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ABSTRACT 

 

The fast pace of life promotes the excessive consumption of processed starchy food 

containing high levels of sugar, salt and oil; which can increase the prevalence of 

type II diabetes, colon and cardiovascular diseases.  The addition of dietary fibres in 

the diet increases the viscosity of digesta, delays mixing in the gut, and promotes 

laxation.  However, few studies attempt to quantify the possible physical and 

chemical effects of either soluble (food gums) and insoluble (largely cellulose) fibre 

in the diet.  These effects may encompass the retention of water inside the fibre 

particles, between particles in the fibre mass and direct effects of the chemical 

nature of the fibre on the digestion process.  In this study, the fractions of water held 

in the various partitions of insoluble particulate dietary fibres are quantified.   The 

relationship between the volume fraction of soluble and insoluble dietary fibres in 

simulated digesta at physiological concentrations and the rheological properties of 

the suspension at physiological shear rates is determined.  Furthermore, the impact 

of fibre and shear rates on the digestion of starch in-vitro at physiological shear rates 

was measured.  This work provides the first quantitative assessment of the effects of 

the physical attributes of dietary fibre on the digestion of starch in-vitro, at 

physiological shear rates. 

 

In this work, four insoluble fibre types were used to construct aqueous suspensions 

containing solid volume fractions similar to those of pig digesta from the small 

intestine, these suspensions also were shown to have similar rheological properties 

to those of pig digesta at physiological shear rates.  In addition, a soluble fibre (Guar 

gum) was used to construct solutions with viscosities comparable to those of the 
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particulate suspensions.  Gelatinised and partially gelatinised starch was added to 

these suspensions and its rate of digestion at 37°C under simulated small intestinal 

conditions was measured at shear rates covering the reported physiological range. 

 

Important results from this work include: 

 The proportion of water retained by a given volume of hydrated mass of 

large fibre particles (AllBran® ) was double that of smaller particles (wheat 

fibre).   For all of the solid particles used, the proportion of water sequestered 

by the intra-particulate voids was less than 4% of the volume of the particles, 

similar proportions were determined for indigestible particles recovered from 

the colon of pigs and from human faeces.   

 

 Food fibre systems containing less than 20% by volume (solid volume 

fraction, φ = 0.20) of insoluble dietary fibres showed Newtonian rheological 

properties and the viscosity of these suspensions could be predicted from φ 

by the Maron-Pierce model.  Starch/fibre suspensions prepared with φ below 

20% (φ = 0.68-0.98) had a similar viscosity to that of starch/guar suspension 

comprising 10% (w/v) starch and 0.4% (w/v) guar.   

 

During in-vitro digestion, the viscosity of the starch/fibre suspensions 

decreased logarithmically over the first 20 minutes during which about 30% 

of the starch was hydrolysed, this was followed by a prolonged period of 

slow digestion as the slowly digested starch (SDS) and resistant starch (RS) 

were hydrolysed.   The rate of starch digestion was independent of the type 

of insoluble fibre and was not affected by suspension viscosities used 
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providing shear rates could be maintained within physiological levels.   For 

guar, rates of digestion were slowed probably due to non-competitive 

inhibition of the amylase by the guar. 

 

 When shear rates were below the physiological range (0.1 s
-1

) or 

gelatinisation was incomplete, the rate of digestion became linear over the 

first 20 minutes of digestion suggesting that the rate of digestion was limited 

by transport processes at low shear in viscous suspensions. 

 

 This study provides useful information regarding the limiting concentration 

of particles and hence viscosity of digesta in the gut if rates of digestion are 

to be maximised.  Additionally, it is suggested that guar, even at low 

concentration may reduce glycemia by reducing rates of amylolysis. 
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