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Abstract

This thesis applies a state-contingent claim approach to asset valuation. First,
prices are determined for options on the S&P 500 index. Market microstructure aspects
such as minimum tick size are directly incorporated into the model, and empirical
maximum and minimum returns are used to limit the range of the distribution. The
state-contingent claim approach is shown to provide an overall improvement on the
Black-Scholes (1973) formula and Stutzer’s (1996) canonical valuation. The state-
contingent claim approach is then applied to stock valuation. US stocks are valued
annually, and the results are compared with Ohlson’s (1995) residual income model,
Stutzer’s canonical valuation and the Sharpe (1964) and Lintner (1965) Capital Asset
Pricing Model (CAPM). The state preference approach is found to provide a significant
improvement on the residual income model, and a similar level of accuracy to the
CAPM and the canonical valuation approach. Of the models under investigation, the

CAPM provides the greatest overall accuracy in pricing stocks.

iv



Contents

100 o070 LT 1 (1) 1 1
A State-Contingent Claim Approach to Pricing S&P 500 Index Options.............. 7
2.1 INETOAUCHION ...ttt sttt sae et sae e beeas 7
2.2 The State Preference Approach........coccceceeveeieininiiniinieecencenrecseeceee e 10
2.2.1.  Breeden and Litzenberger state prices ........cccceceevueverireeseenerieseeecerenenn 13
2.2.2.  Option pricing fUNCHIONS ......cccevueerirrierinieieeeeen e 15
2.3 Alternative Option Pricing Models ........cccovevvrvereenienieninieienieses e 17
2.2.1.  The Black-Scholes formula.........ccccoeourmiiiiniieniiniereereeeeeeceeeeene 17
222,  Canonical Valuation........cc.cecerereerereenieirenenereeiesieeseereesee e ssesessesseesenne 21
2.4 Sample DeSCIIPHION .....coeeivirierieieriereeeresreseeriee e eteeetessa e s e e saesse e s eeensaeseans 24
2.5 RESUIES .ottt e a e st ne st ene 27
2.6 CONCIUSION ..euveuiiieniiinceie ettt ettt sttt et be st et a st be et seaaenis 33
Appendix A Charts and Tables ......c..coeoeeriiiniiniieetcee et 36
A State-Contingent Claim Approach to Equity Valuation ..........ccueeecsesseeressensense 47
3.1 INtrOQUCHION ...ttt a e s aas 47
3.2 EqUity Valuation .....ccceeceeiinirierieniesieeieeieeee st st ssessaeestesseesnessesaessassnesseens 50
3.2.1.  The state preference approach...........cccccociiiiiiiininninicee 50
3.2.2.  Earnings capitalisation models...........ceceeiririreniecieninrininennceneneeenne 56
3.2.3.  Canonical Valuation........cccevecurriueeerienresteeeerreseesreseesseesseesesssesesnresseens 58
3.2.4.  The Sharpe-Lintner Capital Asset Pricing Model............cccocevrvrernrnenn. 60
33 Sample DESCIIPLION ....c..eeutiiiriiiieiter ettt st resaesaesens 63
3:4  RESUIS ettt s s sttt s 66
3.5 CONCIUSION ..ottt ettt ettt ettt et et e st e st e s e e s e e e esaseesanssenes 70
Appendix B Tables and Charts ................... et seeeeeee e 71
L0713 1T 11 11 1 OO 74
REfEIEICES ccuueirvunrieisnriinnesensecsnnsansssnssesssisssssensssesssnessesssesssssossssssssnsssssssssssassassassansssass 76



Tables

Table 2.1 Comparison of Mean Squared Errors on S&P 500 Index Options Valued by
Alternative Option Pricing Models where the VIX proxies for expected volatility ....... 36

Table 2.2 Comparison of Mean Squared Outside Errors on S&P 500 Index Options
Valued by Alternative Option Pricing Models where the VIX proxies for expected
VOLALIILY .veeuteeteeiieeeeerese sttt e st e st e sbeese e e e snesas e aesane et e e seasaantesseeneessaesnens 37

Table 2.3 Comparison of Mean Outside Errors on S&P 500 Index Options Valued by
Alternative Option Pricing Models where the VIX proxies for expected volatility ....... 38

Table 2.4 Comparison of Mean Squared Errors on S&P 500 Index Options Valued by
Alternative Option Pricing Models where 40-day historical volatility proxies for
EXPECIEA VOLAIIIEY ...ttt et 39

Table 2.5 Comparison of Mean Squared Outside Errors on S&P 500 Index Options
Valued by Alternative Option Pricing Models where 40-day historical volatility proxies
fOr eXpected VOLAtIIItY ......ocveeiiirieieeeirerercecee et sttt ste et s e e e e s e e saeaeese e seeseeseens 40

Table 2.6 Comparison of Mean Outside Errors on S&P 500 Index Options Valued by
Alternative Option Pricing Models where 40-day historical volatility proxies for

expected volatility

Table 3.1 Comparison of Mean Squared Errors and Means Squared Relative Errors on

U.S. Equities Valued by Alternative Valuation Models Categorised by Stock Price..... 71

Table 3.2 Comparison of Mean Squared Errors and Means Squared Relative Errors on

U.S. Equities Valued by Alternative Valuation Models Categorised by Market

Capitalisation

Table 3.3 Comparison of Regression Values and Bayesian Information Criterion of

Alternative Valuation Models

vi



Figures

Figure 2.1 Scatter Plots of Call Option Outside Errors by Moneyness .............cccceuen.e. 42
Figure 2.2 Scatter Plots of Put Option Outside Errors by Moneyness..........cccccceeeuene. 43

Figure 2.3 Histogram of state price and canonical risk-neutral probabilities for a call

option on the S&P 500 index with T=24 days to expiry on 27 May 1992. .........ccccuen.. 44

Figure 2.4 Histogram of state price and canonical risk-neutral probabilities for call

option on the S&P 500 index with T=52 days to expiry on 27 May 1992. .......cc.c....... 45

Figure 2.5 Histogram of State Price and canonical risk-neutral probabilities for a call

option on the S&P 500 index with T=87 days to expiry on 27 May 1992. .........ccc....... 46

vii



Chapter 1

Introduction

First proposed by Arrow (1964) and Debreu (1959), the state preference
approach to decision making under uncertainty represents one of the most important
theoretical advances in modern financial economics. Arrow and Debreu formalised the
time-state preference framework, where individuals evaluate alternative economic
decisions both over time, and possible states of nature. In a competitive equilibrium
price is not only determined by individual preferences for the physical characteristics of
traded goods, but also individual preferences for the timing and risk characteristics of
goods. This is easily understood in the context of financial markets, where individuals
exhibit preferences for investments on the basis of the magnitude, timing, and riskiness
of returns. Arrow and Debreu also introduced the concept of a state-contingent claim,
an elementary security with a unit payoff in a given time and state, and zero elsewhere.
The price of a state-contingent claim, or state price, reflects an individual’s subjective
determination of the likelihood of a particular state occurring in the next period. In this

respect, state prices capture inherent uncertainty surrounding alternative states, and, as



established by Ross (1976), in a complete market will be implicit in the price of all

financial assets.

Arrow-Debreu state-contingent claims are now widely regarded as a foundation
of modern asset pricing theory, including the Merton (1973), Breeden (1979), and Cox,
Ingersoll and Ross (1985) models. In contrast to its theoretical success however, state
preference theory has received relatively little empirical attention. Breeden and
Litzenberger (1978) and Banz and Miller (1978) were among the first to estimate state
prices. Following Ross (1976), who showed that evenr simple options will span the state
space, Breeden and Litzenberger established that state-contingent claims may be priced
as the second-derivative of a call option with respect to the strike price. Other than
requiring complete markets, Breeden and Litzenberger’s approach places few
restrictions on the call option pricing function. Given a number of additional
assumptions, a unique closed form solution to Breeden and Litzenberger’s state pricing
function is easily obtained from the Black-Scholes (1973) option pricing formula.
While Breeden and Litzenberger were concerned primarily with determining state prices
on aggregate consumption, Banz and Miller applied the same approach to the capital
budgeting problem, where the underlying asset is the market portfolio. More recently
the state preference approach has been used to uncover aggregate risk preferences
(Jackwerth (2000)) and determine value-at-risk measures (Ait-Sahalia and Lo (2000)).
Non-parametric methods of estimating state price densities have also been advanced

(see, for example, Ait-Sahalia and Lo (1998)).

Despite state prices being incorporated into most theoretical models, state
preference theory has not yet been empirically applied to the asset pricing question.

The aim of this thesis is to investigate the application of state preference theory to



pricing exchange-traded financial assets. Breeden and Litzenberger’s approach is
adopted to estimate the price of state-contingent claims on the S&P 500 index'. Once
state prices have been determined, these may be used to price any asset where the
payoff depends on the value of the index. Obtaining state prices from the second
derivative of the Black-Scholes formula is computationally simple, and provides a
number of appealing characteristics. Market microstructure features such as minimum
tick size, or price increments, may be directly incorporated into the model, and the
historical distribution may be used to proxy investor expectations regarding the range of

possible returns on the underlying asset.

Following this introductory chapter, Chapter 2 investigates the application of the
state preference approach to pricing S&P 500 index options. For this initial application
of the state preference approach, S&P 500 index options are selected because, as
Rubinstein (1994) points outs, these options are more likely to conform to theoretical
market conditions. S&P 500 index options are European rather than American, so
payoffs are simpler to compute; the underlying asset is an index, which tends to exhibit
smoother price movements than other underlying instruments such as commodities,
currencies or stocks, and is more likely to follow a lognormal distribution; and the
market is relatively liquid. Values determined with the state preference approach are

compared to values obtained with the Black-Scholes formula and Stutzer’s (1996)

! Breeden and Litzenberger determined state prices on consumption, however there are well-known
econometric problems associated with aggregate consumption data. These are covered in detail by
Breeden, Gibbons and Litzenberger (1989), and include the reporting of expenditures rather than
consumption; infrequent reporting of consumption data relative to stock returns; sampling error resulting
from taking a subset of the}population of consumption transactions; and summation bias following from
the reported integral of consumption rates rather than spot consumption. In addition, Campbell (1993)

notes that measured aggregate consumption may be a poor proxy for consumption of equity market
participants.



canonical valuation approach. These alternative option pricing methods provide an
interesting contrast to the state preference approach. If state prices are estimated from
the second derivative of the Black-Scholes formula, then, as increments in the price of
the underlying asset approach zero, option values obtained with the state preference
approach should approach Black-Scholes values. In practice however, price movements
are discrete rather than continuous, and as previously noted, the state preference
approach provides for this market microstructure feature to be directly incorporated into
the model. Furthermore, the Black-Scholes formula will price the entire distribution of
expected returns on the underlying asset, albeit with low probability attached to extreme
values. Under the state preference approach the range of expected returns may be

limited, excluding extreme values from the model.

Stutzer’s canonical valuation approach is a non-parametric method that, in
contrast to the Black-Scholes formula, places no restrictions on the stochastic process
governing the underlying asset price. The empirical distribution of returns on the
underlying asset is used to obtain risk-neutral probabilities, which are applied to
expected payoffs to determine the value of the option. Risk-neutral probabilities are
closely related to state prices. A risk-neutral probability distribution is obtained when
relative marginal utilities in alternate states are normalised to sum to one, therefore
assuming investors are indifferent to risk. Note that, similar to the state preference
approach, canonical valuation does not price the entire distribution of expected returns
on the underlying asset; rather, prices are determined from an empirical distribution.
The results of Chapter 2 indicate that the state preference approach performs well in

pricing S&P 500 index options, providing an overall improvement on both the Black-

Scholes formula and canonical valuation.



The successful application of the state-contingent claim approach to pricing
S&P 500 index options suggests that this approach should be applicable to asset pricing
more generally. As such, the state preference approach is applied to pricing equities in
Chapter 3. State prices on the S&P 500 index are determined in the same manner as in
Chapter 2, and are used to value stocks traded on US exchanges over the period
December 1996 through July 2004. Once again, market microstructure features such as
minimum price movements on the underlying asset are directly incorporated into the
model, and the historical distribution is used to determine the range of expected returns
on the underlying asset. A test approach similar to that of the first chapter is also
adopted. Values obtained under the state preference approach are compared to those
determined using other equity valuation techniques; specifically, the residual income
model popularised by the accounting literature (see, for example, Ohlson (1995),
Feltham and Ohlson (1995) and Myers (1999)). In its simplest form, the residual
income model respecifies the dividend discount model in terms of accounting variables,
where stock price is expressed as a function of the book value of equity and expected
earnings per share.  Equities are also valued with Stutzer’s canonical valuation
approach, on the basis that if the state preference approach is applicable to pricing any
exchange-traded asset, then it should also be possible to price securities using risk-
neutral probabilities obtained via the canonical valuation approach in Chapter 2.
Finally, equities are valued with the Sharpe (1964) and Lintner (1965) Capital Asset
Pricing Model (CAPM). The state preference approach is shown to provide a
significant improvement on the residual income model, which performs poorly in
comparison to the alternative models. Consistent with the results for S&P 500 index

options, the state-contingent claim approach provides an improvement on canonical



valuation, however of the models under investigation, the CAPM is shown to provide

the most accuracy in pricing equities. The final chapter concludes.



Chapter 2

A State-Contingent Claim Approach to

Pricing S&P 500 Index Options

2.1 Introduction

State preference theory, first proposed by Arrow (1964) and Debreu (1959),
provides a framework for evaluating individuals’ economic decision making under
uncertainty. Alternative investment decisions are evaluated over both time and
uncertain states of nature, and investor preferences for the timing and riskiness of
returns on financial assets are captured in the prices for state-contingent claims. State-
contingent claims are elementary securities with a unit payoff in a given time and state,
and zero elsewhere. The prices of state-contingent claims, or state prices, are widely
viewed as the building blocks of modemn asset pricing theory, including the Merton
(1973), Breeden (1979) and Cox, Ingersoll and Ross (1985) models. However, despite
state preferences being incorporated into most theoretical models, the empirical
application of state preference theory has received relatively little attention in the

literature. Breeden and Litzenberger (1978) and Banz and Miller (1978) were the first



to quantify state prices as the second derivative of a call option price. While Breeden
and Litzenberger were concerned with state prices on aggregate consumption, Banz and
Miller determined state prices on the market portfolio and applied these to the capital
budgeting problem. A number of other studies have investigated the state pricing
question, including Jackwerth (2000), who applied the state preference approach to
uncover aggregate risk preferences, and Ait-Sahalia and Lo (2000), who used state

prices to determine an alternate value-at-risk measure.

The aim of this thesis is to investigate the application of state preference theory
to pricing exchange-traded financial assets. Breeden and Litzenberger’s approach is
adopted to estimate the prices of state-contingent claims on the S&P 500 index. Once
state prices have been determined, these may be used to price any asset where the
payoff depends on the value of the index. In this chapter, the state preference approach
is applied to pricing S&P 500 index options. Values for S&P 500 index options from
January 1990 through December 1993 are determined with the state preference
approach, and compared to the Black-Scholes (1973) option pricing formula and
Stutzer’s (1996) canonical valuation method. These alternative option pricing methods
provide an interesting contrast to the state preference approach. If state prices are
estimated using the closed form solution of the second derivative of the Black-Scholes
call option price then, as increments in the price of the underlying asset approach zero,
option values should approach the Black-Scholes values. In practice however, price
movements in the underlying asset are discrete rather than continuous, and one
advantage of the state preference approach is that discrete price movements may be
explicitly incorporated into the model. A further advantage of the state preference

approach when compared to Black-Scholes is that the range of expected values of the



underlying asset may be restricted. Whereas the Black-Scholes formula will price very
small and very large expected values, albeit with low probability, these extreme values
may be excluded altogether from the state price calculation. This has the additional

practical advantage of reducing the computational burden.

Stutzer’s canonical valuation method determines risk-neutral probabilities from
the empirical distribution of returns on the underlying asset. Canonical valuation is a
non-parametric method that, unlike the Black-Scholes formula, places no restrictions on
the stochastic process governing the underlying asset price. The canonical valuation
method has some similarities to the state preference approach. Both methods estimate
subjective probabilities associated with possible values of the underlying asset, which
are applied to expected payoffs to determine the value of the asset. As such, canonical
valuation may be viewed as a non-parametric alternative to the state preference

approach. An additional motivation for selecting canonical valuation is that this

approach has been subject to little empirical testing.

This chapter is structured as follows. Section 2.1 provides an overview of the
state preference approach and places it in the context of existing asset pricing models.
Section 2.2 reviews alternative option pricing methods; in particular, the Black-Scholes
option pricing formula and Stutzer’s canonical valuation method. Section 2.3 describes
the data and the methods used to generate state prices and canonical risk-neutral
probabilities. Section 2.4 discusses the results and Section 2.5 summarises the main

findings of the paper and suggests potential directions for further research.



2.2 The State Preference Approach

In modem finance theory, the price of any asset is understood to be a function of
its payoff and a pricing kernel, or stochastic discount factor’. In a two-period context,

the basic form of any asset pricing equation is expressed as follows:
P,=E(MX,) Vi,t 1)

where P, is the price of any asset i in the current period, time 0, E is an expectations

operator conditioning on information available at time 0, X, is the payoff of asset i at

i

time ¢, and M, is the stochastic discount factor.

The stochastic discount factor is equivalent to a time discount factor, except in a
world of uncertainty it will be a random variable. That is, if the outcome at time ¢ were
known with certainty, then the stochastic discount factor would collapse to a constant,
and equation (1) would take the familiar present value form, where next period’s
(known) payoffs are discounted to today’s dollars. This implies that, given a time-
separable utility function and no uncertainty, the stochastic discount factor represents
investors’ discounted marginal rate of substitution between consumption in the current
period, time 0, and consumption in the next period, time ¢. In a world of uncertainty
(and state-separable utility) the stochastic discount factor will also capture investors’
consumption preferences across alternative states of nature, and the stochastic discount
factor will represent investors’ marginal rate of substitution between consumption in the

current period and consumption in period ¢, state s. The appeal of the stochastic

2 See Campbell (2000) for a comprehensive overview of the asset pricing literature and the role of the
stochastic discount factor.
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discount factor lies in its simplicity and broad applicability - any asset may be priced in

terms of its payoff and the stochastic discount factor.

In a complete market the stochastic discount factor exists and may be
characterised by the set of state-contingent claim prices. Ross (1976) observed that
even simple options will span the entire state space, and therefore state-contingent
claims will be implicit in the price of traded securities. If any one of § possible states
occurs in the next period, then in a complete market, investors may form a portfolio
with a positive payoff in state s, and zero elsewhere. Such a portfolio is entirely
consistent with a state-contingent claim, and it is not necessary that an explicit market
for state-contingent claims exists, so long as there exist enough traded securities so as to
span the entire state space. Incorporating state prices into the general asset pricing

equation (1) provides a basis for using the most basic of securities to price other, more

complex assets.

Defining a state price as the individual’s subjective probability assessment of the

likelihood of a particular state s occurring, the price of a state-contingent claim will be
given by investor k’s true probability assessment of the occurrence of state s (7. )
multiplied by their marginal rate of substitution between consumption in the current
period and consumption in state s, time #. This is determined by solving the

representative investor’s two-period constrained optimisation problem, providing the

following expression for the state price at time ¢, state s:

mUs(Ce)
U (Cs)

k

s =

@)

11



In this respect a state price can be interpreted as the price today of one unit of
consumption in state s, time ¢. Equation (2) indicates state prices will exhibit
probability-like characteristics — they are non-negative and, in the next period, will sum
to one — and therefore constitute a legitimate probability distribution. However, since
state prices are implicit in exchange-traded financial assets, and are therefore influenced
by supply and demand, they will be subjective probabilities incorporating investor risk
preferences. Relative to a true probability distribution, greater weight will be placed on
outcomes with higher marginal utility of consumption, where wealth is more valuable to
consumers. This provides a simple but powerful result: outcomes that occur with
greater frequency or are improbable but undesirable attract a greater weighting, a result

entirely consistent with our understanding of investor risk aversion.
Summing the set of state prices across the state space provides the price of an

S
asset with a certain unit payoff in the next period: Z(Dt =e™" , where r is the risk-free

s=1
rate of return. This is consistent with the conditional mean of the. stochastic discount
factor above’. The price of a risky asset j is expressed as the payoff in state s multiplied
by the state price, summed over all possible S states:

S
B =)®d. Vj=1L..N €))

s=1

3 The conditional moments of the stochastic discount factor are easily determined. The conditional mean

of the stochastic discount factor is given by price today of a riskless real asset with a certain unit payoff

next period: P=E (M t) =e”,
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2.2.1. Breeden and Litzenberger state prices

Breeden and Litzenberger (1978) and Banz and Miller (1978) first proposed that
the price of an elementary security may be modelled as the second derivative of a call
option price. This proposition is based on the construction of a simple butterfly spread,
with a normalised unit payoff. If the current value of the asset is given by M, and 4M is
the step size between potential next period values, then the option portfolio replicating
an elementary claim is created by purchasing two calls with strike prices M —AM and
M + AM respectively, and selling two calls with a strike price of M. If the value of the
underlying asset is M next period, then the payoff on the option portfolio will be 4M,

and zero otherwise. Dividing through by 4M obtains a unit payoff:

_AM _ C(M - AM,T)—-2C(M,T)+C(M +AM,T)

! AM AM @

With a step size of 4M between possible next period values, and if M occurs in T
periods then the cost of the call portfolio is P(M,T;AM). Dividing through by 4M

obtains the price of the call portfolio paying one unit:

P(M,T;AM) _C(M —AM,T)-2C(M,T)+C(M +AM,T) )
AM AM?

Taking the limit as the step size tends to zero provides the price of an elementary

security evaluated at X=M:

. 2
i POLT3AM) _ 0 C(X,T)|

M0 AM ax* ©

.

Aside from the assumption of complete markets, Breeden and Litzenberger’s

approach places few restrictions on the option price. It is not necessary for the option

13



pricing function to be twice differentiable as a discrete solution may be obtained from
equation (5), and no restriction is placed on the stochastic process governing the time
series behaviour of asset returns. With some additional assumptions®, evaluating the
second derivative of the Black-Scholes (1973) call option pricing formula provides the
following explicit closed form solution for the price of an elementary claim:

o’C ~

|, M0 \/_n[d (x=M,)] ¢

where

In[(M, - PYD)/ M, ]+[r~1/25" |T
o T

d, =

M7y is the value of the underlying asset in T periods, M) its value today, PVD is the
present value of dividends, and n(d,) =—1—e’d” ? is the standard normal probability
N2

density function.

Describing state prices as the second derivative of a call option with respect to
the strike price makes the assumption that increments in the value of the underlying
stock 4M tend to zero. In reality however, price movements will be greater than zero
and it will not be possible to obtain a limiting value for 4M. Evaluating equation (7) at
discrete intervals will not capture the range of state prices between each possible level
of the strike price, X. Breeden and Litzenberger’s “delta security” method provides a
solution to this problem. The price of a state-contingent claim with a unit payoff if the

value of the underlying asset at time ¢ is greater than or equal to a pre-specified level Y,

* The assumptions of the Black-Scholes formula are well known. Namely, asset returns are assumed to

follow geometric Brownian motion with constant volatility.

14



and zero otherwise, will be simply the sum of the state prices for each asset value

greater then Y. This is given by the cumulative pricing function:

G(r)=[ f;—;l\(/%dX =""N[d,(X =7)] ®)

The cost of a security with a unit payoff if the value of the underlying asset is between
two predetermined levels, say Y; and Y;;, will be the difference between the cumulative

pricing function at these levels:
¢(K’ KH) =" {N[dz (X = Yx)] - N[dz (X =Y, ):I} )

The state price is therefore just the difference between consecutive delta security

prices.
2.2.2. Option pricing functions

The approach for determining state prices outlined above provides a number of
empirical advantages. First, it provides the flexibility to select suitable increments in
the value of the underlying asset for ¥; and Y;+;, allowing market microstructure aspects
such as minimum price movements and price limits to be incorporated into the model.
To illustrate, over the sample period January 1990 to December 1993 the minimum tick
size of the S&P 500 index futures contract was 5c, so increments of 5c for Y;, Y;+; are
used. In addition, the range of expected values of the underlying asset may be bounded
by selecting maximum and minimum values of Y. This not only reduces the
computational burden, but also places limits on the range of index values priced by the
model. In comparison, the Black-Scholes option pricing formula will price very large

and very small values of the index, albeit with a very low probability.

15



With the mechanics for determining state prices outlined above, the option
pricing formulae are easily specified. In equation (3), asset prices were determined as a
function of the asset’s payoff and the stochastic discount factor. This is easily
understood in the context of options, where the payoff is determined by the price of the
underlying asset at the option’s expiry date. Following equation (3), the price of a call

option will therefore be given by:

C =Y max[(M,-PVD)xR,-X,01p,
h

10
=Y max[M,, - X,0), (19
h
and similarly for put options:
P=Y max[ X -(M,-PVD)xR,,04,
h
(11)

=Zmax[X—Mm,O]¢,,
h

The state prices on the S&P 500 index used to determine the price of S&P 500
index options are calculated in the following manner. For each option in the sample
historical 7-day returns on the S&P 500 index are determined from 1 January 1980, and
the empirical maximum and minimum 7-day return obtained. The empirical maximum
and minimum return is then applied to the current level of the index (M)) to determine
the range of possible levels of the index in T days (M7). As noted above, index levels
between the maximum and minimum are calculated in increments of Sc, reflecting the
minimum price movement in the S&P 500 index futures contract at the time of the
sample. Once the state price associated with each potential level of the index in 7-days
is determined, the option price is calculated as the sum of the expected payoff at each

level of the index multiplied by the respective state price.

16



Before turning to the results of pricing S&P 500 index options with the state
preference approach, the following section outlines the alternative models under

consideration, and provides a brief overview of the option pricing literature.

2.3 Alternative Option Pricing Models

In this chapter, the accuracy of the state preference approach in pricing options
is assessed in comparison to alternative option pricing methods, including the Black-
Scholes formula and Stutzer’s (1996) canonical valuation. The similarities between the
state preference approach and the Black-Scholes formula and Stutzer’s canonical
valuation provide the motivation for comparing these alternative valuation techniques.
In addition, the canonical valuation approach has been subject to little empirical testing
in the literature. This section provides an overview of the option pricing literature. In
particular, the literature surrounding the Black-Scholes formula is reviewed, and

Stutzer’s canonical valuation approach is detailed.
2.2.1. The Black-Scholes formula

The Black-Scholes option pricing formula is arguably the most successful
financial model in existence. It has been widely adopted by practitioners and its authors

rewarded with justified acclaim. Moreover, it is a no-arbitrage model, and therefore is

underpinned by a fundamental principle of finance theory. = The Black-Scholes call

option formula is given by:
C=(S-PVD)N(d,)-Xe""N(d,) (12)

where S is the value of the underlying asset, PVD is the present value of dividends

expected to be paid over the life of the option, X is the option’s strike price, T is the time
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to expiration, r is the instantaneous risk free rate of interest, ¢ is the expected volatility

of the underlying asset over the option’s life,

J =ln[(S—PVD)/X]+(r+0'2/2)T

1 O'\/T

d,=d —oT
and N(d) is the cumulative standard normal density function.

Since its inception in the early 1970s numerous studies have investigated the
Black-Scholes option pricing formula’s empirical performance, and its shortcomings
have been well documented. Attention has been largely focused on the assumptions
underpinning the Black-Scholes formula; in particular, the implications of assuming a
particular stochastic process governing the underlying asset’s price dynamic.
Movements in asset prices are assumed to follow geometric Brownian motion with
constant volatility, which implies asset prices are lognormally distributed (or
alternatively, asset returns are normally distributed). If the true distribution deviates
from lognormal and volatility is not constant, then the resulting Black-Scholes option
price will be biased away from the true price. The constant volatility assumption
implies that all options on a single underlying asset should have the same implied
volatility. Empirical research shows that Black-Scholes implied volatilities differ across
exercise prices and time to 1ﬁaturity, with the bias most noticeable for deep-in-the-
money and deep-out-of-the-money options. Early studies (see, for example, Black
(1975), MacBeth and Merville (1979) and Rubinstein (1985)) showed that although
pricing biases in Black-Scholes do exist, the bias is non-constant through time. More

recent studies (see Rubinstein (1994), Dumas, Fleming and Whaley (1998) and Bollen
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and Whaley (2004)) have focused on the performance of Black-Scholes post-1987
crash. Prior to the 1987 crash, Black-Scholes implied volatilities were understood to
have a distinctive “smile” pattern, where deep-in-the-money and deep-out-of-the-money
options have higher implied volatilities than at-the-money options. Post-crash, these
studies find implied volatilities display a “sneer” or “smirk” pattern, where implied
volatility monotonically decreases as the exercise price increases relative to the stock

price. This pattern becomes more pronounced as the time to maturity decreases.

The existence of these anomalies has raised questions regarding the assumptions
underlying the Black-Scholes formula, and alternatives have been proposed which
should, it’s claimed, overcome the limitations imposed by assuming a lognormal
distribution with constant volatility. These alternative models have received a mixed
response. Cox and Ross (1976) proposed a constant elasticity of variance model to
allow volatility to vary with the asset price; however Emanuel and MacBeth (1982) find
that, out of sample, this model performs no better than Black-Scholes. Rubinstein
(1985) tested five alternative option pricing models that relaxed the constant volatility
assumption over the period August 1976 through August 1978 and found that none of
the models characterised stock option prices better than another. He also argues that
while the bias from Black-Scholes is statistically significant, it is not “economically
significant”. In a later paper hbwever, Rubinstein (1994) states “the Black-Scholes
formula become increasingly unreliable over time”, and proposes an alternative — an
implied binomial tree. Other researchers have also proposed an implied tree approach
(see Derman and Kani (1994) and Dupire (1994)) where volatility is assumed to be a
deterministic function of asset price and time. Dumas, Fleming and Whaley investigate

the performance of these models for S&P 500 index options over the period June 1988
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through December 1993 and find that this approach performs no better than an “ad-hoc

procedure that merely smooths Black-Scholes implied volatilities across exercise prices

29

and time to expiration.” In addition to the implied tree approach, a number of other

non-parametric option pricing methods have been advanced. These include stochastic
volatility models, with and without jumps (see Bakshi, Cao and Chen (1997) ar;d Bates
(2000)), kernel regressions (see Ait-Sahalia and Lo (1998)) and neural networks (see
Hutchinson, Lo and Poggio (1994)). These alternatives can be data intensive and, out of
sample, seem unlikely to provide a significant advantage over Black-Scholes. These
approaches have also been criticised for not constituting a predictive theory of option
pricing (Stutzer (1996)). Finally, an alterative solution to the implied volatility problem
has recently been proposed by Bollen and Whaley (2004), who consider the relationship
between the shape of the implied volatility function and the supply and demand for
options contracts. Bollen and Whaley suggest that if implied volatilities reflect a series
of market clearing prices, then imbalances between supply and demand could result in
implied volatility functions that are not flat. Rather than relaxing the Black-Scholes
assumptions, this approach provides an intuitive solution to the implied volatility
problem, and suggests that prices may be formed in a manner not inconsistent with

Black-Scholes once additional costs to the market maker are taken into account.

The Black-Scholes option-pricing formula is derived from the formation of an
arbitrége portfolio, where a call option is replicated with a stock and bond portfolio. If a
risk-free hedge may be created by buying the underlying asset and selling the option (or
vice versa) then the value of the option will be independent of investor risk preferences,
and a risk neutral investor will value the option in the same manner as a risk averse

investor. The expression for the price of a state-contingent claim, equation (9) of the
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previous section, relies on this assumption; where, in a risk neutral world, the expected
return on all assets is equal to the risk free rate (see Cox and Ross (1976) and Black and
Scholes (1973)). That is, setting the instantaneous expected rate of change in stock
price (the drift term iﬁ the stochastic process governing stock returns) equal to the risk
free rate of interest will price options where investors are risk neutral. Pricing
elementary claims with this form of the Black-Scholes option pricing formula will yield

state prices comparable to a risk-neutral prbbability associated with each expected value

of the underlying asset, Y.

More generally, a risk-neutral probability distribution is obtained when relative
marginal utilities in alternative states are normalised to sum to one, assuming a risk-
neutral world where investors are indifferent to risk. Risk-neutral probabilities will
therefore reflect investors’ subjective probability assessment of a particular outcome if
they are risk neutral. Risk-neutral probabilities form the foundation of a number of
option pricing methods, including the binomial tree approach of Cox, Ross and
Rubinstein (1979), Rubinstein’s (1994) implied trees, and Stutzer’s (1996) canonical
valuation. In general, these methods obtain a risk-neutral probability distribution from
an empirical distribution of returns (canonical valuation) or simultaneously observed
option prices (Rubinstein’s implied trees). As noted above, this chapter provides a test
of Stutzer’s canonical valuation method, a non-parametric alternative to the Black-
Scholes formula and the state preference approach. The following sub-section outlines

the steps of the canonical valuation method.

2.2.2. Canonical valuation

Stutzer’s canonical valuation approach does not assume any particular stochastic

process governs asset returns; rather, an historical time series of asset returns is used to
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translate the empirical probability distribution into risk-neutral probabilities. These
risk-neutral probabilities are then used to determine the expected discounted payoff of
the asset, and consequently, the option price. Stutzer’s approach is computationally
simple, and relies on estimating only a single parameter. The data requirements are not
éxtensive. The only input is an historical time series of underlying asset values, from
which risk-neutral probabilities are calculated and applied to the range of possible future

index values to determine the expected option payoff. The steps for determining option

prices are as follows.

To price an option expiring in 7-periods, first construct an historical time series

of T-period returns on the underlying asset:
R =M,/M,,, h=12,...,.H-T (13)
providing H-T possible values of the underlying asset’s price in T-periods,

M,=MQR, k=12, . H-T (14)

with an estimated actual probability of 7, =—I}-1—T. The estimated risk-neutral

probabilities derived from the empirical probabilities must be non-negative and satisfy
the following constraint, where r is the one-period riskless rate:

H-T *R
D m =1 (15)

B r

This constraint is entirely consistent with the conditional mean of the stochastic
discount factor discussed in the previous section. That is, the probabilities must sum to

one, and, under risk-neutrality, the expected return on the underlying asset must be

equal to the risk free rate.

22



While there are many choices for 7~ that would satisfy these twin constraints,

Stutzer chooses an estimate 7 that minimises the Kullback-Leibler Information
Criterion distance between the empirical probabilitiesz, and the risk neutral

probabilities 7.

H-T ﬂ" HT R
#" = argmin I(r: 7r)=Zn‘ A" s.t. Znh——;‘—=1 (16)
7:,,>027r,,—1 h=1 T, h r

The solution to the constrained maximisation problem in the equation above is obtained

using the Lagrange multiplier method, providing the Gibb’s canonical distribution:

7, exp[y'(Rh /rT)]

= ;ﬁh exp[y*(Rh /" ):I’

h=12,...H-T (17)

The Lagrange multiplier, y*, is found by solving the unconstrained minimisation

problem:
y' = argminZexpl:y(Rh/rT —1)] (18)
4 h

The price of a European call option is then determined as:

max | (M, PVD)R Xo]

Z (19)
T
European put options are similarly priced:
max [ X —(M, - PVD) R,,,o]
= Z (20)

r
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In this chapter historical 7-day returns are calculated from January 1980 through
to the option valuation date. Stutzer does not prescribe any particular sample length,
although he does find including the 1987 crash produces larger values for in-the-money
calls than when the crash is excluded from the sample. The impact of the 1987 crash is
the subject of some discussion in the literature.- Rubinstein (1994) suggests investor
fears of another crash explain the deteriorating performance of the Black-Scholes
formula, and Bollen and Whaley (2004) show that the downward sloping shape of the

implied volatility function post-crash is driven by net buying pressure for index puts

used for portfolio insurance.

This section detailed both the state preference approach for determining option
prices, and the alternative methods against which the accuracy of the state preference
approach is assessed; namely, the Black-Scholes formula and Stutzer’s canonical

valuation. Before turning to the results however, the followings section provides details

of the data requirements of each approach.

2.4 Sample Description

The sample contains weekly quotes for options on the S&P 500 index traded on
the Chicago Board of Options Exchange (CBOE) over the period January 1990 through
December 1993. S&P 500 index options were chosen because, as Rubinstein (1994)
points out, these options are most likely to conform to the Black-Scholes conditions.
These options are European rather than American, and therefore payoffs are simpler to
compute; the underlying asset is an index, which tends to exhibit smoother price
movements than other underlying instruments such as commodities, currencies and

stocks and may more closely follow a lognormal distribution; and finally the market is
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relatively liquid. Options with greater than 100 days to maturity and an absolute
moneyness greater than 10% are excluded from the sample as these options are less
frequently traded, and consequently quoted bid and ask prices may not be supported by

actual trades. Moneyness is given by the ratio of the exercise price to the stock price
less 1, IX / S—1|, and reported moneyness categories are consistent with those in

Dumas, Fleming and Whaley (1998).

Valuing options with Black-Scholes requires inputs for the risk free rate of
interest, expected dividend payments, and expected volatility of the underlying asset
over the life of the option. The canonical valuation approach requires a time series of
historical values of the S&P 500 index. As discussed in Section 2, the empirical
distribution is also used to obtain historical maximum and minimum returns for

determining the range of expected future values of the S&P 500 index for which state

prices are calculated.

Historical returns are determined from a time series of daily observations on the
S&P 500 index from January 1980 through December 1993 obtained from CRSP. The
riskless interest rate is proxied by US T-bill rates reported in the Wall Street Journal,
and the present value of dividends paid during the life of the option are discounted daily
cash dividends for the S&P index portfolio collected from the S&P 500 Information
Bulletin. Expected volatility on the S&P 500 index is proxied by the previous trading
day’s CBOE Market Volatility Index (VIX) level. The VIX represents the market’s
consensus view on expected future stock market volatility, and is regarded as a
benchmark of US stock market volatility. On this basis the VIX should provide a more
appropriate proxy for expected volatility than an historical volatility estimate, as it is

both forward-looking and market determined. In addition, the VIX has been found to
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demonstrate characteristics of observed stock market volatility. Fleming, Ostdiek and
Whaley (1995) investigate the properties of the index, and find it to be a useful proxy
for expected stock market volatility. The VIX is strongly related to future realised stock
market volatility, and exhibits a negative, asymmetric relationship with
contemporaneous market return. This is consistent with the observed pattern of
increases stock prices being associated with a reduction in volatility, and vice versa; and
with falling stock prices being associated with larger absolute changes in volatility, than
stock price increases of the same magnitude. In September 2003 the CBOE changed the
methodology for calculating the VIX. The underlying instrument was changed from the
S&P 100 index to the S&P 500 index, as S&P 500 derivatives are more actively traded.
In addition, options over a range of strike prices are used, including out-of-the-money
puts and calls, rather than only at-the-money options, and the calculation is no longer
based on the Black-Scholes option pricing formula’. The CBOE has reproduced the
VIX values prior to September 2003 using the new methodology, and continues to
report values based on the old methodology. Since the new volatility index is based on
S&P 500 index options it is used in this paper. To ensure state price values are robust to
alternative volatility measures an historical volatility estimate based on daily returns on
the S&P 500 index over the previous 40 trading days is used as a second proxy for
expected volatility over the life of the option. Comparison of option values using each
volatility measure also provides an interesting insight into the appropriateness of each

measure, which is discussed in the following section.

* For all these changes the new VIX provides values largely similar to the previous index. This is to be

expected due to the high correlation between the underlying indices.
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2.5 Results

Comparison is made between the state preference approach, the Black-Scholes
formula and Stutzer’s canonical valuation on the basis of three goodness of fit
measures. Mean squared error (MSE), which measures the average squared deviation of
model values from the midpoint of the bid-ask spread, provides a good overall measure
of the goodness of fit of each model. Mean squared outside error (MSOE) assesses the
extent to which model values lie within the quoted bid-ask spread. This is measured as
the squared difference between the estimated model value and the option’s ask (bid)
price if the model value is greater (less) than the ask (bid) price, averaged over the
sample. If the model value lies within the spread then the model is considered to have
accurately priced the security, and the error will be zero. Mean squared error and mean
squared outside error, while useful in assessing overall goodness of fit, provide little
information on the degree to which each model over- or under-prices an option relative
to the quoted spread. Dumas, Fleming and Whaley use mean outside error (MOE) to
assess the extent of model over- or under-pricing. MOE measures the average over- or
under-pricing outside of the option’s quoted bid-ask spread. Similar to MSOE, if the
model value lies between the bid and ask prices then the error measure will be zero. If
the model value exceeds the ask price then the error is the positive difference between
the model value and the ask, and if the model value is less than the bid price then the
error will be the negative difference between the model value and the bid. MOE will
therefore be greater than zero if the model overprices options on average, and less than
zero if the model underprices options on average. As Dumas, Fleming and Whaley

point out, MOE is a useful determinant of pricing biases within moneyness and maturity

categories.
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All three goodness of fit measures indicate that the state preference approach
represents an overall improvement on both the Black-Scholes formula and canonical
valuation. The tables contain results of the three goodness of fit measures for each
model. Results are provided for the full sample, for total puts and total calls in the
sample, and for puts and calls categorised by maturity and moneyness. As discussed in
the previous section, two measures of expected volatility are used in calculating the
Black-Scholes and state price estimates. Tables 2.1 to 2.3 contain MSEs, MSOEs and
MOEs respectively where the proxy for expected volatility is the previous day’s VIX
index value, and in Tables 2.4 to 2.6 expected volatility is proxied with an historical
volatility estimate based on daily returns on the S&P 500 index over the previous 40
trading days. Canonical valuation errors iﬁ Tables 2.4 to 2.6 will be the same as those

in Tables 2.1 to 2.3, and are included for comparative purposes.

The results in Table 2.1 indicate that for the sample as a whole the state
preference approach provides lower MSEs than either of the alternative models.
Squared errors on the state price values are 1.599 on average, compared to 1.712 and
6.376 for Black-Scholes and canonical valuation re'spectively. The state preference
approach represents an overall improvement of approximately 7% on the Black-Scholes
formula and 75% on canonical valuation. Considering puts and calls separately
indicates a similar improvement, and the state preference approach generally
outperforms the alternative models when puts and calls are categorised by maturity and
moneyness. The Black-Scholes formula provides better estimates for out-of-the-money

puts across most maturities than either canonical valuation or state price estimates.

Stutzer’s canonical valuation method generally performs poorly when compared to both
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Black-Scholes and the state preference approach, with the exception of out-of-the-

money calls with fewer than 60 days to maturity.

Table 2.2 contains MSOEs for the three models, and the results are consistent
with the MSEs in Table 2.1. Overall MSOEs on the state price, Black-Scholes and
canonical valuation estimates are 1.165, 1.262 and 5.464 respectively, and the state
preference approach provides an 8% improvement on Black-Scholes and a 79%
improvement on canonical valuation. Comparing the MSOEs in Table 2.2 to MSEs in
Table 2.1 indicates a greater proportion of state price option values lie within the spread
than either Black-Scholes or canonical values, and, on average, there is less dispersion

in state price values than for the alternative models.

MOE:s are reported in Table 2.3. On average all three models over-price the
options in the sample, with MOEs of 0.428, 0.455 and 1.546 for the state price, Black-
Scholes and canonical values respectively. Considering puts and calls separately
indicates puts are over-priced by a greater magnitude than calls for all three models.
When puts and calls are categorised by moneyness the direction of MOEs indicates that
the state preference approAach under-prices in-the-money calls, and over-prices at-the-
money and out-of-the-money calls (of course, by put-call parity, out-of-the-money puts
are under-priced, and at-the-money and in-the-money puts over-priced). The Black-
Scholes estimates exhibit a similar pattern of over- and under-pricing. This is consistent
with the implied volatility sneer documented in previous studies. On average, canonical

valuation over-prices options in all moneyness and maturity categories in the sample.

Tables 2.4, 2.5 and 2.6 report MSEs, MSOEs and MOEs respectively where 40-
day historical volatility proxies for expected volatility. Consistent with the results in

Tables 2.1 to 2.3, the state preference approach with historical volatility provides an
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overall improvement on the alternatives. MSEs for the entire sample in Table 2.4 are
3.151, 3.199 and 6.376 for state price, Black-Scholes and canonical values respectively.
The overall improvement provided by the state preference approach is approximately
2% on Black-Scholes and 51% on canonical valuation. The state preference approach
provides a similar improvement for call options, however when puts are considered
separately, Black-Scholes provides the best estimates. MSOEs are reported in Table 2.5
and, consistent with the MSEs in Table 2.4, the state preference approach provides an
overall improvement on the alternatives. Table 2.6 contains MOEs for each model.
The MOEs indicate both the state preference approach and Black-Scholes formula
under-price the options in the sample on average. Indeed, both puts and calls are under-
priced on average across most maturity and moneyness categories. In-the-money calls
are under-priced by a greater magnitude than out-of-the-money calls, and similarly out-

of-the-money puts are under-priced by more than in-the-money puts.

Of interest is the relative magnitude of the MSEs in Tables 2.1 and 2.4. These
indicate that VIX provides an overall better proxy for expected volatility than historical
volatility. MSEs for the sample as a whole in Table 2.1 for the VIX state price values
are 1.599 compared with MSEs of 3.151 for the historical volatility state price values in
Table 2.4. Using the VIX to proxy expected volatility represents an improvement of
almost 50%, with a similar improvement evident in the Black-Scholes values. However
this improvement is not consistent across moneyness categories. While using the VIX
to proxy for expected volatility produces better estimates for in-the-money calls and
out-of-the-money puts, an historical volatility proxy provides better estimates for out-

of-the-money calls and in-the-money puts.
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Figures 2.1 and 2.2 are scatter plots of under- and over-pricing across
moneyness categories for calls and puts respectively. These figures show graphically
the results in Tables 2.3 and 2.6 for each model. Comparing the call option outside
errors in Figure 2.1 shows the direction of over- and under-pricing. The plots on the
right are the Black-Scholes and state price values where historical volatility proxies for
expected volatility, and the persistent under-pricing across all moneyness categories is
clearly evident. The VIX state preference and Black-Scholes outside errors are on the
left. As discussed above, in-the-money calls are over-priced and out-of the-money calls
under-priced when the VIX proxies for expected volatility. Overall, canonical valuation
produces call option values that are too high, and there appears to be little difference in
the over-pricing across moneyness categories. Figure 2.2 shows a consistent pattern to
Figure 2.1 for put options (naturally, by put-call parity the pattern across moneyness
categories is reversed). Similar to Figure 2.1, canonical valuation produces put option
values that are too high, and historical volatility state preference and Black—Scholes

estimates under-price puts across moneyness categories.

Further insight may be gained from reviewing the probability distributions
associated with the state preference and canonical valuation approaches. Figures 2.3,
2.4 and 2.5 show the state price and canonical risk-neutral probability distributions for a
call option with 24, 52 and 87 days to maturity respectively. The shape of the canonical
probability distribution in Figure 2.3 indicates that, relative to the state price
distributions, greater weight is placed on observations in the tails of the distribution.
This pattern becomes more noticeable as the time to maturity increases. Figure 2.4,
where T=52 days, shows an increasingly fatter left and right tail than both state price

distributions, and this is even more pronounced in Figure 2.5, where T=87 days. The
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greater dispersion as time to maturity increases is consistent with greater probability of
large price movements over longer periods, as greater weight in the tails of the
distribution will place a higher probability on extreme observaﬁons. Consequently,
canonical valuation will produce higher option values relative to Black-Scholes and the
state preference approach. In particular, the thicker left tail and associated greater
downside risk will result in higher values out-of-the-money puts, and, by put-call parity,
in-the-money calls. Stutzer (1993) notes that incorporating the 1987 crash into the
empirical distribution should produce canonical values for in-the-money call options on
the S&P 500 index with less than 6 months to maturity which are “substantially higher”
than Black-Scholes values. While the canonical values for in-the-money calls are found
to be higher than the state price and Black-Scholes values, the outside errors in Figure
2.1 indicate these options are over-priced. Indeed, the results in Tables 2.3 and 2.6
indicate that canonical valuation generally over-prices both puts and calls across all
moneyness and maturity categories. This is consistent with too much weight being

placed on extreme observations in both the left and right tails of the distribution.

Figures 2.3, 2.4 and 2.5 also provide an insight into appropriateness of the
alternative volatility measures. When historical volatility is used to proxy expected
volatility the state price distribution has less weight in the tails of the distribution, and
greater weighting around the mean compared to the VIX state price distﬁbution. This is
most pronounced in Figure 2.3, but is also evident in Figures 2.4 and 2.5. Comparing
the MOEs in Tables 2.3 and 2.6 indicates that the historical volatility values place too
little weight in the left tail of the distribution, under-pricing out-of-the-money puts and
in-the-money calls. On this basis the VIX index appears to be a better measure of

downside risk than historical volatility. However, historical volatility provides better
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estimates of out-of-the-money calls and in-the-money puts. Out-of-the money calls and
in-the-money puts are over-priced when the VIX is used to proxy expected volatility,
indicating that the VIX over-prices upside risk, placing too much weight in the right tail
of the distribution. This has interesting implications for the valuation of index options,
particularly for out-of-the-money index puts, which are used as portfolio insurance by
institutional investors, and for which there is no natural counter-party (see Bollen, and

Whaley (2004)).

2.6 Conclusion

The aim of this thesis is to investigate the application of state preference theory
to pricing exchange-traded financial assets, and in this chapter the state preference
approach is applied to pricing S&P 500 index options. Breeden and Litzenberger’s
(1978) approach is adopted to estimate the price of state-contingent claims on the S&P
500 index. Once state prices have been determined, these may be used to price any
asset where the payoff depends on the value of the index. Values for S&P 500 index
options from January 1990 through December 1993 are determined with the state
preference approach, the accuracy of which is assessed by comparing model values to
alternative option pricing methods, in particular, the Black-Scholes (1973) option
pricing formula and Stutzer’s (1996) canonical valuation method. These alternative
methods provide an interesting contrast to the state preference approach. If state prices
are estimated using the closed form solution of the second derivative of the Black-
Scholes call option price then, as increments in the price of tﬁe underlying asset
approach zero, option values should approach the Black-Scholes values. In practice

however, price movements in the underlying asset are discrete rather than continuous,
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and one advantage of the state preference approach is that discrete price movements
may be explicitly incorporated into the model. A further advantage of the state
preference approach when compared to Black-Scholes is that the range of underlying
asset values may be restricted. Whereas the Black-Scholes formula will price very
small and very large underlying asset values, albeit with low probability, these extreme
values may be excluded altogether from the state price calculation. This has the

additional practical advantage of reducing the computational burden.

Stutzer’s canonical valuation method determines risk-neutral probabilities from
the empirical distribution of returns on the underlying asset. Canonical valuation is a
non-parametric method that, unlike the Black-Scholes formula, places no restrictions on
the stochastic process governing the underlying asset price. The canonical valuation
method has some similarities to the state preference approach. Both methods estimate
subjective probabilities associated with possible values of the underlying asset, which
are applied to expected payoffs to determine the value of the asset. As such, canonical
valuation may be viewed as a non-parametric alternative to the state preference
approach. An additional motivation for selecting canonical valuation is that this method
has been subject to little empirical testing. Accordingly, this chapter also represents a

test of the canonical valuation approach.

The state preference approach to option valuation is shown to perform well,
providing an overall improvement on alternative models. The state preference approach
outperforms both the Black-Scholes formula and Stutzer’s canonical valuation method.
Canonical valuation does not perform well in comparison to either Black-Scholes or
state prices, producing option values that are too high on average across moneyness and

maturity categories. Comparing the results for alternative volatility measures provides
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an interesting insight into the appropriateness of historical volatility and the VIX index
as proxies for expected volatility. In general, the VIX is a better measure for expected
volatility, providing more accurate Black-Scholes and state price values. In particular,
the VIX produces better estimates for in-the-money calls and out-of-the-money puts
indicating that the VIX provides a better estimate of downside risk than historical
volatility. The results of this study are promising for future research into the application

of state-contingent claims to the valuation of other exchange-traded financial assets.
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Figure 2.1 Scatter Plots of Call Option Outside Errors by Moneyness

Outside error is measured as the difference between the estimated model value and the option’s ask (bid)
price if the model value is greater (less) than the ask (bid) price. Scatter plots on the left are outside
errors on state price and Black-Scholes call option values where expected volatility is proxied by the
previous day’s VIX index value. Scatter plots on the right are outside errors on state price and Black-
Scholes call option values where expected volatility is proxied by 40-day historical volatility of daily

returns on the S&P 500 index. The plot below contains outside errors on canonical call option values.
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Figure 2.2 Scatter Plots of Put Option Outside Errors by Moneyness

Outside error is measured as the difference between the estimated model value and the option’s ask (bid)
price if the model value is greater (less) than the ask (bid) price. Scatter plots on the left are outside
errors on state price and Black-Scholes put option values where expected volatility is proxied by the
previous day’s VIX index value. Scatter plots on the right are outside errors on state price and Black-
Scholes put option values where expected volatility is proxied by 40-day historical volatility of daily
returns on the S&P 500 index. The plot below contains outside errors on canonical put option values.
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Figure 2.3 Histogram of state price and canonical risk-neutral probabilities for a
call option on the S&P 500 index with T=24 days to expiry on 27 May 1992.

The solid line represents the probability distribution associated with state prices where the previous day’s
closing value of the VIX index was used as the proxy for implied volatility. The dashed line is where
state prices are estimated with historical volatility. Input parameters are VIX=14.92, 6=11.97, r=3.65
and PVD=0.7. The value of the S&P 500 index was 412.17.
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Figure 2.4 Histogram of state price and canonical risk-neutral probabilities for
call option on the S&P 500 index with T=52 days to expiry on 27 May 1992.

The solid line represents the probability distribution associated with state prices where the previous day’s
closing value of the VIX index was used as the proxy for implied volatility. The dashed line is where
state prices are estimated with historical volatility. Input parameters are VIX=14.92, 6=11.97, 1~3.69
and PVD=1.41. The value of the S&P 500 index was 412.17.
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Figure 2.5 Histogram of State Price and canonical risk-neutral probabilities for a
call option on the S&P 500 index with T=87 days to expiry on 27 May 1992.

The solid line represents the probability distribution associated with state prices where the previous day’s
closing value of the VIX index was used as the proxy for implied volatility. The dashed line is where

state prices are estimated with historical volatility. Input parameters are VIX=14.92, 6=11.97, 1=3.74
and PVD=2.82. The value of the S&P 500 index was 412.17.
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Chapter 3

A State-Contingent Claim Approach to

Equity Valuation

3.1 Introduction

The price of any asset is widely understood to be a function of its expected

future payoffs, as expressed in the general form of the asset pricing equation:
P,=E(M/X,) . Vit , (21)

where P, is the price of asset i in the current period, time 0, £ is an expectations
operator conditioning on information available at time ¢, X, is the payoff of asset i at

time ¢, and M, is the stochastic discount factor.

While this general expression provides a simple representation for the price of
an asset, there are a number of issues, both theoretical and practical, to be resolved for
its application. These range from the seemingly simple — how to determine asset payoff
and what time period does ¢ refer to; to the economically complex — how to determine

investor expectations and what form the stochastic discount factor should take. These
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questions have received significant attention in the literature, and have lead to the

development of numerous alternative specifications of equation (21).

In this thesis the question of the stochastic discount factor is addressed. In a
world of uncertainty the stochastic discount factor represents investors’ consumption
preferences across both time and uncertain outcomes, or states of nature. In a two
period context, the stochastic discount factor will reflect the marginal rate of
substitution between consumption in the current state and time, and state s in the next
period, for the set of § possible outcomes in the next period. The stochastic discount
factor may be represented by the set of state-contingent claim prices. The price of a
state-contingent claim, or state price, is the price today of one unit of consumption in
state s, time . Following Ross’s (1976) observation that in a complete market simple
options will span the state space, and therefore state prices will be implicit in the price
of any exchange-traded asset, Breeden and Litzenberger (1978) and Banz and Miller
(1978) determined that the price ‘of a state-contingent claim may be obtained from the
second derivative of a call option price. The Black-Scholes (1973) option pricing

formula provides a closed form solution.

In the previous chapter the state preference approach was successfully applied to
pricing S&P 500 index options. State prices were calculated on the S&P 500 index and
applied to possible payoffs on the option to determine option price. This was shown to
provide an overall improvement on alternative option pricing methods, including the
Black-Scholes formula and Stutzer’s (1996) canonical valuation approach. However
the general form of the asset pricing equation (21) provides that any asset may be priced
in terms of its payoff and the stochastic discount factor. This implies that the state

preference approach should be applicable to pricing exchange-traded financial assets
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more generally. Indeed, the state prices on the S&P 500 index calculated in the

previous chapter may be used to value any asset where the payoff is dependant on the

index.

In this chapter the state preference approach is applied to valuing equities. The
state prices determined on the S&P 500 index in the previous chapter are applied to
valuing stocks traded on US exchanges over the period December 1996 through July
2004. A similar test approach to the previous chapter is adopted. The accuracy of
values obtained under the state preference approach is assessed relative to values
determined using alternative equity valuation techniques; specifically, the residual
income model popularised in the accounting literature (see for example Ohlson (1995),
Feltham and Ohlson (1995) and Myers (1999)). The residual income model respecifies
equation (21) in terms of accounting variables, where stock price is expressed as a

function of book value per share and contemporaneous and expected earnings per share.

In the previous chapter S&P 500 index options were also valued using Stutzer’s
canonical valuation approach, which provides a non-parametric alternative to the state
preference approach. Risk-neutral probabilities are obtained from the historical
distribution of returns on the underlying asset and applied to possible future payoffs to
determine option price. In the same sense that state prices may be used to value any
asset, Stutzer’s risk neutral probabilities should be applicable to the valuation of an
asset whose payoff is a function of the index. As such, the canonical valuation
approach is also applied to pricing equities in this chapter, and is shown to provide a
similar levei of accuracy to the state preference approach. Finally, for completeness,
equities are valued with the Sharpe (1964) and Lintner (1965) Capital Asset Pricing

Model (CAPM). Perhaps the most widely understood of the asset pricing formulae, the
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CAPM expresses stock return as a function of the risk free rate and the return on the

market portfolio.

This chapter is organised as follows. Section 3.2 reviews alternative approaches
to equity valuation, and provides a derivation of the state preference approach, the
residual income model and Stutzer’s canonical valuation. The CAPM is briefly
reviewed. Section 3.3 describes the data sources and sampling technique, Section 3.4

discusses the results and Section 3.5 concludes.

3.2 Equity Valuation

This section outlines the alternative equity valuation approaches considered in
this chapter. First, the state preference approach is detailed, and a function for valuing
equities is provided. Second, earnings capitalisation models are discussed, with the
focus on Ohlson’s (1995) residual income model. Stutzer’s (1996) canonical valuation
approach is then reviewed, and shown to be applicable to valuing equities as well as
options. Finally, the Sharpe (1964) and Lintner (1965) Capital Asset Pricing Model

(CAPM), and subsequent related literature, is briefly reviewed.

3.2.1. The state preference approach

Defining a state price as the individual’s subjective probability assessment of the

likelihood of a particular state s occurring, the price of a state-contingent claim will be
given by investor k’s true probability assessment of the occurrence of state s, 7,

multiplied by the marginal rate of substitution between consumption in the current

period, and consumption in state s, time ¢. This is determined by solving the
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representative investor’s two-period constrained optimisation problem, providing the
following expression for the state price at time ¢, state s:

G

5= W (22)

In this respect a state price can be interpreted as the price today of one unit of
consumption in state s, time f. Equation (22) indicates state prices will exhibit
probability-like characteristics — they are non-negative and, in the next period, will sum
to one — and therefore constitute a legitimate probability distribution. However, since
state prices are implicit in exchange-traded financial assets, and therefore influenced by
supply and demand, they will be subjective probabilities incorporating investor risk
preferences. This implies that, relative to a true probability distribution, greater weight
will be placed on outcomes with higher marginal utility of consumption, where wealth
is more valuable to consumers. This provides a simple but powerful result: both
outcomes that occur with greater frequency and outcomes that are improbable but

undesirable attract a greater weighting, a result entirely consistent with our

understanding of investor risk aversion.
Summing the set of state prices across the state space provides the price of an

N
asset with a certain unit payoff in the next period, ZCDZ =e ", where r is the risk-free

s=1

rate of return. This is consistent with the conditional mean of the stochastic discount
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factor above®. The price of a risky asset j is expressed as the payoff in state s multiplied
by the state price, summed over all possible S states:

S
B/ =Y®.d. Vj=1.N (23)

s=1

Breeden and Litzenberger (1978) and Banz and Miller (1978) first established
that the price of an elementary security may be modelled as the second derivative of a
call option price. This proposition is based on the construction of a simple butterfly
spread with a normalised unit payoff. If the current value of the asset is given by M,
and 4M is the step size between potential next period values, then the option portfolio
replicating an elementary claim is created by purchasing two calls with strike prices
M -AM and M + AM respectively, and selling two calls with a strike price of M. If
the value of the underlying asset is M next period, then the payoff on the option

portfolio will be 4M, and zero otherwise. Dividing through by A4M obtains a unit

payoff:

_AM _ C(M —AM,T)-2C(M,T)+C(M +AM,T)
AM AM

1 (24)

With a step size of 4M between possible next period values, and if M occurs in T
periods then the cost of the call portfolio is P(M,T;AM). Dividing through by 4M

obtains the price of the call portfolio paying one unit:

P(M,T;AM) C(M —AM,T)-2C(M,T)+C(M +AM,T)
AM AM?

(25)

S The conditional moments of the stochastic discount factor are easily determined. The conditional mean

of the stochastic discount factor is given by price today of a riskless real asset with a certain unit payoff

nextperiod: P=E(M,)=¢"".
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Taking the limit as the step size tends to zero provides the price of an elementary

security evaluated at X=M:

. P(M,T;AM) _9*C(X,T)|
wino  AM | oX°

(26)

Lo

Aside from the assumption of complete markets, Breeden and Litzenberger’s
approach places few restrictions on the option price. It is not necessary for the option
pricing function to be twice differentiable as a discrete solution may be obtained from
equation (25), and no restriction 1s placed on the stochastic process governing the time
series behaviour of asset returns. With some additional assumptions7, evaluating the
second derivative of the Black-Scholes (1973) call option pricing formula provides the
following explicit closed form solution for the price of an elementary claim:

o°C

?”(—2X=MT To.\/— n[d (X M ):I (27)

where

g- In[(M, - PYD)/ M, |+[r-1/26"|T
o T

M7 is the value of the underlying asset in T periods, M, its value today, PVD is the
present value of dividends, and n(d,) =—\/—;—-.—e‘d2’ ? is the standard normal probability
r

density function.

7 The assumptions of the Black-Scholes formula are well known. Namely, asset returns are assumed to

follow geometric Brownian motion with constant volatility.
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Describing state prices as the second derivative of a_call option with respect to
the strike price makes the assumption that increments in the value of the underlying
stock 4M tend to zero. However, in reality price movements will be greater than zero
and it will not be possible to obtain a limiting value for AM. Evaluating equation (27) at
discrete intervals will not capture the range of state prices between each possible level
of the strike price, X. Breeden and Litzenberger’s “delta security” method provides a
solution to this problem. The price of a state-contingent claim with a unit payoff if the
value of the underlying asset at time # is greater than or equal to a pre-specified level 7,
and zero otherwise, will be simply the sum of the state prices for each asset value

greater then Y. This is given by the cumulative pricing function:
e n(d ) -
G(Y)= f S22 dX =""N[d,(X =Y)] (28)

The cost of a security with a unit payoff if the value of the underlying asset is between
two predetermined levels, say Y; and Y;+;, will be the difference between the cumulative

pricing function at these levels:
$(Y.Y) =" {N[d,(X =1)]-N[d,(x =1,) ]} (29)

This approach provides the flexibility to select suitable increments in the value
of the underlying asset for Y; and Y;;, allowing market microstructure aspects such as
minimum price movements and price limits to be incorporated into the model. To
illustrate, the minimum increment on the S&P 500 index is 0.01, so this is used for
increments of Y;. The max.imum and minimum values of Y are obtained from the
historical maximum and minimum monthly returns on the index over the period from

July 1926 through to the valuation date. This not only reduces the computational
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burden, but places limits on the range of expected index values priced by investors. In
comparison, the Black-Scholes option pricing formula will price very large and very

small values of the index, albeit with a very low probability.

The return on the stock is calculated with reference to the index via the linear

projection:
R/ =a+ PR +¢, Vj (30)

where R’ is the return on asset j and R™ is the return on the S&P 500 index. This

provides the following valuation expression for stock payoff:
d) =B/ exp(R/) = B/ exp(a’ + B'R") (1)

where P/ is the current price of asset j. Stock values for the following period are then

determined as:

M:a

B/ =3 gl =3 [ B expla’ + /R (32)

Il
—

s

where ¢, is the state price obtained from the S&P 500 index and P’ is next period’s

price.

As noted earlier, the performance of the state preference approach outlined in
this section is assessed relative to alternative equity valuation techniques, including the
residual income model, Stutzer’s canonical valuation and the Sharpe-Lintner CAPM.

These alternative equity valuation methods are briefly described in the following sub-

sections.
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3.2.2. Earnings capitalisation models

One of the earliest and most widely understood representations of the basic asset
pricing equation (21) is the dividend discount model, where price is expressed as the

present value of the expected dividend stream over the (indefinite) life of the firm:

(33)

Allowing for a number of simplifying assumptions®, the dividend discount model is
broadly consistent with the basic asset pricing expression of equation (21); however the
use of dividends in valuation models presents a number of empirical problems. First,
dividends are not the only means of distributing value to shareholders. Alternatives
include share repurchases, acquisition by another firm, and the exercise of executive
stock options, and the timing and value of these distributions complicate the application
of equation (33). Second, companies may delay dividend payments until later in their
life cycle. Of course, firms must eventually make a distribution to owners, however in
the extreme case, firms may make only one dividend payment — a final distribution on
liquidation. Under these circumstances, modelling price as a function of a stable

dividend stream is simplistic at best.

In an attempt to circumvent the shortcomings surrounding the assumption of a
stable dividend stream, earnings capitalisation models have been proposed as an
alternative to the dividend discount approach. Earnings capitalisation models have
received extensive attention in the accounting literature as these models attempt to

quantify the value relevance of accounting information. Perhaps the most widely

8 Among other things, a flat term structure of interest rates, risk-neutrality, and linear investor

preferences.
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adopted approach is the residual income model, which specifies a relationship between
a firm’s market value, its book value, and contemporaneous and future earnings (see, for

example, Ohlson (1995), Feltham and Ohlson (1995) and Myers (1999)).

The residual income model relies on a number of assumptions surrounding both
the structure of company accounts and investor expectations of future earnings activity.
In particular, the residual income model assumes a clean surplus accounting relation,
where all changes in assets and liabilities, except those related to dividends, are
reflected in the balance sheet. This provides a means to re-express equation (33) in
terms of company earnings. The underlying idea of the clean surplus relation is to
reconcile changes in stocks with the creation and distribution of wealth. This assumes a
clear distinction between value creation and value distribution activities, and that value
distribution does not affect current earnings. The clean surplus relation provides for

changes in book value to be expressed as equal to earnings less dividends:
b =b], +x/, ~d], (34)

where b/ is the current period book value, &/, is book value in the next period, x/,

is
next period earnings, and d;, is next period dividend payments. Combining the present

value of dividends in equation (33) and the clean surplus relation of equation (34)

provides for the following expression for stock price:

oo o BBl 45 —bL)
‘ 7= (1+re)t (35)
T (xh-rbl) E(b).)
R () ey

Assuming book value of equity grows at a lesser rate than the discount rate then
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E,(b/..)
(1+7,)"

=0, and the final term is assumed to be zero. “Residual income” or

abnormal earnings is defined as x =x, —rb,, and this provides the final expression

where price is expressed as the sum of book value and the present value of future

abnormal earnings:

= E, (xtj;-i—r brj+i-1)
f (1+re)i

(36)

where “residual income” or abnormal earnings is defined as x; =x, —7b,_, .

Generally the residual income model is tested empirically using a cross-sectional
regression of prices against book values, earnings and earnings forecasts (see for

example Dechow, Hutton and Sloan (1999)):
P(=ﬁ0+ﬂ1bt+ﬂ2xt+ﬂ3-ft+ei (37)

where b, is book value per share, x, is current earnings per share and f; is forecast next
period earnings per share. In this chapter this model is used for comparison with the

state preference approach to equity valuation.

3.2.3. Canonical valuation

Stutzer’s canonical valuation approach provides a non-parametric alternative to
the computation of state prices using the second derivative of the Black-Scholes option-
pricing formula described above. In the same sense that state prices may be used to
value any asset, then the Stutzer’s risk neutral probabilities should also be applicable to
pricing any asset whose value depends on the index. Stutzer’s canonical valuation

method is computationally simple, and the only data requirements are an historical time
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series of underlying asset values. Risk-neutral probabilities are calculated from the
historical distribution of returns and applied to the range of possible future index values

to determine the expected payoff on the asset as follows.

To price an asset maturing in 7-periods, first construct an historical time series

of T-period returns on the underlying asset:
R =M,/M,,, h=12,....H-T (38)

providing H-T possible values of the underlying asset’s price in 7T-periods,

M,=MR,, h=12,.. . H-T (39)

with an estimated actual probability of 7, =7-]—L]:' The estimated risk-neutral

probabilities derived from the empirical probabilities must be non-negative and satisfy

the following constraint, where r is the one-period riskless rate:
H-T .
Zn,,—r—= (40)
h
While there are many choices for #~ that would satisfy these twin constraints,

Stutzer chooses an estimate 7 that minimises the Kullback-Leibler Information
Criterion distance between the empirical probabilitiesz, and the risk neutral

probabilities 7.

# = argmin I(ﬂ',ﬁ):lfﬂ;m(””Jst Zﬂ'h—= (41)
:r; >0,Zn’,‘, =1 h=1

The solution to the constrained maximisation problem in the equation above is obtained

using the Lagrange multiplier method, providing the Gibb’s canonical distribution:
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A * T
2= ”""‘Xp[,y {Rh/r )T] . h=12,.. H-T (42)
;ﬁh exp[}/ (Rh/r ):|

The Lagrange multiplier, ', is found by solving the unconstrained minimisation

problem:
y =argnﬁn2exp[y(1e,, /rT —1)] (43)
14 h
Possible payoffs are determined with reference to the underlying asset via the linear
projection:
R/ =a+ R +¢, vj (44)

where R’ is the return on asset j and R™ is the return on the S&P 500 index. This

provides the following valuation expression for next period stock values:
B =z, B exp(a’ + 'R})] 45)
h

where 7, is the risk-neutral probability of the return on the S&P500 index R, P/ is

the current price and P’ is next period’s price.

Stutzer’s canonical valuation approach was originally proposed as a non-
parametric option pricing model, rather than an equity valuation technique. As such,

this chapter also represents an initial application of canonical valuation to stock

valuation.
3.2.4. The Sharpe-Lintner Capital Asset Pricing Model

Perhaps the most widely understood of the asset pricing formulae, the Sharpe

(1964) and Lintner (1965) Capital Asset Pricing Model (CAPM) provides a simple yet
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elegant relationship between stock return and return on the market portfolio. This
relationship follows from Markowitz’s (1952) portfolio selection theory, in which it is
established that it is not the risk and return of an individual asset that is priced by
investors, but rather the asset’s contribution to portfolio risk and return. Once a
portfolio of risky assets is of a sufficient size, the addition of another risky asset
contributes little to the overall portfolio variance; rather, it is the covariance between
individual assets that takes on greater importance. The CAPM builds on this central
premise to price an individual asset in terms of the covariance of individual asset returns

and returns on the market portfolio:
E(R}):R{+ﬂf[E(R,"‘)-R{] (46)
where R/ is the return on asset j, R/ is the return on the risk-free asset, R is the return

on the market portfolio and B’ = M
Va.r(R’”)

The CAPM has been subject to extensive debate in the literature. The results of
early tests of the CAPM were mixed (see for example Black, Jensen and Scholes
(1972), Fama and MacBeth (1973), Blume and Friend (1973)). These studies
established a positive linear relationship between portfolio return and beta, which is
consistent with the CAPM, but also found evidence that factors other than beta
systematically impact returns. Overall, the results of these studies lead researchers to
reject the CAPM. However, Roll (1977) identified a serious flaw in any test of the
CAPM, suggesting the only testable hypothesis is that the market portfolio is mean-
variance efficient. Roll observed that there will be any number of ex-post efficient

portfolios, and as this will result in observed linearity between beta and returns, the
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relationship is not independently testable. Roll also noted that the market portfolio is
effectively unobservable, as every individual asset (including human capital and other

non-traded assets) must be included in its composition.

Following Roll’s critique, tests of the CAPM relationship continued, however
researchers tended to be more cautious in interpreting their results. One area of research
focused on market anomalies or empirical contradictions to the CAPM relationship,
such as the size effect first documented by Banz (1981), where small or low market
value stocks exhibit higher average returns, or the momentum effect identified by
Jegadeesh and Titman (1993), where stocks with high returns over the previous three to
twelve months tend to exhibit higher returns in future periods. Others examined the
relationship between average return and other factors, such as earnings-price ratios
(Basu (1983)), the ratio of book value of equity to market value (Fama and French
(1992)), and leverage (Bhandari (1988)). Direct tests of CAPM also became more
sophisticated. Gibbons (1982) developed an alternative test methodology based on a
multivariate approach equations based on the market model; Gibbons, Ross and
Shanken (1989) developed an exact multivariate F-test; and MacKinlay and Richardson

(1991) tested mean-variance efficiency via a generalised method of moments approach.

The CAPM has also been extended in a number of ways. Black (1972) provided
a zero-beta CAPM that does not require the existence of a risk-free asset; Merton (1973)
developed an intertemporal CAPM where expected return is a function of a number of
state variables or hedge factors; and Breeden (1979) extended Merton’s model to
develop a consumption CAPM, where the market portfolio is replaced by aggregate
consumption. Jagannathan and Wang (1996) investigated a conditional version of the

CAPM where betas and the market risk premium vary over time. Other extensions

62



include an allowance for the impact of differential taxation of dividends and capital
gains (see for example Litzenberger and Ramaswamy (1979)), or including higher

moments of the distribution of returns (see for example Kraus and Litzenberger (1976)).

While the CAPM has been subject to intense academic debate it remains one of
the most theoretically tractable of the asset pricing models, and empirical support for
other models is no better than that for the CAPM, an indication that a suitable
alternative is yet to be found. Furthermore the CAPM remains widely used in practice.
As such, the CAPM is included as a basis of comparison for the state preference
approach in this paper. Before turning to the results of this study, the following section

discusses the data inputs required for each equity valuation approach and describes the

sample selection process.

3.3 Sample Description

Companies traded on US exchanges are valued annually over the period January
1997 through 2 January 2004. Valuing stocks with the state preference approach
requires inputs for the risk free rate of interest, expected volatility of the underlying
asset, and the contemporaneous index level. The CRSP files provide stock price and
return, index level and return, and the risk free rate. The expected volatility of the S&P
500 index is proxied by the CBOE Market Volatility Index (VIX) level. As outlined in
the previous chapter, the VIX is expected to provide a more appropriate proxy for
expected volatility than an estimate based on historical returns, as it represents the
market’s consensus view on expected future stock market volatility, and is therefore
forward-looking and market determined. The range of expected future values of the

S&P 500 index is based on historical maximum and minimum returns obtained from the
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empirical return distribution of the S&P 500 index over the period from 2 July 1962
through to each valuation date. Similarly, the canonical valuation approach requires a
time series of historical values of the S&P 500 index and a risk free rate. Regression
estimates for the linear projection in equations (30) and (44) are determined from
monthly return observations on individual stocks and the S&P 500 index over the
previous five years from the valuation date. Beta estimates for the CAPM are also

sourced from these regressions.

The residual income model requires inputs for book value of equity, current
earnings -and expected future earnings. Accounting variables are obtained from the
Compustat database. Observations for book value of equity, earnings, number of
common shares outstanding and an adjustment factor reflecting capitalisation changes
over the period are collected for both active and inactive companies over the period
1993 through 2004. To proxy for expected future earnings consensus earnings forecasts
are obtained from the I/B/E/S files. The I/B/E/S files also provide contemporaneous
earnings data, which is used in preference to the Compustat earnings data so as to align
reported earnings with analysts’ forecasts. The I/B/E/S earnings per share measure
excludes non-recurring or unusual accounting entries, which is also more consistent

with analysts’ earnings forecasts.

The initial sample obtained from Compustat contains 289,299 annual
observations. Observations with missing values, observations where price or equity is
less than or equal to zero, and observations where the number of shares outstanding is
less than or equal to 10,000 are removed (194,428 in total). Descriptive statistics on the
remaining sample of 94,871 observations indicate a correlation between book value per

share and price of 0.995. This high value is driven by a small number of observations
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with extreme values for book value per share, and removing observations for which
book value per sale is more than three standard deviations away from the mean reduces

the observed correlation between book value per share and price to 0.689°.

The remaining sample of 94,859 observations is then matched to the I/B/E/S
dataset based on the date of disclosure of annual earnings information. After removing
observations with missing values and repeated observations from the I/B/E/S files, the
merged Compusat and I/B/E/S dataset contains 34,032 observations. Consensus
forecasts are available on the I/B/E/S files from the middle of the month following
release of the annual report to the market. The date on which the security is valued is
the end of that month. To illustrate, if Company A’s financial year-end is 31 December
1998, then book value, earnings and number of shares outstanding will be as at this
balance date. If the disclosure date for financial statement information is 27 March
1998, then consensus earnings forecasts for the following fiscal year are reported in the
I/B/E/S files at 16 April 1998. The stock is then valued at the end of that month, on 30
April 1998. The value determined on this date is compared to the actual price at the end
of the following month on 31 May 1998. To obtain the actual price the merged
Compustat and I/B/E/S dataset is matched to price data obtained from the CRSP files.

The final dataset contains 13,042 observations.

® This process of trimming or winsorising the sample is widely adopted in the literature (see for example
Dechow, Hutton and Sloan (1999), Collins, Pincus and Xie (1999), Barth, Beaver, Hand and Landsman
(1999), Fama and French (1998), and Frankel and Lee (1998)).
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3.4 Results

The relative performance of the alternative stock valuation approaches is
assessed with three goodness of fit measures. First, mean squared error, which
measures the average squared deviation of model values from the actual price, provides
an overall indication of goodness of fit. Second, comparison is made of adjusted R

from a regression of estimated values on actual values:
P=a+bP +e (47)

where P is the actual realised price, P is the estimated value. This provides an

indication of the relative explanatory power of each valuation approach. Third, the
Bayesian Information Criterion (BIC) is calculated for each approach. The BIC is based
on the log likelihood function, but imposes a penalty for the number of estimated model

parameters so that, everything else being equal, the BIC will tend to favour more

simplistic models:
BIC(k)=-2In(L) +kIn(n) (48)

where L is the log likelihood function, & is the number of estimated model parameters

and » is the number of observations.

The results contained in Panel A of Table 3.1 indicate that the state preference
approach provides a significant improvement on the residual income model. Overall
MSEs on state price values are 35.179, compared to 418.943 for the residual income
model. The canonical valuation approach provides a similar level of accuracy to the
state preference approach, with overall MSEs of 35.214. The CAPM, however,

provides the best fit with an overall MSE of 33.947. This pattern is generally consistent
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when the sample is split by share price. The CAPM performs better across all share
price brackets except for companies with a share price of less than $1, where the state
preference approach provides more accurate values. Note that the results in Panel A of
Table 3.1 where the sample is broken down by share price indicate the state price,
canonical valuation and CAPM perform better for lower priced stocks in comparison to
higher priced stocks. To illustrate, for stocks with a price of less than $1 MSE is 0.028,
0.028 and 0.030 for the state price, canonical valuation and CAPM respectively,
compared to 246.223, 247.089 and 241.379 respectively for stocks with prices of
greater than $50. While this is largely due to the relative magnitude of errors for higher
priced stocks, this pattern is not exhibited for the residual income model, which
performs better for stocks with prices between $10 and $20 where MSE is 99.012
compared to a MSE of 132.646 for stocks priced less than $1 and a MSE of 2,845.913

for stocks priced greater than $50.

Panel B of Table 3.1 contains mean squared relative errors, which measures the
average error relative to the actual price and should overcome the effect of higher priced
stocks exhibiting higher errors as shown in Panel A of Table 3.1. These results indicate
that all three models perform better for stocks priced between $20 and $50, followed by
stocks priced greater than $50. All three stock valuation approaches perform worst with
lower priced stocks, with the highest errors for stocks priced between $1 and $5,
followed by stocks priced less than $1. Overall, comparing mean relative errors does
not change that relative performance of the alternative valuation approaches. The
CAPM provides the most accurate values, with mean squared relative errors of 0.027
across the sample. The canonical valuation and state preference approaches provide

similar levels of accuracy, both with mean squared relative errors of 0.029. The
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residual income model performs the worst, with overall mean squared relative errors of

4.574.

Sample MSE:s are split by market capitalisation in Panel A of Table 3.2. Similar
to the results where MSE is split by price, the CAPM provides the most accurate values
across most capitalisation levels, however the state preference approach performs better
for larger companies. For companies with a market capitalisation of between $10
million and $50 million MSEs for the state price approach are 82.774 compared with
83.046, 85.404 and 1,131.134 for canonical valuation, CAPM and the residual income
model respectively. For companies with a market capitalisation of greater than $50
million the state preference approach also provides the most accurate values, with MSEs
of 467.123 compared with MSEs of 471.257 for the canonical valuation approach,
510.129 for the CAPM and 4,164.760 for the residual income model. Similar to the
results displayed in Table 3.1 MSEs are relatively greater for companies with higher
market capitalisation due to the impact of higher stock prices inducing greater errors.
Panel B of Table 3.2 provides mean squared relative errors across alternative market

capitalisation levels. Once again the residual income model performs poorly relative to

the other valuation approaches.

Adjusted R? is used as an alternative goodness of fit measure to mean squared
error, and is reported in Table 3.3'°. These results are consistent with those for mean
squared error reported in Tables 3.1 and 3.2. The residual income model performs

poorly in comparison to the state preference approach with an adjusted R* of 0.417

10 The regressions were performed across the entire dataset, however to ensure the results were robust to
the potentially spurious impact of including a time-series of asset prices, cross-sectional regressions for

the first and last years in the sample are also undertaken. The results of these regressions are consistent

with those presented in Table 3.3.
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compared to 0.951. Once again, the state preference and canonical valuation
approaches provide similar levels of explanatory power: both models provide an
adjusted R? of 0.951, however the CAPM provides the most accurate estimates with an
adjusted R* of 0.952. The regression estimates presented in Table 3.3 are also of
interest. For the models in question to be a good fit the intercept should be equal to zero
and slope should be equal to one. The #-statistics associated with the slope coefficients
provided in Table 3.3 test the hypothesis that the slope is not significantly equal to one.
For the CAPM slope is equal to 1.002 with a t-statistic of 1.107, which indicates that the
hypothesis of slope equal to one cannot be rejected at the 95% confidence level. This
hypothesis is rejected for the other models however. The slope coefficients for the state
preference and canonical valuation approaches are close to one, at 0.985 and 0.986
respectively, however the associated f-statistics indicate that these estimates are
significantly different from one. The slope coefficient for the residual income model is
1.137, and again, the hypothesis that the beta is equal to one is rejected at the 95%
confidence level. Finally, it is worth noting that the intercept estimates are all

significantly different from zero, an indication of model bias.

The final goodness of fit measure is the BIC, the results for which are also
presented in Table 3.3. Again, the CAPM proves to be the better model with a lower
BIC when compared to the alternatives. The state preference and canonical valuation

approaches provide largely consistent levels of accuracy, and the residual income model

does not perform well.
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3.5 Conclusion

Following the successful application of the state preference approach to pricing
options this paper applies the state preference approach to pricing US stocks. The state
preference approach is compared to alternative equity valuation approaches, including
the residual income model and the CAPM. The residual income model is selected as a
basis of comparison as it has received significant attention in the accounting literature,
largely due to its high explanatory power. The state preference approach is found to
provide a significant improvement on the residual income model. Little difference is
found between the state preference approach, the CAPM and Stutzer’s canonical

valuation. However, the CAPM is found to provide the greatest overall accuracy in

pricing stocks.
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Chapter 4

Conclusion

The state preference approach to decision making under uncertainty, initially
proposed by Arrow (1964) and Debreu (1959), provides an elegant solution to the asset
pricing question. State-contingent claims have long been regarded as a fundamental
building block in asset pricing theory, however little work has been done on the
empirical application of state preference theory. In this thesis the state-contingent claim
approach is empirically applied to pricing exchange-traded financial assets. First, the
prices of state-contingent claims, or state prices, are determined using Breeden and
Litzenberger’s (1978) and Banz and Miller’s (1978) approach and applied to pricing
S&P 500 index options. An advantage of this approach is thatvmarket microstructure
features such as minimum tick size may be directly incorporated into the model. In
addition, empirical maximum and minimum returns on the index may be used to limit
the range of the distribution of expected returns. Prices determined via the state
preference approach are compared to those estimated from Stutzer’s (1996) canonical
valuation model and the Black-Scholes formula. Overall the state preference provides

an improvement on the alternative approaches.
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The successful application to pricing options indicates that the state preference
approach should be applicable to asset pricing more generally. As such, the state
preference approach is then applied to pricing equities.' Once again, values determined
under the state preference approach are compared to alternative models, primarily the
residual income model (see, for example, Ohlson (1995), Feltham and Ohlson (1995)
and Myers (1999)) and the Sharpe (1964) and Lintner (1965) Capital Asset Pricing
Model (CAPM). Equities are also valued with Stutzer’s canonical valuation approach.
The state preference approach provides a significant improvement over the residual
income model, which performs poorly in comparison to the alternative models. While
the state preference approach provides a similar level of accuracy to the CAPM and
canonical valuation, the CAPM provides the greatest overall accuracy in pricing
equities. The results of this thesis indicate that the state preference approach is
empirically applicable to pricing exchange-traded financial assets, and are promising for

future research into the application of the state-contingent claim approach to asset

valuation.
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