

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Strategies for Resolving Security and Interference Issues in 802.11 Wireless Computer Networking

A thesis presented in partial fulfilment of the requirements for the degree of

> Masters of Engineering in Computer Systems Engineering

At Massey University, Palmerston North, New Zealand.

> Gladwin Mendez 2006

> > <u>Supervisors:</u> G.A.Punchihewa Dr Liyanage De Silva

ABSTRACT

This thesis presents the outcomes of the research and development of strategies to improve 802.11 wireless networking security, reduce interference, and investigation into the trends of home users in the city limits of Palmerston North, New Zealand. The main contributions of the research are several types of improvement strategies that reduce interference, add additional layers of security to 802.11, and reports on wireless trends.

The thesis begins with an overview of the current 802.11 security protocols and related issues. The current state of the 802.11 security is presented along with an assessment of efficacy of 802.11. Lastly, the motivations for improving security and reducing interference are explained.

The main improvement presented within the thesis is that of client filtering. The operation of filtering is explained. Using methods from other filtering protocols its shown that how an additional layer of security can be added to 802.11.

Following this, more improvements are shown that can be used with or without client filtering. The use of smart aerials, wizards and frequency selective materials is discussed and the advantages and disadvantages of each are highlighted, as well as the aspects and issues of implementing the strategies on a home personal computer based platform are presented.

This is followed by a description of the experiments conducted into attenuation and direction sensing. The results of the experiments are presented along with the discussion.

Finally, conclusions about the improvements are detailed and the results shown, in addition to research conducted on the trends of 802.11 users to further highlight the need for this research.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor and co-supervisors - Amal Punchihewa and Liyanage De Silva.

Secondly I would like to thank Stan Swan from Massey University at Wellington, who has given me his guidance throughout, his insights and comments have been invaluable. Without him this thesis and the research that it concludes would have been impossible.

In addition I would like my family and my friends. Without their support and their vigilance I would not have made it through the year. Thank you for everything.

ABSTRAG	ABSTRACT		
ACKNOWLEDGEMENTS			
LIST OF I	LIST OF FIGURES		
LIST OF	TABLES	11	
1 INTI	RODUCTION	12	
1.1 B	ackground	12	
1.2 C	ontentS of THE Thesis	13	
2 ISSI	UES RELATED TO THE RESEARCH	14	
2.1 Ir	nterference	14	
2.1.1	Microwave Technology	15	
2.1.2	Bluetooth Technology	16	
2.1.3	802.11 devices	17	
2.1.4	Digital cordless phones	18	
2.2 S	IGNAL Attenuation	19	
2.2.1	Theory of attenuation	19	
2.2.2	Research and experimentation	20	
2.2.3	Setup	22	
2.2.4	Results	24	
2.2.4	4.1 Polarisation Readings	26	
2.2.4	4.2 Interference Readings	27	
2.2.4	4.3 Base Readings	29	
2	.2.4.4.1 Brick 1 metre	30	
2	.2.4.4.2 Brick 2.5 meters	32	
2	.2.4.4.3 Brick 5 meters	34	
2	.2.4.4.4 Distance attenuation comparison	36	
2.2.4	2.2.4.5 Wood		
2	2.2.4.5.1 Wood 1 metre 37		
2.2.4.5.2 Wood 2.5 meters		39	
2.2.4.5.3 Wood 5 meters		41	
2	.2.4.5.4 Distance attenuation comparison	43	

2.2.4.6 Old weatherboard	
2.2.4.6.1 Weatherboard 1 metre	44
2.2.4.6.2 Weatherboard 2.5 meters	46
2.2.4.6.3 Weatherboard 5 meters	48
2.2.4.6.4 Distance attenuation comparison	50
2.2.4.7 Modern weatherboard	
2.2.4.7.1 Weatherboard at 1 metre	51
2.2.4.7.2 Weatherboard at 2.5 meters	53
2.2.4.7.2 Weatherboard at 5 meters	55
2.2.4.7.4 Distance attenuation comparison	57
2.2.4.8 Findings	58
2.3 Security Protocols and Issues	59
2.3.1 Wireless Equivalent Privacy	60
2.3.1.1 Issues	61
2.3.1.2 Improvements	63
2.3.2 Wi-Fi Protected Access	64
2.3.2.1 Issues	64
2.3.2.2 Improvements	65
2.3.3 Service Set Identifier Broadcast	66
2.3.3.1 Common Issues	66
2.3.4 MAC address filtering	67
2.3.4.1 Issues	67
2.3.5 SecureEasySetup(TM)	68
2.3.5.1 Issues	69
2.3.6 802.11i	
2.3.6.1 Wi-Fi Protected Access 2	70
2.3.6.2 Robust Security Network	70
2.3.7 Supplemental Methods	71
3 TYPES OF ATTACKS	75
3.1 Passive	
3.2 Active	
3.2.1 RPC Active Attack	
3.3 Man-in-the-middle	79
4 SECURITY AND INTERFERENCE RESEARCH	

4.1 Research of wireless user trends in 2004		
4.1.1 Methods and resources		
4.1.2 Findings of 2004 Research of wireless user trends	. 84	
4.1.3 GIS Imagery	. 89	
4.2 Research of wireless user trends in 2005	. 95	
4.2.1 Methods and resources	. 95	
4.2.2 Findings of 2005 research of wireless user trends	. 98	
4.2.3 GIS Imagery	. 99	
5 PROBLEM RESOLUTION	133	
5.1 Smart aerials	133	
5.1.1 Issues	134	
5.2 Power stepping	134	
5.2.1 Issues 1	135	
5.3 Frequency Selective Surfaces		
5.3.1 Issues	135	
5.4 Time Usage 1	136	
5.4.1 Issues 1	136	
5.5 Detection of Attackers	137	
5.5.1 Issues	137	
5.6 Filtering	137	
5.6.1 Issues	139	
5.6 Setup Wizards	139	
5.6.2 Issues 1	141	
5.7 Solution	141	
5.7.1 Experimentation 1	143	
6 CONCLUSIONS 1	147	
7 PUBLICATIONS BY THE AUTHOR 1	151	
8 REFERENCES	152	

LIST OF FIGURES

Figure 2.1: Location of centre burst frequency in relation to 802.11 channels
Figure 2.2: Effect of microwave interference on an 802.11 signal
Figure 2.3: Frequency usage of 802.11 and Bluetooth 16
Figure 2.4: Dimensions of rudimentary cage
Figure 2.5: Experimental layout 21
Figure 2.6: Free Space Loss over distance for 2.4 GHz signals
Figure 2.7: Anritsu Portable Spectrum Analyser used
Figure 2.8: Frequency allocation of 2.4 GHz channels
Figure 2.9: Experimental setup
Figure 2.10: Initial measurement taken looking for anomalous readings
Figure 2.11: Base reading
Figure 2.12: Vertical Polarization Readings
Figure 2.13: 5m vertical polarization interference
Figure 2.14: 5m interference with weatherboard
Figure 2.15: Averaged and smoothed graphs of signal measurements at 1, 2.5 and 5 meters 29
Figure 2.16: Measurements taken for brick at 1 metre
Figure 2.17: Averaged and smoothed signal through Brick at 1 metre
Figure 2.18: Calculated attenuation/signal drop through brick at 1 metre
Figure 2.19: Measurements taken for brick at 2.5 meters
Figure 2.20: Averaged and smoothed signal through Brick at 2.5 meters
Figure 2.21: Calculated attenuation/signal drop through brick at 2.5 meters
Figure 2.22: Measurements taken for brick at 5 meters
Figure 2.23: Averaged and smoothed signal through Brick at 5 meters
Figure 2.24: Calculated attenuation/signal drop through brick at 5 meters
Figure 2.25: Measured signal at different distances
Figure 2.26: Measurements taken for wood at 1 metre
Figure 2.27: Averaged and smoothed signal through Wood at 1 metre
Figure 2.28: Calculated attenuation/signal drop through Wood at 1 metre
Figure 2.29: Measurements taken for wood at 2.5 meters
Figure 2.30: Averaged and smoothed signal through Wood at 2.5 meters
Figure 2.31: Calculated attenuation/signal drop through Wood at 2.5 meters
Figure 2.32: Measurements taken for wood at 5 meters 41
Figure 2.33: Averaged and smoothed signal through Wood at 5 meters
Figure 2.34: Calculated attenuation/signal drop through wood at 5 meters
Figure 2.35: Measured signal at different distances
Figure 2.36: Measurements taken for weatherboard at 1 metre

Figure 2.37: Averaged and smoothed signal through weatherboard at 1 meters
Figure 2.38: Calculated attenuation/signal drop through weatherboard at 1 metre
Figure 2.39: Measurements taken for weatherboard at 2.5 meters
Figure 2.40: Averaged and smoothed signal through weatherboard at 2.5 meters
Figure 2.41: Calculated attenuation/signal drop through weatherboard at 2.5 metre
Figure 2.42: Measurements taken for weatherboard at 5 meters
Figure 2.43: Averaged and smoothed signal through weatherboard at 5 meters
Figure 2.44: Calculated attenuation/signal drop through weatherboard at 5 metre
Figure 2.45: Measured signal at different distances
Figure 2.46: Measurements taken for weatherboard at 1 metre
Figure 2.47: Averaged and smoothed signal through weatherboard at 1 metre
Figure 2.48: Calculated attenuation/signal drop through weatherboard at 1 metre
Figure 2.49: Measurements taken for weatherboard at 2.5 meters
Figure 2.50: Averaged and smoothed signal through weatherboard at 2.5 meters
Figure 2.51: Calculated attenuation/signal drop through weatherboard at 2.5 metre
Figure 2.52: Measurements taken for weatherboard at 5 meters
Figure 2.53: Averaged and smoothed signal through weatherboard at 5 meters
Figure 2.54: Calculated attenuation/signal drop through weatherboard at 5 meters
Figure 2.55: Measured signal at different distances
Figure 2.56: Drop in dB of materials over distance
Figure 2.57: Maximising Security for 802.11 home users
Figure 2.58: Encryption of data with WEP60
Figure 2.59: Decryption of data with WEP61
Figure 2.60: Outlining the table WEP system63
Figure 2.61: Illustrating spoofing of a MAC address67
Figure 2.62: MAC address spoofed
Figure 2.63: Illustration of SecureEasySetup process
Figure 2.64: How RSN works
Figure 3.1: Illustration of a passive attack75
Figure 3.2: Illustration of an Active Attack
Figure 3.3: Illustrating a blended attack utilising the wireless medium
Figure 3.4: Illustrating a Man-in-the-Middle Attack
Figure 4.1: High Level data flow of the system
Figure 4.2: Interface and data gathered by Net Stumbler
Figure 4.3: World Wide Reported WEP Usage Over Time as of August 2004
Figure 4.4: Reported World Wireless Networks as of August 2004
Figure 4.5: Unsecured WLAN 'Dlink' with average signal strength detected
Figure 4.6: One minute has passed since first detecting the unsecured AP and already associated
with network due to DHCP

Figure 4.7: Home users with unsecured WLAN and internet sharing
Figure 4.8: Bad networking practice of sharing C:\
Figure 4.9: Large sized company with an unsecured wireless network
Figure 4.10: Found and recognized a default SSID, inputting default administrator password 87
Figure 4.11: Continuing from previous Figure, default administrator password has obviously not
been changed
Figure 4.12: Distribution of secure and unsecure WLAN's
Figure 4.13: 2.5m resolution satellite imagery of the Palmerston North CBD
Figure 4.14: Topographical map illustrating SNR of WLAN's and created using GPSVisualizer 91
Figure 4.15: Aerial Photograph of CBD
Figure 4.16: 3D Representation of WLAN's in and around Massey University Using ArcScene 93
Figure 4.17: 3D Representation of WLAN's in and around Massey University Using ArcScene 94
Figure 4.18: Low Level data flow of information
Figure 4.19: World Wide Reported WEP Usage Over Time as of April 2005
Figure 4.20: Reported World Wireless Networks as of April 2005
Figure 4.21: 2.5 meter resolution satellite imagery of the city of Palmerston North and its districts
Figure 4.22: Channel distribution of WLAN's in Palmerston North 102
Figure 4.23: Channel distribution of WLAN's in Palmerston North 103
Figure 4.24: Security trends evaluated 104
Figure 4.25: Distribution of WLAN's and their security levels
Figure 4.26: Wireless security trends
Figure 4.27: Distribution of WLAN's and the encryption type used 107
Figure 4.28: Distribution of WLAN's detected per district
Figure 4.29: Distribution of commercial units per district
Figure 4.30: One meter aerial imagery of Palmerston Norths CBD 113
Figure 4.31: Higher schooling percentage according to district
Figure 4.32: No education percentage according to district
Figure 4.33: Encryption usage per district
Figure 4.34: Co-channel interference 120
Figure 4.35: Clashes per channel 121
Figure 4.36: Use of ArcScene to investigate LOS
Figure 4.37: Extrapolation of profile between two points
Figure 4.38: Distribution of channel 1 Co-channel interference
Figure 4.39: Channel 1 wireless density
Figure 4.40: Channel 1 conflict potentials
Figure 4.41: Distribution of channel 6 Co-channel interference
Figure 4.42: Channel 6 wireless density
Figure 4.43: Channel 6 conflict potentials

Figure 4.44: Distribution of channel 11 Co-channel interference 129)
Figure 4.45: Channel 11 wireless density 130)
Figure 4.46: Channel 11 conflict potentials 131	
Figure 5.1: Power stepping option in a modified Linksys WRT54g 135	;
Figure 5.2: Time usage access restrictions 136	;
Figure 5.3: SNR measurements taken in a home environment over 40 mins 138	}
Figure 5.4: Authentication process 138	}
Figure 5.5: Illustrating the scenario in practice)
Figure 5.6: An example of a possible signal adjusting wizard 140)
Figure 5.7: Factors involved in calculation SOM 140)
Figure 5.8: Illustrating the scenario in practice 142	
Figure 5.9: Authentication process for directional and signal filtering	
Figure 5.10: Physical dimension of the pentenna 143	;
Figure 5.11: Setup in parking lot 144	ŀ
Figure 5.12: View from above pentenna 144	ł
Figure 5.13: Measurement setup 145	;
Figure 5.14: The near radiation pattern of the pentenna enclosure 145	
Figure 5.15: The far radiation pattern of the pentenna enclosure	,
Figure 5.16: Measurement of directional and SNR information 147	
Figure 6.1: Wireless security and interference strategies)

LIST OF TABLES

Table 2.1: Illustrating the different 802.11 standards 1	17
Table 2.2: Attenuation through different materials	19
Table 2.3: Country 802.11b/g Channel use	23
Table 2.4: Comparing Theoretical and Measured Actual Attenuation	29
Table 2.5: Comparison of Attenuation values	58
Table 2.6: Illustrating negligible performance drop using WEP	62
Table 4.1: Channel distribution of WLAN's in Palmerston North 10	02
Table 4.2: WLAN's detected per district 10	08
Table 4.3: Commercial units, residential and income values per district 11	10
Table 4.4: Education effect on WLAN numbers	14
Table 4.5: Encryption usage according to district	18
Table 5.1: Additional authentication fields added to increase security	38
Table 5.2: Additional authentication fields added to increase security	41

1 INTRODUCTION

The introduction to this thesis covers both the literature survey, and the background information, beginning with the general background and scope of the research. Then the remaining introduction is divided into three separate and distinct chapters following the overall introduction that provide a more detailed look at the facts of wireless networks.

The first of these covers current security protocols and interference sources that affect 802.11 wireless networks or Wireless Local Area Networks (WLAN), descriptions and their flaws and issues. Secondly, 802.11 security and interference issues are analysed to find where and why it needs attention, and thirdly a summary of the types of wireless attacks that can be used against 802.11 networks.

1.1 BACKGROUND

The initial intention for this research was nurtured in the last year of my undergraduate course. Having just successfully having completed a 4th year project on extending wireless computer networks, the security issues that were found during the research sparked my interest.

The most interesting part of the research was the fact that due to the ease of use and plummeting price of wireless hardware there was now a large take up of wireless by home users. The biggest issue that was found was the small percentage of people who had enabled some sort of security measures on their network.

There are millions of wireless networks have been created across the globe, and the number are increasing drastically everyday. While originally wireless was only obtainable for companies who could afford the hardware, wireless is now standard with most home consumer laptops. They exist to improve free up users from wires and truly mobilise users and make setup of home networks easier, cheaper and less obtrusive.

However, while it is easy to setup a wireless network, the setup and wizards to setup wireless security easily are still lacking. In addition the ramifications of not setting up any security are not properly stated by hardware manufacturers. Most home security protocols are vulnerable and can be cracked given the time. The uptake of wireless devices is also causing issues with co-channel interference. This research was initially started to come up with several strategies that could be used in wireless communications to improve security and reduce interference. Once the strategies were formulated, it was hoped that improvements could be found that would improve the situation and provide a better and more secure service to the users of WLANs. All the

improvements are part of an ongoing push for better quality service, better security and greater efficiency.

1.2 CONTENTS OF THE THESIS

Firstly, an overview of the current state of 802.11 home wireless security protocols and sources of interference, as well as descriptions of the various issues associated with each type. This will encompass the 802.11a, 802.11b and 802.11g standards.

After this, the types of attacks are discussed and then the need for reducing interference and improving security is outlined. This includes research done on wireless interference and security trends within the city limits of Palmerston North. Wireless usage trends according to districts, income, education and commercial numbers. The security results are compared with worldwide values to ascertain whether the city follows international trends.

Then the improvements targeted in this research are introduced as mechanisms to significantly reduce ability of attackers from infiltrating a network, and thus improve security and reducing interference. Three chapters are dedicated to filtering, with the first detailing the two types of aggregation and their respective operation, as well as how filtering will improve security and reduce interference. This is followed by a chapter dealing with another development to deal with security and interference. The third chapter outlines additional steps and education of end users.

The design and details of testing environment for the assessment of the proof of concept is described. This is followed discussion of the results of the experiments.

The conclusions are made against the objectives of the research presented by the thesis, and about the outcome.