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ABSTRACT

Geochemical exploration has provided a major contribution to the discovery of 

mineral deposits in the Cobar-Girilambone region. The areas of bedrock exposure 

have generally been well explored and further discoveries will significantly depend on 

a better understanding of element dispersion, movement and accumulation within the 

extensive areas of in situ and transported regolith cover.

This study evaluates the background levels of target and pathfinder elements in 

various sampling media including groundwater, the top metre, transported and in situ 

regolith; and the influences of secondary enrichment (calcrete, iron and manganese) 

on the element association in the regolith of the Girilambone region. It also 

demonstrated that the bedrock geology could be identified by geochemical signatures 

preserved in in situe regolith. This improved knowledge of the regolith geochemistry 

and parent bedrock will assist mineral exploration in the region.

Thresholds and anomalies for key target and pathfinder elements (As, Au, Co, Cr, Cu, 

Mo, Ni, Pb, Sb, V, W, Zn) are estimated using Boxplot and MAD methods. The 

highest threshold, which possibly indicates a local background, is indicated by the 

Boxplot method, whereas the MAD method indicates a lower regional background for 

elements. The thresholds of Au, Cu, Pb and Zn are higher in the in situ regolith facies. 

Arsenic, Cr and V show higher backgrounds when associated with enrichments of 

hematite and goethite in the Fe-enriched regolith zone. Four major element 

associations are recognized by cluster analysis. These include elements associated 

with Ca and Mg (carbonate group), with MnO (manganese oxide), with Fe20:, (iron 

oxide) and with Ni and Cr (mafic group). Principal component analysis indicates 

similar groups representing calcretization (Ca+Mg), adsorption (Fe-Mn oxides) and 

bedrock influences.

A groundwater aquifer is present within the in situ regolith in phyllitic siltstone- 

sandstone layers. Water levels mirror topography, indicating an unconfined aquifer 

system, and groundwater is flowing to the northeast in the Hermidale area and in part 

of the Byrock area. The groundwater in the region is mainly of chloride type, rich in
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Na, Cl and SO4 compared to less common calcium-bicarbonate and bicarbonate- 

chloride types. The correlation between Br/Cl and Na/Cl shows three processes affect 

the groundwater composition: evaporation, water-rock interaction and water mixing. 

Calculation of groundwater ages based on l6Cl/Cl indicates that the groundwater in 

the Byrock area (418000-516000 years) is older than that in the Hermidale area 

(241000-492000 years). Calculated saturation indices of ZnSiC^ malachite and 

tenorite appear to show a vector towards sites of known mineralisation. The 

correlation between the groundwater and regolith composition suggests at least two 

sites (drill holes CBAC217 and CBAC219) of potential mineralisation in the Byrock 

area.

Slightly weathered and deeply weathered saprolith can be discriminated using the 

Chemical Index of Alteration (CIA) and major element trends (AI2O3- (Na20+CaO)- 

K2O). These trends also indicate the chemical history of regolith profiles in the 

Girilambone region. Four zones of weathering are recognised based on the CIA value 

ranging from zone I (CIA>85), zone II (75>CIA> 85), zone III (55>CIA<75) and 

zone IV (CIA<55).

Immobile element ratios Zr/Sc versus Th/Sc indicate the level of sediment recycling.

A significant increase of Zr/Sc (>10) with insignificant or no increase in Th/Sc (~1.0), 

suggests significant recycling of much of the material through weathering processes. 

ACC^/SiCF and TiCF/Zr ratios are used in association with the 1 5 Al20 3 -3 0 0 Ti0 2 -Zr 

diagram to discriminate between sandstone, shale and mafic to felsic igneous 

composition. Ti/Th and Ce/La ratios are used to discriminate between saprolith 

materials that are derived from the Cobar Supergroup and Girilambone Group. Cobar 

Supergroup data are clustered in limited ranges of Ti/Th (0.039 > Ti/Th > 0.03) and 

Ce/La (2.2> Ce/La > 1.9) ratios, whereas those related to the Girilambone group are 

characterised by a relatively small range of Ti/Th (0.03 > Ti/Th > 0.005) and Ce/La 

(2.3 > Ce/La > 1.8).

Calcrete, Fe-Mn oxides or oxyhydroxides appear to be the major regolith components 

that host Au and base metals (Cu, Zn, Pb) in transported and in situ regolith in the 

Girilambone region. The association of Au with calcrete in the region appears to 

reflect a chemical environment within both transported and in situ regolith that is



conducive to precipitation of both carbonate and mobilised gold, rather than a direct 

control on gold fixation by calcrete. Sampling the upper part of the calcrete zone 

within shallow transported and in situ regolith during air-core drilling, as part of the 

strategy for gold exploration in this region, is recommended.

A Mn-enriched zone is variably distributed in the regolith of the Girilambone region 

and is concentrated in the in situ regolith. The highest MnO contents are in the 

southwest of the Hermidale area and generally decrease toward the east. A stratified 

concentration of Mn above the present water table along the groundwater flow path 

indicates previous water levels where the manganese oxides were precipitated due to 

redox changes.

Enrichments of Au (> 0.009 ppm) and As (>40 ppm) match Fe2 Ü 3 increases related to 

the abundance of ferruginous clasts in the Fe-enriched zone, and these indicate a 

mechanical dispersion of remnant primary Au in ferruginous regolith.

An association of elevated Fe, Zn, Cu and Pb is correlated with the presence of 

weathered mafic rocks in the region. Over most of the area there is no systematic 

correlation of elevated Au, As, Zn, Cu and Pb with Fe2 Ü3 in either the transported or 

in situ regolith (r2 < 0.006, 0.003, 0.04, < 0.16 respectively). These elements are 

normally considered to be strongly adsorbed or incorporated into goethite and 

hematite, particularly around mineralisation, but in this case the relationship is not 

strongly expressed, probably because of the low levels of the trace elements in much 

of the area and the different adsorption patterns of goethite and hematite.
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1. CHAPTER ONE: INTRODUCTION

1.1 PREAMBLE

During the last decade there has been an increasing interest in the regolith and the 

tectonic, climatic and surface processes that control it. Large areas of the Earth are 

characterised by thick regolith cover. These areas are mainly located within the tropical 

to sub-tropical zone (between latitudes 40° north and south). Most of Australia’s 

surface is distinguished by low relief and this, together with its location in mid to low 

latitude (11-43°), has affected the types of landform and the manner of landscape 

development. As the search for buried ore deposits continues throughout Australia (e.g., 

Butt, 1998; Morris et al., 2003; Cameron et al., 2004; Tonuie et al., 2003) and the 

world (e.g., Kauranne et al., 1992; Roy et al., 2004), the use of regolith geochemistry 

will continue to play an important role in mineral exploration. The use of geochemistry 

in mineral exploration has progressed from evaluating local targets using weathered 

bedrock recovered by auger or aircore drilling to reconnaissance mode exploration, 

where targets are defined over prospective stratigraphic and structural features (Cohen 

et al., 1996). In Australia, exploration is focussed on regolith geochemistry as a tool, 

particularly in areas of deep in situ and transported regolith cover (e.g., Butt et al., 

2005). Proper application of regolith multi element geochemistry as well as specific 

sampling media in regolith-dominated terrains has led to the discovery of buried ore 

deposits (Butt and Zeegers, 1989). The geochemical behaviour, dispersion and 

accumulation of elements in the regolith results from interaction between parent rock 

that may host mineralisation, weathering processes and groundwater that disperse and 

/or accumulate target and pathfinder elements (e.g., Taylor and Eggleton, 2001).

The hydrogeochemistry of groundwater has been used in Australia as a tool to 

understand the origins of dryland salinity (e.g. Cartwright et al., 2004) and to assist 

mineral exploration under cover. For example a regional study of groundwater 

chemistry has been conducted within the Carpentaria and Eromanga Basins, NW 

Queensland, where the underlying basement rocks belong to the Georgetown and Mt 

Isa inkers (Giblin 1996b; 2001). A detailed hydrogeochemical study was also 

performed at the undisturbed Halfmile Lake and Restigouche Zn-Pb deposits in New 

Brunswick (Leyboume et al., 2002). Both these studies showed a significant



relationship between groundwater chemistry and mineralisation. Whitford et al. (19S)8) 

detected mineralisation by groundwater geochemistry at the Abra deposit in Western 

Australia, from both major and trace elements, and isotope signatures of S, Pb and Sr. 

However, the variability of factors that control behaviour and dispersion of elements 

through water-rock interactions can limit groundwater as a sampling medium Carr et al. 

(1999). The interpretation of uranium ore-mineral equilibrium calculations in 

groundwater was used to assist uranium exploration in South Australia (Pirlo an d  

Giblin, 2004). Caritat et al. (2003; 2005) used the relative concentration of S, Sr and Pb 

isotopes as a hydrogeochemical tool to target and suggest new prospective 

mineralisation sites under cover from the Cumamona province in the Broken Hill area.

This study examines the nature of regolith-related chemical dispersion in part of the 

Girilambone landscape dominated by erosion and well developed in situ regolith. The 

area is located in western New South Wales and covers a strip from north of Nymagee 

to south of Bourke on the Hermidale, Coolabah, Sussex, and Byrock 1: 100 000 map 

sheets. The scarcity of bedrock outcrops, a thick regolith with deep weathering and 

extensive transported cover that masking the geology (Chan et al., 2001; 2002; 2004) 

and the desire by explorationists to be able to conduct geochemical surveys using 

surficial regolith samples necessitate a need for better understanding of the regolith 

geochemistry of this poorly known and explored region. Exploration in this region has 

been hindered by a number of factors. These include multiple deformations and 

metamorphism of bedrocks and the style and geometry of ore deposits (McQueen, 

2004a). The regolith is very old and complete and for geochemical exploration it is 

essential to understand the controls on element dispersion in the regolith, regional 

associations, backgrounds and anomalies of elements and the influence of weathering 

processes, bedrock geology and groundwater on element associations.

Between 2001 and 2004 a major drilling program was conducted in this region by the 

Cooperative Research Centre for Landscape Environments and Mineral Exploration 

(CRC LEME) and the New South Wales Department of Mineral Resources (now 

Department of Primary Industry (DPI)). This drilling program provided a significant 

amount of data including chemical analysis, which facilitated this study.
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1.2 AIMS AND APPROACHES OF THE STUDY

This study investigates using regolith materials (top metre, transported and in situ) in 

the Girilambone region, in addition to groundwater, as sampling media, to understand 

element dispersion patterns and the formation of secondary geochemical haloes. The 

outcomes may provide confidence in vectoring towards possible mineralisation in this 

region. The research also aims to estimate background levels of target and pathfinder 

elements in the regolith. The aims of the study can be summarised as follows:

• to develop improved geochemical exploration strategies through a better 

understanding of multi-element geochemical associations, anomalies and 

backgrounds;

• to identify processes of weathering, transportation and dispersion of elements in the 

unmineralised and weakly mineralised regolith of the Hermidale- Sussex- Byrock 

region;

• to understand the behaviour of potential target and pathfinder elements during 

weathering processes, and particularly the controls on Au, Cu, Zn and Pb dispersion 

and concentration in carbonate, iron and manganese-enriched regolith and variably 

weathered background settings;

• to use groundwater chemistry to identify weathering water-rock interaction 

processes, and target concealed mineralisation;

• to identify the parent materials of the regolith in the region; and

• to appraise the composite geochemical sampling media available in the region and 

to make suggestions to assist mineral exploration in the region and elsewhere.

The approach taken has been to:

• examine the distribution pattem, local and regional background levels, and 

thresholds for a range of target and pathfinder elements;

• identify geochemical associations and special lateral and vertical distribution 

patterns of certain elements by using cluster analysis;

• examine and identify secondary minerals by visual and petrographic examination, 

testing with hydrochloric acid, X-Ray Diffraction (XRD), Scanning Electron 

Microscope (SEM) and Energy Dispersive X-ray Analysis (EDXA);

• analyse groundwater at selected sites by Inductively Coupled Plasma -Optical 

Emission Spectrometry (ICP OES) and radioisotope chlorine-36 measurements; and
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• recognise the geochemical signatures of bedrock samples from the base of d rill 

holes by using immobile major and trace element ratios measured by X- R.ay 

Fluorescence (XRF) spectroscopy analysis.

1.3 THESIS OUTLINE

The thesis is organised as follows:

• The current chapter is an introduction to the study outlining the aims an d  

approaches;

• Chapter Two introduces the regional and site characteristics of the study area 

including climate, vegetation, landuse, regolith landforms and previous work on the 

geochemistry and regolith in the Girilambone region.

• Chapter Three summarises the geology and metallogeny of the region, and 

describes previous geochemical investigations in the region;

• Chapter Four describes sampling methodology.

• Chapter Five describes the methods of data manipulation, quality control, basic and 

multivariate statical techniques that were employed in the study.

• Chapter Six includes a detailed geochemical investigation, using cluster and 

principal component analyses, to determine the characteristic geochemical 

associations of the studied regolith units (top metre, transported, in situ) and to 

identify background, and anomalous levels for elements in the region;

• Chapter Seven describes the types of groundwater samples, and the processes that 

control the nature of the groundwaters, (e.g., evaporation and mixing), investigates 

the rock-water interactions, and estimates the relative ages using 36C1 

measurements;

• Chapter Eight presents a method for identifying the geochemical signatures of 

underlying bedrock in partially weathered bottom of hole samples.
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Chapter Nine includes a description of the weathering profiles, element associations 

in the secondary calcrete-, iron- and manganese- enriched regolith zones; and

Chapter Ten presents the conclusions and recommendations of the study.



2. CHAPTER TWO: REGIONAL AND SITE 
CHARACTERISTICS

2.1 LOCATION OF STUDY AREA

The Girilambone region is located in western New South Wales, approximately 700 km 

north west of Sydney. The area covers a strip from north of Nymagee to south of 

Bourke; including the Hermidale, Coolabah, Sussex, and Byrock 1: 100 000 map sheets,

within the latitudes 30° 30' to 32° 00' south and longitude 146° 00' to 147° 00' east 

(Figure 2.1).
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Figure 2.1 Location map of study area in western NSW. Large map shows 1:100,000 

sheet areas and sampled drill hole sites along road traverses.
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2.2 CLIMATE, VEGETATION AND LANDUSE

The study area has a sub-arid climate. Average monthly maximum temperatures range
o o o o

from 13 C to 20 C in winter to between 28 C to 39 C in summer. Average monthly 

minimum temperatures range from 2 C to 8 C in winter to 14 C to 24 C in summer. 

The humidity is low. During the summer the average relative humidity is about 30 % in 

the afternoon and about 50 % at 9 am. In winter it is about 45 % at 3 pm, whilst it is 

about 75 % at 9 am. On average, rainfall tends to be uniformly distributed throughout 

the year, with a median annual rainfall for Cobar of 390 mm (Australian Bureau of 

Meteorology). Figure 2.2 shows the monthly rainfall in the Cobar area.
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Figure 2.2 Monthly rainfalls in the Cobar area, (from Australian Bureau of 

Meteorology).

Livestock grazing is the main agricultural enterprise (Tate, 2003). Wheat is the 

predominant crop further to the south of Cobar, but cropping is limited in the 

Girilambone-Cobar region due to the low nutrient content of the soils and poor annual 

rainfall (Cunningham et al., 1981). Mining is also a major industry within the region 

where Au, Cu, Zn and Pb are mined (e.g., Stegman and Stegman, 1996).
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The Girilambone region is host to many species of grasses, shrubs and trees, which can 

be used as surrogates for identification of different regolith and landforms. Belah and 

River Oak are noticed in large well-developed stands in or close to the drainage 

channels, whereas White Cypress Pine are commonly found growing in coarse textured 

red and brown earth (Munro, 2003), occasionally associated with streams, and shallow 

soils well up the slopes of hills. Small communities of Black Cypress Pine are present 

on hills and stony ridges, commonly associated with Kurrajong, Mugga Ironbark and 

Green Mallee communities (Cunningham et al., 1981). Extensive areas of Mulga have 

developed to form an almost impassable scrub.

2.3 REGOLITH LANDFORMS

The Girilambone region lies within the Cobar Pediplain. This Pediplain is largely 

underlain by outcrop and subcrop of the Cambro-Ordovician Girilambone Group, the 

Early to Middle Devonian Cobar Supergroup and the Middle to Late Devonian Mulga 

Down Group (Glen, 1994). The pediplain is characterised by gently undulating hills 

averaging 250 metres above sea level, with a few isolated peaks and ranges rising to 

100 metres above this level (Leah, 1996). The Pediplain is bounded by sedimentary 

sequences associated with the Neogene Murray Basin and the Quaternary Darling, 

Bogan and Lachlan River system (Gilligan and Byrnes, 1995).

Most of the study area is covered by colluvial and alluvial sediments with small areas 

of weathered bedrock rises (9-30 m relief). In the Hermidale (particularly in the 

southwestern part) and Sussex areas there are some low hills (30-90 m relief), and in 

the Byrock area more extensive highly weathered bedrock rises. A few small volcanic 

plateaux of slightly weathered leucitite basalt occur in the Sussex and Byrock areas 

(Chan et al., 2001; 2004; Glanville et a l,  2003). Colluvial sheetwash sediments on rises 

dominate in the Sussex area, whereas colluvial sheetwash sediments on erosional plains 

and depositional plains dominate in the Hermidale area (Chan et al., 2001; 2002; 2004). 

Regolith landform units were used in the compilation of the Girilambone 1:100,000 

regolith-landform map (Figure 2.3). In situ saprolite and saprock and transported 

components are distinguished according to the degree of weathering of weatherable
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Figure 2.3 Basic regolith landforms on the Girilambone region. Named sheets are

1:100,000 sheets (source CRC LEME and NSW DPI Girilambone-Cobar project).
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minerals as well as clay mineral assemblages. Generally the transported regolit h 

consists of clay and minor quartz silt-sand-gravel sediments, whereas the in s i t u  

regolith consists of a variety of sandstone/siltstone to metasandstone/siltstone, 

claystone to shale/phyllite (micaceous in places), and silty claystone/ phyllite (Chan e t  

ai, 2001; 2002; 2004).

2.4 PREVIOUS WORK ON THE GEOCHEMISTRY AND 
REGOLITH IN THE GIRILAMBONE REGION

In the Girilambone region, the Cobar area has been a major focus for geological 

investigation and modem mineral exploration, particularly for gold, since the m id- 

1980s (Stegman and Stegman, 1996). Earlier, Andrews (1915) and Rayner (1961) 

studied the stratigraphy, structure and tectonic history of the Cobar region and  

described the Cobar copper and gold deposits with detailed investigation of th e  

geology, ore deposits and operating mines. Other previous geological investigations in  

the Byrock area (e.g., Hall, Ralph &Associates, 1969; Eastmet Minerals N.L., 1970) 

concluded that the dominant outcrops in the area belong to the Girilambone Group 

(Ordovician) and also noted that no economic mineralisation had been reported, except 

an abandoned copper prospect to the north and a gold lode to the west. The regional 

geology and mineralisation of the Cobar region and study area are discussed in Chapter 

3.

Geochemical dispersion and associated depletion haloes in fresh rocks and regolith 

sumounding orebodies have been investigated in numerous studies at selected 

mineralised sites including at the Elura and CSA mines in the Cobar area. These studies 

employed different analytical techniques and sample media (Cohen et al., 1996). 

However, the present review only covers previous work concerned with using chemical 

analysis of regolith and/or groundwater (as sampling medium) to target mineralisation 

sites in the region.

The principles and mechanisms of geochemical dispersion, weathering, landscape 

development, formation of regolith and anomalies have been discussed in different 

geochemical exploration models (e.g. Butt, 1987; Butt and Zeegers, 1989; Taylor and 

Butt 1998; Butt et al., 2000). Leah (1996) classified the weathering profiles in the 

Cobar district into relict lateritic profiles preserved within deeply weathered Palaeozoic
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bedrock terranes with partial oxidation ranging in depth between 80 and 100 metres 

with ferruginous lag morphologies resting on the weathered bedrock and reworked 

ferruginous regolith materials within overlying alluvium. Rutherford (2000) considered 

oxidation (redox processes), which mainly affects the sulfide component and metal 

species, and hydration of the silicate minerals as the main geochemical processes that 

control the chemistry of the weathering profile in the Cobar area. Although these 

processes are important in the formation of the weathered profile and movement of 

metals, they are controlled by the paleoclimatic and recent climatic regimes (e.g., 

Campbell and Claridge, 1992).

Secondary dispersion of elements in the Cobar region has been interpreted as a result of 

paleodrainage channel activity (Taylor et al., 1984), mechanical dispersion of ferricrete 

from an earlier lateritic weathering profile (Dunlop et al., 1983) and weathering of the 

sulfides. Studies have shown that Cu and Zn are preferentially concentrated in goethite 

and that Pb is commonly concentrated in hematite (Scott, 2002). Different techniques 

and sampling media were employed to understand factors controlling element 

dispersion in the Cobar region (e.g., Alipour et al., 1995; 1996; 1997; Cohen, et al., 

1998; Pwa et al., 1999; Cairns et al., 2001; Khider, 2004; McQueen et al., 2004; 

Whitbread and Moore, 2004; Khider and McQueen, 2006; McQueen, 2006).

Geochemical dispersion and resulting anomalies in residual and transported regolith 

along the drainage system near the CSA mine displayed three element associations: Cu 

- Zn - Mn ± Au ± Pb; the As-Sb ± Au; and the As- Sb-Pb ± Au (Shen et al., 1998). 

These associations were recorded from deep saprolite, residual regolith and interbedded 

gravels and silts of paleo-channel deposits respectively. Gold has irregular anomalies 

correlated with near-surface carbonate accumulation (Hill et al. 1998; McQueen et al. 

1999) and economic Au hosted in the oxidised zones (e.g., McKinnons regolith) 

without significant base metals (Piang, 1996).

Pwa et al. (1999; 2002) showed that in the Cobar region Cu, Zn, Pb, Ni, As, Mo, Ag, 

Sb, Ba, Bi and W are enriched around mineralisation, and K, Al, Ca, Ti, Ga, Rb, Sr, Zr, 

Y, V, Na are generally depleted because of feldspar and mica weathering in regolith at 

selected mineralised sites. Scott et al. (1991) related the secondary dispersion of Cu, 

Zn, and some Au to the fluctuation of water table in the area. However, lack of
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chemical analysis of the groundwater made it difficult to understand rock-water 

interactions along the water table in this region.

Investigation of the behaviour of pathfinder elements in the intensely weathered C obar 

terrain by McQueen and Munro (2003) revealed that at the new Cobar Au- Cu deposit 

there is a progressive change in mineral hosts. Goethite, hematite and cryptomelane an d  

alunite-jarosite minerals were identified as important hosts for Zn- Cu- As, Cu- Pb- S b 

and Co-Cu- Ni element groups respectively. Secondary Fe and Mn oxides and 

oxyhydroxides are major host phases for base metal cations within in situ regolith near 

the Peak in the Cobar area (Cairns et al, 2001). These oxides were developed in a 

dominantly erosional setting. No clear association was found between gold and any 

particular secondary mineral. Pathfinder element associations in the Nyngan-Bourke- 

Nymagee area include an “evaporitic” association of Ca-Mg ± Au, a redox association 

of Mn-Co-Zn ± Ni -  Cu ± Au related to redox boundary accumulations of Mn 

oxides/oxyhdroxides, a goethite association of Fe-Cu-Zn and a hematite association o f 

Fe-As-Pb ± Sb ± Bi (McQueen, 2004b). These groups of elements were proposed as 

background associations but the study did not specify or link any of these associations 

to transported or residual regolith units. Distribution of these elements through the 

weathering profile around the New Cobar deposits was interpreted as due to the 

interplay between chemical (hydromorphic) and mechanical dispersions (McQueen et 

al., 2004). Elements such as Pb, As, Bi, Sb and W showed limited chemical dispersion 

deeper in the profile but were mechanically dispersed in hematitic lag at the surface.

The association of Au with calcrete in the Girilambone region was studied by Khider 

and McQueen (2006) and McQueen (2006) These studies have revealed that the 

presence of carbonate is an indicator of a geochemical environment conducive to 

precipitation of chemically mobilised gold rather than a direct control on gold fixation 

by calcrete. The total carbonate content is probably not a significant control on the Au 

concentration.

The hydrogeology of the Nymagee area was summarised by Menzies (1969) as being 

controlled by three main rock type settings:

• Thin Quaternary deposits that are unlikely to contain usable water;
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• Devonian rocks classified into the Amphitheatre and Mulga Downs Stages. T h e  

Amphitheatre Stage is characterised by relatively porous and highly im pervious 

rocks. Many of the latter are quartzites, which are full of joints and cracks th a t  

make them capable of holding underground water. The Mulga Downs S ta g e  

consists mainly of coarse sandy rocks, which are commonly silicified. Some o f  

these rocks are porous sandstone and many of the quartzite beds are heavily  

jointed and carry useful supplies of water; and

• Pre-Devonian rocks, which generally contain water with high quantities of salts.

The groundwater chemistry and hydrogeology of the Girilambone region w ere 

investigated by Khider (2004) and Khider and McPhail (2005). These studies showed 

that the aquifer is an unconfined system within the in situ regolith areas and consists o f  

phyllitic siltstone - sandstone layers. The groundwater generally flows to the northeast 

in the Hermidale area and in part of the Byrock area. The groundwater in the region is  

mainly of chloride type, rich in Na, Cl and SO4 .The other calcium-bicarbonate and 

bicarbonate -  chloride types are not predominant and the main processes that affected 

the groundwater composition are evaporation, water -rock and mixing.
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3. CHAPTER THREE: REGIONAL GEOLOGY AND 
MINERALISATION

3.1 REGIONAL SETTING OF SOUTHEASTERN AUSTRALIA

The geological structure of the eastern third of Australia, which includes New South 

Wales, is summarised by Scheibner (1999) as being composed of three main entities 

(Figure 3.1):

1. the Palaeo-Proterozoic to Mesozoic Australian Craton to the west of the Tasman 

Line, which is mostly concealed by platform basins. In places these basins have 

been deformed into within-plate fold belts (e.g., Adelaide Fold Belt);

2. the Neoproterozoic to Mesozoic Tasman Fold Belt System or Orogenic Zone, 

which represents an orogenic or active plate margin east of the Tasman Line; 

and

3. the Late Carboniferous to Cainozoic platform cover of sedimentary and 

intraplate igneous, dominantly volcanic, rocks.

Most of New South Wales lies in the Tasman Fold Belt System, which consists of five 

fold belts. The important ones are the Kanmantoo, Lachlan and New England Fold 

Belts, the last two being separated by the Sydney-Bowen Basin. Small parts of the 

Thomson and Adelaide Fold Belts occur in the north and the west respectively (Figure 

3.1; Scheibner, 1999).

The Girilambone region, the focus of this study, is located in the NW Lachlan Fold Belt 

(LFB). The LFB has Cambrian to Carboniferous rock assemblages developed over 700 

km across strike and subdivided into western, central and eastern subprovinces (Figure 

3.2; Gray, 1997; Gray and Foster, 1997; 1998; Foster et cil., 1999; Fergusson, 2003; 

Neef, 2004). The western and central subprovinces include structural evidence of east- 

directed and west-directed thrusting, respectively (Gray et al, 2002).

Glen (1992,1995) subdivided the LFB based on the distribution of constrained and 

unconstrained sediment packages (lithotectonic associations) into the Western, 

Southwestern, Central, and Eastern belts. Early Ordovician turbidites occur across the 

Lachlan Fold Belt, but in the Late Ordovician, turbidites were restricted to the central 

part of the Southwestern belt and the western part of the Western belt (Glen,
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1992;Vandenberg and Stewart, 1992; Glen, 1995). The study area lies in Glen’s 1995* s 

Central belt (Figure 3.3).
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Figure 3.1 Main structural entities in the basement of eastern Australia (from 
Scheibner, 1999).
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Figure 3.3 Elements of the early Palaeozoic geology of the Lachlan Fold Belt (from 
Glen, 1995).

3.2 REGIONAL TECTONIC HISTORY

The tectonism that has affected the Girilambone (Bourke-Cobar-Nymagee) region can 

be considered in five stages:

1. Pre-Devonian tectonism;

2. Regional crustal extension in the Late Silurian to Early Devonian;

17



3. Late Early Devonian transgressional tectonism;

4. Carboniferous tectonism; and

5. Neotectonism.

1. Pre-Devonian tectonism

The Lachlan Fold Belt in pre-Ordovician time was characterised by an oceanic setting 

without any deformation in the belt itself, slowly filling in with thick deep-marine 

turbidite sequences (Fergusson and Coney, 1992). The study area was in the ocean on  

the continental side of the Molong Volcanic Arc (Byrnes, 1993) and the oldest rocks in  

the Girilambone region were probably deposited from this time. To the west of this arc, 

sedimentation of turbiditic basinal sediments (Wagga Marginal Basin) began in the 

earliest Ordovician (Kilpatrick and Fleming, 1980). To the east was a fore-arc basin 

(Monaro Slope and Basin; Figure 3.4A).

During the Late Ordovician to Early Silurian the Benambran Orogeny caused strong 

deformation in the western and central parts of the Lachlan Fold Belt. The Molong 

Volcanic Arc and its microcontinental basement collided with the fill of its back-arc 

basin (Wagga Marginal Basin), causing strong deformation and large-scale imbrication 

of the basinal sequences (Pogson, 1982).

The geochemical and isotopic signatures of rocks from this province indicate their 

genesis in a subduction- related island-arc setting (Carr et al., 2003). The line of 

collision is known as the Gilmore Suture (Figure 3.4 C). This structure is oriented 

approximately north-south and its northern continuation is less well-defined (Scheibner, 

1983,1999). It appears to connect with the faults in the Mineral Hill region (Pogson, 

1991) and further north it terminates against the east-north-easterly trending Nandewar 

Lineament (Byrnes, 1993). The deformation, thrust pile-up and consequent tectonic 

thickening of the Wagga Marginal Basin fill in the high heat flow regime of the back- 

arc basin (Pogson, 1982) resulted in high-temperature, low-pressure style 

metamorphism leading to formation of anatectic granites. Some of these granites were 

emplaced syntectonically, but most are post-tectonic. This orogenic activity formed the 

Wagga-Omeo Metamorphic Belt (Figure 3.4B; Byrnes, 1993).
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2. Regional crustal extension in the Late Silurian to Early Devonian

During the Silurian the Lachlan Fold Belt entered a tensional phase. Early Silurian 

extension formed new troughs in the eastern half of the Lachlan Fold Belt, followed by 

localised Late Silurian-Early Devonian deformation during the Bowning-Bindi
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Figure 3.4 Cambrian to Middle Devonian development of the Lachlan Fold Belt (after 

Byrnes, 1993).

Orogeny (Scheibner, 1999). However, west of the Gilmore Suture, extension facilitated 

the emplacement, into the upper crust, of anatectic granitoid melts generated during the 

Benambran tectonism (425-450 Ma). Further, brittle crust extensional tectonism west of 

the Gilmore Suture in the earliest Devonian resulted in subsidence and the formation of 

the composite Darling Basin in which the Cobar Supergroup was deposited (Figure 

3.4C; Byrnes, 1993).

19



3. Late Early Devonian transgressional tectonism

The Middle Devonian Tabberabberan Orogeny terminated the pre-cratonic 

development of the Lachlan Fold Belt. Radiometric dating (Glen et al, 1992) suggests 

that deformation and metamorphism of the easternmost Darling Basin fill occurred a t  

the close of the Early Devonian (395-400 Ma), as an early expression of the  

Tabberabberan Orogeny, which affected the Lachlan region in a number of ways 

(Powell, 1984). Former zones of extension probably suffered severe deformation from 

this orogeny. It is also possible that former extensional faults became reverse faults and 

developed into thrusts of thick-skin and thin-skin tectonic styles (Glen, 1988). This 

deformation was followed by molassic overlap sedimentation, which in the Cobar- 

Bourke area is represented by the Mulga Downs Group sedimentation in the Barka 

Basin.

4. Carboniferous tectonism

Kanimblan tectonism in the Carboniferous (335-360 Ma) resulted in relatively mild 

deformation of the Mulga Downs Group sediments in the Barka Basin and further 

deformation of the underlying Cobar Supergroup. Deformation of these cover 

sequences was probably controlled by reactivation of the normal and cross faults (Neef 

and Bottrill, 2001), which were active during Early Devonian sedimentation. The faults 

are probably reactivated basement faults (Glen, 1985, 1988). The Kanimblan Orogeny 

resulted in the formation of large warps and open folds, such as the Gunderbooka 

Syncline, without developing an axial plane cleavage.

The Kanimblan Orogeny further metamorphosed Lachlan Fold Belt rocks. Post- 

kinematic granites intruded into the eastern part of the Lachlan Fold Belt. The existence 

of some granitic intrusions of this age is considered possible in the Bourke-Cobar 

region, but these intrusions are probably of small volumetric importance by comparison 

with Siluro-Devonian plutons. Carboniferous low- temperature metamorphic effects 

further east are best recognised from folded and thrust relicts of the Mulga Downs 

Group in the Bourke area (Glen et al., 1996). A possible Carboniferous age cannot be 

excluded for some of the least deformed felsic and andesite intrusives in the Bourke 

and Cobar sheet areas.
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5. Neotectonism

The Kanimblan Orogeny converted the LFB into a neocraton, and subsequent Late 

Carboniferous-Holocene sedimentation has been of platformal character (Scheibner and 

Basden, 1996) with some reactivation of the Palaeozoic structural framework during 

Cainozoic time (Duk-Rodkin et al., 2003).

3.3 LOCAL STRATIGRAPHY AND INTRUSIONS

3.3.1 INTRODUCTION

The main Palaeozoic litho-tectonic units recognised in the study area are: The Older 

Basement (Cambrian-Late Silurian); Cobar Supergroup (Late Silurian- late Early 

Devonian); and the Mulga Downs Group (Early to Late Devonian).

The recognised rocks of the Older Basement in the study area are:

1. turbidites, chert and minor basic volcanics of the Girilambone Group;

2. intruded ultramafic and related rocks in the eastern part; and

3. a Silurian volcano- sedimentary sequence.

3.3.2 GIRILAMBONE GROUP

The Girilambone Group, as mapped on the Bourke, Cobar and Nymagee 1: 250,000 

sheets (Byrnes, 1993; Suppel and Gilligan, 1993) crops out poorly to the east of Cobar 

between Nymagee and Bourke (Figure 3.5). The Girilambone Group consists of 

rhythmically bedded, poorly sorted, fine and coarse-grained quartzose sandstone with 

subordinate quartzo-feldspathic sandstone, siltstone and chert, together with minor 

intercalated basic volcanics and minor conglomerate, marl and serpentinite. This group 

has undergone low- to medium- grade regional metamorphism, ranging from low 

greenschist to low amphibolite facies (Gilligan and Byrnes, 1995).

The upper part of the Girilambone Group is characterised by a turbidite sequence 

comprising medium to thickly bedded quartz-rich sandstone interbedded with siltstone, 

slate, and minor chert beds occurring either as thin layers interbedded with slates or as

21



1 Legend
I Dykes

I Matic-Ultramafic Intmsivos 

Granitic Intrusive*

Early Devonian
(Cot)« Supeigroup)

id ooar» graced kMmtt & 
and vacamaasics

Kopy)« Group
Early Dev an tar Mt£or*i.
»aroivy«a and anasor«

Siluro-Dovonian
bnt/cat« trust packages o*'n> t  
coarse graved »tffmrts

Intrvisivo-rolatod body or 
homfelsod sodimcnt

I Harts Tank Beds (Silurian)
I SaMsc»-s *itn imart
I cry ca $■&<•:. * 3  *  aw ,'0<rarici»v»

\ Siluro-Ordovician
I  i « r n i f  s

Mount Dijou Vo lea nics
Fo m m , =raa'ao u u t  aw awasoa-s. 
aauoxad sadanars

Girilambono Group (1)
Saw*üMä e ».T OM-jr.f.
nudatma. a * i ,  rar* ccr^c/ro-aiai 
aocanica aw imiaivaa.
Girilambono Group (2)
HgMy ca*ao acriss. m  iaroslonaa 
and maw ntaat.-,a

Girilambono Group (3)
-y r  t ciwad iaoanecnww ma'c ddiai 
W ß  EatVWeat fonatcr.

Girilambono Group (4)
Sronoy aticaoua guana«

Magnetic structure or linear

(!) Aircore drill hole

V.tOO OOO map sheek key

Byrock Glenarift

Sussex Coolabah

Canbelego Herrn idale

V
New South Wales

Figure 3.5 Interpretive geological map of the study area showing drilling traverses 
(after Fleming et al., 2002).

22



mappable chert zones such as the Alandoon Chert and Whinfell Chert (Pogson, 1991). 

The turbidites range from clay-rich shales to quartz-rich greywacke. Unmetamorphosecl 

turbidites consist dominantly of clay minerals and quartz. Other minerals, notably 

feldspar, are present in small amounts (Chappell, 1998). Chemical analysis of turbidites 

of the Lachlan Fold Belt has shown that these are distinctively low in the elements o f  

typical feldspar (i.e., Na, Ca and Sr; Wyborn and Chappell, 1986). The lower turbidite 

sequence consists of well-bedded, thin to thick beds of meta-sandstone interbedded 

with phyllite and schist. Metamorphosed limestone and calc-silicate rocks w ere 

reported from Cobar (Rayner, 1969; Brunker, 1970; Feltone 1981) and Bourke (Byrnes, 

1993) 1:250,000 sheets. The relationship of these lithological units to the Girilambone 

Group is uncertain. It is thought that rather than being part of the Girilambone Group, 

they represent another lithostratigraphic unit (of Silurian or Ordovician age and 

possible volcanic 'arc’ affinity), which may have been imbricated with the turbidites 

(Gilligan and Byrnes, 1995).

The Girilambone Group in the Hermidale, Coolabah and Sussex regions of the Cobar 

1:250,000 sheet and the Bobadah-Nymagee 1:250,000 sheets is generally recognised as 

undifferentiated thick and thin bedded, graded, parallel-laminated and ripple cross- 

laminated, poorly sorted fine to coarse-grained, micaceous quartz sandstones 

interbedded with quartzite, minor quartz feldspathic sandstone and thinly bedded chert, 

quartz-sericite schist, quartz- muscovite- chlorite-biotite-albite-andalusite schist and 

rare metabasic volcanics (Suppel and Gilligan, 1993). In the Byrock-Glenariff area of 

the Bourke 1:250,000 sheet, the Girilambone Group is more recognisable as a group of 

quartzose and quartz lithic sandstone, pelite and chert, minor intercalations of 

polymictic conglomerate, carbonate-rich rocks, calc silicate homfels and marble, and 

some magnetite-rich schist (Byrnes, 1993). A minor occurrence of Alandoon Chert has 

also been recorded from the Hermidale area (Chan et ai, 2002).

3.3.3 ULTRAMAFIC AND RELATED ROCKS

Two main types of ultramafic rocks occur in the study area. The Honeybugle Complex 

consists of hornblende pyroxenite, hornblendite, serpentinite, gabbro, syenodiorite, 

quartz norite, monzogabbro and monzonite (Byrnes, 1993). This complex trends north-

westerly (Gilligan and Byrnes, 1995), and has been recorded from the southeastern
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comer of the Hermidale sheet (Chan et al., 2002). Serpentinised ultramafic rocks a re  

recorded at Miandetta on the east edge of the Hermidale sheet (Chan et al., 2002}. 

These rocks are interpreted as the northern extension of the Alaskan type intrusive be lt 

developed to the south (Elliott and Martin, 1991).

3.3.4 SILURIAN VOLCANO- SEDIMENTARY SEQUENCE

A Silurian volcano- sedimentary sequence consisting of felsic volcanics intercalated 

with a sedimentary sequence forms a poorly known belt of rocks in the vicinity of Harts 

Tank north of Nymagee (Gilligan and Byrnes, 1995). In the study area the Silurian 

Harts Tank Beds were recorded at Rainbow Ridge, These beds comprise a complex 

sequence of fine- grained sandstone, siltstone, phyllite, black graphitic shale, chert, 

rhyodacitic volcaniclastics and minor related andesitic lavas and tuffs (Pan Australian 

Mining Ltd, 1986; Chan et al., 2002). The widespread geochemical anomalies 

associated with this sequence suggest a Silurian igneous association (Gilligan and 

Byrnes, 1995).

3.3.5 COBAR SUPERGROUP AND RELATED INTRUSIVES

The Cobar Supergroup comprises a sedimentary and volcanic sequence deposited in the 

Cobar region during the Early Devonian. Sedimentation varied from shallow water 

shelf deposition of the Kopyje, Mouramba, Winduck and Walter Range shelves to 

deeper water turbidite deposition represented by the Cobar Basin, Mount Hope, Rast 

and Melrose Troughs (Glen, 1985). The only group that has been definitely recorded 

from the study area is the Kopyje Group (Chan et al., 2002).

The Cobar Supergroup overlies older basement rocks with regional unconformity 

/nonconformity or with a faulted relationship. Minor terrestrial sedimentation is 

preserved at the base of the sequence in the marginal area of the Cobar Supergroup. 

Volcanism was mainly submarine but with some subaerial accumulations on shelf areas 

(Suppel and Gilligan, 1993). The Supergroup was deposited in a fault- controlled basin, 

and troughs developed as a result of rifting at the beginning of the Early Devonian
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(Glen, 1985, 1990). The known margins of the basin and troughs were north-nortk 

westerly to northerly trending basement fractures (Suppel and Gilligan, 1993).

The major volcanic centres related to the Babinda and Majuba Volcanics contain thick 

accumulations of felsic pyroclastics, consisting largely of ashflow and airfall tuffs with 

rhyolite and dacite flows and minor tuffaceous siltstone. In the study area the Babinda 

Volcanics, which form a series of hills, and the Florida Volcanics were recorded from 

the southwest comer of the Hermidale sheet and east of Canbelego respectively (Chan 

et al., 2002).

3.4 ECONOMIC GEOLOGY AND STYLES OF MINERALISATION

The central western region of New South Wales is one of the richest mineral provinces 

in the Lachlan Fold Belt. Mining commenced in the Cobar area when copper was 

discovered in 1870 in a waterhole at the site of the Great Cobar Copper Mine. Later, the 

Cobar Mining Field became one of Australia’s main sources of copper. Gold mining in 

the area started soon afterwards at the Great Cobar, the New Occidental, New Cobar, 

Chesney, Mt Boppy, Mt Drysdale and Peak mines (Stegman and Stegman, 1996). The 

major deposits occur near Cobar, around Girilambone, Nymagee and Canbelego. 

Metallogenic maps with the mineral deposit sites have been compiled by Byrnes 

(1993), Suppel and Gilligan (1993) and Gilligan and Byrnes (1995). The major 

mineralisation styles of the region were summarised by Chan et al. (2001, 2002).

The mineral deposits in the Cobar-Girilambone region can be grouped according to 

lithostratigraphic host units, unless they are related to granitoids, as follows:

1. Deposits related to the Girilambone Group.

2. Deposits related to the Cobar Supergroup.

3.4.1 DEPOSITS RELATED TO THE GIRILAMBONE GROUP

The Girilambone Group contains strongly deformed sequences with probable 

juxtapositioning of different crustal blocks and sequences (Glen and Fleming, 2000). 

Some of the rocks assigned to the Girilambone Group exhibit evidence of multiple 

deformation. Minor puckering is common and in places chevron kinking is well
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developed (Byrnes, 1993). The age of the Girilambone metasedimentary an d  

metavolcanic rocks is thought to be Cambro- Ordovician, but some probable Late 

Silurian- Early Devonian sedimentary units have probably been infaulted (Chan et al 

2001). The main mineral deposits in the Girilambone terrain are predominantly o f  

copper and gold.

3.4.1.1. GIRILAMBONE

The Girilambone copper deposit is the most significant (124,000 t Cu) deposit of this 

type. It occurs 5 km west of Girilambone (Figure 3.6) and is hosted by chlorite-sericite 

schists and the banded quartzite member of the Caro Schist Formation, the basal 

formation of the Girilambone Group (Shields, 1996). Copper mineralisation at this site 

occurs mainly as strongly folded layers and bands or lenses of sulfide in quartzite, and 

as disseminated sulfides within chloritic schists. The occurrence of quartzite as the 

dominant host rock and the layered style of sulfide mineralisation suggested to early 

workers that the deposit represents a deformed, stratiform volcanogenic massive sulfide 

deposit of possibly “Besshi” type. The dominant quartzite host rocks were possibly 

exhalative chemical sediments (Shields, 1996; Chan et al., 2001). The main primary 

sulfides are pyrite and chalcopyrite with secondary chalcocite developed in partly 

oxidised ores. Malachite, azurite, cuprite and native copper occur in the main oxidised 

zone, while rare phosphate minerals are reported from the upper section of the oxide 

zone (Shields, 1996). Secondary processes, including economically significant 

oxidation, supergene enrichment and leaching extend to 65, 45, and 30 metres below 

the surface respectively (Gilligan and Byrnes, 1995). Alternative ore genesis models 

suggest that the Girilambone deposit is a structurally controlled, epigenetic vein and 

lode system (Chan et al., 2001).

3.4.1.2 TRITTON

The Tritton deposit is located 65 km NW of Nyngan and 20 km SW of the Girilambone 

mine (Figure 3.6). It is a structurally controlled, sediment-hosted, copper deposit 

discovered in 1995 (Tritton Resources Ltd, 2003). The deposit is hosted by a part of the 

Girilambone Group, which consists of pelitic schists, mafic schists, greywackes and 

quartzites. It does not crop out. The total resource is about 11 million tonnes of 2.8 wt 

% copper at a lwt % cut-off (Nord Pacific Ltd, 1998). The deposit composes two
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distinct en-echelon lenses of massive, mainly copper sulfide mineralisation, whicTi 

plunge to the SE. Copper is primarily present as chalcopyrite. Gold occurs various with 

hematite-impregnated schist, gossans, parent sulphides, copper ore and possibly quarts 

veins (Fogarty 1996; Register of Australian Mining, 2003/2004).

Mineralisation occurs in three zones, upper, central and lower, which are continuous fo r  

up to 450 m in strike length, up to 35 m wide and open at depth below 1000 m 

(Fogarty, 1998). Mineralisation in the upper zone is hosted by a quartzite unit and 

occurs approximately 180 m below the present land surface (Fogarty, 2001). Primary 

mineralisation consists of massive pyrite and chalcopyrite, occurring as pipe-like 

massive sulfide zones. The lower zone consists of massive and banded pyrite - 

chalcopyrite lenses in chloride and semi-pelitic schist immediately overlying 

carbonated mafic schist. Chlorite, epidote and carbonate alteration assemblages are also 

common throughout the Tritton deposit, with siderite alteration in the hanging wall 

closely associated with sulfide mineralisation (Berthelsen, 1998). Unlike the nearby 

Girilambone deposits, little secondary mineralisation is developed within the weathered 

profile of the Tritton copper deposits (Ackerman and Chivas, 2004).

3.4.2 DEPOSITS RELATED TO THE COBAR SUPERGROUP 

3.4.2.1 CANBELEGO -MOUNT BOPPY

Gold mineralisation occurs near Canbelego (Figure 3.6) as free gold or associated with 

chalcopyrite or iron-rich sphalerite. The host rocks are laminated quartz-mica schists, 

phyllite, siliceous breccia, lithic sandstone, calcareous siltstone, and polymictic 

conglomerate of the Early Devonian (Kopyje Group). The style of mineralisation is 

quartz-vein stockworks in brecciated host rocks. Gilligan (1982) considered the 

deposits to be of volcanic exhalative origin associated with local volcanism. The 

primary ore minerals are sphalerite, galena and pyrite, whereas the main secondary 

minerals are limonite and hematite.

The major Mt Boppy deposit (14.2 t of produced gold) is hosted by a conglomeratic 

unit of the Baledmud Formation, near its unconformable boundary with the underlying 

Girilambone group. The oxidation in the deposits extends to 91 metres and other
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secondary processes (supergene enrichment and leaching) are reported to be 

economically significant (Gilligan and Byrnes, 1995).

3.4.2.2 COBAR -TYPE DEPOSITS

Polymetallic sulfide mineralisation near Cobar occurs in high-strain areas along the 

eastern side and northern edge of the Cobar Basin (Glen, 1995). The deposits vary in 

metal type and abundance. Some are dominantly copper deposits, some have silver- 

lead-zinc lenses in addition to copper, some are gold rich and one (the Elura deposit, 

north-west of Cobar) is lead-zinc-silver-rich with only minor copper. All these deposits 

are hosted by folded and cleaved Early Devonian thin-bedded turbidites and lie oblique 

to the bedding (Glen, 1987).

The CSA deposit, north of Cobar comprises systems of lenses that encompass veins, 

disseminations and semi-massive to massive Cu-Pb-Zn ores (Giles and Marshall, 

2004). Deposits occur as multiple vein and massive sulphide pods and lenses that are 

typically confined to steeply plunging pipe-like concentrations within the steeply 

dipping host structures. Consequently, most ore bodies have a small ellipsoidal surface 

expression and a large down-plunge extension (Stegman and Pocock, 1996). Oxidation 

extends down to 100 metres below the surface with variable supergene enrichment at 

the present water table. The structural setting and fluid inclusion data suggest that high 

temperature hydrothermal ore-bearing fluids migrated along major faults during 

inversion of the Cobar Basin (Glen, 1987; Sun and Seccombe, 2000; Giles and 

Marshall, 2004).

3.5 MINERAL DEPOSITS IN THE STUDY AREA

3.5.1 DEPOSITS ASSOCIATED WITH THE GIRILAMBONE GROUP

Many minor mineral deposits and occurrences were described in the study area by 

Byrnes (1993), Suppel and Gilligan (1993) and Gilligan and Byrnes (1995). The 

following deposits are geographically closest to study sites within the Hermidale, 

Sussex, Coolabah and Byrock T. 100,000 sheet areas.
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3.5.1.1 BUDGERY MINE

The Budgery deposit is located about 10 km to the northwest of Hermidale. It consists 

of a pipe-like copper sulfide orebody that plunges south- southeast at 45°. It contains a  

20 m vertical interval above the water table in which rich ores, both supergene 

sulphides and oxide masses, were found (Gilligan and Byrnes, 1995). The deposit i s  

associated with mafic rocks of the Girilambone Group. Drill hole CBAC151 is located 

1.5 km northwest of the Budgery Mine (Figure 3.7).

3.5.1.2 BYLONG

Byrnes (1993) identified the Riles Rise prospect (Fe), the Comet (Au) and the F inn  

Shaft and Finns Vein (Au) gold and ironstone deposits and three other unnamed 

deposits numbered 33, 34 and 35 on the Cobar metallogenic map in the Bylong area 

about 30-50 km W-NW of Girilambone. These small gold workings are mostly on iron- 

stained quartz veins developed along fractures and schistosity. The veins vary from 2-5 

cm to 15-25 cm wide (Gilligan and Byrnes, 1995). These deposits are hosted by schist 

of the Girilambone Group. The closest drill hole to this area is CBAC 43, located about 

25 km to the southwest (Figure 3.6).

3.5.1.3 CALCITE CRYSTAL RISE, NORTH POLE PROSPECT AND CHERT 
RIDGE PROSPECT

These prospects are located south of Booroomugga Road (close to drill holes CBAC8- 

12) about 5 km southeast Sussex (Figure 3.6), and are considered to comprise a  

stratigraphic trend, containing possible syngenetic mineralisation (Gilligan and Byrnes, 

1995).

Calcite Crystal Rise (Pb) consists of two parallel gossanous quartz veins, which are 

present in weakly-mineralised metasediment of the Girilambone Group. The best auger 

hole values in this prospect showed 1700 ppm Pb, 390 ppm Zn and 350 ppm Cu 

(Gilligan and Byrnes, 1995).

The North Pole prospect (Pb, Au) occupies a fault or shear zone with fractured chert, 

quartz veining and iron staining. There is some minor gossanous development. Low 

anomalous silver is widespread and occurs in both chert and ironstone. Maximum base 

metal values recorded from the gossanous ironstone are 4000 ppm Cu, 6000 ppm Pb 

and 2900 ppm Zn (Gilligan and Byrnes, 1995).

30



At the Chert Ridge prospect (Pb, Zn, Cu) geochemical prospecting has showed 

anomalous lead values along a chert-rich ridge. Values are up to 1.8 wt% Pb, 665 ppm 

Cu and 1250 ppm Zn. On the chert ridge weak traces of mineralisation probably 

continue north through the North Pole line of pits.
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3.5.1.4 MOUNT DIJOU -  BALI) HILLS

Deposits in the Mt Dijou-Bald Hills area are associated with deformed mafic volcanic 

rocks (including pillow lavas) and enclosing metasediments. Mineralisation appears to  

be structurally controlled, occurring in fault breccias, quartz veins and lodes with 

associated silicification and minor sulfides (Byrnes, 1993). Early descriptions of the 

deposits (gold and silver) refer to mineralisation occurring in horizons or jasper- 

ironstone lodes, probably reflecting near surface oxidised portions of the 

mineralisation. Mafic units (dykes or interbedded volcanics) were recorded in nearby 

aircore holes (McQueen, 2004a). Drill holes CBAC 199-202 are located close to the 

Mount Dijou-Bald Hill area (Figure 3.8).

3.5.2 DEPOSITS RELATED TO SILURIAN GRANITOIDS 

3.5.2.1 BEANBAH PROSPECT

The Beanbah prospect is an old working located northeast of Coronga Downs and 

related to Silurian granitoids in the Beanbah area. It is hosted by silicified 

metasediments of the Girilambone Group, which have been intruded by porphyritic 

rocks and the Beanbah Granite. Quartz veining and silicification are common, with 

anomalous values of Mo, Sn, W and locally Cu, Pb and As (De Ross, 1978). Maximum 

rock chip values from the prospect are 0.35 wt% Cu, 1.28 wt% Pb, 10.2wt% As, 410 

ppm Zn, 95 ppm Ag, 70 ppm Sn and 2500 ppm Mo (Gilligan and Byrnes, 1995). In the 

present study CBAC 137 is the closest drill hole to this deposit (Figure 3.7).

3.5.3 DEPOSITS IN UNNAMED SILURIAN VOLCANO - 
SEDIMENTARY SEQUENCES

The following mineralisation sites are located to the northwest of Rainbow Ridge and 

close to the studied drill holes CBAC 165, CBAC 166 and CBAC 167 in the Harts 

Tank area:

Harts Tank Bismuth prospect Bi (Cu, W);

Upton prospect, Hart Tank prospect Zn, Pb, (Cu, W);

Bills Retirement, Au;

Henrys Hill prospect Cu (Zn);
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Henrys prospect Au;

Plumridge prospect Au (Bi); and 

Road shaft prospect Pb (Zn, Cu).
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Gilligan and Byrnes (1995) recorded these deposits within unnamed Silurian volcano —- 

sedimentary sequences. The Harts Tank area was originally prospected for gold an<d 

Pan Australian Mining Ltd explored the area for base metals and gold in the late 1980s 

(Pan Australian Mining Ltd, 1986). The geochemical anomalies are mainly associated 

with ferruginous siliceous outcrops. The gold values are mostly below lg/t. Bismuth 

was reported from a small fault zone passing through the Harts Tank Bismuth prospect 

and north of the Upton prospect (Gilligan and Byrnes, 1995).

Mineralisation at Plumridge is hosted by intermediate volcanics and greenschist o f  

Canbro-Ordovician age. The host rocks in the Road shaft prospect are greenschist felsic 

volcanics, interbedded with Canbro-Ordovician sedimentary rocks. Rock samples 

contain up to 325 ppm Cu and 2660 ppm Zn. Some ultra-silicified pyritic dolomite 

contains up to 0.32 ppm Au, 6550 ppm Pb and 830 ppm As. Hydrothermal alteration is  

predominant both at this prospect and Henrys Hill prospect (Gilligan and Byrnes, 

1995).

A major concentration of gold and base metals occurs in and around Canbelego (Figure 

3.6). The Mount Boppy mine was one of the major producers in the state early last 

century. In addition, there are numerous smaller deposits that were prospected or mined 

around this area. The following deposits are the closest to the study area:

The deposit occurrences in the Canbelego area are related to the basal part of the 

Baledmund Formation or to the fault zone at or near the Girilambone Group basement- 

Baledmund Formation cover contact. The Venturer shaft and Boppy Boulder deposits 

occur as veins hosted by Early Devonian interbedded sedimentary rocks, greenschist, 

and phyllite. Metaquartzite, greenschist and conglomerate host the North Boppy 

Boulder and Boppy Blocks deposits. The Hardwicks deposits mainly occupy a fault or

3.5.4 DEPOSITS IN THE COBAR SUPERGROUP

Venturer shaft 

Boppy Boulder

Au;

Au (Ag, Pb);

Fe (Mn, Au);

Fe, Mn (Au, Pb, Zn); and 

Au, Mn (Ag, Zn, Co).

North Boppy Boulder 

Boppy Blocks

Hardwicks mine west of Canbelego mine
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shear zone and are hosted by conglomerate (Gilligan and Byrnes, 1995). In this study 

CBAC 1 is the closest borehole to this site (Figure 3.6).

3.5.4.1 GLENGARRY GOSSAN AND RELATED DEPOSITS

The Glengarry Gossan and related deposits (coded as NY 19, NY21, and NY22 in 

Nymagee Mineral data sheet; Suppel and Gilligan, 1993) are located in the 

northwestern comer of the Bobadah and northeastern comer of the Nymagee (100 000) 

sheets. The gold and /or silver deposits in this area are concentrated along veins in 

felsic volcanic rocks, except NY 19, which occurs in siltstone of the Baledmund 

Formation of the Kopyje Group. The following mineral deposits were described by 

Suppel and Gilligan (1993) from this area:

NY19 Pb, Au (Cu, Ag);

NY 21 Au;

NY22 Au; and

Glengarry gossan Pb, Cu, Zn (Ag).

The primary and secondary minerals of these deposits are pyrite and iron or manganese 

oxides, respectively. In this study drill holes CBAC 173, CBAC 174 and CBAC 175 are 

close to these deposits (Figure 3.7).
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4. CHAPTER FOUR: SAMPLING METHODOLOGY

A total of 247 drill holes (138 for Sussex-Coolabah, 49 for Hermidale, and 60 for the  

Byrock sheets areas) were drilled in the study area using a small 6-wheel aircore rig  

supplied by Geological Ore Search, Cobar. The drilling was conducted along roadside 

traverses with holes generally spaced at 2-4 km. In some cases the spacing ranged from 

1-8 km. Depth of drilling ranged from 6-82 m. Standard drill log sheets combining 

requirements for both CRC LEME and NSW DPI were used. Chip tray samples were 

collected for every metre for the first ten metres then 2 metres thereafter. 

Approximately 4 kg samples were taken for geochemical analysis every 1 m for the 

first 10 metres and then composite samples were collected every 1-3 metres until the 

end of hole. The water table level was noted in the field at the time of drilling (Chan et 

al, 2001; 2002, Fleming and Hicks, 2002). Samples were taken with a PVC sample 

spear from bagged bulk samples collected by cyclone on the drill rig. Samples were 

collected by the CRC LEME and NSW DPI sampling team.

Byrock and Hermidale samples were analysed for 28 elements (Ag, Al, As, Ba, Be, Bi, 

Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, V, W, Zn and Zr) 

using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP AES), 

following a multi acid digest (HF- HNO3- HCO4 digestion, HC1 leach) using method 

ME- ICP61 of ALS -  Chemex Laboratories in Orange. Sussex samples were processed 

by ANALABS of Cobar using ICP AES (method 1104) and ICP MS (method M104) 

after multi acid digestion (Appendix 1). Although the analytical method used is not a 

total analysis technique for some elements (Eaton at al., 1995), it gives a good first pass 

indication of element abundances, particularly for most (but not all) elements of direct 

interest as commodities or pathfinders (Chan et al, 2002). Each sample was also 

analysed for Au by graphite furnace AAS analysis (method: AU-GF42 of ALS -  

Chemex or F614 of ANALABS) following aqua regia digest and solvent extraction 

(Appendix 1).

Four-kilogram samples were collected from the bottom 1 m interval of the 230 air core 

holes. The depth of sampling varied from 3 m to 82 m, depending on the thickness of 

the weathering profile and the depth of drill refusal. Samples were pulverised in a
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tungsten carbide mill and analysed for major elements by X-ray fluorescence 

spectrometry (XRF) and trace elements by inductively coupled plasma mass 

spectrometry (ICP MS) at Geoscience Australia (Appendix 2).

Groundwater samples (1000 ml) were collected by stainless steel bailer (1 m length by 

5 cm diameter, and 50 cm by 5 cm) from 14 drill holes (9 from the Byrock area, which 

are CBAC217, CBAC218, CBAC219, CBAC227, CBAC231, CBAC235, CBAC242, 

CBAC243 and CBAC248 and five drill holes CBAC150, CBAC154, CBAC158, 

CBAC160 and CBAC173 from the Hermidale area). The water depth, electrical 

conductivity (EC), pH, Eh and water temperature (T) were measured on site using 

portable Orion™ electrodes and meters. All samples were collected after the third 

bailing attempt to ensure that water representative of the groundwater in the hole was 

being considered. Water samples were filtered with 0.45/am filters and separated into 

500 ml for cation analyses (acidified with 2 ml concentrated HNO3) and 500 ml for 

anion analyses (unacidified). Sample handling was earned out with talcum-free non- 

sterile latex gloves. All sampling bottles were new and rinsed three times with the water 

to be sampled prior to collection of the actual sample. Chemicals were added using 

glass or disposable polyethylene pipettes. The alkalinity of the unacidified samples was 

measured by titration in the laboratory and cation and anion concentrations were 

measured by conventional methods using ICP OES at the Bureau of Rural Science 

(BRS), for major (Na, K, Ca, Mg, Si, Cl, S04) and trace elements (Al, Ba, Cu, Fe, Mn, 

Sr, Zn; Appendix 3). Seven water samples from drill holes CBAC150, CBAC158, 

CBAC160, CBAC173, CBAC 217, CBAC227 and CBAC231 were analysed for 36C1 at 

the Department of Nuclear Physics of the Australian National University.

Manganese-rich grains and Mn-coated dark coloured grains (>1 mm diameter) from 

five Mn-dominant intervals in the drill holes CBAC 176 (37-39 m), CBAC 177 (8-9 m, 

13-15 m), and CBAC 180 (6-7 m, 7-8 m) were examined using JEOL 6400 scanning 

electron microscope (SEM) and energy dispersive X-ray (EDX) analysis system 

operating at 15 KeV in Australian National University.

The mineralogy of 34 samples were examined by X-Ray Diffraction (XRD) to identify 

carbonate, manganese oxides and iron oxides minerals and the semi-quantitative 

determination of the mineral abundance was achieved using SiroQuant software at the
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Department of Earth and Marine Sciences of the Australian National Universit y  

(Appendix 4).

Standard, blanks, replicates and duplicates were used to ensure the accuracy a n d  

precision as described in Chapter 5 (Appendix 5).
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5. CHAPTER FIVE: DATA ANALYSIS TECHNIQUES

5.1 INTRODUCTION

Data analysis involves condensing large volumes of information into a form that is m ore 

concise, but no less accurate, from which conclusions and /or decisions can be m ade 

more easily and efficiently. Over the last century a large body of literature on th e  

statistical treatment of geochemical data has been published and computer packages have 

been developed, with some designed for the peculiarities of geochemical models an d  

processes (e.g., Rollinson, 1993; Davis, 2002).

The patterns of geochemical data are generally complex because they are controlled by 

different geological processes that influence the material from which the geochemical 

samples are collected. Since Krumbein and Graybill (1965), statisticians have tried to 

develop improved methods to analyse geological variables. The particular nature of these 

variables, including the ubiquitous relationship between the location where a 

measurement is made and the value of this measurement, has required the development 

of appropriate statistical methods (Davis, 2002). Some non-statistical methods e.g., 

exploratory data analysis, element ratio, bivariate and triangle plots have also been used 

to analyse geochemical variables (Rollinson, 1993).

In this study, different media, such as regolith (transported and residual) and groundwater 

are sampled and the samples are analysed for their chemical and mineralogical contents 

(e.g., by ICP AES & MS, XRF and XRD). The geochemical data are derived from 

particular locations in space and time and are characterised by sample weight, sampling 

densities, sample distributions and the analytical techniques applied.

This chapter includes techniques that are used to analyse the collected geochemical data 

to:

• identify the distribution pattern and outliers ;

• avoid closure and investigate data transformation and quality control; and

• identify element associations using multivariate statistical methods (cluster analysis 

(CA) and principal component analysis (PCA).
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Data in this study, as generally in geochemical analysis (Helsel and Hirsch, 1992), a re  

characterised by:

• a lower boundary of zero, no negative values are possible;

• presence of ‘outliers’, i.e. observations considerably higher or lower than many o f  

the data;

• positive skewness and non-normal distribution; and

• censored data, reported only as below or above some threshold (e.g., detection 

limit).

5.2 EXPLORATORY DATA ANALYSIS

Exploratory Data Analysis (EDA) is the manipulation, summarisation and display o f 

data using simple arithmetic techniques to make them more comprehensible with the 

intention of uncovering underlying structure in the data and detecting important 

departures from this structure (Tukey, 1977; Kelly et al., 1992; Dale, 1995). EDA is an 

approach philosophy for data analysis that employs a variety of techniques (mostly 

graphical) to maximise insight into a data set, uncover underlying structure, extract 

important variables, detect outliers and anomalies, test underlying assumptions, develop 

conservative models, and determine optimal factor settings (e.g., Abonyi et al., 2004).

EDA is similar to classic statistical data analysis in that both start with a general 

scientific problem and yield scientific conclusions. The difference is the sequence and 

focus of the intermediate steps. For classic statistical analysis, the sequence is Problem 

=> Data => Model => Analysis => Conclusions, whereas for EDA, the sequence is 

Problem => Data => Analysis => Model => Conclusions (Dale, 1995; 

NIST/SEMATCH, 2005). Accordingly for classical analysis, the data collection is 

followed by the imposition of a model (e.g. normality, linearity, etc.) and the analysis, 

estimation, and testing that follows are focused on the parameters of that model. For 

EDA, the data collection is not followed by assuming a model but by analysis with a 

goal of inferring what model would be appropriate (NIST/SEMATCH, 2005).

Most geochemical studies (Reimann and Filzmoser, 2000; Grunfeld, 2005) consider 

using EDA as a first step in understanding the distribution of the measured variables 

and a combination of different graphics of histogram, boxplot and a one dimensional 

scattergram will give an excellent one-dimensional insight into the data.
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In this study, data were analyzed using a mixture of both EDA and classic statistical 

approaches (as well as other approaches e.g. multivariate analysis). Many graphical 

techniques of EDA such as boxplots, scatter plots and ratio plots are proposed and used 

to analyse the raw data to detect the outlier values (thresholds and anomalies), and to  

discover the relationship between different major and trace elements in the regolith. 

Classic statistics, such as mean, median and standard deviation are used in indicating 

the quality (accuracy and precision) of the data and in estimating the background and 

anomaly thresholds for the elements.

5,3 RECOGNITION OF OUTLIERS BY BOXPLOT

A boxplot consists of a rectangular box from first quartile (#0.25) to third quartile 

(#0.75), with tick marks at the median (#0.5). The distance between the top and bottom 

of the box is the interquartile range (IQR). The line in the middle of the box is the 

sample median. If the median is not centred in the box, it is an indication of skewness. 

The "whiskers" are lines extending above and below the box. They show the extent of 

the rest of the sample set (unless there are outliers). The suspected outliers and extreme 
outliers are values that are more than 1.5 and 3.0 times the interquartile range away 

from the top or bottom of the box respectively (Tukey, 1977). The plotted outlier points 

may be the result of a data entry error, a poor measurement or an anomaly in the 

measured data. The effectiveness of boxplots has been demonstrated in summarizing 

the results of a field survey (Reese, 2005) and in processing the geochemical data of the 

Cobar region (Cohen et al., 1996).

A single boxplot or multiple boxplots can be drawn together to compare multiple data 

sets or to compare groups in a single data set. An example of a comparative application 

of boxplot is given in Figure 5.1. Small boxes represent consistent values of elements, 

whereas large boxes display a wide range of variation in element concentration. 

Outliers are extreme high or low' measurements (outliers on the high side are more 

common) that are sometimes referred to as “spurious” data because they are highly 

divergent from the main population of data. Outliers may arise from matrix 

interferences or errors in transcription, sampling technique, datacoding, analytical 

methods and / or instrument calibration. Alternatively, what may appear to be outliers
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may simply represent inherent variability in the regional background geochemistry. 

This w ill be particularly true for background areas in which the geochemistry is 

heterogeneous (e.g., SWEDIF and EFAWEST, 1998).
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Figure 5.1 An example of a boxplot for samples of transported regolith in the Byrock 

area.

Outliers are a controversial issue in geochemical analysis; some geochemists (e.g., 

Goncalves et al., 1998; Borrego and Gutierrez, 2000; Lalor and Zhang, 2002) have 

considered them as analytical errors so they are often dealt with by removing them 

prior to multivariate analyses of data or prior to some of the hypothesis test procedures. 

Others (e.g., Helsel and Hirsch, 1992) have considered the outlier as the most important 

records in the data set, and argue they should be carefully investigated based on 

available geological information. In this study the term “ outlier”  is applied to both 

genuine anomalous observations that might relate to potential mineralization, and to 

spurious data points resulting from sampling, analytical and other sources of error. 

Accordingly, during background data interpretation, statistical outliers are provisionally 

accepted as geochemical variations and their credibility is deferred until follow-up 

investigation. The quartile (boxplot) and classic statistical techniques are used to 

identify the geochemical (thresholds and anomalies in the regolith o f the Girilambone 

region (Chapter 6) in which the outliers represent potential geochemical anomalies. 

Outliers were removed from the multivariate analysis (CA and PCA) data as discussed 

below.

42



5.4 TRANSFORMATIONS

Transformation is typically employed in geochemistry to de-skew data for use i n  

modelling methods that assume normality of distribution. Employment o f  

transformation is not merely an arbitrary choice, because serious problems can o ccu r 

when procedures assuming symmetry, linearity or homoscedasticity (constant variance) 

are used on data, which do not possess these required characteristics (Helsel a n d  

Hirsch, 1992; Kotlyar et a l,  1998).

To normalise geochemical data, the most commonly used transformation is logarithmic, 

because the lognormal distribution has long been recognised as a useful model in th e  

evaluation of geological variables whose value distribution is often extremely skewed 

(Rendu, 1988; Limpert et a l,  2001; Ohta et a l,  2004; 2005). However, a number o f  

studies (e.g., Reimann and Filzmoser, 2000; Grunfeld, 2005) have shown that this has 

not been a general rule of thumb when regional datasets are considered. Some 

geochemical data rarely follow normal or even lognormal distributions (Reimann and 

Filzmoser, 2000) and a practical problem remains that the lognormal model is often 

only an approximation of the true distribution of geological data (Rendu, 1988).

The Girilambone geochemical data are not normally or log normally distributed. The 

normal probability and detrended normal plots of the studied geochemical data 

(element concentration) showed that the outliers make the distribution pattern of the 

studied elements not normal (Appendix 8). Therefore, to avoid the “abnormal” 

influences of these outliers on element association, and because some multivariate 

analysis (i.e., PCA) are sensitive to outlier values (Davis, 2002) these outliers were 

removed before multivariate statistical analysis. The data are also log-centred ratio 

transformed to avoid the closure effect (as discussed below).

5.5 TRANSFORMATION TO AVOID CLOSURE

Geochemical data are typically reported as proportions (weight %, parts per million, 

etc.). For a given observation, compositional proportions (i.e.; weight%) always sum to 

a constant (100%). Closed data, by definition, are points of the simplex, which are a
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part of n-dimensional real space. The elements of points on the simplex are vectors o f  

real numbers that satisfy the constant sum constraint. Statistical measures, such a_s 

measures of correlation and covariance can be misleading and can result in an incorrect 

assessment of correlation or other measures of association (Davis, 2002). Aitchison 

(1986) advocated the use of centred log-ratio transformations to overcome the effect o f  

closure. The centred log-ratio transformation of an observation consists of taking the 

logarithm of each variable after the variables have been divided by the geometric mean 

calculated across all variables.

The log-centred ratio is useful because it maintains the concept of distance (i.e.; 

Euclidean) between two compositions in the cluster analysis (Aitchison et al., 2000). 

Also, closure can be avoided by utilising mass balance approaches based on fixing 

volume, mass or concentration changes between samples of parent and daughter 

lithologies. However, this is a restrictive approach and is impractical in the weathering 

(regolith) environments where the equivalent fresh parent rock may be difficult to 

obtain.

Another practical technique to remove closure effects is using element ratios (i.e., 

Mg/Ca, Al/Si, K/Al). This can be explained mathematically as follow:

Y ,/Y 2= (X,/X d )/(X2/Xd) .......................... (1)

Yi/Y2=Xi/X2 ............................. (2)

Where Yi and Y2 are the concentrations (weight % or mole %) of elements 1 and 2 in 

the closed data, Xi and X2 are the pre closed amount of the elements 1 and 2 

respectively, and Xd is the total sum of all element (1+ 2+3,....D)

In this study the effect of closure was largely avoided by using the log centred ratio. 

This transformation is applied on the data of multivariate cluster analysis and principal 

component analysis (Chapter 6), whereas ratios are predominantly used to identify the 

parent materials (Chapter 8).

5.6 QUALITY CONTROL OF DATA

Exploration investment commonly hinges on the results and interpretation of 

geochemical data. A measure of confidence of the data must be ensured, and this can be
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obtained only from a reliable quality assurance/quality control (QA/QC) program, 

which depends upon the quality of field sampling and laboratory analytical procedures. 

An appropriate QA/QC program should minimize inconsistencies and uncertainties 

within the data. Failure to monitor analytical quality may lead to incorrect estimation oT 

thresholds and result in geochemical anomalies that are laboratory error and sampling 

artefacts. The objectives of a QA/QC program are to:

• document the procedures and methods of sample collection, preparation and. 

analysis;

• provide assurance as to reliability of analyses using replicate samples, cross-

laboratory checks;

• provide assurance as to the precision and accuracy from duplicate samples.

• provide assurance as to the accuracy from using recognized reference standards.

• provide reliable information regarding the interpretation of data with respect to the 

behaviour of a mineral and its mineral component(s) during weathering.

Analytical quality control is essential in the initial stage of data analysis (Levinson, 

1974). The principal indicators of data quality are their bias, precision and accuracy. 

Bias is a consistent deviation of measured values from the true value, caused by 

systematic errors in procedure that can be attributed to either the technique or the 

laboratory’s use of the technique. Precision is the nearness with which measurements of 

a given sample agree with each other. In other words it is a measure of the degree of 

agreement among replicate analysis of a sample, usually expressed as the standard 

deviation. Accuracy is a combination of bias and precision of an analytical procedure, 

which reflects the closeness of a measured value to a true value (Clesceri et al., 1989). 

Precision and accuracy are complex issues and are not the same for all elements and all 

concentration levels (Nash et al., 2001).

Guides to analytical quality control (Plant et al., 1975; Fletcher, 1981) explain the 

statistical basis of control and/or the precautions that must be observed. A 

comprehensive account of the theory of error in geochemical data is given by Miesch 

(1967). However, it does not give a detailed description of practical methods for 

estimating the various forms of analytical error.
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James (1970), Thompson and Howarth (1978) and Thompson (1983; 1992) described 

the Statistical basis of analytical quality control, an approach to the estimation o f  

analytical precision and the factors that need to be controlled in any analytical 

procedure. These factors were classified to within-batch variations, between-batch 

variations and overall accuracy. The within-batch variations are either random , 

uncontrolled variation that arises at every stage of analytical procedure, which can b e  

quantified simply as within-batch precision, or are systematic changes within the batch. 

They may become apparent as a change in accuracy, in the form of drift, a periodic 

variation, or discontinuity. The between-batch variations represent changes in accuracy 

between the batches or an additional source of variance, the between- batch precision. 

The overall accuracy is the ability to have correct results of whole multi-batch analysis. 

The purpose of a geochemical survey is to give a description of the geochemical 

variation in sampling media within a region. Numerically this can be expressed in terms 

of the natural “ geochemical variance” of the area. Geochemical information content is 

diminished by the two processes of measurement: the act of taking a sample adds a  

random error with “ sampling variance” and the act of chemical analysis adds another 

random error with “ analytical variance” (Ramsey et al. 1992).

In this study, standards (9 tests by MB-6 standard and 9 tests STSD-2 standard of ALS 

Chemex) and blanks were used to ensure the accuracy (Appendix 5). The analysis of 

these standards showed that some elements (Be, P and Cd) significantly recorded 

higher than the standard upper limits, whereas potassium, Fe and Ti values are lower 

than the standard lower limit (Appendix 5). This possibly indicates analytical errors and 

/or changes in the composition of the chemical standard.

Five replicates were used to investigate sub-sampling precision and analytical accuracy 

and 65 duplicate (49 from Sussex-Coolabah, 6 from Hermidale and 10 from Byrock; 

Appendix 5) samples have been used to estimate the precision of analysis in the three 

batches of data. Replicates were used to calculate the standard error (standard deviation 

(s) of the mean (y) and the probability or the confidence level of the data. Estimations 

of uncertainty of the data are based on definition of the precision in geochemistry 

(Thompson, 1983; Plouffe and Bond, 2003) as P = (2s/ y) * 100%, where the 

coefficient of variation (CV), and the relative standard deviation are (s/ y) *100% and s/
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y, respectively, and graphically by simply plotting the concentration of d ifferent 

batches against each other (Table 5.1; Figure 5.2). Potassium, Bi, Sb and A u  

concentrations show high variation and low precision, which are the result of the  

analytical procedure (e.g., K & Sb, Chan et al., 2002) and/or variation in detecting lo w  

concentrated trace elements (e.g., Au). Elements with low variation (<7%) such as A l,  

Ba, Be, Co, Cr, Cu, Fe, Mg, Mn, Na, Ni, P, Pb, Sr, V, Zn and Zr (Table 5.1), indicate 

high (> 93%) analytical precision. A significant similarity in sub- sample replicate 

compositions indicates that these sub-samples are high-quality representatives of the 

bulk composite sample.

Graphical correlation between the duplicates and original samples generally shows 

significant correlation between the analysed elements (Figure 5.3), which indicates a  

high analytical precision.

Table 5.1. Standard deviation (s), mean (y), coefficient of variation (CV) and precision 

(P) of five replicate samples from CBAC150, Hermidale area. Silver, Mo, Cd, W, and S 

are excluded from the data because they are below the detection limits. Bold numbers 

(in Bi, Ca and Sb) represent half of detection limit.

S am ple A.u pp m M % A»sppm B a ppm B e pp m B i pp m C a % C o p p m Cr pp m  C u ppm Fe % K %
R1 0  004 11.16 12 824 4.3 4 0.01 2 96 33 5 3 7 2.21
R2 0.004 11.46 11 833 4.7 1 0.01 2 104 36 5 49 1.11

R3 0.002 11.61 17 849 4.7 7 0.01 2 110 35 5.48 2.57

R4 0.002 10.13 13 760 4.7 6 0 .005 2 114 35 5 23 1.98

R5 0 0 0 2 9 7 8 14 716 4.8 6 0 .005 2 115 35 5 2 1 1.9

S 0.16 0.03 0.07 0.03 0.02 0.35 0.16 0.00 0.03 0.01 0.01 0.14

y 0.42 1.03 1.12 2.90 0.67 0.60 1.88 0.30 2.03 1.54 0.73 0.28

C V 39.12 3.24 6 4 2 1.08 2.81 57  88 8.77 0.00 1.60 0.90 1.48 50.21

p 78.25 6.48 12.83 2.16 5.62 115.76 17.54 0.00 3.20 1.80 2.96 100 4 1

S am ple M g % Mn ppm N a % Ni ppm P ppm Pb ppm Sb ppm Sr ppm T i% V  ppm Zn ppm Zr ppm
R1 0 5 2 67 0 0 9 24 574 32 6 41 0.13 124 84 93

R2 0.52 70 0 0 9 26 692 33 2.5 42 0.37 131 86 105

R3 0.53 70 0.09 26 667 32 2.5 44 0.34 130 86 106

R4 0.47 68 0 0 9 25 647 28 9 35 0.27 132 85 102

R5 0.45 65 0.09 25 645 26 2.5 34 0.31 131 84 103

S 0 0 3 0.01 0.00 0.01 0.03 0.04 0.26 0.05 0.18 0.01 0.01 0.02

y 3.70 1.83 2.95 1.40 2.81 1.48 0 .59 1.59 3.43 2.11 1 93 2.01

C V 0.86 0.74 0.00 1.03 1.08 3.03 4 5 .1 0 3.14 5.32 0.52 0 2 6 1.13
p 1 71 1 4 9 0 0 0 2 0 7 2.17 6.07 90  19 6 2 9 10.64 1.03 0.53 2 2 6
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Figure 5.2 Plots showing results of replicate analysis of major, minor and trace 

elements for 5 replicates (sub-samples) from CBAC150 32-33m in the Hermidale area.
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Figure 5.3 Correlation between duplicate and original element concentrations in the 

regolith of the Girilambone region shows a high correlation coefficient, r = 0.98. Data 

are in ppm unless are nominated.

5.7 DETECTION LIMIT

The limit of detection is the lowest concentration, which can be measured by a specific 

analytical method and is a function of the level of background noise relative to an 

element signal (Norrish and Chappell, 1967). This value varies greatly from one 

method to another and from one matrix (host rock material) to another (Levinson, 

1974). The data less than the detection limit are known as left censored data (Last, 

1988). Investigators apply various strategies to estimate values below the detection 

limit (DL), including replacement of measurements below a DL with a single value, for 

example DL, DL/2 or D1/V2 (Helsel, 1990; Homung and Reed, 1990). If the 

distribution of measured data is log- normal, then the expected values of the missing 

measurement are conditional on being less than the DL (Gleit, 1985).

In general, censoring means that observations at one or both extremes are not available 

(Gleit, 1985). If censored data make up more than about 30%, the application of 

parametric statistics may lead to unreliable results (Lubin et al., 2004). For less than 

30%, a common and acceptable practice is for them to be converted to the value of half
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of the detection limit (e.g. Ellis and Gilbert, 1980; Grunsky and Smee, 1999). This 

method is widely used, but has no theoretical basis (Helsel, 1990). DL/2 was used as an  

average value between the DL value and zero (Gleit, 1985). In this study, elements with 

> 30% censored values are excluded from statistical analysis, whereas those with <30%d 

are replaced by half of the detection limit.

5.8 CLUSTER ANALYSIS

The cluster analysis method divides a large number of objects into a smaller number o f  

homogeneous groups on the basis of correlation structure (Hartigan, 1975). As an 

explorative technique, cluster analysis provides a description of a reduction in the 

dimension of the data. It classifies a set of observations into two or more mutually 

exclusive unknown groups based on combinations of many variables. This analysis has 

been used to group geological records (Hesp and Rigby, 1975; Guerzoni et al., 1996; 

Goncalves, 1998; Maerz and Zhou, 1999; Bucker et al., 2000; Edwards et al., 2000; 

Jerram and Cheadle, 2000; Zhou and Maerz, 2001), identify regional seismic events 

(Young et al., 2001), group geochemical data (Roy, 1981; Goncalves and Ewert, 

1998;Whiticar and Harris, 2000; Hwang et al., 2001; Lee et al., 2001; Zhang and Lalor, 

2003; Reinders et al., 2003), and recognise the relationship of constituents and 

geochemical associations (Baudo et al., 2000; Peruzzo and Busa, 2000; Popov, 2002) 

and of background and contamination levels (Salman and Rukah, 1999; Hwang et al., 

2001) .

The purpose of cluster analysis is to assemble observations into relatively homogenous 

groups or “clusters”, the members of which are at once alike and unlike members of 

other groups. Clustering procedures can be classified into partitioning methods, 

arbitrary origin methods, mutual similarity procedures and hierarchical clustering 

(Davis, 2002). The hierarchical clustering techniques are most widely applied in the 

earth sciences, probably because their development has been closely linked with 

numerical categorisation of geological data.

Methods of hierarchical cluster analysis follow a prescribed set of steps as follows (e.g., 

Davis, 2002):
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• collecting a data matrix whose columns stand for the objects (samples) to b e  

cluster-analysed and whose rows are the attributes that describe the objects 

(variables);

• optionally standardising the data matrix; and

• using the standardised data matrix to compute the values of resemblance 

coefficients and measure the similarities among all pairs of variables and objects, 

which results in a diagram called a tree, or dendrogram, that shows the hierarchy o f  

similarities among all pairs of variables and objects.

5.8.1 AMALGAMATION OR LINKAGE RULES

At each step of the hierarchical process, the value of an objective function or clustering 

criterion must be computed to determine which two groups are to be joined. The 

objective function is usually based on a measure of proximity between groups. In other 

words it is necessary to identify a linkage or amalgamation rule to determine when two 

clusters are sufficiently similar to be linked together. The common linkage methods 

(e.g., Sokal and Sneath, 1963; Johnson and Wichem, 1982; Davis, 2002) can be 

summarised as follows:

• single linkage (nearest neighbor);

• complete linkage (furthest neighbor);

• unweighted pair-group method using arithmetic averages (UPGMA);

• weighted pair-group method using arithmetic averages (WPGMA);

• unweighted pair-group method using the centroid average (UPGMC);

• weighted pair-group method using the centroid average (WPGMC); and

• Ward’s method.

In this study, Ward’s method (Ward, 1963) is used to identify the linkage between 

clusters. This method consists of using the analysis of variance approach to evaluate the 

distance between clusters by minimizing the sum of squares of any two hypothetical 

clusters that can be formed at each step. The advantages of this technique are i) any 

coherent group will not split among different categories, ii) the methodology readily 

allows consideration of all variables and iii) the boundaries between clusters fall, by 

definition, in regions of multivariate space where there are few points. If this
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subdivision results from geological processes, the boundaries would be natura.] 

(Guerzoni et al., 1996).

5.8.2 DISTANCE MEASURES

The joining or tree clustering method uses the dissimilarities (similarities) or distances 

between objects when forming the clusters. Similarities are a set of rules that serve a s  

criteria for grouping or separating items. These distances (similarities) can be based on 

a single dimension or multiple dimensions, with each dimension representing a rule o r  

condition for grouping objects. Different types of distance measures are summarised in 

Table 5.2 (StatSoft, 2004).

Table 5.2 Types of distance measures, p and r values are defined by user. Xi and Yi the 

coordinates of the objects X and Y.

Distance Expressions
Euclidean VX (x,-y,V
Squared Euclidean X (xi -yi)2
Manhattan X 1 Xj -yd
Chebychev Max | X; -yd

Power WX (x,-y,)p

In this study the Euclidean distance, the most straightforward way of computing 

distances between objects in a multi-dimensional space, was used to calculate the 

distances between clusters. This is probably the most commonly used measure of 

similarity between objects in a standardised m-space (Davis, 2002). The distance 

coefficient is the geometric distance in the multidimensional space and it is computed 

as:

d(X,y )=  (XiCXi-yd2 }1/2

Where x,- denotes the variable measured on object x and y,- is the variable measured on 

object y and the d(Xiy) is the distance between object x and object y.

The advantage of this method is that the distance between any two objects is not 

affected by the addition of new objects to the analysis, which may be outliers.
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However, the distances can be greatly affected by differences in scale among the 

dimensions from which the distances are computed. Therefore the data must be 

standardised by subtracting the column means and dividing by the column standard 

deviation prior to computing distance measurements (Davis, 2002). This ensures that 

each variable is weighted equally. Otherwise, the distance will be influenced most 

strongly by the variable that has the greatest magnitude.

5.9 PRINCIPAL COMPONENT ANALYSIS

Principal component analysis (PCA) is a data reduction technique designed to reduce a 

large number of variables to a small set of underlying components that summarise the 

essential information contained in the variables. A number of steps comprise the PCA 

procedure. These are computation of the correlation matrix (to determine the 

appropriateness of the factor (component) analytical model, component extraction (to 

determine the number of components that are necessary to represent the data and 

rotation (to make the component structure more interpretable; Coakes and Steed, 2001).

PCA uses measures of association such as covariances or correlations to produce the 

principal component (Cohen, 2001). However, selecting the association is important in 

PCA because elemental association that is defined by covariance is possibly affected by 

the scale of measurement values (ppm vs weight % data). This means elements with 

large scale and large numerical values will dominate the variance-covariance matrix 

from which PCA results are generated. The correlation matrix is not affected by scale 

and is actually the standardised equivalent of the covariance matrix therefore all 

elements are equally represented in the correlation matrix. In this study the correlation 

matrix is used for all PCA association. The statistical background and the procedure of 

PCA are summarised in Coakes and Steed (2001) and Davis (2002).

5.10 SUMMARY AND CONCLUSIONS

The most useful steps in data inspection and analysis are found to be:

• Displaying data using exploratory data analysis methods (Histogram, Boxplot) and 

separating extreme or outlying values of elements as a subset of the data.
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• Examining the normality of the data by plotting the data against the normal sco re  

using the quartile-quartile diagram. This showed that the Girilambone regolith 

geochemical data are neither normal nor lognormal. Therefore, to closely norm alise 

these data, the outliers and data with >30% of their values below detection limit a re  

excluded in CA and PCA.

• Determining the accuracy and precision of the data by graphical plotting an d  

computing the coefficient of variation (CV) and the relative standard deviation. T h e  

graphical method of determining precision is more reliable particularly for sm all 

number of replicates.

• Applying multivariate cluster and principal component analyses to group the  

geochemical variables.
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6. CHAPTER SIX: GEOCHEMICAL BACKGROUND, 
ANOMALIES AND ELEMENT ASSOCIATIONS

6.1 DEFINITIONS AND METHODOLOGY

6.1.1 INTRODUCTION

One of the major objectives of this regional geochemical study is to establish the 

normal or background variations of elements used in geochemical exploration in this 

area of ancient and complex regolith cover. This chapter describes the concept and 

definition of the term “background” and the approach used to estimate the geochemical 

backgrounds and anomalies of elements in the top metre, transported and in situ units o f 

regolith in the Girilambone region. The chapter also defines element associations based 

on statistical calculation of the distance similarity coefficient between these elements 

using cluster analysis. These element associations are further investigated by principal 

component analysis.

6.1.2 DEFINITIONS (BACKGROUND, THRESHOLD, AND ANOMALY)

The geochemical background is the normal range of concentration for an element or 

elements in an area excluding mineralised samples (Levinson, 1974). By definition, a 

geochemical anomaly is a deviation from the norm and is a departure from the 

geochemical patterns that are normal for a given area or geochemical landscape. To 

differentiate between background and anomaly, the term threshold is introduced. The 

threshold is the upper limit of normal background values (Levinson, 1974). Threshold 

values, like background values, vary for each element in each rock type, and in each 

area. Values higher than the threshold are considered anomalous and worthy of cautious 

inspection. The problem with defining the background is identifying what is the normal 

range or abundance. In other words what is the geochemical meaning of the words 

“normal range” and how can it be recognised?

Several rules of thumb have been proposed to identify the background and anomalous 

values. Hawkes and Webb (1962) suggested the best approximation for a single 

population of values (one element from one type of rock) is to take the median value as
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background, the mean plus twice the standard deviation as threshold and to consider 

only the highest 2.5 percent as anomalous (or above the threshold). Boyle (1971 ) 

suggested samples that contain an amount of element twice the background, or more, 

are generally considered anomalous.

6.1.3 TECHNIQUES USED TO DETERMINE THE BACKGROUND AND  
ANOMALY

Hawkes and Webb (1962) and Levinson (1974) suggest the following techniques for 

estimating the background and anomaly values:

• In an area of known mineral occurrences, carrying out an orientation survey around 

and away from the mineral occurrence(s) and plotting the data of element 

concentration as a map, histograms and/or cumulative frequency plots, and 

selecting a value that differentiates mineral occurrence-related data from the 

remainder;

• In the common, often unavoidable absence of orientation information (in non/or 

weakly mineralised sites with a thick weathering profile) and/or reliable data from 

the literature, it is necessary to examine the data themselves for unusual behaviour 

(Chen et al., 1998) and this leads to the concept of the statistical anomaly. Various 

ways of identifying such anomalies are described below.

6.1.4 EVALUATION OF THE STATISTICAL TECHNIQUES

The widely used statistical techniques to estimate threshold values are briefly 

summarised below.

1. METHOD OF MEAN PLUS TWO STANDARD DEVIATION (M+2S)

This method of selecting threshold values is still used, but is probably not appropriate 

in many situations. It involves calculating the arithmetic mean (M) and standard 

deviation (S) of the data set and applying the classification “anomalous” to values 

exceeding M+2S. The use of the mean plus two standard deviations is not based on 

some fundamental relationship to mineralisation (Chen et al., 1998). It is merely 

equivalent, in a normal, unskewed distribution to the 97.5 percentile. Although it is 

difficult to transform the geochemical data to a typical normal distribution, the use of
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this parameter as a threshold is equivalent to selecting the uppermost 2.5 percent of an3 / 

sample population. This method of deriving the 97.5 percentile was developed before 

computers were widely available and summary statistics for large populations o-f 

analytical values took a long time to process.

2. MEDIAN + 2 MEDIAN ABSOLUTE DEVIATION (MAD) METHOD

Starting geochemical data analysis with statistical tests based on assumptions o f  

normality, independence and identical distribution may not be warranted, therefore 

using the median + 2 Median Absolute Deviation (MAD) is an alternate more robust 

analogy to M + 2S. In the median + 2MAD method the arithmetic mean is replaced by  

the median and the standard deviation by the median absolute deviation (MAD), 

defined as the median of the absolute deviations from the median of all data (Tukey, 

1977). This method is strongly dependent on the lowest threshold value (median value) 

(Levinson, 1974) without statistical assumptions. Also when a summary value is 

desired that is not strongly influenced by a few extreme observations (outliers), the 

median is preferable to the mean (Helsel and Hirsch, 1992). The mean value in 

(mean+2S) is possibly pulled towards the outliers (becoming higher), whereas the 

median is resistant to the effect of a change in value in the presence of outlying 

observations. This method is useful when the data contains less than 10% outliers 

(Reimann et al., 2005).

3. BOXPLOT METHOD

The boxplot method was explained in detail in Chapter 4. In this approach the 

calculation of the threshold value is based on the quartile and interquartile range of the 

data as 1.5 times the interquartile range (IQR=Q3-Q1) away from the top (upper hinge) 

or bottom (lower hinge) of the box respectively. This boxplot method is the most 

powerful as long as the outliers comprise less than 15% of the data set (Reimann et al., 

2005).

In this study the boxplot and median +2 MAD techniques are applied to calculate the 

geochemical threshold of the different regolith (top metre, transported and in situ) units 

because the preliminary inspection of the studied data showed that the outlier values are 

less than 15%. The identified thresholds were plotted along the studied traverses to
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show how the value of the threshold varies for a single element in different regolitTi 

units of the study areas.

6.2 REGOLITH UNITS AND GEOCHEMICAL BACKGROUNDS, 
THRESHOLDS AND ANOMALIES

6.2.1 INTRODUCTION

In the study area the regolith can be conveniently divided in to three basic types:

• the top metre (largely comprising soil in most of the area);

• transported ; and

• in situ (residual).

The top metre samples from drilling have been used to understand the geochemical 

signature of element associations and the nature and the pattern of element dispersion in 

the surface and near-surface environments. Generally the material of the top metre has 

a homogenous appearance. It consists of silty red-brown clay with pebbles, patches of 

organic substances and regolith carbonate, that if present occurs in the second half 

metre. The known soil horizons are uncertain and difficult to establish. The soil types in 

the Girilambone area have been classified as solonised brown, solodic, red brown 

earths and red calcareous and non-calcareous earths (e.g., Cohen et al., 1998). Soils 

have been widely used as sampling media for geochemical exploration in the Cobar 

area (Cohen et al., 1998; Cairns et al., 2001; Scott, 2002).

Transported regolith can be recognised from visual observation and Portable Infrared 

Mineral Analysis (PIMA) spectra variations. Identification of clay minerals and the 

kaolinite crystallinity index were used to define the unconformity between transported 

regolith that contains kaolinite ± illite ± smectite and in situ regolith, which is 

characterised by highly crystalline kaolinite associated with muscovite/ phengite ± illite 

± smectite (Chan et al., 2002; 2004). The depth of transported regolith varies in the 

study area. It extends to at least 66 m depth in the Byrock region, 35 m in the Sussex 

region and 42 m in the Hermidale region (Figures 6.1 A-C).

Cyclic leaching of trace elements during weathering, aeolian contamination of fine 

fractions and the thick transported regolith profile all have the potential to dilute
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Figure 6.1 Summary profiles of thickness of transported and in situ regolith in the

Byrock (A), Sussex (B) and Hermidale (C) areas. D rill holes locations in the Sussex,

Hermidale and Byrock areas are shown in Figures (3.6-8).
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geochemical anomalies. To detect these weaker anomalies it is important to understand 

the behaviour of pathfinder elements during chemical weathering and soil formation. 

Grouping these elements according to their occurrences and geochemical behaviours 

(e.g., mobility of elements) can enhance detection of weaker anomalies and improve 

inteipretation.

The regolith (top metre, transported and in situ) samples were also classified into 

different regolith facies based on their main secondary enrichments produced during 

weathering. These include a clay-silt-gravel facies (without any enrichment of CaO, 

MgO, Fe203  or MnO), regolith carbonate facies (CaO and MgO are > 1% wt %), iron- 

dominant facies (Fe2Ü3 total >8.5 wt %) and relatively manganese-dominant facies 

(MnO >0.1 wt %). The concentration levels are arbitrarily chosen based on comparing 

the chemical analysis with petrographic description of the samples (Appendix 7).

6.2.2 BACKGROUND AND THRESHOLD VALUES

Most of the area covered in this study is only weakly mineralised or totally 

unmineralised. It thus provides an opportunity to establish typical background values 

for elements of interest and threshold values for anomalies generated by regolith- 

forming processes. Composite samples of the top metre, transported and in situ regolith 

are used to recognise regional backgrounds, anomalies and local geochemical 

associations of elements. Elements that have more than 30% of their values below the 

detection limits (BDL) were excluded or treated separately.

The threshold values of the Au, As, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn are summarised 

in Table 6.1. These elements were selected because of their exploration importance as 

“pathfinders” for ore deposits (e.g. Levinson, 1974). Generally the estimated threshold 

values derived from the MAD method are less than those for the boxplot method (Table 

6.1), which probably represent the minimum threshold values.

6.2.2.1 ELEMENT THRESHOLDS FOR THE TOP METRE

Background concentrations of elements in the surface and near-surface pedogenic 

environments are primarily influenced by soil forming factors (Davies and Wixson, 

1987). The apparent geochemical patterns and elemental composition of different soils
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have been attributed to the effects of climate on soil formation (Chen et al., 1999) ancd 

degree of weathering (Holmgren et al., 1993). Parent materials and secondary 

enrichment of carbonate (calcrete), iron oxides and manganese oxides during duricru&t 

formation are also major factors influencing elemental association and background 

levels (Pierce et al., 1982; Ames and Prych, 1995; Taylor and Eggleton, 2001). Other 

factors, such as agricultural and industrial activities also influence elementa.1 

concentrations in the near-surface regolith.

Two facies were recognised in the top meter of regolith. These are a clay-silt-gravel 

facies and regolith carbonate facies. The threshold values for As (20 ppm and 27 ppm, 

MAD method and boxplot method respectively), Cu (30 ppm and 38 ppm), Ni (36 ppm 

and 41 ppm), Pb (40 ppm and 82.5 ppm), and Zn (91 ppm and 99 ppm) are significantly 

higher in the carbonate facies compared to the clay gravel facies (Table 6.1). This 

possibly indicates that the regolith carbonate facies has higher potential to accumulate 

these elements. However, these differences in the background levels must be treated 

cautiously because they are possibly influenced by a small number of the regolith 

carbonate samples. Gold has approximately equal threshold values in the clay-gravel 

facies (0.004-0.006 ppm) and in the carbonate-rich facies (0.004 ppm). Threshold 

concentrations of Cr are higher in the clay-gravel facies (90 ppm and 116 ppm, Table 

6 . 1).

6.2.2.2 ELEMENT THRESHOLDS FOR THE TRANSPORTED REGOLITH

Three regolith facies are recognised in the transported regolith. These are clay-silt- 

gravel, regolith carbonate and iron-rich facies. Comparative statistical data of element 

thresholds for these facies (Table 6.1) show that Au threshold values are approximately 

equal 0.004 ppm in all three, increasing to 0.006 ppm in the regolith carbonate facies. 

Also Ni, Mo, Sb and Zn threshold ranges are higher in regolith carbonate, which 

indicates that regolith carbonate is an appropriate facies to accommodate these 

elements.

Generally the iron-rich facies is characterised by higher thresholds for As, Cr, Pb, V 

and W. This reflects the occurrence of iron oxide minerals (e.g., goethite, hematite) that 

are characterised by high element absorption (scavenging) capacity. No significant 

differences are observed in Co threshold values.
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Table 6.1 Threshold values of elements estimated by Median+2MAD and Boxplot 

methods for clay-silt-gravel, regolith carbonate, Fe-rich and Mn-rich facies of the top

metre, transported and in situ regolith units.
R E G O .U N I T /  F A C I E S S ta tis tica l e s tim a tio n A u p p m A s  p p m C o  p p m Cr p p m C u  p p m Mo p p m Mi p p m P b  p p m S b  p p m V  p p m W  p p m Z n p p i m

T O P  M E T R E

C la y - S i l t - G r a v e l N u m b e r o f  s a m p le s 97 8 3 1 4 5 1 88 1 8 8 1 4 9 1 8 8 1 3 7 11 7 1 8 8 1 0 6 1 8 8

M edian+ 2M A D 0 .0 0 4 1 7 .0 1 3 .0 9 0 .0 3 0 .0 2 .3 3 2 .0 3 4 .0 1.9 1 1 2 .0 4 .4 5 9 . 5

3 rd Q + 1 .5 IQ R 0 .0 0 6 2 1 .3 1 4 .5 1 1 6 .0 3 8 .5 6 .5 4 0 .5 4 5 .0 3 .6 1 3 9 .6 6 .9 7 7 . 4

R e g o l i t h  c a r b o n a t e N u m b e r  o f  s a m p le s 9 9 9 9 9 9 9 9 9

M edian+ 2M A D 0 .0 0 4 2 0 .0 8 0 .0 3 0 .0 1.7 3 6 .0 4 0 .0 1 1 6 .0 9 1 . 0

3 rd Q + 1 .5 IQ R 0 .0 0 4 2 7 .5 8 5 .0 3 9 .5 3 .5 4 1 .0 8 2 .5 1 4 7 .0 9 9 . 0

T R A N S P O R T E D

C la y - S i l t - G r a v e l N u m b e r o f  s a m p le s 2 7 2 2 8 4 4 8 4 5 8 9 5 8 9 5 8 9 5 8 9 4 1 8 2 9 6 5 8 9 2 7 4 5 8 9

M edian+ 2M A D 0 .0 0 4 1 7 .0 1 0 .0 7 7 .0 2 3 .0 1.4 3 0 .0 3 0 .0 2 .0 1 0 6 .0 4 .6 4 5 . 0

3 rd Q + 1 .5 IQ R 0 .0 0 4 2 0 .5 1 6 .5 1 0 7 .5 3 3 .5 6 .5 4 2 .0 3 9 .0 2 .8 1 3 8 .0 6 .9 6 6 . 5

R e g o l i t h  c a r b o n a t e N u m b e r o f  s a m p le s 4 2 7 7 8 2 9 2 9 2 7 0 9 2 6 3 5 0 9 2 3 8 9 2

M edian+ 2M A D 0 .0 0 4 1 7 .0 1 3 .0 7 3 .0 2 3 .0 3 .9 3 3 .0 2 8 .0 2.1 1 0 7 .0 3 .9 5 3 . 0

3 rd Q + 1 .5 IQ R 0 .0 0 6 2 5 .0 1 6 .0 9 6 .5 3 0 .5 8 .2 4 4 .5 5 1 .5 10 .8 1 4 4 .0 5 .5 6 7 . 3

F e - r ic h N u m b e r o f  s a m p le s 6 0 1 4 0 9 5 1 4 0 1 4 0 1 4 0 1 2 7 1 2 3 111 1 4 0 1 0 6 1 4 0

M edian+ 2M A D 0 .0 0 1 2 7 .0 1 1 .0 1 5 6 .0 2 4 .0 2 .6 2 6 .0 3 9 .0 5 .6 2 1 6 .0 5 .9 4 4 . 0

3 rd Q + 1 .5 IQ R 0 .0 0 4 4 0 .0 1 5 .0 2 1 7 .0 3 3 .0 6 .2 3 5 .0 6 2 .8 9 .6 3 0 3 .5 9 .2 6 3 . 5

I N  S I T U

C la y - S i l t - G r a v e l N u m b e r  o f  s a m p le s 5 4 5 7 3 5 5 7 0 1 2 9 2 1 2 9 2 1 0 4 6 1 2 9 2 1031 7 0 5 1 2 9 2 6 61 1 2 9 2

M edian+ 2M A D 0 .0 0 4 2 0 .0 1 0 .0 9 4 .0 3 7 .0 2 .2 3 4 .0 4 4 .0 2 .9 1 2 7 .0 6 .2 8 1 . 0

3 rd Q + 1 .5 IQ R 0 .0 1 1 2 7 .5 1 9 .5 1 3 5 .0 5 0 .5 6 .5 4 8 .0 6 9 .5 5 .4 1 7 0 .5 9 .9 1 2 0 . 0

R e g o l i t h  c a r b o n a t e N u m b e r  o f  s a m p le s 1 2 8 1 8 5 121 3 1 0 3 1 0 2 6 3 3 1 0 2 0 3 211 3 1 0 1 8 9 3 1 0

M edian+ 2M A D 0 .0 0 4 1 9 .0 1 1 .0 8 9 .0 3 4 .0 1.8 2 7 .0 4 9 .0 2 .9 1 3 3 .0 5.1 7 2 . 0

3 rd Q + 1 .5 IQ R 0 .0 0 9 2 8 .5 1 4 .5 1 1 5 .4 4 8 .0 4 .3 3 8 .0 8 4 .5 4 .8 170.1 6 .5 1 1 4 .5

F e - r i c h N u m b e r o f  s a m p le s 41 8 6 38 91 91 8 7 91 71 5 3 91 5 2 91

M edian+ 2M A D 0 .0 0 4 2 6 .0 1 2 .0 1 3 2 .0 4 7 .0 2 .0 3 1 .0 5 4 .0 4.1 2 0 8 .0 6 .4 1 0 7 .0

3 r d 0 + 1 .5 I Q R 0 .0 0 9 3 7 .0 1 8 .6 1 8 3 .8 6 5 .0 4 .0 4 1 .0 8 6 .8 5 .4 3 0 4 .6 9 .9 1 6 1 .4

Mn-rich N u m b e r  o f  s a m p le s 6 9 6 7 81 81 81 81 81 81 81

M ed ian+ 2M A D 0 .0 1 1 2 1 .0 3 7 .0 9 2 .0 6 2 .0 8 0 .0 5 1 .0 2 0 .0 1 7 2 .0

3 rd Q + 1 .5 IQ R 0 .0 2 2 7 .0 1 6 0 .0 1 2 3 .5 8 7 .0 1 1 8 .0 6 6 .5 1 1 7 .0 2 5 5 .5

6.2.2.3 ELEMENT THRESHOLDS FOR THE IN SITU REGOLITH

In situ regolith consists of clay-silt, regolith carbonate, iron and manganese- rich facies. 

The in situ regolith is characterised by high abundances of Au, Co, Cu, Ni, Pb, V, W 

and Zn compared to the top metre and transported regolith. This is probably related to 

reduced dispersion and dilution in the in situ regolith.

The higher threshold for Au (0.11-0.02 ppm), in addition to Co, Ni, Cu and Zn, in the 

Mn-rich facies could be related to either high concentrations of these elements within 

Mn-rich parent rocks or their scavenging by Mn oxide during the weathering process. 

The highest threshold values for Cr, As and V were recorded in the Fe- rich facies. The 

abundance of Cr, V and Fe probably reflects their concentration in iron oxide minerals.
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6.3 GEOCHEMICAL ANOMALIES

Discriminating between ore-related and regional background anomalies is difficult and 

often requires intensive, expensive and unrewarding fieldwork. However, a sufficient 

amount of geological and geochemical information obtained through a major drilling 

program will assist in following the anomalies in the third dimension (downhole) and 

evaluating sampling media and the exploration approach. The threshold values obtained 

from the MAD and boxpot methods were used to assess possible anomalous values o f  

elements. Some observed values of the top metre samples are significantly greater than 

the boxplot threshold values and therefore are considered as anomalies. These samples 

are separated into sub-data sets for additional investigation down the regolith profile.

6.3.1 ANOMALIES IN THE TOP METRE

6.3.1.1 ANOMALIES IN THE CLAY-SILT-GRAVEL FACIES

The anomalous concentration range of elements in the top metre, clay-silt-gravel facies 

samples are as follows: Au 0.007-0.027 ppm, Co 15-22 ppm, Cr 126-130 ppm, Cu 40- 

232 ppm, Mo 7-12 ppm, Ni 42-73 ppm, Pb 48-160 ppm, Sb 3.9-11 ppm, V 143-151 

ppm, W 7.1-10.4 ppm and Zn 71-128 ppm (Appendix 7). No anomalous values have 

found for As. Elevated values (> boxplot threshold) of Au were detected from drill 

holes CBAC6, 32, 112 and 239, Co from CBAC3, 10, 45, 177, 201 and 204, Cr from 

CBAC 23, and 231, Mo from CBAC 15, 189, 193, 199, 200, 204, 209, 211, 223, 229, 

231 and 232, Ni from CBAC 22-25, 166, 189 and 242, Pb from CBAC 6, 43, 60, 82, 

85, 86, 88, 105, 115 and 188, Sb from CBAC 82, 139, 140, 149, 151, 152, 157, 159, 

161, 162, 164, 172, and 177, V from CBAC 5 and 82, W from CBAC79, 85, 104, 106, 

107 and 116 and Zn from CBAC1, 8, 10, 39, 68, 96, 104, 105, and 117. (Figures 6.2- 

12, Appendix 7).

Gold anomalies are not associated with any other element except Cu (53 ppm) and Pb 

(74 ppm) in drill hole CBAC6. Copper anomalies are accompanied by elevated Zn 

values in drill holes CBAC1, 96, and 117. High Cu concentrations are associated with 

elevated Mo in drill hole CBAC15 and elevated Sb in drill hole CBAC139. Elevated Zn 

values were observed in drill holes CBAC104-106. A significant enrichment of Ni is 

recorded from drill holes CBAC22-25 (Figure 6.7, Appendix 7).
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6.3.1.2 ANOMALIES IN THE REGOLITH CARBONATE FACIES

The regolith carbonate facies in the top metre displays anomalies in two drill holes, 

CBAC 191 and 192. Anomalies for Cr (95 ppm) and Mo (13 ppm) occur in CBAC192. 

Elevated Mo (4 ppm) was detected in CBAC191 (Figure 6.13, Appendix 7).

6.3.2 ANOMALIES IN TRANSPORTED REGOLITH

6.3.2.1 ANOMALIES IN THE CLAY-SILT-GRAVEL FACIES

The clay-silt-gravel facies of the transported regolith shows Au anomalies (0.005-0.098 

ppm) concentrated in the central and southern part of the region (Sussex-Hermidale 

areas). These anomalies do not have associated As anomalies except in drill hole 

CBAC64, where the elevated Au (0.005 ppm) is associated with elevated As (24 ppm) 

and Co (25 ppm). Gold anomalies are associated with elevated Cr (115ppm) in drill
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Figure 6.2 Distribution pattern of Au anomalies with MAD and boxplot (BOX) 

threshold values (A) and a thematic map of anomalous Au in the top metre clay-silt- 

gravel facies (B).
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threshold values (A) and a thematic map of anomalous Cu in the top metre clay-silt- 
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threshold values (A) and a thematic map of anomalous V in the top metre clay-silt- 
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threshold values (A) and a thematic map of anomalous Zn in the top metre clay-silt- 
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Figure 6.13 Anomalies in Cr and Mo for the regolith carbonate facies in the top metre 

samples from drill holes CBAC191 and CBAC 92.

hole CBAC29 and with elevated Cu (38 ppm) in drill hole CBAC 157. Copper 

anomalies were also detected from the Sussex and Hermidale areas and range from 31 

ppm to 257 ppm. Elevated Cu values are occur in drill holes CBAC1 (257 ppm ) and 

CBAC153 (162 ppm ).

Anomalous Cu values are associated with elevated Zn in drill holes CBAC 68, 101, 

117, 121 and 124, and with elevated Pb in drill holes CBAC93 and CBAC227. In 

addition, anomalous Pb is associated with Cr and Ni anomalies in drill holes CBAC224, 

225 and 237. Elevated Cr and Ni probably reflect the presence of weathered mafic 

rocks and elevated Pb could reflect the greater abundance of iron oxides (i.e., hematite) 

at these sites. Anomalous concentrations of Pb are widely spread over the study area
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with notable concentration in the north. The highest anomalous value for Pb (406 ppm ) 

is in drill hole CBAC241 (Tables 6.2,3).

63.2.2 ANOMALIES IN THE REGOLITH CARBONATE FACIES

The regolith carbonate facies of the transported regolith is characterised by a number o f  

Au anomalies (Figure 6.14). This gold is not associated with any gold pathfinder 

elements. Copper anomalies were recorded from drill holes CBAC 20 (52 ppm) and 

CBAC184 (34 ppm associated with As). Drill hole CBAC 162 shows elevated Zn (84- 

ppm) with elevated Sb (11 ppm). Lead anomalies occur in drill holes CBAC228, 

CBAC218 and CBAC242 (52 ppm, 57 ppm and 87 ppm respectively) and are not 

associated within other element anomalies. A single chromium anomaly (106 ppm) was 

recorded in drill hole CBAC231 (Figure 6.14, Appendix 7).

6.3.2.3 ANOMALIES IN THE IRON- RICH FACIES

The iron-rich facies of the transported regolith is characterised by a number of Au 

anomalous values ranges from 0.007 ppm to 0.026 ppm. Elevated Au (>0.01 ppm) 

values were recorded from CBAC 103 and CBAC 143. These anomalies are not 

associated with anomalous values of other elements. Elevated values of As, Cr, Pb, Sb 

and V were observed in CBAC80. Associated Cu and Zn anomalies were observed in 

CBAC81 (with Au and Ni) and CBAC223 (with Ni). An additional Zn anomaly is also 

detected from CBAC207 (Figure 6.15 Appendix 7).

6.3.3 ANOMALIES IN THE IN SITU REGOLITH 

6.3.3.1 CLAY-SILT-GRAVEL FACIES

The clay-silt-gravel facies of the in situ regolith contains elevated Au concentrations in 

drill holes CBAC 63, 157, 188-191 and 217-220. Anomalous Au values are also occur 

in drill holes CBAC122, 123, 142, 161, 185 (with Co, Sb, W), 195, 199, 211, 238 (with 

Zn) and 243 (with W). Anomalous Cu is widespread in the area, without any significant 

correlation with any other element except Zn in drill hole CBAC 167. Elevated values 

of Cu are present in drill holes CBAC1, 7, 37, 50, 80, 115, 116, 119 (with Co, Ni, Zn), 

121, 122, 125, 139,143, 155, 168, 171, 177, 195, 205 and 243 (with V). Additional Zn
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Table 6.2 Anomalies of As, Au, Co, Cr, Cu, Ni, Pb, V, and Zn from the transported clay- 

silt-gravel facies of the Sussex and Hermidale areas.
S o u rce H ole_N o from (m) to (m) As ppm  Au ppm C o  ppm C r ppm C u pp m Ni p p m P b  ppm S b  ppm V ppm W  ppm Zn p p o n - ,
S u sse x C BA C1 2 3 257 3 20
S u sse x C B A C 7 1 2 35
S u sse x C B A C 14 3 4 34 3 20 248
S u sse x C B A C 15 3 3 5 7 0
S u sse x C B A C 18 3 4 17 0
S u s se x C B A C 18 8 9 110 3 0 0 183
S u sse x C B A C 20 1 2 38
S u sse x C B A C 22 1 2 50
S u sse x C B A C 22 4 5 44
S u sse x C B A C 22 5 6 51
S u sse x C B A C 22 9 10 115
S u sse x C B A C 22 10 11 i 44
S u sse x C B A C 22 11 12 4 3
S u sse x C B A C 22 20 24 21
S u sse x C B A C 23 1 2 55
S u sse x C B A C 23 5 6 4 6
S u sse x C B A C 23 6 7 4 2
S u sse x C B A C 23 7 8 110 46
S u sse x C B A C 29 16 20 0 0 18 115 158
S u sse x C B A C 30 8 9 10.5
S u sse x C B A C 46 3 4 7 9
S u sse x C B A C 52 5 6 0 .024
S u sse x C B A C 52 9 10 0 .0 1 2
S u sse x C B A C 53 10 11 0 .0 0 5
S u sse x C B A C 63 1 2 0 0 9 8
S u sse x C B A C 64 1 2 24 0  0 05 2 5  0
S u sse x C B A C 65 2 3 0 0 05
S u sse x C B A C 67 2 3 8 0
S u sse x C B A C 68 1 2 3 5 81 O
S u sse x C B A C 72 1 2 32
S u sse x C B A C 73 1 2 166
S u sse x C B A C 73 2 3 67 O
S u sse x C B A C 74 1 2 42
S u sse x C B A C 74 18 24 0 007
S u sse x C B A C 74 24 30 0 0 0 5
S u sse x C B A C 76 5 6 0 01 1
S u sse x C B A C 77 1 2 2 02
S u sse x C B A C 78 4 5 31
S u sse x C B A C 7 8 5 6 2 0  0
S u sse x C B A C 78 8 9 3 6
S u sse x C B A C 7 8 12 18 32
S u sse x C B A C 8 0 1 2 8 6  O
S u sse x C B A C 83 1 2 34
S u sse x C B A C 8 4 1 2 2 90
S u sse x C B A C 92 1 2 3 9
S u sse x C B A C 93 1 2 4 4 92
S u sse x C B A C 93 5 6 34
S u sse x C B A C 94 3 4 0 .0 0 5
S u sse x C B A C 99 1 2 4 0
S u sse x C B A C 1 0 0 1 2 0 0 0 5 121 O
S u sse x C B  AC 101 1 2 41 148 7.1 97 O
S u sse x C B A C 1 0 2 1 2 142
S u sse x C B A C 1 0 3 1 2 7 3
S u sse x C B A C 1 0 4 1 2 77 O
S u sse x C B A C 1 0 4 9 10 3 0 0 8 3
S u s se x C B A C 1 0 5 1 2 4 0
S u sse x C B A C 1 0 5 11 12
S u s se x C B A C 1 0 6 1 2 50 13 7
S u s se x C B A C 1 1 6 1 2 12 6
S u s se x C B A C 1 1 7 1 2 54 86  0
S u s se x C B A C 121 1 2 4 9 10 0 79 0
S u s se x C B A C 1 2 4 1 2 3 9 8.5 8 0  0
S u s se x C B A C 1 2 6 1 2 60
S u s se x C B A C 1 2 8 4 5 4 0
S u s se x C B A C 1 3 7 4 5 7 4
S u s se x C B A C 1 3 8 7 8 11.4
S u sse x C B A C 1 3 8 9 10 9 9
S u s se x C B A C 1 3 8 10 1 1 0  0 2 6

H erm ida le C B A C 1 4 6 3 4 6 0 0
H erm ida le C B A C 1 4 6 6 7 7 0 0
H erm ida le C B A C 1 4 8 3 4 11 0 0
H erm id a le C B A C 1 4 8 5 6 13 0 0
H erm ida le C B A C 1 5 0 1 2 8 0 0
H erm ida le C B A C 1 5 0 3 4 10 00
H erm ida le C B A C 1 5 3 1 2 0 0 05
H erm ida le C B A C 1 5 3 2 3 0 0 0 6 6 0 0
H erm id a le C B A C 1 5 3 3 4 162
H erm id a le C B A C 1 5 3 6 7 7.00
H erm id a le C B A C 1 5 4 7 8 7 .0 0
H erm id a le C B A C 1 5 4 8 9 0 0 05
H erm id a le C B A C 1 5 5 1 2 67 0
H erm id a le C B A C 1 5 5 9 1 1 0  0 23
H erm id a le C B A C 1 5 5 11 13 0  0 0 5
H e rm id a le C B A C 1 5 5 13 15 0 .0 0 6
H erm id a le C B A C 1 5 7 2 3 6 0 0
H e rm id a le C B A C 1 5 7 3 4
H e rm id a le C B A C 1 5 7 5 6 0 0 0 5 38 6 0 0
H e rm id a le C B A C 1 5 7 7 8 0 0 07
H e rm id a le C B A C 1 5 8 17 21 81 0
H e rm id a le C B A C 1 5 9 0 1 0 0 0 5 7 0 0
H e rm id a le C B A C 1 6 9 1 2 5 0 0
H e rm id a le C B A C 1 6 9 2 3 7 0 0
H e rm id a le C B A C 1 8 2 1 2 17 0
H e rm id a le C B A C 1 8 3 8 9 0 0 0 8
H e rm id a le C B A C 1 8 3 29 3 3 7 0 0
H e rm id a le C B A C 1 8 5 5 6 8 0 0
H e rm id a le C B A C 1 8 5 6 7 10 00
H e rm id a le C B A C 1 8 5 7 8 7 .0 0
H e rm id a le C B A C 1 8 6 2 3 6  0 0
H e rm id a le C B A C 1 8 6 7 8 5 0 0
H e rm id a le C B  AC 187 3 4 6 0 0
H e rm id a le C B A C 1 8 7 6 7 7 00
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Table 6.3 Anomalies of Co, Cr, Mo, Ni, Pb and V from the transported clay-silt-gravel

facies of the Byrock area.
Source Hole No from (m) to (m) Co ppm Cr ppm Cu ppm Mo ppm Ni ppm P b ppm V ppm W ppm
Byrock CBA C199 2 3 189
Byrock CBA C218 6 7 40
Byrock CBA C219 5 6 10.0
Byrock CBA C220 3 4 8.0
Byrock CBAC221 5 6 18.0
Byrock CBAC221 7 8 10.0
Byrock CBAC221 12 13 10.0
Byrock CBA C222 2 3 8.0
Byrock CBA C222 3 4 108 14.0
Byrock CBAC222 4 5 10.0
Byrock CBA C223 4 5 17.0 44
Byrock CBA C223 6 7 9.0 45
Byrock CBA C223 7 8 7.0
Byrock CBA C223 8 9 14.0
Byrock CBA C223 9 10 12.0 41
Byrock CBA C223 15 16 10.0 50
Byrock CBA C223 19 20 8.0
Byrock CBAC224 2 3 7.0
Byrock CBAC224 3 4 110 17.0 52 42
Byrock CBAC224 4 5 110 11.0 66
Byrock CBA C224 5 6 41
Byrock CBA C224 9 10 61
Byrock CBAC224 12 13 12.0
Byrock CBA C225 4 5 9.0
Byrock CBA C225 5 6 115 12.0 83 43
Byrock CBA C225 15 16 10.0 51
Byrock CBA C225 18 19 50
Byrock CBA C225 21 22 8.0
Byrock CBA C225 24 25 11.0 45
Byrock CBA C226 15 16 10.0
Byrock CBA C226 21 22 8.0
Byrock CBA C226 24 25
Byrock CBA C226 30 31 73 11.0 55
Byrock CBA C226 33 34 115 9.0 55
Byrock CBAC227 15 16 32 11.0 53
By rock CBA C228 17 18 205
Byrock CBA C232 2 3 17.0 7.0
Byrock CBA C232 3 4 7.0
Byrock CBA C232 4 5 8.0
Byrock CBA C232 5 6 23.0 47
Byrock CBA C232 6 7 13.0 131
Byrock CBA C232 7 8 11.0 53
Byrock CBA C234 4 5 11.0
Byrock CBA C234 5 6 46
Byrock CBA C234 6 7 51 13.0
Byrock CBA C234 8 9 12.0
Byrock CBA C237 2 3 8.0
Byrock CBA C237 15 16 7.0
Byrock CBA C237 18 19 7.0
Byrock CBA C237 27 7.0
Byrock CBA C237 30 31 8.0 52
Byrock CBA C237 33 34 253 24.0 48 177
Byrock CBA C237 36 37 9.0 44
Byrock C BA C237 39 40 16.0 49
Byrock C BA C237 42 43 13.0 115
Byrock CBA C238 1 2 7.0
Byrock CBAC241 1 2 19.0 43
Byrock CBAC241 2 3 9.0
Byrock CBA C241 3 4 12.0
Byrock CBAC241 8 9 9.0
Byrock CBAC241 25 31 211
Byrock CBAC241 26 27 48
Byrock CBAC241 27 28 406
Byrock CBAC241 28 29 203
Byrock CBAC241 29 30 130 10.0
Byrock CBA C241 30 31 70 10.0
Byrock CBA C241 31 34 53
Byrock C B A C242 8 9 14.0
Byrock C B A C 242 9 10 130 27.0 57
Byrock C B A C 242 12 13 13.0
Byrock C B A C 242 14 15
Byrock C B A C 242 17 18 14.0
Byrock C B A C 243 1 2
Byrock C B A C 243 2 3 9.0
Byrock C B A C 243 7 8 10.0 40
Byrock C B A C 243 9 10 8.0
Byrock C B A C 245 4 5 7.0
Byrock CBA C247 1 2 21.0 51
Byrock C B A C 247 2 3 12.0
Byrock C B A C 247 3 4 9.0
Byrock CBA C247 8 9 7.0 140
Byrock C B A C 247 14 15 7.0 10.0
Byrock CBA C247 15 21
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Figure 6.14 Anomalies of As, Au, Co, Cr, Cu, Mo, Ni, Pb, Sb, V and Zn in the regolith 

carbonate facies of the transported regolith.
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facies of the transported regolith.
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anomalies also occur in drill holes CBAC104, 109, 120,142,144, 146, 175, 177,19 L 

(with W), 198, 201 (with Ni), 218, 238 (with Au) and 243. Elevated Pb concentrations 

(Pb> 150) occur in drill holes CBAC14, 16,44, 47, 60, 198, and 218 (with Au). The 

highest Pb anomaly (Pb = 1010 ppm) was detected from drill hole CBAC198 (Figure 

6.16, Appendix 7).

6.3.3.2 ANOMALIES IN THE REGOLITH CARBONATE FACIES

The regolith carbonate facies is characterised by elevated Au contents (> 0.01) 

observed in drill holes CBAC41, CBAC64, CBAC188 and CBAC204. In CBAC41 and 

CBAC64 elevated Au is associated with Sb anomalies, whereas in CBAC188 Au is 

associated with elevated Pb and W values, and in CBAC204 Au is associated with Cr 

and Mo anomalies. Anomalous Cu values range from 50 ppm to 283 ppm. Significant 

Cu anomalies of 277 ppm and 283 ppm were observed in drill hole CBAC6 and 

CBAC85 respectively, where elevated Cu is not associated with anomalies in any other 

element. Anomalous Cu is associated with elevated Pb and As in drill hole CBAC2. 

Major concentrations of Zn were observed in drill holes 69 (with Cu), 81, 121 (partly 

with Co), 167 (with W), 169 (with Sb) and 198 (Figure 6.17, Appendix 7).

6.3.3.3 ANOMALIES OF THE IRON-RICH REGOLITH FACIES

Anomalies in the Fe-rich saprolite facies are summarised in Figure 6.18 and Appendix 

7. Elevated Au is associated with As and Mo in drill hole CBAC204. Arsenic is also 

accompanied by elevated Cr, Pb, Sb and V in drill hole CBAC237 and with elevated Cu 

in drill hole CBAC243. Another elevated Cu value was observed in drill hole 

CBAC246 (62-63 m) and is associated with high Ni and Zn contents. The anomalous 

association between Cu, Ni, Cr and V was also observed in drill hole CBAC16. 

Elevated Zn values are associated with elevated Ni in drill holes CBAC27 and 

CBAC246, and with high Pb contents in dill holes CBAC104 and CBAC205 (with Sb). 

Chromium anomalies occur in drill holes CBAC65 and CBAC 231 (with Mo, Sb, V).

6.3.3.4 ANOMALIES IN THE MANGANESE-RICH FACIES

In the Mn-rich facies of the in situ regolith (Figure 6.19, Appendix 7), Anomalous As 

was observed in drill holes CBAC 174 and 167. In CBAC 174, As is associated with 

elevated Zn. Elevated Au values range from 0.022 ppm to 0.077 ppm and occur in drill 

holes CBAC 122 (3-5m) associated in the upper part with Co (287 ppm), Cu (129 ppm)

76



•  CBAC238
LU Lli •  CBAC239 ^
E E E
o o o
o o •  CBAC243 §
o LO # •  C BAC 245 S

6600000 mN CBAC233

*?£aC229
♦6 baC217

^CBAC207
j#CBAC198

CBAC247

yCBAC193 
: BAC188

6550000 mN
*CBAC133

do co rs r- 
CO 00 CO 9°
O O O o 

•CBAC104 g  g  g 8

5bAC1 18 • *C0AC!
^r:BAC125 o

C92
##*CBAC80

................ »CBAC66 . . .
CBAC61

CBAC63 « ACBAC60

CBAC37,— * '
0)0 o

CBAC16# * Ä ä C21 o o  o

•►CBAC43
CBAC44
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Figure 6.16 Anomalies of As, Au, Co, Cr, Cu, Ni, Pb, Sb, V and Zn in the in situ clay-silt- 

gravel facies. Data for this figure are in Appendix 7.
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regolith carbonate facies of the in situ regolith. Data for this figure are in Appendix 7.
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and Ni (190 ppm) anomalies; CBAC123 (1-2 m), CBAC191 (20-21 m), CBAC195 (31 - 

32 m) and CBAC198 (15-17 m) associated in the upper part with Co (674 ppm), C u  

(155 ppm), Ni (126 ppm) and Pb (212 ppm). Cobalt anomalies range from 182 ppm to  

674 ppm. In addition to the previously mentioned anomalies of Co with Au, elevated 

Co values of 254 ppm, 259 ppm and 415 ppm occur in drill holes CBAC 211, 

CBAC191 and 177 (associated with Cu and Ni) respectively. A chromium anomaly 

(155 ppm) is present in drill hole CBAC195 (27-33 m). Anomalies of Cu closely 

correlated with elevated Ni occur in drill holes CBAC 122, 177 and 198 (as mentioned 

above). A Ni anomaly (161 ppm) occurs in drill hole CBAC201 (27-33 m). Two 

anomalous Pb values (78 ppm and 86 ppm) were observed in drill holes CBAC 118 (5- 

6 m) and CBAC 119 (0-1 m) respectively. Other elevated Pb values were found in drill 

hole CBAC198 (15-71 m). Zinc anomalies occur in drill holes CBAC167 associated 

with elevated As, CBAC 174, CBAC 176 and CBAC 198 (Figure 6.19, Appendix 7).

6.4 ELEMENT ASSOCIATIONS

Cluster analysis (CA) was used to explore the relationships between As, Au, Ba, Co, 

Cr, Cu, Mo, Ni, Pb, Sb, V and Zn in addition to major elements Ca, Fe, Mg and Mn. 

Elements were excluded from the analysis when more than 30% of their records are 

below detection limits (i.e., Au, As, Bi, Sb and W). Aluminium and K values were also 

excluded because of potential errors for these elements in the analytical technique, 

particularly at high concentration (Chan et al 2001). As explained in the data analysis 

chapter, cluster analysis is an explorative technique that provides a reduction in the 

dimensions of the data by classifying them into groups.

Dendrograms of the inter-elemental relationships in the top metre, transported and in 

situ regolith facies are shown in Figures 6.20 and 6.21. Groups (Clusters) of elements at 

selected Similarity Distance Levels (SDL=10) represent element associations at that 

level. For more detailed investigations, such as element-to-element relationship, the 

clustering needs to be decided on high similarity level (low SDL).
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Principal component analysis (PCA) is also applied to determine the main geological 

components (processes) that control the suggested element associations. Significant 

components were determined based on total variance explanations. The statistical 

stages in calculating the total explained variance, component (factor) statistics table and 

extracting the desired number of components using SPSS statistical software have been 

described by Coakes and Steed (2001). The final rotated factor matrices [loadings o f  

variables (elements) on components (processes)] for the regolith facies are displayed in  

Tables 6.4 and 6.5. These variables have a loading of 0.3 or greater on at least one 

component and they explain ^69% of total variance (except in clay-rich in situ regolith 

= 61). Complex variables may have high loadings on more than one component.

The element associations of the regolith facies in the Girilambone region are 

summarised in Table 6.6. In the top meter it was only possible to analyse the clay-silt- 

gravel facies because of the small number of samples with regolith carbonate and Fe- 

rich facies (< 10 samples). Utilizing cluster and principal component analyses to 

determine element association shows that the pathfinder elements in the regolith 

environment are mainly associated with Fe, Mn or Ca-Mg, in addition to a few single 

element clusters or components. These associations are:

• Iron in the clay-silt-gravel facies of the top metre unit, and generally in all 

transported regolith units, is mainly associated with Cr-V ± Ni ± As ± Cu ± Zn ± Pb 

± Sb. Part of this association (Fe-V-Cr) probably reflects association of these 

elements in iron oxide minerals (particularly hematite) and/or to lesser extent the 

influence of intrusive mafic and ultramafic rocks.

• In the in situ regolith clay-gravel and regolith carbonate facies Fe is significantly 

associated with Cu and Zn whereas in the Fe- and Mn- rich facies it associates with 

As-Pb-Au and As, Zn, Ca, Ba, Mg and V respectively. PCA generally shows that Fe 

enrichment is possibly controlling the dispersion of Cu+ Zn +V± Pb ± As in all in 

situ facies. The significant associations of Cu and Zn with Fe and Mn are possibly 

related to absorption of these metals by Fe and Mn oxide/oxyhydroxide minerals.
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• Manganese is associated with Ca-Co ± Cu in the clay-gravel facies of the top m etre  

and transported regolith, transported regolith carbonate facies and Mn-rich in s i tu  

facies. This association reflects Mn oxide/oxyhydroxide minerals (e.g., 

lithiophorite, todorokite, bimessite) that can accommodate Co and Ca in th e ir  

structures. Energy dispersive X-ray Analysis (EDXA) of Mn minerals explored this

Table 6.4 The rotated factor matrices with loading of elements on each component o f  

the principal component analysis. Table A represents clay-silt-gravel faces of the top 

metre. B, C and D represent clay-silt and gravel, Ca-Mg and Fe rich facies of the 

transported regolith, respectively.

C om ponen t

1 2 3 4 5
Cr .879

V .876

Fe .814 -.331
Ca .789 -.315

Co .685 .363

Mn -.458 .685

Pb -.509 -.583

Zn .944

Cu .716 .506

Ni .622 -.348 .341

Mg .933

Ba -.495 .758

Mo .946

C o m p o n e n t

1 2 3 4 5
Fe .898

V .772 .309

C r .769 .396

As .696 -.307

C u .578 .544 .326

C o .789

Z n .656 .558

Mn -.36 9 .593 .342

Mg .740

Ba .651

Mo -.571 .433

Au -.800

Ni .340 .720

Pb -.829

C a .717

A B

C om ponen t

1 2 3 4 5 6
V .877

C r .859

Pb .793

A s .675

Fe .581 .657

Sb .634

Bi .324 .716

Cu -.707 .301

W .660 .326

Co -.426 -.540

Ni -.301 .817

Ca -.421 -.766

Mn .727

Mg -.332 .697 .397

Ba 641

Mo -.852

Zn .605 663

C o m ponen t

1 2 3 4 5
Fe .822 .311

V .778

Cr .675 -.327

Cu .641 .577

As .602

Mg .923

Ca .820

Ni -.811

Co -.308 .827

Zn .801

Mn .637

Pb -.876

Ba .387 .671

Au .882

C D
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Table 6.5 The rotated factor matrices with loading of elements on each component o f  

the principal component analysis. Tables A, B, C and D represent clay-silt and gravel 

facies, regolith carbonate facies, Fe- rich facies and Mn- rich facies of the in s i tu  

regolith, respectively.

C om ponent

1 2 3
V .85

Ba .69 .39

Cr .68 -

Mn -

Zn .85

Fe .84

Cu .73

Ni -

Mg .42 .67

Ca - .57

A

C om ponent

1 2 3 4 5
V -.838
Cr -.805
Cu .658 .375 -.331
Ni .654

Au -.896
Zn .613 .661

Ba .637 -.544

Fe .784

Mg .421 -.704

As .670

Mn .898

Co .315 .694 .427

Pb -.780

Ca -.318 .700

C

C o m p o n e n t

1 2 3 4
Fe .901

C u .8 7 5

Z n .8 7 0

Ni .5 0 6

V .9 0 4

C r .9 0 3

C a -.371 .7 3 2

P b -.3 2 8 -.6 8 6

M g -.5 0 4 .6 2 6

M o -.7 4 7

B a .7 3 6

M n .4 5 8 .5 2 2

B

C om ponen t

1 2 3 4 5
Cr .892 -.321
V .874 .330

Ni .778 -.322 .341

Ca -.608 -.335 .512

Cu .843

Mg -.817 .437

Mn -.403 .587 .445

Zn -.336 .866

Fe .730 .480

C o .556 -.593 .324

Pb -.772

Ba -.363 -.448 .614

As .362 -.765

Au -.345 -.746

D
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Table 6.6 Elemental groups as are suggested by cluster analysis (CA) and principal 

component analyses (PCA) from the top metre, transported and in situ regolith facies. 

Bolded elements are variables with secondary loading on components.

R ego lith  u n it C lay -silt-g ravel rich facies R ego lith  c a rb o n a te  facies F e-rich  facies M n-rich  f a c i e s
e lem en t asso c ia tio n s elem en t a sso c ia tio n s e lem en t a sso c ia tio n s e lem en t

a s s o c ia t io n s

•  M n -C o -C a

•  M g -B a

< •  C r -V -F e

Ü •  M o -N i

•  C u -Z n -P b

O)
£ 1. C r-V -F e
D-
O 2. C a-C o-M n

H

PC
A

3. Z n -C u -N i-C o
4. M g-B a
5. M o-C u-N i

•  F e - V - C r - A s •  M g -B a •  C r - V - M o

•  N i-  M o •  C u -Z n -N i •  B i -W

•  C u -Z n -B a •  M n - C o - C a •  F e - S b - A s - P b

< •  M n -C o •  C r -V •  M g -  B a -  M n
U •  C a -M g •  F e - A s - P b - A u •  C u - Z n - C o - N i

•  A u -P b •  C a

o
C -
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c
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H 3. M g -B a -Z n -C u 3. C o -Z n -M n -C u -B a -F e 3. B i-W

< 4. N i-M o -C r-V 4. Ba 4. N i-Zn-V V -C u

u 5. C a -M n 5. A u 5. M n -M g -B a
6. Z n -M g

•  F e -Z n -C u •  F e - C u - Z n •  M g - B a •  C r -N i-V

•  B a -V -  M g •  C r -V •  C u -Z n -N i •  C o - C u - M n

•  C r -N i •  M g -C a •  M n - C o - C a •  A s -A u

< •  M n •  M n - B a •  C r - V i •  M g -B a
u
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association between Mn and Co and to some extent Ca (Chapter 9). Manganese i s  

associated with Ba in the Fe-rich facies of the transported and in situ regolith and in th e  

in situ carbonate facies. This association represents the typical hollandite composition, 

which is also observed in this study (Chapter 9).

• The magnesium-Ca association is predominantly observed in the regolith carbonate 

facies. However, this association is not significantly correlated with any element, 

which means that the Ca-Mg enrichment process has limited influence on  

dispersion of the elements. A magnesium-Ba association is noticed in the in situ  

facies and in the transported Fe-rich and regolith carbonate facies. This association 

possibly reflects occurrences of Ba as barite or within Mg-clay minerals (see 

Chapter 9).

• Gold and to some extent Pb and Mo are not associated with any of the Fe, Mn and 

Ca-Mg enrichment facies, which generally indicates the independent behaviour. 

Lead is associated with As, Sb and Fe particularly in the Fe-rich facies.

6.5 SUMMARY AND CONCLUSIONS

The regolith of the Girilambone region can be subdivided into the top metre (as a 

general representative of soil), transported and in situ regolith based on visual field, 

petrographic and chemical analysis. These units also can be further classified based on 

clay-gravel, carbonate, iron and manganese enrichment, using the boundaries of Ca & 

Mg > 1 %, Fe > 8.5 % and Mn > 0.1 %. These boundaries are based on comparison 

between chemical composition and visual and petrographic examination. The clay 

facies represents samples that do not include any Ca, Mg, Fe and Mn enrichment.

To understand the processes that affected element distribution, accumulation and 

association, the thresholds and anomalies of the elements were calculated in each 

regolith facies and only for element values above the detection limits. Element 

thresholds can be calculated using two methods of estimation (MAD+2Median and 

boxplot). Generally the boxplot estimation of the threshold is higher than that from the 

MAD method. The results showed significant enrichment of Au, Cu, Zn and to some 

extent Pb in a profile extending from drill hole CBAC119 to drill hole CBAC125 in the
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northwest Sussex area. The regional background values of Au, Cu, Pb and Zn a re  

higher in the in-situ facies, which possibly relates to parent material enrichment. 

Arsenic, Cr and V showed higher background values within the Fe facies. This relates 

to adsorption or incorporation by secondary Fe oxides (hematite and goethite).

Major and trace element contents determined in clay- carbonate- Fe- and Mn-rich facies 

were subjected to cluster and principal component analyses. Cluster analysis generally 

revealed four element associations, which are Ca and Mg (carbonate group) association, 

MnO (manganese oxides) association, Fe2Ch (iron oxides) association and Ni and C r 

(mafic group) association. Principal component analysis generally showed similar 

groups, representing association with calcrete (Ca+Mg), adsorption (Fe-Mn oxides) and 

bedrock influences.

Cluster analysis and principal component analysis were used to show the main factors 

controlling the trace element associations. The association of base metals with Fe and 

Mn is clear in the in situ facies. An association of mafic group element (i.e., Cr, V) with 

Fe is common in the top metre clay and transported facies. No significant association 

between regolith carbonates facies and Au was observed.
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7. CHAPTER SEVEN: GROUNDWATER CHEMISTRY 
AND HYDROGEOLOGY

7.1 INTRODUCTION

Groundwater is a potentially useful sampling medium for successful mineral 

exploration (e.g., Gray, 1991; Giblin and Dickson, 1992; Gray, 2001; Jeong, 2001; 

Giblin and Rutherford, 2003; Cameron et al., 2004; Caritat and Kirste, 2004; Phipps et 

al., 2004; Pirlo and Giblin, 2004; Cameron and Leyboume, 2005). It is also one of the 

agents important in weathering processes and the geochemical evolution of the regolith, 

given its reactive nature and ability to transport elements and dissolved gases (Giblin 

and Rutherford, 2003). An aim of the study was to investigate potential geochemical 

signatures in groundwater from background and weakly mineralised sites. This would 

also assist in understanding the geochemical controls on groundwater compositions.

This chapter examines the hydrogeology of the area, the likely hydrogeochemical 

processes, water types and water-rock interaction, using observations of the 

groundwater major and trace element compositions. It also includes interpretation of 

36C1/C1 isotope ratios and calculated mineral saturation indices of potential aquifer 

minerals in the area.

7.2 SITE DESCRIPTIONS

Groundwater samples were collected from drill holes CBAC217, CBAC218, 

CBAC219, CBAC227, CBAC231, CBAC235, CBAC242, CBAC243 and CBAC248 in 

the Byrock area and CBAC150, CBAC154, CBAC158, CBAC160 and CBAC173 from 

the Hermidale area (Figure 7.1).

A digital elevation model and the present drainage pattern in the Byrock area show a 

northwest trending ridge separating the Byrock catchment from the Bogan River 

(Figure 7.2). In the Byrock area the Bogan River and Mulga Creek are flowing north 

whereas Tindarey Creek is flowing north-northeast (Figure 7.2).
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Figure 7.1. Geologic map of the Girilambone region showing some known 

mineralisation sites, drill hole locations, drill holes (CBAC) that intersected 

groundwater (blue dots) and drill holes from which the groundwaters were sampled 

(red dots).

90



146 00 146 30

30 30

31 00

Figure 7.2 Digital elevation model of the Byrock area with present drainage, roads and 

the drill holes sampled for groundwater. Red and blue represent high and low elevated 

areas respectively. Modified from Chan et al. (2004).

In the Hermidale area, Whitbarrow and Pangee Creeks generally flow to the north and 

northeast (Figure 7.3). Palaeodrainage systems in the Byrock and Hermidale areas 

identified on magnetic imagery show roughly the same patterns as the present-day 

drainage (Figures 7.4, 5).

The landscape in the Byrock area represents a transitional environment between eroded 

colluvial domains and depositional fluvial domains (Chan et al., 2004). Zones of 

strongly weathered bedrock in the central portion of the area are flanked by the Darling 

and Bogan River systems. A prominent hill and ridge of leucitite dominate the 

landscape west of Byrock (Glanville et al., 2003). These Miocene volcanics are 

relatively unweathered and mostly well exposed. In some areas they sub-crop within 

creeks, roadside drains and borrow pits. In the Hermidale area the landscape consists of 

thick alluvial depositional plains in the east and colluvial erosional plains, rises and low 

hills in the western and southwestern parts of the area (Chan et al., 2002).
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Figure 7.3 Digital elevation model of the Hermidale area with present drainage. Red 

and blue represent high and low elevated areas respectively. Modified from Chan et al. 

(2002). Gaps in data due to mining lease restriction.

Figure 7.4 Magnetics imagery (1.5 vertical derivative) of the Byrock area showing 

magnetic drainage lines (paleodrainage), magnetic basement and the groundwater drill 

holes. Present day drainage is in blue. Modified from Chan et al. (2004).
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Figure 7.5 Magnetics imagery (1.5 vertical derivative) of the Hermidale area showing 

magnetic drainage lines (paleodrainage), magnetic basement, the drill holes that 

intersected groundwater (black dots) and the drill holes from which the groundwaters 

were sampled (red dots). Present day drainage is in blue. Modified from Chan et al. 

(2004).

7.3 HYDROGEOLOGY

The groundwater in the Byrock area was intersected within weathered silty sandstones 

interbedded with phyllite, felsic volcanic and siltstone with breccia (Figure 7.6). In the 

Hermidale area it was detected within weathered phyllitic siltstones sandstones (Figures 

7.7,8). The first appearance of groundwater in the drill hole was recorded as the water 

table depth (Chan et al., 2002; 2004). These depths were used to identify the 

groundwater flow directions and to calculate the hydraulic gradients along the flow
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path. The water table mirrors topography suggesting that the aquifers are unconfined. 

The general flow directions in the Byrock and Hermidale areas are from southwest to 

northeast (Figures 7.9,10). The hydraulic gradients are low (< 0.0035), which suggest 

slow groundwater flow.

7.4 ELECTRICAL CONDUCTIVITY, pH/Eh AND TEMPERATURE

Groundwater compositions are tabulated in Appendix 3. Electrical conductivity (EC) 

ranges from 843pS/cm to 31600 pS/cm. In the Byrock area the EC is significantly 

variable and the lowest value (843pS/cm) was recorded to the west of Byrock 

(CBAC235). In this area the aquifer is mainly in weakly weathered leucitite rocks 

(Glanville et al., 2003). These rocks form Byrock Hill and are covered by very thin 

transported sediments. Therefore the fresh groundwater is possibly a result of minimal 

water-rock interaction between rainwater and the weakly weathered aquifer rocks. Low

160 --  

150 - 

140 - 

130 -

I  120 -

1-

C B A C 217 C B A C 219

L o c a t io n

CBAC221 C B A C 225 C B A C 227

100 -

Wter table
Transported sediments
Claystone
Felsic volcanics
Silty sandstone /  phyllite
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Figure 7.6 Cross-section showing how the water table mirrors topography along the 

groundwater flow between and CBAC217 and CBAC227 in the western part of the 

Byrock area (see Figure 7.9 for location).
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EC was also recorded in CBAC242 and CBAC243, east of Byrock and this a re a  

possibly represents a recharge zone. EC decreases along the inferred flow path from  

17390 pS/cm in CBAC217 to 15220 pS/cm in CBAC227 (Figure 7.9). This may relate 

to mixing with less saline water along the flow path.

In the Hermidale area, the EC is lowest in the southwest and north, suggesting 

proximity to recharge areas, as those samples are from holes in the highest parts of the  

landscape. The EC is higher in the samples inferred to be downstream of the lower-EC! 

samples, which may indicate mixing with higher salinity water or evaporation, both o f  

which are consistent with the observed element ratios (e.g., Na/Cl, Cl/Br; Khider, 

2004). The easternmost sample (CBAC158; Figure 7.10) has an intermediate salinity, 

but it comes from the overlying gravel layer and is probably not downstream of the 

other samples, and is therefore unrelated to them. It is possible that it has a lower 

salinity than the other samples taken from, approximately the same depth and in the 

phyllitic material because of mixing with recharging fresher water.

The pH and temperature decrease along the flow path in both areas (Figures 7.9,10), but 

differences are small and probably not significant. The pH ranges from 6.4 to 7.3 and 

the temperature ranges from 21.6°C to 27°C (Table 7.1). Due to the difficulty of 

measuring in situ Eh of groundwater it was only possible to measure the redox (Eh) 

values in the Byrock samples, where the Eh ranges from 305 to 407 mV. To identify 

the environment of groundwater, Eh and pH values are plotted on an Eh-pH diagram 

(Sato, 1960; Figure 7.11). In this diagram the groundwater environment is divided into 

depth, transitional and weathering environments. All the studied water samples from 

the Byrock area plot in the weathering environment (Figure 7.11) indicating oxidised 

groundwaters.

7.5 ALKALINITY

In this study the measured alkalinity represents total alkalinity (in term of CaCCL mg/L) 

using the standard potentiometric titration method (Eaton et al., 1995). About 94.8% of 

the measured carbonate species in neutralised water (pH around 7) at temperature of 

20°C represents the bicarbonate ion (Fetter, 2001). The alkalinity in the studied 

groundwater samples ranges from 196 to 801.2 mg/L (Table 7.1). Assuming that all the

97



alkalinity in these samples is a result of inorganic carbon species, the concentration of 

bicarbonate and carbonate can be calculated using eqs.l and 2 (Deutsch, 1997).

Table 7.1 Sample depth, Electrical conductivity (EC), pH, Eh, temperature and 

alkalinity of the groundwater samples from the Byrock and Hermidale areas.

Source Drill hole Sample depth (m) EC uS.cm '1 PH Eh mV Temp C ALK mg/L
Byrock CBAC 217 47.3 17390 6.9 350 24 654 2
Byrock CBAC 217a 47.1 17300 6.8 355 23.6 648.7
Byrock CBAC218 46.2 14820 6.7 344 22.3 543.9
Byrock CBAC219 43.4 14960 7.1 344 21.7 445.9
Byrock CBAC227 39.2 15220 6.9 350 22.8 373.6
Byrock CBAC 227a 39.0 15178 6.9 348 22.6 662.5
Byrock CBAC231 38.6 16120 6.5 340 23.9 294.0
Byrock CBAC235 18.6 891 6.5 407 21.6 434.9
Byrock CBAC 235a 183 843 6.7 400 22 4 451.5
Byrock CBAC242 11.8 7240 7.2 305 22.9 801.2
Byrock CBAC243 28.0 2176 7.3 354 21.9 632.1
Byrock CBAC243 34 0 18960 6.9 383 22.3 557 4
Hermidale CBAC 150 50.0 7200 7.1 27.0 494.9
Hermidale CBAC 154 55.0 27200 6.9 24.0 240.1
Hermidale CBAC 158 30.0 20100 6.5 23.0 247.5
Hermidale CBAC 160 65.0 31600 6.4 26.0 196.0
Hermidale CBAC 173 18.0 14280 6.9 27.0 485.1
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Figure 7.11 Eh-pH diagram (Sato, 1960) showing water stability of Byrock water 

samples.
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n e o s '(mg/L)= [alkalinity(mg/L)/ {1+ (2xl0'IO3/10‘pH )}x50] x61 ( 1)

CO3'2(mg/L)= [alkalinity(mg/L)/ {2+ (10‘pH /10103)}x50] x60.................. (2)

The calculated concentrations of HCO3" for the studied groundwater samples are  

tabulated in Appendix 3.

7.6 MAJOR IONS GEOCHEMISTRY

Analysis of how major ions and compounds are distributed in the aquifers assists the 

interpretation of the aquifer mechanics and reveals flow paths and potential recharge 

areas. For example HCO3' concentration was used as an indicator of flow direction, 

preferential permeability and possible mixing (Herczeg et al, 1991; Wolfgang and 

White, 2000).

The distributions of HCO3 in the Girilambone area (Appendix 3) show higher values 

(> 590 mg/L) towards the southeastern part of the Byrock area, and the HCO3 ' 

concentration decreases along the flow path from CBAC217 to CBAC231. A high 

concentration of HCO3' was also recorded from the highland area (possible recharge 

area) of the Bogan River catchment east and northeast of Byrock. In the Hermidale 

region, the likely recharge areas are in the southeast (CBAC173) and north (CBAC150) 

of the region and generally characterised by high concentrations of HC03‘. Similarly 

Na/Cl (in mmol/L) shows a general increase in values moving towards the southeast, 

east and northeast in the Byrock area and from north to southwest in the Hermidale 

area. The northeastern portion of the Hermidale area (CBAC158) shows a relatively 

high Na/Cl value.

Calcium, Mg and K distributions all increase along the inferred flow path. In the 

Byrock area Ca, Mg and K change from 316 mg/L, 697mg/L and 131 (mg/L) 

respectively in CBAC217 to 342, 752 and 162 in CBAC227 within 8 km. 

Correspondingly the concentrations of Ca, Mg and K in the recharge area of the 

Hermidale region (CBAC173) are 168, 276 and 16.2 and they change along the inferred 

flow path to 531,1297 and 109 respectively in CBAC160. In other words these cations
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are increasing in the studied drill holes (except CBAC158) down the flow path , 

indicating mineralogical changes and/or an increase in weathered material in the aquifer 

rocks. Low concentration of Ca, Mg and K in CBAC158 are possibly related to mixin g  

of fresh water from surface.

7.7 GROUNDWATER TYPE AND ORIGIN OF DISSOLVED IONS

Based on the major ion contents, three water types are identified (Figure 7.12). This 

Piper diagram shows that the groundwater compositions at the studied sites of the 

Girilambone region vary, but are generally Na-Cl dominant. The different patterns may 

reflect the evolutionary stages of the water, mixing of waters or mineralogical changes 

in the aquifer composition. The waters in this region can be classified as follows:

• Chloride type, where the anion is chloride and the cation is mainly sodium and 

/or potassium. This type of water occurs in almost all the studied sites (except 

CBAC235 and CBAC243) in the Byrock and Hermidale areas (Figure 7.12). 

The EC measurements showed that the majority of the waters are over the 5000 

pS/cm level of conductivity (Table 7.1) and this is mostly related to 

predominant occurrence of sodium chloride.

• Calcium-bicarbonate type. This type of water is reported only from CBAC235 

(Byrock area). It is characterised by high Ca, Mg and HCO3" contents, alkalinity 

of 434.87 mg/L and EC of 891 pS/cm (Table 7.1). Bicarbonate is possibly 

generated by the reaction of water with CaCCE. The abundance of calcium and 

magnesium probably indicates interaction of the water with the leucitite rocks at 

this site.

• Bicarbonate and chloride type. This type of water occurs in CBAC243 (Byrock 

area) and includes high contents of HCO3', Cf and Na+ with high alkalinity 

(632.1 mg/L) and EC (2176 pS/cm).

The dissolved ions in groundwater are mainly derived from two main processes (e.g., 

Rabemanana et al., 2005). These are:

1. Water-rock interaction

The most common water-rock interaction processes (weathering of silicates and 

carbonates) tend to release base cations (particularly Na+ and Ca2+) and alkalinity
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(HCO.O, whilst raising the pH (Freeze and Cherry, 1979; Hem, 1985). The 

metamorphic and igneous nature of the bedrocks in the study area (Chapter 3) precludes 

primary evaporite minerals such as gypsum or halite, which could be possible sources 

of chloride, sulphate, sodium and calcium. Subsequent ion exchange may modify the 

chemistry (ratios of Ca2+ and Na+) whereas reactions such as oxidation of pyrite may 

prove to be a source of sulphate (Rabemanana et al., 2005).
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Figure 7.12 Piper plots illustrating different types of groundwater in the study area.

The plot of alkalinity with Na+K+Ca+Mg shows that all the water samples fall below 

the 1:1 line (Figure 7.13). This suggests another source of cations in addition to water- 

rock interaction process. The observed excess of Na+ over K+ in all the studied waters 

(except the water in CBAC235) reflects occurrences of clay materials within the 

weathered aquifer rocks. High concentrations of Ca2+, Fe2+, Mg2+ can be attributed 

mainly to weathering of feldspar and mafic minerals. The relationship between K++
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Na+ and Ca2++Mg2+ suggests a predominant felsic component in nearly all the studied 

sites, except CBAC235 (Figure 7.14). Water in the latter has more likely been i n  

contact with carbonate and/or mafic rocks. However, the occurrence of leucitite in th e  

aquifer of CBAC235 (Glanville et ai, 2003) supports the mafic origin.
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Figure 7.13 Scatterplots of alkalinity vs (Na+K+Ca+Mg) for the Byrock and Hermidale 
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types in the Byrock and Hermidale areas.
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2. Salinisation

The increase in salinity essentially describes the evaporative concentration of solutes a t  

the surface or in the shallow subsurface (e.g., Thomas et al., 1989; Nativ et al., 1997 ). 

This may include evaporative concentration at the surface, concentration of solutes by 

evapotranspiration in the subsurface, precipitation and subsequent re-dissolution o f  

secondary evaporite minerals in the unsaturated zone from evapo-concentrated waters. 

The solutes that are subject to this process are possibly derived from water-rock 

/regolith interaction (Na+, Ca2+and HCO3 ) or from external sources, such as marine 

salts (Na+, CY and S042') arriving in the rainfall recharge (Rabemanana et al., 2005).

The significant correlation between the Na+ and CT ions indicates that the major part o f  

the salinity in the groundwater is a result of NaCl (Figure 7.15). Na/Br-Cl/Br 

relationships for Byrock and Hermidale groundwaters generally show three groups o f  

samples (Figure 7.16):

• samples approximately parallel to 1:1 line (i.e. CBAC150, 154, 173, 218, 219, 

242) in which both Na/Br and Cl/Br are comparable, possibly showing the 

influence of evaporation;

• samples with high Na/Br and low Cl/Br. This group (i.e. CBAC235, 243) has 

excess of Na+, which likely reflects cation exchange and/or silicates weathering 

(i.e., albite dissolution) due to water-rock interaction; and

• samples with increased Cf, high Cl/Br and low Na/Br (e.g., CBAC227, 231 and 

260), which indicates mixing with higher salinity water.

There is a strong correlation between S042' and Cf suggesting that their accumulation 

in the groundwater is the result of a common process (evapo-concentration or 

dissolution of secondary evaporite mineral; Figure 7.17). Chloride-S04 ’ data diverge 

from the seawater (SW)-rainwater (RW) line, indicating addition of S O f, which 

possibly related to oxidative weathering of pyrite and/or the dissolution of anhydrite 

(Dogramaci et al, 2001; Rabemanana et al., 2005).

The Ca2+ and S 042" contents at two sites (CBAC150 and 227; Figure 7.18) 

approximates the seawater trend, which suggests concentration by evaporation or 

dissolution of gypsum. Some of the samples show relative enrichment in S04 '
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(CBAC154, 217, 219, 248), which possibly relates to oxidation of sulphides and/o r 

precipitation of Ca2+ as carbonate. Similarly some other samples show Ca2+enrichment 

(CBAC173, 242 and 243 in addition to CBAC235 and CBAC158). The elevated Ca2s~ 

concentration can be related to leaching of carbonate minerals by unsaturated water- 

rock interaction and mobilisation of Ca2̂  as a result of cation exchange in the soil and. 

regolith.
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Figure 7.15 Scatterplot of Na+ vs Cl' for groundwater samples of the Byrock and 

Hermidale areas. Sold line represents regression line with correlation coefficient (r =

0.97) and the dashed line represents seawater dilution.
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Figure 7.16 Scatterplot of Na/Br vs Cl/Br for the Byrock and Hermidale groundwater 

samples showing trends of evaporation (equiline 1:1) and increasing of Cl" and Na+ as 

aiTows parallel to X and Y axes respectively.
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Figure 7.17 Scatterplot of Cl' vs S04 2~ for the Byrock and Hermidale groundwaters. 

The dashed line represents seawater dilution.
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Figure 7.18 Scatterplot of Ca2+ vs S04 2‘ for the Byrock and Hermidale groundwaters.

Sold line represents equiline (1:1) and the dashed line represents seawater dilution.

7.8 CHLORIDE-36

36C1 is a radioactive isotope with a half-life of 301,000 yrs (e.g., Phillips et al., 1991). 

As chloride is hydrophilic, this isotope has the potential to be used as a groundwater-

dating tool or tracer as reported in a number of Australian studies (e.g., Bently et ah, 

1986; Davie et ah, 1989; Torgersen et al., 1991; Cresswell et ah, 1999; Love et al.,
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2000; Lehmann et al., 2003, Wischusen et eil, 2004). These studies, along with ,C)C l  

groundwater studies elsewhere (Phillips et al., 1986) and more general atmospheric 36C l  

studies (Bird et al., 1991; Keywood, 1995; Phillips et a l, 1986) give background 

information on the formation of l6Cl in the atmosphere and its likely behaviour i n  

groundwater systems, including epigene and hypogene production effects.

36C1 is produced in the atmosphere, in near-surface rocks, and in the deep subsurface. 

Atmospheric fallout is derived from cosmic-ray interaction, mainly with argon in th e  

stratosphere and shows a strong latitudinal dependence, with greatest fallout at m id-

latitude (Wischusen et al., 2004). Chloride -36 is also produced in the deep subsurface 

through neutron-capture on °C1, supplying l6Cl to groundwater systems (Bentley et a l., 

1986).

The atmosphere also contains stable chloride derived from sea-spray, and from  

remobilised terrestrial salts. This stable chloride combines with 36C1. The j6Cl/Cl ratio 

can be measured readily on a few milligrams of chloride using accelerator mass 

spectrometry (Elmore et a l, 1979) and varies in natural systems from several hundred 

parts in 1015 of total chloride, down to a background of a few parts in 1015 (e.g., 

Cresswell, et al., 1999).

The 36C1/C1 ratio may be used to estimate ages of groundwaters if three assumptions are 

made. These are: the only sink for 36C1 in the aquifer is radioactive decay; the only 

source for additional 36C1 is normal deep subsurface production, or that additional 

sources can be identified; and, quantified; and the production rate for '6C1 is the same 

now as at the time of recharge (Andrews and Fontes, 1991). The groundwater may then 

be dated using the following standard decay equation:

t = -lA,(lnAt/Ao) ............................................................(3)

Where At is the 36C1/C1 ratio for the groundwater sample, Ao is the ‘1(,C1/C1 ratio for the 

recharge (or input function) and 1A, is the mean life of 36Cl: 434,25 lyr (Cresswell et 

al., 1999).
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Seven Byrock and Hermidale water samples were analysed for '6C1 by the Nuclear 

Physics Department of the Australian National University (Table 7.2). Details of th e  

method of analysis and a description of the Accelerator Mass Spectrometer used a re  

outlined by Fifield et al. (1987). The plotted ratio of 36C1/C1 against total chloride 

content in the Hermidale area together with representative trends for the processes 

indicated, showed that the '6C1/C1 ratios are relatively high in CBAC173 and 

CBAC150, lowest in CBAC160 and intermediate in CBAC158 (Figure 7.19). The ratio 

decreases along the inferred flow path, although the easternmost sample (CBAC158) 

has a higher ratio. The high values indicate the water is proximal to recharge, and the 

lowest value in CBAC160 is probably a result of evaporation and mixing o f  

groundwaters along the flow path. The intermediate ratio at CBAC158 could be a result 

of mixing with a less saline and lower chlorine ratio water. Alternatively the 

groundwater is from a different source than to that in the east. For example, the 

groundwater from CBAC158 could be from the transported gravel layer (Figure 7.7). 

Similarly, plotting 36C1/C1 along the flow path from the drill hole CBAC217 to 

CBAC231 in the Byrock area showed an increase in 36C1/C1 ratio in CBAC227 that 

possibly relates to dilution of groundwater as a result of mixing with lower salinity 

(fresh) water (Figure 7.20).

To estimate the age of groundwater in the study area the,6Cl content of the rainfall 

needs to be known. These data are not available for the study area. However, the 

,6C1/C1 ratio in rainfall for central Australia has been calculated as 325xl0‘15 

(Keywood, 1995; Keywood et al., 1997). If this value of 36C1/C1 is used as input for the 

Girilambone region then the value seems to be reduced during recharge by additional 

chloride input from local salts in the unsaturated zone or from aerosols and dust wind-

blown from local playa lakes. Consequently if the assumptions pertaining to Eq. 3 are 

assumed valid, and an input ratio of 325xlO'15 is used, calculated groundwater ages 

range from 241,000 to 492,000 years in the Hermidale area and from 418,00 to 516,000 

years in the Byrock area (Table 7.2).

7.9 IDENTIFICATION OF AQUIFER MINERALS

In environments where ore minerals have been preserved for long periods of time, it is 

reasonable to assume that either the groundwater-aquifer rock system is at equilibrium,
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or that rates of chemical reactions are so slow that a steady state, or locally equilibrated 

state exists. Aquifer minerals that can be calculated from groundwater composition a r e  

those that either formed out of constituents carried in the groundwater, or are m inerals 

formed from chemical interaction between the groundwater and minerals within rock: 

units that predated groundwater flows. In order to understand the changes in the

Table 7.2 1(,C1 determinations for the Byrock and Hermidale groundwaters.

Sample Location 36CI/CI (x10"15) Error 3bCI age(years)
C BAC150 Hermidale 176.3 8.9 265527
C BAC158 Hermidale 127.1 6.5 407698
CBAC160 Hermidale 104.6 5.8 492428
C BAC 173 Hermidale 186.8 8.6 240564
C BÄC217 Byrock 124.2 6.8 417561
CBAC227 Byrock 111.9 6.2 463006
CBAC231 Byrock 99.1 cn bo 515913
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108



140 i

CBAC217
♦

120  -

CBAC227
o
u

•O
|V |

100  - Cl P r o d u c t i o n
A

S or p t i o n
M—

Dilutio n

Filtration
—►

80

E v a p o r a t i o n  

Cl D e c a y _ _ _ _ _ _

S a m p l e **cyc\ tx io - 't i Ei i oi

217 124.2 6.3

227 111.9 6.2

231 99.1 5.8

CBAC231
♦

T

8000 10000
Chloride concentration ( rng/L)

12000
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hydrogeochemistry and the interaction between groundwater and regolith, the measured 

element concentrations in the groundwater were plotted on activity-activity diagrams 

and mineral saturation indices for all samples were calculated. The Geochemist’s 

Workbench Release 6.0 (Bethke, 2005) with the associated thermo.dat database of 

thermodynamic properties was used for all calculations.

7.9.1 WEATHERING OF SILICATE MINERALS

The concentrations (activities) of the major cations and anions can be employed to 

understand solution-silicate mineral equilibria in terms of pH. Depending upon the 

relative concentrations of major cations, it is possible to identify the chemical 

weathering stage and type of source rock. The suite of silicates with which each 

groundwater sample is saturated can be used as another type of signature for classifying 

aquifer lithology (Giblin, 2001). The initial weathering product of silicate minerals in 

which the groundwater is saturated is gibbsite and as the weathering process continues 

more silica is dissolved into the groundwater and the next principal saturated mineral 

will be kaolinite (Helgeson et al., 1969). Depending upon the concentrations of major
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cations, continued interaction with groundwater causes the principal saturated mineral 

to change from kaolinite to K-mica or K-feldspar or in the case of Na or Ca to smectite.

All the water samples (except CBAC173) plot in the muscovite stability field on a log a 

K+/H+ (as representative of K-Feldspar, K-mica, kaolinite) versus log a Mg++/H+ 

(representative of Mg-silicate, Mg-smectite, chlorite) diagram indicating stability of 

these waters with respect to muscovite (Figure 7.21). The water sample from drill hole 

CBAC173 plots close to the kaolinite- muscovite stability boundary. There are two 

apparent distribution trends: the CBAC235-CBAC243-CBAC242 trend and the 

CBAC173-CBAC219 trend (Figure 7.21). These trends show that the groundwaters are 

associated with variously weathered versions of K-Mg mica. The XRD results showed 

dominant occurrence of muscovite (K source) within the aquifer minerals in drill holes 

CBAC217 (22.9 wt %), CBAC 219 (41.2 wt % )  CBAC227 (29.5 wt %) and CBAC248 

(42.8 wt %; Appendix 4). Occurrence of Mg is possibly relates to the Mg principal 

isomorphous replacement for octahedral A1 of muscovite (Deer et al., 1992) and /or 

occurrence of Mg-rich clay minerals. This illustrates how groundwaters can reflect the 

mineral species in the underlying regolith and bedrock.

Maximum Microcline

log a Mg1+H f 2
Figure 7.21 Hermidale and Byrock groundwaters plotted on a portion of the log a 

K+/H+ versus log a Mg++/H+*2 diagram which covers the stability fields of kaolinite, 

muscovite and maximum microcline in equilibrium with quartz and water at 25°C and 

1 bar.
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muscovite and maximum microcline in equilibrium with quartz and water at 25°C a n d  

1 bar.

7.9.2 SATURATION INDICES

Saturation index calculations can be useful in examining groundwater composition fo r  

the stability of a mineral of interest in an aquifer system (Jeong, 2001). The spatial 

distribution of saturation indices is possibly useful in vectoring to mineralisation 

(Khider and McPhail, 2005). The geochemical program PHREEQC (Parkhurst and 

Appelo, 1999) with Minteq database was used to calculate saturation indices for the 

groundwaters. In order to predict the saturation state of common primary and secondary 

minerals, dissolved concentrations of Ca, Al, Fe, K, Mg, Si, SO42', HCO3', CP, pH, Eh 

and temperature of groundwaters were required in the input file. The output file o f 

PHREEQC displays the saturation state of all the possible minerals (based on the 

chemical system and database) as positive or negative index values. Positive values 

indicate supersaturation of minerals, zero value indicates that the solution is in 

equilibrium with a mineral, and negative values indicate undersaturation of a mineral. 

However, these results only specify possible reactions, as kinetic constraints may limit 

reactions that are thermodynamically indicated. For example, waters are commonly in 

equilibrium with calcite, but may become over-saturated with respect to dolomite as a 

result of slow solution equilibration with this mineral (Drever, 1997).

The SI for a number of relevant phases (generally the least soluble mineral phase for 

each element tested) is shown in Appendix 6 . Figure 7.22 shows examples of ZnSi03 

(chosen to avoid the measurement uncertainty and complications of variables such as 

Eh and CO2, which may affected by atmospheric interaction during measurement), 

malachite (Cu2(0 H)2C0 3 ) and tenorite (CuO) for the Hermidale groundwaters. In 

general, the saturation index for all these minerals increases from south to north, with 

the exception of drill hole CBAC173. Known mineralisation at the Budgery mine lies 

to the northwest of drill hole CBAC150, so the slight change in SI appears to indicate 

the position of the mineralisation, even though the inferred flow paths are from 

southwest to northeast (Figure 7.10). Similarly the increasing SI for these minerals in 

drill hole CBAC173 is possibly related to mineralisation at the Glengarry gossan (see 

Chapter 3, Figure 3.7).
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Figure 7.22 Calculated saturation indices of ZnSiC>3 (A), malachite (B), and tenorite (C) 

in Hermidale groundwaters.
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7.10 IMPLICATIONS FOR EXPLORATION

Groundwater field and laboratory measurements, in addition to data on the regional 

geology, groundwater flow and spatial distribution of rock units, are important 

resources for exploration. Groundwater geochemical exploration procedures are based 

on comprehensive chemical analyses of groundwater parameters to identify the 

components of rocks and minerals that have interacted with water, especially those that 

host ore deposits (Giblin, 2001; Phipps et al, 2004).

It is important to understand regolith-water interactions that alter groundwater 

composition because these interactions may include mineral dissolution, incongruent 

aqueous alteration of minerals or dissolution of salts in the unsaturated zone of local 

regolith and/or by downward moving surface waters or upward moving groundwaters. 

Therefore, depending on how long a groundwater has been in contact with the minerals, 

the solutes it contains could potentially reflect the geochemistry of an extensive volume 

of crustal (regolith) materials. A groundwater that is sampled at a specific location and 

depth below the water table potentially represents the solute content of all aquifers in
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hydraulic contact with that location and the closer to a specific unit a sample is 

collected, the greater will be the proportion of its total solutes derived from that unit 

(Giblin, 2001).

This study has investigated the anomalous occurrences of base metals (particularly Cu 

and Zn) in groundwater using the geochemical parameters of groundwater (i.e., Eh, pH, 

salinity) and con-elated these with the concentration of these metals in the regolith of 

the aquifers. The concentrations of the base metals in the groundwater depend on the 

quantity of the base metal minerals in the regolith and solvent capacity of the 

contacting groundwater. This capacity varies with temperature, Eh, pH and 

groundwater composition (Drever, 1997).

In the Girilambone region the waters were found to be generally undersaturated with 

respect to oxidised copper and zinc minerals, assuming all the copper and zinc are 

oxidised (dissolved and solid). Although Eh was not measured in the Hermidale 

samples, other samples from the area had an average Eh of 350 mV. At these 

conditions, plotting of the groundwater samples on pH-pe diagram show that the all 

water compositions plot in the undersaturated zones for Cu and Zn on (Figure 7.23).

The spatial distribution pattern of Cu and Zn in the groundwater shows significant 

association between Cu and Zn particularly in a number of drill holes (CBAC150, 

CBAC154, CBAC158, CBAC160 and CBAC173) in the Hermidale area. The pattern 

also displays a high concentration of Cu (0.33 mg/L) in drill holes CBAC217 and 

elevated concentration of Zn (0.35 mg/L) and (0.29 mg/L) in CBAC219 and CBAC248, 

respectively (Figure 7.24). It is important to note that Cu and Zn anomalies in these 

drill holes are not associated, as commonly observed in the regolith as a result of 

accommodation of these metals by Fe- and/or Mn- oxides/oxyhydroxide (Chapter 9). 

Enrichments of Cu and Zn in the groundwater are not con-elated with the Cu and Zn 

values in the immediate regolith aquifers of CBAC217 and CBAC219 (Figure 7.25). 

This, in addition to the location of these drill holes near known mineralisation at the 

White Tank prospect and the Wilga Downs prospect (Figure 7.2) suggests the 

groundwaters are carrying a geochemical signature from mineralisation. Elevated 

concentration of Zn is also observed in the groundwater of drill hole CBAC248,
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The distribution pattern of groundwater electrical conductivity, and contents of SO42 , 

Cl', Cu2+ and Zn2+ show remarkable correlation between Cu2+ and the salinity 

parameters (EC, SO42 and Cl',), which indicate significant influence of salinisation on 

Cu concentration and solubility (Figure 7.26). It has been reported (Giblin, 2001) that 

under equivalent Eh, pH conditions Cu solubility proportionally increases with chloride 

concentration of groundwater.

Cuprite

Copper

Chalcocite

Sphalerite Covel lite

Figure 7.23. The Hermidale and Byrock groundwater compositions, mineral stability 

fields and aqueous species predominance areas. Diagrams are calculated assuming 

representative conditions of the samples: (A) a zn species = 8.7 x 10‘7 (B) a cu species = 1.3 x 

107 with a S042’ = 4.1 xlO'3 and a HCO3 = 9.9x 10~3. Sample labels in B are as in A.
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Figure 7.24. The distribution pattern of Cu and Zn in the groundwater of the Byrock 

and Hermidale drill holes.
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7.11 SUMMARY AND CONCLUSIONS

Analysis of groundwater samples from the Byrock and Hermidale areas showed that tlie  

groundwater is moving slowly through the regionally extensive weathered phyllitic 

siltstone-sandstone layer of the in situ regolith. Water levels mirror topography, 

indicating an unconfined aquifer system, and groundwater is flowing in general to the 

northeast in the Hermidale area and similarly in part of the Byrock area. The 

groundwater in the region is mainly of chloride type, rich in Na, Cl and S04 .The other 

calcium-bicarbonate and bicarbonate-chloride types are less common. The correlation 

between Br/Cl and Na/Cl shows three processes affected the groundwater composition. 

These are evaporation, in which both ratios increase; water-rock interaction; and water 

mixing, in which Na/Br and Cl/Br increase respectively. Salinity and 36C1/C1 values 

indicate that mixing of groundwater is likely. Calculation of groundwater ages based on 

36C1/C1 showed that the ages range from 241,000 to 492,000 years in the Hermidale 

area and from 418,000 to 516,000 years in the Byrock area. The waters are 

undersaturated with respect to oxidised copper and zinc minerals. Calculated saturation 

indices of ZnSiO^, malachite and tenorite appear to show a vector towards known 

mineralisation at some sites in the area. The correlation between the groundwater and 

regolith composition suggests at least two sites (drill holes 217 and 219) of potential 

mineralisation.
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8. CHAPTER EIGHT: WEATHERING PROCESSES AND 
PROVENANCE

8.1 INTRODUCTION

Clastic sedimentary rocks contain a record of their provenance and of the processes that 

have operated during weathering, erosion, sedimentation, and after deposition. In most 

cases, the geochemical “signals” from both provenance and processes are intermingled, 

and complex (McLennan et al., 2003), and accordingly this record can be difficult to  

understand. In the last thirty years major developments in petrography and 

geochemistry have greatly advanced our ability to evaluate the detailed sources and 

history of sedimentary rocks and in turn use this information to recognise parental 

material, tectonic association, diagenesis and climate (Gu et al., 2002; Lentz, 2003).

Different weathering and erosional regimes can produce regolith with different 

mineralogical and chemical characteristics. In this way landscape evolution leaves a 

geochemical signature. Geochemical data from regolith can be used to: differentiate 

regolith materials with different regolith histories (e.g., Robertson et cii, 1997; McQueen, 

2006); determine the parent rock type and provenance (e.g., Hallberg, 1984; Roser and 

Korsch, 1988; 1999; Roser et al, 2002; Khider and McQueen, 2005) and to identify 

geochemical alteration/dispersion haloes of mineral deposits (e.g., Whitbread and 

Moore, 2004).

This chapter examines the significance of geochemical parameters (i.e., elemental 

ratios) and indices (e.g., Chemical Alteration Index (CIA)) to understand how 

geochemistry can be used to evaluate the provenance and weathering history of 

terrigenous regolith materials in the Girilambone region. Data from this study are 

compared with available geochemical analyses of felsic and mafic igneous intrusives 

and identified sedimentary rock units (Girilambone and Cobar Groups) from the Cobar- 

Girilambone region. In this study, 190 bottom of the hole samples of saprolite and 

saprock (compared to saprock, saprolite has more than 20% of weatherable minerals 

altered, Eggleton, 2001) from the Byrock, Sussex and Hermidale areas were analysed 

(Appendix 2).
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The main stratigraphic units in the Girilambone region are the Girilambone Group 

(Cambro-Ordovician) and Kopyje Group (Late Silurian-Early Devonian; Chan et al 

2001; 2002; 2004). Stratigraphy and bedrock geology of the study area were discussed, 

in detail in Chapter 3.

8.2 GEOCHEMICAL APPROACHES TO EVALUATE 
SEDIMENTARY PROCESSES

A dominant control on the chemical composition of clastic sediments is the 

composition of the source rocks or provenance (McLennan et al., 2003). Typically 

these sources comprise a complex mixture of upper crustal igneous/metamorphic 

lithologies, volcanic arc-related lithologies and recycled sedimentary rocks (McLennan 

et al, 1990; Johnsson, 1993; McLennan et al., 1993). A variety of other sources such as 

localised volcanic and mafic intrusives may also be locally important. Chemical 

analyses of the main rock-forming minerals and representative Australian rock types 

(parent material) in each category have been reviewed in a number of studies (e.g., 

Joplin, 1963; 1965; Taylor and McLennan, 1985; Gray and Murphy, 1999; 2002). 

These analyses can be use for broad comparisons with saprolith.

A variety of sedimentary processes, including weathering, transport (sorting) and 

diagenesis can cause profound changes to compositions (McLennan et al., 2003); 

however, the potential influences exerted on sediment geochemistry by these processes 

are reasonably well understood (Fralick, 2003). Source rock composition will, to a large 

degree, control the amount and type of framework grains, in contrast to finer material 

capable of being generated elsewhere (Heins, 1993; Palomares and Arribas, 1993).

The presence of more than one unknown variable (weathering rate, sorting, climate, 

metasomatic and metamorphic influences) in the equation relating sediment 

composition to its controlling factors makes a linear solution to the problem of 

determining sources area composition from sediment composition impossible (Fralick, 

2003). A partial solution can be obtained if all variables but one are constant. For 

example, in the saprolith the sediments are adjacent to source area and on the local 

scale these sediments have undergone similar weathering and diagenetic processes.
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Thus the chemical differences could be ascribed to differences in chemical composition 

of the source rock.

An alternative approach is to identify elements in the geochemical data set whose 

concentration depends only on the parent material or other factors (i.e., sorting, climate, 

etc.), which can be determined and quantified. The major problem in using sediment 

geochemistry to infer source area composition is in establishing which elements are 

immobile (Fralick, 2003). MacLean (1990) has developed a technique for determining 

elemental mobility during alteration of volcanics, including a continuously fractionated 

series, and suggests that sedimentary rocks with primary continuity of chemical 

composition are amenable to the procedure. The basic tenet of the technique is that 

immobile elements will increase or decrease in concentration as mobile elements are 

lost from, or gained by, the rock. The technique of plotting immobile-immobile, 

mobile-immobile and mobile-mobile element ratios can be used to identify the source 

rock composition and hydrodynamic influence or sorting (Barrett and MacLean, 1991).

Additional information can be obtained on the alteration history of a data set by 

employing a second technique. This technique rests on the premise that chemical 

weathering acts, over time to destroy all major primary mineral phases except quartz as 

a framework constituent of sand. Given that quartz-rich (high Si0 2 %) sands are more 

mature, this assumption seems to be generally tenable (Fralick, 2003). Therefore 

plotting element concentration in contrast to Si02 provides further information about 

relative mobility, sorting and source rocks as discussed below.

8.2.1 TESTING ELEMENT IMMOBILITY

One method of testing element immobility involves plotting pairs of elements that are 

suspected of being immobile, e.g., Al, Ti, Zr, Nb, Y, Sc, La, Ce and Th (Bhatia and 

Crook, 1986; Condie and Sinha, 1996; Fralick, 2003; Niu, 2004).

In this study, and for saprolith after sedimentary rocks, saprolith sediment element pairs 

involving AI2O3, T i02, Nb, Sc, La, Ce and Th form the strongest correlation (R2 ranges 

from 0.4 to 0.8) with linear arrays along lines extending through the origin (Figure 8.1). 

Thorium displayed an insignificant (R2 =0.1) linear pattern with A I2 O 3  (Figure 8.1 H).
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The distribution of points in Figure 8.1 requires that ALO3, TiC>2, Nb, Sc, Ce and L a . 

were immobile and hydraulically fractionated in a similar manner. Deviations fro m  

linearity may be caused by the main mineral phases containing these elem ents. 

Zirconium and La (except La vs. Ce Figure 8.2B) are not significantly correlated w ith  

the other elements (Figures 8.1- 2). The patterns produced by Zr when plotted against 

chemically immobile elements show a broad indirect correlation with AI2O3 (Figure 8 . 1 

D) whereas its correlation with TiC^is not significant.

Plotting AI2O3, TiCL, Nb, Sc, Zr and Th against SiC>2 concentrations in the saprolith 

provides further insight into chemical and hydrodynamic behaviour of their m ajor 

mineral phases (Figure 8.2 F-K). Trends in Zr data indicate that Zr is proportionally 

increasing with SiC>2, which suggests that Zr is preferentially concentrated in the  

quartz-rich (high SiÜ2) relatively coarse fraction (Figure 8.2 J). However, deviation 

from this trend may be related to a variation in source composition or recycling 

processes (see below). Figures 8.2 (A, B, C) clearly indicate that Ti, A1 and Nb are 

concentrated in the clay (low SiÜ2) fraction.

8.2.2 WEATHERING AND CHEMICAL INDEX OF ALTERATION (CIA)

Weathering is the process that most significantly influences the geochemistry of 

terrigenous sedimentary rocks. Geochemical relationships associated with weathering 

phenomena are discussed in Chapter 9. Typical weathering of the upper continental 

crust is dominated by the alteration of feldspar, and during weathering and transport 

plagioclase is less stable than K-feldspar leading to an increase in K-feldspar/ plagioclase and 

K20/Na20  ratios (Nesbitt, 2003). If the relatively resistant mineral quartz is neglected the 

average of the feldspar group of minerals composes approximately 70% of the upper 

crust (Nesbitt and Young, 1984; Taylor and McLennan, 1985). Thus, much of the effect 

on major-element compositions can be evaluated in the geochemical system using the 

relative mole fractions of Al2 0 3 -(CaO*+Na2 0 )-K20  (coded as A-CN-K diagram; 

Nesbitt and Young, 1984).

A weathering index (CIA) can be formulated using these components such that:

CIA= 100* [A120 3/ (Al20 3+C a0*+ N a20+K 20)] (Nesbitt and Young, 1982; 1984; 

1996) where CaO* refers only to the calcium associated with silicate minerals.

121



1-------1
’O 

N

A
4 v '

** 0

I-------1-----
3

 
S5

F

R2 = 0 8

i---------r
S? 

S

.  K
* 1  r

♦♦ f L '  R =0.4
a
£  0 8 - H

0.4 -

•y>>
% 20- 

10 -

4 ♦
Um* Sc

o

v j O K  *

, v f .
? .  ••

£ 20

10 -

0

30

B

✓

*u*i2t&** R 2 =  0.6

* j R n

S
c

t— 
Iv

 
O

> 
o

 
o

 
c

♦ G
*** A

4  R 2«* 0.4

« & ? /  . 
. . . d i p  *
♦ ♦ il*3tV

4♦ '  ♦ ♦/» ♦♦♦ ♦

-tu

30 - 

p 20 -

10 - 

n - • 
• 

-
 

 ̂
4 

V
 ‘

II £
 

^

i 1 i V 1 1 1
1000

. . .  * v  c 

. .  .* >  4

•LJSä J b

- , j w f  

♦ ♦ •

-4U

30 

P  20 

10

«* H
# R * = 0 .1  /
♦ ♦ ✓  <

.

800

600

N
400

200

♦ M

♦ ♦

♦R2 = 0 1

*♦ v %J  >

' J k  • '

* *  ,

rvv
0 10 20 30 40

.41203
0.5 1

Ti0>2
1.5 10 20 

Sc

Figure 8.1 Scattergrams showing correlations between likely immobile elements: Al, 
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Figure 8.2 Scattergrams showing immobility test correlations of Zr, Sc, La, Ce and Th, 

also plots for Al, Ti, Nb, Sc, Zr and Th against SiC>2 (Dashed lines represent best linear 

regression fit).

In the Girilambone region the CaO values are generally low (<0.2 wt %). The positive 

correlation of high CaO values (<3%) and AI2O3 (Figure 8.3) suggests that the high 

content of CaO in the saprolith samples compared with that in the Post-Archaean 

Australian Shale (PAAS, Taylor and McLennan, 1985) is not due to a high amount of 

calcium carbonate. High CaO values are associated with high values of mafic related
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elements (i.e., Ni, Cr, Co, Appendix 2). These associations together with the observed 

absence of carbonate minerals in these samples (Chan et al., 2001; 2002; 2004) strongly 

support a silicate related origin for the Ca.

Sodium is commonly the most useful dissolved indicator of silicate weathering. This is 

because it is easy to measure and it is derived almost entirely from the hydrolysis of a 

single dominant mineral (plagioclase). It is also the most nearly conservative of the 

major cations (ranked last in both soil exchange preference and biological utilization; 

Staufer 1990). However, high Na values in the regolith may also be related to occurrences of 

added salts (e.g., NaCl), therefore it might be necessary to correct for Na20  using Cl analysis 

(McLennan et al., 2003). This correction for sodium concentration (Na* = Na - 0.86C1 

Staufer, 1990) reflects the conventional understanding that Na:Cl in wet and dry 

deposition follows the marine ratio and that both ions behave conservatively once in 

solution (Staufer, 1990).

The samples in this study generally have low Na20  contents (<1 wt%; Appendix 2) and 

applying the correction to high values (>1%) of Na20  showed that the amount of 

additional Na that is probably derived from the salt source is insignificant (Appendix 

2).
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Figure 8.3 Scattergram showing correlation between AI0O3 and high CaO concentration 

values in base of the hole saprolith samples from the Girilambone region. Post- 

Archaean Australian Shale (PAAS) is from Taylor and McLennan (1985).
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Weathering trends can be displayed on the A-CN-K triangular plot (Figure 8.4A). O n  

this diagram the initial stages of weathering form a trend parallel to the (Ca0 +Na20) -  

AI2O3 side of the diagram, whereas advanced weathering shows a marked loss in K20  

as compositions move towards the AI2O3 apex (Figure 8.4 A). The trends follow m ix ing  

lines representing the removal of alkalies and Ca in solution during the breakdown o f  

first plagioclase and then potassium feldspar and ferromagnesian silicates (McLennan 

et al., 2003).

The CIA and weathering trends on triangular plots have been used in two different 

ways (Rollinson, 1993). Firstly, chemical changes in a recent weathering profile such a s  

that illustrated in Figure 8.4A are used as a template to evaluate the chemical history o f  

ancient profiles. Deviations from such trends can be used to infer chemical changes 

resulting from diagenesis or metasomatism (Nesbitt and Young, 1984; 1989). The 

second is that the A-CN-K diagram was based on the relationship between feldspar 

weathering and Al concentration of modem muds (silt, clay). While it has been 

successfully used to understand the chemical composition and weathering history o f  

ancient muds, it is not so readily applied to sandstone particularly when the sands are 

not well sorted (Nesbitt, 2003). It is also important to remember that when dealing with 

weathering of sedimentary rocks, the sediment forming the rock has already gone 

through previous cycles of weathering and that this is part of the overall geochemical 

composition.

CIA values typically range from about 50 or less for most unweathered igneous and 

metamorphic rocks to 100 for pure aluminosilicate residues such as kaolinite 

(McLennan et al., 2003). The CIA scale is shown to the left on Figure 8.4.

To identify the effect of weathering, all the bottom of hole saprolith samples from this 

study were plotted onto the A-CN-K diagram, including samples characterised by 

apparent igneous (mafic-intermediate) composition, and the CIA was calculated (Figure 

8.4B). Slightly weathered sediments as characterised by CIA value, show a range from 

50 to 70. They plot adjacent to the weathering trends of andesitic - granitic igneous 

rocks (Figure 8.4B). The deeply weathered samples plot along the muscovite-illite trend 

close to the Al-K boundary with high Al content. It has been observed that high
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Figure 8.4 Ternary plots of molecular proportions of AI2O3- (Na20+Ca0*)-K20  with 

the Chemical Index of Alteration (CIA) scale shown on the left modified from 

McLennan and Murray (1999). (A) Shows selected idealized igneous and sedimentary 

minerals and weathering trends for selected upper crustal igneous lithologies. (B) 

Shows bottom of the hole saprolith samples from the Girilambone region for slightly 

and deeply weathered zones and the suggested weathering trends. IWL represents the 

ideal feldspar weathering line.

A1 concentration in marine sediments relates to fine-grained aluminosilicate detrital 

fractions (Calverts, 1976). Potassium is mostly associated with potassium feldspar (K 

AlSi30 8) and illite ((K, H30) Al2 [(OH) 2 Si3AlOi0]) (Shimmield and Mowbray, 1991; 

Martinez et al., 1999; Yarincik et al., 2000). High A1 values in these samples (CIA 

>75) indicate a significant amount of potassium-rich clay, probably produced by 

advanced weathering processes.

On the A-CN-K diagram the chemical compositions of the slightly weathered igneous 

rocks show mafic-andesitic and granodioritic weathering trends. The data also display 

remarkable clustering of points at the muscovite-illite weathering zone parallel to a 

general weathering trend of granite (Figure 8.4B). These trends are parallel to the ideal 

feldspar weathering line (IWL) indicating that weathering was the (only) dominant 

process (McLennan et al., 2003). However leaching of Ca, Na and K during weathering 

causes a change to bulk composition of the residual weathering products along these
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lines from granite to illite (Figure 8.4A, Nesbitt, 2003). Three arbitrarily chosen bul k  

compositions of the weathering residues labelled 1, 2 and 3 (Figure 8.4B) represent 

gradual leaching of Ca, Na and K along the granitic weathering trend. The CIA o f  

residue 1 is about 55 and the weathering trend of granite intersects the A-K boundary a t  

residue 2 where the CIA value is about 80. Along or parallel to the A-K boundary th e  

bulk compositions of the samples from sample 2 to sample 3 contain no Ca or Na, hence a ll 

plagioclase of the initial granitic material has been weathered to clay (primarily kaolinite bu t 

others as well). Illite is likely to have formed after K-feldspar and mica (Nesbitt, 2003). A  

depletion of K is typically used as an index for maturity of sediments (Zabel et aL , 

2001); hence K/Al would be a useful proxy for the intensity of weathering.

8.2.3 METASOMATISM

Recognition of metasomatism is important when evaluating the chemical characteristics 

of the original sediments prior to interpreting the effects of weathering (Fedo et al. , 

1997; Nesbitt and Young, 1997). Potassium- Na-, and Mg- metasomatism have been 

studied in paleosols (Nesbitt and Young, 1989; Rainbird et al., 1990). The effects of K- 

metasomatism are readily discerned in paleosol profiles produced on igneous rocks 

because their weathering trends can be accurately predicted; they are sub-parallel to the 

CN-A1 boundary of A-CN-K diagram (Nesbitt, 2003). Addition of potassium to 

partially weathered samples, for example, results in systematic increase in K therefore 

the metasomatized samples diverge systematically from the weathering trend toward 

the K apex (Figure 8.4A). Similarly, the weathering trend towards illite diverges from 

IWL (Figure 8.4A) due to syn- or post-depositional K-enrichment in the clay fraction 

(Fedo et al., 1995), which suggests significant K- metasomatism of clay minerals 

(Roser et al., 2002; Nesbitt, 2003).

In this study a significant deviation from the ideal weathering trend is generally 

observed in some of the saprolith samples. This deviation coincides with the K- 

metasomatism trend (Nesbitt, 2003, Figure 8.4A), which possibly diverged from the 

weathering trend of mafic-andesitic and granodioritic sources. The mafic-andesitic 

weathering trend is identified for samples numbered 166-163-234-198 (Figure 8.4B). 

Some samples (i.e., 200, 201) diverge from this trend toward K enrichment suggesting 

that these samples were derived from K-metasomatised mafic source rocks
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K-metasomatism was also detected in granodioritic and /or granitic weathering trends. 

Strong K-enrichment in sample numbered 237 is most probably due to IC- 

metasomatism, which diverted the composition from the granodioritic weathering trend, 

defined by samples 247- 167 (Figure 8.4B) or from the inferred granitic trend. These 

two trends overlap because of the gradual composition changes between granodiorite 

and granite.

8.2.4 SEDIMENTARY RECYCLING

The sedimentary recycling (derivation from older sedimentary rocks) of sediment tends 

to strongly enrich sands in heavy minerals (e.g. zircon, monazite, rutile and tourmaline) 

and thus in trace elements associated with those minerals (McLennan et al., 1993, 

2003). This relationship can be monitored by a plot of Th/Sc against Zr/Sc (Figure 8.5) 

for most igneous rock compositions. In this diagram both Th and Zr are incompatible 

and typically become more enriched relative to the more compatible element Sc. 

Although both Th and Zr are enriched in heavy minerals (monazite (Ce, La, Th, U) P04 

and zircon (ZrSiCL) respectively), zircon is typically far more abundant than monazite. 

Therefore, during sedimentary recycling processes, Zr/Sc tends to become increasingly 

higher almost independent of changes in Th/Sc (McLennan et al., 2003). First-order 

sediments show a simple positive correlation between these ratios (Th/Sc and Zr/Sc) 

whereas recycled sediments show a substantial increase in Zr/Sc with far smaller 

increase in Th/Sc.

The plotted saprolith data on the Zr/Sc and Th/Sc diagram (Figure 8.5) display a 

significant increase of Zr/Sc with insignificant or no increase in Th/Sc, suggesting 

significant recycling. The slightly weathered igneous rocks plot below (more mafic) 

and above (more felsic) the Th/Sc ratio level (Th/Sc=l) of upper continental crust, 

indicating that the sources of these sediments are from a wide range of igneous 

compositions.

8.2.5 SEDIMENTARY SORTING

Although source composition plays a major role in controlling the composition of 

sediments, other factors such as chemical weathering, mechanical disaggregation and 

hydrodynamic sorting can also affect the sediment composition to various degrees, 

according to the transportation system and depositional environments (Johnsson, 1993).
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During sediment transport, whether in air or water, minerals begin to separate 

according to size, density and shape. For the major mineralogical components (and thus 

major elements) the processes of weathering and sorting may be difficult to 

differentiate because weathering processes continue during the sediment transport 

process (Johnsson, 1993).
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Figure 8.5 Plot of Th/Sc versus Zr/Sc for saprolith of the Girilambone region showing 

both the oceanic-upper crustal differentiation line and the trend of sediment recycling. 

Data for the PAAS, upper continental crust (UCC) and oceanic crusts (OC) are from 

Taylor and McLennan (1985). The Th/Sc ratio of 1 marks the boundary of upper 

continental crust.

Sedimentary sorting produces alternating shales and sandstones with complementary 

chemistries. The preferential partitioning of quartz and zircon in the coarse-grained 

fraction of the sediments results in a strong fractionation between SiC>2, Zr and other 

components (e.g., AI2O3, TiCF). In other words, the sedimentary sorting causes a 

systematic fractionation between SiCF (quartz) and ALO3 (clay) and also between Zr 

(zircon) and other minor or trace elements that are preferentially retained in the fine-

grained fraction. As a consequence, shales may be defined chemically as having higher 

AhCVSiCF and TiCF/Zr ratios than sandstone (Garcia et al., 1994).
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The fine scale turbiditic interbedding and high degree of mixing of the air core samples 

(see Chan et al., 2001; 2002; 2004), meant it was difficult to separate many of the 

saprolith samples into different grain sizes based on field and petrographic 

examinations. To minimise the influence of sorting as a masking factor of source 

composition signature it was important to separate the analysed composite saprolith 

sediments into sand-dominant sediments and shale (clay)-dominant sediments, based on 

a geochemical compositional model proposed by Garcia et al. (1994). Sediments with 

Ti02/Zr and AkCVTiC^ ratios higher than 0.33 and 0.23 were considered as shale- 

dominant and the complementary ones (Ti02/Zr < 0.33 and Al20 ; /r i0 2 < 0.23) as 

sandstone-dominant (Figure 8.6, Appendix 2).
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Figure 8.6 A1203/Si02 -100TiO2/Zr diagram for base of the hole saprolith samples 

from the Girilambone region. PA AS and UCC data are from Taylor and McLennan 

(1985).

The relationship between Al and Ti/Zr (as shown on a Al-Ti-Zr ternary diagram; Figure 

8.7) was also used to characterise the effect of sorting processes. This diagram is based 

on the following considerations: sedimentation involves weathering, transport, mixing 

from different sources and sorting (Sawyer, 1986). In the first three processes, the total 

contents of typically insoluble elements such as Al, Ti and Zr may vary in response to
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leaching of the soluble elements, but their relative proportions are transferred from the 

source area into bulk sediment without any or with little modification (Zhang et al., 

1998). This material is then sorted according to the hydraulic properties of its mineral 

components and the mechanical and chemical fractionations between complementary 

shales and sandstone are generated (Garcia et al., 1994; Mongelli et al., 1998). The 

centre of the Al-Ti-Zr diagram is proposed as the average of bulk sediment (ABS), 

which represents a conventional chemical boundary between shales and sandstones 

(Garcia et al., 1994). The diagram also reflects the differentiation of igneous rocks. The 

ACOVTiCF ratio of igneous rocks is highly sensitive to magmatic differentiation and 

igneous and sedimentary trends crosscut on the Al-Ti-Zr diagram (Garcia et al., 1994).

15A120 3 15Al20 3

Shale dom inant

Sandstone dom inant

Gianodiontes

Im m a tu re  ta n d s to u e

' " / / / . »  „ G abbi os

M ah n e  sandstone

Figure 8.7 Ternary plot of 15Al203-300Ti02-Zr summarising the geochemical relations 

between common sedimentary (solid line boundary) and plutonic (dotted line 

boundary) trends (after Garcia et al., 1994; A). The saprolith samples from the 

Girilambone region displays shale, immature sandstone, mafic and felsic igneous 

composition (B). Numbers represent drill holes.

Plotting the saprolith samples on the Al-Ti- Zr diagram showed a scatter of points along 

the shale-sandstone trend and the mafic-felsic igneous differentiation trend (Figure 

8.7B). Chemical variation in the shale-dominant field is less than its sandstone- 

dominant counterpart. This is consistent with simple mass-balance considerations. As

131



quartz is abundant in sandstones, the absolute Al + Ti + Zr content is lower than  

complementary shales (Garcia et al., 1994). Sandstone-dominant plots trend toward 

immature sandstone indicating a significant amount of silt and clay within these 

samples. The diagram also shows that bottom of the hole samples from drill holes 

CBAC163, 166, 198, 200, 201 and 234 plot adjacent to the mafic igneous field, and 

others (CBAC167, 233, 237 and 247) plot in the intermediate (granodioritic) igneous 

field (Figure 8.7.B).

8.3 BEDROCK, WEATHERING AND SEDIMENT 
COMPOSITIONS

8.3.1 WEATHERING ZONES

Chemical weathering of Al-silicates produces a new suite of minerals including clay 

minerals, secondary oxides, and hydroxides. The distribution of these constituents 

within an idealized profile is shown in Figure 8.8 (Nesbitt et al., 1997; Nesbitt, 2003). 

Secondary minerals generally predominate near the top of weathering profiles whereas 

primary minerals and rock fragments are more abundant nearer the base. Softer portions 

of profiles are also likely to be eroded in preference to competent material. Therefore it 

is essential to identify whether the mineralogy of the derived sediments reflects the 

mineralogy of the eroded weathering products or the mineralogy of pristine bedrock. In 

this study, this was investigated as follows:

• identifying the original source composition using the A-CN- K diagram and 

weathering trends;

• recognising the zone and degree of weathering by calculating the CIA value for 

each and comparing that with the weathering zone model proposed by Nesbitt et 

al. (1997; Figure 8.8). The least weathered samples (lowest CIA value) are the 

closest to the original composition;

• calculating the CIA for all dominant lithologies (sand and shale). The studied 

saprolith materials were most probably derived from the underlying sedimentary 

bedrocks .The CIA represents the scale of weathering calculated relative to 

fresh feldspar concentration in the original composition from which the 

sedimentary bedrocks were produced; and

132



• classifying the samples based on their immobile geochemical signature 

(immobile elemental ratios). Samples from the same source composition a n d  

different weathering zones (which have undergone different degrees o f  

weathering) will display similar immobile ratios and various CIA values.
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Figure 8.8 An idealized weathering profile developed on granitic bedrock after Nesbitt 

et al. (1997). Qualitative changes in the proportions of clay minerals are plotted to the 

left of the profile, and qualitative changes in quartz, total clay minerals, total feldspars 

and rock fragment proportions are plotted to the right of the profile (A). Four 

weathering zones are shown (I-IV) on Quartz-Plagioclase-K-feldspar (Qz -Pl-Ks) and 

A-CN-K diagrams illustrate qualitatively the mineralogy and bulk composition of the 

four weathering zones in sediments derived from granite and granodiorite (B).

As previously discussed, the A-CN-K diagram and the identified weathering trends 

strongly suggest granite- and granodiorite-type compositions as the main primary 

source of the sedimentary rocks, now weathered to saprolith in the Girilambone region 

(Figure 8.4). The saprolith materials are classified based on CIA values using the 

classification of the weathering zone (Nesbitt et a l., 1997) into Zone I (CIA>85), Zone 

II (85>CIA>75), Zone III (75>CIA > 55) Zone IV (CIA <55). The original source 

composition, weathering trend and chemical composition of the saprolith materials in 

these zones are displayed in Figure 8.9. According to this model, Zone IV and Zone III
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are the least weathered, which is consistent with the definition of saprolith (saprock and 

early stage of saprolite). However, if the sediments were not directly derived from the 

original (igneous) rocks the chemical composition of the saprolith possibly represents a 

higher (Zone II or Zone I) weathering zone. Immobile element ratios used to identify 

the compositional signature of source materials in the weathering zones showed that 

variations in theses ratios are insignificant compared to the CIA values. This means that 

the source compositional signature could be maintained by these elements in the 

saprolith, material despite the intensity of weathering.
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Figure 8.9 A-CN-K diagram shows the weathering zones (I-IV) for saprolith materials 

of the Girilambone region derived from granitic and granodioritic sources. CIA and 

Zones composition are calculated from Nesbitt et al. (1996; 1997).

8.3.2 BEDROCK IDENTIFICATION

This study has identified mafic and felsic igneous rock composition for some of the 

regolith samples. An attempt was also made to assess the compositions of the saprolith 

developed on sedimentary and metasedimentary bedrock. The chemical composition of 

these saprolith samples are compared with those of fresh rocks from bedrock units 

suspected to be present (i.e., Cobar Supergroup and Girilambone Group). The data for 

the Cobar Supergroup (Whitbread, 2004) are for sand and shale units from
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unmineralised sites in the Elura area. Those for the Girilambone Group are from  

Ackerman (2005).

To minimise the effects of weathering processes the comparison between the data se ts  

is based on likely immobile element associations. Conservative elements (Ti, Al, C e, 

La) are reported to be relatively immobile in both sand and shale units of the Cobar 

Supergroup (Whitbread, 2004). Rare Earth Element (REE) distributions are widely 

used to characterize source composition of detrital sediments (Taylor and Mclennan, 

1985; Cullers, et al., 1987; Zhang et al., 1998). Linear correlation and mass balance 

consideration indicate that clays are more important than zircon (or other heavy 

minerals) in hosting both light and heavy REE in cratonic shales (Condie, 1991). Trace 

element behaviour is also reported to be largely controlled by the dominant clay or the 

degree of weathering (Kronberg et al., 1979).

Aluminium and Ti are relatively immobile and significantly correlated in the saprolith 

samples (Figure 8.1). However the Ti0 2 /Al203  ratio is susceptible to sorting because 

TiÜ2 significantly concentrates in the sand fraction, (as detrital rutile and ilmenite) 

whereas AI2O3 concentrates in the clay fraction. Therefore the TiCE/ALOs ratio 

combined with any conserved element (i.e., Ce or La) was used to cover all the 

chemical compositional changes including that caused by sedimentary sorting.

Plotting 30TiÜ2/ A I 2 O 3  against Ce and La showed a clustering of the majority of the 

data in limited concentration ranges for Ce (46-119 ppm) and La (22-51 ppm) in 

comparison with the relatively wide range of 30TiO2/Al2O3 ratios (Figure 8.10,11). 

Plotting fresh sandstone and shale data from the Cobar Supergroup (Whitbread, 2004) 

indicates that portions of the saprolith are possibly weathered from rock units similar to 

the Cobar Supergroup in composition. Various saprolith materials (sandstone, shale) 

from different weathering zones are grouped together on the Ti/Th - Ce/La diagram 

(Figure 8.12) indicating that they have similar chemical composition and were therefore 

derived from similar sources. In this context saprolith materials that are related to the 

Cobar Supergroup are clustered in limited ranges of Ti/Th (0.039 > Ti/Th > 0.03) and 

Ce/La (2.2> Ce/La > 1.9) ratios, whereas the Girilambone group is characterised by 

relatively small range of Ti/Th (0.03 > Ti/Th > 0.005) and Ce/La (2.3 > Ce/La > 1.8; 

Figure 8.11).
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In order to identify the weathering influences on the La/Ce ratio, Ce and La were 

normalised to chondrite (Taylor and McLennan, 1985) and the normalised 

(La/Ce)N is plotted against the CIA in Figure 8.13. The saprolith materials showed a 

wide range of change in (La/Ce)N within the most weathered zone (Zone II, CIA= 75- 

85) and no correlation was observed between (La/Ce)N and CIA. On the other hand 

La/Ce ratios show a limited range (1-1.5) from the least weathered samples. This 

indicates that the (La/Ce)n values can be used reliably as a geochemical signature to 

identify the underlying bedrock in less weathered saprolith samples (with CIA value up 

to 75).

Cobar Sg. fresh 
sand and shale field

a Sand dominant 

x Shale doininanat
A  2.0

Ce (ppm)

Figure 8.10 Scattergram of 30TiO2/Al2O3 and Ce showing the correlation between 

Cobar Supergroup fresh rock compositions and the saprolith of the Girilambone region. 

Data of Cobar Supergroup (Sg) are from Whitbread (2004).
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a Sand dominant 
x Shale dominanat

Cobai Sg hesli sand 
and shale field

A  2.0  -

Figure 8.11 Scattergram of 30TiO2/Al2Oi and La showing the correlation between the 

Cobar Supergroup (Sg) fresh rock compositions and the saprolith of the Girilambone 

region. Data of Cobar Supergroup are from Whitbread (2004).

3.0

Ce'La

Figure 8.12 Ti/Th - Ce/La diagram of saprolith materials from the Girilambone region. 

Samples that are comparable with the Cobar Supergroup (Sg) data are identified by a 

circle. Numbers (I-IV) are related to materials (sand, shale and weathered igneous rock) 

from different weathering zones explained in Figures 8.8-9. Cobar Supergroup data are 

from Whitbread (2004) and the Girilambone data are from Ackerman (2005).
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Figure 8.13 CIA -  (Ce/La)N diagram of saprolith materials from the Girilambone 

region showing (Ce/La)N of the Cobar Supergroup data range (1.0- to 1.5). Cobar 

Supergroup (Sg) data are from Whitbread (2004). Ce and La were normalised to 

chondrite (Taylor and McLennan, 1985).

8.4 SUMMARY AND CONCLUSIONS

Analysis of the least weathered regolith present in bottom of the hole samples has 

shown that elemental ratios and the CIA index are useful for identifying the parent rock 

of weathered samples.

A-CN-K plots have identified the effect of weathering, showing that some of the 

samples are slightly weathered (CIA=50-70) with andesitic-granitic igneous rock 

composition. The deeply weathered (>70 CIA) samples plot adjacent to muscovite- 

illite weathering zone parallel to a general weathering trend of granite. A significant 

deviation from the ideal granodioritic and/ or granitic weathering trends was observed 

on the A-CN-K diagram associated with K enrichment. This K enrichment is possibly 

due to K-metasomatism or alternatively it indicates high K granitic source rocks.
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Ratios of Zr/Sc and Th/Sc diagram indicate that some of the least weathered samples 

are mafic (relatively low Zr/Sc and Th/Sc). The deeply weathered samples showed a n  

independent increase in Zn/Sc, which indicates significant recycling.

The ratios of AfCVSiCb vs 100 TiCL/Zr and 15Al203-Zr-300Ti02 reveal the effect o f  

sedimentary sorting. These ratios also show that sandstone-dominant samples 

approximate immature sandstones indicating significant amounts of silt and clay, 

whereas the shale- dominant field is relatively limited. Mafic intermediate and felsic 

igneous compositions are also identified.

Saprolith materials (after sandstone and shale) from the less weathered zones are 

grouped together on the Ti/Th and Ce/La diagram, indicating that they have similar 

chemical composition and are therefore derived from similar sources. The majority o f 

saprolith samples show Ti/Th and Ce/La ratios within the range found in fresh Cobar 

Supergroup or Girilambone turbidites. Some show depletion in Ce and La and some 

enrichment suggesting these samples were derived from different source rocks or that 

Ce and La have been mobilised in the most weathered regolith.
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9. CHAPTER NINE: ELEMENT DISPERSION IN 
CALCRETE- MANGANESE- IRON-DOMINANT 
REGOLITH

9.1 INTRODUCTION

Element distributions in the regolith are determined by:

• the mineralogy of the regolith and the stability of their primary host minerals;

• the influence of ground and surface waters; and

• the influence of biota (Lewis et al., 1987; Butt et al., 1998; Britt et al., 2001; 

Anand and Paine, 2002). These factors are all affected by the prevailing climatic 

regimes (Koinig et al., 2003). In general, only processes related to past regimes of long 

duration, to extreme climates or to recent regimes leave a significant imprint. Thus, in  

much of Australia many of the dominant geochemical (and mineralogical) 

characteristics of the regolith are related to weathering under humid climates with high 

water tables and generally acid conditions, whereas others are due to later, possibly still 

active, events related to arid, alkaline environments with lower water tables. The 

features produced by these later events appear as modifications of the pre-existing 

regolith and tend to be reflected by the concentrations of minor components (Ollier and 

Pain, 1996; Taylor and Shirtliff, 2003).

This chapter explores the relationships between weathering-controlled element 

dispersion and regolith accumulations of carbonate (Ca- and Mg- rich), iron oxides/ 

oxyhydroxides (Fe-rich) and manganese oxides/oxyhydroxides (Mn-rich). This 

subdivision of regolith is based on knowledge of the regolith materials in the 

Girilambone region and the observed element associations. A better understanding of 

host phases for the various trace elements can help predict regolith-related background 

variations in element abundances and advise the most appropriate regolith sampling 

media for particular elements. This in turn should improve geochemical exploration in 

the region.
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9.2 ELEMENT ASSOCIATIONS AND DISPERSION IN REGOLITH  
CARBONATE ZONES.

9.2.1 INTRODUCTION

Regolith carbonate (commonly called calcrete) is defined by Wright & Tucker (199L) 

as near-surface, terrestrial, accumulations of predominantly calcium carbonate, which 

occurs in a variety of forms from powdery to nodular to highly indurated. Calcrete is  

widely distributed in semi-arid regions (e.g., Goudie, 1983; Nahon, 1991; Wright and 

Tucker, 1991; Hema and Navin, 2004; Durand et al., 2006) and has been used as a  

sampling medium in geochemical exploration for gold and some base metals (e.g., 

Lintem and Butt, 1993; 1998; Hill et al., 1999; McQueen et al., 1999; Chen et al. , 

2002). Calcrete forms by cementation and displacive and replacive precipitation o f 

predominantly calcium-rich carbonate into soil profiles, transported and in situ regolith 

and bedrocks, in areas where pore water and groundwater become saturated with 

respect to calcium carbonate (Durand et al., 2006). Calcrete composition varies from 

calcite-dominant to dolomite-dominant (Chen et al., 2002).

9.2.2 NATURE AND REGIONAL DISTRIBUTION OF REGOLITH 
CARBONATE

There are many types of regolith carbonates and classification schemes. Wright and 

Tucker (1991) proposed a morphological classification (Table 9.1). Various forms that 

have genetic implications are not defined in this classification. Calcretes can also be 

classified by their hydrological setting. Wright and Tucker (1991; Figure 9.1) 

genetically classified the regolith carbonates based on hydrological setting into:

• phreatic (valley) or groundwater non-pedogenic calcrete-forms in areas around 

the groundwater table;

• capillary fringe non-pedogenic calcrete-forms in the capillary fringe of phreatic 

zone;

• gravitational zone non-pedogenic calcrete develops in the gravitational water zone 

of the vadose zone;

• pedogenic calcrete developed in the soil moisture vadose zone; and

• superficial non-pedogenic calcrete which forms on the regolith surface .

141



Table 9.1 Morphological classification of calcrete (from Wright and Tucker, 1991).

Type Description

Calcareous soil Very weakly cemented or uncemented soil 

with small accumulations as grain coatings, 

patches of powdery carbonate including 

needle-fibre calcite, carbonate filled fractures 

and small nodules

Calcified soil A firmly cemented soil, just friable; few 

nodules. 10-50% carbonate

Powder calcrete A fine, usually loose powder of calcium 

carbonate as a continuous body with little or 

no nodule development

Pseudotubule calcrete All, or nearly all, the secondary carbonate 

forms encrustations around roots or fills root 

or other tubes

Nodular calcrete Discrete soft to very hard concretions of 

carbonate cemented and/or replaced soil. 

Concretions may occur with laminated 

coatings to form pisoids

Honeycomb calcrete Partly coalesced nodules with interstitial 

areas of less indurated material between

Hardpan calcrete An indurated horizon, sheet-like, typically 

with a complex internal fabric, with sharp 

upper surface, gradational lower surface

Laminar calcrete Indurated sheet of carbonate, typically 

undulöse. Usually, but not always, over 

hardpans or indurated substrate

Boulder/cobble calcrete Disrupted hardpans due to fracturing, 

dissolution and rhizobrecciation including 

tree heave). Not always boulder grade (clasts 

are rounded due to dissolution)
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Generally in semi-arid systems the alluvial deposits are characterised by three m a jo r 

carbonate sinks: groundwater calcretes, pedogenic calcretes and calcrete conglomerates 

(Khadkikar et al., 1998; Gomez-Gras and Zarza, 2003; Durand et al., 2006). 

Groundwater calcretes originate from carbonate-saturated waters travelling 

preferentially along stratification planes. Pedogenic calcretes form through soil-forming 

processes typically in extra-channel areas. Calcrete conglomerates occur as ribbons, 

sheets and lenses due to the reworking of both pedogenic and groundwater calcretes.

Nash and McLaren (2003) studied a Late Quaternary-Holocene non-pedogenic valley 

calcrete and concluded that the development of non-pedogenic calcretes is less closely 

linked to climatic regime, given their independence from a pedogenic mechanism o f  

carbonate precipitation.

Soil moisture 
zone

Gravitational 
water zone

Capillary
fiiuge

Groundwater

Sheet wash

1 Local i ole of 
plueatophvüc 
plants

1carbonate movement

SUPERFICIAL
NON-PEDOGENIC
CALCRETE
laminar emsts. gully bed
cementation+ case hardening

PEDOGENIC CAL CRETE

GRAVITATIONAL ZONE
N o n - p e d o g e n i c  c a l c r e t e

CAPILLARY FRINGE 
N O N - PEDOGENIC CALCRETE

PHREATIC: (VALLEY) OR
GROUNDWATER
NON -  PEDOGENIC CALCRETE

Figure 9.1 Classification of calcrete by hydrological setting (after Wright and Tucker, 

1991).

In Australia, calcrete occurs over about 21% of the land surface (Figure 9.2) due to the 

large proportion of arid and semi-arid lands (Chen et al., 2002). Their regional 

distribution is largely controlled by a fundamental relationship between:

• the availability of carbonate (C O 3 2 ) and required cations (Cai+, Mg2+) that are 

derived from bedrock (primary carbonate and mafic rocks), aeolian materials and 

rain water or older regolith carbonate accumulations; and
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• the environmental factors such as landscape setting, rainfall rate and chemistry, 

groundwater depth and chemistry (Chen et al, 2002).

Perth
Sydney

Figure 9.2 Distribution of calcrete and associated soils in Australia (after Northcote, 

1975).

Carbonate occurrences in soil or regolith profiles range in thickness from tens of 

centimetres to tens of meters. Within such profiles, there can be more than one 

morphologic type of calcrete, either within a layer or as separate layers. In southern 

Australia calcrete occurs in association with coastal calcarenite dune complexes and 

further inland with a wide range of geological and landscape settings (McQueen et al., 

1999).

Based on morphology, Hill et al. (1999) broadly subdivided the calcrete into nodular 

carbonate facies and coated grains, carbonate rhizoliths, carbonate hardpan facies, 

boulder carbonate facies, powder carbonate facies, tabular massive carbonate facies and 

septarian magnesite accumulations. The occurrences of nodular carbonates, carbonate 

hardpans (as massive and laminated layers, coatings and veinings on bedrock), and 

powder carbonate in the Cobar-Girilambone region were reported by McQueen (2006).
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The distribution of calcrete in southeastern Australia appears to be similar to that 

observed in Western Australia (Lintem and Butt, 1998) with the widespread pedogenic 

groundwater types occurring south of about latitude 30°S (i.e., an extension of a feature 

equivalent to the Menzies Line in Western Australia). North of this zone groundwater- 

related valley calcrete and red-brown hardpans are more common (Hill et al., 1999).

In this study it was difficult to recognise the morphological characteristics of most of 

the calcrete in the pulverised composite samples, but observations of exposed calcrete 

throughout the region indicate at least four calcrete facies in regolith with elevated 

values of CaO (>1.0 wt %) and MgO (>1.0 wt%). These facies are: i) coated grains and 

nodular carbonate; ii) powdery carbonates; iii) massive or laminated carbonate 

hardpans; and iv) filling carbonate that occur as veins (see also Khider and McQueen, 

2006; McQueen, 2006). The first two are weakly consolidated carbonate and generally 

associated with carbonate hardpan, which is common within soil and alluvial/colluvial 

sediments. The third facies occurs in regolith profiles where carbonate-bearing 

solutions have ponded, typically within in situ regolith or along the boundary between 

the transported and in situ regolith (the T/I boundary). The fourth facies forms filling 

along cracks in transported and in situ regolith and fracture-fillings in saprock/ bedrock 

(Figure 9.3).

The regolith profiles and regolith-landform toposequences indicate that the regolith 

carbonate (calcrete) facies vary both vertically within a profile and laterally across the 

landscape. The number and thickness of carbonate-rich “horizons’ varies widely, 

possibly due to multiple episodes of calcrete precipitation and re-dissolution (Figures 

9.4-9). In the in situ regolith the carbonate horizon is 1-8 m thick and generally 

associated with the T/I boundary (Figures 9.7-9), whereas in the transported regolith the 

carbonate is a single near-surface layer, approximately 1 to 3 m thick (Figures 9.4-6). 

Generally, the carbonate-rich layers are within the top 10 m of the regolith (Figures 9.4- 

9).

9.2.3 CALCRETE COMPOSITION

Compositional variability of carbonate-bearing regolith can be shown using the 

components MgO, CaO and the major non- carbonate component AI2 O3 (Figure 9.10). 

The proportion of carbonate in the samples varies from several wt% to nearly pure
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carbonate. Most samples have a significant non-carbonate component, as reflected by 

the concentration of compositions towards the AI2 O3 apex of the ternary plot. All the 

data show a significant MgO content reflecting both the common presence of dolomite 

(Figures 9.11-12) and a non-carbonate contribution of MgO from clay minerals. X-ray

Carbonate
veinlet

CBAC 85 (l-2m)
Laminated mudstone with carbonate veinlet

CBAC 40 (1-2 m)
Sandy silty mudstone with carbonate veinlet

3

CBAC 88 (4-5 m)
White quartz lode showing vermicular quartz chlonte intergrowth, broken and 
invaded by calcrete

Figure 9.3 Examples of calcrete from the Girilambone region showing carbonate filling 

cracks (1-3) and replacing pre-existing materials (3)(samples from aircore drilling, 

Fleming et al., 2001).
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calcrete-bearing zones in the transported regolith of the Byrock area from the 

Girilambone region. D rill hole locations are shown on the associated map.
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Figure 9.5 Drill hole plots showing the transported/m situ boundary and distribution of 

calcrete-bearing zones in the transported regolith of the Hermidale area from the 

Girilambone region. D rill hole locations are shown on the associated map.

148



C8AC1 O^j

E

4

• •  CBAC92
•  CBAC77

CBAC73

CBAC69

6560000 mN

*  CBAC129 
•  CBAC132

CBAC137

UU
E
o
o

6540000 mN
.  CBAC37• ••  * •• •

CBAC32

CBAC23

t  +  CBAC16 
CBAC12

kilometers

CBAC44
CBAC50

6520000 mN
•  CBAC2 

CBAC1

’—1 CMu o < << 
PQ PQu o

■=T CO 
CM CM
O  O  < < 
PQ PQ 
O  O

CM CO 
CO CO
U  O  < < 
PQ PQo u

D ill hole
>•0 T  T> 00 0 \
fc  ro Tru o o o o o
«! < ; < ; < ;  <(,
pq pq pq pq pq pqo o o o o o

0 " - c i o \ ( « \ ^ i r i ^ o o ( N m T r i n
i r i > n u o \ o r ' r ' r ^ r ^ r ' O N C 7 i a \ o \
O O U O U U O O O O O U Ü

p q p q p q p q p q p q p q p q p q p q p q p q p qo o c o o o o o u o o o o

C \ CM WO 
CM c o  c o

c~~ oo co co
6 5c <:
pq PQ 
O  O

Figure 9.6 Drill hole plots showing the transported/m situ boundary and distribution of 

calcrete-bearing zones in the transported regolith of the Sussex area from the 

Girilambone region. Drill hole locations are shown on the associated map.
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Figure 9.9 Drill hole plots showing the transported/m situ boundary and distribution of 

calcrete-bearing zones in the in situ regolith of the Sussex area from the Girilambone 

region. Drill hole locations are shown on the associated map.

diffraction analysis on a suite of calcrete-bearing samples indicates that there is no 

magnesite in the carbonate. There does not appear to be any systematic differences 

between compositions for calcrete from transported versus in situ regolith (Figures 

9.11-12).
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Figure 9.10 Triangular (MgO-CaO-AFCh) compositional diagram of the transported 

and in-situ regolith from the Girilambone region.
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Figure 9.11 Bivariate MgO-CaO diagram of the transported calcrete-bearing regolith 

from the Girilambone region.

153



16 1

Calcite

Dolomite

0 10 20 30 40 50
MgO wt%

Figure 9.12 Bivariate MgO-CaO diagram of the in situ calcrete-bearing from the 

Girilambone region.

Potassium and A1 contents in the regolith carbonate commonly represent the 

composition of relict muscovite and clay minerals. The distribution pattern of regolith 

carbonate compositions on the K2O-AI2O3 diagram shows a trend toward the illite- 

muscovite composition (Figure 9.13 A). A small number of samples plot close to the 

kaolinite composition, which indicates more advanced weathered or reworked 

components of clay. There was no significant correlation of CaO or MgO with AI2O3, 

K2O or Fe20.3 (Figure 9.13).

Fe20 3 in the regolith carbonate samples ranges from 0.74 % to 8.4 %. In gold-enriched 

horizons (see below), there appears to be an antipathetic relationship between Ca, Mg 

and Fe. This suggests that Fe is not significantly present in the carbonate but most 

likely present as iron oxide/oxyhydroxide impurities.

9.2.4. GOLD CONCENTRATION IN CALCRETE

Previous investigation of exposed calcrete in the Cobar-Girilambone region has 

indicated a clear association of Au with calcrete (McQueen et al. 1999; McQueen 

2006). In areas away from known mineralisation calcrete generally contains less than 

0.001 ppm Au (the detection limit). Detectable Au is found in calcrete at sites close to
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or down drainage from known gold mineralisation, with 0.004 ppm considered a 

regional threshold and 0.012 ppm a local (deposit) threshold (McQueen, 2006).

In this study, the calculated thresholds of gold are 0.006 ppm and 0.009 ppm in the 

regolith carbonate (calcrete) of the transported and in situ regolith respectively. There is 

no direct correlation between the carbonate content (CaO and MgO concentrations) and 

Au concentration in calcrete-bearing regolith zones. To understand the distribution of 

Au in the calcrete zone selected profiles of high-Au content from the calcrete of the in 

situ and transported regolith were examined.

•  Muscoute 
A Kaobuite
♦  Hüte

0  8  -Q 8 -

a CaO

Figure 9.13 Scattergrams of major components in the regolith carbonate zones of the 

Girilambone region.
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9 .2 .4 .1  A S S O C IA T IO N  O F  A U  W IT H  C A L C R E T E  IN  T H E  IN SITU 
R E G O L IT H

Elevated Au values associated with calcrete from in situ regolith range from 0.005 ppm 

to 0.025 ppm (Appendix 7). Four examples occur in drill holes CBAC2, CBAC41, 

CBAC188 and CBAC204.

In CBAC2 and CBAC188 calcrete has accumulated along and just below the T/I 

boundary (Figures 9.14, 15). The highest Au values in these drill holes do not coincide 

with the highest Ca or Mg contents, suggesting that the calcrete is not directly 

accumulating Au. Gold contents also vary within the regolith carbonate zone. In 

CBAC2 the highest Au content is in the middle of the regolith carbonate zone and is 

associated with elevated Bi and lower Fe contents (Figure 9.14). The compositional 

trends in CBAC2 show elevated Ca in the upper part of the profile decreasing more 

rapidly than Mg content with depth. This would be consistent with mixed calcite- 

dolomite in the upper part of the calcrete zone (1 m) and predominantly dolomite below 

(2 m; Appendix 4).

0 0.005 0.01 0 1 2 0 2 4 6 8

T/I boundary

Regolith carbonate

Au ppm

Figure 9.14 Distributions of Au, Bi, CaO, MgO and total Fe2 Ü3 (wt %) through the 

regolith carbonate zone within in situ regolith in drill hole CBAC2.

There is also significant Ca enrichment near the top of the regolith carbonate zone in 

drill hole CBAC188. The Au content increases with depth through the carbonate zone
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in association with increasing Fe content (Figure 9.15). This Au-Fe association possibly 

reflects remnant primary gold mineralisation in the saprolite (W and As are also 

elevated) or possibly the influence of a pH or redox boundary related to ferruginisation. 

Below the regolith carbonate zone at 8 m the gold content increases to 0.026 ppm in 

association with elevated W (10 ppm), As (31 ppm) and quartz veining. This is 

consistent with the presence of a remnant primary gold anomaly, possibly partly 

leached, within the saprolite underlying this site. The remnant Au may be adsorbed 

onto hematite/goethite, possibly formed by weathering of primary Fe sulphides 

associated with gold mineralisation.

In drill holes CBAC 41 and CBAC204 calcrete occurs within in situ regolith below the 

soil or T/I boundary. Elevated gold values in these profiles are strongly correlated with 

higher Ca and Mg contents, which are developed at the top of the regolith carbonate 

zone. This enrichment is associated with lower Fe content. The XRD analysis in drill 

holes CBAC41 and CBAC204 shows that the upper parts of these profiles are more 

calcite-rich than the other two examples (Figures 9.16-17, Appendix 4).

0 0.02 0.04 0
0 ♦

T/I boundary

- -  v Regolith carbonate

12 -1
Au ppm w ppm As ppm CaO  % M 9 °  %

Figure 9.15 Distributions of Au, W, CaO, MgO and Fe2 Ü 3 (total) through the regolith 

carbonate zone in drill hole CBAC 188.
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Au ppm CaO  % MgO %

Regolith carbonate

Figure 9.16 Distributions of Au, CaO, MgO and Fe2Ü3 (total) through the regolith 

carbonate zone within in situ regolith in drill hole CBAC41.

0 0.01 0.02 0.03 0 1 2 3 4

Regolith carbonate

Au ppm CaO % M9 °  °/o

Figure 9.17 Distributions of Au (ppm), CaO, MgO and total Fe203  (wt %) through the 

regolith carbonate zone within in situ regolith in drill hole CBAC204.

9.2.4.2 ASSOCIATION OF AU WITH CALCRETE IN THE TRANSPORTED 
REGOLITH

Regolith carbonate zones in transported regolith are generally characterised by an upper 

layer or crust of calcrete. Two examples with elevated Au contents are in drill holes
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CBAC78 and CBAC159 (Figure 9.18). In both these examples, the highest Au contents 

occur at the very top of the regolith carbonate zone. In drill hole CBAC78 the top of 

this zone is at 6 m depth within the transported regolith and has the highest carbonate 

content as indicated by slightly elevated CaO (1 wt%) and MgO (1.87 wt%) values. 

The Fe content is lowest in this part but increases at the base of the regolith carbonate 

zone (Figure 9.18A).

In drill hole CBAC159 the regolith carbonate zone extends across the T/I boundary. In 

the in situ part there are two levels of high carbonate (at 2 and 5 m depth) as indicated 

by Ca and Mg concentrations. The upper level coincides with T/I boundary. Neither of 

these levels coincides with the highest Au content in the profile, which is within 

transported regolith at the top of the regolith carbonate zone. The Au content decreases

0 0.005 0.01 0 5 10 15 0 0.01 0.02 0 5 10

CaO %

T/I boundary

Regolith carbonate

Regolith carbonate

Au ppm CaO % m9 ° % Fe20 3 %

Figure 9.18 Distribution of Au (ppm), CaO, MgO and total Fe203 (wt %) through the 

regolith carbonate zone within transported regolith in drill hole CBAC78 (A) and 

across the transported/m-sz7w boundary in drill hole CBAC159 (B).

steadily down through the regolith carbonate in the in situ part of the profile. The 

overlying soil contains 0.005 ppm Au (Figure-9.18B). Again the Fe content is 

negatively correlated with Ca and Mg contents. X-ray diffraction analysis confirms that 

calcite is present in the upper part of the regolith carbonate zone, with dolomite 

dominating in the lower part (Appendix 4).
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9.2.5 MINOR AND TRACE ELEMENT CHARACTERISTICS OF 
REGOLITH CARBONATE ZONES

Depending upon climate and local conditions, carbonates may be the dominant sink for 

some trace elements. The major control on trace element uptake by carbonate, 

commonly in metastable and polymorphic forms, is pH. Trace elements may be 

coprecipitated as their carbonates or replace Ca2+ in the lattice (Hall, 1998).

9.2.5.1 SILVER, ARSENIC, BISMUTH, ANTIMONY AND TUNGSTEN

The Ag content of the regolith carbonate bearing samples is generally low (89% of 

samples are below the detection limit 0.5 ppm). Elevated Ag values (> 0.5 ppm) are not 

significantly correlated with high CaO, MgO, Fe20i or MnO (Figure 9.19). One 

interval in drill hole CBAC188 (2-4 m) showed significant enrichment in Ag (2.9-16.2 

ppm) associated with high Mo (8 ppm) content and slight enrichment in Mn (Figure 

9.20). This may be related to association of Ag and Mo with minor co-precipitated 

manganese oxides/oxyhydroxides.
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Figure 9.19 Scattergrams showing correlation of detectable Ag with major elements in 

calcrete-bearing regolith from the Girilambone region. (A) Ag plot against CaO, MgO 

and Fe203 (B) Ag verses MnO.
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Figure 9.20 Distribution profile showing the relationships between Fe2 Ü3 , MnO, MgO, 

CaO (wt %), Ag, As, Au and Mo (ppm) in the regolith carbonate zone in drill hole 

CBAC188.

In the regolith carbonate zones there is no clear correlation between As and Fe, Mg, Ca 

and Mn, but the elevated As values (> 23 ppm) are accompanied by high Ca, Mg and/or 

high Fe concentration and enriched in the lower part of the carbonate horizons. 

Examples of such correlation between elevated As and Ca, Mg and Fe are found in drill 

holes CBAC13 and CBAC159 (Figure 9.21 A, B). The relationship of As with Fe in the 

regolith carbonate zone possibly reflects the presence of Fe oxide/oxyhydroxide 

impurities, containing As. This Fe-associated suite was also recognised in other regolith 

materials around the Cobar area (Scott and Taylor, 1989; McQueen and Munro, 2003; 

McQueen et al., 2004) where As and other trace elements such as Sb, Cr and Bi were 

associated with hematite and/or goethite. In this study the As-Fe and Au association is 

observed in Fe-rich regolith (as discussed in section 9.3) with goethite and hematite 

enrichment. A small number of drill sections show enrichment of As in the upper part 

of the carbonate horizon associated with elevated Ca and Mn contents (Figure 9.21 B 

&C). Flowever, this enrichment is not associated with high Au concentrations.

There is no correlation between Bi and Ca, Mg, Fe or Mn concentrations. About 70% 

of high Bi (Bi>6 ppm) samples are concentrated in the upper part of the regolith 

carbonate horizons. Distribution patterns of some of these elevated Bi values are mainly 

consistent with high Ca and to some extent with high Mg concentrations. However, 

these elevated values of Bi generally are not correlated with high Au values. There is
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no correlation between Sb and Fe, Mn, Ca and Mg. Elevated Sb >10 ppm is also not 

comelated with high Au values.

Tungsten has a relatively homogeneous distribution in the regolith carbonate zones. 

Elevated W (>10 ppm) is not comelated with high Au contents except in drill hole 

CBAC188 where the enrichment of W coincides with consistent enrichment in Au 

down the hole (Figure 9.15). This enrichment in Au and W is not associated with the Fe 

pattem, which suggests the W and Au are hosted by mineral other than iron 

oxides/oxyhydroxides (e.g. they may be present as gold and W minerals in quartz-vein 

material).

9.2.5.2 BARIUM AND STRONTIUM

Barium is strongly enriched in the regolith carbonate zone (Appendix 7). Samples with 

high Ba content (> lOOOppm) are concentrated in the upper part of the carbonate 

accumulations (77% of high Ba samples). A small number of high Ba samples occur at 

the base and within the carbonate horizons (17 % and 8 % respectively). Typical host 

minerals for Ba are feldspar and barite. High Ba contents (particularly in feldspar) can 

give some indication of proximity to ore (Scott, 1992). In the presence of carbonate, a 

common alteration product of barite (BaS04) is witherite (BaCCA; Deer et al., 1992). 

Elevated concentrations of Ba (> 1000 ppm) have been previously reported with 

secondary carbonate minerals in soils (Kabata-Pendias and Pendias, 1984).

There is no close correlation between Ba, Ca and Mg in the regolith carbonate zone 

(Figure 9.22A, B). However, barium is significantly correlated with S in carbonate 

associated with transported regolith (r2 = 0.7, Figure 9.22C). This suggest that the Ba is 

present as barite, rather than as a substituting for Ca in carbonate. Such a relationship 

between Ba and S in calcrete has been previously reported (e.g. Butt, 1991; McQueen, 

2006). Barium is weakly correlated with S in the carbonate zones from in situ regolith 

(Figure 9.22 D), which probably indicates that barite is not the major host mineral. A 

very high concentration (1.88 %) of S was detected from the regolith carbonate horizon 

in drill hole CBAC213 (5-6 m depth). This enrichment is associated with relatively 

high Sr (Figure 9.23), which possibly indicates the presence of Sr-rich barite or Ba- 

bearing celestite (SrS04). However, there is not a direct correlation between Sr and Ba
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in the regolith carbonate horizons (Figure 9.22 E, F). Barite with variable Sr content has 

been previously observed in weathered bedrock (siltstone) at the Elura deposit (Scott 

and Taylor, 1989).

Strontium is correlated with Ca and Mg in the regolith carbonate horizons from the 

transported and in situ regolith (Figure 9.22 G, H). The enrichment of Sr in regolith 

carbonates has been commonly observed in many regolith studies (e.g., Butt, 1991, 

McQueen, 2006) in which Sr probably occurs as a substitute for Ca in calcite (Butt, 

1991).
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Figure 9.21 Arsenic distribution profiles showing the relationships between As (ppm) 

and MgO, CaO, Fe2 C>3 ; MnO (wt %), in the regolith carbonate in drill holes CBAC13 

(A), CBAC159 (B) and CBAC184 (C).
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Figure 9.22 Scattergrams showing correlations between Sr and Ba and other elements 

in the regolith carbonates in the transported and in situ (solid symbols) regolith from 

the Girilambone region.
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Figure 9.23 Showing distributions of Sr ppm, Ba ppm, S wt %, CaO wt % and MgO wt 

% in the calcrete bearing zone profile in drill hole CBAC213.

9.2.5.3 OTHER TRACE ELEMENTS

A number of trace elements analysed in the regolith carbonate zones (including Cu, Zn, 

Pb, Cr, Ni, Ti) show positive correlation with Fe and are negatively correlated with Ca 

and Mg, suggesting that these elements are contained within iron oxide/oxyhydroxide 

impurities in the carbonate zone. This Fe-associated suite of trace elements is 

recognised and discussed in detail in the Fe-rich facies (see below).

9.2.6 ORIGIN OF CARBONATE

A potential source of Ca and Mg and all other elements concentrated in regolith 

carbonate is the bedrock. Other sources include aeolian dust, marine aerosols, 

rainwater, groundwater and vegetation. In arid and semi-arid climates aeolian dust is 

probably the most significant source of Ca and Mg added to the regolith surfaces 

(Goudie, 1973; Taylor and Eggleton, 2001). Many playas contain significant Ca- and 

Mg-rich clay minerals and carbonates. During dry lake phases, these can be blown from 

the lake surfaces and deposited down-wind.

In the Cobar-Girilambone region most of the bedrocks have low contents of Ca and Mg 

(in the Cobar Supergroup rocks typically have <1.5% CaO wt % and < 3.2% MgO wt 

%, McQueen 2006; and the Girilambone Group rocks have <0.56 wt % CaO and < 2.45 

wt % MgO, Ackerman, 2005). This suggests that the weathered bedrock is not a major 

source of these elements. Analysis of Srx7/Srs6 ratios in calcrete from across the region 

has shown values ranging from 0.71195 to 0.71624, consistent with a predominantly
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marine source for the Sr (McQueen, 2006). This suggests that the Sr and geochemicall y  

associated Ca have probably been introduced in dust, aerosols or rainwater from  

seawater or marine-derived carbonate accumulations (Dart et al., 2005). Considerably 

elevated levels of many trace elements and gold in areas of known bedroclc 

concentrations indicate the bedrock as a source of these elements.

9.2.7 SUMMARY AND CONCLUSIONS

In the Girilambone region, calcrete is widespread within a zone of variable thickness in  

the upper 10 m of the regolith. The calcrete typically consists of dispersed calcite- 

dolomite, generally with calcite predominating in the upper part of the zone and 

dolomite predominant towards the base. The highest Au contents in a profile are not 

necessary associated with the position of maximum calcrete development. Typically, 

the high Au concentration is at the top of the calcrete zone, but not all cases. There is 

generally a negative correlation between elevated Au and Fe2 Ü3 content in this part o f 

the regolith. Some in situ profile show an association of elevated gold with higher 

Fe2 Ü3 content, but this is probably remnant primary Au in ferruginous saprolite.

The association of Au with calcrete in the Girilambone region appears to reflect a 

chemical environment within both transported and in situ regolith that is conducive to 

precipitation of both carbonate and mobilised gold rather than a direct control on gold 

fixation by calcrete.

There is no positive correlation between Cu, Zn, Pb, Cr, Ni and Ti concentration and 

CaO and MgO contents in the calcrete zone. However, these elements show positive 

correlation with Fe2 Ü3 content suggesting that they are contained within iron 

oxide/oxyhydroxide impurities in the carbonate zone.

9.3 ELEMENT ASSOCIATIONS AND DISPERSION IN Mn-RICH 
REGOLITH

9.3.1 INTRODUCTION

Manganese-enriched zones are common in many deeply weathered terrains (e.g., 

Taylor and Ruxton, 1987). This section will describe the spatial distribution of Mn-rich
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horizons, Mn oxide/oxyhydroxide minerals and the associated element concentrations. 

Their possible relationship with groundwater will also be investigated.

9.3.2 OCCURRENCE OF Mn-RICH HORIZONS

Manganese oxides occur in soils as deposits in cracks and veins, as coatings and stains 

on soil aggregates or as a cementing material. They may also be dispersed throughout 

the soil as microscopic accumulations, or concentrated as nodules up to about 2 cm in  

diameter (Taylor et al., 1983).

In the Girilambone region Mn-enriched zones mainly occur within the in situ regolith 

(Figure 9.24). Manganese enrichment is highest in the west and south of the Hermidale 

area (e.g., drill hole CBAC174) and generally decreases toward the east. The Hermidale 

area is characterised by outcrops of saprolith that form rises and low hills (Chan et al., 

2002) partly developed on the Babinda Volcanics (Suppel and Gilligan, 1993). It is also 

thought to be a groundwater recharge area (Khider and McPhail, 2005). In the northern 

part of the region (Byrock area) the depth of Mn accumulation increases down the 

topographic slope to the northeast.

9.3.3 MANGANESE OXIDE/ OXYHYDROXIDE MINERALS

Manganese occurs in a number of valance states in nature (Day, 1963). A large number 

of oxides and oxyhydroxides exist, in which there is extensive substitution of Mn (II) 

and Mn (III) for Mn (IV), and of OH' for O2' (Taylor et al., 1983). Manganese oxides 

also display a remarkable diversity of atomic architectures, many of which easily 

accommodate a wide assortment of other metal cations. In addition, Mn is abundant in 

most geological systems and forms minerals under a wide range of chemical and 

temperature conditions, and through biological interactions (Post, 1999).

The basic building block for most of the Mn oxide atomic structures is the Mn06 

octahedron. These octahedra can be assembled by sharing edges and/or comers into a 

large variety of different structural arrangements, most of which fall into one of two 

major groups: (i) chain, or tunnel, structures and (ii) layer structures. The tunnel Mn 

oxides are constructed of single, double, or triple chains of edge-sharing MnOß 

octahedra, and the chains share corners with each other to produce frameworks that 

have tunnels with square or rectangular cross sections. The larger tunnels are partially 

filled with water molecules and /or cations (Bums and Bums, 1975; Post, 1999).
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Based on atomic structure, Post (1999) has described and classified the most common 

Mn oxide minerals into: Mn oxides with tunnel structures, which include pyrolusite, 

ramsdellite, nsutite, hollandite group (hollandite, cryptomelane, coronadite and 

manjiroite), romanechite and todorokite, and Mn oxide minerals with layer structures, 

which include lithiophorite, chalcophanite, bimessite, and vemadite. The chemical 

compositions of some of these minerals are summarised in Table 9.2.
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Figure 9.24 Drill hole plots showing the transported/m situ boundary and distribution of 

Mn-enriched zones in the in situ regolith of the Girilambone region. Drill hole locations 

are shown on the associated map.
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The hollandite group minerals have the general formula A0 - 2  (B+Mn4+)80 i 6. xH20 . T h e  

A site can be occupied by large cations such as K +, Ba2+, Na+, Cu+, Pb2+, Rb2+, Sr2+, 

etc., whereas the B site includes Mn3+, Mn4+, Fe?+, Si4+, and Mg2+ (Bums and B um s, 

1975). Cryptomelane, hollandite and coronadite are K, Ba and Pb end-members of a  

solid-solution series, respectively (Bystrom and Bystrom, 1950). Nicholson (1992) u sed  

a high Ba concentration as an indication of secondary enrichment of Mn during 

weathering. Nickel, Cu and Co are commonly reported in lithiophorite, where the Ni an d  

Cu concentrate in the Al-OH sheets and Co in the Mn layers (Ostwald, 1984). 

Lithiophorite has been synthesized by substitution of aluminium and lithium into a  

birnessite-type mineral (Giovanoli et al., 1973). Although lithiophorite generally 

contains a reasonable amount of Li (0.2-3 wt%, Post, 1999), no Li was detected by this 

technique, which probably needs further investigation.

In this study samples from Mn- enriched horizons were analysed to determine the 

morphology and chemical composition of Mn-oxide/oxyhydroxide minerals. 

Manganese-rich grains and Mn-coated dark coloured grains were collected from five 

Mn-dominant intervals in the drill holes CBAC 176 (37-39 m), CBAC177 (8-9 m, 13- 

15 m), arid CBAC 180 (6-7 m, 7-8 m). The samples were examined using scanning 

electron microscope (SEM) and energy dispersive X-ray analysis (EDXA).

The analysis showed that Mn-oxides/oxyhydroxides in these samples occur as 

microcrystalline masses and well-developed platy crystals (Figures 9.25, 27, 29, 31). 

The microcrystalline masses are commonly present as compact botryoidal aggregates, 

coating the clay particles and/or as clusters of Mn oxides/oxyhydroxides between clay 

crystals (Figures 9.25, 27, 29). Manganese oxides in soils in general were reported to be 

very fine grained, commonly poorly crystalline or amorphous (McKeague et al., 1968; 

Childs, 1975). The energy dispersive X-ray analysis (EDXA) spectra of Mn 

microcrystalline masses showed that Mn oxides/oxyhydroxides are associated with K 

and Al and Si in addition to Co and Cu (Figures 9-25, 26). Occurrences of K and Si in 

association with Al are possibly related to muscovite and cryptomelane (Figures 9.25, 

26 A), whereas the association of Mn, Al, Co and Cu in the absence of K and Si (Figure 

9.26 B) suggests occurrence of lithiophorite. Chemical composition of the 

microcrystalline Mn minerals that coat clay and/or quartz crystals shown in Figure 9.27
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confirmed occurrences of clay/mica with high A1 and low K contents (possibly 

muscovite and kaolinite), quartz (high Si content) and lithiophorite with incorporated 

Co, Cu, Ni (Figure 9.28). The spectra of the microcrystalline Mn minerals that clustered 

between clay crystals shown in Figure 9.29 showed Mn associated with Al, Si, Na, Ca, 

Mg, P. Pb, K, Fe and Ba (Figure 9.30), where Al, Si, Na, Ca, Mg and K represent a 

common clay assemblage and AI, Mn, K, Ba, Pb and P possibly represent hollandite 

group minerals.

Table 9.2 Chemical compositions of the common Mn oxide minerals (from Post, 1999)
Mineral Chemical formula
Pyrolusite MnC>2

Ramsdellite MnC>2

Nsutite Mn(0,OH) 2
Hollandite Bax (Mn4+, Mn3+ ) 8 0 16
Cryptomelane Kx (Mn4+, Mn 3+ )8 0 16
Manjiroite Nax (Mn4+, Mn 3+ )8 O i6
Coronadite Pbx (Mn4+, Mn 3+ )8 0 16
Romanechite Ba 6.e(Mn4+, Mn3+)5 O 10. 1.34H20
Todorokite (Ca.Na, K)x (Mn4+, Mn3+) 6 0 12. 3.5 HzO
Lithiophorite LiAI2(Mn24+ Mn3+) 0 6 (OH) 6
Chalcophanite Zn Mn3 0 7 3H20
Birnessite (Na,Ca) Mn7O i4. 2.8 H20
Vernadite Mn02.nH20

Figure 9.25 SEM photomicrograph showing large flakes of mica (muscovite) and 

microcrystalline Mn oxides (cryptomelane) in a sample from a Mn-enriched horizon (7- 

8 m depth) in drill hole CBAC180. Scale bar is 10 pm.
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Figure 9.26 EDXA spectra showing the chemical compositions of (A) clay (Al-Si-K) 

with cryptomelane (Mn-K-Co-Cu) and (B) lithiophorite (Mn-Al-Co-Cu) for the sample 

described in Figure 9.25.

171



Oxides including lithiophorite coating clay and quartz in a sample from a Mn-enriched 

horizon (13-15 m depth) in drill hole CBAC177. Scale bar is 10 pm.

Figure 9.28 EDXA spectrum showing the chemical compositions of clay (Al-Si-K) with 

quartz (high Si) and lithiophorite (Mn-Al-Ni -Co-Cu) for the sample described in 

Figure 9.27.
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Figure 9.29 SEM photomicrograph showing microcrystalline Mn oxides clustered 

between clay crystals in a sample from Mn-enriched horizon (13-15 m depth) in drill 

hole CBAC177.Scale bar is 10 pm.

Figure 9.30 EDXA spectrum showing the chemical compositions of clay (Al-Si-K, Na, 

and Mg) and hollandite group (Mn- (Ba, K, Pb and Na) with some Fe for the sample 

described in Figure 9.29.
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Well-developed manganese oxides/oxyhdroxides fill voids and cavities as sheaves of 

platy crystals (Figure 9.31), which probably indicate late-stage crystallisation. Another 

microcrystalline Mn mineral was also observed adjacent to lithiophorite, coating clay 

crystals (Figure 9.31). The EDXA spectra of the well-developed Mn oxides show that 

Mn is associated with Al, Si, Co and Cu, which suggest clay and lithiophorite (Figure 

9.32), whereas the spectra of the microcrystalline massive Mn oxides show high Mn 

content associated with Al (Figure 9.33), which suggest the presence of pyrolusite or 

ramsdellite and mica.

Figure 9.31 SEM photomicrograph showing well-developed Mn (lithiophorite) crystals 

forming sheaves in voids, mica crystals that formed the framework and microcrystalline 

Mn oxides (pyrolusite or ramsdellite) coating part of clay crystals in a sample from a 

Mn-enriched horizon (8-9 m depth) in drill hole CBAC177. Scale bar is 10 pm.
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Figure 9.32 EDXA spectrum showing the chemical compositions of clay (Al-Si) and 

well-developed Mn oxides (lithiophorite, Mn-Al-Co-Cu) for the sample described in 

Figure 9.31.

Figure 9.33 EDXA spectrum showing the chemical compositions of microcrystalline 

Mn oxides (pyrolusite) for the sample described in Figure 9.31.
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9.3.4 ACCUMULATION OF MANGANESE OXIDES AND 
OXYHYDROXIDES

The relative importance of Mn and Fe oxides/oxyhydroxides as scavengers depends 

upon: pH-Eh conditions; degree of crystallinity of the oxides and therefore th e ir  

reactivity; their relative abundances; and the presence of organic matter as a competing 

adsorbing and chelating fixing agent (Hall, 1998). Elements will show a preference f o r  

uptake by either Mn or Fe oxides depending on local conditions. Oxidation o f  

manganese is catalysed by fine particles in soils (Morgan and Stumm, 1964). H em  

(1964) reported that the oxidation is catalysed by MnÜ2 at pH 7.8 or higher, but not a t  

7.2. He also discussed the oxidation of manganese by precipitated Fe (OH)3, and  

concluded that it is the result of low activity of available Fe2+ in slightly acid solution.

It is difficult to present a typical weathering profile for Mn accumulation because i t  

depends on the nature of the original parent rock and, particularly, on its structure 

(Nahon et al., 1992). A general model of weathering for parent rocks consisting 

essentially of manganiferous silicates (Figure 9.34) was constructed by Nahon and Parc 

(1990) and Parc (1989). Hausmannite and manganite would not be expected to be 

present in the regolith because these minerals are unstable during weathering and they 

are either oxidised or disproportionated to give more oxidised Mn minerals under acid 

and alkaline conditions respectively (Taylor et al., 1983).
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RAMSDELL1TE

GROUTITE

SPESSART
RHODONITE
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CRYPTOMELANE

PYROXMANG

BIRNESSITE

Mn-AMPHIB

LITHIOPHORITE

Figure 9.34 Mineral sequences in the weathering of Mn-bearing silicates. Heavy arrow 

indicates retromorphosis of oxides, (after Nahon et al., 1992).
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It is apparent that different minerals can generate the same oxidized weathering phase  

and that different minerals may generate, in the same horizon, different weathering 

minerals. Therefore it is common to observe in profiles a very oxidised manganiferous 

phase in shallow regolith grading into less oxidised phases at greater depth (Figure 

9.34). Such a retromorphosis can be explained by late weathering of primary minerals 

in the profiles. For example, release of K by weathering of micaceous minerals allows 

the retromorphosis of nsutite (Mni.yMny C>2-y (OH)y) and even of pyrolusite (MnOz) 

into cryptomelane(Kx(Mn4+, M n'+)g Oi6', Nahon et al., 1992). Similarly lithiophorite, 

which strongly develops toward the top of lateritic weathering profiles, shows 

modification of the valence of manganese due to incorporation in its structure o f  

transition elements, particularly Ni2+ (Manceau et al., 1987).

Formation of lithiophorite requires high Al, and this is possibly generated from the 

destruction of parent (alumino-manganifrous) minerals, or from weathering of kaolinite 

in the upper part of the profile. Nahon et al. (1989) showed that the relative 

concentration of manganese oxides could locally generate very acidic environments, 

allowing the release of aluminium by dissolution of kaolinite and its simultaneous 

incorporation into the structure of the precipitating lithiophorite.

The observed distribution of Mn minerals in a number of profiles (e.g., in drill hole 

CBAC177; Figure 9.35) suggests that microcrystalline lithiophorite changed through 

the weathering profile to well-developed recrystallised lithiophorite and pyrolusite. The 

change up the profile from lithiophorite to pyrolusite is consistent with the proposed 

weathering model of Mn-rich materials (Figure 9.34). In CBAC180, the cryptomelane 

and lithiophorite change to hollandite up the profile, probably as a result of significant 

incorporation of Ba in the Mn oxide structure.

9.3.5 MAJOR AND TRACE ELEMENTS CHARACTERISTICS OF 
MANGANESE OXIDES/OXYHYDROXIDES

There is no significant correlation between MnO and the major elements (A I2 O 3 ,  CaO, 

MgO, Fe203, K20 , Na20 , P 2 O 5 ,  Ti02) in the Mn-enriched regolith (Figure 9.36). This 

generally indicates that the distribution of these elements is not controlled by Mn oxide 

concentration. Similarly there is no correlation between Mn and typical pathfinder 

elements (Ag, As, Au, Bi, Mo, Sb, Figure 9.37) associated with Au mineralisation.
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However these results must be cautiously interpreted because some of these elements 

have a large number of censored (BDL) values (Appendix 7).
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Figure 9.35 Distribution profile of Mn (wt %) and Mn-minerals in drill holes 

CBAC176, CBAC177 and CBAC180.

9.3.5.1 GOLD CONCENTRATION IN Mn-RICH REGOLITH

In the Mn-rich regolith Au contents range from <0.001 ppm to 0.077 ppm (Appendix 7) 

and Au shows noticeable concentration in some Mn- rich horizons. Therefore selected 

high-Au concentration profiles were examined to understand the relationship between 

Au and Mn-rich regolith. Significant enrichments of Au (Au > 0.01 ppm) were 

detected from drill holes CBAC 119, CBAC191, CBAC195, CBAC198, CBAC201 and 

CBAC211. Generally Au was enriched either at the top or at the base of the Mn-rich 

horizons (Figures 9.38, 40).
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Figure 9.36 Scattergrams of major elements in the Mn-enriched regolith of the 

Girilambone region. MnO vs. MgO (A), CaO (B), Na20  (C), K20  (D), P20 5 (E), Fe20 3 

(F), A120 3 (G) and T i0 2 (H).
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Figure 9.37 Scattergrams of trace elements in the Mn-enriched regolith of the 

Girilambone region. MnO vs. Ag (A), As (B), Bi (C), Au (D), Mo (E) and Sb (F).

In drill hole CBAC119 three Mn-enriched horizons were recognised. In the upper 

horizon (0-2 m depth) the elevated Mn concentration is associated with an anomalous 

range of Au values (0.012-0.019 ppm) and significant enrichment in Sb (Figure 9.38). 

This horizon also shows a slight enrichment in Fe. However, the distribution pattern of 

Au coincides with Mn, which possibly indicates co-precipitation and /or adsorption of 

Au on Mn oxides. In the middle Mn-rich horizon (4-6 m depth) increasing Mn content 

is associated with elevated As, Sb and to some extent with Au contents, particularly in 

the lower part of the horizon, but the distribution pattern of Au within the horizon is 

more comparable with Mg and Ca patterns (Figure 9.38). This possibly indicates that 

the calcification has a stronger influence on the Au dispersion than Mn scavenging 

processes, or that the accumulation of Mn in the upper part of the horizon occurred 

after Au-carbonate precipitation. In the lower horizon (9-10 m depth) the slight 

enrichment in Au (0.006 ppm) coincides with Mn enrichment; however, this horizon 

overlies a carbonate-rich layer at 10-11 m depth and therefore the elevated Au value
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(0.006 ppm) across the Mn-carbonate boundary is possibly due to concentration of Ali  

in the upper part of the carbonate layer (Figure 9.38).

Gold enrichment was also observed in drill holes CBAC 191, 195, 198, 201 and 211 

(Appendix 7) but the highest Mn content does not coincide with the highest Au values. 

This suggests that the abundance of Mn is not controlling the amount of Au by 

substitution or adsorption on to Mn minerals. In CBAC 191, the highest enrichment o f  

Mn coincides with enrichment of Fe, Mg, As, Co, Ni, Cu and Zn at the top of Mn- 

dominant horizon. This multi-element enrichment possibly reflects a mafic rock 

association. Gold is not associated with this upper level multi-element enrichment but is 

possibly slightly enriched in the middle of the Mn-rich horizon (Figure 9.39).

In drill hole CBAC 195, Au content consistently increases with depth in the Mn horizon 

and the highest Au value (0.077 ppm) was observed at the base of the Mn horizon. The 

distribution pattern of Au in the Mn-dominant horizon in this hole is generally more 

compatible with Fe and Mg than Mn, which probably indicates that the enrichment of 

Au is controlled by Fe oxides and it is not related to abundance of Mn (Figure 9.40).

Two Mn-rich horizons occur in drill hole CBAC 198, where the highest concentrations 

of Au, Co, Cu, Zn and Ni are associated with elevated Mn and to some extent with 

elevated Fe values in the top of the upper Mn horizon (Figure 9.41). There is no 

significant change in the Au concentration in the lower Mn horizon; therefore the Au 

inter-elemental relationship is not clear. However the distribution pattem of the 

elements shows that the base metals are significantly influenced by Mn oxide 

development (as discussed below).

In drill hole CBAC201, there are three Mn-enriched horizons. Gold enrichment in the 

upper and lower horizons is associated with elevated Mn, As, Co, Ni, Cu, and Zn. 

Similarly in the middle horizon Mn enrichment is also associated with elevated Co, Ni 

Cu and Zn but not Au (Figure 9.42). The concentration patterns of associated elements 

are comparable with that of Mn and to some extent with that of Mg. Iron and CaO 

contents showed very little change down the profile. These patterns suggest that the 

enrichments of As, Au, Co, Cu, Ni and Zn are significantly controlled by the abundance 

and scavenging capacity of Mn oxides/oxyhydroxides and/or that the association
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Figure 9.38 Distribution profiles of the trace elements Au, As, W, and Sb (ppm), and 

major elements Fe2Ü3 total, MnO, MgO and CaO (wt %)  in the Mn-enriched horizon of 

drill hole CBAC 119.
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Figure 9.39 Distribution profiles of the trace elements Au, As, Co, Ni, Cu, Cr, and Zn 

(ppm), and major elements Fe203  total, MnO, MgO and CaO (wt %) in the Mn- 

enriched horizon of drill hole CBAC191.
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Figure 9.40 Distribution profiles of the trace elements Au and As (ppm), and major 

elements Fe2 C>3 total, MnO, MgO and CaO (wt %) in the Mn-enriched horizon of drill 

hole CBAC195.
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Figure 9.41 Distribution profiles of the trace elements Au, Ni, Cu, Co and Zn (ppm), 

and major elements Fe20i total, MnO, MgO and CaO (wt %)  in the Mn-enriched 

horizon of drill hole CBAC198.
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reflects the original source rock assemblages. Arsenic is dominantly adsorbed on to 

manganese- and/or iron- oxides/oxyhydroxides (e.g., Akai et al., 2004) and the internal 

structure of manganese oxides/oxyhydroxides may control the occurrence of some of 

these elements. For example, it has been found that uptake of Ag by poorly crystallised 

Mn oxides depends upon the amount of exchangeable of internal ions such as Na and K 

(Anderson et al., 1973).

Two Mn horizons were observed in drill hole CBAC211 (Figure 9.43). Distribution 

patterns of Ni, Cu and Zn significantly coincide with that of Mn. This association is 

commonly observed in saprolith containing mafic rocks. Elevated Au concentrations 

are noticed within the upper horizon and at the top of the lower horizon and the 

distribution pattern of Au particularly in the lower horizon does not match that of Ni, 

Cu and Zn. This suggests an independent enrichment of Au (probably transported). 

Iron and Ca show some enrichment in the lower horizon, but the distribution patterns of 

Fe and Ca are incomparable with the base metals, Au and Mn (Figure 9.43).

Figure 9.42 Distribution profiles of Au, As, Ni, Cu, Co, Cr and Zn (ppm), and major 

elements Fe2Cb total, MnO, MgO and CaO (wt %) in the Mn-enriched horizon of drill 

hole CBAC201.
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Figure 9.43 Distribution profiles of Au, Ni, Cu, and Zn (ppm), and major elements 

Fe2 Ü3 total, MnO, MgO and CaO (wt %) in the Mn-enriched horizon of drill hole 

CBAC211.

93.5.2 MINOR AND TRACE ELEMENT CHARACTERISTICS

The distribution patterns of trace elements in the Mn-dominant samples showed 

significant correlation between Mn and Co (r=0.65), Cu (r=0.76) and Ni (r=0.7). A 

small number of samples show more marked positive correlation trends between these 

elements and Mn (Figure 9.44). The accumulation of Co in manganese 

oxides/oxyhydroxides in the soil has been studied extensively (McKenzie, 1975, 1970; 

Taylor, 1968). Chemical dissolution experiments showed that Co and to a lesser degree 

Ni are dominated by Mn redox cycling (Taylor et al., 2005). However, a small part of 

the Ni was reported to be associated with Co and Al in lithiophorite-asbolane mixed 

layer Mn-oxides (Manceau et al., 2002; Quantin et al., 2002). It has been found that an 

average of about 80 wt% of the total soil Co and part of the total Ni contents are 

associated with the manganese oxides. This possibly relates to the high sorptive 

capacities of manganese oxides, particularly for heavy metals. The adsorption 

capacities onto Mn02 at pH 4.0 are 1.4 mmolg"1 and 1.0 mmolg"1 for Co and Zn 

respectively (Loganathan and Burau, 1973). Similarly, the adsorption capacity on 

Mn02 for Cu at pH 5.0 is 1.8 mmolg1 (McKenzie, 1970). McLaren and Crawford 

(1973) showed that in a suite of soils the adsorption of copper by soil components 

followed the order Mn oxides > organic matter > Fe oxides > clay minerals. In 

synthetic hydrous Mn oxides with adsorbed of Co, Zn, Ca and Na, the Mn was released
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to the solution during the adsorption of Co and Zn but not Ca and Na. It was deduced 

that Co interchanged with surface-bound H+ and structural Mn2+, and Mn'1+, Zn with 

and Mn2+, and Ca only with H+ (Loganathan and Burau, 1973).

Element distribution patterns for the Girilambone samples also show that some M n 

enrichment is positively correlated with elevated Ba, Cr, Pb and Zn (Figure 9.44 A, C , 

E, G). The association of Co, Ba, Pb and Ni with Mn oxides is well documented in the 

geochemical literature (e.g. Taylor, 1968; Childs, 1975; Golden et al., 1993; White and 

Dixon, 1996; Zaidelman and Nikiforova, 1998; Vaniman et al., 2002; Neaman et al., 

2004). Barium behaviour is generally controlled by the biogenic precipitation and 

dissolution of barite and to a lesser degree by Mn redox cycling (Schenau, et al., 2001; 

Cornu et al., 2005; Taylor, et al., 2005).

Observations show that the adsorption capacity of Pb on Mn oxides exceeds that of Fe 

oxides on a molar basis by approximately an order of magnitude (Dong and Hua, 2001; 

Dong et al., 2003). Tan et al. (2006) showed that Ba, Co, Cu, Ni, Pb and Zn were 

significantly correlated with MnÜ2 in iron-manganese nodules, whereas Cr is only 

correlated with Fe20 3  in the surrounding soil. Negra et al. (2005) studied the relation 

between Mn oxides and Cr in the soil and they concluded that soils with more total 

reducible Mn generally demonstrated greater net Cr content. This pattem was 

moderated by soil pH and relative Mn oxidation state. The greater Mn abundance and 

greater Mn4+/ Mn ratio in soil Mn oxides increase Cr oxidation

In this study a broad comelation between Mn and Cr and the general trends of Cr 

increasing with Fe203 content (Figure 9.44 H) probably reflect iron oxide control of Cr 

distribution. However the positive comelation between of Cr with Mn observed in some 

Mn-enriched samples (Figure 9.44 C) indicates that the relationship between these two 

elements is more complex.

The significant positive correlations between elevated Mn values and elevated Co, Ni 

Cu and Zn strongly suggest that these metals were preferably extracted and 

accommodated by Mn-oxides/oxyhydroxides. Examples from drill holes CBAC122, 

CBAC177, CBAC198 and CBAC211 show that the highest Mn value (the peak) 

coincides with the highest value of these metals (Figure 9.45). These enrichments are
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consistent with the concentrations of Pb, Zn, Cu Co and Ni observed in Mn oxides from 

EDXA spectra (Figures 9.26, 9.28, 9.30, 9.32-33).
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Figure 9.44 Scattergrams showing the correlation between Mn and Ba, Co, Cr, Pb, Ni 

and Zn (A-G respectively), and the correlation between Fe2 Ü3 total and Cr (H) in the Mn- 

enriched regolith of the Girilambone region. Apparent additional correlations are 

represented by blue and red lines.
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Figure 9.45 Distribution patterns of Mn (wt %)  Co, Ni, Cu and Zn (ppm) in the Mn- 

dominant regolith of drill holes CBAC122, CBAC177, CBAC198, and CBAC211.

9.3.6 GROUNDWATER AND Mn-ENRICHED REGOLITH

Manganese oxides/oxyhydroxides commonly precipitate at the groundwater/regolith 

interface under suitable Eh-pH conditions. This process involves interaction between 

the groundwater and surrounding materials causing dissolution of Mn under reducing
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precipitation of Mn-enriched materials can accumulate in the oxidised zone of th e  

weathering front due to seasonal changes in groundwater level. The oxidised forms, M n 

(II1-IV), are present as hydroxides with low solubility (Bums and Bums, 1975; Murrey, 

1979). This process is commonly associated with oxidation of Fe (II) to Fe (III), but i t  

has been observed in marine sediments that the typical stratification for Fe (III) extends 

deeper than Mn (IV). The variation in Mn- and Fe-rich stratifications is related to  

differences in reaction kinetics and thermodynamics, i.e., slower oxidation rates of Mn 

“+ compared to Fe2+ and oxidation of Fe2+ by oxidized Mn (Stumm and Morgan, 1981; 

Lovely and Phillips, 1988) and differences in solubility of the reduced and oxidized 

forms of Mn and Fe (Froelich et al., 1979; Aller, 1980).

Observations from this study have shown that the groundwater in the Hermidale area 

(southern part) flows east-northeast (Khider, 2004; Khider and McPhail, 2005; Chapter 

7). The spatial distribution of Mn-horizons relative to the current water table shows that 

these horizons are precipitated in correlative intervals above the groundwater table 

(Figure 9.46). These Mn-rich zones are probably related to previous water table levels 

where the manganese oxides were precipitated due to changes in Eh and pH of the 

groundwater. In the Hermidale area the occurrence of Mn-enriched materials adjacent 

to the proposed recharge area (CBAC174) is consistent with the important role played 

by groundwater in concentration of Mn oxides in weathering profiles.

The abundance of MnO decreases along the established groundwater flow direction 

from 0.179% in CBAC173 to 0.09% in CBAC185 then it increases in CBAC182 to 

0.15% (Figure 9.46). The distribution patterns of elements in CBAC 173 show that Mn 

and Fe are not correlated with Co, Cr, Cu, Ni, Pb and Zn (Figure 9.47), whereas in 

CBAC181 the distribution pattern of both Fe and Mn are consistent with the patterns of 

Mg, Co, Cu, Ni and Zn concentration but not Au, Ca and Pb (Figure 9.48), which 

indicates the influences of Mn and Fe on the dispersion/ fixation of these elements. In 

CBAC 185 the Mn distribution pattern is only comparable with that of Co, except in the 

Mn-rich horizon where the Co pattern coincides with that of Fe. Iron content is 

significantly correlated with Mg, Cu, Cr, Ni and Zn contents (Figure 9.49), which 

possibly indicates that these elements are preferentially co-precipitated or adsorbed on 

iron oxides/oxyhydroxides. In drill hole CBAC 182 only Mn shows significant 

association with the base metals, suggesting Mn-related accumulation. Magnesium is
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association with the base metals, suggesting Mn-related accumulation. Magnesium is 

significantly enriched at the upper boundary of the Mn-enriched horizon in this drill 

hole. This enrichment is associated with elevated Co, Cu, Ni, Pb and Zn (Figure 9.50). 

No Au enrichment was observed in these profiles except in CBAC185, where an 

elevated value (0.85 ppm) was detected at 51 m depth associated with elevated Fe 

content (Figure 9.49). Along the groundwater path, element concentrations within the 

Mn-rich horizon show that the accommodation of the base metals changed from shared 

(Mn and Fe), to only Fe then to only Mn.

In the Byrock area there is no stratigraphic correlation between the current water table 

and Mn-rich regolith and this possibly relates to the saturation level of Mn in the 

groundwater and Eh-pH conditions. This aspect needs further investigation.

§
£
5

Figure 9.46 A cross section showing the Mn-enriched zone and watertable along the 

flow path of the groundwater from drill hole CBAC173 to CBAC182 in the 

southeastern-southern part of the Hermidale area.
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Figure 9.47 Showing the distribution patterns of the trace elements Au, Co, Pb, Ni, Cu, 

Zn and Cr (ppm) and their relationships with MnO and Fe2 Ü 3 total (wt %) in the Mn- 

enriched regolith in drill hole CBAC173.

5 6 0.0001 0.001 0.01 0.1 1 0 40

CBAC181

Mn-enriched zone£  37 -

CaO MnO MgO Co Pb

Figure 9.48 Showing the distribution patterns of the trace elements Au, Co, Pb, Ni, Cu, 

Zn and Cr (ppm) and their relationships with MnO, CaO, MgO and Fe20.2 total (wt %) 

in the Mn-enriched regolith of drill hole CBAC181.
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Figure 9.49 Showing the distribution patterns of the trace elements Au, Co, Ni, Cu, Cr 

and Zn (ppm) and their relationships with MnO, CaO, MgO and Fe203 total (wt %)  in 

the Mn-enriched regolith o f drill hole CBAC185.
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Figure 9.50 Showing the distribution patterns of the trace elements Au, Co, Pb, Cu, Ni, 

Cr and Zn (ppm) and their relationships with MnO, CaO, MgO and Fe203 total (wt %) 

in the Mn-enriched regolith of drill hole CBAC182.
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9.3.7 SUMMARY AND CONCLUSIONS

In the Girilambone region Mn-enriched zones show a variable distribution in the 

regolith. Manganese enrichment is most noticeable in the in situ regolith. The highest 

MnO content is observed in the southwest of the Hermidale area and generally 

decreases toward the east. Lithiophorite, cryptomelane, pyrolusite and hollandite 

compositions have been identified by energy dispersive X-ray analysis (EDXA). The 

Mn-oxides/oxyhydroxides in these zones occur as microcrystalline masses or well- 

developed platy crystals.

Manganese oxide/oxyhydroxide content is generally correlated with that of Fe, Mg, As, 

Co, Ni, Cu and Zn. This is particularly the case in mafic rock dominant areas indicating 

that a mafic element suit released during weathering was accommodated by Mn oxide 

minerals. Gold enrichment is not associated with this multi-element enrichment nor is it 

correlated with the overall MnO abundance, which probably indicates its 

dispersion/fixation is not being controlled by incorporation or adsorption by manganese 

oxides/oxyhydroxides. The relative spatial distribution of Mn- rich horizons with 

respect to groundwater level shows stratified concentration of Mn oxides above the 

present water level along the groundwater flow path, indicating previous water table 

levels where the manganese oxides were precipitated due to chemical changes.

9.4 ELEM ENT ASSOCIATION AND DISPERSIO N IN Fe- 
ENRICH ED REGOLITH

9.4.1 INTRODUCTION

Iron is considered one of the most important elements in regolith geochemistry, because 

of its ability to undergo oxidation and reduction (ferric to ferrous), the high capacity for 

some Fe oxyhydroxides to adsorb large amounts of trace elements across broad pH 

ranges and its abundance in the crust. Iron oxide-rich zones are common in the regolith 

of the Girilambone region (Chan et a l 2002; 2004).

Ferruginous regolith has potential as a sampling medium in mineral exploration in 

many deeply weathered terrains (Anand, 2001) and anomalies of geochemical 

pathfinders have been reported in ferruginous regolith in Australia (Anand et a l 1993;
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Anand, 2001) and around the world (Freyssinet et al., 1989; Costa, 1993; Costa et a /., 

1999).

In the Girilambone region Fe-enriched regolith (with > 8.5 wt% Fe2Ü3 as total Fe) 

shows variable distribution (Appendix 7). The greatest Fe enrichment is in the central 

part of the study area (Sussex area), where Fe is predominantly concentrated in the 

transported regolith particularly as ferruginous clasts (Figure 9.51). Toward the south 

(Hermidale area), the number and thickness of Fe-enriched horizons are significantly 

decreased (Figure 9.52). In the northern part (Byrock area) Fe-enrichment is observed 

in the in situ regolith in the west (where transported cover is thinner) and mainly in 

transported regolith in the east (Figure 9.53).

9.4.2 IRON OXIDE / OXYHYDROXIDE MINERALS

Iron oxides/oxyhydroxides can be distributed evenly throughout a weathering profile, 

or preferentially concentrated in particular horizons. Iron is mobile within a weathering 

profile because of its ease of reduction under anaerobic conditions and its susceptibility 

to be complexed (Taylor et al., 1983). Iron oxides/oxyhydroxides can exist as 

concentrations in mottles, cemented aggregates, discrete fine particles and as coatings 

on grains and crack faces.

The most common soil iron oxides/oxyhydroxides are goethite (a-FeOOH), 

lepidocrocite (y-FeOOH), hematite (a-FezCF), maghemite (y-Fe2 0 3 ) ferrihydrite 

(FIFesOgAFLO) and magnetite (Fe3 0 4 ). With the exception of magnetite (which 

generally exists as a residual primary mineral), all are products of pedogenesis and 

derived either directly from primary sources of iron, or from the transformation of 

earlier pedogenic forms under new environmental conditions (Taylor et al., 1983). 

Magnetite can also be oxidized in a solid-state transformation to maghemite; such a 

transformation is favoured by smaller particle size and a moist environment 

(Feitknecht, 1965).

As well as pH, Eh and temperature other local environmental variables can influence 

the precipitation of iron oxides/oxyhydroxides. These include for example, the 

inhibition of crystallization (eg. the effect of added silicate, phosphate etc.), change in
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mineral species and the modification of crystal morphology (Schwertmann and Taylor, 

1972; Taylor et al., 1983).
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Figure 9.51 Plan showing the location of drill holes with observed Fe-enriched zones in 
the regolith from the Sussex area and profiles of these holes.
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Figure 9.53 Plan showing the location of drill holes with observed Fe-enriched zones in 

the regolith from the Byrock area and profiles o f these holes.
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In this study hematite, goethite and maghemite were identified by X-ray diffraction in  

the Fe-enriched horizons. Some of these horizons (i.e. in drill holes CBAC215, 

CBAC243 and CBAC246) are characterised by the presence of only goethite, whereas 

in others (i.e. CBAC103 and CBAC224) hematite is the dominant iron oxide mineral. 

Maghemite is less abundant and it is only observed in a few Fe-enriched horizons 

(Appendix 4).

9.4.3 TRACE ELEMENT CHARACTERISTICS OF Fe-ENRICHED 
REGOLITH

Some in situ regolith samples shows apparent correlations between Fe, As and Cu 

contents (Figure 9.54 B, F). In the Fe-enriched transported regolith there is not a strong 

con-elation between the content of total Fe2 Ü3 and the trace elements except for As and 

Cr (Figure 9.54).

9.4.3.1 GOLD IN Fe-ENRICHED REGOLITH

Gold shows significant concentration in some of the Fe-rich horizons. However, there 

is no direct correlation between Au and Fe content (Figure 9.54 A). Enrichments of Au 

(> 0.009 ppm) were detected in samples from drill holes CBAC32, CBAC81, 

CBAC103, CBAC143, CBAC204 and CBAC219. Some of these drill holes (i.e. CBAC 

103, CBAC204 and CBAC219) are selected to display the relationship between Au and 

Fe distribution in the regolith profile.

In drill hole CBAC 103 there are three Fe-enriched horizons. The lower horizon extends 

across the T/I boundary. There are two levels of Au enrichment 0.026 ppm and 0.018 

ppm recognised in the transported regolith at 7-8 m and 18-24 m depth respectively 

(Figure 9.55, Appendix 7). The upper Au enrichment zone is associated with significant 

enrichment in Fe and As. The drill hole log and field observations indicate a marked 

increase in ferruginous magnetic gravel and granules at this level. Mineralogical 

analysis shows high hematite content (21 wt%) with some goethite (1.2 wt%) and 

maghemite (4.4 wt%) at this level (Appendix 4). This possibly explains the enrichment 

of Au at this level as a result of mechanical accumulation of Au-bearing ferruginous 

sediments.
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Figure 9.54 Scattergrams of trace elements in the Fe-enriched regolith of the 

Girilambone region. Fe2C>3 % vs. Au (A), As (B), Zn (C), Cr (D), Pb (E) and Cu (F). 

Dashed lines represent apparent additional correlations.

In the lower Au-enriched horizon, Au content generally increases with that of Fe and 

As, but is also significantly correlated with Mn content (Figure 9.55). The 

mineralogical analysis shows a lack of well crystalline iron oxide minerals (Appendix 

4), which possibly indicates occurrences of Fe within the amorphous and /or clay 

materials. The relationship between Au and Mn in Fe-rich zones needs further 

investigation, including detailed microanalysis of components.
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In CBAC204 the Fe-enriched zone consists of pink saprolite. The identified iron- 

oxide/oxyhydroxide minerals in this zone are goethite (8.6 wt%) and hematite (1.2 

wt%; Appendix 7). Iron is associated with As and Au and the highest Au value 

coincides with highest As and Fe contents (Figure 9.56). A positive correlation between 

Au enrichment and Fe2C>3 abundance possibly indicates adsorption of Au and As onto 

Fe oxides/oxyhydroxides during chemical weathering of Au-rich materials.

0.0001 0.001 0.01 100

Figure 9.55 Distribution profiles of Au and As (ppm) and the major elements Fe2Ü 3 

(total), MnO, CaO and MgO (wt%) in the Fe-enriched horizons of drill hole CBAC103.
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Figure 9.56 Distribution profiles o f Au and As (ppm) and the major elements Fe2Ü 3 

total, MnO, CaO and MgO (wt%) in the Fe-enriched horizons of drill hole CBAC204.
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9.4.3.2 ZINC, COPPER AND LEAD ASSOCIATED WITH Fe OXIDES/ 
OXYHYDROXIDES

Because of the economic significance of gossans, there have been many studies, which 

have shown a strong correlation between Cu and Fe content of weathered rocks (see 

Taylor and Eggleton, 2001). Eh, pH and CO2 (g) pressure are important factors in 

controlling the Cu-Fe relationship (e.g. Thomber, 1985; Mosser and Zeegers, 1988). In 

a similar context a comparative study of iron oxides (Rose and Bianchi-Mosquera, 

1993) showed that under neutral conditions (pH=7) goethite adsorbed all the available 

metal, whereas hematite preferentially adsorbed all the Pb, Zn, Co and Ni with only 70 

% of Cu and Ag.

In the Girilambone region there is significant correlation between elevated Fe values 

and high concentration of Cu, Zn and Pb. Distribution patterns in the regolith profiles 

strongly suggests that these metals were preferably adsorbed or accommodated by Fe- 

oxides/ oxyhydroxides. In drill holes CBAC27 and CBAC246 there is a comparable 

relationship between Fe and Zn content within and above the Fe-enriched horizons 

(Figures 9.57-58). In CBAC27, XRD analysis shows 11.2 wt% of goethite in the upper 

horizon (9-19 m depth) and 17.9 wt% goethite with 0.3 wt% hematite in the lower 

horizon (Appendix 4). Similarly, two Fe-enriched horizons with elevated Zn and Cu 

concentrations occur in drill hole CBAC 246 with 0.7 wt% and 6.7wt% of goethite (the 

only detected iron oxide mineral) in the upper and the lower horizons respectively 

(Figure 9.58, Appendix 4)). Petrographic and field observation show the Fe-enriched 

zone consists of finely laminated siltstone with ferruginous rock chips in CBAC27 and 

granitic saprolite with schistose-like texture and ferruginous induration in CBAC 246 

(Chan et al., 2001; 2004).

The significant correlation between Fe and Zn content and distribution of ferruginous 

weathered bedrock suggest that the Fe-Zn association reflects an original bedrock 

association in CBAC27 and /or the mobilised Zn during the weathering of the bedrock 

accompanied afterward with Fe in goethite.
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Figure 9.57 Distribution profiles of Zn (ppm) and the major elements Fe2 Ü 3 (total), 

MnO, CaO and MgO (wt %) in the Fe- enriched horizons of drill hole CBAC27.
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Figure 9.58 Distribution profiles of Zn and Cu (ppm) and the major elements Fe2 C>3 

(total), MnO, CaO and MgO (wt%) in the Fe- enriched horizons of drill hole 

CBAC246.
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In CBAC243 the elevated Zn and Cu values are also significantly correlated with Fe in 

the Fe-enriched zone, coinciding with the highest Fe content (Figure 9.59). The 

predominant iron mineral in this zone is goethite, which ranges between 9.1 wt% in the 

base of the zone (25 m) to 42.4wt % at 23-21 m depth (Appendix 4). This Fe-enriched 

zone is developed on mafic and altered magnetic sedimentary rocks with Fe staining 

and ferruginous indurations. This is again another original bedrock (mafic rock) 

association between Fe, Zn and Cu preserved within goethite.

Elevated Cu values (357-403 ppm) occur in the Fe-enriched zone of drill hole 

CBAC200 (4-6m), where the distribution pattern of Fe is significantly correlated with 

that of Cu (Figure 9.60). The mineralogy of the Fe-enriched horizon is characterised by 

4.3 wt% of hematite and 2.7 wt% of goethite (Appendix 4). This correlation extends 

down the first ten meters of this drill hole regardless of regolith type. The carbonate- 

rich regolith zones that are interbedded with the Fe-enriched zone also show a 

comparable Fe-Cu association, which possibly indicates that the distribution of these 

elements is not affected by the development of the calcrete or pH conditions (alkaline 

or non-alkaline) during the weathering process. In other words, the Fe-Cu association 

possibly represents a bedrock association and the enrichment of these elements is 

significantly related to increased abundance of ferruginous clasts.
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Figure 9.59 Distribution profiles of Zn and Cu (ppm) and the major elements Fe2 Ü3 

(total), MnO, CaO and MgO (wt%) in the Fe-enriched horizons of drill hole CBAC243.
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The correlation between Fe, Zn and Cu contents has also been reported in other regolith 

studies in the western New South Wales and Western Australia. This correlation has 

been related to hosting of Zn and Cu by iron oxide/oxyhydroxide minerals (i.e., 

hematite, goethite, Lintem and Scott, 1990; Brand and Butt, 2001). Alipour et al. 

(1995) noticed a significant relationship between Fe and Cu in ferrolithic lag that was 

derived from an original Fe-rich lithology near Cobar.
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Fe- and carbonate-enriched
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Figure 9.60 Distribution profiles of Cu (ppm) and the major elements Fe2 Ü 3 (total), 

MnO, CaO and MgO (wt%) in the Fe- enriched horizons of drill hole CBAC200.

In CBAC205 the Fe-enriched regolith consists of pink saprolite claystone ane meta-

shale and phyllite (Chan et al., 2004). The distribution patterns of elements show that 

the Pb contents follow those of Fe. The highest Pb value was observed in the lower Fe- 

enriched horizon (15-18 m). This enrichment is associated with increasing Fe and Mn 

content (Figure 9.61). XRD analysis shows that the only detected iron oxide mineral in 

this horizon is goethite (1.9 wt%, Appendix 4). Elevated Pb is also observed within the 

Fe-enriched horizons of drill hole CBAC218 and CBAC224. In CBAC 218 the elevated 

Pb is associated with elevated Zn, Cu, Fe and Mn (Figure 9.73) in the transported 

regolith, which is rich in sand and gravel. XRD analysis shows 3.6 wt % of hematite
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and 0.6 wt% of goethite (Appendix 4). Similarly in CBAC224 the Fe-enriched horizon 

(15-16 m) was observed in a succession of transported sand, silt and gravel where Pb 

and Zn concentrations show comparable patterns to Fe and Mn (Figure 9.63). This 

horizon includes the highest Pb value (103 ppm) with 3.6 wt% of hematite and 3.3wt % 

of goethite (Appendix 4). There are mafic rocks recorded in these drill holes (Chan et 

a l., 2002) and the high concentrations and association of Fe, Zn and Cu may have been 

inherited from these mafic parent rocks. However, occurrences of pink to red coloured 

claystone indicate the presence of iron oxide minerals (possibly hematite) in association 

with clay material. These iron oxides also have the potential to accommodate some of 

the mobilised Pb, Zn and Cu during weathering. The relative enrichment in hematite in 

these drill holes possibly explains the increased Pb concentration due to its preferential 

adsorption by hematite. Other observations from the Cobar region have shown that 

hematite generally has higher Pb but lower Cu and Zn content than goethite (i.e., Scott, 

1992).
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Figure 9.61 Distribution profiles of Pb (ppm) and the major elements Fe2C>3 (total), 

MnO, CaO and MgO (wt %) in the Fe-enriched horizons of drill hole CBAC205.
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Figure 9.62 Distribution profiles of Pb, Cu and Zn (ppm) and the major elements Fe2 C>3 

(total), MnO, CaO and MgO (wt%) in the Fe-enriched horizons of drill hole CBAC218.
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Figure 9.63 Distribution profiles of Pb, Cu and Zn (ppm) and the major elements Fe2 Ü3 

(total), MnO, CaO and MgO (wt%) in the Fe-enriched horizons of drill hole CBAC224.
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9.4.4 SUMMARY AND CONCLUSIONS

Iron-enriched zones are unevenly distributed in the regolith profiles of the Girilambone 

region. Iron- enrichment predominantly occurs in the central part of the study a rea  

(Sussex area) where Fe is concentrated in the transported regolith. This significantly 

decreases towards the south (Hermidale area). In the northern Byrock area, F e - 

enrichment is observed in the in-situ regolith in the west generally in the transported 

regolith in the east.

Some enrichment of Au and As is associated with the increased abundance o f  

ferruginous magnetic gravels in the Fe-enriched zone, which possibly indicates a  

mechanical dispersion of remnant primary Au in ferruginous regolith.

Higher contents of Fe, Zn and Cu occur in areas where there are weathered mafic rocks. 

There is generally not a strong correlation between hematite or goethite content and 

concentration of Au, As, Zn, Cu and Pb in the Fe-enriched zones. This suggests that for 

these background sites the known propensity for iron oxides/oxyhydroxides to take up 

these elements is not strongly expressed, probably because of the low abundances o f 

the trace elements.
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10. CHAPTER TEN: CONCLUSIONS AND 
RECOMMENDATIONS

This study has used a combination of geochemical analysis of the regolith materials a n d  

groundwater in the Girilambone region and made the following key findings:

• Threshold and anomaly values for target and pathfinder elements vary in different 

regolith materials and facies. The spatial distribution of anomalous values in th e  

top metre, transported and in situ regolith have been identified.

• Multivariate cluster analysis and principal component analysis can be used to identify 

major element associations in the regolith. Four major element associations have been 

identified in the Girilambone regolith using these methods.

• Groundwater can be used to vector toward potential mineralisation and ,6C1 isotope 

data can be used to identify the possible age of groundwater.

• Key geochemical signatures can be used to discriminate the main bedrock units (i.e., 

Girilambone Group and Cobar Supergroup) through the overlying saprolith. The A- 

CN-K diagram can be used to determine the likely original source composition, 

weathering and metasomatism trends of the saprolith materials;

• Secondary enrichments of calcrete, manganese and iron oxides significantly control 

the target and pathfinder elements dispersions in the regolith.

• The highest Au contents in the regolith carbonate zone are not necessarily 

associated with the position of maximum calcrete development and Au 

enrichment has occurred at the top of the calcrete zone;

• The stratified occurrence of Mn in the in situ regolith is due to precipitation of 

Mn along previous water table levels. There is a significant correlation between 

Mn oxides/oxyhydroxides and As, Co, Ni, Cu and Zn in these Mn-enriched zones;

• There are significant concentrations of Au in some Fe-enriched horizons, although 

there is no direct correlation between Au and Fe content; and

• There are significant correlations between Fe and elevated Zn and Cu in areas where 

there are mafic rocks.
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10.1 ANOMALY, BACKGROUND AND ELEMENT 
ASSOCIATIONS

The threshold values of target and pathfinder elements are calculated in the clay-silt- 

gravel facies, regolith carbonate facies, Fe-dominant facies and Mn-dominant facies o f  

the top meter, transported and in situ regolith material using Boxplot and MAD 

methods. The boxplot method is more efficient in separating anomalies from the 

background “noise” in the regolith. Potential mineralisation in the northeast of the 

central part of the region (Sussex area) was identified based on anomalous enrichments 

of Au, Cu, Zn and to some extent Pb along the regolith profile from drill hole 

CBAC119 to CBAC125. High threshold values for As, Cr and V are observed in the 

Fe-enriched facies where weathered mafic rocks are present. These elements are 

accommodated by the secondary Fe oxide/oxyhydroxide minerals (hematite and 

goethite). Establishing appropriate threshold values will greatly assist future mineral 

exploration in the Girilambone region.

Four major element associations are identified by cluster analysis. These are element 

suites associated with Ca and Mg (carbonate group), with MnO (Mn-oxide/ 

oxyhydroxide), with FezCA (iron oxide/oxyhydroxide) and with mafic rock (Ni and Cr). 

Principal component analysis indicates similar groups, representing calcretization 

(Ca+Mg), adsorption (Fe-Mn oxides) and bedrock influences. Recognising these 

important regolith-related element associations will assist in selection of the most 

suitable sampling media and geochemical interpretation during mineral exploration.

10.2 GROUNDWATER CHEMISTRY AND HYDROGEOLOGY

Groundwater aquifers are present within the in situ regolith where there are weathered 

phyllitic siltstone-sandstone units. Water levels mirror topography, indicating an 

unconfined aquifer system, and groundwater is flowing in general to the northeast in 

the Hermidale area and similarly in part of the Byrock area. The groundwater in the 

region is mainly chloride type, rich in Na, Cl and SO4 .The other calcium-bicarbonate 

and bicarbonate-chloride types are less common. The main processes that have affected 

the groundwater composition are evaporation, water-rock interaction and mixing. Each 

of these processes left a compositional touch, which can be recognised by significant
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changes in Na/Br and Cl/Br ratios. A significant increase in the 36C1/C1 ratio along th e  

groundwater flow path indicates mixing of groundwaters of different ages. 

Groundwater ages calculated from 36C1/C1 indicate that the groundwater in the ByrocR 

area is older (418000-516000 years) than that in the Hermidale area (241000-492000 

years). The waters are undersaturated with respect to oxidised copper and z in c  

minerals. Calculated saturation indices of ZnSiCA, malachite and tenorite for th e  

Hermidale groundwaters appear to show a vector towards known mineralisation (i.e. th e  

Budgery deposit northwest of drill hole 150 and the Glengarry gossan south of drill 

hole CBAC173). The correlation between the groundwater and regolith composition 

suggests at least another two sites (drill holes 217 and 219) of potential mineralisation.

10.3 SEDIMENTARY WEATHERING PROCESSES AND SOURCE 
COMPOSITION

The degree of weathering of saprolith in the Girilambone region can be determined 

using the Chemical Index of Alteration (CIA) and plots of major components (A-CN-K 

diagram). Four zones of weathering I to IV are recognised based on CIA values. Zone 

IV is the least weathered and zone I the most weathered. The A-CN-K diagram gives 

good results for the finer grained lithologies but is not useful for sandstones particularly 

where they are poorly sorted. Deviations from the weathering trends infer chemical 

changes resulting from diagenesis or metasomatism.

Immobile element ratios Zr/Sc versus Th/Sc can be used to identify sedimentary 

recycling in source rocks for the regolith. A significant increase in Zr/Sc with insignificant 

or no increase in Th/Sc, suggests significant recycling of sediment making up the protolith. 

Comparing these ratios with those for known rock composition indicate a wide range of 

igneous rock compositions for the sediment source.

Al20 3 /Si02  and T i0 2/Zr ratios can be used in association with the 15Al203-300Ti02-Zr 

diagram to discriminate between sandstone, shale and mafic to felsic igneous 

compositions. Sandstone-dominant saprolith plots trend toward immature sandstone 

indicating a significant amount of silt and clay within these samples. This diagram also 

discriminates the saprolith derived from mafic igneous rocks (eg. in drill holes 

CBAC163, 166, 198, 200, 201, 234) from that derived from an intermediate 

(granodioritic) igneous source (eg. in drill holes CBAC167, 233, 237 and 247).
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Ti/Th and Ce/La ratios can be used to discriminate between saprolith materials that are 

derived from the Cobar Supergroup and the Girilambone Group. Cobar Supergroup 

rocks show a limited range of Ti/Th ratios (0.039 - 0.03) and of Ce/La ratios (2.2- 1.9), 

whereas those related to the Girilambone Group are characterised by relatively lower 

ranges of Ti/Th (0.005- 0.03) and Ce/La (1.8- 2.3).

10.4 ELEMENT DISPERSION IN CALCRETE- MANGANESE- 
IRON -DOMINANT REGOLITH

Calcrete, Fe-Mn oxides or oxyhydroxides are important host regolith materials for Au 

and base metals (Cu, Zn, Pb) in transported and in situ regolith in the Girilambone 

region. Calcrete is widespread within a zone of variable thickness in the upper 10 m of 

the regolith. The calcrete typically consists of dispersed calcite-dolomite, generally 

with calcite predominating in the upper part of the zone and dolomite predominant 

towards the base. The highest Au contents in a profile are not necessary associated with 

the position of maximum calcrete development. Typically, the highest Au concentration 

is at the top of the calcrete zone, but not in all cases. There is generally a negative 

correlation between elevated Au and Fe20 3  content in this part of the regolith. Some in 

situ profiles show an association of elevated Au with higher Fe2Ü3 content, but this is 

probably remnant primary Au in ferruginous saprolite.

The association of Au with calcrete in the Girilambone region appears to reflect a 

chemical environment within both transported and in situ regolith that is conducive to 

precipitation of both carbonate and mobilised gold rather than a direct control on gold 

fixation by calcrete. There is no positive correlation between Cu, Zn, Pb, Cr, Ni and Ti 

concentrations and CaO and MgO contents in the calcrete zone. However, these 

elements show positive correlation with Fe2Ü3 content suggesting these elements are 

contained within iron oxide/oxyhydroxide impurities in the carbonate zone.

The Mn-enriched zone is variably distributed in the regolith of the Girilambone region, 

but is generally best developed in the in situ regolith. The highest MnO content is in the 

southwest of the Hermidale area and generally decreases toward the east. Lithiophorite, 

cryptomelane, pyrolusite and hollandite are the dominant Mn minerals. They are
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generally present as microcrystalline masses or well-developed platy crystals in cavities 

and spaces in Mn-rich zones.

Manganese oxide content is positively correlated with multi-element enrichments of F e , 

Mg, As, Co, Ni, Cu and Zn, typically in mafic rock dominant areas. This indicates a  

mafic suite of elements that has been released during weathering. Gold enrichment i s  

not associated with this multi-element enrichment and it is not correlated with MnO 

abundance, which probably indicates an independent host mechanism. A stratified 

concentration of Mn oxides above the present water level along the groundwater flow 

path indicates previous water levels where the manganese oxides were precipitated due 

to redox changes.

Iron-enriched zones are unevenly distributed in the regolith profile of the Girilambone 

region with predominant enrichment in the central part of the study area (Sussex area) 

where Fe is concentrated in the transported regolith. This significantly decreases 

towards the south (Hermidale area). In the northern part (Byrock area) Fe- enrichment 

is observed in the in situ regolith in the west and in the transported regolith in the east. 

Enrichments of Au and As are associated with ferruginous magnetic gravels in the Fe- 

enriched zone, which possibly indicates a mechanical dispersion of Au in ferruginous 

regolith.

Elevated Fe, Zn and Cu contents are associated with weathered mafic rocks in the 

region. These enrichments reflect higher background level of these elements in the 

original mafic bedrock and possibly scavenging of Pb by more abundant Fe oxides. 

Generally across the region there is no clear correlation between hematite or goethite 

content (identified by high Fe-contents) and concentration of Au, As, Zn, Cu and Pb. 

This suggests that the well-known preferential adsorption of these elements by these 

minerals has not been sufficient to produce an observable correlation on a regional 

scale.

10.5 RECOMMENDATIONS FOR FURTHER WORK

• Sampling and analysis of separate regolith lithotypes is important in identifying 

appropriate pathfinders for mineral exploration. Composite sampling over 1 metre
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intervals is a successful and convenient method to detect variations, particularly 

within the first ten-meters of the regolith profile. Surface (top metre) composite 

samples are not recommended for exploration and should only be utilised when 

the regolith mixing facies are well recognised.

• Groundwater samples collected by sample bailer have been found useful fo r  

detecting regional variation in groundwater geochemistry. This type of sampling 

is recommended for regional exploration, particularly when the recharge times are 

too long for preliminary pumping to be practical. They can provide a better 

understanding of water-rock and water- regolith interactions and the resulting 

presence of some dissolved metal complexes.

• Roadside drilling is too restricted to provide a full understanding of the spatial 

distribution of the regolith, groundwater and geochemical anomalies. In any 

drilling project in the future, the drill holes should be selected to provide greater 

coverage of the region.

• Sampling the upper part of the calcrete zone within shallow transported and in 

situ regolith during air-core drilling is recommended, as part of the strategy for 

gold exploration in this region. Identifying this zone from drill cuttings in the field 

is probably best done by testing samples with hydrochloric acid and careful visual 

observation. This can be verified from the Ca and Mg content of samples, 

following chemical analysis.

• Threshold values of elements need to be established for different types of regolith 

material and also tested, particularly in an area of known mineral occurrences by 

implementation of an orientation survey around and away from the mineral 

occurrence.

• Geochemical anomalies in different regolith facies showed enrichments of Au, 

Cu, Zn and to some extent Pb in a profile extending from drill hole CBAC119 to 

CBAC125 in the northwest Sussex area. Further detailed investigation is strongly 

recommended for this area.

• Anomalous Zn and Cu in the groundwater from drill holes CBAC217 and 

CBAC219 (Byrock area) suggest further investigation is warranted around these 

areas probably southeast of CBAC217.

• The scarcity of hydrogeologic information suggests a need for further work on the 

groundwater in the Girilambone region.
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• For a better understanding of weathering process, CIA, A-CN-K diagram a n d  

other element ratios techniques need to be applied across the regolith profile (as a  

study case, particularly in areas of known bedrock geology) to establish th e  

weathering history from fresh bedrock to deeply weathered regolith.

• Further investigation of some underlying bedrock compositions (particularly for 

the Girilambone Group) is required to fully evaluate the application of Ti/Th an d  

Ce/La geochemical signatures.
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APPENDICES

The attached CD includes a digital copy for all the appendices. These appendices are:

Appendix 1: Includes the data of ICP multi acid digestion analysis for the regolith of 

the Byrock, Sussex and Hermidale areas in the Girilambone region.

Appendix 2: Includes the data of ICP and XRF analysis for bottom of the hole 

samples in the Girilambone region.

Appendix 3: Includes the data of geochemical analysis of groundwater in the Byrock 

and Hermidale areas.

Appendix 4: Includes the data of XRD analysis data for selective samples from the 

calcrete bearing, Mn- and Fe- enriched zones in the regolith of the 

Girilambone region.

Appendix 5: Includes standard, blanks, replicates and duplicates data.

Appendix 6: Includes the data of saturation indices for minerals as calculated from the 

groundwaters.

Appendix 7: Includes all the regolith facies and the anomaly table of pathfinders

Appendix 8: Includes the probability P-P diagram for the important elements (i.e., As, 
Au, Cu, Co, Cr, Ni, Pb, Zn) in all the studied facies (i.e., clay-enriched, 
carbonate-enriched, iron-enriched and manganese-enriched) of the top 
metre, transported and in situ regolith in the study area.
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