

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Characterisation of food fibres and their effect on starch digestion in an *in-vitro* system at physiological shear rates

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Anatomy and Physiology at Massey University, New Zealand.

SIA-YEN, YAP

2017

ABSTRACT

The fast pace of life promotes the excessive consumption of processed starchy food containing high levels of sugar, salt and oil; which can increase the prevalence of type II diabetes, colon and cardiovascular diseases. The addition of dietary fibres in the diet increases the viscosity of digesta, delays mixing in the gut, and promotes However, few studies attempt to quantify the possible physical and laxation. chemical effects of either soluble (food gums) and insoluble (largely cellulose) fibre in the diet. These effects may encompass the retention of water inside the fibre particles, between particles in the fibre mass and direct effects of the chemical nature of the fibre on the digestion process. In this study, the fractions of water held in the various partitions of insoluble particulate dietary fibres are quantified. The relationship between the volume fraction of soluble and insoluble dietary fibres in simulated digesta at physiological concentrations and the rheological properties of the suspension at physiological shear rates is determined. Furthermore, the impact of fibre and shear rates on the digestion of starch *in-vitro* at physiological shear rates was measured. This work provides the first quantitative assessment of the effects of the physical attributes of dietary fibre on the digestion of starch in-vitro, at physiological shear rates.

In this work, four insoluble fibre types were used to construct aqueous suspensions containing solid volume fractions similar to those of pig digesta from the small intestine, these suspensions also were shown to have similar rheological properties to those of pig digesta at physiological shear rates. In addition, a soluble fibre (Guar gum) was used to construct solutions with viscosities comparable to those of the particulate suspensions. Gelatinised and partially gelatinised starch was added to these suspensions and its rate of digestion at 37°C under simulated small intestinal conditions was measured at shear rates covering the reported physiological range.

Important results from this work include:

- The proportion of water retained by a given volume of hydrated mass of large fibre particles (AllBran®) was double that of smaller particles (wheat fibre). For all of the solid particles used, the proportion of water sequestered by the intra-particulate voids was less than 4% of the volume of the particles, similar proportions were determined for indigestible particles recovered from the colon of pigs and from human faeces.
- Food fibre systems containing less than 20% by volume (solid volume fraction, φ = 0.20) of insoluble dietary fibres showed Newtonian rheological properties and the viscosity of these suspensions could be predicted from φ by the Maron-Pierce model. Starch/fibre suspensions prepared with φ below 20% (φ = 0.68-0.98) had a similar viscosity to that of starch/guar suspension comprising 10% (w/v) starch and 0.4% (w/v) guar.

During *in-vitro* digestion, the viscosity of the starch/fibre suspensions decreased logarithmically over the first 20 minutes during which about 30% of the starch was hydrolysed, this was followed by a prolonged period of slow digestion as the slowly digested starch (SDS) and resistant starch (RS) were hydrolysed. The rate of starch digestion was independent of the type of insoluble fibre and was not affected by suspension viscosities used

providing shear rates could be maintained within physiological levels. For guar, rates of digestion were slowed probably due to non-competitive inhibition of the amylase by the guar.

- When shear rates were below the physiological range (0.1 s⁻¹) or gelatinisation was incomplete, the rate of digestion became linear over the first 20 minutes of digestion suggesting that the rate of digestion was limited by transport processes at low shear in viscous suspensions.
- This study provides useful information regarding the limiting concentration of particles and hence viscosity of digesta in the gut if rates of digestion are to be maximised. Additionally, it is suggested that guar, even at low concentration may reduce glycemia by reducing rates of amylolysis.

ACKNOWLEDGMENTS

The beginning of a PhD study, resembles a single way journey which with the ultimate goal of graduation. This journey has been enjoyable yet accompanied with hardships which would not have been possible without the help of many people. Firstly, I am grateful to the Lord God Almighty for giving me the opportunity to complete my research and making all things possible.

I would like to express my most honoured gratitude to my enthusiastic chief supervisor, Professor Dr. Roger Lentle to accept me in as his student. My PhD has been an amazing experience and I thank Professor Roger not only for giving me so many wonderful opportunities, but also for his tremendous academic support by continually inspired me with his insightful comments on the scope of my study and patiently guide me to think like a scientist. My deepest thanks go to my cosupervisor, Mr. Allan Hardacre for his invaluable guidance and comments on my research methodology and scientific writing, also his kind hospitality exposing me to the kiwi culture. Special mention goes to my second co-supervisor, Dr. John Monro, for his advice and insightful scientific suggestions to the project. I have learned a lot from them, especially their enthusiasm and innovation in research.

Special thanks go to the Riddet Institute and Plant and Food Research for funding this project.

To the Director of Postgraduate Studies of School of Food and Nutrition (SFN), Professor Julian Heyes and to the Head of department, Professor Steve Flint, thank you for your caring support and encouragement throughout my study.

I am thankful to all the staff of SFN especially the laboratory managers, Michelle Tamehana, Corrin Hulls, Steve Glasgow, Garry Radford, Warwick Johnson, Fliss Jackson and Ann-Marie Jackson for their invaluable technical assistance in using various equipment. I also appreciate the generous assistance from Miria Busby, Yvonne Parkes, Christine Ramsey and Matthew Levin for their support in administration and computer networking setting throughout the years. I would like to give my sincere thanks to Anja Moebis, for her help to access the lab and use the gas pycnometer; Doug Hopcroft, for his help in preparing the images from scanning electron microscope. My thanks also address to Dr. Patrick Janssen who wrote the custom software using Image J that enabled me to estimate particle volumes.

I would like to thank my friends, especially Dr. Zeinab Dehghan-Shoar, Drs. Reza Abdollahi and Faegheh Zaefarian for their kind hospitality. My sincere thanks also go to Farihan, Soffalina, Anges, Karren, Elham, Sayaka, and Tanya for the destressed and fun outings to "hunt" for cuppa, delicious pizzas and cakes. Special thanks go to Pla, Pang, Chalida, Pilirani, Sandra, and Thu for their invaluable support, encouragement, and friendship.

Last but not least, to my beloved family members, my father, Mr. Yap Wei Keong, my mother, Mdm. Lee Siew Moey, my sister, Sin Ling and my brother, Chee Yoong. Thank you for their unconditional love and moral support.

TABLE OF CONTENTS

ABSTRACT	i
ACKNOWLEDGMENTS	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	xi
LIST OF TABLES	xvi
LIST OF EQUATIONS	xviii
LIST OF ABBREVIATIONS	
LIST OF PUBLICATIONS AND CONFERENCES	xxii

Chapter 1 General introduction 1

Cha	pter 2	Review of literature	10
2.1.		Dietary carbohydrate	10
	2.1.1.	Definition and classification of dietary fibre	10
	2.1.2.	Sources of dietary fibre	15
	2.1.3.	Chemical compositions of dietary fibre	17
	2.1.3.1.	Insoluble dietary fibre	18
	2.1.3.2.	Soluble dietary fibre	19
	2.1.4.	Fermentability of dietary fibre	21
	2.1.5.	Hydration properties of insoluble fibres	22
	2.1.5.1.	Factors affecting water holding capacity (WHC)	23
	2.1.5.1.1	Chemical composition and WHC	23
	2.1.5.1.2	Particle sizes, processing methods and health benefits	24
2.2.		Starch granules	26
	2.2.1.	The size and shape of starch granules	26
	2.2.2.	Amylose and amylopectin	26
	2.2.3.	Other minor components	32
	2.2.4.	The structure of starch granules	32
	2.2.5.	Gelatinisation	34
2.3.		Viscosity of starch and dietary fibres suspensions	36
	2.3.1.	Viscosity of digesta	39
	2.3.2.	Factors affecting viscosity	40
	2.3.2.1.	Solid volume fractions (ϕ) and shear rate	40
	2.3.2.2.	Ratio of solid volume fraction to the maximum packing	42
		fraction, (ϕ/ϕ_{max})	
	2.3.2.3.	Aspect ratio of particles sizes	44
	2.3.3.	Viscosity of starch suspensions	46
	2.3.3.1.	Defining gelatinisation by viscosity	46
	2.3.3.2.	Hydration and viscous properties of starch	48
2.4.		Starch digestion	50
	2.4.1.	In-vitro and in-vivo starch digestion	51
	2.4.1.1.	Measurement of rate of digestion <i>in-vitro</i>	52
	2.4.2.	Factors affecting the rate of starch digestion <i>in-vitro</i>	54

	2.4.2.1.	Kinetic of alpha amylase and amyloglucosidase	55
	2.4.2.2.	Physico-chemical properties of raw starch granules	56
	2.4.2.3.	Degree of gelatinisation (DG)	58
	2.4.2.4.	Presence of insoluble and soluble dietary fibres	60
	2.4.2.5.	Effect of shear rate	62
2.5.		Concluding remarks	63

Cha	pter 3	General materials and methods	64
3.1.	-	Introduction	64
3.2.		Selection of materials	64
	3.2.1.	Digestive residues of pig and human	64
	3.2.2.	Food fibres	68
	3.2.3.	Starch	69
	3.2.4.	Glass beads	70
3.3.		Chemical properties of dietary fibre and starch	70
	3.3.1.	Proportion of cellulose, hemicellulose and lignin in food dietary fibre	70
	3.3.2.	Protein content	73
	3.3.3.	Fat content (Soxtec TM method)	74
	3.3.4.	Moisture content	74
	3.3.5.	Water activity (A _w)	75
3.4.		Physical properties of fibre suspensions	75
	3.4.1.	Density of solid residues from digesta and faeces	76
	3.4.2.	Density of liquid used to prepare fibre suspensions	77
	3.4.2.1.	Selection of the Newtonian liquid phase	77
	3.4.3.	Microscopy	79
	3.4.3.1.	Light microscope	79
	3.4.3.2.	Scanning electron microscope	81
3.5.		Starch digestion	82
	3.5.1.	Removal of digestible components from fibre particles	82
	3.5.2.	In-vitro digestion system - using rheometer	83
	3.5.3.	Determination of total starch content	85
3.6.		Data analysis	86

Chapter 4	Quantification of water partitioned in undigested and digested dietary fibres	90
4.1.	Abstract	91
4.2.	Introduction	91
4.3.	Materials and methods	95
4.3.1.	Proximate chemical compositions of fibre particulates	95
4.3.2.	Physical characteristics of fibre particulates	95
4.3.3.	Particulates recovered from human faeces and pig digesta	95
4.3.4.	Selection of drying temperature for digesta particles	95
4.3.5.	In-vitro digestion of commercial fibre particles	96
4.3.6.	SEM	96
4.3.7.	Light microscope	97
4.3.8.	Determination of the volume of fibre particles	97

	4.3.9.	Determination of the water content of saturated particles	98
	4.3.9.1.	Water of saturation (W _s)	98
	4.3.9.2.	Water holding capacity (WHC)	99
	4.3.9.3.	Intra-particulate and extra-particulate water	100
	4.3.10.	Statistical analysis	100
4.4.		Results	101
	4.4.1.	Chemical composition of fibre particles	101
	4.4.2.	Particle morphology	103
	4.4.2.1.	Scanning electron micrographs	103
	4.4.2.2.	Light micrographs	105
	4.4.3.	Distributions of particles	111
	4.4.3.1.	Cumulative distribution of particles	111
	4.4.3.2.	Distribution of particles volume	113
	4.4.4.	Particle density	115
	4.4.5.	Hydration of particles	116
	4.4.6.	Intra- and extra-particulate water	119
4.5.		Discussion	120
4.6.		Conclusions	124

Chapte	
	viscosity of digesta ¹²⁶
5.1.	Abstract
5.2.	Introduction 127
5.3.	Materials and Methods 130
5.3.	Solid particles
5.3.	Dry matter contents (DMC) 130
5.3.	Density of solid particles from pig digesta
5.3.	Solid volume fraction (ϕ)
5.3.	Apparent viscosity of pig digesta
5.3.	Fitting the Maron-Pierce equation for fibre and glass bead
	suspensions 132
5.3.	Image analysis 135
5.3.	Data analysis 135
5.4.	Results
5.4	Validation of parameters used to characterise the viscosity of
	digesta
5.4.	Model particle system 139
5.4.	Properties of particles from pig digesta 144
5.5.	Discussion
5.6.	Conclusions 151

Chapter 6	The effect of fibre and gelatinised starch type	
	on the rate of amylolysis and apparent viscosity reduction during in-vitro digestion at	
	a physiological shear rate	152
6.1.	Abstract	153

6.2.		Introduction	154
6.3.		Materials and methods	157
	6.3.1.	Fibre types	157
	6.3.2.	Preparation of AllBran® fibre	157
	6.3.3.	The concentration of fibres used	158
	6.3.4.	Starch	158
	6.3.5.	Pasting temperature	158
	6.3.6.	Preparation of starch/fibre suspensions	160
	6.3.7.	In-vitro digestion using rheometer	161
	6.3.8.	Total starch and sugar determination	162
	6.3.9.	SEM of starch granules	162
	6.3.10.	Data analysis	163
6.4.		Results	165
	6.4.1.	Fibre types	165
	6.4.2.	Physico-chemical properties of starches	166
	6.4.3.	RDS, SDS, and RS as a proportion of total starch	166
	6.4.4.	Relationship between viscosity and starch	168
6.5.		Discussion	186
6.6.		Conclusions	192

Cha	pter 7	The effects of degree of gelatinisation and process conditions on the digestibility of	
		starch suspensions during in-vitro digestion at	
		physiological shear rates	194
7.1.		Abstract	195
7.2.		Introduction	196
7.3.		Materials and methods	198
	7.3.1.	Starch	198
	7.3.2.	Determination of %DG	198
	7.3.3.	Hydration properties	201
	7.3.4.	Preparation of starch samples for digestion	203
	7.3.5.	Light microscope	203
	7.3.6.	Experiment designs for <i>in-vitro</i> digestion	204
	7.3.7.	In-vitro digestion	204
	7.3.8.	Rheology	205
	7.3.9.	Total starch and sugar determination	206
	7.3.10.	Data analysis	206
7.4.		Results	206
	7.4.1.	Pasting properties of starches	206
	7.4.2.	RDS as a proportion of total starch	207
	7.4.3.	Water absorption, solubility and apparent viscosity	209
	7.4.4.	Digestion of starch	211
	7.4.5.	Effect of %DG	215
	7.4.6.	Effects on starch viscosity	216
	7.4.7.	Relationship between digestion starch and % viscosity	218
7.5.		Discussion	220
7.6.		Conclusion	224

Chapter 8	General discussion and conclusions	226
8.1.	Introduction	226
8.2.	Outcomes from the study	226
8.3.	Applications	228
8.4.	Limitations	229
8.5.	Recommended future research	229
Dibliggraphy		230
Bibliography		
Appendix 1		256
Appendix 2		257
Appendix 3		258
Appendix 4		259
Appendix 5		260
Appendix 6		269
Appendix 7		278

LIST OF FIGURES

Figure 2.1:	Analytical methodology for quantitatively assessing the components of dietary fibre (Asp et al., 1983)	14
Figure 2:2:	Structural model of a cellulose mircofibril. The microfibril has homopolymeric regions of highly crystallinity intermixed with less	14
	organised heteropolymeric amorphous regions (adapted from Taiz & Zeiger, 2002)	18
Figure 2.3:	Three dimensional view of the arrangement of plant cell wall polymers that made up of insoluble and soluble fibres (adapted	
Figure 2.4:	from Thakur, Singh, Handa, & Rao, 1997) Basic structure of the main starch polymers: the quasi-linear amylose (above) and highly branched amylopectin (below)	20
	(adapted from Delcour et al., 2010)	27
Figure 2.5:	From starch granules to building blocks; a schematic showing organization of the unit chains in amylopectin illustrated according to the cluster model and the building block backbone model. (a) the granule consisting of alternating ring with a hilum region, normally considered as amorphous and centred to their middle. (b) The principal arrangement of the semi-crystalline rings according to the cluster structure of amylopectin. (c) The principal arrangement of the semi-crystalline rings according to the building block backbone structure of amylopectin. The structure of the amorphous rings is not established, but consists of amylose as well as amylopectin. The semi-crystalline rings consist of alternating crystalline (C) and amorphous (A) lamellae, which are enlarged in the lower figures. The details of double helices (cylinders) and building blocks (encircled) are depicted in the centre lower figure (circles depict glucose residues). Inter-block segments (IBS) and inter-cluster segments (ICS) are indicated and are found in both models, but the principal unit in (b) is the cluster and in (c) is the much smaller and more tightly branched building block. Note that a major difference between the models is that in (b) the amylopectin molecules penetrate the stacks of lamellae, whereas in (c) the AP molecules do not penetrate the stacks. The blocklets	
	or super helices of AP are not shown, but are supposed to be	
	structures in between the granular rings and the molecular levels	
	(adapted from Vamadevan & Bertoft, 2015)	30
Figure 2.6:	2015) Schematic diagram of starch granule structure (a) a single granule with alternating amorphous and pseudo-crystalline layers; (b) expanded view alternating crystalline and amorphous lamellae in the pseudo-crystalline layers (adapted from Jenkins et al., 1994); (c) blocklet structure in association with amorphous radial channels. Blocklet size is smaller in the semi-crystalline layer than in the crystalline layer; (d) Scanning electron micrographs of starch granules after α -amylolysis showing the occurrence of spherical blocklet-like structures (adapted from Gallant et al.,	30
	spherical blocklet-like structures (adapted from Gallant et al.,	

	1992)
Figure 2.7:	Scanning electron micrographs of residual starch granules after pancreatic alpha-amylase hydrolysis: (a) wheat; (b) potato.
	"Blocklets" are shown by arrows (adapted from Gallant et al.,
Eigura 2.8.	1992)3An illustration of the gelatinisation process and the changes in
Figure 2.8:	ordered structures of a starch granule during heating in excess
	water (adapted from Biliaderis, 1991)
Figure 2.9:	The dispersed soluble fibre forming entangled network in a solution (adapted from Ellis, Rayment, & Wang, 1996)
Figure 2.10:	Schematic model of a suspension of spherical particles in response to applied shear (arrows). Particle-particle interaction increases as
	the gap (h) between particles decreases and the mean particle
	diameter (d) increases (adapted from Petford, 2009) 4
Figure 2.11:	The effect of shear rate on apparent viscosity of a particulate
Eigung 2 12.	4 Suspension
Figure 2.12:	The relationship between relative viscosity and the ϕ/ϕ_{max} (adapted from Stickel & Powell, 2005) using hard polystyrene spheres and
	polymethyl methacrylate beads suspended in polymer solutions
	such as polyethylene glycol-ran-propylene glycol
	monobutylether
Figure 2.13:	A typical RVA viscogram for starch gelatinisation, viscosity
	profile (dotted line) and temperature profile (bold line) 4
Figure 2.14:	Hydrolytic mechanism of enzymes on amylose and amylopectin.
	Alpha-amylase is an endo-acting enzyme hydrolysing α -(1-4)
	bonds at random giving rise to malto-oligosaccharides (linear or branched, typically DP 2-6); it does not hydrolyse α -(1-6) bonds.
	Amyloglucosidase is an exo-acting hydrolase which releases
	single glucose molecules from the non-reducing end of α -(1-4)
	oligo- or polysaccharides. This enzyme is unique because it can
	hydrolyse α -(1-6) branching points, converting starch completely
5. 0.15	to glucose (adapted from Tester & Sommerville, 2000)
Figure 2.15:	Action of salivary and pancreatic alpha-amylase on amylopectin.
	Each circle represents a glucose residue linked with either alpha- 1,4 (horizontally) or alpha-1,6 (vertically) bond. The final
	products from amylolysis are maltose, maltotriose and the
	branched alpha-dextrins (adapted from Gray, 1992)
Figure 2.16:	Diffusion of amylase and its hydrolysis patterns in raw corn and
	potato starches: (A) corn starch showing pores and channels; (B)
	corn starch hydrolysed by amylase with enlarged pores; (C) potato
	starch granules have fewer pores, (D) channels and cavity of
	potato starch by amylase. Adapted from (left: Dhital, Shrestha, & Gidley, 2010); (right: Sujka & Jamroz, 2007)
Figure 3.1:	SEM images of the starch particles (i-ii), to the same scale
Figure 3.2:	The small strain oscillation time sweep test on 70% (w/v) fructose
C	in which 50% (w/v) of glass beads was suspended
Figure 3.3:	The light microphotograpy of (a) cellulosic wheat fibre (Prolux)
	and (b) Wood fibre stained with toluidine blue O (left) and
E '	safranin (right)
Figure 4.1:	Chemical compositions of the "as supplied" fibre particles 10

Figure 4.2:	Chemical compositions of the fibre particles after in-vitro	
Figure 4.3:	digestion SEM images of the various commercial fibre particles used. Left column: commercial fibre particles 'as supplied'; Right column:	102
Figure 4.4:	commercial fibre particles after <i>in-vitro</i> digestion Light microscope images of (a) WF600 and (b) Prolux wheat fibres after staining with Toluidine blue O; particles from (c) wood, (d) AllBran [®] , (e) human faeces and (f) pig digesta were stained with safranin. For fibre particles from (a) to (d): (Left) commercial fibre particles 'as supplied'; (Right) commercial fibre	104
Figure 4.5:	commercial nore particles as supplied, (Right) commercial nore particles after <i>in-vitro</i> digestion. All photos were taken in the same scale as WF600 Light microscope images after analysis of volume using Image J software (a) WF600 and (b) Prolux wheat fibres after staining with Toluidine blue O; particles from (c) wood, (d) AllBran®, (e) human faeces and (f) pig digesta were stained with safranin. For fibre particles from (a) to (d): (Left) commercial fibre particles 'as supplied'; (Right) commercial fibre particles after <i>in-vitro</i>	108
Figure 4.6:	digestion. All photos were taken in the same scale Volume of particles plotted against cumulative volume weighted from Image J analysis; (a) all commercial fibre types before and after <i>in-vitro</i> digestion (IV) and solid particles recovered from human faeces and pig digesta; (b) Cellulosic WF600 and Prolux	111
Figure 4.7:	wheat fibres before and after <i>in-vitro</i> digestion Percent of particles (left) and the proportion of particle volume (right) for each of the 5 size categories. (a) Commercial fibre particles before <i>in-vitro</i> digestion, (b) commercial fibre particles following <i>in-vitro</i> digestion, (c) Particles collected from colonic	112
	pig digesta and human faeces	114
Figure 5.1:	SEM micrograph of glass beads	139
Figure 5.2:	Light micrographs (x200) of food particles recovered from <i>in-vitro</i> digestion with various R values	140
Figure 5.3:	The relationship between η_r of the food fibre suspensions to ϕ/ϕ_{max} ; \blacksquare = WF600 after <i>in-vitro</i> digestion, \blacktriangle = Prolux after <i>in-vitro</i> digestion; + = wood fibre after <i>in-vitro</i> digestion, \blacklozenge = AllBran® after <i>in-vitro</i> digestion, x = glass beads, and	
Figure 5.4:	Maron-Pierce equation fit. Apparent viscosity of the suspending 70% fructose solution, $\eta_s = 0.032$ Pa.s The relationship between ϕ_{max} and aspect ratio (R) for the glass bead and fibre suspensions from this study and for other suspensions (Kitano et al., 1981; Pabst, Gregorova, et al., 2006). Coefficients from the linear regression: This study (Equation 5.4);	142
Figure 5.5:	$\phi_{max} = 0.528$ -0.042 R, Kitano; $\phi_{max} = 0.54$ -0.0125 R, Pabst; $\phi_{max} = 0.51$ -0.0223 R Optical microscopic images (x200) of digesta particles recovered from (a) the proximal; (b) the distal segments of porcine small intenting	143
Figure 6.1:	intestine Chemical compositions of the five fibre types	147 165
Figure 6.2: Figure 6.3:	SEM images of the starch particles (i-ii), to the same scale Proportions of RDS, SDS, and RS as a percentage of total starch,	165

	with and without the inclusion of the fibre types. P, potato starch; C, corn starch; WF600, WF600 wheat fibre; P, Prolux wheat fibre; W, wood fibre; Ab, <i>In-vitro</i> digested AllBran®; G, guar gum; RDS, rapidly digestible starch; SDS, slowly digestible starch; RS, resistant starch. Mean values labelled with different superscripts (a–e) are significantly different (GLM and Tukey's pair wise test,	
Figure 6.4:	p ≤ 0.05) The proportion of starch remaining during <i>in-vitro</i> digestion of the ■=Control starch (left, potato; right, corn), and various starch/fibre suspensions, \Box =WF600, ▲ =Prolux fibre, Δ =Wood fibre, ● =AllBran® fibre, O=Guar. Each point is the mean of two replicates. The line is the best fit for all points using an	167
Figure 6.5:	exponential decay function (Equation 3.10) The proportion of apparent viscosity measured during <i>in-vitro</i> digestion of the \blacksquare =Control starch (left, potato; right, corn), and various starch/fibre suspensions, \square =WF600, \blacktriangle =Prolux fibre, \triangle =Wood fibre, \bigcirc =AllBran® fibre, \bigcirc =Guar. Each point is the mean of two replicates. The line is the best fit for all points using	171
Figure 6.6:	an exponential decay function (Equation 3.10) The proportion of starch remaining (Ln-transformed data) during the first 20 min (Figure 6.4) of <i>in-vitro</i> digestion of the \blacksquare = Control starch (left, potato; right, corn), and various starch/fibre suspensions, \square =WF600, \blacktriangle =Prolux fibre, \triangle =Wood fibre, \blacksquare = AllBran® fibre, \bigcirc =Guar. Each point is the mean of two	173
Figure 6.7:	replicates. The line is the linear regression (Equation 3.11) fitted to all points The proportion of initial viscosity measured (Ln-transformed data) during the first 20 min (Figure 6.5) of <i>in-vitro</i> digestion of \blacksquare =Control starch (left, potato; right, corn), and various starch/fibre suspensions, \square =WF600, \blacktriangle =Prolux fibre, \triangle =Wood fibre, \blacksquare =AllBran® fibre, \bigcirc =Guar. Each point is the mean of two wardingtes	178
Figure 6.8:	replicates. The line is the linear regression (Equation 3.11) fitted to all points The relationship between the proportion of starch remaining in suspension and apparent suspension viscosity during 20 min of <i>in-</i> <i>vitro</i> digestion for \blacksquare =Control starch (left, potato; right, corn), and various starch/fibre suspensions, \square =WF600, \blacktriangle =Prolux fibre, \triangle =Wood fibre, \blacksquare =AllBran® fibre, \bigcirc =Guar. Each point is the	180
Figure 7.1:	mean of two replicates Rheology of starches during gelatinisation: RVA pasting profile for aqueous suspensions of 10% (w/w) potato (P) and corn (C)	185
Figure 7.2:	starch, $\Delta = DG0\%$, $\blacksquare = DG50\%$, DG100% marked on graph Differences in RDS as a percentage of total starch, with %DG and cooking duration at different shear rates (10s, shear rate at 10 s ⁻¹ ; 1s, shear rate at 1 s ⁻¹ ; 0.1s, shear rate at 0.1 s ⁻¹). Proportion of RDS was plotted as means; values with superscripts (a-h) are significantly different (Two way ANOVA and Tukey's pair-wise	199
Figure 7.3:	test, p<0.05). Other notation similar to Table 7.2 Light micrographs (x40) of starch granules gelatinised at different DG and cooking duration. Upper row: Potato starch, lower row:	208

	corn starch. The Aw for all starch/water suspension was 0.99 and Aw for all starch/70% fructose suspensions was 0.74	210
Figure 7.4:	Ln proportion of starch remaining during the first 20 min of simulated small intestinal digestion (Start value = 100%). DG, degree of gelatinisation; Ck, cook time (min); Starch cooked in fructose and measured at shear rates of 0.1 s ⁻¹ , 1 s ⁻¹ and 10 s ⁻¹ (open symbols as per legend); starch cooked in water and measured at a shear rate of 0.1 s ⁻¹ (filled symbols as per legend); starch cooked in water measured at a shear rate of 1 s ⁻¹ and 10 s ⁻¹ (Shear rate > 0.1 s ⁻¹) is the remaining data. Linear regressions of the Ln-transformed data plotted against time are fitted to all data within each of the 3 data sets and are the annotated lines on the	
Figure 7.5:	graphs Ln proportion of apparent viscosity remaining during the first 20 min of simulated small intestinal digestion (Start value = 100%).	212
Figure 7.6:	Notations were similar to those in Figure 7.4 The relationship between the proportion of undigested starch and the proportion of apparent viscosity remaining for all treatments during the 20 min of digestion; $\blacksquare = 10 \text{ s}^{-1}$ FrucCk30, $\blacksquare = 10 \text{ s}^{-1}$ DG50%Ck30, $\blacksquare = 10 \text{ s}^{-1}$ DG100%Ck10, $\square = 10 \text{ s}^{-1}$ DG100%Ck30, $\triangle = 1 \text{ s}^{-1}$ FrucCk30, $\triangle = 1 \text{ s}^{-1}$ DG50%Ck30, $\triangle = 1 \text{ s}^{-1}$ DG100%Ck10, $\triangle = 1 \text{ s}^{-1}$ DG100%Ck30, $\bigoplus = 0.1 \text{ s}^{-1}$ FrucCk30, $\blacksquare = 0.1 \text{ s}^{-1}$ DG50%Ck30, $\bigcirc = 0.1 \text{ s}^{-1}$ DG100%Ck10, $\square =$ Shear rate at 0.1 s ⁻¹ ,Shear rate at 10 and 1 s ⁻¹ (R ² =0.97), Predicted from the Einstein model and Fructose treatment data. All treatments set to 100% starch and viscosity at the start of digestion. Digestion proceeds from left to	213
	right	219

LIST OF TABLES

Table 2.1:	The dietary fibre content in some common food sources (g/100g edible portion) analysed using AOAC method (adapted from	
	(Dreher, 1999; Hollmann, Themeier, Neese, & Lindhauer, 2013; Li, Andrews, & Pehrsson, 2002; Menkovska et al., 2017)	16
Table 2.2:	Proximate composition (%) of dietary fibre isolated from plant cell	10
14010 2.2.	wall analysed using methods adapted from (Englyst, 1989;	
	Holloway & Greig, 1984)	17
Table 2.3:	Hydration properties of various fibre types with different particle sizes	25
Table 2.4:	Shapes and sizes of starch granules from different botanical origin	26
Table 3.1:	Dietary records of the volunteer on three consecutive days on 100 g	
	Kellogg's AllBran® fibre supplement	66
Table 3.2:	Calculated nutritional values of carbohydrate, protein and fats for the daily food intake of the volunteer for three consecutive days	
	using NutriPRO Inc. software	67
Table 3.3:	The densities and apparent viscosities of fructose solutions at 37°C.	78
Table 4.1:	The hydration characteristics of centrifuged pellets of various fibres	110
Table 1 2.	before and after <i>in-vitro</i> digestion	118
Table 4.2:	Relative proportions of dry matter, W_E and W_I in the water saturated centrifuged particle pellets prepared for the measurement of	
	W _S	119
Table 5.1:	Values for DMC, ϕ and ϕ/ϕ_{max} for particulates recovered from the small intestine (SI) of pigs	138
Table 5.2:	The relative viscosities (η_r) and, the estimated ϕ_{max} of the fibre	150
14010 0121	suspensions using <i>in-vitro</i> digested particles at a range of ϕ . Results	
	relative to the viscosity of glass bead suspensions	141
Table 5.3:	Comparisons of constants relating ϕ_{max} with R for various studies	144
Table 6.1:	The PT and peak hot PV for the four concentrations of the two	
	starches	159
Table 6.2:	Experimental treatments of starch/fibre suspensions used	162
Table 6.3:	Viscosity (Pa.s) of the potato (P) and corn (C) starch suspensions	
	with the various fibre types before intestinal digestion (0 min) and	1.00
	during <i>in-vitro</i> intestinal digestion at 20 and 120 min	169
Table 6.4:	Differences in coefficients <i>a</i> and <i>b</i> from Eq. 3.10 ($y = ae^{-(bx)}$) for	
	the relative rate of decay in the proportion of potato and corn starch	
	for six treatments over 120 min of stimulated small intestinal	174
	digestion	174
Table 6.5:	Differences in coefficients a and b from Eq. 3.10 ($y = ae^{-(bx)}$) for the reduction in initial viscosity of potents and some storch for six	
	the reduction in initial viscosity of potato and corn starch for six	175
Table 6.6	treatments over 120 min of stimulated small intestinal digestion	175
Table 6.6:	Differences in constants m and n (Ln Y = Ln $m + n$. Ln t), the relative rate of decay in the properties of poteto and corrected for	
	relative rate of decay in the proportion of potato and corn starch for six treatments over 20 min of stimulated small intestinal digestion	101
Table 67.	six treatments over 20 min of stimulated small intestinal digestion Differences in constants m and n (Lp X = Lp m + n Lp t), the	181
Table 6.7:	Differences in constants m and n (Ln Y = Ln $m + n$. Ln t), the relative rate of decay in viscosity of a properties of initial viscosity	
	relative rate of decay in viscosity as a proportion of initial viscosity	
	for potato and corn starch suspensions for six treatments over 20	100
	min of stimulated small intestinal digestion	182

Table 6.8:	Differences in the relative rate of digestion of potato and corn starch (min ⁻¹) for six treatments over 20 min of stimulated small intestinal digestion	183
Table 6.9:	$T_{\frac{1}{2}}$ values (min) for starch digestion and viscosity for the two starch controls (P, C) and 10 treatments during 120 min of <i>in-vitro</i> digestion of suspensions of various fibres with potato (left) and corn (right) starch	184
Table 7.1:	Pasting properties of 10% (w/w) potato and corn starch suspensions determined by the RVA	199
Table 7.2:	Experimental treatments: P, Potato; C, Corn; Fruc, starch suspension cooked in 70% (w/v) fructose solution; DG50% or DG100%, 50% or 100% gelatinisation temperature treatments; Ck10 or Ck30, cooked for 10 min or 30 min	204
Table 7.3:	Calculated shear stress required (<i>Italics</i>) to generate the shear rates for materials of the apparent viscosities listed. The value for shear stress = 1 (<i>italics</i> , bold) is close to the maximum reported for the small intestine and shear stress values to the right of this in each row represent suspensions with viscosities that are unlikely to be mixed	
Table 7.4:	effectively in the small intestine Effect of cooking duration (Ck10 min or Ck30 min) and %DG on Q (swelling factor), ϕ_w (volume proportion of water in the granules), and S (weight proportion of granule solubles) and the apparent viscosity at the three (3) shear rates for all treatments at the end of	205
Table 7.5:	the gastric digestion phase. Other notation similar to Table 7.2 Variation in the relative rate of digestion of potato (P) and corn (C) starch (min ⁻¹) for the four gelatinisation treatments and three shear rates over 20 min of simulated small intestinal digestion. Other notation similar to Table 7.2	209 214
Table 7.6:	Variation in $T_{\frac{1}{2}}$ values with starch digestion and apparent viscosity for all treatments over 20 minutes. Data points are derived by solving from the linear regression fitted to the data in Figures 7.3	214
	and 7.4	217

LIST OF EQUATIONS

$\eta_r = \eta_s \left(1 + [\mathbf{k}] \mathbf{\phi} \right)$	(Equation 2.1)	42
$\eta_r = (1 - (\phi/\phi_{max}))^{-[k]} \phi^{max}$	(Equation 2.2)	43
$\eta_r = (1 - (\phi/\phi_{\text{max}}))^{-2}$	(Equation 2.3)	44
Y = c - m X	(Equation 2.4)	46
$\phi_{\rm max} = 0.54 - 0.0125 \ { m R}$	(Equation 2.5)	46
$\phi_{\rm max} = 0.51 - 0.0223 \ { m R}$	(Equation 2.6)	46
$\phi_{\rm W} = c Q$	(Equation 2.7)	49
$\phi_{\rm w} = [(1 - (S/100)) * cQ)$	(Equation 2.8)	49
$NDF = 100 \text{ x } [(W_4 - W_5) - (B_4 - B_5)] / [W_1 * W_3]$	(Equation 3.1)	71
$ADF = [(W_3 - W_2) - (B_3 - B_2)] W_1 \times 100$	(Equation 3.2)	72
$ADL = [(W_4 - W_5) - (B_4 - B_5)] W_1 \times 100$	(Equation 3.3)	73
% Fat in starch = $[(W_2 - W_3)/W_1]*100$	(Equation 3.4)	74
% Moisture = $[(W_2 - W_1)/W_1] * 100$	(Equation 3.5)	75
Density of solid = (weight of solid / volume of solid)	(Equation 3.6)	76
Density of liquid = (weight of liquid / volume of liquid)	(Equation 3.7)	77
$t=18\eta h / [g(\rho_s - \rho_w)d^2]$	(Equation 3.8)	78
Reducing sugar = $[((OD^*k) / (W^* \text{ starch})) \times 0.9]$	(Equation 3.9)	86
$y = ae^{-(bx)}$	(Equation 3.10)	87
Ln y = Ln m + n. Ln t	(Equation 3.11)	88
Y = A + [(B) / (1 + exp (-(s-C))/D)]	(Equation 3.12)	88
Proportion of intra-particulate water = [(Fully hydrated		
volume - dehydrated volume)/dehydrated volume \times 100]	(Equation 4.1)	100
Total intra-particulate water =Weight of dry fibre used to		
determine $W_S \times Volume \%$ of shrinkage	(Equation 4.2)	100
Total extra-particulate water = W_s - Total W_I	(Equation 4.3)	100
$\boldsymbol{\phi} = \left[\left(\mathbf{m}_{s} / \mathbf{d}_{s} \right) / \mathbf{V}_{1} \right]$	(Equation 5.1)	131
Average relative error = $(A / B) \times 100$	(Equation 5.2)	134
$\eta_{\rm r} = (0.58 \pm 4.35) + (-0.70 \pm 0.22 \text{ DMC}) + (-59.19 \pm 21.39 \phi)$		
$+(53.31\pm4.55\phi/\phi_{max})$	(Equation 5.3)	138
$t = \frac{b_1 - b_2}{SEb_1 - b_2}$	(Equation 6.1)	164
$SEb_1 - b_2 = \sqrt{SEb_1^2 - SEb_2^2}$	(Equation 6.2)	164
•		
$t = \frac{b - b_0}{SE_b}$	(Equation 6.3)	164
Q(g/g) = (weight of gelatinised granules / dry weight of	(101
starch)	(Equation 7.1)	201
$S(\%) = [(Ss / st) \times 100]$	(Equation 7.2)	201
	(-1	

LIST OF ABBREVIATIONS

ADLAcidic detergent lignin α alphaANOVAAnalysis of variance η_s Apparent viscosityRAspect ratioAOACAssociation of Official Analytical Chemists β betaBDBreakdownCaCl_2Calcium chloride	
ANOVAAnalysis of variance η_s Apparent viscosityRAspect ratioAOACAssociation of Official Analytical Chemists β betaBDBreakdown	
η_s Apparent viscosityRAspect ratioAOACAssociation of Official Analytical Chemists β betaBDBreakdown	
RAspect ratioAOACAssociation of Official Analytical ChemistsβbetaBDBreakdown	
AOACAssociation of Official Analytical ChemistsβbetaBDBreakdown	
β beta BD Breakdown	
BD Breakdown	
CaCl ₂ Calcium chloride	
<i>c</i> Concentration of starch in a suspension	
c* critical concentration	
°C Degree celsius	
DG Degree of gelatinisation	
ρ density	
DMC Dry matter content	
DNS dinitrosalicylic acid	
Na ₂ EDTA-2H ₂ 0 Disodium ethylenediaminetetraacetate dihydr	ate
dwb dry weight basis	
GLM Generalised linear model	
g gram	
g Gravity force	
h hour	
HCl Hydrochloric acid	
kg kilogram	
LiCl Lithium chloride	
L litre	
μl Microlitre	
μm Micrometer	
mg Milligram	

mL	Millilitre
mm	Millimeter
mmol/L	Millimolar/litre
min	minutes
Μ	Molar
MW	Molecular weight
nKat	nanokatal
NDF	Neutral detergent fibre
η_a	Newtonian suspending liquid
NSP	Non starch polysaccharides
Ра	Pascal
Pa.s	Pascal per second
РТ	Pasting temperature
PV	Pasting viscosity
%	Percentage
s^{-1}	Per seconds
KCl	Potassium chloride
W_E	Proportion of extra particulate water
WI	Proportion of intra-particulate water
RDS	Rapid digested starch
RVA	Rapid Visco Analyser
η_r	Relative viscosity
RS	Resistant starch
rpm	Revolutions per minute
SEM	Scanning electron microscope
SDS	Slow digested starch
NaHCO ₃	Sodium bicarbonate
NaCl	Sodium chloride
$Na_2HPO_4 \cdot 2H_2O$	Sodium phosphate dibasic dihydrate
$Na_2B_4O_7 \cdot 10H_2O$	Sodium tetraborate decahydrate
φ	Solid volume fraction
ϕ/ϕ_{max}	Solid volume fraction to their maximum packing fraction
H_2SO_4	Sulfuric acid

Q	Swelling capacity
$\Phi_{ m w}$	Volume fraction of gelatinised starch
v/v	volume/volume
A_w	Water activity
WHC	Water holding capacity
Ws	Water in the saturated fibre
S	Water solubility index
w/w	weight/weight
w/v	weight/volume
wwb	Wet weight basis

LIST OF PUBLICATIONS AND CONFERENCES

Studies completed during candidature, some of which are reported in this thesis, have been published or presented in the following communications:

Peer-reviewed papers:

Allan K. Hardacre, Roger G. Lentle, Sia-Yen Yap, John A. Monro. (2018). Predicting the viscosity of digesta from the physical characteristics of particle suspensions using existing rheological models. Manuscript submitted to the Journal of the Royal Society Interface for publication.

Allan, K. Hardacre, Roger, G. Lentle, Sia-Yen, Yap, John, A. Monro. (2016). Does viscosity or structure govern the rate at which starch granules are digested? *Carbohydrate Polymers*. 136: 667-675.

Allan, K. Hardacre, Sia-Yen, Yap, Roger, G. Lentle, John, A. Monro. (2015). The effect of fibre and gelatinised starch type on amylolysis and apparent viscosity during *in-vitro* digestion at a physiological shear rate. *Carbohydrate Polymers*. 123:80-88

Allan, K. Hardacre, Sia-Yen, Yap, Roger, G. Lentle, Patrick, W. M. Janssen, John, A. Monro. (2014). The partitioning of water in aggregates of undigested and digested dietary particles. *Food Chemistry*. 142: 446-454

Conferences, seminars:

Hardacre, A., Lentle, R., Yap, S. Y., Monro, J. (2014). Functional fibres: Will they reduce carbohydrate digestion? Conducted oral presentation in NZIFST Annual Conference 2014 (1st-3th July, 2014), Christchurch, New Zealand.

Yap, S. Y., Hardacre, A., Lentle, R., Monro, J. (2013). Factors affecting the digestibility of starch in an *in-vitro* rheological system. Conducted poster presentation in NZIFST Annual Conference 2013 (2-4th July, 2013), Hawke's Bay, New Zealand.

Yap, S. Y., Hardacre, A., Lentle, R., Monro, J. (2012). The partitioning of intraparticulate water in insoluble dietary fiber. Conducted poster presentation in 2012. The Riddet Institute Student Colloquium. (19-21th November, 2012), Palmerston North, New Zealand.

Yap, S. Y., Hardacre, A., Lentle, R., Monro, J. (2011). Characterization of the rheological properties of dietary fibers using fructose solutions. Conducted poster presentation in 7th Asia Pacific Conference on Clinical Nutrition (5-8th June, 2011), Bangkok, Thailand.

Yap, S. Y., Hardacre, A., Lentle, R., Monro, J. (2011). A quantitative exploration of the influence of the solid phase of digesta on its rheological properties and digestibility. Conducted oral presentation in 2011 Riddet Institute Annual conference (4-6th July, 2011), Palmerston North, New Zealand.

Yap, S. Y., Hardacre, A., Lentle, R., Monro, J. (2010). The digestion of starchy foods. Conducted oral presentation in the 2010 Riddet Institute Annual conference (10-11th June, 2010), Palmerston North, New Zealand.