power was 50% it would have to make a decision regarding the 

operating scheme it should use. It could set its system time cut -off to 20 hours and it 

would reduce its number of missed CSG repair times by approximately 96 %. However 

it may lose many of its customers as they may not accept a CSG repair time of 20 hours. 

On the other hand, if Telstra set its cut -off to 8 hours it could still reduce its number of 

missed CSG repair times by 78% and its new CSG repair time would make it much 

more attractive to potential customers. 

6.3.6 Experiment three conclusions 

In this section we have looked at the ETF Priority scheme and how it can be used to 

reduce mean TR system time as well as the number of TRs that have a system time 
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greater than a predefined cut -off. We also examined the sensitivity of system 

performance to the predefined system time cut -off. 

The conclusions and recommendations from the ETF Priority analysis are: 

An ETF Priority scheme with a cut -off of 16 hours does not perform better than No 

Priority or FM/FB Priority schemes with respect to TR volume and maintenance 

workload. 

An ETF Priority scheme with a cut -off of 16 hours requires the smallest predictive 

power to reduce mean TR system time and number of TRs that have a system time 

greater than the cut -off. The minimum predictive power required is 47% and 7% 

respectively. However Telstra would not be able to operate with such low predictive 

powers because it can be seen in Figure 6.29 that the minimum predictive power 

that reduces maintenance workload is 50 %. Looking at a predictive power of 50% 

the ETF Priority scheme is able to reduce the current performance of mean TR 

system time and number of TRs that have a system time greater than the cut -off by 

24% and 87% respectively. 

If we equate the number of TRs that miss a 16 hour cut -off to the number of times 

Telstra violate a CSG then according to Gilchrist [6] an 87% reduction in Telstrá s 

2000 CSG compensation bill would save it approximately $60 million in 2000. 

It was shown that at predictive powers below 40 %, mean TR system time increased 

by approximately 10 hours when the system time cut -off was varied between 8 

hours and 20 hours. However, for predictive powers greater than 50% the mean TR 

system time was not sensitive to the system cut -off times we investigated. This 

means that if Telstra could operate a predictive maintenance scheme with predictive 

powers greater than 50% it would be able to advertise small CSG repair times to 

attract customers. 

When predictive power is 50% an 8 hour cut -off time reduces the current estimate of 

the number of TRs that miss a cut -off by 78 %. A 20 hour cut -off reduces the current 

estimate by 96 %. This means that if Telstra's predictive power was 50% it would 

107 



need to decide between attracting customers with a small CSG repair time or further 

reducing its CSG compensation bill, but potentially losing customers, by having a 

large CSG repair time of 20 hours. For predictive powers of 60% or more an 8 hour 

cut -off resulted in zero TRs missing the system time cut -off. 

A summary of the predictive powers required to reduce each of the performance 

measures below their current levels when /3 equals 2 is shown in Figure 6.29. 
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Figure 6.29: The minimum predictive power required to reduce each performance 

measure when ß equals 2. On the x -axis is each performance measure and on the y -axis 

is the minimum predictive power that reduces the performance measure below the 

estimate of its current performance. 
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Chapter 7 

Conclusion 

109 



This thesis is motivated by the need to explore more effective ways of maintaining a 

telecommunications network. Specifically we study a predictive maintenance approach 

that predicts which network problems customers will report in the future. 

7.1 FM /FB data analysis 

An analysis of FM/FB data is undertaken to gain a better understanding of how it can be 

used in a predictive maintenance scheme. The first analysis looks at predictive power 

and determines the characteristics of lines that are most likely to correctly predict future 

customer TRs. From the results the predictive power of FM/FB data is surprisingly low. 

Considering FB lines are disconnected from the network it is especially surprising that 

their predictive power is as low as 11.8%. 

We found that the best method to increase predictive power is to group FB lines that are 

domestic customers and that are within a 30 o -pair range. Counting each group as a 

single ticket of work (ToW) results in a predictive power of 50.7%. Unfortunately 

however, only I% of Telstra's daily TR volume can be predicted through the use of FB 

ToWs. At 7% of the daily TR volume, combined FM/FB data has the greatest capability 

to prevent future TRs. The implication of these results is that if Telstra wish to improve 

the predictive power of FM/FB data it will reduce the number of TRs it can possibly 

prevent. On the other hand if it wants to prevent as many TRs as possible it must do so 

with a reduced predictive power. 

From this analysis it became clear that further analysis is required to investigate why so 

few FB customers report their disconnected lines. It is possible that a reason why so few 

FB lines are reported is that customers are not actively using them. If this is the case 

then identifying and testing the lines that are actively used by customers could possibly 

increase predictive power. Further research could also be conducted into optimal FM 

and FB insulation resistance settings. Currently these are set by Telstra at 50kS2 and 

20kS2 respectively however it is not clear what impact changing these settings would 

have. 

It was shown that 81% of TRs predicted by a FB arrive within 48 hours of first being 

FB and 42% of TRs predicted by a FM arrive within 48 hours of first being FM. The 

implication of this result is that if Telstra wish to use FB data to predict future customer 
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TRs it must react very quickly to FB alarms. In order to react quicker to FB alarms the 

current practise of obtaining FB data three times per day needs to be changed so that FB 

data is received as close to real time as possible. FM data allows a longer time to fix a 

fault before a customer reports it, however FMs also have the worst predictive power. 

A possible explanation of why FB lines are not being reported by customers is that lines 

are not remaining FB, and hence disconnected, for an extended period of time. It is 

possible that many lines are intermittently appearing and disappearing from FB buffers. 

To investigate this we analysed a set of FB lines and found that 87.1% of FB lines had 

been FB in the previous 48 hours and 86.7% of FB lines will be FB again in the next 48 

hours. This result suggests that FB lines are relatively stable and do not intermittently 

appear and disappear from FB status. The implication of this result is that Telstra is able 

to send a worker to fix a FB fault confident that the FB line will not disappear from FB 

status. If lines were disappearing from FB status then Telstra would be wasting 

resources sending workers to fix them. 

The analysis into the relationship between the number of times a line is FB and the 

predictive power found that 30% of lines were FB only once. This directly contradicts 

the results of section 4.4, which show that only 13% of FB lines should appear only 

once. Immediately this questions the validity of the data we have used. We are confident 

that our analysis methods are correct and therefore can only conclude that the FM/FB 

data that Telstra receive is inconsistent and unreliable. Before Telstra could implement a 

predictive maintenance scheme based on FM /FB data it would need to conduct further 

analysis to determine the causes of the inconsistencies we are seeing. 

The analysis into the relationship between the number of times a line is FB and the 

predictive power reveals that lines that appear FB 5 or 6 times have the greatest 

predictive power of approximately 27 %. While this is an interesting observation and it 

provides a better understanding of the dynamics of FB data it is not practically useful. It 

was shown in section 4.3 that the longer Telstra wait after observing a FB line, the less 

chance it has of beating a customer to a fault. Therefore Telstra cannot afford to wait to 

see if a line is going to be FB six times or twelve times before it decides to fix it. 
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One obstacle in this analysis is the fact that FM/FB data is currently unreliable. As an 

AXE exchange can refuse permission to access its FM/FB buffer it is not clear if a line 

is no longer FM/FB or if it was not accessed from the exchange. Until Telstra is able to 

reliably obtain FM/FB data from the exchanges this will continue to be a problem. 

Another area for further investigation is to determine why lines leave a FM/FB 

condition. How were they fixed? What caused the change? Will these lines become FB 

or FM again at a later time? 

As the predictive power, and the percentage of the daily TR volume that is predicted by 

FM/FB data is so small further investigation is required to find other technologies that 

could be used for predictive maintenance. For example testing the insulation resistance 

alone may not be the best test to predict future customer TRs. It may be the case that 

there are other tests that are able to predict future customer TRs more accurately. 

7.2 Modelling and simulating Telstra's CAN maintenance system 

Telstra s CAN maintenance system is modelled as a stochastic discrete event system. In 

this model we establish a relationship between FM/FB data and customer TRs that has 

not previously been understood. Equation (5.5) defines this relationship which enables 

us to calculate mean UTR inter -arrival time, 9UTR> when given PP, ß, OFM /FB and A. 

If Telstra is unable to identify which TRs are predicted by which FM/FBs its 

maintenance workload and mean TR system time will require relatively high minimum 

predictive powers before they can be reduced below current levels. This is because 

individual PTRs must be fixed. When ß equals 2 a FM/FB Priority scheme reduces all 

performance measures at the lowest predictive power of 58 %. We show that if Telstra is 

unable to predict at least two TRs per FM/FB it will not be able to successfully 

implement a predictive maintenance scheme. It was shown that when ß equals 2, 3 and 

4 the mean TR system time is reduced at predictive powers of 82 %, 49% and 37% 

respectively. Therefore significant performance improvements can be made if Telstra 

could target its maintenance to those FM/FBs that predict the most TRs. 

If Telstra is able to identify which TRs are predicted by which FM/FBs, when ß equals 

2, a No Priority maintenance scheme is the best performing scheme reducing all 
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performance measures with a minimum predictive power of 51 %. It was found that 

when ß is small it is more important to be able to identify which TRs are predicted by 

which FM/FBs than when ß is large. This is because when ß is large there are fewer 

faults in the queue and more PTRs are prevented from arriving. When ß is small the 

queue is longer and it is more difficult to fix FM/FBs before PTRs arrive. An interesting 

result is seen at a predictive power of 50% when the FM/FB Priority scheme reduces the 

TR volume more than the No Priority scheme but its mean TR system time is greater. 

This is because UTRs have to wait longer in the queue in a FM/FB Priority scheme. To 

address this problem, and to also try and reduce the number of TRs that have a system 

time greater than a predefined cut -off an ETF Priority scheme is introduced. 

The ETF Priority scheme prioritises UTR faults that are likely to have a system time 

greater than a predefined cut -off. Simulation using this scheme shows that with a 

system cut -off time of 16 hours the ETF Priority scheme is able to reduce all 

performance measures with a minimum predictive power of 50 %. In the first two 

experiments the limiting performance measure (ie the one that requires the greatest 

predictive power) is the mean TR system time. When using an ETF Priority scheme the 

limiting measure is the maintenance workload. As the mean maintenance workload can 

be calculated5 from equations (5.2) and (5.3), the minimum predictive power is limited 

to 50% when ß is 2. When predictive power is 50% it was shown that the ETF Priority 

scheme reduces the number of TRs that miss a 16 hour cut -off by approximately 87 %. 

The implication of this result is that Telstra, or any telecommunications company that 

has a legal obligation to meet customer service guarantees (CSGs), can greatly reduce 

their compensation bills by using an ETF Priority scheme. It was found that for 

predictive powers equal to or greater than 60% system performance is not sensitive to 

variations in system cut -off time. When predictive power is 50% an 8 hour cut -off time 

reduces the current estimate of the number of TRs that miss a cut -off by 78 %. A 20 

hour cut -off reduces the current estimate by 96 %. This means that if Telstra s predictive 

power is 50% it will need to decide between attracting customers with a small CSG 

repair time, or further reducing its CSG compensation bill and potentially losing 

customers by having a large CSG repair time. 

5 When PTRs are cleared with the FM /FBs that predict them 
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An area of further study for the modelling and simulation of a predictive maintenance 

scheme is to investigate more advanced operating schemes and more complex models. 

Currently the model assumes all TRs and FM/FBs are identical in that they all take the 

same mean time to fix. It also assumes that all workers are identical in that they all have 

the same skills and fix faults at the same rate. A more accurate model would have 

different fault types, each fault type having its own mean time to repair. If workers also 

had different skill levels when fixing different faults then certain faults could be 

assigned to certain workers. 

The results from the simulation analysis can not be compared directly to Telstra's 

current operation to decide if it could use FM/FB data for predictive maintenance. The 

reason for this is that Telstra's current system was not accurately modelled in our 

simulation experiments. For example, Telstra does not know the mean FM/FB inter - 

arrival time so we have made assumptions in our analysis. However, we have been able 

to demonstrate the requirements of FM/FB data if Telstra is to use it in a predictive 

maintenance scheme. It was also shown that simulation is a valuable tool when trying to 

understand the dynamics of a system as well as the implications of any operating 

decisions. 
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Appendix A 

Distributions used for ß = 2, 3 and 4 
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In all simulations, the actual number of PTRs produced per correct FM/FB is generated 

according to the probability distributions given for each case below. 
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Figure A.1: Probability distribution of the number of PTRs generated for each correct 

FM/FB when ß equals two. The number of PTRs generated is on the x -axis and the 

probability that number will be generated is on the y -axis. 
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Figure A.2: Probability distribution of the number of PTRs generated for each correct 

FM /FB when ß equals three. The number of PTRs generated is on the x -axis and the 

probability that number will be generated is on the y -axis. 
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Figure A.3: Probability distribution of the number of PTRs generated for each correct 

FM/FB when /3 equals four. The number of PTRs generated is on the x -axis and the 

probability that number will be generated is on the y -axis. 
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Appendix B 

Distribution used during simulation for the delay 

between FM /FB arrival and PTR arrival. 
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The distribution of the delay between the arrival of a FM /FB and the arrival of the 

PTR(s) it predicts that is used in the simulation results in chapter 6 can be seen below in 

Figure B.1 
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Figure B.1: Distribution of delay between FM/FB and customer PTRs. On the x -axis is 

the days since the FM/FB arrived and on the y -axis is the percentage of predicted TRs 

that arrive each day. 
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