Corrigendum

I. Page i, after line 8: insert " $p-$ BDMA" = "para-methoxybenzyl dimethyl acetal".
II. Page 3 , line 17: replace "plasmodium" with "Plasmodium".
III. Page 4, last line: replace "Poeticus" with "poeticus".
IV. Page 14, Scheme 1.9 (67 to 68): replace "napthanlene" with "napthalene".
V. Page 23 , line 15 : delete first "f".
VI. Page 25 , the correct structure of (+)-pericosine $B(115)$ is:

(+)-Pericosine B (115)
VII. Page 54, Scheme 3.11 : insert single spaces after " 33% " and " $\mathrm{E} \mathrm{I}_{3} \mathrm{~N}$ ".
VIII. Page 93 , line 7 : replace " R-configuration" with (R)-configuration".
IX. Page 124 onwards: all the 1,3 -benzodioxolyl compounds from 127 should be " $5-y$ y" not " 6 -yl".
X. Page 133, lines 8 and 9 : delete "benzo" and " $5 a, 8 a-y l$ ".
XI. Page 187 and 188 : compounds 279 and $\mathbf{2 7 7}$ should be named as derivatives of $5 \mathrm{H}-1,3-$ dioxolo[4,5-ffindol-2-one.
XII. Page 189 , lines 10 and 11: compound 280 should be named as a 1,3-dioxolo 1,3-benzodioxolo[5,6-c][1]benzazepinone derivative.
XIII. Page 190 , lines 5 and 6 : the " $5,6 \mathrm{a}, 7,8,9,11$-hexahydro" part of the name for ent- 18 needs to be moved earlier in the name.

Chemoenzymatic Approaches to Montanine Alkaloids:
 Total Synthesis of (+)-Brunsvigine

A thesis submitted for the degree of Doctor of Philosophy of the Australian National University
by

Okanya John Kokas

ANU
THE AUSTRALIAN NATIONAL UNIVERSITY

Research School of Chemistry
Canberra, Australia

October, 2007

Declaration

I declare that the material presented in this thesis represents the result of original work carried out by me, during the period 2003-2007 and has not been previously presented as part of an examination for any other degree. This thesis is less than 100,000 words in length. Wherever possible, established methodologies have been acknowledged by citation of the original publications from which they were derived.

Acknowledgements

With extreme gratitude, I would like to thank my PhD supervisor Professor Martin G. Banwell for his patience, encouragement and professionalism in guiding me towards a successful PhD studentship. Specifically, I am grateful that he has been able to instil confidence within me, and enable me to not only challenge my abilities as a chemist, but also to grow and develop as a person.

I would like to also give my thanks Professor Athel L. J. Beckwith for indulging me with his extraordinary knowledge of radical chemistry, particularly providing me with insightful comments on how to effect a rather difficult radical cyclization reaction that was pivotal to the success of my PhD project.

In general, I would also like to thank all past and present members of the Banwell group that I have met. In recognition of the useful advice and encouragement that I have received during my time in the group, I would like to especially thank the postdoctoral researchers: Dr Natasha Hungerford, Dr Jens Renner, Dr Jonathan Foot, Dr Daniel Offermann, Dr Delphine Dauge, Dr Mario Knoke, Dr Steffan Gross and Dr Michael Backes. Special thanks to Maria Matveenko for work on the 'Lycoricidine project', to Dr David Kvaskoff (UQ) for performing the DFT calculations, to Dr Duncan McGillivray for assistance with formatting of the appendices for this thesis, and to Dr Lorraine Axford in not only providing excellent advice, but also in assisting with the drafting of this thesis.

Being grateful for the wonderful facilities and services provided by the school, I would also like to thank Chris Blake (NMR), Dr Tony Willis (X-ray), Tony Herlt (HPLC), Gordon Lockhart (Mass Spectrometry), Vicki Withers (Microanalysis), Kurt Russell (Chemical Delivery), Joan Smith (Library) and Marilyn Holloway (Academic Secretary) for their efforts in allowing me to work efficiently and productively. Special thanks also goes to the workshop staff (Woodwork, Metalwork and Glassblowing) for their excellent skills in producing and servicing the laboratory equipment. In addition, I would like to thank the security guards that I have met during my time at the school, especially during the late nights spent in the laboratory and in the write-up room.

On a personal level, I would like to acknowledge all the people that I have had the good fortune to interact with at the Research School of Chemistry and consequently have become friends with: Jacki Kitching, Pauline Stanislawski, Andrew Phillis, Kerrie Austin, David Lupton, Matthew Smith, Mathew Jones, Mathew McDonough, Colin Jackson, Joe Hughes, Adam Perriman, Satish Chand, Amy Philbrook, Kelly Fairweather, Ollie Hutt, Giuseppe Del Signore, Nevah Tshabang, Steve McAteer, Jenn Locke, Chris Evenhuis, Gomotsang Bojase-Moleta (BJ) and David Brittain.

Finally, I would like to thank my family for always being supportive of my aspirations, especially my father (Papa, this wouldn't have been possible without you!). I appreciate the support that all of you have given me in the past.

Publications and presentations based on work carried out during the period of PhD candidature

Publications:

1. "Chemoenzymatic Approaches to Montanine Alkaloids: Total Synthesis of (+)Brunsvigine". Banwell, M. G., Kokas, O. J. and Willis, A. C. Org. Lett., 2007, 9, 3503.
2. "Chemoenzymatic Approaches to Amaryllidacae Alkaloids: Total Syntheses of entLycoricidine, 3-epi-ent-Lycoridine and 4-deoxy-3-epi-ent-Lycoridine". Matveenko M., Kokas, O. J., Banwell, M. G. and Willis, A. C. Org. Lett. 2007, 9, 3683.
3. "(2R, 3aS, 5aR, 8aR, 8bS)-4-Bromo-7,7-dimethyl-2-(4-methoxyphenyl)-3a,5a,8a,8b-tetrahydro-benzo[1,2-d:3,4-d']bis[1,3]dioxole". Banwell, M. G., Kokas, O. J. and Willis, A. C. Acta Cryst. Sect. E., 2007, E63, 03820.
4. "A cocrystal of (2S, 3aS, 4R, 5R, 7aS)- and (2R, 3aS, 4R, 5R, 7aS)-7-Bromo-3a,4,5,7a-tetrahydro-2-(4-methoxyphenyl)-1,3-benzodioxole-4,5-diol'. Banwell, M. G., Kokas, O. J. and Willis, A. C. Acta Cryst. Sect. E., 2007, E63, 04187.

Presentations:

1. "Chemoenzymatic Approach to Montanine Alkaloids: Total Synthesis of (+)-Brunsvigine". Oral presentation at the $26^{\text {th }}$ Royal Australian Chemistry Institute, NSW Branch-Organic Group Annual One Day Symposium, Canberra, Australia, November, 2006.
2. "Chemoenzymatic Approaches to Montanine Alkaloids". Poster presentation at the $17^{\text {th }}$ Southern Highlands Conference on Heterocyclic Chemistry (SHCH), Moss Vale, Australia, August, 2006.
3. "Towards the Total Synthesis of $(+)$-Brunsvigine". Poster presentation at the $20^{\text {th }}$ Royal Australian Chemistry Institute Organic Chemistry Conference (ISMC/RACIOC), Cairns, Australia, July, 2004.

Abstract

(-)-Pancracine (13) and (-)-brunsvigine (18) are representative members of the montanineclass of Amaryllidaceae alkaloid that possess a variety of psychopharmacological activities including anxiolytic, antidepressive and anticonvulsive effects. Although there has been extensive effort directed toward the synthesis of Amaryllidaceae alkaloids more generally, the construction of the novel 5,11-methanomorphanthridine ring system associated with the title compounds has received much less attention from synthetic organic chemists. Studies within the Banwell group have resulted in the establishment of an operationally simple route to the 5,11-methanomorphanthridine ring system and, thereby, a formal total synthesis of (\pm)-(13). This thesis describes a more sophisticated and general method for the asymmetric assembly of montanine alkaloids from cis-1,2-dihydrocatechols of the general form 92, compounds which are available in large quantity and enantiomerically pure form via the whole-cell biotransformation of the corresponding halobenzenes.

13

18

92
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$,

Chapter One begins with an introduction to montanine alkaloids and this is followed by an overview of the synthetic strategies previously used to obtain these natural products. The possibility of using the enantiopure cis-1,2-dihydrocatechols 92 and as building blocks for the enantioselective synthesis of the montanine alkaloid (+)-brunsvigine (ent-18) is then introduced and key challenges defined. These include establishing a functional route to the relevant 3-arylhexahydroindole (e.g. compound 194) that could be used as a substrate for the key Pictet-Spengler reaction.

Approach A (Chapter Two) to 3-arylhexahydroindoles details a successful model study in which $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-mediated ring-opening of aziridine 127 was achieved using alkenyl stannane 128 as the nucleophile. However, attempts to effect such a process with oxygenated alkenyl stannanes, such as compound 142, failed.

This outcome meant that a revised approach was required. Accordingly, Chapter Three details Approach B in which an intermolecular Mitsunobu reaction was investigated. Thus, following a successful model study, the coupling of alcohol 192 with keto-amide 168 was effected and so providing compound 193. Frustratingly, this otherwise significant result was found to be irreproducible.

Approach C (Chapter Four), as an alternate method for the preparation of 3arylhexahydroindoles, involved direct N-alkylation reaction of 2°-amine 206 with $\alpha-$ bromoketone 102 to give 3°-amine 205. This pleasing outcome meant that the preparation of appropriate radical precursors (i.e. 211 and 220) could be carried out. However, in doing so,
only low yields of the required compounds were achieved. Nevertheless, sufficient quantities of these materials could be obtained so as to test the key radical cyclization process. Sadly, this test failed to provide the expected product 219.

The final and ultimately successful approach (Approach D), detailed in Chapter Five, involved the amide coupling of bromo- and chloro-derivatives of 2°-amines 206 and 225 with acid 105 to give amides 226 and 227, respectively. Subjecting each of these compounds to a radical cyclization/halogen atom elimination reaction then provided the required 3-arylhexahydrooxindole 224 in 15\% (from 226) and 67\% (from 227), respectively, and as a 8.5:1 mixture of epimers with the major one possessing the stereochemistry required for the preparation of (+)-brunsvigine (ent-18). Indeed, elaboration of the last compound 224 (as a mixture of epimers) over six steps, including one involving the pivotal Pictet-Spengler reaction, provided final the target, viz. compound ent-18, the enantiomer of the alkaloid (-)-brunsvigine.

Chapter Six provides a summary of the chemistry detailed in the preceding chapters and outlines possible future directions for the research.

The following abbreviations have been used throughout this thesis:

AIBN	1,1'-azobisisobutyronitrile
atm	atmosphere
Ac	acetyl
AcOH	acetic acid
ACE-CI	alpha-chloroethyl chloroformate
Ar	aryl
Aq.	aqueous
$i-\mathrm{Bu}$	iso-butyl
$n-\mathrm{Bu}$	butyl
t-Bu	tertiary-butyl
Boc	tertiary-butoxycarbonyl
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	boron trifluoride diethyl etherate
Bn	benzyl
Bz	benzoyl
${ }^{\circ} \mathrm{C}$	degrees Celsius
Conc.	concentrated
c	concentration ($\mathrm{g} / 100 \mathrm{~mL}$)
ca.	circa (approximately)
δ	chemical shift (parts per million)
DBU	1,8-diazabicyclo[5.4.0]undecene
DMAP	4-(N, N-dimethylamino)pyridine
2,2-DMP	2,2-dimethoxypropane
DCC	dicyclohexylcarbodiimide
DEAD	diethyl azodicarboxylate
DIAD	diisopropyl azodicarboxylate
DIBAL-H	diisobutylaluminium hydride
DMDO	dimethyldioxirane
DME	1,2-dimethoxyethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DPPA	diphenylphosphoryl azide
DCE	1,2-dichloroethane
DMF	N, N-dimethylformamide

equiv. or eq. e.e.	equivalent(s) enantiomeric excess
E	entgegen (opposite)
EDCI	1-ethyl-3- (3'-dimethylaminopropyl)carbodiimide
Et	ethyl
eV	electron volt
FGI	functional group interconversion(s)
g	gram(s)
h	hour(s)
$h v$	light
HRMS	high resolution mass spectrum
Hz	Hertz
HOBt	1-hydroxybenzotriazole
IR	infrared
'Pr	iso-propyl
J	coupling constant (Hz)
kcal	kilocalorie(s)
KHMDS	potassium hexamethyldisilazide
LiAlH_{4}	lithium aluminium hydride
mol	mole
M	molarity (moles per litre)
L	litre
MS	mass spectrum
MeCN	acetonitrile
mp	melting point
mins	minutes(s)
MeOH	methanol
M^{+-}	molecular ion
m / z	mass-to-charge ratio
Me	methyl
MVK	methyl vinyl ketone
Ms	mesyl (methanesulfonyl)
MOM	methoxymethyl
NOE	nuclear Overhauser enhancement
NMO	N-methylmorpholine- N -oxide

ii

NMR	nuclear magnetic resonance
NCS	N -chlorosuccinimide
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	tetrakis(triphenylphosphine)palladium(0)
pyr.	pyridine
p-TsCl	para-toluenesulfonyl chloride
p-TsOH	para-toluenesulfonic acid
pK_{a}	acid dissociation constant
PPh_{3}	triphenylphosphine
Pd/C	palladium on carbon
PCC	pyridium chlorochromate
$\mathrm{Ph}_{2} \mathrm{PCl}$	chlorodiphenylphosphine
Ph	phenyl
PMB	para-methoxybenzyl
PMP	para-methoxyphenyl
psi	pound-force per square inch
quant.	quantitative
R	rectus (clockwise)
R_{f}	retardation factor
S	sinistrus (counterclockwise)
TMEDA	tetramethylethylenediamine
THF	tetrahydrofuran
TBS	tertiary-butyldimethylsilyl
$\mathrm{Tt}_{2} \mathrm{O}$	triflic anhydride (trifluoromethanesulfonyl anhydride)
TMAD	trimethyl azodicarboxamide
TTMSS	tris(trimethylsilyl)silane
TMS	trimethylsilyl
Tf	triflyl
Ts	tosyl (para-toluenesulfonyl)
TLC	thin layer chromatography
UV	ultraviolet
v/v	volume-to-volume (ratio)
$v_{\text {max }}$	infrared absorption maxima (cm^{-1})
w/v	weight-to-volume (ratio)
Z	zusammen (together)

$>$	greater than
$<$	less than

Table of Contents

CHAPTER ONE

Studies Directed Towards the Preparation of Montanine Alkaloids: Chemoenzymatic Approaches to (+)-Brunsvigine

1.1. Introduction 2
1.2. Amaryllidaceae Alkaloids 2
1.2.1. Isolation and Structural Properties 2
1.2.2. Biosynthesis 3
1.2.3. Biological Activity 3
1.3. The Montanine-Subclass of Amaryllidaceae Alkaloids 4
1.3.1. Isolation and Structural Properties 4
1.3.2. Biological Activity 6
1.3.3. Synthetic Strategies for Obtaining the Montanine Alkaloids 6
1.3.3.1. Pictet-Spengler Reaction Strategy 8
1.3.3.2. Radical Cyclization Strategy 11
1.3.3.3. Intramolecular Amination Reaction Strategy 12
1.3.3.4. [3+2]-Cycloaddition/Cycloalkylation Strategy 14
1.3.4. Evaluating Key Issues Associated with the Synthesis of the Montanine Alkaloids 16
1.3.4.1. Banwell and Sha Approaches to the Montanine Alkaloids 17
1.3.5. Towards a New Synthesis of the Montanine Alkaloids 19
1.3.5.1. Chemoenzymatic Approaches to Montanine Alkaloids 19
1.4. Aims of the Research Described in this Thesis 22
1.5. Production and Synthetic Applications of cis-1,2-Dihydrocatecols 23
1.6. References 26
CHAPTER TWO
Towards (+)-Brunsvigine: Attempted Synthesis of 3-Arylhexahydroindoles via Approach A
2.1. Introduction 30
2.1.1. Overview and Context 30
2.1.1.1. Overview of Approach A 30
2.2. Aziridines in Synthesis: Overview and Context 31
2.3. D-Ring Annulation: Attempted Synthesis of 3-Arylhexahydroindole 97 33
2.3.1. Model Study 33
2.3.2. Attempted Ring-Opening of Aziridine 127 with Alkenyl Stannanes 142-145 37
2.4. Summary 40
2.5. References 41
CHAPTER THREE
Towards (+)-Brunsvigine: Attempted Preparation of 3-Arylhexahydroindoles via Approach B
3.1. Introduction 44
3.1.1. Overview and Context 44
3.1.1.1. Overview of Approach B 44
3.2. The Mitsunobu Reaction: Overview and Context 45
3.3. D-Ring Annulation: Attempted Synthesis of 3-Arylhexahydroindole 119 47
3.3.1. Model Study 47
3.3.2. Preparation of Conduritol 167 and Keto-Amide 168 50
3.3.3. Attempted Synthesis of Amide 179 54
3.3.4. Attempted Synthesis of Alcohol 180 via the Barton-Mc Combie Deoxygenation Reaction 55
3.3.5. Preparation of Alcohol 180 via Iodination/Reductive Cleavage Method 56
3.3.6. Mitsunobu Reaction of Alcohol 192 and Keto-Amide 168 62
3.4. Summary 65
3.5. References 66
CHAPTER FOUR
Towards (+)-Brunsvigine: Attempted Synthesis of 3-Arylhexahydroindoles via Approach C
4.1. Introduction 70
4.1.1. Overview and Context 70
4.1.1.1. Overview of Approach C 70
4.2. Background: Preparation of 3°-Amines via Direct N -Alkylation of $\mathbf{2}^{\circ}-$ Amines 71
4.3. D-Ring Annulation: Attempted Synthesis of 3-Arylhexahydroindole 194 72
4.3.1. Direct N -Alkylation of $2^{\circ}-$ Amine 206 with α-Bromoketone 102 72
4.3.2. Synthesis of Radical Precursor 211 75
4.3.3. Radical Cyclization Reaction: Precedence from Banwell and Attempted Cyclization of Precursors 211 and 220 77
4.4. Summary 80
4.5. References 82
CHAPTER FIVE
Preparation of 3-Arylhexahydro-oxindoles via Approach D: Application to a Chemoenzymatic Total Synthesis of (+)-Brunsvigine
5.1. Introduction 84
5.1.1. Overview and Context 84
5.1.1.1. Overview of Approach D 84
5.2. Radical Cyclizations of Amides 85
5.3. D-Ring Annulation: Synthesis of 3-Arylhexahydro-oxindole 224 87
5.3.1. Preparation of Radical Precursors 226 and 227 87
5.3.2. Cyclization of Radical Precursor 226 93
5.3.3. Radical Chemistry of $\mathrm{N}-A l l y l a t e d$ Amides 95
5.3.4. Improvements to the Yield of 3-Arylhexahydro-oxindole 224 97
5.3.5. Stereochemical Outcomes of the Radical Cyclization Reaction 99
5.4. C-Ring Annulation via the Pictet-Spengler Reaction 102
5.4.1. Attempted Synthesis of $(+)$-Brunsvigine from 3-Arylhexahydroindole 194 102
5.4.2. Completion of the Synthesis of (+)-Brunsvigine from 3-Arylhexahydroindole 277 105
5.5. Summary 110
5.6. References 111

CHAPTER SIX

Summary and Future Work

6.1. Summary 114
6.1.1. Chemoenzymatic Total Synthesis of (+)-Brunsvigine 114
6.2. Future Work 114
6.2.1. Chemoenzymatic Approaches to Montanine Alkaloids 114
6.3. References 117
CHAPTER SEVEN
Experimental Section
7.1. General Experimental 120
7.2 Experimental Procedures 122
7.2.1. Chapter Two: Attempted Preparation of 3-Arylhexahydroindoles via Approach A 122
7.2.2. Chapter Three: Attempted Preparation of 3-Arylhexahydroindoles via Approach B 135
7.2.3. Chapter Four: Attempted Preparation of 3-Arylhexahydroindoles via Approach C 155
7.2.4. Chapter Five: Preparation of 3-Arylhexahydro-oxindoles via Approach D: Application to a Chemoenzymatic Total Synthesis of (+)-Brunsvigine 164
7.3. References 191
APPENDICES
Appendix One: X-ray Crystal Structure Report for Compound 184 193
Appendix Two: X-ray Crystal Structure Report for Compound 192 207
Appendix Three: X-ray Crystal Structure Report for Compound 247 213
Appendix Four: X-ray Crystal Structure Report for Compound ent-18 219
Appendix Five: Single-Point Energy Calculations (DFT) 231
Appendix Six: Copies of Publications Arising from Work Reported in this Thesis 239

CHAPTER ONE

Studies Directed Towards the Preparation of Montanine Alkaloids: Chemoenzymatic Approaches to (+)-Brunsvigine

Amaryllidaceae: Candelabra flower
[Source plant for (-)-Brunsvigine]

1.1. Introduction

1.2. Amaryllidaceae Alkaloids

1.2.1. Isolation and Structural Properties

Amaryllidaceae alkaloids have been isolated from the plants of almost all the genera of the family Amaryllidaceae that are distributed throughout the tropics and warm temperate regions of Asia, Australia, Africa and America. ${ }^{2}$ Such compounds almost always incorporate isoquinoline-based subunits. Thus far, over 200 different compounds have been obtained and many of their structures have been determined. Lycorine (1), crinine (2), lycoricidine (3) and galanthamine (4) are representative of the most common structural types and so highlight the wide-range of molecular architectures encountered within this large class of alkaloid (Figure 1.1). There is also a corresponding variation in the pharmacological properties of such compounds.

Lycorine (1)

Crinine (2)

Galanthamine (4)

Figure 1.1: Representative members of the major sub-classes of Amaryllidaceae alkaloids

1.2.2. Biosynthesis

Biogenetically speaking, Amaryllidaceae alkaloids are derived from L-tyrosine (5) and Lphenylalanine (6). Thus, L-tyrosine is converted, over several steps, into protocatecualdehyde (7) whilst L-phenylalanine (6) is transformed into tyramine (8) (Scheme 1.1). The imine derived from condensation of protocatecualdehyde (7) with $1^{\circ}-$ amine 8 is then reduced to the corresponding N-benzyl- $N-\beta$-phenylethylamine precursor unit, norbelladine (9) which, by various oxidative coupling and rearrangement processes, eventually gives rise to the observed structures associated with the title alkaloids. ${ }^{3,4}$ Details of one such sequence are presented in the following section.

Scheme 1.1: Early stages of the biosynthesis of Amaryllidaceae alkaloids

1.2.3. Biological Activity

Extensive assessments of the pharmacological properties of Amaryllidaceae alkaloids have been carried out. For example, the various members of the lycorine-class of alkaloids have been reported ${ }^{5}$ to be active against RNA-containing flaviviruses such as Japanese encephalitis, yellow fever and dengue-type 4 viruses while members of the crinine-class of alkaloids have been reported ${ }^{1,5}$ to posses cytotoxic and antimalarial properties. Indeed, all the isolated alkaloids of this class have shown antimalarial activity against strains of plasmodium falciparum, while a crinine-type alkaloid, amabiline (10), has been reported ${ }^{5}$ to be 10,000 times more active than the commercial antimalarial drug chloroquine.

Amabiline (10)

Narciclasine (11)

Members of the lycoricidine class of alkaloids have also attracted attention as potential antineoplastic agents. For example, narciclasine (11) has been shown to posses strong antitumor activity (up to 60% inhibition) against Agrobacterium tumefacienns found in potatoes. Members of the galanthamine class of alkaloids, in particular galanthamine itself (4), have also received a great deal of attention because of their ability to inhibit acetylcholinesterase activity and such that they have found use in the treatment of Alzheimer's disease. ${ }^{1,4}$

1.3. The Montanine-Subclass of Amaryllidaceae Alkaloids

1.3.1. Isolation and Structural Properties

The montanine alkaloids posses the unique 5,11-methanomorphanthridine ${ }^{6}$ framework and are a minor group in the Amaryllidaceae alkaloid family since only nine members have been identified thus far (Scheme 1.2). ${ }^{4,7}$ The first three members (13-15) of this Amaryllidaceae subclass were isolated by Wildman and co-workers ${ }^{8}$ from Haemanthus species while others (16-20) were obtained from a variety of species including Pancratium maritimum, Narcissus Poeticus, Narcissus angustifolius and Brunsvigia cooperi (Figure 1.2) ${ }^{9,10}$

(-)-Pancracine (13)

(-)-Montanine (14)

(-)-Coccinine (15)

(-)-Manthidine (16)

(-)-Manthine (17)

(-)-Brunsvigine (18)

(-)-Montanine (19)

(-)-Nangustine (20)

Figure 1.2: Members of the montanine class of alkaloid

The formation of the pancracine framework is thought to occur as the result of a migration of C 18 to C 11 in the crinine-type precursor 12. The 5,10-ethanomorphanthridine framework, within the crinine-type precursor 12 is, in turn, believed arise from galanthamine (4) via cyclization of N 10 to C 1 and this is then followed by various other rearrangements. Norbelladine (9), a common biosynthetic precursor, is itself thought to be transformed via well known intramolecular oxidative coupling between C'1 and C2 followed by various rearrangements to give the galanthamine-type precursor $4 .{ }^{3}$

Scheme 1.2: Origin of the 5,11-methanomorphanthridine framework of the montanine alkaloids

The assignments of the illustrated structures to compounds 13-19 were originally based on chemical degradation and interconversion studies. ${ }^{11,12}$ However, in 1974 the structure and absolute configuration of one member, (-)-brunsvigine (18), was secured by single-crystal X-ray analysis of the bis(p-bromobenzoate) derivative. ${ }^{13}$ Chemical correlations then followed to secure the structures of many other members of the series.

Interestingly, the isolation of (+)-montabuphine (21) ${ }^{14}$ from Boophane flava, found in the winter rainfall areas of South Africa, suggests that both enantiomeric forms of the montanine alkaloids can be found in nature.

(+)-Montabuphine (21)

1.3.2. Biological Activity

After the discovery that the alkaloid galanthamine (4) is a potent acetylcholinesterase (ACE) inhibitor and, thus, a very important agent for the symptomatic treatment of Alzheimer's disease, ${ }^{15}$ the interest in the isolation and characterization of Amaryllidaceae alkaloids increased dramatically. Indeed, a recent pharmacological study revealed that the montanine alkaloids, in particular montanine (14) itself, possess a variety of psychopharmacological activities including anxiolytic, antidepressive and anticonvulsive effects. ${ }^{16}$ In addition, compounds incorporating an ether function at C 2 have been shown to exhibit weak hypotensive activity. ${ }^{16,17}$ Therefore, and given the structural similarities between the montanine alkaloids and other biologically active Amaryllidaceae alkaloids, synthetic efforts in this area are warranted.

1.3.3. Synthetic Strategies for Obtaining the Montanine Alkaloids

Before discussing the strategy that has been developed through the Author's studies, a survey of existing synthetic protocols available for constructing the montanine alkaloid framework are now presented.

Although massive synthetic effort has been directed toward almost all other types of Amaryllidaceae alkaloids, the montanine subclass has received relatively little attention. ${ }^{8,18}$ However, due to their unique architectures (particularly the presence of a 5,11methanomorphanthridine framework) and recently revealed pharmacological potential, ${ }^{3}$ they now represent attractive targets for synthetic chemists. Analysis of the literature reveals several successful strategies that have allowed six groups to achieve total syntheses of members of the montanine-type alkaloids. Overman was the first to publish (In 1991) a total synthesis of (\pm)-pancracine (13). ${ }^{19}$ Six months later, Hoshino reported total syntheses of (\pm)-pancracine (13), (\pm)-montanine (14) and (\pm)-coccinine (15). ${ }^{20}$ In 1993, Hoshino again reported a modified and improved approach to the same targets ${ }^{21}$ while, in the same year, Overman published the synthesis of (-)-pancracine (13), and thus providing the first asymmetric synthesis of a montanine alkaloid. ${ }^{22}$ Weinreb reported elegant, enantioselective
total syntheses of (-)-pancracine (13), (-)-montanine (14), (-)-coccinine (15) and a formal total synthesis of (-)-brunsvigine (18) in 1997^{23} while, in the following year, Pearson ${ }^{24}$ reported the enantioselective synthesis of $(+$)-coccinine (ent-15), the first total synthesis of a member of the less common enantiomeric series. Ikeda published a formal total synthesis of (\pm)-pancracine (13) in 1999. ${ }^{25}$ Two years later Banwell also reported a formal total synthesis of (\pm)-pancracine $(13)^{26}$ while Sha published the first total synthesis of (-)brunsvigine (18). ${ }^{27}$ Most recently (2005), Pandey reported a formal total synthesis of (土)pancracine (13). ${ }^{18}$

Analyses of the abovementioned syntheses reveals that the strategies used to construct the pentacyclic 5,11-methanomorphanthridine framework, 22, of these alkaloids have largely been confined to: (i), the application of a Pictet-Spengler reaction to 23; (ii), a radical cyclization reaction to $\mathbf{2 4}$; (iii), intramolecular alkylation of amino-alcohol 25; or finally, (iv), a [3+2]-cycloaddition/cycloalkylation reaction involving compound 26 as the substrate (Figure 1.3).

alkaloid framework (22) Formal total synthesis (土)-pancracine (7 steps), (\pm)-montanine (9 steps), \& (\pm)-coccinine (9 steps), Hoshino, 1993.

25

Total synthesis (-)-pancracine (27 steps), (-)-montanine (29 steps), (-)-coccinine (28 steps) \& formal total synthesis of (-)-brunsvigine (21 steps), Weinreb, 1997.

Scheme 1.3: Synthetic strategies employed in obtaining the montanine alkaloid framework 22 lacking the E-ring double bond

A comprehensive review of each strategy, detailing all the relevant formal and total syntheses of the montanine alkaloids, is beyond the scope of this introduction. However, an overview of each type of synthetic strategy that has been used to prepare these alkaloids is presented below.

1.3.3.1. Pictet-Spengler Reaction Strategy

One of the first synthetic strategies directed towards montanine alkaloids employed the title reaction. ${ }^{28}$ Thus, following exhaustive investigations on the reductive cyclizations of nitroketones to 3-arylhexahydroindoles, Sanchez ${ }^{28}$ was able to convert nitroketone 27 into 3-aryloctahydroindole 28 (Scheme 1.3). However, this compound possesses the wrong stereochemistry for the pivotal Pictet-Spengler reaction and such that the installation the C ring of the montanine alkaloid framework could not be generated by such means.

Scheme 1.3: Pictet-Spengler reaction strategy - Sanchez approach to the montanine alkaloid framework

Indeed, subjection of nitroketone 27 to various cyclization conditions produced a range of polyhydroindole derivatives, but none of these possessed the stereochemistry required for elaboration to the montanine alkaloid framework. Fortunately, a 3-aryloctahydroindole possessing the correct (cis-) stereochemistry, was obtained via a modified approach (Scheme 1.4), involving an initial reaction of phenylacetonitrile 29 and nitrocyclohexene 30 to afford the β-nitronitrile 31. Subjection of this last compound to a DIBAL-H reduction followed by reductive cyclization of the product aldehyde 32 with a nickel catalyst then produced the required 3-aryloctahydroindole 33.

31

DIBAL-H,
THF, $0^{\circ} \mathrm{C}$, 81\%

33

32

Scheme 1.4: Modified Sanchez approach to the montanine alkaloid framework

However, due to the low yields of the relevant products and because of a lack of good levels of stereocontrol, this reaction sequence was abandoned since it was considered unlikely to provide a useful synthetic route to montanine alkaloids.

Overman ${ }^{19}$ was able to overcome problems of the type described above by utilizing an elegant [3,3]-sigmatropic rearrangement followed by an intramolecular Mannich reaction to construct 3-aryloctahydroindoles possessing the cis-stereochemistry required for engagement in the key Pictet-Spengler reaction. Ultimately this sequence allowed for the establishment of the first stereocontrolled total synthesis of (\pm)-pancracine (13). This commenced with the readily available aminocyclopentanone 34 (Scheme 1.5), which was treated with the alkynylcerium reagent 35 to afford the propargyl alcohol 36 in a highly diastereoselective manner. The removal of the cyanomethyl protecting group within compound 36 was achieved using AgNO_{3} and the resulting propargyl alcohol, 37, was then reduced with LiAlH_{4} to give allylic alcohol 38. Treatment of this last compound with formalin then provided oxazole 39 in an overall yield of 74% from precursor 36. Treatment of compound 39 with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ initiated the key [3,3]-sigmatropic rearrangement (to give 40) which was followed by an intramolecular Mannich reaction (via intermediate 41) ${ }^{29,30}$
to produce 3-aryloctahydroindole 42 with high stereoselectivity and in excellent yield. In order to obtain the full target framework, all that remained was the hydrogenolysis of the $N-$ benzylamine 42 and subjection of the ensuing 2°-amine to the pivotal Pictet-Spengler reaction. This sequence proved to be highly effective and afforded ketone 43 in 67% overall yield.

Scheme 1.5: Overman's ${ }^{19}$ synthesis of (\pm)-pancracine (13) using a Pictet-Spengler end-game

Stereoselective reduction of compound 43 provided alcohol 44, that underwent dehydration on exposure to SOCl_{2} to give a mixture of products 45 and 46 with the desired one, 46, being obtained in 60% yield. Allylic oxidation of this mixture of alkenes with SeO_{2} then gave allylic alcohols 47 and 48 in 62% and 5% yields, respectively. Good yields were only obtained in this last step with the addition of Celite ${ }^{\circledR}$ to the heterogenous reaction mixture. Oxidation of alcohol 47 under Swern conditions ${ }^{31}$ then provided the required enone 49. With a view to installing the necessary hydroxyl groups at C2 and C3, enone 49 was subjected to Rubottom oxidation conditions ${ }^{32}$ to give an α-hydroxyketone that was reduced with $\mathrm{NaBH}(\mathrm{OAc})_{3}$. This finally provided (\pm)-pancracine (13) in 14% overall yield and in 17 steps from aminocyclopentanone 34. The utility of the [3,3]-sigmatropic rearrangement/intramolecular Mannich reaction sequence and the subsequent PictetSpengler reaction processes have been highlighted in Overman's subsequent report ${ }^{22}$ of the first enantioselective total synthesis of (-)-pancracine (13) from easily obtained and enantiopure (S)-aminoketone 50.

50

1.3.3.2. Radical Cyclization Strategy

An approach to the montanine alkaloids pioneered by Hoshino ${ }^{21}$ serves to showcase the utility of radical cyclization processes in the synthesis of these types of natural products. This method allowed for the late-stage installation of the D-ring via a 5-exo-trig cyclization protocol. The necessary radical cyclization precursor was obtained, after a substantial effort, from tetrahydroisoquinonol 51 (Scheme 1.6). Thus, N-selective trifluoroacetylation of this material gave tetrahydroisoquinonol 52 that was subjected to a thiolation reaction using PhSH in the presence of ZnI_{2} and so generating phenylsulfide 53 in 88% yield over the two steps. Hydrolysis of compound 53 gave tetrahydroisoquinoline 54 that underwent $N-$ alkylation with 4-bromocyclohex-2-enone to afford radical precursor phenylsulfide 55 as an inseparable and $1: 1$ mixture of diastereoisomers. Subjection of this mixture to optimised radical cyclization conditions then furnished the desired montanine alkaloid framework 56 in excellent yield. Subsequent and conventional ${ }^{19,33}$ manipulation of product 56
lead to previously described precursors to the montanine alkaloids (\pm)-pancracine (13), (\pm)-montanine (14) and (\pm)-coccinine (15). As such, this work represented the formal total syntheses of these alkaloids. ${ }^{33}$

Scheme 1.6: Hoshino's approach to (\pm)-pancracine (13), (\pm)-montanine (14) and (\pm)-coccinine (15) using a radical cyclization strategy

1.3.3.3. Intramolecular Amination Reaction Strategy

An intramolecular amination strategy has also been successfully applied in the construction of the montanine alkaloid framework. Weinreb, ${ }^{34}$ for instance, reported elegant and enantioselective syntheses of (-)-pancracine (13), (-)-montanine (14) and (-)-coccinine (15) using novel allenyl silane chemistry followed by an intramolecular amination reaction. Thus, as shown in Scheme 1.7, the synthesis involved the preparation of alkyne 60 using the enantiomerically pure hydroxy epoxide 57 as starting material. The latter compound, which is readily available via a Sharpless asymmetric epoxidation of divinylcarbinol, could be converted, over ten steps, into aldehyde 58.

Scheme 1.7: Intramolecular amination strategy - Weinreb's preparation alkyne 60

Condensation of compound 58 with iminophosphorane 59^{35} afforded an imine that, upon heating, underwent a concerted imino-ene reaction to provide, after desilylation, alkyne 60 as a single stereoisomer in 63% yield over the two steps. The formation of a single stereoisomer via this sequence was gratifying but not unforeseen. Thus, close inspection of this transformation (viz $58+59 \rightarrow \mathbf{6 0}$) reveals two imine conformers, A and B, both of which are capable of engaging in the pivotal thermal imino-ene reaction (Scheme 1.8). However, this had no consequence for the synthesis since both conformers lead to the same stereoisomeric form of the cyclization product 61.

Scheme 1.8: Intramolecular amination strategy - Weinreb's application of the imino-ene reaction to the synthesis of a montanine alkaloid precursor

Alkyne 60 was partially hydrogenated in the presence of Lindlar's catalyst to give the terminal olefin 62 that was subjected to a Heck cross-coupling reaction leading to the formation of an exocyclic alkene, which was N-protected to furnish sulfonamide 63 (Scheme 1.9). A number of attempts were made to produce α-hydroxymethyl compound 66 via hydroboration reactions, but only mixtures of stereoisomeric products were observed. Hence, an alternative route was pursued that involved epoxidation of the olefin with DMDO. Exposure of the product epoxide, 64, to FeCl_{3} at low temperature then lead to aldehyde 65, which was obtained as a single stereoisomer. In situ reduction of compound 65 with DIBALH at $-78^{\circ} \mathrm{C}$ produced the desired α-hydroxymethyl 66 in 88% over the two steps. Catalytic hydrogenation of compound 66 with $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH then gave alcohol 67, which was subjected to sodium naphthalenide-mediated cleavage of the N-tosyl group to produce the key amino-diol 68. Treatment of this last compound with imidazole, PPh_{3} and iodine at $0^{\circ} \mathrm{C}$
effected the pivotal intramolecular amination reaction and so affording the desired functionalised montanine alkaloid framework 69 in 94% yield. Subsequent protecting group manipulations then lead to total syntheses of (-)-pancracine (13), (-)-montanine (14) and (-)-coccinine (15).

DMDO,
acetone, 89\%

64 $\left\lvert\, \begin{aligned} & \mathrm{Na}, \text { napthanlene, } \\ & \mathrm{DME},-78^{\circ} \mathrm{C}, \\ & 96 \%\end{aligned}\right.$

Scheme 1.9: Weinreb's completion of total syntheses of (-)-pancracine (13), $(-)$-montanine (14) and (-)-coccinine (15) via an intramolecular amination strategy

1.3.3.4. [3+2]-Cycloaddition/Cycloalkylation Strategy

Another method for the construction of montanine framework, the [3+2]cycloaddition/cycloalkylation strategy reported by Pandey, ${ }^{18}$ involves a two-step protocol resulting in the installation of the $\mathrm{C}-$, D - and E-rings. As shown in Scheme 1.10, the synthesis began with the preparation of the necessary cycloaddition precursor. Thus, silylamine $\mathbf{7 0}$ (prepared from 3-aminopropanol) and aryl di-iodide 71 (readily obtained from piperonoyl alcohol) underwent a $\mathrm{K}_{2} \mathrm{CO}_{3}$-promoted coupling reaction followed by benzoylation using benzoyl chloride to produce silylamine $\mathbf{7 2}$ in 81% over the two steps.

Heck coupling of this last compound with excess methyl vinyl ketone (MVK) then provided the key cycloaddition precursor 73.

KHMDS,
 THF, $-78^{\circ} \mathrm{C}$

Scheme 1.10: Pandey's formal total synthesis of (\pm)-pancracine (13) via [3+2]cycloaddition/cycloalkylation strategy

Treatment of compound 73 with AgF in MeCN resulted in the generation of an azomethine ylide that underwent an intramolecular [3+2]-cycloaddition reaction to give ketone 74 incorporating the C - and D-rings present in the montanine alkaloid framework. However, this pivotal process proceeds in only modest (56%) yield and with low levels of stereocontrol. With a view to installing the E-ring, ester 74 was hydrolysed and the resulting alcohol was converted into mesylate 75 under standard conditions. Treatment of this last compound with KHMDS in anhydrous THF at $-78^{\circ} \mathrm{C}$ resulted in the formation of the kinetic enolate 76 which
underwent intramolecular C-alkylation to give ketone 77, a compound incorporating the full framework of the montanine alkaloids. The subsequent regioselective installation of the necessary $\Delta^{1,112}$-double bond was achieved via a standard protocol whereby the enol triflate, generated by a reaction of the corresponding lithium enolate with Comins reagent, ${ }^{36}$ was reduced using $\mathrm{Pd}[\mathrm{O}]$-catalysed conditions to provide the desired montanine alkaloid framework 78. As this compound corresponded to an advanced intermediate in Overman's total synthesis of (\pm)-pancracine (13), ${ }^{19}$ its acquisition constituted a formal total synthesis of (\pm)-pancracine (13).

1.3.4. Evaluating Key Issues Associated with the Synthesis of the Montanine Alkaloids

In order to evaluate the strengths and the weaknesses of the four strategies just described, one has to consider whether or not these approaches can be utilized as general methods for the synthesis of montanine alkaloids by addressing problems such as low regio- and stereo-selectivity, the use of lengthy synthetic sequences, the need to employ expensive reagents and low yields. The strength of Weinreb's ${ }^{23,34}$ enantioselective total syntheses of $(-)$-pancracine (13), (-)-montanine (14) and (-)-coccinine (15), for instance, is diminished by the fact that 28 steps (on average) are required to complete the sequences. The formal total synthesis of (\pm)-pancracine (13) reported Pandey ${ }^{18}$ is unique in that rapid access to the montanine alkaloid framework was achieved but it lacks the appropriate stereocontrol that would permit a stereoselective synthesis of (-)-pancracine (13).

Another issue that is of relevance in the evaluation of these strategies involves the installation of both the $\Delta^{1,11 a}$-double bond and oxygen functional groups present at C 2 and C3 in the E-ring of montanine alkaloids. Analysis of all the strategies described above reveals that the installation of such a double bond and oxygen functions in a regio- and stereo-controlled manner is distinctly problematic. For example, the Overman syntheses of (\pm)-pancracine (13) ${ }^{19}$ and (-)-pancracine (13) ${ }^{22}$ suffer from these problems in that rather tedious synthetic sequences are necessary so as to regioselectively install the necessary $\Delta^{1,11 a}$-double bond and to stereoselectively incorporate the hydroxyl groups.

1.3.4.1. Banwell and Sha Synthetic Approaches to Montanine Alkaloids

Whilst addressing some of the abovementioned issues, Banwell was able to achieve an operationally simple, relatively short (9 steps) and fully regio-controlled formal total synthesis (\pm)-pancracine (13), which involved an early stage installation of the desired and previously troublesome $\Delta^{1,11 a}$-double bond. A key feature of this synthesis involved DBUmediated Michael-addition of cyclohexan-1,3-dione (80) to β-nitrostyrene (79) to give product 81 in quantitative yield (Scheme 1.11). Elaboration of the last compound, 81, using relatively straightforward chemistry, produced sulfonamide 82, which was cyclized under Mitsunobu reaction conditions to give 3-arylhexahydroindole 83. Subsequent removal of the tosylate group followed by application of the pivotal Pictet-Spengler reaction allowed for installation of the C-ring and generation of compound 78, an advanced intermediate in Overman's total synthesis of (\pm)-pancracine (13). ${ }^{19}$ Consequently, the acquisition of the pentacyclic compound $\mathbf{7 8}$ by such means constitutes a formal total synthesis of this alkaloid.

Scheme 1.11: Banwell's formal total synthesis of (土)-pancracine (13)

Sha's ${ }^{27}$ approach to (-)-brunsvigine (18) went further in that installation of $\Delta^{1,112}$-double bond and hydroxyl groups at C2 and C3 was achieved at an early stage. Furthermore, a regio- and stereo-controlled synthesis of (-)-brunsvigine (18) was undertaken whereby a
two-step annulation protocol involving a Mitsunobu reaction and anionic cyclization reaction was used to construct the D-ring of the target alkaloid. Thus, as shown in Scheme 1.12, the quinic acid-derived allylic alcohol 84 underwent an intermolecular Mitsunobu reaction with the glycine-derived sulfonamide 85 to give amide 86. Treatment of this last compound with n-BuLi resulted in an anionic cyclization process to provide enone 87 that was then readily elaborated to the corresponding pivaloate ester 88 . Compound 88 was set up for a Culpromoted $S_{N} 2$ displacement reaction, which could be achieved by treating it with arylmagnesium bromide 89. This resulted in the displacement of the pivaloate group to afford the arylated hexahydroindole 90 in 76\% yield.

91

Conc. HCl , $\mathrm{MeOH}, 81 \%$
(-)-Brunsvigine (18)
(i) $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Na}$,
 salt, $90^{\circ} \mathrm{C}$, 62\%

90

88
$\mathrm{MeOH}, 81 \%$

Scheme 1.12: Sha's total synthesis of (-)-brunsvigine (18)

Removal of the N-tosyl group followed by a Pictet-Spengler reaction using Eschenmoser's salt resulted in formation of the fully functionalised montanine alkaloid framework 91. Cleavage of isopropylidene group in this last compound could be achieved using concentrated HCl and thus affording (-)-brunsvigine (18) in 81% yield. Overall, although a relatively efficient synthesis of the target montanine alkaloid (-)-brunsvigine (18) was achieved, this work fails to explore the applicability of these protocols for the purposes of
accessing the remaining montanine alkaloids. Accordingly, the remainder of this introduction details a new synthetic strategy for the general preparation of montanine alkaloids.

1.3.5. Towards a New Synthesis of the Montanine Alkaloids

A key feature of the synthetic approach to the montanine alkaloids that is associated with the body of work described in this thesis is the recognition that the enzymatically-derived and enantiomerically pure cis-1,2-dihydrocatechois of the general type 92 have considerable structural homology to the E-ring of montanine alkaloids and could, therefore, serve as precursors to the title alkaloids.

Figure 1.4: Key intermediate and precursor in a new synthesis of the montanine alkaloids

In particular, it is conceivable that the cis-1,2-dihydroxylation and annulation of the D-ring to this type of substrate would furnish the 3-arylhexahydroindole 93 that could later be transformed, via a Pictet-Spengler reaction, into the corresponding and fully functionalised montanine alkaloid framework (Scheme 1.4). This approach, although challenging, would avoid the tedious and possibly lengthy installation of the necessary $\Delta^{1,11 a}$-double bond and oxygen-based functional groups present at C2 and C3 in the E-ring of montanine alkaloids. In addition, this strategy, if successful, would further highlight the value of cis-1,2dihydrocatechols as building blocks in natural product synthesis.

1.3.5.1. Chemoenzymatic Approaches to Montanine Alkaloids

While a range of methods is likely to be applicable for the annulation of the D-ring to a cis-1,2-dihydrocatechol-derived precursor, four were considered in detail. The first to be
identified (Approach A) involved a new, two-step protocol for annulation of the D-ring. Specifically, this involved a Lewis-acid-mediated nucleophilic ring-opening of aziridine 95 with the cis-1,2-dihydrocatechol-derived stannane 94 (and thus leading to compound 96) that is followed by an intramolecular Mitsunobu-type reaction to generate 3arylhexahydroindole 97, which incorporates the $\Delta^{1,11 a}$-double bond and A-, B-, D- and Erings of the montanine alkaloid framework (Scheme 1.13). Inspired by the work of Overman, ${ }^{19,22}$ it was envisaged that the deoxygenation of 3-arylhexahydroindole 97 at C7 followed by the late-stage installation of the C-ring via a Pictet-Spengler reaction would provide the fully functionalised montanine alkaloid framework.

Scheme 1.13: Possible chemoenzymatic access to the montanine alkaloids via Approach A

The second approach (Approach B) also involves a two-step D-ring annulation protocol. Based on the work by Sha, ${ }^{27}$ this would utilise an intermolecular Mitsunobu-type reaction between cis-1,2-dihydrocatechol-derived allylic alcohol 98 and sulfonamide 99 to produce intermediate 100 that would be subjected to a tandem radical cyclization/halogen atom elimination protocol to give 3-arylhexahydroindole 97 that also incorporates the $\Delta^{1,11 a}$-double bond and A-, B-, D- and E- rings of montanine alkaloid framework (Scheme 1.14). As with the first approach, this one would also involve the deoxygenation of 3-arylhexahydroindole 97 at C7. Subsequent installation of the C-ring via Pictet-Spengler reaction would then provide the fully functionalised montanine alkaloid framework.

Scheme 1.14: Possible chemoenzymatic access to the montanine alkaloids via Approach B

A third approach (Approach C), once again using a two-step annulation protocol, involves the direct N-alkylation of cis-1,2-dihydrocatechol-derived 2°-amine 101 with α bromoketone 102 to produce 3°-amine 103 (Scheme 1.15). After functional group interconversions (FGIs), to produce an appropriate radical precursor, a radical cyclization/halogen atom elimination reaction would then afford 3-arylhexahydroindole 104, which also incorporates the necessary $\Delta^{1,11 a}$-double bond and $\mathrm{A}-, \mathrm{B}-$, $\mathrm{D}-$ and E -rings present in montanine alkaloid framework. Late-stage deoxygenation at C7 of 3arylhexahydroindole 104 followed by the installation of the C-ring via a Pictet-Spengler reaction would then deliver the fully functionalised montanine alkaloid framework.

Scheme 1.15: Possible chemoenzymatic access to the montanine alkaloids via Approach C

The fourth approach (Approach D), which is modification of the third, also involves a twostep D-ring annulation protocol. Based on the work of Ikeda, ${ }^{25}$ this starts with the coupling of 2°-amine 101 (believed to be accessible from the bromo- and chloro-derivatives of cis-1,2dihydrocatechol 92) with acid 105 to produce intermediate 106 (Scheme 1.16). This would be followed by a tandem radical cyclization protocol to give 3-arylhexahydro-oxindole 107 that incorporates the $\Delta^{1,11 a}$-double bond and $A-, B-, D-$ and $E-r i n g s$ of the montanine alkaloid framework. Subsequent deoxygenation at C7 of 3-arylhexahydro-oxindole 107 followed by reduction of the amide function and installation of the C-ring via the pivotal Pictet-Spengler reaction should then provide the fully functionalised framework of the target alkaloids.

Scheme 1.16: Possible chemoenzymatic access to the montanine alkaloids via Approach D

1.4. Aims of the Research Described in this Thesis

By virtue of utilizing the enantiopure cis-1,2-dihydrocatechols as building blocks, the aim of the research presented herein was to develop a general strategy for the chemoenzymatic synthesis of the montanine alkaloids. Specifically, it was envisaged that the first chemoenzymatic total synthesis of the unnatural enantiomer of the montanine alkaloid (+)brunsvigine (ent-18) would illustrate the viability of this procedure. Also, given the availability of either enantiomeric form of cis-1,2-dihydrocatechol 92 (see next section), it is
conceivable that this approach can be utilised as a general method for preparing the remaining montanine alkaloids and in either enantiomeric form. Having identified four possible synthetic approaches, the format of this thesis involves, in Chapters Two-Four, descriptions of the first three approaches (Approach A, Approach B and Approach C), particularly disclosing the studies undertaken to identify suitable conditions for preparing the relevant 3-arylhexahydroindoles as key intermediates for the synthesis of montanine alkaloids. Chapter Five details the implementation of the fourth (successful) approach (Approach D) as a means of preparing (+)-brunsvigine (ent-18). Chapter Six-provides a summary of this work as well as a brief synopsis of possible future work.

(+)-Brunsvigine (ent-18)

1.5. Production and Synthetic Applications of cis-1,2Dihydrocatechols

Before the outcomes of the Author's studies are disclosed, a brief description of the production and synthetic applications of cis-1,2-dihydrocatechols is warranted and so presented below. Importantly, cis-1,2-dihydrocatechols (92) are readily obtained in large quantities (up to 35 grams of per litre of fermentation broth) through the application of various highly efficient whole-cell biotransformations. This is achieved, for example, via treatment of the genetically engineered micro-organism Escherichia coli JM109 (pDTG601) with abundant chemical feedstocks such as simple aromatic compounds (108) (e.g. chlorobenzene and toluene as shown in Scheme 1.17) to produce the enantiomerically pure cis-1,2-dihydrocatechols (92). ${ }^{37}$ In fact, to date, over 250 metabolites produced through this type of process have been reported. ${ }^{38}$

108
 (pDTG601)
$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CH}_{3}$, etc.

92

Scheme 1.17: Preparation of cis-1,2-dihydrocatechols (92) via biotransformation of the corresponding arene 108

To overcome the limitation of there being only one enantiomeric form of the cis-1,2dihydrocatechols available by the means defined above, Boyd et al. ${ }^{39}$ developed a useful chemoenzymatic procedure for accessing the antipode. As shown in Scheme 1.18, the preparation of the enantiomeric series commences with the subjection of p-iodinated arenes of type 109 to toluene dioxygenase-mediated dihydroxylation to produce a mixture of enantiomeric diols 110 and ent-110. Catalytic hydrogenolysis to cleave the carbon-iodine bond is then followed by the feeding of the de-iodinated material (comprised of a mixture of 92 and ent-92) to a wild strain of Pseudomonas putida (P. putida) (which contains the cis-1,2-dihydrocatechol dehydrogenase enzyme). This results in selective metabolism whereby only diol 92 is dehydrogenated, leaving ent-92 untouched and capable of being isolated in high enantiomeric excess. Overall, these metabolites represent a group of versatile building blocks that should be considered valuable additions to the chiral pool. ${ }^{37,40,41}$

$$
\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CH}_{3} \text {, etc. }
$$

Scheme 1.18: Preparation of the enantiomers of the more common cis-1,2-dihydrocatechols

Despite their availability since the 1960's, it has only been in the last 20 years that the cis1,2 -dihydrocatechols have started to have an impact on the synthetic community. Since the pioneering work of Ley et al., ${ }^{42}$ in developing a total synthesis of (\pm)-pinitol (111), these metabolites have been used in a wide range of synthetic endeavours including the preparations of a variety of simple \rightarrow complex natural products, particularly alkaloids, polyketides, macrolides, terpenes and cyclitols (such as compounds 111-118) (Figure 1.5). A comprehensive description of the work carried out in this area is beyond the scope of this introduction. However, excellent reviews of this area are readily available. ${ }^{37,41,43}$

Figure 1.5: Examples of natural products synthesised from cis-1,2-dihydrocatechols

1.6. References

1. Hoshino, O., The Alkaloids. Cordell, G. A.; Ed., Academic Press: New York, 1998; Vol. 51, p 323-424.

Jin, Z., J. Nat. Prod., 2003, 20, 606.
3. Dictionary Of Natural Products On CD-ROM. 1st ed.; Buckingham, J.; Ed., Chapman \& Hall/ CRC: 2004.
4. Kemmler, M. K., Studies Towards the Synthesis of Montanine-type Amaryllidaceae Alkaloids, Masters Thesis, Australian National University, Canberra, 2000.

Likhitwitayawuid, K.; Angerhofer, C. K.; Chai, H. B.; Pezzuto, J. M.; Cordell, G. A., J. Nat. Prod., 1993, 56, 1331.

The common biosynthetic numbering scheme employed by Wildman will be used here. The nomenclature and numbering of Chemical Abstracts is different from this.
9. Labrana, J.; Machocho, A. K.; Kricsfalusy, V.; Brun, R.; Codina, C.; Viladomat, F.; Bastida, J., Phytochem., 2002, 60, 847.

Wildman, W. C.; Brown, C. L., J. Am. Chem. Soc., 1968, 90, 6439.
11. Clark, R. C.; Warren, F. L.; Pachler, K. G. R., Tetrahedron, 1975, 31, 1855.
12. Inubushi, Y.; Fales, H. M.; Warnhoff, E. W.; Wildman, W. C., J. Org. Chem., 1960, 25, 2153.
13. Laing, M.; Clark, R. C., Tetrahedron Lett., 1974, 583.
14. Viladomat, F.; Bastida, J.; Codina, C.; Campbell, W. E.; Mathee, S., Phytochem., 1995, 40, 307. I.; Henriques, A. T.; Zuanazzi, J. A. S., Pharmacology Biochemistry and Behavior, 2006, 85, 148.
17. Southon, I. W.; Buckingham, J., Dictionary of the Alkaloids. Chapman Hall: New York, 1989; p 229, 735.
18. Pandey, G.; Banerjee, P.; Kumar, R.; Puranik, V. G., Org. Lett., 2005, 7, 3713.
19. Overman, L. E.; Shim, J., J. Org. Chem., 1991, 56, 5005.
20. Ishizaki, M.; Hoshino, O.; litaka, Y., Tetrahedron Lett., 1991, 32, 7079.
21. Ishizaki, M.; Kurihara, K.; Tanazawa, E.; Hoshino, O., J. Chem. Soc., Perkin Trans. 1, 1993, 101.
22. Overman, L. E.; Shim, J., J. Org. Chem., 1993, 58, 4662.
23. Jin, J.; Weinreb, S. M., J. Am. Chem. Soc., 1997, 119, 2050.
24. Pearson, W. H.; Lian, B. W., Angew. Chem., Int. Ed. Engl., 1998, 37, 1724.
25. Ikeda, M.; Hamada, M.; Yamashita, T.; Matsui, K.; Sato, T.; Ishibashi, H., J. Chem. Soc., Perkin Trans. 1, 1999, 1949.
26. Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Kemmler, M., J. Chem. Soc., Perkin Trans. 1, 2001, 1345.
27. Sha, C. K.; Hong, A. W.; Huang, C. M., Org. Lett., 2001, 3, 2177.
28. Sanchez, I. H.; Larraza, M. I.; Rojas, I.; Brena, F. K.; Flores, H. J.; Jankowski, K., Heterocycles, 1985, 23, 3033.
29. Overman, L. E.; Ricca, D. J., Comprehensive Organic Synthesis. Heathcock, C.; Trost, B.; Fleming, I.; Eds., Pergamon: Oxford: 1991; Vol. 2, p 1007-1046.
30. Overman, L. E.; Mendelson, L. T.; Jacobsen, E. J., J. Am. Chem. Soc., 1983, 105, 6629.
31. Mancuso, A. J.; Huang, S. L.; Swern, D., J. Org. Chem., 1978, 43, 2480.
32. McCormick, J. P.; Tomasik, W.; Johnson, M. W., Tetrahedron Lett., 1981, 22, 607.
33. Ishizaki, M.; Hoshino, O.; litaka, Y., J. Org. Chem., 1992, 57, 7285.
34. Jin, J.; Weinreb, S. M., J. Am. Chem. Soc., 1997, 119, 5773.
35. Lambert, P. H.; Vaultier, M.; Carrie, R., J. Chem. Soc., Chem. Comm., 1982, 1224.
36. Comins, D. L.; Dehghani, A., Tetrahedron Lett., 1992, 33, 6299.
37. Hudlicky, T.; Gonzalez, D.; Gibson, D. T., Aldrichimica Acta, 1999, 32, 35.
38. Stabile, M. R., Doctor of Philosohy Thesis, Virginia Polytechnic Institute and State University, 1995.
39. Boyd, D. R.; Dorrity, M. R. J.; Hand, M. V.; Malone, J. F.; Sharma, N. D.; Dalton, H.; Gray, D. J.; Sheldrake, G. N., J. Am. Chem. Soc., 1991, 113, 666.
40. Zylstra, G. J.; Gibson, D. T., J. Biol. Chem., 1989, 264, 14940.
41. Johnson, R. A., Org. React., 2004, 63, 117.
42. Ley, S. V.; Sternfeld, F.; Taylor, S., Tetrahedron Lett., 1987, 28, 225.
43. Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Vogtle, M., Pure and Applied Chemistry, 2003, 75, 223.
44. Charest, M. G.; Siegel, D. R.; Myers, A. G., J. Am. Chem. Soc., 2005, 127, 8292.
45. Austin, K. A. B.; Banwell, M. G.; Willis, A. C., Tetrahedron, 2007, 63, 6388.
46. Tian, X. R.; Hudlicky, T.; Konigsberger, K., J. Am. Chem. Soc., 1995, 117, 3643.
47. Donohoe, T. J.; Blades, K.; Helliwell, M.; Waring, M. J.; Newcombe, N. J., Tetrahedron Lett., 1998, 39, 8755.
48. Banwell, M.; McLeod, M., J. Chem. Soc., Chem. Comm., 1998, 1851.
49. Banwell, M. G.; Loong, D. T. J., Org. Biomol. Chem., 2004, 2, 2050.
50. Hudlicky, T.; Rouden, J.; Luna, H.; Allen, S., J. Am. Chem. Soc., 1994, 116, 5099.

CHAPTER TWO

Towards (+)-Brunsvigine: Attempted Synthesis of 3-Arylhexahydroindoles
 via Approach A

2.1. Introduction

2.1.1. Overview and Context

Having identified the Pictet-Spengler reaction as a crucial process in the proposed approach to (+)-brunsvigine (ent-18), the synthesis of a substrate, 119, for such a reaction became a major objective of the study detailed in this chapter. Since it was thought that such a compound could be obtained from cis-1,2-dihydrocatechols 92 , effecting the conversion 92 $\rightarrow 119$ became a particular focus of the work described here and details of this approach (Approach A) are discussed below.

ent-18

$P=$ protecting group

$\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$

2.1.1.1. Overview of Approach A

Central to Approach A, which involves D-ring annulation to an E-ring-containing precursor, is the nucleophilic ring-opening of aziridine 95 with chemoenzymatically-derived and stannylated conduritol 94 to produce sulfonamide 96 (Scheme 2.1). This was to be followed by an intramolecular Mitsunobu reaction ${ }^{1}$ to provide the required key intermediate 3arylhexahydroindole 97 . However, before discussing the studies undertaken by the Author in this regard, a brief overview of the use of aziridines in synthesis is presented in the following section.

$\mathrm{P}, \mathrm{Pl}^{\mathrm{l}}=$ orthogonal
protecting groups

Scheme 2.1: Formation of key intermediate 97 via Approach A

2.2. Aziridines in Synthesis: Overview and Context

Within the synthetic community aziridines have attracted considerable attention in recent years because they represent valuable three-membered ring systems that are versatile building blocks for chemical bond formation and functional group interconversions. ${ }^{2-5}$ This has been extensively demonstrated by the publication of numerous methodologies that describe their preparation, especially asymmetric approaches, and the broad manner of their application to the synthesis of biologically active compounds. ${ }^{5-9}$ The rapid and efficient preparation of the anti-influenza drug oseltamivir phosphate (Tamiflu ${ }^{\oplus}$)(120) by Corey ${ }^{10}$ is a brilliant example that serves to highlight the synthetic value of this heterocycle.

Oseltamivir phosphate (120)

Thus, as summarized in Scheme 2.2, the Corey synthesis of Tamiflu ${ }^{\circledR}$ began with an asymmetric Diels-Alder reaction ${ }^{11}$ between butadiene 121 and ester 122. Produced in excellent yield and in high enantiomeric excess, the Diels-Alder adduct 123 was elaborated, through a series of functional group interconversions, into the corresponding $\alpha, \beta-$ unsaturated ester 124. An intramolecular $\mathrm{S}_{\mathrm{N}} 2$ displacement of the bromine function by the $N A c$ group of this last compound using in situ generated tetra-n-butylammonium hexamethyldisilazide then provided the desired aziridine 125. Subsequent nucleophilic ringopening of the aziridine, 125, with 3 -pentanol was effected using copper(II) triflate as a Lewis acid and so providing the oseltamivir precursor 126, which upon exposure to phosphoric acid in EtOH afforded the target compound 120.

Scheme 2.2: Corey's total synthesis of oseltamivir phosphate (Tamiflu®)(120)

Before disclosing the outcomes of the nucleophilic ring-opening of aziridine 127 with alkenyl stannane 128 (shown in the next section), it is appropriate to provide a rationale as to why aziridine 127 was chosen as a candidate for such a process.

127

128

Generally, and as a consequence of the electronegativity of the nitrogen atom and the ringstrain (Baeyer strain) present in aziridines (and related three membered rings), ring-opening reactions are a dominant feature of their chemistry. In this respect, aziridines are divided into two main types, depending upon the nature of the N-substituent. ${ }^{5,12}$ The 'non-activated' aziridines (129) contain a basic nitrogen atom and ring-opening reactions usually occur after protonation, quaternarization at the heteroatom or formation of Lewis acid adducts. The 'activated' aziridines (130) (typically N-sulfonyl derivatives such as aziridine 127), posses an electrophilic substituent which can conjugatively stabilize any negative charge that develops on the nitrogen atom in the transition state for the ring-opening by nucleophiles (typically alcohols, azides and thiols). ${ }^{12}$

$\mathrm{L}_{\mathrm{N}-\mathrm{R}}$	$\mathrm{LN}_{\mathrm{N}-\mathrm{R}}$
$\mathbf{1 2 9}$	130
'non-activated'	'activated'
$\mathrm{R}=\mathrm{H}$, alkyl, aryl	$\mathrm{R}=\mathrm{COR}, \mathrm{CO}_{2} \mathrm{R}, \mathrm{SO}_{2} \mathrm{R}$

Consequently, 'activated' aziridines are preferred over 'non-activated' ones as substrates for nucleophilic ring-opening reactions. Generally, nucleophilic ring-opening of 'activated' aziridines does not occur in the absence of a Lewis acid. This is significant because the nitrogen lone pair has increased s-orbital character as compared to aliphatic 2° - and $3^{\circ}-$ amines. This results in lower basicity and, more significantly, a decreased π-donor ability which reduces the capacity for a facile ring-opening process. ${ }^{12,13}$

2.3. D-Ring Annulation: Attempted Synthesis of 3arylhexahydroindole 97

2.3.1. Model Study

A proof-of-principle model study was undertaken that involves the testing of an alkenyl stannane's capacity to react with aziridines in the intended manner and in the presence of Lewis acid catalysts that promote nucleophilic ring-opening of aziridines. The reason alkenyl stannanes (such as compound 128) behave as nucleophiles can be rationalized using the concept of the β-tin effect. As a special type of hyperconjugation that is general amongst the group 14 metals, the β-tin effect involves the stabilization of a carbocation by hyperconjugation through a β-carbon-tin bond (Scheme 2.3). ${ }^{14}$

Scheme 2.3: The β-tin effect in stabilizing carbocations

This effect enhances the nucleophilicity of alkynyl, alkenyl, allyl and aryl stannanes in their reactions with electrophiles. Alkenyl stannanes (131), for instance (Scheme 2.4), react with
electrophiles $\left(\mathrm{E}^{+}\right)$through an ipso-substitution reaction that results in cleavage of the stannyl group to produce alkene 132. ${ }^{15}$

Scheme 2.4: Reaction of alkenyl stannanes with electrophiles (E^{+})

On this basis, it is conceivable that alkenyl stannane 128 might engage in what would be an unprecedented carbon-carbon bond-forming process with aziridine 127. Thus, as shown in Scheme 2.5, nucleophilic addition of alkenyl stannane 128 to the benzylic carbon of the Lewis acid-activated aziridine 127 to produce the carbocation 133. Subsequent elimination of the trimethyltin cation from this species would then complete the ipso-substitution process, re-establish the double bond and so lead to alkene 134.

Scheme 2.5: Mechanism for the nucleophilic ring-opening of aziridine 127 with model alkenyl stannane 128

If the proposed new carbon-carbon bond forming event could be effected, this could provide a useful method for the construction of compound 97. As a prelude to investigating such possibilities, the electrophilic aziridine 127 and the corresponding nucleophile alkenyl stannane 128 need to be synthesised.

34

Hence, starting with cyclohexanone (135), the alkenyl stannane 128 was prepared following a standard, two-step, Shapiro protocol ${ }^{16}$ whereby the conversion of compound 135 into tosylhydrazone 136 was achieved using tosylhydrazine in refluxing MeOH (Scheme 2.6). Treatment of the latter compound with n-BuLi (4 equiv.) at low temperatures in the presence TMEDA resulted in the liberation of N_{2} and p-toluenesulfonyl anion to provide the intermediate alkenyl carbanion 137 which was trapped with $\mathrm{Me}_{3} \mathrm{SnCl}$ to afford alkenyl stannane 128. The ${ }^{1} \mathrm{H}$ NMR spectrum of this last material showed the expected signals including one at $\delta 5.76$, due to the olefinic proton $\left(\mathrm{H}_{\mathrm{a}}\right)$. However, the dominant feature in this spectrum is a signal at $\delta 0.00$ and the associated satellite doublets $\left(J\left[{ }^{117,119} \mathrm{Sn}-\mathrm{H}\right] 52\right.$ and 54 $\mathrm{Hz})$ which, together, integrate to nine protons and so are assigned to the three equivalent methyl group protons associated with tin.

Scheme 2.6: Synthesis of the model alkenyl stannane 128

Aziridine 127 was also prepared via a two-step sequence, this one involving an initial Wittig olefination of piperonal (138) to give the known styrene 139 (Scheme 2.7). ${ }^{17} \operatorname{Copper(II)-~}$ mediated nitrene addition to styrene 139 utilizing p-toluenesulfonamide, iodosobenzene and copper(I) triflate in the presence of $3 \AA$ molecular sieves ${ }^{18}$ then produced aziridine 127 in 40% yield. All the data obtained on this previously unreported material were in full accord with the assigned structure. The ${ }^{13} \mathrm{C}$ NMR spectrum, for example, showed signals at $\delta 40.8$ and 35.5 , which are assigned to C_{a} and C_{b}, respectively.

Scheme 2.7: Synthesis of aziridine 127

When aziridine 127 was treated with alkenyl stannane 128 in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as the Lewis acid ${ }^{19}$ a nucleophilic ring-opening of the aziridine occurred and thus delivering the desired product (134) in 55% yield (Scheme 2.8). The chromatographically separable hydrolysis product 140 was also obtained in 20% yield.

Scheme 2.8: Nucleophilic ring-opening of aziridine 127 with model alkenyl stannane 128

All the spectral data obtained on compound 134 were in accord with the assigned structure. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of this product (Figure 2.1) showed a signal at $\delta 4.30$ corresponding to benzylic proton $\left(\mathrm{H}_{\mathrm{a}}\right)$, which is indicative of the new carbon-carbon bondforming event resulting from the ring-opening of aziridine 127.

Figure 2.1: $300 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum of compound 134 recorded in CDCl_{3}

2.3.2. Attempted Nucleophilic Ring-Opening of Aziridine 127 with Alkenyl Stannanes 142-145

With the success of the model ipso-substitution reaction detailed in the preceding section, attention turned towards nucleophilic ring-opening of aziridine 127 with cis-1,2-dihydrocatechol-derived alkenyl stannane 142. However, before this process could be investigated, the preparation of the latter compound was required. This was achieved in four steps whereby the enantiopure iodo-derivative of cis-1,2-dihydrocatechol 92 was first protected as the isopropylidene acetal then dihydroxylated using OsO_{4} under the Upjohn conditions. ${ }^{20}$ In this way, the illustrated diol 141 (Scheme 2.9) was obtained. Subsequent protection of this diol as the isopropylidene acetal followed by stannylation with hexamethylditin in the presence of catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ afforded the required stannylated conduritol 142 in excellent yield. All the spectral data obtained on this previously unreported compound were consistent with the assigned structure. For instance, the ${ }^{13} \mathrm{C}$ NMR spectrum showed six signals (at $\delta 108.7,108.6,27.8,27.5,26.4$ and 26.2) which are attributed to the two isopropylidene groups. In addition, the signal at $\delta 134.2$ and the associated tin satellites $\left[J\left({ }^{117 / 119} \mathrm{Sn}-{ }^{13} \mathrm{C}\right)=19.95 \mathrm{~Hz}\right.$] were assigned to C_{a}.

Scheme 2.9: Synthesis of stannylated conduritol 142

In order to probe the generality, or otherwise, of the new carbon-carbon bond forming reaction detailed in the preceding section, alkenyl stannanes 143,144 and 145 were also prepared by standard procedures detailed in the experimental section.

143

144

Having access to aziridine 127 and stannylated conduritol 142 meant that the pivotal nucleophilic ring-opening of aziridine 127 could be investigated. Disappointingly, initial attempts to effect the nucleophilic ring-opening reaction of aziridine 127 with stannane 142 in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}{ }^{19}$ failed to yield the required sulfonamide 146 (Scheme 2.10).

Scheme 2.10: Attempted nucleophilic ring-opening of aziridine 127
with stannylated conduritol 142

Varying the number of equivalents $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ employed also failed to change the outcome with a chromatographically inseparable mixture of products being obtained in each instance. Indeed, the desired product 146 was never observed in any of these reaction mixtures. As shown in Scheme 2.11, the use of alkenyl stannanes 143, 144 and 145 as alternative substrates for nucleophilic ring-opening of aziridine 127 also failed to yield the expected product. Once again, chromatographically inseparable mixtures of unidentified products were observed in each instance.

Scheme 2.11: Attempted nucleophilic ring-opening of aziridine 127 with alkenyl stannanes 143, 144 and 145

These outcomes lead to the investigation of other Lewis acids such as $\mathrm{InCl}_{3}, \mathrm{SnCl}_{4}, \mathrm{TiCl}_{4}$, $\mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}$ and $\mathrm{Sc}(\mathrm{OTf})_{3} . \mathrm{InCl}_{3}$, for instance, was found to be too mild as Lewis acid such that only recovered starting materials were observed (Table 2.1). Conversely, SnCl_{4} and TiCl_{4} appeared to be too strong and often lead to complex and chromatographically inseparable mixtures of products.

Lewis acid (equiv.)	Solvent	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Outcome
$\mathrm{InCl}_{3}(3)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78 \rightarrow 18$	18	No reaction
$\mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}(3)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78 \rightarrow 80$	48	No reaction
$\mathrm{Sc}(\mathrm{OTf})_{3}(3)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78 \rightarrow 18$	2	Decomp.
$\mathrm{SnCl}_{4}(3)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78 \rightarrow 18$	16	Decomp.
$\mathrm{TiCl}_{4}(3)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78 \rightarrow 18$	20	Decomp.
$\mathrm{MgBr}_{2} \cdot \mathrm{OEt}_{2}(3)$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78 \rightarrow 18$	16	No reaction

Table 2.1: Attempted nucleophilic ring-opening of aziridine 127 with conduritol 146 - the effects of different Lewis acids

These results might suggest that the presence of the oxygen functions on the stannylated conduritol 142 inhibit nucleophilic attack of the stannyl species onto aziridine 127 by providing alternative coordination sites for the Lewis acids being used. ${ }^{13,21,22}$ This is supported by the fact that little is known about the specific interactions of Lewis acids with oxygen functions in the presence of nitrogen and stannyl groups. ${ }^{13}$ In fact, given that alkenyl stannanes can react with various electrophiles, it is conceivable that stannylated conduritol 142 can react directly with electrophilic species such as SnCl_{4} and TiCl_{4}, thus contributing to the observed mixture of products. In addition, the inductive electron-withdrawing effects of the oxygen substituents may be reducing the nucleophilicity of the alkenyl stannane. Regardless of the origins of these results, they meant that an alternative approach to the synthesis of 3-arylhexahydroindoles was required.

2.4. Summary

This chapter has detailed Approach A as a method for preparing (+)-brunsvigine (ent-18). Key features included an interesting $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-mediated nucleophilic ring-opening of aziridine 127 by alkenyl stannane 128 (Scheme 2.8). However, attempts to extend this protocol by using the analogous oxygenated alkenyl stannanes $142-145$ failed to yield the expected ring-opened products. The failure to effect this pivotal nucleophilic ring-opening of aziridine 127 with such oxygenated alkenyl stannanes was disappointing and also meant that new approaches to (+)-brunsvigine (ent-18) had to be devised. One of these is detailed in the following chapter.

2.5. References

1. Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Kemmler, M., J. Chem. Soc., Perkin Trans. 1, 2001, 1345.
2. Fanta, P. E., Aziridines. Weissberger, A., John Wiley \& Sons: Sydney, 1964; Vol. 19, p 524.
3. Hu, X. E., Tetrahedron, 2004, 60, 2701.
4. Stamm, H., J. Prakt. Chem. /Chem-Ztg, 1999, 341, 319.
5. Sweeney, J. B., Chem. Soc. Rev., 2002, 31, 247.
6. Padwa, A.; Murphree, S. S., Three Membered Ring Systems. Gribble, G. W.; Joule, J. A., Pergamon Press: 2004; Vol. 16, p 54.
7. Mitchinson, A.; Nadin, A., J. Chem. Soc., Perkin Trans. 1, 2000, 2862.
8. Mitchinson, A.; Nadin, A., J. Chem. Soc., Perkin Trans. 1, 1999, 2553.
9. Nadin, A., J. Chem. Soc., Perkin Trans. 1, 1998, 3493.
10. Yeung, Y. Y.; Hong, S.; Corey, E. J., J. Am. Chem. Soc., 2006, 128, 6310.
11. Corey, E. J.; Shibata, S.; Bakshi, R. K., J. Org. Chem., 1988, 53, 2861.
12. Tanner, D., Angew. Chem., Int. Ed. Engl., 1994, 33, 599.
13. Hoffman, R. V., Chemtracts-Organic Chemistry, 1999, 12, 34.
14. Davies, A. G., Organotin Chemistry. 2nd ed.; Wiley-VCH: Weinheim, 2004.
15. Jerkunica, J. M.; Traylor, T. G., J. Am. Chem. Soc., 1971, 93, 6278.
16. Taylor, R. T.; Degenhardt, C. R.; Melega, W. P.; Paquette, L. A., Tetrahedron Lett., 1977, 159.
17. Lebigot, Y.; Delmas, M.; Gaset, A., Synth. Comm., 1982, 12, 107.
18. Dauban, P.; Saniere, L.; Tarrade, A.; Dodd, R. H., J. Am. Chem. Soc., 2001, 123, 7707.
19. Eis, M. J.; Ganem, B., Tetrahedron Lett., 1985, 26, 1153.
20. Vanrheenen, V.; Kelly, R. C.; Cha, D. Y., Tetrahedron Lett., 1976, 17, 1973.
21. Ferraris, D.; Drury, W. J.; Cox, C.; Lectka, T., J. Org. Chem., 1998, 63, 4568.
22. Cox, C.; Ferraris, D.; Murthy, N. N.; Lectka, T., J. Am. Chem. Soc., 1996, 118, 5332.

CHAPTER THREE

Towards (+)-Brunsvigine: Attempted Preparation of 3-Arylhexahydroindoles
 via Approach B

3.1. Introduction

3.3.1. Overview and Context

This chapter details synthetic studies undertaken for the purposes of preparing 3arylhexahydroindole 119. As a key precursor to the target natural product (+)-brunsvigine (ent-18), it was hoped that such a compound (119) could be obtained from the chemoenzymatically-derived and enantiopure cis-1,2-dihydrocatechol 92.

$\mathrm{P}=$ protecting groups

ent-18

92

3.1.1.1. Overview of Approach B

The key elements of Approach B (which involve the preparation of a 3-arylhexahydroindole suitable for elaboration to (+)-brunsvigine) are shown in scheme 3.1. Thus, the coupling (under Mitsunobu conditions) of the chemoenzymatically-derived conduritol 98 and sulfonamide 99, followed by functional group interconversions (FGIs) should enable the preparation of the compound 147. Subsequent radical cyclization of this last compound would then provide 3-arylhexahydroindole 97 thus completing the D-ring annulation protocol and as well as the installation of the necessary $\Delta^{1,11 \text { a }}$-double bond present in the E-ring of (+)-brunsvigine (ent-18). However, before discussing the Author's efforts directed at implementing such an approach, a brief overview of the Mitsunobu reaction is presented in the next section.

Scheme 3.1: Formation of key intermediate 97 via Approach B

3.2. The Mitsunobu Reaction: Overview and Context

The Mitsunobu reaction, reported by its inventor in 1967 and developed extensively in the ensuing years, ${ }^{1,2}$ is a unique $S_{N} 2$-type reaction that utilizes the redox system diethylazodicarboxylate (DEAD) and PPh_{3} in conjunction with a substrate alcohol 148 and appropriate nucleophile (NuH) to generate the target product 149. Triphenylphosphine oxide $\left(\mathrm{O}=\mathrm{PPh}_{3}\right)$ and hydrazine 150 are the inevitable by-products of this process (Scheme 3.2).

Scheme 3.2: The Mitsunobu reaction

This type of conversion is a three-step process that begins with the rapid addition of PPh_{3} to DEAD to form a zwitterionic P-N adduct 151 (Scheme 3.3). This intermediate then undergoes protonation to form phosphonium salt 152. The second step involves the Nu mediated addition of alcohol 153 to salt 152 to form intermediates 154 and 155 as well as nucleophile (NuH). Subsequent protonation of compound 155 with NuH then provides the conjugate base of nucleophile (Nu^{-}) as well as the stable hydrazine by-product 150. The
final step involves Nu^{-}reacting with oxyphosphonium salt 154, in an $\mathrm{S}_{\mathrm{N}} 2$ displacement process, to form the required product (149) together with $\mathrm{O}=\mathrm{PPh}_{3}{ }^{3,4}$

$N \bar{u}$

Scheme 3.3: Generally accepted mechanism of the Mitsunobu reaction

Factors that can influence the outcomes of the Mitsunobu reaction include the basicity of the phosphine (such as PPh_{3}), the pK_{a} of the nucleophile and steric effects associated with the alcohol, nucleophile and phosphine. Clearly, the failure to successfully execute any one of the key steps of this process prevents the desired outcome. Nevertheless, the Mitsunobu reaction has been widely used in organic synthesis for the displacement of hydroxyl groups by carboxylic acid-based nucleophiles. In addition, nucleophiles such as amines, sulfonamides and thiols have been used. ${ }^{3,4}$ The enantioselective total synthesis of the Amaryllidaceae alkaloid (-)-mesembrine (159) by Takano ${ }^{5}$ provides one of many examples of the utility of this reaction.

Specifically, Takano was able to demonstrate that the mannitol-derived alcohol 157 could participate in an intramolecular Mitsunobu reaction to give the required pyrrolidine 158 in 85% yield (Scheme 3.4). Birch reduction of the enone moiety within the latter compound using lithium metal in liquid ammonia then afforded the target alkaloid 159 in 77% yield. ${ }^{6,7}$

Scheme 3.4: Takano's total synthesis of (-)-mesembrine (159)

3.3. D-Ring Annulation: Attempted Synthesis of 3Arylhexahydroindole 119

3.3.1. Model Study

As there was limited precedence for the desired intermolecular Mitsunobu reaction between alcohol 98 and sulfonamide 99, a model study was undertaken. Following the work of Sha, ${ }^{8}$ relevant model compounds for such studies were considered to be 2-iodocyclohexenol (160) and sulfonamide 161.

98

99

160

161

2-lodocyclohexenol (160) was synthesized in two steps from cyclohexenone (162) via an initial Johnson iodination reaction, ${ }^{9}$ to give α-iodoclohexenone (163), followed by a $\mathrm{NaBH}_{4}-$ mediated reduction of the carbonyl function under Luche conditions and so providing the target compound (160) (Scheme 3.5). ${ }^{10,11}$ All the data obtained on this material were consistent with the assigned structure and in agreement with those reported in literature. ${ }^{12}$

The ${ }^{13} \mathrm{C}$ NMR spectrum, for example, showed two signals at $\delta 103.3$ and 71.6 which are attributed to C_{a} and C_{b}, respectively.

Scheme 3.5: Synthesis of 2-iodocyclohexenol (160)

The preparation of sulfonamide 161 began with a nitro-aldol condensation ${ }^{13}$ between piperonal (138) and nitromethane that gave β-nitrostyrene 79 in quantitative yield (Scheme 3.6). LiAlH_{4}-mediated reduction of the last compound, to give the corresponding β arylethylamine, was followed by protection of the revealed $1^{\circ}-$ amine group using $p-\mathrm{TsCl}$ and so generating the target compound 161 in 42% over the two steps.

Scheme 3.6: Synthesis of sulfonamide 161 from piperonal 138

Despite these successes, when 2-iodocyclohexenol (160) and sulfonamide 161 were subjected to a Mitsunobu reaction for 22 h this failed to give the desired product 164. Only the starting materials were recovered from the reaction mixture (Scheme 3.7). Attempts to effect this process by applying longer reaction times also failed.

Scheme 3.7: Attempted Mitsunobu reaction of 2-iodocyclohexenol (160) with sulfonamide 161

With this disappointing outcome, the synthesis of triflamide 165 was undertaken. As shown in Scheme 3.8, reduction of β-nitrostyrene 79 with LiAlH_{4} produced the corresponding β arylethylamine that was immediately treated with $\mathrm{Tf}_{2} \mathrm{O}$ to provide the desired triflamide 165 in 49% yield over the two steps. Gratifyingly, treatment of 2-iodocyclohexenol 160 with triflamide 165 under the Mitsunobu reaction protocol resulted in the formation of the desired product (166) in $\mathbf{7 4 \%}$ yield.

Scheme 3.8: Mitsunobu reaction of 2-iodocyclohexenol (160) with triflamide 165

This pleasing outcome was confirmed by mass spectrometric analysis as well as ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR experiments. For instance, the ${ }^{13} \mathrm{C}$ NMR spectrum of triflamide 166 (Figure 3.1) showed a signal at $\delta 63.6$ which is attributed to C_{a} and thus indicating that the desired coupling of alcohol 160 with triflamide $\mathbf{1 6 5}$ had taken place.

Figure 3.1: $75 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of triflamide 166 recorded in CDCl_{3}

With this encouraging result to hand, it was then envisaged that the same sort of Mitsunobu reaction could be applied to the "real" system involving the coupling of the cis-1,2-dihydrocatechol-derived conduritol 167 and keto-amide 168. However, before this key process could be investigated, the preparation of these two precursors had to be carried out. Details of the relevant synthetic work are provided in the following Section.

3.3.2. Preparation of Conduritol 167 and Keto-Amide 168

The synthesis of conduritol 167 commenced with the protection of the bromo-derivative of cis-1,2-dihydrocatechol 92 as the corresponding PMP acetal 169 (Scheme 3.9). As this compound proved to be somewhat unstable, it was immediately subjected to cis-1,2dihydroxylation using OsO_{4} under the Upjohn conditions ${ }^{14}$ to give diol 170 as a 2:1 and inseparable mixture of diastereoisomers. Protection of this mixture of diols (170) with MOMCI then gave conduritol-derivative 171 (now as an inseparable $3: 1$ mixture of diastereoisomers due to selective enrichment of the major one), which were subjected to regioselective DIBAL-H-mediated acetal cleavage at $-40^{\circ} \mathrm{C}$. This process delivered the major conduritol 172 in 64% yield together with the corresponding and chromatographically separable regioisomer 173, which was obtained in 30% yield.

$\mathrm{Ac}_{2} \mathrm{O}, \mathrm{DMAP}, \mathrm{Et}_{3} \mathrm{~N}$,
171
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-18^{\circ} \mathrm{C}$,
16 h, 93%

Scheme 3.9: Synthesis of conduritol 167 from the bromo-derivative of cis-1,2-dihydrocatechol 92

The regioselectivity observed in this reaction is attributed the steric bulk exerted by the bromine atom at C_{a} within substrate 171 (Scheme 3.10). From this it is thought that the coordination of DIBAL-H occurs preferentially at O_{d} to produce a sterically less congested intermediate 175. This transient species can then undergo cleavage of the $\mathrm{C}_{\mathrm{c}}-\mathrm{O}_{\mathrm{d}}$ bond (as shown in $175 \rightarrow \mathbf{1 7 6}$) by the attack of the hydride ion of the aluminium metal from the direction syn to the departing oxygen and thus provide compound 172 as the major regioisomeric form of the product. ${ }^{15}$

Scheme 3.10: Regioselective reductive ring-cleavage of the benzylidene acetal function in conduritol 171 using DIBAL-H

When conduritol 172 (major regioisomer) was treated with acetic anhydride in the presence of DMAP/triethylamine the acetylated derivative 174 was obtained (Scheme 3.9). The relative positions of the protecting groups (PMB and acetate) in this compound were confirmed using 2D-NMR spectroscopy. As shown in Figure 3.2, the observation of crosspeaks corresponding to the interaction of H_{b} with H_{a} and H_{c} in the ${ }^{1} H-{ }^{1} H$ COSY spectrum were taken as being indicative of the structure assigned to conduritol 174 and thus confirming the regioselectivity associated with DIBAL-H-mediated cleavage of acetal group present in conduritol 171. Subsequent deprotection of the p-methoxybenzyl function within this last compound using DDQ lead to the target mono-ol, 167, in 81% yield.

Figure 3.2: $600 \mathrm{MHz}^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of conduritol 174 recorded in CDCl_{3}

The preparation of keto-amide 168 commenced by using a protocol described by Corey et. al., ${ }^{13}$ wherein a LiAlH_{4}-mediated nitro-aldol reaction was carried out between piperonal (138) and nitromethane to give β-nitroalcohol 177 in 70% yield (Scheme 3.11). Since this product was prone to acid-catalysed dehydration, it was hydrogenolysed using dihydrogen in the presence of $10 \% \mathrm{Pd} / \mathrm{C}$ and the ensuing 1°-amine was subjected to selective N protection using one equivalent of $\mathrm{Tf}_{2} \mathrm{O}$ at low temperature and thus affording the hydroxyamide 178 in 33% over the two steps involved. This modest yield is ascribed to the instability of the intermediate 1°-amine, the problem associated with selective N-triflation of the ensuing hydroxy-amine to produce hydroxy-amide 178 as well as competing hydrogenolysis of the benzylic alcohol group in β-nitroalcohol 177. Oxidation of compound 178 with PCC in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded the desired keto-amide 168 in 74% yield.

Scheme 3.11: Synthesis of keto-amide 168 from piperonal (138)

3.3.3. Attempted Synthesis of Amide 179

The successful preparation of conduritol 167 and keto-amide 168 meant that the pivotal Mitsunobu reaction could now be investigated. Unfortunately, subjection of conduritol 167 and keto-amide 168 to the relevant reaction conditions, viz. those used in the model study, resulted in a chromatographically inseparable mixture of products, none which corresponded to the target compound $\mathbf{1 7 9}$ (Scheme 3.12). A prolonged reaction time accompanied with an increase in temperature also failed to yield the desired material.

Scheme 3.12: Attempted Mitsunobu reaction of conduritol 167 with keto-amide 168

This outcome is presumably the result of adverse steric effects exerted by the adjacent acetate group in conduritol 167. Since Sha ${ }^{8}$ has shown that alcohol 84 lacking an adjacent
oxygen function could be reacted with amide 85 in a Mitsunobu reaction to give compound 86 in excellent yield (Scheme 3.13), relevant modifications to the Mitsunobu substrate were carried out as defined in the following section.

Scheme 3.13: Successful Mitsunobu reaction of alcohol 84 and amide 85 reported by Sha ${ }^{8}$

3.3.4. Attempted Synthesis of Alcohol 180 via Barton-MCombie Deoxygenation Reaction

In considering an alternative approach to the one defined above, the sterically less demanding alcohol 180 was identified as a new substrate for the pivotal Mitsunobu reaction. It was considered that application of the Barton- M^{c} Combie deoxygenation protocol ${ }^{16}$ at C_{a} followed by oxidative cleavage of the PMB group would be the most viable method for preparing such a compound from the readily available precursor 172 (Scheme 3.14).

Scheme 3.14: Obtaining the sterically less-demanding alcohol 180 from conduritol 172

Preparation of target 180 began with treatment of conduritol 172 with sodium hydride, followed by carbon disulfide $\left(\mathrm{CS}_{2}\right)$ in the presence of imidazole to produce an anion that was trapped with iodomethane to give xanthate ester 181 in 73% yield (Scheme 3.15). However, treatment of the last compound $\mathbf{1 8 1}$ with $n-\mathrm{Bu}_{3} \mathrm{SnH}$, at $80^{\circ} \mathrm{C}$, resulted in the recovery of
starting material. Variations on this type of protocol, including those involving the use of a longer reaction time and two additional equivalents of $n-\mathrm{Bu}_{3} \mathrm{SnH}$, also failed to yield the deoxygenated conduritol 182. This result was rather surprising given that there are numerous examples from the literature of the deoxygenation of 2°-alcohols of complex substrates using this method. ${ }^{17-20}$ From this the pentafluorophenylthionocarbonate analogue, 183 , of ester 181 was sought on the basis that homolysis of this group is more facile, ${ }^{21}$ a reactivity that is attributed to the highly electron-withdrawing capacity associated the pentafluorophenyl substituent which serves to increase radicophilicity of the thione group. ${ }^{21-23}$ Substrate 183 was prepared by the treatment of conduritol 172 with pentafluorophenyl chlorothionoformate in the presence of DMAP. Once again, however, reaction of this material (183) with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ and a catalytic amount of AIBN produced a chromatographically inseparable mixture of products, none of which corresponded to the desired deoxygenated conduritol 182.

Scheme 3.15: Attempted Barton-McCombie deoxygenation of conduritol 172 using the xanthate ester and thionocarbonate methods

3.3.5. Preparation of Alcohol 180 via lodination/Reductive Cleavage Method

The disappointing outcomes detailed in the preceding section meant a different method for preparing the deoxygenated conduritol 180 was required. One involving a two-step iodination/reductive de-iodination protocol ($\mathbf{1 7 2} \boldsymbol{\rightarrow 1 8 4} \boldsymbol{\rightarrow} \mathbf{1 8 2}$) (Scheme 3.16) was pursued.

Scheme 3.16: Proposed two-step deoxygenation of conduritol 172 via an iodination/reductive cleavage method

The implementation of this approach began with an investigation of a method for the conversion of conduritol 172 into the iodinated compound 184. Sulfonates 185 and 186 were identified as substrates that could engage in $\mathrm{S}_{\mathrm{N}} 2$-displacement reactions involving iodide ion as the nucleophile.

As shown in Scheme 3.17, the synthesis of the mesylate 185 was achieved through the treatment of conduritol $\mathbf{1 7 2}$ with MsCl in the presence of a catalytic amount of DMAP while triflate 186 was prepared using $\mathrm{Tf}_{2} \mathrm{O}$ in the presence of pyridine. All the spectral data obtained on these sulfonate esters were in accord with the assigned structures. The ${ }^{13} \mathrm{C}$ NMR spectra of mesylate 185 and triflate 186 showed signals at $\delta 78.4\left(\mathrm{C}_{\mathrm{a}}\right)$ and $83.6\left(\mathrm{C}_{\mathrm{b}}\right)$, respectively, which are attributable to the ring carbons bearing the newly introduced and strongly electron-withdrawing substituents.

Scheme 3.17: Synthesis of mesylate 185 and triflate 186

However, as shown in Table 3.1, subjection of either compound (185 and 186) to reaction with various sources of iodide ion failed to give the desired product, viz compound 184.

			entries 1-7			
Entry	Substrate	Reagent	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right.$)	Time (h)	Outcome
1^{24}	OMs	NaI	Acetone	56	16	No reaction
2^{25}	OMs	$\mathrm{Nal} / \mathrm{NaHCO}_{3}$	Acetone	56	16	No reaction
3^{26}	OMs	$\mathrm{Bu}_{4} \mathrm{NI}$	Toluene	80	16	No reaction
4^{26}	OTf	$\mathrm{Bu}_{4} \mathrm{NI}$	Toluene	80	16	No reaction
5^{27}	OTf	$\mathrm{Bu}_{4} \mathrm{NI}$	Toluene	120	20	Decomp.
6^{28}	OTf	$\mathrm{Bu}_{4} \mathrm{NI}$	MeCN	90	20	No reaction
7^{29}	OTf	NaI	DMF	80	20	No reaction
8^{30}	OTf	$\mathrm{Bu}_{4} \mathrm{NI}$	DMF	80	20	No reaction

Table 3.1: Attempted reactions of mesylate 185 and triflate 186 with various sources of iodide ion

For example, treatment of mesylate 185 and triflate 186 (entries 3 and 4) with $\mathrm{Bu}_{4} \mathrm{NI}$ at 80 ${ }^{\circ} \mathrm{C}$ only resulted in the return of starting material. In addition, subjection of the presumably more reactive triflate 186 to the higher temperature of $120{ }^{\circ} \mathrm{C}$ (entry 5) only lead to decomposition of starting material. Overall, analysis of these results suggested that compounds 185 and 186 were unsuitable substrates for the desired transformation.

In view of the results just described, a method that employed the unique $\mathrm{PPh}_{3}-\mathrm{I}_{2}$-imidazole reagent system ${ }^{31}$ was investigated. Specifically, it was envisaged that such a system would overcome the previous difficulties and deliver the required iodide 184 in just one step. An initial attempt to effect the desired reaction at $90^{\circ} \mathrm{C}$ lead to an incomplete transformation whereby the desired product 184 was obtained in only 5% yield, together with 30% of aromatic by-product 187 (entry 1 of Table 3.2). Although this yield (of 5%) was low, such an outcome was encouraging and indeed, subjecting conduritol 172 to a higher reaction temperature of $120{ }^{\circ} \mathrm{C}$ lead to the consumption of nearly all starting material and so
produced an increased yield (12\%) of the desired product (entry 2). Interestingly, this was also accompanied by the decrease in the yield of the aromatic by-product 187.

Entry	Reagents (equiv.) $\left(\mathrm{Ph}_{2} \mathrm{PCI}: \mathrm{PPh}_{3}: \mathrm{I}_{2}:\right.$ Imid. $: \mathrm{I}_{3}$-Imid.)	Conc. $(\mathrm{mol} / \mathrm{L})$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Product(s) (\%) $\mathbf{1 7 2}: \mathbf{1 8 4}: \mathbf{1 8 7}$
1	$0.0: 1.5: 0.0: 1.2: 1.6$	0.04	90	24	$60^{*}: 5^{*}: \sim 30^{\star}$
2	$0.0: 1.9: 0.0: 2.5: 2.0$	0.17	120	16	$5: 12: 20$
3	$2.0: 0.0: 3.0: 7.5: 0.0$	0.01	90	2	Decomp.
4	$0.0: 3.0: 2.0: 3.0: 0.0$	0.04	120	5	$0: 47: \sim 10^{\star}$
5	$0.0: 3.0: 2.0: 3.0: 0.0$	0.02	120	20	$0: 57: \sim 15^{\star}$
6	$0.0: 4.0: 0.0: 1.2: 1.0$	0.02	120	18	$0: 70: \sim 10^{\star}$
7	$0.0: 5.0: 0.0: 1.2: 1.0$	0.02	120	3.5	$0: 81: 6$

* estimated by crude ${ }^{1} \mathrm{H}$ NMR-analysis of the crude reaction mixture; Imid = imidazole, I_{3} - Imid $=2,4,5$-triiodoimidazole; solvent $=$ toluene

Table 3.2: Formation of iodide 184 by reaction of alcohol 172 using various phosphine-iodine-imidazole reagent combinations

Although mechanistic studies were not carried out, it is conceivable that the pathway being followed in the conversion of $172 \rightarrow 184$ involves $S_{N} 2$ displacement of the intermediate oxyphosphonium species 188 by the iodine-imidazole complex 189 (Scheme 3.18). ${ }^{31}$

Scheme 3.18: Possible mechanism for the formation of iodide 184 from alcohol 172 using the $P h_{3}-l_{2}$-imidazole reagent combinations

Partial support for such a hypothesis arises from the single-crystal X-ray structure of iodide 184 which demonstrates that it possesses the expected (inverted) configuration at the iodine-bearing ring-carbon (Figure 3.3).

Figure 3.3: ORTEP derived from the single-crystal X-ray analysis of iodide 184

The aromatic by-product 187 was thought to result from the decomposition of iodide 184, whereby the presence of antiperiplanar relationship between the MOM group at C_{c} and proton at C_{d} is thought to facilitate a base-promoted E 2 elimination of ${ }^{-} \mathrm{OMOM}$ (at C_{c}) leading to an intermediate diene 190 (Scheme 3.19). Subsequent E1 elimination of the iodine moiety (at C_{b}) as HI from this species then provides the observed aromatic compound 187. The structure of this compound was confirmed using various spectrometric techniques including ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and mass spectrometry. The ${ }^{1} \mathrm{H}$ NMR spectrum, for example, showed aromatic signals at $\delta 7.34$ and 6.93 which are indicative of the $1,3,5$-trisubstituted aromatic ring present in compound 187. In addition, this spectrum also showed signals, at δ 5.09 and 3.47 , attributable to the MOM group (at C_{a}) within compound 187.

Scheme 3.19: Proposed mechanism for the formation of the aromatic by-product 187 from
iodide 184

The problems created by the low yield of the product 184 were compounded by difficulties in separating the required material from the excess PPh_{3} and the by-product $\mathrm{O}=\mathrm{PPh}_{3}$. Therefore, and as an attempt to overcome these issues, an iodination system which involved the use $\mathrm{Ph}_{2} \mathrm{PCl}-\mathrm{I}_{2}$-imidazole reagent system was investigated. An advantage to using $\mathrm{Ph}_{2} \mathrm{PCl}$ compared to PPh_{3} is that $\mathrm{Ph}_{2} \mathrm{PCl}$ and its by-products can be removed from the organic phase by extraction. In addition, this reagent system has been reported to be the most reactive and versatile one for converting alcohols into the corresponding alkyl iodides under relatively mild conditions. ${ }^{32}$ However, as shown in entry 3 of Table 3.2, an attempt to convert conduritol 172 into the iodide 184 using this system only resulted in chromatographically inseparable mixture of products, none of which corresponded to the desired compound 184. In re-investigating the $\mathrm{PPh}_{3}-\mathrm{I}_{2}$-Imidazole system, a further increase in the number of equivalents of PPh_{3} (entries 4 and 5) followed by a decrease in concentration of the reactants, lead to a significant increase in yield ($35-45 \%$) of the iodide 184. The use of $2,4,5$-triiodoimidazole ${ }^{33}$ as the iodide source also had a dramatic effect with the result that a now excellent yield (81\%) of iodide 184 could be obtained (entry 7).

Selective removal of the iodine moiety present in iodide $\mathbf{1 8 4}$ with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of a catalytic amount of $\mathrm{Et}_{3} \mathrm{~B}$ as radical initiator (and oxygen [air]) at $18{ }^{\circ} \mathrm{C}^{34}$ then furnished deoxygenated conduritol 182 in excellent yield and so completing the two-step deoxygenation protocol (Scheme 3.20). No products arising from the loss of bromine were
observed. This was attributed to significant differences in bond strengths (bond dissociation energies) between $s p^{3}$ iodine-carbon bonds and $s p^{2}$ bromine-carbon bonds with the latter being 26-28 kcal/mol stronger. ${ }^{35,36}$ Oxidative cleavage of the PMB group of deoxyconduritol 182 with DDQ under biphasic conditions then afforded the, by now, long-sought after alcohol 180 in 96% yield. All the data obtained on this material were consistent with the assigned structure. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of this compound showed signals at $\delta 2.26$ and 1.95 , which are attributed to the diastereotopic protons at C_{a}, and so confirming successful de-iodination of precursor 184. In addition, the IR spectrum showed a broad band at $3437 \mathrm{~cm}^{-1}$, which was indicative of an alcohol function resulting from oxidative cleavage of the PMB group of deoxygenated conduritol 184.

Scheme 3.20: Synthesis of alcohol 180 from iodide 184

3.3.6. Mitsunobu Reaction of Alcohol 192 with Keto-Amide 168

Having prepared alcohol 180, all that remained was the key Mitsunobu reaction. In the event, subjection of this compound and keto-amide 168 to the Mitsunobu reaction protocol failed to give the keto-amide 191. Only a chromatographically inseparable mixture of unidentified products was obtained (Scheme 3.21). An increase in reaction temperature also failed to yield the expected Mitsunobu adduct. A careful re-examination of the work of Sha ${ }^{8}$ seemed to suggest that steric effects imparted by the MOM groups might also be contributing to this unfavourable outcome.

Scheme 3.21: Attempted Mitsunobu reaction of alcohol 180 with keto-amide 168

In fact, it was envisaged that an exchange of the MOM groups of alcohol 180 for the isopropylidene group would produce a compound that was sterically less demanding and structurally analogous to the compound reported by Sha. ${ }^{8}$ Therefore, alcohol 180 was treated with trace HCl in MeOH at $18^{\circ} \mathrm{C}$ and this resulted in hydrolysis of the MOM groups to produce an intermediate triol that was immediately protected using 2,2-DMP (in the presence of catalytic p - TsOH) to give acetonide 192 containing a single free hydroxyl group (Scheme 3.22).

Scheme 3.22: Synthesis of compound 192

The structure of alcohol 192 was confirmed by single-crystal X-ray analysis and the derived ORTEP is shown in Figure 3.4.

Figure 3.4: ORTEP derived from the single-crystal X-ray analysis of alcohol 192

Subjection of alcohol 192 and keto-amide 168 to Mitsunobu reaction resulted in a successful transformation whereby the desired compound 193 was produced 63% yield (Scheme 3.23). All the spectral data obtained on this compound were in full accord with the assigned structure.

Scheme 3.23: Successful Mitsunobu reaction of Alcohol 192 and Keto-Amide 168

For instance, the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 3.5) showed a signal at $\delta 52.2$ which is attributed to that carbon atom $\left(C_{a}\right)$ involved in the newly installed carbon-nitrogen bond.

* $=$ Ethyl acetate; ${ }^{*}=$ unknown impurities

Figure 3.5: $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of keto-amide 193 recorded in CDCl_{3}

Unfortunately, and very frustratingly, the Mitsunobu reaction of alcohol 192 and keto-amide 168 was found to be irreproducible under the conditions just described. Additional efforts to effect this reaction by using sterically less-demanding reagent systems, such as TMAD/PMe ${ }^{37}$ (entry 6 of Table 3.3), also failed to yield the required compound. Overall, this disappointing outcome meant that an alternative approach to the synthesis of the pivotal 3arylhexahydroindoles was necessary.

Entry	Carboxylate	Phosphine	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Time (h)	Outcome
1	DIAD	PPh_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	18	15	$\mathbf{1 9 3}(<1 \%)$
2	DEAD	PPh_{3}	THF	18	20	$\mathbf{1 9 3}(<1 \%)$
3	TMAD	PPh_{3}	$\mathrm{C}_{6} \mathrm{H}_{6}$	18	15	Starting material
4	TMAD	PBu_{3}	$\mathrm{C}_{6} \mathrm{H}_{6}$	18	15	Starting material
5	TMAD	PMe_{3}	THF	18	15	Starting material
6	TMAD	PMe_{3}	$\mathrm{C}_{6} \mathrm{H}_{6}$	18	15	Starting material

Table 3.3: Attempted Mitsunobu reactions with different reagent systems

3.4.Summary

In connection with the work directed towards the preparation of (+)-brunsvigine (ent-18), this chapter has detailed a synthetic approach (Approach B) whereby, following a successful model study, efforts were made to carry out a Mitsunobu reaction between keto-amide 168 and the cis-1,2-dihydrocatechol-derived alcohols 167, 180 and 192 so as to provide intermediates necessary for preparation of the key 3-arylhexahydroindole 119. Whilst this type of conversion proved capricious, it provided the basis for an alternative approach (Approach C). Details of this alternative are provided in the following chapter.

3.5. References

1. Mitsunobu, O., Synthesis, 1981, 1.
2. Mitsunobu, O.; Yamada, Y., Bull. Chem. Soc. Jpn., 1967, 40, 2380.
3. Hughes, D. L., The Mitsunobu Reaction. Paquette, L. A., John Wiley \& Sons, Inc.: New York, 1992; Vol. 42, p 335.
4. Hughes, D. L., Org. Prep. Proc. Inter., 1996, 28, 127.
5. Takano, S.; Imamura, Y.; Ogasawara, K., Tetrahedron Lett., 1981, 22, 4479.
6. Takano, S.; Shishido, K.; Sato, M.; Yuta, K.; Ogasawara, K., J. Chem. Soc., Chem. Comm., 1978, 943.
7. Takano, S.; Shishido, K.; Matsuzaka, J. I.; Sato, M.; Ogasawara, K., Heterocycles, 1979, 13, 307.
8. Sha, C. K.; Hong, A. W.; Huang, C. M., Org. Lett., 2001, 3, 2177.
9. Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovic, M. R., Tetrahedron Lett., 1992, 33, 917.
10. Luche, J. L.; Rodriguezhahn, L.; Crabbe, P., J. Chem. Soc., Chem. Comm., 1978, 601.
11. Luche, J. L., J. Am. Chem. Soc., 1978, 100, 2226.
12. Sha, C. K.; Huang, S. J.; Zhan, Z. P., J. Org. Chem., 2002, 67, 831.
13. He, F.; Bo, Y. X.; Altom, J. D.; Corey, E. J., J. Am. Chem. Soc., 1999, 121, 6771.
14. Vanrheenen, V.; Kelly, R. C.; Cha, D. Y., Tetrahedron Lett., 1976, 17, 1973.
15. Mori, A.; Fujiwara, J.; Maruoka, K.; Yamamoto, H., J. Organomet. Chem., 1985, 285, 83.
16. Barton, D. H. R.; McCombie, S. W., J. Chem. Soc., Perkin Trans. 1, 1975, 1574.
17. Hong, F. T.; Paquette, L. A., Chemtracts-Organic Chemistry, 1998, 11, 67.
18. Chatgilialoglu, C.; Ferreri, C., Res. Chem. Intermed., 1993, 19, 755.
19. Hartwig, W., Tetrahedron, 1983, 39, 2609.
20. Liu, P.; Panek, J. S., Tetrahedron Letters, 1998, 39, 6147.
21. Barton, D. H. R.; Jaszberenyi, J. C., Tetrahedron Lett., 1989, 30, 2619.
22. Robins, M. J.; Wilson, J. S.; Hansske, F., J. Am. Chem. Soc., 1983, 105, 4059.
23. Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C., Tetrahedron Lett., 1990, 31, 3991.
24. Georg, G. I.; Kant, J., J. Org. Chem., 1988, 53, 692.
25. Maezaki, N.; Izumi, M.; Yuyama, S.; Sawamoto, H.; Iwata, C.; Tanaka, T., Tetrahedron, 2000, 56, 7927.
26. Chambers, D. J.; Evans, G. R.; Fairbanks, A. J., Tetrahedron - Asymmetry, 2003, 14, 1767.
27. Karpiesiuk, W.; Banaszek, A.; Zamojski, A., Carbohydr. Res., 1989, 186, 156.
28. Kiyoshima, K.; Sakamoto, M.; Ishikura, T.; Fukagawa, Y.; Yoshioka, T.; Naganawa, H.; Sawa, T.; Takeuchi, T., Chem. Pharm. Bull., 1989, 37, 861.
29. Lindhorst, T. K.; Braun, C.; Withers, S. G., Carbohydr. Res., 1995, $268,93$.
30. Bohm, M.; Lorthiois, E.; Meyyappan, M.; Vasella, A., Helv. Chim. Acta, 2003, 86, 3818.
31. Garegg, P. J.; Samuelsson, B., J. Chem. Soc., Perkin Trans. 1, 1980, 2866.
32. Classon, B.; Liu, Z. C.; Samuelsson, B., J. Org. Chem., 1988, 53, 6126.
33. Classon, B.; Garegg, P. J.; Samuelsson, B., Can. J. Chem., 1981, 59, 339.
34. Roush, W. R.; Bennett, C. E., J. Am. Chem. Soc., 2000, 122, 6124.
35. Luo, Y., Comprehensive Handbook of Chemical Bond Energies. CRC Press, Taylor Francis Group: New York, 2007; p 211.
36. Friedrich, E. C.; Abma, C. B., J. Am. Chem. Soc., 1980, 102, 1367.
37. Tsunoda, T.; Otsuka, J.; Yamamiya, Y.; Ito, S., Chem. Lett., 1994, 539.

CHAPTER FOUR

Towards (+)-Brunsvigine:

Attempted Preparation of
3-Arylhexahydroindoles
via Approach C

4.1. Introduction

4.1.1. Overview and Context

As noted in Section 1.3.5. (see Chapter One), the Pictet-Spengler reaction was identified as a crucial element in the proposed strategy for obtaining (+)-brunsvigine (ent-18). Accordingly, the focus of studies to this point remained identifying methods for the formation of 3-arylhexahydroindole 194, the substrate required for the Pictet-Spengler reaction. Indeed, it was hoped that such a compound could be obtained via a new approach, Approach C, that still started from the enzymatically-derived and enantiopure cis-1,2dihydrocatechol 92. Details of this study are presented below.

194

ent-18

92

4.1.1.1. Overview of Approach C

As a modification of the second approach (Approach B), the third one (Approach C), which is detailed here, would involve a two-step D-ring annulation protocol commencing with direct N-alkylation of cis-1,2-dihydrocatechol-derived 20-amine 195 with α-bromoketone 196 (Scheme 4.1). Using various functional group interconversions (FGIs), it was hoped to produce compound 197 which it was anticipated would engage in a radical cyclization/halogen atom elimination reaction to give the 3-arylhexahydroindole 198 possessing the necessary $\Delta^{1,11 a}$-double bond present in the E-ring of (+)-brunsvigine (ent18). However, before discussing the outcome of these studies, a brief overview of the synthesis of $3^{\circ}-$ amines via direct N-alkylation of 2°-amines with alkyl halides is presented in the next section.

Scheme 4.1: Formation of key intermediate 198 via Approach C

4.2. Background: Preparation of $\mathbf{3}^{\circ}$-Amines via Direct \boldsymbol{N} Alkylation of $\mathbf{2}^{\circ}$-Amines

Although direct N-alkylation of unactivated 2°-amines with alkyl halides is conceptually the most straightforward method for preparing 3°-amines, problems exist because the degree of N-alkylation is often difficult to control with the formation of undesired quaternary ammonium salts frequently being encountered. Accordingly, the practical applications of this approach have, until recently, been somewhat limited. In attempts to address this issue, Mohri', Soloshonok ${ }^{2}$ and Varma ${ }^{3}$ have each been able to enhance the synthetic value of this methodology by reporting operationally simple and direct N-alkylation protocols that normally result in moderate to high yields of 3°-amines without the accompanying formation of undesired quaternary ammonium salts. Mohri, for instance, was able to establish an efficient synthesis of 3°-amine 201 through the use of potassium hydride-mediated N alkylation of 2°-amine 199 with benzyl bromide (200) (Scheme 4.2). ${ }^{1}$

Scheme 4.2: Mohri's synthesis of 3°-amine 201

Soloshonok was able to report the highly efficient synthesis of 3°-amine 204 via direct $N-$ alkylation of 2°-amine 202 with alkyl bromide 203 in excellent yield (Scheme 4.3). ${ }^{2}$ This conversion is particularly relevant to the one being contemplated in Approach C, details of which are provided in the following sections.

Scheme 4.3: Soloshonok's synthesis of 3°-amine 204

4.3. D-Ring Annulation: Attempted Synthesis of 3Arylhexahydroindole 194

4.3.1. Direct \boldsymbol{N}-Alkylation Reaction of 2°-Amine 206 and α-bromoketone 102

An investigation into the viability of the title approach for preparing 3°-amine 205 started with the synthesis of the relevant precursors, namely the $2^{\circ}-$ amine 206 and the α-bromoketone 102.

205

206

102

The synthesis of 2°-amine 206 began with the subjection of the previously prepared alcohol 180 (see Section 3.3.4.) to Mitsunobu azidation reaction ${ }^{4}$ using DPPA as the nucleophile. In this way azide 207 was produced in excellent yield (Scheme 4.4). Reduction of this azide under Staudinger conditions ${ }^{5}$ then provided the corresponding 1°-amine 208 which upon subjection to a reductive amination protocol, ${ }^{6}$ using p-anisaldehyde and $\mathrm{NaBH}_{3} \mathrm{CN}$, afforded 2°-amine 206 in excellent yield. All the data obtained for this compound were in accord with the assigned structure. The ${ }^{13} \mathrm{C}$ NMR spectrum, for example, showed signals at $\delta 57.9$ and 47.6 that are attributed to C_{a} and the benzylic carbon of the PMB substituent, respectively. In addition, the IR spectrum showed a broad band at $3333 \mathrm{~cm}^{-1}$ which is indicative of the NH group present in compound 206.

180

$\mathrm{PPh}_{3}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$, $65^{\circ} \mathrm{C}, 20 \mathrm{~h}, 87 \%$
(i) p-anisaldehyde $\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}$, (Dean-Stark),
16 h
(ii) $\mathrm{NaBH}_{3} \mathrm{CN}$, $\mathrm{MeOH}, 18^{\circ} \mathrm{C}$, $10 \mathrm{~h}, 90 \%$ (2 steps)

206

Scheme 4.5: Synthesis of α-bromoketone 102

Gratifyingly, subjection of 2°-amine 206 and α-bromoketone 102 to a direct N-alkylation reaction as described by Soloshonok ${ }^{2}$, afforded 3°-amine 205 in 59\% yield (Scheme 4.6).

Scheme 4.6: Synthesis of 3°-amine 205 by direct N -alkylation reaction

All the spectral data obtained on compound 205 were consistent with the assigned structure. In particular, the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 4.1) showed a signal at $\delta 61.0$ which is attributed to C_{a} and so is indicative of the presence of the newly formed carbon-nitrogen bond. In addition, a signal observed at $\delta 53.1$ was assigned to C_{b}.

Figure 4.1: $75 \mathrm{MHz}^{13} \mathrm{C}$ NMR spectrum of 3°-amine 205 recorded in CDCl_{3}

4.3.2. Synthesis of Radical Precursor 211

The successful preparation of 3°-amine 205 now meant that an appropriate radical cyclization precursor could be prepared. It was envisaged that this could be achieved via simple reduction of the carbonyl function within ketone 205 to the corresponding alcohol, followed by conversion of the latter into the corresponding xanthate ester 211. ${ }^{7}$ The preparation of this radical precursor began by subjecting $3^{\circ}-$ amine 205 to a $\mathrm{NaBH}_{4}-$ mediated reduction of the carbonyl group to give alcohol 210 (as a $1: 1$ mixture of diastereoisomers) in 94% yield (Scheme 4.7). Treatment of this last compound with sodium hydride, carbon disulfide and iodomethane ${ }^{8}$ then produced xanthate ester 211, albeit, in low yield (ca 24%). This was also accompanied by 20% of recovered starting material.

NaH , imidazole, CS_{2}, Mel,
THF, $18^{\circ} \mathrm{C}$,
1 h, 24\%

211

Scheme 4.7: Synthesis of radical precursor 211

In an attempt to find a reasonable explanation for the low yield of xanthate 211, this compound was examined carefully. As shown in Scheme 4.8, the 1,2-relationship between the xanthate group and 3^{0}-amine function in amine 211 is significant as the amine moiety can displace the xanthate ester residue to produce intermediate aziridinium ion 212 which can, in turn, react with adventitious water to give alcohol 210.9-11

Scheme 4.8: Possible pathway for the conversion of xanthate 211 into alcohol 210

Additional evidence for involvement of this type of neighbouring group participation comes from various efforts to prepare halides 213 and 214 (Scheme 4.9). For instance, attempts to synthesize the radical precursor 213 under standard Appel-type reaction conditions ${ }^{12}$ failed. Subjecting this material to the optimised iodination conditions (as described in the previous Chapter [Section 3.3.4.]) also failed to produce the corresponding iodinated radical precursor 214. In each instance, only starting material 210 was recovered from the reaction mixture.

210

A: $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $18^{\circ} \mathrm{C}, 16 \mathrm{~h}$
$\mathrm{B}: \mathrm{PPh}_{3}$, triiodoimidazole, imidazole, toluene, $120^{\circ} \mathrm{C}, 3 \mathrm{~h}$

for $A: X=B r(213)$
for B : $X=I$ (214)

Scheme 4.9: Attempted synthesis of radical precursors 213 and 214

4.3.3. Radical Cyclization Reaction: Precedence from Banwell and Attempted Radical Cyclizations of Precursors 211 and 220

Although an efficient synthesis of xanthate ester 211 could not be achieved, proof that such a compound could undergo the pivotal radical cyclization reaction was required. Immediately before the work described here was undertaken, Banwell et al. ${ }^{13}$ reported that treatment of alkenyl chloride 215 with $n-\mathrm{Bu}_{3} \mathrm{SnH}$, in the presence of catalytic amounts of AIBN, resulted in the formation of a 1°-radical 216 that underwent 5-exo-trig cyclization to form intermediate radical 217 (Scheme 4.10). Subsequent elimination of the chlorine radical then produced the desired target erythrina alkaloid framework 218 in excellent (93\%) yield.

Scheme 4.10: Banwell's method for the assembly of tetracyclic framework 218 of aromatic erythrina alkaloids via a carbon-radical cyclization/chlorine-radical elimination sequence

Therefore, following such work, ${ }^{13}$ the radical precursor 211 was treated with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ and a catalytic amount of AIBN then the ensuing mixture was heated at $80^{\circ} \mathrm{C}$ for 3 h . However, under such conditions only starting material was recovered from the reaction mixture (Scheme 4.11). Attempts to effect the chemical transformation by increasing the reaction time and number of equivalents of $n-\mathrm{Bu}_{3} \mathrm{SnH}$ also failed to give compound $\mathbf{2 1 9}$ and now only a chromatographically inseparable mixture of products was observed.

Scheme 4.11: Attempted radical cyclization of xanthate ester 211

In pursuit of a better precursor, attention turned towards the use of the more reactive pentafluorophenyl thionocarbonate function. To such ends, alcohol 210 was treated with pentafluorophenyl thionochloroformate ${ }^{14}$ in the presence of a catalytic amount of DMAP and in this way thionocarbonate 220 was obtained in 16.5% yield (Scheme 4.12). 78

Disappointingly, subjection of this material to radical cyclization conditions failed to give the required 3-aryhexahydroindole 219. Instead, a chromatographically inseparable mixture of products, including material tentatively identified as the reduced compound 221, was obtained.

221

219

Scheme 4.12: Synthesis of thionocarbonate 220 and attempted radical cyclization of it as a route to 3-aryhexahydroindole 219

In order to explain why only reduced material was obtained, the likely reaction mechanism of the desired radical cyclization process was considered. As it is generally understood, the use of thiocarbonyl group as radical precursor in tin-mediated radical chemistry is heavily reliant upon the strong affinity of tin for sulfur. Therefore, as shown in Scheme 4.13, the addition of the stannyl radical (generated during the radical initiation step) to the thiocarbonyl function of compound 220 would result in the formation of intermediate radical 222. This strong affinity of tin for sulfur leads to the formation of an equilibrium process, which lies towards intermediate radical 222. Cleavage of this radical via the β-scission of the carbonoxygen bond would produce benzylic radical 223, which can then undergo hydrogen atom abstraction from tin hydride to give the reduced compound 221. Alternatively, benzylic radical $\mathbf{2 2 3}$ can undergo radical cyclization to produce the required 3-arylhexahydroindole
219. However, this reaction is not observed, presumably, because it is slow relative to the direct reduction process. ${ }^{15}$

Scheme 4.13: Mechanism associated with the reduction of thionocarbonate 220 by $\mathrm{n}-\mathrm{Bu}_{3} \mathrm{SnH}$

This situation can be attributed to several underlying factors such as concentration of the reactants, temperature, rate of addition of the hydride and the conformational constraints imposed on the radical by the molecular framework within which it is embedded. For instance, the failure of radical 223 to undergo cyclization might be due to insufficient conformational freedom within the radical intermediate to enable it to undergo addition onto the halogenated double bond. ${ }^{16}$ Because a limited supply of compound 220 was available, only a few variations on the original attempts to effect the conversion $\mathbf{2 2 0} \boldsymbol{\rightarrow 2 1 9}$ could be investigated. None of these proved fruitful. Accordingly, a new approach to the originally targeted 3-arylhexahydroindole 194 was required.

4.4. Summary

This Chapter has detailed work directed towards the preparation of (+)-brunsvigine (ent-18) via Approach C. Key features include the successful N-alkylation the cis-1,2-dihydrocatechol-derived 2°-amine 206 with α-bromoketone 102 to produce $3^{\circ}-$ amine 205.

However, the attempts to convert the last compound into an appropriate radical precursor proved to be somewhat problematic because only low yields of radical precursors 211 and 220 were obtained. Nevertheless, having access to these materials meant that the key radical cyclization could be attempted. Disappointingly, subjecting these compounds (211 and 220) to $n-\mathrm{Bu}_{3} \mathrm{SnH}$-mediated radical cyclization conditions only lead to recovered starting material (in the case of precursor 211) or reduced material (in the case of precursor 220) were obtained.

Although this failure to prepare the required 3-arylhexahydroindole 219 was disappointing, it provided the necessary platform for the investigation of the final and successful approach (Approach D; see following Chapter for a detailed discussion) to the title alkaloid.

4.5. References:

1. Mohri, K.; Suzuki, K.; Usui, M.; Isobe, K.; Tsuda, Y., Chem. Pharm. Bull., 1995, 43, 159.
2. Moore, J. L.; Taylor, S. M.; Soloshonok, V. A., Arkivoc, 2005, 287.
3. Ju, Y. H.; Varma, R. S., Green Chem., 2004, 6, 219.
4. Mann, S.; Carillon, S.; Breyne, O.; Duhayon, C.; Hamon, L.; Marquet, A., Eur. J. Org. Chem., 2002, 736.
5. Yokokawa, F.; Asano, T.; Shioiri, T., Org. Lett., 2000, 2, 4169.
6. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D., J. Org. Chem., 1996, 61, 3849.
7. Barton, D. H. R.; McCombie, S. W., J. Chem. Soc., Perkin Trans. 1, 1975, 1574.
8. Iacono, S.; Rusmussen, J. R., Org. Synth., 1985, 64, 57.
9. O'Brien, P.; Towers, T. D., J. Org. Chem., 2002, 67, 304.
10. Chuang, T. H.; Sharpless, K. B., Org. Lett., 2000, 2, 3555.
11. Chuang, T. H.; Sharpless, K. B., Org. Lett., 1999, 1, 1435.
12. Davey, A. E.; Parsons, A. F.; Taylor, R. J. K., J. Chem. Soc., Perkin Trans. 1, 1989, 1853.
13. Stanislawski, P. C.; Willis, A. C.; Banwell, M. G., Org. Lett., 2006, 8, 2143.
14. Barton, D. H. R.; Blundell, P.; Dorchak, J.; Jang, D. O.; Jaszberenyi, J. C., Tetrahedron, 1991, 47, 8969.
15. Zard, S. Z., Angew. Chem., Int. Ed. Engl., 1997, 36, 673.
16. Curran, D. P.; Tamine, J., J. Org. Chem., 1991, 56, 2746.

CHAPTER FIVE

Preparation of 3-Arylhexahydrooxindoles via Approach D: Application to a Chemoenzymatic Total Synthesis of (+)-Brunsvigine

5.1. Introduction

5.1.1. Overview and Context

Having encountered difficulties associated with the pivotal radical cyclization reaction which it was hoped would enable formation of the D-ring of (+)-brunsvigine (ent-18), this Chapter details a new approach (Approach D) leading to a successful synthesis of 3-arylhexahydrooxindole 224. As will be shown, this key intermediate could then be elaborated, via the previously mentioned Pictet-Spengler strategy (Chapter One), to (+)-brunsvigine (ent-18).

ent-18

224

5.1.1.1. Overview of Approach D

As a modification of Approach C, the fourth and final one (Approach D) involved a two-step D-ring annulation protocol whereby it was hoped that an amide coupling of 2°-amines 206 and 225 (derived from the bromo- and chloro-derivatives of cis-1,2-dihydrocatechol 92, respectively) with acid 105 would give compounds 226 and 227. These amides were then to be subjected to a radical cyclization reaction to give the desired 3-arylhexahydro-oxindole 224 (Scheme 5.1). Encompassing part of the work described by Ikeda ${ }^{1}$ and Banwell, ${ }^{2}$ this approach involved the application of a novel radical cyclization reaction that affords compound 224 possessing the requisite stereochemistry at C3 and the necessary $\Delta^{1,11 a_{-}}$ double bond present in the E-ring of the target alkaloid. The preparation of both 2°-amines 206 and 225 represented an attempt to examine differences in the ability of these halogenated compounds to undergo such a radical addition/elimination sequence and so produce 3-arylhexahydro-oxindole 224. Subsequent elaboration of compound 224, including the late-stage installation the C-ring via the Pictet-Spengler reaction (as discussed in Chapter One), would enable the total synthesis of (+)-brunsvigine (ent-18) to be achieved. However, before the details of these investigations are disclosed, a
commentary on the radical cyclization reactions of amides is warranted. Such a commentary is provided in the following section.

Scheme 5.1: Formation key intermediate 224 via Approach D

5.2. Radical Cyclizations of Amides

The failure to effect a radical cyclization reaction of the type described in Chapter Four (viz $\mathbf{2 2 0} \boldsymbol{\rightarrow 2 1 9}$) and so achieve D-ring annulation prompted the search for an alternative approach. A literature survey revealed a 1988 report by Livinghouse et. al. ${ }^{3}$ demonstrating the ability of N-allyl α-haloacetamides to undergo radical cyclizations under atom transfer conditions. ${ }^{4}$ Such a protocol was employed in the synthesis of the alkaloid (-)trachelanthamidine (231) (Scheme 5.2). Thus, iodoacetamide 228 engaged in a 5-exo-trig radical cyclization reaction to produce a chromatographically separable mixture of pyrrolizinones $\mathbf{2 2 9}$ and $\mathbf{2 3 0}$ with the former product predominating. Elaboration of compound 229, over two simple steps, then provided the target alkaloid 231.

Scheme 5.2: Livinghouse's total synthesis (-)-trachelanthamidine (231)

In the following year, Stork ${ }^{5}$ was able to exploit this methodology in the preparation of cisfused 3 -pyrrolidones and piperidones. For example, the synthesis of pyrrolidone 233 possessing a quaternary carbon was achieved in good yield via germanium hydridemediated radical cyclization of bromoacetamide 232 (Scheme 5.3).

Scheme 5.3: Stork's synthesis of pyrrolidinone 233

In extending this methodology, Ikeda ${ }^{1}$ was able to report a stereoselective synthesis of 3-aryloctahydro-oxindole 236 (Scheme 5.4) and so completing a formal total synthesis of the montanine alkaloid (\pm)-pancracine (13). The preparation of the 3-aryloctahydro-oxindole 236 was achieved through a two-step annulation protocol that involved an amide bond forming reaction of $2^{\circ}-$ amine 234 with acid 105 to produce compound $\mathbf{2 3 5}$, the substrate for radical cyclization reaction. This reaction proceeded smoothly in the presence of TTMSS to afford the required 3-aryloctahydro-oxindole 236 in 82% yield over the two steps. Subsequent elaboration of this compound, through a series of straightforward transformations, finally lead to the construction of 5,11-methanomorphanthridine 56, an advanced intermediate in Hoshino's formal total synthesis of (\pm)-pancracine (13). ${ }^{6}$ The
acquisition of compound 56 by such means thus constituted a formal total synthesis of the racemic modification of this natural product.

Scheme 5.4: Ikeda's formal total synthesis of (\pm)-pancracine (13)

5.3. D-Ring Annulation: Synthesis of 3-Arylhexahydrooxindole 224

5.3.1. Preparation of Radical Precursors 226 and 227

Following earlier work, ${ }^{1}$ it was envisaged that compounds 226 and 227, each possessing a thiophenyl group adjacent to the amide carbonyl, would be synthesized as substrates for an Ikeda-type radical cyclization reaction.

226

227

The α-thiophenyl-amide residue was chosen because it is less prone to solvolysis than the corresponding α-halo-amides. ${ }^{7}$ The preparation of radical precursor 226 began with the synthesis of the known acid fragment 105 (Scheme 5.5) wherein commercially available ethyl α-bromoacetate (237) was reacted with thiophenol in the presence of t-BuOK to give the α-phenylthioacetate 238 in 96% yield. Subsequent α-chlorination of this compound using NCS produced chloride 239 (as a racemate) which was subjected to a TiCl_{4}-mediated Friedel-Crafts alkylation reaction using 1,2-methylenedioxybenzene as the nucleophile. This reaction thus provided the α-arylated ester $\mathbf{2 4 0}$ (also as a racemate) in $\mathbf{7 3 \%}$ yield over the two steps involved.

Scheme 5.5: Synthesis of acid 105 from ethyl α-bromoacetate (237)

Saponification of ester 240 with sodium hydroxide then afforded, after acid work-up, the previously reported acid $105 .{ }^{1}$ All the data obtained on this compound were consistent with assigned structure. For example, the ${ }^{13} \mathrm{C}$ NMR spectrum showed signals at $\delta 171.6$ and 55.8 , which were assigned to the carbons of the acid moiety $\left(\mathrm{C}_{\mathrm{a}}\right)$ and benzylic carbon $\left(\mathrm{C}_{\mathrm{b}}\right)$ carrying the thiophenyl group, respectively.

Having already prepared the required bromo-alkene 206 (see Section 4.3.1.), the synthesis of its chloro-analogue, 227, remained. This followed established pathways that are detailed on the following pages. Thus, protection of the cis-1,2-dihydrocatechol 92 as the corresponding PMP acetal was followed by OsO_{4}-mediated cis-1,2-dihydroxylation under
the Upjohn reaction conditions ${ }^{8}$ to give diol 241 in 66\% yield over the two steps involved and as an inseparable 2:1 mixture of epimers (Scheme 5.6). Subsequent reaction of the diol function with $\mathrm{MOMCl}, \mathrm{NaH}$ and triethylamine then provided fully protected conduritol 242 in 88% yield and as an inseparable 3:1 mixture of epimers. Treatment of this mixture with DIBAL-H, at $-30^{\circ} \mathrm{C}$, resulted in regioselective cleavage of the acetal moiety, giving conduritols 243 and 244 as a 5.5:1 and now chromatographically separable mixture of regioisomers.

Scheme 5.6: Synthesis conduritol 245 from cis-1,2-dihydrocatechol 92

Regioisomer 243 was then reacted with acetic anhydride in the presence of a catalytic amount of DMAP to give the fully protected conduritol 245 in 83% yield. The preparation of this derivative of the target compound 243 was necessary so as to confirm the regioselectivity of the DIBAL-H-mediated cleavage reaction of the acetal moiety in precursor 242. As shown in Figure 5.1, the cross-peaks appearing in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of this compound are attributed to the interaction of H_{b} with H_{a} and H_{c} and so establishing the assigned structure for conduritol 245.

Figure 5.1: $600 \mathrm{MHz}^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY spectrum of conduritol 245 recorded in CDCl_{3}

Conduritol 243 was subjected to a two-step deoxygenation protocol with the first of these involving the treatment of this material with triiodoimidazole, PPh_{3} and imidazole, under the previously optimised conditions (described in Chapter Three). This furnished iodide 246 and by-product 247 in 66% and 2.5% yield, respectively (Scheme 5.7).

Scheme 5.7: Iodination of conduritol 243

As discussed in Chapter Three (section 3.3.5.), the appearance of the aromatic by-product 247 is attributed to the elimination of the elements of HOMOM and HI from precursor 246. A single-crystal X-ray analysis of this aromatic material served to confirm the assigned structure (Figure 5.2).

Figure 5.2: ORTEP derived from the single-crystal X-ray analysis of aromatic by-product 247

Treatment of iodide 246 with $n-\mathrm{Bu}_{3} \mathrm{SnH}$, in the presence of a catalytic amount of $\mathrm{Et}_{3} \mathrm{~B}$ in oxygen (air), ${ }^{9}$ resulted in the reductive cleavage of the iodide to give the required deoxygenated compound 248 in excellent yield (Scheme 5.8).

Scheme 5.8: Synthesis of 2°-amine 225

Oxidative cleavage of the PMB group within compound 248, using DDQ, gave alcohol 249 which was subjected to a Mitsunobu azidation reaction ${ }^{10}$ using DPPA as the nucleophile and so providing azide 250 in 75% yield. Reduction of this azide, under standard Staudinger conditions, ${ }^{11}$ then provided 1°-amine 251 which was subjected to a reductive amination protocol ${ }^{12}$ (using p-anisaldehyde and $\mathrm{NaBH}_{3} \mathrm{CN}$) to give 2°-amine 225 in 56% yield. All the data obtained on this last compound were in accord with the assigned structure. The ${ }^{13} \mathrm{C}$ NMR spectrum, for example, showed signals at $\delta 56.3$ and 47.7 which are attributed to C_{a} and the benzylic carbon of the PMB group, respectively. In addition, the IR spectrum showed an absorption band at $3337 \mathrm{~cm}^{-1}$ which is the result of NH stretching associated with the $2^{\circ}-$ amine function in compound 225.

The successful preparation of the acid 105 as well as the bromo- and chloro-amines 206 and 225, respectively, meant that the key amide bond forming reaction could be attempted. In the event, treatment of acid 105 with $2^{\circ}-$ amine 206 at $18{ }^{\circ} \mathrm{C}$ in the presence of EDCI, HOBt and EtN'Pr ${ }_{2}$ in DMF, resulted in formation of compound 226 in 86% yield (Scheme 5.9). Subjection of acid 104 and 2°-amine 225 to the same reaction conditions also lead to the desired compound 227, this time in 74% yield.

Scheme 5.9: Synthesis of radical cyclization precursors 226 and 227

5.3.2. Cyclization of Radical Precursor 226

The key radical cyclization reaction was first investigated by subjecting the bromo-alkene $\mathbf{2 2 6}$ to standard radical cyclization conditions involving its treatment with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ (1 eq.) and a catalytic amount AIBN (0.5 eq.) in refluxing benzene. However, analysis of the ensuing reaction mixture revealed that the requisite 3-arylhexahydro-oxindoles 224/252 had only been formed in 15% yield (and as a 8.5:1 mixture of epimers) with the major one, 224, being assigned as that possessing the desired R-configuration at C3. These epimers were accompanied by 44% of recovered starting material and 2\% of by-product 254 (Scheme 5.10). In addition, a chromatographically inseparable mixture of by-products 253, 255 and 256 was obtained. So, while the desired process appeared to have proceeded with high diastereoselectivity, this outcome was nevertheless disappointing, because of the low yield of compounds 224/252 that was obtained.

Scheme 5.10: Outcomes of subjecting compound 226 to radical cyclization conditions

The structures of the cyclization products 224/252 were confirmed using various techniques including ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR spectroscopy as well as mass spectrometry. For example, the ${ }^{1} \mathrm{H}$ NMR spectrum of the major epimer (which was isolated using HPLC techniques) showed a signal at $\delta 5.87$ that is assigned to H_{b} which is attached to one of the sp^{2}-carbons of the newly installed carbon-carbon double bond (Figure 5.3). The ${ }^{13} \mathrm{C}$ NMR spectra of the same material showed signals at $\delta 51.6$ and 123.0 attributed to C 3 and C 4 , respectively.

Figure 5.3: $800 \mathrm{MHz}^{1} \mathrm{H}$ NMR (above) and $150 \mathrm{MHz}^{13} \mathrm{C}$ NMR (below) spectra of 3-arylhexahydro-oxindole 224 (major epimer) recorded in CDCl_{3}

In an effort to confirm the configuration of the major epimer 224, a NOE experiment was performed but this did not allow for the unequivocal assignment of the stereochemistry
associated with the compound. This is ascribed to the lack of sufficient conformational rigidity within the framework of this compound to allow for successful observation of the relevant through-space interactions. For instance, the anticipated cross-peaks arising from a through-space interaction between the H_{d} and H_{b} / H_{c} in the NOESY spectrum for the major epimer 224 were not observed (Figure 5.4). The equivalent through-space interactions between H_{a} and H_{d} in the minor epimer 252 were also absent. Accordingly, confirmation of configurations about C3 of epimers 224 and 252 was postponed until later in the synthetic sequence and at which point the major epimer 224 was shown to possess the R configuration at C3.

224 (major epimer)

252 (minor epimer)

Figure 5.4: Expected ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ through-space (NOE) interactions for compounds 224 and 252

In order to account for the low yields of the desired radical cyclization product as well as the formation of by-products 253-256, an analysis of the radical chemistry associated with allylic amides is required. Such an analysis is presented in the following section.

5.3.3. Radical Chemistry of \boldsymbol{N}-Allylated Amides

In general (as shown in Scheme 5.11) radicals that incorporate the nitrogen atom and carbonyl functions of an allylic amide (see, for example, 257) tend to cyclize rather slowly to produce lactams of the type $258 .{ }^{13}$ This results from the tendency, due to steric effects, of the initially formed radical to exist largely as a anti-rotamer $\mathbf{2 5 9}$ rather than the syn-rotamer 257. ${ }^{5}$ This is significant because the anti-rotamer (259) is topologically prohibited from undergoing radical cyclization, and so can only engage in direct reduction to form compounds such as $\mathbf{2 6 0}$. The opposite is true for the syn-rotamer (257) because it is topologically capable of undergoing radical cyclization and so likely to lead to the formation of products such as lactam 258.

Scheme 5.11: Radical chemistry of N -allylated amides

This sort of situation undoubtedly contributes to the formation of by-products 254-256 (reduction pathway) observed upon the treatment of compound 226 with $n-\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN.

The by-product/product ratio will be influenced by favouring the cyclization pathway. Factors that can have such an influence include reactant and reagent concentrations, steric effects, reaction temperature, rate of addition of reactants and the use of catalytic $n-\mathrm{Bu}_{3} \mathrm{SnH}$ and/or atom transfer-reagents as well as the purity of radical precursors. ${ }^{7,14}$

5.3.4. Improvements to the Yield of 3-Arylhexahydro-oxindole of 224

In order to obtain sufficient quantities of key compound 224 for the purposes of preparing (+)-brunsvigine, an improvement in the radical cyclization process was necessary. Therefore, having considered the factors that influence this process, optimisation studies using substrate 227 began whereby variations in reagent systems, temperature and concentrations were explored. As shown in Table 5.1 (entry 1), subjection of compound 227 to a radical cyclization reaction at $80^{\circ} \mathrm{C}$ using 1.0 eq. of $n-\mathrm{Bu}_{3} \mathrm{SnH}$ and 1.5 eq. of AIBN for 3 h resulted in the formation of products 224/252 in 45% yield and as 8.5:1 mixture of epimers, respectively. This was accompanied by a 32% yield of a chromatographically inseparable mixture of by-products 261 and 262.

* $=$ accompanied with by-product 262; ${ }^{*}=$ obtained as 8.5:1 mixture of epimers

Table 5.1: Optimization of the radical cyclization of compound 227 to give 3-arylhexahydro-oxindoles 224/252

While compound 261 is almost certainly produced by direct reduction of the initially formed radical 264, by-product 262 probably results from reaction of the initial radical 264 with isobutyronitrile radical $\mathbf{2 6 3}$ generated via thermolysis of AIBN at $80^{\circ} \mathrm{C}$ (Scheme 5.12).

Scheme 5.12: Possible pathway associated with the formation of by-product 262

The use of the chloro-derivative of the radical precursor 227 (compared to the bromoderivative of the radical precursor 226) in the radical cyclization reaction resulted in a cleaner process, which also provided compounds 224/252 in higher yield (45% compared to 15\%) and as 8.5:1 mixture of epimers. This phenomenon might be attributed to the stronger (by $15-16 \mathrm{kcal} / \mathrm{mol}^{15}$) sp^{2}-carbon-halogen bonds in alkenyl chlorides compared to alkenyl bromides. Indeed, as alkenyl bromides are more susceptible to $n-\mathrm{Bu}_{3} \mathrm{SnH}$-mediated homolytic cleavage, this theory helps to explain the occurrence of by-products 253-256. For example, by-product 254 (Scheme 5.13) may arise via homolytic cleavage of alkenyl carbon-bromine bond in radical precursor 226 and thus producing alkenyl radical 265.

Scheme 5.13: Rationale for the formation of by-products 253 and 254

As an extremely reactive radical, ${ }^{16,17}$ this last species can undergo rapid hydrogen-atom abstraction from $n-\mathrm{Bu}_{3} \mathrm{SnH}$ to produce compound 254. Subsequent 5-exo-trig radical cyclization of this material (254) would then deliver the observed by-product 253.

In promoting the cyclization pathway, it was thought that atom transfer conditions should be investigated. ${ }^{4,18}$ However, subjection of radical precursor 227 to $n-\mathrm{Bu}_{6} \mathrm{Sn}_{2}$-mediated atom transfer conditions (entry 2 of Table 5.1) failed to give expected products 224/252 and after 3 h only starting material (227) was isolated. In overcoming this outcome, the reaction was repeated with the addition of $n-\mathrm{Bu}_{3} \mathrm{SnH}$ (1 eq.) (entry 3). Under such conditions compounds 224/252 were obtained in 39% yield and these were accompanied by 7% yield of reduced material 261. Increasing the amount of AIBN (from 1.0 to 1.5 equiv.) resulted in compounds 224/252 being formed in 46% yield (entry 4). This result seemed to suggest that this radical cyclization reaction was operating via a poorly propagating radical chain. ${ }^{13}$ Indeed, an attempt to use $n-\mathrm{Bu}_{3} \mathrm{SnH}$ catalytically (0.3 eq.) (entry 5) resulted in formation of compounds 224/252 in a reduced yield of 39% with 54% of recovered starting material being obtained. Increasing the reaction temperature (entry 6) and using TTMSS (entry 7) as the hydrogenatom source seemed to have a negative effect as lower yields (32 and 36%, respectively) of 3-arylhexahydro-oxindoles 224/252 were obtained. The yield obtained when TTMSS was used was especially disappointing because, as this reagent is a weaker hydrogen atom donor than $n-\mathrm{Bu}_{3} \mathrm{SnH}$, it was hoped that its use would favour the cyclization pathway since it has lower capacity to reduce the initially formed radical 264. Indeed, as $\mathrm{Si}-\mathrm{H}$ bond strength in TTMSS is $79 \mathrm{kcal} / \mathrm{mol}$, it is $5 \mathrm{kcal} / \mathrm{mol}$ stronger than the $\mathrm{Sn}-\mathrm{H}$ bond in $n-\mathrm{Bu}_{3} \mathrm{SnH}^{19}{ }^{19}$ While this outcome was interesting, it failed to deliver the required material in higher yield. So, attention quickly turned to investigating the effect of varying the concentration of the reactants. Gratifyingly, a significant increase in the yield (to 67\%) of 3-arylhexahydrooxindoles 224/252 was obtained when a lower reactant concentration (of $5 \times 10^{-4} \mathrm{M}$) was used (entry 10).

5.3.5. Stereochemical Outcomes of the Radical Cyclization Reaction

Given that the pivotal radical cyclization reaction could now be achieved with high levels of diastereoselectivity, there was a need to try and establish, reasonably promptly, the configuration of the major epimeric form of the product. Computational analysis, ${ }^{20}$ as detailed in Scheme 5.14, suggests that there is a preference for the initially formed radical 264 to
pass through a transition state, $Z-264$, that would lead to the cyclized species 266 possessing the required stereochemistry.

5-exo-trig cyclization

|II

Scheme 5.14: Computational analysis of the cyclization of initial radicals Z-264 and E-264

Another transition state, $E-264$, leading to an alternate cyclization product, 267, is less likely to be formed because of unfavourable interactions between the 1,2-methylenedioxyaryl unit and the C5 MOM group. Interestingly, computational analysis also shows the preference of this intermediate (267) to exist as a 3°-radical, wherein a 1,2-migration of the chlorine atom from C3a to C 4 has occurred immediately after the radical cyclization event. Each of the radical species 266 and 267, arising from the cyclization process, might be expected to undergo (Scheme 5.15) rapid and irreversible loss of a chlorine radical to give the observed 3-arylhexahydro-oxindoles 224 and 252, respectively. Accordingly, the calculations predict that the desired epimer should predominate. As subsequent studies have revealed (vide infra.), compound 224 is indeed the major product formed as a result of the radical cyclization process.

224 (major epimer)

elimination

252 (minor epimer)

Scheme 5.15: Elimination of chlorine radicals from intermediates 266 and 267 derived by the cyclization of radical 264

5.4. C-Ring Annulation via the Pictet-Spengler Reaction

5.4.1. Attempted Synthesis of (+)-Brunsvigine from 3-Arylhexahydroindole 194

The successful synthesis of 3-arylhexahydro-oxindole 224 meant that the total synthesis of (+)-brunsvigine (ent-18) via the Pictet-Spengler reaction strategy (as discussed in Chapter One) could be pursued. The 3-arylhexahydroindole 194 (Scheme 5.16) was identified as an ideal substrate for this transformation and its preparation from compound $\mathbf{2 2 4}$ is described below.

Scheme 5.16: Identification of the substrate, 194, for the Pictet-Spengler reaction

The synthesis of 3-arylhexahydroindole 194 began with the treatment of the epimeric mixture of compounds 224 and 252 with AlH $_{3}$ [prepared in situ by treating a THF solution of LiAlH_{4} (1 eq.) with $\left.\mathrm{AlCl}_{3}(1 \mathrm{eq}).\right]^{1,21}$ at $18{ }^{\circ} \mathrm{C}$. This resulted in selective reduction of the amide carbonyl to give 3°-amine 268 in excellent yield. A mild, two-step debenzylation protocol was then employed whereby 3°-amine 268 was treated with α-chloroethyl chloroformate (ACE-CI) in DCE at $80^{\circ} \mathrm{C}^{22,23}$ to form the intermediate ammonium species 269 (Scheme 5.17). Subsequent displacement of the PMB group by the nucleophilic chloride ion then provided carbamate 270.

Scheme 5.17: Synthesis of 3-arylhexahydroindole 194 from compound 224

Treatment of this material with MeOH at reflux resulted in the cleavage of the carbamate function to form amine hydrochloride salt, which upon work-up with aqueous NaOH afforded the substrate for the Pictet-Spengler reaction, namely amine 194 that was obtained as a 8.5:1 mixture of diastereoisomers. All the data obtained on this material were in accord with the assigned structure. For example, the IR spectrum showed an absorption band at 3307 cm^{-1}, which is indicative of the presence of an NH group.

Disappointingly, treatment of compound 194 with paraformaldehyde in neat formic acid ${ }^{2}$ at $80^{\circ} \mathrm{C}$ failed to give the expected Pictet-Spengler product, namely compound 271 (Scheme 5.18). Rather, congener 272 (48%) was produced wherein the required 5,11methanomorphanthridine framework was obtained with accompanying installation of 1,3dioxolane function at C 2 and C 3 .

Scheme 5.18: Pictet-Spengler reaction of 3-arylhexahydroindole 194

Product 272 presumably results from the cleavage of the MOM groups under the hot and acidic conditions employed for the Pictet-Spengler reaction. ${ }^{24}$ As suggested in Scheme 5.19, formic acid-promoted removal of the MOM groups from 5,11-methanomorphanthridine 271 leads to diol ent-18. Nucleophilic attack of one of the alcohol functions within this compound on the acid-activated formaldehyde 273 would produce hemiacetal 274 that is then protonated to give the corresponding oxonium ion 275. Elimination of water from this last intermediate would then deliver cation 276 that can engage in an intramolecular reaction whereby the free remaining hydroxyl group reacts with the oxonium moiety to afford compound 272. ${ }^{25-27}$

Scheme 5.19: Possible mechanism of the formation of compound 272

This unwanted MOM-cleavage/methylation sequence, although disappointing, could, in principle, be circumvented by using Eschenmoser's salt. ${ }^{28,29}$ In the event, subjection of 3arylhexahydroindole 194 to the reaction with this reagent in DMF at $80^{\circ} \mathrm{C}$ failed to provide to 5,11-methanomorphanthridine 272. In fact, only a chromatographically inseparable mixture of a range of uncharacterised by-products was observed.

5.4.2. Completion of the Synthesis of (+)-Brunsvigine from 3Arylhexahydroindole 277

Having encountered problems associated with the lack of stability of the MOM protecting group under the Pictet-Spengler reaction conditions, a revision of the synthetic plan was necessary. As a pivotal step in the preparation of the target alkaloid involved the PictetSpengler reaction (C-ring annulation), introduction of an acid-stable hydroxyl protecting group seemed necessary. Hence, 2°-amine 277, possessing the cyclic carbonate residue at C5 and C6, was identified as an ideal substrate for such a key transformation. The rationale for this arises from the fact that this diol protecting group is extremely stable to acidic conditions as well as being more stable to base-promoted hydrolysis than an ester group. ${ }^{30}$

277

The preparation of compound 277 began with the removal of the MOM group from 3°-amine 268 using catalytic HCl in MeOH to provide diol 278 in 73% yield (Scheme 5.20). Treatment of the last compound with triphosgene in the presence of pyridine effected the one-pot cleavage of the PMB group and the installation of the required cyclic carbonate group ${ }^{31}$ and so producing carbamoyl chloride $\mathbf{2 7 9}$ in 50% yield and as a 8.5:1 diastereoisomeric mixture.

Scheme 5.20: Synthesis of carbamoyl chloride 279

This outcome was pleasing and all the data obtained on this compound (279) were in full accord with assigned structure. The IR spectrum, for instance, showed strong carbonyl stretching bands at 1802 and $1738 \mathrm{~cm}^{-1}$, which are attributed to cyclic carbonate function (typically $\left.1800 \mathrm{~cm}^{-1}\right)^{32}$ and the carbamoyl chloride group which typically absorbs in the range of $1740-1738 \mathrm{~cm}^{-1} .{ }^{33}$ This structure was also confirmed by the appearance of carbon signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 153.5$ and 148.9 (Figure 5.5), which are due to cyclic carbonate carbonyl and carbamoyl chloride carbonyl carbons, respectively.

Figure 5.5: $150 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectrum of carbamoyl chloride 279 recorded in CDCl_{3}

The conformationally rigid nature of carbamoyl chloride 279 was also useful because it finally enabled the confirmation of the illustrated relative configuration of diastereoisomer 279.

Figure 5.6: $600 \mathrm{MHz}^{1} \mathrm{H}^{1} \mathrm{H}$ NOESY spectrum of carbamoyl chloride 279 (recorded in CDCl_{3})

Specifically, the NOESY spectrum of carbamoyl chloride 279 (Figure 5.6) showed the critical 1,5-through-space interaction between H_{b} / H_{c} and H_{d}, which is indicative of the illustrated stereochemistry at C3.

The preparation of the substrate for the Pictet-Spengler reaction, viz 3-arylhexahydroindole 277, continued with the removal of the carbamoyl chloride function. Thus, hydrolysis of the carbamoyl chloride group present in compound 279 with catalytic HCl in dioxane-water ${ }^{34,35}$ proceeded smoothly to give Pictet-Spengler reaction precursor 277 in excellent yield (Scheme 5.21). Gratifyingly, subjection this material to the pivotal Pictet-Spengler reaction, using paraformaldehyde in the presence of formic acid, effected the C-ring annulation to give, in 65\% yield, carbonate 280 that possessed the fully functionalised 5,11methanomorphanthridine framework of (+)-brunsvigine (ent-18). Purification of this material by flash chromatography resulted in compound 280 being isolated as a single diastereoisomer.

Scheme 5.21: synthesis of 2°-amine 277 and the subsequent Pictet-Spengler reaction to achieve C-ring annulation

All the spectral data obtained on compound 280 were in full accord with the assigned structure. For example, analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 5.7) showed the two characteristic aromatic proton signals at $\delta 6.56$ and $6.49\left(\mathrm{H}_{\mathrm{d}}\right.$ and H_{c}, respectively), which are indicative of successful C-ring annulation. In addition, the diastereotopicity associated with the methylenedioxy protons H_{1} and H_{m} (resonating at $\delta 5.92$ and 5.89 , respectively) also highlights the differences between the $R e$ and S-type faces of this rigid framework.

Figure 5.7: $600 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (above) and $75 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR (below) spectra of carbonate80 recorded in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$

Having successfully prepared the fully functionalised framework of (+)-brunsvigine (ent-18), all that remained was the cleavage of the cyclic carbonate protecting group to reveal the free hydroxyl functions at C2 and C3. In the event, treatment of carbonate 280 with aqueous potassium hydroxide in MeOH^{36} resulted in a hydrolysis reaction which produced (+)brunsvigine (ent-18) in 87\% yield (Scheme 5.22).

Scheme 5.22: Completion of the synthesis of (+)-brunsvigine (ent-18)

The spectral data obtained for this compound were in full accord with the assigned structure. In accord with the reports of Dry et. al. ${ }^{37}$ this compound was able to be crystallized from wet acetone as a sesquihydrate and the melting range of this material proved to be $130-140^{\circ} \mathrm{C}$, in reasonably good agreement with the values reported in literature ($140-150{ }^{\circ} \mathrm{C}^{37}$) for the natural product. The final confirmation of the structure assigned to the synthetic material arose from single-crystal X-ray analysis (Figure 5.8). The specific rotation of (+)brunsvigine (ent-18) was $[\alpha]_{D}^{20}+75.9$ (c 0.1, EtOH) which is of similar magnitude but opposite sign to that reported ${ }^{37}$ for the natural product, viz. $[\alpha]_{D}^{20}-76.6$ (c 1, EtOH).

Figure 5.8: ORTEP derived from the single-crystal X-ray analysis of (+)-brunsvigine (ent-18) sesquihydrate (water molecules omitted for clarity)

5.5. Summary

This Chapter has detailed a 17-step total synthesis of (+)-brunsvigine (ent-18) which proceeded in 0.6% overall yield. Involving Approach D, the key features include the preparation of a substrate capable of undergoing a challenging 5-exo-trig radical cyclization/halogen atom elimination process to install the D-ring of the target alkaloid and thus generating the 3-arylhexahydro-oxindole 224. Subsequent elaboration of this intermediate to a compound, 277, suitable for participation in a Pictet-Spengler reaction was achieved in four steps including a mild one-pot, two-step protocol whereby the PMB substituent was cleaved and the acid stable cyclic carbonate group was installed. Finally, subjection of compound 277 to a Pictet-Spengler reaction followed by the hydrolysis of the cyclic carbonate group revealed the target compound (+)-brunsvigine (ent-18). Since the enantiomer (ent-92) of the starting diol (92) is known, this work also constitutes a formal total synthesis of (-)-brunsvigine (18).

5.6. References

1. Ikeda, M.; Hamada, M.; Yamashita, T.; Matsui, K.; Sato, T.; Ishibashi, H., J. Chem. Soc., Perkin Trans. 1, 1999, 1949.
2. Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Kemmler, M., J. Chem. Soc., Perkin Trans. 1, 2001, 1345.
3. Jolly, R. S.; Livinghouse, T., J. Am. Chem. Soc., 1988, 110, 7536.
4. Curran, D. P.; Chang, C. T., Tetrahedron Lett., 1987, 28, 2477.
5. Stork, G.; Mah, R., Heterocycles, 1989, 28, 723.
6. Ishizaki, M.; Kurihara, K.; Tanazawa, E.; Hoshino, O., J. Chem. Soc., Perkin Trans. 1, 1993, 101 and references cited therein.
7. Giese, B.; Kopping, B.; Göbel, T.; Dickhaut, J.; Thoma, G.; Kulicke, K. J.; Trach, F., Radical Cyclization Reaction. Paquette, L. A., John Wiley \& Sons Inc.: New York, 1996; Vol. 48, p 301.
8. Vanrheenen, V.; Kelly, R. C.; Cha, D. Y., Tetrahedron Lett., 1976, 17, 1973.
9. Roush, W. R.; Bennett, C. E., J. Am. Chem. Soc., 2000, 122, 6124.
10. Mann, S.; Carillon, S.; Breyne, O.; Duhayon, C.; Hamon, L.; Marquet, A., Eur. J. Org. Chem., 2002, 736.
11. Yokokawa, F.; Asano, T.; Shioiri, T., Org. Lett., 2000, 2, 4169.
12. Abdel-Magid, A. F.; Carson, K. G.; Harris, B. D.; Maryanoff, C. A.; Shah, R. D., J. Org. Chem., 1996, 61, 3849.
13. Curran, D. P.; Tamine, J., J. Org. Chem., 1991, 56, 2746.
14. Curran, D. P., Radical cyclizations and sequential radical reactions. In Comprehensive Organic Synthesis, Trost, B.; Fleming, I., Eds. Pergamon Press: New York, 1991; Vol. 4, p 779.
15. Luo, Y., Comprehensive Handbook of Chemical Bond Energies. CRC Press, Taylor Francis Group: New York, 2007; p 211.
16. Curran, D. P., Synthesis, 1988, 417.
17. Stork, G.; Baine, N. H., J. Am. Chem. Soc., 1982, 104, 2321.
18. Zhang, L. M.; Koreeda, M., Org. Lett., 2004, 6, 537.
19. Chatgilialoglu, C., Acc. Chem. Res., 1992, 25, 188.
20. Computational calculations were carried out using UB3LYP/6$311+G(3 d f, 2 p) / / U B 3 L Y P / 6311 G^{* *}$ levels of theory by Dr David Kvaskoff at the University of Queensland. In 2006.
21. Finholt, A. E.; Bond, A. C.; Schlesinger, H. I., J. Am. Chem. Soc., 1947, 69, 1199.
22. Yang, B. V.; Orourke, D.; Li, J. C., Synlett, 1993, 195.
23. Olofson, R. A.; Martz, J. T.; Senet, J. P.; Piteau, M.; Malfroot, T., J. Org. Chem., 1984, 49, 2081.
24. Greene, T. W.; Wuts, P. G., Protective Groups in Organic Synthesis. 3 ed.; John Wiley \& Sons: Hoboken, 1999; p 701.
25. Bazbouz, A.; Christol, H.; Coste, J.; Plenat, F., Bull. Soc. Chim. Fr., 1978, 305.
26. Anteunis, M.; Becu, C., Synthesis, 1974, 23.
27. Pelletier, S. W.; Desai, H. K.; Kulanthaivel, P.; Joshi, B. S., Heterocycles, 1987, 26, 2835.
28. Keck, G. E.; Webb, R. R., J. Am. Chem. Soc., 1981, 103, 3173.
29. Sha, C. K.; Hong, A. W.; Huang, C. M., Org. Lett., 2001, 3, 2177.
30. Greene, T. W.; Wuts, P. G., Protective Groups in Organic Synthesis. 3 ed.; John Wiley and Sons Inc.: Hoboken, 1999; p 241.
31. Burk, R. M.; Roof, M. B., Tetrahedron Lett., 1993, 34, 395.
32. Cardillo, G.; Orena, M.; Porzi, G.; Sandri, S.; Tomasini, C., J. Org. Chem., 1984, 49, 701.
33. Banwell, M. G.; Coster, M. J.; Harvey, M. J.; Moraes, J., J. Org. Chem., 2003, 68, 613.
34. Drauz, K.; Kleemann, A.; Martens, J.; Scherberich, P.; Effenberger, F., J. Org. Chem., 1986, 51, 3494.
35. Banholzer, R.; Heusner, A.; Schulz, W., Liebigs Ann. Chem., 1975, 2227.
36. Tanino, K.; Onuki, K.; Asano, K.; Miyashita, M.; Nakamura, T.; Takahashi, Y.; Kuwajima, I., J. Am. Chem. Soc., 2003, 125, 1498.
37. Dry, L. J.; Poynton, M.; Thompson, M. E.; Warren, F. L., J. Chem. Soc., 1958, 4701.

CHAPTER SIX

Summary and Future Work

6.1. Summary

6.1.1. Chemoenzymatic Total Synthesis of (+)-Brunsvigine (ent-18)

The work presented in this thesis has been directed towards the development of a chemoenzymatic total synthesis of the unnatural enantiomer of the montanine alkaloid (+)-brunsvigine (ent-18). Involving four approaches, with the last being successful, three major outcomes of this study can be identified. The first is the selective manipulation of enantiopure cis-1,2-dihydrocatechols so as to provide an appropriately functionalised precursor for a novel radical cyclization process. The second is the successful employment of this precursor in a 5-exo-trig radical cyclization/halogen atom elimination reaction to complete the D-ring annulation, and thus constructing the framework required for the pivotal Pictet-Spengler reaction. The third involved the introduction of an acid stable alcohol protecting group that enabled the successful application of the key Pictet-Spengler reaction to achieve the C-ring annulation and so provide the fully functionalised framework of the target alkaloid. This framework was then easily converted into (+)-brunsvigine (ent-18).

6.2. Future Work

6.2.1. Chemoenzymatic Approaches to Montanine Alkaloids

Careful inspection of the reported synthetic approach to (+)-brunsvigine (ent-18) suggests a general method for the preparation of the remaining members of the montanine alkaloid family. This stems from the fact that the differences that exist between these natural products arise from variations in oxygenation at C2, C3 and C4 of the E-ring. Therefore, as both enantiomers of the chloro-derivative of the enantiopure cis-1,2-dihydrocatechol (92 and ent-92) are available, it is conceivable that both the (+) and (-) series of these alkaloids can be accessed following this general method (Scheme 6.1).

(-)-Nangustine (20)

(-)-Montanine (14)

(-)-Coccinine (15)

(+)-Montabuphine (21)

(-)-Manthine (17)

(-)-Brunsvigine (18)

(-)-Manthidine (16)

Scheme 6.1: Chemoenzymatic approach to montanine alkaloids

The preparation of (-)-nangustine (20), for instance, would entail the use of diol ent-92 whereby a similar sequence, as described for the synthesis of (+)-brunsvigine, would be utilized.

(-)-Nangustine (20)

Thus, commencing with ent-92, protection of this material as the corresponding PMP acetal, followed by an epoxidation reaction with m-CPBA would be expected to give epoxide 281 (Scheme 6.2). Subsequent regioselective cleavage of the epoxide ${ }^{1}$ and the PMP acetal moieties with DIBAL-H should then deliver trans-diol 282. Elaboration of this last compound, through a sequence of known transformations, would then give 2°-amine 283. It is important to note the presence of the 1,2 -trans relationship between MOM groups in
compound 283 would limit the formation of an unwanted 1,3-dioxolane moiety (as observed in Section 5.4.1.) during the execution of the pivotal Pictet-Spengler reaction. Subjection of compound 283 to a EDCI/HOBt-mediated coupling reaction acid 105 would then give radical cyclization substrate 284.

Scheme 6.2: Synthesis of substrate 284 for the radical cyclization reaction

Treatment of compound 284 with $n-\mathrm{Bu}_{6} \mathrm{Sn}_{2}, n-\mathrm{Bu}_{3} \mathrm{SnH}$ and AIBN in refluxing benzene should complete the D-ring annulation process by effecting the key radical cyclization reaction and producing 3-arylhexahydro-oxindole 285 as the major epimer (Scheme 6.3). Finally, elaboration of this compound, through several steps (which also includes the pivotal Pictet-Spengler reaction to annulate the C-ring), should then afford the target alkaloid $(-)$-nangustine (20). Work directed at implementing this plan is now underway.

Scheme 6.3: Completion of a total synthesis of (-)-nangustine (20) from radical cyclization precursor 284

6.3. References:

1. McRae, K. J., cis-1,2-Dihydrocatechols - Versatile Synthons for the Stereoselective Assembly of Natural Products, Doctor of Philosophy Thesis, The Australian National University, Canberra, 2001.

CHAPTER SEVEN

Experimental Section

7.1. General Experimental

Unless otherwise specified, proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were recorded at $20^{\circ} \mathrm{C}$ in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{OD}$ on a Varian Inova 300 spectrometer operating at 300 MHz for proton and 75 MHz for carbon nuclei. In certain cases, a Varian Inova 500 spectrometer operating at 500 MHz for proton and 125 MHz for carbon nuclei was used, a Varian Inova 600 spectrometer operating at 600 MHz for proton and 150 MHz for carbon nuclei was used and a Varian Inova 800 spectrometer operating at 800 MHz for proton and 200 MHz for carbon nuclei was used. Signals arising from the residual protio-forms of the solvent were employed as the internal standard. ${ }^{1} \mathrm{H}$ NMR data are recorded as follows: chemical shift (δ) [relative integral, multiplicity, coupling constant(s) $J(\mathrm{~Hz})$] where multiplicity is defined as: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; $\mathrm{t}=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{m}=$ multiplet or combinations of the above. The central peak (δ 77.0) of the CDCl_{3} triplet, the central peak ($\delta 49.0$) of the $\mathrm{CD}_{3} \mathrm{OD}$ septet or the central peak (δ 29.8) of the $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ septet was used to reference proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectra. For ${ }^{13} \mathrm{C}$ NMR spectra the data are given as: chemical shift (δ). Assignment of signals observed in various NMR spectra were often assisted by conducting distortionless enhancement of polarization transfer (DEPT), attached proton test (APT), homonuclear (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$) correlation spectroscopy (COSY), heteronuclear single quantum correlation (HSQC), heteronuclear multiple-bond correlation (HMBC) and/or nuclear Overhauser effect (NOE) experiments.

Infrared spectra ($v_{\max }$) were recorded on a Perkin-Elmer 1800 Series FTIR Spectrometer. Samples were analysed as KBr disks (for powdery solids) or as thin films on NaCl plates (for oils and crystalline solids).

A VG Fisons AutoSpec three sector ($\mathrm{E} / \mathrm{B} / \mathrm{E}$) double-focussing mass spectrometer was used to obtain low- and high-resolution electron impact (EI) mass spectra. Low- and highresolution electrospray (ESI) mass spectra were obtained on a VG Quattro II triple quadrupole MS instrument operating in either positive and/or negative ionisation modes.

Optical rotations were measured with a Perkin-Elmer 241 polarimeter at the sodium-D line (589 nm) and the concentrations (c) ($\mathrm{g} / 100 \mathrm{~mL}$) indicated, using spectroscopic grade CHCl_{3}, THF or EtOH as solvent. The measurements were carried out in a cell with a path length (I) of 1 dm . Specific rotations $[\alpha]_{D}$ were calculated (at $20^{\circ} \mathrm{C}$) using the equation $[\alpha]_{D}=100 . \alpha /(\mathrm{c} . \mathrm{I})$ and are given in 10^{-1}.deg. $\mathrm{cm}^{2} . \mathrm{g}^{-1}$.
Melting points were measured on either a Stanford Research System "OptiMelt" apparatus or a Reichert hot-stage microscope apparatus and are uncorrected.

Elemental analyses were performed by the Australian National University's Microanalytical Services Unit based at the Research School of Chemistry, Canberra, Australia.

Analytical thin layer chromatography (TLC) was performed on glass-backed 0.25 mm thick silica gel $60 \mathrm{~F}_{254}$ plates as supplied by Merck. Eluted plates were visualised using a 254 nm UV lamp and/or by treatment with a suitable dip followed by heating. These dips were composed of phosphomolybdic acid, ceric sulfate, sulfuric acid (conc.) and water ($37.5 \mathrm{~g}: 7.5$ $\mathrm{g}: 37.5 \mathrm{~g}: 720 \mathrm{~mL}$), or vanillin, MeOH and sulfuric acid (conc.) ($5 \mathrm{~g}: 500 \mathrm{~mL}: 25 \mathrm{~mL}$). Flash chromatography was performed using the analytical grade solvents indicated and silica gel 60 $(0.040-0.0063 \mathrm{~mm})$ as supplied by Merck. Room temperature is assumed to be ca. $18^{\circ} \mathrm{C}$.

Analytical high performance liquid chromatography (HPLC) was carried out using a Waters Alliance 2695 separation module and a Waters 2996 photodiode detector set at 254 nm interfaced with Empower 2 chromatography software. Analytical HPLC separations were carried out using Altech Altima C18, $5 \mu \mathrm{~m} 250 \times 4.6 \mu \mathrm{~m}$ HPLC column.

Starting materials and reagents were generally available from the Sigma-Aldrich-Fluka (SAF), Merck, TCI, Strem or Lancaster Chemical Companies and were used as supplied or, in the case of some liquids, distilled. All cis-1,2-dihydrocatechols were generously provided by Dr G. Whited of Genencor International Inc. (Palo Alto, CA) or by Professor D. Boyd of the Queen's University, Belfast. Drying agents and other inorganic salts were purchased from the AJAX, BDH or Unilab Chemical Companies. Tetrahydrofuran (THF), dioxane, and diethyl ether were distilled from sodium benzophenone ketyl. MeOH and EtOH were distilled from calcium oxide while dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and acetonitrile (MeCN) was distilled from calcium hydride. Hexane and ethyl acetate were distilled without using drying reagents. Whilst Benzene and Toluene were distilled from sodium, Triethylamine, pyridine and $\mathrm{N}, \mathrm{N}-$ diisopropylethylamine ($\mathrm{EtN}^{\mathrm{i}} \mathrm{Pr}_{2}$) were all distllled from and stored over potassium hydroxide. N, N-dimethylformamide was stored over activated $4 \AA \AA$ molecular sieves.

Concentration under reduced pressure was performed on the rotary evaporator with the water bath temperature not exceeding $45{ }^{\circ} \mathrm{C}$ unless otherwise specified. Also, all reactions were performed under an atmosphere of nitrogen unless otherwise specified.

7.2. Experimental Procedures

7.2.1. Chapter Two: Attempted Preparation of 3-Arylhexahydroindoles via Approach A

Cyclohexenyltrimethylstannane (128)

A modification of the procedure detailed by Paquette et al. was employed. ${ }^{1}$
Thus, a magnetically stirred suspension of p-toluenesulfonylhydrazone $136^{13}(0.40 \mathrm{~g}, 1.50$ mmol) in TMEDA-hexane (2 mL of a $1: 1 \mathrm{v} / \mathrm{v}$ mixture) cooled to $-78^{\circ} \mathrm{C}$ was treated, dropwise, with n-BuLi (3.80 mL of a 1.6 M solution in hexane, 6.01 mmol). After 1.5 h at this temperature, the reaction mixture was warmed to $18^{\circ} \mathrm{C}$ for 2 h and then cooled to $0^{\circ} \mathrm{C}$. The introduction of trimethyltin chloride (TMSnCl) ($1.20 \mathrm{~g}, 6.01 \mathrm{mmol}$) to the ensuing mixture produced in an orange solution that was allowed to warm to $18^{\circ} \mathrm{C}$ and for 20 h at which time TLC analysis indicated that all starting material had been consumed. Consequently, the reaction mixture was diluted with pentane (50 mL) and water (50 mL) and the separated organic fraction was washed, sequentially, with water ($2 \times 50 \mathrm{~mL}$), $\mathrm{CuSO}_{4}(2 \times 40 \mathrm{~mL}$ of saturated aqueous solution) and brine ($1 \times 50 \mathrm{~mL}$) and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give an orange oil. Vacuum distillation using Kugelrohr apparatus then afforded the previously reported title compound $\mathbf{1 2 8}^{\mathbf{2}}$ ($0.18 \mathrm{~g}, \mathbf{4 9 \%}$) as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.76(1 \mathrm{H}, \mathrm{m}), 2.08(2 \mathrm{H}, \mathrm{m}), 2.00(2 \mathrm{H}, \mathrm{m}), 1.55(4 \mathrm{H}, \mathrm{m}), 0.00$ (9H, m).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.7,136.9,30.8,27.4,23.6,22.6,-9.7$.
IR (NaCl) $\boldsymbol{v}_{\text {max }} 2924,2829,1433,1187,764 \mathrm{~cm}^{-1}$.

3,4-Methylenedioxystyrene (139)

A magnetically stirred suspension of piperonal (138) ($2.96 \mathrm{~g}, 19.7 \mathrm{mmol}$), potassium carbonate $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)(3.50 \mathrm{~g}, 25.3 \mathrm{mmol})$ and methyltriphenylphosphonium bromide $\left(\mathrm{MePPh}_{3} \mathrm{Br}\right)$ $(7.00 \mathrm{~g}, 19.6 \mathrm{mmol})$ in dioxane-water (20.3 mL of a $67: 1 \mathrm{v} / \mathrm{v}$ mixture) was heated at $100^{\circ} \mathrm{C}$ for 18 h at which point TLC analysis indicated that all starting material had been consumed. Consequently, the reaction mixture was cooled to $18^{\circ} \mathrm{C}$, filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to produce a yellow residue that was subjected to flash chromatography (silica, neat hexane $\rightarrow 1: 5 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane, gradient elution). Concentration of appropriate fractions ($R_{f}=0.8$) then afforded the previously reported title compound $139^{3}(2.33 \mathrm{~g}, 80 \%)$ as an opaque, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{H}\left(\mathrm{CDCl}_{3}\right) 7.09(1 \mathrm{H}, \mathrm{m}), 6.92(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and 1.5 Hz$), 6.85(1 \mathrm{H}, \mathrm{d}, J$ $=8.1 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=17.7$ and 10.8 Hz$), 5.96(1 \mathrm{H}, \mathrm{s}), 5.70(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}), 5.24$ $(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 148.4,147.8,136.8,132.4,121.4,112.1,108.4,105.7$, 101.4. IR (NaCl) $v_{\text {max }} 3087,2894,1630,1604,1489,1444,1248,1191,1042,914 \mathrm{~cm}^{-1}$. MS (EI, 70 eV) m/z 148 (M+, 100%), 111 (15), 89 (55), 69 (45), 57 (65), 43 (63).

HRMS Found: $\mathrm{M}^{+}, 148.0517 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2}$ requires $\mathrm{M}^{+\bullet}, 148.0524$.

2-(Benzo[d][1,3]dioxol-6-yl)-1-tosylaziridine (127)

A magnetically stirred mixture containing styrene 139 ($148.0 \mathrm{mg}, 1.00 \mathrm{mmol}$), CuOTf (24.0 $\mathrm{mg}, 0.11 \mathrm{mmol}$), p-toluenesulfonamide ($240.0 \mathrm{mg}, 1.40 \mathrm{mmol}$) and $3 \AA \AA$ molecular sieves (0.5 g) in anhydrous $\mathrm{MeCN}(3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ then treated with iodosylbenzene ${ }^{4}$ (308.0 $\mathrm{mg}, 1.40 \mathrm{mmol})$. After 1 h , the cooling bath was removed and the reaction mixture was allowed to stir at $18{ }^{\circ} \mathrm{C}$. After 23 h , the reaction mixture was filtered through a pad of Celite ${ }^{\oplus}$ and the filtrate was concentrated under reduced pressure to provide a brown residue. Subjection of this material to flash chromatography (silica, 1:4 $\boldsymbol{2}$ 2:3 v / v ethyl acetatehexane, gradient elution) afforded, after concentration of appropriate fractions ($R_{f}=0.6,2: 3$ v / v ethyl acetate-hexane), the title compound 127 ($127.5 \mathrm{mg}, 40 \%$) as a white, crystalline solid.
$\mathrm{mp}=105-107^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left.(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)\right] 7.87(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.84(1 \mathrm{H}$, dd, $J=8.1$ and 1.8 Hz) $6.76(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 5.96(2 \mathrm{H}, \mathrm{s}), 3.73$ ($1 \mathrm{H}, \mathrm{dd}, J=7.2$ and 4.5 Hz), $2.90(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}$), $2.41(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 2.41(3 \mathrm{H}, \mathrm{s})$ ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left.\delta_{C}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)\right]$ 148.2, 148.0, 145.0, 135.6, 130.1, 129.5, 128.1, 121.0, 108.3, 106.6, 101.6, 40.8, 35.5, 21.0.

IR (KBr) $v_{\text {max }} 2923,1718,1490,1445,1330,1250,1160,1038 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 317 (M+, 30%), 162 (100), 135 (63), 132 (43), 104 (36), 77 (32), 65 (16).
HRMS Found: $\mathrm{M}^{+}, 317.0710 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}, 317.0721$.
Elemental Analysis Found: C, 60.63; H, 5.06; N, 4.41. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 60.55$; H , 4.76; N, 4.41.

2-(Benzo[d][1,3]dioxol-6-yl)-2-(1-cyclohexenyl)-N-tosyl-ethanamine (134), and 1-(Benzo[d][1,3]dioxol-6-yl)-2-(tosylamino)ethanol (140)

A magnetically stirred solution of aziridine 127 ($45.0 \mathrm{mg}, 0.14 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ then treated, dropwise, with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(60 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$. After 5 \min, the ensuing mixture was treated with stannane $128(35.0 \mathrm{mg}, 0.14 \mathrm{mmol})$ and allowed to warm to $18{ }^{\circ} \mathrm{C}$. After 20 h , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with ammonium hydroxide ($1 \times 40 \mathrm{~mL}$ of saturated aqueous solution), ammonium chloride (2×40 mL of saturated aqueous solution) and brine ($1 \times 40 \mathrm{~mL}$). The organic fraction was then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, neat hexane $\rightarrow 3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane, gradient elution) afforded two fractions, A and B.

Concentration of fraction $\mathbf{A}\left(R_{f}=0.3,3: 7 \mathrm{v} / \mathrm{v}\right.$ ethyl acetate-hexane) provided the title compound 134 ($31.0 \mathrm{mg}, 55 \%$) as an opaque, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J$ $=8.4 \mathrm{~Hz}), 6.51(2 \mathrm{H}, \mathrm{m}), 5.92(2 \mathrm{H}, \mathrm{s}), 5.44(1 \mathrm{H}$, broad s$), 4.30(1 \mathrm{H}$, broad m$), 3.26(1 \mathrm{H}, \mathrm{m})$, $3.12(1 \mathrm{H}$, complex m), $2.44(3 \mathrm{H}, \mathrm{s}), 2.04(1 \mathrm{H}$, broad s), 1.64-1.42(8H, complex m).
${ }^{13} \mathrm{C}$ NMR (126 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 147.8,146.5,143.5,137.0,137.0,136.6,134.1,129.7,127.1$, $123.0,121.0,108.2,107.9,101.0,51.5,45.2,27.0,25.2,22.6,22.3$.

IR (NaCl) $v_{\max } 3292,2925,1722,1503,1488,1328,1246,1161,1039 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 399 ($\mathrm{M}^{+\bullet}, 15 \%$), 310 (6), 215 (100), 203 (15), 185 (37), 155 (23), 135 (19), 91 (43), 57 (22), 43 (17).

HRMS Found: $\mathrm{M}^{+\bullet}$, 399.1507. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}$, 399.1504.

Concentration of fraction \mathbf{B} ($R_{f}=0.2,3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) provided sulfonamide 140 ($10.0 \mathrm{mg}, 20 \%$) as an opaque, viscous oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.72(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.75(3 \mathrm{H}, \mathrm{m})$, $5.94(2 \mathrm{H}, \mathrm{s}), 4.95(1 \mathrm{H}$, broad s), $4.69(1 \mathrm{H}, \mathrm{dd}, J=8.7$ and 3.6 Hz$), 3.18(1 \mathrm{H}$, broad m$)$, 2.98 ($1 \mathrm{H}, \mathrm{m}$), $2.42(3 \mathrm{H}, \mathrm{s})$ (one signal due to NH obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 147.9,147.5,143.6,136.6,134.7,129.8,127.0,119.3,108.3$, 106.2, 101.1, 72.5, 50.1, 21.5.

IR (NaCl) $v_{\text {max }} 3608,3382,3018,1505,1489,1332,1250,1215,1160,1041,749 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 335 (M+•, 9%), 306 (25), 184 (31), 151 (100), 123 (20), 93 (77), 65 (77).
HRMS Found: $\mathrm{M}^{+}, 335.0818 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}, 335.0793$.

2-lodocyclohex-2-enol (160)

A magnetically stirred solution known cyclohexenone $163^{5}(5.0 \mathrm{~g}, 22.5 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ $(8.4 \mathrm{~g}, 22.5 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(75 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ then treated with NaBH_{4} $(1.0 \mathrm{~g}, 26.3 \mathrm{mmol})$ and stirred at $18{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was quenched with water (100 mL) and extracted with diethyl ether ($3 \times 150 \mathrm{~mL}$). The combined organic fractions were washed with brine ($1 \times 100 \mathrm{~mL}$), then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, 1:4 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=$ 0.4) afforded the previously reported title compound $160^{6}(5.0 \mathrm{~g}, 99 \%)$ as a light-yellow, crystalline solid.
$\mathrm{mp}=45-47^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.40(1 \mathrm{H}, \mathrm{t}, J=3.9 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{m}), 2.90(1 \mathrm{H}$, broad s), 2.111.51 (6 H , complex m).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.6,103.3,71.6,31.9,29.1,17.4$.
IR (NaCl) $v_{\text {max }} 3352,2938,2862,1625,1426,1328,1161,1078,1052,989,971 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 224 (${ }^{+๋}$, 83\%), 206 (37), 196 (100), 183 (10), 155 (9), 127 (33), 97 (75), 79 (93), 69 (96), 55 (85), 39 (83).

HRMS Found: $\mathrm{M}^{+\bullet}, 223.9695 . \mathrm{C}_{6} \mathrm{H}_{9}{ }^{127} \mathrm{I}$ requires $\mathrm{M}^{+}, 223.9698$.

1-[(2-lodocyclohex-2-enyloxy)methyl]-4-methoxybenzene (286)

A magnetically stirred solution of cyclohexenol $160(1.25 \mathrm{~g}, 5.58 \mathrm{mmol})$ in anhydrous THF (20 mL) was treated with sodium hydride (0.80 g of a 60% mixture with paraffin oil, 20.10 mmol) then heated at $65{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was cooled to $18^{\circ} \mathrm{C}$ and treated with $n-$ $\mathrm{Bu}_{4} \mathrm{NI}(7.91 \mathrm{~g}, 21.43 \mathrm{mmol})$ and p-methoxybenzyl chloride (PMB-CI) ($3.35 \mathrm{~g}, 21.43 \mathrm{mmol}$) in anhydrous DMF (20 mL). The resulting mixture was then stirred for 22 h before being quenched with water (100 mL) and extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic fractions were washed with water ($1 \times 100 \mathrm{~mL}$) and brine $(1 \times 100 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue. Subjection of this material to flash chromatography (silica, 1:19 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound 286 ($1.85 \mathrm{~g}, 96 \%$) as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.38(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.50(1 \mathrm{H}, \mathrm{m})$, $4.58(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \operatorname{broad} \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 2.14-$ $1.88(3 \mathrm{H}$, complex m), $1.77(2 \mathrm{H}, \mathrm{m}), 1.61(1 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 158.5,140.9,129.7,128.9,113.0,99.2,77.8,70.7,54.6,28.8$, 28.5, 16.7.

IR (NaCl) $\boldsymbol{v}_{\text {max }}$ 2937, 2862, 2834, 1612, 1513, 1463, 1302, 1248, 1173, 1082, 1036, 826, 733 cm^{-1}.

MS (EI, 70 eV) m/z 344 ($\mathrm{M}^{+}, 99 \%$), 236 (91), 208 (33), 187 (99), 137 (97), 122 (99), 109 (95), 81 (100), 65 (41), 51 (51), 39 (70).
HRMS Found: $\mathrm{M}^{+\bullet}, 344.0275 . \mathrm{C}_{14} \mathrm{H}_{17}{ }^{127} \mathrm{IO}_{2}$ requires $\mathrm{M}^{+\bullet}$, 344.0273.

[6-(4-Methoxybenzyloxy)cyclohex-1-enyl]trimethylstannane (143)

A magnetically stirred solution of cyclohexene $286(0.4 \mathrm{~g}, 1.16 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(90 \mathrm{mg}$, $77.9 \mu \mathrm{~mol}$) in anhydrous THF (3 mL) maintained at $18^{\circ} \mathrm{C}$ was treated with hexamethylditin ($0.29 \mathrm{~mL}, 1.39 \mathrm{mmol}$) then heated at $65^{\circ} \mathrm{C}$. After $13 \mathrm{~h}, \mathrm{TLC}$ analysis indicated that all starting material had been consumed. Consequently, the reaction mixture was cooled to $18{ }^{\circ} \mathrm{C}$ then concentrated under reduced pressure to give a black residue that was subjected to flash chromatography (silica, 1:19 v/v ethyl acetate-hexane elution) and so providing two fractions, A and B.

Concentration of fraction $\mathbf{A}\left(R_{f}=0.5,1: 19 \mathrm{v} / \mathrm{v}\right.$ ethyl acetate-hexane) gave the title compound 143 ($122.0 \mathrm{mg}, 36 \%$ at 77% conversion) as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.21(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{m})$, $7.55(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 4.30(1 \mathrm{H}, \mathrm{d}, J=10.8 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 2.14-1.92(3 \mathrm{H}$, complex m), 1.82-1.72 (1H, m), 1.56-1.42 (2H, complex m), $0.01(9 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} 158.9,145.1,137.8,130.9,129.4,113.5,77.4,70.1,55.1,28.3\right.$, 27.2, 20.1, -9.3.

IR (NaCl) $v_{\text {max }} 2998$, 2934, 2858, 2834, 1614, 1514, 1248, 1077, 1037, 909, 764, $733 \mathrm{~cm}^{-1}$. MS (EI, 70 eV) m/z 367 [(M-H3C•) ${ }^{+}, 80 \%$], 337 (72), 287 (5), 257 (12), 231 (82), 201 (17) 165 (45), 151 (39), 135 (55), 121 (100), 77 (30), 41 (41).

HRMS Found: $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 367.0721 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{2}{ }^{120} \mathrm{~S}$ n requires $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 367.0720$.

Concentration of fraction B ($R_{f}=0.3,1: 19 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) afforded starting cyclohexene 286 ($93.0 \mathrm{mg}, 23 \%$ recovery) as a colourless oil which was identical, in all respects, with the authentic material.
(3aS, 4R, 5R, 7aS)-3a,4,5,7a-Tetrahydro-7-iodo-2,2-dimethylbenzo[d][1,3]dioxole-4,5-diol (141)

A magnetically stirred suspension of cis-1,2-dihydrocatechol 92 ($10.0 \mathrm{~g}, 42.0 \mathrm{mmol}$) in 2,2DMP (100 mL) cooled to $0^{\circ} \mathrm{C}$ was treated with $p-\mathrm{TsOH}(76.0 \mathrm{mg}, 4.4 \mathrm{mmol}$) and warmed to $18{ }^{\circ} \mathrm{C}$. After 1 h , the reaction mixture was treated with sodium hydroxide (100 mL of a 1 M aqueous solution) and the separated aqueous fraction of the resulting biphasic mixture was extracted with diethyl ether ($2 \times 150 \mathrm{~mL}$). The combined organic fractions were washed with water ($1 \times 60 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give an orange residue containing the isopropylidene derivative of compound 92 . A solution of this material in acetone-water (200 mL of a $3: 1 \mathrm{v} / \mathrm{v}$ mixture) cooled to $0^{\circ} \mathrm{C}$ was treated with N -methylmorpholine- N -oxide (NMO) ($4.0 \mathrm{~g}, 34.2 \mathrm{mmol}$) and osmium tetraoxide (11 mL of a 2.5 wt \% solution in t-BuOH, 1.1 mmol) and stirred at $18^{\circ} \mathrm{C}$. After 40 h , the reaction mixture was treated with sodium metabisufite (100 mL of a $1: 4 \mathrm{w} / \mathrm{v}$ aqueous solution) and stirred for a further 2 h . Concentration of this mixture under reduced pressure provided a brown residue that was partitioned between diethyl ether (500 mL) and water (500 mL). The separated aqueous fraction was extracted with diethyl ether ($2 \times 250 \mathrm{~mL}$) and the combined organic fractions were washed with brine ($1 \times 500 \mathrm{~mL}$) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a black oil. Subjection of this material to flash chromatography (silica, 1:1 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=$ 0.2) afforded the previously reported title compound $141^{7}(5.4 \mathrm{~g}, 46 \%)$ as a white, crystalline solid
$\mathrm{mp}=160-162^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.43(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{m})$, $4.34(1 \mathrm{H}, \mathrm{m}), 4.24(1 \mathrm{H}, \mathrm{m}), 2.38(2 \mathrm{H}, \mathrm{m}), 1.43(3 \mathrm{H}, \mathrm{s}), 1.40(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ 141.1, 109.3, 99.6, 78.5, 77.0, 69.0, 67.8, 27.3, 25.9.
IR (KBr) $v_{\text {max }} 3503,3379,2985,2923,2885,1634,1448,1369,1233,1080,1053 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 311 ($\mathrm{M}^{+}, 40 \%$), 297 (70), 254 (61), 208 (43), 110 (81), 101 (100), 81 (54), 59 (60).

HRMS Found: $\mathrm{M}^{+}, 311.9862 . \mathrm{C}_{9} \mathrm{H}_{13}{ }^{127} \mathrm{IO}_{4}$ requires $\mathrm{M}^{+}, 311.9858$.
Elemental Analysis Found: $\mathrm{C}, 34.63 ; \mathrm{H}, 4.18 . \mathrm{C}_{9} \mathrm{H}_{13} \mathrm{IO}_{4}$ requires $\mathrm{C}, 34.64 ; \mathrm{H}, 4.20$.
Specific Rotation $[\alpha]_{D}^{20}+21.1\left(c 0.21, \mathrm{CHCl}_{3}\right)$.
(3aS, 5aR, 8aR, 8bS)-4-lodo-3a,5a,8a,8b-tetrahydro-2,2,7,7-tetramethyl-benzo[1,2-d:3,4-d']bis[1,3]dioxole (287)

A magnetically stirred suspension of diol 141 ($2.75 \mathrm{~g}, 8.8 \mathrm{mmol}$) in 2,2-DMP (100 mL) cooled to $0^{\circ} \mathrm{C}$ was treated with $p-\mathrm{TsOH}(85.0 \mathrm{mg}, 0.49 \mathrm{mmol})$ then warmed to $18{ }^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was treated with triethylamine (5 mL) and concentrated under reduced pressure to give a yellow residue that was diluted with diethyl ether (100 mL) and treated with sodium hydroxide (100 mL of a 1 M aqueous solution). The separated aqueous fraction of the resulting biphasic mixture was extracted with diethyl ether ($1 \times 100 \mathrm{~mL}$) and the combined organic fractions were then washed with water $\left(1 \times 60 \mathrm{~mL}\right.$) before being dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow oil. Subjection of this material to flash chromatography (silica, $1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) afforded, after concentration of appropriate fractions ($R_{f}=0.8$), the previously reported title compound $\mathbf{2 8 7}^{7}$ ($2.80 \mathrm{~g}, 90 \%$) as a clear, colourless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.31(1 \mathrm{H}, \mathrm{m}), 4.54(1 \mathrm{H}, \mathrm{m}) ,4.50(1 \mathrm{H}, \mathrm{m}), 4.45(1 \mathrm{H}, \mathrm{m}), 4.41$ ($1 \mathrm{H}, \mathrm{m}$), 1.34-1.30 (12H, complex m).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 136.9,109.5,102.1,76.0,73.3,72.3,72.1,27.6,27.4,26.3$.
IR (NaCl) $\nu_{\max } 2987,2934,2984,1636,1455,1380,1370,1229,1076,1062,947 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 352 ($\mathrm{M}^{+\bullet}, 21 \%$), 337 [($\left.\left.\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 100\right], 279$ (22), 237 (50), 152 (35), 110 (72), 59 (45), 43 (99).

HRMS Found: $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}$, 336.9936. $\mathrm{C}_{11} \mathrm{H}_{14}{ }^{127} \mathrm{IO}_{4}$ requires $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}$, 336.9937.
Specific Rotation $[\alpha]_{D}^{20}+141.1\left(c 0.19, \mathrm{CHCl}_{3}\right)$.
(3aS, 5aR, 8aS, 8bS)-3a,5a,8a,8b-Tetrahydro-2,2,7,7-tetramethyl-benzo[1,2-d:3,4-d']bis[1,3]dioxol-4-yl)trimethylstannane (142)

Save for the use of a 24 h reaction time, title compound 142 (88% as a clear, colourless oil) was obtained using the method outlined for the preparation of compound 143.
$\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (silica, $1: 19 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.61(1 \mathrm{H}, \mathrm{m}), 4.39-4.25(4 \mathrm{H}$, complex m$)$, 1.18-1.16 (9 H , complex m), $1.11(3 \mathrm{H}, \mathrm{s}), 0.00(9 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.5,134.3,108.9,108.8,74.5,73.2,72.8,70.5,28.0,27.8$, 26.6, 26.5, -9.5.

IR (NaCl) $v_{\text {max }} 2989,2932,2882,1455,1378,1365,1223,1058,854 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 375 [(M-H $\left.\left._{3} \mathrm{C} \cdot\right)^{+}, 100 \%\right], 317$ (24), 259 (44), 229 (28), 165 (38), 135 (22).
HRMS Found: $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 375.0621 . \mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{4}{ }^{120} \mathrm{Sn}$ requires $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 375.0618$.
Specific Rotation $[\alpha]_{\mathrm{D}}^{20}+25.2\left(c 0.19, \mathrm{CHCl}_{3}\right)$.
((3aS, 4R, 5R, 7aS)-3a,4,5,7a-Tetrahydro-7-iodo-2,2-dimethylbenzo[d][1,3]dioxol-4,5-yl)bis(oxy)(tert-butyl)dimethylsilane (288)

A magnetically stirred solution of diol 141 ($1.50 \mathrm{~g}, 4.81 \mathrm{mmol}$) and imidazole ($1.31 \mathrm{~g}, 19.20$ mmol) in anhydrous DMF (20 mL) cooled to $0^{\circ} \mathrm{C}$ was treated with TBS-Cl ($1.81 \mathrm{~g}, 12.02$ mmol) and warmed to $18{ }^{\circ} \mathrm{C}$. After 17 h , when TLC analysis indicated that all of the starting
material had been consumed, the reaction mixture was treated with diethyl ether-water (200 mL of a $1: 1 \mathrm{v} / \mathrm{v}$ mixture) and the separated aqueous fraction was extracted with diethyl ether ($2 \times 100 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give an oily residue that was subjected to flash chromatography (silica, $1: 19 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution). Concentration of appropriate fractions ($R_{f}=0.6$) then afforded the title compound $288(2.36 \mathrm{~g}, 91 \%)$ as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.17(1 \mathrm{H}, \mathrm{s}), 4.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.4 \mathrm{~Hz}), 4.26(1 \mathrm{H}$, broad s), 4.12 $(1 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}$, broad m$), 1.31(3 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s}), 0.83(9 \mathrm{H}, \mathrm{m}), 0.78(9 \mathrm{H}, \mathrm{m}), 0.01-0.00$ (12H, complex m).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 140.6,109.5,98.0,79.2,77.1,71.7,69.5,27.4,26.2,25.9$, 25.6, 18.2, 17.9, -4.5, -4.6, -4.9, -5.0.

IR (NaCl) $v_{\text {max }}$ 2927, 2855, 1625, 1472, 1383, 1256, 1158, 1071, 1036, $956,837 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 540 ($\mathrm{M}^{+\bullet},<1 \%$), 525 (3), 483 (8), 425 (52), 397 (11), 355 (10), 298 (55), 241 (61), 215 (100), 166 (20), 147 (78), 73 (88)
HRMS Found: $\mathrm{M}^{+}, 540.1593 . \mathrm{C}_{21} \mathrm{H}_{41}{ }^{127} \mathrm{IO}_{4} \mathrm{Si}_{2}$ requires $\mathrm{M}^{+}, 540.1588$.
Specific Rotation $[\alpha]_{D}^{20}-34.7\left(c 0.22, \mathrm{CHCl}_{3}\right)$.
((3aS, 4R, 5R, 7aS)-3a,4,5,7a-Tetrahydro-2,2-dimethyl-7-(trimethylstannyl)benzo [d][1,3]dioxol-4,5-yl)bis(oxy)(tert-butyl)dimethylsilane (144)

Save for the use of a 20 h reaction time, title compound 142 (91% as a clear, colourless oil) was obtained from conduritol 288 using the method outlined for the preparation of compound 143.
$\boldsymbol{R}_{\boldsymbol{f}}=0.6$ (silica, $1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution)
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.76(1 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}$, broad m$)$, $3.84(1 \mathrm{H}, \mathrm{m}), 1.27(6 \mathrm{H}, \mathrm{s}), 0.83(9 \mathrm{H}, \mathrm{s}), 0.81(9 \mathrm{H}, \mathrm{s}), 0.14(3 \mathrm{H}, \mathrm{s}), 0.10(6 \mathrm{H}, \mathrm{s}), 0.03-0.00$ (12 H , complex m).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 143.2,138.6,108.4,77.4,77.173 .5,68.8,27.7,26.0,25.9$, 18.3, 18.2, -4.3, -4.4, -4.6, -9.6, -10.1.

IR (NaCl) $v_{\max } 2954,2929,2857,1472,1463,1379,1369,1253,1125,1078,835,775 \mathrm{~cm}^{-1}$.
MS (El, 70 eV) m/z 563 [(M-H3C• $\left.)^{+}, 22 \%\right], 520$ (9), 503 (10), 463 (73), 348 (15), 253 (19), 215 (58), 165 (92), 147 (56), 73 (100).

HRMS Found: $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 563.2024 . \mathrm{C}_{23} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{Si}_{2}{ }^{120} \mathrm{Sn}$ requires $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 563.2035$.
Specific Rotation $[\alpha]_{D}^{20}-50.9\left(c 0.36, \mathrm{CHCl}_{3}\right)$.
((3aS, 5aR, 8aS, 8bR)-4-lodo-3a,5a,8a,8b-tetrahydro-2,2-dimethylbenzo[d][1,3]dioxol-5a,8a-yl)benzo[d][1,3]dioxol-7-one (289)

A magnetically stirred solution of diol $141(1.20 \mathrm{~g}, 3.85 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) was cooled to $-78^{\circ} \mathrm{C}$ then treated with triphosgene ($0.46 \mathrm{~g}, 1.54 \mathrm{mmol}$) and pyridine (1.86 $\mathrm{mL}, 23.0 \mathrm{mmol}$) and allowed to warm to $18^{\circ} \mathrm{C}$. After 15 h , point TLC analysis indicated that all of the starting material had been consumed. Consequently, the reaction mixture was treated with ammonium chloride (100 mL of a saturated aqueous solution) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 100 \mathrm{~mL})$. The combined organic fractions were washed, sequentially, with $\mathrm{HCl}(1 \times 50 \mathrm{~mL}$ of a 1 M aqueous solution), sodium hydrogen carbonate $\left(\mathrm{NaHCO}_{3}\right)(1 \times 50 \mathrm{~mL}$ of a saturated aqueous solution) and brine $(1 \times 50 \mathrm{~mL})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a white residue. Recrystallization of this material (diethyl ether-ethyl acetate) gave the title compound 289 ($1.24 \mathrm{~g}, 96 \%$) as a white, crystalline solid. $m p=112-114^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.48(1 \mathrm{H}, \mathrm{m}), 5.17(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.9$ and 2.7 Hz$), 4.99(1 \mathrm{H}, \mathrm{m})$, 4.66-4.59 (2H, complex m), $1.41(6 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 152.8,130.8,110.8,108.2,74.8,72.0,71.4,27.4,26.4$.
IR (NaCl) $v_{\max } 2998,2898,1642,1805,1755,1634,1384,1374,1323,1234,1180,1134$, $1081,1054,1039,1006,840 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV) m/z 338 ($\mathrm{M}^{+}, 38 \%$), 323 (95), 314 (15), 281 (11), 237 (15), 219 (18), 207 (18), 191 (14), 154 (11), 128 (10), 110 (80), 81 (47), 65 (21), 59 (24), 53 (48), 43 (100).

HRMS Found: $\mathrm{M}^{+\bullet}, 337.9650 . \mathrm{C}_{10} \mathrm{H}_{11}{ }^{127} \mathrm{IO}_{5}$ requires $\mathrm{M}^{+\bullet}, 337.9651$.
Specific Rotation $[\alpha]_{D}^{20}+137.2\left(c 0.18, \mathrm{CHCl}_{3}\right)$.
((3aS, 5aR, 8aS, 8bR)-4-(Trimethylstannyl)-3a,5a,8a,8b-tetrahydro-2,2dimethylbenzo[$d][1,3]$ dioxol-5a,8a-yl)benzo[d][1,3]dioxol-7-one (145)

Save for the use of a 12 h reaction time, title compound 145 (25% as a clear, colourless oil) was obtained from conduritol 289 using the method outlined for the preparation of compound 143.
$\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (silica, $1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution)
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.84(1 \mathrm{H}, \mathrm{m}), 5.09(1 \mathrm{H}, \mathrm{dd}, J=6.9$ and 2.1 Hz$), 4.99(1 \mathrm{H}, \mathrm{dd}, J$ $=6.3,3.3 \mathrm{~Hz}), 4.64-4.56(2 \mathrm{H}$, complex m), $1.37(3 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s}), 0.23(9 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 153.7,150.2,127.3,109.9,73.3,72.8,70.5,28.0,26.6,9.2$.
IR (NaCl) $v_{\text {max }}$ 2986, 2917, 1811, 1370, 1237, 1177, 1155, 1132, 1052, $767 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 361 [(M-H3C. $)^{+}, 100 \%$], 302 (91), 273 (8), 244 (8), 217 (24), 165 (57), 149 (15), 135 (47), 93 (12), 81 (27), 65 (29), 53 (15), 43 (72).

HRMS Found: $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}$, 361.0105. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5}{ }^{120} \mathrm{Sn}$ requires $\left(\mathrm{M}-\mathrm{H}_{3} \mathrm{C} \cdot\right)^{+}, 361.0098$.
Specific Rotation $[\alpha]_{D}^{20}+75.1\left(c 1.60, \mathrm{CHCl}_{3}\right)$.

7.2.2. Chapter Three: Attempted Preparation of 3-arylhexahydroindoles via Approach B

2-(Benzo[d][1,3]dioxol-6-yl)-N-tosylethanamine (161)

A magnetically stirred suspension of $\mathrm{LiAlH}_{4}(1.15 \mathrm{~g}, 30.2 \mathrm{mmol})$ in anhydrous diethyl ether (50 mL) was cooled to $0^{\circ} \mathrm{C}$ then treated with a solution of the known β-nitrostyrene $79^{8}(2.00 \mathrm{~g}$, 10.4 mmol) in anhydrous THF (50 mL) and heated at $65^{\circ} \mathrm{C}$. After 15 h , when TLC analysis indicated that all of the starting material had been consumed, the reaction mixture was quenched with sodium sulfate decahydrate (5 mL of a saturated aqueous solution) [CAUTION: Exotherm]. The resulting mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to give a yellow oil containing β-arylethylamine (a derivative of compound 79). This material was subjected, without purification, to the next step of the reaction sequence.
A magnetically stirred solution of this yellow oil in anhydrous THF (50 mL), maintained at 18 ${ }^{\circ} \mathrm{C}$, was treated with $p-\mathrm{TsCl}(2.40 \mathrm{~g}, 12.6 \mathrm{mmol})$ and triethylamine (1.5 mL). After 26 h , the mixture was concentrated under reduced pressure to give a brown residue that was treated with sodium hydroxide (100 mL of a 1 M aqueous solution) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3×100 mL). The combined organic fractions were washed with $\mathrm{HCl}(100 \mathrm{~mL}$ of a 1 M aqueous solution) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a viscous, brown oil. Subjection of this material to flash chromatography (silica, 1:4 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound 161 ($1.40 \mathrm{~g}, 42 \%$) as an off-white, crystalline solid.

[^0]IR (KBr) $v_{\max } 3283,2923,1490,1443,1324,1247,1159,1094,1039,812 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 319 ($\mathrm{M}^{+\bullet}, 50 \%$), 184 (42), 155 (97), 135 (100), 91 (89), 77 (28), 65 (18), 51 (17).

HRMS Found: $\mathrm{M}^{+\bullet}, 319.0879 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$ S requires $\mathrm{M}^{+\bullet}, 319.0878$.

2-(Benzo[d][1,3]dioxol-6-yl)-N-triflylethanamine (165)

A magnetically stirred suspension of $\mathrm{LiAlH}_{4}(30 \mathrm{~mL}$ of a 1 M solution in THF, 30.0 mmol) in anhydrous diethyl ether (50 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with a solution of the known β-nitrostyrene $79^{8}(2.0 \mathrm{~g}, 10.4 \mathrm{mmol})$ in anhydrous THF (50 mL) and heated at $65^{\circ} \mathrm{C}$. After 12 h, when TLC analysis indicated that all of the starting material had been consumed, the reaction mixture was quenched with sodium sulfate decahydrate (20 mL of a saturated aqueous solution) [CAUTION: Exotherm]. The mixture was filtered through a pad of Celite ${ }^{\mathbb{E}}$ and the filtrate was washed with brine ($1 \times 100 \mathrm{~mL}$) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow oil containing β-arylethylamine (a derivative of compound 79). This material was subjected, without purification, to the next step of the reaction sequence.

A magnetically stirred solution of the yellow oil in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was treated with DMAP ($120.00 \mathrm{mg}, 0.98 \mathrm{mmol}$) and triethylamine ($1.60 \mathrm{~mL}, 11.6 \mathrm{mmol}$) before being cooled to $-78^{\circ} \mathrm{C}$ and then treated (dropwise) with $\mathrm{Tf}_{2} \mathrm{O}(1.63 \mathrm{~mL}, 9.7 \mathrm{mmol}$) and allowed to warm to 18 ${ }^{\circ} \mathrm{C}$. After 20 h , the ensuing mixture was concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, 1:4 v/v ethyl acetatehexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound 165 (1.35 g, 49\%) as an opaque, light-yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.67(2 \mathrm{H}, \mathrm{m}), 5.93(2 \mathrm{H}, \mathrm{s}), 5.18(1 \mathrm{H}$, $\mathrm{m}), 3.49(2 \mathrm{H}, \mathrm{m}), 2.81(2 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 148.0,146.6,130.2,121.7,108.8,108.5,101.0,45.4,36.1$.

A magnetically stirred solution of cyclohexenol $160(0.75 \mathrm{~g}, 3.35 \mathrm{mmol})$, triflamide $165(1.14 \mathrm{~g}$, $3.84 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(1.40 \mathrm{~g}, 5.34 \mathrm{mmol})$ in anhydrous THF $(20 \mathrm{~mL})$ maintained at $18^{\circ} \mathrm{C}$ was treated with DEAD ($736 \mu \mathrm{~L}, 4.68 \mathrm{mmol}$). After 15 h , the resulting mixture was concentrated under reduced pressure to give viscous, orange oil that was subjected to flash chromatography (silica, $1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution). Concentration of appropriate fractions ($R_{f}=0.4$) then afforded the title compound 166 ($1.25 \mathrm{~g}, 74 \%$) as a light-yellow, crystalline solid.
$\mathrm{mp}=64-65^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.71(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.63(2 \mathrm{H}, \mathrm{m}), 5.90(3 \mathrm{H}, \mathrm{m}), 3.14(2 \mathrm{H}$, broad m), $2.85(3 \mathrm{H}$, broad m), 2.22-1.70 (6 H , complex m).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 147.7,146.3,131.3,121.6,121.5,108.8,108.3,100.8,63.6$, 48.0, 36.4, 28.6, 20.8, 20.5. (2 signals obscured or overlapping)

MS (EI, 70 eV) m/z 503 (M+, 78\%), 370, 341 (11), 207 (68), 149, 135 (100), 79 (62).
HRMS Found: $\mathrm{M}^{+\bullet}, 502.9882 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3}{ }^{127} \mathrm{IO}_{4} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}, 502.9875$.
(2S, 3aS, 4R, 5R, 7aS)-and ($2 R, 3 \mathrm{a} S, 4 R, 5 R, 7 \mathrm{aS}$)-7-Bromo-3a,4,5,7a-tetrahydro-2(4methoxyphenyl)benzo[d][1,3]-dioxole-4,5-diol (170)

92

(ii) $\mathrm{OsO}_{4}, \mathrm{NMO}$, acetone $/ \mathrm{H}_{2} \mathrm{O}$, $18^{\circ} \mathrm{C}, 20 \mathrm{~h}$

170

A magnetically stirred suspension of cis-1,2-dihydrocatechol 92 ($20 \mathrm{~g}, 104.7 \mathrm{mmol}$) and p methoxybenzaldehyde dimethyl acetal (p-MBDMA) ($20.9 \mathrm{~mL}, 115.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL) was cooled to $-20^{\circ} \mathrm{C}$ then treated with (1S)-(+)-camphor-10-sulfonic acid monohydrate $\left(\mathrm{CSA}^{\prime} \cdot \mathrm{H}_{2} \mathrm{O}\right)(2.42 \mathrm{~g}, 10.43 \mathrm{mmol})$. After 1 h , when TLC analysis indicated that all of the starting material had been consumed, the reaction mixture was quenched with sodium hydroxide (200 mL of a 1 M aqueous solution). The separated aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$ and the combined organic fractions were then washed with brine (1 $\times 100 \mathrm{~mL}$) before being dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford a white solid. A solution of this material in acetone-water (300 mL of $2: 1 \mathrm{v} / \mathrm{v}$ mixture) was cooled to $0^{\circ} \mathrm{C}$ then treated with N -methylmorpholine N -oxide (NMO) (27.1 g, 231.7 mmol) and osmium tetraoxide (7 mL of a $2.5 \% \mathrm{wt} / \mathrm{v}$ solution in $t-\mathrm{BuOH}, 0.53 \mathrm{mmol}$). The ensuing mixture was stirred at $18^{\circ} \mathrm{C}$ for 20 h then treated with sodium metabisulfite (200 mL of a $20 \% \mathrm{w} / \mathrm{v}$ aqueous solution). After 4 h the reaction mixture was concentrated under reduced pressure to give brown residue that was treated with diethyl ether-water (1000 mL of a $1: 1 \mathrm{v} / \mathrm{v}$ mixture). The separated aqueous phase was extracted with diethyl ether (4×150 mL) and the combined organic fractions then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue. Subjection of this material to flash chromatography (silica, $1: 19 \mathrm{v} / \mathrm{v} \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded a 3:1 mixture of the C2-epimeric forms of the title compound 170 ($23.3 \mathrm{~g}, 65 \%$) as a white, crystalline solid.
$\mathrm{mp}=133-134^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ (major) $7.42(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$, $6.29(1 \mathrm{H}, \mathrm{m}), 5.80(1 \mathrm{H}, \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{m}), 4.40(3 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{m})$, $3.81(3 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ (minor) $7.37(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{d}, 9.0 \mathrm{~Hz}), 6.17(1 \mathrm{H}, \mathrm{dd}$, $J=2.7,1.2 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{s}), 4.69(1 \mathrm{H}, \mathrm{dd}, J=6.0,1.2 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{dd}, J=4.8,4.6 \mathrm{~Hz})$, 4.42 (3H, m), 4.31 ($1 \mathrm{H}, \mathrm{m}$), $3.80(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ (major): 161.4, 136.5, 130.8, 129.0, 120.7, 114.3, 103.1, $77.9,77.1,69.6,67.7,55.5 ; \delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ (minor): 161.5, 133.7, 130.3, 129.3, 122.2, 114.3, 104.7, 79.0, 77.9, 70.0, 68.0, 55.5.

IR (NaCl) $v_{\text {max }} 3518,3392$, 2954, 2907, 2834, 1615, 1515, 1390, 1304, 1248, 1170, 1074, 1050, 1030, $924 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV) m/z 343 and 341 [(M-H• $)^{+}, 5$ and 5\%], 172 (10), 153 (13), 152 (13), 135 (100), 108 (39), 77 (22), 65 (18).

HRMS Found: $(\mathrm{M}-\mathrm{H} \cdot)^{+}$, 341.0020. $\mathrm{C}_{14} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{5}$ requires $(\mathrm{M}-\mathrm{H} \cdot)^{+}$, 341.0025.
Elemental Analysis Found: $\mathrm{C}, 48.67$; $\mathrm{H}, 4.40$; $\mathrm{Br}, 23.42 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$ requires $\mathrm{C}, 49.00$; H , 4.41; Br, 23.28.
($2 S, 3 \mathrm{a} R, 4 R, 5 R, 7 \mathrm{a} R$)-and (2R, 3aR, 4R, 5R, 7aR)-7-Bromo-3a,4,5,7a-tetrahydro-4,5-bis(methoxymethoxy)-2-(4-methoxyphenyl)benzo[d][1,3]dioxole (171)

A magnetically stirred solution of diol 170 ($35.7 \mathrm{~g}, 104.3 \mathrm{mmol}$) in anhydrous THF (500 mL) was cooled to $0^{\circ} \mathrm{C}$ then treated with sodium hydride $(9.20 \mathrm{~g}$ of a 60% mixture with paraffin oil, 229 mmol) and $\mathrm{EtN}^{\prime} \mathrm{Pr}_{2}$ ($40.0 \mathrm{~mL}, 229 \mathrm{mmol}$). The ensuing mixture was allowed to warm to $18{ }^{\circ} \mathrm{C}$ and after 15 mins the reaction mixture was again cooled to $0^{\circ} \mathrm{C}$ then methoxymethyl chloride (MOMCI) ($16.6 \mathrm{~mL}, 219 \mathrm{mmol}$) was added (dropwise). After the addition was complete, the reaction mixture re-warmed to $18^{\circ} \mathrm{C}$. This protocol was repeated once more and the resulting mixture then quenched with water (200 mL) [CAUTION: Exothermic]. The separated aqueous phase was extracted with ethyl acetate ($2 \times 200 \mathrm{~mL}$) and the combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue. This material was subjected twice more to the reaction conditions outlined above and workup, in the usual fashion, then gave an orange residue. Subjection of this material to flash chromatography (silica, 3:7 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound $171(40.8 \mathrm{~g}, 91 \%)$ as an opaque, light-yellow oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ (major): $7.43(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.95(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$, $6.39(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{s}), 4.82-4.72(4 \mathrm{H}$, complex m$), 4.60(1 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{m})$, $4.201 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.36(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]$ (major): 161.5, 132.5, 129.7, 129.3, 122.7, 114.3, 104.7, $96.8,96.5,78.1,77.0,74.8,72.4,55.6,55.5$.

IR (KBr) $v_{\text {max }} 2936,2893,1614,1518,1398,1305,1250,1151,1080,1034,917,831 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 432 and $430\left(\mathrm{M}^{+\bullet}\right.$, both >1\%), 389 and 387 (both ~12), 236 and 234 (both 88), 181 (63), 137 (90), 122 (95), 45 (100).

Elemental Analysis Found: C, $50.35 ; \mathrm{H}, 5.35 ; \mathrm{Br}, 18.64 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrO}_{7}$ requires $\mathrm{C}, 50.13 ; \mathrm{H}$, 5.38; Br, 18.53.
(1S, 2S, 5R, 6S)-2-(4-Methoxybenzyloxy)-3-bromo-5,6-bis(methoxymethoxy) cyclohex-3-enol (172) and (1S, 4R, 5R, 6R)-6-(4-methoxybenzyloxy)-2-bromo-4,5bis(methoxymethoxy) cyclohex-2-enol (173)

A magnetically stirred solution benzylidene acetal 171 ($35.3 \mathrm{~g}, 82 \mathrm{mmol}$) in anhydrous toluene (700 mL) was cooled to $-60^{\circ} \mathrm{C}$ then treated with DIBAL-H (410 mL of a 1 M solution in toluene, 410 mmol). The ensuing solution was allowed to warm to $-30^{\circ} \mathrm{C}$ and after 5.5 h , when TLC analysis indicated that all the starting material had been consumed, the reaction mixture was quenched with sodium/potassium tartrate (300 mL of a saturated aqueous solution) [CAUTION: Exothermic] and the ensuing mixture was then allowed to warm to $18{ }^{\circ} \mathrm{C}$ over period of 12 h . The separated aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 300 \mathrm{~mL})$ and the combined organic fractions were then washed with brine $(1 \times 300 \mathrm{~mL})$ before being dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give an opaque, colourless oil. Subjection of this material to flash chromatography (silica, 2:3 v / v ethyl acetatehexane elution) provided two fractions, \mathbf{A} and \mathbf{B}.
Concentration of fraction $\mathbf{A}\left(R_{f}=0.3\right)$ afforded the title compound $172(22.1 \mathrm{~g}, 64 \%)$ as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.27(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.79(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.10(1 \mathrm{H}, \mathrm{d}, J$ $=3.3 \mathrm{~Hz}), 4.68-4.60(6 \mathrm{H}$, complex m$), 4.28(1 \mathrm{H}, \mathrm{m}), 4.15-3.95(3 \mathrm{H}$, complex m$), 3.69(3 \mathrm{H}, \mathrm{s})$, $3.28(3 \mathrm{H}, \mathrm{s}), 3.24(3 \mathrm{H}, \mathrm{s}), 3.11(1 \mathrm{H}$, broad s).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.1,130.6,129.5,129.3,123.8,113.4,96.9,95.8,77.6,75.3$, 73.8, 72.0, 68.5, 55.2, 55.0, 54.8.

IR (NaCl) $v_{\max } 3468,2994,2935,2894,2837,1643,1612,1586,1514,1465,1365,1302$, $1250,1212,1174,1151,1098,1038,917,831 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV) m/z 434 and $432\left(\mathrm{M}^{+\bullet}\right.$, both $\left.<1 \%\right)$, 389 and 387 [($\left.\mathrm{M}-\mathrm{CH}_{3} \mathrm{OCH}_{2}\right)^{+}$, both 9], 280 and 278 (both 11), 236 and 234 (both 83), 181 (60), 137 (83), 122 (86), 121 (100), 109 (24), 91 (24), 78 (41), 77 (51), 45 (96).

HRMS Found: $\mathrm{M}^{+\bullet}, 432.0786 . \mathrm{C}_{18} \mathrm{H}_{25}{ }^{79} \mathrm{BrO}_{7}$ requires $\mathrm{M}^{+\bullet}, 432.0784$.
Elemental Analysis Found: C, 49.93; $\mathrm{H}, 5.96$; $\mathrm{Br}, 18.61 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrO}_{7}$ requires $\mathrm{C}, 49.90 ; \mathrm{H}$, 5.82; Br, 18.44.

Specific Rotation $[\alpha]_{D}^{20}-17.8\left(c 0.14, \mathrm{CHCl}_{3}\right)$.

Concentration of fraction $B\left(R_{f}=0.4\right)$ gave the title compound $173(10.6 \mathrm{~g}, 30 \%)$ as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.27(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J$ $=3.9 \mathrm{~Hz}), 4.78-4.58(6 \mathrm{H}$, complex m$), 4.36(1 \mathrm{H}, \mathrm{m}), 4.29(1 \mathrm{H}, \mathrm{m}), 4.05(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s})$, $3.38(6 \mathrm{H}, \mathrm{s}), 1.60(1 \mathrm{H}$, broad s).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.6,130.4,129.7,129.5,126.3,114.0,97.3,96.3,76.8,73.5$, 73.2, 72.4, 70.3, 55.8, 55.6, 55.3.

IR (NaCl) $\nu_{\text {max }} 3452,2917,1612,1514,1249,1150,1101,1033,917 \mathrm{~cm}^{-1}$.
MS (ESI, 70 eV) m/z 457 and 455 [(M + Na) ${ }^{+}$, both 34\%], 121 (29), 102 (100), 74 (49).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 455.0688 . \mathrm{C}_{18} \mathrm{H}_{25}{ }^{79} \mathrm{BrNaO}_{7}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 455.0681$.
Specific Rotation $[\alpha]_{\mathrm{D}}^{20}-53.0\left(c 0.28, \mathrm{CHCl}_{3}\right)$.
(1S,2S,5R,6R)-2-(4-Methoxybenzyloxy)-3-bromo-5,6-bis(methoxymethoxy)cyclohex-3-enyl acetate (174)

A magnetically stirred solution of conduritol 172 ($198.0 \mathrm{mg}, 0.46 \mathrm{mmol}$), DMAP ($11.0 \mathrm{mg}, 0.09$ mmol) and triethylamine ($95 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ then treated with acetic anhydride ($\mathrm{Ac}_{2} \mathrm{O}$) ($65 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) and allowed to warm to $18{ }^{\circ} \mathrm{C}$. After 16 h , point TLC analysis indicated that all starting material had been consumed. Consequently, the reaction mixture was treated with water (40 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 40 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give an opaque, colourless oil. Subjection of this material to flash chromatography (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.5,2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) afforded the title compound 174 (202.0 mg , 93\%) as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{H}\left(\mathrm{CDCl}_{3}\right) 7.31(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.22(1 \mathrm{H}, \mathrm{d}, J$ $=3.9 \mathrm{~Hz}), 5.48(1 \mathrm{H}, \mathrm{dd}, J=8.4$ and 3.9 Hz), 4.77-4.69 (4 H, complex m), $4.63(2 \mathrm{H}, \mathrm{s}), 4.37$ $(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{m}), 4.18(1 \mathrm{H}, \mathrm{dd}, J=9.0$ and 3.9 Hz$), 3.79(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s})$, 3.37 (3H, s), 2.06 (3H, s).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 170.1,159.4,130.5,129.8,129.6,124.6,113.7,97.0,96.3$, 77.0, 74.4, 72.1, 69.9, 55.7, 55.6, 55.2, 20.9 (one signal obscured or overlapping).

IR (NaCl) $v_{\text {max }} 2952,2896,1747,1613,1514,1374,1247,1151,1101,1038,910,733 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 476 and 474 ($\mathrm{M}^{+\bullet}$, both > 1\%), 431 and 429 (both 9), 399 and 397 (both 3), 344 (13), 265 and 263 (both 4), 214 (17), 171 (17), 146 (17), 121 (100), 107 (9), 77 (8), 69 (9), 45 (41).

HRMS Found: $\mathrm{M}^{+}, 474.0891 . \mathrm{C}_{20} \mathrm{H}_{27}{ }^{79} \mathrm{BrO}_{8}$ requires $\mathrm{M}^{+}, 474.0889$.
Specific Rotation $[\alpha]_{D}^{20}-118.2\left(c 0.22, \mathrm{CHCl}_{3}\right)$.
(1R, 2S, 5R, 6R)-3-Bromo-2-hydroxy-5,6-bis(methoxymethoxy)cyclohex-3-enyl acetate (167)

A magnetically stirred solution conduritol 174 ($165.0 \mathrm{mg}, 0.34 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-water (5.3 mL of a $17: 1 \mathrm{v} / \mathrm{v}$ mixture) maintained at $18^{\circ} \mathrm{C}$ was treated with DDQ ($95.0 \mathrm{mg}, 0.42 \mathrm{mmol}$). After 13 h , when TLC analysis indicated that all starting material had been consumed, the ensuing reaction mixture was treated with sodium hydrogen carbonate (50 mL of a saturated aqueous solution) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The separated aqueous fraction of the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$ and the combined organic fractions were washed with brine ($1 \times 50 \mathrm{~mL}$) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue. Subjection of this material to flash chromatography (silica, 2:3 v / v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.2$) afforded the title compound 167 ($100.0 \mathrm{mg}, 81 \%$) as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.24(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{dd}, J=8.7$ and 4.2 Hz$)$, 4.76-4.68 (4H, complex m), $4.56(1 \mathrm{H}$, broad s), $4.25(1 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{dd}, J=9.0$ and 3.9 $\mathrm{Hz}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 2.87(1 \mathrm{H}$, broad s), $2.11(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 170.2,130.4,125.9,96.8,96.2,71.8,71.4,70.6,70.2,55.8$, 55.6, 20.9.

IR (NaCl) $v_{\text {max }} 3436,2896,1746,1373,1235,1151,1101,1041,917 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 356 and 354 ($\mathrm{M}^{+\bullet}$, both <1\%), 265 and 263 (44 and 40), 207 (72), 189 and 187 (61 and 55), 159 (22), 109 (22), 81 (23), 45 (94), 43 (100)
HRMS Found: $\mathrm{M}^{+}, 354.0309 . \mathrm{C}_{12} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{7}$ requires $\mathrm{M}^{+\bullet}, 354.0314$.
Specific Rotation $[\alpha]_{D}^{20}-21.8\left(c 0.11, \mathrm{CHCl}_{3}\right)$.

1-(Benzo[d][1,3]dioxol-6-yl)-2-nitroethanol (177)

A magnetically stirred solution of piperonal $138(3.0 \mathrm{~g}, 20.0 \mathrm{mmol})$ and nitromethane (5.4 mL , 100.0 mmol) in anhydrous THF (30 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with $\mathrm{LiAIH}_{4}(2 \mathrm{~mL}$ of a 1 M solution in THF, 2.0 mmol). After 2 h , the reaction mixture was quenched with phosphate buffer ($\mathrm{pH} \sim 7,50 \mathrm{~mL}$) [CAUTION: Exotherm] and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford title compound $177(2.94 \mathrm{~g}, 70 \%)$ as a white, crystalline solid ($\mathrm{R}_{f}=0.2,1: 4$ v / v ethyl acetate-hexane). This material proved to be somewhat unstable and was therefore subjected, without purification, to the next step of the reaction sequence.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.02(1 \mathrm{H}, \mathrm{m}), 6.97(1 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.00(2 \mathrm{H}$, s), $5.39(1 \mathrm{H}, \mathrm{m}), 4.74-4.56(2 \mathrm{H}$, complex m$)$ (one signal due to OH obscured or overlapping). ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 148.7,148.3,135.1,120.5,108.8,107.3,102.1,82.6,71.3$.

1-(Benzo[d][1,3]dioxol-6-yl)-2-(triflylamino)ethanol (178)

A magnetically stirred solution of nitroalcohol 177 ($2.93 \mathrm{~g}, 13.90 \mathrm{mmol}$) in $\mathrm{MeOH}(90 \mathrm{~mL})$ maintained at $18^{\circ} \mathrm{C}$ was treated with $\mathrm{Pd} / \mathrm{C}(1.48 \mathrm{~g}$ of 10% mixture, 1.39 mmol) and hydrogen (1 atm). After 9.5 h , the ensuing mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to give a yellow oil containing the amino alcohol derivative of compound 177. This material, dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$, was treated (dropwise) with triethylamine ($1.38 \mathrm{~mL}, 13.25 \mathrm{mmol}$) and $\mathrm{Tf}_{2} \mathrm{O}(1.86$ $\mathrm{mL}, 11.05 \mathrm{mmol}$). After 10 min , the reaction mixture was allowed to warm to $18^{\circ} \mathrm{C}$ for 1 h , then treated with sodium hydrogen carbonate (100 mL of a saturated aqueous solution) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$,
filtered and concentrated under reduced pressure to give a yellow residue that was subjected to flash chromatography (silica, $1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution). Concentration of appropriate fractions $\left(R_{f}=0.6\right)$ afforded the title compound $178(1.43 \mathrm{~g}, 33 \%)$ as a white, crystalline solid.
$\mathrm{mp}=90-92^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.81(3 \mathrm{H}, \mathrm{m}), 5.96(2 \mathrm{H}, \mathrm{s}), 4.77(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0$ and 3.6 Hz$)$, $3.46(1 \mathrm{H}, \mathrm{m}), 3.31(1 \mathrm{H}, \mathrm{m})$ (two signals due to OH and NH obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 148.0, 147.8, 130.6, 119.4, 108.5, 106.2, 101.3, 73.3, 65.8, 50.5.

IR (NaCl) $v_{\max } 3359,3303,2906,1505,1490,1444,1373,1232,1193,1147,1039 \mathrm{~cm}^{-1}$.
MS (El, 70 eV) m/z 313 ($\mathrm{M}^{+\bullet}, 62 \%$), 226 (4), 185 (8), 164 (19), 151 (99), 123 (35), 93 (100), 77 (18), 69 (39), 65 (82), 51 (13), 39 (43).

HRMS Found: $\mathrm{M}^{+\bullet}, 313.0234 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{5}$ S requires $\mathrm{M}^{+\bullet}, 313.0232$.

1-(Benzo[d][1,3]dioxol-6-yl)-2-(triflylamino)ethanone (168)

A magnetically stirred solution of keto-amide $178(1.43 \mathrm{~g}, 4.56 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$ maintained at $18^{\circ} \mathrm{C}$ was treated with PCC ($1.48 \mathrm{~g}, 6.80 \mathrm{mmol}$). After 23 h , the ensuing mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure to give a brown solid. Subjection of this material to flash chromatography (silica, 1:4 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=$ 0.3) provided the title compound $168(1.05 \mathrm{~g}, 74 \%)$ as a white, crystalline solid. $m p=156-158^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 7.46(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{s}), 6.86(1 \mathrm{H}, \mathrm{d}, J=8.4$ $\mathrm{Hz}), 6.02(2 \mathrm{H}, \mathrm{s}), 4.75(2 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 2.69(1 \mathrm{H}$, broad s) (one signal due to NH obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 191.1,153.5,149.3,129.7,125.4,120.7,108.9,108.1$, 103.2, 50.4.

IR (NaCl) $v_{\text {max }} 3278,2978,2916,1681,1605,1506,1444,1397,1370,1328,1264,1231$, 1181, 1008, $934,893 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV) m/z 311 ($\mathrm{M}^{+\bullet}, 53 \%$), 242 (32), 185 (11), 149 (100), 121 (90), 91 (30), 81 (23), 69 (77), 43 (52).
HRMS Found $\mathrm{M}^{+}, 311.0073 . \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}, 311.0075$.
Elemental Analysis Found: $\mathrm{C}, 38.70 ; \mathrm{H}, 2.77 ; \mathrm{N}, 4.51 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 38.59 ; \mathrm{H}$, 2.59; N, 4.50.

O-(1S,2S,5R,6R)-2-(4-Methoxybenzyloxy)-3-bromo-5,6-bis(methoxymethoxy)cyclohex-3-enyl S-methyl carbonodithioate (181)

A magnetically stirred solution of conduritol $172(2.0 \mathrm{~g}, 4.62 \mathrm{mmol})$ and imidazole (104.0 mg , 1.52 mmol) in anhydrous THF (75 mL) maintained at $18^{\circ} \mathrm{C}$ was treated with sodium hydride (280.0 mg of a 60% mixture with paraffin oil, 6.92 mmol). After 20 min , the ensuing mixture was treated with carbon disulfide $\left(\mathrm{CS}_{2}\right)(840 \mu \mathrm{~L}, 13.86 \mathrm{mmol})$ and following 30 min , iodomethane (Mel) ($75 \mu \mathrm{~L}, 8.31 \mathrm{mmol}$) was introduced (dropwise). The resulting reaction mixture was stirred for 15 mins at which it was then treated with water (300 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, 3:7 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.5$) afforded the title compound $181(1.74 \mathrm{~g}, 73 \%)$ as a clear, light-yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.32(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.25(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{dd}, J=9.9$ and 4.2 Hz$), 4.77(2 \mathrm{H}, \mathrm{m}), 4.72(2 \mathrm{H}, \mathrm{m}), 4.66-4.57(3 \mathrm{H}, \mathrm{m})$, $4.38(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.9$ and 4.2 Hz$), 4.26(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s}), 2.58$ (3H, s).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 215.6,159.3,130.4,130.0,129.5,124.6,113.6,96.8,96.5$, 78.7, 77.1, 74.9, 71.9, 71.1, 55.8, 55.5, 55.1, 19.2.

IR (NaCl) $v_{\text {max }}$ 2952, 2895, 1612, 1514, 1250, 1212, 1151, 1099, 1046, $911 \mathrm{~cm}^{-1}$.

MS (ESI, 70 eV) m/z 547 and 545 [(M + Na) ${ }^{+}, 100$ and 92\%], 159 (43), 121 (52), 91 (90), 69 (84).

HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 545.0277. $\mathrm{C}_{20} \mathrm{H}_{27}{ }^{79} \mathrm{BrNaO}_{7} \mathrm{~S}_{2}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 455.0279$.
Specific Rotation $[\alpha]_{D}^{20}-140.5\left(c 2.74, \mathrm{CHCl}_{3}\right)$.

O-(1S,2S,5R,6R)-2-(4-Methoxybenzyloxy)-3-bromo-5,6-bis(methoxymethoxy)cyclohex-3-enyl O-perfluorophenyl carbonothioate (183)

A magnetically stirred solution of conduritol $172(150.0 \mathrm{mg}, 0.34 \mathrm{mmol})$, pyridine ($20 \mu \mathrm{~L}, 0.23$ mmol) and DMAP ($8.5 \mathrm{mg}, 0.07 \mathrm{mmol}$) in anhydrous benzene (1 mL) maintained at $18^{\circ} \mathrm{C}$ was treated with pentafluorophenyl thionochloroformate $\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{O}(\mathrm{CS}) \mathrm{Cl}\right)(280 \mu \mathrm{~L}, 0.41 \mathrm{mmol})$. After 18 h , when TLC analysis indicated that all starting material had been consumed, the reaction mixture was treated with water (40 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic fractions were washed with sodium hydrogen carbonate ($1 \times 40 \mathrm{~mL}$ of a saturated aqueous solution) and brine ($1 \times 40 \mathrm{~mL}$) and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, 1:9 \rightarrow 1:4 v / v ethyl acetate-hexane gradient elution) and concentration of appropriate fractions ($R_{f}=0.3,1: 4$ ethyl acetate-hexane) afforded the title compound 183 ($226.5 \mathrm{mg}, 99 \%$) as a clear, viscous oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.37(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.31(1 \mathrm{H}, \mathrm{d}, J$ $=5.4 \mathrm{~Hz}), 5.82(1 \mathrm{H}, \mathrm{dd}, J=10.5$ and 3.9 Hz$), 4.84-4.68(7 \mathrm{H}$, complex m$), 4.44(1 \mathrm{H}, \mathrm{dd}, J=$ 10.2 and 4.2 Hz$), 4.30(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.44(3 \mathrm{H}, \mathrm{s}), 3.41(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 191.4,159.6,130.8,130.0,129.4,124.2,113.8,96.9,96.7$, 82.3, 76.9, 75.5, 71.9, 71.1, 55.8, 55.6, 55.2 (six signals not observed).

IR (NaCl) $v_{\text {max }} 2936,2897,2839,1613,1523,1370,1304,1250,1174,1152,1101,1048$, $997,917 \mathrm{~cm}^{-1}$.

MS (El, 70 eV) m/z 660 and $658\left(\mathrm{M}^{+}\right.$, both < 1%), 627 and 625 (both 2), 615 and 613 (5 and 4), 519, and 517 (both 3), 477 and 475 (both 4), 445 and 443 (7 and 8), 331 (71), 280 and 278 (both 9), 181 (17), 137 (28), 121 (100), 109 (22), 77 (20).

HRMS Found: M^{+}, , 658.0288. $\mathrm{C}_{25} \mathrm{H}_{24}{ }^{79} \mathrm{BrF}_{5} \mathrm{O}_{8} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}$, 658.0295.
Specific Rotation $[\alpha]_{D}^{20}-115.7\left(c 0.14 \mathrm{CHCl}_{3}\right)$.
(1S,2S,5R,6R)-2-(4-Methoxybenzyloxy)-3-bromo-5,6-bis(methoxymethoxy)cyclohex-3-enyl methanesulfonate (185)

A magnetically stirred solution of conduritol 172 ($250.0 \mathrm{mg}, 0.58 \mathrm{mmol}$), triethylamine ($140 \mu \mathrm{~L}$, 1.33 mmol) and DMAP ($40.0 \mathrm{mg}, 0.33 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ then treated, dropwise, with methanesulfonyl chloride (MsCl) $(70 \mu \mathrm{~L}, 0.87 \mathrm{mmol})$ and allowed to warm to $18^{\circ} \mathrm{C}$. After 23 h , point TLC analysis indicated that all starting material had been consumed. Consequently, the reaction mixture was treated with sodium hydrogen carbonate (50 mL of a saturated aqueous solution) and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 30 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give yellow residue that was subjected to flash chromatography (silica, 2:3 v/v ethyl acetate-hexane elution). Concentration of appropriate fractions ($R_{f}=0.4$) afforded the title compound $185(225.0 \mathrm{mg}, 76 \%)$ as a clear, light-yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.36(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J$ $=4.8 \mathrm{~Hz}), 5.10(1 \mathrm{H}, \mathrm{dd}, J=9.3$ and 3.9 Hz$), 4.86-4.67(6 \mathrm{H}$, complex m$), 4.43(1 \mathrm{H}, \mathrm{d}, J=4.2$ $\mathrm{Hz}), 4.26(1 \mathrm{H}, \mathrm{m}), 4.20(1 \mathrm{H}, \mathrm{dd}, J=9.3$ and 3.9 Hz$), 3.78(3 \mathrm{H}, \mathrm{s}), 3.36(6 \mathrm{H}, \mathrm{m}), 3.05(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.4,130.5,130.2,129.3,123.9,113.6,97.0,96.5,78.4,77.6$, 75.5, 72.2, 71.9, 55.8, 55.5, 55.1, 38.0.

IR (NaCl) $\nu_{\text {max }} 2938,2897,1613,1515,1359,1250,1177,1099,1047,966,884 \mathrm{~cm}^{-1}$.
MS (El, 70 eV) m/z 512 and $510\left(\mathrm{M}^{+\bullet}, 13\right.$ and 12\%), 467 and 465 (both 3), 278 and 280 (both 8), 181 (16), 137 (32), 121 (100), 109 (14), 91 (8), 77 (18), 45 (88).

HRMS Found: $\mathrm{M}^{+\bullet}, 510.0557 . \mathrm{C}_{19} \mathrm{H}_{27}{ }^{79} \mathrm{BrO}_{9} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}, 510.0559$.
Specific Rotation $[\alpha]_{D}^{20}-103.1\left(c 0.85, \mathrm{CHCl}_{3}\right)$.
(1S,2S,5R,6R)-2-(4-Methoxybenzyloxy)-3-bromo-5,6-bis(methoxymethoxy)cyclohex-3-enyl trifluoromethanesulfonate (186)

A magnetically stirred solution of conduritol $172(210.0 \mathrm{mg}, 0.48 \mathrm{mmol})$ and pyridine ($90 \mu \mathrm{~L}$, 1.07 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated (dropwise) with $\mathrm{Tf}_{2} \mathrm{O}(100 \mu \mathrm{~L}, 0.58 \mathrm{mmol})$. After 1 h , the reaction was allowed to warm to $18{ }^{\circ} \mathrm{C}$ for 4 h and then treated with HCl (60 mL of a 2 M aqueous solution). The resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$) and the combined organic fractions were washed with sodium hydrogen carbonate (60 mL of saturated aqueous solution) then dried $\left(\mathrm{MgSO}_{4}\right.$), filtered and concentrated under reduced pressure to give an opaque, colourless oil. Subjection of this material to flash chromatography (silica, 2:3 v / v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.7$) afforded the title compound $186(211 \mathrm{mg}$, 77%) as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.35(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.27(1 \mathrm{H}, \mathrm{d}, J$ $=5.1 \mathrm{~Hz}), 5.36(1 \mathrm{H}, \mathrm{m}), 4.82-4.68(6 \mathrm{H}$, complex m$), 4.45(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 4.26(2 \mathrm{H}, \mathrm{m})$, $3.80(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.6,131.0,130.1,128.9,123.1,118.4,113.7,97.0,96.9$, 83.6, 78.8, 75.8, 72.2, 70.8, 55.9, 55.6, 55.2.

IR (NaCl) $v_{\text {max }} 2955,1613,1515,1416,1247,1215,1148,1048,909,734 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 566 and $564\left(\mathrm{M}^{+}\right.$, both 3%), 136 (3), 121 (100), 77 (3), 45 (44).
HRMS Found: $\mathrm{M}^{+\bullet}, 564.0311 . \mathrm{C}_{19} \mathrm{H}_{24}{ }^{79} \mathrm{BrF}_{3} \mathrm{O}_{9} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}$, 564. 0277.
Specific Rotation $[\alpha]_{D}^{20}-159.9\left(c 0.17, \mathrm{CHCl}_{3}\right)$.

1-(($(1 R, 4 R, 5 R, 6 R)-2$-Bromo-6-iodo-4,5-bis(methoxymethoxy)cyclohex-2-enyloxy)methyl)-4-methoxybenzene (184) and 1-(4-methoxybenzyloxy)-2-bromo-4(methoxymethoxy)benzene (187)

A magnetically stirred solution of alcohol $172(2.17 \mathrm{~g}, 5.01 \mathrm{mmol})$ in anhydrous toluene (250 mL) was heated to $120^{\circ} \mathrm{C}$ then treated with $\mathrm{PPh}_{3}(6.60 \mathrm{~g}, 25.19 \mathrm{mmol})$, triiodoimidazole (2.24 $\mathrm{g}, 5.02 \mathrm{mmol}$) and imidazole ($0.41 \mathrm{~g}, 6.01 \mathrm{mmol}$). After 3.5 h , when TLC analysis indicated that all the starting material had been consumed, the reaction mixture was cooled to $18{ }^{\circ} \mathrm{C}$ and treated with sodium metabisulfite $\left(\mathrm{NaS}_{2} \mathrm{O}_{5}\right)(200 \mathrm{~mL}$ of $20 \% \mathrm{w} / \mathrm{v}$ aqueous solution) for a further 1 h . The separated aqueous phase was extracted with toluene ($2 \times 200 \mathrm{~mL}$) and the combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, neat hexane $\rightarrow 3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane gradient elution) afforded two fractions, \mathbf{A} and \mathbf{B}. Concentration of fraction $\mathbf{A}\left(R_{f}=0.4\right.$ in $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) afforded the title compound 184 ($2.20 \mathrm{~g}, 81 \%$) as a white, crystalline solid.
$\mathrm{mp}=52-54^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.42(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{d}, J$ $=1.8 \mathrm{~Hz}), 4.88(2 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}, \mathrm{m}), 4.72(2 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}), 4.63(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.43$ $(1 \mathrm{H}, \mathrm{m}), 4.32(3 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.54(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.5,130.8,130.0,129.4,122.7,113.8,97.6,95.2,81.2,78.3$, 74.3, 73.4, 56.8, 55.7, 55.2, 28.5.

IR (NaCl) $\boldsymbol{v}_{\text {max }} 2950,2895,1613,1514,1465,1250,1152,1084,1048,1032,923,824 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 544 and 542 (${ }^{+}$+, both 1\%), 311 and 309 (both 1), 135 (3), 121 (100), 77 (4), 45 (47).

HRMS Found: $\mathrm{M}^{+\cdot}, 543.9798 . \mathrm{C}_{18} \mathrm{H}_{24}{ }^{81} \mathrm{Br}^{127} \mathrm{IO}_{6}$ requires $\mathrm{M}^{+}, 543.9781$.
Elemental Analysis Found: $\mathrm{C}, 40.21 ; \mathrm{H}, 4.00 . \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrIO}_{6}$ requires $\mathrm{C}, 39.80 ; \mathrm{H}, 4.45$.
Specific Rotation $[\alpha]_{D}^{20}-80.1\left(c 0.25, \mathrm{CHCl}_{3}\right)$.

Concentration of fraction \mathbf{B} ($R_{f}=0.5$ in 3:7 v/v ethyl acetate-hexane) provided title compound $187(110 \mathrm{mg}, 6 \%)$ as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{m})$, $6.89(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.09(2 \mathrm{H}, \mathrm{s}), 5.01(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.47(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.1,151.6,150.1,132.1,128.7,128.5,121.5,116.0,115.0$, 113.7, 94.9, 71.2, 55.7, 55.0.

IR (NaCl) $v_{\text {max }} 2955,2939,2904,2835,1613,1587,1514,1489,1465,1272,1218,1192$, 1174, 1153, 1080, 1038, 1001, $922,824 \mathrm{~cm}^{-1}$.

MS (ESI) $\mathrm{m} / \mathrm{z} 377$ and 375 [(M + Na) ${ }^{\dagger}$, both 9\%], 251 (5), 121 (100), 91 (6).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 377.0156. $\mathrm{C}_{16} \mathrm{H}_{17}{ }^{81} \mathrm{BrO}_{4}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 377.0187.

1-(((1S,4R,5S)-2-Bromo-4,5-bis(methoxymethoxy)cyclohex-2-enyloxy)methyl)-4methoxybenzene (182)

184

toluene, $0-18^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$

PMBO
182

A magnetically stirred solution of iodide $184(10.69 \mathrm{~g}, 19.7 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~B}(8.4 \mathrm{~mL}$ of 1 M solution in hexanes, 8.4 mmol) and $n-\mathrm{Bu}_{3} \mathrm{SnH}(6.5 \mathrm{~mL}, 23.6 \mathrm{mmol}$) in anhydrous toluene (25 mL) was cooled to $0^{\circ} \mathrm{C}$ then treated with oxygen (air) for 10 mins . The ensuing mixture was then warmed to $18^{\circ} \mathrm{C}$ and after 2.5 h at this temperature, and at which point TLC analysis indicated that all the starting material had been consumed, it was concentrated under reduced pressure to give a yellow oil. Subjection of this material to flash chromatography (silica, neat hexane $\rightarrow 3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane gradient elution) and concentration of appropriate fractions ($R_{f}=0.3,3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) then afforded the title compound 182 (6.94 g , 85%) as a white, crystalline solid.
$\mathrm{mp}=45-47^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.29(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{d}, J$ $=4.5 \mathrm{~Hz}), 4.76-4.52(6 \mathrm{H}$, complex m$), 4.08(3 \mathrm{H}, \mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{s})$, $2.26(1 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.6,131.4,130.1,129.9,127.8,114.0,96.3,95.9,77.1,72.4$, 72.2, 71.2, 55.7(3), 55.6(7), 55.4, 31.4.

IR (NaCl) $v_{\max } 2936,2889,2837,1612,1514,1465,1441,1249,1150,1047,917,822 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV) m/z 418 and 416 ($\mathrm{M}^{+\bullet}$, both 4%), 330 and 328 (both 22), 249 (65), 181 (24), 173 (32), 137 and 135 (46 and 50), 122 (100), 121 (82), 109 (35), 78 (52), 77 (65), 65 (36), 45 (82).

HRMS Found: M^{+}, 416.0833. $\mathrm{C}_{18} \mathrm{H}_{25}{ }^{79} \mathrm{BrO}_{6}$ requires $\mathrm{M}^{+}, 416.0834$.
Elemental Analysis Found: $\mathrm{C}, 51.84 ; \mathrm{H}, 5.98 . \mathrm{C}_{18} \mathrm{H}_{25}{ }^{79} \mathrm{BrO}_{6}$ requires $\mathrm{C}, 5.81 ; \mathrm{H}, 6.04$.
Specific Rotation $[\alpha]_{D}^{20}-147.5\left(c 0.08 \mathrm{CHCl}_{3}\right)$.
(1S,4R,5S)-2-Bromo-4,5-bis(methoxymethoxy)cyclohex-2-enol (180)

A magnetically stirred solution of bromide $182(2.93 \mathrm{~g}, 7.02 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-water (140 mL of a $5: 2 \mathrm{v} / \mathrm{v}$ mixture) maintained at $18^{\circ} \mathrm{C}$ was treated with DDQ ($2.40 \mathrm{~g}, 10.56 \mathrm{mmol}$). After 24 h , when TLC analysis indicated that all of the starting material had been consumed, the reaction mixture was treated with water (200 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 200 \mathrm{~mL})$. The combined organic fractions were washed with brine $(1 \times 200 \mathrm{~mL})$ and then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue. Subjection of this material to flash chromatography (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.5$) afforded the title compound $180(2.01 \mathrm{~g}, 96 \%)$ as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.08(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}), 4.69-4.56(4 \mathrm{H}$, complex m$), 4.26(1 \mathrm{H}$, $\mathrm{m}), 4.08-3.98(2 \mathrm{H}$, complex m), $3.28(6 \mathrm{H}, \mathrm{s}), 2.31(1 \mathrm{H}, \mathrm{m}), 1.77(1 \mathrm{H}, \mathrm{m})$ (signal due to OH proton not observed).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 129.7,129.5,95.5,95.1,72.0,70.5,69.3,55.2(3)$, $55.1(7)$, 33.6.

IR (NaCl) $v_{\text {max }} 3437$ (broad), 2936, 2893, 1642, 1466, 1442, 1377, 1214, 1151, 1109, 1045, $911,733 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV) m/z 254 and $252\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{OCH}_{2} \cdot\right)^{+}$, both 10%), 210 and 208 (both 80), 191 and 189 (both 40), 175 and 173 (both 21), 129 (13), 95 (29), 94 (13), 65 (19), 55 (18), 45 (100), 39 (22).

HRMS Found: $\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{OCH}_{2}{ }^{\bullet}\right)^{+}$, 252.0009. $\mathrm{C}_{10} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}_{5}$ requires $\left(\mathrm{M}-\mathrm{CH}_{3} \mathrm{OCH}_{2}{ }^{\bullet}\right)^{+}$,
251.9997.

Elemental Analysis Found: $\mathrm{C}, 40.50 ; \mathrm{H}, 5.83 ; \mathrm{Br}, 27.11 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{BrO}_{5}$ requires $\mathrm{C} .40 .42 ; \mathrm{H}$, 5.77; Br, 26.89.

Specific Rotation $[\alpha]_{D}^{20}-9.0\left(c 0.45, \mathrm{CHCl}_{3}\right)$.
(3aS,5S,7aR)-6-Bromo-3a,4,5,7a-tetrahydro-2,2-dimethylbenzo[d][1,3]dioxol-5-ol (192)

(i) HCl (trace),

A magnetically stirred solution of alcohol $180(315.0 \mathrm{mg}, 1.06 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was treated with concentrated HCl (trace) and heated at $65^{\circ} \mathrm{C}$. After 15 mins, ensuing mixture was cooled to $18^{\circ} \mathrm{C}$ then treated with sodium hydrogen carbonate (50 mL of a saturated aqueous solution) and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a white residue containing the triol derivative of compound 180. This material was dissolved in 2,2-DMP (20 mL) and treated with $\mathrm{p}-\mathrm{TsOH}(31.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ then stirred for 1 h at $18{ }^{\circ} \mathrm{C}$. Triethylamine (1 mL) was introduced and the ensuing mixture was concentrated under reduced pressure to give yellow residue. Subjection of this material to flash chromatography (silica, 3:7 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=$ 0.3) afforded the title compound 192 ($213.0 \mathrm{mg}, 81 \%$) as a white, crystalline solid.
$\mathrm{mp}=133-134^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 6.02(1 \mathrm{H}, \mathrm{m}), 4.60(1 \mathrm{H}$, broad d, $J=5.4 \mathrm{~Hz}), 4.48(2 \mathrm{H}$, complex m), $4.27(1 \mathrm{H}, \mathrm{m}), 2.43(1 \mathrm{H}, \mathrm{m}), 1.87(1 \mathrm{H}, \mathrm{m}) .1 .30(3 \mathrm{H}, \mathrm{s}), 1.29(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 131.7,129.2,108.8,73.4,72.5,65.9,35.1,27.5,25.9$.
IR (NaCl) $v_{\text {max }} 3467,2990,2933,1644,1382,1373,1226,1066,907 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 250 and $248\left(\mathrm{M}^{+}\right.$, both 1%), 235 and 233 (both 64), 192 and 190 (both 19), 175 and 173 (both 83), 149 and 147 (both 38), 111 (36), 94 (90), 77 (23), 65 (42), 59 (53), 55 (57), 43 (100).

HRMS Found: $\mathrm{M}^{+}, 248.0046 . \mathrm{C}_{9} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{3}$ requires $\mathrm{M}^{++}, 248.0048$.

Specific Rotation $[\alpha]_{D}^{20}+57.6\left(c 0.80, \mathrm{CHCl}_{3}\right)$.

2-(N-($(3 \mathrm{a}, 5,5 R, 7 a R)-6-B r o m o-3 a, 4,5,7 a-t e t r a h y d r o-2,2-d i m e t h y l b e n z o[d][1,3] d i o x o l-~$ 5-yl)- N-triflylamino)-1-(benzo[d][1,3]dioxol-6-yl)ethanone (193)

A magnetically stirred solution of $\mathrm{PPh}_{3}(98.0 \mathrm{mg}, 0.37 \mathrm{mmol})$ and DEAD ($\left.51 \mu \mathrm{~L}, 0.32 \mathrm{mmol}\right)$ in anhydrous THF (5 mL) was cooled to $0^{\circ} \mathrm{C}$ then treated with alcohol 192 ($58.0 \mathrm{mg}, 0.23 \mathrm{mmol}$) and keto-amide $168(87.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ and allowed to warm to $18{ }^{\circ} \mathrm{C}$. After 17 h , the reaction mixture was concentrated under reduced pressure to give viscous, yellow oil. Subjection of this material to flash chromatography (silica, $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound 193 ($80.0 \mathrm{mg}, 63 \%$) as an opaque, viscous oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.45(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{m}), 6.84(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz})$, $6.38(1 \mathrm{H}, \mathrm{s}), 6.05(2 \mathrm{H}, \mathrm{m}), 4.42(1 \mathrm{H}, \mathrm{s}), 4.36(1 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{s}), 2.38(1 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s})$, $1.11(3 \mathrm{H}, \mathrm{s})$ (four signals obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 189.7,152.1,148.3,132.0,123.9,121.4,110.1,109.6,107.9$, 107.7, 101.9, $72.5,69.7,57.8,52.1,27.6,25.9,21.9$ (one signal obscured or overlapping).

IR (NaCl) $\nu_{\max } 2988,1704,1448,1392,1248,1034,961 \mathrm{~cm}^{-1}$.
MS (El, 70 eV) m/z 543 and 541 ($\mathrm{M}^{+\bullet}$, both < 1\%), 497 (2), 462 (18), 352 and 350 (both 2), 335 and 333 (both 1), 149 (100), 121 (10), 65 (14), 43 (17).

HRMS Found: $\mathrm{M}^{+\bullet}, 541.0029 . \mathrm{C}_{19} \mathrm{H}_{19}{ }^{79} \mathrm{BrF}_{3} \mathrm{NO}_{7}$ S requires $\mathrm{M}^{+\bullet}$, 541.0018.

7.2.3. Chapter Four: Attempted Preparation of 3-AryIhexahydroindoles via Approach C

(3R,4S,6R)-6-Azido-1-bromo-3,4-bis(methoxymethoxy)cyclohex-1-ene (207)

A magnetically stirred solution of alcohol $180(1.64 \mathrm{~g}, 5.52 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(2.31 \mathrm{~g}, 8.82$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~mL}\right.$) was cooled to $0^{\circ} \mathrm{C}$ then treated (dropwise) with DEAD ($1.40 \mathrm{~mL}, 8.84 \mathrm{mmol}$) and DPPA ($1.92 \mathrm{~mL}, 8.84 \mathrm{mmol}$). The ensuing mixture was allowed to warm to $18^{\circ} \mathrm{C}$. After 16 h at this temperature, the reaction mixture was concentrated under reduced pressure to give viscous, orange oil. Subjection of this material to flash chromatography (silica, $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.5$) afforded the title compound $207(1.65 \mathrm{~g}, 93 \%)$ as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.4,1.2 \mathrm{~Hz}), 4.76-4.64(4 \mathrm{H}$, complex m$)$, $4.06(1 \mathrm{H}, \mathrm{m}), 3.89(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 3.80(1 \mathrm{H}, \mathrm{dt}, J=9.9,3.6 \mathrm{~Hz}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{s})$, 2.30-2.12 (2H, complex m).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 132.3,125.8,95.9,95.1,71.6,70.0,61.1,55.5(3), 55.4(5)$, 30.8.

IR (NaCl) $v_{\text {max }}$ 2934, 2893, 2103, 1730, 1635, 1215, 1150, 1110, 1046, 910, $730 \mathrm{~cm}^{-1}$. MS (EI, 70 eV) m/z 236 and 234 [($\left.\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \cdot\right)^{+}$, both 56\%], 207 and 205 (28 and 30), 176 and 174 (56 and 62), 159 (33), 123 (75), 121 (57), 108 (53), 95 (71), 77 (70), 65 (100).
HRMS Found: $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \cdot\right)^{+}$, 233.9877. $\mathrm{C}_{10} \mathrm{H}_{16}{ }^{79} \mathrm{BrN}_{3} \mathrm{O}_{4}$ requires $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \cdot\right)^{+}$, 233.9878 .
Elemental Analysis Found: C, $37.56 ; \mathrm{H}, 4.83$; $\mathrm{Br}, 24.54 ; \mathrm{N}, 12.78 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrN}_{3} \mathrm{O}_{4}$ requires C , 37.28; H, 5.01; Br, 24.80; N, 13.04.

Specific Rotation $[\alpha]_{D}^{20}+1.2\left(c 0.82, \mathrm{CHCl}_{3}\right)$.
(1R,4R,5S)-2-Bromo-4,5-bis(methoxymethoxy)cyclohex-2-enamine (208)

A magnetically stirred solution azide $207(1.63 \mathrm{~g}, 5.06 \mathrm{mmol})$ in THF-water (50 mL of a $4: 1$ v / v mixture) maintained at $18^{\circ} \mathrm{C}$ was treated with PPh_{3} then heated at $65^{\circ} \mathrm{C}$. After 20 h , when TLC analysis indicated that all the starting material had been consumed, the reaction mixture was cooled to $18^{\circ} \mathrm{C}$, diluted with water (60 mL) and extracted using diethyl ether (3×100 $\mathrm{mL})$. The combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give light-yellow oil. Subjection of this material to flash chromatography (silica, 1:11:8 $\mathrm{v} / \mathrm{v} \mathrm{MeOH}$-ethyl acetate- CHCl_{3} elution) and concentration of appropriate fractions ($R_{f}=0.4$) afforded the title compound $208(1.30 \mathrm{~g}, 87 \%)$ as a clear, colourless oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.09(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 4.74-4.62(4 \mathrm{H}$, complex m$), 4.09(1 \mathrm{H}$, $\mathrm{t}, J=3.9 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dt}, J=9.3,3.3 \mathrm{~Hz}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.32(1 \mathrm{H}, \mathrm{m}), 2.16-1.99$ $(2 \mathrm{H}$, complex m), $1.89(2 \mathrm{H}$, broad s).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 135.1,127.4,95.5,94.9,72.0,71.055 .4,55.3,52.8,32.8$. IR (NaCl) $\boldsymbol{v}_{\text {max }} 3377,3306,3055,2932,2891,1633,1438,1184,1149,1120,1095$, 1051,1034, 916, 721, 697, $542 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 209 and 207 [($\left.\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)^{++}$, both 54%], 190 and 188 (both 5), 180 and 178 (both 18), 164 and 162 (both 21), 107 (9), 93 (14), 83 (11), 45 (100).
HRMS Found: $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)^{+^{+}}$, 206.9897. $\mathrm{C}_{10} \mathrm{H}_{18}{ }^{79} \mathrm{BrNO}_{4}$ requires $\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)^{++}$, 206.9895.
Specific Rotation $[\alpha]_{\mathrm{D}}^{20}-38.7$ (c 1.16, CHCl_{3}).
(1R,4R,5S)-N-(4-Methoxybenzyl)-2-bromo-4,5-bis(methoxymethoxy)cyclohex-2enamine (206)

208
 $\mathrm{MeOH}, 18^{\circ} \mathrm{C}$ 10 h

206

A magnetically stirred solution of amine $208(1.50 \mathrm{~g}, 5.06 \mathrm{mmol})$ and p-anisaldehyde (0.83 g , 6.08 mmol) in anhydrous benzene (16 mL) was heated at $80^{\circ} \mathrm{C}$ in an apparatus fitted with a Dean-Stark trap. After 16 h , when TLC analysis indicated that all the starting material had been consumed, the reaction mixture was cooled to $18{ }^{\circ} \mathrm{C}$ then concentrated under reduced pressure to give a yellow oil containing the imine derivative of compound 208. A solution of this material in $\mathrm{MeOH}(10 \mathrm{~mL})$ was maintained at $18^{\circ} \mathrm{C}$ with stirring whilst being treated with $\mathrm{NaBH}_{3} \mathrm{CN}(0.49 \mathrm{~g}, 7.77 \mathrm{mmol})$. After 10 h , the reaction mixture was quenched with water (60 mL) and extracted with ethyl acetate ($4 \times 60 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound 206 ($1.90 \mathrm{~g}, 90 \%$) as an opaque, colourless oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.28(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.38(1 \mathrm{H}, \mathrm{d}, J$ $=6.0 \mathrm{~Hz}), 4.80-4.68(4 \mathrm{H}$, complex m$), 4.10(1 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}), 3.77(3 \mathrm{H}, \mathrm{s})$, $3.67(2 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}, \mathrm{m}), 3.37(6 \mathrm{H}, \mathrm{s}), 2.30(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 1.99(1 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 158.5,134.4,131.9,130.2,129.3,113.6,95.9,94.8,72.1,71.6$, 57.9, 55.3, 55.2, 55.0, 47.6, 29.4.

IR (NaCl) $\nu_{\max } 3333,2947,2890,2835,1611,1512,1464,1247,1149,1105,1032,916 \mathrm{~cm}^{-1}$. MS (EI, 70 eV) m/z 417 and $415\left(\mathrm{M}^{+\bullet}\right.$, both 9%), 416 and 414 (15 and 11), 372 and 370 (both 40), 356 and 354 (both 18), 294 (30), 284 and 282 (both 22), 269 and 267 (both 19), 212 (18), 137 (83), 136 (96), 122 (76), 121 (100), 106 (29), 91 (32), 78 (43), 77 (50), 65 (28), 45 (88).

HRMS Found: $\mathrm{M}^{+\bullet}, 415.0994 \mathrm{C}_{18} \mathrm{H}_{26}{ }^{79} \mathrm{BrNO}_{5}$ requires $\mathrm{M}^{+\cdot}, 415.0994$.
Elemental Analysis Found: $\mathrm{C}, 51.70$; $\mathrm{H}, 6.25$; $\mathrm{N}, 3.59$; $\mathrm{Br}, 19.40 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BrNO}_{5}$ requires C , 51.93; H, 6.29; N, 3.36; Br, 19.19.

Specific Rotation $[\alpha]_{D}^{20}-22.7$ (c 2.05, CHCl_{3}).

1-(Benzo[d][1,3]dioxol-6-yl)-2-bromoethanone (102)

A magnetically stirred solution of ketone $209(3.30 \mathrm{~g}, 20.1 \mathrm{mmol})$ in dioxane-diethyl ether (90 mL of a $5: 4 \mathrm{v} / \mathrm{v}$ mixture) maintained at $18^{\circ} \mathrm{C}$ was treated (dropwise) with bromine (1.13 mL , 22.1 mmol) and heated at $40^{\circ} \mathrm{C}$. After 20 h , the ensuing mixture was diluted with water (200 mL) and extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue that was subjected to flash chromatography (silica, $1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution). Concentration of appropriate fractions ($R_{f}=0.4$) then afforded the title compound $102(4.80 \mathrm{~g}$, 98%) as a brown, crystalline solid.
$\mathrm{mp}=90-92{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.53(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{s}), 6.82(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $6.02(2 \mathrm{H}, \mathrm{s}), 4.35(2 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 189.3,152.3,148.2,128.3,125.4,108.3,107.9,102.0,30.8$.
IR (NaCl) $\nu_{\text {max }}$ 2953, 1681, 1601, 1502, 1487, 1441, 1393, 1362, 1272, 1241, 1200, 1106, 1036, 931, $805 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 244 and 242 (M^{+}, both 14\%), 200 and 198 (4 and 11), 149 (100), 135 (13), 121 (19), 91 (8), 77 (9), 65 (20), 51 (10).

HRMS Found: M^{+}, 241.9577. $\mathrm{C}_{9} \mathrm{H}_{7}^{79} \mathrm{BrO}_{3}$ requires $\mathrm{M}^{+\bullet}$, 241.9579.

2-($N-(4-$ Methoxybenzyl)- \boldsymbol{N}-((1 R,4R,5S)-2-bromo-4,5-bis(methoxymethoxy)cyclohex-2-enyl)amino)-1-(benzo[d][1,3]dioxol-6-yl)ethanone (205)

A magnetically stirred solution of 2°-amine 206 ($168.0 \mathrm{mg}, 0.40 \mathrm{mmol}$) and α-bromoketone $102(147.0 \mathrm{mg}, 0.60 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(5 \mathrm{~mL})$ was treated with $\mathrm{EtN}^{\prime} \operatorname{Pr}_{2}(140 \mu \mathrm{~L}, 0.81$ mmol) then heated at $80^{\circ} \mathrm{C}$ for 12 h , at which TLC analysis indicated that all starting material had been consumed. Consequently, the ensuing mixture was cooled to $18{ }^{\circ} \mathrm{C}$ then diluted with water (50 mL) and extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue. Subjection of this material to flash chromatography (silica, 3:7 v/v ethyl acetatehexane elution) and concentration of appropriate fractions ($R_{f}=0.4$) afforded the title compound 205 ($138.0 \mathrm{mg}, 59 \%$) as a viscous, light-yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.49(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and 1.5 Hz$), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.33$ $(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.40(1 \mathrm{H}, \mathrm{dd}, J=6.3$ and $1.8 \mathrm{~Hz}), 5.94(2 \mathrm{H}, \mathrm{s}), 4.74-4.63(4 \mathrm{H}$, complex m$), 4.03(2 \mathrm{H}, \mathrm{m}), 3.85(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz})$, $3.74(3 \mathrm{H}, \mathrm{s}), 3.65(2 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.32(3 \mathrm{H}, \mathrm{s})$, 2.28-2.08 (2H, complex m).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 195.9,158.7,151.4,147.6,133.2,131.6,130.4,130.3,124.7$, $113.4,108.1,107.4,101.5,95.9,94.7,72.2,71.1,61.0,60.1,56.4,55.3,55.2,55.0,53.2$, 24.7.

IR (NaCl) $\nu_{\text {max }} 2935,2893,1688,1671,1611,1511,1443,1362,1289,1250,1148,1105$, 1038, $917 \mathrm{~cm}^{-1}$.

MS (EI, 70 eV) m/z 578 and $576\left(\mathrm{M}^{+\bullet}\right.$, both < 1%), 548 and 546 (both 2), 518 and 516 (both 4), 458 and 456 (both 15), 428 and 426 (both 72), 414 and 412 (both 10), 298 (20), 149 (48), 121 (100), 91 (15), 77 (20), 65 (19), 45 (77).

HRMS Found: $\mathrm{M}^{+\bullet}, 578.1386 . \mathrm{C}_{27} \mathrm{H}_{33}{ }^{81} \mathrm{BrNO}_{8}$ requires $\mathrm{M}^{+}, 578.1390$.
Specific Rotation $[\alpha]_{D}^{20}-8.1\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

2-(N-(4-Methoxybenzyl)-N-((1R,4R,5S)-2-bromo-4,5-bis(methoxymethoxy)cyclohex-

 2-enyl)amino)-1-(benzo[d][1,3]dioxol-6-yl)ethanol (210)

A magnetically stirred solution of $3^{\circ}-$ amine $205(560.0 \mathrm{mg}, 0.97 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ maintained at $18{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{NaBH}_{4}(368.0 \mathrm{mg}, 9.68 \mathrm{mmol})$. After 1 h , when TLC analysis indicated that all starting material had been consumed, the ensuing mixture was treated with water (40 mL) and extracted with ethyl acetate ($3 \times 80 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford the title compound 210 ($530.0 \mathrm{mg}, 94 \%$) as a light-yellow oil. This material was used in next step of the reaction sequence without purification.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 7.41(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.92(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.76(3 \mathrm{H}$, broad m), $6.51(1 \mathrm{H}, \mathrm{m}), 5.92(2 \mathrm{H}$, broad s), $4.70(5 \mathrm{H}$, broad m), $4.11(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s})$, 3.71-3.53 (3H complex m), $3.33(3 \mathrm{H}, \mathrm{m}), 3.28(3 \mathrm{H}, \mathrm{m}), 2.90-267(1 \mathrm{H}$, complex m), $2.53(1 \mathrm{H}$, $\mathrm{m}), 2.19(2 \mathrm{H}, \mathrm{m})$ (one signal due to OH obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left.\delta_{\mathrm{C}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]\right) 159.6,148.2,147.3,137.8,134.2,133.4,132.7,132.2$, 130.9, 119.8, 114.4, 108.3, 107.0, 101.6, 96.9, 95.3, 73.4, 72.9, 72.2, 69.8, 58.4, 55.4, 55.3, 24.3 (one signal obscured of overlapping).

IR (NaCl) $v_{\text {max }} 3458,3232,2937,2891,1511,1488,1443,1249,1148,1105,1038,917,811$ cm^{-1}.

MS (ESI, 70 eV) m/z 582 and $580\left[(\mathrm{M}+\mathrm{H})^{+}, 98\right.$ and 100\%], 564 and 562 (12 and 13), 444 and 442 (both 7), 121 (41).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 582.1510. $\mathrm{C}_{27} \mathrm{H}_{35}{ }^{81} \mathrm{BrNO}_{8}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 5821525.

2-(N-(4-Methoxybenzyl)-O-2-((1R,4R,5S)-2-bromo-4,5-

bis(methoxymethoxy)cyclohex-2-enylamino)-1-(benzo[d][1,3]dioxol-6-yl)ethyl Smethyl carbonodithioate (211)

A magnetically stirred solution of alcohol 210 ($114.0 \mathrm{mg}, 0.19 \mathrm{mmol}$) and imidazole (5.0 mg , 0.06 mmol) in anhydrous THF (75 mL) maintained at $18^{\circ} \mathrm{C}$ was treated with sodium hydride (12.0 mg of a 60% mixture with paraffin oil, 0.29 mmol) and stirred for $20 \mathrm{mins} \mathrm{CS}_{2}(35 \mu \mathrm{~L}$, 0.59 mmol) was added and the ensuing mixture was stirred for 30 mins before iodomethane ($22 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$) was introduced (dropwise). After 15 mins , the ensuing mixture was then treated with water (40 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow residue which was subjected to flash chromatography (silica, 1:9 $\rightarrow 3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane gradient elution) and so providing two fractions, \mathbf{A} and \mathbf{B}.

Concentration fraction $\mathbf{A}\left(R_{f}=0.4,3: 7 \mathrm{v} / \mathrm{v}\right.$ ethyl acetate-hexane) afforded the title compound 211 ($32.0 \mathrm{mg}, 24 \%$) as viscous, yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.26(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.82(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 6.67(3 \mathrm{H}, \mathrm{m})$, $5.91(2 \mathrm{H}, \mathrm{m}), 4.73(5 \mathrm{H}$, broad m$), 4.07(2 \mathrm{H}, \mathrm{m}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.43-3.35(3 \mathrm{H}$, complex m), $3.34(3 \mathrm{H}, \mathrm{m}), 3.19-2.86(2 \mathrm{H}$, complex m), $2.37(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 189.0,158.7,147.6,146.9,133.9,133.4,132.6,130.9,130.1$, 122.2, 121.6, 120.5, 113.5, 108.4, 101.0, 96.1, 94.9, 72.6, 71.3, 71.2, 55.5, 55.4, 55.2, 49.4, 29.7 (one signal obscured or overlapping).

IR (NaCl) $v_{\text {max }}$ 2930, 2993, 1642, 1511, 1442, 1248, 1148, 1105, 1039, $869 \mathrm{~cm}^{-1}$.
MS (ESI, 70 eV) m/z 672 and 670 [(M + H) ${ }^{+}, 100$ and 92\%], 656 and 654 (both 41), 625 and 623 (38 and 36), 582 and 580 (31 and 33), 552 and 550 (13 and 12), 418 and 416 (15 and 20), 291 and 289 (73 and 53), 215 and 213 (15), 102 (35).

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 672.1159. $\mathrm{C}_{29} \mathrm{H}_{37}{ }^{81} \mathrm{BrNO}_{8} \mathrm{~S}_{2}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 672.1123 .

Concentration fraction \mathbf{B} ($R_{f}=0.4,3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) provided the starting material 210 ($23.0 \mathrm{mg}, 20 \%$) which was identical, in all respects, with authentic material.

2-(N-(4-Methoxybenzyl)-O-2-((1R,4R,5S)-2-bromo-4,5-
 bis(methoxymethoxy)cyclohex-2-enylamino)-1-(benzo[d][1,3]dioxol-6-yl)ethyl O-perfluorophenyl carbonothioate (220)

A magnetically stirred solution of alcohol $210(150.0 \mathrm{mg}, 0.26 \mathrm{mmol})$, pyridine ($63 \mu \mathrm{~L}, 0.77$ mmol) and DMAP ($32.0 \mathrm{mg}, 0.26 \mathrm{mmol}$) in anhydrous benzene (2 mL) maintained at $18{ }^{\circ} \mathrm{C}$ was treated with pentafluorophenyl thionochloroformate ($340.0 \mathrm{mg}, 1.29 \mathrm{mmol}$). After 12 h , when TLC analysis indicated that all starting material had been consumed, the reaction mixture was treated with water (40 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give an orange oil that was subjected to flash chromatography (silica, 1:9 $\rightarrow 1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane gradient elution) and so providing two fractions, \mathbf{A} and \mathbf{B}.

Concentration fraction $\mathbf{A}\left(R_{f}=0.3,3: 7 \mathrm{v} / \mathrm{v}\right.$ ethyl acetate-hexane) afforded the title compound 220 ($34.5 \mathrm{mg}, 16.5 \%$) as viscous, yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.29(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.66(3 \mathrm{H}$, broad m), $6.43(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 5.88(2 \mathrm{H}, \mathrm{s}), 4.68(4 \mathrm{H}, \mathrm{m}), 4.06(1 \mathrm{H}, \mathrm{m}), 3.76(4 \mathrm{H}, \mathrm{s})$, $3.69-3.50(3 \mathrm{H}$, complex m$), 3.35(6 \mathrm{H}, \mathrm{m}), 3.20-3.01(2 \mathrm{H}$, complex m), 2.28-1.80(2H, complex m).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 167.5,158.7,147.6,147.1,142.8,141.1,139.3,137.8,133.4$, 132.6, 131.7, 129.9, 125.1, 121.5, 113.4, 107.9, 101.0, 95.9 94.8, 72.4, 71.0, 65.6, 55.2, 55.1, 54.9, 51.1, 29.5 (seven signals obscured or overlapping).

IR (NaCl) $v_{\text {max }}$ 2930, 1740, 1611, 1521, 1443, 1379, 1248, 1148, 1104, $1040 \mathrm{~cm}^{-1}$.
MS (ESI, 70 eV) m/z 808 and $806\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, both 5\%], 586 and 584 (5 and 5), 425 (5), 306 (16), 227 (16), 121 (100).

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 806.1074. $\mathrm{C}_{34} \mathrm{H}_{34}{ }^{79} \mathrm{BrF}_{5} \mathrm{NO}_{9} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 806.1057.

Concentration fraction $\mathbf{B}\left(R_{t}=0.4,3: 7 \mathrm{v} / \mathrm{v}\right.$ ethyl acetate-hexane) gave the starting material 207 ($31.0 \mathrm{mg}, 21 \%$) which was identical, in all respects, with authentic material.
(1 R,4R,5S)-N-(4-methoxybenzyl)-N-(2-(benzo[d][1,3]dioxol-6-yl)ethyl)-2-bromo-4,5-bis(methoxymethoxy)cyclohex-2-enamine (221)

$\boldsymbol{R}_{f}=0.3,3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 564.1592. $\mathrm{C}_{27} \mathrm{H}_{35}{ }^{79} \mathrm{BrNO}_{7}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 564.1597.

7.2.4. Chapter Five: Preparation of 3-Arylhexahydro-oxindoles via Approach D: Application to a Chemoenzymatic Total Synthesis of (+)Brunsvigine

Ethyl 2-(phenylthio)acetate (238)

Following a protocol defined by Babin et al., ${ }^{9}$ a magnetically stirred solution of thiophenol ($5.50 \mathrm{~g}, 49.9 \mathrm{mmol}$) in anhydrous THF (100 mL) was cooled to $0^{\circ} \mathrm{C}$ and treated with t-BuOK $(6.17 \mathrm{~g}, 55.0 \mathrm{mmol})$. After 15 mins , the ensuing mixture was treated with a solution of ethyl α bromoacetate 237 ($8.35 \mathrm{~g}, 50.0 \mathrm{mmol}$) in anhydrous THF (50 mL) then stirred for 1 h at which time TLC analysis indicated that all starting material had been consumed. Consequently, the reaction mixture was treated with brine (200 mL) and the separated aqueous fraction of the biphasic mixture was extracted with diethyl ether ($2 \times 100 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give yellow oil [CAUTION: Stench!]. Subjection of this material to flash chromatography (silica, 1:19 v/v ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.4$) afforded the previously reported title compound $238{ }^{10}(9.48 \mathrm{~g}, 96 \%)$ as a clear, light-yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.34(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.17(3 \mathrm{H}, \mathrm{m}), 4.07(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz})$, $3.55(2 \mathrm{H}, \mathrm{m}), 1.13(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.1,134.7,129.3,128.5,126.4,61.0,36.1,13.6$.
IR (NaCl) $v_{\text {max }} 3060,2982,1734,1583,1481,1439,1269,1132,1026,740 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 196 ($\mathrm{M}^{+\cdot}, 72 \%$), 123 (100), 109 (31), 77 (19), 69 (21), 65 (18), 43 (42).
HRMS Found: $\mathrm{M}^{+\bullet}, 196.0558 . \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{M}^{+\cdots}$, 196.0558.

Ethyl 2-chloro-2-(phenylthio)acetate (239)

Following a protocol defined by Tamura et al., ${ }^{10}$ a magnetically stirred solution of $\alpha-$ thiophenylacetate 238 ($9.45 \mathrm{~g}, 48.1 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ then treated with NCS ($6.44 \mathrm{~g}, 48.2 \mathrm{mmol}$) and allowed to warm to $18^{\circ} \mathrm{C}$. After 14 h , when TLC analysis indicated that all starting material had been consumed, the ensuing mixture was treated with water (200 mL) and the separated aqueous fraction of the biphasic mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic fractions were washed, sequentially, with $\mathrm{HCl}(3 \times 200 \mathrm{~mL}$ of a 2 M aqueous solution), water ($2 \times 300 \mathrm{~mL}$) and brine ($1 \times 300 \mathrm{~mL}$) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow oil [Caution: Stench!]. Subjection of this material to flash chromatography (silica, $1: 4 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) and concentration of appropriate fractions ($\mathrm{R}_{f}=0.7$) afforded the previously reported title compound $239{ }^{10}(7.78 \mathrm{~g}, 70 \%$) as a clear, light-yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.55-7.51(2 \mathrm{H}$, complex m$), 7.33(3 \mathrm{H}, \mathrm{m}), 5.54(1 \mathrm{H}, \mathrm{s}), 4.15$ $(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 165.3,133.6,129.9,129.1,128.8,64.4,62.4,13.5$.
IR (NaCl) $v_{\max } 3060,2983,1747,1583,1472,1440,1368,1297,1263,1151,1024,868,742$ cm^{-1}.

MS (El, 70 eV) m/z 230 (${ }^{+\bullet \bullet}, 11 \%$), 157 (24), 142 (25), 137 (13), 121 (19), 109 (14), 97 (18), 81 (42), 69 (100), 57 (45), 43 (63).

HRMS Found: $\mathrm{M}^{+\bullet}, 230.0167 . \mathrm{C}_{10} \mathrm{H}_{11}{ }^{35} \mathrm{ClO}_{2}$ S requires $\mathrm{M}^{+}, 230.0168$.

Ethyl 2-(benzo[d][1,3]dioxol-6-yl)-2-(phenylthio)acetate (240)

A magnetically stirred solution of 1,2 -methylenedioxybenzene ($3.80 \mathrm{~g}, 31.1 \mathrm{mmol}$) and α -chloro- α-thiophenylacetate $239\left(5.97 \mathrm{~g}, 25.9 \mathrm{mmol}\right.$) in anhydrous CHCl_{3} (100 mL) was cooled to $0^{\circ} \mathrm{C}$ then treated with $\mathrm{TiCl}_{4}(2.85 \mathrm{~mL}, 25.9 \mathrm{mmol})$. The ensuing mixture was allowed to warm to $18^{\circ} \mathrm{C}$ and after 1.5 h , when TLC analysis indicated that all the starting material had been consumed, the reaction mixture was quenched with water (200 mL). The separated aqueous phase was extracted with $\mathrm{CHCl}_{3}(2 \times 200 \mathrm{~mL})$ and the combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a black residue. Subjection of this material to flash chromatography (silica, 1:19 v/v ethyl acetatehexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the previously reported title compound $\mathbf{2 4 0}{ }^{11}$ ($4.02 \mathrm{~g}, 77 \%$) as viscous, light-yellow oil.
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.38(2 \mathrm{H}, \mathrm{m}), 7.23(3 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}), 6.85(1 \mathrm{H}$, $\mathrm{m}), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.86(2 \mathrm{H}, \mathrm{s}), 4.87(1 \mathrm{H}, \mathrm{s}), 4.08(2 \mathrm{H}, \mathrm{m}), 1.12(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$,
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.9,147.3,133.5,132.1,128.9,128.6,127.9,121.9,108.5$, 107.7, 100.9, 61.3, 55.7, 13.6.

IR (NaCl) $v_{\text {max }} 3059,2982,2900,1732,1503,1489,1442,1368,1303,1247,1148,1038$, $930,744 \mathrm{~cm}^{-1}$.

MS (ESI, 70 eV) m/z 339 [(M + Na) $\left.{ }^{+}, 100 \%\right], 261$ (8), 207 (95), 135 (20).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 339.0666 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NaO}_{4} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 339.0667.

2-(Benzo[d][1,3]dioxol-6-yl)-2-(phenylthio)acetic acid (105)

A magnetically stirred solution of ester $240(4.02 \mathrm{~g}, 12.7 \mathrm{mmol})$ in water-EtOH (50 mL of a 1:4 mixture) maintained at $18^{\circ} \mathrm{C}$ was treated with sodium hydroxide ($2.53 \mathrm{~g}, 6.3 \mathrm{mmol}$) and heated at $85^{\circ} \mathrm{C}$. After 14 h , the ensuing mixture was cooled to $18^{\circ} \mathrm{C}$ and concentrated under reduced pressure to give a brown residue that was treated with HCl (excess of a 2 M aqueous solution, $\mathrm{pH} \sim 4-5$). This mixture was then diluted with ethyl acetate-water (400 mL of a $1: 1$ v / v mixture) and the separated aqueous phase was extracted with ethyl acetate ($2 \times 100 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford the previously reported title compound $105^{11}(3.65 \mathrm{~g}, 99 \%)$ as an off-white, crystalline solid.
$m p=116-118^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.41(2 \mathrm{H}, \mathrm{m}), 7.32-7.24(3 \mathrm{H}$, complex m$), 7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.8$ $\mathrm{Hz}), 6.97(1 \mathrm{H}, \mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 5.99(2 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{s})$ (signal due to acid proton not observed).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 171.6,148.6,148.3,135.0,132.1,130.6,129.7,128.1,123.0$, 109.3, 108.6, 102.1, 55.8.

IR (NaCl) $\nu_{\max } 3058,2981,2898,1709,1502,1488,1443,1412,1249,1039,931,804,744$, $690 \mathrm{~cm}^{-1}$.

MS (El, 70 eV) m/z 288 (${ }^{+\bullet}, 32 \%$), 276 (22), 243 (10), 207 (19), 180 (25), 179 (100), 167 (35), 151 (22), 149 (50), 121 (53), 109 (27), 93 (37), 77 (33), 65 (44), 51 (31).

HRMS Found: $\mathrm{M}^{+\bullet}, 288.0455 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{M}^{+\bullet}, 288.0456$.
(2S, 3aS, 4R, 5R, 7aS)-and (2R, 3aS, 4R, 5R, 7aS)-7-Chloro-3a,4,5,7a-tetrahydro2(4methoxyphenyl)benzo[d][1,3] dioxole-4,5-diol (241)

Save for the use of a 23 h reaction time in the osmium tetraoxide-mediated cisdihydroxylation step, compound 92 was converted into a ca. 2:1 mixture of the C 2 -epimeric forms of title compound 241 (66% as a white, crystalline solid) by the same method as outlined above for the preparation of compound 170.
$\boldsymbol{R}_{f}=0.3$ (silica, $1: 19 \mathrm{v} / \mathrm{v} \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
$\mathrm{mp}=114-116^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (major): $7.34(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 5.98$ $(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{s}), 4.67(1 \mathrm{H}, \mathrm{dd}, J=6.6,1.2 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{t}, J=6.0 \mathrm{~Hz}), 4.34$ $(1 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.14(1 \mathrm{H}, \mathrm{s}), 2.96(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (minor): $7.38(2 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}), 6.90(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.03(1 \mathrm{H}, \mathrm{dd}, J=3.0,0.6 \mathrm{~Hz}), 5.85(1 \mathrm{H}, \mathrm{s}), 4.83(1 \mathrm{H}, \mathrm{dd}$, $J=5.7,1.2 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{t}, 5.1 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.02(1 \mathrm{H}, \mathrm{s})$ (signal due to one OH obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (major): 160.9, 132.2, 129.3, 128.6, 127.5, 114.1, 104.7, 77.6, 76.1, 70.1, 66.7, 55.5; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (minor): 160.8, 131.1, 129.0, 128.2, 114.0, 102.9, 76.6, 75.9, 68.9, 66.4, 55.5 (one signal obscured or overlapping).

IR (NaCl) $v_{\text {max }} 3415,3271,3000,2932,2905,2868,2838,1651,1612,1518,1460,1437$, 1394, 1303, 1172, 1031, 911, 832, $731 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 299 and $297\left(\mathrm{M}^{+}, 22\right.$ and 48\%), 225 and 223 (3 and 7), 179 (27), 146 and 144 (20 and 38), 137 (78), 135 (100), 108 (91), 77 (38), 65 (18), 39 (23).
HRMS Found: $(\mathrm{M}-\mathrm{H} \cdot)^{+}$, 297.0532. $\mathrm{C}_{14} \mathrm{H}_{15}{ }^{35} \mathrm{ClO}_{5}$ requires $(\mathrm{M}-\mathrm{H} \cdot)^{+}$, 297.0530 .
Elemental Analysis Found: $\mathrm{C}, 56.09 ; \mathrm{H}, 4.98$; $\mathrm{Cl}, 11.73 . \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 56.29$; H , 5.06; CI, 11.87.
(3aR, 4R, 5R, 7aR)-7-Chloro-3a,4,5,7a-tetrahydro-4,5-bis(methoxymethoxy)-2-(4methoxyphenyl)benzo[d][1,3]dioxole (242)

Save for the use of a 20 h reaction time, compound 241 was converted into a ca. 3:1 mixture of the C2-epimeric forms of the title compound $\mathbf{2 4 2}$ (88% as a clear, viscous oil) by the same method as outlined above for the preparation of compound 171.
$\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (silica, 2:3 v/v ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (major): $7.37(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.11$ $(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 5.89(1 \mathrm{H}, \mathrm{s}), 4.81-4.70(5 \mathrm{H}$, complex m$), 4.60,(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}), 4.35$ $(1 \mathrm{H}, \mathrm{m}), 4.17-4.10(1 \mathrm{H}$, complex m$), 3.80(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (major): 160.5, 131.9, 128.3, 127.8, 126.8, 113.5, 104.4, 96.3, 95.9, 76.2, 75.7, 74.5, 70.9, 55.4, 55.3, 55.0.

IR (NaCl) $v_{\text {max }}$ 2937, 2834, 1650, 1615, 1589, 1518, 1465, 1440, 1399, 1305, 1251, 1172, $1151,1080,1035,918,831 \mathrm{~cm}^{-1}$.

MS (ESI) $\mathrm{m} / \mathrm{z} 411$ and $409\left[(\mathrm{M}+\mathrm{Na})^{+}, 35\right.$ and 100\%], 389 and 387 [$(\mathrm{M}+\mathrm{H})^{+}, 3$ and 10], 181 (22), 151 (19), 137 (45), 121 (78), 99 (40).

HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 409.1029. $\mathrm{C}_{18} \mathrm{H}_{23}{ }^{35} \mathrm{ClNaO}_{7}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 409.1030$.
Elemental Analysis Found: $\mathrm{C}, 55.94 ; \mathrm{H}, 5.65 ; \mathrm{Cl}, 8.92 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClO}_{7}$ requires $\mathrm{C}, 55.89 ; \mathrm{H}$, 5.99; Cl, 9.17.
(1S, 2S, 5R, 6S)-2-(4-Methoxybenzyloxy)-3-chloro-5,6-bis(methoxymethoxy) cyclohex-3-enol (243) and (1S, 4R, 5R, 6R)-6-(4-methoxybenzyloxy)-2-chloro-4,5bis(methoxymethoxy) cyclohex-2-enol (244)

242

Save for the use of a 7.5 h reaction time, compound 242 was converted into title compound 243 (60% as a clear, colourless oil) and title compound 244 (11% as a clear, viscous oil) by the same method as outlined above for the preparation of compound 172.

Compound 243

$\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.32(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.96(1 \mathrm{H}, \mathrm{d}, J$ $=4.2 \mathrm{~Hz}), 4.88-4.67(6 \mathrm{H}$, complex m$), 4.37(1 \mathrm{H}, \mathrm{m}), 4.17(2 \mathrm{H}, \mathrm{m}), 4.02(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s})$, $3.36(3 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.2,133.3,129.6,129.4,126.5,113.5,97.0,95.9,76.8,75.4$, 74.1, 71.2, 68.4, 55.4, 55.2, 54.9.

IR (NaCl) $\nu_{\text {max }} 3468,2936,2895,1648,1612,1514,1465,1302,1250,1151,1098,1044$, $917,823 \mathrm{~cm}^{-1}$.
MS (ESI) $\mathrm{m} / \mathrm{z} 413$ and 411 [(M + Na) ${ }^{\dagger}, 35$ and 100\%], 121 (96), 75 (19), 61 (86).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 411.1186 . \mathrm{C}_{18} \mathrm{H}_{25}{ }^{35} \mathrm{CINaO}_{7}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 411.1187.
Elemental Analysis Found: C, 55.47; $\mathrm{H}, 6.60$; $\mathrm{Cl}, 8.84 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClO}_{7}$ requires $\mathrm{C}, 55.60 ; \mathrm{H}$, 6.48; CI, 9.12.

Specific Rotation $[\alpha]_{D}^{20}-11.7\left(c 0.175, \mathrm{CHCl}_{3}\right)$.

Compound 244

$\boldsymbol{R}_{f}=0.4$ ($2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane)
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.27(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 5.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=3.9 \mathrm{~Hz}), 4.79-4.70(4 \mathrm{H}$, complex m$), 4.70(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}), 4.61(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz})$, $4.35-4.30(2 \mathrm{H}$, complex m), $4.05(2 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s})$ (one signal due to OH obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.5,135.1,129.6,129.5,126.1,113.9,97.2,96.2,76.5,73.4$, 73.1, 71.5, 69.1, 55.7, 55.5, 55.1.

IR (NaCl) $\nu_{\max } 3467,2932,1612,1514,1250,1151,1100,1035,917 \mathrm{~cm}^{-1}$.
MS (ESI, 70 eV) m/z 413 and 411 [($\mathrm{M}+\mathrm{Na})^{+}, 40$ and 100\%], 121 (40), 102 (6).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 411.1182 . \mathrm{C}_{18} \mathrm{H}_{25}{ }^{35} \mathrm{CINaO}_{7}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 411.1187$.
Specific Rotation $[\alpha]_{D}^{20}-51.2\left(c 1.45, \mathrm{CHCl}_{3}\right)$.
(1S,2S,5R,6R)-2-(4-Methoxybenzyloxy)-3-chloro-5,6-bis(methoxymethoxy)cyclohex-3-enyl acetate (245)

Save for the use of $\mathrm{EtN}^{\prime} \mathrm{Pr}_{2}$ instead of triethylamine and 18 h reaction time, title compound 245 (83% as a clear, colourless oil) was prepared from compound $\mathbf{2 4 3}$ using the method outlined for the preparation of compound 174.
$\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{H}\left(\mathrm{CDCl}_{3}\right) 7.23(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 6.80(2 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 5.93(1 \mathrm{H}, \mathrm{d}, J$ $=5.1 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{m}), 4.71-4.62(4 \mathrm{H}$, complex m$), 4.56(2 \mathrm{H}, \mathrm{s}), 4.26(2 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{m})$, 3.72 (3H, m), 3.31 ($6 \mathrm{H}, \mathrm{m}$), $2.00(3 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.8,159.1,133.8,129.5,129.4,126.1,113.4,96.7,96.0$, 75.7, 74.2, 71.8, 70.9, 69.6, 55.5, 55.3, 54.9, 20.7.

IR (NaCl) $\nu_{\text {max }}$ 2936, 2896, 1748, 1649, 1613, 1514, 1465, 1442, 1374, 1302, 1235, 1151, 1101, 1044, 918, $825 \mathrm{~cm}^{-1}$.

MS (ESI, 70 eV) m/z 455 and 453 [(M + Na) ${ }^{+}, 10$ and 28\%], 241(4), 145 (6), 121 (100).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 453.1308. $\mathrm{C}_{20} \mathrm{H}_{27}{ }^{35} \mathrm{ClNaO}_{8}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 453.1292.
Specific Rotation $[\alpha]_{D}^{20}-93.2\left(c 2.25, \mathrm{CHCl}_{3}\right)$.

1-(($(1 R, 4 R, 5 R, 6 R)$-2-Chloro-6-iodo-4,5-bis(methoxymethoxy)cyclohex-2-enyloxy)methyl)-4-methoxybenzene (246) and 1-(4-methoxybenzyloxy)-2-chloro-4(methoxymethoxy)benzene (247)

Title compound 246 (66\% as a clear, viscous oil) and title compound 247 (2.5% as a white, crystalline solid) were formed by treating compound 243 under the same conditions as defined above for preparing compound $\mathbf{1 8 4}$ but now using a reaction time of 5 h .

Compound 246

$\boldsymbol{R}_{\boldsymbol{f}}=0.7$ (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.40(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{m})$, $4.87(2 \mathrm{H}, \mathrm{s}), 4.82(2 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.72(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.64$ $(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.41-4.37(2 \mathrm{H}$, complex m$), 4.30-4.27(2 \mathrm{H}$, complex m$), 3.80(3 \mathrm{H}, \mathrm{s})$, 3.53 (3H, s), 3.39 (3H, s).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.2,131.9,129.8,129.2,126.5,113.5,97.4,94.8,80.3,78.0$, 74.5, 72.3, 56.5, 55.4, 54.9, 28.9.

IR (NaCl) $v_{\text {max }} 2951,2894,1648,1613,1586,1515,1465,1303,1250,1152,1090,1018$, $921,824,653 \mathrm{~cm}^{-1}$.

MS (ESI) m/z 522 and $520\left[(\mathrm{M}+\mathrm{Na})^{+}, 19\right.$ and 43\%], 241 (6), 121(100), 89 (19), 61 (31).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 521.0223. $\mathrm{C}_{18} \mathrm{H}_{24}{ }^{35} \mathrm{Cl}^{127} \mathrm{IO}_{6}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 521.0204 .
Elemental Analysis Found: C, 43.58; H, 4.85; CI, 6.82; I, 25.12. $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{ClIO}_{6}$ requires C , 43.35; H, 4.85; CI, 7.11; I, 25.44.

Specific Rotation $[\alpha]_{D}^{20}-90.8\left(c 1.63, \mathrm{CHCl}_{3}\right)$.

Compound 247

$\boldsymbol{R}_{\boldsymbol{f}}=0.8$ (2:3 v/v ethyl acetate-hexane).
$\mathrm{mp}=62-63^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.37(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{m}), 6.91(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz})$, $6.87(2 \mathrm{H}, \mathrm{m}), 5.10(2 \mathrm{H}, \mathrm{s}), 5.02(2 \mathrm{H}, \mathrm{s}), 3.01(3 \mathrm{H}, \mathrm{s}), 3.47(3 \mathrm{H}, \mathrm{s})$.
${ }^{13}{ }^{2}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 159.2,151.4,149.2,128.8,128.5,123.6,118.6,115.3,115.2$, 113.7, 94.8, $71.2,55.7,55.0$.

IR (NaCl) $\nu_{\max } 2959,2919,1612,1515,1497,1462,1386,1279,1250,1236,1215,1172$, $1149,1083,999,920,806 \mathrm{~cm}^{-1}$.

MS (ESI) $m / z 333$ and $331\left[(M+N a)^{+}, 4\right.$ and 7\%], 279 (9), 137 (10), 121 (57), 89 (28), 79 (100).

HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 331.0714 . \mathrm{C}_{16} \mathrm{H}_{17}{ }^{35} \mathrm{ClO}_{4}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 331.0713$.

1-(((1S,4R,5S)-2-Chloro-4,5-bis(methoxymethoxy)cyclohex-2-enyloxy)methyl)-4methoxybenzene (248)

246

248

Save for the use of a 2 h reaction time, title compound 248 (84% as a clear, viscous oil) was prepared from compound 246 using the same method as outlined above for the preparation of compound 182.
$\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.311(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.02(1 \mathrm{H}, \mathrm{d}$, $J=5.1 \mathrm{~Hz}), 4.40-4.55(6 \mathrm{H}$, complex m$), 4.20(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}), 4.14-4.06(2 \mathrm{H}$, complex m$)$, $3.80(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 2.26(1 \mathrm{H}, \mathrm{m}), 1.99(1 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 159.0, 136.2, 129.6, 129.2, 126.5, 113.4, 95.8, 95.2, 75.3, 71.7, $70.8,70.9,55.1,55.0,54.8,30.4$.

IR (NaCl) $\nu_{\text {max }} 2936,2891,1648,1612,1586,1514,1465,1442,1386,1356,1302,1249$, $1150,1034,824 \mathrm{~cm}^{-1}$.

MS (ESI) $m / z 397$ and $395\left[(\mathrm{M}+\mathrm{Na})^{+}, 19\right.$ and 54\%], 121 (100), 60 (19).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 395.1223 . \mathrm{C}_{18} \mathrm{H}_{25}{ }^{35} \mathrm{ClO}_{6}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 395.1237$.
Elemental Analysis Found: $\mathrm{C}, 57.77 ; \mathrm{H}, 6.71 ; \mathrm{Cl}, 9.46 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClO}_{6}$ requires $\mathrm{C}, 57.99$; H , 6.76; $\mathrm{Cl}, 9.51$.

Specific Rotation $[\alpha]_{D}^{20}-41.2\left(c 2.03, \mathrm{CHCl}_{3}\right)$.
(1S,4R,5S)-2-Chloro-4,5-bis(methoxymethoxy)cyclohex-2-enol (249)

Save for the use of a 20 h reaction time, title compound 249 (98% as a clear, viscous oil) was prepared from compound $\mathbf{2 4 8}$ using the method as outlined above for the preparation of compound 180.
$\boldsymbol{R}_{\boldsymbol{f}}=0.5$ (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.98(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}), 4.79-4.69(4 \mathrm{H}$, complex m$), 4.35(1 \mathrm{H}$, $\mathrm{t}, J=5.1 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{t}, J=4.2 \mathrm{~Hz}), 4.12(1 \mathrm{H}, \mathrm{dt}, J=9.6,3.0 \mathrm{~Hz}), 3.39(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s})$, $2.48-2.38(1 \mathrm{H}$, complex m), $2.37(1 \mathrm{H}$, broad s), $1.88(1 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 137.6,125.4,95.5,95.0,71.1,70.5,68.0,55.2,55.1,33.2$.
IR (NaCl) $v_{\text {max }} 3437,2939,2893,1647,1442,1381,1290,1214,1150,1110,1046,955,917$ cm^{-1}.

MS (ESI) m/z 277 and 275 [(M + Na) ${ }^{+}, 20$ and 59\%], 135 (11), 131 (33), 129 (100).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}$, 275.0655. $\mathrm{C}_{10} \mathrm{H}_{17}{ }^{35} \mathrm{ClO}_{5}$ requires $(\mathrm{M}+\mathrm{Na})^{+}$, 275.0662.
Elemental Analysis Found: $\mathrm{C}, 47.21 ; \mathrm{H}, 6.55 ; \mathrm{Cl}, 13.85 . \mathrm{C}_{10} \mathrm{H}_{17} \mathrm{ClO}_{5}$ requires $\mathrm{C}, 47.53 ; \mathrm{H}$, 6.78; $\mathrm{Cl}, 14.03$.

Specific Rotation $[\alpha]_{D}^{20}-95.5\left(c\right.$ 1.83, $\left.\mathrm{CHCl}_{3}\right)$.
(3R,4S,6R)-6-Azido-1-chloro-3,4-bis(methoxymethoxy)cyclohex-1-ene (250)

249

Save for the use of an 18 h reaction time, title compound 250 (75% as a clear, viscous oil) was prepared from compound 249 using the method outlined above for the preparation of compound 207.
$\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (silica, $3: 7 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.14(1 \mathrm{H}, \mathrm{dd}, J=5.4,1.2 \mathrm{~Hz}), 4.78-4.69(4 \mathrm{H}$, complex m$)$,
$4.17(1 \mathrm{H}, \mathrm{t}, J=3.6 \mathrm{~Hz}), 3.93(1 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{dt}, J=9.6,3.6 \mathrm{~Hz}), 3.39(3 \mathrm{H}, \mathrm{s})$, 3.37 (3H, s), 2.33-2.15 (2H, complex m).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 135.0,127.8,95.7,94.9,70.6,70.1,59.8,55.4,55.3,30.3$.
IR (NaCl) $v_{\text {max }}$ 2948, 2892, 2103, 1642, 1467, 1449, 1252, 1215, 1150, 1110, 1047, 956, 917 cm^{-1}.

MS (ESI) $\mathrm{m} / \mathrm{z} 302$ and $300\left[(\mathrm{M}+\mathrm{Na})^{+}, 33\right.$ and 100\%], 218 (20), 188 (40), 145 (30), 128 (53), 117 (51), 108 (81), 99 (57), 92 (49), 80 (73), 65 (64).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 300.0725 . \mathrm{C}_{10} \mathrm{H}_{16}{ }^{35} \mathrm{CIN}_{3} \mathrm{O}_{4}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 300.0727$.
Elemental Analysis Found: $\mathrm{C}, 43.32 ; \mathrm{H}, 5.65 ; \mathrm{N}, 15.06 ; \mathrm{Cl}, 12.77 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}_{4}$ requires C , 43.25; H, 5.81; N, 15.13; Cl, 12.77.

Specific Rotation $[\alpha]_{\mathrm{D}}^{20}+51.1$ (c 1.37, CHCl_{3}).
(1R,4R,5S)-2-Chloro-4,5-bis(methoxymethoxy)cyclohex-2-enamine (251)

Save for the use of a reaction time of 20 h , title compound 251 (98% as a viscous, lightyellow oil) was prepared from compound 250 using the method outlined above for the preparation of compound 208.
$\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (silica, $1: 11: 8 \mathrm{v} / \mathrm{v} \mathrm{MeOH}-$ ethyl acetate $-\mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.84(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8,1.2 \mathrm{~Hz}), 4.72-4.61$ (4 H , complex m), $4.14,(1 \mathrm{H}, \mathrm{t}, J=4.1 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{dt}, J=9.9,3.3 \mathrm{~Hz}), 3.33(3 \mathrm{H}, \mathrm{s}), 3.32(3 \mathrm{H}, \mathrm{s}), 3.25(1 \mathrm{H}, \mathrm{m})$, $2.10(1 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{m}), 1.71(2 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 141.7,122.8,95.2,94.5,71.0,70.9,55.0,54.9,51.2,32.4$.
IR (NaCl) $v_{\text {max }} 3578,3379,3307,2935,2891,2823,1638,1467,1449,1383,1363,1290$, $1213,1149,1100,1038,916,876 \mathrm{~cm}^{-1}$.

MS (ESI) $m / z 276$ and $274\left[(M+N a)^{+}, 6\right.$ and 17\%], 254 and $252\left[(M+H)^{+}, 9\right.$ and 27], 222 and 220 (18 and 51), 200 (55), 188 (57), 178 and 176 (20 and 60), 144 and 142 (29 and 92), 128 (100), 107 (22).

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 252.1001. $\mathrm{C}_{10} \mathrm{H}_{18}{ }^{35} \mathrm{CINO}_{4}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 252.1003.

Specific Rotation $[\alpha]_{D}^{20}-14.4\left(c 1.03, \mathrm{CHCl}_{3}\right)$.
(1R,4R,5S)-N-(4-Methoxybenzyl)-2-chloro-4,5-bis(methoxymethoxy)cyclohex-2enamine (225)

Save for the use of a 14 h reaction period for the first step and 1 h reaction period in the second step, title compound 225 (56% as a clear, colourless oil) was prepared from compound 251 using the same method as outlined above for the preparation of compound 206.
$\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (3:2 v/v ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.30(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.86(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.16(1 \mathrm{H}, \mathrm{dd}$, $J=6.0,1.8 \mathrm{~Hz}), 4.77(2 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 4.72(2 \mathrm{H}, \mathrm{s}), 4.19(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{t}, J=$ $3.6 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.72(2 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 3.50(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 3.40(3 \mathrm{H}, \mathrm{s}), 3.39(3 \mathrm{H}$, s), $2.32(1 \mathrm{H}, \mathrm{m}), 2.18-2.10(1 \mathrm{H}$, complex m$)$ (one signal, due to NH proton, not observed).
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 158.4,141.0,131.9,129.3,125.8,113.6,95.7,94.7,72.0,70.7$, 56.5, 55.3, 55.2, 55.0, 47.7, 29.2.

IR (NaCl) $v_{\max } 3337,2948,2890,2836,1638,1612,1513,1465,1300,1247,1149,1105$, 1032, 955, 916, $824 \mathrm{~cm}^{-1}$.

MS (ESI) $m / z 396$ and $394\left[(\mathrm{M}+\mathrm{Na})^{+}, 2\right.$ and $\left.6 \%\right], 374$ and $372\left[(\mathrm{M}+\mathrm{H})^{+}, 9\right.$ and 27), 121 (100).

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}, 372.1566 . \mathrm{C}_{18} \mathrm{H}_{26}{ }^{35} \mathrm{CINO}_{5}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 372.1578$.
Elemental Analysis Found: $\mathrm{C}, 58.04 ; \mathrm{H}, 7.18$; $\mathrm{N}, 3.57$; $\mathrm{Cl}, 9.53 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{CINO}_{5}$ requires C , 58.14; H, 7.05; N, 3.77; CI, 9.53.

Specific Rotation $[\alpha]_{D}^{20}-13.9\left(c 0.53, \mathrm{CHCl}_{3}\right)$.

N-(4-Methoxybenzyl)-2-(benzo[d][1,3]dioxol-6-yl)-N-((1R,4R,5S)-2-bromo-4,5-bis(methoxymethoxy)cyclohex-2-enyl)-2-(phenylthio)acetamide (226)

A magnetically stirred solution of 2°-amine $206(1.36 \mathrm{~g}, 3.27 \mathrm{mmol}), \alpha$-arylated acetic acid 105 (1.04 g, 3.61 mmol) and $\mathrm{EtN}^{\prime} \mathrm{Pr}_{2}$ (DIPEA) ($1.42 \mathrm{~mL}, 8.17 \mathrm{mmol}$) in anhydrous DMF (20 $\mathrm{mL})$ maintained at $18^{\circ} \mathrm{C}$ was treated with $\operatorname{EDCI}(0.69 \mathrm{~g}, 3.61 \mathrm{mmol})$ and $\mathrm{HOBt}(0.53 \mathrm{~g}, 3.92$ mmol) and the ensuing mixture then heated at $30^{\circ} \mathrm{C}$. After 3 h , when TLC analysis indicated that all starting material had been consumed, the reaction mixture was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(300 \mathrm{~mL})$ and HCl (100 mL of a 2 M aqueous solution). The separated organic phase was washed, sequentially, with $\mathrm{HCl}(3 \times 100 \mathrm{~mL}$ of a 2 M aqueous solution), brine $(1 \times 100 \mathrm{~mL})$ and sodium hydrogen carbonate ($1 \times 100 \mathrm{~mL}$ of a saturated aqueous solution) before being dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a yellow oil. Subjection of this material to flash chromatography (silica, $2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound 226 ($1.94 \mathrm{~g}, 86 \%$) as an off-white foam.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (mixture of diastereomers and amide rotamers) 170.9, 170.7, $169.6,158.9,158.8(6), 158.3,148.2,147.6,147.3,147.0,134.1,133.9,133.8,133.6,132.6$, $132.5,132.1,130.9,130.4,130.3,130.0,129.8,129.7,129.2,129.0,128.7,128.6,128.5$, $128.4,127.8,127.5,127.0,126.6,122.5,121.9,121.6,114.4,114.2,113.9,113.6,113.5$, $109.8,108.7,108.2,108.0,107.5,107.1,101.0,100.8,96.1,96.0,94.7,94.6,71.6,71.5$, $70.5,70.4,70.3,65.7,59.0,58.0,55.6,55.4,55.3,55.2,55.0,54.9,53.9,46.8,46.1,46.0$, 29.5, 28.9.

IR (NaCl) $\nu_{\max } 3057,2933,2893,1653,1611,1512,1487,1442,1410,1248,1149,1108$, $1038,918,818,735 \mathrm{~cm}^{-1}$.

MS (ESI) $m / z 710$ and $708\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$, both $\left.4 \%\right], 448$ and 446 (both 8), 418 and 416 (both 80), 121 (100).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 710.1256 . \mathrm{C}_{33} \mathrm{H}_{36}{ }^{81} \mathrm{BrNO}_{8} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 710.1222$.
Elemental Analysis Found: $\mathrm{C}, 57.86 ; \mathrm{H}, 5.27 ; \mathrm{N}, 2.16 . \mathrm{C}_{33} \mathrm{H}_{36} \mathrm{BrNO}_{8} \mathrm{~S}$ requires $\mathrm{C}, 57.73$; H , 5.28; N, 2.04.

N-(4-Methoxybenzyl)-2-(benzo[d][1,3]dioxol-6-yl)-N-($1 R, 4 R, 5 S)-2-c h l o r o-4,5-$

 bis(methoxymethoxy)cyclohex-2-enyl)-2-(phenylthio)acetamide (227)

Save for the use of the reaction temperature of $18^{\circ} \mathrm{C}$, title compound $\mathbf{2 2 7}(\mathbf{7 4 \%}$ as an offwhite foam) was prepared from compound $\mathbf{2 2 5}$ and compound 105 using the method outlined above for the preparation of congener 226.
$\boldsymbol{R}_{\boldsymbol{f}}=0.6$ (silica, $3: 2 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (mixture of diastereomers and amide rotamers): 170.8, 170.6, $158.6,147.4,147.0,146.7,137.6,137.4,133.7,133.4,133.3,132.9,131.8,130.4,130.0$, 129.4, 129.3, 128.9, 128.4, 128.3, 128.2, 128.1, 127.9, 127.5, 127.3, 126.7, 126.3, 122.0, $121.4,114.1,113.8,113.2,113.1,109.3,108.1,107.3,106.8,100.7,100.6,95.7,94.4,71.3$, $69.4,69.2,57.7,55.3,55.0,54.9,54.8,54.6,54.1,53.9,46.4,45.7,28.2$.

IR (NaCl) $v_{\text {max }}$ 3058, 2947, 2893, 1653, 1612, 1584, 1512, 1487, 1442, 1411, 1361, 1248, 1149, 1109, 1038, 918, $733 \mathrm{~cm}^{-1}$.

MS (ESI) $\mathrm{m} / \mathrm{z} 666$ and $664\left[(\mathrm{M}+\mathrm{Na})^{+}, 45\right.$ and $\left.100 \%\right], 644$ and $642\left[(\mathrm{M}+\mathrm{H})^{+}, 27\right.$ and 61], 582 and 580 (12 and 28), 472 and 470 (3 and 9), 374 and 372 (7 and 29), 352 and 350 (4 and 11), 121 (43).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 642.1893. $\mathrm{C}_{33} \mathrm{H}_{36}{ }^{35} \mathrm{ClNO}_{8} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 642.1928.
Elemental Analysis Found: $\mathrm{C}, 61.93 ; \mathrm{H}, 5.90 ; \mathrm{N}, 2.23 ; \mathrm{Cl}, 5.57 . \mathrm{C}_{33} \mathrm{H}_{36} \mathrm{ClNO}_{8} \mathrm{~S}$ requires C , 61.72; H, 5.65; N, 2.18; Cl, 5.52.
(3R,5R,6S,7aR)-1-(4-Methoxybenzyl)-3-(benzo[d][1,3]dioxol-6-yl)-5,6,7,7a-tetrahydro-5,6-bis(methoxymethoxy)-1 H-indol-2(3H)-one) (224), (3S,5R,6S,7aR)-1-(4-Methoxybenzyl)-3-(benzo[d][1,3]dioxol-6-yl)-5,6,7,7a-tetrahydro-5,6-bis(methoxymethoxy)-1H-indol-2(3H)-one) (252),
(3aR,5R,6S,7aR)-1-(4-methoxybenzyl)-3-(benzo[d][1,3]dioxol-6-yl)-hexahydro-5,6-bis(methoxymethoxy)-1 H-indol-2(3H)-one (253), N-((1R,4R,5S)-4,5-bis(methoxymethoxy)cyclohex-2-enyl)- \mathbf{N}-(4-methoxybenzyl)-2-(benzo[d][1,3]dioxol-6-yl)acetamide (254), \boldsymbol{N}-(4-methoxybenzyl)-2-(benzo[d][1,3]dioxol-6-yl)-N ((1R,4R,5S)-2-bromo-4,5-bis(methoxymethoxy)cyclohex-2-enyl)acetamide (255) and \boldsymbol{N}-((1R,4R,5S)-4,5-bis(methoxymethoxy)cyclohex-2-enyl)-N-(4-methoxybenzyl)-2-(benzo[d][1,3]dioxol-6-yl)-2-(phenylthio)acetamide (256)

A magnetically stirred mixture of amide 226 ($90.0 \mathrm{mg}, 0.13 \mathrm{mmol}$) in anhydrous benzene (2 mL) that had been degassed ($3 \times$ freeze-pump-thaw method) was heated to $80^{\circ} \mathrm{C}$ under an
argon atmosphere. The reaction mixture was then treated (over 3 h and via syringe pump) with a degassed mixture of $n-\mathrm{Bu}_{3} \mathrm{SnH}(38 \mu \mathrm{~L}, 0.14 \mathrm{mmol})$ and AIBN $(11.0 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous benzene (1 mL). The cooled reaction mixture was concentrated under reduced pressure to give a yellow residue. Subjection of this material to flash chromatography (silica, neat hexane $\rightarrow 7: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane gradient elution) provided fractions $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and D.

Concentration of fraction $\mathbf{A}\left(R_{f}=0.4,3: 2 \mathrm{v} / \mathrm{v}\right.$ ethyl acetate-hexane) afforded the title compound $224 / 252(10.0 \mathrm{mg}, 15 \%)$ as a mixture (8.5:1) of epimers.
${ }^{1} \mathrm{H}$ NMR $(800 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (major epimer) $7.12(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 6.81(2 \mathrm{H}, \mathrm{d}, J=8.8$ $\mathrm{Hz}), 6.77(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.68(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 5.93(2 \mathrm{H}, \mathrm{dd}, J$ $=3.2,1.2 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{m}), 4.90(1 \mathrm{H}, \mathrm{d}, J=15.2 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 4.73(1 \mathrm{H}, \mathrm{d}, J$ $=7.2 \mathrm{~Hz}), 4.69(2 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{m}), 4.09(1 \mathrm{H}, \mathrm{s}), 4.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.2 \mathrm{~Hz}), 3.94(1 \mathrm{H}, \mathrm{m})$, $3.79(3 \mathrm{H}, \mathrm{s}), 3.73(1 \mathrm{H}, \mathrm{m}), 3.40(3 \mathrm{H}, \mathrm{s}), 3.38(3 \mathrm{H}, \mathrm{s}), 2.13(1 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}, \mathrm{q}, J=11.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (major epimer) 173.3, 159.1, 148.0, 146.8, 140.0, 130.7, 129.3, 128.1, 123.0, 120.1, 114.1, 108.4, 107.7, 101.1, 96.8, 94.8, 72.7, 70.2, 57.1, 55.6(4), 55.5(6), 55.3, 51.6, 43.7, 28.9.

IR (NaCl) $v_{\text {max }}$ 2929,1702, 1682, 1513, 1489, 1440, 1247, 1147, 1107, 1037, $917 \mathrm{~cm}^{-1}$.
MS (ESI) $\mathrm{m} / \mathrm{z} 520$ [(M + Na) $\left.{ }^{+}, 41 \%\right], 498$ [(M + H) ${ }^{+}$, 21], 466 (6), 436 (6), 374 (11), 266 (9), 211 (8), 121 (100), 61 (10).
HRMS Found: $(\mathrm{M}+\mathrm{Na})^{+}, 520.1954 . \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{8}$ requires $(\mathrm{M}+\mathrm{Na})^{+}, 520.1947$.

Concentration of fraction \mathbf{B} ($R_{f}=0.5,3: 2 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) gave the title compound 254 ($1.3 \mathrm{mg}, 2 \%$) as an opaque, viscous oil.
${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.14(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}), 6.85[1 \mathrm{H}, \mathrm{s}$ (obscured)], $6.84(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=8.4 \mathrm{~Hz}) .6 .78(2 \mathrm{H}, \mathrm{m}), 5.94(2 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, J=15.0 \mathrm{~Hz}), 4.77(1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 4.71(1 \mathrm{H}, J$ $=6.6 \mathrm{~Hz}), 4.60(1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.51(1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.01(1 \mathrm{H}$, broad m$), 3.97(1 \mathrm{H}, J=5.0$ $\mathrm{Hz}), 3.84(1 \mathrm{H}, J=6.6 \mathrm{~Hz}), 3.79(3 \mathrm{H}, \mathrm{s}), 3.52(1 \mathrm{H}, \mathrm{m}), 3.46(4 \mathrm{H}, \mathrm{s}), 3.45[1 \mathrm{H}, \mathrm{m}$ (obscured)] $3.28(3 \mathrm{H}, \mathrm{s}), 2.52-2.43(2 \mathrm{H}$, complex m), $1.72(1 \mathrm{H}, J=12.6 \mathrm{~Hz}), 1.53(1 \mathrm{H}, \mathrm{m}), 1.01(1 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 174.0,158.8,147.4,146.4,129.3,128.5,128.4,123.1,114.0$, $110.3,108.1,100.9,96.2,93.8,70.8,70.5,55.7,55.4,55.2,53.1,51.3,43.2,39.5,28.6,24.1$. IR (NaCl) $v_{\text {max }}$ 2934, 1682, 1611, 1512, 1491, 1250, 1148, 1106, 1037, $917 \mathrm{~cm}^{-1}$.
MS (ESI, 70 eV) m/z $522\left[(\mathrm{M}+\mathrm{Na})^{+}, 100 \%\right], 500\left[(\mathrm{M}+\mathrm{H})^{+}, 81\right], 468$ (24), 436 (17), 121 (95), 102 (27).

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}, 500.2273 . \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{8}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 500.2284$.
Specific Rotation $[\alpha]_{D}^{20}+126.8\left(c 0.35, \mathrm{CHCl}_{3}\right)$.

Concentration of fraction \mathbf{C} ($R_{f}=0.6,3: 2 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) gave the title compounds 253, 255 and 256 as chromatographically inseparable mixture of products.

Compound 253

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}, 500.2287 . \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{NO}_{8}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 500.2284$.

Compound 255

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}, 578.1355 . \mathrm{C}_{27} \mathrm{H}_{33}{ }^{79} \mathrm{BrNO}_{8}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 578.1389$.

Compound 256

HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}, 608.2328 . \mathrm{C}_{33} \mathrm{H}_{38} \mathrm{NO}_{8} \mathrm{~S}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 608.2318$.

Concentration fraction D ($R_{f}=0.3,2: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane) gave the starting material $226(40.0 \mathrm{mg}, 44 \%)$ which was identical, in all respects, with authentic material.
(3R,5R,6S,7aR)-1-(4-Methoxybenzyl)-3-(benzo[d][1,3]dioxol-6-yl)-5,6,7,7a-tetrahydro-5,6-bis(methoxymethoxy)-1 H -indol-2(3H)-one) (224), (3S,5R,6S,7aR)-1-(4-Methoxybenzyl)-3-(benzo[d][1,3]dioxol-6-yl)-5,6,7,7a-tetrahydro-5,6-bis(methoxymethoxy)-1 H -indol-2(3H)-one) (252),
\mathbf{N}-(4-methoxybenzyl)-2-(benzo[d][1,3]dioxol-6-yl)-N-((1R,4R,5S)-2-chloro-4,5-bis(methoxymethoxy)cyclohex-2-enyl)acetamide (261) and \boldsymbol{N}-(4-methoxybenzyl)-2-(benzo[d][1,3]dioxol-6-yl)-N-((1R,4R,5S)-2-chloro-4,5-bis(methoxymethoxy)cyclohex-2-enyl)-3-cyano-3-methylbutanamide) (262)

227

A magnetically stirred mixture of amide, $227(199.0 \mathrm{mg}, 0.309 \mathrm{mmol})$ and $n-\mathrm{Bu}_{6} \mathrm{Sn}_{2}(300 \mu \mathrm{~L}$, 0.774 mmol) in anhydrous benzene (650 mL) was degassed (3 x freeze-pump-thaw method) and then maintained under an argon atmosphere. After being heated at $80^{\circ} \mathrm{C}$, the ensuing mixture was treated (via syringe pump) with a degassed mixture containing $n-\mathrm{Bu}_{3} \mathrm{SnH}$ (123 $\mu \mathrm{L}, 0.465 \mathrm{mmol}$) and AIBN ($25.0 \mathrm{mg}, 0.155 \mathrm{mmol}$) in anhydrous benzene (2 mL) for 3 h . The resulting mixture was then concentrated under reduced pressure to give a yellow residue.

Subjection of this material to flash chromatography (silica, neat hexane $\rightarrow 7: 3 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane gradient elution) provided fractions \mathbf{A} and \mathbf{B}.

Concentration of fraction A provided the title compounds 224/252 as chromatographically inseparable mixture of epimers (8.5:1) ($103.0 \mathrm{mg}, 67 \%$) $\left[\boldsymbol{R}_{\boldsymbol{f}}=0.4\right.$ (silica, $3: 2 \mathrm{v} / \mathrm{v}$ ethyl acetatehexane)].

Concentration of fraction B afforded the title compound 261 ($30.6 \mathrm{mg}, 18 \%$) as a viscous, colourless oil.
$\boldsymbol{R}_{f}=0.5$ (3:2 v/v ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (major rotamer) $7.12(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, J=8.7$ $\mathrm{Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.67(2 \mathrm{H}, \mathrm{m}), 6.54(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.21(1 \mathrm{H}, \mathrm{dd}, J=6.6$ and $2.1 \mathrm{~Hz}), 5.91(2 \mathrm{H}, \mathrm{s}), 5.77(1 \mathrm{H}, \mathrm{m}), 4.74-4.51(5 \mathrm{H}$, complex m), 4.19-4.14(2H, complex m), $3.81(3 \mathrm{H}, \mathrm{s}), 3.45(2 \mathrm{H}, \mathrm{s}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.33(3 \mathrm{H}, \mathrm{s}), 2.23-1.98(2 \mathrm{H}$, complex m$)$.
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (major rotamer) 173.0, 158.8, 147.5, 146.4, 138.4, 129.7, 128.5, 127.9, 126.7, 114.3, 109.6, 108.0, 100.9, 96.1, 94.7, 71.8, 69.9, 55.5, 55.4, 55.3, 54.0, 46.4, 40.7, 28.6.

IR (NaCl$)_{\nu_{\text {max }}}$ 2932, 2893, 1652, 1612, 1513, 1490, 1444, 1409, 1247, 1149, 1109, 1036, $919,811 \mathrm{~cm}^{-1}$.
MS (ESI, 70 eV) m/z 558 and $556\left[(\mathrm{M}+\mathrm{Na})^{+}, 21\right.$ and $\left.55 \%\right], 536$ and $534\left[(\mathrm{M}+\mathrm{H})^{+}, 12\right.$ and 30], 474 and 472 (12 and 42), 121 (100).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 534.1883. $\mathrm{C}_{27} \mathrm{H}_{33}{ }^{35} \mathrm{CINO}_{8}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 534.1894.
Specific Rotation $[\alpha]_{D}^{20}+23.2\left(c 0.25 \mathrm{CHCl}_{3}\right)$.

Compound 262

$\boldsymbol{R}_{f}=0.5(3: 2 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane elution).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$601.2305. $\mathrm{C}_{31} \mathrm{H}_{38}{ }^{35} \mathrm{ClN}_{2} \mathrm{O}_{8}$ requires $(\mathrm{M}+\mathrm{H})^{+} 601.2316$.
($3 R, 5 R, 6 S, 7 a R$)-1-(4-Methoxybenzyl)-3-(benzo[d][1,3]dioxol-6-yl)-2,3,5,6,7,7a-hexahydro-5,6-bis(methoxymethoxy)-1 H -indole (268)

A magnetically stirred suspension of aluminium trichloride $\left(\mathrm{AlCl}_{3}\right)(743.0 \mathrm{mg}, 5.56 \mathrm{mmol})$ in anhydrous THF (15 mL) was cooled to $-20^{\circ} \mathrm{C}$ then treated, dropwise, with $\mathrm{LiAlH}_{4}(5.56 \mathrm{~mL}$ of a 1 M solution in THF, 5.56 mmol) before being allowed to warm to $18^{\circ} \mathrm{C}$. After 1 h , a solution of the epimeric mixture ($8.5: 1$) of compounds 224 and 252 ($173.0 \mathrm{mg}, 0.35 \mathrm{mmol}$), in anhydrous THF (10 mL), was added dropwise and the ensuing mixture was stirred for 12 h at $18^{\circ} \mathrm{C}$. TLC analysis after this time indicated that all the starting material had been consumed so the reaction mixture was treated with sodium/potassium tartrate (30 mL of a saturated aqueous solution) [CAUTION: Exothermic] and stirring continued at $18^{\circ} \mathrm{C}$ for 4 h . The separated aqueous phase was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$) and the combined organic fractions were washed with brine $(2 \times 50 \mathrm{~mL})$ and ammonium chloride ($1 \times 50 \mathrm{~mL}$ of a saturated aqueous solution) then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford a 8.5:1 diastereoisomeric mixture of the title compound $268(158.0 \mathrm{mg}$, 94%) as an opaque, colourless oil.
$\boldsymbol{R}_{\boldsymbol{f}}=0.4$ (silica, $3: 2 \mathrm{v} / \mathrm{v}$ ethyl acetate-hexane).
${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.23(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.83(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 6.69(1 \mathrm{H}, \mathrm{d}, J$ $=7.8 \mathrm{~Hz}), 6.61(1 \mathrm{H}, \mathrm{s}), 6.60(1 \mathrm{H}$, partially obscured m$), 5.91(2 \mathrm{H}, \mathrm{s}), 5.57(1 \mathrm{H}$, broad m$)$, $4.83-4.70(4 \mathrm{H}$, complex m), $4.20(1 \mathrm{H}, \mathrm{m}), 4.00(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}$, s), $3.41(3 \mathrm{H}, \mathrm{s}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.36(1 \mathrm{H}$, partially obscured m), $3.21(1 \mathrm{H}$, broad d, $J=12.0 \mathrm{~Hz})$, $2.91(1 \mathrm{H}$, broad s), $2.12(2 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}, \mathrm{m})$ (one signal obscured or overlapping).
${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 158.7,149.6,147.6,146.0,136.7,130.3,130.1,120.8,119.2$, $113.5,108.1,108.0,100.9,96.2,94.6,73.4,70.0,66.5,62.7,57.8,55.5,55.3,55.2,46.1$, 29.4.

IR (NaCl) $v_{\text {max }}$ 2934, 2890, 1611, 1512, 1488, 1441, 1357, 1248, 1147, 1103, $1039 \mathrm{~cm}^{-1}$.
MS (ESI) m/z 484 [(M + H) $\left.{ }^{+}, 100 \%\right]$, 121 (32), 54 (18).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}, 484.2335 . \mathrm{C}_{27} \mathrm{H}_{33} \mathrm{NO}_{7}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 484.2335$.
(3R,5R,6S,7aR)-3-(Benzo[d][1,3]dioxol-6-yl)-2,3,5,6,7,7a-hexahydro-5,6-bis(methoxymethoxy)-1 H -indole (194)

A magnetically stirred solution of 3°-amine $268(83.5 \mathrm{mg}, 0.173 \mathrm{mmol})$ in DCE (3 mL) maintained at $18^{\circ} \mathrm{C}$ was treated with $\mathrm{ACE}-\mathrm{Cl}(40 \mu \mathrm{~L}, 0.70 \mathrm{mmol})$ then heated at $80^{\circ} \mathrm{C}$. After 1 h , time TLC analysis indicated that all starting material had been consumed. Consequently, the reaction mixture was concentrated under reduced pressure to give a yellow residue. Treatment of this material with $\mathrm{MeOH}(3 \mathrm{~mL})$ followed by heating at $65{ }^{\circ} \mathrm{C}$ for 30 mins produced an orange reaction mixture which, upon cooling to $18^{\circ} \mathrm{C}$ then concentration under reduced pressure, provided an orange residue. This material was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and $\mathrm{HCl}(40 \mathrm{~mL}$ of a 1 M of an aqueous solution) and the separated aqueous fraction of the biphasic mixture was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ before being treated with sodium hydroxide (40 mL of a 2 M of an aqueous solution) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 10 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give the title compound $194(28.7 \mathrm{mg}, 45 \%)$ as an opaque, viscous oil. This material was used, without purification, in the next step of the reaction sequence.

IR (NaCl) $v_{\text {max }} 3307,2961,1503,1488,1259,1093,1037,802 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 388 and 386 [(M + Na) ${ }^{+} 1$ and 7\%], 143 (10), 103 (24), 77 (40), 63 (100).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 364.1753. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{6}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 364.1760.
(6aR, 7aS, 10aR, 12R)-6,12-Methano-6H-1,3-benzodioxolo[5,6-c][1]benzazepine-5,6a,7,7a,10a,12-hexahydro-7a,10a-benzo[d][1,3]dioxole (272)

A magnetically stirred solution 2^{0}-amine $194(28.7 \mathrm{mg}, 0.08 \mathrm{mmol})$ in formic acid (3 mL) maintained at $18^{\circ} \mathrm{C}$ was treated with paraformaldehyde ($142.0 \mathrm{mg}, 4.73 \mathrm{mmol}$) then heated at $80^{\circ} \mathrm{C}$. After 15 h the reaction mixture was cooled to $18^{\circ} \mathrm{C}$, quenched with sodium hydrogen carbonate (60 mL of saturated aqueous solution) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 60 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue. Subjection of this material to flash chromatography (silica, $1: 11: 8 \mathrm{v} / \mathrm{v}$ MeOH-ethyl acetate- CHCl_{3} elution) and concentration of appropriate fractions ($R_{f}=$ 0.3) afforded the title compound $272(11.3 \mathrm{mg}, 48 \%$) as a viscous, light-yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left.(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left[\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 6.65(1 \mathrm{H}, \mathrm{s}), 6.57(1 \mathrm{H}, \mathrm{s}), 5.98(2 \mathrm{H}, \mathrm{dd}, J=6.3$ and 0.6 Hz$)$, $5.94(1 \mathrm{H}, \mathrm{s}), 5.11(1 \mathrm{H}, \mathrm{s}), 4.93(1 \mathrm{H}, \mathrm{s}), 4.79(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.33-4.30(3 \mathrm{H}$, complex m$)$, $3.76(1 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{m}), 3.59(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{m}), 1.58[1 \mathrm{H}, \mathrm{m}$ (obscured)].
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left.\delta_{\mathrm{C}}\left[\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 153.4,148.6,147.1,122.1,117.3,109.0,108.7,101.8,94.8$, 73.5, 73.4, 64.7, 63.4, 58.0, 47.3, 32.2.

MS (EI, 70 eV) m/z 300 [(M + Na) $\left.{ }^{+}, 95 \%\right]$, 121 (100).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}, 300.1248 . \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}$ requires $(\mathrm{M}+\mathrm{H})^{+}, 300.1236$.
(3R,5R,6S,7aR)-1-(4-Methoxybenzyl)-3-(benzo[d][1,3]dioxol-6-yl)-2,3,5,6,7,7a-hexahydro-1 H -indole-5,6-diol (278)

A magnetically stirred solution of 3°-amine 268 ($158.0 \mathrm{mg}, 0.327 \mathrm{mmol}$) in $\mathrm{MeOH}(20 \mathrm{~mL})$ maintained at $18^{\circ} \mathrm{C}$ was treated with HCl (trace of a concentrated aqueous solution) then heated at $60^{\circ} \mathrm{C}$ for 3 h , after which time TLC analysis indicated that all the starting material had been consumed. Consequently, the reaction mixture was cooled to $18^{\circ} \mathrm{C}$, quenched with sodium hydrogen carbonate ($1 \times 40 \mathrm{~mL}$ of a saturated aqueous solution) then extracted with ethyl acetate ($4 \times 40 \mathrm{~mL}$). The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford the title compound 278 ($95.0 \mathrm{mg}, 73 \%$) as a viscous oil. This material was used without purification in the next step of the reaction sequence.
(3R, 4aR, 7aS, 8aR)-3-(Benzo[d][1,3]dioxol-6-yl)-2,3,4a,7a,8,8a-hexahydro-4a,7a-benzo[d][1,3]dioxol-6-one-1 \boldsymbol{H}-indole-1-carbamoyl chloride (279)

A magnetically stirred solution of diol $278(95.0 \mathrm{mg}, 0.240 \mathrm{mmol})$ and pyridine ($78 \mu \mathrm{~L}, 0.962$ mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ maintained at $18^{\circ} \mathrm{C}$ was treated with triphosgene (285.0 $\mathrm{mg}, 0.962 \mathrm{mmol}$). After 14 h , the reaction mixture was concentrated under reduced pressure to give a yellow residue that was subjected to flash chromatography (silica, 2:3 v/v ethyl acetate-hexane elution). Concentration of appropriate fractions ($R_{f}=0.5$) afforded a 8.5:1
diastereoisomeric mixture of the title compound 279 ($44.0 \mathrm{mg}, 50 \%$) as a white, crystalline solid.
$\mathrm{mp}=64-66^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (major rotamer): $6.75(1 \mathrm{H}, \mathrm{d}, J=3.9 \mathrm{~Hz}), 6.60(1 \mathrm{H}, \mathrm{d}, J=1.8$ $\mathrm{Hz}), 6.58(1 \mathrm{H}, \mathrm{dd}, J=3.9,1.8 \mathrm{~Hz}), 5.99(1 \mathrm{H}, \mathrm{t}, J=1.2 \mathrm{~Hz}), 5.94(2 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}$, broad d, J $=3.9 \mathrm{~Hz}), 4.85(1 \mathrm{H}, \mathrm{m}), 4.22-4.14(1 \mathrm{H}$, complex m$), 3.97-3.92(2 \mathrm{H}$, complex m), $3.19(1 \mathrm{H}$, $\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}), 1.39(1 \mathrm{H}, \mathrm{q}, J=5.7 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (major rotamer): $153.5,148.9,148.4,147.1(3), 147.0(8), 133.6$, 118.9, 116.5, 108.8, 106.5, 101.4, 72.6, 71.7, 55.7, 55.0, 46.5, 29.9.

IR (NaCl) $\boldsymbol{v}_{\text {max }} 2960,2925,2854,1802,1738,1610,1514,1503,1489,1443,1374,1255$, 1176, 1097, 1038, $811 \mathrm{~cm}^{-1}$.
MS (EI, 70 eV) m/z 365 and $363\left(\mathrm{M}^{+}, 50\right.$ and 100\%), 304 and 302 (6 and 17), 242 (25), 228 (28), 223 (31), 211 (23), 199 (28), 186 (44), 169 (28), 148 (35), 121 (55), 115 (30), 97 (21), 57 (30), 55 (28), 43 (18).

HRMS Found: $\mathrm{M}^{+\bullet}, 363.0496 . \mathrm{C}_{17} \mathrm{H}_{14}{ }^{35} \mathrm{CINO}_{6}$ requires $\mathrm{M}^{+\bullet}, 363.0510$.
(3R, 4aR, 7aS, 8aR)-3-(Benzo[d][1,3]dioxol-6-yl)-2,3,4a,7a,8,8a-hexahydro-1 H-indole-4a,7a-benzo[d][1,3]dioxol-6-one (277)

A magnetically stirred solution of carbamoyl chloride 279 ($20.0 \mathrm{mg}, 0.055 \mathrm{mmol}$) in dioxanewater (3 mL of a $1: 1 \mathrm{v} / \mathrm{v}$ mixture) maintained at $18^{\circ} \mathrm{C}$ was treated with HCl (trace of a concentrated aqueous solution) then heated at $70^{\circ} \mathrm{C}$. After 14 h , the reaction mixture was cooled to $18^{\circ} \mathrm{C}$, treated with sodium hydrogen carbonate (40 mL of a saturated aqueous solution) then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford a 8.5:1 diastereoisomeric mixture of the title compound $\mathbf{2 7 7}(14.0 \mathrm{mg}, \mathbf{8 3 \%}$) as a white, amorphous solid.
$\boldsymbol{R}_{\boldsymbol{f}}=0.2$ (silica, $1: 11: 8 \mathrm{v} / \mathrm{v} \mathrm{MeOH}$-ethyl acetate- CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta_{\mathrm{H}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 6.64(3 \mathrm{H}, \mathrm{m}), 5.84(2 \mathrm{H}, \mathrm{s}), 5.48(1 \mathrm{H}, \mathrm{m}), 5.08-5.01(1 \mathrm{H}$, complex m), $4.95(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 3.76(1 \mathrm{H}, \mathrm{m}), 3.51(1 \mathrm{H}, \mathrm{m}), 3.42(1 \mathrm{H}, \mathrm{m})$, $2.71(1 \mathrm{H}, \mathrm{dd}, J=11.4,10.8 \mathrm{~Hz}), 2.48(1 \mathrm{H}, \mathrm{m}), 1.28(1 \mathrm{H}, \mathrm{q}, J=11.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}) \delta_{\mathrm{c}}\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 157.3,154.7,148.7,147.1,137.4,121.9,114.0,108.8$, 108.7, 101.9, 74.9, 74.1, 57.8, 55.9, 50.0, 33.1.

IR (NaCl) $v_{\text {max }}$ 2917, 2851, 1795, 1490, 1442, 1353, 1248, 1156, 1035, 928, $804 \mathrm{~cm}^{-1}$.
MS (ESI) m/z 302 [(M + H) $\left.{ }^{+}, 100 \%\right], 276$ (57), 258 (20), 240 (32), 211 (5), 193 (6), 121 (20), 118 (28).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 302.1029. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 302.1028.
(6aR, 7aS, 10aR, 12R)-6,12-Methano-6H-1,3-benzodioxolo[5,6-c][1]benzazepine-5,6a,7,7a,10a,12-hexahydro-7a,10a-benzo[d][1,3]dioxol-9-one (280)

A magnetically stirred solution 2°-amine 277 ($118.9 \mathrm{mg}, 0.395 \mathrm{mmol}$) in formic acid (10 mL) maintained at $18^{\circ} \mathrm{C}$ was treated with paraformaldehyde ($59.3 \mathrm{mg}, 1.975 \mathrm{mmol}$) and the ensuing mixture heated at $80^{\circ} \mathrm{C}$. After 16 h , the reaction mixture was cooled to $18{ }^{\circ} \mathrm{C}$, quenched with sodium hydrogen carbonate (60 mL of saturated aqueous solution) then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 60 \mathrm{~mL})$. The combined organic fractions were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown residue. Subjection of this material to flash chromatography (silica, $1: 11: 8 \mathrm{v} / \mathrm{v} \mathrm{MeOH}$-ethyl acetate- CHCl_{3} elution) and concentration of appropriate fractions ($R_{f}=0.3$) afforded the title compound $280(80.0 \mathrm{mg}$, 65%) as a white, amorphous solid.
${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left.\delta_{\mathrm{H}}\left[\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 6.65(1 \mathrm{H}, \mathrm{s}), 6.53(1 \mathrm{H}, \mathrm{s}), 5.91(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 5.89(1 \mathrm{H}$, $\mathrm{d}, J=1.2 \mathrm{~Hz}), 5.76(1 \mathrm{H}, \mathrm{t}, J=1.8 \mathrm{~Hz}), 5.06(1 \mathrm{H}, \mathrm{dt}, J=7.8,1.5 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{m}), 4.26(1 \mathrm{H}$, $\mathrm{d}, J=16.8 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{s}), 3.16(1 \mathrm{H}, \operatorname{broad} \mathrm{d}, J=12.0 \mathrm{~Hz}), 3.05$ ($1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$), $3.00(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}$), $2.44(1 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR $\left.(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left[\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] 159.9,154.7,147.7,146.8,132.9,126.0,109.7,108.0$, 107.5, 101.6, 75.1, 73.4, 61.3, 61.1, 55.2, 45.9, 32.7.

IR (NaCl) $\nu_{\max } 2925,1799,1482,1235,1196,1159,1043,931,730 \mathrm{~cm}^{-1}$.
MS (ESI) $m / z 336\left[(\mathrm{M}+\mathrm{Na})^{+}, 6 \%\right], 314\left[(\mathrm{M}+\mathrm{H})^{+}, 100 \%\right], 252$ (6), 121 (4).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 314.1019. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{5}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 314.1028.
(6aR, 8S, 9R, 11R)-6,11-Methano-6H-1,3-benzodioxolo[5,6-c][1]benzazepine-5,6a,7,8,9,11-hexahydro-8,9-diol (ent-18)

A magnetically stirred solution of carbonate $280(72.0 \mathrm{mg}, 0.229 \mathrm{mmol})$ in MeOH was cooled to $0^{\circ} \mathrm{C}$ then treated with potassium hydroxide (6 mL of a 0.5 M aqueous solution) and allowed to warm to $18^{\circ} \mathrm{C}$. After 4.5 h , the reaction mixture was diluted with water (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 60 \mathrm{~mL})$. The combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to afford the title compound ent-18 (58.0 $\mathrm{mg}, 87 \%$) as a white, crystalline solid.
$\boldsymbol{R}_{\boldsymbol{f}}=0.3$ (silica, $1: 9 \mathrm{v} / \mathrm{v} \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$)
$m p=130-140^{\circ} \mathrm{C}$ (sesquihydrate - crystals grown from wet acetone).
${ }^{1} \mathrm{H} \mathrm{NMR}(800 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.56(1 \mathrm{H}, \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{s}), 5.90(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz}), 5.87(1 \mathrm{H}, \mathrm{d}$, $J=1.6 \mathrm{~Hz}), 5.75(1 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{d}, J=16.8 \mathrm{~Hz}), 4.15(1 \mathrm{H}, \operatorname{broad} \mathrm{s}), 3.86(1 \mathrm{H}, \mathrm{d}, J=16.8$ $\mathrm{Hz}), 3.68(1 \mathrm{H}, \mathrm{m}), 3.33(1 \mathrm{H}$, broad s$), 3.23(1 \mathrm{H}$, broad m$), 3.11(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}), 3.07(1 \mathrm{H}$, d, $J=11.2 \mathrm{~Hz}), 2.19(1 \mathrm{H}, \mathrm{m}), 1.52(1 \mathrm{H}, \mathrm{m})$ (signals due to OH protons not observed).
${ }^{13} \mathrm{C}$ NMR (125 MHz) $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 149.4,149.2,144.9,129.8,122.0,119.4,108.7,108.0$, 103.0, 68.1, 66.2, 66.0, 58.4, 56.2, 45.0, 29.8.

IR (NaCl) $\boldsymbol{v}_{\max } 3369,2957,2926,1482,1334,1235,1070,1031,930$.
MS (ESI) $m / z 310\left[(M+N a)^{+}, 8 \%\right], 288\left[(M+H)^{+}, 100\right], 121$ (4).
HRMS Found: $(\mathrm{M}+\mathrm{H})^{+}$, 288.1241. $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires $(\mathrm{M}+\mathrm{H})^{+}$, 288.1236.
Specific Rotation $[\alpha]_{D}^{20}+75.9(c 0.10, \mathrm{EtOH})$.

7.3. References

1. Taylor, R. T.; Degenhardt, C. R.; Melega, W. P.; Paquette, L. A., Tetrahedron Lett., 1977, 159.
2. Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan, K. S.; Faron, K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray, C. K., J. Org. Chem., 1986, 51, 277.
3. Lebigot, Y.; Delmas, M.; Gaset, A., Synth. Commun., 1982, 12, 107.
4. Dauban, P.; Saniere, L.; Tarrade, A.; Dodd, R. H., J. Am. Chem. Soc., 2001, 123, 7707.
5. Johnson, C. R.; Adams, J. P.; Braun, M. P.; Senanayake, C. B. W.; Wovkulich, P. M.; Uskokovic, M. R., Tetrahedron Lett., 1992, 33, 917.
6. Sha, C. K.; Hong, A. W.; Huang, C. M., Org. Lett., 2001, 3, 2177.
7. Entwistle, D. A.; Hudlicky, T., Tetrahedron Lett., 1995, 36, 2591.
8. Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Kemmier, M., J. Chem. Soc., Perkin Trans. 1, 2001, 1345.
9. Babin, D.; Demassey, J.; Demoute, J. P.; Dutheil, P.; Terrie, I.; Tessier, J., J. Org. Chem., 1992, 57, 584.
10. Tamura, Y.; Choi, H. D.; Shindo, H.; Ishibashi, H., Chem. Pharm. Bull., 1982, 30, 915.
11. Ikeda, M.; Hamada, M.; Yamashita, T.; Matsui, K.; Sato, T.; Ishibashi, H., J. Chem. Soc., Perkin Trans. 1, 1999, 1949 and references cited therein.

Appendix One

X-ray Crystal Structure Report for Compound 184

Martin G. Banwell, Okanya J. Kokas and Anthony C. Willis
Research School of Chemistry, The Australian National University, Canberra, A. C. T. 0200,
Australia.
E-mail:willis@rsc.anu.edu.au

Abstract

The crystal structure of $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrIO}_{6}$ is reported.

Comment

The crystallographic asymmetric unit consists of four molecules of $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrIO}_{6}$. The compound is enantiometrically pure. The absolute structure of the crystal has been determined by refinement of the Flack parameter and this establishes the absolute configuration of the molecule. The largest peaks in the final difference electron density map are located near I and Br atoms.

Experimental

The compound was prepared by OJK and recrystalized from ethyl acetate/ petroleum spirit.

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{BrIO}_{6}$	Cell parameters from 118346 reflections
$M_{r}=543.19$	$\theta=3-25^{\circ}$
Monoclinic	$\mu=3.380 \mathrm{~mm}^{-1}$
$P 2_{1}$	$T=200 \mathrm{~K}$
$a=9.3047(1) \AA$	Plate
$b=33.0047(3) \AA$	Colourless
$c=13.9912(1) \AA$	$0.22 \times 0.17 \times 0.05 \mathrm{~mm}$
$\beta=91.6476(5)^{\circ}$	Crystal source: local
$V=4294.90(7) \AA^{3}$	
$Z=8$	
$D_{x}=1.680 \mathrm{Mg} \mathrm{m}^{-3}$	
D_{m} not measured	
$M o$ Ka radiation	
$\lambda=0.71073 \AA$	

Data collection

Nonius KappaCCD diffractometer
ϕ and ω scans with CCD
Absorption correction:
by integration via Gaussian method (Coppens,
1970) implemented in maXus (2000)
$T_{\text {min }}=0.517, T_{\text {max }}=0.836$
62173 measured reflections 15170 independent reflections

10297 reflections with
$1>3.0 \sigma(1)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=25.108^{\circ}$
$h=-11 \rightarrow 11$
$k=-38 \rightarrow 39$
$I=-16 \rightarrow 16$

Refinement

Refinement on F

$R=0.0263$
$w R=0.0288$
$S=1.1209$
10297 reflections
938 parameters
H -atom parameters not refined
Method, part 1, Chebychev polynomial,
(Carruthers \& Watkin, 1979, Prince, 1982)
[weight] $=1.0 /\left[\mathrm{A}_{0}{ }^{*} T_{0}(\mathrm{x})+A_{1}{ }^{*} T_{1}(\mathrm{x}) \ldots\right.$
$\left.\left.+A_{n-1}\right]^{*} T_{n-1}(\mathrm{x})\right]$
where A_{i} are the Chebychev coefficients
listed below and $x=F$ calc/Fmax Method
= Robust Weighting (Prince, 1982) $W=$
[weight] * [1-(deltaF/6*sigmaF) $\left.{ }^{2}\right]^{2} A_{i}$ are:
0.7540 .02160 .571

H atoms were added at calculated positions and, during refinement, each rides on the C atom to which it is attached.

Data collection:

COLLECT (Nonius BV, 1997). Cell refinement: Denzo/Scalepack (Otwinowski \& Minor, 1997). Data reduction: Denzo/Scalepack (Otwinowski \& Minor, 1997). Program(s) used to solve structure: SIR92 (Altomare et al. 1994). Program(s) used to refine structure: CRYSTALS (Watkin et al. 2003). Molecular graphics: ORTEP-II (Johnson 1976) in teXsan (MSC, 1992-1997) . Software used to prepare material for publication: CRYSTALS (Watkin et al. 2003).

References

Mackay, S., Gilmore, C. J, Edwards, C., Stewart, N. \& Shankland, K. (2000). maXus Computer Program for the Solution and Refinement of Crystal Structures. Nonius, The Netherlands, MacScience, Japan \& The University of Glasgow.
Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. Crystallographic Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors, Munksgaard. Copenhagen. pp 255-270.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). SIR92 - a program for automatic solution of crystal structures by direct methods. J. AppI. Cryst. (27), 435-435
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
Nonius BV, COLLECT Software, 1997-2001)
Otwinowski, Z. \& Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276, 1997, 307-326. Ed Carter, C. W. \& Sweet, R. M., Academic Press.
Prince, E. Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York, 1982.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Molecular Structure Corporation. (1992-1997). teXsan. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Johnson, C. K. (1976). ORTEP-II, A Fortran Thermal-Ellipsoid Plot Program, Report ORNL- 5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Larson, A. C. (1970). The Inclusion of Secondary Extinction in Least-Squares Refinement in Crystal Structures. Crystallographic Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors., Munksgaard. Copenhagen. pp 291-294

Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\hat{A}^{2})

$$
U_{e q}=(1 / 3) \Sigma_{i} \Sigma_{\mathrm{i}} U^{j j} \mathrm{a}^{\mathrm{i}} \mathrm{a}^{\mathrm{j}} \mathrm{a}_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{j}} .
$$

	x	y	z	$U_{\text {eq }}$
115	0.31545(4)	$0.181714(19)$	0.52149(3)	0.0559
1115	0.17264(4)	0.31572(2)	0.23247(3)	0.0675
1215	0.88193(5)	0.212973 (19)	0.24315(4)	0.0757
1315	0.59696(6)	0.28545(2)	-0.00384(4)	0.0863
Br26	0.17991 (7)	0.02674(2)	0.32471 (4)	0.0606
Br126	$0.32795(7)$	0.47589(2)	$0.07087(4)$	0.0638
Br226	0.67455(6)	0.06247(2)	0.42150(4)	0.0636
Br326	0.82777(6)	0.43412(2)	0.17721 (4)	0.0605
07	0.0128(4)	0.05176(11)	0.6597(3)	0.0578
09	-0.2253(6)	0.06696(13)	0.6958(3)	0.0779
011	0.2805(4)	0.08582(10)	0.6241(2)	0.0484
013	0.2845(5)	0.08927(12)	0.7925(3)	0.0658
016	0.2199(3)	0.12066 (10)	0.3360(2)	0.0461
024	0.2760(5)	0.20680 (12)	-0.0643(3)	0.0706
0107	0.4766(4)	0.43941 (12)	0.4092(3)	0.0655
0109	0.7221 (5)	$0.42835(14)$	0.4422(3)	0.0795
0111	$0.2063(4)$	$0.40877(11)$	$0.3527(3)$	0.0560
0113	$0.1994(6)$	$0.40447(13)$	$0.5198(3)$	0.0768
0116	0.2747(4)	$0.38224(11)$	0.0650(3)	0.0527
0124	0.2453 (5)	$0.29228(12)$	-0.3267(3)	0.0638
0207	0.8725(4)	$0.05913(11)$	0.0883 (2)	0.0527
0209	1.0955(4)	0.02917 (16)	$0.0654(3)$	0.0738
0211	0.7206 (3)	$0.12975(11)$	0.1286 (2)	0.0499
0213	0.7317(4)	0.13365(14)	-0.0388(3)	0.0666
0216	0.8337(3)	0.14564(11)	0.4191(3)	0.0522
0224	$0.9808(5)$	$0.22698(17)$	0.8161 (3)	0.0920
O307	0.6275 (4)	$0.43903(12)$	-0.1626(3)	0.0579
O309	$0.4107(4)$	$0.47417(16)$	-0.1861(3)	0.0793
0311	0.7678(4)	0.36574(12)	-0.1188(3)	0.0565
0313	0.7450(5)	$0.35988(17)$	-0.2859(3)	0.0833
0316	0.6580(4)	$0.35225(10)$	0.1707(3)	0.0499
O324	0.5169(4)	0.25906(11)	0.5517(3)	0.0610
C1	0.0295(6)	$0.07849(14)$	$0.5796(4)$	0.0467
C2	0.1542 (5)	$0.10793(15)$	$0.5978(3)$	0.0440
C3	0.1761 (5)	$0.12966(14)$	$0.5035(3)$	0.0394
C4	$0.2334(5)$	$0.10145(16)$	0.4273 (3)	0.0452
C5	0.1464 (5)	$0.06265(14)$	0.4287 (3)	0.0396
C6	0.0553 (5)	$0.05298(15)$	$0.4943(3)$	0.0422
C8	-0.0849(9)	$0.06635(19)$	$0.7281(4)$	0.0767
C10	-0.2783(9)	$0.0275(2)$	$0.6749(6)$	0.0928
C12	$0.3534(7)$	$0.09934(19)$	$0.7087(4)$	0.0588
C14	0.2932(10)	$0.04652(18)$	$0.8147(5)$	0.0842
C17	0.3518(6)	$0.1226(2)$	$0.2866(4)$	0.0609
C18	$0.3222(5)$	$0.14443(17)$	$0.1926(4)$	0.0492
C19	0.3212(6)	$0.18627(19)$	0.1873(4)	0.0577
C20	0.3005(7)	$0.20621(16)$	0.1016(4)	0.0572
C21	0.2857(5)	$0.18438(18)$	0.0184(3)	0.0457
C22	0.2823(6)	$0.14256(16)$	0.0208(4)	0.0487
C23	0.3009(5)	$0.12283(16)$	$0.1086(4)$	0.0505
C25	0.2908(11)	0.1856(2)	-0.1520(5)	0.0957
C101	0.4613(6)	0.41515(15)	0.3238(4)	0.0485
C102	0.3324(6)	0.38649(16)	0.3304(4)	0.0503
C103	0.3135(5)	0.36746(15)	0.2314(4)	0.0448
C104	0.2589(6)	$0.39901(16)$	0.1586(3)	0.0463
C105	0.3540(6)	0.43636(15)	0.1701(4)	0.0475
C106	0.4448(5)	$0.44381(16)$	$0.2414(3)$	0.0441
C108	0.5832(9)	0.4241 (2)	$0.4754(5)$	0.0810
C110	$0.7613(10)$	0.4698(2)	0.4297(6)	0.1025
C112	0.1316(8)	0.3947(2)	0.4309(5)	0.0734
C114	0.1932(11)	0.4464(2)	0.5443(5)	0.0953
C117	0.1485(6)	0.3853(2)	0.0040(4)	0.0654
C118	0.1786(5)	0.36193(16)	-0.0861(4)	0.0496

C119	0.1932(7)	0.3205(2)	-0.0822(4)	0.0678
C120	0.2176(8)	$0.29837(18)$	-0.1635(5)	0.0732
C121	0.2255(5)	0.31729(16)	-0.2489(4)	0.0451
C122	0.2156(6)	0.35859(16)	-0.2553(4)	0.0517
C123	0.1931(6)	$0.38074(17)$	-0.1722(4)	0.0555
C125	0.2283(8)	0.3097(2)	-0.4189(4)	0.0710
C201	0.9086(5)	$0.08286(15)$	0.1712(3)	0.0443
C202	0.8687(5)	0.12741 (14)	0.1565(4)	0.0429
C203	0.8931(5)	$0.14774(15)$	0.2539(4)	0.0430
C204	0.7869(5)	$0.13322(16)$	0.3268(4)	0.0474
C205	0.7784(5)	0.08784(16)	$0.3206(4)$	0.0470
C206	0.8328(5)	0.06478(16)	0.2542(4)	0.0474
C208	0.9868(7)	0.0532(2)	0.0261(4)	0.0641
C210	1.0489(8)	-0.0108(2)	0.0845(5)	0.0838
C212	0.6901 (7)	$0.15318(19)$	0.0452(4)	0.0632
C214	0.6436 (7)	0.1001 (2)	-0.0655(5)	0.0723
C217	0.7267(6)	$0.1673(2)$	0.4725(4)	0.0643
C218	0.7949(5)	0.18176 (18)	0.5639(4)	0.0529
C219	0.9027(6)	0.2108(2)	0.5658(4)	0.0649
C220	0.9646 (7)	0.2247(2)	0.6502(4)	0.0674
C221	0.9152(6)	0.2100(2)	0.7362(4)	0.0628
C222	0.8100(6)	0.1807(2)	0.7378(4)	0.0640
C223	0.7518(6)	$0.16631(17)$	$0.6515(4)$	0.0594
C225	0.9310(9)	0.2148(3)	0.9062(5)	0.1049
С301	0.5881 (6)	0.41555(16)	-0.0812(4)	0.0513
C302	0.6218(5)	0.37059(17)	-0.0943(4)	0.0505
С303	0.5981 (5)	0.35074(16)	$0.0043(4)$	0.0499
С304	0.7063(5)	0.36416(15)	0.0798(4)	0.0454
С305	0.7206(5)	0.41000(17)	0.0751(4)	0.0476
С306	0.6677(5)	0.43276(17)	0.0050(4)	0.0484
C308	0.5102(7)	0.4483(2)	-0.2250(4)	0.0704
C310	0.4701(8)	0.5137(2)	-0.1635(6)	0.0887
C312	0.7889(8)	0.3411(2)	-0.2019(5)	0.0769
C314	0.8369(8)	0.3915 (3)	-0.3153(5)	0.0876
C317	0.7633(6)	0.33074(18)	0.2283(5)	0.0628
C318	0.6949(5)	0.31417(16)	0.3157(4)	0.0529
C319	0.5804(5)	0.28746(16)	$0.3073(4)$	0.0490
C320	0.5224(6)	0.27005(16)	0.3870(4)	0.0536
C321	0.5783(6)	0.27851(16)	0.4765(4)	0.0487
C322	0.6907(7)	0.30612(19)	0.4873(4)	0.0641
C323	0.7463(6)	0.32347(18)	0.4054(5)	0.0655
C325	0.5715(7)	0.2670(2)	0.6460(4)	0.0686
H11	-0.0613(6)	0.09425(14)	0.5687(4)	0.0562
H21	0.1301(5)	0.12776(15)	0.6490(3)	0.0529
H31	$0.0801(5)$	$0.13974(14)$	0.4800(3)	0.0473
H41	0.3369(5)	0.09522(16)	0.4421(3)	0.0542
H61	0.0003(5)	0.02710(15)	0.4867(3)	0.0505
H81	-0.0778(9)	0.04852(19)	0.7858(4)	0.0928
H82	-0.0562(9)	0.09459(19)	0.7462(4)	0.0928
H101	-0.3807(9)	0.0293(2)	0.6516(6)	0.1119
H102	-0.2723(9)	$0.0105(2)$	0.7340(6)	0.1119
H103	-0.2192(9)	0.0149(2)	0.6243(6)	0.1119
H121	$0.3623(7)$	0.12950(19)	0.7055(4)	0.0704
H122	$0.4515(7)$	0.08692(19)	0.7112(4)	0.0704
H141	0.2422(10)	0.04106(18)	0.8753(5)	0.1008
H142	0.3964(10)	0.03841 (18)	0.8228(5)	0.1008
H143	0.2471 (10)	0.03056 (18)	$0.7614(5)$	0.1008
H171	$0.4252(6)$	0.1379(2)	$0.3258(4)$	0.0732
H172	0.3880(6)	0.0947(2)	$0.2741(4)$	0.0732
H191	0.3359(6)	0.20244 (19)	$0.2473(4)$	0.0692
H201	$0.2962(7)$	$0.23648(16)$	$0.1000(4)$	0.0689
H221	0.2666(6)	$0.12665(16)$	-0.0394(4)	0.0584
H231	0.2989(5)	0.09255(16)	$0.1107(4)$	0.0605
H251	$0.2818(11)$	0.2050(2)	-0.2066(5)	0.1151
H252	$0.3872(11)$	0.1722(2)	-0.1526(5)	0.1151
H253	$0.2138(11)$	0.1645(2)	-0.1585(5)	0.1151
H1011	0.5506(6)	0.39876 (15)	$0.3161(4)$	0.0581
H1021	$0.3521(6)$	$0.36510(16)$	$0.3797(4)$	0.0604
H1031	$0.4100(5)$	$0.35800(15)$	$0.2111(4)$	0.0539
H1041	0.1561(6)	0.40596(16)	$0.1697(3)$	0.0555
H1061	0.5040(5)	0.46909(16)	0.2407(3)	0.0529

H1081	0.5762(9)	0.4392(2)	0.5371(5)	0.0966
H1082	0.5641 (9)	0.3947(2)	0.4865(5)	0.0966
H1101	0.8615(10)	0.4713(2)	0.4059(6)	0.1223
H1102	0.7564(10)	0.4843(2)	0.4923(6)	0.1223
H1103	0.6935(10)	0.4827(2)	0.3822(6)	0.1223
H1121	0.0333(8)	0.4070(2)	0.4287(5)	0.0883
H1122	0.1233(8)	0.3646(2)	0.4260(5)	0.0883
H1141	0.2431(11)	0.4509(2)	0.6077(5)	0.1145
H1142	0.2417(11)	0.4628(2)	0.4944(5)	0.1145
H1143	0.0905(11)	0.4551(2)	0.5479(5)	0.1145
H1171	0.1282(6)	0.4143(2)	-0.0118(4)	0.0781
H1172	0.0640(6)	0.3733(2)	$0.0364(4)$	0.0781
H1191	0.1861 (7)	0.3063(2)	-0.0195(4)	0.0811
H1201	0.2295(8)	0.26830(18)	-0.1594(5)	0.0875
H1221	0.2244(6)	0.37258(16)	-0.3182(4)	0.0620
H1231	0.1874(6)	0.41097(17)	-0.1757(4)	0.0663
H1251	0.2454(8)	0.2885(2)	-0.4685(4)	0.0855
H1252	0.2991(8)	0.3322(2)	-0.4258(4)	0.0855
H1253	$0.1285(8)$	0.3206(2)	-0.4274(4)	0.0855
H2011	1.0147(5)	0.08096(15)	0.1840(3)	0.0531
H2021	0.9301(5)	0.14016(14)	$0.1072(4)$	0.0515
H2031	0.9919(5)	0.14041(15)	0.2780(4)	0.0515
H2041	0.6901(5)	0.14509(16)	0.3116(4)	0.0566
H2061	0.8235(5)	0.03467(16)	0.2591(4)	0.0567
H2081	1.0282(7)	0.0803(2)	0.0100(4)	0.0771
H2082	0.9484(7)	0.0399(2)	-0.0336(4)	0.0771
H2101	1.1309(8)	-0.0269(2)	0.1126(5)	0.1003
H2102	1.0140(8)	-0.0238(2)	0.0236(5)	0.1003
H2103	0.9689(8)	-0.0100(2)	0.1307(5)	0.1003
H2121	0.7428(7)	0.17952(19)	0.0510(4)	0.0754
H2122	0.5843(7)	0.15845(19)	0.0406(4)	0.0754
H2141	0.6795(7)	0.0878(2)	-0.1256(5)	0.0863
H2142	0.6469(7)	0.0795(2)	-0.0132(5)	0.0863
H2143	0.5423(7)	0.1095(2)	-0.0765(5)	0.0863
H2171	0.6903(6)	0.1910(2)	0.4344(4)	0.0771
H2172	0.6449(6)	0.1488(2)	0.4864(4)	0.0771
H2191	0.9365(6)	0.2219(2)	0.5039(4)	0.0782
H2201	1.0439(7)	0.2451(2)	0.6495(4)	0.0810
H2221	0.7759(6)	$0.1699(2)$	0.8000(4)	0.0768
H2231	0.6774(6)	0.14445(17)	0.6523(4)	0.0714
H2251	0.9870(9)	0.2293(3)	0.9579(5)	0.1259
H2252	0.9442(9)	0.1849(3)	0.9139(5)	0.1259
H2253	0.8268(9)	0.2217(3)	0.9106(5)	0.1259
H3011	0.4825(6)	0.41865(16)	-0.0721(4)	0.0616
H3021	0.5564(5)	0.35834(17)	-0.1443(4)	0.0605
H3031	$0.5011(5)$	0.35939(16)	0.0256(4)	0.0599
H3041	0.8015(5)	0.35130(15)	0.0679(4)	0.0545
H3061	0.6810(5)	0.46278(17)	0.0092(4)	0.0581
H3081	0.5482(7)	0.4614(2)	-0.2836(4)	0.0843
H3082	0.4603(7)	0.4225(2)	-0.2430(4)	0.0843
H3101	0.3940(8)	0.5312(2)	-0.1357(6)	0.1064
H3102	0.5055(8)	0.5266(2)	-0.2231(6)	0.1064
H3103	0.5519(8)	0.5107(2)	-0.1161(6)	0.1064
H3121	0.8936(8)	0.3346(2)	-0.2055(5)	0.0925
H3122	0.7330(8)	0.3155(2)	-0.1951(5)	0.0925
H3141	0.7980(8)	0.4035(3)	-0.3764(5)	0.1052
H3142	0.8423(8)	0.4129(3)	-0.2648(5)	0.1052
H3143	0.9352(8)	0.3803(3)	-0.3255(5)	0.1052
H3171	0.8428(6)	0.34966(18)	0.2479(5)	0.0753
H3172	0.8033(6)	0.30791(18)	0.1903(5)	0.0753
H3191	0.5391(5)	0.28071(16)	0.2424(4)	0.0587
H3201	0.4390(6)	0.25110(16)	0.3796(4)	0.0642
H3221	0.7306(7)	0.31333(19)	0.5522(4)	0.0765
H3231	0.8267(6)	0.34345(18)	0.4127(5)	0.0782
H3251	0.5165(7)	0.2508(2)	0.6930(4)	0.0822
H3252	0.5609(7)	0.2965(2)	0.6606(4)	0.0822
H3253	0.6755(7)	0.2594(2)	0.6508(4)	0.0822

Table S2. Anisotropic displacement parameters (\AA^{2})

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
115	0.04969(19)	0.0470(2)	0.0713(2)	-0.00605(16)	$0.00620(16)$	0.00397(18)
1115	0.0472(2)	0.0584(2)	0.0968(3)	-0.00405(18)	$0.00094(19)$	-0.0097(2)
1215	0.0848(3)	0.0463(2)	0.0961(3)	0.0035(2)	0.0040(2)	-0.0025(2)
1315	0.0963(4)	0.0489(2)	0.1138(4)	-0.0100(2)	0.0046(3)	-0.0057(2)
Br26	0.0778(4)	0.0603(3)	0.0434(3)	0.0176(3)	-0.0021(3)	-0.0094(3)
Br126	$0.0778(4)$	$0.0628(3)$	0.0507 (3)	0.0149(3)	-0.0016(3)	0.0072(3)
Br226	0.0630(4)	$0.0759(4)$	0.0522(3)	0.0002(3)	0.0066 (3)	$0.0139(3)$
Br326	0.0648(4)	$0.0613(3)$	0.0549(3)	-0.0016(3)	-0.0051(3)	-0.0056(3)
07	0.079(3)	0.049(2)	0.045(2)	-0.0049(18)	0.0130(19)	0.0069(16)
09	0.091 (3)	0.068(3)	0.077 (3)	-0.018(2)	0.040(3)	-0.003(2)
011	0.052(2)	0.049(2)	0.043(2)	$0.0119(16)$	-0.0077(16)	-0.0014(15)
013	0.098(3)	0.055(2)	0.045(2)	0.011(2)	-0.006(2)	-0.0018(18)
016	0.0418(18)	0.057(2)	0.0401(19)	$0.0044(15)$	$0.0027(15)$	0.0155(15)
024	0.118(4)	0.048(2)	0.047(2)	0.016(2)	0.008(2)	0.0050(18)
0107	0.085(3)	$0.061(2)$	0.050(2)	0.002(2)	-0.016(2)	-0.0134(18)
0109	0.085(3)	0.079(3)	0.073(3)	-0.015(3)	-0.029(2)	0.002(2)
0111	0.064(2)	0.059(2)	0.044(2)	0.0125(18)	$0.0043(18)$	0.0049(17)
0113	0.124(4)	0.056(2)	0.051 (2)	0.016(2)	0.010(2)	0.004(2)
0116	0.0438(19)	0.068(2)	0.046(2)	0.0132(17)	-0.0102(16)	-0.0172(18)
0124	0.090(3)	0.048(2)	0.053(2)	0.001(2)	-0.001(2)	-0.0027(18)
O207	0.051 (2)	0.064(2)	0.0431(19)	0.0000(17)	-0.0015(16)	-0.0102(17)
0209	0.047 (2)	$0.101(4)$	0.074(3)	-0.001(2)	$0.005(2)$	-0.040(3)
0211	0.0409(19)	0.062(2)	0.047(2)	0.0053(16)	-0.0041(15)	0.0043(17)
0213	0.071(3)	0.083(3)	0.046(2)	$0.001(2)$	0.0009(18)	0.005(2)
0216	0.0355(18)	0.068(2)	0.053(2)	$0.0131(17)$	0.0002(16)	-0.0130(18)
0224	0.089(3)	0.138(5)	0.049(3)	-0.027(3)	0.002(2)	-0.022(3)
0307	0.052(2)	0.070(2)	0.051(2)	0.0010(19)	-0.0023(17)	0.0102(19)
0309	$0.053(2)$	$0.101(4)$	0.082(3)	0.000(2)	-0.009(2)	0.041 (3)
0311	0.0403(19)	0.074(3)	0.055(2)	0.0048(18)	-0.0019(17)	-0.0134(19)
0313	0.065(3)	$0.127(4)$	0.056(3)	-0.002(3)	-0.011(2)	-0.021(3)
0316	0.0398(18)	0.052(2)	0.058(2)	0.0092(16)	0.0045(16)	0.0170(17)
O324	0.070(2)	0.056(2)	0.057(2)	-0.0169(19)	-0.001(2)	0.0044(18)
C1	0.054(3)	0.036(3)	0.050(3)	-0.003(2)	0.008(2)	0.003(2)
C2	0.051 (3)	0.043(3)	0.039(3)	-0.004(2)	0.004(2)	-0.001(2)
C3	$0.036(2)$	0.037(3)	0.046(3)	-0.0017(19)	0.002(2)	0.004(2)
C4	0.041 (3)	0.059(3)	0.036 (3)	0.014(2)	-0.002(2)	$0.006(2)$
C5	0.050(3)	0.039(2)	0.029(2)	0.005(2)	-0.008(2)	0.000(2)
C6	0.049(3)	0.038(3)	0.039(3)	-0.001(2)	-0.002(2)	0.003(2)
C8	0.127 (7)	0.057(4)	0.047(3)	-0.021(4)	0.033(4)	-0.005(3)
C10	0.120(6)	$0.071(4)$	0.089(5)	-0.036(4)	0.028(4)	-0.002(4)
C12	0.072(4)	0.062(4)	0.042(3)	-0.002(3)	-0.006(3)	0.000(3)
C14	0.147 (7)	0.055(4)	0.050(4)	0.014(4)	-0.008(4)	0.007(3)
C17	0.041(3)	0.090(4)	0.052(3)	0.007 (3)	0.005(2)	0.019(3)
C18	0.045(3)	0.059(3)	0.044(3)	0.000(2)	$0.001(2)$	$0.011(2)$
C19	0.068(3)	0.060(4)	0.045(3)	-0.006(3)	0.003(3)	-0.011(3)
C20	0.083(4)	0.039(3)	0.050(3)	-0.002(3)	0.012(3)	-0.001(2)
C21	0.058(3)	0.044(3)	0.036(3)	0.009(3)	0.000(2)	$0.002(2)$
C22	0.053(3)	0.043(3)	0.050(3)	-0.005(2)	0.000(2)	-0.005(2)
C23	0.048(3)	0.042(3)	0.062(4)	0.002(2)	0.000(2)	0.009(3)
C25	$0.162(8)$	0.077 (5)	$0.048(4)$	0.040(5)	$0.015(4)$	0.009(3)
C101	0.055 (3)	0.047(3)	0.044 (3)	0.010(2)	-0.005(2)	-0.009(2)
C102	0.049(3)	0.053(3)	0.049(3)	0.012(2)	0.001 (2)	0.001 (2)
C103	0.036(2)	$0.043(3)$	0.056(3)	0.002(2)	0.003(2)	-0.005(2)
C104	0.043(3)	0.054(3)	0.042(3)	0.014(2)	0.000(2)	-0.009(2)
C105	0.052(3)	0.041 (3)	0.050(3)	0.014(2)	0.002(2)	-0.005(2)
C106	0.046(3)	0.046(3)	0.041 (3)	0.004(2)	0.001 (2)	-0.010(2)
C108	0.117(6)	0.074(4)	0.051(4)	-0.015(4)	-0.022(4)	0.007(3)
C110	$0.136(7)$	0.080(5)	0.090(5)	-0.039(5)	-0.027(5)	-0.010(4)
C112	0.078(4)	0.079(4)	0.064(4)	0.006(4)	0.014(3)	0.002(3)
C114	0.171 (8)	0.059(4)	0.056(4)	0.014(5)	0.011 (5)	0.001 (3)
C117	0.038(3)	$0.095(5)$	0.063(4)	0.014(3)	-0.015(3)	-0.024(3)
C118	0.044(3)	0.051(3)	0.053(3)	0.001 (2)	-0.012(2)	-0.010(3)

C119	0.090(4)	0.066(4)	0.047(3)	-0.009(3)	-0.005(3)	0.002(3)
C120	0.110(5)	0.042(3)	0.066(4)	0.005(3)	-0.014(4)	-0.005(3)
C121	0.053(3)	0.036 (3)	0.046(3)	-0.001(3)	-0.003(2)	-0.002(2)
C122	0.058(3)	0.044(3)	0.053(3)	0.000(2)	-0.005(3)	0.005(3)
C123	0.053(3)	0.047(3)	0.065(4)	0.007(2)	-0.010(3)	-0.003(3)
C125	0.098(5)	0.060(4)	0.056(4)	0.009(3)	0.010(3)	-0.002(3)
C201	0.041 (3)	0.051 (3)	0.041 (3)	0.004(2)	0.000(2)	-0.008(2)
C202	0.034(3)	0.044(3)	0.050(3)	0.002(2)	0.001 (2)	0.004(2)
C203	0.033(2)	0.040(3)	0.056(3)	0.005(2)	0.002(2)	-0.007(2)
C204	0.037 (3)	0.056(3)	0.048(3)	0.005(2)	-0.007(2)	-0.007(2)
C205	0.041 (3)	0.055(3)	0.046(3)	0.011(2)	0.000(2)	0.010(2)
C206	0.047(3)	0.047(3)	0.048(3)	0.007(2)	-0.005(2)	$0.001(2)$
C208	0.072(4)	0.069(4)	0.052(3)	-0.011(3)	0.009(3)	-0.007(3)
C210	0.086(5)	0.075(5)	0.089(5)	0.022(4)	-0.013(4)	-0.028(4)
C212	0.073(4)	0.070(4)	0.045(3)	0.019(3)	-0.016(3)	0.007(3)
C214	0.057(4)	0.099(5)	0.060(4)	0.001 (3)	-0.015(3)	-0.008(3)
C217	0.053(3)	$0.081(4)$	0.058(4)	0.018(3)	-0.004(3)	-0.018(3)
C218	0.048(3)	0.059(3)	0.052(3)	0.006(3)	0.003(2)	-0.009(3)
C219	0.058(3)	0.084(4)	0.053(4)	0.006(3)	0.012(3)	0.002(3)
C220	0.064(4)	$0.077(4)$	0.062(4)	-0.018(3)	0.007(3)	-0.008(3)
C221	0.050(3)	0.086(5)	0.052(4)	-0.003(3)	0.001 (3)	-0.015(3)
C222	0.066(4)	0.076(4)	0.050(3)	-0.004(3)	0.002(3)	0.002(3)
C223	0.060(3)	0.051 (3)	0.068(4)	0.000(3)	0.005(3)	-0.008(3)
C225	0.103(6)	0.150(8)	0.062(5)	-0.016(6)	0.004(4)	-0.027(5)
C301	0.043(3)	0.059(3)	0.053(3)	0.004(2)	$0.003(2)$	0.004(3)
C302	0.038(3)	0.064(3)	0.049(3)	-0.002(2)	-0.004(2)	-0.002(2)
C303	$0.034(3)$	0.046(3)	0.070(4)	0.002(2)	0.004(2)	-0.003(3)
C304	0.034(2)	0.047(3)	0.055(3)	0.002(2)	0.002(2)	0.007(2)
C305	0.036(3)	0.062(3)	0.044(3)	0.002(2)	$0.001(2)$	0.001 (3)
C306	0.046(3)	0.049(3)	0.051(3)	0.005(2)	$0.001(2)$	-0.007(3)
C308	$0.077(4)$	0.087(5)	0.048(4)	-0.017(4)	-0.005(3)	0.007(3)
C310	0.084(5)	0.094(6)	0.088(5)	0.030(4)	0.001 (4)	0.039(4)
C312	0.074(4)	0.090(5)	$0.067(4)$	0.011(4)	0.009(3)	-0.019(4)
C314	$0.071(4)$	$0.133(7)$	0.060(4)	0.003(5)	0.003(3)	0.003(4)
C317	0.043(3)	0.060(4)	0.085(4)	0.012(3)	0.002(3)	0.026(3)
C318	0.042(3)	0.046(3)	0.070(4)	0.012(3)	0.000(3)	0.015(3)
C319	0.044 (3)	0.049(3)	0.054(3)	$0.001(2)$	-0.003(2)	0.002(3)
СЗ20	0.049(3)	0.045(3)	0.066(4)	-0.011(2)	-0.007(3)	0.001 (3)
C321	0.046(3)	0.040(3)	0.060(3)	-0.001(2)	0.008(3)	0.007(2)
C322	0.070(4)	0.061(4)	0.060(4)	-0.012(3)	-0.015(3)	0.000(3)
C323	0.059(3)	0.058(4)	0.079(4)	-0.015(3)	-0.012(3)	0.011(3)
C325	0.075(4)	0.075(4)	0.056(4)	-0.002(3)	-0.005(3)	-0.003(3)

Table S3. Geometric parameters ($\AA .0$)

115-C3	$2.162(5)$	0113-C114	1.428(8)
1115-C103	2.153(5)	O116-C104	1.433(6)
1215-C203	2.161 (5)	O116-C117	1.436(6)
1315-C303	2.158(5)	O124-C121	1.382(6)
Br26-C5	1.909(4)	O124-C125	1.417(7)
Br126-C105	1.916(5)	O207-C201	1.431(6)
Br226-C205	1.925(5)	O207-C208	$1.407(7)$
Br326-C305	1.894(5)	O209-C208	1.387(8)
O7-C1	1.438(6)	O209-C210	1.417(9)
O7-C8	1.422(7)	O211-C202	1.424(6)
O9-C8	1.371 (9)	O211-C212	$1.421(6)$
O9-C10	1.421 (8)	O213-C212	1.405(7)
O11-C2	1.423(6)	O213-C214	1.420(8)
O11-C12	1.419(6)	O216-C204	1.412(6)
O13-C12	$1.393(7)$	O216-C217	1.450(6)
O13-C14	1.447(7)	O224-C221	1.378(7)
O16-C4	1.429(6)	O224-C225	1.414(9)
O16-C17	1.428(6)	O307-C301	1.434(6)
O24-C21	1.375(6)	O307-C308	1.412(7)
O24-C25	1.423(8)	O309-C308	1.382(8)
O107-C101	1.442(6)	O309-C310	1.449(9)
O107-C108	1.430(8)	O311-C302	1.419(6)
O109-C108	1.393(9)	O311-C312	1.436 (7)
O109-C110	1.426(9)	O313-C312	1.380(8)
O111-C102	1.427(6)	O313-C314	1.417(9)
O111-C112	1.393(7)	O316-C304	1.418(6)
O113-C112	1.416(8)	O316-C317	1.438(6)

O324-C321	1.370(6)	C122-H1221	1.000
O324-C325	1.426(7)	C123-H1231	1.000
C1-C2	1.529(7)	C125-H1251	1.000
C1-C6	1.486(7)	C125-H1252	1.000
$\mathrm{C} 1-\mathrm{H} 11$	1.000	C125-H1253	1.000
C2-C3	1.521(7)	C201-C202	1.529(7)
C2-H21	1.000	C201-C206	$1.500(7)$
C3-C4	1.523(7)	C201-H2011	1.000
C3-H31	1.000	C202-C203	1.530(7)
C4-C5	1.515(7)	C202-H2021	1.000
C4-H41	1.000	C203-C204	1.518(7)
C5-C6	1.307(7)	C203-H2031	1.000
C6-H61	1.000	C204-C205	1.502(8)
C8-H81	1.000	C204-H2041	1.000
C8-H82	1.000	C205-C206	1.314(7)
C10-H101	1.000	C206-H2061	1.000
C10-H102	1.000	C208-H2081	1.000
C10-H103	1.000	C208-H2082	1.000
C12-H121	1.000	C210-H2101	1.000
C12-H122	1.000	C210-H2102	1.000
C14-H141	1.000	C210-H2103	1.000
C14-H142	1.000	C212-H2121	1.000
C14-H143	1.000	C212-H2122	1.000
C17-C18	1.516(7)	C214-H2141	1.000
C17-H171	1.000	C214-H2142	1.000
C17-H172	1.000	C214-H2143	1.000
C18-C19	1.383(8)	C217-C218	1.490(8)
C18-C23	1.385(8)	C217-H2171	1.000
C19-C20	1.376(8)	C217-H2172	1.000
C19-H191	1.000	C218-C219	1.385(9)
C20-C21	1.373(8)	C218-C223	1.397(8)
C20-H201	1.000	C219-C220	1.378(9)
C21-C22	1.381 (8)	C219-H2191	1.000
C22-C23	1.396(7)	C220-C221	1.389(9)
C22-H221	1.000	C220-H2201	1.000
C23-H231	1.000	C221-C222	1.377(9)
C25-H251	1.000	C222-C223	1.392(8)
C25-H252	1.000	C222-H2221	1.000
C25-H253	1.000	C223-H2231	1.000
C101-C102	1.532(8)	C225-H2251	1.000
C101-C106	$1.496(7)$	C225-H2252	1.000
C101-H1011	1.000	C225-H2253	1.000
C102-C103	1.526(7)	C301-C302	1.529(8)
C102-H1021	1.000	C301-C306	1.509(7)
C103-C104	1.533(7)	C301-H3011	1.000
C103-H1031	1.000	C302-C303	1.548(8)
C104-C105	1.524(8)	C302-H3021	1.000
C104-H1041	1.000	C303-C304	1.505(7)
C105-C106	1.311(7)	C303-H3031	1.000
C106-H1061	1.000	C304-C305	1.520(7)
C108-H1081	1.000	C304-H3041	1.000
C108-H1082	1.000	C305-C306	1.319(7)
C110-H1101	1.000	C306-H3061	1.000
C110-H1102	1.000	C308-H3081	1.000
C110-H1103	1.000	C308-H3082	1.000
C112-H1121	1.000	C310-H3101	1.000
C112-H1122	1.000	C310-H3102	1.000
C114-H1141	1.000	C310-H3103	1.000
C114-H1142	1.000	C312-H3121	1.000
C114-H1143	1.000	C312-H3122	1.000
C117-C118	1.510(8)	C314-H3141	1.000
C117-H1171	1.000	C314-H3142	1.000
C117-H1172	1.000	C314-H3143	1.000
C118-C119	1.374(9)	C317-C318	1.498(8)
C118-C123	1.365 (8)	C317-H3171	1.000
C119-C120	1.377(9)	C317-H3172	1.000
C119-H1191	1.000	C318-C319	1.386(8)
C120-C121	1.352(8)	C318-C323	1.366(8)
C120-H1201	1.000	C319-C320	1.379(8)
C121-C122	$1.369(7)$	C319-H3191	1.000
C122-C123	1.394(8)	C320-C321	1.371(8)

C320-H3201	1.000	H102-C10-H103	109.5
C321-C322	1.392(8)	O11-C12-O13	113.9(5)
C322-C323	1.393(9)	O11-C12-H121	108.3
C322-H3221	1.000	O13-C12-H121	108.3
C323-H3231	1.000	O11-C12-H122	108.3
C325-H3251	1.000	O13-C12-H122	108.3
C325-H3252	1.000	$\mathrm{H} 121-\mathrm{C} 12-\mathrm{H} 122$	109.5
C325-H3253	1.000	O13-C14-H141	109.5
C1-07-C8	113.7(4)	O13-C14-H142	109.5
C8-09-C10	112.1 (6)	H141-C14-H142	109.5
C2-011-C12	115.2(4)	O13-C14-H143	109.5
C12-O13-C14	112.9(5)	H141-C14-H143	109.5
C4-O16-C17	113.5(4)	H142-C14-H143	109.5
C21-O24-C25	117.1(5)	O16-C17-C18	107.7(4)
C101-O107-C108	113.0(5)	O16-C17-H171	109.9
C108-O109-C110	112.4(6)	C18-C17-H171	109.9
C102-0111-C112	115.6(4)	O16-C17-H172	109.9
C112-O113-C114	114.3(5)	C18-C17-H172	109.9
C104-0116-C117	114.4(4)	H171-C17-H172	109.5
C121-0124-C125	117.5(4)	C17-C18-C19	121.4(5)
C201-O207-C208	114.4(4)	C17-C18-C23	120.7(5)
C208-O209-C210	112.6(5)	C19-C18-C23	117.9(5)
C202-O211-C212	115.0(4)	C18-C19-C20	121.7(5)
C212-O213-C214	114.0(5)	C18-C19-H191	119.2
C204-O216-C217	114.6(4)	C20-C19-H191	119.2
C221-O224-C225	117.3(6)	C19-C20-C21	119.7(5)
C301-O307-C308	113.4(4)	C19-C20-H201	120.1
C308-O309-C310	112.7(5)	C21-C20-H201	120.1
C302-0311-C312	114.4(4)	O24-C21-C20	115.7(5)
C312-O313-C314	114.3(5)	O24-C21-C22	123.8(5)
C304-O316-C317	114.3(4)	C20-C21-C22	120.4(5)
C321-O324-C325	118.6(4)	C21-C22-C23	119.0(5)
O7-C1-C2	111.0(4)	C21-C22-H221	120.5
O7-C1-C6	107.6(4)	C23-C22-H221	120.5
C2-C1-C6	110.7(4)	C22-C23-C18	121.2(5)
O7-C1-H11	109.2	C22-C23-H231	119.4
C2-C1-H11	109.2	C18-C23-H231	119.4
C6-C1-H11	109.2	O24-C25-H251	109.5
C1-C2-O11	109.5(4)	O24-C25-H252	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	106.0(4)	H251-C25-H252	109.5
O11-C2-C3	109.6(4)	O24-C25-H253	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	110.5	H251-C25-H253	109.5
O11-C2-H21	110.5	H252-C25-H253	109.5
C3-C2-H21	110.5	O107-C101-C102	110.6(4)
C2-C3-115	111.6(3)	O107-C101-C106	107.0(4)
C2-C3-C4	112.2(4)	C102-C101-C106	112.0(4)
115-C3-C4	110.3(3)	O107-C101-H1011	109.1
C2-C3-H31	107.5	C102-C101-H1011	109.1
115-C3-H31	107.5	C106-C101-H1011	109.1
C4-C3-H31	107.5	C101-C102-O111	110.2(4)
C3-C4-016	109.3(4)	C101-C102-C103	105.6(4)
C3-C4-C5	108.1(4)	O111-C102-C103	109.6(4)
O16-C4-C5	110.6(4)	C101-C102-H1021	110.4
C3-C4-H41	109.6	O111-C102-H1021	110.4
O16-C4-H41	109.6	C103-C102-H1021	110.4
C5-C4-H41	109.6	C102-C103-1115	112.0(4)
C4-C5-Br26	114.6(3)	C102-C103-C104	110.5(4)
C4-C5-C6	125.0(4)	1115-C103-C104	110.7(3)
Br26-C5-C6	120.5(4)	C102-C103-H1031	107.8
C1-C6-C5	123.3(4)	1115-C103-H1031	107.8
C1-C6-H61	118.3	C104-C103-H1031	107.8
C5-C6-H61	118.3	C103-C104-O116	107.7(4)
O7-C8-09	113.8(5)	C103-C104-C105	107.4(4)
O7-C8-H81	108.4	O116-C104-C105	109.5(4)
O9-C8-H81	108.4	C103-C104-H1041	110.7
O7-C8-H82	108.4	O116-C104-H1041	110.7
$\mathrm{O} 9-\mathrm{C8}-\mathrm{H} 82$	108.4	C105-C104-H1041	110.7
H81-C8-H82	109.5	C104-C105-Br126	114.4(3)
O9-C10-H101	109.5	C104-C105-C106	126.3(5)
O9-C10-H102	109.5	Br126-C105-C106	119.3(4)
H101-C10-H102	109.5	C101-C106-C105	121.1 (5)
O9-C10-H103	109.5	C101-C106-H1061	119.4
H101-C10-H103	109.5	C105-C106-H1061	119.4

O107-C108-O109	112.4(5)	C204-C203-H2031	107.8
O107-C108-H1081	108.7	C203-C204-O216	109.5(4)
O109-C108-H1081	108.7	C203-C204-C205	108.1(4)
O107-C108-H1082	108.7	O216-C204-C205	110.9(4)
O109-C108-H1082	108.7	C203-C204-H2041	109.5
H1081-C108-H1082	109.5	O216-C204-H2041	109.4
O109-C110-H1101	109.5	C205-C204-H2041	109.4
O109-C110-H1102	109.5	C204 - C205-Br226	114.7(4)
H1101-C110-H1102	109.5	C204-C205-C206	126.7(5)
O109-C110-H1103	109.5	Br226-C205-C206	118.6(4)
H1101-C110-H1103	109.5	C201-C206-C205	121.1(5)
H1102-C110-H1103	109.5	C201-C206-H2061	119.4
O113-C112-O111	113.2(6)	C205-C206-H2061	119.4
O113-C112-H1121	108.5	O207-C208-O209	112.9(5)
O111-C112-H1121	108.5	O207-C208-H2081	108.6
O113-C112-H1122	108.5	O209-C208-H2081	108.6
O111-C112-H1122	108.5	O207-C208-H2082	108.6
H1121-C112-H1122	109.5	O209-C208-H2082	108.6
O113-C114-H1141	109.5	H2081 - C208-H2082	109.5
O113-C114-H1142	109.5	O209-C210-H2101	109.5
H1141-C114-H1142	109.5	O209-C210-H2102	109.5
O113-C114-H1143	109.5	H2101-C210-H2102	109.5
H1141-C114-H1143	109.5	O209-C210-H2103	109.5
H1142-C114-H1143	109.5	H2101-C210-H2103	109.5
O116-C117-C118	107.0(4)	H2102-C210-H2103	109.5
O116-C117-H1171	110.1	O211-C212-O213	112.6(5)
C118-C117-H1171	110.1	O211-C212-H2121	108.7
O116-C117-H1172	110.1	O213-C212-H2121	108.7
C118-C117-H1172	110.1	O211-C212-H2122	108.7
H1171-C117-H1172	109.5	O213-C212-H2122	108.7
C117-C118-C119	119.7(6)	H2121-C212-H2122	109.5
C117-C118-C123	122.0(5)	O213-C214-H2141	109.5
C119-C118-C123	118.3(5)	O213-C214-H2142	109.5
C118-C119-C120	121.0(6)	H2141-C214-H2142	109.5
C118-C119-H1191	119.5	O213-C214-H2143	109.5
C120-C119-H1191	119.5	H2141-C214-H2143	109.5
C119-C120-C121	119.9(6)	H2142-C214-H2143	109.5
C119-C120-H1201	120.0	O216-C217-C218	108.6(4)
C121-C120-H1201	120.0	O216-C217-H2171	109.7
O124-C121-C120	115.6(5)	C218-C217-H2171	109.7
O124-C121-C122	123.6(5)	O216-C217-H2172	109.7
C120-C121-C122	120.8(5)	C218-C217-H2172	109.7
C121-C122-C123	118.6(5)	H2171-C217-H2172	109.5
C121-C122-H1221	120.7	C217-C218-C219	121.9(5)
C123-C122-H1221	120.7	C217-C218-C223	120.7(5)
C122-C123-C118	121.2(5)	C219-C218-C223	117.5(5)
C122-C123-H1231	119.4	C218-C219-C220	122.1(6)
C118-C123-H1231	119.4	C218-C219-H2191	118.9
O124-C125-H1251	109.5	C220-C219-H2191	118.9
O124-C125-H1252	109.5	C219-C220-C221	119.0(6)
H1251-C125-H1252	109.5	C219-C220-H2201	120.5
O124-C125-H1253	109.5	C221-C220-H2201	120.5
H1251-C125-H1253	109.5	C220-C221-O224	114.2(6)
H1252-C125-H1253	109.5	C220-C221-C222	120.9(5)
O207-C201-C202	111.5(4)	O224-C221-C222	124.9(6)
O207-C201-C206	107.7(4)	C221-C222-C223	118.9(5)
C202-C201-C206	111.6(4)	C221-C222-H2221	120.5
O207-C201-H2011	108.6	C223-C222-H2221	120.5
C202-C201-H2011	108.6	C218-C223-C222	121.5(5)
C206-C201-H2011	108.6	C218-C223-H2231	119.3
C201-C202-O211	108.6(4)	C222-C223-H2231	119.3
C201-C202-C203	105.8(4)	O224-C225-H2251	109.5
O211-C202-C203	109.7(4)	O224-C225-H2252	109.5
C201-C202-H2021	110.9	H2251-C225-H2252	109.5
O211-C202-H2021	110.9	O224-C225-H2253	109.5
C203-C202-H2021	110.9	H2251 - C225-H2253	109.5
C202-C203-I215	111.7(3)	H2252-C225-H2253	109.5
C202-C203-C204	112.2(4)	O307-C301-C302	111.8(4)
1215-C203-C204	109.3(3)	O307-C301-C306	107.5(4)
C202-C203-H2031	107.8	C302-C301-C306	111.3(4)
1215-C203-H2031	107.8	O307-C301-H3011	108.7

C302-C301-H3011	108.7	C318-C323-H3231	118.8
C306-C301-H3011	108.7	O324-C325-H3251	109.5
C301-C302-O311	109.8(4)	O324-C325-H3252	109.5
C301-C302-C303	105.6(4)	H3251-C325-H3252	109.5
O311-C302-C303	109.3(4)	O324-C325-H3253	109.5
C301-C302-H3021	110.7	H3251-C325-H3253	109.5
O311-C302-H3021	110.7	H3252-C325-H3253	109.5
C303-C302-H3021	110.7	115-C3-C2-O11	-74.5(4)
C302-C303-1315	112.1(4)	115-C3-C2-C1	167.4(3)
C302-C303-C304	113.0(4)	115-C3-C4-O16	-68.4(4)
1315-C303-C304	109.4(3)	115-C3-C4-C5	171.1(3)
C302-C303-H3031	107.3	1115-C103-C102-O111	-75.2(4)
1315-C303-H3031	107.3	1115-C103-C102-C101	166.1(3)
C304-С303-H3031	107.3	1115-C103-C104-O116	-68.3(4)
C303-C304-O316	109.0(4)	1115-C103-C104-C105	173.7(3)
C303-C304-C305	108.7(4)	1215-C203-C202-O211	-73.9(4)
O316-C304-C305	110.2(4)	1215-C203-C202-C201	169.1(3)
C303-C304-H3041	109.7	1215-C203-C204-O216	-68.7(4)
O316-C304-H3041	109.7	1215-C203-C204-C205	170.4(3)
C305-C304-H3041	109.7	1315-C303-C302-O311	-73.7(4)
C304-C305-Br326	115.5(4)	1315-C303-C302-C301	168.3(3)
C304-C305-C306	124.6(5)	1315-C303-C304-O316	-67.6(4)
Br326-C305-C306	119.9(4)	1315-C303-C304-C305	172.2(3)
C301-C306-C305	123.0(5)	Br26-C5-C4-O16	50.5(5)
C301-C306-H3061	118.5	Br26-C5-C4-C3	170.2(3)
C305-C306-H3061	118.5	Br26-C5-C6-C1	176.8(4)
O307-C308-O309	114.0(5)	Br126-C105-C104-O116	52.4(5)
O307-С308-H3081	108.3	Br126-C105-C104-C103	169.1(3)
O309-С308-H3081	108.3	Br126-C105-C106-C101	175.8(4)
O307-С308-H3082	108.3	Br226-C205-C204-O216	50.0(5)
O309-C308-H3082	108.3	Br226-C205-C204-C203	170.0(3)
H3081-C308-H3082	109.5	Br226-C205-C206-C201	177.0(3)
O309-C310-H3101	109.5	Br326-C305-C304-O316	50.8(5)
O309-C310-H3102	109.5	Br326-C305-C304-C303	170.2(3)
H3101-C310-H3102	109.5	Br326-C305-C306-C301	176.7(4)
O309-C310-H3103	109.5	O7-C1-C2-O11	53.0(5)
H3101-C310-H3103	109.5	O7-C1-C2-C3	171.2(4)
H3102-C310-H3103	109.5	O7-C1-C6-C5	-140.9(5)
O311-C312-O313	113.1(6)	O7-C8-O9-C10	63.6(7)
O311-C312-H3121	108.6	O9-C8-O7-C1	68.6(6)
O313-C312-H3121	108.6	O11-C2-C1-C6	-66.4(5)
O311-C312-H3122	108.6	O11-C2-C3-C4	49.8(5)
O313-C312-H3122	108.6	O11-C12-O13-C14	71.8(7)
H3121-C312-H3122	109.5	O13-C12-O11-C2	73.9(6)
O313-C314-H3141	109.5	O16-C4-C3-C2	166.5(4)
O313-C314-H3142	109.5	O16-C4-C5-C6	-129.9(5)
H3141-C314-H3142	109.5	O16-C17-C18-C19	83.5(6)
O313-C314-H3143	109.5	O16-C17-C18-C23	-99.1(5)
H3141-C314-H3143	109.5	O24-C21-C20-C19	-175.4(5)
H3142-C314-H3143	109.5	O24-C21-C22-C23	176.5(5)
O316-C317-C318	109.8(4)	O107-C101-C102-O111	53.2(6)
O316-C317-H3171	109.4	O107-C101-C102-C103	171.5(4)
C318-C317-H3171	109.4	O107-C101-C106-C105	-140.2(5)
O316-C317-H3172	109.4	O107-C108-O109-C110	63.0(7)
C318-C317-H3172	109.4	O109-C108-O107-C101	69.4(6)
H3171-C317-H3172	109.5	O111-C102-C101-C106	-66.1(6)
C317-C318-C319	120.5(5)	O111-C102-C103-C104	48.7(5)
C317-C318-C323	121.5(5)	O111-C112-O113-C114	71.0(8)
C319-C318-C323	118.0(5)	O113-C112-O111-C102	75.4(6)
C318-C319-C320	121.0(5)	O116-C104-C103-C102	167.0(4)
C318-C319-H3191	119.5	O116-C104-C105-C106	-130.0(5)
C320-C319-H3191	119.5	O116-C117-C118-C119	67.6(6)
C319-C320-C321	120.5(5)	O116-C117-C118-C123	-111.9(6)
C319-C320-H3201	119.8	O124-C121-C120-C119	-177.8(6)
C321-C320-H3201	119.8	O124-C121-C122-C123	178.9(5)
C320-C321-O324	116.7(5)	O207-C201-C202-O211	54.5(5)
C320-C321-C322	119.8(5)	O207-C201-C202-C203	172.3(4)
O324-C321-C322	123.5(5)	O207-C201-C206-C205	-142.4(5)
C321-C322-C323	118.4(5)	O207-C208-O209-C210	63.6(6)
C321-C322-H3221	120.8	O209-C208-O207-C201	67.5(6)
C323-C322-H3221	120.8	O211-C202-C201-C206	-66.1(5)
C322-C323-C318	122.3(5)	O211-C202-C203-C204	49.2(5)
C322-C323-H3231	118.8	O211-C212-O213-C214	71.8(6)

O213-C212-O211-C202	72.9(6)
O216-C204-C203-C202	166.9(4)
O216-C204-C205-C206	-130.6(5)
O216-C217-C218-C219	66.2(7)
O216-C217-C218-C223	-113.7(6)
O224-C221-C220-C219	-177.7(6)
O224-C221-C222-C223	179.5(6)
O307-С301-C302-0311	53.0(6)
О307-С301-С302-С303	170.7(4)
O307-С301-С306-C305	-142.6(5)
О307-С308-O309-C310	63.2(7)
O309-С308-O307-С301	66.9(6)
O311-C302-C301-C306	-67.2(6)
O311-C302-C303-C304	50.6(6)
O311-C312-O313-C314	73.0(7)
O313-C312-O311-C302	71.3(7)
O316-C304-C303-C302	166.7(4)
O316-C304-C305-C306	-131.1(5)
O316-C317-C318-C319	59.2(7)
O316-C317-C318-C323	-123.4(5)
O324-C321-C320-C319	-178.2(5)
O324-C321-C322-C323	178.8(5)
C1-C2-O11-C12	-129.2(4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-68.3(5)
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	-2.7(7)
C2-C1-07-C8	91.7(5)
C2-C1-C6-C5	-19.4(7)
C2-C3-C4-C5	46.0(5)
C3-C2-O11-C12	115.0(4)
C3-C2-C1-C6	51.8(5)
C3-C4-O16-C17	125.5(4)
C3-C4-C5-C6	-10.2(6)
C4-O16-C17-C18	-178.7(4)
C5-C4-O16-C17	-115.6(4)
C6-C1-07-C8	-147.0(5)
C17-C18-C19-C20	177.2(5)
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 23-\mathrm{C} 22$	-176.1(5)
$\mathrm{C} 18-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21$	-2.5(9)
C18-C23-C22-C21	0.1(8)
C19-C18-C23-C22	1.5(7)
C19-C20-C21-C22	4.1(9)
C20-C19-C18-C23	-0.3(8)
C20-C21-O24-C25	167.2(6)
C20-C21-C22-C23	-3.0(8)
C22-C21-O24-C25	-12.3(8)
C101-C102-O111-C112	-127.3(5)
C101-C102-C103-C104	-70.0(5)
C101-C106-C105-C104	-1.7(8)
C102-C101-O107-C108	99.0(5)
C102-C101-C106-C105	-18.9(7)
C102-C103-C104-C105	49.1(5)
C103-C102-O111-C112	116.8(5)
C103-C102-C101-C106	52.3(5)
C103-C104-O116-C117	130.8(5)
C103-C104-C105-C106	-13.3(7)
C104-O116-C117-C118	-173.4(4)
C105-C104-O116-C117	-112.7(5)

C106-C101-O107-C108	-138.8(5)
C117-C118-C119-C120	178.6(6)
C117-C118-C123-C122	-177.6(5)
C118-C119-C120-C121	-1(1)
C118-C123-C122-C121	-1.1(8)
C119-C118-C123-C122	2.9(8)
C119-C120-C121-C122	3(1)
C120-C119-C118-C123	-1.9(9)
C120-C121-O124-C125	168.9(6)
C120-C121-C122-C123	-1.8(8)
C122-C121-O124-C125	-11.8(8)
C201-C202-O211-C212	-129.0(4)
C201-C202-C203-C204	-67.8(5)
C201-C206-C205-C204	-2.4(8)
C202-C201-O207-C208	95.7(5)
C202-C201-C206-C205	-19.6(6)
C202-C203-C204-C205	46.0(5)
C203-C202-O211-C212	115.7(5)
C203-C202-C201-C206	51.7(5)
C203-C204-O216-C217	127.5(5)
C203-C204-C205-C206	-10.6(7)
C204-O216-C217-C218	-174.8(4)
C205-C204-O216-C217	-113.4(5)
C206-C201-O207-C208	-141.4(4)
C217-C218-C219-C220	179.0(6)
C217-C218-C223-C222	-177.2(5)
C218-C219-C220-C221	-2(1)
C218-C223-C222-C221	-1.8(9)
C219-C218-C223-C222	2.8(8)
C219-C220-C221-C222	3(1)
C220-C219-C218-C223	-1.0(9)
C220-C221-O224-C225	177.1(6)
C220-C221-C222-C223	-0.9(9)
C222-C221-O224-C225	-3(1)
C301-C302-O311-C312	-129.0(5)
С301-C302-C303-C304	-67.5(5)
C301-C306-C305-C304	-1.3(8)
C302-C301-O307-C308	99.9(5)
C302-C301-C306-C305	-19.9(7)
C302-C303-C304-C305	46.5(6)
C303-C302-O311-C312	115.6(5)
C303-C302-C301-C306	50.4(5)
C303-C304-O316-C317	129.3(4)
C303-C304-C305-C306	-11.8(7)
C304-O316-C317-C318	-171.4(4)
C305-C304-O316-C317	-111.6(5)
C306-C301-O307-C308	-137.6(5)
C317-C318-C319-C320	175.9(5)
C317-C318-C323-C322	-175.3(5)
C318-C319-C320-C321	-0.8(8)
C318-C323-C322-C321	-0.3(9)
C319-C318-C323-C322	2.1 (8)
C319-C320-C321-C322	2.6(8)
C320-C319-C318-C323	-1.5(8)
C320-C321-O324-C325	-179.9(5)
C320-C321-C322-C323	-2.0(9)
C322-C321-O324-C325	-0.8(8)

Table S4. Contact distances (\AA)

115...0324	3.188(4)
Br26..C206 ${ }^{\text {' }}$	$3.577(5)$
O9...C223	3.343(7)
$013 \cdots \mathrm{C} 25^{\text {i }}$	3.273 (8)
O16...C203 ${ }^{\text {² }}$	3.341 (5)
O24..-C225ii'	3.236(9)
O24...O224ii	3.244(6)
O24...C120	3.363 (7)
0109...C323	3.508(7)
0113..C125ii	3.252(8)
O113..C122i	3.491 (7)
O116...C303	3.317(6)
O124..C325 ${ }^{\text {V }}$	3.181 (8)
O124...O324 ${ }^{\text {iv }}$	3.276(6)
O124...C220ii	3.443(8)
O213...C225iv	3.36(1)
O213...C222iv	3.584(7)
O216..C3 ${ }^{*}$	$3.407(5)$
O224...C25 ${ }^{\text {i }}$	3.21(1)
O224..C120 ${ }^{\text {vi }}$	3.233(8)
O307..C210vii	3.579(8)
O313..C325 ${ }^{\text {² }}$	3.581 (8)
O316 \cdots C103	3.377(6)
O316 \cdots C101	3.532(7)
O324...C125ii	3.200(8)
C6..C110 ${ }^{\text {viil }}$	3.388(9)
C10..C106 ${ }^{\text {k }}$	3.392(9)
C12..C25ii	3.508(9)
C25..C225ii	3.60(1)
C125..C325 ${ }^{\text {lv }}$	3.58(1)
C206...C310 ${ }^{\text {x }}$	3.491 (9)
C210‥C306 ${ }^{\text {xi }}$	3.490(9)

Appendix Two

X-ray Crystal Structure Report for Compound 192

Martin G. Banwell, Okanya J. Kokas and Anthony C. Willis

Research School of Chemistry, The Australian National University, Canberra, A. C. T. 0200,
Australia.
E-mail: willis@rsc.anu.edu.au

Abstract

The crystal structure of $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrO}_{3}$ is reported.

Comment

The crystallographic asymmetric unit consists of one molecule of $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrO}_{3}$. All H atoms were observed in difference electron density maps prior to their inclusion. They were included at calculated positions and then refined positionally. The compound is enantiometrically pure. The absolute structure of the crystal has been determined by refinement of the Flack parameter and this establishes the absolute configuration of the molecule. The largest peaks in the final difference electron density map are located near the Br atom or between C atoms.

Experimental

The compound was prepared by OJK and recrystalized from ethyl acetate/ petroleum spirit.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{BrO}_{3}$
$\mathrm{Mr}=249.10$
Orthorhombic
$\mathrm{P}_{1} 2_{1} 2_{1}$
$\mathrm{a}=5.9587(1) \AA$
$b=8.5961(2) \AA$
$V=993.54(4) \AA^{3}$
$Z=4$
$D_{x}=1.665 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo Ka radiation
$\lambda=0.71073 \AA$

Data collection

Nonius KappaCCD diffractometer
ϕ and ω scans with CCD
Absorption correction:
by integration via Gaussian method
(Coppens, 1970), implemented in maXus (2000).
$T_{\text {min }}=0.641, T_{\text {max }}=0.781$
13677 measured reflections
2278 independent reflections

Cell parameters from 10194 reflections
$\theta=3-27.5^{\circ}$
$\mu=4.110 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Rod
Colourless
Crystal source: local

Refinement

Refinement on F
$R=0.0220$
$w R=0.0232$
$S=1.1135$
1957 reflections
159 parameters
Only coordinates of H atoms refined Method, part 1, Chebychev polynomial,
Carruthers \& Watkin, 1979, Prince, 1982)
$[$ weight $]=1.0 /\left[A_{0}{ }^{*} T_{0}(\mathrm{x})+A_{1}{ }^{*} T_{1}(\mathrm{x}) \ldots\right.$
$\left.\left.+A_{n-1}\right]^{*} T_{\mathrm{n}-1}(\mathrm{x})\right]$, where A_{j} are the
Chebychev coefficients listed below and
x= Fcalc/Fmax Method = Robust
Weighting (Prince, 1982) $W=$ [weight] *
[1-(deltaF/6*sigmaF) $\left.{ }^{2}\right]^{2} A_{i}$ are: 1.55
0.1401 .41
$(\Delta / \sigma)_{\max }=0.001410$
$\Delta \rho_{\max }=0.45 \mathrm{e}^{\AA^{3}}$
$\Delta \rho_{\text {min }}=-0.61$ e \AA^{-3}
Extinction correction: Larson (1970),
Equation 22
Extinction coefficient: 131 (17)
Scattering factors from International
Tables Vol C 4.2.6.8 and 6.1.1.4
Absolute structure: Flack (1983), 929
Friedel-pairs
Flack parameter $=0.002(7)$

Table 1. Selected geometric parameters ($\bar{A} .9$)

$\mathrm{Br} 13-\mathrm{C} 5$	$1.911(2)$	$\mathrm{C} 1-\mathrm{C} 6$	$1.502(3)$
$\mathrm{O} 7-\mathrm{C} 1$	$1.437(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.517(3)$
$\mathrm{O} 7-\mathrm{C} 8$	$1.427(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.516(3)$
$\mathrm{O} 9-\mathrm{C} 2$	$1.446(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.506(3)$
$\mathrm{O} 9-\mathrm{C} 8$	$1.438(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.332(3)$
$\mathrm{O} 12-\mathrm{C} 4$	$1.427(2)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.521(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.520(3)$	$\mathrm{C} 8-\mathrm{C} 11$	$1.525(3)$
$\mathrm{C} 1-\mathrm{O} 7-\mathrm{C} 8)$	$108.15(14$	$\mathrm{O} 12-\mathrm{C} 4-\mathrm{C} 5$	$111.54(17)$
$\mathrm{C} 2-\mathrm{O} 9-\mathrm{C} 8$	$107.35(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 13$	$114.48(14)$
$\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 2$	$102.50(15)$	$\mathrm{Br} 13-\mathrm{C} 5-\mathrm{C} 6$	$126.23(19)$
$\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 6)$	$110.48(16$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.22(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$112.84(16)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{O} 7$	$122.28(17)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 9$	$101.45(15)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 10$	$106.58(15)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.45(16)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 10$	$108.52(17)$
$\mathrm{O} 9-\mathrm{C} 2-\mathrm{C} 3$	$110.25(16)$	$\mathrm{O} 9-\mathrm{C} 8-\mathrm{C} 111$	$110.84(17)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$114.04(16)$	$\mathrm{C} 10-\mathrm{C} 8-\mathrm{C} 11$	$109.65(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 12$	$107.29(15)$		$108.46(18)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$110.71(15)$		$112.61(18)$

Table 2. Hydrogen-bonding geometry ($\left.\AA_{1}^{\circ}{ }^{\circ}\right)$

$D \cdot \mathrm{H} \cdots A$	$\mathrm{D} \cdot \mathrm{H}$	$\mathrm{H} \cdot A$	$D-H \cdots A$	$D-H \cdots A$
$\mathrm{O} 12-\mathrm{H} 1 \cdots \mathrm{O} 9$	$0.83(3)$	2.01	$2.822(2)$	$166(3)$

Symmetry codes: (i) $1-x, y-1 / 2,1 / 2-z$
H atoms were included at calculated positions or where observed in difference electron density maps and then refined positionally.

Data collection:
COLLECT (Nonius BV, 1997). Cell refinement: Denzo/Scalepack (Otwinowski \& Minor, 1997). Data reduction:
Denzo/Scalepack (Otwinowski \& Minor, 1997). Program(s) used to solve structure: SIR92 (Altomare et al. 1994).
Program(s) used to refine structure: CRYSTALS (Watkin et al. 2003). Molecular graphics: ORTEP-II (Johnson 1976) in teXsan (MSC, 1992-1997). Software used to prepare material for publication: CRYSTALS (Watkin et al. 2003).

References

Mackay, S., Gilmore, C. J, Edwards, C., Stewart, N. \& Shankland, K. (2000). maXus Computer Program for the Solution and Refinement of Crystal Structures. Nonius, The Netherlands, MacScience, Japan \& The University of Glasgow.
Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. Crystallographic Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors, Munksgaard. Copenhagen. pp 255-270.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). SIR92 - a program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. (27), 435-435
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
Nonius BV, COLLECT Software, 1997-2001)
Otwinowski, Z. \& Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276, 1997, 307-326. Ed Carter, C. W. \& Sweet, R. M., Academic Press.
Prince, E. Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York, 1982.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Molecular Structure Corporation. (1992-1997). teXsan. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Johnson, C. K. (1976). ORTEP-II, A Fortran Thermal-Ellipsoid Plot Program, Report ORNL- 5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Larson, A. C. (1970). The Inclusion of Secondary Extinction in Least-Squares Refinement in Crystal Structures.
Crystallographic Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors., Munksgaard. Copenhagen. pp 291-294.

Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

	$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} a_{i} \cdot a_{j}$			
	\boldsymbol{x}	y	z	$U_{\text {eq }}$
Br 13	0.66829 (4)	0.42134 (2)	0.380422 (11)	0.0366
07	0.1608 (3)	0.86832 (15)	0.44763 (6)	0.0304
O9	0.2587 (2)	0.90855 (19)	0.33445 (6)	0.0300
012	0.3605 (3)	0.4455 (2)	0.25053 (8)	0.0410
C1	0.1173 (3)	0.7276 (2)	0.40993 (10)	0.0278
C2	0.0925 (3)	0.7861 (2)	0.33638 (9)	0.0271
C3	0.1422 (4)	0.6653 (2)	0.28146 (9)	0.0326
C4	0.3679 (3)	0.5860 (3)	0.28968 (9)	0.0307
C5	0.4166 (3)	0.5545 (2)	0.36456 (10)	0.0280
C6	0.3084 (4)	0.6151 (2)	0.41830 (9)	0.0275
C8	0.2698 (3)	0.9753 (2)	0.40237 (10)	0.0272
C10	0.5153 (4)	0.9950 (3)	0.42195 (12)	0.0364
C11	0.1408 (4)	1.1284 (3)	0.40368 (13)	0.0401
H1	0.484 (6)	0.444 (4)	0.2309 (16)	0.0490
H11	-0.013 (5)	0.682 (3)	0.4265 (12)	0.0331
H21	-0.046 (5)	0.824 (3)	0.3281 (13)	0.0325
H31	0.126 (5)	0.716 (4)	0.2359 (15)	0.0388
H32	0.025 (5)	0.584 (4)	0.2852 (14)	0.0388
H41	0.491 (5)	0.658 (3)	0.2744 (13)	0.0365
H61	0.357 (5)	0.587 (3)	0.4673 (13)	0.0328
H101	0.594 (6)	1.065 (4)	0.3888 (14)	0.0435
H102	0.520 (6)	1.037 (3)	0.4686 (15)	0.0435
H103	0.585 (5)	0.898 (4)	0.4193 (15)	0.0435
H111	0.206 (6)	1.201 (4)	0.3711 (16)	0.0479
H112	0.127 (5)	1.178 (4)	0.4507 (17)	0.0479
H113	-0.010 (6)	1.109 (3)	0.3870 (14)	0.0479

Table S2. Anisotropic displacement parameters (\AA^{2})

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Br 13	0.03268 (11)	0.04660 (12)	0.03038 (11)	0.00326 (8)	0.00054 (9)	-0.00308 (8)
07	0.0366 (7)	0.0273 (6)	0.0274 (5)	-0.0038 (6)	0.0080 (6)	-0.0037 (5)
09	0.0308 (6)	0.0315 (7)	0.0276 (6)	-0.0059 (5)	0.0040 (5)	0.0029 (6)
012	0.0375 (9)	0.0492 (10)	0.0363 (7)	-0.0064 (7)	0.0077 (6)	-0.0193 (6)
C1	0.0264 (10)	0.0302 (9)	0.0266 (8)	-0.0047 (7)	0.0032 (6)	-0.0022 (7)
C2	0.0209 (8)	0.0325 (9)	0.0280 (9)	-0.0038 (7)	0.0006 (6)	0.0015 (7)
C3	0.0346 (12)	0.0422 (10)	0.0210 (8)	-0.0068 (9)	0.0002 (7)	-0.0015 (7)
C4	0.0308 (10)	0.0343 (9)	0.0269 (8)	-0.0077 (8)	0.0050 (6)	-0.0077 (8)
C5	0.0267 (8)	0.0251 (8)	0.0321 (9)	-0.0061 (6)	-0.0001 (6)	-0.0015 (7)
C6	0.0307 (10)	0.0255 (8)	0.0262 (8)	-0.0024 (7)	0.0025 (7)	0.0021 (6)
C8	0.0269 (9)	0.0249 (8)	0.0297 (8)	-0.0001 (6)	0.0008 (7)	0.0003 (7)
C10	0.0272 (11)	$0.0402(11)$	0.0418 (12)	-0.0040 (8)	-0.0033 (9)	0.0015 (9)
C11	0.0392 (13)	0.0306 (10)	0.0504 (12)	0.0064 (8)	0.0009 (10)	0.0018 (8)

Table S3. Geometric parameters (\AA. \cdot)

$\mathrm{Br} 13-\mathrm{C} 5$	$1.911(2)$
$\mathrm{O} 7-\mathrm{C} 1$	$1.437(2)$
$\mathrm{O} 7-\mathrm{C} 8$	$1.427(2)$
$\mathrm{O} 9-\mathrm{C} 2$	$1.446(2)$
$\mathrm{O}-\mathrm{C} 8$	$1.438(2)$
$\mathrm{O} 12-\mathrm{C} 4$	$1.427(2)$
$\mathrm{O} 12-\mathrm{H} 1$	$0.83(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.520(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.502(3)$
$\mathrm{C} 1-\mathrm{H} 11$	$0.93(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.517(3)$
$\mathrm{C} 2-\mathrm{H} 21$	$0.90(3)$

$\mathrm{C} 3-\mathrm{H} 32$	$0.99(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.506(3)$
$\mathrm{C} 4-\mathrm{H} 41$	$1.00(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.332(3)$
$\mathrm{C} 6-\mathrm{H} 61$	$1.02(3)$
$\mathrm{C} 8-\mathrm{C} 10$	$1.521(3)$
$\mathrm{C} 8-\mathrm{C} 11$	$1.525(3)$
$\mathrm{C} 10-\mathrm{H} 101$	$1.00(3)$
$\mathrm{C} 10-\mathrm{H} 102$	$0.97(3)$
C10-H103	$0.93(3)$
C11-H111	$0.97(3)$
C11-H112	$1.01(3)$

C3-C4	1.516 (3)	C11-H113	0.97 (4)
C3-H31	0.99 (3)	C3-H32	0.99 (3)
C1-07-C8	108.15 (14)	C5-C4-H41	104.7 (15)
C2-09-C8	107.35 (13)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 13$	114.48 (14)
C4-O12-H1	103 (2)	C4-C5-C6	126.23 (19)
O7-C1-C2	102.50 (15)	Br13-C5-C6	119.22 (15)
O7-C1-C6	110.48 (16)	C1-C6-C5	122.28 (17)
C2-C1-C6	112.84 (16)	C1-C6-H61	117.7 (15)
O7-C1-H11	109.2 (15)	C5-C6-H61	120.0 (15)
C2-C1-H11	112.5 (15)	O9-C8-07	106.58 (15)
C6-C1-H11	109.1 (16)	O9-C8-C10	108.52 (17)
C1-C2-O9	101.45 (15)	O7-C8-C10	110.84 (17)
C1-C2-C3	114.45 (16)	O9-C8-C11	109.65 (17)
O9-C2-C3	110.25 (16)	O7-C8-C11	108.46 (18)
C1-C2-H21	112.1 (17)	C10-C8-C11	112.61 (18)
O9-C2-H21	111.2 (17)	C8-C10-H101	111.1 (18)
C3-C2-H21	107.5 (17)	C8-C10-H102	107 (2)
C2-C3-C4	114.04 (16)	H101-C10-H102	111 (2)
C2-C3-H31	107.7 (17)	C8-C10-H103	108.4 (19)
C4-C3-H31	112.2 (17)	H101-C10-H103	107 (3)
C2-C3-H32	106.9 (16)	H102-C10-H103	112 (3)
C4-C3-H32	107.7 (17)	C8-C11-H111	110.1 (20)
H31-C3-H32	108 (2)	C8-C11-H112	114.9 (19)
C3-C4-O12	107.29 (15)	H111-C11-H112	110 (3)
C3-C4-C5	110.71 (15)	C8-C11-H113	108.2 (18)
O12-C4-C5	111.54 (17)	H111-C11-H113	105 (2)
C3-C4-H41	110.0 (17)	H112-C11-H113	107 (2)
O12-C4-H41	112.6 (15)		
Br13-C5-C4-O12	49.6 (2)	C1-07-C8-C11	127.3 (2)
Br13-C5-C4-C3	169.0 (1)	C1-C2-09-C8	-32.2 (2)
Br13-C5-C6-C1	176.6 (1)	C1-C2-C3-C4	-52.9 (2)
O7-C1-C2-O9	36.8 (2)	C1-C6-C5-C4	-0.3 (3)
O7-C1-C2-C3	155.5 (2)	C2-O9-C8-C10	134.9 (2)
O7-C1-C6-C5	-124.9 (2)	C2-O9-C8-C11	-101.7 (2)
O7-C8-O9-C2	15.5 (2)	C2-C1-O7-C8	-28.7 (2)
O9-C2-C1-C6	-82.1 (2)	C2-C1-C6-C5	-10.8 (3)
O9-C2-C3-C4	60.8 (2)	C2-C3-C4-C5	39.4 (2)
O9-C8-07-C1	9.3 (2)	C3-C2-O9-C8	-153.9 (1)
O12-C4-C3-C2	161.3 (2)	C3-C2-C1-C6	36.7 (2)
O12-C4-C5-C6	-133.4 (2)	C3-C4-C5-C6	-14.0 (3)
C1-O7-C8-C10	-108.6 (2)	C6-C1-O7-C8	91.8 (2)

Table S4. Contact distances (\AA)

$\mathrm{O} \cdots \mathrm{C} 6^{\mathrm{i}}$	$3.345(2)$
$\mathrm{O} \cdots \mathrm{O} 12^{\text {ii }}$	$2.822(2)$
$\mathrm{O} 12 \cdots \mathrm{C} 10^{\text {iii }}$	$3.453(3)$

$\mathrm{O} 12 \cdots \mathrm{C} 2^{\mathrm{in}}$	$3.465(2)$
$\mathrm{O} 12 \cdots \mathrm{C} 4^{\mathrm{ii}}$	$3.575(3)$

Symmetry codes: (i) $x-1 / 2,3 / 2-y ; 1-z$;
(ii) $1-x, 1 / 2+y, 1 / 2-z$;
(iii) $1-x, y-1 / 2,1 / 2-z$;
(iv) $-\mathrm{x}, \mathrm{y}-1 / 2,1 / 2-\mathrm{z}$.

Appendix Three

X-ray Crystal Structure Report for
Compound 247

Martin G. Banwell, Okanya J. Kokas and Anthony C. Willis
Research School of Chemistry, The Australian National University, Canberra, A. C. T. 0200,

Australia.
E-mail: willis@rsc.anu.edu.au

Abstract

The crystal structure of $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{4}$ is reported.

Comment

The crystallographic asymmetric unit consists of one molecule of $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{4}$. All H atoms were observed in difference electron density maps prior to their inclusion. They were included at calculated positions and then refined positionally. The largest peaks in the final difference electron density map are located near the Cl atom or between C atoms.

Experimental

The compound was prepared by OJK and recrystallized from chloroform.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClO}_{4}$
$M_{r}=308.76$
Triclinic
$P 1$
$a=9.1808(3) \AA$
$b=9.4965(2) \AA$
$c=9.8483(3) \AA$
$\beta=70.7497$ (13) ${ }^{\circ}$
$\gamma=74.6515(17)^{\circ}$
$V=769.22$ (4) \AA^{3}
$Z=2$
$D_{x}=1.333 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured Mo Ka radiation $\lambda=0.71073 \AA$

Data collection

Nonius KappaCCD diffractometer
ϕ and ω scans with CCD
Absorption correction:
by integration via Gaussian method (Coppens, 1970)
implemented in maXus (2000)
$T_{\text {min }}=0.920, T_{\text {max }}=0.977$
15541 measured reflections
3515 independent reflections

Cell parameters from 10947 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.261 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate
Colourless
$0.36 \times 0.34 \times 0.10 \mathrm{~mm}$
Crystal source: local

2770 reflections with
I>3.00($)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.504$ 。
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 11$
$I=-12 \rightarrow 12$

Refinement

Refinement on F
$R=0.0331$
$w R=0.0359$
$S=1.1172$
2770 reflections
241 parameters
Only coordinates of H atoms refined

Method, part 1, Chebychev polynomial, (Carruthers \& Watkin, 1979, Prince, 1982) [weight] $=1.0 /\left[A_{0}{ }^{*} T_{0}(x)+A_{1}{ }^{*} T_{1}(x) \ldots\right.$ $\left.\left.+A_{n-1}\right]^{*} T_{n}^{-1}(x)\right]$ where A_{i} are the Chebychev coefficients listed below and $x=$ Fcalc/Fmax Method = Robust Weighting (Prince, 1982) $W=$ [weight] * [1-(deltaF/6*sigmaF) $\left.{ }^{2}\right]^{2} A_{i}$ are: $1.83-0.3991 .90-0.2110 .551$
$(\Delta / \sigma) \max =0.005951$
$\Delta \rho_{\text {max }}=0.31$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables Vol C 4.2.6.8 and 6.1.1.4

H atoms were included at calculated positions or where observed in difference electron density maps and then refined positionally.

Data collection:
COLLECT (Nonius BV, 1997). Cell refinement: Denzo/Scalepack (Otwinowski \& Minor, 1997). Data reduction: Denzo/Scalepack (Otwinowski \& Minor, 1997). Program(s) used to solve structure: SIR92 (Altomare et al. 1994). Program(s) used to refine structure: CRYSTALS (Watkin et al. 2003). Molecular graphics: ORTEP-II (Johnson 1976) in teXsan (MSC, 1992-1997). Software used to prepare material for publication: CRYSTALS (Watkin et al. 2003).

References

Mackay, S., Gilmore, C. J, Edwards, C., Stewart, N. \& Shankland, K. (2000). maXus Computer Program for the Solution and Refinement of Crystal Structures. Nonius, The Netherlands, MacScience, Japan \& The University of Glasgow.
Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. Crystallographic
Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors, Munksgaard. Copenhagen. pp 255-270.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). SIR92 - a program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. (27), 435-435
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
Nonius BV, COLLECT Software, 1997-2001)
Otwinowski, Z. \& Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276, 1997, 307-326. Ed Carter, C. W. \& Sweet, R. M., Academic Press.
Prince, E. Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York, 1982.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Molecular Structure Corporation. (1992-1997). teXsan. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Johnson, C. K. (1976). ORTEP-II, A Fortran Thermal-Ellipsoid Plot Program, Report ORNL- 5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Larson, A. C. (1970). The Inclusion of Secondary Extinction in Least-Squares Refinement in Crystal Structures.
Crystallographic Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors., Munksgaard. Copenhagen. pp 291-294.

Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

Cl19	0.83557(4)	0.43108(4)	0.02459(4)	0.0541
O2	0.77201 (10)	-0.26306(10)	$0.36874(10)$	0.0418
04	0.81139(11)	-0.10850(9)	0.14021 (9)	0.0400
011	0.54037(10)	0.46201(9)	0.24767 (10)	0.0386
O20	0.17560 (13)	1.11342(10)	$0.33389(12)$	0.0507
C1	0.93212(19)	-0.3006(2)	0.3701(2)	0.0564
C3	$0.75344(17)$	-0.23602(14)	0.22986(15)	0.0404
C5	0.73491 (14)	0.02794(12)	$0.17945(12)$	0.0323
C6	0.81091(14)	$0.14464(13)$	0.09967 (13)	0.0345
C7	0.74095(14)	0.28658(12)	0.12586(12)	0.0334
C8	0.59679(13)	$0.31759(12)$	0.23029(13)	0.0317
C9	0.52458(14)	$0.19907(13)$	$0.31084(14)$	0.0361
C10	0.59331 (14)	$0.05491(13)$	0.28569(13)	0.0358
C12	0.38392(15)	0.49595(15)	0.34199(16)	0.0429
C13	0.33620(13)	$0.66071(13)$	$0.33485(14)$	0.0356
C14	$0.34664(15)$	$0.75817(14)$	0.20261 (14)	0.0391
C15	0.29517(16)	0.91060(14)	0.19671 (15)	0.0403
C16	0.23061 (15)	0.96635(13)	0.32631 (15)	0.0381
C17	0.22073 (16)	0.87016(15)	$0.45934(15)$	0.0420
C18	0.27316 (15)	0.71923 (15)	0.46326 (14)	0.0399
C21	0.1754(3)	1.21488(18)	0.2010(2)	0.0666
H11	0.936(2)	-0.325(2)	0.466(2)	0.0644
H12	0.984(2)	-0.385(2)	0.327 (2)	0.0644
H13	0.988(2)	-0.219(2)	0.309(2)	0.0644
H31	0.8150(19)	-0.3158(18)	0.1772(18)	0.0488
H32	0.642(2)	-0.2219(17)	0.2401(18)	0.0488
H61	0.9105(18)	$0.1259(16)$	0.0271(17)	0.0403
H91	0.4297(18)	0.2127(16)	0.3841(17)	0.0411
H101	0.5427(18)	-0.0262(17)	0.3422(17)	0.0418
H121	0.3808(18)	0.4458(17)	0.4459(19)	0.0474
H122	0.3158(19)	0.4589(18)	0.3058(17)	0.0474
H141	0.3912(19)	0.7189(18)	0.1149(18)	0.0467
H151	0.3050(19)	0.9722(18)	0.1040(19)	0.0486
H171	0.1779(19)	0.9129(18)	0.5438(19)	0.0510
H181	0.2635(18)	0.6530(18)	0.5591 (18)	0.0473
H211	$0.126(3)$	1.310(3)	0.227(2)	0.0834
H212	0.286(3)	1.215(2)	$0.139(3)$	0.0834
H213	0.115(3)	1.189(2)	0.153(2)	0.0834

Table S2. Anisotropic displacement parameters (\AA^{2})

Cl 19	0.0524(2)	$0.03532(16)$	0.0591(2)	-0.02033(13)	0.01459(15)	-0.00978(13)
02	0.0363(4)	0.0422(5)	$0.0365(5)$	-0.0071(4)	-0.0012(4)	-0.0016(4)
04	0.0494(5)	0.0300(4)	0.0346(4)	-0.0105(4)	-0.0007(4)	-0.0074(3)
011	0.0315(4)	0.0304(4)	0.0464(5)	-0.0055(3)	-0.0014(4)	-0.0076(3)
020	0.0593(6)	0.0357(5)	0.0589(6)	-0.0029(4)	-0.0195(5)	-0.0149(4)
C1	0.0421 (8)	0.0659(10)	0.0532(9)	0.0017 (7)	-0.0138(7)	-0.0096(7)
C3	0.0440(7)	0.0320(6)	0.0457(7)	-0.0143(5)	-0.0089(5)	-0.0059(5)
C5	0.0367(6)	0.0303(5)	$0.0298(5)$	-0.0085(4)	-0.0079(4)	-0.0055(4)
C6	0.0350(6)	0.0349(6)	0.0309(6)	-0.0106(5)	-0.0016(5)	-0.0074(4)
C7	0.0349(6)	0.0322(5)	0.0315(5)	-0.0133(4)	-0.0030(4)	-0.0044(4)
C8	0.0293(5)	0.0308(5)	0.0342(6)	-0.0062(4)	-0.0086(4)	-0.0048(4)
C9	0.0269(5)	0.0371(6)	0.0386(6)	-0.0085(4)	-0.0022(5)	-0.0039(5)
C10	0.0332(6)	0.0331(6)	0.0382(6)	-0.0120(5)	-0.0055(5)	-0.0018(5)
C12	0.0315(6)	0.0370(6)	0.0505(8)	-0.0054(5)	0.0003(5)	-0.0082(5)
C13	0.0266(5)	0.0360(6)	0.0422(6)	-0.0040(4)	-0.0089(5)	-0.0072(5)
C14	0.0388(6)	0.0403(6)	0.0376(6)	-0.0048(5)	-0.0086(5)	-0.0121(5)
C15	0.0444 (7)	0.0391 (6)	0.0388(6)	-0.0067(5)	-0.0167(5)	-0.0044(5)
C16	0.0355(6)	0.0353(6)	0.0475(7)	-0.0048(5)	-0.0159(5)	-0.0113(5)
C17	0.0430(7)	0.0469(7)	0.0380(6)	-0.0072(5)	-0.0107(5)	-0.0141(5)
C18	0.0386(6)	0.0438(6)	0.0355(6)	-0.0068(5)	-0.0106(5)	-0.0051(5)
C21	0.0936(14)	0.0357(7)	0.0781(12)	-0.0024(8)	-0.0452(11)	-0.0064(7)

Table S3. Geometric parameters ($\left.\AA_{1}, 0\right)$
Cl19-C7
O2-C1
O2-C3
04-C3
O4-C5
$\mathrm{O} 11-\mathrm{C} 8$
$\mathrm{O} 11-\mathrm{C} 12$
O20-C16
O20-C21
$\mathrm{C} 1-\mathrm{H} 11$
$\mathrm{C} 1-\mathrm{H} 12$
C1-H13
$\mathrm{C} 3-\mathrm{H} 31$
$\mathrm{C} 3-\mathrm{H} 32$
C5-C6
C5-C10
C6-C7
C6-H61
C7-C8
C8-C9
C9-C10
C9-H91
$\mathrm{C} 10-\mathrm{H} 101$
$\mathrm{C} 12-\mathrm{C} 13$
C12-H121
C12-H122
C13-C14
C13-C18
C14-C15
C15-C16
$\mathrm{C} 15-\mathrm{H} 151$
$\mathrm{C} 16-\mathrm{C} 17$
C17-C18
C17-H171
C18-H181
C21-H211
C21-H212
$\mathrm{C}_{\mathrm{C} 1-\mathrm{O} 213-\mathrm{C} 3}$
C3-O4-C5
C8-O11-C12
C16-O20-C21
O2-C1-H11
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 12$
$\mathrm{H} 11-\mathrm{C} 1-\mathrm{H} 12$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{H} 13$
H11-C1-H13
H12-C1-H13
O4-C3-O2
O4-C3-H31
O2-C3-H31
O4-C3-H32
O2-C3-H32
H31-C3-H32
O4-C5-C6
O4-C5-C10
C6-C5-C10
C5-C6-C7
C5-C6-H61
C7-C6-H61
Cl19-C7-C6
C119-C7-C8
C6-C7-C8
C7-C8-011
C7-C8-C9
O11-C8-C9
C8-C9-C10
$1.7349(11)$
$1.4216(18)$
$1.386(17)$
$1.4238(14)$
$1.3821(14)$
$1.3643(14)$
$1.4332(15)$
$1.3657(15)$
$1.419(2)$
$0.93(2)$
$0.94(2)$
$1.00(2)$
$0.968(17)$
$0.968(17)$
$1.3951(16)$
$1.3823(17)$
$1.3790(16)$
$0.962(15)$
$1.3940(16)$
$1.3923(16)$
$1.3937(17)$
$0.932(15)$
$0.962(15)$
$1.4992(17)$
$1.010(17)$
$0.984(17)$
$1.3876(18)$
$1.3931(18)$
$1.3915(18)$
$0.949(17)$
$1.3901(18)$
$0.944(17)$
$1.3884(19)$
$1.3809(19)$
$0.938(17)$
$0.986(17)$
$0.96(2)$
$1.00(2)$
$0.95(2)$
$113.49(11)$
$117.7(1)$
$116.46(9)$
$117.66(12)$
$109.0(12)$
$109.5(11)$
$107.3(16)$
$110.4(10)$
$114.4(16)$
$106.0(16)$
$112.33(10)$
$103.8(0)$
$111.4(9)$
$109.6(9)$
$107.8(10)$
$111.9(13)$
$114.49(10)$
$125.54(10)$
$119.95(11)$
$119.13(11)$
$120.2(9)$
$120.7(9)$
$118.71(9)$
$119.09(9)$
$122.20(10)$
$116.84(10)$
$117.73(10)$
$125.40(10)$
$120.89(11)$

C8-C9-H91	121.5(9)
C10-C9-H91	117.6(9)
C9-C10-C5	120.08(10)
C9-C10-H101	120.2(9)
C5-C10-H101	119.7(9)
O11-C12-C13	108.78(10)
O11-C12-H121	110.0(9)
C13-C12-H121	109.3(9)
O11-C12-H122	106.5(9)
C13-C12-H122	111.3(9)
H121-C12-H122	110.8(13)
C12-C13-C14	121.65(12)
C12-C13-C18	120.00(12)
C14-C13-C18	118.28(11)
C13-C14-C15	121.49(12)
C13-C14-H141	118.5(10)
C15-C14-H141	120.0(10)
C14-C15-C16	119.23(12)
C14-C15-H151	118.2(10)
C16-C15-H151	122.5(10)
C15-C16-O20	124.36(12)
C15-C16-C17	119.86(12)
O20-C16-C17	115.78(12)
C16-C17-C18	120.18(12)
C16-C17-H171	116.9(10)
C18-C17-H171	123.0(10)
C13-C18-C17	120.94(12)
C13-C18-H181	120.4(9)
C17-C18-H181	118.7(9)
O20-C21-H211	106.2(13)
O20-C21-H212	109.3(13)
H211-C21-H212	110.6(18)
O20-C21-H213	109.6(14)
H211-C21-H213	109.0(18)
H212-C21-H213	111.9(19)
C119-C7-C6-C5	-179.3(1)
C119-C7-C8-011	-1.1(2)
Cl19-C7-C8-C9	-179.3(1)
O2-C3-O4-C5	-65.8(1)
O4-C3-O2-C1	-65.1(1)
O4-C5-C6-C7	177.2(1)
O4-C5-C10-C9	-177.2(1)
O11-C8-C7-C6	179.2(1)
O11-C8-C9-C10	-179.1(1)
O11-C12-C13-C14	52.6(2)
O11-C12-C13-C18	-130.2(1)
O20-C16-C15-C14	-179.7(1)
O20-C16-C17-C18	179.9(1)
C3-O4-C5-C6	171.3(1)
C3-O4-C5-C10	-10.0(2)
C5-C6-C7-C8	0.4(2)
C5-C10-C9-C8	-0.1(2)
C6-C5-C10-C9	1.5(2)
C6-C7-C8-C9	1.0(2)
C7-C6-C5-C10	-1.6(2)
C7-C8-O11-C12	172.7(1)
C7-C8-C9-C10	-1.1(2)
C8-O11-C12-C13	-173.9(1)
C9-C8-O11-C12	-9.3(2)
C12-C13-C14-C15	176.9(1)
C12-C13-C18-C17	-176.5(1)
C13-C14-C15-C16	-0.6(2)
C13-C18-C17-C16	-0.2(2)
C14-C13-C18-C17	0.7(2)
C14-C15-C16-C17	1.1(2)
C15-C14-C13-C18	-0.3(2)
C15-C16-O20-C21	4.1(2)
C15-C16-C17-C18	-0.8(2)

Table S4. Contact distances (\AA)

119...Cl19 ${ }^{\text {a }}$	3.4461 (8)
Cl19...C211	3.535(2)
O2..C12iii	3.302(2)
O2...C9ii	3.487(1)
O4...C6 ${ }^{\text {iv }}$	3.478(1)
O20...C9 ${ }^{\text {- }}$	3.433(2)
O20...C17 ${ }^{\text {i }}$	3.519(2)
O20...C1 ${ }^{\text {vii }}$	3.520(2)
$\mathrm{C} 1 \cdots \mathrm{C} 13^{\text {viil }}$	3.537(2)
C6...C14 ${ }^{\text {ix }}$	3.545(2)
C6..C15 ${ }^{\text {ix }}$	3.557(2)
C8...C18 ${ }^{\text {vii }}$	3.505(2)
C9...C17 ${ }^{\text {vii }}$	3.599(2)
C10…C16 ${ }^{\text {x }}$	3.520(2)

Symmetry codes: (i) $2-x, 1-y,-z$; (ii) $1-x, 2-y,-z$; (iii) $1-x,-y, 1-z$; (iv) $2-x,-y,-z$; (v) $x, 1+y, z$; (vi) $-x, 2-y, 1-z$; (vii) $1-x, 1-y, 1-z$; (viii) $1+x, y-1, z$; (ix) $1-x, 1-y,-z$; (x) $x, y-1, z$.

Appendix Four

X-ray Crystal Structure Report for
Compound ent-18

Martin G. Banwell, Okanya J. Kokas and Anthony C. Willis
Research School of Chemistry, The Australian National University, Canberra, A. C. T. 0200, Australia.

E-mail:willis@rsc.anu.edu.au

Abstract

The crystal structure of $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4} \cdot \mathrm{H}_{2} \mathrm{O} 2: 3$ is reported.

\section*{Comment}

The compound is enantiometrically pure but the anomolous dispersion terms are very low for all elements in the structure and so the absolute configuration can not be determined in this experiment. Consequently Friedel-pair reflections have been averaged and the Flack parameter has not been refined. The absolute configuration of the molecule has been assigned on the basis of the synthetic precursors.

The crystallographic asymmetric unit consists of two molecules of $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$ and three water molecules of solvation. The water molecules are disordered over six sites but close distances between some of these sites force restrictions upon their occupancies (viz. $\mathrm{O} 2011+\mathrm{O} 2012 \leq 1.0$, $\mathrm{O} 2021+\mathrm{O} 2022+\mathrm{O} 204 \leq 1.0$ and $\mathrm{O} 2011+\mathrm{O} 2022 \leq 1.0)$. When the occupancies were refined independently it could be seen that setting relationships 1 and 2 to equal 1.0 exactly would be appropriate, so this was performed. As a consequence of this, the water occupancies sum to 3.0 . Restraints were imposed on the displacement parameters of sites which were close together so they tend to be similar.
H atoms attached to C atoms were included at calculated positions and ride on the atoms to which they are attached. Three of the alcohol H atoms were observed in difference maps and were included at these locations and refined positionally with restraints on distances and angles involving them. The remaining alcohol H and water H atoms were not directly observed and could be disordered over more than one site on account of the disordering of the water molecules to which they might hydrogen-bond. They have not been included in the final structure.

The largest peaks in the final difference electron density map are located near the disordered solvate sites.

Experimental

The compound was prepared by OJK and recrystallized from wet acetone.

Crystal data

$2\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}\right) \cdot 3\left(\mathrm{H}_{2} \mathrm{O}\right)$
$M_{r}=628.68$
Trigonal
$R 3$
$a=16.3003(4) \AA$
$b=16.3003(4) \AA$
$c=29.5212(10) \AA$
$a=90^{\circ}$
$V=6792.9(3) \AA^{3}$
$Z=9$
$D_{x}=1.38 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Mo Ka radiation
$\lambda=0.71073 \AA$

Cell parameters from 50810 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=0.105 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate
Colourless
$0.27 \times 0.27 \times 0.09 \mathrm{~mm}$
Crystal source: local

Data collection

Nonius KappaCCD diffractometer
ϕ and ω scans with CCD
Absorption correction:
by integration via Gaussian method (Coppens,
1970) implemented in maXus (2000)
$T_{\text {min }}=0.979, T_{\text {max }}=0.991$
29833 measured reflections
3470 independent reflections

Refinement

Refinement on F
$R=0.0535$
$w R=0.0457$
$S=1.1064$
2814 reflections
446 parameters
H atoms treated by a mixture of independent and constrained refinement

2814 reflections with
$1>2.0 \sigma$ (I)
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=27.489^{\circ}$
$h=-20 \rightarrow 20$
$k=-21 \rightarrow 20$
$I=-38 \rightarrow 38$

, pant, Chebychev polyomial,
(Carruthers \& Watkin, 1979, Prince, 1982)
$T_{0}(x)+A_{1} T_{1}(x) \ldots$
$\left.{ }_{n-1}\right]^{*} T_{n-1}(x)$
coefficients Robust Weighting (Prince 1082) W [weight] * [1-(deltaF/6*sigmaF)2]2 A, are: 2.140 .7481 .83
$\mathrm{m}_{\text {max }}=0.02 \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables
Vol C 4.2.6.8 and 6.1.1.4

H atoms attached to C were included at calculated positions and ride on the atoms to which they are attached. Three of the alcohol H atoms were refined positionally with restraints on distances and angles involving them. The remaining H atoms bonded to O were not located and have not been included in the final structure.

Data collection:
COLLECT (Nonius BV, 1997). Cell refinement: Denzo/Scalepack (Otwinowski \& Minor, 1997). Data reduction: Denzo/Scalepack (Otwinowski \& Minor, 1997). Program(s) used to solve structure: SIR92 (Altomare et al. 1994). Program(s) used to refine structure: CRYSTALS (Watkin et al. 2003). Molecular graphics: ORTEP-I/ (Johnson 1976) in teXsan (MSC, 1992-1997) . Software used to prepare material for publication: CRYSTALS (Watkin et al. 2003).

References

Mackay, S., Gilmore, C. J, Edwards, C., Stewart, N. \& Shankland, K. (2000). maXus Computer Program for the Solution and Refinement of Crystal Structures. Nonius, The Netherlands, MacScience, Japan \& The University of Glasgow.
Coppens, P. (1970). The Evaluation of Absorption and Extinction in Single-Crystal Structure Analysis. Crystallographic
Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors, Munksgaard. Copenhagen. pp 255-270.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). SIR92 - a program for automatic solution of crystal structures by direct methods. J. Appl. Cryst. (27), 435-435
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
Nonius BV, COLLECT Software, 1997-2001)

Otwinowski, Z. \& Minor, W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol. 276, 1997, 307-326. Ed Carter, C. W. \& Sweet, R. M., Academic Press.
Prince, E. Mathematical Techniques in Crystallography and Materials Science Springer-Verlag, New York, 1982.
Carruthers, J. R. \& Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
Molecular Structure Corporation. (1992-1997). teXsan. Single Crystal Structure Analysis Software. Version 1.8. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Johnson, C. K. (1976). ORTEP-II, A Fortran Thermal-Ellipsoid Plot Program, Report ORNL- 5138, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Larson, A. C. (1970). The Inclusion of Secondary Extinction in Least-Squares Refinement in Crystal Structures. Crystallographic Computing. F. R. Ahmed, S. R. Hall and C. P. Huber, Editors., Munksgaard. Copenhagen. pp 291-294.

Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$$
U_{e q}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{j} a^{i} a^{j} a_{i} \cdot a_{j}
$$

	Occupancy	x	y	z	$U_{\text {eq }}$
O3	1.0000	0.16586 (16)	0.47190(17)	0.51167(10)	0.0446
05	1.0000	0.35283(16)	0.55813(16)	0.53976(9)	0.0447
013	1.0000	$0.28964(18)$	0.00555(19)	0.38005(9)	0.0495
015	1.0000	$0.17038(17)$	0.02211(19)	0.34694(9)	0.0486
0103	1.0000	0.3448(2)	0.5639(2)	0.32474(10)	0.0592
0105	1.0000	$0.22425(17)$	0.37932(18)	0.29965(9)	0.0470
0113	1.0000	0.5255(2)	0.28087 (18)	0.56832(10)	0.0540
0115	1.0000	0.53400(19)	0.42359(18)	0.58716(9)	0.0508
0203	1.0000	0.0227(2)	$0.2174(3)$	0.62715(13)	0.0772
0204	0.15(1)	$0.1133(13)$	0.5235(15)	0.6302(6)	0.0641
02011	0.63(3)	0.0929(10)	0.4056(11)	0.5981(6)	0.0919
02012	0.37(3)	0.058(2)	0.366(2)	0.5796(8)	0.0945
02021	0.57(2)	0.3021(10)	0.5572(8)	$0.6289(3)$	0.0552
02022	0.28(2)	0.2529(18)	0.5242(12)	0.6204(4)	0.0429
N8	1.0000	0.23415 (18)	0.21050(17)	0.54488(9)	0.0354
N108	1.0000	0.50745(19)	0.3924(2)	0.37044(10)	0.0410
C1	1.0000	0.1747(2)	0.3519(2)	$0.47130(11)$	0.0375
C2	1.0000	$0.2313(2)$	0.4534(2)	0.48706(11)	0.0351
C4	1.0000	0.3163(2)	0.46989(19)	0.51643(10)	0.0329
C6	1.0000	0.2938(2)	0.3885(2)	0.54849(10)	0.0341
C7	1.0000	0.2700(2)	0.30166 (19)	0.51954(11)	0.0330
C9	1.0000	0.2756(2)	0.1553(2)	0.52540(11)	0.0373
C10	1.0000	0.2482(2)	0.1256(2)	0.47643(11)	0.0347
C11	1.0000	0.2933(2)	0.0842(2)	0.45257(11)	0.0369
C12	1.0000	0.2630(2)	0.0542(2)	0.40884(11)	0.0376
C14	1.0000	0.2470(3)	0.0046(3)	0.33709(12)	0.0507
C16	1.0000	0.1917(2)	0.0648(2)	0.38913(11)	0.0386
C17	1.0000	0.1478(2)	0.1053(2)	0.41160(11)	0.0372
C18	1.0000	0.1762(2)	0.1358(2)	$0.45617(11)$	0.0348
C19	1.0000	0.1286(2)	0.1795(2)	0.48355(11)	0.0354
C20	1.0000	0.1916(2)	0.2856(2)	$0.48622(11)$	0.0341
C21	1.0000	0.1300(2)	0.1561(2)	0.53411(12)	0.0407
C101	1.0000	0.3866(2)	0.5215(3)	$0.39499(11)$	0.0438
C102	1.0000	0.3096(3)	0.4931(3)	$0.35962(12)$	0.0488
C104	1.0000	0.2793(2)	0.3948(3)	0.33968 (11)	0.0434
C106	1.0000	0.3660(2)	0.3834(2)	$0.33025(11)$	0.0408
C107	1.0000	0.4115(2)	0.3860(2)	$0.37554(11)$	0.0371
C109	1.0000	0.5155(2)	0.3286(2)	0.40270(12)	0.0433
C110	1.0000	0.5213(2)	0.3591(2)	0.45187(12)	0.0369
C111	1.0000	0.5230(2)	0.3000(2)	0.48557(12)	0.0408

C112	1.0000	0.5278(2)	0.3289(2)	0.52999(12)	0.0428
C114	1.0000	0.5299(3)	0.3396(3)	$0.60513(14)$	0.0523
C116	1.0000	0.5326(2)	0.4140(2)	0.54072(11)	0.0390
C117	1.0000	0.5338(2)	0.4745(2)	0.50792(12)	0.0379
C118	1.0000	0.5269(2)	0.4457(2)	0.46242(11)	0.0358
C119	1.0000	0.5280(2)	0.5085(2)	0.42411(11)	0.0383
C120	1.0000	0.4328(2)	0.4746(2)	0.40172(11)	0.0369
C121	1.0000	0.5756(2)	0.4919(2)	0.38261(12)	0.0449
H1	1.0000	0.197(3)	0.528(2)	$0.5198(14)$	0.0540
H2	1.0000	0.322(3)	0.552(3)	0.5623(11)	0.0540
H3	1.0000	0.260(2)	0.399(3)	$0.2783(11)$	0.0580
H11	1.0000	0.1228(2)	0.3345(2)	0.44877(11)	0.0451
H21	1.0000	0.2550(2)	0.4960(2)	0.46003(11)	0.0443
H41	1.0000	0.3670(2)	0.47559(19)	0.49539(10)	0.0378
H61	1.0000	0.3499(2)	0.4046(2)	$0.56811(10)$	0.0392
H62	1.0000	0.2384(2)	0.3755(2)	0.56796(10)	0.0392
H71	1.0000	0.3277(2)	0.31424(19)	0.50203(11)	0.0390
H91	1.0000	0.2539(2)	0.0969(2)	0.54406(11)	0.0455
H92	1.0000	0.3461(2)	0.1950(2)	0.52709(11)	0.0455
H111	1.0000	0.3449(2)	0.0768(2)	0.46671 (11)	0.0456
H141	1.0000	0.2220(3)	-0.0585(3)	0.32212(12)	0.0639
H142	1.0000	0.2945(3)	0.0552(3)	$0.31683(12)$	0.0639
H171	1.0000	0.0969(2)	0.1130(2)	0.39673(11)	0.0449
H191	1.0000	0.0635(2)	0.1601(2)	0.47237 (11)	0.0420
H211	1.0000	0.0940(2)	0.1784(2)	0.55292(12)	0.0465
H212	1.0000	0.1033(2)	0.0866(2)	0.53882(12)	0.0465
H1011	1.0000	0.4035(2)	0.5783(3)	0.41419(11)	0.0547
H1021	1.0000	0.2533(3)	$0.4913(3)$	0.37412(12)	0.0619
H1041	1.0000	0.2386(2)	0.3461 (3)	0.36256(11)	0.0509
H1061	1.0000	0.4121(2)	0.4363(2)	0.31051(11)	0.0492
H1062	1.0000	0.3454(2)	0.3215(2)	0.31487(11)	0.0492
H1071	1.0000	0.3682(2)	0.3286(2)	$0.39365(11)$	0.0453
H1091	1.0000	0.5741(2)	0.3260(2)	$0.39537(12)$	0.0543
H1092	1.0000	0.4588(2)	0.2640 (2)	0.39922(12)	0.0543
H1111	1.0000	0.5208(2)	0.2392(2)	0.47791 (12)	0.0511
H1141	1.0000	0.5877(3)	0.3574(3)	0.62370(14)	0.0637
H1142	1.0000	0.4722(3)	0.3046(3)	0.62451(14)	0.0637
H1171	1.0000	0.5393(2)	0.5366(2)	0.51604(12)	0.0461
H1191	1.0000	0.5594(2)	0.5767(2)	$0.43301(11)$	0.0442
H1211	1.0000	0.6388(2)	0.4999(2)	0.39072(12)	0.0509
H1212	1.0000	0.5833(2)	0.5359(2)	0.35729(12)	0.0509

Table S2. Anisotropic displacement parameters (\AA^{2})

O3	0.0446(12)	0.0437(12)	0.0527(13)	0.0274(10)	-0.0003(10)	-0.0081(10)
05	0.0450(12)	0.0359(11)	0.0480(13)	0.0162(10)	0.0001(10)	-0.0037(10)
013	0.0518(13)	0.0642(15)	0.0427(12)	0.0367(12)	0.0008(10)	-0.0142(11)
015	0.0540(14)	0.0621(14)	0.0366(11)	0.0343(12)	-0.0026(10)	-0.0116(11)
0103	0.0778(18)	0.0620(16)	0.0544(14)	0.0474(15)	-0.0131(13)	-0.0023(13)
0105	0.0409(12)	0.0629(14)	0.0340(11)	0.0236(11)	-0.0024(9)	-0.0006(10)
0113	0.0717(16)	0.0538(14)	0.0436(13)	0.0366(13)	-0.0084(11)	0.0014(11)
0115	0.0663(15)	$0.0537(14)$	0.0387(12)	0.0348(12)	-0.0027(11)	-0.0015(10)
0203	0.0616(18)	0.084(2)	0.084(2)	0.0345(17)	0.0072(16)	0.0062(17)
0204	0.054(11)	0.089(14)	0.068(12)	0.049(10)	0.022(8)	0.024(10)
02011	0.087(7)	0.108(8)	0.091 (8)	0.057(6)	0.045(5)	0.045(6)
02012	0.110(12)	0.130(13)	0.075(10)	0.083(10)	0.036(8)	0.040(8)
02021	0.067(6)	0.054(4)	0.043(3)	0.030(4)	$0.006(3)$	0.009(3)
02022	0.072(10)	0.037(6)	0.028(5)	0.034(7)	0.004(5)	0.005(4)
N8	0.0405(13)	0.0311(11)	0.0352(12)	0.0183(10)	0.0030(10)	0.0006(10)
N108	0.0396(13)	0.0472(14)	0.0429(14)	0.0268(12)	-0.0025(11)	-0.0056(11)
C1	0.0361(15)	0.0453(16)	$0.0321(13)$	0.0209(13)	-0.0034(11)	-0.0027(12)
C2	0.0392(15)	0.0395(14)	0.0322(14)	0.0240(12)	-0.0010(12)	-0.0006(11)
C4	0.0334(13)	0.0301(13)	$0.0314(13)$	0.0131(11)	-0.0001(11)	-0.0007(10)
C6	0.0344(14)	0.0324(13)	0.0318(13)	0.0140(11)	-0.0018(11)	-0.0015(11)
C7	0.0356(14)	0.0299(13)	0.0327(13)	0.0158(11)	0.0001(11)	-0.0015(11)
C9	0.0395(15)	0.0373(14)	0.0376(14)	0.0212(12)	-0.0021(12)	0.0005(12)
C10	0.0325(14)	0.0339(14)	0.0345(13)	0.0141(11)	-0.0008(11)	-0.0023(11)
C11	0.0361(14)	0.0389(15)	0.0392(15)	0.0214(12)	0.0005(12)	-0.0016(12)
C12	0.0370(15)	0.0423(16)	0.0366(15)	0.0222(13)	0.0074(12)	0.0002(12)
C14	0.0528(19)	0.066(2)	0.0405(17)	0.0354(17)	0.0050(14)	-0.0056(15)
C16	0.0403(16)	0.0373(14)	0.0342(15)	0.0164(12)	0.0017(12)	-0.0019(12)
C17	0.0372(15)	0.0416(15)	0.0340(14)	0.0206(13)	-0.0044(12)	-0.0031(12)
C18	0.0353(14)	0.0313(13)	0.0378(15)	0.0166(11)	0.0028(12)	-0.0003(11)
C19	0.0305(13)	0.0341(14)	0.0411(15)	0.0158(11)	-0.0011(11)	-0.0067(11)
C20	0.0345(14)	0.0345(14)	0.0312(13)	0.0156(12)	-0.0010(11)	-0.0053(11)
C21	0.0359(15)	0.0367(15)	0.0441(16)	0.0142(12)	0.0049(13)	-0.0027(12)
C101	0.0482(18)	0.0579(19)	0.0315(14)	0.0312(16)	-0.0032(13)	-0.0053(13)
C102	0.0470(18)	0.071 (2)	0.0374(16)	$0.0361(17)$	-0.0038(13)	-0.0093(15)
C104	0.0374(15)	0.057(2)	0.0329(15)	0.0217(14)	-0.0012(12)	-0.0001(13)
C106	0.0402(15)	0.0491(17)	0.0340(14)	0.0230(14)	-0.0011(12)	-0.0047(13)
C107	0.0363(14)	0.0441(16)	0.0326(14)	0.0215(13)	0.0015(11)	-0.0064(12)
C109	0.0466(17)	0.0472(17)	0.0421(17)	0.0279(15)	-0.0101(14)	-0.0147(13)
C110	0.0340(14)	0.0391(15)	0.0413(15)	0.0209(12)	-0.0046(12)	-0.0081(12)
C111	0.0419(16)	0.0431(16)	0.0436(16)	0.0259(13)	-0.0061(13)	-0.0050(13)
C112	0.0421(17)	0.0432(16)	0.0446(17)	0.0225(14)	-0.0022(13)	-0.0008(13)
C114	0.062(2)	0.0512(19)	0.0461(18)	0.0302(17)	-0.0014(16)	0.0020(15)
C116	0.0363(15)	0.0485(17)	0.0359(15)	0.0239(14)	-0.0065(12)	-0.0061(12)

$C 117$	$0.0369(15)$	$0.0373(15)$	$0.0410(15)$	$0.0198(12)$	$-0.0025(13)$	$-0.0069(12)$

Table S3. Geometric parameters (\mathcal{A}_{0})

O3-C2	1.442(4)	C17-C18	1.401(4)
$\mathrm{O} 3-\mathrm{H} 1$	0.83(3)	C17-H171	1.000
O5-C4	1.429(4)	C18-C19	1.523(4)
O5-H2	0.81(3)	C19-C20	1.508(4)
O13-C12	1.373(4)	C19-C21	1.544(5)
O13-C14	1.443(4)	C19-H191	1.000
O15-C14	1.443(4)	C21-H211	1.000
015-C16	1.383(4)	C21-H212	1.000
O103-C102	1.436 (5)	C101-C102	1.516(5)
O105-C104	1.428(4)	C101-C120	1.329(5)
O105-H3	0.81(3)	C101-H1011	1.000
O113-C112	1.366(4)	C102-C104	1.538(5)
O113-C114	1.426(5)	C102-H1021	1.000
O115-C114	1.438(5)	C104-C106	1.540(4)
O115-C116	1.379(4)	C104-H1041	1.000
N8-C7	1.497(4)	C106-C107	1.519(4)
N8-C9	1.484(4)	C106-H1061	1.000
N8-C21	1.504(4)	C106-H1062	1.000
N108-C107	1.523(4)	C107-C120	1.517(4)
N108-C109	1.463(4)	C107-H1071	1.000
N108-C121	1.481 (4)	C109-C110	1.522(4)
C1-C2	1.509(4)	C109-H1091	1.000
C1-C20	1.318(4)	C109-H1092	1.000
C1-H11	1.000	C110-C111	1.395(5)
C2-C4	1.540(4)	C110-C118	1.402(4)
C2-H21	1.000	C111-C112	1.382(5)
C4-C6	1.518(4)	C111-H1111	1.000
C4-H41	1.000	C112-C116	1.386(5)
C6-C7	1.529(4)	C114-H1141	1.000
C6-H61	1.000	C114-H1142	1.000
C6-H62	1.000	C116-C117	1.376(5)
C7-C20	1.528(4)	C117-C118	1.409(4)
C7-H71	1.000	C117-H1171	1.000
C9-C10	1.519(4)	C118-C119	1.519(4)
C9-H91	1.000	C119-C120	1.515(4)
C9-H92	1.000	C119-C121	1.545(4)
C10-C11	1.410(4)	C119-H1191	1.000
C10-C18	1.398(4)	C121-H1211	1.000
C11-C12	$1.381(4)$	C121-H1212	1.000
C11-H111	1.000	C2-O3-H1	106(3)
C12-C16	1.386(5)	C4-O5-H2	110(3)
C14-H141	1.000	C12-O13-C14	105.1(2)
C14-H142	1.000	C14-O15-C16	104.9(3)
C16-C17	1.363(5)	C104-O105-H3	108(3)

C112-O113-C114	105.6(3)
C114-0115-C116	105.6(3)
C7-N8-C9	109.7(2)
C7-N8-C21	104.2(2)
C9-N8-C21	106.4(2)
C107-N108-C109	110.0(2)
C107-N108-C121	103.5(2)
C109-N108-C121	109.6(3)
C2-C1-C20	122.2(3)
C2-C1-H11	118.9
C20-C1-H11	118.9
C1-C2-O3	105.9(2)
C1-C2-C4	111.6(2)
O3-C2-C4	112.0(2)
C1-C2-H21	109.1
O3-C2-H21	109.0
C4-C2-H21	109.0
C2-C4-O5	109.4(2)
C2-C4-C6	113.3(2)
O5-C4-C6	112.1(2)
C2-C4-H41	107.2
O5-C4-H41	107.3
C6-C4-H41	107.2
C4-C6-C7	107.4(2)
C4-C6-H61	110.0
C7-C6-H61	110.0
C4-C6-H62	110.0
C7-C6-H62	110.0
H61-C6-H62	109.5
C6-C7-N8	115.6(2)
C6-C7-C20	108.8(2)
N8-C7-C20	105.9(2)
C6-C7-H71	108.8
N8-C7-H71	108.8
C20-C7-H71	108.8
N8-C9-C10	114.3(2)
N8-C9-H91	108.2
C10-C9-H91	108.2
N8-C9-H92	108.2
C10-C9-H92	108.3
H91-C9-H92	109.5
C9-C10-C11	119.2(3)
C9-C10-C18	120.0(3)
C11-C10-C18	120.8(3)
C10-C11-C12	117.1(3)
C10-C11-H111	121.4
C12-C11-H111	121.4

C11-C12-O13	128.5(3)
C11-C12-C16	121.5(3)
O13-C12-C16	109.8(3)
O15-C14-O13	106.3(2)
O15-C14-H141	110.2
O13-C14-H141	110.2
O15-C14-H142	110.3
O13-C14-H142	110.3
H141-C14-H142	109.5
C12-C16-O15	109.3(3)
C12-C16-C17	122.1(3)
O15-C16-C17	128.4(3)
C16-C17-C18	118.0(3)
C16-C17-H171	121.0
C18-C17-H171	121.0
C17-C18-C10	120.5(3)
C17-C18-C19	120.6(3)
C10-C18-C19	118.9(3)
C18-C19-C20	110.4(2)
C18-C19-C21	108.9(2)
C20-C19-C21	98.4(2)
C18-C19-H191	112.7
C20-C19-H191	112.7
C21-C19-H191	112.7
C7-C20-C19	105.2(2)
C7-C20-C1	125.0(3)
C19-C20-C1	128.4(3)
C19-C21-N8	102.2(2)
C19-C21-H211	111.3
N8-C21-H211	111.3
C19-C21-H212	111.3
N8-C21-H212	111.2
H211-C21-H212	109.5
C102-C101-C120	123.2(3)
C102-C101-H1011	118.4
C120-C101-H1011	118.4
C101-C102-O103	108.1(3)
C101-C102-C104	111.6(3)
O103-C102-C104	110.8(3)
C101-C102-H1021	108.7
O103-C102-H1021	108.8
C104-C102-H1021	108.8
C102-C104-O105	110.4(3)
C102-C104-C106	111.0(3)
O105-C104-C106	111.2(3)
C102-C104-H1041	108.0
O105-C104-H1041	108.1

C106-C104-H1041	108.1	O115-C114-H1141	109.7
C104-C106-C107	107.6(2)	O113-C114-H1141	109.7
C104-C106-H1061	110.0	O115-C114-H1142	109.7
C107-C106-H1061	110.0	O113-C114-H1142	109.6
C104-C106-H1062	109.9	H1141-C114-H1142	109.5
C107-C106-H1062	109.9	C112-C116-0115	109.3(3)
H1061-C106-H1062	109.5	C112-C116-C117	122.0(3)
N108-C107-C106	112.7(2)	O115-C116-C117	128.7(3)
N108-C107-C120	104.3(2)	C116-C117-C118	117.5(3)
C106-C107-C120	110.6(3)	C116-C117-H1171	121.3
N108-C107-H1071	109.7	C118-C117-H1171	121.2
C106-C107-H1071	109.7	C117-C118-C110	120.1(3)
C120-C107-H1071	109.7	C117-C118-C119	120.8(3)
N108-C109-C110	113.6(3)	C110-C118-C119	119.0(3)
N108-C109-H1091	108.4	C118-C119-C120	114.5(2)
C110-C109-H1091	108.4	C118-C119-C121	108.1(3)
N108-C109-H1092	108.5	C120-C119-C121	95.9(2)
C110-C109-H1092	108.4	C118-C119-H1191	112.4
H1091-C109-H1092	109.5	C120-C119-H1191	112.4
C109-C110-C111	118.3(3)	C121-C119-H1191	112.4
C109-C110-C118	120.2(3)	C107-C120-C119	105.9(2)
C111-C110-C118	121.5(3)	C107-C120-C101	123.1(3)
C110-C111-C112	117.3(3)	C119-C120-C101	128.9(3)
C110-C111-H1111	121.4	C119-C121-N108	102.5(2)
C112-C111-H1111	121.3	C119-C121-H1211	111.2
C111-C112-0113	127.6(3)	N108-C121-H1211	111.1
C111-C112-C116	121.5(3)	C119-C121-H1212	111.2
O113-C112-C116	110.8(3)	N108-C121-H1212	111.2
O115-C114-0113	108.7(3)	H1211-C121-H1212	109.5
C14-O13-C12-C11	-172.1(3)	C20-C1-C2-C4	7.7(5)
C14-O13-C12-C16	12.7(4)	C2-C1-C20-C7	-1.7(5)
C12-O13-C14-O15	-20.6(4)	C2-C1-C20-C19	163.1(3)
C16-O15-C14-O13	20.8(4)	O3-C2-C4-O5	-46.8(3)
C14-O15-C16-C12	-13.3(3)	O3-C2-C4-C6	79.1(3)
C14-O15-C16-C17	171.8(3)	C1-C2-C4-O5	-165.3(3)
C9-N8-C7-C6	-140.0(3)	C1-C2-C4-C6	-39.4(4)
C9-N8-C7-C20	99.5(3)	O5-C4-C6-C7	-171.6(3)
C21-N8-C7-C6	106.4(3)	C2-C4-C6-C7	64.0(4)
C21-N8-C7-C20	-14.1(3)	C4-C6-C7-N8	-172.8(3)
C7-N8-C9-C10	-62.8(3)	C4-C6-C7-C20	-53.9(3)
C21-N8-C9-C10	49.3(3)	N8-C7-C20-C1	150.7(3)
C7-N8-C21-C19	39.3(3)	N8-C7-C20-C19	-17.0(3)
C9-N8-C21-C19	-76.6(3)	C6-C7-C20-C1	25.8(5)
C20-C1-C2-O3	-114.5(4)	C6-C7-C20-C19	-141.9(3)

N8-C9-C10-C11	171.5(3)
N8-C9-C10-C18	-11.2(4)
C9-C10-C11-C12	177.0(3)
C18-C10-C11-C12	-0.3(4)
$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 18-\mathrm{C} 17$	-177.5(3)
C9-C10-C18-C19	1.8(4)
C11-C10-C18-C17	-0.3(5)
C11-C10-C18-C19	179.0(3)
C10-C11-C12-O13	-174.4(3)
C10-C11-C12-C16	0.4(4)
O13-C12-C16-O15	0.4(4)
O13-C12-C16-C17	175.7(3)
C11-C12-C16-O15	-175.2(3)
C11-C12-C16-C17	0.1(5)
$\mathrm{O} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	173.7(3)
C12-C16-C17-C18	-0.6(4)
C16-C17-C18-C10	0.7(4)
C16-C17-C18-C19	-178.6(3)
C10-C18-C19-C20	76.9(4)
C10-C18-C19-C21	-30.2(4)
C17-C18-C19-C20	-103.8(3)
C17-C18-C19-C21	149.1(3)
C18-C19-C20-C1	118.8(4)
C18-C19-C20-C7	-74.1(3)
$\mathrm{C} 21-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 1$	-127.3(4)
$\mathrm{C} 21-\mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 7$	39.8(3)
C18-C19-C21-N8	66.5(3)
$\mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 21-\mathrm{N} 8$	-48.7(3)
C114-O113-C112-C111	-178.4(4)
C114-O113-C112-C116	-0.5(4)
C112-O113-C114-O115	0.5(5)
C116-O115-C114-O113	-0.4(5)
C114-O115-C116-C112	0.1(4)
C114-O115-C116-C117	178.9(4)
C109-N108-C107-C106	-137.3(3)
C109-N108-C107-C120	102.8(3)

C121-N108-C107-C106	105.7(3)
C121-N108-C107-C120	-14.2(3)
C107-N108-C109-C110	-68.5(3)
C121-N108-C109-C110	44.6(4)
C107-N108-C121-C119	41.9(3)
C109-N108-C121-C119	-75.3(3)
C120-C101-C102-O103	-111.0(4)
C120-C101-C102-C104	11.0(5)
C102-C101-C120-C107	-1.7(6)
C102-C101-C120-C119	159.2(4)
O103-C102-C104-O105	-45.8(5)
O103-C102-C104-C106	78.0(4)
C101-C102-C104-O105	-166.3(3)
C101-C102-C104-C106	-42.5(4)
O105-C104-C106-C107	-171.5(3)
C102-C104-C106-C107	65.3(3)
C104-C106-C107-N108	-170.2(3)
C104-C106-C107-C120	-53.9(3)
N108-C107-C120-C101	145.5(3)
N108-C107-C120-C119	-19.2(3)
C106-C107-C120-C101	24.2(5)
C106-C107-C120-C119	-140.5(3)
N108-C109-C110-C111	175.9(3)
N108-C109-C110-C118	-5.5(5)
C109-C110-C111-C112	-179.7(3)
C118-C110-C111-C112	1.7(5)
C109-C110-C118-C117	-179.0(3)
C109-C110-C118-C119	-0.6(5)
C111-C110-C118-C117	-0.4(5)
C111-C110-C118-C119	178.0(3)
C110-C111-C112-O113	176.5(4)
C110-C111-C112-C116	-1.2(5)
O113-C112-C116-O115	0.3(4)
O113-C112-C116-C117	-178.7(3)
C111-C112-C116-O115	178.3(3)

$\mathrm{C} 111-\mathrm{C} 112-\mathrm{C} 116-\mathrm{C} 117$	$-0.7(5)$	$\mathrm{C} 117-\mathrm{C} 118-\mathrm{C} 119-\mathrm{C} 121$	$148.0(3)$
$\mathrm{O} 115-\mathrm{C} 116-\mathrm{C} 117-\mathrm{C} 118$	$-176.8(3)$	$\mathrm{C} 118-\mathrm{C} 119-\mathrm{C} 120-\mathrm{C} 101$	$126.3(4)$
$\mathrm{C} 112-\mathrm{C} 116-\mathrm{C} 117-\mathrm{C} 118$	$2.0(5)$	$\mathrm{C} 118-\mathrm{C} 119-\mathrm{C} 120-\mathrm{C} 107$	$-70.2(3)$
$\mathrm{C} 116-\mathrm{C} 117-\mathrm{C} 118-\mathrm{C} 110$	$-1.4(5)$	$\mathrm{C} 121-\mathrm{C} 119-\mathrm{C} 120-\mathrm{C} 101$	$-120.8(4)$
$\mathrm{C} 116-\mathrm{C} 117-\mathrm{C} 118-\mathrm{C} 119$	$-179.8(3)$	$\mathrm{C} 121-\mathrm{C} 119-\mathrm{C} 120-\mathrm{C} 107$	$42.7(3)$
$\mathrm{C} 110-\mathrm{C} 118-\mathrm{C} 119-\mathrm{C} 120$	$75.1(4)$	$\mathrm{C} 118-\mathrm{C} 119-\mathrm{C} 121-\mathrm{N} 108$	$66.2(3)$
$\mathrm{C} 110-\mathrm{C} 118-\mathrm{C} 119-\mathrm{C} 121$	$-30.4(4)$	$\mathrm{C} 120-\mathrm{C} 119-\mathrm{C} 121-\mathrm{N} 108$	$-51.9(3)$
$\mathrm{C} 117-\mathrm{C} 118-\mathrm{C} 119-\mathrm{C} 120$	$-106.5(4)$		

Appendix Five

Single Point Energy Calculations (DFT)'

Kvaskoff, D.

School of Molecular \& Microbial Sciences, University of Queensland, Brisbane. QLD, 4072, Australia.

Email: kvaskoff@uq.edu.au

Molecule (radical)	E (Hartree)	Relative E	$E(k c a / m o l)$	$E(k J / m o l)$
264	-2164.77714	0.0^{\dagger}	0.0^{\dagger}	0.0^{\dagger}
$Z-264$	-2164.75390	0.02324	14.6	61.01
E-264	-2164.74672	-2164.77942	-0.00227	19.1
$\mathbf{2 6 6}$	-2164.79335	-0.01621	-1.4	-59.87
267			-10.2	-42.56

${ }^{\dagger}$: arbitrary reference

Table: UB3LYP/6-311+G(3df,2p)//UB3LYP/6-311G** energies

Report of the transition state for radical $\mathbf{Z - 2 6 4}\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{CINO}_{8}\right)$

Z-264

Gaussian 03, Revision B. 05
Point group: C1
State $=2$
$\mathrm{S}^{2}=0.78414$
UB3LYP/6-311+G(3df,2p)//UB3LYP/6-311G**; HF =-2164.753904

Atom
Coordinates $(\AA) \quad z$

C	0.07829100	-2.22150000	1.13637700
C	-0.72852000	-1.08582100	0.46347400

232

C	0.12844500	-0.27261400	-0.50554300
C	1.26990400	-0.79683400	-1.07375300
C	2.01298600	-1.92172500	-0.41960800
C	1.01234900	-2.93091600	0.16295200
H	-1.54709400	-1.52575300	-0.11786600
H	0.68437200	-1.81865600	1.94991000
H	-0.61190000	-2.94701100	1.57364300
H	2.65882200	-2.41639500	-1.14472000
H	0.44238800	-3.36200000	-0.67234400
H	1.72207100	-0.30135500	-1.92224900
N	-1.32494100	-0.18383800	1.44243800
c	-0.68781800	1.00271600	1.70099800
0	-1.17197000	1.89297300	2.38815700
C	0.66804300	1.07092000	1.06536400
C	1.25028300	2.30524700	0.59184800
C	0.47700200	3.48172400	0.39317200
C	2.62433600	2.31283800	0.26484800
C	1.12611200	4.58400900	-0.09825000
H	-0.56957200	3.51269600	0.65525900
C	3.26075800	3.44754700	-0.24377400
H	3.19588500	1.40112200	0.39317600
C	2.48423800	4.57706900	-0.41181700
H	4.31295200	3.44585100	-0.49700900
H	1.38205700	0.36166200	1.46869400
0	2.85504400	5.80185900	-0.89848900
0	0.59981200	5.82332900	-0.38766600
C	1.71929500	6.65583500	-0.69095500
H	1.52005600	7.21759900	-1.60425200
H	1.92344600	7.32493500	0.15446200
C	-2.59806600	-0.51416900	2.08452900
H	-2.72070200	0.21921100	2.88279800
H	-2.51907200	-1.50300000	2.54908100
0	2.83528000	-1.40910700	0.66271200
0	1.66519400	-3.98717900	0.87905100
c	1.94280800	-5.13175500	0.15264900
H	2.22412600	-5.90317100	0.88074900
H	1.05920500	-5.46788000	-0.42053000
C	4.17265500	-1.78444400	0.62128200
H	4.58517700	-1.57225600	1.61643800
H	4.28208500	-2.85314400	0.38778500
C	-3.78892900	-0.48267800	1.14907600
c	-4.50591100	-1.63624800	0.84680600
c	-4.20812600	0.72621700	0.57157300
c	-5.61355600	-1.61081300	-0.00598400
H	-4.20806000	-2.58330500	1.28722600
C	-5.30104100	0.77013600	-0.27523200
H	-3.66743600	1.63818300	0.79847200
C	-6.01397800	-0.40050600	-0.57222100
H	-6.14519400	-2.52959800	-0.21399500
H	-5.63081700	1.70012700	-0.72232300
0	-7.07452700	-0.24871700	-1.41624200
0	4.83150700	-1.00685700	-0.36456600
0	3.01342000	-4.89288400	-0.74714500
c	3.33882400	-6.03467200	-1.52030200
H	4.16171200	-5.75448100	-2.17681600
H	3.65849200	-6.87345100	-0.88655000
H	2.48931300	-6.36345900	-2.13506600
C	6.19734400	-1.34976300	-0.50216800
H	6.61046500	-0.71582700	-1.28632400
H	6.75678000	-1.17275500	0.42765400
H	6.32551300	-2.40298200	-0.79014300
C	-7.83608700	-1.39659900	-1.75831300
H	-8.30018100	-1.85018000	-0.87502300
H	-8.61558200	-1.04660700	-2.43318200
H	-7.22426000	-2.14718700	-2.27172400
Cl	-0.84002200	0.80055300	-1.56711600

Report of the transition state for radical $E-264\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ClNO}_{8}{ }^{\circ}\right)$

E-264
Gaussian 03, Revision B. 05
Point group: C1
State $=2$
$\mathrm{S}^{2}=0.78580$
UB3LYP/6-311+G(3df,2p)//UB3LYP/6-311G**; HF =-2164.7467202

Atom	Coordinates (\AA)		
	x	\boldsymbol{y}	z
C	-0.11851900	0.71991400	-1.10385900
C	-1.07025300	0.10968700	-0.05295600
C	-0.42202800	0.08896600	1.32357600
C	0.58680400	0.96167900	1.66146500
C	1.38390300	1.71296000	0.63484900
C	0.50626200	2.01137000	-0.59085100
H	-1.96909300	0.73449800	0.01640600
H	0.68360200	0.01887800	-1.33937800
H	-0.67080400	0.92110600	-2.02503400
H	1.73430700	2.65099500	1.06770400
H	-0.28177700	2.71243200	-0.27857200
H	0.86886500	1.07420800	2.70004000
N	-1.51272400	-1.23476100	-0.41426700
C	-0.92578700	-2.31736500	0.18136200
0	-1.27521600	-3.47354300	-0.00483700
C	0.22298800	-1.96775100	1.08961000
C	1.57970700	-2.17113000	0.63022700
C	1.87943900	-2.40763300	-0.73880200
C	2.63360800	-2.10484100	1.56322700
C	3.19821900	-2.54538300	-1.08423400
H	1.09916100	-2.51324600	-1.48043400
C	3.97182400	-2.24575300	1.19102000
H	2.39624600	-1.91801600	2.60335300
C	4.22719400	-2.46063500	-0.14781500
H	4.77379500	-2.18496000	1.91467300
H	0.04548800	-2.21746100	2.12879700
0	5.43368100	-2.66232800	-0.76581400
0	3.72963900	-2.81866700	-2.32282100
C	5.14594500	-2.69904400	-2.17106600
H	5.63488100	-3.56618700	-2.61679900
H	5.48792300	-1.76506700	-2.63409400
C	-2.59680100	-1.41602000	-1.38267400
H	-2.62560500	-2.48764200	-1.58654100
H	-2.33450900	-0.90546400	-2.31531400
0	2.52826600	0.93810900	0.21926900

O	1.25678900	2.60184600	-1.65859800
C	1.24449500	3.98382900	-1.71341100
H	1.67411500	4.26137500	-2.68445700
H	0.21518100	4.38084900	-1.63728800
C	3.75245700	1.57307500	0.37375100
H	4.48544500	0.95706000	-0.16238500
H	3.73420600	2.59171200	-0.04275400
C	-3.94724700	-0.92983700	-0.90003200
C	-4.62694400	0.08745100	-1.56277700
C	-4.56055500	-1.51448600	0.21891300
C	-5.88606600	0.52511500	-1.14223000
H	-4.17711400	0.55269000	-2.43490300
C	-5.80540200	-1.09232800	0.65090100
H	-4.05194400	-2.3117700	0.74941100
C	-6.48033000	-0.06733900	-0.02781600
H	-6.38185500	1.31711800	-1.68720800
H	-6.28495300	-1.54128600	1.51224600
O	-7.70099100	0.27306400	0.47588700
O	4.07995800	1.63194100	1.75333300
O	2.02464200	4.52394800	-0.65859500
C	2.02993200	5.94029900	-0.65651600
H	2.64705700	6.25844300	0.18296100
H	2.45682700	6.34433800	-1.58504500
H	1.01780400	6.34936900	-0.52903200
C	5.25834800	2.36088800	2.00384100
H	5.41379500	2.36548300	3.08271700
H	6.13193300	1.89593200	1.52406900
H	5.18000600	3.39947400	1.65041600
C	-8.43857900	1.29670700	-0.17489600
H	-8.67054600	1.02855200	-1.21196200
H	-9.36642300	1.39744100	0.38584500
H	-7.90171700	2.25207700	-0.15903400
Cl	-1.61117500	-0.24228900	2.64921200

Report for transition state for radical $266\left(\mathrm{C}_{27} \mathbf{H}_{31} \mathrm{CINO}_{8}{ }^{\mathbf{}}\right)$

266

[^1]| Coordinates (\AA) | | | |
| :---: | :---: | :---: | :---: |
| Atom | x | y | z |
| C | 0.72988100 | 1.97304100 | 1.07056600 |
| C | 0.97171000 | 0.60249000 | 0.40505700 |
| C | -0.29130600 | 0.03755800 | -0.30173100 |
| C | -1.17156600 | 1.05012600 | -0.92335600 |
| C | -1.29454500 | 2.41576400 | -0.33395700 |
| C | 0.07561200 | 2.95293200 | 0.10259200 |
| H | 1.78078600 | 0.69556500 | -0.32292000 |
| H | 0.08242200 | 1.86835000 | 1.94379200 |
| H | 1.68243000 | 2.38469700 | 1.41306300 |
| H | -1.75322600 | 3.10234200 | -1.04512400 |
| H | 0.69702300 | 3.06948900 | -0.79763500 |
| H | -1.93393600 | 0.70614300 | -1.60966900 |
| N | 1.29844100 | -0.44235900 | 1.36783700 |
| C | 0.26866700 | -1.30783000 | 1.63006700 |
| 0 | 0.31279300 | -2.25051400 | 2.39475500 |
| C | -0.94948000 | -0.82818900 | 0.82308100 |
| C | -1.98794100 | -1.84767700 | 0.42541700 |
| C | -1.65175400 | -3.20272600 | 0.23359500 |
| C | -3.30510500 | -1.41897300 | 0.23317100 |
| C | -2.66006900 | -4.05198800 | -0.15908900 |
| H | -0.65261900 | -3.57068100 | 0.41288400 |
| C | -4.32114900 | -2.30003400 | -0.16866600 |
| H | -3.55321900 | -0.37480400 | 0.38763800 |
| C | -3.96467400 | -3.61639700 | -0.36011500 |
| H | -5.34012100 | -1.96480500 | -0.31230900 |
| 0 | -4.76021000 | -4.68159500 | -0.70923200 |
| 0 | -2.59274600 | -5.41065300 | -0.37212400 |
| C | -3.85120300 | -5.76294400 | -0.95175900 |
| H | -3.73090400 | -5.89960100 | -2.03474400 |
| H | -4.23031100 | -6.66764400 | -0.47587800 |
| C | 2.58249500 | -0.52335700 | 2.05415600 |
| H | 2.48721500 | -1.37101100 | 2.73706200 |
| H | 2.73627300 | 0.37323100 | 2.66547500 |
| 0 | -2.13765400 | 2.33705200 | 0.85275300 |
| 0 | -0.03190700 | 4.21707400 | 0.76481400 |
| C | 0.06249400 | 5.33812900 | -0.04127500 |
| H | 0.19252100 | 6.19480400 | 0.63205100 |
| H | 0.92838800 | 5.26930600 | -0.72515500 |
| C | -3.31240500 | 3.07420000 | 0.78960900 |
| H | -3.71528100 | 3.09980800 | 1.81040300 |
| H | -3.12067800 | 4.09787200 | 0.43345800 |
| C | 3.76213300 | -0.70913800 | 1.12189000 |
| C | 4.83238700 | 0.18009600 | 1.12850300 |
| C | 3.81827000 | -1.80325600 | 0.24502100 |
| C | 5.94216600 | -0.00020900 | 0.29775500 |
| H | 4.81518300 | 1.03400300 | 1.79917000 |
| C | 4.90695300 | -1.99599100 | -0.58679600 |
| H | 2.99498600 | -2.50813500 | 0.21655600 |
| C | 5.98112400 | -1.09491400 | -0.56629800 |
| H | 6.75479400 | 0.71279500 | 0.33534000 |
| H | 4.95596100 | -2.83929900 | -1.26488900 |
| 0 | 7.00470300 | -1.37591300 | -1.42226000 |
| 0 | -4.21777100 | 2.42356300 | -0.08629900 |
| 0 | -1.12111700 | 5.49395600 | -0.80834000 |
| C | -1.07397400 | 6.63012500 | -1.65374500 |
| H | -2.01938900 | 6.66854200 | -2.19353500 |
| H | -0.95577300 | 7.55758000 | -1.07656100 |
| H | -0.25204700 | 6.56143600 | -2.37992300 |
| C | -5.43305200 | 3.13327900 | -0.23828300 |
| H | -6.05037100 | 2.56766400 | -0.93548500 |
| H | -5.97062900 | 3.22680800 | 0.71591900 |
| H | -5.26661600 | 4.14084500 | -0.64509100 |
| C | 8.12846500 | -0.50874400 | -1.44109700 |
| H | 8.62803300 | -0.47625800 | -0.46619200 |
| H | 8.81162000 | -0.92291100 | -2.18086300 |
| H | 7.84781800 | 0.50808400 | -1.73871500 |
| H | -1.44553700 | -0.09279800 | 1.46943300 |
| Cl | 0.29956400 | -1.09240500 | -1.66240100 |

Report for transition state for radical $267\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{CINO}_{8}{ }^{\circ}\right)$

267

Gaussian 03, Revision B. 05

Point group: C1
State $=2$
$S^{2}=0.75584$
UB3LYP/6-311+G(3df,2p)//UB3LYP/6-311G**; HF =-2164.7933498

Coordinates (\AA)

Atom	x	\boldsymbol{y}	z
C	-0.80395300	1.27049800	-1.23229700
C	-1.06803900	0.11239900	-0.25288100
C	0.14667600	-0.20904300	0.56704200
C	0.95332000	0.84772900	1.14177100
C	1.11175700	2.06565900	0.21772500
C	-0.21021800	2.45290100	-0.46494200
H	-1.89972100	0.41339500	0.40878400
H	-0.09744400	0.95782700	-2.00433500
H	-1.72698900	1.59270000	-1.71983900
H	1.50013900	2.91320000	0.77949900
H	-0.90994100	2.78260100	0.31477400
N	-1.38298400	-1.17521200	-0.86980500
C	-0.71233400	-2.23628500	-0.31731100
O	-0.89705100	-3.40767800	-0.57535700
C	0.29410800	-1.68514000	0.72639500
C	1.68231400	-2.28428500	0.59384700
C	2.60973000	-1.74029000	-0.31906200
C	2.01207300	-3.41831900	1.33593000
C	3.82480800	-2.37544500	-0.43423400
H	2.39213000	-0.84584200	-0.88820800
C	3.25714900	-4.05320500	1.20790600
H	1.28211000	-3.83078400	2.02211100
C	4.14495400	-3.50681800	0.30837400
H	3.51139700	-4.93039700	1.78851400
O	5.42930900	-3.90184000	0.01770600
O	4.89950800	-2.02193200	-1.21758900
C	5.80987600	-3.12225100	-1.12162200
H	5.73409500	-3.73919000	-2.02678000
H	6.82251000	-2.74442300	-0.97975300
C	-2.52368700	-1.37278300	-1.76286100
H	-2.39595100	-2.37206600	-2.18293100

H	-2.45794500	-0.65392900	-2.58379700
0	2.04429000	1.68274300	-0.80191300
0	-0.01635500	3.51793600	-1.40131600
C	-0.11835300	4.80365100	-0.89727600
H	-0.20927000	5.47031200	-1.76436100
H	-1.00769400	4.91183800	-0.25018300
C	3.26914700	2.34437800	-0.74866000
H	3.80607600	2.06652500	-1.66413700
H	3.12171700	3.43467800	-0.70917000
C	-3.86804400	-1.25534700	-1.07256300
C	-4.72603800	-0.18883600	-1.32386600
C	-4.28178600	-2.23567100	-0.15593100
C	-5.96685400	-0.07987200	-0.68950600
H	-4.43488300	0.57729600	-2.03613300
C	-5.50619300	-2.14274400	0.48231100
H	-3.63258900	-3.08096600	0.04551200
C	-6.36030400	-1.06157100	0.22078600
H	-6.60620700	0.76319700	-0.91396400
H	-5.83405600	-2.89805200	1.18631000
0	-7.54256900	-1.06541500	0.89913100
0	3.97218300	1.90922200	0.39845200
0	1.04193000	5.13258300	-0.14992800
C	0.97750800	6.43331300	0.40830800
H	1.90359200	6.59245300	0.95935800
H	0.89054400	7.20282500	-0.37140800
H	0.13011200	6.53589600	1.10003400
C	5.20577300	2.58047200	0.57320500
H	5.65489500	2.19160100	1.48636200
H	5.89024700	2.39401800	-0.26616800
H	5.06582300	3.66577300	0.67746100
C	-8.45319900	0.00171900	0.67915700
H	-8.77748200	0.04494100	-0.36676900
H	-9.31347300	-0.20590200	1.31332500
H	-8.01854000	0.96639400	0.96465200
H	-0.11180200	-1.99470300	1.70365700
H	1.92264000	0.52387500	1.50506100
Cl	0.10798400	1.47574000	2.77583500

Comment:

DFT methods such as (UB3LYP) are usually good at modelling open-shell systems because they include the effects of electron correlation (i.e. the fact that electrons in a molecular system react to one another's motion and attempt to keep out of one another's way), whereas ab-initio methods including electron correlation account for the instantaneous interactions of pairs of electrons with opposite spin.
Ref.: Foresman, J. B.; Frisch, A.; Exploring Chemistry with Electronic Structure Methods, $2^{\text {nd }}$ Ed., Gaussian Inc., Pittsburg, PA, 1996.

The degree of spin contamination can be assessed by inspection of $\left\langle S^{2}\right\rangle$, which should be 0.75 for a doublet (within 5%); Ref.: Cramer, C. J.; Essentials of Computational Chemistry: Theories and Models; $2^{\text {nd }}$ Ed., Wiley, New York, 2004, page 190.

The spin multiplicity for a molecule is given by the equation $2 S+1$, where S is the total spin for the molecule. Thus, a doublet state (one unpaired electron, i.e. a radical) has a spin multiplicity of 2 . All calculated molecules here have no symmetry (i.e. point-group is C_{1}).

References

1. Gaussian 03, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;

Appendix Six

Copies of Publications Arising
from Work Reported in this Thesis

Chemoenzymatic Approaches to the Montanine Alkaloids: A Total Synthesis of (+)-Brunsvigine

Martin G. Banwell,* Okanya J. Kokas, and Anthony C. Willis
Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia
mgb@rsc.anu.edu.au

Received June 7, 2007

(+)-brunsvigine [(+)-1]
(non-natural enantiomer)
The readily available and enzymatically derived cis-1,2-dihydrocatechols 3a and 3b have been elaborated over 17 steps, including a novel radical addition/elimination sequence, into the enantiomer, $(+)-1$, of the montanine alkaloid brunsvigine $[(-)-1]$.
$(-)$-Brunsvigine $[(-)-1]^{1-3}$ is a representative member of a relatively small group of natural products known as the montanine alkaloids which incorporate the 5,11-methanomorphanthridine framework and bear hydroxy or methoxy groups in varying configurations at $\mathrm{C}-2$ and $\mathrm{C}-3 .{ }^{4}$ The isolation of (+)-montabuphine, ${ }^{5}$ assigned structure 2, from the Amaryllidaceae species Boophane flava found in Southern Africa suggests that both enantiomeric forms of the framework can be encountered within this class of natural product. Little is known about the biological properties of such compounds, ${ }^{4,6}$ although their structural similarity to other pharmacologically active Amaryllidaceae alkaloids suggests they deserve attention in this regard.

[^2]Two distinct end-games have been employed in the limited number of total syntheses of the montanine alkaloids reported

. OMe

(+)-1

3a $X=\mathrm{Cl}$
$3 \mathrm{bX}=\mathrm{Br}$
thus far. The first of these, as highlighted in Overman's 1992 synthesis of (\pm)-pancracine, ${ }^{7}$ involves subjecting an appropriately configured 3 -arylated perhydroindole to the Pictet-Spengler reaction. Pearson has exploited this same approach in the preparation of $(+)$-coccinine, ${ }^{8}$ as has Sha in a synthesis of (-)-brunsvigine. ${ }^{9}$ The second type of end-
game relies on the assembly of the morphanthridine skeleton incorporating a hydroxymethyl group at $\mathrm{C}-11$ and installation of the 5,11-methano bridge by activation of the hydroxyl moiety, then displacement of the activated unit by $\mathrm{N}-5$. Hoshino first deployed this approach in syntheses of (\pm)montanine, (\pm)-coccinine, (\pm)-O-acetylmontanine, (\pm)-pancracine, and (\pm)-brunsvigine. ${ }^{10}$ Subsequently, Weinreb applied this strategy in enantioselective total syntheses of $(-)$ montanine, (- -coccinine, and (- -pancracine. ${ }^{11}$ Several formal total syntheses of various members of the montanine alkaloid class have also been described, ${ }^{12}$ and all but two ${ }^{12 a, d}$ rely on one or other of the two end-games just described. Herein we outline a chemoenzymatic synthesis of the enantiomer, $(+)-\mathbf{1}$, of $(-)$-brunsvigine $[(-)-\mathbf{1}]$ that starts from the monochiral 3-halo-cis-1,2-dihydrocatechols 3a and 3b, each of which can be obtained in multigram quantities through the whole-cell biotransformation of the corresponding halobenzene. ${ }^{13}$ The strategy used involves the late-stage application of the Pictet-Spengler reaction and a novel radical addition/elimination process ${ }^{14}$ that permits the ready and completely regiocontrolled introduction of the $\Delta^{1,11 a_{-}}$ alkene associated with all of the title alkaloids.
The early stages (Scheme 1) of the total synthesis of (+)brunsvigine involved assembly of the precursor to the E-ring and began with the p-methoxyphenyl or PMP-based acetal derivatives $4,{ }^{15}$ of compounds $\mathbf{3 a}$ and $\mathbf{3 b}$. These acetals were subjected to a regio- and diastereo-selective cis-dihydroxylation under the UpJohn conditions, ${ }^{16}$ and the resulting diols $\mathbf{5 a}(65 \%$ from 3a) and $\mathbf{5 b}(66 \%)$ converted, under standard conditions involving $\mathrm{MOM}-\mathrm{Cl}$ and sodium hydride, into the corresponding bis-MOM ethers $\mathbf{6 a} \mathbf{(9 1 \%)}$ and $\mathbf{6 b}$ (88%), respectively. Reductive cleavage of the acetal moiety within these last compounds was effected regioselectively using DIBAL-H, ${ }^{15}$ affording the p-methoxylbenzyl or PMB-ethers 7a (64\%) and 7b (60\%), respectively. Conversion of these alcohols into the corresponding iodides, 8a (81\%) and $\mathbf{8 b}$ (66%), could be achieved using triiodoimidazole in the
(6) Very recently (- -montanine has been shown to display anxiolytic, antidepressant and anticonvulsant-type effects in mice: Schürmann da Silav, A. F.; de Andrade, J. P.; Bevilaqua, L. R. M.; da Souza, M. M.; Izquierdo, I.; Henriques, A. T.; Zuanazzi, J. A. S. Pharmacol., Biochem. Behav. 2006, 85, 148.
(7) Overman, L. E.; Shim, J. J. Org. Chem. 1991, 56, 5005.
(8) Pearson, W. H.; Lian, B. W. Angew. Chem., Int. Ed. 1998, 37, 1724.
(9) Sha, C.-K.; Hong, A.-W.; Huang, C.-M. Org. Lett. 2001, 3, 2177.
(10) Ishizaki, M.; Hoshino, O.; Iitaka, Y. J. Org. Chem. 1992, 57, 7285.
(11) Jin, J.; Weinreb, S. M. J. Am. Chem. Soc. 1997, 119, 5773.
(12) (a) Ishizaki, M.; Kurihara, K.-I.; Tanazawa, E.; Hoshino, O. J. Chem. Soc., Perkin Trans. 1 1993, 101. (b) Ikeda, M.; Hamada, M.; Yamashita, T.; Matsui, K.; Sato, T.; Ishibashi, H. J. Chem. Soc., Perkin Trans. 1 1999, 1949. (c) Banwell, M. G.; Edwards, A. J.; Jolliffe, K. A.; Kemmler, M. J. Chem. Soc., Perkin Trans. 1 2001, 1345. (d) Pandey, G.; Banerjee, P.; Kumar, R.; Puranik, V. G. Org. Lett. 2005, 7, 3713.
(13) For reviews on methods for generating cis-1,2-dihydrocatechols by microbial dihydroxylation of the corresponding aromatics, as well as the synthetic applications of these metabolites, see: (a) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichimica Acta 1999, 32, 35. (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Vögtle, M. Pure Appl. Chem. 2003, 75, 223. (c) Johnson, R. A. Org. React. 2004, 63, 117.
(14) Stanislawski, P. C.; Willis, A. C.; Banwell, M. G. Org. Lett. 2006, $8,2143$.
(15) Compound $\mathbf{4 b}$ has been described previously: Banwell, M. G.; McRae, K. J.; Willis, A. C. J. Chem. Soc., Perkin Trans. 1 2001, 2194.
(16) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.

presence of imidazole and triphenylphosphine, ${ }^{17}$ although in each of these reactions leading to such products they were accompanied by the hydroquinone derivative $9(2.5-6 \%)$. The structures of compounds $8 \mathbf{a}$ and $\mathbf{9 b}$ follow from singlecrystal X-ray analyses. ${ }^{18}$ Reductive deiodination of dihalides $\mathbf{8 a}$ and $\mathbf{8 b}$ was achieved using tri- n-butyltin hydride and without any complications arising from competitive removal of the halogens attached to the associated alkene. The ensuing PMB-ethers 10a (85\%) and 10b (84\%) were each subjected to cleavage with DDQ, and the alcohols 11a (96\%) and 11b (98%) so formed engaged in Mitsunobu reactions using diphenylphosphoryl azide (DPPA) ${ }^{19}$ as the nucleophile. The ensuing azides 12a (93%) and 12b (75%) thus formed were then each subjected to a Staudinger reaction using triphenylphosphine in aqueous THF, and the resulting primary amines 13a (87%) and 13b (98%) engaged in reductive amination reactions using p-methoxybenzaldehyde then sodium cyanoborohydride to give the corresponding secondary amines $\mathbf{1 4 a}$ (90%) and $\mathbf{1 4 b}$ (56%).

The assembly of the precursor to the AB -ring substructure of $(+)$-brunsvigine is shown in the early parts of Scheme 2 and used protocols defined by Ikeda et al. ${ }^{12 b}$ Thus, 1,2methylenedioxybenzene was treated with ethyl α-chloro- α -

[^3]
thiophenylacetate in the presence of TiCl_{4} to give, after saponification of the product ester with NaOH , the α-arylated acetic acid 17 (99%). EDCI-promoted coupling of this compound with either amine $\mathbf{1 4 a}$ or $\mathbf{1 4 b}$ gave the corresponding amides 18a (86\%) and 18b (74\%), each of which was obtained as a ca. 1:1 mixture of diastereoisomers. In a pivotal step of the synthesis, compounds $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ were each subjected to reaction with mixtures of hexa- n-butylditin, tri- n-butyltin hydride, and AIBN so as to generate, via homolytic cleavage of the thiophenyl unit, a benzylic radical that engages in a 5-exo-trig cyclization/halide radical elimination reaction sequence, ${ }^{14}$ thus forming the D-ring of target $(+)-\mathbf{1}$. This sequence led to a mixture of the 3-arylhexahydrooxindole 19 (0% from 18a and 7% from 18b) and the required epimer 20 (29% from 18a and 60% from 18b) together with varying quantities of those compounds arising from reductive cleavage of the thiophenyl and/or halogen residue within the starting materials. The lactam carbonyl within product 20 was removed using in situ generated AlH_{3} and the hexahydroindole 21 thus obtained in 94% yield. Because the looming Pictet-Spengler reaction requires the presence of acid-stable hydroxyl protecting groups, the MOM-ether residues within compound 21 were removed using aqueous HCl in methanol and the ensuing diol 22 (73%) subjected to reaction with triphosgene. ${ }^{20}$ Use of this reagent not only resulted in the conversion of the cis-diol
residue within substrate 22 into the acid-stable cyclic carbonate but also effected cleavage of the PMB-protected amine to form the corresponding carbamoyl chloride 23 which was immediately treated with aqueous dioxane in the presence of traces of HCl to give the cyclic secondary amine 24 (42% from 22). Treatment of the last compound with paraformaldehyde in aqueous formic acid at $80^{\circ} \mathrm{C}$ effected the pivotal Pictet-Spengler reaction to generate compound $\mathbf{2 5}$ (65\%) embodying the full pentacyclic framework of target $(+)$-brunsvigine. Finally, subjection of carbonate 25 to reaction with KOH in methanol at $18{ }^{\circ} \mathrm{C}$ afforded compound $(+)-1\left[\mathrm{mp} \mathrm{130-140}{ }^{\circ} \mathrm{C}\right.$ (sesquihydrate-recrystallized from wet acetone); lit. ${ }^{1} \mathrm{mp} 140-150^{\circ} \mathrm{C}$ (for sesquihydrate of the enantiomer)] in 87% yield. The spectral data derived from this material were in full accord with the assigned structure, but final confirmation of this followed from a single-crystal X-ray analysis. ${ }^{18}$ The specific rotation of (+)-brunsvigine $\left\{[\alpha]_{\mathrm{D}}+75.9\right.$ (c 0.1, ethanol) $\}$ was of similar magnitude but opposite sign to that reported ${ }^{21}$ for its enantiomer $\left\{[\alpha]_{D}\right.$ -76.3 (c 1, ethanol) \}.
Given the availability of the enantiomeric forms of starting materials 3a and 3b, ${ }^{13}$ the work detailed above will also

[^4]provide access to (-)-brunsvigine. Moreover, it seems reasonable to suggest that rather straightforward modifications to the reaction sequences defined above should permit the efficient preparation of many other members of the montanine alkaloid class. Work directed to such ends is now underway in these laboratories, and results will be reported in due course.

Acknowledgment. We thank the Institute of Advanced Studies and the Australian Research Council for generous financial support.

Supporting Information Available: Preparation and characterization of selected compounds; atomic displacement ellipsoid plots together with certain other materials derived from the single-crystal X-ray analyses of compounds $\mathbf{8 a}, \mathbf{9 b}$, and (+) $\mathbf{1}$ (CCDC numbers 632321, 632322, and 641134, respectively); and ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}$ NMR spectra of compounds 11a, $\mathbf{1 1 b}, 14 \mathrm{a}, 14 \mathrm{~b}, 20,25$, and (+)-1. This material is available free of charge via the Internet at http://pubs.acs.org.

OL071344Y

Chemoenzymatic Approaches to Lycorine-Type Amaryllidaceae Alkaloids: Total Syntheses of ent-Lycoricidine, 3-epi-ent-Lycoricidine, and 4-Deoxy-3-epi-ent-lycoricidine

Maria Matveenko, Okanya J. Kokas, Martin G. Banwell,* and Anthony C. Willis
Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200, Australia

mgb@rsc.anu.edu.au
Received July 2, 2007

ABSTRACT

The readily available and enzymatically derived cis-1,2-dihydrocatechol 4 has been elaborated, over 11 steps including an Overman rearrangement, into the non-natural enantiomer, $(-)-1$, of the alkaloid lycoricidine $[(+)-1]$. Related chemistries have provided analogues 18, 19, and 26.

The lycorine-type Amaryllidaceae alkaloids (+)-lycoricidine $[(+)-1],(+)$-narciclasine [(+)-2], and (+)-pancratistatin [(+)3] have been known for many years and have been isolated from, inter alia, plants of the genus Amaryllidaceae including the bulbs of narcissi and daffodils. ${ }^{1}$ The potent biological properties of such compounds, particularly their carcinostatic and antiviral qualities, have resulted in their being considered for use as therapeutic agents. ${ }^{2}$ For example, (+)-pancratistatin and some of its derivatives have been the subject of preclinical development studies as agents for the treatment of certain cancers. ${ }^{2}$ This situation, together with the limited

[^5]availability of certain of these alkaloids from natural sources, has prompted a substantial body of work directed at the development of practical synthetic routes to these compounds and various analogues. The extensive efforts devoted to this matter have been the subject of a number of recent reviews. ${ }^{3}$ Work in the area continues unabated. ${ }^{4}$

As part of a continuing program to exploit readily available, microbially derived and enantiomerically pure cis-1,2-dihydrocatechols such as $\mathbf{4}$ as starting materials in chemical synthesis, ${ }^{5}$ we have developed and now report efficient synthetic sequences that enable the rather rapid

[^6]transformation of this material into ent-lycoricidine [(-)-1] and various congeners. Hudlicky and co-workers have exploited metabolite $\mathbf{4}$ and its enantiomer in cycloaddition and aziridination protocols culminating in elegant total syntheses of alkaloids $\mathbf{1 - 3}$ as well as various related (especially deoxygenated) systems. ${ }^{3}$ The present work is distinct in that very different protocols have been applied to compound $\mathbf{4}$ in order to obtain the title compounds.

The syntheses of 3-epi-ent-lycoricidine and that analogue lacking the methylenedioxy unit are shown in Scheme 1.

Thus, cis-1,2-dihydroxylation of the readily accessible p methoxybenzylidene acetal derivative $5^{6,7}$ of metabolite 4

[^7]under the UpJohn conditions ${ }^{8}$ followed by treatment of the resulting diol (6) with MOM-Cl in the presence of base afforded the previously reported ${ }^{7}$ compound 7 (59\% from 5). Treatment of this last compound with DIBAL-H resulted in essentially completely regiocontrolled cleavage of the PMP-acetal residue within the substrate and formation of the alcohol $\mathbf{8}^{7}$ (84%) that was immediately protected, using standard conditions, as the corresponding MOM-ether 9 (90%). Oxidative cleavage of the PMB-ether residue within this last compound using DDQ then afforded alcohol 10 (95%), which was immediately converted into the corresponding mesylate $\mathbf{1 1}$ using a minor modification of the Crossland-Servis procedure. ${ }^{9}$ Reaction of compound 11 with sodium azide afforded the expected $\mathrm{S}_{\mathrm{N}} 2$ product 12 (95\% from 10) that was reduced to the corresponding amine 13 (99%) using the Staudinger protocol. ${ }^{10}$ Subjection of compound $\mathbf{1 3}$ to reaction with the commercially available boronate ester $\mathbf{1 4}$ under Suzuki-Miyaura cross-coupling conditions ${ }^{11}$ in a microwave reactor then provided the tricyclic compound $\mathbf{1 6}$ in 50% yield. Thus far, we have been unable to determine the precise order of events associated with the conversion $13+14 \rightarrow \mathbf{1 6}$ but presume that the cross-coupling reaction precedes the lactamization step. This last step contrasts with most other protocols ${ }^{3}$ for establishing the lactam ring of such isocarbostyrils that often involve the application of a modified Bischler-Napieralski cyclization reaction. ${ }^{3,12}$ Treatment of compound $\mathbf{1 6}$ with trimethylsilyl bromide at $-30{ }^{\circ} \mathrm{C}^{13}$ resulted in cleavage of the MOMprotecting groups and formation of the corresponding triol 18 (43\%). Reaction of boronate 15^{14} with compound 13 under the same conditions as just described afforded the coupling product 17 (69%) that then gave 3-epi-ent-lycoricidine ($\mathbf{1 9)}$ (44%) upon exposure to trimethylsilyl bromide.

The synthesis of the 4-deoxy analogue of compound 19 was achieved in a similar manner (Scheme 2). Thus, treatment of alcohol $\mathbf{8}^{7}$ with a mixture of triiodoimidazole, imidazole, and triphenylphosphine gave the iodide $\mathbf{2 0}^{7}(81 \%)$ that was immediately reduced with tri- n-butyltin hydride to

give the iodinated system $\mathbf{2 1}^{7}$ (85\%). Subjection of the last compound to treatment with DDQ afforded alcohol 22 (96\%) that was immediately converted into the corresponding mesylate $\mathbf{2 3}$ under standard conditions. Treatment of compound $\mathbf{2 3}$ with sodium azide afforded the expected product 24^{7} (76% from 22) that was reduced directly to the amine $\mathbf{2 5}^{7}$ (96\%) under Staudinger conditions. Suzuki-Miyaura cross-coupling of this last compound with boronate ester $\mathbf{1 5}$ followed by treatment of the product lactam (62%) with trimethylsilyl bromide then gave 4-deoxy-3-epi-ent-lycoricidine (26) in 92% yield.
The synthesis of ent-lycoricidine [(-)-1] followed very similar lines (Scheme 3) and involved initial reaction of alcohol $\mathbf{1 0}$ with trichloroacetonitrile in the presence of DBU to give the acetimidate 27. Subjection of this last compound to microwave irradiation in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{15}$ resulted in an Overman rearrangement ${ }^{16}$ and the formation of the acetamide derivative $\mathbf{2 8}$ (65% from 10). To the best of our knowledge the conversion $\mathbf{2 7} \rightarrow \mathbf{2 8}$ represents the first example of such a rearrangement that involves a halogenated alkene and that is effected by microwave irradiation. Hydrolysis of amide 28 was achieved using DIBAL- H^{17} and provided amine 29 (89%) that could be subjected to a Suzuki-Miyaura cross-coupling reaction with boronate ester 15. The ensuing lactam (83%) was treated with trimethylsilyl bromide to give ent-lycoricidine $[(-)-1]^{18}$ in 62% yield. The NMR, MS, and IR spectral data derived from this material were completely consistent with those reported for both the natural product ${ }^{18}$ and its enantiomer. ${ }^{18}$ Similarly, the specific rotation of our material $\left\{[\alpha]_{\mathrm{D}}=-141\right.$ (c 0.44 , pyridine) $\}$ was consistent with that reported ${ }^{18}$ previously $\left\{[\alpha]_{D}=-164\right.$ (c 0.45 , pyridine) for (-)- $\mathbf{1}\}$. Final confirmation of structure followed a single-crystal X-ray analysis ${ }^{19}$ of the derived triacetate 30 (70%): $\mathrm{mp}=224-228{ }^{\circ} \mathrm{C}$ (lit. ${ }^{18} \mathrm{mp}=205-$

[^8]
$\left.210{ }^{\circ} \mathrm{C}\right) ;[\alpha]_{\mathrm{D}}=-196\left(c 0.40, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit. ${ }^{18}[\alpha]_{\mathrm{D}}=-205$ (c $0.40, \mathrm{CHCl}_{3}$) .

Given the availability of the enantiomer of starting material $4,{ }^{5}$ the work detailed above will also provide access to (+)lycoricidine $[(+)-\mathbf{1}]$. Moreover, it seems reasonable to suggest that rather straightforward modifications to these reaction sequences should permit the efficient preparation of other members of the lycorine alkaloid class. Work directed to such ends is now underway in these laboratories and results will be reported in due course.

Acknowledgment. We thank the Institute of Advanced Studies and the Australian Research Council for generous financial support. Mr. José Basutto (Australian National University) is warmly acknowledged for helpful discussions.

Supporting Information Available: Full experimental procedures; crystallographic data and atomic displacement ellipsoid plot for compound 30 (CCDC no. 648758); ${ }^{1} \mathrm{H}$ and/ or ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1 8}, \mathbf{1 9}, 26,29,(-)-1$, and 30 . This material is available free of charge via the Internet at http://pubs.acs.org.

[^9]Acta Crystallographica Section E
Structure Reports
Online
ISSN $1600-5368$
Editors: W . Clegg and D.G.W atson

(2R,3aS,5aR,8aR,8bS)-4-Bromo-2-(4-methoxyphenyl)-7,7-dimethyl-3a,5a,8a,8b-tetrahydrobenzo[1,2-d:3,4-d']bis[1,3]dioxole
 Martin G. Banwell, Okanya J. Kokas and Anthony C. Willis

[^10]Acta Crystallographica Section E
Structure Reports
Online
SSN 1600-5368

(2R , $3 \mathrm{aS}, 5 \mathrm{aR}, 8 \mathrm{aR}, 8 \mathrm{bS}$)-4 Brom o-2-(4m ethoxyphenyl)-7,7-dim ethyl-3a,5a,-8a,8b-tetrahydrobenzo [1,2-d:3,4-d $]$ bis[1,3]dioxole

M artin G . Banw ell,* O kanya J. Kokas and Anthony C . W inlis

Research SchoolofChem istry, Instiute ofAdvanced Studies, The Austalian N ational University, Canbema, ACT 0200, Australia
Comespondence e-m ail: m gbo rsc anu edu au

Received 8 August 2007; accepted 8 August 2007
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K} ; \mathrm{m}$ ean $(\mathrm{C}-\mathrm{C})=0.005 \dot{A}$; R factor $=0.034 ; \mathrm{wR}$ factor $=0.078$; data-to-param eter ratio $=13.9$.

The tithe compound, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{5}$, bears an exo-orientated or R -configured 4-m ethoxyphenylgroup and inconporates a C 0 bond that is distinctly shorter than the three rem aining acetalc- O bonds [1.415 (4) versus 1.431 (4)-1.448 (4) \AA and 1.421 (4) versus 1.436 (4)-1.448 (4) A for the two molecules in the asymm etric unit].

Related literature

For related literature, Banwell et al. (2003); Boyd et al (1991); H ume etal (2005).

Experim ental

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{5}$
$\mathrm{M}_{r}=38324$
M onoclinic, $\mathrm{P}_{1}{ }_{1}$
$\mathrm{a}=52285(1) \AA$
$\mathrm{A}=33.4467(9) \AA$
$\mathrm{C}=9.4726(3) \AA$
$=91.7226(12)$
$V=1655.78$ (7) A°
$M_{r}=3$
M onocinic, $\mathrm{P} 2_{1}$
$a=52285$ (1) A.
$\mathrm{C}=9.4726$ (3) A
$=91.7226$ (12)

D ata collection
N onius K appaCCD diffractom eter
A bsorption comection: integration
vie G aussian method (Coppens,
1970) implem ented in maX us
(M adkay etal, 1999)
$\mathrm{T}_{\mathrm{min}}=0.546, \mathrm{~T}_{\text {max }}=0.892$
Refinement
$R\left[F^{2}>2\left(F^{2}\right)\right]=0.034$
H atom param eters not refined $\max =058 \mathrm{eA}^{\circ}{ }^{3}$
$\min ^{2}=082 \mathrm{eA}^{3}$
A bsolute stucture: Flack (1983), 2828 Friedel pairs
Flack param eter: 0.012 (6)

Data colection: COLLECT (Nonius, 1997); cell refinemen DENZO SCALEPACK (O tw inowski \& M inor, 1997); data reduc tion: DENZO SCA LEPA CK ; program (s) used to solve structure SIR 92 (A ltom are et al, 1994); program (s) used to refine structure CRYSTALS (Betteridge etal, 2003); m olecular graphics: ORTEP] (Johnson, 1976) in TEXSAN M oleaular Structure Corporation 1997); software used to prepare material for publication: CRYs TALS.

We thank the Australian Resparch Council for financie support.

Supplem entary data and figures for this paper are available from th IU Crelectronic archives (R eference:BT2471).

References

A ltom are, A ., Cascarano, G ., G iacovazzo, C ., G uagliardi, A ., Buria, M . C Polidori, G.\& Cam alli, M . (1994).J.A ppl Cryst. 27, 435.
Banwell, M . . ., Edwards, A . J., H arfoot, G . J., Jolliffe, K . J., M cLeod, M .D M CR ae, K .J., Stew art, S.G .\& Vögtle,M . (2003) .Pure A ppl. Chem .75, 22 229.

Betteridge, P.W ., Camuthers, J. R , Cooper, R . I., Prout, K . \& W atkin, D (2003). J.A ppl Cryst. 36, 1487.

Boyd, D . R ., D orrity, M . R . J., H and, M . V ., M abne, J. F., Sharm a, N . D D alton, H ., G ray, D . J. \& Sheldrake, G .N . (1991). J.Am . Chem . Soc. 11 666-667.
Coppens, P. (1970).Crystallographic Com puting, edited by F.R .A hm ed, S. H all\& C.P.H uber, pp. 255-270. Copenhagen:M unksgaard.
Fladk, H.D. (1983).A cta Cryst.A 39, 876-881.
Hulme, A., Compton, T., Parsons, S. \& M eqpenger, D. (2005). Priva communication (refcode NASZA J). CCD C, Union R oad, Cambridg England.
Johnson, C . K . (1976) . O RTE PII. Report O RN L 5138.0 ak R idge N ation Laboratory, Tennespe, U SA.
M olealbe Structure Corporation (1997).TEXSAN .Version 18. M SC, Tl W oodlands TX 77381, U SA .
N onius (1997). CO LLECT.N onius BV, D elft, The N etherlands.
O twinowski, Z . \& M ninor, W . (1997). M ethods in Enzymology, Vol 27 M acrom olbularCrystallography, PartA, edited by C .W .CarterJr\& R .M Sweet, pp. 307-326.N ew York: A cadem ic Press.

supplementary materials

Acta Cryst. (2007). E63, o3820 [doi:10.1107/S1600536807039232]

(2R,3aS,5aR,8aR,8bS)-4-Bromo-2-(4-methoxyphenyl)-7,7-dimethyl-3a,5a,8a,8b-tetrahy-drobenzo[1,2-d:3,4- $\left.d^{\prime}\right]$ bis [1,3]]dioxole

M. G. Banwell, O. J. Kokas and A. C. Willis

Comment

As part of a program directed towards exploiting microbially derived and enantiomerically pure cis-1,2-dihydrocatechols in the synthesis of certain biologically active natural products (Banwell et al., 2003), we generated an epimeric mixture of compounds (I) and (II) then subjected this to reaction with DIBAL-H. At 195-233 K one of these two benzylidene acetals participated more readily in the anticipated reductive cleavage reaction leading to the desired p-methoxybenzyl ether (III). The unreacted epimer was recovered and subjected to single-crystal X-ray analysis and thus establishing that it was compound (II) incorporating an exo-orientated or R-configured 4-methoxyphenyl group at C 2 . This outcome is consistent with the notion that the reactive epimer (I) can, by virtue of reduced steric effects, complex DIBAL-H at the O1-acetal oxygen more readily than (II) and thus engage, selectively, in the ring-cleavage process leading to target (III). The present structure represents only the second reported for a 4-methoxyphenylacetal derivative of a cis-cyclohexane-1,2-diol (Hulme et al., 2005).

The crystallographic asymmetric unit within the solid-state structure of compound (II) consists of two independent molecules. The compound is enantiomerically pure and its absolute configuration has been determined by refinement of the Flack parameter. The outcome of this determination is in agreement with that predicted on the basis of the absolute configuration of the precursor, viz. ($1 S, 2 S$)-3-bromo-3,5-cyclohexadiene-1,2-diol (Boyd et al., 1991). The three non-aromatic rings within the title compound are each close to planar and with the two 1,3 -dioxolane rings clearly attached to the opposite faces of the central cyclohexene residue. The allylic and homo-allylic $\mathrm{C}-\mathrm{O}$ bonds associated with the two heterocyclic rings are all of similar length ($1.430-1.438 \AA$) but the $\mathrm{C} 2-\mathrm{O} 3$ bond is notably shorter than the three remaining acetal carbon to oxygen bonds ($1.418 v s 1.438-1.444 \AA$) within the molecule. The origins of this variation are unclear at the present time.

Experimental

A magnetically stirred solution of a 5:3 mixture of the benzylidene acetals (I) and (II) ($88 \mathrm{mg}, 0.23 \mathrm{mmol}$) in anhydrous dichloromethane/pentane (1.4 ml of a $1: 1 \mathrm{v} / v$ mixture) was cooled to 195 K then treated, dropwise, with DIBAL-H (1.15 ml of a 1.0 M solution in dichloromethane). The resulting mixture was warmed to 233 K and after 6 h at this temperature was treated with sodium potassium tartrate (5 ml of a 1 M aqueous solution). The ensuing mixture was allowed to stir at 291 K for 2 h then the separated aqueous fraction was extracted with dichloromethane $(3 \times 40 \mathrm{ml})$. The combined organic phases were washed with brine $(1 \times 50 \mathrm{ml})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a clear, colourless oil. Subjection of this material to flash chromatography (silica, $1: 4 v / v$ ethyl acetate/hexane elution) afforded two fractions, A and B .

Concentration of fraction $\mathrm{A}\left(R_{\mathrm{f}}=1 / 5\right)$ under reduced pressure afforded the benzyl ether (III) [$41 \mathrm{mg}, 74 \%$ based on available (I)] as a clear, colourless oil, $[\alpha]_{\mathrm{D}}-59.9\left(c 0.05, \mathrm{CHCl}_{3}\right)$ (Found: $M^{+}, 384.0570 . \mathrm{C}_{17} \mathrm{H}_{21}{ }^{79} \mathrm{BrO}_{5}$ requires M^{+}, 384.0572). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(2 H, \mathrm{~d}, J=8.7 \mathrm{~Hz}), 6.90(2 H, \mathrm{~d}, J=8.7 \mathrm{~Hz}), 6.24(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 4.84$

supplementary materials

$(1 H, \mathrm{~d}, J=10.8 \mathrm{~Hz}), 4.68-4.61(2 H$, complex m), 4.36(2H, m), 4.15-4.10(2 H , complex m), $3.81(3 \mathrm{H}, \mathrm{s}), 1.43(3 H, \mathrm{~s}), 1.36$ $(3 H, \mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,130.1,129.9,128.6,124.2,114.1,110.1,77.9,75.4,74.0,73.4,70.5,55.5$, 28.1, 26.2 (one signal obscured or overlapping); $v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3460,2924,1612,1516,1464,1254,1089,1046$; MS (EI, 70 eV) 386 and $384\left(M^{+}\right.$, both 3\%), 256 (7), 137 (20), 121 (100), 101 (20), 81 (37), 69 (81), 55 (42), 43 (53).

Concentration of fraction $\mathrm{B}\left(R_{\mathrm{f}}=0.30\right)$ under reduced pressure afforded a solid that upon recrystallization (diethyl ether) gave the acetal (II) ($30 \mathrm{mg}, 90 \%$ recovery) as white plates, m.p. $=649-651 \mathrm{~K},[\alpha]_{\mathrm{D}}=+49.4\left(c 0.21, \mathrm{CHCl}_{3}\right)$ [Found: $(M$ $\left.-\mathrm{H}^{\cdot}\right)^{+}, 381.0334 . \mathrm{C}_{17} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{5}$ requires $\left.\left(M-\mathrm{H}^{\cdot}\right)^{+}, 381.0338\right] .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(2 H, \mathrm{~d}, J=8.4 \mathrm{~Hz})$, $6.79(2 H, \mathrm{~d}, J=8.4 \mathrm{~Hz}), 6.25(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{s}), 4.91(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.64-4.60(3 \mathrm{H}$, complex m$), 3.73$ $(3 H, \mathrm{~s}), 1.40(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s}) ; v_{\max }(\mathrm{NaCl}) / \mathrm{cm}^{-1} 2979,2896,1647,1615,1589,1517,1382,1337,1249,1220,1175$, 1090, 1060, 1025, 948, 832; MS (EI, 70 eV) 384 and $382\left(M^{+}\right.$, both 15%), 383 and 381 [$\left(M-\mathrm{H}^{-}\right)^{+}$, both 29], 336 and 334 (both 2), 200 (16), 161 (31), 137 (38), 136 (60), 135 (100), 108 (53), 77 (29), 43 (52).

Refinement

Hydrogen atoms were included at calculated positions and ride on the atoms to which they are bonded. The biggest features in a final difference electron density map are close to the Br atoms.

Figures

Figure 1. Anisotropic displacement ellipsoid plot of $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{5}$ (molecule one) with labelling of selected atoms. Ellipsoids show 50\% probability levels. Hydrogen atoms are drawn as circles with small radii.
Figure 2. Anisotropic displacement ellipsoid plot of $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{5}$ (molecule two) with labelling of selected atoms. Ellipsoids show 50% probability levels. Hydrogen atoms are drawn as circles with small radii.
Figure 3. Unit cell packing diagram of $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{5}$ projected down the a axis. Hydrogen atoms are drawn as circles with small radii.
(2R,3aS,5aR,8aR,8 bS)- 4-Bromo-2-(4-methoxyphenyl)-7,7-dimethyl-3a,5a,8a,8 b-tetrahydrobenzo[1,2 - d:3,4 $\left.d^{\prime}\right]$ bis $[1,3]$ dioxole

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrO}_{5}$

$$
F_{000}=784
$$

$M_{r}=383.24$
Monoclinic, $P 2_{1}$
$a=5.2285(1) \AA$
$b=33.4467$ (9) \AA
$c=9.4726(3) \AA$
$\beta=91.7226(12)^{\circ}$
$V=1655.78(7) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.537 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 55931 reflections
$\theta=2.6-25^{\circ}$
$\mu=2.51 \mathrm{~mm}^{-1}$
$T=200 \mathrm{~K}$
Plate, colourless
$0.45 \times 0.14 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD
diffractometer
Monochromator: graphite
$T=200 \mathrm{~K}$
φ and ω scans with CCD
Absorption correction: integration
via Gaussian method (Coppens, 1970) implemented
in maXus (Mackay et al., 1999)
$T_{\text {min }}=0.546, T_{\max }=0.892$
$k=-39 \rightarrow 39$
20604 measured reflections
5796 independent reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.078$
$S=0.97$
5796 reflections
416 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from neighbouring sites
H -atom parameters not refined
Method $=$ Modified Sheldrick $w=1 /\left[\sigma^{2}\left(F^{2}\right)+\right.$
$\left.(0.03 P)^{2}+0.44 P\right]$,
where $P=\left[\max \left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.58 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.82$ e \AA^{-3}
Extinction correction: None
Absolute structure: Flack (1983), 2828 Friedel pairs
Flack parameter: -0.012 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.3464(5)$	$0.40867(9)$	$0.5958(3)$	0.0442
C2	$0.2738(7)$	$0.40850(12)$	$0.7402(4)$	0.0359
O3	$0.0221(5)$	$0.39302(8)$	$0.7424(3)$	0.0393
C4	$-0.0224(7)$	$0.37075(11)$	$0.6148(4)$	0.0358
C5	$0.0579(8)$	$0.32792(11)$	$0.6278(4)$	0.0382

supplementary materials

C6	0.2260 (8)	0.30950 (12)	0.5503 (4)	0.0384
C7	0.3623 (7)	0.32944 (11)	0.4320 (4)	0.0345
O8	0.3249 (5)	0.30663 (8)	0.3051 (2)	0.0349
C9	0.1349 (7)	0.32616 (11)	0.2148 (4)	0.0348
O10	0.0409 (5)	0.35852 (8)	0.2978 (2)	0.0374
C11	0.2475 (7)	0.37002 (11)	0.3917 (4)	0.0364
C12	0.1353 (7)	0.39397 (12)	0.5098 (4)	0.0360
C13	0.2790 (7)	0.44947 (11)	0.8044 (4)	0.0333
C14	0.1061 (8)	0.47884 (12)	0.7616 (4)	0.0402
C15	0.1102 (8)	0.51620 (12)	0.8225 (4)	0.0408
C16	0.2883 (7)	0.52469 (11)	0.9305 (4)	0.0347
C17	0.4642 (8)	0.49634 (12)	0.9723 (4)	0.0422
C18	0.4595 (8)	0.45874 (12)	0.9093 (4)	0.0408
Br19	-0.11756 (10)	0.29887 (3)	0.76809 (4)	0.0609
C20	-0.0808 (7)	0.29762 (13)	0.1827 (4)	0.0448
C21	0.2636 (8)	0.34112 (13)	0.0852 (4)	0.0465
O22	0.2709 (5)	0.56229 (8)	0.9893 (3)	0.0439
C23	0.4571 (9)	0.57223 (12)	1.0977 (4)	0.0480
0101	0.8242 (5)	0.60404 (8)	0.6747 (3)	0.0444
C102	0.7448 (7)	0.60523 (11)	0.5282 (4)	0.0356
0103	0.4861 (5)	0.61825 (8)	0.5250 (3)	0.0392
C104	0.4501 (7)	0.64154 (11)	0.6503 (4)	0.0353
C105	0.5211 (7)	0.68426 (11)	0.6330 (4)	0.0337
C106	0.6957 (7)	0.70409 (11)	0.7083 (4)	0.0352
C107	0.8556 (7)	0.68488 (11)	0.8242 (4)	0.0325
0108	0.8519 (4)	0.70848 (9)	0.9508 (2)	0.0342
C109	0.6632 (7)	0.69170 (12)	1.0426 (4)	0.0358
0110	0.5563 (5)	0.65805 (8)	0.9668 (2)	0.0378
C111	0.7488 (8)	0.64532 (11)	0.8725 (4)	0.0363
C112	0.6229 (8)	0.61987 (12)	0.7581 (4)	0.0362
C113	0.7651 (7)	0.56493 (11)	0.4605 (4)	0.0323
C114	0.6019 (8)	0.53372 (12)	0.4985 (4)	0.0399
C115	0.6187 (8)	0.49680 (11)	0.4347 (4)	0.0388
C116	0.7973 (7)	0.49055 (11)	0.3318 (4)	0.0355
C117	0.9609 (8)	0.52082 (12)	0.2951 (4)	0.0414
C118	0.9423 (7)	0.55802 (12)	0.3611 (4)	0.0392
Br119	0.32031 (9)	0.71174 (3)	0.49172 (4)	0.0513
C120	0.4578 (8)	0.72146 (13)	1.0659 (5)	0.0527
C121	0.7960 (9)	0.67800 (14)	1.1778 (4)	0.0505
O122	0.7948 (6)	0.45324 (8)	0.2698 (3)	0.0429
C123	0.9839 (9)	0.44560 (13)	0.1674 (4)	0.0483
H21	0.3917	0.39055	0.7960	0.0430*
H41	-0.2078	0.37220	0.5861	0.0429*
H61	0.2651	0.28080	0.5711	0.0459*
H71	0.5489	0.33217	0.4563	0.0414*
H111	0.3748	0.38645	0.3405	0.0436*
H121	0.0332	0.41686	0.4701	0.0432*
H141	-0.0240	0.47275	0.6851	0.0480*
H151	-0.0141	0.53715	0.7893	0.0487*

supplementary materials

H171	0.5957	0.50268	1.0478	0.0504^{*}
H181	0.5880	0.43815	0.9403	0.0487^{*}
H201	-0.0197	0.27581	0.1198	0.0536^{*}
H202	-0.2251	0.31227	0.1341	0.0536^{*}
H203	-0.1412	0.28577	0.2727	0.0536^{*}
H211	0.1346	0.35471	0.0216	0.0560^{*}
H212	0.4012	0.36053	0.1135	0.0560^{*}
H213	0.3405	0.31807	0.0343	0.0560^{*}
H231	0.4256	0.60002	1.1320	0.0576^{*}
H232	0.6324	0.57057	1.0587	0.0576^{*}
H233	0.4434	0.55302	1.1780	0.0576^{*}
H1021	0.8522	0.62490	0.4770	0.0427^{*}
H1041	0.2679	0.63956	0.6788	0.0424^{*}
H1061	0.7226	0.73307	0.6875	0.0424^{*}
H1071	1.0354	0.68137	0.7934	0.0391^{*}
H1111	0.8841	0.62966	0.9249	0.0436^{*}
H1121	0.5266	0.59745	0.8019	0.0436^{*}
H1141	0.4723	0.53827	0.5723	0.0480^{*}
H1151	0.5024	0.47460	0.4625	0.0465^{*}
H1171	1.0916	0.51623	0.2219	0.0499^{*}
H1181	1.0616	0.57999	0.3348	0.0472^{*}
H1201	0.5305	0.74480	1.1196	0.0633^{*}
H1202	0.3854	0.73078	0.9727	0.0633^{*}
H1203	0.3194	0.70884	1.1213	0.0633^{*}
H1211	0.6672	0.66636	1.2420	0.0606^{*}
H1212	0.8821	0.70132	1.2252	0.0606^{*}
H1213	0.9267	0.65726	1.1558	0.0606^{*}
H1231	0.9627	0.41776	0.1303	0.0580^{*}
H1232	0.9630	0.46507	0.0878	0.0580^{*}
H1233	1.1584	0.44861	0.2123	0.0580^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0511(17)$	$0.0465(17)$	$0.0355(14)$	$-0.0169(13)$	$0.0087(13)$	$-0.0127(13)$
C2	$0.035(2)$	$0.039(2)$	$0.034(2)$	$-0.0014(17)$	$-0.0008(16)$	$-0.0041(17)$
O3	$0.0432(16)$	$0.0415(15)$	$0.0333(14)$	$-0.0120(13)$	$0.0064(11)$	$-0.0104(12)$
C4	$0.037(2)$	$0.039(2)$	$0.0318(19)$	$-0.0038(17)$	$-0.0044(16)$	$-0.0093(16)$
C5	$0.050(3)$	$0.032(2)$	$0.031(2)$	$-0.0090(18)$	$-0.0070(18)$	$-0.0013(17)$
C6	$0.051(2)$	$0.032(2)$	$0.032(2)$	$0.0052(17)$	$-0.0079(17)$	$0.0006(16)$
C7	$0.037(2)$	$0.033(2)$	$0.033(2)$	$0.0052(17)$	$-0.0006(17)$	$-0.0070(17)$
O8	$0.0360(14)$	$0.0368(16)$	$0.0312(13)$	$0.0076(11)$	$-0.0078(11)$	$-0.0084(11)$
C9	$0.037(2)$	$0.036(2)$	$0.032(2)$	$0.0106(16)$	$-0.0030(16)$	$-0.0073(16)$
O10	$0.0478(15)$	$0.0364(14)$	$0.0277(13)$	$0.0114(12)$	$-0.0035(11)$	$-0.0080(11)$
C11	$0.045(2)$	$0.034(2)$	$0.0309(19)$	$-0.0037(17)$	$0.0001(16)$	$-0.0034(16)$
C12	$0.050(2)$	$0.030(2)$	$0.0274(19)$	$0.0009(17)$	$-0.0008(17)$	$-0.0041(15)$
C13	$0.039(2)$	$0.034(2)$	$0.0274(19)$	$-0.0039(17)$	$0.0035(16)$	$-0.0057(16)$
C14	$0.044(2)$	$0.042(2)$	$0.034(2)$	$0.0015(19)$	$-0.0099(18)$	$-0.0020(18)$

supplementary materials

C15	$0.050(2)$	$0.034(2)$	$0.038(2)$	$0.0044(18)$	$-0.0057(18)$	$0.0018(17)$
C16	$0.045(2)$	$0.028(2)$	$0.0310(19)$	$-0.0050(17)$	$0.0054(16)$	$-0.0016(15)$
C17	$0.044(2)$	$0.040(2)$	$0.042(2)$	$0.0012(19)$	$-0.0105(18)$	$-0.0111(18)$
C18	$0.044(2)$	$0.037(2)$	$0.041(2)$	$0.0050(18)$	$-0.0100(18)$	$-0.0079(17)$
Cr19	$0.0886(4)$	$0.0553(3)$	$0.0393(2)$	$-0.0281(3)$	$0.0087(2)$	$0.0010(2)$
C20	$0.034(2)$	$0.045(2)$	$0.055(2)$	$0.003(2)$	$-0.0052(17)$	$-0.015(2)$
C21	$0.053(3)$	$0.052(3)$	$0.035(2)$	$0.006(2)$	$0.0036(19)$	$-0.0011(19)$
O22	$0.0618(18)$	$0.0291(15)$	$0.0407(16)$	$-0.0040(14)$	$-0.0010(13)$	$-0.0046(12)$
C23	$0.070(3)$	$0.035(2)$	$0.039(2)$	$-0.018(2)$	$-0.001(2)$	$-0.0034(18)$
O101	$0.0498(17)$	$0.0489(18)$	$0.0337(14)$	$0.0165(14)$	$-0.0081(12)$	$-0.0132(12)$
C102	$0.034(2)$	$0.038(2)$	$0.034(2)$	$0.0044(17)$	$-0.0005(16)$	$-0.0067(17)$
O103	$0.0385(15)$	$0.0420(15)$	$0.0367(14)$	$0.0062(12)$	$-0.0059(11)$	$-0.0133(12)$
C104	$0.038(2)$	$0.035(2)$	$0.033(2)$	$0.0003(17)$	$0.0032(16)$	$-0.0087(16)$
C105	$0.039(2)$	$0.034(2)$	$0.0290(19)$	$0.0018(17)$	$0.0033(16)$	$-0.0022(16)$
C106	$0.043(2)$	$0.031(2)$	$0.0314(18)$	$-0.0011(17)$	$0.0072(16)$	$0.0014(15)$
C107	$0.033(2)$	$0.034(2)$	$0.0303(19)$	$0.0008(16)$	$0.0020(15)$	$-0.0057(16)$
O108	$0.0395(13)$	$0.0340(14)$	$0.0293(13)$	$-0.0040(12)$	$0.0048(10)$	$-0.0065(13)$
C109	$0.037(2)$	$0.039(2)$	$0.0310(19)$	$-0.0071(17)$	$0.0038(16)$	$-0.0057(16)$
O110	$0.0482(16)$	$0.0351(15)$	$0.0305(13)$	$-0.0101(12)$	$0.0081(12)$	$-0.0061(11)$
C111	$0.047(2)$	$0.031(2)$	$0.031(2)$	$0.0025(17)$	$0.0043(17)$	$-0.0026(16)$
C112	$0.051(2)$	$0.031(2)$	$0.0268(19)$	$-0.0019(18)$	$0.0058(17)$	$-0.0039(15)$
C113	$0.036(2)$	$0.032(2)$	$0.0291(18)$	$-0.0013(17)$	$-0.0023(16)$	$-0.0030(16)$
C114	$0.047(2)$	$0.040(2)$	$0.033(2)$	$-0.0009(19)$	$0.0068(18)$	$-0.0068(17)$
C115	$0.046(2)$	$0.036(2)$	$0.035(2)$	$-0.0040(18)$	$0.0020(18)$	$-0.0010(17)$
C116	$0.044(2)$	$0.029(2)$	$0.033(2)$	$0.0036(17)$	$-0.0062(17)$	$-0.0038(16)$
C117	$0.044(2)$	$0.043(2)$	$0.038(2)$	$-0.0008(19)$	$0.0136(18)$	$-0.0103(18)$
C118	$0.040(2)$	$0.035(2)$	$0.043(2)$	$-0.0019(18)$	$0.0066(18)$	$-0.0076(18)$
Br119	$0.0586(3)$	$0.0541(3)$	$0.0406(2)$	$0.0124(2)$	$-0.00977(18)$	$0.0001(2)$
C120	$0.038(2)$	$0.052(3)$	$0.068(3)$	$0.001(2)$	$0.006(2)$	$-0.016(2)$
C121	$0.061(3)$	$0.060(3)$	$0.031(2)$	$-0.009(2)$	$-0.003(2)$	$0.002(2)$
O122	$0.0602(19)$	$0.0300(15)$	$0.0386(16)$	$0.0026(13)$	$0.0018(13)$	$-0.0065(12)$
C123	$0.067(3)$	$0.041(2)$	$0.037(2)$	$0.018(2)$	$0.001(2)$	$-0.0042(19)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 2$	$1.431(4)$
$\mathrm{O} 1-\mathrm{C} 12$	$1.439(4)$
$\mathrm{C} 2-\mathrm{O} 3$	$1.415(4)$
$\mathrm{C} 2-\mathrm{C} 13$	$1.499(5)$
$\mathrm{C} 2-\mathrm{H} 21$	1.000
$\mathrm{O} 3-\mathrm{C} 4$	$1.433(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.497(5)$
$\mathrm{C} 4-\mathrm{C} 12$	$1.524(5)$
$\mathrm{C} 4-\mathrm{H} 41$	1.000
$\mathrm{C} 5-\mathrm{C} 6$	$1.315(5)$
$\mathrm{C} 5-\mathrm{Br} 19$	$1.904(4)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.502(6)$
$\mathrm{C} 6-\mathrm{H} 61$	1.000
$\mathrm{C} 7-\mathrm{O} 8$	$1.432(4)$

$\mathrm{O} 101-\mathrm{C} 102$	$1.436(4)$
$\mathrm{O} 101-\mathrm{C} 112$	$1.436(4)$
$\mathrm{C} 102-\mathrm{O} 103$	$1.421(4)$
$\mathrm{C} 102-\mathrm{C} 113$	$1.498(5)$
$\mathrm{C} 102-\mathrm{H} 1021$	1.000
$\mathrm{O} 103-\mathrm{C} 104$	$1.437(4)$
$\mathrm{C} 104-\mathrm{C} 105$	$1.486(5)$
$\mathrm{C} 104-\mathrm{C} 112$	$1.527(5)$
$\mathrm{C} 104-\mathrm{H} 1041$	1.000
$\mathrm{C} 105-\mathrm{C} 106$	$1.320(5)$
$\mathrm{C} 105-\mathrm{Br} 119$	$1.911(4)$
$\mathrm{C} 106-\mathrm{C} 107$	$1.503(5)$
$\mathrm{C} 106-\mathrm{H} 1061$	1.000
$\mathrm{C} 107-\mathrm{O} 108$	$1.436(4)$

supplementary materials

C7-C11	1.528 (5)	C107-C111	1.513 (5)
C7-H71	1.000	C107-H1071	1.000
O8-C9	1.448 (4)	O108-C109	1.448 (4)
C9-010	1.433 (4)	C109-O110	1.439 (4)
C9-C20	1.502 (5)	C109-C120	1.486 (6)
C9--C21	1.503 (5)	C109-C121	1.510 (5)
O10-C11	1.431 (4)	O110-C111	1.430 (4)
C11-C12	1.509 (5)	C111-C112	1.513 (5)
C11-H111	1.000	C111-H1111	1.000
C12-H121	1.000	C112-H1121	1.000
C13-C14	1.387 (5)	C113-C114	1.402 (5)
C13-C18	1.385 (5)	C113-C118	1.360 (5)
C14-C15	1.376 (6)	C114-C115	1.379 (5)
C14-H141	1.000	C114-H1141	1.000
C15-C16	1.391 (5)	C115-C116	1.386 (5)
C15-H151	1.000	C115-H1151	1.000
C16-C17	1.371 (5)	C116-C117	1.377 (5)
C16-O22	1.379 (4)	C116-O122	1.379 (4)
C17--C18	1.392 (5)	C117-C118	1.397 (5)
C17-H171	1.000	C117-H1171	1.000
C18--H181	1.000	C118-H1181	1.000
C20-H201	1.000	C120-H1201	1.000
C20-H202	1.000	C120-H1202	1.000
C20-H203	1.000	C120-H1203	1.000
C21-H211	1.000	C121-H1211	1.000
C21-H212	1.000	C121-H1212	1.000
C21-H213	1.000	C121-H1213	1.000
O22-C23	1.433 (4)	O122-C123	1.429 (5)
C23-H231	1.000	C123-H1231	1.000
C23-H232	1.000	C123-H1232	1.000
C23-H233	1.000	C123-H1233	1.000
C2-O1-C12	108.6 (3)	C102-O101-C112	109.0 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 3$	106.8 (3)	O101-C102-O103	106.1 (3)
O1-C2-C13	112.5 (3)	O101-C102-C113	111.5 (3)
O3-C2-C13	109.5 (3)	O103-C102-C113	110.3 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{H} 21$	109.3	O101-C102-H1021	109.6
$\mathrm{O} 3-\mathrm{C} 2-\mathrm{H} 21$	109.3	O103-C102-H1021	109.6
C13-C2-H21	109.3	C113-C102-H1021	109.6
C2-O3-C4	107.8 (3)	C102-O103-C104	107.3 (3)
O3-C4-C5	113.0 (3)	O103-C104-C105	113.0 (3)
O3-C4-C12	102.1 (3)	O103-C104-C112	101.9 (3)
C5-C4-C12	112.7 (3)	C105-C104-C112	112.7 (3)
O3-C4-H41	109.6	O103-C104-H1041	109.7
C5-C4-H41	109.6	C105-C104-H1041	109.7
C12-C4-H41	109.6	C112-C104-H1041	109.7
C4-C5-C6	126.4 (4)	C104-C105-C106	126.5 (3)
C4- $55-\mathrm{Br} 19$	113.9 (3)	C104-C105-Br119	113.9 (3)
C6-C5-Br19	119.7 (3)	C106-C105-Br119	119.5 (3)
C5-C6-C7	123.3 (3)	C105-C106-C107	122.7 (3)

C5-C6-H61	118.4
C7-C6-H61	118.4
C6-C7--08	109.5 (3)
C6--C7-- 11	112.9 (3)
O8-C7-C11	102.8 (3)
C6-C7--H71	110.5
O8-C7-H71	110.5
C11-C7-H71	110.5
C7--08-C9	109.2 (3)
O8-C9-O10	104.9 (2)
O8-C9--C20	109.3 (3)
O10-C9-C20	108.9 (3)
O8-C9-C21	108.5 (3)
O10-C9-C21	111.4 (3)
C20-C9-C21	113.4 (3)
C9--O10-C11	106.2 (3)
C7-C11-O10	101.5 (3)
C7-C11-C12	116.5 (3)
O10-C11-C12	107.5 (3)
C7-C11-H111	110.3
$\mathrm{O} 10-\mathrm{C} 11-\mathrm{H} 111$	110.3
C12--C11-H111	110.3
C4- $\mathrm{Cl}^{2}-\mathrm{C} 11$	116.3 (3)
C4-C12--01	103.0 (3)
C11-C12-O1	107.0 (3)
C4-C12-H121	110.1
C11-C12-H121	110.1
$\mathrm{O} 1-\mathrm{Cl2}-\mathrm{H} 121$	110.1
C2-C13-C14	121.7 (3)
C2-C13-C18	119.9 (3)
C14-C13-C18	118.4 (4)
C13-C14-C15	121.3 (4)
C13-C14-H141	119.4
C15-C14-H141	119.4
C14-C15-C16	119.7 (4)
C14-C15-H151	120.2
C16-C15-H151	120.2
C15-C16-C17	119.9 (4)
C15-C16-O22	115.6 (3)
C17-C16-O22	124.5 (3)
C16-C17-C18	119.9 (4)
C16-C17-H171	120.1
C18-C17-H171	120.0
C17-C18-C13	120.8 (4)
C17-C18-H181	119.6
C13-C18-H181	119.6
C9- $220-\mathrm{H} 201$	109.5
C9-C20-H202	109.5
H201-C20-H202	109.5

C105-C106-H1061	118.7
C107-C106-H1061	118.7
C106-C107-O108	110.7 (3)
C106-C107-C111	113.1 (3)
O108-C107-C111	102.3 (3)
C106-C107-H1071	110.1
O108-C107-H1071	110.1
C111-C107-H1071	110.2
C107-O108-C109	108.4 (3)
O108-C109-O110	105.4 (3)
O108--C109-C120	109.8 (3)
O110-C109-C120	109.1 (3)
O108-C109-C121	108.8 (3)
O110-C109-C121	110.4 (3)
C120-C109--C121	113.1 (4)
C109-O110-C111	105.9 (3)
C107-C111-O110	101.6 (3)
C107-C111-C112	115.6 (3)
O110-C111-C112	108.4 (3)
C107-C111-H1111	110.3
O110-C111-H1111	110.3
C112-C111-H1111	110.3
C104-C112-C111	116.6 (3)
C104-C112-O101	103.6 (3)
C111-C112-O101	106.9 (3)
C104-C112-H1121	109.8
C111-C112-H1121	109.8
O101-C112-H1121	109.8
C102-C113-C114	120.6 (3)
C102-C113-C118	120.5 (3)
C114-C113-C118	118.9 (3)
C113-C114-C115	120.5 (4)
C113-C114-H1141	119.8
C115-C114-H1141	119.8
C114-C115-C116	119.8 (4)
C114-C115-H1151	120.1
C116-C115-H1151	120.1
C115-C116-C117	120.2 (4)
C115-C116-O122	116.0 (3)
C117-C116-O122	123.8 (3)
C116-C117-C118	119.3 (4)
C116-C117-H1171	120.3
C118-C117-H1171	120.3
C117-C118-C113	121.3 (4)
C117-C118-H1181	119.4
C113-C118-H1181	119.4
C109-C120-H1201	109.5
C109-C120-H1202	109.5
H1201-C120-H1202	109.5

supplementary materials

$\mathrm{C} 9-\mathrm{C} 20-\mathrm{H} 203$	109.5	$\mathrm{C} 109-\mathrm{C} 120-\mathrm{H} 1203$	109.5
$\mathrm{H} 201-\mathrm{C} 20-\mathrm{H} 203$	109.5	$\mathrm{H} 1201-\mathrm{C} 120-\mathrm{H} 1203$	109.5
$\mathrm{H} 202-\mathrm{C} 20-\mathrm{H} 203$	109.5	$\mathrm{H} 1202-\mathrm{C} 120-\mathrm{H} 1203$	109.5
$\mathrm{C} 9-\mathrm{C} 21-\mathrm{H} 211$	109.5	$\mathrm{C} 109-\mathrm{C} 121-\mathrm{H} 1211$	109.5
$\mathrm{C} 9-\mathrm{C} 21-\mathrm{H} 212$	109.5	$\mathrm{C} 109-\mathrm{C} 121-\mathrm{H} 1212$	109.5
$\mathrm{H} 211-\mathrm{C} 21-\mathrm{H} 212$	109.5	$\mathrm{H} 1211-\mathrm{C} 121-\mathrm{H} 1212$	109.5
$\mathrm{C} 9-\mathrm{C} 21-\mathrm{H} 213$	109.5	$\mathrm{C} 109-\mathrm{C} 121-\mathrm{H} 1213$	109.5
$\mathrm{H} 211-\mathrm{C} 21-\mathrm{H} 213$	109.5	$\mathrm{H} 1211-\mathrm{C} 121-\mathrm{H} 1213$	109.5
$\mathrm{H} 212-\mathrm{C} 21-\mathrm{H} 213$	109.5	$\mathrm{C} 116-\mathrm{O} 122-\mathrm{C} 12123$	109.5
$\mathrm{C} 16-\mathrm{O} 22-\mathrm{C} 23$	$116.7(3)$	$\mathrm{O} 122-\mathrm{C} 123-\mathrm{H} 1231$	$116.9(3)$
$\mathrm{O} 22-\mathrm{C} 23-\mathrm{H} 231$	109.5	109.5	
$\mathrm{O} 22-\mathrm{C} 23-\mathrm{H} 232$	109.5	$\mathrm{O} 122-\mathrm{C} 123-\mathrm{H} 1232$	109.5
$\mathrm{H} 231-\mathrm{C} 23-\mathrm{H} 232$	109.5	$\mathrm{H} 1231-\mathrm{C} 123-\mathrm{H} 1232$	109.5
$\mathrm{O} 22-\mathrm{C} 23-\mathrm{H} 233$	109.5	$\mathrm{O} 122-\mathrm{C} 123-\mathrm{H} 1233$	109.5
$\mathrm{H} 231-\mathrm{C} 23-\mathrm{H} 233$	109.5	$\mathrm{H} 1231-\mathrm{C} 123-\mathrm{H} 1233$	109.5
$\mathrm{H} 232-\mathrm{C} 23-\mathrm{H} 233$	109.5	$\mathrm{H} 1232-\mathrm{C} 123-\mathrm{H} 1233$	109.5

Fig. 1

Fig. 2

supplementary materials

Fig. 3

Fig. 4

(I)

(II)

(III)

Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368
Editors: W. Clegg and D. G. Watson

A cocrystal of ($2 S, 3 \mathrm{a} S, 4 R, 5 R, 7 \mathrm{a}$) - and ($2 R, 3 \mathrm{a}, 4 R, 5 R, 7 \mathrm{a}$) -7-bromo-2-(4-methoxyphenyl)-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (17:3)
Martin G. Banwell, Okanya J. Kokas and Anthony C. Willis

[^11]Acta Crystallographica Section \mathbf{E}
Structure Reports
Online
ISSN 1600-5368

A cocrystal of (2S,3aS,4R,5R,7aS)- and (2R,3aS,4R,5R,7aS)-7-bromo-2-(4-methoxyphenyl)-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (17:3)

Martin G. Banwell,* Okanya J. Kokas and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT 0200, Australia
Correspondence e-mail: mgb@rsc.anu.edu.au
Received 7 September 2007; accepted 25 September 2007
Key indicators: single-crystal X-ray study; $\mathrm{T}=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \dot{\mathrm{~A}}$; disorder in main residue; R factor $=0.030 ; \mathbf{w R}$ factor $=0.076$; data-to-parameter ratio $=14.4$.

The title compounds, both $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$, cocrystallize and their structures, including absolute stereochemistries, have been solved simultaneously. The structures differ in the configuration (R versus S) at the acetal C atom bearing the 4 methoxyphenyl group.

Related literature

For related literature, see: B anwell et al. (2007a,b); B oyd et al. (1991); Hulme et al. (2005).

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$	$b=9.7093(5) \AA$
$M_{r}=343.17$	$\mathrm{c}=9.9373(5) \AA$
M onoclinic, $P 2_{1}$	$\beta=95.689(3)^{\circ}$
$a=7.2245(4) \AA$	$V=693.62(6) \AA^{3}$

$Z=2$
Mo K α radiation
$\mu=2.98 \mathrm{~mm}^{-1}$

Data collection

Nonius KappaCCD area-detector diffractometer
Absorption correction: integration via Gaussian method (Coppens, 1970) implemented in maXus (Mackay et al, 1999)
$T_{\text {min }}=0.372, T_{\text {max }}=0.586$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$\mathrm{w} R\left(F^{2}\right)=0.076$
$S=0.99$
3108 reflections
216 parameters
35 restraints
H atoms treated by a mixture of independent $a n d$ constrained refinement
$T=200 \mathrm{~K}$
$0.40 \times 0.29 \times 0.26 \mathrm{~mm}$

12613 measured reflections 3108 independent reflections 2802 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$

Data collection: COLLECT (Nonius, 1997); cell refinement: DENZOISCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZOISCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEPII (Johnson, 1976) in TEXSAN (Molecular Structure Corporation, 1997); software used to prepare material for publication: CRYSTALS.

The authors thank the Australian Research Council for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2294).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Banwell, M. G., Kokas, O. J. \& Willis, A. C. (2007a). Org. Lett. 9, 3503-3506. Banwell, M. G., Kokas, O. J. \& Willis, A. C. (2007b). Acta Cryst. E63, $\mathbf{0 3 8 2 0}$. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Boyd, D. R., Dorrity, M. R. J., Hand, M. V., Malone, J. F., Sharma, N. D., Dalton, H., Gray, D. J. \& Sheldrake, G. N. (1991). J. Am. Chem. Soc. 113, 666-667.
Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hulme, A., Compton, T., Parsons, S. \& Messenger, D. (2005). Private communication (refcode NASZA.). CCDC, Union Road, Cambridge, England.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mackay, S., Gilmore, C. J., Edwards, C., Stewart, N. \& Shankland, K. (1999). maXus. Nonius BV, Delft, The Netherlands, MacScience Co. Ltd, Japan, and University of Glasgow, Scotland.
Molecular Structure Corporation (1997). TEXSAN. Version 1.8. MSC, The Woodlands, Texas, USA.
Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

supplementary materials

supplementary materials

Acta Cryst. (2007). E63, 04187 [doi:10.1107/S1600536807046995]

A cocrystal of ($2 S, 3 a S, 4 R, 5 R, 7 a S)$ - and ($2 R, 3 a S, 4 R, 5 R, 7 a S$)-7-bromo-2-(4-methoxyphenyl)-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (17:3)

M. G. Banwell, O. J. Kokas and A. C. Willis

Comment

During the course of establishing a total synthesis of the non-natural enantiomeric form of the montanine alkaloid brunsvigine (Banwell et al., 2007a) we had occasion to convert (1S,2S)-3-bromo-3,5-cyclohexadiene-1,2-diol (I) (Boyd et al., 1991) into the corresponding 4-methoxybenzylidene acetal (II). This was achieved under standard conditions and provided compound (II) as a ca 5:3 mixture of epimers arising from a variation in stereochemistry at the newly installed acetal carbon. Subjection of this mixture to cis-dihydroxylation under the so-called UpJohn conditions resulted in each epimer reacting exclusively at the non-halogenated double bond and in a diastereofacially selective manner to give the corresponding mixture of cis-diols (III) and (IV) as a solid after recrystallization from ethyl acetate. In order to establish the relative stereochemistries within these two compounds a single-crystal X-ray analysis was undertaken. The present structures represent only the third and fourth reported for a 4-methoxyphenylacetal derivative of a cis-cyclohexane-1,2-diol (Banwell et al., 2007b; Hulme et al., 2005).

The crystallographic asymmetric unit consists of one molecule of $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$, but with some atoms disordered. The disordered atoms appear to indicate that two isomers have co-crystallized, with the atoms that are not disordered being common to both. The major epimer includes sites O 18 and C 10 to C 19 (crystallographic labelling), and the minor epimer includes O 118 and C 110 to C 119 . The structures vary in configuration (R versus S) at the acetal carbon bearing the 4-methoxyphenyl group. The minor isomer atom sites have been refined with isotropic displacement parameters set equal to $U_{\text {eq }}$ of the closest site of the major epimer. Restraints were applied to distances and angles of the minor sites so they would tend to match the corresponding values in the major epimer and so O 118 and C 110 to C 117 would tend to be coplanar. The relative occupancies of the two isomers were refined.

The compounds are enantiomerically pure and their absolute configurations have been determined by refinement of the Flack parameter. The outcomes of these determinations are in agreement with those predicted on the basis of the absolute configuration of the precursor (I) (Boyd et al., 1991).

The largest peaks in the final difference electron-density map are located near the Br atom and at the juncture between disordered and ordered parts of the structure(s).

Experimental

A magnetically stirred suspension of ($1 S, 2 S$)-3-bromo-3,5-cyclohexadiene-1,2-diol (I) ($20.0 \mathrm{~g}, 104.7 \mathrm{mmol}$) and 4-methoxybenzaldehyde dimethyl acetal ($20.9 \mathrm{ml}, 115.2 \mathrm{mmol}$) in anhydrous dichloromethane (200 ml) was cooled to 253 K then $(1 S)$-(+)-camphor-10-sulfonic acid monohydrate ($2.4 \mathrm{~g}, 10.4 \mathrm{mmol}$) was added. After 1 h the reaction mixture was quenched with sodium hydroxide (200 ml of a 1 M aqueous solution) and the separated aqueous phase extracted with dichloromethane $(2 \times 100 \mathrm{ml})$. The combined organic phases were washed with brine $(1 \times 100 \mathrm{ml})$ then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a white solid assumed to contain an epimeric mixture of the benzylidene acetals (II). A

supplementary materials

magnetically stirred solution of this material in acetone/water (300 ml of a $2: 1 \mathrm{v} / \mathrm{v}$ mixture) was cooled to 273 K then treated with N-methylmorpholine N-oxide ($27.1 \mathrm{~g}, 232 \mathrm{mmol}$) and osmium tetraoxide (7.0 ml of a $2.5 \% ~ w / v$ solution in tert-butanol, 0.53 mmol). The ensuing mixture was stirred at 291 K for 20 h then treated with sodium metabisulfite (200 ml of a $20 \% \mathrm{w} / \mathrm{v}$ aqueous solution). After 4 h the reaction mixture was concentrated under reduced pressure to give a brown residue that was treated with diethyl ether $(500 \mathrm{ml})$ then water $(500 \mathrm{ml})$. The separated aqueous phase was extracted with diethyl ether ($4 \times$ $150 \mathrm{ml})$ and the combined organic fractions were then dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated under reduced pressure to give a brown solid. Subjection of this material to flash chromatography (silica, $1: 19 \mathrm{v} / \mathrm{v}$ methanol/dichloromethane elution) and concentration of the appropriate fractions $\left(R_{\mathrm{f}}=0.3\right)$ afforded a ca. 4:1 mixture of the title compounds (III) and (IV) $(23.3 \mathrm{~g}, 65 \%)$ as a white, crystalline solid, m.p. $=406-407 \mathrm{~K}$ [Found: $(M-\mathrm{H} \text { ? })^{+}, 384.0570 . \mathrm{C}, 48.67 ; \mathrm{H}, 4.40 ; \mathrm{Br} 23.42$. $\mathrm{C}_{14} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{5}$ requires $(\mathrm{M}-\mathrm{H} ?)^{+}, 384.0572 . \mathrm{C}, 49.00 ; \mathrm{H}, 4.41 ; \mathrm{Br} 23.28 \%$]. ${ }^{1} \mathrm{H} \mathrm{NMR}$ [$300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$] δ (major epimer) $7.42(2 H, \mathrm{~d}, J=8.9 \mathrm{~Hz}), 6.95(2 H, \mathrm{~d}, J=8.9 \mathrm{~Hz}), 6.29(1 \mathrm{H}, \mathrm{m}), 5.80(1 \mathrm{H}, \mathrm{s}), 4.90(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}), 4.55(1 \mathrm{H}$, $\mathrm{m}), 4.40(3 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{m}), 3.81(3 \mathrm{H}, \mathrm{s}) ; \delta($ minor epimer) $7.37(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.17(1 \mathrm{H}$, dd, $J=2.7$ and 1.2 Hz), $5.87(1 \mathrm{H}, \mathrm{s}), 4.69(1 \mathrm{H}, \mathrm{dd}, J=6.0 \mathrm{and} 1.2 \mathrm{~Hz}), 4.51(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 4.42(3 \mathrm{H}, \mathrm{m}), 4.31(1 \mathrm{H}$, m), $3.80(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left[75 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta$ (major epimer) $161.4,135.6,130.8,129.0,120.7,114.3,103.1,77.9$, $77.1,69.6,67.6,55.5 ; \delta$ (minor epimer) $161.5,133.7,130.3,129.3,122.2,114.3,104.7,79.0,77.9,70.0,68.0,55.5 ; v_{\max }$ $(\mathrm{NaCl}) / \mathrm{cm}^{-1} 3518,3392,2954,2907,2834,1615,1515,1390,1304,1248,1170,1074,1050,1030,924 ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{eV})$ 343 and $341\left[(M-H ?)^{+}\right.$, both 5\%], $172(10), 153$ (13), 135 (100), 108 (39), 77 (22), 65 (18), 39 (18).

Refinement

The alcohol hydrogen atoms were included at locations revealed in a difference electron density map and were then refined positionally. Other hydrogen atoms were added at calculated positions ($\mathrm{C}-\mathrm{H}$ distance $1.0 \AA, U_{\text {iso }}(\mathrm{H})=1.2 \times U_{\text {eq }}(\mathrm{C})$) and, during refinement, each was set to ride on the carbon atom to which it is attached.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot of the major isomer of $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$ with labelling of selected atoms. Ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Fig. 2. Anisotropic displacement ellipsoid plot of the minor isomer of $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$ with labelling of selected atoms. Ellipsoids show 30% probability levels. Hydrogen atoms are drawn as circles with small radii.

Fig. 3. Unit cell packing diagram of $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$ projected down the b axis. Hydrogen atoms of the alcohol groups are drawn as circles with small radii and the others have been deleted.

sup-2

Cocrystal of ($2 S, 3 a S, 4 R, 5 R, 7 a S$)- and ($2 R, 3 a S, 4 R, 5 R, 7 a S$)-7-bromo- 2-(4-methoxyphenyl)-3a,4,5,7a-tetrahydro-1,3-benzodioxole-4,5-diol (17:3)

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrO}_{5}$	$F_{000}=348$
$M_{r}=343.17$	$D_{\mathrm{x}}=1.643 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1}$	$\mathrm{Mo} K \alpha$ radiation
	$\lambda=0.71073 \AA$
Hall symbol: P 2 yb	Cell parameters from 30770 reflections
$a=7.2245(4) \AA$	$\theta=2.6-27.5^{\circ}$
$b=9.7093(5) \AA$	$\mu=2.98 \mathrm{~mm}^{-1}$
$c=9.9373(5) \AA$	$T=200 \mathrm{~K}$
$\beta=95.689(3)^{\circ}$	Block, colourless
$V=693.62(6) \AA^{3}$	$0.40 \times 0.29 \times 0.26 \mathrm{~mm}$
$Z=2$	

Data collection

Nonius KappaCCD area-detector diffractometer	2802 reflections with $I>2 \sigma(I)$
Monochromator: graphite	$R_{\text {int }}=0.048$
$T=200 \mathrm{~K}$	$\theta_{\max }=27.5^{\circ}$
φ and ω scans with CCD	$\theta_{\min }=3.5^{\circ}$
Absorption correction: integration	
via Gaussian method (Coppens, 1970) implemented	$h=-9 \rightarrow 9$
in maXus (Mackay et al., 1999)	
$T_{\min }=0.372, T_{\max }=0.586$	$l=-12 \rightarrow 11$
12613 measured reflections	
3108 independent reflections	

Refinement

Refinement on F^{2}	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
	Method $=$ Modified Sheldrick $w=1 /\left[\sigma^{2}\left(F^{2}\right)+\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$	$\left.(0.038 P)^{2}+0.097 P\right]$,
	where $P=\left[\max \left(F_{0}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3$
$w R\left(F^{2}\right)=0.076$	$(\Delta / \sigma)_{\max }=0.043$
$S=0.99$	$\Delta \rho_{\max }=0.45 \mathrm{e} \AA^{-3}$

supplementary materials

3108 reflections	$\Delta \rho_{\min }=-0.90$ e \AA^{-3}
216 parameters	Extinction correction: none
35 restraints	Absolute structure: Flack (1983), with 1430 Friedel
Primary atom site location: structure-invariant direct	
methods	Flack parameter: $-0.019(10)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
Br20	0.43964 (4)	0.3005 (3)	0.34759 (3)	0.0547	
07	1.0479 (3)	0.0958 (4)	0.5926 (3)	0.0594	
O8	1.0545 (3)	0.3760 (4)	0.5778 (2)	0.0476	
O9	0.7101 (3)	0.3574 (4)	0.8155 (2)	0.0468	
011	0.4712 (3)	0.4076 (4)	0.65992 (19)	0.0444	
018	0.0214 (4)	0.1796 (4)	1.1172 (3)	0.0562	0.853 (4)
0118	0.0317 (17)	0.3946 (16)	1.1645 (12)	0.0555*	0.147 (4)
Cl	0.8881 (4)	0.1684 (4)	0.6274 (3)	0.0414	
C2	0.9556 (3)	0.3090 (5)	0.6760 (2)	0.0382	
C3	0.7968 (4)	0.4054 (4)	0.7008 (3)	0.0406	
C4	0.6353 (4)	0.4100 (4)	0.5872 (3)	0.0367	
C5	0.6293 (3)	0.2884 (5)	0.4953 (2)	0.0374	
C6	0.7390 (4)	0.1786 (4)	0.5112 (3)	0.0397	
C10	0.5344 (5)	0.4276 (5)	0.7997 (3)	0.0398	0.853 (4)
C12	0.4022 (5)	0.3619 (5)	0.8875 (4)	0.0373	0.853 (4)
C13	0.3774 (6)	0.2201 (5)	0.8878 (4)	0.0411	0.853 (4)
C14	0.2495 (6)	0.1620 (5)	0.9669 (5)	0.0473	0.853 (4)
C15	0.1463 (6)	0.2471 (6)	1.0447 (4)	0.0408	0.853 (4)
C 16	0.1678 (6)	0.3889 (6)	1.0432 (4)	0.0428	0.853 (4)
C 17	0.2976 (6)	0.4437 (6)	0.9649 (4)	0.0411	0.853 (4)
C19	-0.1055 (9)	0.2620 (8)	1.1849 (5)	0.0683	0.853 (4)
C110	0.5244 (13)	0.3003 (17)	0.7692 (10)	0.0396*	0.147 (4)
C112	0.3909 (16)	0.3102 (19)	0.8776 (12)	0.0380*	0.147 (4)
C113	0.294 (2)	0.1981 (19)	0.9244 (16)	0.0469*	0.147 (4)
C114	0.170 (2)	0.219 (2)	1.0228 (16)	0.0414*	0.147 (4)
C115	0.1473 (18)	0.3534 (17)	1.0695 (13)	0.0433*	0.147 (4)
C116	0.246 (2)	0.4612 (17)	1.0201 (15)	0.0403*	0.147 (4)
C117	0.3638 (19)	0.4373 (19)	0.9260 (15)	0.0403*	0.147 (4)
C119	-0.089 (6)	0.292 (4)	1.213 (4)	0.0688*	0.147 (4)
H1	1.006 (7)	0.035 (5)	0.542 (4)	0.0710*	
H2	1.135 (6)	0.342 (4)	0.579 (4)	0.0570*	
H11	0.8363	0.1192	0.7038	0.0491*	
H21	1.0394	0.2984	0.7617	0.0455*	
H31	0.8463	0.5005	0.7188	0.0484*	
H41	0.6399	0.4972	0.5341	0.0439*	
H61	0.7221	0.1014	0.4445	0.0471*	
H101	0.5503	0.5278	0.8211	0.0473*	0.853
H131	0.4513	0.1600	0.8314	0.0489*	0.853
H141	0.2315	0.0599	0.9680	0.0562*	0.853

sup-4

H161	0.0915	0.4498	1.0971	0.0512^{*}	0.853
H171	0.3164	0.5458	0.9643	0.0492^{*}	0.853
H191	-0.1880	0.2006	1.2334	0.0835^{*}	0.853
H192	-0.0340	0.3240	1.2515	0.083^{*}	0.853
H193	-0.1832	0.3188	1.1169	0.085^{*}	0.853
H1101	0.5314	0.2051	0.7316	0.0475^{*}	0.147
H1131	0.312	0.1036	0.8881	0.053^{*}	0.147
H1141	0.099	0.141	1.0585	0.0497^{*}	0.147
H1161	0.229	0.5569	1.0541	0.0484^{*}	0.147
H1171	0.4335	0.5165	0.8911	0.0484^{*}	0.147
H1191	-0.165	0.335	1.281	0.082^{*}	0.147
H1192	-0.012	0.215	1.256	0.0826^{*}	0.147
H1193	-0.173	0.255	1.135	0.0826^{*}	0.147

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br20	$0.04465(15)$	$0.06961(18)$	$0.04579(15)$	$0.00756(18)$	$-0.01518(10)$	$-0.00620(18)$
O7	$0.0408(12)$	$0.0565(13)$	$0.0777(17)$	$0.0121(10)$	$-0.0104(11)$	$-0.0169(12)$
O8	$0.0301(10)$	$0.0530(13)$	$0.0602(14)$	$0.0004(9)$	$0.0068(10)$	$0.0097(10)$
O9	$0.0317(9)$	$0.0736(13)$	$0.0343(9)$	$0.0055(8)$	$-0.0015(8)$	$-0.0005(8)$
O11	$0.0299(9)$	$0.0683(13)$	$0.0347(10)$	$0.0063(9)$	$0.0009(7)$	$0.0002(9)$
O18	$0.0533(15)$	$0.0628(17)$	$0.0538(16)$	$-0.0029(13)$	$0.0123(13)$	$0.0109(13)$
C1	$0.0332(13)$	$0.0424(14)$	$0.0471(16)$	$0.0012(11)$	$-0.0029(12)$	$0.0044(11)$
C2	$0.0278(10)$	$0.0473(13)$	$0.0386(11)$	$-0.0018(15)$	$-0.0018(8)$	$0.0010(16)$
C3	$0.0319(13)$	$0.0486(14)$	$0.0404(14)$	$0.0008(11)$	$-0.0013(11)$	$-0.0020(12)$
C4	$0.0302(12)$	$0.0443(13)$	$0.0354(13)$	$0.0025(10)$	$0.0014(10)$	$0.0007(11)$
C5	$0.0306(10)$	$0.0466(15)$	$0.0341(10)$	$-0.0029(13)$	$-0.0010(8)$	$-0.0003(14)$
C6	$0.0348(13)$	$0.0428(14)$	$0.0401(14)$	$-0.0020(11)$	$-0.0021(11)$	$-0.0018(11)$
C10	$0.0344(16)$	$0.0482(18)$	$0.0357(16)$	$0.0023(13)$	$-0.0025(13)$	$-0.0012(13)$
C12	$0.0325(17)$	$0.045(2)$	$0.0333(17)$	$0.0037(15)$	$-0.0030(14)$	$0.0001(16)$
C13	$0.036(2)$	$0.044(2)$	$0.042(2)$	$0.0050(16)$	$-0.0012(17)$	$-0.0032(16)$
C14	$0.043(2)$	$0.049(2)$	$0.048(2)$	$0.0008(17)$	$-0.0018(17)$	$0.0051(17)$
C15	$0.0352(17)$	$0.053(3)$	$0.0336(18)$	$-0.0010(15)$	$-0.0010(14)$	$0.0048(15)$
C16	$0.042(2)$	$0.049(2)$	$0.0373(19)$	$-0.0002(17)$	$0.0013(15)$	$-0.0054(15)$
C17	$0.039(2)$	$0.045(2)$	$0.038(2)$	$0.0009(14)$	$0.0008(16)$	$-0.0036(15)$
C19	$0.066(3)$	$0.086(4)$	$0.057(3)$	$-0.011(2)$	$0.027(3)$	$-0.005(2)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Br} 20-\mathrm{C} 5$	$1.910(2)$
$\mathrm{O} 7-\mathrm{C} 1$	$1.424(3)$
$\mathrm{O} 7-\mathrm{H} 1$	$0.82(5)$
$\mathrm{O} 8-\mathrm{C} 2$	$1.422(4)$
$\mathrm{O} 8-\mathrm{H} 2$	$0.67(4)$
$\mathrm{O} 9-\mathrm{C} 3$	$1.432(4)$
$\mathrm{O} 9-\mathrm{Cl} 10$	$1.436(4)$
$\mathrm{O} 9-\mathrm{C} 110$	$1.482(11)$
$\mathrm{O} 11-\mathrm{C} 4$	$1.449(3)$

$\mathrm{C} 12-\mathrm{C} 13$	$1.388(5)$
$\mathrm{C} 12-\mathrm{C} 17$	$1.382(6)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.391(6)$
$\mathrm{C} 13-\mathrm{H} 131$	1.000
$\mathrm{C} 14-\mathrm{C} 15$	$1.397(6)$
$\mathrm{C} 14-\mathrm{H} 141$	1.000
$\mathrm{C} 15-\mathrm{C} 16$	$1.385(6)$
$\mathrm{C} 16-\mathrm{C} 17$	$1.384(7)$
$\mathrm{C} 16-\mathrm{H} 161$	1.000

supplementary materials

O11-C10	1.432 (4)	C17-H171	1.000
O11--C110	1.527 (12)	C19-H191	1.000
O18-C15	1.376 (5)	C19-H192	1.000
O18-C19	1.433 (7)	C19-H193	1.000
O118-C115	1.380 (16)	C110-C112	1.518 (15)
O118-C119	1.434 (19)	C110-H1101	1.000
C1-C2	1.512 (5)	C112-C113	1.399 (17)
C1-C6	1.503 (4)	C112-C117	1.346 (17)
C1-H11	1.000	C113-C114	1.406 (17)
C2--C3	1.520 (4)	C113--H1131	1.000
C2-H21	1.000	C114-C115	1.397 (17)
C3-C4	1.542 (4)	C114-H1141	1.000
C3-H31	1.000	C115-C116	1.382 (16)
C4- C_{5}	1.490 (4)	C116-C117	1.347 (16)
C4-H41	1.000	C116-H1161	1.000
C5-C6	1.328 (4)	C117-H1171	1.000
C6-H61	1.000	C119-H1191	1.000
C10- C 12	1.498 (6)	C119-H1192	1.000
C10-H101	1.000	C119-H1193	1.000
$\mathrm{Cl}-\mathrm{O} 7-\mathrm{Hl}$	104 (4)	C14-C13-H131	120.1
C2--08- 22	105 (3)	C13-C14-C15	119.6 (4)
C3-09-C10	102.1 (2)	C13-C14-H141	120.2
C3-09-C110	109.2 (4)	C15-C14-H141	120.2
C4-011-C10	106.5 (2)	C14-C15-018	115.0 (4)
C4-O11-C110	101.9 (5)	C14-C15-C16	121.0 (5)
C15-O18-C19	117.6 (3)	O18-C15-C16	124.0 (4)
C115-O118-C119	117.1 (16)	C15-C16-C17	118.1 (5)
O7-C1-C2	106.3 (2)	C15-C16-H161	120.9
O7-C1-C6	112.5 (2)	C17-C16-H161	120.9
C2-- $\mathrm{C} 1-\mathrm{C} 6$	111.7 (2)	C16-C17--C12	122.0 (4)
O7-C1-H11	108.8	C16-C17-H171	119.0
C2-C1-H11	108.8	C12-C17-H171	119.0
C6-C1-H11	108.8	O18-C19-H191	109.5
C1-C2-08	111.3 (2)	O18-C19-H192	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	112.5 (2)	H191-C19-H192	109.5
O8-C2-C3	105.5 (3)	O18-C19-H193	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 21$	109.1	H191-C19-H193	109.5
O8- $22-\mathrm{H} 21$	109.1	H192-C19-H193	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 21$	109.1	O11-C110-09	97.0 (8)
C2-C3-09	109.0 (2)	O11-C110-C112	109.2 (8)
C2-C3-C4	115.3 (2)	O9-C110-C112	112.0 (8)
O9-C3-C4	103.5 (2)	O11-C110-H1101	112.5
C2-C3-H31	109.6	O9-C110-H1101	112.6
$\mathrm{O} 9-\mathrm{C} 3-\mathrm{H} 31$	109.6	C112-C110-H1101	112.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 31$	109.6	C110-C112-C113	124.2 (12)
C3-C4-O11	103.4 (2)	C110-C112-C117	115.9 (12)
C3-C4-C5	113.5 (2)	C113-C112-C117	119.9 (11)
O11-C4-C5	108.5 (2)	C112-C113-C114	119.5 (12)
C3-C4-H41	110.4	C112-C113-H1131	120.2

sup-6

supplementary materials

$\mathrm{O} 11-\mathrm{C} 4-\mathrm{H} 41$	110.4
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 41$	110.4
$\mathrm{~B} 20-\mathrm{C} 5-\mathrm{C} 4$	$113.4(2)$
$\mathrm{B} 20-\mathrm{C}-\mathrm{C} 6$	$121.0(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$125.6(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$121.2(2)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 61$	119.4
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 61$	119.4
$\mathrm{O} 9-\mathrm{C} 10-\mathrm{O} 11$	$103.6(2)$
$\mathrm{O} 9-\mathrm{C} 10-\mathrm{C} 12$	$109.9(3)$
$\mathrm{O} 11-\mathrm{C} 10-\mathrm{C} 12$	$110.3(3)$
$\mathrm{O} 9-\mathrm{C} 10-\mathrm{H} 101$	110.9
$\mathrm{O} 11-\mathrm{C} 10-\mathrm{H} 101$	110.9
$\mathrm{C} 12-\mathrm{C} 10-\mathrm{H} 101$	110.9
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 13$	$120.9(4)$
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 17$	$119.6(4)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17$	$119.4(5)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$119.8(5)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 131$	120.1
$\mathrm{C} 10-\mathrm{O} 9-\mathrm{C} 3-\mathrm{C} 2$	$-162.1(3)$
$\mathrm{C} 10-\mathrm{O} 9-\mathrm{C} 3-\mathrm{C} 4$	$-38.9(4)$
$\mathrm{C} 3-\mathrm{O} 9-\mathrm{C} 10-\mathrm{O} 11$	$46.4(4)$
$\mathrm{C} 3-\mathrm{O} 9-\mathrm{C} 10-\mathrm{C} 12$	$164.3(3)$
$\mathrm{C} 10-\mathrm{O} 11-\mathrm{C} 4-\mathrm{C} 3$	$10.3(4)$
$\mathrm{C} 10-\mathrm{O} 11-\mathrm{C} 4-\mathrm{C} 5$	$131.2(3)$
$\mathrm{C} 4-\mathrm{O} 11-\mathrm{C} 10-\mathrm{O} 9$	$-35.0(4)$
$\mathrm{C} 4-\mathrm{O} 11-\mathrm{C} 10-\mathrm{C} 12$	$-152.7(4)$
$\mathrm{C} 19-\mathrm{O} 18-\mathrm{C} 15-\mathrm{C} 14$	$-172.0(4)$
$\mathrm{C} 19-\mathrm{O} 18-\mathrm{C} 15-\mathrm{C} 16$	$6.0(6)$
$\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$173.0(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 8$	$-68.3(3)$
$\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 8$	$54.8(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-27.0(4)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$49.9(3)$
$\mathrm{O} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-146.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-47.1(4)$
$\mathrm{O} 8-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 9$	$-169.8(2)$
$\mathrm{O} 8-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$74.3(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 9$	$68.7(3)$
$\mathrm{O} 9-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-99.6(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 11$	$136.7(3)$

$\mathrm{C} 114-\mathrm{C} 113-\mathrm{H} 1131$	120.3
$\mathrm{C} 113-\mathrm{C} 114-\mathrm{C} 115$	$118.1(13)$
$\mathrm{C} 113-\mathrm{C} 114-\mathrm{H} 1141$	121.0
$\mathrm{C} 115-\mathrm{C} 114-\mathrm{H} 1141$	121.0
$\mathrm{C} 114-\mathrm{C} 115-\mathrm{O} 118$	$126.5(12)$
$\mathrm{C} 114-\mathrm{C} 115-\mathrm{C} 116$	$120.5(11)$
$\mathrm{O} 118-\mathrm{C} 115-\mathrm{C} 116$	$113.0(11)$
$\mathrm{C} 115-\mathrm{C} 116-\mathrm{C} 117$	$120.0(12)$
$\mathrm{C} 115-\mathrm{C} 116-\mathrm{H} 1161$	120.0
$\mathrm{C} 117-\mathrm{C} 116-\mathrm{H} 1161$	120.0
$\mathrm{C} 116-\mathrm{C} 117-\mathrm{C} 112$	$122.0(12)$
$\mathrm{C} 116-\mathrm{C} 117-\mathrm{H} 1171$	119.0
$\mathrm{C} 112-\mathrm{C} 117-\mathrm{H} 1171$	119.0
$\mathrm{O} 118-\mathrm{C} 119-\mathrm{H} 1191$	109.4
$\mathrm{O} 118-\mathrm{C} 119-\mathrm{H} 1192$	109.5
$\mathrm{O} 118-\mathrm{C} 119-\mathrm{H} 1193$	109.5
$\mathrm{H} 1191-\mathrm{C} 119-\mathrm{H} 1192$	109.5
$\mathrm{H} 1191-\mathrm{C} 119-\mathrm{H} 1193$	109.5
$\mathrm{H} 1192-\mathrm{C} 119-\mathrm{H} 1193$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$19.4(4)$
$\mathrm{O} 9-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 11$	$17.8(4)$
$\mathrm{O} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 20$	$69.7(3)$
$\mathrm{O} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-109.0(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$5.3(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 20$	$-175.9(2)$
$\mathrm{Br} 20-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-179.8(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-1.2(5)$
$\mathrm{O} 9-\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 13$	$-48.6(5)$
$\mathrm{O} 9-\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 17$	$134.2(4)$
$\mathrm{O} 11-\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 13$	$65.1(5)$
$\mathrm{O} 11-\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 17$	$-112.1(4)$
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-177.9(4)$
$\mathrm{C} 17-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-0.7(6)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$-0.1(6)$
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{C} 17-\mathrm{C} 16$	$177.2(4)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$0.4(6)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{O} 18$	$178.9(4)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$0.7(7)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-1.5(6)$
$\mathrm{O} 18-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$-179.4(4)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 12$	$1.2(6)$

Hydrogen-bond geometry (\AA, ${ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 1 \cdots \mathrm{O} 8^{\mathrm{i}}$	$0.81(4)$	$1.97(5)$	$2.779(5)$	$171(5)$
$\mathrm{O} 8 \cdots \mathrm{H} 2 \cdots \mathrm{O} 7$	$0.67(4)$	$2.48(4)$	$2.725(5)$	$105(4)$
$\mathrm{O}-\mathrm{H} 2 \cdots \mathrm{O} 11^{\mathrm{ii}}$	$0.67(4)$	$2.56(4)$	$3.055(3)$	$133(4)$

supplementary materials

Symmetry codes: (i) $-x+2, y-1 / 2,-z+1$; (ii) $x+1, y, z$.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

(I)

(III)
(major)

(II)

(IV)
(minor)

[^0]: $\mathrm{mp}=83-85^{\circ} \mathrm{C}$
 ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.24(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.62(1 \mathrm{H}, \mathrm{d}, J$ $=7.8 \mathrm{~Hz}), 6.49(2 \mathrm{H}, \mathrm{m}), 5.83(2 \mathrm{H}, \mathrm{s}), 5.23(1 \mathrm{H}, \mathrm{m}), 3.09(2 \mathrm{H}, \mathrm{q}, J=7.1 \mathrm{~Hz}), 2.63(2 \mathrm{H}, \mathrm{t}, J=$ $7.1 \mathrm{~Hz}) .2 .37(3 \mathrm{H}, \mathrm{s})$.
 ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 147.4, 145.9, 143.1, 136.6, 131.4, 129.4, 126.8, 121.4, 108.8, 108.0, 100.6, 44.3, 35.2, 21.2.

[^1]: Gaussian 03, Revision B. 05
 Point group: C1
 State $=2$
 $\mathrm{S}^{2}=0.75434$
 UB3LYP/6-311+G(3df,2p)/UB3LYP/6-311G**; HF $=-2164.7794153$

[^2]: (1) Dry, L. J.; Poynton, M.; Thompson, M. E.; Warren, F. L. J. Chem. Soc. 1958, 4701
 (2) Inubushi, Y.; Fales, H. M.; Warnhoff, E. W.; Wildman, W. C. J. Org. Chem. 1960, 25, 2153.
 (3) Clark, R. C.; Warren, F. L.; Pachler, K. G. R. Tetrahedron 1975, 31, 1855.
 (4) For reviews dealing with this class of alkaloid, see: (a) Martin, S. F. In The Alkaloids; Brossi, A., Ed.; Academic Press: San Diego, 1987; Vol. 30, p 251. (b) Hoshino, O. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: San Diego, 1998; Vol. 51, p 323. (c) Lewis, J. R. Nat. Prod. Rep. 2000, 17, 57 and previous reviews in the series.
 (5) Viladomat, F.; Bastida, J.; Codina, C.; Campbell, W. E.; Mathee, S. Phytochemistry 1995, 40, 307.

[^3]: (17) Garegg, P. J.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1980, 2866.
 (18) Details of X-ray analyses carried out as part of this study are provided in the Supporting Information.
 (19) Lal, B.; Pramanik, B. N.; Manhas, M. S.; Bose, A. K. Tetrahedron Lett. 1977, 1977.

[^4]: (20) Banwell, M. G.; Coster, M. J.; Harvey, M. J.; Moraes, J. J. Org. Chem. 2003, 68, 613.
 (21) Pancricine. Dictionary of Natural Products; Buckingham, J., Ed.; Chapman \& Hall: London, U.K., 1994; Vol. 4, p 4432, entry P-00106.

[^5]: (1) For reviews dealing with this class of alkaloid, see: (a) Martin, S. F. In The Alkaloids; Brossi, A., Ed.; Academic Press: San Diego, 1987; Vol. 30, p 251. (b) Hoshino, O. In The Alkaloids; Cordell, G. A., Ed.; Academic Press: San Diego, 1998; Vol. 51, p 323. (c) Jin, Z. Nat. Prod. Rep. 2003, 20, 606.
 (2) For useful points on entry into the literature concerned with the biological properties of lycorine-type alkaloids and their analogues, see: (a) Pettit, G. R.; Melody, N. J. Nat. Prod. 2005, 68, 207. (b) McNulty, J.; Larichev, V.; Pandey, S. Bioorg. Med. Chem. Lett. 2005, 15, 5315. (c) Pettit, G. R.; Eastham, S. A.; Melody, N.; Orr, B.; Herald, D. L.; McGregor, J.; Knight, J. C.; Doubek, D. L.; Pettit, G. R., III; Garner, L. C.; Bell, J. A. J. Nat. Prod. 2006, 69, 7.

[^6]: (3) (a) Hudlicky, T. J. Heterocycl. Chem. 2000, 37, 535. (b) Rinner, U.; Hudlicky, T. Synlett 2005, 365. (c) Chapleur, Y.; Chrétien, F.; Ibn Ahmed, S.; Khaldi, M. Curr. Org. Synth. 2006, 3, 341.
 (4) For recent synthetic efforts in this area that have not been covered in the above-mentioned reviews, ${ }^{3}$ see: (a) Zhang, H.; Padwa, A. Synlett 2006, 2317. (b) Zhang, H.; Padwa, A. Org. Lett. 2006, 8, 247. (c) Shukla, K. H.; Boehmler, D. J.; Bogacyzk, S.; Duvall, B. R.; Peterson, W. A.; McElroy, W. T.; DeShong, P. Org. Lett. 2006, 8, 4183. (d) Li, M.; Wu, A.; Zhou, P. Tetrahedron Lett. 2006, 47, 3707. (e) Crich, D.; Krishnamurthy, V. Tetrahedron 2006, 62, 6830. (f) Shin, I.-J.; Choi, E.-S.; Cho, C.-G. Angew. Chem., Int. Ed. 2007, 46, 2303. (g) Padwa, A.; Zhang, H. J. Org. Chem. 2007, 72, 2570.

[^7]: (5) For reviews on methods for generating cis-1,2-dihydrocatechols by microbial dihydroxylation of the corresponding aromatics, as well as the synthetic applications of these metabolites, see: (a) Hudlicky, T.; Gonzalez, D.; Gibson, D. T. Aldrichim. Acta 1999, 32, 35. (b) Banwell, M. G.; Edwards, A. J.; Harfoot, G. J.; Jolliffe, K. A.; McLeod, M. D.; McRae, K. J.; Stewart, S. G.; Vögtle, M. Pure Appl. Chem. 2003, 75, 223. (c) Johnson, R. A. Org. React. 2004, 63, 117.

[^8]: (6) Banwell, M. G.; McRae, K. J.; Willis, A. C. J. Chem. Soc., Perkin Trans. 1 2001, 2194.
 (7) Banwell, M. G.; Kokas, O. J.; Willis, A. C. Org. Lett. 2007, 9, 3503.
 (8) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973.
 (9) Crossland, R. K.; Servis, K. L. J. Org. Chem. 1970, 35, 3195.
 (10) Gololobov, Y. G.; Kasukhin, L. F. Tetrahedron 1992, 48, 1353.
 (11) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
 (12) Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.; Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W. J. Chem. Soc., Chem. Commun. 1995, 2551
 (13) Hanessian, S.; Delorme, D.; Dufresne, Y. Tetrahedron Lett. 1984, 25, 2515.
 (14) Mentzel, U. V.; Tanner, D.; Tonder, J. E. J. Org. Chem. 2006, 71, 5807.
 (15) Nishikawa, T.; Asai, M.; Ohyabu, N.; Isobe, M. J. Org. Chem. 1998, 63, 188.
 (16) (a) Overman, L. E. Acc. Chem. Res. 1980, 13, 218. (b) Overman, L. E.; Carpenter, N. E. Org. React. 2005, 66, 1 and references cited therein. (17) Oishi, T.; Ando, K.; Inomiya, K.; Sato, H.; Iida, M.; Chida, N. Org. Lett. 2002, 4, 151.
 (18) Keck, G. E.; Wager, T. T.; Duarte Rodriquez, J. F. J. Am. Chem. Soc. 1999, 121, 5176.
 (19) Details of this analysis are provided in the Supporting Information.

[^9]: OL701552R

[^10]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.
 For further information see http://journals.iucr.org/services/authorrights.html

[^11]: Copyright © International Union of Crystallography
 Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.
 For further information see http://journals.iucr.org/services/authorrights.html

