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Abstract 

Enhanced greenhouse gas emissions of nitrous oxide (N2O) induced by agricultural 

practices is believed to be the major anthropogenic source. Studies conducted in New 

Zealand generally from pasture suggest low N2O emission, however, there is little 

information for arable farming systems. Therefore, there is a need for a site-specific 

assessment of the impact of tillage practices on N2O fluxes. 

This paper evaluates tillage system and land use effects on N2O emissions at two sites 

using a closed chamber technique. Sites included a Kairanga silt loam where 

maize/barley was grown continuously for either 17 (Kl 7) or 34 (K34) years, with a 

conventional tillage system (Kairanga), and an Ohakea silt loam where winter oats and 

summer fodder maize was double-cropped for five years with conventional (CT) and 

no-tillage (NT) systems (Massey). At both sites permanent pasture (PP) soil was used as 

a control. 

Spatial measurements for all treatments at Massey site showed large inherent variations 

in N2O fluxes (a mean CV=l 19%) which reflected natural soil heterogeneity , and 

perhaps the measurement technique used rather than the real differences due to the 

tillage and cropping systems evaluated. N 2O emissions measured from December 1998 

to September 1999 from the PP were significantly lower (1.66 kg N 2O-N/ha/year) than 

the CT and NT plots at 9.20 and 12.00 kg N2O-N/ha/year respectively. However, there 

were no differences in N2O emission rates between the CT and NT treatments. 

Cumulative coefficient of variation (CV) of treatments ranged from 39 to 140%. 

Seedbed preparation using power-harrow which was done within few days of ploughing 

the CT plots reduced N 2O emissions by 65% within the first hour after power

harrowing. However, N2O emission rates returned to the pre-power harrowing levels 

one month after power-harrowing. 

There was strong relationship between log-transformed values of soil moisture content 

(SMC) and N2O emissions in all treatments, PP (r = 0.73), CT (r = 0.75) and NT (r = 

0.86). Seasonal variation in N 2O emission from the PP was in the order of 

winter=autumn>summer. Although fluxes in the CT were higher in winter than in the 

autumn season, there were no differences between the summer and autumn data. Similar 
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to the PP, the seasonal variations in N2O emission in the NT treatment were in the order 

of winter>autumn=summer. 

The estimated annual N2O emissions from the PP, Kl 7 and K34 (calculated as the mean 

of all individual closed cover chamber measurements between November 1998 and 

September 1999) from Kairanga site were similar at 3.24, 3.42 and 2.37 kg N2O

N/ha/year, respectively. There were large variations in N2O emissions during the year 

with the mean flux rates ranging from 0.175 to 13.32, 0.175 to 16.91 and 0.088 to 30.05 

kg N2O-N/ha/year in the PP, Kl 7 and K34 fields, respectively. 

Although overall comparison of treatment means did not show any discernible 

differences between management practices, there were signs that the K34 had lower 

emissions compared to the PP. 

N2O fluxes from the Kl 7 and PP field appeared to be influenced by SMC. There is clear 

indication that low or negligible emissions occur when gravimetric soil water content is 

less than 30% in the PP. Although N2O fluxes did not follow the rainfall patterns in the 

K 17 and PP, linear regression analyses indicated low but significant relationship r == 

0.46 and 0.53 (0.72 when log-transformed), respectively. 

In the K34 field, SMC did not seem to govern fluxes which were especially apparent 

during wet months of April and May. The linear regression analysis using the measured 

data revealed no relationship (r = 0.12) between the SMC and N2O fluxes in the K34 

treatment. 

Seasonal grouping of monthly log-transformed N2O emissions showed significant 

differences in all treatments. Summer season N2O emissions in the PP were the lowest 

than other seasons whereas no discernible differences were observed among other 

seasons. Although N2O fluxes during spring and summer were similar in the Kl 7 field , 

they were significantly lower than the winter and higher than autumn fluxes. There were 

considerably higher emissions in summer than in autumn in the K34 but seasonal 

variation between winter and spring was less profound. 

Spatial variability in N2O fluxes was large during the year with coefficients of variation 

(CV) ranging from 10 to 82%, 12 to 99% and 9 to 137% for the PP, Kl 7 and K34 fields, 

respectively. 
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Chapter 1 

General Introduction 

1 

There is a growing concern world-wide about climate change. Atmospheric warming 

which is known to be caused by so-called "greenhouse gases" mainly include carbon 

dioxide (CO2), methane (CH4 ) and nitrous oxide (N2O) and to a lesser extent 

chlorofluorocarbons (CFCs) (IAEA, 1992). Presently, the increase in greenhouse gases 

other than CO2 in changing the climate is similar in importance as CO2. One such gas is 

N2O which despite its low concentration in the atmosphere, about 310 ppb (IPCC, 

1995), on a molecule per molecule basis has a radiative force about 200 to 300 times 

that of CO2 (Jaques, 1992) and an average atmospheric lifetime of about 150 years 

(lAEA, 1992). It is widely accepted that the main source ofN2O is agriculture. 

Most N2O originates with soil processes, as intermediate product from microbial 

nitrification and denitrification (Delwiche, 1981 ). Increased emissions of N2O from 

soils are associated with fertilisation of soils with mineral nitrogen (N), animal manure, 

N derived from biological N2 fixation, and enhanced N mineralisation (MacKenzie et 

al., 1998). With fertiliser usage predicted to grow worldwide at 6-7% per annum 

(Peoples et al., 1995) and low N utilisation efficiency in agricultural systems, the 

potential of soils to form and emit N2O increases. This increased N2O emission to the 

atmosphere is of great concern and need quantification. 

Amounts of N2O emitted depend on complex interactions between soil properties, 

climatic factors and agricultural practices (Granli and Bockman, 1994). Main factors in 

the soil controlling N2O emissions are soil content of NH4 and NO3 (Ball et al. , 1997; 

Castaldi and Smith, 1998; Seneviratne and Van Holm, 1998); soil aeration status and 

soil water content (Carran et al., 1995; Teira-Esmatges et al. , 1998; MacKenzie et al., 

1998); presence of degradable organic material which promotes microbial activity 

(Ineson et al., 1998; Kaiser et al., 1998); soil pH (Anderson and Poth, 1998; Sitaula and 

Bakken, 1993 ; Burth and Ottow, 1983) and soil temperature (Mahmood et al. , 1998). 

Although these are known interacting factors they are not always strongly correlated 

with N2O fluxes . Due to complexity of interactions between various factors , N2O 

emissions have very high spatial and temporal variations. 
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Agricultural practices alter soil properties which influence the extent of N2O emissions. 

Intensive use of cultivation practices, both internationally and locally in New Zealand, 

hugely impact soil properties. In the Manawatu region heavier textured soils used for 

continuous maize production result in loss of soil organic matter (SOM) (Saggar et al., 

2000) and deterioration in soil structure (Shepherd et al., 2000). Even short term tillage 

operations can affect SOM levels and microbial biomass (Aslam et al., 1999) which are 

of particular interest in nutrient transformations. Conversion of pastures to arable 

cropping in New Zealand results in depleting of SOM and soil fertility over time and 

additional N fertilisers are applied to compensate for the loss of organic N reserves. 

Since N fertilisation is considered as a major practice on increasing N2O emission from 

soil by providing an additional N source (Ryden and Rolston, 1983), careless N 

application on such soils may contribute to increased loss of N either as NO3 through 

leaching or as N2O emissions. 

An alternative to conventional tillage system is conservation tillage system which aims 

for sustainable agricultural production. Its growing acceptance is due to reduced soil 

erosion and runoff (Choudhary et al., 1993; Unger and Vigil, 1998; Myers and Wagger, 

I 996). enhanced moisture retention and infiltration (Baumhardt and Lascano, 1996), 

lower summer temperatures (Prihar et al., 1996) and possible increased net return to the 

farmer (Reicosky, 1994). However, the impact conservation tillage has on N2O emission 

is not known for these Manawatu soils. 

In the past 20 years, research of N2O emissions has concentrated on enhancing an 

understanding of N2O production processes and its controlling factors. Despite this it is 

not possible to predict the fate of a unit of N that is applied on a specific arable field 

(Mosier et al., 1996). Both short- and long-term in-situ measurements are needed to 

assess N2O emissions from soils. 

Studies by Ruz-Jerez et al. (1994) and Carran et al. (1995) from both poorly and well 

drained grazed pastures in the Manawatu region suggest low N2O emission from these 

low fertility hill lands. However, there is little information for arable farming systems. 

Therefore, there is a need for site-specific assessment of the impact of tillage practices 

on N2O fluxes. 
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1.1 Research Objectives 

To evaluate long-term and short term impacts of different tillage systems and land use 

on N 2O emissions selected farming practices were chosen in the Manawatu region of 

New Zealand. The overall aim was to characterise land use practices and their effect on 

N2O emissions. This study is a part of a wider project on soil nitrogen recycling. 

The specific objectives of this study were as follows: 

• To quantitatively determine the rates of N2O emissions from fields sown with the 

conventional tillage (CT), no-tillage (NT) and compare these with permanent pasture 

(PP) fields throughout one management cycle. 

• To measure the response of soil N2O emissions to various cultural practices and 

selected environmental parameters such as changes in soil moisture and soil 

temperature . 

• To measure soil physical and chemical properties and asses their interactions with 

N2O emissions. 




