Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

A STUDY OF CIS-ACTING ELEMENTS REQUIRED FOR DOSAGE COMPENSATION IN DROSOPHILA MELANOGASTER

- -

A thesis presented in partial fulfilment of the requirements for the Degree of Master of Science in Genetics at Massey University, Palmerston North, New Zealand

> Rebecca Ann Henry 2000

ABSTRACT

Dosage compensation (the equalisation of X-linked gene products) occurs in *Drosophila melanogaster* by a two fold transcriptional up-regulation of X-linked gene expression in males. This involves the binding of five proteins, MSL-1, MSL-2, MSL-3, MLE, MOF, and potentially an RNA (*roX1* or *roX2*), to hundreds of sites along the male X chromosome. The *cis*-acting X-linked DNA sequences required for dosage compensation (called dosage compensation regulatory elements or DCREs) remain elusive, despite numerous attempts of identify them. An insulated reporter gene assay system has been developed to minimise problems previously encountered with identification of these elements. The reporter system consists of the constitutive *armadillo* promoter fused to the *lacZ* reporter gene (called *arm-lacZ*). This reporter construct is flanked by SCS/SCS' insulator elements to block potential repressive effects of an autosomal chromatin environment.

The role of the roX genes during dosage compensation was investigated. Initially both the roX1 and roX2 RNAs were expressed from within the arm-lacZ insulated system. Expression of either RNA lead to a significant increase in lacZ expression in males, although consistently less than two-fold. These results suggested that either the MSL complex was binding to the roX genes or the expression of the roX RNAs in cis lead to male-specific hypertranscription of *lacZ*. To test these possibilities *roX1* and *roX2* cDNAs were inserted into the arm-lacZ reporter. Insertion of either cDNA lead to a significant increase in *lacZ* expression in males, suggesting that the transcribed regions of the roX genes contain binding site(s) for the MSL complex. Interestingly the level of lacZ hypertranscription in males was significantly higher in homozygous roX1 cDNA lines than homozygous roX1 gene lines. This may indicate that too high a local concentration of roX1 RNA has a dampening effect on the level of hypertranscription meditated by the MSL complex. In a set of experiments designed to identify the MSL binding site(s) in roX1, two regions of the cDNA sequence were amplified and inserted into the arm-lacZ system. One of these fragments, containing a proposed DNAseI hypersensitivity site and possible GAGA binding sites, increased lacZ expression in males, but to levels lower than the entire cDNA. This suggests there may be more than one MSL biding site in roX1.

A second method of dosage compensation is thought to occur in *Drosophila*, independently of the MSL proteins. The *arm-lacZ* insulated reporter system was used to investigate the hypothesis that some genes may be dosage compensated due to repression by *Sex-lethal (Sxl)* in females. Several genes have been found to contain three or more Sxl binding sites in their 3' UTRs, with some also carrying Sxl binding sites in the 5' UTR. Fragments from the *Sxl, Cut* and *Small Forked* genes, containing numerous Sxl binding sites from the 3' UTR, were inserted into the 3' UTR region of *arm-lacZ*. Males carrying autosomal insertions of the construct had on average 1.07 – 1.50 times the level of β -galactosidase in females. This suggests that some genes could be partially compensated through Sxl repression in females.

In addition to inserting 3' UTR fragments into *arm-lacZ*, a synthetic oligonucleotide containing a long Sxl binding site was inserted into the 5' region of an *arm-lacZ* construct already carrying the *Runt* 3' UTR fragment. Males carrying autosomal insertions of the construct had levels of β -galactosidase activity similar to those lines carrying autosomal insertions of the 3' UTR fragments alone. This suggests that other factors such as RNA binding proteins or RNA secondary structure may be required in order to obtain efficient translation repression by Sxl.

Finally three X-linked DNA fragments, from the 1C region, were inserted individually between the SCS' element and the *armadillo* promoter. If the X-linked fragment contained a DCRE then males carrying autosomal insertions of the construct would produce twice the β -galactosidase activity of females. However, males and females expressed the same levels of *lacZ*.

ACKNOWLEDGEMENTS

I would first like to give a big thank you to my supervisor Dr. Max Scott for all his advice and encouragement even when nothing seemed to be going right. I really appreciate it.

My next big thanks goes to Anton, without whom I would never have got through all of this. You were a great support for me and so totally understanding when my constant excuse for not being able to go anywhere or do anything seemed to be that my flies needed watering!

To Mum and Dad for understanding that the orange-eyed flies were GOOD and when I found one it was cause for celebration. Thank you for putting up with my attempts to explain what I was studying. Your patience was admirable!

To Cate for helping to keep me sane in that first year and always going for a walk rain or shine when I needed a break from studying. To Sarah, Victoria, Mikey and Dougal for being good friends and not saying too much about me working with flies!

Thank you to my friends at Massey. To Beccy and Bek for letting me loiter in your lab and giving me someone to talk to. Beccy I <u>really</u> appreciate the help you gave me in the injection room. To Sheralee for teaching me new techniques, even when you were rushed off your feet. To Annika and so many others, thank you for your friendship and all the fun times we have had.

Thank you to everyone in the Fly Spot, past and present – Max, Lewis, Helen, Xuelei and Jörg. You all gave me time out of busy schedules to help when I needed it.

Thank you to Massey University for the Massey Masterate Scholarship, which made my postgrad years so much easier.

ABBREVIATIONS

β	· ·	beta
Δ		delta
λ		lambda
°C		degrees Celsius
ATP		adenine triphosphate
bp		base pairs
BSA		bovine serum albumin
cDNA		complementary DNA
DIG		digoxigenin
DNA		deoxyribose nucleic acid
DNAse		deoxyribonuclease
dNTPs		dinucleotide triphosphates
F		female
g		gram
L		litre
kb		kilobase pairs
μ		micro
m		milli
М		male or molar
mRNA		messenger RNA
nt		nucleotide pairs
OD		optical density
PCR		polymerase chain reaction
RNA		ribonucleic acid
RNase		ribonuclease
rpm		revolutions per minute
U		unit
UTR		untranslated region
UV		ultra violet
\mathbf{v}/\mathbf{v}		volume per volume
w/v		weight per volume

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
ABBREVIATIONS	v
LIST OF FIGURES	xiii
LIST OF TABLES	xiv
1.0 INTRODUCTION	1
1.1 DOSAGE COMPENSATION - AN OVERVIEW	1
1.2 DOSAGE COMPENSATION IN DROSOPHILA	1
1.2.1 Dosage Compensation Involves Transcriptional Up Regulation	1
1.2.2 Histone Acetylation, Transcriptional Activity and Dosage Compensation	2
1.3 THE TRANS-ACTING MALE SPECIFIC LETHALS	3
1.3.1 Maleless	4
1.3.2 Male-Specific Lethal-1	4
1.3.3 Male-Specific Lethal-2	5
1.3.4 Male-Specific Lethal-3	5
1.3.5 Males-Absent on the First	6
1.3.6 Histone Acetylation and MSL Localisation	7
1.4 NON-CODING RNA INVOLVEMENT IN DOSAGE COMPENSATION	7
1.5 REGULATION OF DOSAGE COMPENSATION	9
1.5.1 Sex-Lethal	9
1.5.2 Sxl Regulation of Dosage Compensation	10
1.5.3 A Second MSL Independent Method of Dosage Compensation	10
1.6 CIS-ACTING ELEMENTS CONTROLLING DOSAGE COMPENSATIO	N 12
1.6.1 DCREs Are Still Unidentified	13
1.6.2 Mono and Dinucleotide Repeats Correlate with Dosage Compensation	14
1.6.3 Why Have DCREs Not Been Identified?	14
1.7 A NEW APPROACH TO IDENTIFYING DCRES	15
1.8 RESEARCH OBJECTIVES	16
1.8.1 Specific Objectives	16

2.0 MATERIALS AND METHODS	18
2.1 PLASMIDS AND COSMIDS	18
2.2 BACTERIAL STRAIN	18
2.3 BACTERIAL MEDIA	18
2.3.1 Luria Broth (LB)	18
2.3.2 SOB	18
2.3.3 SOC	18
2.3.4 2x YT	18
2.3.5 Terrific Broth (TB)	18
2.3.6 Antibiotics and Media Additives	19
2.3.6.1 Ampicillin	19
2.3.6.2 Kanamycin	19
2.3.6.3 X-gal (5-bromo-4-chloro-3-indyol-β-D-galactosidase)	19
2.3.6.4 IPTG (Isopropylthio-β-D-galactosidase)	19
2.3.6.5 Chloramphenicol	19
2.4 MAINTENANCE OF BACTERIAL CULTURES	19
2.5 BUFFERS AND SOLUTIONS	25
2.5.1 Solutions for Gel Electrophoresis	25
2.5.1.1 10x Gel Loading Dye	25
2.5.1.2 1x TAE Buffer (Tris Acetate EDTA Buffer)	25
2.5.1.3 1x TBE Buffer (Tris Borate EDTA Buffer)	25
2.5.2 Solutions for Preparation of Plasmid and Cosmid DNA	25
2.5.2.1 GTE (Glucose/Tris/EDTA)	25
2.5.2.2 TE Buffer 10/1 (Tris EDTA Buffer)	25
2.5.2.3 Phenol (Tris Equilibrated)	25
2.5.2.4 Potassium Acetate (pH 4.8)	26
2.5.3 Solutions for Transformation of DNA	26
2.5.3.1 DnD	26
2.5.3.2 K-MES	26
2.5.3.3 Transformation Buffer (TFB)	26
2.5.3.4 Transformation Buffer 1 (Tfb1)	26

2.5.3.5 Transformation Buffer 2 (Tfb2)

vii

27

2.5.4 Solutions used for Fluorometric Quantitation of DNA	27
2.5.4.1 1x TNE Buffer	27
2.5.4.2 Working Dye Solution A	27
2.5.5 Solutions for Southern Blotting and Immunological Detection (DIG)	27
2.5.5.1 Denaturation Solution	27
2.5.5.2 Neutralisation Solution	27
2.5.5.3 20x SSC (Sodium Standard Citrate)	27
2.5.5.4 Standard Hybridisation Buffer	27
2.5.5.5 Maleic Acid Buffer (DIG Detection) pH 7.5	27
2.5.5.6 Washing Buffer (DIG Detection)	28
2.5.5.7 Blocking Solution (DIG Detection)	28
2.5.5.8 Detection Buffer (DIG Detection) pH 9.5	28
2.5.6 Solutions for Microinjection	28
2.5.6.1 Injection Buffer	28
2.5.7 Solutions for β-galactosidase Assays	28
2.5.7.1 β-galactosidase Assay Buffer	28
2.5.7.2 CPRG (Chlorophenol red-β-galactopyranoside monosodium salt)	28
2.6 PREPARATION OF PLASMID DNA	28
2.6.1 Large Scale Preparation of Plasmid or Cosmid DNA	28
2.6.2 Small Scale Preparation of Plasmid DNA	30
2.7 PURIFICATION OF DNA	30
2.7.1 Purification of DNA after PCR	30
2.7.2 Phenol/Chloroform Extraction of DNA	31
2.7.3 Ethanol Precipitation of DNA	31
2.8 DETERMINATION OF DNA CONCENTRATION	31
2.8.1 Determination by Comparison to a DNA Ladder	31
2.8.2 Spectrophotometric Determination of DNA Concentration	31
2.8.3 Fluorometric Determination of DNA Concentration	31
2.9 AGAROSE GEL ELECTROPHORESIS	32
2.9.1 DNA Extraction from Seaplaque Agarose	32
2.10 RESTRICTION DIGESTION OF DNA	32
2.10.1 Restriction Enzymes	32
2.10.2 Analytical Restriction Enzyme Digestion	33

2.10.3 Preparative Restriction Digestion	33
2.11 SOUTHERN BLOTTING	33
2.11.1 Preparation of DIG Labelled Probe	33
2.11.2 Hybridisation and Post Hybridisation Washes	34
2.11.3 Chemiluminescent Detection of DIG Labelled Probe	34
2.12 SYNTHETIC OLIGONUCLEOTIDES	35
2.13 AMPLIFICATION OF DNA BY POLYMERASE CHAIN REACTION	35
2.14 SUBCLONING	36
2.14.1 Filling in 5' Overhangs with DNA Polymerase I, Large (Klenow) Fragment	36
2.14.2 Removal of 3' or 5' Overhangs with Mung Bean Nuclease	36
2.14.3 Removal of 5' Phosphate Groups from DNA with Calf Intestinal	
Phosphatase	39
2.14.4 Annealing Oligonucleotides	39
2.14.5 Addition of 5' Phosphates to Oligonucleotides by T4 Polynucleotide Kinase	39
2.15 DNA LIGATION	39
2.16 TRANSFORMATION OF PLASMID DNA	39
2.17 FLY STOCKS AND TRANSGENIC FLY STOCKS	41
2.18 FLY MEDIA	41
2.18.1 Cornmeal Agar	41
2.18.2 Formula 4-24 (Instant Fly Food)	44
2.19 MAINTENANCE OF FLY STOCKS	44
2.19.1 Setting Fly Crosses	44
2.19.2 Collection of Virgin Females	44
2.20 MICROINJECTION OF D. MELANOGASTER EMBRYOS	44
2.20.1 Co-Precipitation of Plasmid DNA	44
2.20.2 Collection of Embryos	45
2.20.3 Dechorination of Embryos	45
2.20.4 Dehydration of Embryos	45
2.20.5 Microinjection of Embryos	45
2.20.6 Crossing Adult Survivors	46
2.20.7 Identification of Transformants and Establishment of a Transformant Stock	46
2.21 DETERMINATION OF CHROMOSOMAL LINKAGE OF INSERT	46
2.22 β-GALACTOSIDASE ASSAYS	47
2.22.1 Total Protein Assays	48

3.0 RESULTS

3.1 DETERMINATION OF THE EFFECT OF ROX GENES IN CIS ON	
REPORTER GENE EXPRESSION	49
3.1.1 GENERATION OF HSP83-ROX2 EXPRESSING CONSTRUCTS	49
3.1.1.1 Insertion of roX2 cDNA into hsp83 in pBS	49
3.1.1.2 Insertion of hsp83-roX2 into pHF11 Upstream of the SCS' Insulator	
Element	50
3.1.1.3 Insertion of hsp83-roX2 into pHF11 Within the SCS/SCS' Insulated Region	50
3.1.1.4 β-galactosidase Assays of Autosomal Insertions of hsp83-roX2 Expressing	
Constructs - pRH02 and pRH03	55
3.1.2 GENERATION OF 4.9 KB GENOMIC ROX1 EXPRESSING	
CONSTRUCT	56
3.1.2.1 β-galactosidase Assays of Autosomal Insertions of 4.9 kb Genomic	
roX1 Expressing Construct – pRH04	56
3.1.3 GENERATION OF 3.7 kb ROX1 and 1.1 kb ROX2 cDNA CONTAINING	
CONSTRUCTS	61
3.1.3.1 Insertion of a NotI Linker into pHF11	61
3.1.3.2 Insertion of 3.7 kb roX1 cDNA Sequence into pBS2N	62
3.1.3.3 Insertion of 1.1 kb roX2 cDNA into pHF11 + NotI Linker	63
3.1.3.4 Insertion of 3.7 kb roX1 cDNA into 1.1 kb roX2 in pHF11 + NotI Linker	69
3.1.3.5 β -galactosidase Assays of Autosomal Insertions of 3.7 kb roX1 and 1.1 kb	
roX2 cDNA Containing Constructs - pRH08, pRH09, pRH13	70
3.1.4 GENERATION OF CONSTRUCTS CONTAINING ROX1 PCR	
FRAGMENTS	71
3.1.4.1 β-galactosidase Assays of Autosomal Insertions of roX1 PCR	
Fragment Containing Constructs - pRH11, pRH12	73
3.2 DETERMINATION OF THE EFFECT OF SXL BINDING SITES ON	
THE ARM-LACZ REPORTER GENE EXPRESSION	78
3.2.1 GENERATION OF SXL BINDING SITES IN THE 3' UTR OF pHF11	78
3.2.1.1 Insertion of PCR Fragments Containing Sxl Binding Sites into pHF12	78
3.2.1.2 Insertion of arm-lacZ + Sxl Binding Sites into pHF10	79

х

49

3.2.1.3 β -galactosidase Assays of Autosomal Insertions of 3' UTR Sxl Binding	
Site Containing Constructs- pRH23, pRH24, pRH25	80
3.2.2 GENERATION OF A SINGLE SXL BINDING SITE IN THE 5' UTR	
OF ARM-LACZ	85
3.2.2.1 Insertion of arm-lacZ + Runt 3' UTR from pHF13 into pUC118	85
3.2.2.2 Insertion of Sxl 5' Oligonucleotide into arm-lacZ + Runt 3' UTR in pUC11	8 86
3.2.2.3 Insertion of arm-lacZ + Runt 3' UTR + Sxl 5' Insert into pHF10	86
3.2.2.4 β -galactosidase Assays of Autosomal Insertions of 5' UTR Sxl Binding	
Site Containing Construct- pRH31	87
3.3 INSERTION OF X-LINKED DNA INTO pHF11	92
3.3.1 β-galactosidase Assays of Autosomal Insertions of X-linked DNA Containing	ıg
Constructs- p34F3 5.0, p34F3 8.0, p34F3 17.0	94
4.0 DISCUSSION	99
4.1 EVALUATION OF THE ROLE OF ROX GENES DURING DOSAGE	
COMPENSATION	99
4.1.1 Roles of roX Genes as MSL Entry Sites	99
4.1.2 roX1 and roX2 RNA Expression Partially Hypertranscribes LacZ in Males	100
4.1.3 roX1 and roX2 cDNA Sequences Partially Hypertranscribe LacZ in Males	102
4.1.4 roX RNA Expression vs DNA Sequence	103
4.1.5 Regions of the roX1 cDNA may be Important of Dosage Compensation	104
4.1.6 Regions of the roX1 cDNA Sequence Partially Compensate arm-lacZ	104
4.1.7 GAGA Protein Binding Involvement in Dosage Compensation	105
4.1.8 Role of roX RNA in RNA – Protein Interactions	105
4.1.9 Parallels between roX and Xist	106
4.1.10 Conclusions and Future Work	107
4.2 EXAMINATION OF DOSAGE COMPENSATION INVOLVING SEX-	
LETHAL	110
4.2.1 Dosage Compensation Involving Sex-lethal	110
4.2.2 Differences Between Length, Position and Number of Binding Sites	111
4.2.3 Sxl Binding Sites Required in Both 3' UTR and 5' UTRs?	111
4.2.4 Sxl Protein Binding of mRNA	112

4.2.5 Other Protein Binding Sites in 5' UTR for Interaction with Sxl	112
4.2.6 Conclusions and Future Work	113
4.3 ISOLATION OF X-LINKED DOSAGE COMPENSATION REGUL	ATORY
ELEMENTS	115
4.3.1 Are Genes Present within the X-linked Regions Studied?	115
4.3.2 What is the Nature of DCREs?	115
4.3.3 Conclusions and Future Work	116
5.0 APPENDICES	118
Appendix 1. Physical Maps of Plasmids	118
Appendix 2. B-Galactosidase Activities of Transgenic Flies	139

6.0 BIBLIOGRAPHY

Errata

The data values listed in tables within this thesis are correct, however due to calculation difficulties values quoted within the main body of text may vary slightly from those in the tables.

163

LIST OF FIGURES

Figure 1. I	Réstriction Enzyme Digestions of <i>hsp83-roX2</i> Containing Constructs to confirm Insertion and Orientation	51
Figure 2. I	Restriction Enzyme Digestions of Genomic <i>roX1</i> Expressing Constructs to confirm Excision and Insertion	57
Figure 3. I	Restriction Enzyme Digestions of <i>roX1</i> and <i>roX2</i> Containing Constructs to confirm Insertion and Orientation	64
Figure 4.] (Restriction Enzyme Digestions of <i>roX1</i> PCR Fragment Containing Constructs to confirm PCR Amplification, Insertion and Orientation	74
Figure 5.] (Restriction Enzyme Digestions of 3' UTR, Sxl Binding Site Containing Constructs to confirm PCR Amplification, Insertion and Orientation	81
Figure 6. 1	Restriction Enzyme Digestions of Sxl 5' Insert Containing Constructs to confirm Insertion and Orientation	88
Figure 7. 1	Restriction Enzyme Digestions of X-linked DNA Containing Constructs to confirm Insertion and Orientation	95

LIST OF TABLES

Table 1. Plasmids, Cosmids and Bacterial Strain	20
Table 2. Drosophila melanogaster Fly Stocks and Transgenic Fly Stocks	37
Table 3. Synthetic Oligonucleotides	42
Table 4. β-galactosidase Assays of Transgenic Flies carrying Autosomal Insertions of pRH02 and pRH03	53
Table 5. β-galactosidase Assays of Transgenic Flies carrying Autosomal Insertions of pRH04	59
Table 6. β-galactosidase Assays of Transgenic Flies carrying Autosomal Insertions of pRH08, pRH09, and pRH13	66
Table 7. β-galactosidase Assays of Transgenic Flies carrying Autosomal Insertions of pRH11 and pRH12	76
Table 8. β-galactosidase Assays of Transgenic Flies carrying Autosomal Insertions of pRH23, PRH24, and pRH25	83
Table 9. β-galactosidase Assays of Transgenic Flies carrying Autosomal Insertions of pRH31	90
Table 10. β-galactosidase Assays of Transgenic Flies carrying Autosomal Insertions of p34F3 5.0 and p34F3 8.0	97

1.0 INTRODUCTION

1.1 DOSAGE COMPENSATION - AN OVERVIEW

Dosage compensation is the mechanism by which the expression of X-linked genes is equalised between males with one X chromosome and females with two. Different organisms have evolved unique mechanisms to achieve dosage compensation. In mammals one female X chromosome is randomly inactivated to equal the expression of the single male X chromosome (Lyon, 1961). In *Caenorhabditis elegans* the expression of both female X chromosomes is down regulated to equal the expression of the single male X chromosome (Hsu and Meyer, 1993). Mammals and *C. elegans* are both examples of organisms where the male is the heterogametic sex. In organisms where the female is heterogametic (ZW), eg. birds and butterflies, dosage compensation has been shown not to occur (Baverstock *et al.*, 1982; Johnson and Turner, 1979).

1.2 DOSAGE COMPENSATION IN DROSOPHILA

1.2.1 Dosage Compensation Involves Transcriptional Up Regulation

In *Drosophila* dosage compensation is achieved by the hypertransactivation (transcriptional up-regulation) of genes on the single male X chromosome to equal the level of expression from two female X chromosomes. Early support for this statement came from Offermann's, (1936) observation in squashes of polytene chromosomes, from larval salivary glands, that the male X chromosome is wider and more diffuse in appearance than both female X chromosomes. This 'puffier' appearance indicates an increase in gene expression. Following this observation Mukherjee and Beermann, (1965) demonstrated that incorporation of tritiated (³H) uridine into nascent salivary gland transcripts was significantly higher in the single unpaired male X chromosome than one female X chromosome. Results from these experiments pointed to an enhancing effect occurring on the male X chromosome rather than a repressing effect on the female.

1.2.2 Histone Acetylation, Transcriptional Activity and Dosage Compensation

The core particle of the nucleosome consists of four histones H2A, H2B, H3 and H4. Acetylation of the histones occurs at specific lysine residues in the N-terminal domain and is a ubiquitous post-translational modification found in all animal and plant species (Turner, 1991).

Histone acetylation has been stated as being potentially a major influence on transcription and DNA packaging through the cell cycle (Turner, 1991). Histones in actively transcribing genes are rapidly acetylated and deacetylated, which proposes a link between transcriptional activation and histone acetylation (reviewed by Turner, 1991). Neutralisation of positive charges by acetylation of histone H4 is thought to play a primary role in altering interactions between the DNA and histones, which may mediate enhanced binding of transcription factors to their DNA target sequences (Vettese-Dadey *et al.*, 1996).

Acetylation of ε -amino groups of lysine residues, present in the N-terminal domain of the core histones, is most strongly linked with transcriptional activity (Turner, 1991). Vettese-Dadey *et al.*, (1996) demonstrated that the highly acetylated histone H4 in nucleosome cores has the highest affinity for transcription factors USF and GAL-4H. Studies of the *Saccharomyces cerevisiae* mating type (MAT) locus (Johnson *et al.*, 1990) indicates that the repression of the silent mating loci requires histone acetylation. When lysine 16 is mutated to an arginine, which retains the positive charge, the regulation of the MAT locus is unaffected. But, when lysine 16 is mutated to a glutamine (a neutral amino acid mimicking acetylation) derepression of the locus occurs (Johnson *et al.*, 1990). A specific isoform of histone H4 acetylated at lysine 16 (H4Ac16) is also predominantly associated with the male X chromosome in *Drosophila* (Turner *et al.*, 1992). The acetylation of histone H4 on lysine 16 (H4Ac16) may play a role in loosening the chromatin structure and increasing the accessibility of transcription factors associated with the male X chromosome in *Drosophila* (Bone *et al.*, 1994).

1.3 THE TRANS-ACTING MALE SPECIFIC LETHALS

A simple model for dosage compensation in Drosophila would predict that increases in X-linked gene transcription result from the action of trans-acting factors upon target cis-acting sequences localised to the X chromosome (Palmer et al., 1993). It has been rationalised that mutations inactivating regulatory genes responsible for dosage compensation could result in sex specific lethality (Lucchesi and Manning, 1987). A mutation that prevents normal compensation could cause the death of an individual with a single X chromosome due to a deficiency of X-linked gene products. Belote and Lucchesi, (1980a) carried out a large screen for ethyl methanesulfonate (EMS) induced sex-specific lethals on the 2nd and 3rd chromosomes. Three male-specific lethal mutations male-specific lethal-1 (msl-1), male-specific lethal-2 (msl-2) and maleless (mle) were discovered. Temperature sensitive mutants of mle had previously been isolated from natural populations of D. melanogaster (Fukunaga et al., 1975; Golubovsky and Ivanov, 1972). These three genes plus the subsequently discovered male-specific lethal-3 (msl-3) (Lucchesi et al., 1982) and males-absent on the first (mof) (Hilfiker et al., 1997) have been collectively named the male-specific lethals or msls. Males mutant in any of these genes exhibit prolonged posthatching development and eventually die during the late larval or early pupal stages (Belote, 1983). These mutations have been shown to have no discernible effect on the viability and development of females (Belote and Lucchesi, 1980a).

Males homozygous for *msl-1*, *msl-2* or *mle* show a significant reduction in X-linked enzyme activities, while the levels of autosomal enzymes are not affected (Belote and Lucchesi, 1980b).

The MSL proteins bind to hundreds of sites along the entire length of the male X chromosome (Kuroda *et al.*, 1991; Palmer *et al.*, 1993). Immunolocalisation experiments show that the MSLs bind to the same sites along the X chromosome (Bone *et al.*, 1994), and the native X chromosome binding of any MSL protein requires the wildtype function of the other four MSLs (Bashaw and Baker, 1995; Gorman *et al.*, 1993; Gu *et al.*, 1998; Hilfiker *et al.*, 1994; Kelley *et al.*, 1995; Palmer *et al.*, 1994,). This dependent binding suggests that the MSL proteins form a heteromultimeric complex.

1.3.1 Maleless

As discussed above the msl genes have all recently been cloned. The mle gene (Kuroda et al., 1991) encodes a polypeptide containing several short motifs characteristic of a superfamily of DNA and RNA helicases. MLE shows the highest sequence homology to a subfamily of RNA helicases containing DEAH box motifs (Schwer and Guthrie, 1991; Nakajima et al., 1997). MLE shares 50% identity with human RNA helicase A (RHA) which mediates the interaction of CBP (CREB Binding Protein) with RNA polymerase II (Nakajima et al., 1997). It has been proposed that the recruitment of CBP complexes may promote local unwinding of promoter DNA via RHA and allow access of transcriptional apparatus (Nakajima et al., 1997). A study by Lee et al., (1997) showed that MLE possesses NTPase and both RNA and DNA helicase activities and that these activities are essential functions of MLE for dosage compensation. Preliminary studies by Nakajima and Montminy (unpublished data cited by Nakajima et al., 1997) have observed MLE associating with a 250 kDa CBP with histone acetylase activity. The unpublished data along with evidence that MLE appears to co-localise with acetylated histone H4 (Bone et al., 1994), and has NTPase/helicase activity (Lee et al., 1997) suggests that MLE may be involved in initiation of transcription, perhaps via chromatin remodelling of X-linked genes.

1.3.2 Male-Specific Lethal-1

The cloning and characterisation of the *msl-1* gene (Palmer *et al.*, 1993) showed that the MSL-1 protein is not closely related to any proteins in the current databases. It does however contain acidic regions in the N-terminus consisting of two extended aspartate and glutamate clusters, characteristic of proteins involved in chromatin modelling and transcription (Palmer *et al.*, 1993). The acidic regions of these proteins may provide a region of interaction with histones to mediate nucleosome assembly or release and thereby promote changes in chromatin structure and transcription (Palmer *et al.*, 1992). MSL-1 protein is present in *mle* and *msl-3* mutant larvae, but is undetectable in *msl-2* mutant male larvae (Palmer *et al.*, 1994). This finding plus other genetic tests carried out by Palmer *et al.*, (1994) suggests that *msl-2* expression positively regulates the translation or stability of MSL-1 in males. MSL-1 also contains regions rich in proline, serine, threeonine and glutamic acid which are residues (PEST sequences) associated with rapidly degraded proteins (Palmer *et al.*, 1993).

1.3.3 Male-Specific Lethal-2

MSL-1 and MSL-2 have been shown to co-immunoprecipitate from male nuclear extracts (Kelley *et al.*, 1995). MSL-2 (Zhou *et al.*, 1995), contains a RING finger, which is a C_3HC_4 zinc finger (Lovering *et al.*, 1993). Using a two-hybrid system Copps *et al.*, (1998) found that the RING finger domain of MSL-2 binds MSL-1. When residues clustered around the first zinc-binding site of the RING finger domain in MSL-2 were mutated interaction with MSL-1 was lost. In addition to the RING finger motif the MSL-2 protein also contains a positively and a negatively charged amino acid residue cluster and a coiled coil domain that may be involved in protein-protein interactions (Zhou *et al.*, 1995). Zhou *et al.*, (1995) hypothesise that MSL-2 may be a transcription regulator, with the positively charged amino acid cluster contributing to a DNA binding domain and the negatively charged cluster being part of a transcription *trans*-activator domain. Copps *et al.*, (1998) propose that the RING finger domain interaction with MSL-1, through the first zinc-binding site, may be an important prerequisite for subsequent protein-protein interactions and that the second zinc-binding site may have a second, but as yet unidentified activity.

MSL-1 and MSL-2 appear to form a core complex within the MSL complex. When either is removed through mutation the remaining MSL proteins fail to bind any site along the X chromosome (Gorman *et al.*, 1993; Gorman *et al.*, 1995; Palmer *et al.*, 1994; Lyman *et al.*, 1997). Conversely if MSL-3, MLE or MOF are removed MSL-1 and MSL-2 remain bound to 30 - 40 'high affinity' binding sites along the X chromosome (Palmer *et al.*, 1994; Gorman *et al.*, 1995; Gu *et al.*, 1998; Lyman *et al.*, 1997)

1.3.4 Male-Specific Lethal-3

Cloning and characterisation of the *msl-3* gene found that it encodes a novel protein (Gorman *et al.*, 1995). MSL-3 contains two chromatin organisation modifier (chromo) domains that are 30 - 50 amino acid domains conserved in several eukaryotic chromatin-binding proteins such as *Drosophila* hetereochromatin protein 1 (HP1) and Polycomb (PC) (Koonin *et al.*, 1995). Chromodomains have been implicated in the delivery of both positive and negative transcription regulators to chromatin targets.

1.3.5 Males-Absent on the First

Experimental results have identified an additional gene *males-absent on the first (mof)*, which encodes a putative histone acetyl transferase thought to be crucial for dosage compensation. This fifth male lethal gene was isolated by screening the X chromosome of *Drosophila melanogaster* for EMS-induced mutations, to identify genes carrying mutations that cause male specific lethality. Males mutant for *mof* die at the third instar larval stage of development, MSL-1, MSL-2 and MLE association with the X chromosome is reduced and the X-specific isoform of H4Ac16 is absent (Hilfiker *et al.*, 1997).

The *mof* mRNA encodes an 827 amino acid protein that contains a 250 amino acid domain common to many acetyl transferases and is shown to be required for binding of acetyl coenzyme A. This domain is found in proteins known to acetylate histones, such as histone acetyl transferase 1 of yeast (Kleff *et al.*, 1995) and histone acetyl transferase A of *Tetrahymena* (Brownell *et al.*, 1996). The mutation of *mof* results from a substitution of Gly691 (the most conserved residue in the 250 amino acid motif) for glutamic acid. This mutation leads to the absence of H4Ac16 on the male X chromosome and a male lethal phenotype. Lu *et al.*, (1996) showed that the mutation of the corresponding glycine to an aspartate, in the human spermidine/spermine acetyl transferase, abolishes enzyme activity. Recently it has also been demonstrated that MOF co-localises with the MSL complex on the male X chromosome using loss-of-function mutations (Gu *et al.*, 1998).

Immunolocalisation experiments have shown that all of the MSL proteins bind to hundreds of specific sites along the male X chromosome. Each of the MSLs is produced in both sexes except for MSL-2, which is absent in females (Zhou *et al.*, 1995). Henikoff and Meneely, (1993) suggest that MLE could catalyse the movement of the MSL complex along the nascent RNA. In *msl-1*, *msl-2* or *msl-3* mutant backgrounds MLE does not bind the X chromosome, but is still present, indicating that MSL-1, MSL-2 and MSL-3 are required for binding, but not for regulation of X chromosome expression (Gorman *et al.*, 1993). MOF, the fifth MSL protein, encodes a putative histone acetylase. Mutational studies provide strong evidence that MOF has histone acetyl transferase activity and is responsible for the histone acetylation involved in male specific hypertranscription of X-linked genes (Hilfiker *et al.*, 1997).

1.3.6 Histone Acetylation and MSL Localisation

The pattern of H4Ac16 distribution on the X chromosome is very similar to that of the MSLs suggesting a link between the signals required for localising these proteins to the male X chromosome (Bone *et al.*, 1994). Bone *et al.*, (1994) also observed that presence of this H4 isoform on the X chromosome requires the wildtype function of the *msl* genes. This suggests that the mechanism of dosage compensation involves histone acetylation through association with the MSL proteins.

1.4 NON-CODING RNA INVOLVEMENT IN DOSAGE COMPENSATION

Two new genes roXI and roX2 (RNA on the X chromosome) have been isolated using an enhancer detector screen for β -galactosidase activity in the mushroom bodies of the *Drosophila* brain (Amrein and Axel, 1997; Meller *et al.*, 1997). Both genes are Xlinked and each encodes an RNA without a significant open reading frame (ORF). Their expression is confined to the nucleus of male flies, which suggests that they may encode non-coding RNAs (Amrein and Axel, 1997; Meller *et al.*, 1997). Expression of roXI and roX2 is dependent on the MSL complex (dosage compensation machinery) as neither of the genes are expressed in flies mutant for any of the *msls*. Additionally, expression of a *msl-2* transgene in females induces the expression of both roXI and roX2 RNA (Amrein and Axel, 1997; Meller *et al.*, 1997). In situ hybridisation of roXIprobes to late third-instar male larvae salivary gland X chromosomes displays a subcellular localisation of roXI RNA very similar to the localisation of the MSL complex binding the X chromosome (Amrein and Axel, 1997; Meller *et al.*, 1997).

Disruption of roX1 produces no obvious phenotype, lethality, or developmental delay, which rules out roX1 as an essential component of the dosage compensation complex. However the disrupted roX1 mutant (the $roX1^{ex6}$ mutation removes the 5' half of the roX1 gene and produces no stable RNA (Kelley *et al.*, 1999)) was used to show that roX1 RNA could spread in *trans*. Kelley *et al.*, (1999) inserted a DNA fragment, containing the roX1 gene, into either the second or third chromosome by P element mediated transformation. Males homozygous or hemizygous for the null $roX1^{ex6}$ mutation, but carrying one copy of the roX1 transgene, were used for RNA *in situ* hybridisation to polytene chromosomes. These *in situ* experiments showed the autosomally encoded RNA coating the entire X chromosome. This indicates that the *roX1* RNA still bound to the X despite being produced on another chromosome.

٤.

Kuroda *et al.*, (1991) proposed an RNA component of the dosage compensation system based on the observations that MLE contains RNA binding domains and is released from the X chromosome by RNase digestion (Richter *et al.*, 1996). However male flies mutant for *roX1* exhibit normal MLE binding and are fully dosage compensated (Meller *et al.*, 1997).

Franke and Baker, (1999) genetically produced a mutant with simultaneous loss of both roX1 and roX2, which abolished binding of the MSL complex to the male X chromosome. They suggest this is a strong indication that the roX RNAs are integral components of a dosage compensation nucleoprotein complex and is consistent with the earlier proposal of Meller *et al.*, (1997) that there is a family of non-homologous and redundant genes including roX1 and roX2 that can compensate for the loss of one of its members. They also propose that roX1 and its family members associate along the entire X chromosome to help change chromatin conformation and achieve hypertranscription, perhaps by associating with the MSLs, histone acetyl transferase or other chromatin constituents.

Comparisons have been made between the *roX* RNA and *Xist* RNA that coats the inactive mammalian X chromosome. *Xist* encodes a non-coding RNA expressed from the X-inactivation centre of the inactive X chromosome in mammals and is thought to 'spread' (in *cis*) along one of the female X chromosomes, remodelling chromatin to form a transcriptionally inactive Barr body (Lee *et al.*, 1996). There are some similarities between *roX1* and *Xist*; they are both nuclear and localised to a structurally modified X chromosome undergoing dosage compensation (Meller *et al.*, 1997).

1.5 REGULATION OF DOSAGE COMPENSATION

1.5.1 Sex-Lethal

The process of dosage compensation is one of several controlled by the 'master regulatory gene' Sex-lethal (Sxl). Initially dosage compensation is controlled by the expression patterns of Sxl, which in turn is controlled by the ratio of X chromosomes (X) to autosomes (A). An X:A ratio of 1.0 (2X:2A) results in female development and a X:A ratio of 0.5 (1X:2A) results in male development. In Drosophila the X:A ratio acts to switch the Sxl gene into either the female mode which represents ON (functional) or the male mode which represents OFF (non-functional) (Cline, 1978). The X:A ratio itself is assessed by 'counting' genes, referred to as numerators and denominators (reviewed by Parkhurst and Meneely, 1994). These proteins are members of the helix-loop-helix (HLH) family of transcription factors (Parkhurst et al., 1990). The numerators are a group of X chromosomal genes that behave as feminising elements because they increase the probability of activating Sxl expression. Lowering the number of numerators results in female lethality due to the lack of activated Sxl, whereas raising the number results in male lethality because Sxl is activated. Denominators are autosomally encoded genes acting as antagonists to the numerators by competing with numerators to form heterodimers. The heterodimers formed activate Sxl at the level of transcription (Keyes et al., 1992).

The initial activation of *Sxl* results in production of *Sxl* mRNA transcripts from the early 'establishment' promoter P_E in females. These early *Sxl* mRNA protein products specify the production of active female-specific transcripts from the late 'maintenance' promoter P_L (Bell *et al.*, 1991) and thereby establish an autoregulatory feedback loop. Transcripts of *Sxl* are also produced in males from P_L , but these are truncated and inactive and maintained by default (Bell *et al.*, 1991; Keyes *et al.*, 1992).

In males a functional Sxl protein is missing, therefore male differentiation and dosage compensation occurs. In females, active Sxl protein acts upon the mRNA of *transformer (tra)*, the next gene in the pathway. Sxl binding to *tra* RNA blocks a splice acceptor site, resulting in another female-specific splicing pattern occurring. The functional Tra protein is only produced in females and is involved in somatic sex

determination. *In vitro* studies by Samuels *et al.*, (1994) showed that Sxl protein binds to poly uridine (polyU) tracts in mRNA that consist of eight or more Us or AU₇.

1.5.2 Sxl Regulation of Dosage Compensation

5.

Sxl loss-of-function mutations cause female lethality and gain-of-function mutations cause male lethality (Cline, 1978). Zhou et al., (1995) demonstrated that the primary target of Sxl during dosage compensation is *msl-2*. The *msl-2* transcript is present in both males and females, with the same ORF, but the MSL-2 protein is present only in males (Bashaw and Baker, 1995; Kelley et al., 1995; Zhou et al., 1995). A small intron in the 5' UTR (untranslated region) of the msl-2 transcript is spliced out in males and retained in females (Bashaw and Baker, 1995; Kelley et al., 1995; Zhou et al., 1995). Within this intron are poly(U) runs that resemble the Sxl binding sites found in Sxl and tra and are therefore spliced out in males. Four more Sxl binding sites are present in the 3' UTR that is retained in both sexes. Mutations of Sxl binding sites in either the 5' or the 3' regions result in ectopic expression of MSL-2 protein in females. This indicates that the sites in both the 3' and 5' UTRs are required for appropriate regulation of msl-2 translation (Bashaw and Baker, 1997; Kelley et al., 1997). Bashaw and Baker, (1997) suggest the possibility that Sxl binding at both ends of the msl-2 transcript changes the structure of the RNA by circularisation and therefore prevents access of translational machinery.

1.5.3 A Second MSL Independent Method of Dosage Compensation

A second method of dosage compensation has been suggested in *Drosophila* that is independent of the *msls*. The first evidence for this second method was the observation by Cline, (1978) that females homozygous for a loss-of-function mutation for *Sxl* were not rescued if also homozygous for mutations in *msl-2*, *msl-1* or *mle*. *msl-3* is yet untested, but assumed to have the same phenotype due to the co-dependence of the *msls*. These findings suggest that *Sxl* and the *msls* may act on different loci to direct dosage compensation.

Dosage compensation of the X-linked *Runt* gene has been shown to be dependent on *Sxl*, but independent of the *msls* (Gergen, 1987; Bernstein and Cline, 1994). Wildtype *Runt* is required for the normal segmentation of *Drosophila* embryos (Gergen and Wieshaus, 1986) and is active at the blastoderm stage. Gergen, (1987) studied the

dosage compensation of *Runt* at the blastoderm stage of development and found that *Runt* expression was not affected by mutations in *msl-1*, *msl-2* and *mle*. Examination of the *Runt* gene revealed three *Sxl* binding sites in the 3' UTR (Kelley *et al.*, 1995). *Sxl* expression from the early *Sxl* promoter (Sxl_E) occurs at the same stage of development as *Runt* expression, which supports the idea that early dosage compensation begins at mid-stage four and that *Runt* expression is *Sxl* dependent and *msl* independent (Bernstein and Cline, 1994; Gergen, 1987). The regulation of *Runt* by *Sxl* is probably due to repression of expression in females as indicated by only female-specific lethal alleles of *Sxl* affecting dosage compensation at the blastoderm stage (Gergen, 1987).

Two models have been suggested for the relationship between MSL dependent and *Sxl* mediated dosage compensation. The first involves *Sxl* controlling 'early' dosage compensation during embryogenesis, while the MSLs mediate 'late' dosage compensation during the larval and pupal stages. Evidence for this model is that *msl* mutant males complete embryogenesis, but die as late larvae or pupae (Belote and Lucchesi, 1980a; Fukunaga *et al.*, 1975) and *Runt* is expressed before MSLs become functional (Gergen, 1987). *Sxl* and *Runt* expression is detected at mid-stage four of embryogenesis, but MSL binding to the X chromosome does not occur until the end of stage five (blastoderm stage). The *Sxl* 'early' dosage compensation process may have evolved to satisfy a need for dosage compensation before the MSLs become functional and therefore the two systems are operating sequentially (Franke *et al.*, 1996).

The second model is that Sxl and MSL mediated dosage compensation pathways act in parallel (Rastelli *et al.*, 1995) during development on separate sets of genes (Kelley *et al.*, 1995). Recent data suggests that Sxl may reduce the stability or translation of a subset of X-linked transcripts in females (Kelley *et al.*, 1995). Kelley *et al.*, (1995) suggest that this second dosage compensation system may upregulate X-linked genes in males, while a subset of X-linked genes are down regulated in females. A computer search scanning all available 3' UTRs of *Drosophila* genes produced 21 genes containing three or more 3' poly(U) sites. 20 of these genes are on the X chromosome. The only autosomal gene found was *msl-1* (*msl-2* is also autosomal) (Kelley *et al.*, 1995). Kelley *et al.*, (1995) proposed that *Sxl* directly regulates dosage compensation of many genes through their 3' UTRs. Bernstein and Cline, (1994) suggest that *Sxl* mediated dosage compensation is not limited to embryonic development through studies of partial loss-of-function Sxl mutants, while Rastelli et al., (1995) suggest that msldependent dosage compensation is not limited to larval development.

1.6 CIS-ACTING ELEMENTS CONTROLLING DOSAGE COMPENSATION

2.

Relatively little is known about the *cis*-acting sequence characteristics of the X chromosome which identify it as a target for dosage compensation regulators (ie. MSLs and Sxl). These dosage compensation regulatory elements (DCREs) are thought to be distributed throughout the X chromosome. Evidence suggests that DCREs exert their efforts locally on individual genes or small groups of genes. When fragments from the X chromosome are transposed to an autosome the X-linked genes within the fragment remain dosage compensated (Ghosh *et al.*, 1989; Hazelrigg *et al.*, 1984; Krumm *et al.*, 1985; Levis *et al.*, 1985; McNabb and Beckendorf, 1986; Pirrotta *et al.*, 1985; Spradling and Rubin, 1983). Also when cloned X-linked genes are translocated to autosomal sites they remain at least partially dosage compensated (reviewed by Baker *et al.*, 1994; Lucchesi and Manning, 1987).

Conversely when autosomal fragments are translocated to X chromosome sites the genes within the fragment remain non-compensated. But, when cloned autosomal genes are translocated to the X chromosome they are compensated in males (Baker *et al.*, 1994). These observations suggest that dosage compensation in *Drosophila* is controlled by *cis*-acting sequences both distant and close to the genes. Supporting this suggestion is the observation that not all genes on the X chromosome are dosage compensated. These non-compensated genes can be in close proximity to genes that are.

Support for the hypothesis that *cis*-acting elements confer transcriptional upregulation only onto nearby sequences is the finding that *LSP-1* α is an X-linked gene but is not compensated. *LSP-1* α codes the alpha subunit of larval serum protein-1. *LSP-1* α has a transcription unit named *L12* immediately adjacent to it that is compensated (Ghosh *et al.*, 1989). Females exhibit twice the amount of gene product found in males (Brock and Roberts, 1982; Roberts and Evans-Roberts, 1972). This phenomenon could be explained by assuming that the *LSP-1* α gene has only relatively recently been translocated to the X chromosome. Ghosh *et al.*, (1989) determined that $LSP-1\alpha$ is inherently capable of dosage compensation by relocating the $LSP-1\alpha$ gene to ectopic X chromosome sites. The results of this experiment showed steady state levels in males (one dose) are equivalent to females (two doses).

1.6.1 DCREs Are Still Unidentified

For the last ten years the search for *cis*-acting sequences involved in dosage compensation has been fruitless. Two X-linked genes (*white* and *Sgs-4*) have been extensively studied using genetic and molecular techniques in an attempt to localise the DCREs. The studies predominantly involved inserting X-linked transgenes, which contained progressive deletions, into autosomes to isolate a possible consensus sequence for dosage compensation.

Levis *et al.*, (1985) analysed the *cis*-acting sequences involved in regulating the *white* gene. Varying lengths of both 3' and 5' flanking sequences were deleted from the *white* gene. Flanking sequences 420 bp upstream and 160 bp downstream of the gene were found to be sufficient for dosage compensation to occur. Pirrotta *et al.*, (1985) further delimited the required sequence to 200 bp upstream of the gene.

As sequences in the *white* gene are gradually removed from the 5' end a progressive decline in dosage compensation is observed (Qian and Pirrotta, 1995). Qian and Pirrotta, (1995) concluded that *cis*-acting DCREs consist of multiple elements present near and within the promoter and some within the coding region of the gene. Despite these observations no DCRE consensus sequence has been identified.

Transformation experiments involving the *Sgs-4* gene demonstrated that 840 bp upstream and 130 bp downstream of the gene are sufficient for proper activity and regulation when relocated to autosomal sites (McNabb and Beckendorf, 1986). Sequence comparisons between compensated and non-compensated alleles failed to show any base substitutions specific to the non-compensated alleles (Hofmann and Korge, 1987).

1.6.2 Mono and Dinucleotide Repeats Correlate with Dosage Compensation

Evidence has been presented that suggests the X chromosome has unique structural features that may be related to dosage compensation. Two dinucleotide repeats $(CA/GT)_n$ and $(CT/GA)_n$ and one mononucleotide repeat $(C/G)_n$ have been reported to be found at twice the level on the X chromosome as on autosomes (Huijser *et al.*, 1987; Lowenhaupt *et al.*, 1989; Pardue *et al.*, 1987). Chromosomal arms from autosomes translocated to the X chromosome acquire the ability to dosage compensate in several *Drosophila* species. The newly translocated arm also gains a higher density of $(CA/GT)_n$ similar to the other X chromosomes. The pattern of $(CA/GT)_n$ sequences shows several correlations with general chromosomal functions such as dosage compensation (Pardue *et al.*, 1987). Pardue *et al.*, (1987) suggests that the acquisition of dosage compensation ability and higher density of $(CA/GT)_n$ repeats reflects a relationship between the two processes.

These repeats are all able to adopt a non B form of DNA when subjected to negative supercoiling *in vitro* and may be involved in the adoption or maintenance of a decondensed X chromatin structure required for dosage compensation (Lowenhaupt *et al.*, 1989). Other than their enrichment on the X chromosome there is no evidence that these repeats are involved in dosage compensation as the repeats are also found on autosomes at significant levels.

1.6.3 Why Have DCREs Not Been Identified?

A major limitation of previous attempts to identify DCREs is that X-linked genes on autosomes are only partially compensated.

All studies (excluding *white* studies) used Northern Blots or RNase Protection Assays to quantitate gene expression levels in males and females. These methods experience technical difficulties when quantitating two fold differences in expression. Studies of the *white* gene used spectrophotometric eye pigment assays that must take into account the non-linearity of the pigmentation response to gene dose (Qian and Pirrotta, 1995). Early indications of this non-linearity were demonstrated when transgenes at autosomal sites exhibited full dosage compensation - males with one dose produce twice as much pigment as one dose females. However females with two copies of the white transgene

have a two to three fold higher level of pigmentation than males with one (Hazelrigg et al., 1984; Levis et al., 1985; Pirrotta et al., 1985).

Hypotheses have been suggested to account for partial dosage compensation when Xlinked transgenes are translocated to autosomes. Qian and Pirrotta, (1995) suggest that the requirement for a certain amount of DCREs associated with the gene is not being met and/or that the autosomal chromatin environment (more condensed than X chromosomes) is having an inhibitory effect upon the transgene. The use of insulator elements to flank the transgene supports this hypothesis (Roseman *et al.*, 1995).

1.7 A NEW APPROACH TO IDENTIFYING DCRES

2.

Fitzsimons *et al.*, (1999) developed a reporter gene assay that can be used to screen X chromosomal DNA for DCREs. The components of this assay are the *E. coli lacZ* gene under the control of the constitutive promoter from the *armadillo* gene (this fusion is referred to as *arm-lacZ*). The *arm* promoter was chosen because it is constitutive and active in all tissues and all stages of development (Vincent *et al.*, 1994) in both males and females. *arm-lacZ* was flanked by SCS and SCS' insulator elements (specialised chromatin structures). SCS and SCS' sequences act as domain boundaries (Udvardy and Schedl, 1993). Domain boundaries establish a domain of independent gene activity by protecting against regulatory effects of surrounding chromosomal DNA. It has been found that *arm-lacZ* can respond to DCREs when on the X chromosome - one copy in males is expressed at twice the level of one copy in females.

A limitation in studying X-linked genes is that the coding region must remain intact enough so its product can be assayed for. Using this newly developed assay system allows X-linked sequences to be subdivided as a reporter gene is detected in the assay rather than the gene product. Fitzsimons *et al.*, (1999) placed portions of DNA from the *D. melanogaster* X chromosome immediately upstream of the *arm* promoter. The hypothesis for these experiments was that any X-linked sequence containing DCREs would confer dosage compensation onto *arm-lacZ* in males and thereby produce twice the *lacZ* activity in males over females. As yet the DCREs remain unidentified.

1.8 RESEARCH OBJECTIVES

This study has three main objectives. The first objective is to investigate the effect of *roX* genes on dosage compensation regulated by isolated DCREs. The second is to continue with the study begun by Fitzsimons *et al.*, (1999) and isolate the DCREs involved in dosage compensation. However our study will focus particularly on regions of the X chromosome (eg. 1C) known to contain 'high affinity' binding sites for the MSL-1/MSL-2 core complex (Lyman *et al.*, 1997). The final objective is to investigate further the possibility of *Sxl* regulating a second dosage compensation pathway throughout development.

1.8.1 Specific Objectives

Previous studies have been carried out to develop a new reporter gene assay system that can be used to screen X chromosomal DNA for DCREs. Fitzsimons *et al.*, (1999) developed and used this assay system on many constructs containing X-linked fragments of DNA in the attempt to isolate the elusive DCREs. This study will utilise the *arm-lacZ* assay system developed by Fitzsimons *et al.*, (1999) to investigate the role of various X-linked DNA fragments in dosage compensation.

The initial aim was to test if the roX genes are needed to be present in *cis* in order for a fragment containing a DCRE to cause a male specific increase in *lacZ* expression. It was found that the roX genes alone caused elevated *lacZ* expression ie. the roX genes contained DCREs. Consequently the initial objective was modified to test if roX cDNAs and fragments of roX genes contained DCREs.

The second aim of this study was to determine if DNA fragments from the tip of the X chromosome, in particular the region that shows "high affinity" binding with the MSL-1/MSL-2 core complex. The assay system will also be used to look for DCREs in these X-linked DNA fragments. The presence of DCREs would be confirmed by an increase in *lacZ* expression in males

The third aim was to investigate the role of *Sxl* in dosage compensation in females throughout development. The study aimed to determine if insertion of 3' UTR fragments from other X-linked genes (*Sxl, Small Forked, and Cut*) would cause a

decrease in female specific expression of *lacZ*. These 3' UTR fragments contained 3 or more Sxl binding sites and were inserted into the 3' UTR of *arm-lacZ*.

2.

The fourth and final aim also looked at Sxl involvement in dosage compensation. Experiments with *msl-2* showed the Sxl binding sites were required in both the 3' and 5' UTR to get complete repression of translation. Previously Fitzsimons *et al.*, (1999) showed insertion of a *Runt* 3' UTR fragment into the *arm-lacZ* 3' UTR caused a modest decrease in female *lacZ* expression. This study aimed to determine if an additional Sxl site in the 5' UTR of the *arm-lacZ* construct, carrying the *Runt* 3' UTR fragment, would result in a more dramatic decrease in female *lacZ* expression.