

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

SYNTHESIS OF AN ARGININE MIMIC FOR AN ANTIFUNGAL OCTAPEPTIDE LIBRARY

This thesis is presented in partial fulfilment of the requirements for the degree of Master of Science in Chemistry at Massey University, Palmerston North, New Zealand

Hao Sun 2008

ABSTRACT

A family of bioactive antifungal octapeptides has been established¹⁻³. The template for this library is based on peptides composed of two predefined amino acids, three arginines, and three unknown components. The arginine contains a guanidino group (pKa =12.48) which is readily protonated under physiological conditions, and hence can bind to fungal cell walls which possess a negatively charged surface. Other components of this peptide are used to kill the fungi by inhibition of their sodium transport system¹⁻⁵.

To date this story has survived on the fact that D-amino acids work best. However both D and L arginine derivatives are quite expensive. In collaboration with the research group in the University of Otago, it was planned to develop an effective and economic method to produce a series of compounds to replace arginine. These mimics were designed to be artificial amino acids as $NH_2 \sim N^*(R') \sim COOR$ where the side chain R' carries a guanidino group. Thus the chiral carbon is now replaced by an amide group hence no stereocenter, no enantiomers but the guanidino group will retain a high pKa similar to that of the natural arginine. For the synthetic strategy, the target molecule was divided into two parts, one the amino acid backbone, and the other the guanidine containing side chain. Each segment was built up separately and finally combined together.

The backbone of the arginine mimic must possess two amino groups. One is at the Nterminal for the next step in peptide synthesis, the other one (N*) is used to connect to the guanidino containing side chain. This was reacted with selected acetate derivatives (*t*butylchloroacetate, benzylchloroacetate, methylbromoacetate) that had potential to produce the desired backbone in good yield.

Construction of the side chain (R') to be composed of a di-protected guanidine and a carboxylic group was the most challenging and difficult part of this project. To achieve this, two different approaches were studied. One was to use a primary amino acid NH_2 -(CH_2)_x-COOH (X=1,2,5) to react with a guanylating reagent to make the unprotected side chain, then two protecting groups were added to the two nitrogen containing groups of the guanidine. The other method was protection of a guanylating reagent (usually carboxamidine compounds) then reaction with a primary amino acid to make a di-protected guanidine containing side chain. In amino acid and peptide chemistry, to avoid self condensation and by-product formation, selectivity of amino and carboxylic groups is very crucial hence application of different types of protecting groups are the basis of peptide construction. Therefore in this project, employment of suitable protecting groups at both N- and C-terminals was incorporated in this study.

Finally, one arginine mimic *N*-[*N'*-((9-fluorenyl)methoxycarbonyl)-2-aminoethyl]-*N*-*t*butyloxycarbonylmethyl-3-*N'*,*N''*-bis(*t*-butyloxycarbonyl)carbamidinopropanamide was successfully built up. It will be used for the construction of octapeptides for the current antifungal programme. The final product will be sent to University of Otago for bio-activity tests.

ACKNOWLEDGEMENTS

Firstly I would like to record my appreciation to Associate Professor David R. K. Harding as my research supervisor for his guidance and assistance in helping me complete my Masterate and opening the door to peptide chemistry.

I also wish to thank Mr David Lun for his constant instruction and assistance in the operation of equipment (HPLC/MS). A special thanks to Dr Krishanthi Jayasundera who taught me a lot about Flash Column Chromatography. Thanks to Mr Sebastian Parker for his suggestions and assistance in amide bond formation in this project.

Similarly I express my appreciation to Dr Wayne Campbell and Mr Adam Stephenson for their efforts in proof reading drafts of this thesis. Thanks to Mr Ross Davidson for the assistance with the calculation of bond angles of molecules in this project.

Furthermore, thanks to all the academic staff and other members of Chemistry Discipline, Institute of Fundamental Sciences, especially Professor Andrew M. Brodie, Associate Professor Carol Taylor, Associate Professor Trevor Kitson and Associate Professor Eric Ainscough for their support and suggestions throughout my two years Masterate study at Massey University.

TABLE OF CONTENTS

Abstr	ract		Ι
Acknowledgements		III	
List o	of Figures		VII
List o	of Tables		Х
List o	of Abbreviation		XI
CHA	PTER ONE	INTRODUCTION	01
1.1	A D-Octapeptide	e Combinatorial Library	01
1.2	Natural Arginine	and the Guanidino Group	03
1.3	Structure of a De	esigned Arginine Mimic	
	and the Synthetic	c Strategy	05
1.4	Strategy for the S	Synthesis of a Protected	
	Guanidino Grou	р	07
1.5	Protection of the	N-Terminus in Peptide Chemistry	09
1.6	Protection of C-7	Ferminus in Peptide Chemistry	13
1.7	Coupling Reaction	ons	14
CHA	PTER TWO	EQUIPMENT AND MATERIALS	16
2.1	Equipment		16
2.2	Materials		16
CHA	PTER THREE	FORMATION OF THE PROTECTED	
		GUANIDINO GROUP	17

3.1	Introduction		17
3.2	Prepara	Preparation of Guanidino Acids	
	3.2.1	N,N',N"-tri-Boc-Guanidine and N,N'-di-Boc-N"-	
		trifluoromethanesulfonyl	
		Guanidine	18
	3.2.2	1H-Pyrazole-1-Carboxamidine Hydrochloride	23
	3.2.3	Aminoiminomethanesulfonic Acid	26
	3.2.4	Conclusion	28
	3.2.5	Experimental	28
3.3	Protect	ion of Guanidino Groups	31
	3.3.1	Introduction to the Protection of Guanidino Groups	31
	3.3.2	Protection with Di-t-butyl Dicarbonate	33
	3.3.3	N-(Benzyloxycarbonyloxy)succinimide	35
	3.3.4	Tosyl Group for Guanidine Protection	37
	3.3.5	Experimental	39
3.4	Conclu	sion	41

CHAPTER FOUR CONVERSION OF PROTECTED CARBOXAMIDINE COMPOUNDS TO GUANIDINO ACIDS 43

4.1	Introdu	iction	43
4.2	Protection of Carboxamidine Compounds and Conversion to		
	Guanic	lino Acids	44
	4.2.1	N,N'-bis-t-Butoxycarbonylthiourea	44
	4.2.2	N,N'-bis(t-Butoxycarbonyl)-S-methylisothiourea	46
	4.2.3	1H-Pyrazole-1-[N,N"-bis(t-Butoxycarbonyl)]-	
		carboxamidine	48
4.3	Conclu	ision	51

4.4	Experimental		52
CHA	APTER FIVE	BACKBONE SYNTHESIS	54
5.1	Introduction		54
5.2	Synthesis and	l Discussion	56
5.3	Conclusion		58
5.4	Experimental		58
СНА	APTER SIX	COUPLING OF THE GUANIDINE	
		CONTAINING SIDE CHAIN TO	
		THE AMINO ACID BACKBONE	60

6.1	Introduction		60
6.2	Discussion		61
6.3	Conclusion		62
6.4	Experimental		62
СНА	PTER SEVEN	SUMMARY AND CONCLUSION	64

CHAPTER EIGHT	CONCLUSION	67
REFERENCES		69

LIST OF FIGURES

Figure 1	Designed D-octapeptide and the combinatorial library	02
Figure 2	Structure of natural L and D arginine	03
Figure 3	Resonance structures of guanidine	04
Figure 4	Structure of the target arginine mimic in this project	05
Figure 5	Synthetic strategy of arginine mimics	06
Figure 6	Structure and molecular weight of glycine,	
	ß-alanine and 6-aminohexanoic acid	06
Figure 7	Structure of a typical guanylation reagent and the	
	normal process of formation of a guandino group	07
Figure 8	Four possibilities of di-peptide formation using	
	unprotected amino acids	10
Figure 9	Design of a protected arginine mimic	11
Figure 10	Mechanisms of cleavage of Fmoc and Boc groups	12
Figure 11	The structures of DCC and HBTU	15
Figure 12	The three routes for the formation of substituted	
	guanidines	17
Figure 13	The mechanism of Mitsunobu reaction to achieve	
	substituted guanidine formation	19
Figure 14	Synthetic strategy for making the di-Boc guanidino	
	acid from the guanidine hydrochloride	20
Figure 15	Formation of 1H-pyrazole-1-carboxamidine	
	hydrochloride	24
Figure 16	Reaction of 1H-pyrazole-1-carboxamidine	
	hydrochloride with a primary amino acid	24
Figure 17	Self-condensation of 1H-pyrazole-1-carboxamidine	
	and of N-alkyldiguanidine	26
Figure 18	Formation of guanidino acids from reaction	
	of aminoiminomethanesulfonic acid with primary	
	amino acids	27
Figure 19	Structure of unprotected guanidino acids	32
Figure 20	Structure of di-t-butyl dicarbonate and the	

	mechanism of its amine protecting reaction	34
Figure 21	Preparation of di-Boc-protected guanidino acid	35
Figure 22	Three reagents for the introduction of the Cbz group	36
Figure 23	Preparation of di-Cbz protected guanidino acids	
	using benzyloxycarbonylsuccinimide	37
Figure 24	Di-tosyl protected arginine mimic	38
Figure 25	Attempted di-protection of a guanidino group	
	with <i>p</i> -toluenesulfonyl chloride	39
Figure 26	Angles of the guanidino group for the unprotected	
	and mono protected guanidino acids	41
Figure 27	Angles of the guanidino group for thiourea and	
	S-methylisothiourea and their di-Boc products	43
Figure 28	Basic mechanism for the reaction of	
	N,N'-bis-t-Butoxycarbonylthiourea with amines	
	catalyzed by HgCl ₂	45
Figure 29	Formation of di-protected guanidine acids from	
	S-methylisothiourea	46
Figure 30	Protonation of pyrazole	49
Figure 31	Formation of 1H-pyrazole-1-[N,N"	
	-bis(t-Butoxycarbonyl)]carboxamidine	49
Figure 32	Production of guanidines from 1H-Pyrazole-1-	
	[N,N"-bis(t-butoxycarbonyl)]carboxamidine	50
Figure 33	Designed backbone structure	54
Figure 34	Basic process of solid phase peptide synthesis	55
Figure 35	Mechanism for removal of the 9-	
	fluoromethyloxycarbonyl group (Fmoc)	56
Figure 36	Reaction scheme for the construction of the	
	protected backbone amino acid	57
Figure 37	Structure and reaction scheme for the	
	coupling reagents DCC and HBTU	61
Figure 38	The arginine mimic N-[N'-((9-fluorenyl)methoxycarbonyl)-	
	2-aminoethyl]-N-t-butyloxycarbonylmethyl-	
	3-N',N"-bis(t-butyloxycarbonyl)carbamidinopropanamide	
	produced in this project	64

Figure 39	Designed arginine mimic in which benzyl ester	
	is used as C-terminal block group	65
Figure 40	Mechanism for the rremoval of the benzyl group on the	
	C-terminal by hydrogenolysis	65

LIST OF TABLES

Table 1	Experimental results for the reaction of	
	1H-Pyrazole-1-carboxamidine	
	hydrochloride with three primary amino acids	25
Table 2	Experimental results for the reaction of	
	aminoiminomethanesulfonic acid with three	
	primary amino acids	27
Table 3	Experimental results for the formation of di-Boc guanidino	
	acids from the reaction of the N,N' -bis	
	(t-butyloxycarbonyl)-S-methylisothiourea with	
	three primary amino acids	47
Table 4	Basicity of common amines	60

LIST OF ABBREVIATIONS

Arg	arginine
Boc	<i>t</i> -butyloxycarbonyl
(Boc) ₂ O	di-t-butyl dicarbonate
Cbz	benzyloxycarbonyl
(Cbz) ₂ O	dibenzyl dicarbonate
Cbz-OSu	benzyloxycarbonylsuccinimide
DCC	dicyclohexylcarbodiimide
DCM	dichloromethane
DEAD	diethyl azodicarboxylate
DIEA	diisopropylethylamine
Fmoc	9-fluorenylmethyloxycarbonyl
Fmoc-OSu	N-(9-fluorenylmethoxycarbonyloxy)succinimide
HBTU	O-Benzotriazol-1-yl-N,N,N',N'-tetramethyluronium
	hexafluorophosphate
ortho-Br-Cbz	ortho-bromobenzyloxycarbonyl
ortho-Cl-Cbz	ortho-chlorobenzyloxycarbonyl
PNA	peptide nucleic acid
PPh ₃	triphenylphosphine
SPPS	solid phase peptide synthesis
TFA	trifluoroacetic acid