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Abstract 

xi;< 

Apoptosis is involved in aspects of viral infection from the anti -viral response to virus 

replication and pathogenesis. This thesis examines the effect of a single antiapoptotic 

factor on apoptosis and pathogenesis in a natural virus infection of mice. The p28 gene 

of ectromelia virus (EV) is required for virus replication in A strain but not B6 mice. A 

p28 mutant EV (EVAp28) has reduced growth in A strain macrophages, leading to the 

hypothesis that p28 is a strain specific replication factor. Recently, it has also been 

discovered that p28 also enables EV to prevent apoptosis induced through CD40 or the 

p75 TNF receptor in some cell lines. Thus the hypotheses that p28 enhances virulence 

as a strain specific replication factor, and that p28 is an inhibitor of apoptosis in vivo, 

were investigated. The effect of p28 on EV virulence and pathogenesis was found to 

form a spectrum, ranging from necessity for virulence in EV- susceptible mouse strains 

to no effect on virulence in EV- resistant strains. Unexpectedly, this was independent of 

both the presence of macrophages and levels of apoptosis during the critical period of 

infection (d3 -9 p.i.). However, expression of p28 was associated with reduced levels of 

apoptosis in response to EV infection specifically in B6 mice from d3 -d9 p.i. 

Interestingly, the effect of p28 on apoptosis in B6 mice was readily detectable by only 

3d p.i., yet was dependent on the presence of CD8+ T cells corresponding with data in 

other mouse strains suggesting interactions between p28 and cellular antiviral 

responses. These data suggested that the role of p28 during in vivo infection was not 

directly attributable to a role as a strain -specific replication factor, or preventing 

apoptosis during d3 -9 p.i. 

A role for apoptosis early in infection in the priming of the immune response has been 

suggested by a number of authors. Based on the apoptotic profile in B6 mice, it was 

hypothesised that p28 may increase EV virulence through preventing apoptosis prior to 

d3 p.i. It was discovered that the apoptotic response to acute EV infection consists of 

two distinct, 'differentially regulated phases. In addition to the response from d3 -9 p.i.,' 

an additional increase in apoptosis was observed in the livers and ovaries of infected 

mice within 6h of infection, despite the fact that virus was not yet detectable in these 

organs. The response was TNF- dependent and only occurred in mice infected with 

EVAp28, suggesting that it may be blocked by p28. Apoptosis was dependent on the 



presence of the p55 TNF receptor, and required macrophages at the site of 

inoculation. These observations suggest that TNF synthesis may occur as a very early 

response to infection, resulting in rapid and transient apoptosis at distal sites. The 

targeting of the response by EV further suggests that it may be an important component 

of the host response. 

The final question addressed was whether p28 affected apoptosis later in the response 

through interaction with p75 or CD40 as described in vitro. EV and EVAp28 infection 

were compared in mice lacking p75, or both p55 and p75 TNF receptors, and in mice 

lacking two interacting cytokines /cytokine receptors important to the antiviral response: 

IL -6 and the receptor for IFNy. All cytokine and cytokine receptor deficient mice were 

more susceptible to EV than wt mice, but remained resistant to EVAp28. Closer 

examination of TNF receptor deficient mice showed that both EV and EVAp28 mutant 

viruses replicated to similar levels and induced similar levels of hepatic necrosis, 

however EVAp28 stimulated lower levels of leukocyte infiltrates independent of any 

observable effects on apoptosis. This suggested that effects of p28 from d3 -9 p.i. had 

both TNF- dependent and independent roles. Finally, EV and EVAp28 infection were 

compared in CD40 -/- mice on EV- resistant and EV- susceptible genetic backgrounds. 

Results suggested an interaction of p28 with CD40 was important to virulence in the 

susceptible but not the resistant strain. 

The data are consistent with p28 having a role in manipulation of macrophage and TNF 

function, and suggest that these are likely to be related, especially early in infection. 

p28 also increased virulence through non -TNF and macrophage dependent pathways. 

These data also have intriguing implications for TNF and apoptosis during virus 

infection. The presence of a biphasic response to EV infection implies that systemic 

sequelae of infection may occur much more rapidly than previously thought. 

Additionally, the findings in CD40 ,/- mice suggest that the roles of receptors may differ 

in importance to the antiviral response in different in vivo contexts. By implication, 

viral factors affecting CD40 may also vary in effect dependent on host strain. 
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Figure 1.1 Morphological Characteristics of Apoptosis 

Stage I. Condensation 

Cytoplasmic shrinkage 

Chromatin condensation at nuclear margin 

Nuclear membrane intact 

Organelle morphology preserved 

Stage II. Zeiosis 

Membrane bound apoptotic bodies 

Nuclear contents maintained within 
nuclear membrane 

Organelles intact 

Stage III. Uptake of Apoptotic Bodies 

Apoptotic bodies recognised and 
phagocytosed by surrounding cells 

Contents of apoptotic bodies degraded 

Flectron micrographs reproduced from "Pathways for Cytolysis" ed. G.M.Griffin and J. Tschopp 



1.1 Apoptosis in Virus Infections 

Apoptotic cell death is widely recognised as being important both in immune function 

and in viral pathogenesis. Viral survival strategies reflect this dichotomy: while a high 

level of apoptosis is a hallmark of some virulent infections (Griebel et al., 1990; 

Noteborn et al., 1994; Zhang et al., 1996), many viruses encode anti -apoptotic genes, 

implying that this process of cell death is an important component of the anti -viral 

response. 

There are many potential antiviral roles for apoptosis. The death of host cells prior to 

the completion of virus replication is likely to be an effective antiviral measure in vivo, 

as shown by studies using Sendai virus and encephalomyocarditis virus (Itoh et al., 

I998; Schwarz et al., 1998). Viruses which stimulated rapid apoptosis were found to 

have reduced viral progeny in vitro, correlating with reduced virulence and increased 

host survival in vivo. A second function of apoptosis may be to prime the immune 

response in vivo. Studies by Albert (1997), Bellone (1998) and Inaba et al. (1998) have 

demonstrated that antigens acquired by phagocytic APCs from apoptotic bodies can be 

presented on class I MHC and are capable of stimulating Ag- specific CTL activity. 

This suggests that apoptosis may be an elegant mechanism to prime the immune 

response against intracellular pathogens, yet remain immunologically silent when used 

to dispose of senescent cells during normal physiology. 

Apoptosis may also have proviral roles. Potential roles for apoptosis in enhancing virus 

growth could include the spreading of virus within apoptotic bodies, or suppression of 

the immune response. The former is suggested by electron micrographs in which 

apoptotic debris from ectromelia virus -infected cells can be observed to be. 

phagocytosed before forming new viral factories and subsequent virus particles 

(Matsumoto 1958). An example of apoptosis in suppression of the T cell response to 

infection is the measles virus. Infection with measles virus leads to a period of 

immunosuppression (Griffin and Bellini, 1996) associated with T cell cycle arrest 
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(Engelking et al., 1999) and enhanced DC and T cell apoptosis (Fugier- Vivier et al., 

1997; Okada et al., 2000). This suggests that virus is likely to exploit apoptosis as an 

effective mechanism of suppressing the T cell response. 

1.2 Definition of Apoptosis 

Like many physiological processes, cell death does not have a single mechanism or 

pathway. A range of morphological and biochemical characteristics are seen in cell 

death, encompassing but not exclusive to those defining classical apoptosis and 

necrosis. 

Classical apoptosis is defined by morphological criteria (Kerr et al., 1972; Fig. 1.1). 

Early cytoplasmic changes lead to the cell detaching from neighbouring cells and losing 

specialised surface elements such as microvilli and gap junctions. Concurrently, the 

nucleus shows characteristic chromatin condensation as the nucleoskeleton becomes 

compromised. This results in chromatin coalescing to form distinctive electron -dense 

crescents adjacent to the nuclear membrane. Zeiosis - an active bubbling of the 

cytoplasmic membrane - and blebbing of the nucleus is then noticeable, although the 

organelles remain intact and the nucleus and cytoplasm remain membrane bound. As 

the cytoskeleton is broken down, the cytoplasm and nucleus begin to bleb into apoptotìc 

bodies containing compartmentalised nuclear and cytoplasmic material, including intact 

organelles. The apoptotic bodies are rapidly phagocytosed by the surrounding cells and 

degraded within lysosomes. The process can be surprisingly rapid, with the entire 

process from detachment to degradation taking as little as 20 minutes. 

The morphological changes seen in apoptosis are accompanied by distinctive, tightly 

regulated biochemical cascades. Mitochondria in particular play an essential role in 

apoptosis. The membrane permeability transition of mitochondria, characterised by a 

loss of membrane potential (Zoratti and Szabo, 1995) and release of apoptosis- inducing 

factor (AIF) from the intermembrane space (Susin et al., 1999) is pivotal in apoptosis, 
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and is thought to be the point at which cell death becomes irreversible. This is usually 

accompanied by the release of cytochrome c and formation of the pro -apoptotic 

"apoptosome" complex (see Fig. 1.2; Susin et aL, 1999). As the process of apoptosis 

continues, multiple proteases, particularly the caspase family, are activated. Caspases 

are important in the apoptotic response as a mechanism of amplifying the initial 

apoptotic signal, and as effector proteases (for a recent review see Rathmell and 

Thompson, 1999). The 14 caspases currently known can be defined as initiator or 

effector caspases, with some overlap in actual function. Initiator caspases can be 

defined by their long prodomain, usually a protein -protein interaction domain (Slee et 

al., 1999). On receipt of an apoptotic signal, aggregation of inactive initiator caspases 

is thought to trigger self -cleavage into active caspases. In addition to cleaving apoptotic 

targets such as plectin (Stegh et aL, 2000) the initiator caspases amplify the original 

signal by further activation of effector caspases. These are important effectors of 

apoptosis, playing roles in dismantling the cytoskeleton through cleaving of globular 

actin and lamins (Rao et al., 1996), and activating further enzymes in the process of 

apoptosis, such as caspase activated DNase (CAD; Enari et al., 1998). The release of 

CAD from its inhibitor (ICAD) results in DNA being cleaved in the regions between 

histones. This leads to the 180bp ladder often used as a biochemical marker of 

apoptosis (Wyllie, 1980). The translocation of phosphatidylserine from the inner leaf of 

the cytoplasmic membrane to the outer surface of the cell is also an early event 

characteristic of apoptosis, which later allows the recognition and phagocytosis of 

apoptotic bodies by surrounding cells (Fadok et al., 1992; Fadok et al., 2000). 

The progression of a cell through apoptosis contrasts starkly with the process of 

necrosis. Necrosis occurs as a result of an uncontrolled change to the cell or its 

environment, such as some cytotoxic agents, change of extracellular osmolarity, or a 

breach of the cytoplasmic membrane. Normally, this results in the cytoplasm and 



Figure 1.2 Pathways to apoptosis 
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Apoptosis initiated by a diverse range of stimuli converge on common pathways: 

caspase activation, mitochondrial events, and nuclear events. The cytotoxic T cell 

response can cause lytic death through insertion of perforin as shown. It may have 

additional roles in disruption of cytoplasmic calcium levels, and regulation of granzyme 

function (see text for details). 



CTL ,=> 

Perforin 

Fas 

Neutral SMase 

Glucocorticoids Radiation 

Heat UV 

SM ceramide 

DISC 

Activated scramblase 

bel-2? 

APAfë 

AIF 

cytochrome c 

TIA granzyme B 

procaspase 9 

cyt 

loss of membrane 
potential 

8ax/Bak 

Mitochondria 

SEK1 

spase 8 caspase 2 Jnk/SapK 

/j" 
caspases 3, 6, 7 /1 n \ CAD 

Transglutaminase PARP Fodrin 

activation DNA PKC Lamin 

Gelsolin Huntingtin 

mdm2 

pRb 

Nucleu()%e 

active CAD 

DNA laddering 

ICAD 

p53 
stabilisation 

2%6701 7%t2 / .%"%.0 

180bp 180bp 180bp DNA strand breaks 

Acid SMase 

sphingomyelin 

MEKK1 G ceramide oo 
V 

Bax/Bad 

Increased mitochondrial 
permeability 

SGlucocorticoid /receptor complex 

Transcription of pro- & 

anti -apoptotic genes 



organelles of the cell swelling and bursting, releasing cytoplasmic contents into the 

extracellular milieu. The uncontrolled nature of necrosis is a counterpoint to the tightly 

regulated mechanism of apoptosis both mechanistically and in the immunological 

response to death. After apoptosis, the cellular contents are sequestered into 

surrounding cells, limiting inflammation, but potentially stimulating cell- mediated 

immunity through presentation of antigen (Albert et al., 1997; Bellone et al., 1998; 

Inaba et al., 1998). In contrast, necrosis stimulates non -specific inflammation. 

Interestingly, apoptotic bodies not taken up by surrounding cells undergo secondary 

necrosis, resulting in the same inflammatory response as after conventional necrosis 

(Kerr et al., 1972). 

1.3 Triggers for Apoptosis During Viral Infection 

Apoptosis can be triggered at many stages during viral infection by intracellular or 

extracellular stimulation. The importance of apoptosis in virus infection is supported by 

the fantastic array of viral anti -apoptotic strategies which exist (Table 1.1). These 

include latency, mimicry of host anti -apoptotic proteins, degradation of host pro - 

apoptotic proteins, sequestration of triggers for apoptosis, and the blocking of signalling 

pathways by inactive pseudosubstrates. 

Three apoptotic stimuli of importance during viral infection - detection of intracellular 

abnormalities, cytotoxic granules and cytokine receptor mediated apoptosis - and 

corresponding mechanisms of viral evasion of apoptosis are shown here as an 

illustration of the interplay of host and virus in manipulating apoptosis. 
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Table 1.1 Mechanisms of viral inhibition of apoptosis 

Pathway Mechanism Gene Virus Reference 

Cell- mediated cytotoxicity 

Recognition of infected 

cells: The MHC 

Blocking MHC 

transport through 

Golgi 

E19 

US3 

m152 

Adenovirus 

HCMV 

MCMV 

(Andersson et al., 1985) 

(Jones et al., 1996) 

(Ziegler etal., 1997) 

Blocking TAP 

function 

ICP47 

US6 

HSV 

HCMV 

(Hill et al., 1995) 

(Alm et al., 1997) 

Recognition of infected 

cells byNKcells 

MHC class I mimics UL18 

m144 

HCMV 

MCMV 

(Reybum et al., 1997) 

(Kubota et al., 1999) 

Granule- mediated 

apoptosis 

Pseudosubstrate of 

granzyme B 

CrmA Cowpox (Quan et aL, 1995) 

Receptor- mediated cytotoxicity 

TNF- mediated 

apoptosis 

TNT receptor 

homologues 

CrmB, C 

Crm D 

T2 

Cowpox 

EV 

Myxomavirus 

( Alcami et al., 1999) 

( Alcami et al., 1999) 

(Macen et al., 1996) 

cIAP homologues p35 

A224L 

Baculovirus 

ASFV 

(Clem and Miller, 1993) 

(Chacon et al., 1995) 

Blocking of caspase 8 

binding through DED 

E8 

KI3 

BORFE2 

MC160L 

EHV -2 

HHV -8 

BHV -4 

Molluscum 

contagiosum 

(Wang et al., 1997a) 

(Wang et aL, I997a) 

(Wang etaL, 1997a) 

(Hu et aL, 1997) (Bertin 

et al., 1997) 

Cell -Cycle Progression and Apoptosis 

The p53 pathway Inhibition of p53 

transcriptional 

activity 

T antigen SV40 McCarthy et al. (1994) 

P53 degradation E6 HPV-16, -18 (Scheffner et al., 1990) 

(Werness et al., 1990) 

Bel -2 family members Bel -2 homologue EIB -19K 

A179L 

Adenovirus 

ASFV 

(Rao et aL, 1992) 

(Brun et al., 1996) 



1.3.1 Intracellular Triggers - Inappropriate Cell Cycling 

1a 

One of the important roles of apoptosis during normal physiology is the destruction of 

defective cells prior to cell replication. Cellular abnormalities and cell cycle 

perturbation are detected by a number of semi -redundant systems within the cell, some 

of which stimulate cell cycle (comprehensively reviewed in Kohn, 1999). Arrest of the 

cell cycle allows repair of cell damage prior to S phase. On repair, the stimulus for cell 

cycle arrest is removed and the cell can resume normal cycling. Apoptosis may be 

induced in situations in which cells are unable to remove the stimulus for cell cycle 

arrest, or in cells in which cell cycle arrest and progression are concurrently stimulated. 

Virally- induced apoptosis may be stimulated through either route. Examples include 

cell cycle arrest and apoptosis on cellular detection of viral dsRNA (Balachandran et al., 

2000; Kaufman, 1999; Kibler et al., 1997; Lee and Esteban, 1994; Takizawa et al., 

1996) and the stimulation of inappropriate cell cycling in non -cycling cell types by viral 

infection (Barry and McFadden, 1998; Fotedar et al., 1996; Moran, 1993; Op De Beeck 

and Caillet -Fauquet, 1997). The latter is particularly important for viral infections such 

as adenoviruses and papillomaviruses which stimulate partial cell cycle progression in 

quiescent cell populations as part of the viral replication cycle. 

1.3.1.1 Stimulation of apoptosis through the p53 pathway 

Many of the cellular mechanisms for detection of DNA or RNA abnormalities cause 

cell cycle arrest by the stabilisation of the nucleoprotein p53. During normal cell 

cycling, p53 has a half -life of around 20 min (Olson et al., 1993). Degradation of p53 

is enhanced by binding to mdm -2, which is also a negative regulator of p53- mediated 

transcription (Fuchs et al., 1998; Honda et al., 1997; Momand et al., 1992; Tao and 

Levine, 1999). The presence of DNA damage (Shieh et al., 1997) or dsRNA (Cuddihy 

et al., 1999) leads to post -translational modification of p53 (phosphorylation and 

acetylation), preventing mdm -2 binding (Shieh et al., 1997; Shieh et al., 1999) and p53 

degradation. p53 then forms tetramers, which are active as transcription factors (TF; 
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Sakaguchi et al., 1997). These directly upregulate cell cycle arrest genes such as pRb 

and p21' (Shiio et al., 1992; El Deiry et al.. 1993), feedback inhibitors of the p53 

pathway (mdm -2: (Perry et al., 1993) and TFs such as c -fos and c -jun (Ginsberg et al., 

1991), while downregulating cell cycle progression genes, such as the E2F family. 

Thus increased levels of p53 can induce cell cycle arrest. 

Accumulation of excess p53 is also associated with apoptosis induction. This is at least 

partially attributable to the upregulation of bax transcription by p53 and concomitant 

decrease in the transcription of bc1-2 (Miyashita et al., 1994). While further molecular 

mechanisms dictating whether stabilisation of p28 induces cell cycle arrest or apoptosis 

are still uncertain (Matlashewski 1999), the concurrent accumulation of p53, promoting 

cell cycle arrest, and cell cycle promoting factors such as the E2F family of 

transcription factors are a strong indicator of apoptosis induction (Kowalik et al., 1995; 

Shan and Lee, 1994; Wu and Levine, 1994). During cell cycle arrest and repair, 

apoptosis through the simultaneous stimulation of cell cycle arrest and progression is 

prevented by the p53- mediated upregulation of pRb. pRb, and the related proteins p107 

and p130, bind to E2F and other cell cycle promoting transcription factors to 

downregulate transcription from a variety of promoters associated with cell cycle 

progression including DHFR (Blake and Azizkhan, 1989), POLa (Pearson et al., 1991), 

cyclin A (Schulze et al., 1995), cyclin D (Sala et al., 1994) and cyclin E (Duronio and 

O'Farrell, 1995). 

The importance of the p53 pathway for apoptosis induction during infection with some 

viruses can be assessed by the finding that nuclear DNA viruses including the 

papillomaviruses and adenoviruses have evolved multiple pathways with which to block 

the p53 /pRb pathway through convergent evolution. 



1.3.1.2 Degradation of host proteins 

The interaction of human papillomavirus 16 and 18 (HPV -16 and I- WV -18) with the p53 

system illustrates the effectiveness of degradation of host pro -apoptotic proteins as a 

viral anti -apoptotic strategy. HPV -16 and 18 are tumorigenic viruses estimated to be 

associated with 93% of cervical cancers (Walboomers et al., 1999). The virus infects 

the quiescent cervical epithelium and exploits two early genes --E6 and E7- in order to 

stimulate cell cycle progression without inducing apoptosis. The E7 protein physically 

complexes pRb, preventing downregulation of E2F and so stimulating cell cycle 

progression. The loss of pRb concurrently leads to stabilisation and overall increased 

p53 levels. Thus E7 expression in isolation stimulates a rapid apoptotic response (Jones 

et al., 1997). However, E7 expression in concert with the HPV protein E6 results in 

maintenance of the cell cycle (Howes et al., 1994; Pan and Griep, 1994). E6 is an early 

protein which concurrently binds p53 and E6AP, a ubiquitin ligase (Scheffner et al., 

1993). This directly flags p53 for degradation, thus very effectively preventing p53- 

mediated apoptosis. 

1.3.2 Cell- Mediated Apoptosis 

1.3.2.1 The cytotoxic granules of CTLs and NK cells 

Cytotoxic T lymphocytes (CTLs) and natural killer cells (NK cells) provide 

complementary cell mediated responses during virus infection. CTL- mediated 

apoptosis is stimulated after the recognition of the MHC class I of the target cell or the 

cognate T cell receptor (TCR) of the CTL, facilitated by integrins (reviewed in Garcia et 

al., 1999). NK cells recognise cells through NK cell receptors, which can be either 

stimulatory or inhibitory (reviewed in Lanier, 1998). Each cell type then has the 

capacity to induce apoptosis through two pathways: cytotoxic granules and the TNF 

receptor superfamily. 
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Cytotoxic granules contain a number of effector molecules, including perforin, 

granzymes (notably granzymes A and B), and TIA -1. During CTL- mediated 

cytotoxicity, a tight junction forms between the effector and target cells and cytotoxic 

granules are delivered to the target cell (Yannelli et al., 1986). The components of the 

granules each stimulate complementary aspects of apoptosis. 

Perform is a C9 -like glycoprotein which aggregates into transmembrane pores in a 

calcium- dependent manner (Krahenbuhl and Tschopp, 1991). Perform is of importance 

for the induction of cytotoxicity (Kagi et al., 1994), and the antiviral activity of CTL 

and NK cells (Mullbacher et al., 1999a), however the mechanism is a source of debate. 

Since single channel electrophysical readings have not detected any closing events for 

the pores (Peters et al., 1990), it would be expected that perforin pore formation would 

lead to cell lysis and necrotic death. In some cell types perforin- dependent lysis can be 

induced independent of other granule constituents (Persechini et al., 1990), however 

CTLs more commonly induce target cell apoptosis. It is likely that perforin contributes 

to apoptosis through interaction with granzymes, since apoptotic changes to target cells 

in response to granzymes require perforin (Hayes et al., 1989). Direct observation of 

granzyme colocalisation with and without perforin suggests that the role may be in 

delivery of granzymes to the nucleus of the target cell (Jans et al., 1998). 

Granzymes are serine proteases with esterase activity and various cleavage site 

specificities. They are expressed not only in CTLs and NK cells, but also in non - 

cytolytic T cells and bone -marrow derived mast cells (Jenne and Tschopp, 1988). Most 

granzyme activity of CTL and NK cell granules is mediated by granzymes A and B. 

Granzyme B is the granzyme most closely associated with apoptosis. It has a similar. 

enzymatic activity to the caspase family, and is capable of inducing the apoptotic 

cascade by cleaving and so activating the effector caspase, caspase 3 (Darmon et al., 

1995; Quan et al., 1996; van de Craen et al., 1997). Interestingly, activation of caspases 

is necessary for the induction of nuclear changes associated with apoptosis after 
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exposure to granzyme B (Sarin et al., 1998), but apoptotic changes in the cytoplasm 

induced by the granzyme do not require caspase activity (Atkinson et al., 1998; Heibein 

et al., 1999). This may be because granzyme B is capable of cleaving some 

downstream caspase substrates directly (Andrade et al., 1998; Barry et al., 2000; 

Thomas et al., 2000). 

Granzyme A is a tryptase exclusively expressed in CTLs. Granzyme A can induce 

nuclear apoptotic morphology (Shi et al., 1992) and is synergistic with granzyme B 

(Nakajima et al., 1995). While the CTLs of granzyme A- deficient mice are functionally 

indistinguishable from those of wt mice, possibly due to redundancy with granzyme K 

(Wilharm et al., 1999), the mice have increased susceptibility to some viral infections 

(Mullbacher et al., 1996), suggesting an important role in the anti -viral response. 

Cytotoxìc granules also stimulate apoptosis through TIA -1 and TIA -R. These closely 

related RNA- binding proteins are capable of inducing DNA fragmentation in 

mammalian cells (Taupin et al., 1995; Tian et al., 1991) during CTL- mediated 

apoptosis and specific phases of foetal development (Lowin et al., 1996). The link 

between the binding of the RNA and the DNA degradation is not yet known. 

Each of the above proteins is capable of inducing apoptosis independently, however 

they are also synergistic ( Nakajima et al., 1995). Together with the induction of 

apoptosis through Fas (CTLs: Lowin et al., 1994) this provides a partially redundant, 

and highly effective, system for the detection and apoptosis of virally infected cells. 

1.3.2.2 Blocking of host protein transport 

The evasion of CTL responses is particularly important in latent or long -term virus 

infections. As a consequence, viruses such as the herpes viruses down -regulate MHC 

class I by inhibiting MHC class I complex formation at several stages of assembly and 

transport, including the loading of the MHC class I with peptide. During assembly, 

peptides derived from degradation pathways active in the cytosol must be transported 



into the lumen of the endoplasmic reticulum in order to bind and stabilise the immature 

MHC class I complexes. The translocation occurs through the transporter associated 

with antigen processing (TAP), in an ATP -dependent process (Lankat and Tampe, 

1999). The herpes viruses herpes simplex virus (HSV) (Hill et at, 1995; Tomazin et 

al., 1996) and human cytomegalovirus (HCMV) (Ahn et al., 1997; Hengel et al., 1997) 

stably bind the TAP heterodimer, preventing transport of the peptides through the TAP, 

and thus trap the nascent MHC class I complexes in the ER. In the absence of peptide, 

these are degraded, and levels of MHC class I presented by the cell are reduced. In 

addition, ICP47 may destabilise the TAP heterodimer structure, further inhibiting 

function (Lacaille and Androlewicz 1998). Interestingly, the strategy of TAP inhibition 

appears to have evolved independently in each virus strain, as ICP47 and US6 are not 

homologous, and bind in separate domains of the TAP complex. 

1.3.2.3 Mimicry 

Mimicry of host proteins is an extremely common mechanism for the prevention of 

apoptosis of infected cells. Mimics or homologues exist of many host proteins, 

including cytokine receptors (Barry and McFadden, 1997), cell cycle regulators (Lee 

and Reddy 1999) and antiapoptotic genes (Subramanian et al., 1995). A number of 

viruses also use homologues of host proteins to prevent CTL or NK cell mediated 

detection and apoptosis. The human cytomegalovirus (HCMV) MHC class I homologue 

ÚL18 is an MHC class I homologue expressed at the cell surface complexed with 02- 

microglobulin, and capable of binding peptides in the peptide cleft (Browne et al., 1990; 

Chapman and Bjorkman, 1998; Falmestock et al., 1995). Expression of UL1 8 enables 

the virus to avoid NK mediated cell death despite MHC class I downregulation. UL18 

is hypothesised to protect against NK cell mediated death by binding the leukocyte 

immunoglobulin -like receptor -1 (LIR -1), a glycoprotein closely related to the natural 

killer inhibitory receptors (KIR), with an affinity > 1000 fold higher than the affinity for 

class I MHC (Chapman et al., 1999). This is consistent with studies in which UL18 
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transfection of cell lines leads to resistance to killing by IL -2 activated NK cells in 

virus -free systems (Reyhurn et al., 1997). 

1.3.3 Receptor -Ligand Interactions 

1.3.3.1 The TNF receptor superfamily 

The TNF receptor superfamily is defined by the presence of distinctive cysteine -rich 

pseudorepeats in the extracellular portion of the protein. More than 20 superfamily 

members have been identified, including OPG, OX40, CD40, CD30, Fas, TNFR 1 

(p55), TNFR 2 (p75) and the death receptors (DR1 -5). Most members are type I 

membrane proteins, with the exceptions being two soluble TNF receptor homologues 

encoded by poxviruses (Smith et al., 1991) and soluble TNF receptor variants. The 

intracellular domains show no intrinsic enzymatic activity, but instead contain protein - 

protein interaction domains. Members of the family can he separated into subgroups on 

the basis of their intracellular domains. In particular, subgroups are defined by the 

presence or absence of death domains (DDs), or TRAF domains (Fig. 1.3). The 

presence of these domains allows interactions with other DD or TRAF proteins 

respectively. 

TNF receptor superfamily members have a diverse range of functions, with activities in 

CD4+ T cell activity (Lane 2000), activation of NK cells (Martin -Fotecha et al., 1999), 

B cell function (Renshaw et al., 1994), osteoclast function (Wong et al., 1999), 

increasing vascular permeability (Goldblum et al., 1988; Horvath et al., 1988), 

stimulation of chemokine production (Tessier et al., 1997), and activation of 

macrophage Functions (Conkling et at., 1988), as well as induction of apoptosis. TNF - 

mediated apoptosis is most closely associated with stimulation of the death domain 

receptors: prototypically, p55 (CD120a, TNFR1, Tnfrsfla) and Fas (CD95, APO -1) 

(Itoh et al., 1991; Wong and Goeddel, 1994). However, it has also been noted recently 
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that apoptosis can be signalled via non death domain receptors such as p75 (CD120b, 

TNFR2, Tnfrsflb) and CD40 (Hess and Engelmann, 1996; Weiss et aL, 1997). 

1.3.3.2 DD and non -DD stimulated apoptosis 

The "death receptors" are defined by the presence of a cytoplasmic death domain (DD). 

The DD is a protein docking site, which serves as a seeding point for the complexing of 

the death -inducing signalling complex (DISC) (Eberstadt et al., 1997). The DISC of the 

different DD receptors differ in exact components, but remain the same in principle. 

The DD of p55 recruits TRADD, a cytoplasmic DD protein which further binds FADD 

to the complex (Hsu et aL, 1996). FADD contains death effector domains (DEDs), also 

protein docking sites, which are necessary for the binding of pro -caspase 8 (FLICE) 

(Muzio et al,, 1996). The aggregation of caspase 8 pro -enzymes in the DISC appears to 

trigger self -cleavage, resulting in activation and release of the enzyme. Once activated, 

caspase 8 is in turn capable of activating effector caspases such as caspase 3 and thus 

stimulating the apoptotic cascade (Srinivasula et al., 1996; Fig. 1.3). Caspase 8 also 

participates directly in apoptosis through the cleavage of the anti -apoptotic bel -2 family 

member BID (Li et al., 1998; Luo et al., 1998) and cytoskeletal components (Stegh et 

al., 2000). Overexpression studies have also shown that p55 ligation can activate 

caspase 2 through the cytoplasmic DD protein RRIDD (Duan and Dixit, 1997), 

although given the lack of p55 signalled cell death in caspase 8 null mice (Varfolomeev 

et al., 1998), the relevance of this in vivo is questionable. 

In addition to apoptosis, TRADD binding to the DD may also stimulate transcriptional 

changes signalled by p55. When overexpressed, TRADD can heterodimerise with 

TRAF2 (Hsu et al., 1996), a signalling molecule more commonly associated with the 

signalling of transcriptional changes through the p75 TNF receptor. The dimer binds 

and allows the activation of NIK (NF -icB inducing kinase) (Malinin et al., 1997; 



Figure 1.3 Pathways of TNF receptor superfamily signalling 

Adapted from ( Darnay et al., 1997) and (Wallach, 1999). 





Pomerantz and Baltimore, 1999) and degradation of the inhibitor of NF-1<B (I -KB; Song 

et al., 1997), allowing NF -KB activity. 

p55 is also capable of transducing signals through other protein -protein interaction 

domains. In particular, FAN, an adaptor protein required for neutral sphingomyelinase 

activation by this receptor, binds to a stretch of nine residues upstream of the DD 

(Adam- Klages et al., 1996). Activation of neutral sphingomyelinase leads to activation 

of the ERK pathway, ultimately activating NF -KB and resulting in transcriptional 

consequences of p55 TNF receptor binding (Adam et al., 1996). 

Non -death domain receptors include CD27, CD30, CD40 and the p75 TNF receptor. 

These receptors have a wide variety of functions which are predominantly effected 

through transcriptional changes. In addition, CD40 and p75 are capable of enhancing 

apoptosis when coexpressed with p55, and may stimulate apoptosis individually 

(Declercq et al., 1998; Grell et al., 1999; Weiss et al., 1997), despite the lack of a DD. 

The primary signalling molecules for non -DD receptors are the TNF receptor associated 

factors (TRAFs). TRAFs do not appear to have enzymic activity. Instead, TRAFs 

appear to he primarily adaptor proteins, similar to TRADD and FA DD. 

The binding of TRAFs by non -DD TNF receptors triggers formation of hetero- or 

homodimers capable of activating the NIK pathway (Malinin et al., 1997). In addition, 

the TRAFs also activate the MAPK pathway. This upregulates transcription factors 

including AP1, cJun, ATF2 and Elkl (Reinhard et al., 1997; Song et al., 1997), 

resulting in further changes to transcriptional patterns and mRNA stability. TRAFs may 

also be transported to the nucleus, and directly enhance transcription through their 

amino domain (Min et al., 1998). 

There are currently two hypotheses as to the mechanism of p75 and CD40 enhancing 

apoptosis through p55 which are supported by strong experimental evidence and which 

are not mutually exclusive. The first, supported by Scatchard analysis of TNF receptor 
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binding assays, is that p75 has a higher on rate and lower off rate than the p55 receptor 

(Tartaglia et al., 1993a). This would increase the concentration of free TNF near the 

surface of the cell and thus increase the ligand available for binding to the lower affinity 

p55 TNF receptor (Grell et al., 1995). A second explanation is that binding of the p75 

receptor leads to upregulation of TNF mRNA in the cell. On translation, the TNF is 

hypothesised to remain cell associated, leading to an increase in autocrine and paracrine 

signalling. This has been seen to occur in cell lines in vitro (Grell et al., 1999; 

Vercammen et al., 1995). A similar observation has been made with CD40- mediated 

cell death (Grell et al., 1999; Hess and Engelmann, 1996) and in some cell types may 

extend to upregulation of other DD- stimulating ligands (Afford et al., 1999). This may 

also be enhanced or mediated by interaction of shared signalling pathways (Declercq et 

al., 1998). 

1.3.3.3 Preventing enzymatic activity 

The poxvirus strategies for preventing signalling through the TNF receptors include 

TNF receptor homologues which effectively sequester sTNF and prevention of 

apoptotic signalling through serpins (Barry and McFadden 1997; Turner et al., 1999). 

The poxvirus serpin crmA /SPI -2 is an effective anti -apoptotic protein, active as a 

caspase pseudosubstrate (Quan et al., 1995). The protein binds to the active site of the 

enzymes in a similar manner to the true substrates, however is not cleaved, forming 

instead a stable inactive complex (Ekert et al., 1999). CrmA has been found to bind 

strongly to caspase 1 and caspase 8 in vitro, with weaker binding to granzyme B and 

caspase 6 also evident (Quan et al., 1995; Zhou et al., 1997). This is consistent with 

studies in which crmA as been expressed in transfection systems and found to block 

death induced by overexpression of the initiator caspase, caspase 1 (Miura et al., 1995), 

or by Fas /p55 activation (Tewari and Dixít, 1995), but not overexpression of effector 

caspases such as caspase 3 (Srinivasula et al., 1996). A low affinity for granzyme B 

may also have functional consequences in reducing cell death due to CTL activity 



(Macen et al., 1996; Tewari et al., 1995a). However, given the much higher affinity for 

caspase 8, it seems likely that the resistance to CTL- ly'sis observed in several studies is 

due to resistance to Fas- mediated death. 

Whether the fimction of crmA in vivo is to prevent Fas- mediated cell death, to reduce 

inflammation, or both is not yet certain. Initial studies described crmA in an anti - 

inflammatory role (Pickup et al., 1986), in which the ability to block the processing of 

IL -113 by caspase 1 was paramount (Ray et al., 1992; Thompson et al., 1993). 

However, given the importance of Fas and the CTI, response in resolution of viral 

infections, it would he expected that this too would play an important role. This has not 

yet been demonstrated in in vivo infection. This could be due to the route of infection 

or the presence of multiple genes blocking the TNF /Fas and IL -lß pathways (Spriggs 

et al., 1992; Hu et al., 1994) in poxviruses. The influence of crmA on in vivo apoptosis 

is also yet to be described. 

1.3.4 Summary 

The balance between pathogenesis and virus clearance involves sophisticated host -virus 

interactions. Apoptotic cell death is an important cellular process manipulated by an 

array of genes from both the virus and the host. Some of the more direct methods by 

which apoptosis is induced and prevented have been noted above, but it is likely that 

more subtle strategies will he discovered as we continue to unravel virus -host 

interactions. Indeed it is likely that many have already been discovered but not yet 

identified as having apoptotic consequences. 

Given the importance of apoptosis in virus infection and the temporal nature of many of 

the apoptotic stimuli, it is surprising how little has been published on the kinetics of the 

apoptotic response during infection, or the effect of anti -apoptotic factors on kinetics of 

infection. Thus in the current study, apoptosis is studied during acute infection with a 

virulent pathogen. As a model, the mouse pathogen ectromelia virus has been chosen. 
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Ectromelia virus (EV), the causative agent of mousepox, has several advantages as a 

model system. Firstly, it is a well -defined infection. Extensive work by Fenner, Mims, 

Roberts and coworkers between 1930 and 1965 resulted in a solid body of knowledge 

on the pathology within EV infected individuals and the spread of infection through 

groups. In addition, the immunology of EV has been comprehensively studied as a 

model of a generalised infection by Blanden, Karupiah and coworkers from 1970 to the 

present time. The genetics of resistance to EV have also been closely examined by 

Buller, Brownstein and coworkers. Thus EV infection, and the host response to EV 

infection, have been well characterised. 

EV also has an advantage as a model in that the natural host is the mouse. The virus is 

thus highly adapted to a host which is well defined, and in which inbred strains of 

known EV- susceptibility are available. Further, manipulation of the immunological 

environment is aided by the availability of gene knockout and genetically manipulated 

mice. 

Finally, EV encodes an intriguing anti -apoptotic gene which our laboratory has shown 

to prevent cell death through the non -DD TNF superfamily receptors p75 and CD40. 

This provides an excellent opportunity to examine the effect of an antiapoptotic gene on 

apoptosis and virus virulence in vivo. 

1.4 Ectromelia Virus 

1.4.1 Ectromelia Virus and Mousepox 

Ectromelia virus (EV) is an orthopoxvirus closely related to vaccina virus, cowpox and 

the smallpox agent variola virus. The EV genome consists of a 210kb linear dsDNA 

with terminal hairpin structures (Esposito and Knight, 1985). Sequences necessary for 

replication are located internally, and a large number of genes dispensible for in vitro 

growth are present in the inverted terminal repeats (ITRs) of greater than 6.5kb 



(Esposito and Knight, 1985; Kotwal and Moss, 1988; Perkus et al., 1991). Among the 

genes present in the ITRs are a large number of immuriomodulatory genes, dispensable 

for growth in vitro, but necessary for virulence in vivo. 

EV is the causative agent of mousepox, which can be manifested as a rapidly fatal, 

acute disease, or a chronic form which may be resolved by the host response to 

infection. At the initial stages of infection EV predominantly infects cells of the 

macrophage /monocyte system, with virus later being spread to parenchymal cells 

(Mims, 1959b; Roberts, 1962). Gene expression is rapid, with newly synthesised 

antigen evident within lh of infection, and viral inclusion bodies evident in the 

cytoplasm within 6h of infection. These mark the formation of `viral factories' and 

productive EV replication (Marchal 1930, Cairns 1960). The infection can lead to a 

range of outcomes in inbred mouse strains. These range from a rapid lethal infection in 

highly susceptible strains such as Balb /c, D2 and A/J to an inapparent infection 

followed by virus clearance in 129Sv mice (Fenner 1948; Wallace et al., 1985; Jacoby 

et al., 1989; Brownstein et al., 1992; Brownstein and Gras, 1995), Interestingly, the 

lethality of infection is not linked to virus replication within the mice, as mouse strains 

both susceptible and resistant to lethal EV infection may support high levels of virus 

replication (Wallace et al., 1985). Host resistance is multigenic, and associated with a 

strong cell -mediated response. Mice in which cell mediated immunity is specifically 

compromised, for example athymic (Allen et al., 1981; Subrahmanyan and Mims, 1967) 

or NK cell depleted mice (Karupiah et al.,1996) are highly susceptible to EV mediated 

death. Several resistance to mousepox genes (rmp -1 to 4) have been identified 

(Brownstein et al., 1992; Brownstein and Gras, 1995; Wallace et al., 1985). Rmp -1, 

initially identified in A/J (rmp -1`) and B6 (rmp -1') mice, appears to be a non -redundant 

resistance gene (Wallace et al., 1985), as rmp -4 may be (Brownstein and Gras, 1995), 

whereas some overlap in the activities of rmp -2 and rmp -3 has been noted (Brownstein 

et al., 1992). interestingly, rmp -1 is located extremely close to the NK gene complex, 
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and may.influence the susceptibility of mice to EV- mediated lethality through effects on 

the NK cell response (Brownstein et al., 1992). 

Outcome of infection is also dependent on the strain of virus used. EV has been 

isolated from wild virus populations on multiple occasions, from Europe, Asia, the 

United Kingdom and North America. The majority of current studies are performed 

with two highly virulent strains: NIH -79 and Moscow. The major isolate used in NIH 

studies, and the studies performed by Buller and colleagues is NIH -79, isolated in 1979 

from an outbreak in the NIH laboratories (Allen et al., 1981). NIH -79 is similar in 

virulence to the highly virulent and lethal Moscow strain. Moscow strain was used in 

the defining experiments of Andrewes & Elford (Andrewes and Elford, 1947), Fenner 

(Fenner, 1947; Fenner, 1947a; Fenner, 1948) and Blanden ( Blanden, 1970; Blanden, 

1971; Blanden, 1971a). All experiments in this thesis use the Moscow strain of virus. 

1.4.2 Kinetics of EV Infection 

Infection with EV results in acute disease over the first 9 days of infection. Virulent 

strains may induce significant damage to the liver and spleen during the early stages of 

disease which can cause death in susceptible mouse strains (Fenner 1949). Survivors of 

the initial stages of infection will usually have a strong subsequent humoral response to 

virus which is an effective barrier to reinfection (Fenner, 1949a). The kinetics of the 

infection are illustrated in Fig. 1.4. 

EV normally infects mice first as a very small inoculum through cracks or abrasions in 

the skin surface, where it is quickly taken up by phagocytes, in particular macrophages 

(Mims, 1959b)_ Rapid virus replication, cell to cell spread and cell migration leads to 

seeding of the local draining lymph node within 24h (Roberts, 1962), where the virus 

rapidly replicates to high levels and is released into blood and lymph. The resultant 

viraemia can seed the liver and spleen, the targets of infection, as well as other organs 

of the body (lungs, intestine, reproductive tract). Within 3d post infection (p.i.) virus 



24 

Figure 1.4 Progression of mousepox 

A. Spread of virus during the acute phase of infection after cutaneous or subcutaneous 

inoculation with ectromelia virus, analogous to natural infection. The positions of 

early external lesions appearing around d10 to dl l p.i. are marked as shaded areas. 

B. Kinetics of the cellular response to ectromelia virus infection. 

C. Detection of virus at the site of infection (footpad), in the blood and in a target of 

infection (spleen) during ectromelia virus infection. 

Fig. 1 A and 1C adapted from Fenner et al. 1949. Fig. 1B adapted from Gardner et al. 

(1974), and G. Karupiah (pers. comm.). 
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can be titrated from the target organs of infection. The virus replicates quickly in these 

sites, with up to 107pfu per gram isolated from either organ by d6 p.i. in susceptible 

mouse strains such as Ralb /c (Wallace et al., 1985). Growth appears to be uncontrolled 

in highly susceptible mice, resulting in coagulative necrosis in the liver, and death of the 

host within 7 -9d of infection. Internal examination of the mice reveals hepatomegaly 

and splenomegaly, usually accompanied by white plaques on both organs (Marchal 

1930). The lymph nodes draining the site of infection are often swollen and the area of 

infection oedematous. Additionally, death in highly susceptible mouse strains is often 

accompanied by intestinal haemorrhage, which can be microscopically associated with 

distinctive EV inclusion bodies (Greenwood et al., 1936). Highly susceptible mouse 

strains generally do not display skin lesions or evidence of an inflammatory response, 

and infected animals rarely appear ill until within hours of death. 

Resistant mice show a similar mode and time -course of infection during the first 6d of 

infection. However, an inflammatory response at the site of inoculation is detectable 

from approximately 6d p.i. (Fenner, 1949). Virus growth does not continue unabated 

until the death of the animal as seen in susceptible mice. Instead, virus titres peak in the 

liver and spleen at around 6d p.i.. The mice then appear to be able to mount an effective 

antiviral response, reducing titres noticeably by 9d p.i., and eventually clearing the 

virus. As for susceptible mice, infection is associated with hepatomegaly and extreme 

splenomegaly, which may or may not be accompanied by the formation of hepatic and 

splenic plaques. As the infection resolves, hepatocyte regeneration is evident in the 

liver, and scar tissue can be observed forming within the spleen. Depending on the 

effectiveness of the antiviral response, the virus may take 15 -28 days to be reduced to 

undetectable levels in the target organs and within this time viraemia can lead to 

seeding of the skin and periphery. Hence mice which do not quickly clear the virus are 

likely to sustain conjunctivitis and virally- induced skin lesions, particularly around the 

eyes, ears, nose and base of the tail. The mice also suffer from rapid, severe 
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inflammation at the site of infection, which may result in gangrene and the limb 

amputation (ectromelia) for which the virus was originally named (Marchai, 1930). 

1.4.3 Kinetics of the Host Response 

Elements of both the innate and adaptive immune responses are critical for host 

resistance to lethal EV infection (Blanden, 1971; Jacoby et al., 1989; Tsuru et al., 

1983). Infection of resistant B6 mice depleted of NK cells, CD4+ T cells, CD8+ T 

cells, B cells or macrophages have shown that these cell types contribute to differing 

stages of the anti -EV response. Cytokines and macrophage function are important in 

the response to EV from very early times post -infection (see Section 1.4.4). Depletion 

of macrophages by cytotoxic liposomes results in a defect in the antiviral response 

which is evident from early stages post -infection (Karupiah et al., 1996). Cellular 

responses are then instigated (Fig. 1.4). NK cells are the first cellular response to 

become detectable, with high levels of NK- mediated antiviral activity detectable over 

the first 4 days of infection (Delano and Brownstein, 1995; Jacoby et al., 1989). The 

CTL response then becomes detectable at around 3 d p.i., and is maximal at 

approximately 6 d p.i. ( Blanden, 1970; Blanden, 1971; Gardner et al., 1974). Both of 

these responses are central to the clearance of EV, with loss of either NK cells or CD8+ 

T cells resulting in severe defects in the clearance of virus (Jacoby et al., 1989; Blanden 

et al. 1971; Karupiah et aL, 1996). Studies by Mullbacher, Simon and colleagues have 

further focussed on the effects of CTL granule components on EV growth, clearance 

and pathogenesis, and have found that mice deficient in perforin or granzymes are 

highly susceptible to EV- mediated death (Mullbacher et al., 1996; Mullbacher et aL, 

1999a; Mullbacher et al., 1999), supporting an important role for CTL granule- mediated 

apoptosis in control of EV infection. 

Subsequently, from day 8 onwards the antibody response becomes detectable (Blanden, 

1970), with IgG strongly induced. The humoral response is not effective in resolution 
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of infection (Blanden, 1971), but is effective at protecting against recurrent infection 

(Fenner, 1949; Roberts, 1962). 

1.4.4 EV and TNF 

The important role of cytokines in host control of poxvirus infection (Ramshaw et at, 

1997) and EV infection in particular has been highlighted by the infection of cytokine 

or cytokine- deficient mice. Notably, mice deficient in Thl -type cytokines ( Ramshaw et 

al., 1997), TNF receptors (Ruby et al., 1997) or the IFNy receptor (Karupiah et al., 

1990) result in significantly increased susceptibility to lethal EV infection. Further, 

resistance to EV is significantly impaired by loss of either the p55 or p75 TNF 

receptors, with the loss of p75 resulting in a shorter mean time to death than loss of both 

receptors (Ruby et al., 1997). Thus both TNF receptors are important for the antiviral 

response to EV infection. 

TNF has multiple antiviral roles, such as increasing vascular permeability (Goldblum et 

al., 1988; Horvath et al., 1988), stimulating chemokine production (Tessier et al., 

1997), and activation of macrophage functions (Conkling et al., 1988), in addition to 

direct stimulation of apoptosis as described in Section 1.3.3.2. The importance of TNF 

in EV infection is evident in the multiple mechanisms utilised by the virus to prevent 

EV signalling. These include soluble decoy TNF receptors and pseudosubstrates of 

intracellular signalling proteins (Loparev et al., 1998; Turner et al., 2000). 

Decoy receptors may be important for blocking not only TNF- mediated signalling and 

cell death in the infected cell, but also for reducing levels of TNF in the extracellular 

fluid, thus preventing further immune consequences of TNF expression. Poxviruses 

encode up to 3 decoy TNF receptors, designated crmB, C and D in cowpox. Of these, 

cnn 13 is the most widely expressed, with crm C described as an intact ORF only in 

cowpox (Alcami et al., 1999; Smith, 1996), and crmD described in cowpox and 

ectromelia (Loparev et al., 1998). The sole functional EV decoy receptor, crmD, has 
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sequence similarity to the ligand- binding domain of the p75 TNF receptor but lacks the 

transmembrane or cytoplasmic domains (Howard et al., 1991; Smith et al., 1991; Upton 

et al., 1991). In vitro studies have found that crmD can bind TNF in vitro, however its 

role in in vivo inflammation is not yet known (Alcami et al., 1999; Loparev et al., 1998; 

Smith, 1996). 

In addition to decoy receptors, EV also encodes a crmA homologue, SPI -2 (Turner et 

al., 2000). SPI -2 efficiently prevents TNF and Fas- mediated apoptosis in vitro, and is 

functionally indistinguishable from cowpox crmA in expression studies (Turner et al., 

2000); see Section 1.3.3.3). 

Data from work by Janet Ruby has also suggested that the early EV gene, p28, may 

further interfere in TNF- mediated responses (J.Ruby, unpublished data). 

1.4.5 p28 

p28 is a 241 as protein consisting of two domains, a carboxy zinc RING finger and an 

amino domain (Fig. 1.5). It is not a clear homologue of any proteins yet implicated in 

cell signalling or antiviral function. An important role in virus infection is supported by 

the presence of highly conserved homologues in pathogenic poxviruses, such as 

cowpox, variola viruses India 1967 and Bangladesh 1975 and Shope fibroma virus 

(Upton et al., 1994). In contrast, extensively passaged viruses such as vaccinia 

Copenhagen and vaccinia WR contain either truncated or non -existent p28 ORFs. A 

role for p28 in regulation of the antiviral response is suggested by the requirement for 

p28 for in vivo virulence, despite having no detectable effect on viral replication in most 

cell lines in vitro (Senkevich et al., 1994). 

p28 is expressed from an early promoter, with its unstable mRNA present from 2 hours 

post -infection and continuing to be produced for the remainder of the infection 

independent of viral replication (Senkevich et al., 1995). The vast majority of p28 

protein appears to be maintained in the viral factories, with the possibility of some small 
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amounts being present in the cellular nucleus (Upton et al., 1994). The 

compartmentalisation of p28 is abrogated by completé, but not partial, removal of the 

RING finger. The RING finger appears to be required for localisation of the protein into 

the viral factories (Senkevich et al., 1995); the carboxy domain has not yet been found 

to have a defined structure or function. 

p28 has proved refractory to expression independent of virus, and so all studies 

published have examined the roles of the protein through comparison of wt EV and a 

p28 disruption mutant virus (EVAp28) created by Tania Senkevich and colleagues 

(Senkevich et al., 1994). Initial papers describing p28 showed that the gene was 

required for growth of EV in ANCR mice, correlating with reduced EVAp28 replication 

in ex vivo peritoneal macrophages from the same strain (Senkevich et al., 1994; 

Senkevich et al., 1995). EVAp28 was also attenuated in SCID mice (Senkevich et al., 

1995), however, both EV and EVAp28 grew to similar titres in B6 mice (Senkevich et 

al., 1995), suggesting that the effect of p28 expression on EV virulence may differ 

dependent on either the genotype of the host or effectiveness of the host response. The 

p28 Zn RING finger motif is held in common with the TRAF family (Section 1.3.3.2), 

and led to the hypothesis that p28 may influence virus replication or host cell viability 

through interaction with TRAF signalling pathways (J. Ruby, pers. comm.). A role in 

manipulating TNF receptor signalling was confirmed when EV but not EVAp28 was 

found to prevent death of the L929 mouse fibroblast line signalled through CD40 or the 

p75 TNF receptor (J. Ruby, pers. comm.) This has since been found to be concomitant 

with preventing the upregulation of TNF mRNA after CD40 or p75 TNF receptor 

ligation. The effect appears to be specific, as housekeeper genes and IL -1 mRNA are 

not affected (Turner et al., submitted). An additional role for p28 in preventing 

apoptosis is implied by the work of Brick and colleagues, who found that EV but not the 

EV p28 mutant virus could prevent UV- mediated apoptosis of virally infected cells 

(Brick et al., 2000). This could reflect an activity of p28 in preventing virally mediated 
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Fig. 1.5 The p28 protein. 

A. The sequence of the EV protein p28, (Senkevich et al., 1994 ; D. Smith, 

unpublished data). 

B. The predicted topology of the zinc RING finger, comprising 8 cysteine/hìstidine 

residues binding 2 Znz' ions. The RING is likely to be a scaffolding motif, to enable 

effective folding of the active domains of the protein . 



{ 7ápt,i i U!CithP tt_ 

apoptosis, as described for the Shope fibroma virus p28 homologue, N1R (Brick et al., 

1998). 

Thus p28 was known to be an effective antiapoptotic gene when expressed in a viral 

context in vitro. However, the role of p28 in vivo, and apoptosis manipulation by EV 

using p28, was not known. 

1.4.6 EV and Apoptosis 

Given the high susceptibility of mice lacking CTL- mediated (Mullbacher et al., 1996; 

Mullbacher et al., I 999a; Mullbacher et al., 1999), or TNF- mediated (Ruby et al., 1997) 

apoptosis to lethal EV infection, it is very likely that apoptosis plays an important role 

in host control of EV infection. Currently, there is little data examining apoptosis 

directly during the infection. Early microscopy studies revealed the presence of 

pyknotic cell nuclei accompanied by cytoplasmic inclusion bodies during infection of 

the liver (Mims, 1959b), suggesting that EV may induce apoptosis of infected cells 

during in vivo infection. Related orthopoxvirus infections have described apoptosis as 

an antiviral event (Barry and McFadden, 1998). However, when charting EV infection 

using electron micrographs, Matsumoto (1958) noted that tissue debris from infected 

cells was phagocytosed by macrophages. Approximately 5h later, the engulfed tissue 

debris was intermixed with inclusion bodies, which produced EV particles 6h p.ì. This 

suggests that apoptosis may enable infection of macrophages through the phagocytosis 

of apoptotic bodies, and that apoptosis may enhance EV spread in phagocytic cell types 

in vivo in addition to a role in virus clearance. 

These data suggest that apoptosis has multiple functions during in vivo EV infection, 

which may be either pro- or anti -viral. Further, it is possible that apoptosis fulfills 

differing roles at various stages of the infection. This would imply that viral factors 

which manipulate apoptosis, including p28, may also differ in effect and role at 

differing times post infection. 
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In the studies described in this thesis, the kinetics of apoptosis are explored using EV 

infection of mice as a model system. The EVAp28 virus is also compared to EV in 

order to examine the contribution of an apoptosis -blocking virus protein to apoptosis, 

and how this affects virulence and pathogenesis. Finally, the contribution of TNF to 

apoptosis and infection progression in EV infection is examined using two approaches - 
the EVtp28 virus, and mice lacking TNF receptors. 

Thus the aims of this study are 

to describe apoptosis in the context of a natural virus infection 

to determine the contribution of the p28 gene to EV virulence in a variety of mouse 

strains, including mouse knockout models 

to examine the role of TNF in EV infection, in particular it's contribution to 

apoptosis 

to explore links between apoptosis and virulence. 





Chapter 2 

Materials and Methods 





1 Methods 

2.1 Cell Culture 

BS -C -1 ceIIs (African green monkey kidney: ATCC CCL -26) were cultured in MEM 

supplemented with 5% FCS, 10mM HEPES p1-17.4, 2mM L- glutamine, 10µg /m1 

penicillin and 10µg /ml streptomycin (MEM5). Primary chick epithelial cells were 

prepared from 13 day old chicken embryos by Allison Condie and cultured in MEM 

containing 10% FCS and otherwise supplemented as above. WEHI 164 cells (ATCC 

CRL -1751) were cultured in DMEM supplemented with 10% FCS, (DMEM10) and 

otherwise supplemented as above (MEM5). 

2.2 Viruses 

The p28 disruption mutant EV (EVAp28) was created by Tania Senkevich and is a gpt 

disruption mutant of ectromelia virus (EV), derived from the replacement of the RING 

finger of p28 with the bacterial enzyme, xanthine -guanine phosphoribosyltransferase 

(gpt) ( Senkevich et al., 1994). The p28 mutant virus used is functionally 

indistinguishable from two independently derived p28 mutant viruses and can be 

reverted to wt phenotype by re- introducing the original segment of p28 (Senkevich et 

al., 1994). 

Stocks of Moscow strain EV and the Moscow strain- derived EVAp28 were prepared as 

crude lysates of infected primary chick epithelial cells or BS -C -1 African green monkey 

kidney cells. The presence of gpt in EVAp28 allowed periodic testing of virus stock 

purity by growth in gpt selection medium (MEM5 + 25 jg /ml mycophenolic acid, 250 

mg /ml xanthine and 15mg /m1 hypoxanthine) (Falkner and Moss, 1988). At the same 

time as harvest of virus stocks, crude lysates of identical uninfected cells were prepared, 

aliquoted and stored for use in mock -infection (Section 2.5). All viruses and control 

lysates were stored in small aliquots at -70 °C until use. 
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2 3 Mice 

p55 -/- (Rothe et al., 1993), p75 -/- ( Peschon et al., 1998) and p55 -/- p75 -/- mice (Peschon 

et al., 1998) were disruption mutants bred on a hybrid C57BL /6 (B6) x 129 /Sv (129) 

strain background. CD40 -/- mice (Kawabe et al., 1994) were also disruption mutants in 

a 136 x 129 background. Control mice for these strains were B6 x 129 (B6/129)F2. 

CD40 -/- were bred onto a Balb /c background from the above CD40 -/- by Paul Foster. 

136.132m -/- (7,ijlstra et al., 1989) on a B6 background, IFNyR -/- (Huang et al., 1993), IL- 

6-/- (Kopf et al., 1994) on a 129 background, and control 129 mice were kindly 

provided by Alistair Ramsay, JCSMR, ANU. For some studies, B6, Swiss Nude and 

A/J mice were used. Mice were bred in specific pathogen free facilities at the Animal 

Breeding Establishment, John Curtin School of Medical Research, Australian National 

University or at the Department of Microbiology and Immunology, University of 

Melbourne. Genotype of cytokine receptor null mice was confirmed by PCR (Table 

2.1) except for IL -6 -I- mice, which were provided directly by Alistair Ramsay. TKO 

mice were CD40- /- p55 -/- p75 -/- bred from the above knockout populations by S.C. and 

Jo McLintock at the Animal Breeding Establishment, JCSMR, ANU. Wt control mice 

for TKO mice were bred from the same B6/129 FI crosses used to generate the TKO 

mice. 

2.4 Mouse Genotyping 

DNA was extracted from tail tips incubated in 250µ1 digestion buffer (final 

concentration: 100mM NaC1, 10mM Tris.C1 pH8.0, 25mM EDTA pH8.0, 0.5% SDS, 

100.ig/ml proteinase K) for 16h at 56 °C while shaking. The digested tissue was made 

up to a volume of 4001 with double distilled water. After two phenol -chloroform 

extractions and a single ethanol precipitation, 1µl of the extracted DNA was analysed in 

a 2541 PCR reaction using the primers shown in Table 2.1. The PCR conditions 

comprised an initial 3 min incubation at 94'C, followed by 35 cycles of 94 °C for 30s, 

the appropriate annealing temperature (Table 2.1) for 45s, then 72 °C for 90s. A final 
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extension time of 10 min at 72 °C was included, followed by storage at 4 °C until 

analysis. 

2 5 In Vivo Infection 

8 -12 week old sex -matched mice were inoculated with 5 x 103 pfu of either EV or 

EV4p28 diluted in 2041 PBS into the right hind footpad. Control mice were mock - 

infected with matched uninfected tissue culture prepared at the same time as the virus 

stocks (Section 2.2), and diluted as for virus. Tissues were harvested at the specified 

times and fixed in 10% neutral buffered formalin for later apoptotic cell counts, frozen 

at -20 °C for titration, or snap frozen in OCT embedding agent by exposure to liquid 

nitrogen. For morbidity /mortality studies, mice were infected as above and observed 

daily. For some experiments, this included daily measurement of mouse weight, and 

footpad thickness as taken vertically from the pad to the top of the foot. This was 

compared to weight changes and footpad thickness in mock -infected index mice of the 

same genotype. All mice in morbidity/mortality studies were autopsied on death. 

Surviving mice were sacrificed at 25d p.i. and autopsied, except for Balb /c and Balb /c- 

C.D40 -/- mice which were sacrificed at 21d p.i. for humane reasons. Liver and spleen of 

all mice surviving until the end of the experiment were frozen at -20 °C for titration to 

determine whether virus had been cleared, and facial lesions and/or eye secretions were 

swabbed for presence of infectious virus. 

2 6 in Vivo Neutralisation of TNF 

To neutralise TNF, mice were given 100µI XT-3-11 anti -TNF mAb ascites i.p. 24h 

before infection and then at 1, 3, and 5 days p.i. For the shorter time -course, l00111 XT- 

22 anti -TNF mAb ascites was given i.v. 24h pre- infection. At this dose, both mAbs 

were equally effective in blocking TNF- dependent production of reactive nitrogen 

intermediates during virus infection (J. Ruby, personal communication). Control mice 
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Table 2.1 Primers for genotyping of cytokine deficient mouse strains 

Target Primer Sequence Annealing 

Temperature 

Ref 

CD40 CD4OUpG 5'-GGCAGTAAGACGATG'IY'iACAA GAG A-3' 64°C A 

C.'D40 CD40Holo 5'{'rAGAIGAGAAGGAAGAATGGG AAA AG3' 64°C A 

CD40(átete<I 

neo rasselle) 

CTk1010w2T 5'-TATTGGCTGCAGGGI'CGCTCGGI>`r1T-3' 64°C A 

p55 p60-B 5'rGATTGTCACGGTGCCGTTGAAG-3' 64°C B 

p55 p60-E 5'-TGA CAA GGACACGGTGIGTGGG3' 64°C B 

p55 p6(}97e 5'-TGCTGAIYìGGGATACATCCATC3' 64°C B 

p55/p75(inserted 

noo cassette) 

pglá'I6 5'-00Ci GIG GAT GTGGAA'IT°iTGTG-3' 64°C B 

p75 p80-i 5'AACGGGCCAGACCICGGGT-3' 64°C B 

p75 p80-Kas 5'AGAGCTCC'AGGC ACA AGG GG3' 64°C B 

IFNyR IFNyitsense 5'riATCCTACATACGrAA ACA TAC GGTG3' 60°C C 

It'NyR IINyilarttiserse 5'1"iIC Alt ATGGAAAGGAGGGATACAG3' 60°C C 

IFN}R(insered 

neo cassette) 

Neo 5'-CCTGCGTGCAATCCAT>vTTG-3' 60°C C 

A: (Peschon et al., 1998) B: (Kawabe et al., 1994) C: (Huang et al., 1993) 
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were pre -treated with an isotype control mAb ascites preparation (GL1 13, anti-13 

galactosidase). All 3 clones were kindly provided by I. Abrams, DNAX. 

2.7 Sublethal -Irradiation 

Groups of 4 animals were irradiated in a rotating container exposed to 650 rad from a 

6°Cobalt source (Dept. of Chemistry, University of Melbourne). Mice were infected 

with 5 x 103 pfu EV or EV4p28 into the right hind footpad 24h post -irradiation and 

observed daily up to 25d p.i.. One group of 2 -4 control mice of each genotype were 

also irradiated and mock -infected for observation up to 26d post -irradiation. 

2.8 Macrophage Depletion 

To deplete macrophages from the site of infection, age and sex -matched groups of mice 

were injected with liposomes containing dichloromethylene diphosphonate (C12MDP) 2 

days before infection, as described in Table 2.2. Liposomes were prepared with 

phosphatidylcholine and cholesterol as described by van Rooijen and Sanders (1994) 

(van Rooijen and Sanders, 1994), stored at 4 °C and used within 2 weeks. Control 

(mock- depleted) mice were injected with PBS in an identical manner to the liposomes 2 

days before infection (van Rooijen and Sanders, 1994). This was considered a more 

appropriate control than PBS -containing liposomes, which may concurrently activate 

macrophages and block normal phagocytic functions (N. van Rooijen, pers. comm). 

C12MDP was a gift of Boehringer Mannheim GmbH, Mannheim, Germany. Depletion 

was confirmed by examination of sections for acid phosphatase -positive cells. Briefly, 

cryosections of livers, spleens or LN were fixed in dry acetone for 10 minutes at room 

temperature. The cryosections were then allowed to dry completely before being 

overlaid with a barbital -based acid phosphatase buffer with napthyl AS -BI phosphate as 

substrate. To create the buffer /substrate mix, 4 solutions were made: (a) barbital buffer 

(145mM sodium acetate, 145mM sodium barbital in ddH2O); (b) substrate solution 

(10mg /m1 napthyl AS BI phosphate in dimethylformamide); (c) pararosaniline solution 
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(40mg /ml pararosaniline -HC1 dissolved over heat in 2N HC1, then cooled and filtered); 

and (d) sodium nitrate solution (40mg /ml sodium nitrate in ddH2O). Solutions A and B 

were mixed in ddH2O (5m1:1m1:12m1 respectively) to form solution 1, which was then 

mixed with solution 2 (800µ1 solution C mixed with 800111 solution D) before adjusting 

to pH 5.0 (Kraal et al., 1987). Negative control slides were overlaid with buffer in 

which substrate solution B was replaced with dimethylformamide. Slides were reacted 

for 30 min (liver) or 60 min (spleen, LN) at 37 °C then washed well in 3 changes of 

PBS. Sections were then counterstained in Harris' haematoxylin before dehydration 

and mounting in DPX. 

Table 2.2 Depletion of macrophages by injection of Cl2MDP liposomes. 

Liposome Injection 

Site 

Macrophage Depletion Site Ref. 

Footpad i.v. Footpad Draining 

LN 

Liver Spleen 

50111 

5011l 

- 

150µl 

I5041 

Y 

N 

Y 

Y 

N 

Y 

N 

Y 

Y 

N 

Y 

Y 

(Delemarre et al. 1990) 

(van Rooijen et al. 1994) 

Fig. 4.9, this thesis 

2.9 Analysis of Serum TNF 

Serum TNF was measured according to the bioassay of Espevik and Nissen -Meyer 

(1986) ( Espevik and Nissen -Meyer, 1986). Briefly, experimental sera or murine rTNF 

in control serum were serially diluted 1:1 across a 96 well microtitre plate in DMEM10. 

5 x 104 WEHI 164 cells were added in an equal volume of DMEM10 containing 4.rg/ml 

actinomycin D and incubated for 24h (3700, 5% CO2). Cell viability was then 

ascertained with thiazolyl blue (M'FT). 
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2.10 In Situ Apoptosis Detection 

Apoptosis was visualised by TUNEL staining, using a method adapted from Ansari et 

al. (1993) (Ansari et al., 1993) by G.Gobe (University of Queensland) and S.C. 

Samples were fixed in 10% neutral buffered formalin then set in paraffin. 

Subsequently, 7 -81.tm tissue sections were dewaxed and rehydrated. After 15min 

digestion with 0.05% pepsin at 37 °C, sections were permeabilised with 0.1% 

Tween20l0.1 %Triton X100 for 2min at 4 °C and rinsed thoroughly with PBS. Sections 

were then incubated with terminal deoxytransferase (Boehringer- Mannheim, 

Mannheim, Germany) reaction mix as per manufacturer's instructions for lh in the dark 

at 37 °C, using FITC- 12 -UTP as the labelling nucleotide. The reaction was stopped by 

the addition of 501.1.I 0.05M EDTA and sections rinsed thoroughly with PBS before 

mounting in AquaMount for immediate reading, or ProLong for delayed reading. As a 

positive control, sections of murine ovaries from uninfected mice were included in each 

batch. These routinely contain large numbers of TUNEL -positive cells in atretic 

follicles (see Fig. 4.7A). To quantitate apoptotic cells, greater than 10 random 40x 

fields were assessed by confocal laser scanning microscopy using a Biorad MRC 1000 

(Bio -Rad Microscience, Herts, UK) equipped with a 100mW argon ion laser (Ion Laser 

Technologies, Salt Lake City, UT, USA) which was fitted to a Nikon Eclipse TE300 

inverted microscope (Nikon Pty. Ltd., Japan). The excitation wavelength was 488 nm, 

with emission monitored at wavelengths greater than 515 nm. The resultant images 

were analysed using the Bio -Rad COMOS analysis software (Bio -Rad Microscience). 

Apoptotic cells were discriminated as TUNEL- positive cells with apoptotic 

morphology, as necrotic cells can also be labelled during TUNEL (Grasl -Kraupp et al., 

1995). Counting of apoptotic cells was not possible at late times post -infection in some 

mouse strains, since fragments from individual cells were not distinguishable from 

those of other cells in areas containing high levels of cell death. Thus the percentage 

area of the total field which was TUNEL- positive was calculated and translated into 

absolute cell numbers by calculating the actual area apoptotic and dividing by the 



t h I í f ,ri.;h i71 'kt 0 

44 4 

average area of comparable nuclei in that sample. It should be noted that, while this 

method was tested and found accurate in livers in which apoptotic cells were readily 

quantifiable, it did not distinguish between TUNEL -positive apoptotic and necrotic 

cells. This is noted in text where applicable. 

2 11 Assessment of Hepatic Morphology 

Samples from the right lobe of the liver were collected from each mouse, and 

immediately fixed in 10% neutral buffered formalin (10% NBF). After greater than 24h 

fixation, samples were set in paraffin, then sectioned into 6 -7µm thicknesses onto 

Histogrip- coated slides. Sections were then stained with haematoxylin and eosin, using 

Harris haematoxylin and Eosin -Y. Each section was initially examined first at low 

power (4x) to determine overall damage, localisation of necrotic and lymphocytic foci, 

and architectural changes to the liver. Necrotic and lymphocytic foci were then 

quantitated in a minimum of 10 high power (10x) fields of view by counting both the 

number of foci and number of nucleated cells per focus. Lymphocytic infiltration not 

causing foci was semi- quantitated by estimating the ratio of lymphocytes not in foci to 

the number of hepatocytes present. Sections were also examined at high power (10 -40 

x magnification) for the presence of ballooning degeneration, kupffer cell activation, 

vacuolisation and other symptoms of infection or damage. Two sections were assessed 

per sample, with all sections assessed blind. Photography was performed on an 

Olympus BX50 light microscope with Olympus PM30 exposure control unit, using 

Fujichrome Velvia colour slide film. Equipment and advice were kindly provided by 

David Paul and Bruce Abaloz, Department of Zoology, University of Melbourne. 

2.12 Virus Titration 

Virus titration was carried out as described by Karupiah et al. (1993) (Karupiah et al., 

1993). Livers, spleens, lungs and popliteal lymph nodes draining the site of infection 

were removed from infected mice and homogenised (PRO Scientific Inc., USA) in 1ml 
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ice -cold PBS. l001.11 homogenate was incubated with an equal volume of lmg /ml 

trypsin (30min, 37 °C) to release the virus and diluted in MEM5 to a final volume of 

1ml. Ten -fold dilutions of the trypsinised homogenate in PBS were titrated onto BS -C- 

1 cells and overlaid with MEM5 supplemented with l% low viscosity or 0.6% high 

viscosity carboxymethyl- cellulose. After 4 days incubation at 35 °C (5% CO2) 

monolayers were stained with 0.2% crystal violet in 20% ethanol, and plaques counted. 

2.13 Detection of Virus by PCR 

DNA was extracted from organs homogenised as above. 1000 of organ suspension 

was incubated with 1O0111 double strength digestion buffer (final concentration: 100mM 

NaC1, 10mM Tris.CI pH8.0, 25mM EDTA pH8.0, 0.5% SDS, 1001.1,g /ml proteinase K) 

for 16h at 56 °C while shaking. The digested tissue was made up to a volume of 400µ1 

with double distilled water. After two phenol -chloroform extractions and a single 

ethanol precipitation, lµ1 of the extracted DNA was analysed for the presence of viral 

DNA in a 25111 PCR reaction using the primers p28F and p28R as shown in Table 2.3. 

Primers and PCR protocol designed by S.0 and Deborah Maguire (JCSMR, ANTJ). The 

PCR conditions comprised an initial 3 min incubation at 94 °C, followed by 35 cycles of 

94 °C for 30s, 55 °C for 45s and 72 °C for 90s. A final extension time of 10 min at 72 °C 

was included, followed by storage at 4 °C until analysis. To control for variations in 

DNA extraction efficiency, a PCR for genomíc CD40 was performed using the primers 

CD4OUpG and CD40Holo as described in Section 2.4. 
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Table 2.3 Primers for the detection of viral and genomic DNA. 

Target Primer Sequence Annealing 

Temperature 

p28 p28F 5' -GGATATGGAATTCGATCCTGCC - 3' 55 °C 

p28 p28R 5'- TTATTAGTTAACTAGCTTATAGAACTTGCTC -3' 55 "C 

CD40 CD40UpG 5' -GGC AGT AAG ACG ATG TGA CAA CAG A -3' 64 °C 

CD40 CD40Holo 5' -GAG ATG AGA AGG AAG AAT GGG AAA AC -3' 64 °C 

2.14 Purification of Viral DNA 

Viral DNA was prepared from stocks by gently pelleting 750µ1 stocks (5000 x g, 4 °C, 

15min) and resuspending in 500111 prechilled TE buffer (10mM Tris.HC1, 1mM EDTA, 

pH7.4). 500p1 prechiIled 2x VV DNA extraction buffer was added (final 

concentrations: 10mM Tris.HC1 pH7.6, 50mM (3- mercaptoethanol, 25mM NaCl, 10mM 

EDTA, 1% sarcosyl, I .5M sucrose) and mixed gently by inversion. DNase -free RNase 

and proteinase K were added to 10014/ml and after gentle mixing, incubated at 37 °C 

overnight. Samples were gently phenol /chloroform extracted 3 times by slowly rotating 

the sample with phenol /chloroform for 15 min at ambient temperature then separating 

layers (20 000 x g, 4 "C, 10 min). This was followed by 2 chloroform extractions 

performed in the same manner. The resultant aqueous layer was dialysed against 4 

changes of TE then quantitated by spectrophotometric analysis (UV 1601). 

2.15 Statistical Analysis 

Data was analysed using Minitab 10.5 (Minitab Inc., PA). Statistical comparisons were 

made using the two -tailed Student t -test. For small or non -normally distributed 

samples, a ranked test (the Wilcoxin U -test) was also used to confirm statistical 

difference. Figures display the results of Student's t -test. Groups in which testing 
occurred solely by Student t -test contained greater than 5 readings or individuals. Error 
bars indicate SD unless otherwise stated. 
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2.16 Reagents and Suppliers 
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Actinomycin D Sigma Chem. Co., MO, USA 

Agarose Progen Industries, Qld, Australia 

Aquamount "BDH, UK 

13- mercaptoethanol Sigma Chem. Co., MO, USA 

Carboxymethylcellulose Sigma Chem. Co., MO, USA 

Chloroform Research Organics, OH USA 

Cholesterol Sigma Chem. Co., MO, USA 

C12MDP Boerhinger Mannheim, GmbH, Mannheim, 

Germany 

Dimethylformamide Sigma Chem. Co., MO, USA 

DMEM Media Production Unit, University of Melbourne 

DNase -free RNase Promega, WI, USA 

dNTPs Promega, WI, USA 

DPX BDH, UK 

EDTA Sigma Chem. Co., MO, USA 

Eosin Y BDH, UK 

Ethanol BDH, UK 

FCS CSL Biosciences, Vic, Australia 

Haematoxylin BDH, UK 

IIEPES Sigma Chem. Co., MO, USA 

Hypoxanthine Sigma Chem. Co., MO, USA 

L- glutamine Gibco BRL, NY USA 

MEM Media Production Unit, University of Melbourne 

Mycophenolic acid Sigma Chem. Co., MO, USA 

Napthyl AS BI phosphate Sigma Chem. Co., MO, USA 

10% NBF Ajax Finechem, NSW, Australia 



L,+:, ,,,,,{ I<<< 4& 

OCT embedding agent Sakura Finetechnical Co., Tokyo, Japan 

Pararosanaline Sigma Chem. Co., MO, USA 

PBS Media Production Unit, University of Melbourne 

PCR buffer Boerhinger Mannheim, GmbH, Mannheim, 

Germany 

Penicillin CSL Biosciences, Vic, Australia 

Pepsin Sigma Chem. Co., MO, USA 

Phenol (pH 7.5) Research Organics, OH, USA 

Phosphatìdylcholine Lipoid GmbH, Ludwigshafen, Germany 

Primers Bresatec, SA, Australia 

ProLong Molecular Probes, OR, USA 

Proteinase K Sigma Chem. Co., MO, USA 

rTNF (murine) Genentech, CA, USA 

Sarcosyl Sigma Chem. Co., MO, USA 

SDS Progen Industries, Qld, Australia 

Sodium acetate Ajax Finechem, NSW, Australia 

Sodium barbital BDH, UK 

Sodium chloride Ajax Finechem, NSW, Australia 

Sodium nitrate Ajax Finechem, NSW, Australia 

Sodium nitrite Ajax Finechem, NSW, Australia 

Streptomycin CSL Biosciences 

Sucrose Ajax Finechem, NSW, Australia 

Taq DNA polymerase Boerhinger Mannheim, GmbH, Mannheim, 

Germany 

Terminal deoxytransferase Boerhinger Mannheim, GmbH, Mannheim, 

Germany 

Thiozolyl blue Sigma Chem. Co., MO, USA 

Tris.Cl ICN, OH, USA 
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Triton -X100 Sigma Chem. Co., MO, USA 

Trypsin Sigma Chem. Co., MO, USA 

Tween20 Sigma Chem. Co., MO, USA 

Xanthine Sigma Chem. Co., MO, USA 





Chapter 3. 

Ectromelia Virus Differentially Affects the Host 

Apoptotic Response Dependent on Host Strain 

and the Virulence Factor p28 
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3.1 Introduction 

The poxvirus ectromelia virus (EV) is a virulent mouse pathogen, closely related to the 

human pathogen smallpox (Buller and Palumbo, 1991; Moss, 1996). Interestingly, EV is 

not equally pathogenic in all mouse strains. In highly EV- susceptible mouse strains such as 

D2, ANCR, A/J and Balb /c, EV has been found to cause a rapid lethal infection, whereas 

EV- resistant strains such as B6, and 129 appear to respond to infection with an effective 

antiviral response (Delano and Brownstein, 1995; Karupiah, 1998; Niemialtowski et al., 

1994; O'Neill and Brenan, 1987). The basis for resistance is multigenic in most strains 

(Brownstein et al., 1992; Brownstein and Gras, 1995), although studies on B6 and A/J mice 

have found that resistance segregates with the Rmp -1 (resistance to mousepox -1) gene 

(Delano and Brownstein, 1995; Wallace et al., 1985), which is closely linked to NK cell 

activity (Delano and Brownstein, 1995). The response to infection of resistant mice is 

associated with a predominantly Thl -type cytokine profile and, consequently, a strong cell - 

mediated immune response (CMI) ( Blanden, 1970; Gardner et al., 1974; Jacoby et al., 

1989). In contrast, the response to EV infection of susceptible mice is associated with a 

Th2 -like response and ineffective or delayed NK and CTL responses (Karupiah, 1998; 

Mohan et al., 1997; O'Neill and Brenan, 1987; Schell, 1960). It would be reasonable to 

hypothesise then that the apoptotic response may vary between susceptible and resistant 

mouse strains, and that any manipulation of apoptosis by the virus may also vary in 

effectiveness, dependent on the immune bias of the host. 

The EV virulence factor p28 is capable of manipulating apoptosis in vitro, but the effects of 

expression on apoptosis in vivo are not known. In vivo studies on the role of p28 have been 

limited to a comparison of virus growth and host death in 2 immunocompetent (ANCR and 

B6) and 2 immunocompromised (SCID and outbred athymic) mouse strains (Senkevich et 

al., 1994; Senkevich et al., 1995). It was found that p28 was required for virulence in the 

highly EV- susceptible A strain, SCID and athymic mice. For these three strains, EV 

replicated to significantly higher levels than EVAp28. This result may have indicated that 

p28 was active as a virulence factor only in the absence of an effective antiviral response; 
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alternatively, it may have indicated that p28 was of importance in susceptible mice or 

uniquely ineffective as a virulence factor in B6 mice. Further, it was not evident whether 

p28 enhances virulence through manipulation of apoptosis (Brick et al. 2000, Turner et al. 

submitted), effects on virus growth in macrophages (Senkevich et al., 1995), or consequent 

effects of p28 expression on host antiviral responses. 

Thus in the following experiments the effects of the EV virulence factor p28 on the 

virulence and pathogenesis of EV are explored, focussing particularly on the effects of p28 

expression in host strains of differing susceptibility to EV, and the effects of p28 on the 

apoptotic response to infection. In addition to better illuminating the role of p28 in vivo, 

this study also aims to map the hepatic apoptotic response occurring during a virulent viral 

infection. 
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3.2 Results 

3.2.1 The effect of p28 on EV pathogenesis is dependent on host strain 

Previous studies in immunocompetent mice have described p28 as a virulence factor in the 

highly EV- susceptible A strain mice but not EV- resistant B6 mice (Senkevich et al. 1995). 

This led to the hypothesis that p28 might be a strain- specific replication factor. However, it 

was also possible that p28 was required for EV virulence in susceptible but not resistant 

mice. To test the effects of host strain and EV- susceptibility on p28 function, the mortality 

and morbidity of infection with EV or a p28 mutant EV (EVAp28) was examined in two 

strains of highly resistant mice (B6 and 129), two strains of highly susceptible mice (A!J 

and Balb /c) and congenitally athymic Swiss Nudes (Table 3.1). B6x129 F2 mice (B6/129) 

were also examined in preparation for further experiments (see Chapters 4 and 5). Mice 

were infected with 5 x 10' pfu EV or EVAp28 s.c. into the right hind footpad then observed 

at 24h intervals for 25d p.i. This regimen mimics the natural route of infection (Fenner, 

1949; Roberts, 1962). Mortality is shown in Table 3.1. Identically infected mice were also 

sacrificed 9d p.i. to enable comparison of pathology between mouse strains (see also 

Section 3.2.4). 

All mice were examined daily for symptoms of illness and discomfort (weight loss, 

lethargy, coat ruffling) as well as symptoms specific to mousepox (presence of pocks, 

particularly on the face and extremities). Mousepox stimulates a strong cellular immune 

response (Blanden, 1970), which was monitored indirectly through footpad swelling 

(Fenner, 1949). Intestinal infection, particularly in EV- susceptible mice, has been reported 

by several authors (Fenner, 1949; O'Neill and Brenan, 1983). Thus, diarrhoea was also 

noted as an indicator of intestinal infection. Autopsies performed on mice sacrificed at d9 

p.i. examined pathological changes in the target organs of infection (liver and spleen), 

intestines and the popliteal lymph node draining the site of infection (draining lymph node; 

DLN). Splenomegaly was measured as an indicator of the host cellular response. In 

addition, the state of other internal organs not commonly associated with mousepox 

pathogenesis was examined (lungs, heart, thymus, stomach, kidneys, reproductive tract) for 
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grossly observable signs of infection. These organs did not typically show overt signs of 

infection. There was occasional pathology within individuals, however this is likely to 

reflect differences between individuals rather than groups. In consequence, symptoms in 

these organs have been omitted for clarity unless displayed by 2 or more mice within the 

group. Data regarding viral titres in organs of these mice is also not presented, as virus 

growth is explored more fully later in this chapter (Section 3.2.2). The effects of infection 

with EV or EVAp28 on morbidity are summarised in Table 3.2. 

Differences between EV and EVAp28 infection were marked in susceptible mice. A/J mice 

were highly susceptible to lethal infection with EV, succumbing 8 -9d post -inoculation 

(Table 3.1). Little morbidity, including footpad swelling, was observable, although 3 of 5 

mice had minor diarrhoea in the 12h before death. Death was accompanied by extensive 

viral lesions in the liver, spleen and intestine, associated with intestinal haemorrhage in 3 of 

5 mice (Table 3.2). Fatty change of the liver, indicating hepatic stress, was also detected in 

3 of 5 mice, and evidence of oedema and tissue breakdown in the reproductive tract was 

seen in 2 of 5 mice. In contrast, A/J mice were highly resistant to EVAp28. This was most 

clearly shown by the lack of mortality in EVAp28 infected mice (Table 3.1). Morbidity 

observed was also markedly different, and remained restricted to minor footpad swelling, 

evident from approximately 9 -17d p.i. EVAp28 infected mice sacrificed at 9d p.i. for 

comparison to lethally infected mice revealed hepatomegaly and splenomegaly greater than 

that detected in EV- infected mice, however, these were relatively low in comparison to 

other mouse strains (Table 3.2). At termination of the experiment at d25 p.i., the p28 

mutant virus was no longer detectable in these mice in either the liver or spleen (data not 

shown). These data confirmed that p28 was necessary for pathogenic EV infection of A/J 

mice. 

Balb /c mice also proved to he highly susceptible to EV- induced mortality and resistant to 

EVAp28, demonstrating that resistance to EVAp28 was not specific to A/J mice (Table 

3.1). Progression of EV infection in Balb /c mice was similar to that in the A/J strain. 

Balb /c mice infected with EV had slightly higher levels of inflammation at the site of 
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infection than A/J mice (Table 3.2), however 3 of 5 mice did not display further signs of 

discomfort until shortly before death. This discomfort resulted in distress necessitating 

euthanasia at 8d p.i. in 2 of the 5 mice infected. All mice additionally had conjunctivitis, 

with 3 of 5 mice suffering further facial lesions (Table 3.2). Post -mortem examination 

showed that internal pathology was very similar to that seen in A/J mice. Extensive viral 

lesions were present in the liver, spleen and intestines, leading to intestinal haemorrhage in 

1 of 5 mice. Ovaries and uterus were also inflamed in 4 of 5 mice. 

As seen in A/J mice, Balb /c were highly resistant to EVAp28, however morbidity was 

noticeably greater. Morbidity was present from d9 p.i., as indicated by weight loss, small 

eye Iesions and footpad swelling (Table 3.2). At d 1 5 p.i. symptoms appeared to resolve, 

and by d25 p.i. mice showed no evidence of disease. Autopsies at d25 p.i. revealed minor 

residual hepatomegaly and splenomegaly well below that of EV- infected mice (Table 3.2). 

It thus appeared that p28 was a virulence factor in at least two strains of EV- susceptible 

mice. It also appeared that p28 affected virulence to a different extent between A/J and 

Balb /c strains. 

The effect of p28 on EV infection in the highly susceptible but immunocompetent A/J and 

Balb /c mice was next compared to Swiss nude mice, which are congenitally athymic 

(Pantelouris, I968; Green, 1981). The subsequent lack of T cells results in high 

susceptibility to EV infection (Buller et al., 1987). All Swiss nude mice infected with EV 

suffered rapid, lethal infection (Table 3.1) with minimal morbidity and no detectable 

swelling at the site of infection (Table 3.2). Lethal infection was associated with severe 

intestinal lesions in 4 of 5 mice, and uniformly severe splenic and hepatic lesions similar to 

those seen in the susceptible A/J and Balb /c strains. In contrast to the immunocompent 

susceptible mice, Swiss nude mice were also highly susceptible to EVtp28, with 100% of 

mice succumbing to lethal infection (Table 3.1). The MTD of EVOp28- infected mice was 

significantly extended compared to EV infection (P <0.05), however this is unlikely to be 

biologically significant in view of the similarity of the morbidity (Table 3.2), hepatic 

indicators of damage (Table 3.4) and virus titres (Fig. 3.2B) associated with EVOp28 



infection compared to those observed in EV infection. Prior to death, morbidity appeared 

very similar to that in response to EV infection, with post -mortem examination revealing 

almost identical internal pathology (Table 3.2). Both EV and EVAp28- infected mice were 

found to have small, dark spleens and pale, mottled livers, consistent with the abundant 

viral lesions and low level cellular infiltration found histologically (see also Fig. 3.3). 

Hence p28 expression was not necessary for EV virulence in Swiss nude mice. 

p28 expression had a less obvious effect on EV pathogenesis in EV- resistant mouse strains. 

All EV- resistant mouse strains survived infection with EV or EVAp28 (Table 3.1) with 

minimal morbidity (Table 3.2). While mice did not show typical signs of disease such as 

pocks or weight loss, all resistant mice showed extreme footpad swelling which was not 

seen in susceptible mice. Examination of internal pathology at d9 p.i. further showed that 

footpad swelling correlated closely with splenomegaly for EV and EVAp28 infections. 

While internal pathology was low overall, some hepatomegaly and evidence of fatty liver 

was seen in all 3 resistant mouse strains, particularly B6. More striking was the presence of 

damage in the infected footpad and the lymph node draining the site of infection. This 

resulted in lymph node destruction in all EV- infected B6 mice, 3 of 5 EVAp28 infected B6 

mice, 3 of 5 EV infected B6/I29 mice, and 2 of 5 EV infected 129 mice. 

As described in EV- susceptible mice, the effect of p28 expression on EV pathogenesis was 

not equal between all EV- resistant mouse strains. In addition to differential LN destruction 

(Table 3.2), this was most evident through comparison of splenomegaly and footpad 

swelling. Both were greater in response to EV than EVAp28 infection in 129 and B6/129 

mice. This contrasted with B6 mice, in which p28 expression did not appear to affect either 

parameter (Table 3.2). 

These data showed that p28 expression increased EV pathogenesis in both susceptible (A/J 

and Balb /c) and resistant (B6/129 and 129) mouse strains. The requirement for p28 for EV 

virulence was not equal in all mouse strains. This could be clearly observed in susceptible 

mice, in which mutation of p28 led to responses ranging from dramatic attenuation of the 

virus and almost no attendant morbidity (A/J), to external lesions which were then resolved 
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(Balb /c), or lethal infection indistinguishable from that of wt EV (Swiss nude). EV 

virulence appeared less affected by the presence of p28 during infection of EV- resistant 

mouse strains, however this was at least partially due to the low level of morbidity evident 

on EV infection. In these mice, expression of p28 led to detectable differences in the host 

response to infection, as indicated by increased footpad swelling and splenomegaly (129), 

or LN destruction with increased footpad swelling and splenomegaly (B6/í29), although 

again, p28 did not affect symptoms of infection in all mice (B6). 

These data had broadly addressed whether p28 expression affected the outcome of disease 

in a number of mouse strains. It was now examined whether the effect of p28 on viral 

pathogenesis was related to a requirement for p28 for EV replication as suggested by 

Senkevich and colleagues (1995), or in preventing virus clearance. To do this, the kinetics 

of virus replication were ascertained in resistant and susceptible mice. 

3.2.2 The effect of p28 on EV replication is dependent on host strain 

To determine the kinetics of EV and EVdp28 replication, Swiss nude, AIS, B6, B6/129 and 

129 mice were infected with 5 x 103 pfu of either EV or EVdp28 via the footpad as 

previously and sacrificed from d3 to d9 p.i. Balb /c mice were not used, as suitably matched 

mice were not available at the time of the experiments. This time -course encompasses the 

first detection of virus in target organs at d3 (Fenner, 1949), the peak virus titres occurring 

at d6 -7 p.i. (Fenner, 1949), and initiation of virus clearance by CMI ( Blanden 1971, 

Gardner 1974). Virus replication was examined in the target organs of infection (liver and 

spleen) and the popliteal lymph node draining the site of infection (draining lymph node: 

DLN) (Fig. 3.1). The DLN is the first site seeded by virus after footpad infection and is 

an indicator of virus replication at the site of inoculation (Fenner 1949a). The footpad 

itself was not titrated as the original inoculum would interfere with the titres obtained. 

Swiss nude mice did not show any effect of p28 expression on EV replication or clearance 

in any of the organs tested. EV and EVAp28 proved highly and equally virulent, with 

levels of both viruses increasing in the livers of mice until host death. Levels of both 
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viruses were significantly greater than those seen in any other mouse strain tested (Fig. 3.1; 

P <0.01) and were indistinguishable at each timepoint (P>0.40). Hence in Swiss nude mice 

p28 expression did not affect virus replication or clearance. This was consistent with 

earlier observations of equal morbidity and mortality. 

In contrast, EV clearly required p28 for effective replication in A/J mice. High levels of 

EV replication occurred in all organs tested from d3 p.i. In contrast, severe attenuation of 

EVAp28 was evident in the liver and spleen of infected animals, with virus remaining 

below detectable levels in the liver. EVAp28 was also attenuated in the DLN, in which 

EVAp28 remained at levels at least 1 log less than the wt virus. This was particularly 

notable as, despite apparent titres of up to 1008 
t 

04 pfu/g, the small mass of DLN ( <12mg) 

means that absolute EVAp28 levels actually decreased over the period of the infection in 

the DLN of A/J mice to levels below those injected by d9 p.i., the only mice in which this 

occurred. Thus p28 was required for virus growth in A/J mice. 

The inflammatory responses of the EV- resistant mouse strains to infection with EV or 

EVAp28 had suggested that p28 affected virulence in 129 and B6/129, but not B6 mice. 

However, infection of B6, 129 and B6/129 mice with EV and EVAp28 led to similar virus 

replication kinetics in each case. All three strains supported equal growth of EV and 

EVAp28 in the DLN. Levels of virus replication were approximately equal in the spleen, 

however in the liver EVAp28 titres reached maximum levels approximately 1 log below 

those of EV at d6 p.i. (B6 P <0.05; B6/129 P <0.01, 129 P <0.01) before the onset of virus 

clearance, observable at d9 p.i. Virus clearance appeared more effective in 129 and B6/129 

mice than B6 mice. This finding was in keeping with the higher observed resistance of 

these mice to EV-mediated morbidity. 

These data showed that EVAp28 replication was compromised very early in infection of the 

highly susceptible A/J mice. The effect was unique amongst the mouse strains tested and 

consistent with the marked lack of pathogenicity in A/J mice. Differences in the responses 

of EV- resistant mice to p28 expression appeared generally related to levels of viral 
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replication, since the three resistant mouse strains showed slight but consistent attenuation 

of EVAp28, and minor effects of p28 on morbidity. 

Two potentially related mechanisms proposed in the literature were consistent with the host 

strain -specific effects of p28 expression on virus replication. The first, proposed by 

Senkevich and colleagues, was that p28 was required for EV replication in macrophages 

from some strains of mice. This was consistent with a requirement for p28 for the growth 

of EV in ex vivo macrophages derived from A strain mice (Senkevich et al., 1995), and the 

important role of macrophages in the establishment of EV infection (Mims, 1959b; 

Roberts, 1962). A second mechanism was proposed by Brick and colleagues, and Turner 

and coworkers (Brick et al. 2000; Turner et al. submitted). These two studies found that 

p28 was required for EV to block some forms of apoptosis, which may prevent effective 

virus replication. Apoptosis may directly compromise virus replication through the death 

of the infected cell before virus replication is complete (Everett et al., 2000; Itoh et al., 

1998; Roulston et al., 1999; Smith et al., 1997), and may additionally promote the antiviral 

response through priming of the immune response (Albert et al., 1997; Bellone et al., 

1998). These proposed mechanisms for p28 activity were not mutually exclusive, as it was 

possible that apoptosis early after EVAp28 infection of ex vivo A strain macrophages may 

restrict replication of the p28 mutant virus. Indeed, preliminary experiments have 

suggested that this is the case (S.C., data not shown). Thus the next experiment examined 

whether the effect of p28 on EV virulence required the presence of macrophages. To do 

this, EV and EVAp28 virulence were tested in mice depleted of macrophages with 

cytotoxic liposomes. 

3.2.3 Macrophages contribute to p28- mediated virulence in A/J mice 

Growth of EV in macrophages is critical at several points in infection. Macrophages are 

amongst the first cell types infected during dermal and subdermal EV infection (Roberts 

1962). Additionally, infection of the resident macrophages of the liver (Kupffer cells) is an 

important and rate -limiting step in the progression of virus infection (Mims 1959). Hence, 
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activity of p28 as a macrophage -specific replication factor would be consistent with, and 

sufficient for, the extreme attenuation of EVAp28 observed in A/J mice. To test the role of 

p28 and macrophages in EV infection of A/J mice, the virulence of EV and EVAp28 were 

compared in mice depleted of macrophages using C12MDP liposomes injected into the 

footpad and i.v. 48h prior to infection (Section 2.8). This protocol effectively depletes 

macrophages from the liver, spleen, footpad and popliteal lymph (Karupiah et al., 1996; 

van Rooijen et al., 1989), see also Fig. 4.9). Control mice were mock -depleted with PBS as 

described in Section 2.8. After liposome or PBS treatment, mice were infected with 5 x 103 

pfu of EV or EVAp28 in the right hind footpad as previously, then observed at 24h intervals 

for 25d. B6 mice were also tested as controls in which EV and EVAp28 grew to equal 

levels and caused similar mortality and morbidity. 

The response of mock- depleted A/J mice to infection with EV or EVAp28 was 

indistinguishable from that of untreated mice (Section 3.2.1). EV infection resulted in rapid 

lethal infection with minimal morbidity, whereas EVAp28 infection resulted in minor 

morbidity followed by recovery from infection (Tables 3.1, 3.3). Infection of liposome- 

treated A/J mice with EV led also to rapid lethality, identical to that of PBS- treated EV 

infected mice. However, liposome- treated A/J mice showed strikingly increased 

susceptibility to EVAp28, as illustrated by the increase in mortality from 0% to 80% of 

infected mice. This indicated that EVAp28 attenuation was largely reversed by 

macrophage depletion. However, the p28 mutant virus remained attenuated in comparison 

to EV as indicated by lower mortality rates and extended MTD (P <0.01). Unexpectedly, 

post -mortem examination did not show overt lesions to the liver or spleen, although all 

mice showed DLN destruction. 

Mock -depleted B6 mice responded to infection as per untreated mice, with all mice 

surviving infection with both viruses (Table 3.3). Swelling at the site of infection was 
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severe, and indistinguishable between the wt and p28 mutant viruses. Macrophage 

depletion of B6 mice led to a significant increase in susceptibility to both EV and EVAp28. 

Footpad swelling and splenomegaly were very reduced in comparison to non -treated mice, 

suggesting compromise of the inflammatory response to infection in macrophage- depleted 

mice. This is in agreement with the low splenomegaly observed, and previous reports of 

immune dysfunction in macrophage depleted mice (Karupiah et al., 1996; van Rooijen and 

Sanders, 1994). Death ensued rapidly, with all mice succumbing to infection at 8d p.i. 

(Karupiah et al., 1996; Table 3.3). Post -mortem examination revealed very small spleens 

and the presence of viral plaques on the margins of the liver. It was additionally found that 

mortality, morbidity and internal pathology did not differ between EV and EVAp28 

infection of liposome- treated B6 mice. 

The results of macrophage depletion in A/J and B6 mice confirmed the critical role of 

macrophages in resistance to EV infection (Karupiah et al., 1996). The presence or 

absence of p28 did not affect lethality in macrophage- deficient B6 mice. A/J mice depleted 

of macrophages were more susceptible to EVAp28 than control mice, suggesting that a 

major antiviral mechanism targeted by p28 is macrophage- dependent. Despite this, 

EVAp28 was still less virulent than EV, with 4 of 5 macrophage -depleted mice surviving 

for an extended period in comparison to equivalent mice infected with EV, and 1 mouse 

surviving for greater than 25d p.i. Virus was not detectable in the liver, spleen or LN of 

this mouse (data not shown), thus the mice were still capable of clearing the infection. This 

observation suggests that p28 was still required for virulence in macrophage -depleted A/J, 

and so also inhibits mechanisms which are independent of macrophages. 

A role for p28 in virulence through the inhibition of apoptosis has also been implied by 

previous work (Brick et al., 2000, Turner et al., submitted). The effect of p28 expression 

on apoptosis during EV infection was next examined 
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3.2.4 P28 manipulates apoptosis in B6 mice but not in other strains 

To determine whether p28 expression affected apoptosis during EV infection, apoptotic 

cells were quantitated in the livers of B6, B6/129, 129, A/J or Swiss Nude mice. Liver was 

chosen, as hepatic damage is thought to be the cause of death in EV infection (Fenner, 

1949). Liver samples collected from the mice described in Section 3.2.2 were fixed in 10% 

NBF and sectioned for detection of apoptosis in situ. This has the advantage of allowing 

the sites and context of apoptosis to be examined in addition to quantitative analysis. 

Apoptosis was visualised using TUNEL staining, which exploits the ability of terminal 

deoxytransferase to attach fluorescein -conjugated uracil triphosphate (FITC- 12 -UTP) to 

breaks in the DNA strands. The apoptotic cells can then be visualised and quantitated 

(Section 2.10). Since this staining technique can also stain necrotic cells (Grasl- Kraupp et 

al., 1995), the morphology of the labelled cells was also examined. 

For histological assessment, sections collected in serial with those used for TUNEL 

staining were stained with H&E. Necrosis, lymphocytic infiltration and lymphocytic foci 

were then semi- quantitated for comparison to apoptosis (Table 3.4). Swiss nude, A/J, B6 

and 129 strains were chosen as representing a variety of responses in susceptible and 

resistant mice to EV and EVAp28 infection. 136/129 mice were also subsequently 

examined (Chapter 5). 

The apoptotic response to EV infection and the sensitivity of the response to p28 

expression differed between mouse strains independent of the effect of p28 on EV 

virulence. Swiss nude mice responded to both EV and EVt.p28 infection with high levels 

of apoptosis at d6 and d9 p.i. (Fig. 3.2). Consistent with viral replication, levels of 

apoptosis were not significantly different between EV and EVAp28 infected mice d6 p.i. 

The apoptotic cells were predominantly present as individual cells associated with areas of 

necrosis and comparable to those later detected in CTL- deficient mice (Fig. 3.7C). 

Increased apoptosis was concomitant with increases in both virus titres (Fig. 3.2) and 

necrosis (Fig. 3.3B, C, Table 3.4), suggesting that these were related in Swiss nude mice. 

In addition, high levels of vacuolisation (Fig. 3.3B) were detected, which increased over the 
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first 6d of infection. Quantitation of necrosis showed a non -significant trend towards 

reduced necrosis in EVAp28- infected mice at d9 p.i. (P =0.09) This was not detectable by 

direct observation. 

In contrast, apoptosis did not obviously correlate with virus levels in A/J mice. EV 

replicated to levels significantly higher in the livers of A/J than Swiss nude mice by d6 p.i. 

(P <0.01; Fig. 3.2), while EVAp28 did not reach detectable levels. However, A/J mice 

displayed low levels of apoptosis in response to both virus infections (Table 3.4, Fig. 3.4). 

Interestingly, hepatic necrosis was present at similar levels in both EV and EVAp28 

infection despite EVAp28 virus titres being below the limit of detection in the liver (Fig. 

3.2). Necrosis was not, however, qualitatively equivalent. Hepatic necrosis in response to 

EV consisted of areas of hepatic damage with poorly defined margins, similar in 

appearance to those observed in Swiss nude mice (Fig. 3.3C, 3.4B). In contrast, necrotic 

areas in A/J mice infected with EVAp28 were discrete and localised. Further, necroses in 

EVAp28 -infected A/J mice were associated with inflammatory foci (Fig. 3.4C). This was 

not seen in EV infection, suggesting that p28 expression inhibited inflammation or 

leukocyte chemotaxis in the livers of these mice. 

The highly EV- resistant 129 mouse strain also responded to EV infection with a low level 

of apoptosis which was not sensitive to p28 expression (Fig. 3.2), and did not display 

hepatic necrosis at any point in infection (Table 3.4). EV- resistant mice displayed 

increased inflammatory cell infiltration into the liver and higher numbers of lymphocytic 

foci (Table 3.4), consistent with the capacity of the mice to resolve the infection. These 

observations suggested that a vigorous apoptotic response was not required for an effective 

antiviral response. Further, the patterns of apoptosis observed in resistant mice differed 

from those seen in susceptible A/J mice. Whereas apoptotic cells in highly EV- sensitive 

mice were closely associated with necroses, apoptotic cells in EV- resistant mice were 

scattered throughout the parenchyma. These may or may not have been associated with 

foci of inflammatory cells, as the foci were difficult to discern during fluorescende 
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microscopy (see Figs. 4.2E, 4.2F, 5.9). The pattern of apoptosis observed in 129 and 

B6/129 mice was shared by EV- infected B6 mice (Fig. 3.7B, 5.9). 

The apoptotic response of B6 mice was uniquely sensitive to regulation by p28 expression. 

136 mice displayed low levels of apoptosis in response to EV infection, as observed in other 

resistant strains. However, infection with EVAp28 led to an increase in apoptosis evident 

within 3 days of infection which was significantly increased over EV- induced levels 

throughout the infection (P <0.05; Fig. 3.2). Levels of apoptosis in EVAp28 infected mice 

were approximately 3 times higher than apoptosis in EV- infected animals from d3 p.i., 

reducing towards wt levels as the infection began to resolve. For both EV and EVAp28 

infection, apoptosis appeared qualitatively similar; apoptotic cells appeared to be 

predominantly scattered hepatocytes, with some apoptosis present in the sinusoids and 

venules. Figs. 4.2E and 4.2F illustrate the most common patterns of apoptosis observed in 

B6 mice. 

Within B6 mice, an accelerated infiltration of lymphocytes and increase in lymphocytic 

foci was seen in EVAp28- infected animals across the early stages of infection compared to 

that in EV infection (Table 3.4). While it is tempting to speculate that this could be the 

cause of increased apoptosis in EVAp28- infected B6 mice, it should be noted that increased 

apoptosis was present before the increase in lymphocyte infiltration and during the time at 

which both EV and EVAp28 infected mice had similar numbers of foci. These findings 

suggest that both inflammation dependent and independent mechanisms activate apoptosis. 

This data revealed a complex relationship between the apoptotic response and the antiviral 

response. In immunocompromised mice (Swiss nude), virus growth was uncontrolled and 

levels of apoptosis appeared to parallel virus levels. However, in immunocompetent mice, 

generally low levels of apoptosis were observed, whether or not the mice mounted an 

effective antiviral response (eg. 129 vs. A /J). In B6 mice however, the apoptotic response 

appeared to be strongly inhibited by p28 at all timepoints examined. 



3.2.5 p28 activity requires both radiation sensitive and radiation resistant 

elements 

In the previous experiments it was noted that EVAp28 but not EV infection induced the 

formation of lymphocytic foci in AJ.J mice, suggesting that p28 may be active in A/J mice 

by preventing an efficient immune response. EVAp28 also stimulated accelerated 

formation of inflammatory cell foci in B6 mice, however, this appeared to have a lesser 

effect on virulence. In order to test whether a functional immune response was required for 

attenuation of EVAp28, A/J and B6 mice were sublethally irradiated before infection with 

EV or EVAp28. Sublethal irradiation limits the immune response by causing the death of 

proliferating cells, including cells responding to antigen (Johnson et al., 1995; Lin et al., 

1996) and downregulates some aspects of macrophage function (Anderson and Warner, 

1976). Groups of 4 mice were exposed to 650 rad from a 66Co source and infected 24h later 

with 5 x 10' pfu EV or EVAp28 per mouse as previously. Mice were then examined at 24h 

intervals for morbidity and mortality. As controls, groups of 3 mice were irradiated and 

mock -infected, and 4 mice of each genotype were left non -irradiated before infection. 

Irradiated mice showed a significant reduction swelling at the site of inoculation and lack of 

splenomegaly, as seen in macrophage depleted mice (Section 3.2.3). The MTD of 

irradiated A/J mice infected with EV was equivalent to that of non -irradiated mice, 

suggesting that irradiation did not increase the sensitivity of the mouse strain to EV- 

mediated lethality (Table 3.5). Both irradiated and non -irradiated mice displayed similar 

internal pathology, with grainy, slightly fatty livers. Irradiated mice additionally displayed 

reduced spleen size in comparison to non -irradiated control mice. Death was associated 

with significant intestinal damage in 3 of 4 mice in both irradiated mice and non -irradiated 

mice_ 

EVAp28 infection of irradiated ALT mice also resulted in 100% mortality, however MTD 

was around 18d p.í., substantially greater than that of EV infected mice (Table 3.5; 

P <0.01). Post -mortem examination revealed strikingly different pathology to that seen in 

EV infected A/J mice. The livers of irradiated A/J mice infected with EVAp28 were 
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relatively normal, with some fatty change. No intestinal damage was observed, however 

spleens were highly enlarged and fibrous. In comparison, non- irradiated mice did not 

appear to have significant internal pathology, although some splenomegaly was noted. 

In contrast, sublethally- irradiated B6 mice were equally susceptible to EV and EVAp28, 

with a mean time to death (MTD) of around 10d p.i. for both viruses (Table 3.5). Unlike 

non -irradiated control mice, irradiated B6 displayed little swelling in the infected footpad. 

In addition, irradiated mice infected with EV or EVAp28 possessed extremely small spleens 

and soft, fatty livers with a grainy texture. Samples were not taken for titration, or 

histological comparison with susceptible or non -irradiated mice or TÜNEL staining since 

mice had been dead for between 15 min and 16h, during which time variable tissue and 

virus degradation would have already started to take place. However, morbidity was 

identical in response to both viruses, suggesting that virulence was also identical. The 

observation that p28 does not affect virulence in irradiated B6 mice may indicate that p28 

manipulates immune -mediated response(s). This is consistent with the regulation of 

apoptosis by p28 during d3 -9 p.i. in this mouse strain. However, it is also possible that the 

impairment of the host response is to such an extent that p28 is no longer necessary for high 

EV virulence. 

These data showed that irradiation increased susceptibility of A/J mice to EVAp28 but did 

not completely reverse attenuation of the virus. Comparison of MTD between irradiated 

mice shows that survival time was significantly extended in EVAp28 infected A/J mice 

compared to those infected with EV (P <0.01), or B6 mice infected with either virus 

(P <0.01), revealing a radioresistant aspect of A/J resistance to EVAp28. Since irradiation 

prevents the proliferative response to antigen, the continuing resistance of A/J mice to 

EVAp28 also implies that p28 has further activities in these mice than the manipulation of 

the cellular immune response implied in Fig. 3.4. Further, the unique pathology observed 

in these mice suggests that p28 may be required for localisation of the virus to organs 

during EV infection, particularly the liver and intestine. Alternatively, p28 may normally 

function to increase EV virulence in some organs, notably the liver and intestine, leading to 
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the rapid death observed during infection of A/J mice with the wt virus. In the absence of 

an immune response, EVAp28 may be able to replicate to pathogenic levels in other organs 

such as the lungs. It is not known how this may relate to previous data describing roles for 

p28 in apoptosis (Brick et aL, 2000, Turner et al., submitted), virus growth in macrophages 

(Senkevich et al. 1995), or changes to hepatic pathology (Section 3.2.1). Given the focus of 

the current work on apoptosis in infection rather than the basis for EVAp28 attenuation in 

A/J mice, this data was noted but not explored further. 

In contrast to the startling effect of p28 expression in sublethally- irradiated A/J mice, p28 

expression did not affect Iethality of infection in similarly irradiated B6 mice. Sublethal 

irradiation of B6 mice led to high susceptibility to both EV and EVAp28. No difference 

could be seen between the two virus infections, a finding in common only with Swiss nude 

mice. The finding suggests that p28 does not play a role in virulence in irradiated B6 mice. 

Further, the result, in combination with the differences in apoptosis between EV and 

EVAp28 infected B6 (Fig. 3.6) suggests that p28 may be active in B6 mice through 

manipulation of immune- mediated apoptosis. 

3.2.6 The effect of p28 expression on apoptosis is abrogated in MHC class 

I- deficient mice 

Effective NK and CTL responses are critical for resistance to EV. Depletion of either cell 

type results in susceptibility to EV- mediated lethality (Blanden, 1970; Buller et aL, 1987; 

Jacoby et aL, 1989; Karupiah et al., 1996; O'Neill and Brenan, I987). The two cytotoxic 

cell types have overlapping kinetics of activation during EV infection. NK cells, which 

important during virus infections as cytolytic cells and sources of antiviral cytokines (Biron 

et al., 1999), are predominantly active prior to 4d p.i. The CTL response, mediated by 

CD8+ T cells is then highly active from 3 -10d p.i. (Gardner et al., 1974; Karupiah et al., 

1996). It had been noted in Section 3.2.4 that the presence of p28 reduced hepatic 

apoptosis in B6 mice during the period 3 -9d p.í., ie during the period of maximum CTL 

activity_ Thus, it was possible that the difference in levels of hepatic apoptosis between EV 

and EVAp28 infected B6 mice was dependent on CD8+ T cells. 
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To investigate whether CD8+ CTLs contributed to the differences seen in the apoptotic 

response to EV and EVAp28 infection in B6 mice, apoptosis and virus growth were 

examined in B6 and B6.132m -/- mice. B6.02m -/- mice are selectively CD8+ CTL deficient 

due to extremely low levels of class I MHC expression (Zijlstra et al., 1990). In the 

absence of positive selection, CD8+ T cells cannot mature to provide a CTL response 

(Zijlstra et al., 1990). Interestingly, NK cell function remains largely intact (Tay et al., 

1995). B6 and B6.ß2m -/- mice were infected with a low dose (5 x 10' pfu) of either EV or 

EVdp28 via the footpad as previously, and organs harvested from 3 -9d p.i. for virus 

titration and apoptotic staining. 

As shown in an earlier study (Karupiah et al., 1996), B6.132m -/- mice are highly susceptible 

to the lethal effects of EV infection. All B6.132m -/- mice infected with EV died within 17d 

of infection, whereas control mice uniformly survived the infection (Table 3.6). Similarly, 

B6.132m -/- mice did not survive infection with EVAp28, and no differences were observed 

between the MTD of the two infections. Titration of EV and EVAp28 showed that 

replication of both viruses was increased in B6.(32m -/- mice, compared to B6 mice. The 

increase in virus titres was evident from d3 p.i. on infection with EVAp28 (P <0.05) and 

from d6 p.i. on infection with EV (P <0.05; Fig. 3.6). Virus clearance was also significantly 

compromised, with levels of hepatic EV and EVAp28 present in B6.132m -/- mice at d9 p.i. 

comparable to those in B6 mice at the peak of infection (d6 p.i.; Fig. 3.6). Equivalent 

patterns of virus growth and clearance were observed in the spleen and DLN (data not 

shown). Thus, neither virus replication or clearance was affected by p28 expression in 

B6.132m -/- mice. 

TUNEL staining of hepatic sections showed that apoptosis in B6 mice was similar to that 

observed previously (Fig. 3.2). While both EV and EVAp28 infected mice displayed some 

hepatic apoptosis, the levels of apoptosis were at significantly higher levels in mice infected 

with EVAp28 compared to those infected with EV within 3d p.í.(P <0.01; Fig. 3.6). 

Enhanced levels of apoptosis were maintained in EVAp28 infected mice at 6d p.i., before 

decreasing at d9 p.i. to levels similar to those found in infection with the wt virus. In 
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contrast, B6.(32m -/- mice responded to both EV and EVAp28 with low levels of apoptosis 

at 3d p.i. which increased during the course of the infection. The magnitude of the 

difference in apoptosis levels between EV and EVAp28- infected mice was strikingly 

decreased in B6.(32m -/- mice compared to B6, although it remained significant at d6 p.í. 

(P <0.05) and became significant at d9 p.i. (P <0.01; Fig. 3.6). This reflected the similarity 

of the kinetics of apoptosis in B6.132m -/- mice to those observed in Swiss nude mice (Fig. 

3.2) rather than the parent B6 strain (Figs. 3.2 and 3.6). 

A qualitative examination of apoptosis in B6 and B6.132m -/- mice showed that the 

differences in levels of apoptosis detected were mirrored by differences in the pathogenesis 

of EV and EVAp28. As previously, B6 mice displayed predominantly scattered apoptosis 

in response to both EV and EVAp28 (Fig. 3.7B), with some apoptosis associated with foci 

of leukocytes, as illustrated in Fig. 4.2F. This was consistent from d3 -9 p.i., and 

qualitatively indistinguishable between EV and EVAp28 infections. Inflammation of the 

livers as indicated by increased numbers of leukocytes, increased inflammatory foci and 

some distension of sinusoids was also indistinguishable between the two virus infections 

(see Fig. 4.2E, F). B6.[32m -/- mice displayed very different patterns of apoptosis, 

associated with differences in hepatic necrosis and leukocyte infiltration. Like B6 mice, 

B6.(32m -/- mice had a significant infiltration of inflammatory cells evident from d3 p.i. 

which appeared to form foci throughout the hepatic tissue. However, this was associated 

with extensive necrosis not observed in B6 mice (Fig. 3.7C). Apoptosis in B6.[32m -/- mice 

was similarly strongly associated with necrosis, in contrast to the scattered apoptotic cells 

of B6 mice. 

Hence the difference in levels of apoptosis between EV and EVAp28 infection in B6 mice 

was dependent on a functional CD8+ T cell response. 



3.2 Discussion 

The work presented in this chapter focussed on two questions (1) the role of p28 in the 

pathogenesis of EV and (2) the role of apoptosis in the host response to infection. 

The data showed that p28 contributes to EV virulence to varying degrees in a number of 

mouse strains, with A/J (p28 absolutely required for EV virulence) and B6 (p28 not 

required for EV virulence) forming the extreme phenotypes. The effect of p28 expression 

appeared greater in highly EV- susceptible mouse strains and lesser in mice highly resistant 

to EV- mediated mortality. 

There are a number of mechanisms by which p28 may be a more effective virulence factor 

in EV- susceptible than EV- resistant mice. Mouse strains highly susceptible to EV are more 

likely to have a Th2 -type cytokine bias and humoral immune response, whereas resistance 

to EV- mediated mortality is associated with a Thl response and correspondingly strong cell 

mediated immunity (Karupiah, 1998). In Balb /c mice, the Th2 bias has been linked with 

possible defects in cytokine production (Alleva et al., 1998) and /or the response to 

cytokines (Shibuya et al., 1998). For example, Balb /c CD4+ T cells are capable of 

producing Thl type cytokines such as IFNy after concurrent treatment with IL -12, IL -1 and 

TNF. In comparison, CD4+ T cells from EV- resistant B6 require only IL -12 treatment 

(Shibuya et al., 1998). It is known that p28 interrupts the upregulation of TNF mRNA after 

p75 or CD40 activation (Turner et al., submitted). It is possible that this also occurs in 

vivo. Thus by preventing upregulation of TNF or other cytokines, p28 may prevent a Th2 

to Thl switch in EV- susceptible mice which is not necessary for an effective cell- mediated 

antiviral response in Thl biased resistant mice. In A/J mice it is likely that there are further 

mechanisms very early in the response, as indicated by the extremely low levels of EVAp28 

detectable by d3 p.i. in the liver and spleen. An alternative, and possibly complementary, 

possibility is that the innate apoptotic response of EV- infected cells to infection is sufficient 
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to clear the majority of infecting virus in the absence of p28 in the susceptible mouse 

strains tested. Since this would occur before the timepoints tested, the response would be 

unlikely to be observed in the liver from 3d pi. To detect whether this is occurring, 

TUNEL staining in the infected footpad and local draining lymph node would be required 

at earlier timepoints. This may be enhanced by a reduced ability to replicate in 

macrophages (Senkevich et al., 1994). A third, related mechanism maybe that early host - 

induced apoptosis in EVdp28 infection could serve to prime the immune response through 

rapid antigen presentation (Albert et al., 1997; Bellone et al., 1998). This might be 

expected to be of greater importance in susceptible mice than in mice which are 

independently capable of an effective cell -mediated anti -viral response such as B6 or 129. 

A role for p28 in manipulating the immune response is supported by the reduction of EV- 

EVAp28 differences in irradiated mice compared to non -irradiated controls, equal virulence 

of EV and EVAp28 in congenitally athymic Swiss nude mice, accumulation of 

inflammatory foci in response to EVAp28 but not EV in A/J mice, and by suppression of 

apoptosis by EV but not EVAp28 in B6 mice. It is also possible that the reduced impact of 

p28 in EV infection of macrophage -depleted mice may reflect the role of p28 in 

manipulation of cellular immunity. This is suggested by the significant reductions in CD4+ 

and CD8+ T cell activity reported in macrophage -depleted mice (Karupiah et al., 1996). In 

this regard it is interesting to note that the effect of macrophage depletion on EV and 

EVAp28- mediated mortality was indistinguishable from that of sublethal irradiation, in 

which T cell function, and some aspects of macrophage function such as production of 

inflammatory cytokines, are compromised (Anderson and Warner, 1976) 

Earlier studies showed that EVAp28 was uniformly attenuated in SLID or outbred athymic 

mice (Senkevich et al., 1995). In contrast, data in this chapter shows EVAp28 virulence to 

be only marginally reduced in the congenitally athymic mouse strain, Swiss nude. While it 

is possible that compensatory mechanisms such as NK cells are masking the effect of p28 
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mutation, both EV and EVAp28 grow to high levels in the Swiss nude mice, suggesting that 

compensating mechanisms are not effective against either virus. It is possible that the 

difference in EVAp28 attenuation between this study and the previous study could be a 

result of differing genetic backgrounds of the athymic mice An analogous finding in this 

study is that EV and EVAp28 virulence is equal in sublethally irradiated B6, 

yet EVAp28 is attenuated in similarly irradiated A/J mice. 

A key question addressed in this chapter was whether p28 was required for virulence as a 

strain and cell -type specific replication factor in the macrophages of A strain mice 

(Senkevich et al. 1995). This hypothesis was consistent with previous studies in which it 

has been shown that macrophages are amongst the first cell types to be infected (Mims 

1959, Roberts 1962) and productive infection of macrophages is required for hepatic 

infection (Mims 1959). However, data in this chapter suggests that this hypothesis is 

unlikely to explain the role of p28, since EVAp28 virulence in A/J mice was not restored by 

depletion of macrophages, indicating that p28 had further functions in virulence. 

Thus, the data support the presence of macrophage- independent aspects of p28 activity in 

EV virulence. However, they do not preclude a role for p28 in manipulating other aspects 

of macrophage activity that may be of importance in the anti -viral response, for example, 

production of inflammatory cytokines and APC function (Gordon et al., 1992). This is 

explored further in Chapter 4, 

In addition to the role of p28 in infection, this study also focussed on the inter -relationships 

between apoptosis, virus growth and pathogenesis. Apoptosis has previously been 

associated with pathogenesis in a number of viral infections (Baize et al., 1999; Lewis et 

al., 1996; Oberhaus et al., 1997; Roulston et al., 1999). In this study, it was found that 

apoptosis was only associated with observable EV pathogenesis in immunocompromised 

mice (Swiss nude and B6.(32m -/ -). In contrast, both susceptible and resistant 
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immunocompetent mouse strains had apoptotic responses unrelated to viral growth or 

necrosis. There are a number of conclusions that can be drawn. It can be seen from the 

low levels of apoptosis and high titres of virus at d6 p.i. in most strains tested that apoptosis 

is very unlikely to be required for EV replication. Similarly, the resistance of 136 and 129 

mice to EV infection does not appear to be dependent on a quantitatively large apoptotic 

response, since levels of apoptosis are very similar to those found in susceptible ALT mice. 

This is confirmed by the apoptotic response of B6 mice to EVAp28 infection. While 

infection with the p28 mutant resulted in significantly higher levels of apoptosis, this was 

associated with only a relatively minor acceleration of lymphocytic focus formation, which 

did not affect virulence or the outcome of infection. The lack of correlation between levels 

of apoptosis and resistance is interesting, given that the major cell types capable of 

inducing apoptosis during the acute phase of infection - the NK cells and CD8+ CTL- are 

essential for recovery from EV ( Karupiah et al., 1996). In particular B6 mice lacking 

perforin, and so unable to induce NK or CTL granule- mediated apoptosis, become 

susceptible to lethal infection (Mullbacher et al., 1999b). In contrast, removal of CD4+ 

cells, which are of primary importance in cytokine production rather than in induction of 

cytotoxicity, results in chronic infection and an inability to clear virus (Karupiah et al., 

1996). This suggests an important role for the cytotoxic response in control of EV not 

detectable by in situ apoptosis detection. Alternatively, apoptosis early in infection may 

not be observable in this study because of the organs and timepoints chosen for 

investigation. For example, it is possible that p28 is influencing apoptosis in the footpad 

and DLN before the virus reaches the liver. Indeed, it can be seen throughout this chapter 

that events determining virus replication are likely to be occurring prior to 3d p.i. This can 

particularly be seen in AJJ and B6 mice. In A/I mice, in which EVAp28 was highly 

attenuated, virus replication was reduced by d3 p.i. In B6 mice, in which EVAp28 was not 

attenuated, a difference in hepatic apoptosis was clearly evident by d3 p.i. The latter was 
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puzzling, as virus replication and leukocyte infiltration into the liver (including NK cells) 

was low at this stage. The effect of p28 on the apoptotic response to EV infection prior to 

d3 p.i. was thus examined more closely in B6 mice. 



3.4 Tables and Figures 



Table 3.1 Mortality in response to infection with EV or EVAp28 

Mouse 

Strain 

Infection Mice per 

group 
EV* EVAp28* 

Mortality ( %) MTD (days)$ Mortality ( %) MTD (days) 

A/J 100 9.0±0.0 0 - 6 

Balb /c L00 8.6 ± 0.5' 0 - 5 

Swiss Nude 100 7.2 ± 0.3 100 9.0 ± 0.7 5 

B6 0 - 0 - 5 

129 0 - 0 - 5 

B6/129 0 - 0 - 5 

*Sex- matched 8 -12 week old mice of each genotype were infected with 5x 103 pfu of either 

EV or EVAp28 in the right hind footpad and observed for 25 days at 24h intervals for signs 

of morbidity and mortality. 

IMTD, mean time to death ± SD. MTD analysed for statistically significant differences 

with the Student's t -test. MTD found to be significantly different between EV and EVAp28 

infected Swiss nude mice (P <0.05). 

a. 2 of 5 EV infected Balb /c sacrificed at 8d p.i. for humane reasons. 



Table 3.2 Indicators of morbidity in EV infection of various mouse strains 

Symptom 

Mouse strain and infection' 

A/J Balb /c Swiss nude 129 B6/129 B6 

EV* EVAp28 EV* EVAp28 EV* EVAp28 EV EVAp28 EV EVAp28 EV EVAp28 

Weight loss' - - - + T - - - - - 

Facial lesions` - - +++ + - - - - - - - - 

Intestinal lesionsd ++ - ++ +/- + + ++ ++ - _ - - - - + + 

Hepatic lesions' + ++ - +++ +1- +++ + ++ - - - - +1- +, /- 

Splenic lesionsf + +- - + ++ +++ +++ - - - - +/- +/- 

LN destruction' + 

Hepatomegalÿ' - + + -i I i - - + + 

Splenomegaly' + ++ ++ +i- i- ++ ++ -I ++-;- i 1+ + + ++ + + ++ 

Footpad swelling - + +/- + - - + ++ +,- + ++ ++ + + + ++ +H ++ 



a. Groups of 5 female mice were infected with 5 x 10' pfu FV or EV4p28 and observed for 25d p.i. Observations quoted in this table were taken at 9d p.i. or at time of death 

if MTD < 9d. Groups for which readings were taken at time of death are indicated by asterisks. 

b. Weight loss was measured by daily weighing of mice before and after infection up to 9d p.i. Weight loss occurred from d6 p.i., and was not observed to reverse during the 

time measured. Scored at 9d p.i. Scores: Weight maintained at 100 -95% uninfected weight ( -); reduced to 90 -95% uninfected weight ( +); reduced to 85 -90% uninfected 

weight ( + +) 

c. Facial lesion scores: No lesions ( -); conjunctivitis ( +); conjunctivitis with visible pocks ( + +); extensive visible pocks ( + + +) 

d. All intestinal lesions detected were severe. Score indicates number of mice in group with lesions, from O ( -) to 5 mice ( + + + + +) 

e. Hepatic lesions were grossly visible as pale or dark mottling of liver, primarily at the outer edge of lobules and associated with fatty change. Individual plaques were 

observable in severe damage. Present in no mice -; low levels present in less than half of the experimental group + / -; low levels present in more than half of the 

experimental group +; mottling or plaques more prevalent + +; severe hepatic damage + ++ 

Splenic lesions were grossly visible as pale or dark mottling, often associated with either softening of the organ or fibrous changes. Scoring as for hepatic lesions. 

g. LN destruction scored as either popliteal LN draining the site of infection destroyed ( +) or present ( -) at 9d p.i. 

h. Hepatomegaly: score indicates virus infected liver mass as a percentage of mock -infected liver mass. 0- 100 %: - ; 100- 150 %: + 

Splenomegaly: score indicates virus infected spleen mass as a percentage of mock -infected spleen mass. 0- 100 %: -; 101- 150 % +, 151 -200% + +, 201 - 300% + + +, 301 - 

400%a + + + +, >40 I % + + + ++ 

Footpad swelling measured using clinical scores. No swelling -; just detectable +; bones of foot obscured + +; swollen to 3mm thickness L + +; very swollen below heck 

+ + + +; swelling including hock + + + ++ 



Table 3.3 Effects of Cl2MDP treatment on resistance of mice to infection with EV 

and EVAp28. 

Infection * 

Mouse strain EV EVAp28 Mice per 

and Treatment Mortality MTD Mortality MTD group 
(04) (days)$ ( %) (days) 

A/J 

+ PBS 100 9.8 ± 0.8 0 - - 

+ Liposomes 100 8.8 ± 0.8 80 15.0 ± 5,0 0 

136 

+ PBS 0 - 0 - 5 

+ Liposomes 100 8.0 ± 0.0 100 8.0 ± 0.0 0 

*Female mice of each strain were treated with 1501x1 C12MDP liposomes i.v. and 

S0p1 liposomes s.c. into the right hand hind footpad. 48h later they were infected 

with 5x 103pfu of either EV or EVAp28 in the same footpad and observed for 25 

days at 24h intervals for signs of morbidity and mortality. 

$MTD, mean time to death ± SD. MTD was not statistically different between EV- 

infected A/J mice treated with PBS or liposomes (P= 0.10), liposome- treated A/J 
mice infected with EV or EVAp28 (P= 0.09), or liposome treated B6 mice infected 

with EV or EVAp28 using the Student's t -test. 



Table 3.4 Hepatic changes associated with infection. 

Infection EV EVOp28 

Mouse Strain Swiss Nude A/.I BO 129 Swiss Nude A/J B6 129 

Dal ° post-infection Necrotic foci' ' 

0 0±0 20.38±61.15 0±0 0±0 0±0 20.38±61.15 0±0 0±0 
3 20.38±40.76 61.15±326.11 0±0 0±0 0±0 20.38±407.64 0±0 0±0 
6 481427±30166 8947.8 ± 6196.2 101.91 ± 101.91 0 ± 0 409682±8805.1 3444.6 ± 978.34 0 ± 0 0 ± 0 

9 
ta td 8947.8 ± 6196.2 0 ± 0 20626.8±115975 1732.5 ± 815.29 40.76 ± 40.76 0 ± 0 

Inllanunatc ry cell foci" 

0 0±0 0.01 ± 0.01 0.21+-0.21 0.10±0.14 0 ± 0 0.01 ± 0.01 0.21±0.21 0.10±0.14 

3 0±0 6.48 ± 4.75 1.30 ± 0.82 5.69±3.34 0 ± 0 3.24 ± 2.13 5.84 ± 2.46 4.38 ± 2.65 

6 0 ± 0 0 ± 0 5.35±1.15 22.31 ± 6.41 0 ± 0 7.68 ± 3.58 20.60±2.85 18.35±6.24 

9 120.86 + 39.55 51.26 ± 10.24 0 = 0 24.65 ± 5.36 103.20 ± 27.46 44.21 ± 11.88 

Inllammatorvi cell infiltration' 

0 +/- +/- +/- +/- +/- +/- +/- +/- 

3 +/- +/- + +/- +/- +/- + + 

6 +/- ++ + ++- +/- + ++ ++ 

9 t t ++ +++ +/- +/- -++ 



a. Levels of necrosis were semi -quantitated by counting necrotic foci in at least 10 fields of view per section from 2 sections per sample. Size of each 

necrosis was measured using a micrometer, and the total area per field of view was calculated. All samples were assessed blind. Data represents pmt 

necrotic tissue per field of view ± SD 

b. Levels of inflammatory cell foci were semi -quantitated by observing foci in at least 10 fields of view per section from 2 sections per sample. The number 

of cells per focus and the total number of foci per field of view were counted. Cells per focus x number of foci were calculated to give the number of 

cells within foci in each field of view. All samples were assessed blind. Data represent cells within foci per field of view ± SD 

c. Inflammatory cell infiltration was estimated by comparing the ratio of lymphocytes to hepatocytes present in at least 10 fields of view per section from 2 

sections per sample. Lymphocytes present within foci were excluded from the ratio. All samples were assessed blind. 

d. t = not assessed due to death of mice. 



Table 3.5 Effects of sublethal irradiation on resistance of mice to infection with EV and 

EVOp28. 

infection * 

Mouse strain EV EVOp28 Mice per 

and Treatment Mortality MTD Mortality MTD (days) group 
( %) (days)$ ( %) 

Ali 

Non -irradiated 100 9,0 ± 0.0 0 - S 

Irradiated l 00 9.0 ± 0.0 100 18.0 ± 0.Oa 

B6 

Non- irradiated 0 - 0 - 5 

Irradiated 100 10.5 ± 0.5 100 10.0 ± 0.0 5 

*Male mice of each strain were irradiated with 650 rads from a 60Co source 24h prior to 

infection. A further group of 3 mice of each genotype was irradiated and mock- infected to 

ensure that irradiation was sublethal and so not contributing directly to mortality of 

infection. No mortality was seen in this group (data not shown). 

MTD, mean time to death ± SD. MTD analysed for statistically significant differences 

with the Student's t -test. 

a. MTD found to be significantly different between EV and EVAp28 infected mice 

(P<0.01). 



Table 3.6 Mortality in B6 and B6.132m -/- mice in response to infection with EV or 

EVAp28 

Mouse EV* 

Strain Mortality ( %) MTD (days)1 Mortality ( %) MTD (days) group 

B6 

B6. (32m' 

EV4p28 Mice per 

0 0 6 

100 17.3 ± 0.6 100 17.8 ± 0.3 10 

*Sex -matched mice of each genotype were infected with 5x 103pfu of either EV or 

EVAp28 in the right hind footpad and observed for 25 days at 24h intervals for signs of 

morbidity and mortality. 

IMTD, mean time to death ± SD. MTD not significantly different in EV and EVAp28- 

infected B6.132m -/- mice by Student's t -test (P <0.05). 



Figure 3.1 EV and EV \p28 replication in the acute phase of infection 

Groups of 5 female mice of each strain were infected with 5 x 103 pfu EV or EVLS,p28 in 

the right hind footpad and sacrificed at the times indicated. Liver, spleen and the 

popliteal lymph node draining the infected footpad (DLN) were titrated as described in 

Karupiah et al. (1993). Titres and levels of apoptosis were analysed for statistical 

significance with the Student's t -test ( *P<0.05, * *P <0.01). Data is representative of two 

experiments. Limit of detection for titration: 101.7 pfu /g. Titres and apoptotic counts are 

not available for EV- infected Swiss nude and A/J mice at 9d p.i. due to death of the mice 

(see Table 3.1). Data represents virus titre ± SD. 

na: not applicable. DLN were often destroyed during the process of infection and so 

could not be titrated in B6 mice, or in 129 mice infected with EV at d9 p.i.. 

nd: not determined. 
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Figure 3.2 Apoptosis in response to EV and EVAp28 infection 

Groups of 5 female mice of each strain were infected with 5 x 103 pfu EV or EVAp28 in 

the right hind footpad and sacrificed at the times indicated. Liver samples were fixed in 

10% NBF for sectioning and staining for apoptotic cells using the TUNEL method 

(Section 2.10; A). Hepatic virus titres from figure 3.1 are also shown for comparison 

with apoptosis (B). Virus titres and levels of apoptosis were analysed for statistical 

significance with the Student's t -test ( *P <0.05, * *P <0.01). Data is representative of two 

experiments for A /J, B6, Swiss nude and B6/129 mice, and one experiment for 129 

mice. Limit of detection for titration: 10' pfu /g. Data are not available for Swiss nude 

and A/J mice at 9d p.i. with EV due to death of the mice (see table 3.1). 

Error bars represent SD of collated data. 
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Figure 3.3 Hepatic morphology of Swiss nude mice infected with EV or 

EV4p28 

Livers were harvested 6d p.i. from 5 female mice mock -infected, or infected with 5 x 10' 

pfu EV or EV4p28 as previously. Formalin -fixed sections were stained with the H &E 

as per materials and methods. Representative sections are shown. Mock -infected mice 

displayed healthy liver morphology (A). Mice infected for 6d with EV showed necrotic 

changes and severe vacuolisation of cells throughout the tissue (black arrows; compare 

to portal inflammation in A/J and B6 mice, Figs. 3.4, 3.5). However, inflammatory 

changes were minimal (B). In EV4p28 infected mice, necrosis also occurred throughout 

the tissue (C). No inflammatory infiltrates were seen in either EV or EV4p28- infected 

Swiss nude mice, although ballooning necrosis was prominent (white arrows). 

Magnification: 20x. 
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Figure 3.4 Hepatic morphology of A/J mice infected with EV or EVAp28 

Livers were harvested 6d p.i. from 5 female mice mock -infected, or infected with 5 x 10 

pfu EV or EVAp28 as previously. Formalin -fixed sections were stained with the H &E 

as per materials and methods. Representative sections are shown. Mock -infected mice 

displayed healthy liver morphology (A). Mice infected for 6d with EV showed 

predominantly periportal necrosis, associated with minimal inflammatory changes (B). 

Necrotic cells resembled those seen in Swiss Nude mice infected with EVAp28 (white 

arrows; see also Fig. 33). In EVAp28 infected A/J mice, hepatic changes were obvious 

despite the extremely low levels of virus present (C). In particular, foci of inflammatory 

cells could be seen. These were predominantly near venules. Magnification: 20x. 
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Figure 3.5 Hepatic morphology of B6 mice infected with EV or EVAp28 

Livers were harvested 6d p.i. from 5 female mice mock -infected, or infected with 5 x 103 

pfu EV or EVip28 as previously. Formalin -fixed sections were stained with the H &E 

as per materials and methods. Representative sections are shown. Mock -infected mice 

displayed healthy liver morphology (A). Mice infected for 6d with EV showed 

inflammatory changes including distended sinusoids and an increase in the number of 

inflammatory cells (B). Pathology was very similar in EVAp28 infected mice. 

Inflammatory infiltrates highlighted by black arrows (B, C). Magnification: 20x (A, B); 

40x (C). 
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Figure 3.6 Virus growth and apoptosis in B6 and B6.132m -/- mice 

Groups of 5 female mice of each strain were infected with 5 x 103 pfu EV or 

EVOp28 in the right hind footpad and sacrificed at the times indicated. 

Samples of liver were harvested for virus titration as described by Karupiah 

et al. (1993) or snap- frozen in liquid nitrogen for cryosectioning and TUNEL 

staining as described in Sections 2,5 and 2.10. Virus titres and levels of 

apoptosis were analysed for statistical significance using the Student's t -test 

( *P<0.05, * *P<0.01). The limit of detection for virus titration was 50 pfu/g 

(10`' pfu /g), as indicated by the dashed Iine. Error bars represent SD. 



Figure 3.7 The apoptotic response of B6.(12m -/- mice to EV infection is 

associated with high levels of necrosis 

livers were harvested 6d p.i. from 5 female mice mock -infected, or infected with 5 x 10' 

pfu EV or EVAp28 as previously. Formalin -fixed sections were stained using the 

TUNEL procedure as per materials and methods. Representative sections are shown 

from EV- infected samples examined for Fig. 3.6. Apoptotic cells were evident as 

strongly FITC -positive cells with apoptotic morphology (white arrow). Mock -infected 

mice displayed low to undetectable levels of hepatic apoptosis (A). By d9 p.i., apoptosis 

was present as scattered cells throughout the hepatic parenchyma in B6 mice (B). 

However, in R6.132m -/- mice apoptosis was commonly associated with necrosis, visible 

in TUNEL stained sections as large areas of reduced background staining (black 

arrows). Pathology and the pattern of apoptosis was indistinguishable between EV and 

EVAp28 infected mice. Magnification: 20x. 
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Chapter 4 

A Novel Apoptotic Response to EV Infection 

is Suppressed By Expression of p28 In Vivo 
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4.1 Introduction 

There is now a large body of evidence supporting the importance of early events in the 

anti -viral response and outcome of infection. Studies in which key elements of the early 

host response have been ablated have shown that compromise of the early response is 

often associated with a reduced ability of the organism to clear virus and successfully 

recover from infection (Huang et al., 1993; Karupiah et al., 1996). The early response 

includes production of cytokines such as TNF and IFNI' (Grieder et al., 1997; Ruzek et 

al., 1997), and may include rapid apoptosis of infected cells (Itoh et al., 1998). 

Notably, the response has previously been described as a local event (Grieder et al., 

1997) which appears to play roles in preventing spread of virus (Itoh et al., 1998) and in 

the initiation of inflammation (Orange et al., 1997). Infection with a number of 

complex DNA viruses results in cytokine upregulation within hours of inoculation 

(Grieder et al., 1997; Ruzek et al., 1997). Similar responses, such as cytokine 

upregulation, are closely associated with apoptosis and pathology later in infection 

(Orange et al., 1997). 

An important role for TNF early in infection is suggested by its rapid production after 

virus infection (Grieder et al., 1997), the rapid attenuation of vaccinia virus constructs 

encoding TNF (Sambhi et al., 1991), and the aberrant inflammatory responses to EV 

seen in TNF receptor deficient mice (Chapter 5). This corresponds with the in vitro 

finding that TNF is anti -viral within 24h in a variety of infections (Mestan et al., 1986; 

Wong and Goeddel, 1986; Wong et al., 1992). TNF is also one of the primary factors 

identified in the host response against EV (Ruby et al., 1997 ; Chapter 5). 

It has also been found that the virus gene p28 is necessary for EV to block 

transcriptional upregulation of TNF in vitro, thus preventing TNF- mediated apoptosis in 

some cell types (Turner et al. submitted). The data described in Chapter 3 shows that 

p28 is important for the virulence of EV in a variety of mouse strains. However, no 
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consistent effect on apoptotic profiles was observed from d3 to d9 p.i. Given the 

potential importance of early events in the oucome of infection, it was possible that p28 

and /or apoptosis played an important role in EV infection prior to the timepoints 

chosen. 

Thus, in this chapter apoptosis in EV infection and the effects of p28 are examined prior 

to d3 p.i. 



4.2 Results 

4.2.1 Two distinct phases of apoptosis occur on infection of mice with 

p28- mutant but not wild -type ectromelia virus. 

During the experiments described in Chapter 3, it was noted that B6 mice displayed 

increased hepatic apoptosis within 3d of infection, despite low levels of detectable virus 

and inflammatory cell infiltration (Table 3.2, Fig. 3.2). The data suggested that p28 

affected apoptosis prior to d3 p.i. To investigate this hypothesis, B6 mice were infected 

with 5 x 10; pfu of either EV or EVAp28 via the footpad as described in Section 2.5, 

and sacrificed at intervals from 6h to 9d p.i. (Fig. 4.IA, B). The extension of the time 

course to 9d p.i. allowed direct comparison of apoptosis before d3 p.i. with that already 

described. The Iiver, a target of infection, was harvested, sectioned and stained, either 

using the TUNEL technique in order to visualise apoptotic cells in situ, or haematoxylin 

and eosin (H &E) for general histological examination (Figs. 4.1A, 4.2). Samples were 

also collected for virus titration (Fig. 4.1B). 

Apoptosis was very low in mock -infected mice (Fig. 4.1A). At 24h p.ì., both EV and 

EVdp28 infected mice displayed a marked increase in hepatic apoptosis. Apoptosis 

from d3 -9 p.i.was similar to that described in Chapter 3 (Fig. 4.1A). Apoptotic cells 

were predominantly scattered cells within the sinusoids and occasional parenchymal 

cells. As virus replication, necrosis and the inflammatory response increased through 

d6 p.i., foci of apoptotic hepatocytes in association with infiltrating lymphocytes or 

necroses could be observed (Fig. 4.2G) which were also observable at d9 p.i. This 

response was common to both EV and EV428- infected mice. 

In addition, examination of apoptosis before dl p.i. revealed an apoptotic response to 

EVAp28 infection at only 6h p.i. The apoptosis was not observed in EV infection, 

implying that the response was blocked by the presence of p28 (Figs. 4.1A, 4.2A, B, C, 

D). The apoptotic cells were distributed randomly through the hepatic parenchyma, 
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predominantly in the sinusoids, suggesting that the apoptosing cells might be kupffer 

cells or migrating leukocytes. Further, the apoptotic response was transient, with 

apoptosis no longer detectable 12h after infection. This apoptotic response was 

distinctive in that it occurred prior to the detection of infectious virus in the liver (Fig. 

4.1B) and was not associated with inflammatory changes seen later in infection such as 

sinusoid distension (Fig. 4.2E), necrosis (Fig. 4.2F) or foci of inflammatory cells. In 

contrast, EV- infected mice did not display increased hepatic apoptosis prior to 24h p.i. 

(Figs. 4.1A, 4.2C). 

Titration of livers showed that virus growth was very similar to that described in 

Chapter 3. Virus first became detectable at d3 p.i. for both EV and EVAp28. Virus 

titres then peaked at d6 p.i., followed by a decrease in titres, detectable at d9 p.i. The 

trend was the same for both viruses, with EVAp28 titres being significantly lower than 

EV titres at d3 and d9 p.i. in 2 of 3 experiments (P <0.05; Fig. 4.1, and data not shown). 

Previous studies of apoptosis in viral infection have associated apoptosis with the 

presence of viral antigen (Lieber et al., 1997). However, titration of the livers had 

shown that infectious virus was not detectable before d3 p.i. (Fig 4.1B). The possibility 

existed that during footpad infection a very small amount of virus, below the limit of 

detection by titration, had entered the bloodstream and thus reached the liver. To 

investigate the possibility that virus was present in the liver 6h p.i., EV- specific PCR 

was performed on DNA extracted from the same livers used for the apoptotic studies 

(Fig. 4.3). It was found that viral DNA could be detected 24h p.i. in both EV and 

EVAp28 infected mice, correlating with the marked increase in apoptosis seen at Id p_1. 

in both infections (Fig. 4.1A). However, viral DNA could not he detected 6h or 12h p.i. 

Hence, infection with EVAp28 but not EV elicited a transient apoptotic response in the 

liver 6h p.i. in B6 mice. At this very early stage of the infection, no virus could be 

detected in the liver by titration or PCR. 
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4.2.2 The early phase of virus -induced apoptosis is dependent on TNF 

The finding that EV but not EVAp28 inhibited CD40 and TNF mediated cell death in 

vitro (Turner et al., submitted) suggested that the apoptosis observed in mice infected 

with EVAp28 could be dependent on one of these factors. Both are important in the 

anti -EV response (Ruby et al., 1995; Ruby et al., 1997), with TNF implicated in the 

later stages of other viral infections as a cause of hepatic immunopathology (Orange et 

al., 1997). CD40 was first investigated to determine whether it was necessary for the 

early phase of apoptosis. CD40 -/- and wt B6/129 mice were infected as previously with 

EV or EVAp28 and livers harvested for TUNEL staining at 6h and 12h p.i.. To control 

for the effects of stress and tissue disturbance during inoculation, livers were also 

harvested from mock -infected mice 6h p.i. as described in Section 2.5. It was found 

that neither wt (B6/129) nor CD40 -/- mice responded to mock -infection with an 

increase in apoptosis (Fig. 4.4). CD40 -/- mice experienced an increase in apoptosis at 

6h p.i. in response to EVAp28 but not EV, as was seen in wt mice (Fig. 4.4). Hence 

CD40 was not necessary for the early phase of apoptosis to occur. 

To investigate whether TNF was required for the early apoptotic response to EVAp28 

infection, apoptosis was also examined in mice in which TNF was depleted. B6 mice 

were treated with neutralising anti -TNF mAb or an isotype control 24h before infection 

with EVAp28, then at 2d intervals thereafter. This antibody and dose has previously 

been shown to efficiently deplete TNF from the serum (J. Ruby, pers comm), and was 

found in this experiment to deplete serum TNF 6d p.i. (data not shown) as tested by 

biological assay (Section 2.9). Livers were harvested 6h or 6d p.i., and apoptotic cells 

stained using TUNEL. Serum was also collected and tested for the presence of TNF by 

biological assay. 

Apoptotic cells were readily detected in livers from control mAb- treated mice infected 

with EVAp28 6h p.i. (Fig. 4.5A). In contrast, apoptosis in equivalent EVAp28- infected 

mice treated with anti -TNF mAb remained at background levels. Thus, treatment with 
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anti -TNF mAb prevented the early phase of apoptosis. A comparison of apoptosis in 

anti -TNF treated mice with control treated mice at 6d p.i., revealed a trend towards 

higher apoptosis in the anti -TNF treated subjects although not to a statistically 

significant extent (P -0.15; Fig. 4.5A). Titration revealed that this corresponded with a 

similar trend in hepatic virus titres of anti -TNF mAh- treated mice at 6d p.i. (P =0.14; 

Fig. 4.5B), suggesting that the trend towards increased apoptosis may be due to virus - 

mediated damage. 

It is noteworthy that while TNF was demonstrably depleted at d6 p.i, TNF was below 

detectable levels in the serum of all mice tested at 6h p.i. (limit of detection 1.2 pg/ml; 

data not shown). 

Thus, the early phase of apoptosis was dependent on the presence of TNF but not CD40. 

4.2.3 The early phase of apoptosis is dependent on the p55 TNF receptor 

Treatment with anti -TNF mAb demonstrated the apparent dependence of the early 

apoptotic response on TNF. TNF is capable of signalling through two receptors - p55 

and p75 (see Section 1.3,3.1) - as well as potentially mediating signalling events 

through its cytoplasmic domain (Hribar et al., 1999; Watts et al., 1999). To investigate 

the contributions of the alternative p55 and p75 TNF receptors to the early apoptotic 

response, hepatic apoptosis was monitored in wt B6/129 mice and mice lacking either 

p55, p75, or both TNF receptors (Peschon et al., 1998). Mice were mock -infected with 

tissue culture lysate or infected with 5 x 10' pfu of either EV or EVAp28 in the hind 

footpad as previously and liver samples harvested at 6h p.i. for TUNEL staining (Fig. 

4.6). As previously, EVAp28 but not EV infection significantly increased apoptosis 

above background levels in the livers of wt B6/129 mice at 6h p.i. (P<0.01; Fig. 4.4, 

4.6). p75 -/- mice also displayed a large increase in apoptosis 6h after infection with 

EVAp28, which was not significantly different to the apoptotic response of B6/129 mice 

to EVAp28. p75 -/- mice were found to further display elevated apoptosis after EV 
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infection. While not statistically significant (P =0.18, Fig. 4.6), the trend was 

maintained in duplicate experiments. 

Mock- infected and uninfected p55- deficient mice were found to consistently display 

higher apoptosis than equivalent p75 -/- ar B6/129 mice. Levels of apoptosis did not 

increase at 6h p.i. with either EV or EVAp28 infection, suggesting that the p55 TNF 

receptor is necessary for the early phase of apoptosis. This was further supported by the 

lack of an apoptotic response in p55 -/- p75 -/- mice. Mice lacking both TNF receptors 

showed extremely low levels of apoptosis which were invariant between EV, EVAp28 

and mock -infection 6h p.i. The pattern of apoptosis in all infected and mock -infected 

p55 -1- p75 -/- mice examined 6h p.i. appeared to also reflect the pattern of apoptosis seen 

in uninfected mice. 

Thus p55 was necessary for the early apoptotic response to occur. The response was 

not dependent on p75, however a role for p75 in p28 activity was implied by the trend 

towards increased apoptosis in EV- infected p75 -/- mice 6h p.i. 

4.2.4 The early phase of apoptosis is not exclusive to the liver 

The liver is investigated throughout this thesis as the target organ of EV infection in 

which virally- induced damage is thought to lead to mortality (Fenner 1949). However, 

it is also an important filter for the body's blood supply and as such is sensitive to 

systemic changes (Arias, 1988). Hence, it was possible that the changes seen in hepatic 

apoptosis at 6h p.i. were systemic rather than specific to the liver. Thus apoptosis was 

also determined in the ovaries, a site of low level EV infection (Karupiah et al., 1993). 

Apoptosis was not quantitated over the entire ovary since apoptosis occurs continuously 

in healthy, uninfected ovaries during normal follicular atresia (Guo et al., 1994; Kaípía 

and Hsueh, 1997; Fig. 4.7A). However, levels of apoptosis are extremely low or 

undetectable in ovarian stroma of healthy mice (Fig. 4.7A, B), and increased during EV 

infection (Fig. 4.8). Thus B6/129, p75 -/- or p55 -/- p75 -/- mice were mock -infected, or 

infected with EV or EVAp28 via the footpad as previously and ovaries collected at 6h or 



of 

6d p.i. for TI NEL staining. Apoptotic cells were then counted in the stroma of each 

ovary. 

The ovaries of mock -infected wt mice were indistinguishable from those of uninfected 

mice (Figs. 4.7, 4.8A, D, Table 4.1). Upon infection with EV, apoptosis in the ovarian 

stroma increased in B6/129 and p75 -/- mice (Fig. 4.8B), although the ovaries did not 

appear otherwise damaged. EVAp28 infection resulted in further increases in stromal 

apoptosis in B6/129 and p75 -/- mice (P <0.05; Table 4.1, Fig 4.8A, C). In contrast, p55- 

/- mice showed no statistically significant increase in apoptosis (P =0.64; Table 4.1). 

Interestingly, these mice exhibited a wide variation in apoptosis between individuals 

infected with EV or EVAp28 not seen in other mouse strains. The variation was 

consistent in two experiments, and consistent with unusually high hepatic apoptosis 

(Fig. 4.6). p55- /- p75 -/- mice responded to EVAp28 infection with low levels of 

apoptosis at 6h p.i. While the increase in apoptosis in EVAp28- infected p55-/- p75 -/- 

mice over that in EV- infected or mock- infected mice remained significant (P <0.05), it 

should be noted that apoptosis stimulated 6h p.i. by EVAp28 infection of p55-/- p75 -/- 

mice was below levels seen during EV infection of all other mouse strains tested 

(P <0.01). 

A comparison of apoptosis levels at d6 p.i. showed that EV infection uniformly 

stimulated higher levels of apoptosis in the ovarian stroma than EVAp28 independent of 

host genotype (P <0.02; Table 4.1). Apoptosis at this point was much more prolific than 

that observed at 6h p.i. (P <0.01; Table 4.1, Fig. 4.8E, F). However, levels of apoptosis 

were not significantly different between wt and TNF receptor knockout mice. This 

suggested that TNF did not play a role in the ovarian response to EV or EVAp28 

infection during apoptosis 6d p.i. Thus, this data showed that the early apoptotic 

response occurred in the ovaries as well as in the liver. Further, the apoptotic response 

in the ovaries was dependent on the p55 TNF receptor. 
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4.2.5 p28 does not block the early phase of apoptosis in IFNyR-/- mice 

TNF in vivo is part of a complex web of cytokine interactions. Hence, in addition to 

TNF receptor knockout mice, apoptosis was examined in mice lacking IFNyR and IL -6, 

which are known to play a role in the effective host response to EV ( Karupiah et al., 

1993; Ramshaw et al., 1997). IFNy is particularly important in antiviral responses 

(Karupiah et al., 1993) and can enhance TNF production as well as synergising with 

TNF- mediated anti -viral activity (Beutler et al., 1986; Davignon et al., 1996; Ohmori et 

al., 1997; Schijns et al., 1991). IL -6 is induced by TNF during hepatic damage and can 

prevent TNF -mediated hepatic damage under some circumstances (Mizuhara et al., 

1994). Mortality studies have shown that IL -6 deficient mice have an increased 

susceptibility to EV- mediated lethality (Ramshaw et al., 1997). To determine whether 

the contribution of TNF to the early phase of apoptosis was specific, or due to the less 

effective antiviral response in TNF receptor deficient mice, mice lacking IL -6 or the 

receptor for IFNy were infected with a small amount of EV or EVAp28 as previously 

and apoptosis determined in the liver (IL -6 -/ -) or ovaries (IFNyR -/ -). Apoptosis studies 

were also to include the livers of IFNyR -/- mice, however fixation of the livers was 

incomplete, resulting in the livers being unusable for TUNEL staining. As IL -6 and 

IFNyR -/- mice were on a different background to the TNF receptor deficient mice, the 

background strain 129Sv (129) was also infected and hepatic and ovary samples 

examined for apoptosis. 

Apoptosis in 129 mice 6h p.i. showed the same trends as had been seen in B6 and 

B6/129 mice. Apoptosis in response to EV 6h p.i. was very low; indeed, levels of 

hepatic apoptosis stimulated by EV infection were lower than those stimulated by 

mock -infection (Table 4.3). Apoptosis increased in response to EVOp28 in both the 

ovary (Table 4.2) and liver (Table 4.3) in comparison to EV- or mock -infection. 

Apoptosis in the ovaries of IFNyR-I- mice was equally induced by EV and EVtp28 

infection (Table 4.2). Apoptosis increased to very high levels within 6h of infection in 
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response to either virus. Levels of apoptosis were 5 to 10 fold higher than those 

detected in other strains of mice (Table 4.1). Similarly, at d6 p.i. levels of apoptosis 

were elevated in response to both viruses, and not significantly different between EV 

and EVAp28. Thus p25 did not prevent early apoptosis in IFNyR -/- mice. 

Apoptosis in IL -6 -/- mice was very similar to that described in the wt 129 strain, and 

was indistinguishable microscopically. At 6h p.i., EV- infected mice displayed slightly 

lower levels of apoptosis in the liver than mock -infected mice. Apoptosis increased 6h 

p.i. with EVAp28 to levels similar to those described in 129 mice. Hence, IL -6 did not 

play a detectable role in the apoptotic response to infection 6h p.i. 

4.2.6 The early phase of apoptosis is mouse strain dependent 

It could be seen from a comparison of apoptosis in B6, B6/129 and 129 mice at 6h p.i. 

that the early phase of apoptosis was present in EV- resistant mouse strains (Figs. 4.1, 

4.4, Table 4.1). However, it was found in Chapter 3 that not all mouse strains 

responded equally to p28 expression. To investigate the effect of host strain on the early 

phase of apoptosis, EV- resistant and EV- susceptible mouse strains were mock -infected 

or infected in the right hind footpad with 5 x 103 pfu of either EV or EVAp28 as 

previously, and livers harvested at 6h or 6d p.i. for TONEL staining. In addition to B6, 

B6/129 and 129 mice, apoptosis was measured in the livers of EV- susceptible Swiss 

nude and A/J mice. 

EV infection did not stimulate apoptosis greater than mock - infection at 6h p.i., in any 

mouse strain (Table 4.3). In contrast, EVAp28 stimulated a host -strain dependent 

apoptotic response. The apoptotic response to EVAp28 was highly significant in B6 

and B6/129 mice (P <0.01). EVAp28 stimulated lower levels of apoptosis 6h p.i. in 129 

mice compared to B6 mice (P <0.01), however apoptosis remained significantly higher 

than that in response to EV (P<0.05). In contrast, the apoptotic response to infection of 

A/J and Swiss Nude mice to EVAp28 infection did not increase to levels greater than 
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those seen on mock -infection or EV- infection. Further, a comparison of the early phase 

of apoptosis (6h p.i.) with the later phase (6d p.i.) showed that the two phases were not 

observably interdependent. Hence, the early phase of the apoptotic response was 

dependent on host strain. This appeared to correlate with susceptibility or resistance to 

EV- mediated lethality. A comparison of apoptosis in resistant mice 6h p.i. with 

EVAp28 further shows that the apoptotic response is most significantly increased in the 

B6 mice. Interestingly, apoptosis in the B6 x 129 hybrid was intermediate between the 

parent strains and was not significantly different from either, suggesting that the early 

apoptotic response is heritable and codominant. 

4.2.7 The early phase of apoptosis is macrophage dependent 

Macrophages have been implicated in the attenuation of EV428 in vitro (Senkevich et 

aL, 1995) although their role in vivo is more ambiguous (Chapter 3). As a highly 

phagocytic cell type, macrophages are amongst the first cell types to be infected during 

dermal (Roberts, 1962) or intravenous (Mims, 1959b) infection. Replication of EV in 

macrophages is critical for hepatic infection (Mims, t 959b). Macrophages are also 

important APCs and sources of cytokines. In particular, macrophages are known to 

produce inflammatory cytokines including TNF on infection in vitro and in vivo (Biron, 

1994; Goldfeld and Maniatis, 1989). To test whether macrophages in the liver or at the 

site of infection were required for the early apoptotic response in the Iiver, C12MDP- 

liposomes were used to deplete macrophages from distinct tissue compartments 

(Kurimoto et aL, 1994; van Rooijen and Sanders, 1994). Footpad inoculation with 

liposomes was used to deplete macrophages from the footpad and medulla and 

subcapsular sinus of the draining lymph node. This did not include the Langerhans cells 

of the skin, tissue dendritic cells, or dendritic cells and macrophages of the cortex and 

germinal centres of the lymph nodes (Delemarre et aL, 1990; Kurimoto et aL, 1994). 

Intravenous inoculation was then used to deplete macrophages from the liver and red 

pulp of the spleen (van Rooijen and Sanders, 1994). Macrophage depletion was 

monitored by acid phosphatase staining of livers and DLNs from liposome -treated and 
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control -treated animals using acid phosphatase staining (Section 2.8, Table 2.2; 

Burnstone 1959, (Kraal et al., 1987). 48h post -inoculation with liposomes, livers and 

popliteal LN were harvested from treated mice and snap -frozen in liquid nitrogen. 

Cryosections were then acid- phosphatase stained. No changes in Kupffer cell numbers 

were found after liposome treatment of the footpad, despite almost complete 

macrophage depletion in the popliteal lymph node (Fig. 4.9B). In contrast, mice in 

which C12MDP- liposomes were inoculated i.v. were depleted of Kupffer cells from the 

liver without affecting macrophage numbers in the popliteal lymph node (Fig. 4.9B). 

To determine the role of macrophages in the footpad and liver in the early phase of 

apoptosis, C12MDP- liposomes were injected i.v. or into the footpads of B6 mice 2 days 

prior to footpad infection with 5 x 10' pfu EVOp28. Livers were harvested 6h p.i. and 

stained using TUNEL for quantification of apoptosis. Levels of apoptosis in PBS - 

treated mice infected with EV were similar to those in previous control treated mice 

(Fig. 4.5, 4.9A). The lower levels than those seen in untreated mice (Fig. 4.1) suggests 

that i.v, treatment may slightly depress the apoptotic response independent of the effects 

of liposomes or virus. Macrophage depletion from the footpad, accompanied by PBS 

injection i.v., resulted in a decrease in the number of apoptotic cells in the livers of the 

infected mice, compared to control- treated animals (E <0.05; Fig. 4.9A). In contrast, i.v. 

inoculation of Cl2MDP- liposomes caused increased levels of TUNEL- positive cells in 

the livers. This effect was possibly due to residual apoptotic macrophages 48h after i.v. 

injection of liposomes, or the inefficient clearance of apoptotic debris from 

macrophage -depleted livers (Falasca et al., 1996; Shi et al., 1998; Shi et al., 1996). 

These data indicated that the early apoptotic response observed in the liver was 

dependent on macrophages at the site of infection. While no contribution towards the 

apoptotic response by Kupffer cells was detected, this may have been complicated by 

ongoing apoptosis of hepatic phagocytes after i.v. liposome treatment. 



4.2.8 Inhibition of the early phase of apoptosis does not influence virus 

replication 

The results presented indicate that p28 was required to block the early phase of 

apoptosis and that it was also a virulence factor (Chapter 3). To determine whether the 

effect of p28 on virulence was linked to the early phase of apoptosis, it was necessary to 

manipulate apoptosis 6h p.i. independent of the later effects of p28 expression (d3 -9 

p.i.; Fig. 4.1A). Hence, groups of 5 B6 mice were treated with anti -TNF or a control 

antibody 24h prior to infection, in order to prevent the early phase of apoptosis. Mice 

were then infected in both hind footpads with a high dose of EVOp28 (5 x 106 pfu per 

footpad) and sacrificed at 6h p.i. for assessment of apoptosis, or Id or 2d p.i. for viral 

titration. 

Assessment of apoptosis showed that apoptosis was increased in response to EVOp28 to 

levels similar to those seen in infections with smaller doses of virus (7.34 ± 1,68 

apoptotic cells per mm2 liver; Table 4.3). Anti -TNF treatment led to reduction of 

peracute apoptosis to a lesser extent than observed previously, which was not signifcant 

at 6h p.i. (4.75 ± 1.76 apoptotic cells per mm2 liver; P= 0.059). Virus titration from the 

draining popliteal lymph nodes, livers or lungs showed no difference between the 

amount of virus recovered from anti -TNF mAb treated mice compared to control mAb 

treated animals dl p.i. (Fig. 4.10). While anti -TNF mAb treatment tended to be 

associated with an increase in splenic virus titres, levels of virus were not significantly 

higher than those in control mAb- treated animals (P =0.053; Student's t- test). Similarly, 

the apparent decrease in lung titres on anti -TNF treatment was not significant, as only 3 

of 5 mice treated with the control mAb yielded virus from this organ. By day 2 there 

was no difference in virus levels between anti -TNF mAb and control mAb treated 

animals in any of the organs tested. Hence, this preliminary experiment did not 

demonstrate an effect of the early apoptotic response on virus growth. 
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4.3 Discussion 

This chapter demonstrates that EV stimulates a biphasic apoptotic response. Apoptosis 

was observed in the livers of mice 6h after infection with low doses of EVAp28 but not 

wt EV in the footpad. The apoptosis was transient and no longer observable 12h after 

infection. A second phase of apoptosis was then observed in the liver from 1 to 9d p.ì., 

which coincided with the detection of virus in the liver and was then maintained after 

the onset of virus clearance at 9d p.i. The data suggest that different pathways are 

involved in the regulation of the two phases of apoptosis since p28 gene expression 

clearly suppressed the early phase of apoptosis, but had a variable effect on the later 

response in different strains of mice. Thus two distinct, differentially regulated phases 

are present in the apoptotic response to EV infection. 

Apoptosis has previously been demonstrated within hours of infection at the site of 

virus replication in vivo (Lieber et al., 1997). Viral antigen and apoptosis are often 

closely associated (Lewis et al., 1996), however histological colocalisation studies 

suggest that within an infected tissue apoptosis may be triggered in uninfected cells 

(Heise and Virgin, 1995; Oberhaus et al., 1997). The current study demonstrates that a 

rapid apoptotic response may also occur in an organ remote from the site of infection. 

We found that viral DNA first became demonstrable in the liver 24h p.i., slightly earlier 

than previous authors (Fenner, 1949; Mims, 1959b). The lack of detectable virus in the 

liver prior to 24h p.i. suggests that the hepatic apoptosis may be due to a systemic 

response initiated by local events in the footpad. An apoptotic response was observed 

in the ovaries which mirrored that in the liver, also supporting a systemic response to 

infection. Rapid systemic sequelae of local events have previously been suggested by 

the work of Grieder and colleagues (Grieder et al., 1997) in which cytokine mRNA was 

measured in various organs in response to footpad infection with the alphavirus, 

Venezuelan equine encephalitis. IFNy, TNF and IL -6 mRNA in the local draining 

lymph node was unregulated within 6h p.i. to levels equal to or greater than those found 
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at 24h p.i. Further, changes in cytokine mRNA levels in non -draining lymph nodes and 

spleens of infected animals were found within 24h p.i. This supports the concept of a 

systemic response during the very early stages of viral infection, potentially triggered by 

events at the site of infection. 

The early phase of apoptosis did not appear to depend on CD40. Two lines of evidence 

indicated that the apoptotic response was instead critically dependent on TNF. Firstly, 

neutralisation of TNF using specific mAb significantly reduced levels of apoptosis 6h 

after infection. Secondly, no early apoptotic response to infection with EVdp28 was 

observed in mice lacking the p55 TNF receptor, with or without the presence of p75. A 

rapid, short-lived increase in TNF levels has been noted during a similar timeframe in 

other viral infections (Grieder et al., 1997; Lieber et aL, 1997) although these studies 

have not examined apoptosis. Hence, the hypothesis that the peracute apoptotic 

response to EVAp28 infection is mediated by a transient increase in TNF levels is 

supported directly by the data in this chapter and indirectly by work in similar models of 

infection apoptosis noted in EV infection (Grieder et al., 1997; Lieber et al., 1997). 

While the reason for the transience of the response has not been investigated in this 

study, it is possible that the downregulation of TNF may occur rapidly at a 

transcriptional level as has been found in vitro (Sinha et al., 1998). It is also known that 

release of cellular and poxvirai soluble TNFRs is capable of blocking TNF activity 

(Loparev et al., 1998), suggesting further potential mechanisms for downregulation of 

the response. 

In vitro studies in our laboratory suggest a mechanism by which EV might be blocking 

the early phase of apoptosis. At the initiation of these studies it was known only that 

p28 was required for EV to block in vitro cell death stimulated by CD40 or p75. It is 

now known that one pathway by which these two receptors cause apoptosis is the 

upregulation of TNF mRNA. The TNF produced can cause autocrine or juxtacrine 

stimulation of the p55 TNF receptor, resulting in cell death (Grell et aL, 1999). A 

recent study by Steve Turner and Janet Ruby has shown that prevention of p75 or 



ppphi5is... ,)_..f) 

CD40- mediated cell death by EV in vitro is associated with reduced upregulation of 

TNF mRNA by either of these receptors (Turner et al. submitted). In contrast, infection 

with the p28 mutant virus does not change the levels of TNF mRNA produced by 

infected cells. It is possible that a similar mechanism is responsible for the early phase 

of apoptosis and its suppression by EV in vivo. This is suggested by the observation 

that EVAp28- infected mice lacking the p75 TNF receptor have reduced hepatic 

apoptosis at 6h p.i. compared to wt mice, and is further supported by the finding that the 

p55 TNF receptor is required for the apoptotic response to occur. However, semi - 

quantitative RT -PCR of TNF mRNA in vivo has found significant variation in TNF 

mRNA levels between individuals, suggesting that there may be further mediators of 

apoptosis (S.C. and S. Turner, data not shown). 

The finding that EV was less effective at preventing apoptosis in p75 -/- mice suggests 

that p28 may require p75 for efficient anti -apoptotic activity. If the activity of p28 in 

blocking peracute apoptosis is through the prevention of TNF mRNA upregulation 

through the non -death domain TNF receptors as hypothesised, then it is interesting that 

ablation of the p75 TNF receptor only partially blocks the apoptotic response. This 

suggests that EV may also block death through other p55- dependent mechanisms. This 

may reflect an activity of p28 on the stability of TNF mRNA independent of the 

stimulus for upregulation. An alternative, but less likely, explanation is that p28 

prevents apoptosis by interfering in an unknown manner with the cytoplasmic signalling 

cascade after p55 TNF receptor ligation. p75 may then enhance apoptosis through 

cooperation of signalling cascades from the two receptors (Weiss et al., 1997). 

However, while a role for p28 in interference with the p55 signalling cascade may be 

consistent with the data presented in this chapter, there is currently no evidence for this 

in vim). 

Involvement of IFNy in peracute apoptosis was implied by the extremely high levels of 

apoptosis seen in ovaries of both EV and EV .p28- infected IFNyR -/- mice 6h p.i. A 

role for IFNyR in p28 -mediated suppression of the apoptotic response was unexpected, 
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given that IFNy has been found to increase apoptosis in ovarian tissue when combined 

with Fas'and/or TNF (Jo et al., 1995; Porter et aL, 2000; Quirk et al., 1997; Quirk et al., 

1998). However, there are a number of mechanisms by which the absence of IFNyR 

might have increased levels of apoptosis. These include a role in the activity of p28 at 

the site of infection, or an unrelated role at the site at which apoptosis was measured. 

With reference to the former, IFNy has been found to be produced in the local draining 

lymph node within 6h of footpad infection with other viruses (Grieder et al., 1997), 

concurrent with the production of TNF in the same infection. The presence of potential 

IFNy- activated sequences (GAS) in the promoter of p28 suggests that IFNy may 

enhance p28 mRNA transcription (SC, data not shown). This would be consistent with 

the presence of an apoptotic response at 6h p.i. in EV infected as well as EV428- 

infected mice. Alternatively, IFNyR deficiency may specifically affect ovarian 

apoptosis during EV infection. This is suggested by the observation that IFNy is 

produced in preovulatory follicles during normal ovarian function (Grasso et aL, 1994). 

It would be expected that functions of IFNy in the follicles would be disrupted in 

IFNyR -/- mice. Given that IFNy is capable of affecting non -immune functions such as 

hormone production (Pate, 1995), it is possible that the differences seen in apoptosis 

between the wt and IFNyR-/- mice may be unrelated to expression of p28 by EV, and 

may instead be due to an unexpected response of these mice to virus infection. 

AIthough no adverse effects of the IFNyR -/- mutation on the ovary have been reported 

in the literature, the unusually high levels of apoptosis at both 6h and 6d p.i. suggest that 

some cell types in the ovaries of these mice may be sensitised to apoptosis. 

A key finding of this study has been the requirement for macrophages at the site of 

infection for the early phase of apoptosis to occur. Macrophages are both responsive to 

and producers of TNF (Gordon et al., 1992) and are central to successful innate antiviral 

responses and the generation of an effective acquired immune response (Fearon and 

Locksley, 1.996)_ Depletion of macrophages before EV infection results in a severe 

defect in the host antiviral response evident within 24h (Karupiah et al., 1996; Tsuru et 
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al., 1983), supporting a role in viral control early in infection. Since macrophages are 

among the first cells infected after exposure to EV (Roberts, 1962) and are also potent 

producers of TNF (Gordon et al., 1992), a logical proposal is that early expression of 

p28 in infected cells in the footpad inhibits local TNF production. As a result, the 

hypothetical systemic TNF response and its effects, such as apoptosis at distal sites, are 

also abrogated. Alternatively, other macrophage- derived factors may lead to the 

production of TNF within the liver in virus- infected mice, or TNF- producing cells may 

migrate to the liver. 

In a preliminary experiment presented in this chapter, no antiviral role for the early 

apoptosis or the early TN F response was demonstrated as indicated by levels of virus 

detected early in infection. It is possible that no difference was seen because the large 

dose of EVAp28 used rendered the assay insensitive. This is suggested by the decrease 

in the effect of antìTNF mAb treatment on apoptosis at 6h p.i. (Fig. 4.5, Section 4.2.8). 

It is also possible that the effects of the early response may not be linked to viral 

replication. For instance, it has been suggested that some poxviral virulence factors act 

to regulate inflammation rather than directly affecting host factors which control virus 

replication (McFadden et al., 1995). 

The data presented in this study indicate that EV gene p28 is required for EV to 

suppress a rapid macrophage- and TNF- dependent apoptotic response to virus infection. 

The function of the apoptotic response is not yet known, however, there are a number of 

potential roles. The first relates to a protective function, for example preventing further 

hepatic damage later in infection. This has been suggested by studies in which it has 

been shown that TNF- mediated hepatic damage can be followed within hours by an 

increase in levels of IL -6 which appears to have a negative effect on further TNF 

production and TNF- mediated hepatic necrosis (Mizuhara et al., 1994). Alternative 

hypotheses suggest that the apoptosis may be secondary to the TNF response. TNF has 

previously been found to be important in multiple inflammatory events, including 

chemotaxis of lymphocytes and monocytes (Dixit et al., 1990; Green et al., 1998). In a 



mouse model, the onset of experimental autoimmune encephalomyelitis was delayed in 

TNF- deficient mice. The delay correlated with defective migration of inflammatory 

leukocytes into the central nervous system parenchyma (Korner et al., 1997). Hence, a 

transient increase in TNF may prime the immune response, resulting in a more effective 

antiviral response and more efficient virus clearance. 

Thus these studies had found that TNF was required for a transient apoptotic response 

that could be blocked by the presence of p28. This led to a further question: did p28 

manipulate TNF- mediated apoptosis - or other TNF mediated events - later in 

infection? 







Table 4.1 Apoptosis in ovaries of TNF receptor knockout mice infected with EV or EVAp28. 

Mouse Strain 6h p.i. 6h p.i. 6d p.i. 

Mock-infecteda EVa EVAp28a EVa EVAp28a 

B6/129 1.25 ± 0.95 15.25 ± 3.55' 64.52±12.11x'` 105.63±18.81" 13.9 ± 2.84' 

p75-/- 3.30 ± 1.51 17.67 ± 3.74' 57.38 ± 17.95"° 129.61 ± 27.32" 45.31 ± 16.25' 

p55-/- 4.26 ± 2.53 11.00 ± 10.56 10.25 ± 8.05 nd nd 

p55-/-p75-/- 1.20 ± 0.98 1.20 ± 0.66 6.70 ± 2.011" ° 138.24 ± 21.83' d 36.92 ± 12.17" 

a. Groups of 5 female 9 -14 week old mice were infected with 5 x 103 pfu EV or EVAp28, or mock -infected with tissue culture lysate diluted as for 

the infectious virus. Ovaries were harvested 6h or 6d later and fixed in 10% NBF for TIJNEL staining. Apoptosis was measured by counting 

apoptotic cells in the stroma of the ovary (Fig. 4.7) and adjusting to the number of apoptotic cells per mm2 of stroma. Minimum of two sections 

per ovary counted for both ovaries of each mouse. All sections were assessed blind. Experiment indicative of 2 (p75 -/ -, p55 -/ -, p55 -/- p75 -/ -) or 3 

(B6/129) replicates. P55 -/- mice harvested in groups of 3 mice. Data represents the number of apoptotic cells present per mm2 of ovarian stroma. 

b. Apoptosis in response to virus infection significantly greater than that in response to mock -infection at 6h p.i. (P <0.05) 

c. Apoptosis in response to EVAp28 significantly greater than that in response to EV (P <0.05) 

d. Apoptosis in response to EV significantly greater than that in response to EVAp28 (P <0.05) 

nd: Not determined 



Table 4.2 The early phase of apoptosis is not blocked by p28 in IFNyR -/- mice 

6h p.i. 6h p.i. 6d p.i. 

Mouse Strain Mock-infected' EV' EVAp28a EVa EVAp28a 

129 9.21 ± 2.36 12.89 ± 5.46 23.78 ± 3.16b 28.64 ± 8.64 26.54 ± 12.61 

IFNyR -/ -1 11.65 ± 2.36 116.17 ± 27.27 198.5 ± 14.44` 165.29 ± 31.08 248.62 ± 41.25 

a. Groups of 5 female 10 -13 week old mice were infected with 5 x 103 pfu EV or EVAp28, or mock -infected with tissue culture 

lysate diluted as for the infectious virus. Ovaries were harvested 6h or 6d later and fixed in 10% NBF for TUNEL staining. 

Apoptosis was measured by counting apoptotic cells in the stroma of the ovary (see Fig. 4.7) and adjusting to the number of 

apoptotic cells per mm2 of stroma. Minimum of two sections per ovary counted for both ovaries of each mouse. All sections were 

assessed blind. Data represents the number of apoptotic cells present per mm2 of ovarian stroma. 

b. Apoptosis in response to EVAp28 significantly greater than that in response to EV (P<0.05) 

c. Apoptosis in response to EVAp28 significantly greater than that in response to EV (P <0.01) 

d. Apoptosis in IFNyR -/- mice infected with EV or EVAp28 greater than equivalent 129 mice infected with the same virus at both 

timepoints (P <0.001) 



Table 4.3 Hepatic apoptosis during the early and late phases of apoptosis in mice infected with EV or EVAp28. 

Mouse Strain 6h p.i. 6h p.i. 6d p.i. 

Mock -infected" EVa EVAp28" EVa EVAp28' 

A /Jb 2.02 ± 0.14 1.75 ± 0.63 1.82 ± 0.87 4.03 ± 1.36 3.33 ± 1.53 

Swiss nudeb 2.48 ± 0.60 1.41 ± 0.80 3.13 ± 1.18 7.94 ± 2.86 8.35 ± 1.68 

B65 1.28 ± 0.03 0.98 ± 0.02 6.14 ± 0.96` 3.26 ± 0.65 7.83 ± 1.02` 

B6/129b 0.21 ± 0.14 0.58 ± 0.29 5.92 ± 1.75` 5.22 ± 1.30 5.08 ± 1.17 

129 2.17 ± 0.41 0.59 ± 0.16e 3.28 ±0.334 4.41 ±2.55 4.10 ± 0.53 

129.íL -6 -/- 1.53 ± 0.20 0.64 ± 0.43e 2.68 ± 0.42d nd nd 

a. Groups of 4 to 5 female mice between 8 and 14 weeks old were infected with 5 x 10; pfu EV or EVAp28, or mock -infected with tissue culture 
lysate diluted as for the infectious virus. Livers were harvested 6h or 6d later and fixed in 10% NBF for TUNEL staining. Staining was 
performed in 6 mixed batches, with 3 B6 samples repeatedly assayed to control for batch to batch variation. Apoptosis measured by counting 
apoptotic cells as described in materials and methods. IL -6 -/- mice concurrently assayed for comparison to 129 mice. Levels of apoptosis 
compared statistically using Student's t -test. Data represents the number of apoptotic cells detected per mm3 hepatic tissue. 

b. Representative of 2 to 3 experiments. Experimental replicates limited in 129 and 129.IL -6 -/- mice by mouse availability. 

c. Apoptosis in response to EVAp28 significantly greater than that in response to EV (P<0.01) 

d. Apoptosis in response to EVAp28 significantly greater than that in response to EV (P <0.05) 

e. Apoptosis in response to EV significantly less than in response to mock- infection (P <0.05) 

nd. Not determined 



Figure 4.1 B6 mice display a biphasic apoptotic response to EVAp28 

infection 

Groups of 5 8 -16 week old female B6 mice were infected with 5 x 103 pfu EV or 

EVAp28 in the right hind footpad and sacrificed at the times indicated. (A) At least two 

sections per liver were stained for apoptotic cells using the TUNEL procedure described 

in materials and methods, and apoptosis quantitated. Data represent mean TUNEL- 

positive cell numbers ± SD. Data was analysed for statistical significance using 

Student's t -test ( *P<0.05, * *P <0.01). The number of TUNEL -positive cells was found 

to be significantly higher in EVAp28 infected mice than EV- infected mice in the early 

phase of apoptosis (before 12h p.i.) and at d3 and d6 p.i. (B) The early phase of 

apoptosis occurred prior to detection of virus in the liver. Both EV (filled bars) and 

EVAp28 (open bars) became detectable by titration in the liver at d3 p.i. Liver samples 

were harvested at the indicated time points and titrated as described in Section 2.11. The 

limit of detection of the plaque- forming assay was 100 pfu and samples below this level 

were assigned a value of 50 (1.7 logo) pfu (broken line). Data represent mean virus 

titres from 5 mice ± SD and are representative of 3 experiments. 
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Figure 4.2 Hepatic morphology differs between the early and later phases 

of apoptosis. 

Livers were harvested from groups of 5 female B6 mice infected with 5 x 103 pfu EV or 

F,VAp28 in the footpad and sacrificed at the times indicated below. Mock- infected 

animals were inoculated with diluted tissue culture lysate as described in materials and 

methods. Formalin -fixed sections were stained with the TUNEL procedure (A - F) or 

H &E (G, H, I) for histological examination. Representative sections are shown. At 6h 

p.i., no observable changes were present in livers of mock -infected mice (A, G). 

Infection with EVAp28 led to the presence of scattered apoptotic cells 6h p.i. (B, white 

arrows) in the absence of overt changes to hepatic architecture (H). In contrast, EV 

infection at 6h was not associated with any hepatic changes observable in TUNEL (C) or 

H &E (I) stained sections. In contrast, apoptosis 6d p.i. with EV or EVAp28 was 

associated with inflammatory changes such as distension of sinusoids (E, F), and areas 

of hepatic damage (F, white arrows). Magnifications: A, C x 20; B, D -I x 40. Samples 

shown were collected from mice also indicated in Fig. 5.1. 



Mock- 
infected 

EVAp28 

EV 

6h p. i. 



Figure 4.2 Hepatic morphology differs between the early and later phases 

of apoptosis. (D - F) 

Groups of 5 female B6 mice infected with 5 x 10' pfu EV or EVOp28 in the footpad or 

inoculated with diluted tissue culture lysate. Livers were then harvested at 6d p.i.. 

Formalin -fixed liver sections were stained with the TLNEL procedure. Representative 

sections are shown. At 6d p.i., no observable changes were present in livers of mock - 

infected mice (D). Apoptosis 6d p.i. with EV or EVOp28 was associated with 

inflammatory changes such as distension of sinusoids (E, F), and areas of hepatic 

damage (F) Apoptotic cells indicated by white arrows. Magnification: x 40. Samples 

shown were collected from mice also indicated in Fig. 4.1. 
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Figure 4.2 Hepatic morphology differs between the early and later phases 

of apoptosis. (G - I ) 

Livers were harvested from groups of 5 female B6 mice infected with 5 x 103 pfu EV or 

EVAp28 in the footpad, or mock -infected with diluted tissue culture lysate and sacrificed 

6h p.i. Formalin -fixed sections were stained with H &E for histological examination. 

Representative sections are shown. At 6h p.i., no observable changes were present in 

livers of mock- infected mice (G), EVAp28 infected livers, or EV infected livers (I) as 

stained with H &E. In contrast, apoptosis 6d p.i. with EV or EVAp28 was associated 

with a inflammatory changes, as shown in Fig. 3.5. Magnification: x 40. 
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Figure 4.3 Detection of virus in the livers of infected mice by PCR. 

10 -12 week old female B6 mice were infected with 5 x 103 pfu EV or EVAp28 in the right hind footpad as previously 

and livers harvested at the times indicated. DNA was extracted from the livers of 3 mice per timepoint as described in 

Section 2.13 before amplification of virus DNA with the primers p28F and p28R (Table 2.3). Both (A) EV and (B) 

EVAp28 DNA were detected. Genomic CD40 was also amplified as a control for DNA concentration (Kawabe et al. 

1994). Samples from single mice representative of each timepoint are shown. 
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Figure 4.4 The early phase of apoptosis is present in CD40 -/- mice 

Groups of 5 female 10 -14 week old B6/129 or CD40 -/- mice on a B6/129 back- 

ground were infected with 5 x 103 pfu EV or EV4p28 in the right hind footpad 

and sacrificed at the times indicated. Additionally, 5 control mice of each geno- 

type were mock - infected with tissue culture lysate and sacrificed at 6h p.i. to 

control for stress and the presence of tissue culture material in the innoculum. 

Liver sections were stained for apoptotic cells using the TUNEL procedure 

described in Section 2.10, and data analysed for statistical significance using 

Student's t -test ( *P <0.05, * *P <0.01). Data represent mean TUNEL- positive 

cell numbers + SD. Mock -infection led to negligible apoptosis. The number of 
TUNEL- positive cells was found to be significantly higher in EV4p28 infected 

mice at 6h p.i. in both the wt B6/129 and CD40 -/- mice (P <0.01). 



Figure 4.5 Treatment of B6 mice with anti -TNF mAb prevents the early 

phase of apoptosis. 

Groups of 4 female B6 mice were injected ì.p. with ascites preparations of either anti - 

TNF mAb (XT -22; open bars) or an isotype control (GL113; closed bars) 24h before 

footpad infection with 5 x 103 pfu EVAp28, and at 2 day intervals thereafter. Livers 

harvested at 6h or 6d p.i. were formalin -fixed and sections stained for apoptotic cells 

using the TUNEL method. Samples of each liver were also frozen at -20 °C for titration. 

Apoptotic cells were counted and analysed as Section 2.10. Data shown represent mean 

number of TUNEL- positive cells ± SD. (A) Anti -TNF mAb- treated mice were found to 

have significantly lower levels of apoptosis than control mice 6h p.i. (Student's't -test; 

*P <0.05) but not 6d p.i. (B) Anti -TNF treated mice showed an increase in virus titre 

although it was not statistically significant. This correlated with a similar increase in 

apoptosis. Samples titrated as described in Section 2.12. The limit of detection of the 

plaque - forming assay was 100 pfu and samples below this level were assigned a value of 

50 (1.7 login) pfu (broken line). Data represent mean virus titres from 4 mice f SD. 
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Figure 4.6 Early hepatic apoptosis in response to EVAp28 is ablated in p55 TNF 

receptor- deficient mice. 

10 -16 week old female mice of each genotype were mock -infected, or infected with 5x 103 pfu of 

either EV or EVAp28 in the footpad. Livers were harvested 6h p.i. and fixed in 10% NBF at indicated 

time -points. Sections were stained for apoptotic cells using the TUNEL procedure as described in the 

materials and methods. Data indicates mean number of TUNEL- positive cells ± SEM for 2 to 3 read- 

ings per sample, with samples collected from 5 individual mice. Levels of apoptosis were significant- 

ly increased in EVAp28- infected wt ( * *P <0.01) and p75 -/- ( *P <0.05) mice compared to EV- infected 

mice by Student's t -test. 



Figure 4.7 Apoptosis occurs during follicular development in the ovaries 

Apoptosis occurs in both infected and uninfected ovaries during the normal development 

of follicles (A B; white arrows). Shown are three follicles from the ovary of an 

uninfected mouse. During development of the follicle, granulosa cells initially 

proliferate to form a thick layer of cells around the ovum (see also Fig. 4.8B and D). 

This is followed by the formation of the thecal layer around the developing follicle, and 

the apoptosis of granulosa cells to form the antrum (shown in A, B). More advanced 

antrum fonnation can be seen in the secondary follicles in Fig. 4.8F, which also display 

a well developed thecal layer. Apoptosis is not seen in the theca surrounding the follicles 

or in stromal cells. 

Ovary shown was harvested from a healthy 12 week old B6/129 mouse, fixed in 10% 

NBF and TÚNEL stained as per materials and methods. Magnification 40x. 
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Figure 4.8 (A -C) The early phase of apoptosis occurs in the ovaries and is 

distinct from the later phase of apoptosis 

Ovaries were harvested from groups of 5 female mice infected with 5 x 10' pfu EV or 

EVAp28 in the footpad and sacrificed at 6h or 6d p.i. (see also Table 4.1). Formalin- 

fixed sections were stained with the TUNEL procedure as per materials and methods. 

Representative sections from p75 -/- mice are shown. Apoptosis occurs in both infected 

and uninfected ovaries during normal development of follicles (A). An increase in 

apoptosis was seen in the stroma of EV infected mice 6h p.i. (B), hut this was 

significantly less than the apoptotic response noted in mice infected with EVAp28 for 6h 

p.i. (C). Magnification: 40x 
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Figure 4.8 (D -F) The early phase of apoptosis occurs in the ovaries and is 

distinct from the later phase of apoptosis 

Ovaries were harvested from groups of 5 female mice infected with 5 x 10' pfu EV or 

EVAp28 in the footpad and sacrificed at 6h or 6d p.i. (see also Table 4.1). Formalin- 

fixed sections were stained with the TUNEL procedure as per materials and methods. 

Representative sections from p75 -/- mice are shown. Apoptosis occurs in both infected 

and uninfected ovaries during normal development of follicles (D). This was increased 

in the stroma of mice infected with either EV (E) or EVAp28 (F) 6d p.i. Apoptosis 

occurred in all sections of the stroma examined, including thecal layers (F). 

Magnification: D, F: 40x; E 16x 
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Figure 4.9 Macrophage depletion prevents the early phase of apoptosis. 

(A) To deplete macrophages from the site of infection or systemically, groups of male 

B6 mice received Cl2MDP liposomes via the routes shown 2 days prior to infection 

(open bars). Control mice were treated with PBS (closed bars) as above. 6h after 

subsequent infection with 5 x 10' pfu of EVAp28 in the footpad, livers were harvested 

and formalin fixed for TUNEL staining. Data shown represent mean numbers of 

apoptotic cells from 5 mice ± SD. Treatment with Cl2MDP- liposomes via the footpad 

significantly reduced levels of apoptosis, compared to control mice (Student's t -test; 

P<0.05). (B) Mice were liposome- treated as above and livers and popliteal lymph nodes 

were harvested for acid phosphatase staining. In footpad -inoculated mice, macrophages 

were depleted from the draining lymph node without affecting Kupffer cell numbers in 

the liver. In contrast, systemic liposome treatment caused the depletion of macrophages 

from the liver but not the lymph node. Magnification: 20x. 
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Figure 4.10 The early apoptotic response does not affect virus replication. 
Groups of 5, 8 -12 week old male B6 mice were injected i.v. with anti -muTNF mAb (open bars) or an isotype control mAb 

(closed bars) 24h before infection with 5x106 pfu EVAp28 in each hind footpad, as described in materials and methods. Days 

1 or 2 p.i. lung, liver, spleen and draining popliteal lymph node (LN) were collected and virus was titrated. Differences 

between the virus titres of control mAb- treated and anti -TNF mAb- treated organs were not statistically significant at either 

day (P >0.05, Student's t- test). The limit of detection of the plaque -forming assay was 100 pfu and samples below this level 

were assigned a value of 50 (1.7 log10) pfu (broken line). Data represent mean virus titres from 5 mice ± SD. 



Chapter 5 

p28 Contributes to EV Virulence Through Both 

Cytokine- Dependent and Cytokine- Independent 

Mechanisms 
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5.1 Introduction 

Experiments described in previous chapters presented an intriguing mix of possible 

aspects of EV infection affected by p28. Initial experiments found p28 to be an 

important virulence factor in some strains of mice (Chapter 3). In addition, p28 

appeared to regulate a TNF- dependent apoptotic response early in infection (Chapter 4). 

In B6 mice, there was also evidence that p28 could regulate apoptosis later in infection 

(Chapter 3). However, it was not known whether the interaction of p28 with TNF 

receptors or CD40, as shown in vitro, was a significant factor in the response to virus 

later in infection. 

Important roles for both CD40 and TNF in antiviral defence have been demonstrated for 

a number of virus infections (Grell et aL, 1998). CD40 is required for the upregulation 

of the humoral immune response (Kawabe et aL, 1994; Renshaw et al., 1994; Xu et al., 

1994), macrophage activation (Stout et al., 1996), APC function of B cells, 

macrophages and dendritic cells (Grewal and Flavell, 1998), and subsequent T cell 

activation (Clarke, 2000; Grewal et al., 1995). TNF influences multiple aspects of the 

antiviral response, including upregulation of IFNy and chemokines ( Dixit et al., 1990; 

Lange et al., 1995; Tessier et aL, 1997), apoptosis (Lazdins et al., 1997), leukocyte 

chemotaxis (Green et aL, 1998), and inflammatory changes such as increasing vascular 

and cellular permeability (Hribar et al., 1999). These activities of TNF are mediated 

through the two TNF receptors, p55 (TNF receptor 1) and p75 (TNF receptor 2). Most 

activities have been attributed to the p55 TNF receptor rather than the p75 receptor, 

correlating with the finding that p55 is required for aspects of TNF antiviral activity 

(Wong and Goeddel, 1986). However, there is emerging evidence that p75 also plays 

an important role in the anti -viral response. This has been highlighted by infection of 

p55 -í- and p75 -/- mice with EV. While p55 -/- mice were more susceptible to EV than 
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wild -type mice, p75 -/- mice were significantly more susceptible again, resulting in a 

lethal infection (Ruby et al., 1997). 

In this study, the hypothesis that p28 may contribute to EV virulence in vivo through 

p75 or CD40 is addressed, with emphasis on the period between 3 and 9d p.i. In 

addition, two other cytokines important in control of EV infection are examined for 

comparison: IL -6 and IFN7. Mice deficient in either of these cytokines due to gene 

knockout or neutralisation with antibodies are significantly more susceptible to lethal 

EV infection than the parent mouse strain (Karupiah et al. 1993, Ramshaw et al. 1997). 

It has also been shown that recombinant vaccinia viruses constitutively expressing 

either cytokine are highly attenuated in vivo ( Ramshaw et al., 1997). Thus this chapter 

examines the contributions of cytokines or their receptors to EVt p28 attenuation in vivo 

with particular reference to TNF and the impact of p28- mediated blocking of TNF 

activity. 



5.2 Results 

5.2.1 TNF receptor knockout mice are resistant to EVAp28 infection but 

not wt EV 

To determine whether TNF- dependent antiviral mechanisms were regulated by p28, 

p75 -í -, p55- /- p75 -/- and wt B6/129 mice were infected with 5 x 10' pfu of either EV or 

EVAp28 s.c. into the footpad and examined daily for morbidity and mortality up to 25d 

p.i. This involved monitoring footpad swelling as an indicator of inflammation at the 

site of infection (Fenner, 1949), the appearance of pocks; and symptoms of general 

illness including weight loss, lethargy,and coat ruffling. Additionally, at death or 

termination of the experiment, internal organs were examined for evidence of 

pathology. 

As described in Chapter 3, wt B6/129 mice were resistant to both EV and EVAp28 

(Table 5.1). B6/129 mice displayed high levels of foot swelling in response to EV, 

which were diminished in response to EVAp28 (Fig. 5.1), consistent with the strong 

inflammatory response of these mice to EV infection (Chapter 3). At no stage did the 

mice show classical signs of succumbing to mousepox such as lethargy, coat ruffling, 

hunched appearance, weight loss (Fig. 5.2), or the appearance of pox (Fenner, 1949). 

Indeed, all wt mice recovered from infection with either virus. In contrast, p28 

significantly affected mortality in p75 -/- and p55 -/- p75 -/- mice. 60% of p75 -/- mice 

infected with EV succumbed to disease, with a mean time to death of 11.6d p.i. (Table 

5.1). p75 -/- mice infected with EV displayed reduced foot swelling compared to EV- 

infected B6/129 mice (P <0.01; Fig. 5.1). No further signs of disease were seen in EV- 

infected p75 -I- mice until 24h before death, at which point some but not all mice 

became hunched and lethargic. All p75 -/- mice infected with EVAp28 survived 

infection (Table 5.1). As observed in B6/129 mice, EVAp28 infection was associated 
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with lower footpad swelling than EV. Thus the p75 TNF receptor was not required for 

p28 activity as a pathogenic factor. 

p55- /- p75 -/- mice displayed higher morbidity in response to both EV and EVAp28 than 

p75 -/- mice. Cutaneous or mucosal lesions were detected in 5 of 6 mice infected with 

EV, and discomfort and coat ruffling were present from days 8 -21 of infection. Despite 

the increased morbidity, rates of mortality were equal to those found in p75 -/- mice, and 

mean time to death was significantly extended (P <0.01; Table 5.1). Unexpectedly, 

inflammation in the footpad was also increased in p55 -/- p75 -/- mice infected with EV 

compared to p75 -/- mice (P <0.05; Fig. 5.1). Morbidity in p55 -/- p75 -/- mice infected 

with EVAp28 was restricted to coat ruffling , with all mice surviving infection. Thus, 

p28 was a significant factor in EV pathogenesis in both p75 and p55p75 TNF receptor - 

deficient mice. 

These data supported previous work describing roles for p75 and p55 in resistance of 

mice to EV infection (Ruby et al., 1997). The experiments also showed that EV 

stimulated higher levels of morbidity and lethal infection than EVAp28 in both TNF 

receptor deficient mouse strains, indicating that p28 contributed to pathogenesis 

independent of TNF. To determine whether p28 was contributing to virus replication, 

or preventing virus clearance through the TNF receptors, the kinetics of virus 

replication were examined in the wt and TNF receptor deficient mice. 

5.2.2 Kinetics of virus replication in TNF receptor deficient mice. 

In order to determine the kinetics of EV and EVAp28 replication in wt and TNF 

receptor deficient mice, groups of 5 p75 -/ -, p55 -/- p75 -/- and wt B6/129 mice were 

infected with either EV or EVAp28 as previously, and sacrificed at 3d intervals over d3- 

9 p.i. Virus titres were obtained from the liver, spleen and popliteal LN draining the site 

of inoculation, as described in Chapter 3. 
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Hepatic titres of EV and EVAp28 were similar in the livers of B6/129, p75 -/- and p55 -/- 

p75 -/- mice (Fig. 5.3). Maximum hepatic virus titres were obtained at d6 p.i., with 

EVAp28 titres approximately I log lower than those seen in comparable EV infected 

mice. By d9 p.í., wt and p28 mutant virus titres were indistinguishable in all three 

mouse strains, despite the fact that EV, unlike EVAp28, caused fatal disease in 2 of the 

3 strains. At this time both viruses were at uniformly higher titres in the livers of p75 -/- 

and p55 -/- p75 -/- than B6/129 mice, suggesting that virus clearance from the liver is 

compromised in the absence of p75 but not further compromised by the removal of p55. 

Further, the similar titres of EV and EVtp28 present at 9d p.i. in all strains tested show 

that virus clearance from the liver was not affected by p28 expression. 

Levels of EV in the spleen were sensitive to the presence of both p28 and the TNF 

receptors. The p75 TNF receptor was clearly required for EV clearance, as virus titres 

were significantly higher in p75 -/- mice than wt mice 9d p.i. (P <0.05) and showed a 

strong trend towards higher levels in p55 -/- p75 -/- mice 9d p.i. In addition, p28 was 

required for efficient virus replication in the spleens of p55 -/- p75 -/- mice (Fig. 5.3). 

Interestingly, this correlated with unusual splenomegaly in p55 -/- p75 -/- mice (Fig. 5.4). 

In B6/129 and p75 -/- mice, splenomegaly in response to EVAp28 was significantly less 

than that in response to EV (P <0.01), however in p55 -/- p75 -/- mice splenomegaly was 

significantly enhanced (P <0.01) in response to both viruses. Further, splenomegaly was 

indistinguishable between EV and EVAp28 in the p55 -/- p75 -(- mice by d9 p.i. It is 

possible that this reflects an effect of p28 expression that is dependent on the p55 TNF 

receptor. Alternatively, this could reflect the unusual immunological environment of 

these mice. The migration of follicular dendritic cells to the spleen and lymph nodes is 

compromised in p55 -/- p75 -/- mice, resulting in a lack of B cell follicles (Kawabe et al., 

1994). A CD40 or TNF- dependent role for p28 in B cell expansion, or a TNF - 

dependent role in T cell expansion would also be consistent with this result. 
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Virus titres were also determined from the DLN, as an indicator of virus replication in 

the footpad. Both EV and EV4p28 were detectable at high levels within the DLN of 

B6/129 and p75 -/- mice within 3d of infection, and remained at high levels at all 

timepoints (Fig. 5.3). By d9 p.i. EV replication and the associated host response 

resulted in destruction of the lymph node of p75 -/- mice (Fig. 5.3). Replication of EV 

in the DLN of p55- /- p75 -/- mice was similar to that in p75 -/- mice, however replication 

of EV4p28 was at lower levels early in infection, reaching levels comparable to those of 

wt virus only at d9 p.i. (Fig. 5.3). This did not delay detection of virus in the livers of 

infected mice, since both EV and EV4p28 were present in the liver at similar levels at 

d3 p.i. 

These data confirmed that the TNF receptors, particularly p75, had roles in clearance of 

both EV and EVAp28 from the target organs of infection (Ruby et al., 1997). p28 

expression mildly enhanced EV replication independent of TNF, however, interaction 

with TNF receptors did not detectably affect virus clearance. These data show that p28 

did not affect EV replication or clearance within the first 9d p.i. through interactions 

with TNF receptor signalling 

Interestingly, hepatic replication of EV4p28 was only reduced by approximately 1 log 

compared to EV. The reduced replication of EV4p28 did not appear to be sufficient to 

account for its reduced lethality. ft was possible that the role of p28 was predominantly 

in manipulation of the host response. TNF is capable of inducing hepatic necrosis 

(Lehmann et al., 1987) and is induced by viral infection (Grieder et al., 1997; Orange et 

al., 1997; Ruzek et al., 1997). To investigate whether p28 affected these parameters 

through TNF, necrosis and the inflammatory response within EV and EV4p28 infected 

livers were next examined. 



5.2.3 Hepatic damage is greater in response to infection with wt virus 

than EVAp28. 

To examine whether p28 affected hepatic pathology through the TNF receptors, NBF- 

fixed liver samples from the mice described in the previous section were stained with 

haematoxylin and eosin (H &E) as described in Section 2.11. Each liver was then 

assessed histologically for the presence of necrotic foci and inflammatory infiltrates. 

Typical results are shown in Table 5.2. 

B6/129 mice responded rapidly to infection with either virus, as shown by infiltration 

with inflammatory cells and formation of multiple foci from d3 p.i. with EV or EVdp28 

(Table 5.2). Levels of cellular infiltration increased from d3 to d9 p.i. and were 

accompanied by Kupffer cell hypertrophy and mild inflammation. Necrosis was 

noticeably absent from infected livers (Figs. 5.5, 5.6, 5.7). The changes appeared 

similar in EVdp28 infection, although quantitation of foci revealed reduced numbers of 

foci (Table 5.2, Fig. 5.7). Neither necrosis nor inflammatory changes were seen in 

mock -infected animals (Fig. 5.5). 

p75 -/- and B6/129 mice shared similar responses to infection as measured by 

quantitation of inflammatory foci (Table 5.2). However, while the control of infection 

in B6/I29 mice was associated with minimal hepatic damage, infection of p75 -/- mice 

with either EV or EVAp28 resulted in necrotic changes observable from d6 -9 p.i. (Table 

5.2). Hepatic necrosis in p75 -/- mice did not differ quantitatively between viruses, 

however the response to EV infection was accompanied by the appearance of distinctive 

necrotic foci, often discrete and separated from foci of inflammatory cells (Fig. 5.6C, 

D). These were not seen in p75 -/- mice infected with EVdp28 (Fig. 5.7C, D), or 

B6/129 or p55- /- p75 -/- mice infected with either virus (Fig. 5.6, 5.7). The distinctive 

foci were accompanied by indicators of hepatic damage such as degeneration of 

hepatocytes, increased blood in the sinusoids and increased infiltration by inflammatory 

cells. Since virus titres were not appreciably higher in EV- infected mice than EVdp28 
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infected mice, it is unlikely that the foci were due to overwhelming levels of virus 

replication. It is possible that the foci may he due to a protective role for p75 against 

p55- mediated damage, as has been suggested by Horn and colleagues (Horn et al., 

2000). 

p55 -/- p75 -/- mice displayed a large number of smaller inflammatory foci in comparison 

to the B6/129 and p75 -/- mice. Necrotic foci were present in EV and EVAp28 infected 

mice at approximately the same levels as those in p75 -/- mice but were associated with 

inflammatory foci in both EV and EVAp28 infection, contrasting with the lack of 

necrosis in B6/129 and the distinctive necroses seen in p75 -/- mice (Figs. 5.6, 5.7). By 

d9 p.i., necrosis was accompanied by significant damage to the infected livers (Fig. 

5.7E). Inflammatory foci showed a strong trend towards increased numbers in EV 

infected mice compared to EVAp28 infected mice, although this was not significant. 

These data show that both TNF receptors are necessary for maximal inflammatory cell 

infiltration, inflammatory focus formation and prevention of necrosis during EV 

infection, independent of p28 expression. p55 also appeared to have a further role in the 

hepatic response to virus which was manipulated by p28, as indicated by the presence of 

the distinctive necrotic foci in p75 -/- mice. The finding that the foci were not present in 

similarly infected p55 -/- p75 -/- mice suggests that they may require p55 activity. 

It has been found that, in addition to blocking TNF- mediated apoptosis (Turner et al., 

submitted), p28 and its homologues are also capable of blocking other forms of 

apoptosis in vitro (Brick et al., 2000; Brick et al., 1998). Given the important role of 

apoptosis in the anti -viral response (Clem and Miller, 1993; Itoh et al., 1998; Turner 

and Moyer, 1998), in hepatic damage (Lawson et al., 1998; Lieber et al., 1997) and in 

the potential priming of the immune response (Inaba et al., 1998; Rosen et al., 1995), it 

was possible that p28 also influenced pathogenesis in these mice through manipulation 

of non -TNF mediated apoptosis. Hence the effect of p28 expression on apoptosis was 

examined in the livers of wt and TNF receptor -deficient mice. 
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5.2.4 Apoptosis in EV- infected TNF receptor deficient mice is 

-differentially responsive to p28 expression 

The effects of p28 interactions with TNF signalling on hepatic apoptosis were 

examined using in situ TUNEL staining on liver samples from the mice described in 

Section 5.2.3. Apoptosis was measured as the number of TUNEL- positive cells 

showing apoptotic morphology at 3d intervals from d3 to d9 p.i., and quantified as 

described in Section 2.10. Typical staining patterns are shown in Figs. 5.9 - 5.11. 

Apoptosis, paradoxically, appeared more responsive to p28 expression in the absence of 

TNF receptors. Apoptosis in B6/129 mice was not sensitive to p28 expression, showing 

comparable levels and patterns of apoptosis across the course of infection with either 

virus (Figs. 5.8, 5.9). As described in Chapter 3, both viral infections stimulated 

predominantly scattered apoptosis throughout the infection, from d3 p.i. At d6 and d9 

p.ì., apoptosis was also present in the proximity of leukocyte clusters (Fig. 5.9B, C). 

Mock- infected B6/129 mice displayed negligible levels of apoptosis (Fig. 5.9A). 

Apoptosis in p75 -/- mice was at similar levels to B6/129 in mock - infected (Fig. 5.10A) 

and EV or EVAp28 infected mice 3d p.i. (Fig 5.8). At d6 p.i., apoptosis showed a trend 

towards increasing levels in response to infection with either virus, which continued to 

increase slightly at d9 p.i. in response to EV but not EVAp28 (Fig. 5.8). The increase in 

apoptosis in p75 -/- mice infected with EV was associated with distinctive apoptosis 

patterns from d6 p.i. (Fig. 5.10B). Apoptotic cells were clustered near or within small 

areas of necrosis resembling that illustrated in Fig. 5.6C. Apoptotic cells in EVAp28- 

infected p75 -/- mice were instead predominantly scattered as seen in B6/129 mice, with 

a smaller percentage of apoptosis associated with necroses (Fig. 5.10C). It is interesting 

that despite the very different patterns of apoptosis, the absolute number of cells 

undergoing apoptosis was not significantly greater in EV infected than EVAp28 infected 

mice. 
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In contrast, apoptosis in p55- /- p75 -/- mice was highly sensitive to the presence of p28. 

Mice exhibited similar levels of apoptosis in response to EVAp28 to those seen in 

B6/129 and p75 -/- mice (Fig. 5.8). However, the number of TUNEL- positive cells seen 

in response to wt EV was significantly increased from d3 p.i., reaching very high levels 

by d9 p.i. (P <0.01; Fig. 5.8). This was predominantly individual apoptosing 

hepatocytes, although both necrosis -associated and single cell apoptosis were evident. 

By d9 p.i., a larger percentage of TUNEL -positive cells in EV- infected p55-/- p75 -/- 

mice was present as undigested apoptotic bodies than that seen in B6/129 or p75 -/- mice 

(Fig. 5.11B). It is likely that much of the apparent increase in apoptosis was attributable 

to necrotic cells and secondary necrosis of undigested apoptotic bodies, as late in 

infection the volume of apoptotic cells and associated debris made the distinction 

between apoptosis and necrosis extremely difficult (Fig. 5.11 B). This contrasted with 

the apoptosis seen in response to EVAp28, which more closely resembled the response 

observed in p75 -/- mice (Figs. 5.10C, 5.11C). 

Thus, unlike MCMV and adenovirus infections (Hayder et al., 1999; Orange et al., 

1997), TNF did not appear to contribute to apoptosis during EV infection from d3 -9 p.i. 

in B6/129 mice. p28 also did not appear to affect the apoptotic response in these mice. 

However, p28 expression did lead to increased numbers of TUNEL- positive cells in the 

livers of p55 -/- p75 -/- mice. This was unrelated to hepatic virus titres, since growth of 

EV was not significantly greater in the livers of p55 -/- p75 -/- mice than p75 -/- or 

B6/129 mice (Fig. 5.3). Further, at d9 p.i. equal titres of EV and EVAp28 were 

recovered from the livers of p55 -/- p75 -/- mice (Fig. 5.3). It also appears unrelated to 

cellular infiltration (Table 5.2). Indeed, the histology suggests that high levels of 

TUNEL- positive cells are seen because of a lack of uptake of apoptotic particles, and 

subsequent necrosis. 

Given that the presence of p28 affected hepatic necrosis (Fig. 5.6, 5.7) and apoptosis 

(Fig. 5.8) without affecting the number of inflammatory foci (Table 5.2), it was possible 
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that p28 might be affecting virulence through reducing the effectiveness of 

inflammatory cells. To address this possibility EV and EVAp28 infection was 

examined in sublethally irradiated mice. These have previously been shown to have 

limited immune responses due to an inability of immune,cells to proliferate on antigenic 

or other stimulation (Johnson et al., 1995; Lin et al., 1996). 

5.2.5 p28 affects virulence through radiation -insensitive elements 

In order to better define the elements affected by p28 expression, wt and TNF receptor 

deficient mice were sublethally irradiated before infection (Section 2.7). Groups of 4 

mice were infected 24h later with 5 x 103 pfu EV or EVAp28 per mouse as previously, 

and examined at 24h intervals for morbidity and mortality. As controls, 3 mice of each 

genotype were irradiated and mock- infected, and groups of 3 -4 sex and age -matched 

mice of each genotype left non -irradiated before infection. 

Mortality rates in non -irradiated control mice were equal to those demonstrated 

previously (Tables 5.1 and 5.3). B6/129, p75 -/- and p55- /- p75 -/- mice were uniformly 

resistant to EVAp28-mediated lethality. B6/129 mice also proved resistant to EV- 

mediated lethality, whereas both p75 -/- and p55 -/- p75 -/- mice suffered 60% mortality in 

response to EV infection. MTD were again significantly longer in p55 -/- p75 -/- mice 

([6.5 ± 1,2 days) than p75 -/- mice ( 10.8 + 0.8 days: P <0.01). Irradiation resulted in 

both B6/129 and TNF receptor knockout mice becoming highly susceptible to EV- 

mediated mortality (Table 5.3). Strikingly, irradiation rendered wt B6/129 and TNF 

receptor deficient mice equally susceptible to EV mediated lethality, as indicated by 

MTD (Table 5.3). Irradiated B6/129 and TNF receptor knockout mice were also highly 

susceptible to EVAp28. However, in comparison to EV infection, mortality in EVAp28- 

infected mice was uniformly delayed by 4 to 5 days. From these data, two conclusions 

can be drawn. Firstly, the equal susceptibility of B6/129, p75 -/- and p55 -/- p75 -/- mice 

to EV after irradiation suggests that TNF requires radiation -sensitive elements for anti- 
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EV activity. Secondly, p28 enhances virulence through both radiation sensitive, and 

TNF- independent, radiation -insensitive elements. 

The study thus far had examined p28 activity only in the light of its potential 

interactions with TNF, and had found that it had predominantly TNF- independent 

activity. There were two possibilities not yet explored. The first was that p28 may be 

acting through CD40 in vivo, consistent with the in vitro finding that p28 can block cell 

death and the upregulation of TNF mRNA through CD40 (Turner et al., submitted). 

The second possibility was that in vivo interactions noted between p28 and the TNF 

receptors more generally reflected the compromise of the immune response due to the 

removal of cytokine receptors rather than the TNF receptors specifically. Both of these 

possibilities were now addressed. 

5.2.6 Effects of CD40 deficiency differ between mouse strains 

In addition to preventing TNF mediated cell death through p75, p28 has been shown to 

block CD40- mediated cell death (Turner et al., submitted). In order to test whether the 

effects of p28 expression were negated in the absence of CD40, CD40 -/- mice on the 

same 136/129 background as the TNF receptor knockout mice were infected. In 

addition, it was possible that the effect of CD40 deficiency may differ in EV- susceptible 

and EV- resistant mice, as has been implied for TNF (Shibuya et al., 1998). Thus, the 

importance of CD40 in the attenuation of EVAp28 was also investigated by infecting 

mice lacking CD40 on the EV- susceptible Balb /c background. 

As previously, mice were infected with 5 x 103 pfu of either EV or EVAp28 via the 

footpad and examined daily for 25d p.i. Additionally, at death or termination of the 

experiment, internal organs were examined for evidence of pathology. Results are 

shown in Table 5.4 and Fig. 5.12. 

B6/129 mice were resistant to EV and EVAp28 as previously (Chapter 3, Table 5.4). 

Mice displayed footpad swelling from 8 -18d p.i. in response to both viruses, which was 
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greater in response to EV than EVAp28, but otherwise showed minimal morbidity in 

response to infection (Chapter 3, Table 5.4, Fig. 5.1, 5.2 and 5.12A, B). All mice 

survived infection and examination at d25 p.i. revealed minor residual splenomegaly in 

otherwise healthy mice. EVAp28 appeared to be attenuated in B6/129 mice, as 

indicated by reduced footpad swelling (Fig 5.12A). 

CD40 knockouts on the resistant B6/129 background were found to be more susceptible 

to EV- mediated lethality than wt B6/129 mice (Table 5.4). Increased mortality was 

associated with slight, but consistent, weight loss in all mice (data not shown) and 

enhanced swelling at the site of infection (Fig 5.12A). Attenuation of EVAp28 was also 

observed in CD40 -/- mice, as indicated by reduced lethality of infection (Table 5.4) and 

footpad swelling (Fig. 5.12A). Hence mutation of CD40 did not restore EVAp28 

virulence, suggesting that CD40 is not required for the activity of p28 as a virulence 

factor in B6/129 mice. 

A comparison of EV and EVAp28 infection in Balb /c and Balb /c- CD40 -/- mice showed 

that p28 was also required for EV virulence in mice on a Balb /c background. Balb /c 

mice were found to rapidly succumb to EV infection, but no mortality was seen in 

response to EVAp28 (Table 5.4). Instead, Balb /c mice infected with EVAp28 displayed 

delayed onset of morbidity by 2 to 3d in comparison to EV infected mice, and 

symptoms appeared to resolve by dl 7 p.i. Mice were fully recovered from the infection 

at termination of the experiment at 25d p.i. (Fig. 5.12C, D; see also Section 3.2.1). 

Post -mortem examination revealed that the difference in mortality was reflected in 

marked differences in internal pathology. EV infected Balb /c uniformly displayed 

hepatic, splenic and intestinal lesions, associated with extreme splenomegaly and highly 

enlarged Peyer's patches. An EVAp28- infected Balb /c mouse sacrificed at d8 p.i. for 

comparison with EV infection displayed potential intestinal damage and discoloured 

spleen and liver but no splenomegaly or enlargement of Peyer's patches. Further, all 
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observable symptoms of EVAp28 infection were resolved at the termination of the 

experiment (25d p.i.). 

Balh /c- CD40 -/- mice infected with EV displayed greater morbidity and more rapid 

onset of disease than similarly infected wt Balb /c mice. EV infected Balb /c- CD40 -/- 

were hunched and lethargic Id before morbidity was detectable in similarly infected 

Balb /c mice. This was accompanied by discharge from the eyes in all mice, but no 

visible pocks. Post -mortem examination revealed severe hepatic damage, as indicated 

by hepatomegaly and fatty, grainy appearance. All mice also displayed intestinal 

haemorrhage and severe tissue damage to the uterus and ovaries. Enlarged Peyer's 

patches and splenomegaly were not observed in EV- infected Balb /c- CD40 -/- mice. 

An increase in susceptibility of Balb /c- CD40 -/- mice could also be seen in response to 

EVAp28 infection. Balb /c- CD40 -/- mice infected with EVAp28 suffered severe ongoing 

morbidity from d10 p.i. which did not begin resolution until around d17 p.i. This 

included facial lesions, accelerated footpad swelling, lethargy and ruffled fur (Fig. 

5.12C, D). Sacrifice of an EVAp28- infected Balb /c- CD40 -/- mouse at d8 p.i. for 

comparison with EV- infected mice revealed minimal hepatic damage, as indicated by 

slight hepatomegaly. No eye lesions were visible, and intestines appeared to be intact, 

with slightly enlarged Peyer's patches. Strikingly, this was associated with extreme 

splenomegaly, and a lack of visible splenic lesions compared to similarly infected 

Balh /c mice. Since CD40 -/- mice lack an effective 13 cell response (Kawabe et al., 

1994), the splenomegaly suggests that in Balb /c- CD40 -/- mice may have strong T cell 

proliferation in response to EVAp28, which does not occur in response to EV. This is 

deserving of further investigation. The data may also have suggested that EVAp28 was 

similarly attenuated in Balb /c- CD40 -/- mice as in Balb /c. However, pathogenic changes 

in Balb /c- CD40 -/- mice at d8 p.i. were likely to underestimate the pathogenicity of 

EVAp28 in these mice. EVAp28 -infected Balb /c- CD40 -/- mice did not consistently 

display signs of infection until d7 p.i. Some discomfort was discernible at d9 p.i. By 
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dl 1 p.i., all mice displayed maximal footpad swelling, and signs of significant general 

discomfort such as hunching and coat ruffling. This was accompanied by lethargy, 

weight loss and swollen bellies by d12 pi., which was associated with poorly formed 

faeces (2 of 5 mice) or diarrhoea (3 of 5 mice) by d13 p.i. Symptoms did not begin to 

subside until d17 p.i. Mice sacrificed at d25 p.i. showed hepatomegaly and 

splenomegaly, but no other remaining symptoms of infection. Thus while EVAp28 

infection of Balb /c- CD40 -/- mice led to only 20% mortality, the absolute level of 

mortality seen is likely to understate EVAp28 virulence. 

These limited experiments support the data of Ruby and colleagues (Ruby et al., 1995) 

describing an important role for CD40 in the anti -viral response. The data further 

suggest that interactions between CD40 signalling pathways and p28 may not be of 

importance in EV virulence in B6/129 mice, but play a greater role in virulence in 

Balbic mice. 

5.2.7 IFNyR and IL -6 deficient mice are resistant to EVAp28 infection 

Many cytokines other than TNF have been demonstrated as important in the control of 

EV infection (Karupiah, 1998; Karupiah et al., 1993; Ramshaw et at., 1997). It was 

possible that differences in the effects of p28 expression observed between wt and TNF 

receptor deficient mice were due to the compromise of the immune response in the TNF 

receptor knockouts rather than TNF receptor deficiency specifically. Hence, EV and 

EVAp28 infection of TNF receptor deficient mice was compared with infection of mice 

lacking other cytokines or cytokine receptors important in the resolution of EV 

infection. IFNy and IL -6 are known from previous studies to be required for resistance 

to EV infection (Karupiah et al., 1993; Ramshaw et al., 1997; van den Broek et al., 

1995). It should be noted for these experiments that while the TNF receptor knockouts 

were on a B6/129 background, the IL -6 and IFNyR -/- mice were on the more EV- 

resistant 129 background (for details of I29 mice, see Chapter 3). 
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IL -6 -/ -, IFNyR -/- and 129 mice were infected with S x 10' pfu of either EV or EVAp28 

via the footpad and examined over the course of 25 days. The background 129 mice 

proved highly resistant to EV and EVAp28 (Table 5.5). No mortality was observed in 

response to either virus, and morbidity in response to both viruses was also minimal. 

Footpad swelling was observed at low levels and appeared to be slightly less in 

response to EVAp28 than EV. No other symptoms of infection were observed, and on 

sacrifice at d25 p.i., virus was not detectable in the liver or spleen by titration (data not 

shown). 

11.-64- mice displayed increased mortality in response to EV, resulting in 50% mortality 

at 14 ± 2d p.i. (Table 5.5). No increase in mortality was seen in EVAp28 infected mice. 

However, morbidity was more similar than is suggested by mortality rates. IL -6 -/- mice 

responded to both infections with reduced splenomegaly and increased footswelling 

compared to that seen in 129 mice. Both aspects were slightly reduced in EVAp28 

compared to EV infection, as seen in the background strain. EVAp28 infected mice 

recovered from infection after displaying foot swelling until approximately dl 7 p.i. 

EV- infected mice also suffered foot swelling until around dl9 p.i. Further gross signs 

of infection were not evident until 24h before death, at which point they became 

hunched with ruffled fur. Post -mortem examination revealed macroscopically 

observable viral plaques on the liver and spleen, but little splenomegaly. Plaques were 

not present at sacrifice of the remaining surviving mice (d25 p.i.) or in an EVAp28- 

infected [L -6 -/- mouse sacrificed at dl 3 p.i. for comparison with lethal EV infections. 

Thus the loss of IL -6 resulted in higher susceptibility to both viruses. This did not 

appear to be affected by the presence of p28 to a greater extent in the IL -6 -/- mice than 

in the wt strain, suggesting that IL -6 and p28 are unlikely to interact. 

IFNyR -i- mice were also susceptible to both EV and EVAp28 induced morbidity, and 

highly susceptible to lethal EV infection. EV- infected IFNyR -/- displayed diarrhoea 

and multiple pocks in the vicinity of mucous membranes from 7d p.ì. Mice became 



hunched and lethargic within 9 days of infection, followed rapidly by death. Post- 

mortems revealed severe intestinal lesions and reduced spleen and liver size. Liver 

pathology was associated with fatty change and necrosis in 4 of 6 livers examined, and 

fibrosis in 1 of 6 livers. EVAp28 infection of IFNyR -/- mice also resulted in pocks on 

the face and mucous membranes, appearing within 24h of those on EV- infected mice. 

Mice became lethargic and 6 of 7 mice suffered intestinal damage as indicated by 

diarrhoea from dl 1 -12 p.i. An EVAp28- infected mouse sacrificed for comparison with 

EV- infected mice at d12 showed hepatomegaly, and intestinal lesions similar to those 

seen in EV infected mice. Symptoms subsided in the following 36h, and all mice 

survived infection, although external lesions and footpad swelling were maintained. 

Mice were sacrificed for humane reasons at d21 p.í. At sacrifice, EVAp28- infected 

mice displayed residual hepatomegaly and splenomegaly, with no other discernible 

internal injury. However, pocks were still present and infectious on the face, urogenital 

openings and at the site of infection (data not shown). Hence the morbidity seen in 

IFNyR -/- mice was consistent with a non -specific increase in susceptibility to virus 

infection. These data suggested that the activity of p28 as a virulence factor did not 

require IFNyR or IL -6. 



5.3 Discussion 

In this chapter, potential roles of p28 in EV virulence were investigated through the 

infection of cytokine- or cytokine receptor -deficient mice. It was shown previously that 

EV but not EVAp28 can block apoptosis activated by CD40 and p75 in vitro (Turner et 

al. submitted). Data presented in this chapter demonstrates that p28 also targets CD40 

and p75 independent events in vivo. This was most clearly illustrated in mortality 

studies of B6 /129 -derived mice. It was expected that if the role of p28 in vivo was to 

block activity through CD40 or p75, then in their absence EVAp28 virulence would be 

restored. However, CD40 -/ -, p75 -/- and p55- /- p75 -/- mice on a B6/129 background 

suffered lethal infection in response to EV and recovered fully from EV428 infection. 

This demonstrated that either p28 affected mortality through pathways additional to 

those observed in vitro, or that p28 must block both TNF and CD40- mediated signalling 

pathways for EV virulence. The latter is suggested by the presence of intracellular 

signalling molecules common to both CD40 and p75 (Grell et al., 1999; Rao et al., 

1995; Rothe et al., 1995). CD40- /- p75 -/- and CD40- /- p55 -/- p75 -/- mice have been bred 

which may help to answer this question (SC and Jo McLintock, JCSMR Animal 

Services). However, the mice appear to have further defects, as indicated by low litter 

sizes (knockout litter size: 3.0 f 1.4 pups, control litter size: 5.1 + 1.6 pups) and 

unproductive matings (2 of 5 knockout breeding pairs productive, 5 of 5 control 

breeding pairs productive). While this suggests potentially interesting roles for these 

receptors in reproduction and /or development, sufficient mice for investigation of p28 

activity have not yet been produced. 

Previous studies suggested that the attenuation of EV428- mediated mousepox in some 

mouse strains was due to compromised virus replication (Senkevich et al., 1995). Data 

in this chapter, like that in Chapter 3, does not support a role for p28 as a replication 

factor in vivo. While quantitation of virus in B6/129 and TNF receptor deficient mice 
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showed maximum titres of EVAp28 to be approximately 1 log lower than those of wt 

EV in B6/129 and TNF receptor deficient mice, the reduced lethality of EVAp28 

infection was unlikely to be due to the difference in virus titres since (1) levels of virus 

rose to similar levels in B6/129 mice which survived and TNF receptor KO mice which 

did not, and (2) by d9 p.í., titres of both EV and EVAp28 were significantly reduced and 

indistinguishable from one another in all strains tested. This suggested that EVAp28 

replication was not sufficiently compromised to account for the attenuation of disease. 

Thus, it is likely that the role of p28 in virulence was in virus -host interactions. 

An initial hypothesis tested in this chapter was that p28 may block TNF- mediated 

apoptosis through p75 during the period d3 -9 p.i. It was not possible to detemine 

whether this in fact occurred, as low levels of apoptosis were observed in wt mice in 

response to both EV and the p28 mutant virus. However, broader TNF- dependent 

activities were also examined. Unexpectedly, the data suggests that the contribution of 

p28 to virulence is predominantly TNF- independent. A subtle interaction between p28 

and effects of the p55 TNF receptor was suggested by the unusual necroses observed in 

p75 -/- mice, but not wt or p55 -/- p75 -/- mice in response to EV. There are a number of 

possible explanations. It can be seen from the data in Table 5.1 and Figure 5.3 that p75- 

1- mice were as susceptible or more susceptible to EV than p55 -i- p75 -/- mice. Thus it is 

possible that the necroses simply reflect the higher susceptibility of the mice, although 

if this is the case then it is interesting that they do not resemble necroses in any of the 

EV- susceptible mouse strains examined. Alternatively, a protective role for p75 against 

p55- mediated damage to the liver is suggested by comparison of necroses from 

EVAp28 -infected wt, p75 -/- and p55 -/- p75 -/- mice. This has previously been 

demonstrated to occur on treatment with the hepatotoxin dimethylnitrosamine (Horn et 

al., 2000), and is consistent with the higher susceptibility of p75 -/- mice than p55- / -p75- 

/ -mice. A third alternative is that p28 may interrupt chemotaxis stimulated by TNF by 

preventing chemokine upregulation (Hornung et al., 2000; Tessier et al., 1997), 

although this has so far been described as a p75 dependent event (Wang et al., 1997). 



A role for p28 in preventing TNF- mediated chemotaxis was also suggested by 

comparing splenomegaly and infiltration of the liver by leukocytes in B6/129 and p75 -/- 

mice with p55- /- p75 -/- mice. B6/129 and p75 -/- mice displayed significantly greater 

splenomegaly in response to EV than EVAp28 by d9 p.i. (P <0.05) In contrast, there 

was no difference between splenomegaly induced by EV or EVAp28 in p55-/- p75 -/- 

mice, suggesting that p28 may enhance splenomegaly through a TNF- dependent 

mechanism. The high splenomegaly may have been due to abnormally high cell 

proliferation in the spleen, however this is unlikely, since the CD4 and CD8 responses 

to antigen in these mice have previously been described as normal (Peschon et al., 

1998), and levels of leukocytes found in the liver did not increase; indeed, levels of 

leukocytes infiltrating the liver were lower in p55 -/- p75 -/- mice than in either B6/129 or 

p75 -/- mice. An alternative proposal is that the splenomegaly observed may reflect a 

role for TNF in chemotaxis of T cells from the spleen to sites of infection. A role for 

TNF in lymphocyte chemotaxis through endothelial monolayers has been shown by de 

Jong and colleagues (de Jong et al., 1996), and further roles for TNF in regulation of 

chemokines and chemokine receptor expression have been described both in vitro 

(Hornung et al., 2000) and in vivo (Tessier et al., 1997). The data from the current 

study suggests that the chemotaxis of lymphocytes from the spleen requires the 

presence of the p55 TNF receptor, and is inhibited by the presence of p28. This finding 

may indicate an important aspect of p28 function, which could he investigated further 

by examining TNF -stimulated upregulation of chemokine mRNA or protein from a 

variety of cell types infected with EV or EVAp28. The further finding that p28 

expression increased hepatic apoptosis in p55 -/- p75 -/- mice and was required for EV 

growth in the spleen and LN of these mice suggests that p28 had additional roles in EV 

infection, independent of interactions with TNF. 

A TNF independent component of p28 activity is also supported by the attenuation of 

EVAp28 in p55 -/ -p75 -/ -mice, and the attenuation of the p28 mutant virus in the 

irradiated mice independent of TNF expression. This may indicate that p28 interacts 
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with other pathways; for example, other signalling pathways in which TRAFs are 

utilised '(see Section 1.13.2). In particular, a role for p28 in CD40 activity is supported 

by the comparison of EV and EVAp28 infection in Balb /c and Balb /c.CD40 -/- mice (see 

below). 

It is interesting to contrast the effects of p28 expression on infection in TNF receptor 

knockout mice with those in mice lacking other cytokines. Comparison of EV and 

EVAp28 lethality in IFNyR -/- and IL -6 -/- mice revealed that EVAp28 also induced 

reduced pathogenesis in these mice. However, despite differences in lethality between 

EV and EVAp2S infection, differences in pathogenesis appeared to be minor in 

comparison to those observed in CD40 -/ -, TNF receptor deficient, Balb /c or A/J mice. 

This was consistent in 129, IFNyR -/- and IL -6 -/- mice, suggesting that the small 

difference in pathogenesis is not specific to these cytokines, but instead reflects the 

influence of the 129 background. Collation of data with that obtained at 6h p.i. shows 

that IL -6 had no observable impact on the effect of p28 expression or ablation at any 

time within the first 9d p.i. In contrast, IFNyR appears to play a role in enabling p28 

activity early in infection (Chapter 4). IFNyR may play a similar role later in infection, 

as shown by the similarly high morbidity in EV and EVAp28 infected IFNyR -/- mice, 

but is not absolutely required for p28 activity later in infection, as shown by the 

difference in mortality between EV and EVAp28 -infected IFNyR -/- mice. On current 

data, it is impossible to dissect out the contribution of background strain from the effect 

of IFNyR mutation. This data is also interesting because the severely curtailed IFN7 

responses of A/J and Balb /c mice are likely to play a role in their extreme sensitivity to 

some viral infections, including EV (Mohan et al., 1997; Schindler et al., 1982). 

However, while IFNyR -/- mice were highly susceptible to EV, an increase in 

susceptibility to EVAp28 was also evident which was not seen in A/J or Balb /c mice, 

suggesting further that IFNy is not involved in the attenuation of EVAp28 in either of 

these mouse strains. 
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A comparison of CD40- deficient mice on B6/129 and Balh /c backgrounds also 

strikingly illustrated the effects of background strain, and suggested that the 

contribution of p28- receptor interactions may differ in different host strains. The 

B6/129 strain is a cross of two EV- resistant strains and is itself highly resistant to EV- 

induced death. CD40 -/- mice on the B6/129 background showed increased 

susceptibility to F.V, as seen in TNF receptor deficient mice. The increased morbidity 

and further reduced MTD reflects the important role of CD40 in the anti -viral response 

prior to the antibody response (Ruby et al., 1995). These mice also showed increased 

morbidity in response to EVAp28 and an accelerated inflammatory response at the site 

of infection, followed by resolution of the infection. In contrast, Balb /c mice are 

sensitive to lethal EV infection and resistant to EVAp28. Mutation of CD40 on a Balb /c 

background resulted in severe pathology in response to both viruses. A comparison of 

autopsy results suggested that pathology in response to EVAp28 was only slightly 

milder than that of EV. Hence CD40 was more important to p28 activity in the 

susceptible Balb /c mice than the resistant B6/129. The finding that EVAp28 stimulates 

splenic expansion in Balh /c.CD40 -/- mice but not Balh /c further suggests that in these 

mice p28 may play a role in immune suppression. The effect of p28 expression and 

potential interactions with CD40 signalling in EV- susceptible mice would be a fruitful 

area to examine further. CD40 is of importance in many stages of the immune 

response, including APC priming and function, and CD4 activity (reviewed in Grewal 

and Flavell, 1998) which may be affected by p28 activity and cause the noted low level 

of EVAp28 virulence early in infection, 

The limited results from these experiments suggest that CD40 may be more important in 

the antiviral response of the susceptible Balb /c strain than the resistant B6/129 strain. 

Similar experiments have been planned to examine TNF in susceptible mouse strains, 

using Balb /c.TNF -/- mice. At present, TNF -/- mice have been crossed onto a Balb /c 

background, but have not yet been sufficiently backcrossed for experimental work. 



This data also revealed information on the role and mechanism of TNT in EV infection. 

Results of irradiation experiments showed that TNF requires radiation -sensitive 

elements for anti -EV activity. All irradiated mice suffered Iethal infection with both 

viruses, with no difference seen between MTD of B6/129 mice and the TNF receptor 

knockouts. This is in apparent conflict with previous studies describing direct antiviral 

activity of the cytokine in vitro (Wong and Goeddel, 1986) and in vivo (Ruby et al., 

1997). In particular, a vaccinia virus construct encoding TNF has been found to be 

attenuated in both irradiated and non -irradiated mice (Lidbury et al., 1995). It is 

possible that the differences between the current and previous studies reflect insufficient 

induction of TNF in irradiated mice, and potential differences between EV and vaccinia 

virus. Another possibility is suggested by a study by Elkon and colleagues (Elkon et 

al., 1997). During infection of wt and SCID mice with recombinant adenovirus, it was 

found that TNF was an effective antiviral agent against hepatic infection only in wt 

mice ( Elkon et al., 1997). It is thus possible that, unlike the case in VV infection, TNF 

is not directly anti -viral in EV infection. This data suggests that TNF may require an 

effective T cell response in order to be effectively anti -viral in resistant mice. 

Thus in this chapter it has been found that p28 activity has some TNF dependent 

activity, but predominantly enhances virulence through TNF- independent mechanisms. 

These differ between mouse strains: in particular, the activity of p28 was found to be 

significantly increased in susceptible Balb /c mice lacking CD40 compared to wt mice, 

yet CD40 mutation had relatively little effect on virulence in EV- resistant B6/129. This 

suggests that (1) p28 has significant TNT- and CD40- independent activity; (2) the role 

of p28 in EV virulence may differ dependent on the strain of the host. 







Table 5.1 Effects of TNF receptor mutation on resistance of mice to infection with EV 
and EVAp28. 

Infection* 

Mouse 
Strain 

EV EVAp28 Mice 
per 

group Mortality ( %) MTD t (days) Mortality ( %) MTD t (days) 

B6/129 

p75 -/- 

p55- /- p75 -/- 

0 

60 

50 

- 

11.6 ±0.9 

18.0 ± 0.0 

0 

0 

0 

- 

- 

- 

10 

10 

6 

*8 -12 week old sex -matched mice of each genotype were infected with 5 x 103 pfu of 

either EV or EVdp28 in the right hind footpad and observed for 25 days at 24h 

intervals for signs of morbidity and mortality. 

*MTD, mean time to death ± SD. MTD significantly greater in p55 -/- p75 -/- mice 

infected with EV than p75 -/- mice (P<0.01) as tested by Student's t -test 



Table 5.2 Hepatic changes associated with EV or EV4p28 infection of TNF receptor deficient mice. 

Infection EV EV 4p2ß 

Mouse Strain B6/129 P75 -/- P55- /- p75 -/- B6/129 P75 -/- P55-/- p75 -/- 

Day post- infection Necrotic foci' 

0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 

3 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 

6 0 ± 0 2975.4 ± 3220.0 1324.7 ± 1467.4 0 ± 0 1732.3 ± 3892.6 183.4 ± 4259.4 

9 0 ±0 468.7 ± 835.6 14938.5 ± 7214.5 0 ± 0 1793.4 ± 1467.4 6582.7 ±6134.4 

Infiamniatin cell foci" 

0 0.21 ±0.47 0.15 ± 0.33 0 ± 0 0.21 ± 0.47 0.15 ± 0.33 0 ± 0 

3 4.34 ± 4.34 0.55 ± 0.92 0.18 ± 0.17 3.09 ± 1.04 0.16 + 0.23 0.08 ± 0.17 

6 16.29 ± 3.11 12.52 ± 12.24 24.33 ± 10.57 11.61 ± 3.24 2.57 ±0.71 9.07 ± 5.39 

9 61.26 ± 14.73 66.81 ± 17.71 46.83 ± 13.00 48.62 ± 9.83 35.53 ± 56.00 24.07 ± 15.10 

Inflammatory cell infiltration' 

0 +/- +/- +/- +/- +/- ,-/- 

3 +/- +/- + + +/- + 

6 ++ ++ + ++ + + 

9 + ++ + ++ + ++ ++ + 



a. Levels of necrosis were semi -quantitated by counting necrotic foci in at least 10 fields of view per section from 2 sections per sample. The 

size of each necrosis was measured using a micrometer, and the total area of necrosis per field of view calculated. All samples were assessed 

blind. Data represents pmt necrotic tissue per field of view ± SD 

b. Levels of inflammatory cell foci were semi- quantitated by observing foci in at least 10 fields of view per section from 2 sections per sample. 

The number of cells per focus and the total number of foci per field of view were counted. Cells per focus x number of foci were calculated 

to give the number of cells within foci in each field of view. All samples were assessed blind. Data represent cells within foci per field of 

view ± SD 

c. Inflammatory cell infiltration was estimated by comparing the ratio of lymphocytes to hepatocytes present in at least 10 fields of view per 

section from 2 sections per sample. Lymphocytes present within foci were excluded from the ratio. All samples were assessed blind. 



Table 5.3 Effect of sublethal irradiation on mortality in response to EV or EVAp28 
infection 

Infection* 

Mouse strain EV EVAp28 

Mortality ( %) MTD (days) $ Mortality ( %) MTD (days) $ 

Non - 
irradiated 

136/129 0 - 0 - 

p75 -/- 60 10.8 ± 0.8 0 - 

p55- /- p75 -/- 60 16.5 ± 1.2 0 - 

Irradiated' 

B6/129 100 10.8 ±0.2 100 15.3 ±1.8b 

p75 -/- 100 10.0 ±0.0 100 14.0±0.0` 

p55 -/- p75 -/- 100 10.5 ± 0.5 100 14.0 ± 0.5 b 

*Groups of 4 8 -12 week old sex- matched mice of each genotype were infected with 

5 x 103 pfu of either EV or EVAp28 in the right hind footpad and observed for 25 

days at 24h intervals for signs of morbidity and mortality. MTD analysed for 

significant difference using the Student's t -test 

a: Mice were irradiated with 650 rads from a 60Co source 24h prior to infection. 

Control mice were not irradiated. A further group of mice of each genotype was 

irradiated and mock -infected as described in Section 2.7 to ensure that irradiation was 

not lethal. No mortality was seen in this group (data not shown). 

b: MTD significantly different between EV and EVAp28 infected mice of the same 

genotype (P <0.05) 

c: MTD significantly different between EV and EVAp28 infected mice of the same 

genotype (P <0.01) 

$MTD, mean time to death ± SD. 



Table 5.4 Effects of CD40 mutation on resistance of B6/129 and Balb /c mice to 

infection with EV and EVAp28. 

Infection 

Mouse Strain EV EVAp28 Mice 
per 

group Mortality ( %) MTD (days) Mortality ( %) MTD (days) 

B6/129 

CD40 -/- 

0 - 

66 8.9 ± 1.3 

0 - 

0 - 

5 

6 

Balb /c 

Balb /c.CD40 -/- 

100 8.6 ± 0.5 

100 8.0 ± 0.0 

0 - 

20 21.0 ± 0.0 

5 

5 

*8 -12 week old sex -matched mice of each genotype were infected with 5x 10' pfu of 

either EV or EVAp28 in the right hind footpad and observed for 25 days at 24h 

intervals for signs of morbidity and mortality. 

±MTD, mean time to death ± SD. 

MTD between EV infected CD40 -/ -, Balb /c and Balb /c.CD40 -/- mice not significantly 

different as tested by Student's t -test. MTD of Balb /c.CD40 -/- infected with EVAp28 

not compared to EV- infected mice statistically, as only one mouse was lethally infected 

with EVAp28. 



Table 5.5 Effects of IFNyR or IL -6 mutation on resistance of mice to infection with EV 
and EV4p28. 

Infection* 

Mouse Strain EV EVAp28 Mice 
per 

group Mortality ( %) MTD $ (days) Mortality ( %) MTD $ (days) 

129 

129.1L6 -/- 

129.IFNyR -/- 

0 

50 

100 

- 

14.0 ± 2.0 

11.4 ± 1.1 

0 - 

0 - 

0 - 

5 

6 

7 

*842 week old sex -matched mice of each genotype were infected with 5x 103pfu of 

either EV or EVAp28 in the right hind footpad and observed for 25 days at 24h 

intervals for signs of morbidity and mortality. 

*MTD, mean time to death ± SD. 
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Figure 5.1 Swelling at the site of infection in response to EV or 

EVAp28 inoculation 

Groups of 5, 10 -14 week old female mice of each strain were infected with 5 

x 103 pfu EV or EVAp28 in the right hind footpad_ Control measurements 

were made from 5 mice mock -infected with tissue culture lysate as described 

in Section 2.5. Footpad thickness was measured from the pad to the top of 

the foot at 24h intervals. Data represent the mean of 5 measurements ± SD. 

Statistical significance analysed with the Student's t -test. EV infections 

resulted in significantly greater footpad swelling than EVAp28 in B6/129, 

p75 -f- and p55 -/- p75 -/- mice ( *P <0.05, * *P <0.01). p75 -/- and p55-/-p75-/- 

mice showed significantly reduced footpad swelling in response to EV from 

d6 p.i.. in comparison to B6/129 (P <0.01) mice. Swelling was reduced more 

in EV- infected p75 -/- than EV- infected p55 -/- p75 -/- mice (P <0.05). All 

other comparisons at single time- points were not significant (P>0.05). 
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Figure 5.2 Weight changes in response to EV or EVAp28 infection 

Groups of 5, 10 -14 week old female mice of each strain were infected with 5 x 103 pfu 

EV or EVAp28 in the right hind footpad and mice weighed at 24h intervals. Control 

measurements were made from 5 mice mock -infected with tissue culture lysate as 

described in materials and methods. Data represent the mean of the 5 measurements ± 

SD. No significant difference was found in mouse weights from d1 -9 p.i. (Student's t- 

test, P >0.05). 



Figure 5.3 Replication of EV and EVAp28 in TNF receptor knockout mice 

8 -12 week old female mice of each strain were infected with 5 x 103 pfu EV or EVAp28 

in the right hind footpad and sacrificed at the times indicated. The right hind popliteal 

lymph node (DLN), spleen and a sample of liver were titrated as described in Section 

2.12. The limit of detection is 10" pfu (broken line). Data represent mean virus titres 

from a minimum of 5 mice ± SD. Titres were analysed for statistical significance with 

Student's t -test. Hepatic EV titres were statistically different from EVAp28 titres at d6 

p.i. in B6/129 (P <0.05), p75 -/- (P <0.01) and p55- /- p75 -/- mice (P<0.05). At all 

timepoints, EV titres were significantly greater than EVAp28 in p55 -/- p75 -/- spleen 

(P <0.01). Additionally, EVAp28 replication in p55 -/- p75 -/- spleen was significantly less 

than growth in B6/129 on d3 (P <0.01) and d6 p.i. (P <0.01) and p75 -/- mice on d3 

(P<0.05), d6 p.i. (P<0.01), and d9 p.i. (P <0.01). Replication of EV was significantly 

greater than that of EVAp28 at d6 p.i. in p75 -/- mice (P<0.01). EV titres were 

significantly greater than EVAp28 titres in DLN of p55 -/- p75 -/- mice at d3 p.i. (P<0.05). 

All other comparisons at single time -points not significant (P >0.05). No titre available 

for EV- infected p75 -/- DLN due to the destruction of the lymph node by infection 

na: not applicable. 

EV and EVAp28 titres significantly different (P<0.05) 

EV and EVAp28 titres significantly different (P <0.01) 
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Figure 5.4 Splenomegaly in response to EV or EVAp28 infection 

8 -12 week old female mice of each strain were infected with 5 x 103 pfu EV or 

EVAp28 in the right hind footpad and sacrificed at the times indicated. 
Spleens were harvested and weighed before titration (see Fig. 5.3). Spleen 

mass increased from d3 to d9 p.i.. in all mice (P <0.01). By d9 p.i., B6/129 

and p75 -/- mice displayed more extensive splenomegaly in response to EV 

infection than EVAp28 infection (P <0.01). This did not occur in p55-/- p75 -/- 

mice. EV caused greater splenomegaly in p55 -/- p75 -/- mice than in any other 

mouse strain (P <0.05). Similarly, EVAp28 infection caused greater splenome- 

galy in p55 -/- p75 -/- mice than other strains (B6/129, p75 -/- P <0.01). Data rep- 

resent mean spleen masses from a minimum of 5 mice ± SD. Differences 

between spleen masses analysed for statistical significance with Student's t- 

test. 



Figure 5.5 Normal hepatic morphology in TNF receptor deficient mice 

5 female mice of each genotype between 10 and 16 weeks old were mock -infected with 

tissue culture lysate and livers harvested 6d p.i.. Formalin -fixed sections were stained 

with T-1&E as per materials and methods. Representative sections are shown from 

B6/129 (A), p75 -/- (B) and p55- /- p75 -/- mice (C) mice. In each case, mock -infection 

did not lead to observable pathology. Magnification: 20x. 
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Figure 5.6 Necrotic foci in EV- infected TNF receptor deficient mice 

5 10 -16 week old female mice of each genotype were infected with EV as previously 

and livers harvested 9d p.i.. Formalin -fixed sections were stained with H &E as per 

materials and methods. Representative sections are shown. B6/129 (A, B) and p55 -/- 

p75-/- mice (E, F) displayed necrosis associated with foci of inflammatory cells. 

However, infection of p75 -/- mice with EV led to the presence of necroses associated 

with little or no inflammatory infiltrate (C, D). Apoptosis was evident in the vicinity of 

necroses from all three mouse strains, but appeared more prevalent in those seen in EV- 

infected p75 -/- mice (B, D, F). Magnification: A, C, E : 20x, B, D, F : 64x. 
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Figure 5J Necrotic foci in EVAp28- infected TNF receptor deficient mice 

5 10 -16 week old female mice of each genotype were infected with EVAp28 as 

previously and livers harvested 9d p.i.. Formalin -fixed sections were stained with 

H &E as per materials and methods. Representative sections are shown. B6/129 (A, 

B) p75 -/- (C,D) and p55- /- p75 -/- mice (E, F) displayed necrosis associated with foci 

of inflammatory cells. Magnification: A, C, E : 20x, B, D, F : 64x. 
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Figure 5.8 Hepatic apoptosis in EV or EVAp28 -infected TNF receptor 
deficient mice 

8 -10 week old female mice of each genotype were infected with 5x 103 pfu of either 

EV or EVAp28 in the footpad and livers harvested at indicated time -points as 

described in Section 2.5. Sections were stained for apoptotìc cells using the TUNEL 

procedure. Data indicates mean number of TUNEL positive cells ± SD for 5 to 7 

individual mice. Levels of apoptosis were significantly increased in p55-/- p75 -/- 

mice infected with EV at d3 p.i. (* P <0.05) and d9 ( * *P<0.01) as tested by Student's 

1-test. 



Figure 5.9 The apoptotic response of B6/129 mice to infection with EV or 

EV \p28 

Livers were harvested 6d p.i. from 5 10 -16 week old female mice mock -infected, or 

infected with 5 x 103 pfu EV or EVAp28 as previously. Formalin -fixed sections were 

stained with the TLINEL procedure as per materials and methods. Representative 

sections are shown. Apoptotic cells were evident as strongly FITC -positive cells with 

apoptotic morphology (white arrow). Mock -infected B6/129 mice displayed low to 

undetectable levels of hepatic apoptosis (A). Apoptosis became more evident during the 

infection and by d6 p.i., could be detected as individual apoptotic cells and apoptotic 

cells in contact with inflammatory infiltrates. This occurred equally in both EV (B) and 

EVAp28- infected mice (C). Magnification: (A, B) 40x, (C) 60x. 
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Figure 5.10 The apoptotic response of p75 -/- mice to infection with EV or 

EV \p28 

Livers were harvested 6d p.i. from 5 10 -16 week old female mice mock -infected, or 

infected with 5 x 103 pfu EV or EVAp28 as previously. Formalin -fixed sections were 

stained with the TUNE!. procedure. Representative sections are shown. Mock -infected 

p75 -/- mice suffered negligible levels of apoptosis (A). This increased in EVAp28- 

infected mice, in the form of scattered apoptotic cells (C) or small clusters of apoptosis. 

Apoptosis was marginally higher in EV- infected mice (B), in which necroses associated 

with significant apoptosis appeared more prevalent. Magnification: 60x. 
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Figure 5.11 The apoptotic response of p55- /- p75 -/- mice to infection with 

EV or EV \p28 

Livers were harvested 6d p.i. from 5 female mice of each genotype mock -infected, or 

infected with 5 x 103 pfu EV or EV4p28 as previously. Formalin -fixed sections were 

stained with the TUNEL procedure as described in Section 2.10. Representative sections 

are shown. While mock -infected p55 -/- p75 -/- mice had low levels of hepatic apoptosis 

(A), apoptosis was highly increased in EV infection, mainly as single apoptosing cells 

(B). This was also increased in EVz p28 infected mice (C) although to a much lower 

level. See also Fig. 4.8. High counts of apoptosis in EV- infected -p55 -/- p75 -/- mice are 

likely to be due in part to the presence of apoptotic dust in these livers (white arrow). 

Magnification: A, 40; B, C, 60x. 
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Figure 5.12 Morbidity of CD40 deficient mice in response to infection with 

EV or EV \p28 

Groups of 5 female 8 -10 week old CD40 -/- mice on a B6/129 (A, B) or Balb /c (C, D) 

background were infected with 5 x 103 pfu EV or EVAp28 as previously, and morbidity 

examined at 24h intervals for up to 25d p.i. 

(A, C) Swelling at the site of infection was assessed visually and scored according to 

the following scale: 0 - healthy footpad, 1- slight swelling of footpad, 2- bones of foot 

obscured by swelling, 3- feet approximately 3mm in diameter, restricted to foot below 

hock, 4- extremely swollen, restricted to foot below hock, 5- extremely swollen 

including hock. 

(B, D) Clinical score based on presence of facial lesions, lethargy, and coat ruffling. 

Lesions scored 1 to 3 (1- lesions just detectable, 3- confluent lesions across face and 

muzzle), and added to lethargy (0 -not present, 0.5- present) and coat ruffling (0 -not 

present, 0.5- present). 
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Discussion 
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The experiments described in this thesis were designed to address effects of the 

expression of the virulence factor p28 on apoptosis and pathogenesis during the course 

of a natural poxvirus infection, ectromelia virus. During these studies, insights have 

been gleaned into the roles of TNF and apoptosis in viral infection, as well as the role 

that p28 plays in the virulence of EV. 

6.1 Apoptosis in EV infection 

An important aim of this study was to examine the kinetics of the apoptotic response 

during a virulent virus infection, using EV infection of mice as a model of a coevolved 

host -virus system. This allowed the frequency of tissue apoptosis to be correlated with 

virus growth, histologically detectable events such as tissue inflammation, and selected 

physiological parameters such as host morbidity and mortality. Surprisingly, in situ 

staining of the livers of EVAp28 infected mice showed that EVAp28 infection leads to 

two distinct, differentially regulated phases of apoptosis. These appeared independent 

of one another. The early phase of apoptosis was a transient apoptotic response, 

detectable in the liver and ovaries 6h after footpad infection of mice with EVAp28 but 

not wt EV. The induction of the early apoptosis required macrophages local to the site 

of infection and was clearly TNF dependent. A later apoptotic phase was also evident 

in infections with either wt or mutant virus from 3 to 9d pi, coinciding with elevated 

rates of viral replication. 

While the early phase of apoptosis was blocked by the presence of p28, the sensitivity 

of the later stage to regulation by p28 depended on host strain. These data imply that 

the two bursts of apoptotic activity may be mediated by different pathways and 

associated regulatory elements. Alternatively, if the activity of p28 itself can be 

regulated by other proteins (either virus or host) during infection, it can be equally 

hypothesised that the activity of p28 itself was differentially altered at different stages 

of the infection. This supposes that p28 expression by virus occurs at sufficient and 
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equivalent levels during both phases of apoptosis to mediate the inhibition of apoptosis. 

Indeed, the more highly progressed the infection, the more likely that the tissue milieu 

contains host and viral proteins involved in modifying existent apoptotic signalling 

pathways. 

The work described in Chapter 4, together with previous in vitro findings, suggests that 

the early phase of apoptosis in the liver is stimulated by rapid cytokine release from an 

unidentified source after infection. Interestingly, increases in the production of TNF, 

TFNy, and IL -12 mRNA have been described within 6h at the site of infection in 

response to several other viruses, including adenovirus (Lieber et al., 1997) and the 

alphavirus Venezualan equine encephalitis (Grieder et al., 1997). Additionally, similar 

increases have been described in response to infection with intracellular bacteria such as 

Listeria monocytogenes (Ehlers et al., 1992; Golovliov et al., 1995; Iizawa et al., 1992). 

In these studies, changes in cytokine mRNA levels were found at the earliest timepoint 

tested (30min: Iizawa et al. 1992; 3h p.i.: Lieber et al. 1997). These data suggest that 

the induction of the apoptotic response may be a general response to pathogens. It is 

likely that the route of infection and the pathogen additionally affect the early cytokine 

and apoptotic response (Orange et al., 1997; Ruzek et al., 1997; Ruzek et al., 1999; 

Sprecher and Becker, 1992). 

Perhaps one of the most intriguing discoveries during these studies was the 

demonstration that within hours of footpad infection, apoptosis was rapidly signalled to 

distal organs. This study is the first to show rapid systemic consequences of local 

events on virus infection. The increase in apoptosis is just one of many possible 

consequences of a transient increase in TNF. The many roles of TNF in the antiviral 

response (see Section 6.2.1) suggest that investigation of further possible consequences 

such as the upregulation of other inflammatory cytokines at remote sites would allow a 

greater insight into the immediate response to infection and the mechanisms by which 

the host response to infection is initially shaped. 
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These experiments only briefly examined the possib le functions of an early apoptotic 

response. The early phase of apoptosis did not correspond with the later apoptotic 

response, observable changes in leukocyte responses, or changes to pathology indicative 

of a more effective anti -viral response. However, if apoptosis in the liver is concomitant 

with apoptosis at the site of infection, two interesting functions that immediately present 

themselves are apoptosis as an effective antiviral response at the site of infection, and 

apoptosis of infected cells allowing rapid uptake of antigen through phagocytosis of 

apoptotic bodies by APCs. The former would be consistent with the low level of virus 

growth in A/J mice (Senkevich et al., 1994, Chapter 3) and the observation that ex vivo 

macrophages from this strain support low levels of virus replication (Senkevich et al., 

1995). An anti -apoptotic role for poxviral cytokine- modifying proteins has previously 

been described in myxomavirus, in which the T2 gene product has separate extracellular 

anti -TNF activity, and intracellular anti -apoptotic activity (Schreiber et al., 1997; 

Sedger and McFadden, 1996). The second possibility is suggested by studies in which 

it has been found that APCs are capable of presenting antigen obtained from the 

engulfment of apoptotic bodies (Albert et al., 1997; Bellone et al., 1998). Thus an early 

apoptotic response may allow very rapid presentation of viral antigen, and enhance the 

speed of the T cell response to infection. 

The later phase of apoptosis is differentially regulated to the early stage, as indicated by 

the insensitivity of the later phase of apoptosis to lack of TNF (Chapter 5), and to p28 in 

aII strains except B6 (Chapter 3). The low levels of apoptosis and high levels of virus in 

most strains during the later stage of infection suggests that a large hepatic apoptotic 

response is not required for EV replication. In addition, the low level of observable 

apoptosis during the clearance of EV from highly resistant mice show that high levels of 

apoptosis are also not required for EV clearance. At first glance, this appears to be in 

contradiction to previous findings, in which an important role for apoptosis in the 

clearance of EV - particularly apoptosis mediated by the immune system (Mullbacher et 

al., 1999a) - has been implied. However, there are at least three alternative 
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interpretations of the data: (1) The apoptotic response may be of importance as a low 

level, targeted response. This interpretation is supported by work in which sections 

from the livers of LCMV- infected mice have been stained for perforin, CD8, NKI.1 and 

virus, showing a surprisingly low number of perforM positive cells in the organ (Muller 

et al., 1989; Young et al., 1989) consistent with the low levels of apoptosis detected in 

this thesis (Chapters 3 and 5). (2) The number of cells undergoing apoptosis is 

potentially larger than that observed. The number of cells labelled by TUNEL is only a 

proportion of the cells undergoing apoptosis. The process of apoptosis is rapid, with 

TUNEL and the necessary apoptotic phenotype only visible for a part of the total time 

in which cells are apoptotic. The rapid nature of apoptosis and uptake of apoptotic 

bodies further suggests that there may be substantial apoptosis occurring, with only a 

small proportion of the cells visibly apoptotic at any point in time. (3) Although the 

liver is a target of infection it is likely to be of interest to examine apoptosis in other 

organs; notably, the spleen and intestine. The latter is suggested by a number of highly 

susceptible mouse strains in which death was commonly associated with intestinal 

haemorrhage (Fenner et al. 1989; Chapter 3). This site potentially offers a useful future 

direction for studying apoptosis in EV infection. 

6.2 The EV protein, p28 

At the time these studies commenced, activity of p28 was known only from two closely 

related papers. In these, p28 was described as a strain -specific virulence factor required 

for growth of EV in macrophages from ANCR mice and for EV virulence in ANCR 

mice in vivo (Senkevich et al., 1994, 1995). A third paper on the rabbitpox p28 

homologue Ni R described the gene as being capable of preventing vaccinia virus (VV)- 

mediated cell death in some cell lines (Brick et al., 1998), a finding which has now been 

expanded to include UV- mediated cell death for both N1R and p28 (Brick et al., 2000). 

Additionally, our laboratory had found that EV but not EVAp28 could prevent TNF- 

mediated cell death in a mouse fibroblast line in vitro (J. Ruby, pers. comm.). Further 
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explorations of p28 activity were hampered by an inability to express functional p28 

independent of virus (J. Ruby, D. Segal, S.C. [data not shown], and D. Smith) or detect 

p28 using previously prepared (Senkevich et al. 1994) or newly designed and created 

antibodies (S.C., data not shown). Indeed, despite the testing of multiple strategies for 

the production and detection of p28, production remains limited to insoluble protein in 

cell free or bacterial systems (D. Smith and J. Ruby, pers. comm ; Senkevich et al., 

1994), and p28 remains detectable only through RT -PCR detection of mRNA or 

biological activity. 

The mechanism by which EV but not EVAp28 may prevent TNF- mediated apoptosis 

has now started to be defined. Cell types such as the murine fibroblast line L929 are 

sensitive to cell death through CD40 and the p75 TNF receptor. In response to 

stimulation of either receptor, the cells upregulate TNF mRNA and subsequently 

apoptose (Turner et al. submitted). Apoptosis can be blocked by preventing signalling 

through the p55 TNF receptor pathway, consistent with the model of p75- mediated cell 

death in which p75 stimulation leads to transcriptional upregulation of TNF and 

subsequent autocrine stimulation of the p55 TNF receptor (Grell et al. 1999). On 

infection with EV, stimulation of p75 no longer results in an increase in TNF mRNA, 

and the cells become refractory to p75 TNF receptor- mediated cell death (Turner et al. 

submitted). In contrast, EVdp28 infection does not prevent either TNF mRNA 

upregulation or cell death. The effect of p28 appears to be specific to TNF mRNA, as 

other cytokine and housekeeper mRNAs examined were not affected. However, it 

should be noted that chemokine mRNA was not examined (see Sections 6.2.2, 6.2.3). 

6.2.1 p28 and TNF interaction 

A fundamental question addressed in this thesis was whether p28 activity in vivo was 

equivalent to its activity in vitro. No direct evidence was found for p28 preventing 

TNF- mediated apoptosis of infected cells in vivo, suggesting instead that p28 may 

downregulate other consequences of TNF- mediated signalling. Data presented in 
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Chapter 4 show that p28 prevented TNF- dependent apoptosis in vivo at 6h p.i. 

However, it is extremely unlikely that this reflected directly antiapoptotic activity of 

p28, since the apoptosis occurred remote from the site of infection and was in greater 

quantities than would occur if only virally infected cells were undergoing apoptosis. 

Given the in vitro data, it is hypothesised that p28 prevents the early phase of apoptosis 

through impeding upregulation of TNF at the site of infection. The hypothesis implies 

the interruption of other TNF- mediated activities, including leukocyte activation, and 

leukocyte and APC chemotaxis (Dixit et al., 1990; Green et al., 1998) (see also Section 

6.2.2). It is interesting to speculate what effects this may have on infection in the 

footpad. Both p75 and CD40 are involved in many stages of the antiviral response, 

including events from initial injection of the virus to infection of the LN (see Fig. 1.4). 

In particular, p75 has been shown to be of importance in the migration of dendritic cells 

from the site of infection to the lymph node (Wang et al., 1997). CD40 is important in 

the subsequent maturation of the DCs and the provision of help to T cells within the 

lymph node (Grewal and Flavell, 1996). It is possible that p28 may interfere in either of 

these pathways. EV initially infects phagocytic cell types such as Langerhans cells and 

macrophages (Roberts, 1962). These, and keratinocytes, are major sources of TNF on 

cutaneous or dermal viral infection (Sprecher and Becker, 1992) or application of 

irritants (Wang et al., 1997). TNF is then capable of stimulating chemotaxis of 

leukocytes towards the site of infection (Dixit et al., 1990; Green et al., 1998), as well 

as the maturation of DCs and their migration to the local LN (Cumberbatch et al., 1994; 

Grewal and Flavell, 1996). By preventing any of these stages of chemotaxis, and 

concomitant cell maturation, it is possible that p28 may influence aspects of the earliest 

antiviral responses. 

To test the hypothesis that p28 interrupts TNF production early in infection, 

semiquantitative cytokine mRNA assays could be performed in tissue from the footpad, 

popliteal LN, contralateral LN, liver and spleen of B6 mice, which displayed the 

strongest apoptotic response to infection to be clearly prevented by p28 expression. 
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Preliminary experiments to examine this have already been performed, although data so 

far has been equivocal (SC; data not shown). 

No evidence was found for p28 interacting with TNF- dependent apoptosis later in the 

infection. This was possibly linked to the differential triggers for apoptosis active later 

in infection as compared to those active in the early phase (see Section 6.1). 

6.2.2 CD40 and potential p28 activity 

A second pathway through which EV p28 prevented transcription in vitro was that of 

CD40. CD40 has multiple activities in the antiviral response. In addition to being 

required for B cell activation (Calderhead et al., 2000; Kawabe et al., 1994; Renshaw et 

al., 1994; Xu et al., 1994), CD40 is capable of activating NK cells (Carbone et al., 

1997; Martin -Fontecha et al., 1999), and is also necessary for effective CD8+ T cell 

memory initiation (Borrow et al., 1996; Borrow et al., 1998), and APC function, 

particularly the production of IL -12 from DCs ( Mosca et al., 2000; Schulz et al., 2000). 

CD40 and CD4OL deficient mice have been found to have compromised immune 

responses as shown by a lack of B cell follicles (Calderhead et al., 2000; Kawabe et al., 

1994; Renshaw et al., 1994; Xu et al., 1994) and ineffective antiviral responses to some 

but not all viral infections (Borrow et al., 1996; Ruby et al., 1995; Whitmire et al., 

1996). 

Data in this thesis suggests that the interaction of p28 with CD40- mediated activities 

may be more important for EV virulence in EV- susceptible than EV- resistant mouse 

strains. This may reflect the multiple roles for CD40 in the antiviral response, and in 

particular the role of CD40 in upregulation of IL -12 during virus infection. IL -12 

appears to be more important in the generation of effective cell -mediated immunity in 

Th2- biased mouse strains such as Balb /c than Thl- biased strains such as B6. This is 

illustrated by the requirement of Balb /c mice for IL -12 in order to generate an effective 

Th 1 -type antiviral response (Galbiati et al., 2000). In contrast, B6 mice were found to 

generate Th -1 type T cells in both the presence and absence of IL -12. Thus one 
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mechanism by which p28 may be affecting EV- mediated mortality may be by 

manipulation of CD40, resulting in an ineffective Th2 -type T cell response and 

subsequent death of the host. 

Although effects of p28 on CD40 activity were most clearly evident in susceptible mice, 

it is possible that p28 also has effects on resistant mice which have not been assayed in 

the current system. Experiments in this thesis concentrated on events during the first 9 

days of infection, and overall mortality of infection. CD40 function is also required for 

effective CD8-i CTL memory and effective B cell responses (Borrow et al., 1996; 

Whitmire et al., 1996). Thus it is possible that p28 may play a role in resistant mice in 

the downregulation of long -term protection against future EV infection. Indeed, given 

that many wild populations of mice carry EV without overt pathogenesis (Fenner, 

1996), it is possible that the long term effects of p28 expression may be of more 

importance in propagation of EV outside of laboratory conditions than the acute effects 

noted in the highly susceptible mouse strains. 

6.2.3 p28 and immune function 

Several pieces of evidence suggest interaction between p28 and elements of the immune 

system, which may or may not be linked with p28 -TNF interactions. Firstly, liver 

histology in selected mouse strains (A/J and p75 -/- mice; Chapters 3 and 5) showed 

different patterns of leukocyte infiltration and necrosis in response to EV or EVAp28. 

In particular, EV- infected A/J mice displayed an unexpectedly disorganised, low level 

hepatic inflammatory infiltrate despite the high levels of virus present. In contrast, 

EVAp28 infection led to the presence of inflammatory infiltrates and definite foci, as 

described in EV- resistant mouse strains. Secondly, several experiments showed a 

reduced impact of p28 expression in T cell deficient mice. In Chapter 3, p28 was 

shown to be a virulence factor in two immunocompetent EV- susceptible mouse strains 

(A /J and Balb /c) but not in the T cell deficient Swiss nude strain. The difference in the 

activity of p28 as a virulence factor may have been due to either the lack of T cells, or 
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the background genotype of Swiss nude mice. It was not possible to differentiate 

between these possibilities, as no background strain for Swiss nudes is available. 

However, quantitation of apoptosis in B6 and B6.132m -/- mice (Chapter 3) allowed 

comparison of EV and EVAp28 infection in wt or CD8+ T cell null mice. While 

EVAp28 induced high levels of apoptosis in B6 mice, EV induced reduced levels of 

apoptosis. The difference between levels of apoptosis induced by EV or EVAp28 

infection was abrogated in mice lacking CD8+ T cells, suggesting that the effect of p28 

on apoptosis later in infection may require a functional CD8 response. 

It is possible that the interaction between p28 and cellular immunity may reflect 

interruption of TNF- or CD40- mediated events by p28. Examination of the 

inflammatory infiltrates in infected mice shows that in some mouse strains (p75 -/- and 

A /J) significant differences occur between EV and EVAp28 -stimulated leukocyte 

infiltration into the liver. A role for TNF in NK cell recruitment to the liver has been 

previously described (Pilaro et al., 1994). Additionally, TNF can stimulate production 

of a number of chemokines, including Mig, RANTES, MIP -la, MIP -2 and JE (Ohmori 

et al., 1997; Tessier et al., 1997) and through these can also stimulate chemotaxis of 

other cell types (Tessier et al., 1997). Thus it is very likely that p28 manipulation of 

cellular chemotaxis through TNF plays a role in the contribution of p28 to EV 

virulence. 

An interaction of p28 with cellular immunity distinct from TNF is implied by the 

pathology of the p55-/-p75-/- mice in response to EV or EVAp28 (Chapter 5). In p55 -/- 

p75-/- mice, splenomegaly in response to EVAp28 was similar to that induced by EV, 

the only mice in which this occurred. It was also associated with reduced splenic 

EVAp28 replication. This finding may additionally indicate a cell -type dependent role 

for p28 in the absence of TNF. It is possible that this reflects a similar cell type- specific 

effect of p28 expression to that previously described in the macrophages of A/7 mice 

(Senkevich et al. 1995). These data show that p28 has roles in manipulation of immune 
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function outside of TNF manipulation, and strongly suggests an effect on virulence 

through regulation of a TNF- independent mechanism. 

A possibility that p28 may regulate signalling through other TNF family members was 

not tested in these experiments. This could occur through preventing TRAF- pathway 

stimulated transcription similar to the pathways used by CD40 and p75, or through 

preventing upregulation of the mRNA after CD40 or p75 activation. For example, 

OX40 is known to be important in development of an efficient immune response (Lane, 

2000). In particular, the ligand for OX40 is upregulated in splenic DCs by CD40 

ligation during the DC -CD4+ T cell interaction which leads to CD4+ T cell activation 

(Lane, 2000; Walker et al., 2000). It is possible that p28 activity may interrupt 

upregulation of OX40L in a similar manner to that observed for TNF. While no 

definitive evidence for EV- mediated interruption of CD4+ T cell function has yet been 

found, the possibility cannot be discounted on the weight of current evidence. 

6.2.4 p28 in wt mice 

The experiments described in this thesis found that the aspects of virulence and 

pathogenesis affected by p28 expression varied between host strains (Chapter 3). The 

variation in strain -specific responses to p28 expression formed a spectrum, with A/J and 

B6 mice forming the extreme phenotypes. In A/J mice expression of p28 was required 

for production of high virus titres. In addition, a role for p28 in immune suppression 

was implied by the increased splenomegaly and numbers of hepatic inflammatory 

infiltrates during the later stages of EVAp28 infection. In contrast, in B6 mice the 

apoptotic response to infection was sensitive to p28 expression although no significant 

effect was detected in virus virulence, pathogenesis or the inflammatory response. The 

more resistant 129 mice experienced only a minor effect of p28 expression on 

inflammation and pathogenesis which could be entirely accounted for by the slightly 

reduced level of EVAp28 replication in comparison to EV. 
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Thus p28 activity resulted in different effects on EV virulence dependent on host strain. 

Interestingly, this result correlates with previous studies in which the importance of 

TNF and its receptors in the anti -viral or anti -pathogen response has been shown to 

differ between mouse strains. The differences can be clearly observed in a comparison 

of Balb /c mice with B6. Primary B6 CD4+ T cells require dendritic cells or splenocytes 

plus IL -12 for induction of a Thl phenotype from naive cells in vitro, whereas those 

isolated from Balb /c mice additionally require concurrent treatment with IL -la and 

TNF (Shibuya et al., 1998). These data suggest that p28 interference with TNF levels 

early in infection could efficiently prevent a Thi -like response in Balb /c mice while 

having a minimal effect on the response of resistant mouse strains such as B6 or 129. 

Further, since Balb /c but not B6 IFNy levels were also dependent on the provision of 

IL -la and TNF (Shibuya et al., 1998), it is possible that a similar mechanism could 

prevent effective anti -viral responses before the induction of a T cell response. This 

would be interesting to test through comparison of T cell responses in EV and EVAp28 

infected susceptible mouse strains. 

This work underlines the need to examine the effects of virulence factor expression in a 

number of mouse strains. These differences in susceptibility of mouse strains to various 

infections have been widely recognised in other infections and often used to investigate 

the attributes that lead to resistance to particular virus infections. It is interesting that 

they are rarely utilised in investigation of virus attributes. Given that wild host 

populations consist of individuals with differing genotypes, it is possible that by 

addressing the effects of virus genes on pathogenesis in a number of mouse strains we 

may form a clearer and more accurate picture of how these genes may be of importance 

to pathogenesis outside of the laboratory. 
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6.2.5 Summary 

The data in this thesis has concentrated on the possible in vivo ramifications of p28 

activities which have been defined in vitro. In particular, data has examined regulation 

of TNF - related functions by p28. It is hypothesised that regulation of TNF- mediated 

transcriptional activity as described in vitro may result in some of the differences seen 

in immune responses to EV and EV4p28. Interruption of TNF mediated cell death, also 

described in vitro, was not noted during the majority of the response, however it is 

possible that this plays a role at the site of infection. To investigate the contribution of 

apoptosis at this site, further investigation of the apoptotic response in the footpad or 

draining popliteal LN would be required. 

Interruption of other forms of cell death, eg. virally induced and UV induced apoptosis 

have been shown by previous authors (Brick et al., 1998, Brick et al., 2000). The 

prevention of apoptosis in these systems did not occur through p75, since the 

experiments used HeLa cells which do not express the p75 TNF receptor. The 

experiments in this thesis confirm that p28 enhances EV virulence through TNF - 

independent mechanism(s), however, no evidence has been found implicating apoptosis 

independent of TNF. 

In addition to the examination of p28 activity in vivo, this study has also mapped the 

hepatic response to EV in a number of mouse strains. Examination of apoptosis during 

the first 9d of virus infection has revealed a complex, multifactorial interaction between 

virus and host. Cytokines were found to be necessary for apoptosis early in infection, 

and may have directly triggered the apoptotic response at the site remote from infection. 

Later in the infection, apoptosis was present at unexpectedly low levels unless high 

levels of necrosis were present, suggesting that low levels of apoptosis as detected by 

TUNEL were sufficient for virus clearance. 

These data have shown that p28 can have multiple effects in vivo which are not entirely 

accounted for by our current knowledge of p28 activity. In addition, examination of 



apoptosis during the first 9d of virus infection has revealed a complex, multifactorial 

interaction between virus and host. Cytokines were found to be necessary for apoptosis 

early in infection, and may have directly triggered the apoptotic response at the site 

remote from infection. Later in the infection, apoptosis was present at unexpectedly 

low levels unless high levels of necrosis were present, suggesting that low levels of 

apoptosis as detected by TCINEL were sufficient for virus clearance. 
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