
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the pennission of the Author.

SADL

A SYMBOLIC ARCHITECTURE DESCRIPTION LANGUAGE

A Thesis Presented in Partial Fulfilment

of the requirements for the Degree of

Master of Arts in Computer Science

at Massey University

Thomas William Livingstone

1985

Abstract

This thesis develops a new language capable of specifying computer

architecture at the symbolic, or assembly language level.

The thesis first provides a representative sample of current, or

proposed, computer description languages and discusses four of the

languages and their merits with regard to the symbolic approach. Next,

a model is proposed of computer architecture at the level which is

visible to an executing sequence of instructions. This model is based

on the assembly language level of computer architecture.

Symbolic Architecture Description Language (SADL) is

Finally, Build, a LISP program which takes SADL

Next, the

described.

architecture

descriptions and generates functions and data structures for use in

simulating architectures, is described.

Acknowledgements

I would like to thank the following for their support and assistance

during this thesis:

Nola Simpson, for being my supervisor;

Paul Lyons, for his excellent criticisms of the manuscript;

The staff of the Massey University Computer

cooperation.

Centre for their

Table of Contents

Introduction ••• 1
. .. 5
... 9

1.1
1.2

Multi-level Architectures and Virtual Machines ••••••

1.3

Current Architecture Description Languages ••••
1 • 2. 1
1. 2. 2
1 • 2. 3
1 • 2. 4

ISPS•.........•....
The Vienna Definition Language •••
LISP •••••
PASCAL •••

Summary •••••••
2 A Conceptual Model of Architecture ••••••

2.1 A Model of Instruction Execution ••

3

2.2 The Register Set Domain •••••••
Instruction Set Domain •.• 2.3

2.4
2.5

SADL
3. 1
3.2

The
The Access Method Domain •••.
The Data Type Domain ••••••••

- The Symbolic Architecture Description Language ••
The Basics of the Language ••
The Processor Description •.••
3. 2. 1 The Register Domain ••. ..

3.2.1.1 The Array Clause ••
3. 2. 1. 2 The Word Clause •••
3.2.1.3 The Mapping Clause ••.

3.2.2 The Access Method Domain ••••
3.2.2.1 The Access Method Description ••
3.2.2.2 The Access Method Class Section •••

3.2.3 The Instruction Domain •••••.••.••••••••
3.2.3.1 The Instruction Statement ••••••
3.2.3.2 The Asynchronous Instruction Set .•
3.2.3.3 The Synchronous Instruction Set

3.3 The Executor Description ••.

•• 10
• • 21
• • 29

.36,
• • 41

• • 42
. 43

........... 45
• •• 49
•. 57

. 60

• • 62
.. 63 • •• 68 • •• 70

. • •• 71
••. 74 • 76

• . 80
• • 81
.. 85 • •• 86

...... • • 87
..90

••. 93
••• 99

3.4 Using SADL •• ••••••••••••• • • 100

4 Building Programs from SADL ••••••
4.1 Data Structures ••.••••.••••••

4.2
4,3
4.4

4. 1. 1
4.1.2
4.1.3

The Register Domain •••
The Access Method Domain ••••••.
The Instruction Set domain ••.

Constructing Tokens .••••••••••••.••••••••
Handling Symbolic Numbers ••••••••.
Building LISP functions and PR0Gs ••
4.4.1 Converting Value Expressions to LISP •••

4.4.2
4.4.3

4,4.1.1 The Value Group .•.
The Destination Selector ••
SADL statements ••••.
4.4.3.1 C0ND STMT •••
4.4.3.2 C0DEM STMT •.••

. 102
• • 103

. 105
• • 107
•• 109
• • 111

• 11 3
• • 11 5
•• 11 6
• • 11 7

. 119
••• 1 21

•• 123
• •••. 125

5

4.4.3.3 WHILE STMT ••••••••••
SADL Instructions in LISP •••
The Access Method Function ••
The Code Macro Function •••••

4.4.4
4,4.5
4,4.6
4.4.7 The Executor Function ••
SADL Operators as Functions •••

........................
4.5
4.6 An Example•..•...•.....

Conclusions ••
5.1 Summary ••
5.2 The Realization of Design Goals •••
5.3 Future Directions •••••••••••••••••

.

.
.

••••• 126
• 127

••••• 130
.. 131
..131

• ••••• 1 32
•• 138

. ... • • 146
• • 146
•• 14 7 • • 149

Appendix 1•........•..••........•...•.......••......... 1 52

Appendix 2•...............................• 1 59

Bibliography 189

Chapter 1 INTRODUCTION

1 Introduction

This thesis proposes a language for symbolically specifying the

execution environment of assembly language programs. The assembly

language level of description was chosen as it is the most abstract

level which is still capable of specifying the instruction set

functionality of a computer. Higher level abstractions, such as

compilers and interpreters, no longer allow explicit access to the

physical machine state, while lower level descriptions have little

meaning to the software engineer.

Computer Design, once an area of individual artistic expression, is

becoming the result of systematic cooperation between the members of a

team, often a large team, frequently aided by automated design tools.

Members of the design team must be able to communicate with each other,

and with their design tools, without ambiguity, and to this end a

number of formal languages have been developed for the description of

computer systems.

It has become a truism that a computer system consists of a number of

layers, each describable in terms of a particular model. In this

thesis, we shall find the level described by the ISP (Instruction Set

Processor) model [Bell71] to be the most useful. A computer

architecture defined in terms of this model would comprise:

Chapter 1 INTRODUCTION 2

(i) a set of registers,

(ii) a memory which contains the encoded instructions,

(iii) a set of functions which

(a) produce the effective address for obtaining and

storing the operands and

(b) specify the actions required to implement the

instructions.

(iv) a finite state machine which defines the loading,

interpretation and execution of instructions defined for

the architecture.

There are two approaches to modelling an architecture at the ISP level.

The traditional method (adopted in the specification language ISPS

[Barb81]) is a mechanical view: the architecture is viewed as a

structure consisting of registers and decoding functions which operate

on the machine code of the architecture.

The second approach is a symbolic view: it is derived from the

Assembly Language model of architecture. It ignores the mechanics of

encoding and decoding - the instruction is only ever represented in

symbolic form - and models the decode and execute cycle as a language

interpretation cycle.

Why use the symbolic approach?

1. It is the natural tool for software engineers.

A software engineer who programs an architecture directly (as

Chapter 1 INTRODUCTION 3

opposed to using a high level language) makes use of the symbolic

level and an Assembler. The costs of programming in machine code

versus assembly language and the functional equivalence of the two

means that machine code programming has been superceded by assembly

language programming, except possibly for some extremely

specialised applications.

2. It is a natural pedagogic tool.

Because people are familiar with the symbolic approach to

architecture, it is easier to comprehend architectures when

expressed symbolically. This is important when attempting to learn

new architectures, when comparing two architectures

evaluating an architecture.

3. It allows direct simulation of the symbolic program.

or when

The normal process when simulating the execution of programs on a

particular architecture is to write the programs (normally in

assembly language), translate them into the machine code for the

target architecture and run them on a simulator which emulates the

instruction and register sets of the target machine.

Having the architecture specified symbolically bypasses the

translation phase as the assembly language program may be executed

directly by the simulator. This saves programmer time and

therefore saves money. Balanced against this is the increased cost

in processor time of executing an interpreted program rather than a

compiled program. Also, the symbolic tracing of instruction

Chapter 1 INTRODUCTION 4

execution is simplified and protection mechanisms against faulty

programs are easier to install; for instance it would be

impossible for a running program to try executing data, an

occurrence common in out-of-control machine code programs.

4. It can fully specify the register set of an architecture, and

external lines may also be modelled indirectly as registers. The

symbolic approach allows the register set of an architecture to be

specified to the same detail as the mechanical approach to ISP

specification. Thus there is no expressive capability lost when

using the symbolic approach over the mechanical approach.

5. Fundamental to the symbolic approach is the fact that each machine

instruction has one equivalent symbolic instruction and that the

functionality of both is the same. This is a widely recognised

view of pure assembly language (as opposed to macro-assembly

language).

Section 1.2 of chapter 1 examine8 four languages which are used, or

have been proposed for use in describing the instruction set processor

level. Two of the languages, LISP and VDL, deal with instruction set

processors at the symbolic level while the other two languages, Pascal

and ISPS, deal with the machine code level.

Chapter 2 proposes a model of computer architecture which is centred on

the view of an executing program within a machine. The model is based

upon the stored program concept with a single execution unit and single

Chapter 1 INTRODUCTION 5

instruction and data streams; this excludes architectures based upon

array and vector processing as well as systolic architectures.

Chapter 3 defines both the syntax and semantics of the Symbolic

Architecture Description Language (SADL) and shows the capabilities and

restrictions of the current version of the language.

Chapter 4 describes software which processes a description in SADL and

produces a set of data structures and functions which may be used to

simulate the architecture when provided with an assembly language

program. It is an application intended to test the validity of SADL.

1.1 Multi-level Architectures and Virtual Machines

One of the major concepts that has evolved in computing in the last

fifteen years has been the view of a computer system as a layered

hierarchy of abstract machines. At the top of the hierarchy are user

applications and at the bottom is the physical specification of the

electronic components which combine to form the hardware.

Each level may be viewed (more or less) as a complete architecture

independent of those levels in the hierarchy either above or below

it. This view is invaluable in simplifying the task of designing or

analysing computer systems.

Chapter 1 INTRODUCTION 6

There are differing views as to what constitutes each layer, but

Siewiorek, Bell and Newell [Bell71,Siewiorek82] have proposed a

layering that suits the author's purposes and is quite widely

recognised. I shall refer to this as the Bell model.

In the Bell model there are four main levels which are subdivided

into sublevels. The main levels are: Circuit level, Logic level,

Program level, PMS level.

The only level of relevance to the software engineer is the program

level, because this level is broken down into the ISP (Instruction

Set Processor) sublevel, and the High Level Language sublevel which

is itself broken down into Operating System, Run-time System,

Application Routines and Applications Systems sublevels.

Chapter 1 INTRODUCTION

Example 1.1

I ---,
PMS

I ---,
Program High Level

Language

Applications Systems

I I ,------------------------,
Applications Routines I

I I ,------------------------,
Run-time System

I I ,------------------------,
Operating System

I I I ,-------------------,------------------------,
Instruction

Set Processor

I ---,
Logic

I ---1
Circuit

I ---,

7

The Assembly Language sublevel fits into the hierarchical view just

above the ISP sublevel and below the Operating System sublevel

(although Tanenbaum [Tanenbaum76] views the assembler level as being

above the operating system level).

The reasons for placing Assembly Language at this point in the

hierarchy are these:

Chapter 1 INTRODUCTION 8

(i) In the abstraction process, information is hidden or

lost. Anything that may be specified by an Assembly

Language program may be specified in greater detail at

the ISP sublevel; this indicates that the Assembly

level is an abstraction of the ISP sublevel.

(ii) Similarly, an Operating System is a composition of

concepts expressible in Assembly Language. Its

component subroutines, coroutines, and programs are

built up from assembler-level instructions, either

directly or (as in the case of UNIX and Burroughs' MCP

which are written in high level languages) indirectly.

Where do compilers, which bypass the assembler level and directly

produce code at the ISP level, fit into the model? Their mapping

from a particular level in the hierarchy of abstract machines to

another, lower level may bypass one or more levels. However the

number of levels which a compiler bypasses does not invalidate the

hierarchical structuring of abstract machines.

Chapter 1 INTRODUCTION 9

1.2 Current Architecture Description Languages

There currently exist a considerable number of languages for

describing computer architectures at various levels. Most of these

straddle the Register Transfer and the ISP levels. There seem to be

almost no generally recognised languages which approach the ISP level

from the language (or symbolic) direction.

Subrata Dasgupta [Dasgupta82] surveys a group of languages which he

calls Computer Design and Description Languages (or CDDLs). The

survey concentrates on ISPS, S*A and the CONLAN extensible language

system.

Two points made by Dasgupta are significant. The first is that at

the time of writing (1982) CDDLs had not been generally accepted by

the computer design community. The second point is that the majority

of CDDLs that have been proposed have fallen into the Register

Transfer level of description. This is partly true of most of the

languages described here although they all have applicability at the

ISP level. Only LISP and VDL have the ability to specify

architecture at the symbolic level.

