Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Studies Relating to the Ovarian Monitor

A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Biochemistry at Massey University.

Delwyn Cooke, B.Sc., Dip.Sc.

December, 1993

Department of Chemistry and Biochemistry Massey University

Dedication

This thesis is dedicated to

÷.,

Mervyn George Blackwell

Abstract

Hormonal data contained on the Melbourne Women's Hospital Menstrual Cycle Database and data collected in the Palmerston North Centre of the World Health Organisation trial were analysed and compared. The analysis of the two sets of data showed that the utilisation of a threshold excretion rate for urinary Pregnanediol or Pregnanediol Glucuronide of 7 µmol 24 hr⁻¹ was an acceptable marker for the end of the fertile period. The data collected by the women participants in the World Health Organisation Trial also showed that the Ovarian Monitor, a home fertility test, provided the most simple, comprehensive and accurate marker of fertility status available.

Lysozymes from several sources were examined as possible replacements for the hen egg white lysozyme in the Ovarian Monitor as a means of reducing the Estrone Glucuronide assay time. Unfortunately, although they were all found to possess a faster initial rate, the clearing curves were also more biphasic making them unsuitable for use in the current end-point assay. These differences were attributed to the presence of electrostatic fields on both the enzyme and the substrate. However, the human lysozyme obeyed second order kinetics for a significant percentage of the twenty minute clearing curve. Thus, the Estrone Glucuronide assay time could be significantly reduced by adapting the Ovarian Monitor to linearise the human lysoyzme clearing curve with an appropriate algorithm.

Human lysozyme is very expensive thus, it was necessary to optimise conjugation condition for Estrone Glucuronide using the more economical hen egg white lysozyme. Also, chromatographic conditions for conjugate purification had to be established before the human lysozyme could be conjugated and the viability of the above proposal could be tested.

Both the mixed anhydride and active ester conjugation methods were optimised. The most effective purification scheme involved pH 4.3 phosphate buffers using a Mono-S column followed by an Alkyl Superose column.

Acknowledgements

First, and foremost I would like to acknowledge my supervisor Associate Professor Len Blackwell for perseverance in the face of adversity and for the many frank and open discussions we have had during the course of this work.

Secondly, I would like to thank my flatmate Inge Merts, for allowing me to monopolise her computer and convert the lounge into a semi-permanent study for the last unmentionable number of months, not to mention for paying to get the computer fixed during one of its less co-operative phases. I am also equally indebted to Kerry Blackwell for formatting and invaluable assistance in getting this work to press on time.

I would also like to thank Yinqui Wu for synthesising starting material for me and his supervision during my excursion into the world of organic chemistry and Hale Nicholson for his supervision of the molecular biology. I would also like to acknowledge Mr Dick Poll for using my conjugate samples to trial the newly acquired SMART system.

I am also especially grateful to my family for their financial support over my years at Massey and especially this last year. Most notably I am grateful to my mother who always seems to be the initiator of such things.

The receipt of a grant from the Palmerston North Medical Foundation is gratefully acknowledged.

Merry Christmas!!

Table of Contents

			Page
Ded	ication		ii
Abs	tract		iii
Ack	nowledg	ements	iv
Tab	le of Co	ntents	v
List	of Figur	es	xi
List	of Table	S	xxi
List	of Scher	nes	xxiii
Abb	reviation	S	xxiv
Cha	pter On	e: Ovarian Physiology and the Ovarian Monitor	1
1.1	Introduc		1
1.2	The Me	nstrual Cycle	1
1.3	Natural	Family Planning	3
1.4	Urine V	fersus Blood	7
1.5	Biosynt	hesis of Estrogens and Progesterone	8
1.6	Urinary	Excretion of Ovarian Estrogens	9
1.7	Urinary	Excretion of Ovarian Progesterone	11
1.8	Homoge	enous Enzyme Immuno-assay	12
1.9	The Ova	arian Monitor Assay	13
	1.9,1	The Ovarian Monitor	13
	1.9.2	The Assay Tube	14
	1.9.3	The Importance of Timed Urine Samples	15
	1.9.4	The Estrone Glucuronide Assay	16
	1.9.5	The Pregnanediol Glucuronide Assay	20
	1.9.6	Interpretation of the Ovarian Monitor Results	22
1.10	Potentia	l of the Ovarian Monitor	25
1.11	Aims of	the Present Study	. 26

				vi
Cha	upter Tv	vo: Clinical S	Studies	28
2.1	Introdu	iction		28
2.2	Metho	ds		31
	2.2.1	The Royal V	Women's Hospital Database	31
		2.2.1.1	The Women	31
		2.2.1.2	Urine Collection and Analysis	31
		2.2.1.3	Data Analysis	31
		i) A Statist	ically Defined Increase in Pregnanediol Levels from Baseline Values	31
		ii) The Preg	gnanediol Glucuronide Threshold	32
	2.2.2	The World I	Health Organisation Study	33
		2.2.2.1	Study Objectives	33
		2.2.2.2	Subject Recruitment	34
		2.2.2.3	Urine Collection and Analysis	35
		2.2.2.4	- Data Analysis	35
		i) Markers (of Fertility	35
		ii) An Incre	ase in Pregnanediol Glucuronide Levels from Baseline	37
		iii) Reprodu	cibility of the Women's Hormonal Data	37
	2.2.3	Trigg's Track	cing Signal	37
		2.2.3.1	Calculation of Trigg's Tracking Signal	38
		2.2.3.2	Interpretation of the Tracking Signal	-40
		2.2.3.3	Application of Trigg's Tracking Signal to Menstrual Cycle Data	41
2.3	Results	and Discussion	1	43
	2.3.1	The Royal W	omen's Hospital Database	43
		2.3.1.1	The First Statistically Significant Pregnanediol Rise	43
		2.3.1.2	The Threshold Level for Pregnanediol	48
	2.3.2	Analysis of the	he World Health Organisation Data	52
		2.3.2.1	The First Significant Pregnanediol Glucuronide Rise	52
		2.3.2.2	Markers of Fertility	54
		i) The Begin	ning of Fertility	54
		ii) Ovulation	and Mid-cycle Markers	58
		iii) The End	of Fertility Marker	61
		2.3.2.3	The Length of the Fertile Period	69

				vii
		2.3.2.4	Reproducibility of the Women's Home Data	71
		i) Estrone (Glucuronide	72
		ii) Pregnan	ediol Glucuronide	74
2.4 (Conclus	ion		76
Chap	ter Th	ree: Kine	tic Studies on Lysozymes	80
3.1	Introd	luction		80
	3.1.1	The History	of Lysozyme	81
	3.1.2	General Stru	ctural and Kinetic Characteristics of Lysozyme	82
		3.1.2.1	The Three Dimensional Structure of Hen Egg White Lysozyme	82
		3.1.2.2	The Substrate	82
		3.1.2.3	Binding of Substrate to HEWL	83
		3.1.2.4	The Mechanism of Catalysis for HEWL	84
		3.1.2.5 ··	Measurement of Lysozyme Activity	86
	3.1.3	Lysozymes f	rom Other Sources	87
	3.1.4	The Ovarian	Monitor	89
3.2	Metho	ods		93
	3.2.1	Enzyme Assa	ays	93
		3.2.1.1	The Tris Maleate Stock Buffer	93
		3.2.1.2	The Bacterial Suspension	93
		3.2.1.3	The Assay Protocol	93
	3.2.2	Purification c	of Goose Egg White Lysozyme	94
		3.2.2.1	Goose Egg White Lysozyme Purification Method One	94
		3.2.2.2	Goose Egg White Lysozyme Purification Method Two	95
		3.2.2.3	Goose Egg White Lysozyme Purification by Fast Protein	
			Liquid Chromatography	95
	3.2.3	T4 Lysozyme	Expression and Purification	96
		3.2.3.1	Reconstruction of the T4 Lysozyme Gene in an Expression	
			System	96
		3.2.3.2	Purification of T4 Lysozyme	98
	3.2.4	Kinetics of Co	ell Lysis	. 99
	3.2.5	Conversion B	etween Transmission and Absorbance Values	102

				viii	
	3.2.6	Michaelis	Menten Parameters	102	
	3.2.7	Calculation	n of Electrostatic Fields of Lysozymes	103	
3.3	Resu	lts and Discu	ission	104	
	3.3.1	Goose Egg	g White Lysozyme Purification	104	
	3.3.2	T4 Lysozy	me Expression and Purification	109	
		3.3.2.1	Reconstruction of the T4 Lysozyme Gene in an Expression		
			System	109	
		3.3.2.2	Purification of T4 Lysozyme	113	
	3.3.3	Lysozyme	Clearing Curve	114	
		3.3.3.1	Hen Egg White Lysozyme	115	
		3.3.3.2	Goose Egg White Lysozyme	120	
		3.3.3.3	Turkey Egg White Lysozyme	127	
		3.3.3.4	Human Lysozyme	135	
	•.	3.3.3.5	T4 Lysozyme	139	ľ
	3.3.4	Michaelis N	Menten Parameters	142	
	3.3.5	Electrostatio	c Fields and Second Order Behaviour of Clearing Curve	149	
3.4	Concl	usion		155	
Chap	ter Fou	r: Synt	thesis of Estrone Glucuronide Conjugates to Lysozyme	157	
4.1	Introd			157	
4.2	Metho	ds		160	
	4.2.1	Mixed Anhy	ydride Conjugations	160	
		4.2.1.1	Activation of Estrone Glucuronide for Conjugation to Hen Egg		
			White Lysozyme	160	
		4.2.1.2	Conjugation of Estrone Glucuronide to Hen Egg White		
			Lysozyme	160	
		4.2.1.3	General Experimental Details for the Mixed Anhydride Reaction	163	
	4.2.2	Active Ester	Conjugations	165	
		4.2.2.1	Activation of Estrone Glucuronide for Conjugation to Hen Egg		
			White Lysozyme	165	
		4.2.2.2	Conjugation of Estrone Glucuronide to Hen Egg White	•	
			Lysozyme	165	

Ē.

				ix
		4.2.2.3	General Experimental Details for the Active Ester Reaction	165
	4.2.3	Fast Proteir	Liquid Chromatography Purification and Analysis	167
	4.2.4	Purification	of Hen Egg White Lysozyme	168
	4.2.5	Inhibition S	Studies	169
4.3	Resul	ts and Discus	sion	171
	4.3.1	Synthesis of	f 17-Oxoestra-1,3,5 (10)-triene-3-yl-B-D-glucopyranosiduronic	
		Acid		171
		4.3.1.1	Coupling of the Bromosugar to Estrone	172
		4.3.1.2	Preparation of 17-oxoestra-1,3,5(10)-triene-3-yl-B-D-	
			glucopyranosiduronic Acid	176
	4.3.2	Cation Exch	ange Chromatography on the Mono-S Column with Seven Molar	
		Urea		178
	4.3.3	Synthesis an	d Purification of Hen Egg White Lysozyme Estrone Glucuronide	
	•.	Conjugates		182
		4.3.3.1	Conjugation of Hen Egg White Lysozyme using the Estrone	
			Glucuronide Mixed Anhydride	182
		4.3.3.2	Conjugation of Hen Egg White Lysozyme with the Estrone	
			Glucuronide Active Ester	186
		4.3.3.3	Purification of Combined Hen Egg White Lysozyme Estrone	
			Glucuronide Conjugates by CM Sepharose Chromatography in	
			Seven Molar Urea	188
		4.3.3.4	Effect of Varying Ratios of Estrone Glucuronide Active Ester	
			to Hen Egg White Lysozyme	192
		4.3.3.5	Further Optimisation of the Mixed Anhydride and Active Ester	
			Methods	197
		4.3.3.6	Attempted Removal of Hen Egg White Lysozyme by	
			Precipitation with Sodium Chloride	202
		4.3.3.7	Analysis of Hen Egg White Lysozyme Estrone Glucuronide	
			Conjugates with the SMART System; Evidence for	
			Important Hydrophobic Effects	204
		4.3.3.8	Alkyl Superose Chromatography as a Second Step in the	ē.
			Purification of Hen Egg White Lysozyme Estrone	
			Glucuronide Conjugates	208

	4.3.3.9	Dependence of Elution Profiles from Cation Exchange columns	
		on pH	210
4.4	Future Directions		216
References			218

х

List of Figures

Chapter On	e: Ovarian Physiology and the Ovarian Monitor	
Figure 1.1	Mean Values for Serum Luteinising Hormone, Follicle Stimulation Hormone, Estradiol and Progesterone obtained during a Normal 28 Day Human Menstrual Cycle	2
Figure 1.2	Natural Family Planning Markers for Fertility and their Relationship to the Day of the Luteinising Hormone Peak	4
Figure 1.3	Biosynthetic Pathway for the Female Sex Steroids	9
Figure 1.4	A Stylised Diagram of the Ovarian Monitor	14
Figure 1.5	A Stylised Diagram of an Ovarian Monitor Assay Tube and its Constituents	14
Figure 1.6	Mixing Antibody with the Urine Sample by Shaking Horizontally	16
Figure 1.7	Interaction of Antibody with the Estrone Glucuronide in the Urine	17
Figure 1.8	Mixing Estrone Glucuronide Conjugate with the Excess Antibody by Shaking Horizontally	17
Figure 1.9	Interaction of the Estrone Glucuronide Conjugate with the Excess Antibody	18
Figure 1.10	Suspending the Micrococcus lysodeikticus Spot by Shaking Laterally	18
Figure 1.11	Lysis of the <u>Micrococcus</u> <u>lysodeikticus</u> cells by Excess Estrone Glucuronide Conjugate	19

5 **4** 9

		xii
Figure 1.12	The Standard Curve for Estrone Glucuronide	20
Figure 1.13	The Standard Curve for Pregnanediol Glucuronide	21
Figure 1.14	The Estrone Glucuronide and Pregnanediol Glucuronide Hormone Profile as obtained on the Ovarian Monitor for a Normal Menstrual Cycle	23
Figure 1.15		23
Chapter Tv	vo: Clinical Studies	
Figure 2.1	The Daily Total Estrogen and Pregnanediol Levels for a Typical Cycle: Type One	43
Figure 2.2	The Urinary Pregnanediol Levels and Trigg's Tracking signal for a Typical Cycle: Type One	44
Figure 2.3	The Urinary Pregnanediol Levels and Trigg's Tracking Signal for a Typical Cycle: Type Two	45
Figure 2.4	The First Significant Pregnanediol Rise using Trigg's Tracking Signal at 95% and 99% Confidence Intervals	46
Figure 2.5	The Pregnanediol Threshold using Three Different Threshold Values	49
Figure 2.6	The First Significant Pregnanediol Glucuronide Rise using Trigg's Tracking Signal at 95% and 99% Confidence Intervals	52
Figure 2.7	The First Significant Pregnanediol and Pregnanediol Glucuronide Rise at the 99% Confidence Interval	53

		xiii
Figure 2.8	The Beginning of the Fertile Period by Mucus and Ovarian Hormones	55
Figure 2.9	The Prediction of Ovulation by Mucus and Ovarian Hormones	59
Figure 2.10	The End of the Fertile Period by Mucus, Ovarian Hormones and the Symptothermal Method	62
Figure 2.11	The End of the Fertile Period by the Basal Body Temperature and Symptothermal Methods	66
Figure 2.12	The End of the Fertile Period using the Pregnanediol Glucuronide Threshold and Basal Body Temperature Method	67
Figure 2.13	The End of Fertility as Predicted by the Basal Body Temperature Method	
	and the Mucus Method Expressed Relative to the Predicted End of Fertility by the Pregnanediol Glucuronide Threshold	68
Figure 2.14	The Effect of a Urinary Infection on the Estrone Glucuronide Profile	71
Figure 2.15	The Reproduciblity of the Estrone Glucuronide Data: A Comparison of a	
	Woman's Chart with the Laboratory Repeat	73
Figure 2.16	The Reproducibility of the Pregnanediol Glucuronide Data: A Comparison of a Woman's Chart with the Laboratory Repeat	75
Chapter Thr	ee: Kinetic Studies on Lysozymes	
Figure 3.1	Connolly Surface Model of Hen Egg White Lysozyme	82
Figure 3.2	Structure of the Polysaccharide Component of the Cell Wall of the	
	Bacterium Micrococcus lysodeikticus	83

		xiv
Figure 3.3	A Typical Ovarian Monitor Clearing Curve of a <u>Micrococcus</u> <u>lysodeikticus</u> Suspension by Hen Egg White Lysozyme	88
Figure 3.4	Elution Profile of a Goose Egg White Lysozyme Purification by Ionic Exchange on a Carboxy-methyl Superose Column using Gradient One	106
Figure 3.5	Elution Profile of a Goose Egg White Lysozyme Purification by Ionic Exchange on a Carboxy-methyl Superose Column using Gradient Two	106
Figure 3.6	Elution Profile of Combined Best Goose Egg White Lysozyme Fractions after Ionic Exchange Chromatography on a Carboxy-methyl Superose Column using Gradient Two	108
Figure 3.7	Gel obtained from Goose Egg White Lysozyme after Purification and Hen Egg White Lysozyme, after Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis	109
Figure 3.8	Schematic Diagram of the Transfer of the T4 Lysozyme Gene from pHS1401e into pHN1403 for Expression	110
Figure 3.9	Ethidium Bromide Gel of pHN1403 and pHS1401e Digests	111
Figure 3.10	Interpretation of Ethidium Bromide Gel Profile of the pHS1401e Plasmid after Digestion with B <u>am</u> HI, H <u>in</u> d III and P <u>vu</u> I	112
Figure 3.11	Absorbance (280 nm) and Lysozyme Activity Profile of <u>Escherichia coli</u> lysates after One Pass Through a Carboxy-methyl Sepharose Column	114
Figure 3.12	Dependence of Transmission Change in Five Minutes on Hen Egg White Lysozyme Concentration	- 116

Figure 3.13	A Twenty Minute Ovarian Monitor Clearing Curve of a <u>Micrococcus</u> <u>lysodeikticus</u> Suspension by Hen Egg White Lysozyme and its Fit to a Zero	
	Order Rate Equation	118
Figure 3.14	A Twenty Minute Ovarian Monitor Clearing Curve of a <u>Micrococcus</u> <u>lysodeikticus</u> Suspension by Hen Egg White Lysozyme and its Fit to a First Order Rate Equation	118
Figure 3.15	A Twenty Minute Ovarian Monitor Clearing Curve of a <u>Micrococcus</u> <u>lysodeikticus</u> Suspension by Hen Egg White Lysozyme and its Fit to a Second Order Rate Equation	119
Figure 3.16	A Twenty Minute Ovarian Monitor Clearing Curve of a <u>Micrococcus</u> <u>lysodeikticus</u> Suspension by Goose Egg White Lysozyme	120
Figure 3.17	Dependence of Transmission Change in Twenty Minutes on Goose Egg White Lysozyme Concentration	122
Figure 3.18	Change in Absorbance over Twenty Minutes of a Suspension of a <u>Micrcoccus lysodeikticus</u> by Goose Egg White Lysozyme	123
Figure 3.19	A Twenty Minute Ovarian Monitor Clearing Curve of a <u>Micrococcus</u> <u>lvsodeikticus</u> Suspension by Goose Egg White Lysozyme and its Fit to a Second Order Rate Equation	124
Figure 3.20	A Twenty Minute Ovarian Monitor Clearing Curve of a <u>Micrococcus</u> <u>lvsodeikticus</u> Suspension by Goose Egg White Lysozyme and its Fit to Two Second Order Rate Equations	125
Figure 3.21	The Dependence of the Observed Second Order Rate Constant for the First and Second Phases of the Goose Egg White Lysozyme Clearing Curve on Enzyme Concentration	126

xv

Figure 3.22	A Five Minute Clearing Curve in Absorbance of a Micrococcus lysodeikticus	
	Suspension by Hen Egg White Lysozyme obtained on the Cecil	
	Spectrophotometer	129
Figure 3.23	A Five Minute Clearing Curve in Absorbance of a Micrococcus lysodeikticus	
	Suspension by Hen Egg White Lysozyme obtained on the Cecil	
	Spectrophotometer and its fit to a Second Order Rate Equation	130
Figure 3.24	A Five Minute Clearing Curve in Absorbance of a Micrococcus lysodeikticus	
1.64.00.012	Suspension by Turkey Egg White Lysozyme obtained in the Cecil	
	Suspension by Turkey Lgg White Lysolyme obtained in the Ceell Spectrophotometer and its Fit to a Second Order Rate Equation	131
	speciropholometer and its Fil to a second Order Rate Equation	151
Figure 3.25	A Five Minute Clearing Curve in Absorbance of a Micrococcus lysodeikticus	
	Suspension by Turkey Egg White Lysozyme obtained in the Cecil	
	Spectrophotometer and its Fit to Two Second Order Rate Equations	132
Figure 3.26	Deviation of Hen Egg White and Turkey Egg White Lysozyme Clearing	
0	Curves from Second Order Kinetics	133
Elauna 2 27	Demondance of the Observed Second Only Bate Constant (1/1) for How	
Figure 3.27	Dependence of the Observed Second Order Rate Constant $(\underline{k'}_{2})$ for Hen	
	Egg White, Turkey Egg White and Human Lysozyme on Enzyme	
	Concentration	134
Figure 3.28	A Five Minute Clearing Curve in Absorbance of a Micrococcus lysodeikticus	
	Suspension by Hen Egg White and Human Lysozyme obtained in the	
	Cecil Spectrophotometer	135
Figure 3.29	A Five Minute Clearing Curve in Absorbance of a Micrococcus lysodeikticus	
000 0.27		
	Suspension by Human Lysozyme obtained in the Cecil Spectrophotometer and	137
	its Fit to Two Second Order Rate Equations	137
Figure 3.30	Dependence of the Observed Second Order Rate Constant $(\underline{k'_{a}})$ for Hen Egg	

xvi

2 2

		xvii
	White, Turkey Egg White and Human Lysozyme on Enzyme Concentration	138
Figure 3.31	A Twenty Minute Clearing Curve in Absorbance of a Micrococcus	
	lysodeikticus Suspension by T4 Lysozyme obtained in the Cary	
	Spectrophotometer	140
Figure 3.32	Change in Absorbance in Twenty Minutes of a Micrococcus lysodeikticus	
	Suspension by T4 Lysozyme and Hen Egg White Lysozyme obtained in	
	the Cary Spectrophotometer	141
Figure 3.33	Deviation of T4 Lysozyme Clearing Curve from Second Order Kinetics	142
Figure 3.34	Michaelis Menten Plot for Hen Egg White Lysozyme obtained on the Cary	
	Spectrophotometer using Initial Rate Data	143
Figure 3.35	Michaelis Menten Plot for Hen Egg White Lysozyme obtained on the Cary	
	Spectrophotometer using Initial Rate Data showing the Initial Rate to	
	Decrease with Substrate Concentration at Very High Substrate	
	Concentrations	144
Figure 3.36	The Dependence of V_{max} on Hen Egg White Lysozyme Concentration	147
Figure 3.37	The Electrostatic Potential for Hen Egg White Lysozyme, Turkey Egg White	
	Lysozyme Human Lysozyme and T4 LysozymeContoured at +2 kTand -2 kT	
	Calculated by the Klapper Algorithm	151
Chapter Fou	r: Synthesis of Estrone Glucuronide Conjugates	
Figure 4.1	¹ H NMR Spectrum of Methyl-[17-oxoestra-1,3,5(10)-triene-3-yl-2',3',4'-tri-O-	
	acetyl-β-D-glucopyranosid] Uronate	175
Figure 4.2	¹ H NMR Spectrum of 17-oxoestra-1,3,5(10)-triene-3-yl-β-D-	

		xviii
	glucopyranosiduronic Acid	177
Figure 4.3	FPLC Profile for an E1G and PdG Conjugation Reaction Mixture on a	
0	Mono-S Column using 7 M Urea Buffers	180
Figure 4.4	FPLC Profile for the Reaction Mixture of a HEWL-E1G Conjugation	
	Synthesised by the Mixed Anhydride Method using a Molar Ratio of	
	E1G:HEWL of 2:1 on a Mono-S Column using 7 M Urea Buffers	183
Figure 4.5	A ₂₈₀ Profile for the Reaction Mixture of a HEWL-E1G Conjugation	
	Synthesised by the Mixed Anhydride Method using a Molar Ratio of	
	E1G:HEWL of 2:1 on a CM Sepharose Fast Flow Cation Exchange Column	
	using Non-urea Buffers	184
Figure 4.6	A_{280} profile for the Purification of the Combined Fractions of a Mixed	
	Anhydride (2:1 Molar Ratio of E1G:HEWL) and Active Ester Conjugation	
	(3:1 Molar Ratio of E1G:HEWL) on a CM Sepharose Fast Flow Cation	
	Exchange Column using 7 M Urea Buffers	189
Figure 4.7	Mono-S Profiles (7 M Urea) for the Pooled Peak Fractions (A, B and	
	"Lysozyme") from a CM Sepharose Fast Flow (7 M urea buffers) Column	
	of a Combined Mixed Anhydride (2:1 Molar Ratio of E1G:HEWL) and Active	
	Ester Conjugation (3:1 Molar Ratio of E1G:HEWL)	190
Figure 4.8	7 M Urea Mono-S Profile for the Reaction Mixture of a HEWL-E1G	
	Conjugation Synthesised by the Active Ester Method using a Molar Ratio of	
	E1G:HEWL of 1.5:1	194
Figure 4.9	A ₂₈₀ Profile for the Purification of the Reaction Mixture of an Active Ester	
	Conjugation (Molar Ratio E1G:HEWL 1.5:1) on a CM Sepharose Fast Flow	
	Cation Exchange Column using 7 M Urea Buffers	195

		xix
Figure 4.10	7 M Urea Mono-S Profile for a 3:1 E1G:HEWL Active Ester Conjugation Performed in the Presence of a 50% Excess of Coupling Reagents	197
Figure 4.11	7 M Urea Mono-S Profile for a 1.5:1 E1G:HEWL Active Ester Conjugation Performed in the Presence of a 50% Excess of Coupling Reagents	198
Figure 4.12	7 M Urea Mono-S Profile for an E1G:HEWL Active Ester Conjugation by Titration Performed in the Presence of a 50% Excess of Coupling Reagents	199
Figure 4.13	7 M Urea Mono-S Profile for a 3:1 E1G:HEWL Mixed Anhydride Conjugation Performed in the Presence of a 50% Excess of Coupling Reagents	200
Figure 4.14	Mono-S Profiles (7 M urea) for Fractions resulting from the Purification by Precipitation Experiment using an Active Ester Conjugation (1.5:1 Molar Ratio of E1G:HEWL)	203
Figure 4.15	SMART Profile obtained on a Reverse Phase Hydrophobicity Column for Fractions resulting from a CM Sepharose Column on a 1.5:1 E1G:HEWL Active Ester Conjugation	205
Figure 4.16	Alkyl Superose Profile for the Purification of the Combined Conjugate A Peak	209
Figure 4.17	Alkyl Superose Profile for a 3:1 E1G:HEWL Mixed Anhydride Reaction Mixture	210
Figure 4.18	Mono-S Profile for a 1.1:1 E1G:HEWL Active Ester Reaction Mixture utilising pH 9.5 Non-urea Buffers	211
Figure 4.19	Mono-S Profile for a 1.1:1 E1G:HEWL Active Ester Reaction Mixture utilising pH 4.3 Non-urea Buffers	212

Figure 4.20 Mono-S Profile for a 1.1:1 E1G:HEWL Active Ester Reaction Mixture utilising

pH 6.0 Non-urea Buffers

Figure 4.21 Mono-S Profile for a 1.1:1 E1G:HEWL Active Ester Reaction Mixture utilising pH 7.6 Non-urea Buffers

213

21

List of Tables

Chapter Or	ne: Ovarian Physiology and the Ovarian Monitor	
Table 1.1	The Estrogens and their Principal Urinary Metabolites	10
Chapter Tw	vo: Clinical Studies	
Table 2.1	The First Day of the Fertile Period	56
Table 2.2	Mid-cycle Markers	60
Table 2.3	The First Day of the Infertile Period	62
Table 2.4	The Length of the Fertile Period	70
Chapter Th	ree: Kinetic Studies on Lysozymes	
Table 3.1	Structural and Kinetic Characteristics of a Variety of Lysozymes	88
Tahle 3.2	Goose Egg White Lysozyme Activity for Various Fractions generated using Method One	104
Table 3.3	Goose Egg White Lysozyme Activity for Various Fractions generated using Method Two	105
Table 3.4	Goose Egg White Lysozyme Activity for Various Fractions generated using Gradient One and Two on a Carboxy-methyl Superose Column	107
Table 3.5	Goose Egg White Lysozyme Activity for the Two Fractions resulting from Re-chromatography of the Best Goose Egg White Lysozyme Fractions on a Carboxy-methyl Superose Column	108

Table 3.6	Michealis Menten Parameters obtained for a Variety of Lysozymes and several	
	Hen Egg White Lysozyme Concentrations	145
Chapter F	our: Synthesis of Estrone Glucuronide Conjugates of Lysozyme	
Table 4.1	Percentage Inhibition of Fractions resulting from a Mixed Anhydride 2:1	
	E1G:HEWL Conjugation after Purification on a CM Sepharose Fast Flow	
	(Non-urea) Column	185
Table 4.2	Percentage Inhibition of Fractions resulting from an Active Ester 3:1	
	E1G:HEWL Conjugation after Purification on a CM Sepharose Fast Flow	
	(Non-urea) Column	187
Table 4.3	Percentage Inhibition of Fractions resulting from an Active Ester 1.5:1	
	E1G:HEWL Conjugation after Purification on a CM Sepharose Fast Flow 7	
	Molar Urea Column	196

Table 4.4Concentration of Sodium Chloride required for Elution of Lysozyme and
Conjugate at Four Different Buffer pH Values

215

xxii

xxiii

List of Schemes

Chapter Th	ree: Kinetic Studies on Lysozymes	
Scheme 3.1	The Catalytic Mechanism of Hen Egg White Lysoyzme	84
Scheme 3.2	Mechanism for Enzyme Catalysis	146
Scheme 3.3	Bernath and Vieth Model for Second Order Kinetic Behaviour of Lysozyme	154
Chapter For Scheme 4.1	The Synthesis of Estrone Glucuronide Conjugate by the Mixed Anhydride	
	Method	161
Scheme 4.2	Disproportionation of the Mixed Anhydride Reagent	162
Scheme 4.3	The Synthesis of Estrone Glucuronide Conjugate by the Active Ester Method	166
Scheme 4.4	The Synthesis of Estrone Glucuronide	171
Scheme 4.5	Mechanism of the Koenigs-Knorr Coupling of the Bromosugar to Estrone	17

Abbreviations

α	Smoothing Constant
A ₂₈₀	Absorbance at 280 nm
Abs	Absorbance
BBT	Basal Body Temperature
BIP	Basic Infertility Pattern
bp	Base Pairs
СМ	Carboxy-methyl
c type	Chick Type
DCC	Dicyclohexylcarbodiimide
DCU	Dicyclohexylurea
DMF	Dimethylformamide
DMSO	Dimethylsulphoxide
E _o	Total Enzyme Concentration
e	Charge on an electron
E. coli	Escherichia coli
E1G	Estrone Glucuronide
E1G-(H)	Estrone Glucuronide (acid form)
E1G-(Na)	Estrone Glucuronide (Na form)
EDTA	Ethylenediamine Tetra-acetic Acid
ESA	Exponentially Smoothed Average
FE	Forecast Error
FPLC	Fast Protein Liquid Chromatography
FSH	Follicle Stimulating Hormone
GEWL	Goose Egg White Lysozyme
GLC	Gas Liquid Chromatography
g type	Goose type
HEWL	Hen Egg White Lysozyme
HuL	Human Lysozyme
Hz	Hertz
IBC	Isobutylchloroformate

xxiv

I.D.	Internal Diameter	
IEP	Iso-electric Point	
k	Boltzmann's constant	
kb	Kilobase Pairs	
LB	Luria-Bertani Broth	
LH	Luteinising Hormone	
MAD	Mean Absolute Deviation	
M. lysodeikticus	Micrococcus lysodeikticus	
NAG	N-acetylglucosamine	
NAM	N-acetylmuramic Acid	
NFP	Natural Family Planning	
NHS	N-hydroxysuccinimide	
NMR	Nuclear Magnetic Resonance	
PAGE	Polyacrylaminde Gel Electrophoresis	
Pd	Pregnanediol	
PdG	Pregnanediol Glucuronide	
SD	Standard Deviation	
SDS	Sodium Dodecyl Sulphate	
SEn	Substrate Molecule with n Number of Lysozyme Molecules Attached	
SFE	Smoothed Forecast Error	
std. dev.	Standard Deviation	
Т	Absolute Temperature	
T1	Initial Transmittance	
T2	Final Transmittance	
ΔT	Change in Transmission	
T4L	T4 Phage Lysozyme	
TAE	Tris-Acetate Buffer containing EDTA	
TE	Tris-HCl Buffer containing EDTA or Total Estrogens	
TEPDDE	Total Estrogen and Pregnandiol Data Entry	
TEWL	Turkey Egg White Lysozyme	
TS	Tracking Signal	
TLC	Thin Layer Chromatography	

TNBTri-n-butylamineWHOWorld Health Organisation