

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

VITAMIN E REQUIREMENTS OF ADULT DOMESTIC CATS (*FELIS CATUS*) FED DIETS CONTAINING HIGH LEVELS OF FISH OIL

A thesis presented in partial fulfilment of the requirement for the degree of Master of Nutritional Sciences at Massey University, Palmerston North, New Zealand

Yuben Wu

LIST OF ABBREVIATIONS

- TO*	T11'1
α-TO [•]	α-Tocopherol radical
a-TOH	a-Tocopherol
¹ O ₂	Active oxygen
³ C•	Triplet excited carotenoid
³ H-TdR	Tritiated thymidine
³ O ₂	State oxygen
AAFCO	Association of America Feed Control Officials
Ascorbate	Ascorbate radical
Brdu	5-Bromo-2'- deoxyuridine
Caro	Carotenoids
CAT	Catalase
Con A	Concanavalin A
CPM	Counts per minute
ELISA	Enzyme-linked imunosorbent assay
FRAP	The ferric reducing ability of plasma
GSH	Reduced glutathione
GSHPx	Glutathione peroxidase
GSH _{red}	Glutathione reductase
GSSG	Oxidised glutathione
H_2O_2	Hydrogen peroxide
HO [•]	Hydroxyl radical
LO_2^{\bullet}	Lipid hydroperoxide radicals
LOOH	Lipid hydroperoxides
LPO	Lipid peroxides
MCDP	10-N-Methylcarbamoyl-3,7-dimethylamino-10 H-phenothiazine
NADP	Triphosphopyridine nucleotide
NO ₂ •	Nitrogen dioxide
NRC	National Research Council
O2*-	Superoxide anion
OH•	Hydroxyl radical
PA ₂	Phospholipase A ₂
PHA	Phytohemagglutinin
PHGSHPx	Phospholipid hydroperoxides glutathione peroxidase
PUFA	Polyunsaturated fatty acids
PWM	Pokeweed mitogen
R*	Carbon-centered radical
RBC	Red blood cell
ROO [•]	Fatty acid hydroperoxide radicals
ROOH	Fatty acid hydroperoxides
Se	Selenium
SI	Stimulation index
SOD	Superoxide dismutase
TBA	Thiobarbituric acid

ABSTRACT

The vitamin E (α -tocopherol) requirement of adult cats fed diets containing high levels of fish oil was investigated. Thirty-two (16 male, 16 female) adult domestic cats (*Felis catus*) were randomly allocated to four groups according to sex and fed one of four experimental diets (A, B, C, and D) for 126 days. The cats were housed in large outdoor pens in groups of 8 cats. Diets A, B, C and D contained approximately 300 g of fish oil per kg diet dry matter and were supplemented to contain 0, 5, 10, and 15 IU DL- α -tocopheryl acetate per g added fish oil per kg diet, respectively. The diets were provided *ad libitum* with water being available at all times. Food intake was measured daily and body weights were measured at weekly intervals. Blood samples were taken from the jugular vein of each cat at bi-weekly intervals during the study. Blood samples were analysed for plasma α -tocopherol, red blood cell H₂O₂ (4 and 2 %) haemolysis, the ferric reducing ability of plasma, plasma lipid peroxides, plasma triglycerides, alkaline phosphatase and whole blood lymphocyte proliferation.

All cats remained healthy throughout the study except one female cat who was removed after 3 weeks due to poor food intake. The four diets were analysed and found to be free of peroxides. The average daily metabolisable energy intake of the cats on diet A, B, C and D at the end of study were similar and were 289, 261, 256, and 267 $kJ\cdot kg^{\text{-1}}$ body weight, respectively. No clinical signs of vitamin E deficiency were observed in any of the cats. The plasma α -tocopherol concentrations of the cats in the four groups at the start of the study were not significantly different between the four groups (mean \pm SEM, 3.4 ± 0.2 $\mu g \cdot m l^{-1}$). When the cats were fed diet A (unsupplemented), the mean plasma α -tocopherol concentration remained relatively low and the RBC 4 % H2O2 haemolysis remained high, while the RBC 2 % H2O2 haemolysis decreased consistently. Plasma lipid peroxides remained relatively low throughout the study. The ferric reducing ability of plasma status was compromised in the cats on the unsupplemented diet. There was no significant (P < P0.05) difference in any of the response parameters measured amongst the cats fed diets B, C and D except for the RBC 4 % H₂O₂ haemolysis of the cats on diet B which was significantly higher than those on diet C and D at week 4 and week 8, and the LPO value of the cats on diet D which was significantly higher than those of the cats on diet B and C at week 4.

The vitamin E requirement of adult cats fed a high level of fish oil, using the response parameters measured, was estimated to be between 0 and 5 IU of vitamin E per g added fish oil per kg diet. The current recommendation of the Association of American Feed Control Officials (10 IU vitamin E/g fish oil/kg diet) appears to be well in excess. The results from the present study also showed that there was no beneficial effect of dietary vitamin E on whole blood cell proliferation when vitamin E levels were 150 % of the recommendations of the Association of American Feed Control Officials. The vitamin E requirement of adult cats to optimise immune response warrants further investigation.

ACKNOWLEDGEMENTS

I would like to sincerely thank to my chief supervisor, Dr Wouter Hendriks for his advice, patient and guidance during the course of this study. I extend my thanks to my second supervisor, Associate Professor Brian Jordan for his corrections and valuable comments.

I would also like to thank Dr Kay Rutherfurd for her laboratory supervision, Mr Shane Rutherfurd, Ms Maggie Zou, Dr John McIntosh, Dr Philip Pearce for their expert assistance in the chemical analysis of α -tocopherol, fatty acids and the ferric reducing ability of plasma and Ms Rosemary Watson for performing the red blood cell hydrogen peroxide haemolysis assay.

I would like to thank the following people for their contributions to this work:

Mrs Linley Fray for her technical assistance with the cell proliferation assay.

Mrs Heather Nicol, Ms Karin Weidgraaf for their technical assistance in the conduct of the study.

Drs Tsegaw Belay and Mark Newcome of Heinz Pet Products, Terminal Island, Los Angeles, California, USA for manufacturing the experimental diets.

I acknowledge the support and encouragement of Mr Terry McGrath, Mr Parackal Mathew and Mrs Sherly Mathew during my study.

I am extremely thankful to my wife for her patience and support throughout the study. I extend my gratitude to my parents for fostering my education, which allowed me to undertake this study. I thank my parents-in-law for their support, and encouragement throughout this study.

v

TABLE OF CONTENTS

List of Abbreviations	ii
Abstract	iii
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	х
GENERAL INTRODUCTION	1
<u>CHAPTER 1</u> REVIEW OF LITERATURE	3
1.1 Introduction	3
1.2 Free radicals, lipid peroxidation and various antioxidants within the	
mammalian body	4
1.2.1 Free radicals and lipid peroxidation	4
1.2.2 Antioxidant nutrients and enzymes, and their interaction within the	
mammalian body	6
1.2.2.1 Vitamin E (α-tocopherol)	6
1.2.2.2 Vitamin C (ascorbic acid) and glutathione	6
1.2.2.3 Uric acid	7
1.2.2.4 β -Carotene and other related carotenoids	7
1.2.2.5 Selenium, glutathione peroxidase, superoxide dismutase and	
catalase	9
1.2.2.6 Interactions of vitamin E with selenium	10
1.3 Dietary factors affecting vitamin E requirement of mammals	11
1.3.1 Polyunsaturated fatty acids	11
1.3.2 Selenium	12
1.3.3 Sulphur amino acids	13
1.3.4 Synthetic antioxidants	13
1.3.5 Vitamin C	14

1.3.6 Vitamin A	14
1.3.7 Zinc	15
1.3.8 Summary	15
1.4 Targeted tissues and signs of vitamin E deficiency	15
1.4.1 Affected tissues and signs of vitamin E deficiency in animals	16
1.4.2 Affected tissues and signs of vitamin E deficiency in cats	18
1.5 Vitamin E requirements of several mammalian species	19
1.6 Methods of assessing vitamin E status	20
1.6.1 Plasma α-tocopherol	21
1.6.2 Red blood cell hydrogen peroxide haemolysis assay	23
1.6.3 Lipid peroxides assays	23
1.6.4 Whole blood lymphocyte proliferation assay	24
1.6.5 The ferric reducing ability of plasma assay	26
1.7 Determination of vitamin E requirements of animals	27
1.8 Determination of vitamin E requirement in cats	28
1.9 Inferences from review of literature	28
CHAPTER 2 MATERIALS AND METHODS	30
2.1 Animals and diets	30
2.2 Blood sample collection and processing	32
2.3 Whole blood and blood plasma assays	33
2.3.1 Chemicals used	33
2.3.2 Plasma vitamin E (α-tocopherol) analysis	34
2.3.3 Red blood cell hydrogen peroxide haemolysis	35
2.3.4 Plasma lipid peroxides	35
2.3.5 Whole blood lymphocyte proliferation	35
2.3.6 The ferric reducing ability of plasma	36
2.4 Chemical analyses	37
2.5 Data analysis	38

vii

CHAPTER 3 RESULTS

3.1 Body weight and metabolisable energy intake	39
3.2 Plasma α-tocopherol	40
3.3 Red blood cell hydrogen peroxide (4 and 2 %) haemolysis	41
3.4 Ferric reducing ability of plasma	42
3.5 Plasma lipid peroxides	44
3.6 In vitro whole blood lymphocyte proliferation with mitogen (CON A, PHA	
and PWM) and without mitogen	45
3.7 Plasma triglycerides and alkaline phosphatase	48
CHAPTER 4 DISCUSSION	49
<u>CHAPTER 5</u> CONCLUSION	54
CHAPTER 6 REFERENCES	55

LIST OF TABLES

CHAPTER 1

Table		
1	Targeted tissues and vitamin E deficiency symptoms in selected animal	
	species	16
2	The minimum vitamin E requirements for growing and adult animals of	
	several mammalian species	20
3	Plasma α -tocopherol status in healthy animals	21
4	Plasma α -tocopherol status in selected vitamin E deficient animal species	22
5	Vitamin E requirements of selected animal species using different	
	response criteria	27

CHAPTER 2

Table

1	Ingredient composition of the experimental basal diet	30
2	Chemical composition of the four experimental diets	31
3	The fatty acid profile of the four experimental diets	32
4	Calculated fatty acid profile of the four experimental diets	33

CHAPTER 3

Table

1	Statistical significance of selected variables on measured response		
	parameters		

LIST OF FIGURES

CHAPTER 1

Figure		
1	Schematic presentation of lipid peroxidation	5
2	The glutathione system	8
3	Interaction of vitamin E and selenium.	10

CHAPTER 3

Figure

1	Average daily ME intake of the adult cats on the four diets	40
2	Mean (\pm SEM) plasma α -tocopherol concentration of the adult cats on	
	the four diets	41
3	Mean (\pm SEM) red blood cell 4 % H ₂ O ₂ haemolysis of the adult cats on	
	the four diets	42
4	Mean (\pm SEM) red blood cell 2 % H ₂ O ₂ haemolysis of the adult cats on	
	the four diets	43
5	Mean (\pm SEM) ferric reducing ability of plasma of the adult cats on the	
	four diets	43
6	Mean (\pm SEM) plasma lipid peroxide levels of the adult cats on the four	
	diets	44
7	Mean (\pm SEM) <i>in vitro</i> stimulation index of cat whole blood lymphocytes	
	to concanavalin A	46
8	Mean (\pm SEM) <i>in vitro</i> stimulation index of cat whole blood lymphocytes	
	to phytohemagglutinin	46
9	Mean (\pm SEM) <i>in vitro</i> stimulation index of cat whole blood lymphocytes	
	to pokeweed mitogen	47
10	Mean (\pm SEM) in vitro counts per minute of unstimulated cat whole blood	
	lymphocytes	47
11	Mean (\pm SEM) plasma triglyceride concentration of the adult cats on	
	the four diets	48

х

GENERAL INTRODUCTION

The domestic cat (*Felis catus*) is a member of the Felidae family of the order Carnivore and one of the most popular companion animals. Part of their attraction lays in their playful behaviour (Houpt *et al.*, 1988). In recent years researchers have discovered that the relationship between humans and their pets provides numerous physiological and psychological benefits to the owner (Case *et al.*, 1995).

Besides proper health care and medical attention, nutrition is considered to be an important component of the care of cats. Nutritional balance and preferences of diets must be considered when a diet is formulated for cats by an animal nutritionist (Case *et al.*, 1995). It is well known that many cats prefer fish and consequently, numerous cat foods are composed of fish or flavoured with fish (Houpt *et al.*, 1988). However, there have been several reports of vitamin E deficiency in cats as a result of the exclusive feeding of fish and fish based diets (Cordy and Stillinger, 1953; Coffin and Holzworth, 1954; Munson *et al.*, 1958; Griffiths *et al.*, 1960; Watson *et al.*, 1973; Gaskell *et al.*, 1975; Flecknell and Gruffydd-Jones, 1978; Summers *et al.*, 1982; Koutinas *et al.*, 1993; Tidholm, 1996) over the last 50 years.

The vitamin E requirements of other animal species such as humans, rats, pigs, dogs, and guinea pigs have been extensively studied (Van Vleet, 1975; Farrell *et al.*, 1985; Hakkarainen *et al.*, 1986; Jensen *et al.*, 1988a; Mahan, 1991; Meydani *et al.*, 1991; Cho and Choi, 1994; Barja *et al.*, 1996; Wang *et al.*, 1996; Kubo *et al.*, 1997). These studies have demonstrated that the *in vivo* vitamin E requirements are markedly influenced by dietary composition. A high dietary level of polyunsaturated fatty acids increases the requirement for vitamin E as a result of the increased susceptibility of tissues to peroxidation (Duthie, 1993). The dietary vitamin E requirement of cats has been set at 30 IU·kg⁻¹dry matter: a figure mostly extrapolated from other animal species (NRC, 1986). In order to prevent vitamin E deficiency in cats fed commercially sold, fish based diets, the Association of America Feed Control Officials (AAFCO, 1997) recommends that diets containing fish oil should be supplemented with 10 IU of vitamin E for every g of fish oil per kg diet. AAFCO (1997) failed to provide evidence to substantiate this value and, therefore, the exact vitamin E requirements of cats fed high levels of polyunsaturated fatty acids are still largely unknown.

The main objective of this study was to determine the vitamin E requirement of cats fed high dietary levels of polyunsaturated fatty acids from fish oil. This study was also undertaken to obtain baseline data on α -tocopherol levels in blood plasma of adult cats, which can be used in the diagnosis of vitamin E deficiency.