

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Studies of

the Reproductive Biology and of the Structure,

Composition, and Physiology of the Egg of

Graphognathus leucoloma Boheman

(Coleoptera: Curculionidae)

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Zoology at Massey University

David George Holdom

A. Graphognathus leucoloma Boheman, adult.

B. Graphognathus leucoloma Boneman, eggs.

To the late Stan and Blanche Bason, whose enthusiasm and love of nature were a major influence on my interest in biology

ABSTRACT

The published information regarding the biology and pest status of Graphognathus leucoloma Boheman is summarized.

A study was made of egg development at temperatures ranging from 4 to 37.8° C and relative humidities ranging from 40 to 100%. Egg hatch was frequently very low and showed considerable variability. Median duration of development ranged from about 14 days at 31.5° C to 95-97 days at 15° C, with the developmental-hatching threshold between 12.1 and 13.5° C. Sub-threshold temperatures were lethal. Virtually no hatching occurred below 100% RH but the eggs could withstand considerable dessication and would hatch when moistened. Possible effects of humidity on the duration of development and of parental age on egg viability are also discussed. Some reasons for the very low egg viability are suggested, along with modifications to the experimental design to eliminate them.

Studies were made of adult and pupal size, and of longevity, preoviposition period and reproductive output. Some reasons for unexpectedly low fecundity and long pre-oviposition period are discussed.

The structure of the egg envelopes and the cement in which the eggs are laid was studied, using scanning and transmission electron microscopy, and Nomarski differential interference microscopy. A histochemical study of these structures, supplemented by some simple chemical tests, was also made, to elucidate in part their composition. The chorion is 4-9µm thick and composed entirely of protein; some 250,000 aeropyles are scattered over the surface, and its structure is such that it could probably act as a plastron when the egg is submerged. There is no micropyle. Disulphide linkages are probably important in the structure of the chorion, as in many other species, but unlike other beetles so far studied, no crystalline proteins were found. The vitelline membrane was found to be a three-layered structure 0.3-0.5um thick composed of protein and acid mucopolysaccharides, and to be highly resistant to chemical attack. Waterproofing is probably provided by a layer of lipid on the outer surface of the vitelline membrane. The cement was found to be a complex, variable and heterogeneous mixture of protein and up to five acid mucopolysaccharides, which is unlike that of any other species reported. Some possible functions of the cement and the significance of its composition are suggested.

A note on the citation of publications, and the referral to species and their systematic status.

Any publication by three joint authors is cited in full the first time it is referred to and thereafter is abbreviated to the form: senior author <u>et al</u>. Publications with more than three joint authors are cited in the form: senior author <u>et al</u>. each time they are cited, including the first. The specific name of any organism is given in full only on the first time it is referred to, and the names of insect species and genera and their taxonomic status are listed in Appendix Five. V

ACKNOWLEDGEMENTS

I would like to thank Mr. I.A.N. Stringer, who supervised the major part of this work, for his constant advice and helpful suggestions, and Dr. J. Crofton for his supervision in its early stages.

Thanks are also due to Dr. M.J. Merrilees, who offered helpful advice during the early stages and on histochemistry; to Mr. M. Mannering and Dr. J. Riddle for advice regarding histological methods; to Dr. W.M. Kain who made a number of helpful suggestions during the planning stages of both seasons' work; and to Mr. M.J. Esson for his constant advice.

I am indebted to Mr. M.J. Esson and Dr. W.M. Kain for the loan of equipment without which this work would not have been possible; to Professor Bacon for the use of a constant temperature room; to Mr. E. Roberts for the loan of a refrigerator; and to Mr. W. Thomas for constructing much of the other equipment. I am also grateful to Mr. P. Couchman for supplying a sample of basic fuchsin that worked; to Messrs. C. Fletcher and R. Hanson for many of the chemicals used in the histochemistry, and to Dr. M.J. Merrilees for a sample of cetylpyridinum chloride. The ever helpful and patient staff of Chemistry Stores have also earned my gratitude.

Thanks to Mr. D. Hopcroft who prepared the material for electron microscopy and for operating the microscopes, and, together with Mr. I. Simpson, for processing the electron micrographs.

Credit for the frontispiece and Figs. 3.1, 3.2 and 3.3 must go to the staff of the Central Photographic Unit, who also processed the light micrographs. Miss A. Turner drew Figs. 2.1 to 2.6.

I wish to thank Dr. P. Elliott, Mr. M.J. Esson, Mr. P.G. Fenemore and Mr. N. Pomeroy who read parts of the manuscript and who made many useful suggestions; Mr. C.G. Arnold and Dr. B.S. Weir, who advised me on statistical methods; and Di Machin for assistance with the final preparation and for a translation from the French text. Thanks are due also to Glenis Mobberley for typing references on to cards; to my sister, Diana Cloud, for sending several references from Canada and for her constant encouragement; and Mrs. J. Parry for typing the final manuscript.

vi

vii

CONTENTS

		Page
Abstract		iv
A Note on th	e Citation of Publications and the Referral to	v
Species and '	Their Taxonomic Status	
Acknowledgem	ents	vi
Contents		vii
List of Tabl	es	х
List of Figu	res	xi
List of Abbr	eviations	xiv
CHAPTER ONE	THE STUDY AN IMAL	1
1.1	Origins and Occurrence	1
1.2	Pest Status, Life Cycle, and Biology	2
1.3	The Present Study	4
CHAPTER TWO	STUDIES ON THE DEVELOPMENT AND HATCHING	5
	OF EGGS	
2.1	Introduction	5
2.2	Materials and Methods	8
2.2.	1 First Season	8
2.2.	1.1 Collection and maintenance of adults	8
2.2.	1.2 Maintenance of constant temperatures	8
2.2.	1.3 Maintenance of constant relative humidities	8
2.2.	1.4 Assessment of temperature and humidity effects	11
2.2.	.1.5 Effects of Tyrophagus putrescentiae Schrank (Acari, Acaridae)	12
2.2.	2 Second Season	12
2.2.	2.1 Maintenance of constant temperatures	12
2.2	.2.2 Maintenance of adults and assessment of temperature effects and egg survival	12
2.2	.2.3 Shadehouse experiment	14
2.3	Results and Discussion	17
2.3	.1 Effects of temperature and humidity on survival	17
2.3	.2 Duration of development	19

Measurement and representation of the duration 19 2.3.2.1 of the egg stage Some possible effects of humidity on the 2.3.2.2 22 duration of the egg stage Some effects of temperature on the duration of 2.3.2.3 23 the egg stage 2.3.3 Second Season 26 2.3.3.1 Assessment of survival 26 Some effects of temperature on survival 2.3.3.2 27 Effects of temperature on the duration of the 2.3.3.3 31 egg stage Effect of parental age on egg viability 2.3.3.4 34 2.3.4 The Shadehouse Experiment 34 2.3.5 Effect of T. putrescentiae on G. leucoloma eggs 34 2.4 General Conclusions 36 CHAPTER THREE STUDIES OF VARIABILITY AND REPRODUCTIVE 38 CAPACITY IN ADULTS AND PUPAE 3.1 Introduction 38 3.2 Materials and Methods 39 3.2.1 Collection and Maintenance of Weevils 39 3.2.2 Shadehouse Experiment 41 3.3 Results 44 3.3.1 Size Characteristics of Adults and Pupae 44 Longevity, Pre-oviposition Period and 44 3.3.2 Reproductive Capacity 3.3.3 Shadehouse Experiment 54 3.4 Discussion 55 CHAPTER FOUR STUDIES ON THE STRUCTURE AND COMPOSITION OF 59 THE EGG SHELL AND CEMENT OF G. leucoloma 4.1 Introduction 59 4.2 Materials and Methods 62 4.2.1 Transmission Electron Microscopy (TEM) 62 4.2.2 Scanning Electron Microscopy (SEM) 62 4.2.3 Light Microscopy 62 4.2.3.1 Histological methods 62

4.2.3.2 Histochemistry

Page

ix

		Page
4.2.3.2.1	Carbohydrates	63
4.2.3.2.2	Proteins	64
4.2.4	Chemical Tests Performed on Fresh Whole or Dechorionated Eggs	65
4.3	Results and Discussion	66
4.3.1	Structure and Composition of the Chorion	66
4.3.2	The Vitelline Membrane	80
4.3.3	The Cement	83
4.3.3.1	Component one	83
4.3.3.2	Component two	84
4.3.4	The Yolk	93
4.4	Summary and Conclusions	94
APPENDIX ONE	MISCELLANEOUS OBSERVATIONS	96
A1.1	Resistance of Larvae to Dessication	96
A1.2	Observations on the Relationship Between Larval Populations and Crop Damage	96
A1.3	Jumping by Newly Hatched Larvae	96
A1.4	Cannibalism by Larvae	96
A1.5	Duration of the Pupal Stage	97
A1.6	Drinking of Water by Adults	97
A1.7	Deformed Adults in the Field	97
A1.8	Bacteria in the Eggs	97
APPENDIX TWO	ARTIFICIAL DIET FOR THE ADULT WHITE-FRINGED WEEVILS	99
APPENDIX THREE	HISTOLOGICAL AND HISTOCHEMICAL METHODS	100
APPENDIX FOUR	A LIST OF REAGENTS USED IN THE PRESENT STUDY	109
APPENDIX FIVE	A LIST OF INSECT SPECIES REFERRED TO IN THE TEXT AND THEIR TAXONOMIC POSITION	111

References

LIST OF TABLES

Table		Page
2-I	Facilities for maintenance of constant temperatures	9
2-II	Allocation of eggs to test temperatures through allocation of adults	13
2-III	Survival of <u>G. leucoloma</u> eggs after exposure to different temperatures and humidities	18
2-IV	Hatching of G. leucoloma eggs during first season	28
2-V	Effects of temperature on survival and duration of development of <u>G. leucoloma</u> eggs - 2nd season	32
2-VI	Viability of samples collected at different times and incubated at 25.4° C	34
3-I	Weight characteristics of pupae and adults from different collection sites	45
3-II	Size characteristics of adults used in the experiments and of the pupae from which they emerged	48
3-III	Longevity, pre-oviposition period and reproductive capacity of <u>G. leucoloma</u>	49

х

LIST OF FIGURES

Figure		Page
A	Graphognathus leucoloma Boheman, adult	ii
В	Graphognathus leucoloma Boheman, eggs	ii
2.1	Metal oviposition cage with aluminium foil floor used for housing adults during the first season	10
2.2	Jar used for holding eggs at constant humidity during the first season	10
2.3	Jar used to maintain eggs in laboratory during the second season	10
2.4	Jar used to maintain eggs at high humidity in the shadehouse	16
2.5	Tube used to contain eggs exposed to ambient conditions in the shadehouse	16
2.6	Maintenance of eggs at ambient conditions in the shadehouse	16
2.7	Cumulative hatch curves of samples held at 100% RH and specified temperature (first season)	21
2.8	(a) Median duration and (b) rate of egg development in relation to temperature (first season)	21
2.9	Cumulative hatch curves at specified temperatures (second season)	29
2.10	Survival of eggs in relation to temperature (second season)	30
2.11	(a) Median duration and (b) rate of egg development in relation to temperature (second season)	30
3.1	Container used to house adults singly during the second season (natural size)	40
3.2	The shadehouse	43
3.3	The shelter beneath which the adults were kept, with the cover removed, as seen from the left-hand door of the shadehouse	43
3.4	Distribution of pupal weight at the a) Massey and	46

1

xi

		xii
Figure		Page
3.5	Distribution of adult weight at the a) Massey and	47
	b) Longburn collection sites	
3.6	Longevity of weevils in lots 3-9	50
3.7	Pre-oviposition period of weevils in lots 3-9	51
3.8	Fecundity of weevils in lots 3-9	52
3.9	Mean size of egg-batches laid by weevils in lots 3-9	53
4.1	Scanning electron micrograph of the egg, showing the	67
	aeropyles distributed densely over the surface	
4.2	Sçanning electron micrograph showing detail of the surface of the chorion	67
4.3	Scanning electron micrograph showing pores exposed through gaps in the cement	68
4.4	Transmission electron micrograph of the chorion and cement	69
4.5	Transmission electron micrograph of the chorion and cement	69
4.6	Scanning electron micrograph of a freeze fractured egg showing the broken edge of the chorion	70
4.7	Unstained section photographed using Nomarski optics	70
4.8	Transmission electron micrographs of the vitelline membrane and inner region of the chorion	2 71
4.9	Micrograph of an unstained section	75
4.10	Mixed anhydride reaction for side-chain carboxyl groups (glutamic and aspartic acids)	75
4.11	The DDD reaction for disulphide groups (cystine)	76
4.12	The DDD reaction for sulphydryl groups (cysteine)	76
4.13	The diazotization-coupling method for tyrosine	77
4.14	The Sakaguchi-dichloronaphthol method for arginine	77
4.15	The DMAB-nitrite method for tryptophan	78
4.16	The PAS technique	85
4.17	The modified PAS method for uronic acid-containing glycoasminoglycans	86
4.18	Alcian Blue staining at pH 2.5	87

		xiii
Figure		Page
4.19	Alcian Blue staining at pH 1.0	88
4.20	The PAD technique A) After 7 hrs staining B) After 24 hrs staining	89
4.21	The carbodiimide reaction for carbohydrate-bound carboxyl groups	90
A1.1	Transmission electron micrographs of the yolk showing the rod-shaped bacteria which were observed in the eggs	98

ABBREVIATIONS USED IN THE TEXT

v		
0	COMPOOR	20 01110
0	UCHI CCD	CETETRO

P Probability

RH relative humidity

approximately equal to

< less than

ABBREVIATIONS USED IN THE FIGURES

- aer aeropyle
- B bacteria
- C chorion
- cem cement
- G glycogen granules
- ic inner layer of chorion
- ilin inner lining of chorion
- ivm inner layer of vitelline membrane

lae lining of aeropyle

mvm middle layer of vitelline membrane

oc outer region of chorion

ovm outer layer of vitelline membrane

- trl trabecular layer
- vtm vitelline membrane

CHAPTER ONE

THE STUDY ANIMAL

1.1 ORIGINS AND OCCURRENCE

The white-fringed weevil, <u>Grapho mathus leucoloma</u> Boheman (Coleoptera, Curculionidae, Brachyderinae), is a native of South America, where it occurs in Argentina, Brazil, Chile, Feru and Uruguay (Berry, 1947; Young <u>et al.</u>, 1950). Its known range now includes many south-eastern states of the U.S.A. as far north as Laryland (Anonymous, 1969), all five mainland Australian states (Chadwick, 1970), South Africa (Joubert, 1951) and New Zealand. In New Zealand, <u>G. leucoloma</u> was found in Northland in 1944, where it was believed to have been introduced with American war equipment about 1940 (Cottier, 1962), but it now occurs throu hout the North Island and has been found in Nelson (Perrott, 1964) and Ashburton (.ay, 1975) in the South Island.

Buchanan (1947) recognised three species of <u>Grapho_nathus:G. leucolona</u>, <u>G. peregrinus</u> and <u>G. minor</u>, and six races of <u>G. leucolona</u>, of which five occur in the U.S.A. Only <u>G. leucolona</u> is recorded outside North and South America, but no details regarding strains appear to have been published.