Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A STUDY OF THE EFFECT OF THE FREQUENCY OF SPRING CUTTING

ON THE REGROWTH AND RESULTING YIELD OF

LUCERNE (Medicago sativa L.)

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Agricultural Science

at

MASSEY UNIVERSITY

by

FRANCIS TSUMA

1968

TABLE OF CONTENTS

<u>Section</u>	ACKNOWLEDGEMENTS	Page
I	INTRODUCTION	• 1
II	REVIEW OF LITERATURE (A) GENERAL (i) Origin 1. The Common Group	• 3
	 2. The Turkestan Group	• 4 • 5 • 5
	(ii) <u>Morphology</u>	• 5
	 (B) <u>DEFOLIATION</u> (i) <u>General</u>	• 6
	 (iii) <u>Frequency</u> (a) Effect on Dry Matter Yield	. 9 . 13 . 15 . 16 . 20 . 22
	(C) MOISTURE USE BY LUCERNE	, 23
	 (D) LIGHT INTERCEPTION (i) General (ii) The Measurement of Solar Radiation (iii) Photosynthesis (iv) The Interrelationship of Light, Leaf Area and Productivity 	, 26 , , 30 , 32
	(v) The Effect of Frequency of Defoliation on Light Interception	, 36

Section

V

III	THE FIELD EXPERIMENT	anti-mana di Saran
	(a) The Site	37
	(b) Climatic Conditions	37
	(c) Treatments	38
	(d) Methods	40
	(i) Dry Matter Yields	40
	(ii) Botanical Composition	40
	(iii) Point Analysis	41
	(iv) Leaf Area Index and Stem:Leaf Ratio	42
	(v) Organic Reserves	42
	(vi) Plant Density	43
	(vii) Stem Height	43
	(viii) Soil Moisture	43
	(ix) Light Measurement	44
IV	RESULTS	
	(i) Dry Matter Yields	45
	(ii) Main Dry Matter Yields	47
	(iii) Botanical Composition	49
	(iv) Point Analysis	49
	(v) Stem:Leaf Ratio	50
	(vi) Organic Reserves	52
	(vii) (a) Plant Density	53
	(b) Plant Density	54
	(viii) Stem Height	56
	(ix) (a) Soil Moisture	57
	(b) Soil Moisture	59
	(x) Leaf Area Distribution Percentage	60
	(xi) Leaf Area Index	63
	(xii) Light Penetration Percentage	65
V	INTERPRETATION OF RESULTS	

(i)	Dry Matter Yields	e	0	e	٠	٠	•	e	ø	•	¢	68
(ii)	Main Dry Matter Yields	ø	٠		ø	¢	•	ø	•	e	\$	71
(iii)	Botanical Composition .	¢	•	0	e		•		ø		ø	73
(iv)	Point Analysis	٠	ø	•	e	e	ø			•	e	74
(v)	Stem:Leaf Ratio			•			٠					75

Page

Section

Page	•

	(vi)	Organ	nic R	eser	ves	¢	¢	¢	•	٠	•	•	•	ø	¢	¢	e	77
	(vii)	Plant	t Den	sity	¢	¢	e	ø	¢	ø	đ	٠	¢	e	•	e	e	78
	(viii)	Stem	Heig	ht .	9 e	•	٠	Ŧ	•	•	0	*	•	•	e	•	¢	79
	(ix)	Soil	Mois	ture	¢	٠	3	¢	٠	a	•	•	ø	•		e	٠	81
	(x)	Leaf	Area	Inde	ex	e	æ	•	•	•	•	*	¢	•	e	•	e	81
	(xi)	Light	t Mea	suren	nen	ts		¢	æ	•	•	•	•		•	s	•	82
VI	SUMMARY AND	D CONC	CLUSI	ONS	¢	•	•	6 d		; de	e	¢	¢	•	a	, ,	Þ	84
	REFERENCES	6 4		¢ ¢	æ	÷ (8 6		÷	•	•	*	÷	e	, e	•	86

APPENDICES

LIST OF TABLES

Table		Page
1	The energy available at various wavelengths	27
2	Growth rates per unit leaf area and chlorophyll	34
3	Treatments, cutting intervals and dates	39
4	Dry weight yields (g/3 quadrats/week) in response to cutting frequency	45
5	Analysis of variance on dry matter yield per week as g/3 quadrats	46
6	Dry weight yields (g/4 quadrats per week) in response to cutting frequency	47
7	Analysis of variance on dry matter yield per week as g/4 quadrats	48
8	Percentage contribution of lucerne	49
9	Relative frequency of each species in the cover	50
10	Stem:leaf ratio measurements taken on 7th March, 1967	51
11	Analysis of variance on stem:leaf ratio	51
12	Dry weight yields of top growth per dome	52
13	Plant density measurements taken on 7th March, 1967	53
14	Analysis of variance on plant density measured on 7/3/67	53
15	Plant density measurements taken on 18th April, 1967	54
16	Analysis of variance on plant density measured on 18/4/67	55
17	Stem height measurements in centimeters (weekly averages)	56
18	Analysis of variance on average stem height in cm. per week	57
19	Soil moisture percentage sampled to a depth of 4" on 24th January, 1967	58
20	Analysis of variance on soil moisture percentage	58
21	Soil moisture percentages sampled to a depth of 4" on 8th March, 1967	59
22	Analysis of variance on soil moisture percentage	59
23	Leaf area distribution percentage in 3" layers in the canopies of lucerne harvested on 7th March, 1967	61
24	The leaf area indices of lucerne plants harvested on 7th March, 1967	63
25	Analysis of variance on leaf area indices	63
26	Light penetration percentage at 2" intervals in the canopies of lucerne harvested on 7th March, 1967	66

LIST OF FIGURES

Figure		Page
1	Effect of cutting intervals on dry matter yield (gm/6 sq.ft./week). Production between 13th Dec., 1966, and 24th Jan., 1967	46a
2	Effect of previous cutting intervals on dry matter yield (gm/8 sq.ft./week). Total of cuts following 2 six week spells	48a
3	Effect of previous cutting intervals on relative frequency of each species and bare ground in the cover as determined by point analysis on 4th April, 1967	50 c
4	Effect of previous cutting intervals on stem:leaf ratio measured on 7th March, 1967	51a
5	Effect of previous cutting intervals on plant density measured on 7th March, 1967	53a
6	Effect of previous cutting intervals on plant density, measured on 18th April, 1967	55a
7	Effect of previous cutting intervals on stem height. Weekly averages of 6 weeks measured on 7th Feb., 21st Feb., and 8th March, 1967	57b
8	Relationship between yield LAI and stem height in response to previous cutting intervals	64a
9	Effect of previous cutting intervals on leaf area index. Measured on 7th March, 1967	64ъ
10	Light penetration percentages in canopies of lucerne which had previously been cut every 2, 3, 4 and 6 weeks	67a

LIST OF PLATES

Plate		Page
1	The Graveley mower used in this study	38a
2	One of the wooden domes used in this study	42a
3	Treatment 1 plot (cut every 2 weeks) has got more weeds covering the ground than treatment 5 plot (cut every 6 weeks), which has got more bare ground and is virtually weed free. Therefore, it appears that frequent cutting of lucerne weakens the plants and makes them susceptible to weed	
	invasion	49a
4	Treatment 1 plot (cut every 2 weeks) showing a dense mat of weeds which came in as lucerne stand was weakened by repeated frequent cutting	50a
5	Treatment 5 plot (cut every 2 weeks), showing patches of bare ground, is practically weed free, an advantage gained from less frequent defoliation. It would appear that when lucerne is infrequently defoliated it grows vigorously and prevents weeds from making a start.	50ъ
6	Treatment 5 plot (cut every 6 weeks) has got the tallest plants, whereas treatment 1 plot (cut every 2 weeks) has got the shortest plants. Plants on both plots were allowed six weeks growth before measuring the height. It appears that repeated frequent defoliation slows down the rate of growth	57a

LIST OF DIAGRAMS

Diagram		Page
1	Plan of experimental area	39a
2	Different sizes of leaves used in determining leaf area index of lucerne harvested on 7/3/67	42b

ACKNOWLEDGEMEMTS

This study was suggested by Mr G.S. Robinson, Senior Lecturer in Field Husbandry, Massey University, to whom the author is sincerely grateful, for without his advice, help and continued enthusiasm, this Thesis would not have been written.

Thanks are also due to the following:

Prof. B.R. Watkin, Mr C.J. Baker and Mr L.R. Cooper, for assistance in the field work;

The late Mr A.C. Glenday of Applied Maths. Division, D.S.I.R. for valuable advice and help in statistical problems associated with this work; Dr R.W. Brougham and Mr D.B. Edmond, both of Grasslands Division, D.S.I.R., for helpful advice in experimental work;

Miss M.G. Campbell and the Library Staff, Massey University, for their help in obtaining references from inter-loan resources; Miss D. Scott and the Photographic Unit Staff, for assistance with general photographic work;

Mrs P.A.A. Cook, for her diligent typing of this Thesis.

This study was carried out under the tenure of a Post-Graduate Scholarship awarded by the New Zealand Government (under the Special Commonwealth African Assistance Plan), to whom the author expresses his sincere gratitude.

CHAPTER I

INTRODUCTION

There is abundant evidence to show that the yield, stand, chemical composition and the feeding value of lucerne may be materially affected by varying the cutting interval. Therefore, the purpose of the field experiment reported here was to determine the effect of the frequency of spring cutting on the regrowth and resulting yield of a pure stand of New Zealand certified lucerne (Chanticleer) and on weed invasion of the stand and, if possible, the reasons for this effect. It is hoped that this information will add to the existing evidence.

Lucerne is cultivated for stock feed in many parts of the world, including New Zealand. In recent years, it has become increasingly important as a forage crop because of its potential for high yields of good quality feed under a wide range of climatic and soil conditions. The long tap root of the plant affords it considerable resistance to drought. Moreover, the plant is rich in phosphates, lime and protein, all of which are essential in animal production. In common with other legumes, it possesses the power to increase the nitrogen content of the soil.

Lucerne was introduced into New Zealand during European settlement and its acreage has since increased, especially in the South Island. In 1962, there were approximately 146,000 acres cut for hay and silage. This figure would be much higher if the acreage of grazed lucerne was included. It has been reported that for many years lucerne has given profitable returns in parts of the Auckland and Wellington Provinces of the North Island, (N.Z. Dept. of Agric. Bul. No.155, 1958).

The increased use of lucerne in New Zealand farming can be attributed to improved farming technology. The crop can now be established easily through inoculation with the right strain of bacteria and maintained at high production levels through the use of fertilisers. Weeds can be effectively controlled by mechanical means as well as weedkillers. Mechanization of hay and silage making is also a major factor influencing the spread of lucerne into areas hitherto considered unsuitable.

On the other hand, in many parts of New Zealand, particularly the North Island, improved strains of high producing grasses and clovers are on the increase at the expense of lucerne. In addition, root and fodder crops are grown in place of lucerne to supplement pastures in summer and winter. Nevertheless, lucerne has got a big potential in the drier areas and on the lighter soils where it has been shown to outyield grasses and clovers.

2.