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ABSTRACT 

Dosage compensation (the equalisation of X-linked gene products) occurs in 

Drosophila melanogaster by a two fold transcriptional up-regulation of X-lir.ked gene 

expression in males. This involves the binding of five proteins, MSL-1 , MSL-2, MSL-

3, MLE, MOF, and potentially an RNA (roXJ or roX2), to hundreds of sites along the 

male X chromosome. The cis-acting X-linked DNA sequences required for dosage 

compensation ( called dosage compensation regulatory elements or DCREs) remain 

elusive, despite numerous attempts of identify them. An insulated reporter gene assay 

system has been developed to minimise problems previously encountered with 

identification of these elements. The reporter system consists of the constitutive 

armadillo promoter fused to the lacZ reporter gene ( called arm-lacZ). This reporter 

construct is flanked by SCS/SCS' insulator elements to block potential repressive 

effects of an autosornal chromatin environment. 

The role of the roX genes during dosage compensation was investigated. Initially both 

the roXJ and roX2 RNAs were expressed from within the arm-lacZ insulated system. 

Expression of either RNA lead to a significant increase in lacZ expression in males, 

although consistently less than two-fold. These results suggested that either the MSL 

complex was binding to the roX genes or the expression of the roX RNAs in cis lead to 

male-specific hypertranscription of lacZ. To test these possibilities roXI and roX2 

cDNAs were inserted into the arm-lacZ reporter. Insertion of either cDNA lead to a 

significant increase in lacZ expression in males, suggesting that the transcribed regions 

of the roX genes contain binding site(s) for the MSL complex. Interestingly the level of 

lacZ hypertranscription in males was significantly higher in homozygous roXI cDNA 

lines than homozygous roXJ gene lines. This may indicate that too high a local 

concentration of roXJ RNA has a dampening effect on the level of hypertranscription 

meditated by the MSL complex. In a set of experiments designed to identify the MSL 

binding site(s) in roXJ, two regions of the cDNA sequence were amplified and inserted 

into the arm-lacZ system. One of these fragments, containing a proposed DNAsel 

hypersensitivity site and possible GAGA binding sites, increased lacZ expression in 

males, but to levels lower than the entire cDNA. This suggests there may be more than 

one MSL biding site in roXI. 
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A second method of dosage compensation 1s thought to occur in Drosophila, 

independentiy of the MSL proteins. The arm-lacZ insulated reporter system was used 

to investigate the hypothesis that some genes may be dosage compensated due to 

repression by Sex-lethal (Sxl) in females. Several genes have been found to contain 

three or more Sxl binding sites in their 3' UTRs, with some also carrying Sxl binding 

sites in the 5' UTR. Fragments from the Sxl, Cut and Small Forked genes, containing 

numerous Sxl binding sites from the 3' UTR, were inserted into the 3' UTR region of 

arm-lacZ. Males carrying autosomal insertions of the construct had on average 1.07 -

1.50 times the level of 13-galactosidase in females. This suggests that some genes could 

be partially compensated through Sxl repression in females. 

In addition to inserting 3' UTR fragments into arm-lacZ, a synthetic oligonucleotide 

containing a long Sxl binding site was inserted into the 5' region of an arm-lacZ 

construct already carrying the Runt 3' UTR fragment. Males carrying autosomal 

insertions of the construct had levels of 13-galactosidase activity similar to those lines 

carrying autosomal insertions of the 3' UTR fragments alone. This suggests that other 

factors such as RNA binding proteins or RNA secondary structure may be required in 

order to obtain efficient translation repression by Sxl. 

Finally three X-linked DNA fragments, from the 1 C region, were inserted individually 

between the SCS' element and the armadillo promoter. If the X-linked fragment 

contained a DCRE then males carrying autosomal insertions of the construct would 

produce twice the 13-galactosidase activity of females. However, males and females 

expressed the same levels of lacZ. 
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1.0 INTRODUCTION 

H DOSAGE COMPENSATION - AN OVERVIEW 

Dosage compensation is the mechanism by which the expression of X-linked genes is 

equalised between males with one X chromosome and females with two. Different 

organisms have evolved unique mechanisms to achieve dosage compensation. In 

mammals one female X chromosome is randomly inactivated to equal the expression of 

the single male X chromosome (Lyon, 1961). In Caenorhabditis elegans the expression 

of both female X chromosomes is down regulated to equal the expression of the single 

male X chromosome (Hsu and Meyer, 1993). Mammals and C. elegans are both 

examples of organisms where the male is the heterogametic sex. In organisms where 

the female is heterogametic (ZW), eg. birds and butterflies, dosage compensation has 

been shown not to occur (Baverstock et al. , 1982; Johnson and Turner, 1979). 

1.2 DOSAGE COMPENSATION IN DROSOPHILA 

1.2.1 Dosage Compensation Involves Transcriptional Up Regulation 

In Drosophila dosage compensation is achieved by the hypertransactivation 

(transcriptional up-regulation) of genes on the single male X chromosome to equal the 

level of expression from two female X chromosomes. Early support for this statement 

came from Offermann's, (1936) observation in squashes of polytene chromosomes, 

from larval salivary glands, that the male X chromosome is wider and more diffuse in 

appearance than both female X chromosomes. This 'puffier' appearance indicates an 

increase in gene expression. Following this observation Mukherjee and Beermann, 

( 1965) demonstrated that incorporation of tritiated (3H) uridine into nascent salivary 

gland transcripts was significantly higher in the single unpaired male X chromosome 

than one female X chromosome. Results from these experiments pointed to an 

enhancing effect occurring on the male X chromosome rather than a repressing effect on 

the female. 
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1.2.2 Histone Acetylation, Transcriptional Activity and Dosage Compensation 

The core particle of the nucleosome consists of four histones H2A, H2B, H3 and H4. 

Acetylation e)f the histones occurs at specific lysine residues in the N-terminal domain 

and is a ubiquitous post-translational modification found in all animal and plant species 

(Turner, 1991). 

Histone acetylation has been stated as being potentially a maJor influence on 

transcription and DNA packaging through the cell cycle (Turner, 1991). Histones in 

actively transcribing genes are rapidly acetylated and deacetylated, which proposes a 

link between transcriptional activation and histone acetylation (reviewed by Turner, 

1991). Neutralisation of positive charges by acetylation ofhistone H4 is thought to play 

a primary role in altering interactions between the DNA and histones, which may 

mediate enhanced binding of transcription factors to their DNA target sequences 

(Vettese-Dadey et al., 1996). 

Acetylation of E-amino groups of lysine residues, present in the N-terminal domain of 

the core histones, is most strongly linked with transcriptional activity (Turner, 1991). 

Vettese-Dadey et al. , (1996) demonstrated that the highly acetylated histone H4 in 

nucleosome cores has the highest affinity for transcription factors USF and GAL-4H. 

Studies of the Saccharomyces cerevisiae mating type (MAT) locus (Johnson et al., 

1990) indicates that the repression of the silent mating loci requires histone acetylation. 

When lysine 16 is mutated to an arginine, which retains the positive charge, the 

regulation of the MAT locus is unaffected. But, when lysine 16 is mutated to a 

glutarnine (a neutral amino acid mimicking acetylation) derepression of the locus occurs 

(Johnson et al., 1990). A specific isoform of histone H4 acetylated at lysine 16 

(H4Ac 16) is also predominantly associated with the male X chromosome in Drosophila 

(Turner et al., 1992). The acetylation of histone H4 on lysine 16 (H4Acl 6) may play a 

role in loosening the chromatin structure and increasing the accessibility of transcription 

factors associated with the male X chromosome in Drosophila (Bone et al., 1994). 
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1.3 THE TRANS-ACTING MALE SPECIFIC LETHALS 

A simple model for dosage compensation in Drosophila would predict that increases in 

X-linked gene transcription result from the action of trans-acting factors upon target 

cis-acting sequences localised to the X chromosome (Palmer et al. , 1993). It has been 

rationalised that mutations inactivating regulatory genes responsible for dosage 

compensation could result in sex specific lethality (Lucchesi and Manning, 1987). A 

mutation that prevents normal compensation could cause the death of an individual with 

a single X chromosome due to a deficiency of X-linked gene products. Belote and 

Lucchesi, (1980a) carried out a large screen for ethyl methanesulfonate (EMS) induced 

sex-specific lethals on the 2nd and 3rd chromosomes. Three male-specific lethal 

mutations male-specific lethal-I (msl-1) , male-specific lethal-2 (msl-2) and maleless 

(mle) were discovered. Temperature sensitive mutants of mle had previously been 

isolated from natural populations of D. melanogaster (Fukunaga et al. , 1975; 

Golubovsky and Ivanov, 1972). These three genes plus the subsequently discovered 

male-specific lethal-3 (msl-3) (Lucchesi et al., 1982) and males-absent on the first (mof) 

(Hilfiker et al. , 1997) have been collectively named the male-specific lethals or msls. 

Males mutant in any of these genes exhibit prolonged posthatching development and 

eventually die during the late larval or early pupal stages (Belote, 1983). These 

mutations have been shown to have no discernible effect on the viability and 

development of females (Belote and Lucchesi, 1980a). 

Males homozygous for msl-1, msl-2 or mle show a significant reduction in X-linked 

enzyme activities, while the levels of autosomal enzymes are not affected (Belote and 

Lucchesi, 1980b ). 

The MSL proteins bind to hundreds of sites along the entire length of the male X 

chromosome (Kuroda et al., 1991; Palmer et al., 1993 ). Immuno localisation 

experiments show that the MSLs bind to the same sites along the X chromosome (Bone 

et al., 1994), and the native X chromosome binding of any MSL protein requires the 

wildtype function of the other four MSLs (Bashaw and Baker, 1995; Gorman et al. , 

1993; Gu et al. , 1998; Hilfiker et al., 1994; Kelley et al., 1995; Palmer et al., 1994,). 

This dependent binding suggests that the MSL proteins form a heteromultimeric 

complex. 
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1.3.1 Maleless 

As discussed above the ms/ genes have all recently been cloned. The mle gene (Kuroda 

et al., 1991} encodes a polypeptide containing several short motifs characteristic of a 

superfamily of DNA and RNA helicases. MLE shows the highest sequence homology 

to a subfamily of RNA helicases containing DEAH box motifs (Schwer and Guthrie, 

1991; Nakajima et al. , 1997). MLE shares 50% identity with human RNA helicase A 

(RHA) which mediates the interaction of CBP (CREB Binding Protein) with RNA 

polymerase II (Nakajima et al., 1997). It has been proposed that the recruitment of CBP 

complexes may promote local unwinding of promoter DNA via RHA and allow access 

of transcriptional apparatus (Nakajima et al. , 1997). A study by Lee et al. , (1997) 

showed that MLE possesses NTPase and both RNA and DNA helicase activities and 

that these activities are essential functions of MLE for dosage compensation. 

Preliminary studies by Nakajima and Montminy (unpublished data cited by Nakajima et 

al., 1997) have observed MLE associating with a 250 kDa CBP with histone acetylase 

activity. The unpublished data along with evidence that MLE appears to co-localise 

with acetylated histone H4 (Bone et al. , 1994), and has NTPase/helicase activity (Lee et 

al. , 1997) suggests that MLE may be involved in initiation of transcription, perhaps via 

chromatin remodelling ofX-linked genes. 

1.3.2 Male-Specific Lethal-I 

The cloning and characterisation of the msl-1 gene (Palmer et al., 1993) showed that the 

MSL-1 protein is not closely related to any proteins in the current databases. It does 

however contain acidic regions in the N-terminus consisting of two extended aspartate 

and glutamate clusters, characteristic of proteins involved in chromatin modelling and 

transcription (Palmer et al., 1993). The acidic regions of these proteins may provide a 

region of interaction with histones to mediate nucleosome assembly or release and 

thereby promote changes in chromatin structure and transcription ·(Palmer et al., 1994; 

Turner et al. , 1992). MSL-1 protein is present in mle and ms/-3 mutant larvae, but is 

undetectable in ms/-2 mutant male larvae (Palmer et al., 1994). This finding plus other 

genetic tests carried out by Palmer et al., (1994) suggests that ms/-2 expression 

positively regulates the translation or stability of MSL-1 in males. MSL-1 also contains 

regions rich in proline, serine, threonine and glutamic acid which are residues (PEST 

sequences) associated with rapidly degraded proteins (Palmer et al., 1993). 
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1.3.3 Male-Specific Lethal-2 

MSL-1 and MSL-2 have been shown to co-immunoprecipitate from male nuclear 

extracts (Kelley et al. , 1995). MSL-2 (Zhou et al., 1995), contains a RING finger, 

which is a C3HC4 zinc finger (Lovering et al., 1993). Using a two-hybrid system Copps 

et al. , (1998) found that the RING finger domain of MSL-2 binds MSL-1. When 

residues clustered around the first zinc-binding site of the RING finger domain in MSL-

2 were mutated interaction with MSL-1 was lost. In addition to the RING finger motif 

the MSL-2 protein also contains a positively and a negatively charged amino acid 

residue cluster and a coiled coil domain that may be involved in protein-protein 

interactions (Zhou et al., 1995). Zhou et al., (1995) hypothesise that MSL-2 may be a 

transcription regulator, with the positively charged amino acid cluster contributing to a 

DNA binding domain and the negatively charged cluster being part of a transcription 

trans-activator domain. Copps et al., (1998) propose that the RING finger domain 

interaction with MSL-1, through the first zinc-binding site, may be an important 

prerequisite for subsequent protein-protein interactions and that the second zinc-binding 

site may have a second, but as yet unidentified activity. 

MSL-1 and MSL-2 appear to form a core complex within the MSL complex. When 

either is removed through mutation the remaining MSL proteins fail to bind any site 

along the X chromosome (Gorman et al., 1993; Gorman et al., 1995; Palmer et al., 

1994; Lyman et al. , 1997). Conversely if MSL-3, MLE or MOF are removed MSL-1 

and MSL-2 remain bound to 30 - 40 'high affinity' binding sites along the X 

chromosome (Palmer et al. , 1994; Gorman et al., 1995; Gu et al. , 1998; Lyman et al. , 

1997) 

1.3.4 Male-Specific Lethal-3 

Cloning and characterisation of the msl-3 gene found that it encodes a novel protein 

(Gorman et al., 1995). MSL-3 contains two chromatin organisation modifier (chromo) 

domains that are 30 - 50 amino acid domains conserved in several eukaryotic 

chromatin-binding proteins such as Drosophila hetereochromatin protein 1 (HPl) and 

Polycomb (PC) (Koonin et al., 1995). Chromodomains have been implicated in the 

delivery of both positive and negative transcription regulators to chromatin targets. 
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1.3.5 Males-Absent on the First 

Experimental results have identified an additional gene males-absent on the first (moj) , 

which encodes a putative histone acetyl transferase thought to be crucial for dosage 

compensation. This fifth male lethal gene was isolated by screening the X chromosome 

of Drosophila melanogaster for EMS-induced mutations, to identify genes carrying 

mutations that cause male specific lethality. Males mutant for mof die at the third instar 

larval stage of development, MSL-1 , MSL-2 and MLE association with the X 

chromosome is reduced and the X-specific isoform of H4Ac16 is absent (Hilfiker et al., 

1997). 

The mof mRNA encodes an 827 amino acid protein that contains a 250 amino acid 

domain common to many acetyl transferases and is shown to be required for binding of 

acetyl coenzyme A. This domain is found in proteins known to acetylate histones, such 

as histone acetyl transferase 1 of yeast (Kleff et al. , 1995) and histone acetyl transferase 

A of Tetrahymena (Brownell et al., 1996). The mutation of mof results from a 

substitution of Gly691 (the most conserved residue in the 250 amino acid motif) for 

glutamic acid. This mutation leads to the absence of H4Ac16 on the male X 

chromosome and a male lethal phenotype. Lu et al. , (1996) showed that the mutation of 

the corresponding glycine to an aspartate, in the human spermidine/spermine acetyl 

transferase, abolishes enzyme activity. Recently it has also been demonstrated that 

MOF co-localises with the MSL complex on the male X chromosome using loss-of

function mutations (Gu et al. , 1998). 

Immunolocalisation experiments have shown that all of the MSL proteins bind to 

hundreds of specific sites along the male X chromosome. Each of the MSLs is 

produced in both sexes except for MSL-2, which is absent in females (Zhou et al. , 

1995). Henikoff and Meneely, (1993) suggest that MLE could catalyse the movement 

of the MSL complex along the nascent RNA. In msl-1, msl-2 or msl-3 mutant 

backgrounds MLE does not bind the X chromosome, but is still present, indicating that 

MSL-1, MSL-2 and MSL-3 are required for binding, but not for regulation of X 

chromosome expression (Gorman et al., 1993). MOF, the fifth MSL protein, encodes a 

putative histone acetylase. Mutational studies provide strong evidence that MOF has 

histone acetyl transferase activity and is responsible for the histone acetylation involved 

in male specific hypertranscription of X-linked genes (Hilfiker et al., 1997). 
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1.3.6 Histone Acetylation and MSL Localisation 

The pattern of H4Acl 6 distribution on the X chromosome is very similar to that of the 

MSLs suggesting a link between the signals required for localising these proteins to the 

male X chromosome (Bone et al. , 1994). Bone et al., (1994) also observed that 

presence of this H4 isoform on the X chromosome requires the wildtype function of the 

ms! genes. This suggests that the mechanism of dosage compensation involves histone 

acetylation through association with the MSL proteins. 

1.4 NON-CODING RNA INVOLVEMENT IN DOSAGE COMPENSATION 

Two new genes roXI and roX2 (RNA Qn the X chromosome) have been isolated using 

an enhancer detector screen for ~-galactosidase activity in the mushroom bodies of the 

Drosophila brain (Amrein and Axel, 1997; Meller et al., 1997). Both genes are X

linked and each encodes an RNA without a significant open reading frame (ORF). 

Their expression is confined to the nucleus of male flies, which suggests that they may 

encode non-coding RNAs (Amrein and Axel, 1997; Meller et al. , 1997). Expression of 

roXI and roX2 is dependent on the MSL complex ( dosage compensation machinery) as 

neither of the genes are expressed in flies mutant for any of the msls. Additionally, 

expression of a msl-2 transgene in females induces the expression of both roXI and 

roX2 RNA (Amrein and Axel, 1997; Meller et al. , 1997). In situ hybridisation of roXI 

probes to late third-instar male larvae salivary gland X chromosomes displays a 

subcellular localisation of roXI RNA very similar to the localisation of the MSL 

complex binding the X chromosome (Amrein and Axel, 1997; Meller et al., 1997). 

Disruption of roXI produces no obvious phenotype, lethality, or developmental delay, 

which rules out roXI as an essential component of the dosage compensation complex. 

However the disrupted roXJ mutant (the roxrx6 mutation removes the 5' half of the 

roXI gene and produces no stable RNA (Kelley et al. , 1999)) was used to show that 

roXJ RNA could spread in trans. Kelley et al. , (1999) inserted a DNA fragment, 

containing the roXI gene, into either the second or third chromosome by P element 

mediated transformation. Males homozygous or hemizygous for the null roxrx6 

mutation, but carrying one copy of the roXI transgene, were used for RNA in situ 

hybridisation to polytene chromosomes. These in situ experiments showed the 
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autosomally encoded RNA coating the entire X chromosome. This indicates that the 

roXJ RNA still bound to the X despite being produced on another chromosome. 

Kuroda et al., (1991) proposed an RNA component of the dosage compensation system 

based on the observations that MLE contains RNA binding domains and is released 

from the X chromosome by RNase digestion (Richter et al. , 1996). However male flies 

mutant for roXJ exhibit normal MLE binding and are fully dosage compensated (Meller 

et al., 1997). 

Franke and Baker, (1999) genetically produced a mutant with simultaneous loss of both 

roXJ and roX2, which abolished binding of the MSL complex to the male X 

chromosome. They suggest this is a strong indication that the roX RNAs are integral 

components of a dosage compensation nucleoprotein complex and is consistent with the 

earlier proposal of Meller et al., (1997) that there is a family of non-homologous and 

redundant genes including roXJ and roX2 that can compensate for the loss of one of its 

members. They also propose that roXJ and its family members associate along the 

entire X chromosome to help change chromatin conformation and achieve 

hypertranscription, perhaps by associating with the MSLs, histone acetyl transferase or 

other chromatin constituents. 

Comparisons have been made between the roX RNA and Xist RNA that coats the 

inactive mammalian X chromosome. Xist encodes a non-coding RNA expressed from 

the X-inactivation centre of the inactive X chromosome in mammals and is thought to 

'spread' (in cis) along one of the female X chromosomes, remodelling chromatin to form 

a transcriptionally inactive Barr body (Lee et al. , 1996). There are some similarities 

between roXJ and Xist; they are both nuclear and localised to a structurally modified X 

chromosome undergoing dosage compensation (Meller et al., 1997). 
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1.5 REGULATION OF DOSAGE COMPENSATION 

1.5.1 Sex-Lethal 

The process of dosage compensation is one of several controlled by the 'master 

regulatory gene' Sex-lethal (Sxl). Initially dosage compensation is controlled by the 

expression patterns of Sxl, which in turn is controlled by the ratio of X chromosomes 

(X) to autosomes (A). An X:A ratio of 1.0 (2X:2A) results in female development and 

a X:A ratio of 0.5 (1X:2A) results in male development. In Drosophila the X:A ratio 

acts to switch the Sxl gene into either the female mode which represents ON 

(functional) or the male mode which represents OFF (non-functional) (Cline, 1978). 

The X:A ratio itself is assessed by 'counting' genes, referred to as numerators and 

denominators (reviewed by Parkhurst and Meneely, 1994). These proteins are members 

of the helix-loop-helix (HLH) family of transcription factors (Parkhurst et al. , 1990). 

The numerators are a group of X chromosomal genes that behave as feminising 

elements because they increase the probability of activating Sxl expression. Lowering 

the number of numerators results in female lethality due to the lack of activated Sxl, 

whereas raising the number results in male lethality because Sxl is activated. 

Denominators are autosomally encoded genes acting as antagonists to the numerators 

by competing with numerators to form heterodimers. The heterodimers formed activate 

Sxl at the level of transcription (Keyes et al., 1992). 

The initial activation of Sxl results in production of Sxl mRNA transcripts from the early 

'establishment' promoter PE in females. These early Sxl mRNA protein products specify 

the production of active female-specific transcripts from the late 'maintenance' promoter 

PL (Bell et al., 1991) and thereby establish an autoregulatory feedback loop. Transcripts 

of Sxl are also produced in males from PL' but these are truncated and inactive and 

maintained by default (Bell et al., 1991; Keyes et al., 1992). 

In males a functional Sxl protein is missing, therefore male differentiation and dosage 

compensation occurs. In females, active Sxl protein acts upon the m.RNA of 

transformer (tra), the next gene in the pathway. Sxl binding to tra RNA blocks a splice 

acceptor site, resulting in another female-specific splicing pattern occurring. The 

functional Tra protein is only produced in females and is involved in somatic sex 
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determination. In vitro studies by Samuels et al. , (1994) showed that Sxl protein binds 

to poly uridine (polyU) tracts in mRNA that consist of eight or more Us or AU7• 

1.5.2 Sxl Regulation of Dosage Compensation 

Sxl loss-of-function mutations cause female lethality and gain-of-function mutations 

cause male lethality (Cline, 1978). Zhou et al., (1995) demonstrated that the primary 

target of Sxl during dosage compensation is msl-2. The msl-2 transcript is present in 

both males and females, with the same ORF, but the MSL-2 protein is present only in 

males (Bashaw and Baker, 1995; Kelley et al. , 1995; Zhou et al. , 1995). A small intron 

in the 5' UTR (untranslated region) of the msl-2 transcript is spliced out in males and 

retained in females (Bashaw and Baker, 1995; Kelley et al., 1995; Zhou et al., 1995). 

Within this intron are poly(U) runs that resemble the Sxl binding sites found in Sxl and 

tra and are therefore spliced out in males. Four more Sxl binding sites are present in the 

3' UTR that is retained in both sexes. Mutations of Sxl binding sites in either the 5' or 

the 3' regions result in ectopic expression of MSL-2 protein in females. This indicates 

that the sites in both the 3' and 5' UTRs are required for appropriate regulation of msl-2 

translation (Bashaw and Baker, 1997; Kelley et al. , 1997). Bashaw and Baker, (1997) 

suggest the possibility that Sxl binding at both ends of the msl-2 transcript changes the 

structure of the RNA by circularisation and therefore prevents access of translational 

machinery. 

1.5.3 A Second MSL Independent Method of Dosage Compensation 

A second method of dosage compensation has been suggested in Drosophila that is 

independent of the msls. The first evidence for this second method was the observation 

by Cline, (1978) that females homozygous for a loss-of-function mutation for Sxl were 

not rescued if also homozygous for mutations in msl-2, msl-1 or mle. msl-3 is yet 

untested, but assumed to have the same phenotype due to the co-dependence of the 

msls. These findings suggest that Sxl and the msls may act on different loci to direct 

dosage compensation. 

Dosage compensation of the X-linked Runt gene has been shown to be dependent on 

Sxl, but independent of the msls (Gergen, 1987; Bernstein and Cline, 1994). Wildtype 

Runt is required for the normal segmentation of Drosophila embryos (Gergen and 

Wieshaus, 1986) and is active at the blastoderm stage. Gergen, ( 1987) studied the 
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dosage compensation of Runt at the blastodenn stage of development and found that 

Runt expression was not affected by mutations in msl-1, ms/-2 and mle. Examination of 

the Runt gene- revealed three Sxl binding sites in the 3' UTR (Kelley et al., 1995). Sxl 

expression from the early Sx/ promoter (SxlE) occurs at the same stage of development 

as Runt expression, which supports the idea that early dosage compensation begins at 

mid-stage four and that Runt expression is Sxl dependent and ms/ independent 

(Bernstein and Cline, 1994; Gergen, 1987). The regulation of Runt by Sxl is probably 

due to repression of expression in females as indicated by only female-specific lethal 

alleles of Sxl affecting dosage compensation at the blastoderm stage (Gergen, 1987). 

Two models have been suggested for the relationship between MSL dependent and Sxl 

mediated dosage compensation. The first involves Sxl controlling 'early' dosage 

compensation during embryogenesis, while the MSLs mediate 'late' dosage 

compensation during the larval and pupal stages. Evidence for this model is that ms/ 

mutant males complete embryogenesis, but die as late larvae or pupae (Belote and 

Lucchesi, 1980a; Fukunaga et al., 1975) and Runt is expressed before MSLs become 

functional (Gergen, 1987). Sxl and Runt expression is detected at mid-stage four of 

embryogenesis, but MSL binding to the X chromosome does not occur until the end of 

stage five (blastoderm stage). The Sxl 'early' dosage compensation process may have 

evolved to satisfy a need for dosage compensation before the MSLs become functional 

and therefore the two systems are operating sequentially (Franke et al., 1996). 

The second model is that Sxl and MSL mediated dosage compensation pathways act in 

parallel (Rastelli et al. , 1995) during development on separate sets of genes (Kelley et 

al., 1995). Recent data suggests that Sxl may reduce the stability or translation of a 

subset of X-linked transcripts in females (Kelley et al., 1995). Kelley et al., (1995) 

suggest that this second dosage compensation system may upregulate X-linked genes in 

males, while a subset of X-linked genes are down regulated in females. A computer 

search scanning all available 3' UTRs of Drosophila genes produced 21 genes 

containing three or more 3' poly(U) sites. 20 of these genes are on the X chromosome. 

The only autosomal gene found was ms/-1 (msl-2 is also autosomal) (Kelley et al., 

1995). Kelley et al., ( 1995) proposed that Sxl directly regulates dosage compensation of 

many genes through their 3' UTRs. Bernstein and Cline, (1994) suggest that Sxl 

mediated dosage compensation is not limited to embryonic development through studies 
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of partial loss-of-function Sxl mutants, while Rastelli et al., (1995) suggest that ms/

dependent dosage compensation is not limited to larval development. 

1.6 C/S-ACTING ELEMENTS CONTROLLING DOSAGE COMPENSATION 

Relatively little is known about the cis-acting sequence characteristics of the X 

chromosome which identify it as a target for dosage compensation regulators (ie. MSLs 

and Sxl). These dosage compensation regulatory elements (DCREs) are thought to be 

distributed throughout the X chromosome. Evidence suggests that DCREs exert their 

efforts locally on individual genes or small groups of genes. When fragments from the 

X chromosome are transposed to an autosome the X-linked genes within the fragment 

remain dosage compensated (Ghosh et al., 1989; Hazelrigg et al., 1984; Krumm et al. , 

1985; Levis et al., 1985; McNabb and Beckendorf, 1986; Pirrotta et al., 1985; Spradling 

and Rubin, 1983 ). Also when cloned X-linked genes are trans located to autosomal sites 

they remain at least partially dosage compensated (reviewed by Baker et al., 1994; 

Lucchesi and Manning, 1987). 

Conversely when autosomal fragments are translocated to X chromosome sites the 

genes within the fragment remain non-compensated. But, when cloned autosomal 

genes are translocated to the X chromosome they are compensated in males (Baker et 

al. , 1994). These observations suggest that dosage compensation in Drosophila is 

controlled by cis-acting sequences both distant and close to the genes. Supporting this 

suggestion is the observation that not all genes on the X chromosome are dosage 

compensated. These non-compensated genes can be in close proximity to genes that 

are. 

Support for the hypothesis that cis-acting elements confer transcriptional upregulation 

only onto nearby sequences is the finding that LSP-la is an X-linked gene but is not 

compensated. LSP-1 a codes the alpha subunit of larval serum protein- I. LSP-1 a has a 

transcription unit named Ll 2 immediately adjacent to it that is compensated (Ghosh et 

al., 1989). Females exhibit twice the amount of gene product found in males (Brock 

and Roberts, 1982; Roberts and Evans-Roberts, 1972). This phenomenon could be 

explained by assuming that the LSP-1 a gene has only relatively recently been 
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translocated to the X chromosome. Ghosh et al. , (1989) determined that LSP-1 a is 

inherently capable of dosage compensation by relocating the LSP-1 a gene to ectopic X 

chromosome sites. The results of this experiment showed steady state levels in males 

(one dose) are equivalent to females (two doses) . 

1.6.1 DCREs Are Still Unidentified 

For the last ten years the search for cis-acting sequences involved in dosage 

compensation has been fruitless. Two X-linked genes (white and Sgs-4) have been 

extensively studied using genetic and molecular techniques in an attempt to localise the 

DCREs. The studies predominantly involved inserting X-linked transgenes, which 

contained progressive deletions, into autosomes to isolate a possible consensus 

sequence for dosage compensation. 

Levis et al., (1985) analysed the cis-acting sequences involved in regulating the white 

gene. Varying lengths of both 3' and 5' flanking sequences were deleted from the white 

gene. Flanking sequences 420 bp upstream and 160 bp downstream of the gene were 

found to be sufficient for dosage compensation to occur. Pirrotta et al., (1985) further 

delimited the required sequence to 200 bp upstream of the gene. 

As sequences in the white gene are gradually removed from the 5' end a progressive 

decline in dosage compensation is observed (Qian and Pirrotta, 1995). Qian and 

Pirrotta, (1995) concluded that cis-acting DCREs consist of multiple elements present 

near and within the promoter and some within the coding region of the gene. Despite 

these observations no DCRE consensus sequence has been identified. 

Transformation experiments involving the Sgs-4 gene demonstrated that 840 bp 

upstream and 130 bp downstream of the gene are sufficient for proper activity and 

regulation when relocated to autosomal sites (McNabb and Beckendorf, 1986). 

Sequence comparisons between compensated and non-compensated alleles failed to 

show any base substitutions specific to the non-compensated alleles (Hofmann and 

Korge, 1987). 
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1.6.2 Mono and Dinucleotide Repeats Correlate with Dosage Compensation 

Evidence has been presented that suggests the X chromosome has unique structural 

features that · may be related to dosage compensation. Two dinucleotide repeats 

(CA/GT)" and (CT/GA)n and one mononucleotide repeat (C/G)n have been reported to 

be found at twice the level on the X chromosome as on autosomes (Huijser et al. , 1987; 

Lowenhaupt et al. , 1989; Pardue et al., 1987). Chromosomal arms from autosomes 

translocated to the X chromosome acquire the ability to dosage compensate in several 

Drosophila species. The newly translocated arm also gains a higher density of 

(CA/GT\ similar to the other X chromosomes. The pattern of (CA/GT)" sequences 

shows several correlations with general chromosomal functions such as dosage 

compensation (Pardue et al. , 1987). Pardue et al., ( 1987) suggests that the acquisition 

of dosage compensation ability and higher density of (CA/GT)" repeats reflects a 

relationship between the two processes. 

These repeats are all able to adopt a non B form of DNA when subjected to negative 

supercoiling in vitro and may be involved in the adoption or maintenance of a 

decondensed X chromatin structure required for dosage compensation (Lowenhaupt et 

al., 1989). Other than their enrichment on the X chromosome there is no evidence that 

these repeats are involved in dosage compensation as the repeats are also found on 

autosomes at significant levels. 

1.6.3 Why Have DCREs Not Been Identified? 

A major limitation of previous attempts to identify DCREs is that X-linked genes on 

autosomes are only partially compensated. 

All studies (excluding white studies) used Northern Blots or RNase Protection Assays to 

quantitate gene expression levels in males and females. These methods experience 

technical difficulties when quantitating two fold differences in expression. Studies of 

the white gene used spectrophotometric eye pigment assays that must take into account 

the non-linearity of the pigmentation response to gene dose (Qian and Pirrotta, 1995). 

Early indications of this non-linearity were demonstrated when transgenes at autosomal 

sites exhibited full dosage compensation - males with one dose produce twice as much 

pigment as one dose females. However females with two copies of the white transgene 



15 

have a two to three fold higher level of pigmentation than males with one (Hazelrigg et 

al. , 1984; Levis et al., 1985; Pirrotta et al. , 1985). 

Hypotheses have been suggested to account for partial dosage compensation when X

linked transgenes are translocated to autosomes. Qian and Pirrotta, (1995) suggest that 

the requirement for a certain amount of DCREs associated with the gene is not being 

met and/or that the autosomal chromatin environment (more condensed than X 

chromosomes) is having an inhibitory effect upon the transgene. The use of insulator 

elements to flank the transgene supports this hypothesis (Roseman et al. , 1995). 

1.7 A NEW APPROACH TO IDENTIFYING DCRES 

Fitzsimons et al. , (1999) developed a reporter gene assay that can be used to screen X 

chromosomal DNA for DCREs. The components of this assay are the E. coli lacZ gene 

under the control of the constitutive promoter from the armadillo gene (this fusion is 

referred to as arm-lacZ). The arm promoter was chosen because it is constitutive and 

active in all tissues and all stages of development (Vincent et al. , 1994) in both males 

and females. arm-lacZ was flanked by SCS and SCS' insulator elements (specialised 

chromatin structures). SCS and SCS' sequences act as domain boundaries (Udvardy 

and Schedl, 1993 ). Domain boundaries establish a domain of independent gene activity 

by protecting against regulatory effects of surrounding chromosomal DNA. It has been 

found that arm-lacZ can respond to DCREs when on the X chromosome - one copy in 

males is expressed at twice the level of one copy in females. 

A limitation in studying X-linked genes is that the coding region must remain intact 

enough so its product can be assayed for. Using this newly developed assay system 

allows X-linked sequences to be subdivided as a reporter gene is detected in the assay 

rather than the gene product. Fitzsimons et al. , (1999) placed portions of DNA from the 

D. melanogaster X chromosome immediately upstream of the arm promoter. The 

hypothesis for these experiments was that any X-linked sequence containing DCREs 

would confer dosage compensation onto arm-lacZ in males and thereby produce twice 

the lacZ activity in males over females. As yet the DCREs remain unidentified. 
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1.8 RESEARCH OBJECTIVES 

This study has three main objectives. The first objective is to investigate the effect of 

roX genes on dosage compensation regulated by isolated DCREs. The second is to 

continue with the study begun by Fitzsimons et al., (1999) and isolate the DCREs 

involved in dosage compensation. However our study will focus particularly on regions 

of the X chromosome ( eg. 1 C) known to contain 'high affinity' binding sites for the 

MSL-1/MSL-2 core complex (Lyman et al., 1997). The final objective is to investigate 

further the possibility of Sxl regulating a second dosage compensation pathway 

throughout development. 

1.8.1 Specific Objectives 

Previous studies have been carried out to develop a new reporter gene assay system that 

can be used to screen X chromosomal DNA for DCREs. Fitzsimons et al. , (1999) 

developed and used this assay system on many constructs containing X-linked 

fragments of DNA in the attempt to isolate the elusive DCREs. This study will utilise 

the arm-lacZ assay system developed by Fitzsimons et al. , (1999) to investigate the role 

of various X-linked DNA fragments in dosage compensation. 

The initial aim was to test if the roX genes are needed to be present in cis in order for a 

fragment containing a DCRE to cause a male specific increase in lacZ expression. It 

was found that the roX genes alone caused elevated lacZ expression ie. the roX genes 

contained DCREs. Consequently the initial objective was modified to test if roX 

cDNAs and fragments of roX genes contained DCREs. 

The second aim of this study was to determine if DNA fragments from the tip of the X 

chromosome, in particular the region that shows "high affinity" binding with the MSL-

1 /MSL-2 core complex. The assay system will also be used to look for DCREs in these 

X-linked DNA fragments. The presence of DCREs would be confirmed by an increase 

in lacZ expression in males 

The third aim was to investigate the role of Sxl in dosage compensation in females 

throughout development. The study aimed to determine if insertion of 3' UTR 

fragments from other X-linked genes (Sx/, Small Forked, and Cut) would cause a 
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decrease in female specific expression of lacZ. These 3' UTR fragments contained 3 or 

more Sxl binding sites and were inserted into the 3' UTR of arm-lacZ. 

The fourth and final aim also looked at Sxl involvement in dosage compensation. 

Experiments with msl-2 showed the Sxl binding sites were required in both the 3' and 5' 

UTR to get complete repression of translation. Previously Fitzsimons et al., (1999) 

showed insertion of a Runt 3' UTR fragment into the arm-lacZ 3' UTR caused a modest 

decrease in female lacZ expression. This study aimed to determine if an additional Sxl 

site in the 5' UTR of the arm-lacZ construct, carrying the Runt 3' UTR fragment, would 

result in a more dramatic decrease in female lacZ expression. 




